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Preface

Relatively new research fields such as ambient intelligence, intelligent environ-
ments, ubiquitous computing, and wearable devices have emerged in recent years.
These fields are related by a common theme: making use of novel technologies
to enhance user experience by providing user-centric intelligent environments, re-
moving computers from the desktop and making computing available anywhere and
anytime. It must be said that the concept of intelligent environments is not new and
began with home automation. The choice of name for the field varies somewhat from
continent to continent in the English-speaking world. In general intelligent space is
synonymous to intelligent environments or smart spaces of which smart homes is
a subfield. In this collection, the terms intelligent environments and ambient intel-
ligence are used interchangeably throughout. Such environments are made possible
by permeating living spaces with intelligent technology that enhances quality of
life. In particular, advances in technologies such as miniaturized sensors, advances
in communication and networking technology including high-bandwidth wireless
devices and the reduction in power consumption have made possible the concept of
intelligent environments. Environments such as a home, an office, a shopping mall,
and a travel port utilize data provided by users to adapt the environment to meet
the user’s needs and improve human-machine interactions. The user information
is gathered either via wearable devices or by pervasive sensors or a combination
of both. Intelligent environments brings together a number of research fields from
computer science, such as artificial intelligence, computer vision, machine learning,
and robotics as well as engineering and architecture. Other fields such as human-
computer interaction and sociology deal with the human aspect of the problems.

May 2008 Dorothy Monekosso
London and Tokyo Paolo Remagnino

Yoshinori Kuno

vii



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 Intelligent Environments: Methods, Algorithms and Applications . . . 1
Dorothy N. Monekosso, Paolo Remagnino, and Yoshinori Kuno
1.1 Intelligent Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 What Is An Intelligent Environment? . . . . . . . . . . . . . . . . . 2
1.1.2 How Is An Intelligent Environment Built? . . . . . . . . . . . . . 2

1.2 Technology for Intelligent Environments . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Private Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Public Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.3 Middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Chapter Themes in This Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 A Pervasive Sensor System for Evidence-Based Nursing
Care Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Toshio Hori, Yoshifumi Nishida, and Shin’ichi Murakami
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Evidence-Based Nursing Care Support . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Background of the Project . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Concept of Evidence-Based Nursing Care Support . . . . . . 15
2.2.3 Initial Goal of the Project: Falls Prevention . . . . . . . . . . . . 16
2.2.4 Second Goal of the Project: Obtaining ADL

of Inhabitants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

ix



x Contents

2.4 Overview and Implementations of the System . . . . . . . . . . . . . . . . . 19
2.4.1 Overview of the Evidence-Based Nursing Care

Support System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.2 System Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Experiments and Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.1 Tracking a Wheelchair for Falls Prevention . . . . . . . . . . . . 24
2.5.2 Activity Transition Diagram: Transition of Activities

in One Day . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.3 Quantitative Evaluation of Daily Activities . . . . . . . . . . . . 26
2.5.4 Probability of “Toilet” Activity . . . . . . . . . . . . . . . . . . . . . . 28
2.5.5 Discussion of the Experimental Results . . . . . . . . . . . . . . . 29

2.6 Prospect of the Evidence-Based Nursing Care Support System . . . 30
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Anomalous Behavior Detection: Supporting Independent Living . . . . 35
Dorothy N. Monekosso and Paolo Remagnino
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Unsupervised Classification Techniques . . . . . . . . . . . . . . . 37
3.3.2 Using HMM to Model Behavior . . . . . . . . . . . . . . . . . . . . . 38

3.4 Experimental Setup and Data Collection . . . . . . . . . . . . . . . . . . . . . . 39
3.4.1 Noisy Data: Sources of Error . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.2 Learning activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.1 Instance Class Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.3 Models: Unsupervised Classification: Clustering

and Allocation of Activities to Clusters . . . . . . . . . . . . . . . 43
3.5.4 Behaviors: Discovering Patterns in Activities . . . . . . . . . . 45
3.5.5 Behaviors: Discovering Anomalous

Patterns of Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Sequential Pattern Mining for Cooking-Support Robot . . . . . . . . . . . . 51
Yasushi Nakauchi
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Inference from Series of Human Actions . . . . . . . . . . . . . . 53
4.2.2 Time Sequence Data Mining . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.3 Human Behavior Inference Algorithm . . . . . . . . . . . . . . . . 54
4.2.4 Activity Support of Human . . . . . . . . . . . . . . . . . . . . . . . . . 57



Contents xi

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.1 IC Tag System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.2 Inference of Human’s Next Action . . . . . . . . . . . . . . . . . . . 60
4.3.3 Cooking Support Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Robotic, Sensory and Problem-Solving Ingredients
for the Future Home . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Amedeo Cesta, Luca Iocchi, G. Riccardo Leone, Daniele Nardi,
Federico Pecora, and Riccardo Rasconi
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Components of the Multiagent System . . . . . . . . . . . . . . . 70
5.2 The Robotic Platform Mobility Subsystem . . . . . . . . . . . . . . . . . . . . 71
5.3 The Interaction Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 Environmental Sensors for People Tracking

and Posture Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5 Monitoring Activities of Daily Living . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5.1 Schedule Representation and Execution Monitoring . . . . . 77
5.5.2 Constraint Management in the ROBOCARE Context . . . . . 78
5.5.3 From Constraint Violations to Verbal Interaction . . . . . . . 81

5.6 Multiagent Coordination Infrastructure . . . . . . . . . . . . . . . . . . . . . . . 82
5.6.1 Casting the MAC Problem to DCOP . . . . . . . . . . . . . . . . . . 83
5.6.2 Cooperatively Solving the MAC Problem . . . . . . . . . . . . . 86

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Ubiquitous Stereo Vision for Human Sensing . . . . . . . . . . . . . . . . . . . . 91
Ikushi Yoda and Katsuhiko Sakae
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Ubiquitous Stereo Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.1 Concept of Ubiquitous Stereo Vision . . . . . . . . . . . . . . . . . 93
6.2.2 Server-Client Model for USV . . . . . . . . . . . . . . . . . . . . . . . 93
6.2.3 Real Utilization Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3 Hierarchical Utilization of 3D Data and Personal Recognition . . . . 95
6.3.1 Acquisition of 3D Range Information . . . . . . . . . . . . . . . . . 95
6.3.2 Projection to Floor Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4 Recognition of Multiple Persons and Interface . . . . . . . . . . . . . . . . . 98
6.4.1 Pose Recognition for Multiple People . . . . . . . . . . . . . . . . . 99
6.4.2 Personal Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.4.3 Interface for Space Control . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5 Human Monitoring in Open Space (Safety
Management Application) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.5.1 Monitoring Railroad Crossing . . . . . . . . . . . . . . . . . . . . . . . 101
6.5.2 Station Platform Edge Safety Management . . . . . . . . . . . . 103



xii Contents

6.5.3 Monitoring Huge Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7 Augmenting Professional Training, an Ambient
Intelligence Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
B. Zhan, D.N. Monekosso, S. Rush, P. Remagnino, and S.A. Velastin
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2 Color Tracking of People . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.3 Counting People by Spatial Relationship Analysis . . . . . . . . . . . . . . 113

7.3.1 Simple People Counting Algorithm . . . . . . . . . . . . . . . . . . 113
7.3.2 Graphs of Blobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.3.3 Estimation of Distance Between Blobs . . . . . . . . . . . . . . . . 116
7.3.4 Temporal Pyramid for Distance Estimation . . . . . . . . . . . . 117
7.3.5 Probabilistic Estimation of Groupings . . . . . . . . . . . . . . . . 119
7.3.6 Grouping Blobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8 Stereo Omnidirectional System (SOS) and Its Applications . . . . . . . . . 127
Yutaka Satoh and Katsuhiko Sakaue
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.2 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.3 Image integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.4 Generation of Stable Images at Arbitrary Rotation . . . . . . . . . . . . . . 133
8.5 An example Application: Intelligent Electric Wheelchair . . . . . . . . 136

8.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.5.2 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.5.3 Obstacle Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
8.5.4 Gesture / Posture Detection . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9 Video Analysis for Ambient Intelligence in Urban Environments . . . . 143
Andrea Prati and Rita Cucchiara
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
9.2 Visual Data for Urban AmI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9.2.1 Video Surveillance in Urban Environment . . . . . . . . . . . . . 145
9.2.2 The LAICA Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

9.3 Automatic Video Processing for People Tracking . . . . . . . . . . . . . . 149
9.3.1 People Detection and Tracking from Single

Static Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
9.3.2 People Detection and Tracking

from Distributed Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . 152



Contents xiii

9.3.3 People Detection and Tracking
from Moving Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9.4 Privacy and Ethical Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

10 From Monomodal to Multimodal: Affect Recognition
Using Visual Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Hatice Gunes and Massimo Piccardi
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
10.2 Organization of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
10.3 From Monomodal to Multimodal: Changes and Challenges . . . . . . 164

10.3.1 Background Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
10.3.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
10.3.3 Data Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
10.3.4 Synchrony/Asynchrony Between Modalities . . . . . . . . . . . 171
10.3.5 Data Integration/Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
10.3.6 Information Complementarity/Redundancy . . . . . . . . . . . . 174
10.3.7 Information Content of Modalities . . . . . . . . . . . . . . . . . . . 176

10.4 Monomodal Systems Recognizing Affective Face
or Body Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

10.5 Multimodal Systems Recognizing Affect from Face
and Body Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
10.5.1 Project 1: Multimodal Affect Analysis for Future Cars . . 179
10.5.2 Project 2: Emotion Analysis in Man-Machine

Interaction Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
10.5.3 Project 3: Multimodal Affect Recognition in Learning

Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
10.5.4 Project 4: FABO-Fusing Face and Body Gestures

for Bimodal Emotion Recognition . . . . . . . . . . . . . . . . . . . 184
10.6 Multimodal Affect Systems: The Future . . . . . . . . . . . . . . . . . . . . . . 185
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

11 Importance of Vision in Human-Robot Communication:
Understanding Speech Using Robot Vision and Demonstrating
Proper Actions to Human Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Yoshinori Kuno, Michie Kawashima, Keiichi Yamazaki,
and Akiko Yamazaki
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
11.2 Understanding Simplified Utterances Using Robot Vision . . . . . . . 193

11.2.1 Inexplicit Utterances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
11.2.2 Information Obtained by Vision . . . . . . . . . . . . . . . . . . . . . 194
11.2.3 Language Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
11.2.4 Vision Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
11.2.5 Synchronization Between Speech and Vision . . . . . . . . . . 197
11.2.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199



xiv Contents

11.3 Communicative Head Gestures for Museum Guide Robots . . . . . . . 200
11.3.1 Observations from Guide-Visitor Interaction . . . . . . . . . . . 201
11.3.2 Prototype Museum Guide Robot . . . . . . . . . . . . . . . . . . . . . 203
11.3.3 Experiments at a Museum . . . . . . . . . . . . . . . . . . . . . . . . . . 206

11.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211



List of Contributors

Amedeo Cesta
Institute for Cognitive Science and Technology, National Research Council of Italy,
e-mail: amedeo.cesta@istc.cnr.it

Rita Cucchiara
Dipartimento di Ingegneria dell’Informazione, University of Modena and Reggio
Emilia, Modena, Italy,
e-mail: rita.cucchiara@unimore.it

Hatice Gunes
Faculty of Information Technology, University of Technology, Sydney (UTS),
e-mail: haticeg@it.uts.edu.au

Toshio Hori
Digital Human Research Center, National Institute of Advanced Industrial Science
and Technology, and CREST, Japan Japan Science and Technology Agency,
e-mail: t.hori@aist.go.jp

Luca Iocchi
Dipartimento di Informatica e Sistemistica, University of Rome, La Sapienza, Italy,
e-mail: iocchi@dis.uniroma1.it

Michie Kawashima
Faculty of Liberal Arts, Saitama University, Saitama, Japan,
e-mail: kawashima411@nifty.com

Yoshinori Kuno
Graduate School of Science and Engineering, Saitama University, Saitama, Japan,
e-mail: kuno@cv.ics.saitama-u.ac.jp

Riccardo Leone
Institute for Cognitive Science and Technology, National Research Council of Italy,
e-mail: riccardo.leone@istc.cnr.it

xv



xvi List of Contributors

Dorothy N. Monekosso
Kingston University, Kingston upon Thames, London, UK,
e-mail: n.monekosso@kingston.ac.uk

Shin’ichi Murakami
Digital Human Research Center, National Institute of Advanced Industrial Science
and Technology and Graduate School of Engineering, Tokyo University of Science,
e-mail: s-murakami@aist.go.jp

Yasushi Nakauchi
University of Tsukuba, Tsukuba, Japan,
e-mail: nakauchi@iit.tsukuba.ac.jp

Daniele Nardi
Dipartimento di Informatica e Sistemistica, University of Rome, La Sapienza, Italy,
e-mail: nardi@dis.uniroma1.it

Yoshifumi Nishida
Digital Human Research Center, National Institute of Advanced Industrial Science
and Technology, and CREST, Japan Japan Science and Technology Agency,
e-mail: y.nishida@aist.go.jp

Federico Pecora
Institute for Cognitive Science and Technology, National Research Council of Italy,
e-mail: federico.pecora@istc.cnr.it

Massimo Piccardi
Faculty of Information Technology, University of Technology, Sydney (UTS),
e-mail: massimo@it.uts.edu.au

Andrea Prati
Dipartimento di Scienze e Metodi dell’Ingegneria, University of Modena and
Reggio Emilia, Modena, Italy,
e-mail: andrea.prati@unimore.it

Riccardo Rasconi
Institute for Cognitive Science and Technology, National Research Council of Italy,
e-mail: riccardo.rasconi@istc.cnr.it

Paolo Remagnino
Kingston University, Kingston upon Thames, London, UK,
e-mail: p.remagnino@kingston.ac.uk

S. Rush
Kingston University, Kingston upon Thames, London, UK,
e-mail: s.rush@kingston.ac.uk

Katsuhiko Sakaue
National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan,
e-mail: k.sakaue@aist.go.jp



List of Contributors xvii

Yutaka Satoh
National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan,
e-mail: yu.satou@aist.go.jp

S.A. Velastin
Kingston University, Kingston upon Thames, London, UK,
e-mail: s.velastin@kingston.ac.uk

Akiko Yamazaki
School of Systems Information Science, Future University-Hakodate, Hakodate,
Japan,
e-mail: akikoy@fun.ac.jp

Keiichi Yamazaki
Faculty of Liberal Arts, Saitama University, Saitama, Japan,
e-mail: yamakei@post.saitama-u.ac.jp

Ikushi Yoda
National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan,
e-mail: i-yoda@aist.go.jp

B. Zhan
Kingston University, Kingston upon Thames, London, UK,
e-mail: b.zhan@kingston.ac.uk



Chapter 1
Intelligent Environments: Methods, Algorithms
and Applications

Dorothy N. Monekosso, Paolo Remagnino, and Yoshinori Kuno

1.1 Intelligent Environments

The roots of the research field can be traced back a few years starting with home
automation. It has long been a dream to have a home that responds to the occupant’s
needs, anticipating needs and adapting to the occupant. The goals are generally to
maximize comfort and safety, optimize energy usage, enhance general well-being,
and eliminate strenuous repetitive activities. Research in this area takes on different
labels in the wider research community around the world. Terms such as intelligent
environment, smart spaces, smart homes, and ambient intelligence are often used
interchangeably; not to mention related fields such as pervasive computing, ubiq-
uitous computing, and wearable devices. Intelligent environments are living spaces
with embedded sensors that sense and effectors that react to the occupants. The
occupant need not wear or carry a computing-capable device, although wearable
devices may augment and provide context awareness. The resurgence of the field
is due in part to advances in technology that enable intelligent environments to be
constructed. Particularly important are advances in sensor and actuator technology,
and the development of networking including wireless technology as well as the
miniaturization and the reduction in power consumption of the aforementioned de-
vices and equipment. Miniaturization is critical as it not only allows devices to be
embedded in the environment and out of sight, but also enables the devices to be
made wearable.
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1.1.1 What Is An Intelligent Environment?

It is often easier to describe with examples of applications than define. In this chap-
ter, it is defined as a living or working space that "interacts in a natural way and
adapts to the occupant". By natural it is meant in a manner that is natural for a hu-
man occupant and thus it implies speech. Adaptation refers to the fact that it learns
to recognize and change itself depending on the identity and activity undertaken by
the occupant with minimal intervention from the occupant. It must also adapt to
natural changes such as those resulting from seasonal changes. In short, to qualify
for the adjective intelligent, the environment must not only automate and facilitate
everyday activities, it must also be adaptive and communicate in a natural way with
humans. It must respond and adapt to users through learning. Early research tar-
geted for the most part labor-intensive tasks in the home with the introduction of
household appliances to reduce the impact of daily chores. These appliances were
for the most part fixed at one location in the home. It is not uncommon nowadays
to carry a number of smart portable devices such as PDAs and mobile phones but as
with household appliances, their utility is limited as individual devices. The power
of technology comes to light when all these can communicate and make collective
decisions to enhance the user experience. More recently researchers, in the field of
intelligent environments and related research fields have sought to extend the con-
cept with intelligence everywhere and anywhere, connecting locations so that the
intelligence travels with the user.

1.1.2 How Is An Intelligent Environment Built?

Intelligent environments are made possible by permeating spaces with intelligent
technology that enhances quality of life. Environments range from private to public
spaces and include the home, the office, shopping malls, airports and seaports, train
stations to mention a few and utilize data provided by users to adapt the environ-
ment to meet the user’s needs and improve human-machine interactions. The user
information is gathered either via wearable devices or by pervasive sensors or by a
combination of both. Thus the development of an intelligent environment requires
a collaborative effort from a number of disciplines; from computer science, such as
artificial intelligence, computer vision, machine learning, and robotics to mechani-
cal and material engineering and architecture. Other fields such as human-computer
interaction, psychology, and sociology deal with the human aspect of the problem.

1.2 Technology for Intelligent Environments

Advances in networking technology and the miniaturization of devices and sensors
have made possible the intelligent environment. A typical home today contains a
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large number of embedded computers, each with a dedicated function and more of-
ten than not situated at a fixed location. Embedded computers are found not only
in high-tech equipment such as PDAs, iPods, and mobile phones but also in the
traditional household appliances such as cookers, washing machines, and fridges.
Although useful as individual appliances and devices, their utility is greatly en-
hanced if connected through a network to allow communication between the de-
vices and appliances. A system in which the fridge can command the main home
computer to place an online order for milk because it is running low on milk is far
more useful than any one of the appliances alone. In terms of sensing, of particular
relevance to intelligent environments are technologies for visual and audio sensing.
Intelligent environments will typically contain embedded cameras and microphones.
There are a variety of other sensors of use in an intelligent environment, for exam-
ple to monitor ambient characteristics such as temperature and humidity, to detect
human presence through motion or pressure sensors, not forgetting bio-sensing for
monitoring health status. In the next section, we shall see examples of these sen-
sors deployed in private and public spaces. The sensors monitor the space and the
humans within the space, allowing human activities to be recognized and behaviors
analyzed. At the boundary between human and computer, interfaces are critical. The
study of Human-Computer Interaction (HCI) grew alongside the developments in
computer and related technology; greatly influencing technological design, for ex-
ample display technology. Advances in display technology and the presentation of
information therein have had a significant impact on the development of intelligent
environment as a means of interaction. The applications of display technology can
be seen in projects such as the iRoom at Stanford University. Similarly, information
capture is no longer restricted to data entry using keypad entry systems. There are
numerous technologies that facilitate information entry in more natural ways, from
finger touch screens, handwriting and sketching recognition systems, to speech and
gesture recognition systems. Some novel developments for capturing information
are seen in the MIT Oxygen projects (e.g., AIRE). The goal in developing intelli-
gent spaces is to enhance the user’s experiences, maximize energy efficiency, and
provide a safe and secure environment. The environment must adapt to one or more
occupants and interact in a manner that is natural to humans. In order to adapt, the
technology within the environment must sense and learn user preferences. Thus an
important objective in intelligent environment research is to understand and predict
human behavior and preferences based on sensed data be it audiovisual or other
simple sensors such as temperature, and motion. It may be that the environment
must understand the current activity in order to predict which effectors to activate
next, e.g., which light to switch on or music to play; alternatively, it may be that
the overall behavior is of interest as in monitoring health status for assisted liv-
ing. The former can be achieved by modeling patterns in low-level actuator status
while the latter can be achieved by modeling the occupant’s patterns of behavior.
Underlying technology that enables human behavior understanding and predictions
includes detecting and tracking objects and person, persons and gesture recognition,
gaze tracking from visual data, and speech and speaker recognition from audio data.
Examples of these are discussed in the next section.
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1.3 Research Projects

There are a number of projects in the area of intelligent environments taking place
for the most part in universities and research centers around the world. We iden-
tify broad categories in intelligent environments research; the classification is based
on the test bed or scenario. In the first category and probably the most extensively
researched are private spaces which include homes. In the second category are pub-
lic spaces such as meeting room, shared work environments or any other shared
environment, e.g., elevator. The third category is the middleware that allows smart
technologies to interact. In the next three sections, some examples are reviewed in
each category. This is not a comprehensive list but a starting point; we do, however,
attempt to review some of the most notable.

1.3.1 Private Spaces

Notable projects addressing problems of intelligent environments in the category of
private spaces include the Intelligent Dormitory (iSpace) [2], the Adaptive Home
project of Mozer [10], the MavHome project [5], and the Aware home [18]. The
projects discussed tackle progressively more complex spaces and occupy larger
test beds.

The Intelligent Dormitory (iSpace) [8, 9] is an ongoing project at Essex Univer-
sity (UK) aimed at developing an Intelligent Environment that continuously adapts
so that the occupant does not explicitly interact with environment actuators. The
goal is to make the environment economical, safer, and more comfortable. The test
bed for the iSpace project is a furnished laboratory closely resembling a typical stu-
dent room at the University of Essex. Technology within the iSpace monitors and
learns the occupant’s behavior. Sensors monitor while actuators allow the occupant
to modify the iSpace environmental conditions. The devices include temperature
sensors, humidity, motion sensors, and a matrix of light sensors across the room.
The occupant’s identity is determined by access control to the iSpace. In addition,
a video camera allows external monitoring of the room. A number of actuators in-
clude: air circulators; fan heaters; a door lock actuator; motorized vertical blinds;
automated window openers, and a light dimmer. The devices communicate with
one another for coordinated action.

Among the first attempts at developing an adaptive home is Mozer [10] with the
Adaptive Home. While iSpace focuses on a single room with a single occupant,
the objective of the Adaptive Home was to develop a home that essentially pro-
grams itself by observing the lifestyle and desires of the inhabitants, and learning
to anticipate and accommodate their needs. The goals are prediction to anticipate
the needs of the occupant and efficient energy usage; for example, predicting the
occupants’ return to begin heating the home at an appropriate time and detecting
statistical patterns in energy usage.
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MavHome is a research project at the University of Texas at Arlington. The goal
is to create a fully integrated, versatile intelligent home that learns from its occu-
pants and makes its own decisions for optimizing the home’s operations. Foremost is
maximizing the comfort, safety, security, health, money savings and enjoyment of the
people who live there [11, 12, 13]. MavHome takes the concepts found in iSpace and
the Adaptive Home a step further. It is a completely integrated home and includes
all the sensors for monitoring behavior and actuators for local and remote control
found in the iSpace and the Adaptive Home. In addition, it continuously collects
health data on occupants, alerting them to short-term and long-term changes in their
health. Dealing with multiple occupants adds complexity to activity detection and
behavior modeling. Other technology found in MavHome, include robots and smart
appliances to aid occupants with reduced mobility. The refrigerator takes stock of
inventory and replenishes itself by ordering groceries online, the microwave oven
retrieves recipes online for dinner, while a robot vacuums the floors and another ro-
bot cuts the grass. The home entertainment system automatically records television
programming it knows might be of interest to occupants. The project takes the con-
cept even further to allow the networking of similar smart home for the purpose of
energy conservation.

The Georgia Tech Aware Home [18] Research Initiative beginning in 1998 is
a three-pronged project dealing with chronic care management in the home, future
tools for the home, and digital entertainment and media. The test bed is at the Geor-
gia Tech Broadband Institute Residential Laboratory, a purpose-built three-story,
5040-square-foot home for the design, development, and evaluation of technolo-
gies. In the chronic care management as well as monitoring as in other projects,
interaction and visualization are key factors. A number of display tools have been
developed for visualizing and displaying the results of health monitoring. The digi-
tal entertainment and media strand focuses very much on ease of use and networking
of media devices as well as sharing media content within and between homes. Net-
working is a key feature in a truly intelligent environment; the future tools strand
has for aim to simplify the setting up, security, and other networking related issues.

Little has been said so far about location-aware or context-aware application. An
important issue in intelligent environment is localization. AwareHome addresses
the issue with iCam and TrackSense. iCam simultaneously calculates its location
and that of another object within the environment. TrackSense provides indoor
positioning.

An important issue not often mentioned in the context of intelligent environment
is user acceptance. The Aware project directly tackles acceptance issues as a related
project.

1.3.2 Public Spaces

So far private spaces projects were described. Most if not all technology and tools
developed in the context of private spaces are relevant to public spaces. The main
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differences encountered when dealing with public spaces relate to (a) the number of
occupants, (b) different objectives (c) nature of activities and d) more complex pri-
vacy concerns. The number of occupants is potentially greater in public spaces such
as airport, shopping mall and so detecting activities presents greater challenges. Al-
though the overall goals of enhanced user experience, energy minimization, safety,
and security are the same, the relative importance of the aims is different. For ex-
ample, traveling through an airport, the aim is to get from the entrance to the plane
with minimal stress and thus a key issue is personalized information presentation;
tools and devices need to be location and context aware. The nature of activities in
publics versus those in private spaces is more likely ephemeral and thus behaviors
may be more difficult to model. Lastly but very important, privacy issues are more
complex because acceptance of technology varies from person to person.

A number of research projects in the category of public spaces include MIT’s
Project Oxygen [19] and the Project AIRE, the Intelligent Classroom [21], the
iRoom project [3], the HyperMedia Studio [4], and the Intelligent Elevator [22].
The physical space varies between the projects described, ranging from a single
meeting room to larger halls and distributed areas. The description in this section
focuses on tools and applications rather than devices. The latter are much the same
as those described for private spaces.

The Oxygen project at MIT encompasses a group of projects. The Intelligent
Room is a highly interactive environment that uses embedded computation to ob-
serve and participate in normal, everyday events, such as collaborative meetings.
The Intelligent Room is populated with a number of tools purposely developed such
as MeetingView, Annotea, and ASSIST. These augment a public space with basic
perceptual sensing, speech recognition, and distributed agent logic. MeetingView is
a tool to record the progress of a meeting in an intelligent meeting room capturing
the format of the meeting and providing tools for analysis of the content.

Computer-based equipment and devices can be very useful tools but become in-
creasingly difficult to operate or program with added functionality. D. Franklin at
the University of Chicago has for goal to give devices and systems the capability to
understand the user actions and respond so that the user can interact with the device
in a manner that is more natural. In this project, the test bed is a classroom, the In-
telligent Classroom. Cameras and microphones are employed to make sense of the
speaker’s actions and infer the speaker’s intentions from those actions. The system
attempts to assist the speaker by using knowledge of their intentions to decide on
the next action; anticipating the speaker’s actions. In the Intelligent Classroom, the
speaker can concentrate on the lecture without learning to operate the classroom
equipment; the Intelligent Classroom will assist when needed [20, 21].

The next project described differs somewhat from the previous in that the objec-
tives are to investigate the design of rooms and integration of devices rather than cre-
ating an intelligent space for a specific purpose. Nevertheless the test bed is a public
arena. The iRoom, an experimental research facility at Stanford University, is part of
the interactive workspaces (iWork) project. The aim of the interactive workspaces
project is to investigate the design and use of rooms containing one or more large
displays with the ability to integrate portable devices and to create applications
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integrating the use of multiple devices in the space. The first project within the
iWork larger project was the Interactive Mural, a four-projector tiled display. It in-
cluded a pressure-sensitive floor, which tracked users in front of the display. A later
iRoom contains three touch-sensitive whiteboard sized displays along the side wall,
and a display with pen interaction called the interactive mural built into the front
wall.

The Hypermedia Studio project brings together technology in the form of
Intelligent Environments and arts. It creates original artistic works and systems com-
bining interactive, performative, hypermedia content for both location-based appli-
cations (media/performance/installation events) and distribution-based applications
(television, internet and dedicated networks).

In a class of its own but within the public space category is the intelligent elevator.
Known as the destination elevator, this type of elevator is endowed with intelligent
behavior. Destination-based elevators are so called because of the dispatching algo-
rithm used that requires passengers to enter their destination floor on an entry device
prior to entering the elevator car. Once the passengers enter the destination they are
directed to an assigned car. Prior knowledge of the destination allows the control to
dispatch in a most efficient manner. Once in the elevator, there is no more interaction
between passenger and elevator control. The design of the data entry and displays
is such that it is suitable for use by visually impaired or physically disabled passen-
gers. Koehler and Ottiger [22] provide a review of the technology behind destination
elevators.

1.3.3 Middleware

A requirement for an intelligent environment is the middleware that integrates de-
vices, sensors, and effectors. Most projects have developed middleware that meets
the requirements and integrates a specific system. An alternative approach is to de-
velop generic reusable middleware. Microsoft in the context of their EasyLiving
[1] project developed a prototype system for building intelligent environments. It
is a software toolkit to construct intelligent environments. The prototype middle-
ware comprised a distributed programming system of agent processes running on
multiple computers, computer vision software to track people and maintain each
person’s identity, a database of a geometric model describing objects and people,
and an event system and scripting system that can trigger actions based on people’s
movement.

While the EasyLiving middleware came from the development of an intelligent
environment, the Amigo Project’s main objective was to develop middleware. The
aim was to develop middleware that dynamically integrates heterogeneous systems
to achieve interoperability [14] between services and devices to connect in a net-
work home appliances (heating systems, lighting systems, washing machines, re-
frigerators), multimedia and personal devices (mobile phones, PDAs). The network



8 D.N. Monekosso et al.

extends between homes of friends and relatives allowing the use of services across
homes [15, 16, 17].

1.4 Chapter Themes in This Collection

This book comprises ten chapters by researchers from Europe, Asia, and Australa-
sia and thus provides a broad view of the current state of Intelligent Environments
on three continents. As discussed in the preface, the research field though now well
established has a different designation in different parts of the world. Ambient In-
telligence is a term well understood in Europe. Although the terms Intelligent En-
vironments and Ambient Intelligence are not often used in Japan, a great deal of
research has been conducted in Japan that directly relates to these topics. In particu-
lar, research has been carried out in pervasive computing and ubiquitous computing,
as well in computer vision and robotics. We, the editors, have thus settled for a ti-
tle that attempts to bridge over the linguistic constraints in the hope that the title
adequately reflects the content for a global audience.

The Assisted Living (AL) theme runs through contributions from Hori et al. in
Chapter 2 and Monekosso and Remagnino in Chapter 3. Quality of life is enhanced
by creating an intelligent environment to support persons with reduced cognitive
and/or physical capacity. Both address the issue of improving the care of the el-
derly with unobtrusive sensors embedded in the environment. Hori et al. address
the problem in a communal environment, aimed at persons requiring intensive care,
while Monekosso and Remagnino address the problem of caring remotely to allow
independent living. More specifically, Hori et al. present an ultrasonic sensor sys-
tem that detects and tracks wheelchairs and people. They show the applications of
this system within the context of nursing care. In particular, the system is used to
prevent users ("inhabitants" in their words) from falls and records the daily living
activities of each user in order to provide better care. Monekosso and Remagnino
present a system that can detect a deviation from an inhabitant’s daily routine of ac-
tivities and alert a caregiver or family. Still within the assistive living theme, Cesta
et al. (Chapter 5) tackle the problem with a robot capable of supporting and assist-
ing the inhabitant in their home. Nakauchi (Chapter 4) provides another example
of assisted living though the target audience now is the wider population. In par-
ticular, Nakauchi presents a cooking-support robot system. The system learns the
sequences of human actions from observing cooking and other human activities. It
infers the next action from the learning results and suggests to the user what to do
next through voice and gesture.

Key to many intelligent environments is the capability to identify individuals
and recognize human behaviors within the environments. The most common sen-
sor technology for this purpose is imaging. The imaging devices may be static as
Yoda and Sakaue (Chapter 6) who propose a Ubiquitous Stereo Vision, a network
of multiple stereo-vision systems that recognizes the actions of people in their envi-
ronments. In addition to detailed observation of human activities in the laboratory,
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they describe several experiments in which people were monitored in open spaces,
such as railroad crossings, train station platforms, and a pavilion at the Aichi Expo
2005. The theme is also found in Zhan et al. (Chapter 7).

A challenge for visual sensing is the field of view of the camera. Satoh and
Sakaue (Chapter 8) propose a Stereo Omnidirectional System (SOS). The system
is composed of twelve sets of three-camera stereo units (i.e., total 36 cameras) that
provide omnidirectional color images and range data simultaneously in real time
with a complete spherical field of view. As an application of the system they de-
scribe an intelligent wheelchair.

From imaging tools to applications in Ambient Intelligence, Prati and Cucchiara
(Chapter 9) address visual sensing for very challenging applications; their environ-
ment is the urban outdoor. This has the additional complexity of numerous sources
of data, and range of very interesting and non trivial applications. They address
video data analysis, focusing in particular on the use of computer vision techniques
for monitoring public parks.

As well as recognizing behavior it is often necessary to detect finer details in the
environment such as the human affect. A major limitation of affective computing
has been that most of the research on emotion recognition has focused on one sin-
gle sensor modality at a time and especially the face display. Gunes and Piccardi
(Chapter 10) introduce recent advances in multi-modal affect, focusing on systems
that include vision as one of the input modalities, and attempt to analyze affective
face and body movement either as a pure monomodal system or as part of a multi-
modal affective framework.

Robots can be useful components in intelligent environments; to assist or sup-
port humans in need of assistance. Three chapters are related to robots. The first is
the robot helper described by Cesta et al. (Chapter 5) that supports older persons
in their home and the second is the cooking support system (Chapter 4) described
by Nakauchi. Finally, Kuno et al. (Chapter 11) discuss the importance of vision
in human-robot communication in the context of helper robots. They describe two
cases: a helper robot and a museum guide robot. The helper robot can respond to
simplified utterances with deixis or ellipsis by recognizing human actions with com-
puter vision. The museum guide robot moves its head to display appropriate non-
verbal information to human vision while explaining exhibits.

1.5 Conclusion

In this introductory chapter, intelligent environment was defined and the require-
ments for such an environment discussed. Research into intelligent environment
evolved from the simple home automation projects to adaptive systems. With the
proliferation of smart devices and networking in particular wireless networking,
the future of intelligent environment research is integration of all technologies re-
quired to create a truly adaptive environment. More specifically, it is developing the
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necessary middleware that will allow devices from any sources to be plug and play
and interact.
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Chapter 2
A Pervasive Sensor System for Evidence-Based
Nursing Care Support

Toshio Hori, Yoshifumi Nishida, and Shin’ichi Murakami

Abstract This chapter introduces a pervasive sensor system for nursing homes,
where the daily activities of inhabitants are continuously monitored. Deterioration
in the quality of nursing care for inhabitants of nursing homes has become a ma-
jor problem in an aging society. The authors address this problem with the use of
pervasive sensors embedded in a nursing room. The sensors monitor the position
of a subject and his wheelchair, then the information is utilized to provide prompt
assistance to the subject and also to log their daily movement. In our experiments,
we obtained the subject’s position data for a month and a half in a nursing home in
Tokyo and analyzed the subject’s activity transitions, the number of times the sub-
ject went to a restroom, and other important factors for nursing care. This chapter
presents the concept of evidence-based nursing care, overview of the current system
and experimental results obtained.

2.1 Introduction

The rapid development of sensing and communication technology has enabled us
to monitor daily activities in our living environment. It has also enabled intelligent
spaces in which the behavior of inhabitants is monitored with pervasive sensors and
services are provided based on the history and current conditions for the purpose of
enhancing quality of life. This has become an important research field in computer
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science and robotics. When we develop such intelligent spaces, research on dealing
with a variety of information obtained in our daily lives quantitatively must be em-
phasized especially because it is the key to provide useful and appropriate support
for persons in the space. Indeed, our daily lives are the most familiar matter for us,
but they have seldom been evaluated quantitatively. Therefore, we must pursue the
methodologies of (1) monitoring persons and objects in the environment, (2) analyz-
ing the data and abstracting meaningful information from the data, and (3) modeling
and simulating daily lives of persons statistically.

Concerning the monitoring methodology, sensing technology in general and per-
formance of sensors have advanced greatly but there are no or few principles for
obtaining data of daily living. Even if there are a large number of sensors installed
in a space, meaningful data cannot be obtained from these if the system designers
do not have a clear view of the goal. That is, the monitoring methodology is the
basis of the other methodologies and is influenced by them at the same time.

The data analysis and abstraction methodologies are closely related to the mod-
eling and simulation methodology. When we develop a daily life model of a person
and a simulator of his/her daily life, we must analyze the data obtained keeping in
mind the objectives. That is, the model or the simulator regulates the analysis meth-
ods, and we cannot get any useful information or good models from the data if we
use inappropriate analysis methods.

In this chapter, the authors introduce a pervasive sensor system for nursing
homes. This is a collaborative research project with our research group and a nursing
home in Tokyo, Japan. We visited the nursing home before developing the system
and interviewed caregivers to investigate problems in the home. Then, we designed
a sensor system to meet the requirements of caregivers and installed it in a nurs-
ing room in the home. This chapter presents the background of this collaborative
research, system overviews and experimental results obtained in the nursing home.

2.2 Evidence-Based Nursing Care Support

2.2.1 Background of the Project

Statistics published in 2004 by The Ministry of Health, Labour and Welfare of Japan
(MHLW) show that the number of caregivers working in nursing homes and that
of old persons who use or stay in the homes were 62,306, and 49,7483, respec-
tively [10]; this means that one caregiver has to support 8.0 old persons on average
in the homes. The imbalance between the numbers of caregivers and old persons
will likely increase and certainly impose a burden on caregivers, so we need to take
some measures to alleviate the daily tasks of caregivers.

From our interview of caregivers in a nursing home, there are many tasks required
of caregivers in nursing homes and they are classified into the following two types:
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Direct tasks Tasks in which caregivers have direct contact with inhabitants. They
include personal care, such as feeding, toileting, bathing, and sup-
port of transfer between a bed and a wheelchair.

Indirect tasks Tasks in which caregivers do not contact inhabitants directly. They
include patrolling, recording daily reports of each inhabitant’s ac-
tivities, and designing/evaluating the care plan of each inhabitant.

The direct tasks are mainly based on skills that can be instructed at nursing schools
and from skilled caregivers to novices. On the other hand, not all skills for the indi-
rect tasks are transferable between caregivers.

For example, designing and evaluating care plans require precise and insightful
knowledge of each inhabitant, but such knowledge is not described quantitatively
but obtained through experience by each caregiver at present. That is, care plan-
ning and its evaluation rely principally on the intuition and experience of each care-
giver, and the quality of nursing care and care plans varies between caregivers. To
overcome the situation and provide the same quality of services for all the inhabi-
tants, objective criteria for designing/evaluating care plans are necessary in nursing
homes.

2.2.2 Concept of Evidence-Based Nursing Care Support

One of the candidates for the criteria mentioned above is the quantitative daily ac-
tivity data of the inhabitants. If the activities of daily living (ADL) of each inhab-
itant are recorded quantitatively and presented to caregivers, they can understand
the condition of inhabitants much better than by relying only on their subjective
observations and intuition.

The system presented in this paper contributes to obtaining ADL of the inhabi-
tants in the nursing home quantitatively by pervasive sensors. The authors call these
quantitative observation data the evidence (of ADL). If the system provides the same
evidence to all the caregivers, it will enable caregivers to establish effective care
plans and also to provide the same quality of services for all the inhabitants. The au-
thors call this an evidence-based nursing care.

In the medical field, concepts of evidence-based medicine (EBM) and evidence-
based nursing (EBN) became popular in the late 1980’s. EBM is the process of
systematically reviewing, appraising and using clinical research findings to aid the
delivery of optimum clinical care to patients, and EBN is the process by which
nurses make clinical decisions using the best available research evidence, their clin-
ical expertise and patient preferences. Wallin et al. conducted research examining
the factors that promote EBN [19]. They concluded that supportive leadership, facil-
itative human resources, activity in seeking new research and enhanced implemen-
tation of research findings in clinical practice are the keys.

The evidence-based nursing care proposed by the authors is slightly different
from EBN. The word “evidence” in our concept indicates the quantitative ADL
data of each inhabitant obtained by the system whereas that word implies mainly
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research evidence in EBN. That is, our concept concentrates on the personal evi-
dence whereas EBN concentrates on the public evidence.

2.2.3 Initial Goal of the Project: Falls Prevention

When the authors started this collaborative research project with a nursing home
in Tokyo, Japan, we were initially requested to develop a system to prevent falls/
tumbles of the inhabitants using our ultrasonic sensor technology [8, 13].

According to the caregivers in the nursing home, wheelchair users tend to fall
down from their beds or their wheelchairs when they transfer between bed and
wheelchair or between wheelchair and toilet seat. It is also likely that old people
who suffer from senile dementia tumble from their beds when they try to sneak
out of the bed. This is statistically significant: a report from the MHLW in 2001
indicates that falls were the most common type of injury1 (50.0%) that occurred in
nursing homes in Japan and the third most common injury was tumbles (9.3%). That
is, injuries in nursing homes will dramatically decrease if we can prevent falls and
tumbles. This is one of the challenging research themes in welfare and this has been
our initial goal of the project.

When we interviewed the caregivers, they told us that they had been using several
kinds of sensors to detect and prevent such injuries from occurring. Figure 2.1 shows
two types of sensors used in the home. Figure 2.1 (a) is a floor mat sensor at bed
side, which detects falls from bed, and Figure 2.1 (b) is a touch sensor on a handrail
of a bed, which detects a person sneaking out of the bed. However, those sensors
had little effect on preventing injuries because (1) the inhabitants, though suffering
from dementia, often learn how to escape being detected by the sensors, (2) the

Floor Mat
Sensor

Touch Sensor

(a) Floor mat sensor at bed side (b) Touch sensor on a handrail
of a bed

Fig. 2.1 Sensors used in a nursing home

1 In this paper, we do not use the word accident but injury, based on the concept that accidents do
not occur by chance, but are preventable.
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sensors often emit false alarms when, for example, a person turns over and touches
a sensor by chance while sleeping, and (3) the sensors can detect but cannot prevent
injuries even if they work correctly. Therefore, the fall prevention system requires
the functions of (i) monitoring the subject all the time, (ii) detecting injury-prone
activities beforehand, and (iii) calling caregivers in time to support transfer from/to
a wheelchair before the fall injuries actually occur.

From the discussion with caregivers, we determined the following as the injury-
prone activities which should be detected by the system: (a) entering a toilet, (b) ap-
proaching a bed, and (c) getting up and moving out of a bed, where transfer will
occur after those activities. The system works as follows: it monitors the subject
all the time and, when it observes one of those activities, it sends an alarm to care-
givers by an existing nurse call line. As we had been developing an Ultra Badge
system which obtains 3D position of small tags (we call the tag an Ultra Badge)
continuously, we installed the system in one nursing room in the home.

But there was a problem. According to the caregivers, more than 90% of the
inhabitants of the nursing home suffer from dementia so the caregivers cannot expect
the inhabitants to put on any sensors by themselves. Moreover, we could not use
contact-type sensors because they were often thrown away when the subject of our
experiments felt uncomfortable. So we had to monitor the subject without attaching
any sensors directly on his body. To solve this problem, we decided to attach a
sensor (Ultra Badge) to a wheelchair which the subject uses. By monitoring the
wheelchair’s position, the system can detect activities (a) and (b). To detect activity
(c), we developed a new sensor system. They are introduced in Sect. 2.4.

2.2.4 Second Goal of the Project: Obtaining ADL of Inhabitants

When the wheelchair locator subsystem began working stably in the nursing home,
the authors had a meeting with the caregivers and showed them some experimental
results of wheelchair tracking. Results shown were the trajectory of a wheelchair,
such as Figure 2.11, during one-hour periods, and one of the results indicated that
the subject went to the toilet one night, though no caregiver had noticed such activity
at all.2 Neither was there any written record of the activity. Watching the results, a
caregiver indicated that the system was effective in obtaining ADL of inhabitants
automatically.

As mentioned previously in Sect. 2.2.1, the number of caregivers in the nursing
homes is much smaller than that of the old persons, so it is impossible to monitor
activities of all the inhabitants all the time, especially during the night. On the other
hand, caregivers are expected to design/evaluate care plans for each inhabitant, and
require precise knowledge about each inhabitant for the care planning/evaluation.
But currently, the planning task relies only on the intuition and experience of each

2 We had not connected the system and a nurse call line yet because the system was unstable at
that time.
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caregiver. They need some means to obtain the conditions of each inhabitant prop-
erly and some objective criteria for designing/evaluating care plans.

The wheelchair locator subsystem monitors the position of a wheelchair only and
it cannot know what the person is actually doing at all. But, according to the care-
giver, even the position of each inhabitant is not always known to caregivers, as that
experimental result revealed, so they wanted to know the location of the subject by
the system. In that meeting, the caregivers requested the authors to analyze the posi-
tion data as his ADL, and hence we set our second goal of this project as obtaining
ADL of inhabitants.

Compared with the initial goal of the system, i.e., falls prevention, which is in-
tended to be a prompt support for caregivers and inhabitants, the second goal aims
at establishing long-term support for caregivers. The system obtains ADL of the in-
habitants quantitatively and continuously as the evidence, and the caregivers provide
proper nursing care for each inhabitant based on the evidence. As was mentioned
before, this is the concept of evidence-based nursing care and, therefore, we call
the system which supports this concept the Evidence-Based Nursing Care Support
System.

2.3 Related Work

Stanford introduced a nursing home, the Oatfield Estates, in an article that he pub-
lished in IEEE Pervasive Computing [18]. The home had employed IR (infrared)
and RF (radio frequency) wireless communication tags not only for surveillance but
also for monitoring the health condition of the inhabitants.

Sixsmith and Johnson [16] developed a fall detection system. They employed an
array of IR sensors to obtain human posture images and detected falls by a neural
network classifier. However, images were too coarse to detect falls correctly and the
false recognition rate was high.

Srivastava et al. developed an embedded sensor network system for Smart
Kindergarten [2, 17]. They used wearable small tags to capture interactions among
students, teachers, and common classroom objects. They integrated many kinds of
sensors, such as accelerometers, magnetic field, pressure, and light sensors, into the
badge in combination with a DSP and a micro-controller, and the badge communi-
cated with the environment-side system using Bluetooth.

Abowd and Price are co-directing The Aware Home Project [1, 11] at Georgia
Institute of Technology. They built a three-story house as a living laboratory and em-
bedded cameras, microphones, and other sensors in every room in the home. One of
the focuses of their research is “Context-Awareness,” that is, the system recognizes
activities of the residents by embedded sensors and provides useful information for
them based on the data obtained by the sensors.

The CareMedia is a research project at Carnegie Mellon University [7]. The re-
searchers installed four cameras and microphones in a nursing home in Pittsburgh
and recorded video images over a week. Analyzing the video, they tried to track the
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movement of each inhabitant and to extract their activities and interaction patterns
at that place automatically [3].

Wilson solved the simultaneous tracking and activity recognition (STAR) prob-
lem [20]. He stated that people tracking can be improved by activity recognition and
vice versa, then solved the problem using a particle filter.

Harada et al. developed small wireless devices for collecting life logs, which are
the records of experiences in daily life [5]. They tried to predict behavior candidates
which are likely to occur soon to provide appropriate supports [12].

There was an interesting study reported by Harmo et al. in the IEEE/RSJ IROS
2005 conference [6]. In this study, the authors surveyed the needs for elderly care
by questionnaires and interviews given to the old people, caregivers and the general
public. The paper suggested that we must consult the actual users about their needs
when we develop real applications.

2.4 Overview and Implementations of the System

2.4.1 Overview of the Evidence-Based Nursing Care
Support System

We employed ultrasonic sensors developed by the authors to remotely monitor the
trajectory of a wheelchair and the position of the subject in bed. The system is
composed of two subsystems: a wheelchair locator subsystem and an ultrasonic
radar subsystem. Figure 2.2 shows a schematic diagram of the proposed system.

The wheelchair locator subsystem tracks the position of a wheelchair. We at-
tached an ultrasonic emitter to the wheelchair of a subject and use this to track his
position in a nursing room. In the room, there are a few areas defined where transfer

Detection Areas

Ultrasonic
Signal for
Locator

Ultrasonic
Signal for
Radar

Ultrasonic
Receivers
Network

Ultrasonic
Emitters

Nurse
Call

Fig. 2.2 Schematic diagram of the Evidence-Based Nursing Care Support System
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from the wheelchair will occur. When the wheelchair enters one of those areas, the
subsystem notifies caregivers of the occurrence of this “entering” event immediately
by an existing nurse call system to support transfer [9].

On the other hand, the ultrasonic radar subsystem [15] monitors the position of a
person on the bed. The subsystem uses time-of-flight of ultrasound pulses reflected
by objects and monitors the position of the highest object on bed, on the assumption
that the highest object in that particular area is the head or a part of the body of
the subject. When it observes the highest object moving from the center of the bed
to its edge, it assumes that the subject is getting out of bed and sends an alarm to
caregivers just as the wheelchair locator subsystem does.

While the subsystems monitor the position of the wheelchair and the subject, the
data obtained are stored in a log file as the ADL of the subject.

2.4.2 System Implementations

The ultrasonic 3D tag system developed by the authors [14] can track 3D positions
of multiple ultrasonic tags continuously and concurrently by ultrasonic receivers
embedded into the environment. We named the tag the Ultra Badge, and call the
system the Ultra Badge System. We installed the system in a nursing room of the
nursing home as the wheelchair locator subsystem.

Figure 2.3 shows two types of Ultra Badges developed by the authors.
Figure 2.3 (a) is a small type whose size is approximately 3× 3× 1 cm (in com-
parison with a Euro coin). It uses a button-type battery and works 6 to 8 hours.
Figure 2.3 (b) is a long-battery-life type which uses a lithium-polymer battery and
is active for one month. We use the latter type for this project because we must run
the system continuously in the long term.

Figures 2.4 and 2.5 show the appearance of a nursing room and its floor plan,
respectively, where we deployed ultrasonic receivers on the ceiling. Locations of
ultrasonic receivers embedded on the ceiling are also displayed as intersection points
of vertical and horizontal lines in Figure 2.5. The appearance of the ceiling and

Long battery-life type
Size: 65x44x20mm(body)

120x125x14mm(battery)
Weight: 45g(body)

300g(battery)

batterymain body

(a) Small type (b) Long-battery-life type

Fig. 2.3 Ultra Badges—ultrasonic 3D tags developed by the authors—
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Gateway

Toilet

Bed 1 Bed 2

Bed 3 Bed 4

Fig. 2.4 Sensorized nursing room Fig. 2.5 Floor plan of a nursing room
and locations of ultrasonic receivers

Ultrasonic
Receivers

Ultrasonic
Receiver

(a) Appearance of the ceiling (b) Enlarged view

Fig. 2.6 Ultrasonic receivers on the ceiling of a nursing room

an enlarged view of an ultrasonic receiver are shown in Figures 2.6 (a) and (b),
respectively. All the apparatus, such as receiver hubs and a data processing PC, are
hidden inside the ceiling so the room looks the same as the other room except for
the ceiling.

Figure 2.7 shows the configuration of the system from the viewpoint of apparatus
and signal/data flows and Table 2.1 shows its specifications.

The system works as follows:

1. The controller PC sends the ID of an Ultra Badge to the SYNC signal generator.
2. The SYNC signal generator sends SYNC signal to all the receivers and the radio

transmitter at the same time.
3. The radio transmitter broadcasts a Badge’s ID as SYNC signal and a Badge

which receives its own ID emits ultrasound pulses.
4. Concurrently, the receivers start their internal timers upon receiving SYNC signal

to calculate the time-of-flight of ultrasound pulses.
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Fig. 2.7 Configuration of apparatus and signal/data flows of the Ultra Badge System

Table 2.1 Specifications of the Ultra Badge System

Position estimation error less than 80 mm (50 mm average)
Resolution 15 mm (average)
Sampling frequency up to 50 Hz
Frequency of ultrasound 40 kHz
A.P.L.∗ of ultrasound 51 dB
Badge size (main body) 65×44×20 mm
Battery life About 1 month∗∗
∗A.P.L.: Acoustic Pressure Level.
∗∗Using a lithium-polymer rechargeable battery.

5. Each receiver stops its timer upon receiving ultrasound pulses from the Badge
and then the timer value is sent back to the PC from each receiver.

6. The PC collects all the receivers’ timer values and computes Badge’s position by
triangulation using a robust estimator [4].

The current system monitors a single Badge attached to a wheelchair of a subject,
but when there are several Badges in the environment, they are activated in turn.

Figure 2.8 shows the wheelchair and the Ultra Badge attached to the back of the
seat. The battery box of the Badge is put inside a pocket at the back of the seat. As
the subject cannot walk by himself but always uses the wheelchair to move around,
the system assumes that the wheelchair’s position indicates the subject’s position.

Figure 2.9 shows an enlarged view of the ultrasonic radar subsystem. In this sys-
tem, two ultrasonic emitters are coupled to control the intensity of acoustic pressure
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level and 24 pairs of emitters are embedded on the ceiling above the bed area. Ultra-
sonic receivers are shared with the wheelchair locator subsystem. Configuration of
the system is almost the same as that of the wheelchair locator except for emitters
which are connected to the SYNC generator by wire.

The principle used to locate the highest object by the radar subsystem is illus-
trated in Figure 2.10 and described as follows:

Let us suppose that the positions of the i-th emitter, the j-th receiver and the high-
est object (head, in Figure 2.10) are Pe

i , Pr
j, and P, respectively, and the propagation

distance is Li, j, as shown in Figure 2.10. Then the following equation is obtained:

Li, j = ‖Pe
i −P‖+‖Pr

j −P‖. (2.1)

This is an equation of a spheroid, where both Pe
i and Pr

j are its focal points and P is a
point on its surface. As we installed many receivers on the ceiling, we can expect that
more than three receivers receive reflected ultrasound pulses, and we obtain the same
number of equations (2.1). When there are (at least) three spheroids whose axes do
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not coincide, we obtain the position of P as their intersection point, theoretically.3

The subsystem activates the emitters in turn and computes the position of P every
time. To minimize the ill effect of measurement errors, we use a robust estimator [4]
which is the same as the wheelchair locator subsystem.

In both subsystems, ultrasound pulses sent through the air do not carry any per-
sonal information. Moreover, the system only collects distance between the Badge
and each receiver calculated from time-of-flight data. he Badge’s position is com-
puted from distance data at a data processing PC. So personal information does not
leak even if the ultrasound pulses are tapped. Therefore, we can say that the system
respects and does not invade the privacy of the subjects.

2.5 Experiments and Analyses

Our proposed system was implemented in one room of a nursing home in Tokyo
and its target was one old person (male) whose family allowed us to monitor and
collect data related to his activities.

We attached an Ultra Badge to his wheelchair as shown in Figure 2.8 and
recorded its position data for several months. The data was obtained at the sampling
rate of 5 Hz by the system, and the position was estimated by a robust estimator [4]
to remove the ill effect of outliers in the data set; consequently, their estimation error
was less than 80 mm with an average of 50 mm. The data was sampled at 5 Hz and
it was used for falls prevention (i.e., our initial goal), but such a high frequency is
not required to know the ADL of the subject (i.e., our second goal) so the data was
logged at 1 Hz.

The ultrasonic radar subsystem was so unstable during the experiment that we
use only the data obtained by the wheelchair locator subsystem hereafter.

2.5.1 Tracking a Wheelchair for Falls Prevention

One of the purposes of the wheelchair locator subsystem was to track the wheel-
chair to prevent fall injuries. The subsystem monitored the wheelchair’s position
continuously, and sent an alarm to caregivers by an existing nurse call line when it
detected the wheelchair entering into one of the areas where falls are likely to occur.
Whenever the subsystem sent an alarm, it recorded the action into a log file at the
same time.

We defined two areas, around the subject’s bed and the toilet, as predefined areas,
because transfer from/to wheelchair occurs in those particular areas. According to
the log files, the system successfully detected the “entering” events and sent alarms

3 Mathematically, three equations of spheroid give two solutions symmetrical to the plane on which
an emitter and receivers exist. However, one of the solutions exists behind the ceiling, i.e., z < 0 in
Figure 2.10, so we can easily omit it.
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Fig. 2.11 Trajectory of a
wheelchair obtained by the
proposed system Toilet-OUT,5:53:33

Toilet-IN,    5:49:28

Bed-IN,    5:53:45

Bed-OUT,5:49:20

Toilet Area

Bed Area

Gateway Area

to caregivers. Therefore, we conclude that the subsystem was effective in predicting
transfers.

Detecting the “entering” events gives binary information only, i.e., the wheel-
chair is in or out of the area. On the other hand, if we need more precise trajectory
of the wheelchair in the room, it is available by plotting the data in the log files
on the floor plan. For example, Figure 2.11 shows the trajectory obtained between
5 AM and 6 AM on one day. The data tells us that he went to the toilet once (around
5:50) and mostly stayed inside the bed area (probably on the bed) during the time
period.

2.5.2 Activity Transition Diagram: Transition of Activities
in One Day

Using the log recorded, we analyzed the ADL of the subject and developed his life
log from the viewpoint of locations.

Table 2.2 shows the labels we used to describe the locations of the subject. To
classify activities robustly, we set thresholds of elapsed time for each label. If this
threshold is too long, such as 5 minutes, we cannot recognize short-term activities
such as urination. On the other hand, if it is too short, such as 5 seconds, the position
estimation errors fluctuate the classification when the wheelchair stays around the
area boundaries. We empirically determined the thresholds as 30 seconds for robust
classification.

For example, when the wheelchair stayed inside the Bed Area depicted in
Figure 2.11 for more than (or equal to) 30 seconds, we assigned a label “Bed” for
the time period. If the wheelchair got into the Gateway Area or the system failed to
track the wheelchair for not less than 30 seconds, it was labeled as “Outside.” When
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Table 2.2 Labels and state values of activities from a viewpoint of locations

Activity Location Elapsed time State Value
Outside Gateway/outside∗ ≥ 30 sec 4
Toilet Toilet area ≥ 30 sec 3
Bed Bed area ≥ 30 sec 2
Moving — — 1
∗The system cannot track wheelchair.

Hour

Bed

Toilet

Out

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Breakfast

Hydration/
Recreation

Lunch

Snack/
Recreation

Dinner

Fig. 2.12 Activity transition and common home schedule

the wheelchair was about the boundary of the bed area and its estimated position
changed between inside and outside of the area frequently, a label “Moving” was
assigned.

Using these labels, we made an activity transition diagram which describes the
transitions of his activities each day.

Figure 2.12 illustrates the diagram plotted by the data obtained on one day (the
label “Outside” is noted as “Out” in this figure). As it is difficult to recognize “Toi-
let” activities, they are circled. The activity “Moving” is not explicitly presented in
the figure, but it is implicitly displayed as vertical links between activity states. In
this figure, common home schedules are also shown as grayed rectangles. This fig-
ure tells us that (1) the subject went to the toilet in the room 5 times during the day,
(2) he went out of the room 4 times, and (3) he spent his time mostly on his bed.

Our system is currently installed in one room only, and it cannot obtain the wheel-
chair’s position at all when it goes out of the room. So a general label “Outside” is
assigned to the time period while the wheelchair is outside. However, if the com-
mon home schedule is superimposed on this diagram as in the figure, we can assign
more precise labels to each corresponding activity, such as breakfast, hydration and
recreation.

2.5.3 Quantitative Evaluation of Daily Activities

The activity transition diagram provides a visual and comprehensible understanding
of daily activities, so it is easy to recognize ADL of the subject by the diagrams.
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However, it does not provide any quantitative evaluation of the living condition of
the subject. Therefore, we calculated the correlation between activities of the subject
and common home schedule to evaluate the condition quantitatively.

First, we assigned state values to the activities as in Table 2.2. Then, we made
time series data of state transition for each experimental day and the common home
schedule by using these values. As the activity raw data were logged at 1 Hz, the
state values were assigned to the activity each second. As a result, we obtain two
time series data; one is the activity state of the subject and another is the state of the
common home schedule, both have 86,400 (= 24×60×60) data points.

Correlation coefficient, R, between the activity state and the common home
schedule is calculated as follows:

R = ∑t(S(t)−S)(SC(t)−SC)√
∑t(S(t)−S)

√
∑t(SC(t)−SC)

(2.2)

where t is time (0 ≤ t < 86,400), S(t) and SC(t) are the activity state value and the
state value of the common schedule at time t, respectively, and S and SC are their
averages in one day.

Figure 2.13 shows 46 days of correlation coefficients calculated by equation (2.2).
In general, we say that two data sets weakly correlate to each other when their cor-
relation coefficient is between 0.4 and 0.7. The figure reveals that the coefficients of
33 days among 46 satisfy this criterion.

The correlation coefficient gives a quantitative understanding of daily activi-
ties of the subject. On the other hand, the activity transition diagram shown in
Figure 2.12 gives a visual, quick and comprehensible understanding. When care-
givers recognize that the coefficient value becomes lower, they can consult the dia-
gram to find the cause and take measures if necessary. Therefore, they complement
each other.
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2.5.4 Probability of “Toilet” Activity

Falls are the most common type of injury in nursing homes in Japan as mentioned
in Sect. 2.2.3, and one of the locations falls are apt to occur is at the toilet where
transfer between a wheelchair and a toilet seat occurs every time. Ideally, each care-
giver should pay close attention to all the inhabitants, detect toilet timing of each
person, and support his/her transfer just in time, but this is not realistic. Currently,
inhabitants who need transfer support are asked to call caregivers themselves using
a nurse call line when they want to go to the toilet.

Therefore, if there is a system which can forewarn caregivers of the possible
inhabitants who may go to the toilet within the next several minutes, caregivers can
go directly to that particular person from a nurse station. As the first step toward
developing such a system, we analyzed the probability of “Toilet” activity from the
life log files.

First, we counted the number of activities of leaving bed (we call this “Move-
FromBed” hereafter) and the number of “Toilet” activities immediately after
“MoveFromBed.” Then we obtained the probability of “Toilet” activity that follows
“MoveFromBed.”

Figure 2.14 shows the analysis results; the histogram indicates the numbers of
“Toilet” and “MoveFromBed” activities and the line graph shows the transition rate,
P(t), where t is time. P(t) is calculated as P(t) = NT (t)/NB(t)× 100(%), by using
the following notations:

NT (t) the number of “Toilet” right after “MoveFromBed” between t and (t + 1)
o’clock, and

NB(t) the number of “MoveFromBed” in the same time period.

From the figure, it is obvious that the subject got out of bed very frequently
between 6 and 7 AM, but the probability of toileting during the time period was as
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low as 29.2%. On the other hand, he did not get out of bed so often between 8 and
9 AM, but he went to the toilet with high probability of 90.0% at that time.

2.5.5 Discussion of the Experimental Results

We had run the wheelchair locator subsystem for several months. A controller pro-
gram kept running during the experiments, but the tag sometimes did not work cor-
rectly when the battery ran out and caregivers did not notice it. Therefore, the system
needs a notification function when to change and recharge the battery. Position esti-
mation error was less than 80 mm and it was enough to obtain ADL of the subject.

The system needs to visualize the logged data to understand ADL of the subject,
and one example of visualization is the trajectory of a wheelchair (Figure 2.11).
When we showed caregivers several figures of the trajectory separated every one
hour, their pro and con comments were as follows:

Pros (1) The resolution of the trajectory was more than they could imagine.
(2) If the system properly worked 24 hours a day, it would be very effec-
tive in obtaining ADL of the subject with little help from caregivers (see
Sect. 2.2.4).
(3) To know such precise trajectory was effective in designing facilities such
as width of corridors where two wheelchair users could pass easily and
where to install handrails for the inhabitants.

Con Understanding the meaning of those figures was easy but the number of
figures (24 figures/day) was too many. It was desirable to reduce the number
to one or two figures per day.

Concerning the pros (3) comment, if we had employed other location sensors
whose resolutions are coarser than ours, such as RFID tags whose resolution is
about 30 to 50 cm, we could not obtain such precise trajectories. This is the point
where our ultrasonic 3D tag system is superior to others in this application area.

Also, based on the con comment, we developed the activity transition diagram
presented in Sect. 2.5.2 as another visualization method. The diagram provides a
visual and comprehensible understanding of ADL of the subject.

The correlation coefficient is a quantitative representation of ADL and it provides
information for a quantitative understanding of ADL of the subject. If we assume
the conformity of ADL to the common home schedule as the evaluation criteria of
the care plan, the correlation coefficient gives good information for the evaluation.
On the other hand, the activity transition diagram is a symbolic representation of
ADL and it gives visual, quick and comprehensible understanding. Taken together,
the visual and quantitative measures complement each other.

Probability of “Toilet” activity revealed that there are several periods of time in
a day during which the “Toilet” activities are likely to occur.
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Concerning the activity transition diagram, the correlation coefficient of ADL,
and the “Toilet” probability, caregivers’ comments were as follows:

• The activity transition diagram and the correlation coefficient of ADL look very
interesting because there are neither any visualization tools nor such precise ac-
tivity data of the inhabitants at present. Current situation at the nursing home, i.e.,
a shortage of caregivers, does not allow caregivers to obtain activity data manu-
ally at such a high precision spatially and temporally, so the system is promising
for supporting many tasks of caregivers.

• If the time when each inhabitant is likely to go to toilet is estimated, the care-
givers can visit the inhabitant before he/she uses a nurse call and they can sug-
gest toileting. This contributes not only to human resource allocation, but also to
supporting the inhabitants who are apt to go to toilet alone.

For the latter comment, according to the caregivers, there is no explicit criterion
for prioritizing multiple nurse calls which ring at the same time, so they cope with
the calls in sequence in space (from the nearest room to the farthest) and/or in time
(from the earliest call to the latest) currently. That is, sometimes several caregivers
go to one inhabitant, while others are left unattended. If a system supports prioritiz-
ing multiple nurse calls and gives instructions on which call should be responded to
first for each caregiver, it will be useful for efficient human resource allocation.

The caregivers of the nursing home that the authors have been collaborating with
are very positive about deploying the system, but they do not have minute knowl-
edge of the system, while the authors do not have full knowledge about what kind
of information is useful and required for supporting nursing care. Thus, from our
several years’ experience, we learned that the communication between the devel-
opers and the users is the most important factor in developing a system and data
processing/presentation methods which are of practical use in the real environment.

2.6 Prospect of the Evidence-Based Nursing Care
Support System

The authors believe that what a nursing care support system should be is the
evidence-based nursing care support system which enables users (i.e., the old per-
sons) to select desirable services according to the level of serious illness or the
degree of private information which they agree to disclose to the system.

To obtain the evidence, i.e., the quantitative activity logs, sensors for collecting
ADL are the inevitable elements. However, the use of sensors must be considered
carefully because they may easily invade privacy of the subject. This is a trade-
off between the level of services the person can enjoy from the system and the
degree of the privacy invasion. A nursing home must explain the pros and cons of
the system to the prospective inhabitant and his/her family beforehand, and then
obtain their agreement. In some cases, extensive use of privacy-invasive sensors,
such as cameras, will be acceptable just as all kinds of medical apparatuses are
allowed in ICUs (Intensive Care Units) of hospitals to save lives of patients.
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The authors’ prospect of the Evidence-Based Nursing Care Support System is
illustrated in Figure 2.15. Based on this prospect, we are planning to develop several
types of nursing room in the nursing home:

1. Intensive Monitoring Units (IMU)—Rooms where any sensors, even cameras,
are allowed to use. Equivalent of ICU in hospitals. Users of the room will be
persons who suffer from severe dementia.

2. Minimally Privacy Invasive Units (MPIU)—Rooms where cameras are for-
bidden but other sensors which do not invade the privacy of the inhabitants are
allowed. Possible users of this room will be persons whose level of dementia is
not so severe but who are prone to fall from their bed/wheelchair, or who present
wandering symptoms and sometimes sneak out of their bed during the night.

3. Ordinary Units (OU)—Rooms where zero to a few sensors are used. The in-
habitants who do not need special observations will use this room.

The system presented in this paper is a kind of MPIU and we are now investigating
a system which uses cameras to obtain activities on bed robustly.

2.7 Conclusions

This chapter introduced a pervasive sensor system for nursing homes. The authors
investigated the problems in nursing homes, established a concept of evidence-based
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nursing care support, and clarified the functions required for the proposed system
from the interviews with caregivers.

The authors developed a monitoring system by using ultrasonic 3D tag technol-
ogy, installed it in a nursing room in a nursing home, and kept it running in real
operation for several months. The wheelchair locator subsystem ran successfully
and recorded the life log of the subject. The authors analyzed the log files and found
his ADL patterns, such as the daily transition of ADL and the probability of “Toilet”
activity. Then we summarized the experimental results with the pro and con com-
ments of caregivers to claim the effectiveness of the system developed. Finally, we
introduced our prospect of the evidence-based nursing care support system.
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Chapter 3
Anomalous Behavior Detection: Supporting
Independent Living

Dorothy N. Monekosso and Paolo Remagnino

Abstract In this chapter we describe a system for supporting independent living and
enhancing quality of life of older persons. The home is equipped with non-intrusive
standard home automation technology and an array of sensors that captures the sta-
tus of appliances. Activities taking place in the home are detected and models of
behavior for the occupant are created. In a first step, unsupervised classification
techniques are employed to distinguish between activities that make up the occu-
pant’s daily routine. The activities include watching TV, entry to or exit from home,
bathing, cooking, and eating. In a second step, a Hidden Markov Model technique
is employed to model behaviors. In the context of assisted living, we define behav-
ior as any detectable pattern in a sequence of activities. The models thus built can
help a caregiver by distinguishing between normal and anomalous behavior. The
system achieves this goal by predicting routine behavior. Behavior not recognized
as routine is tagged as requiring investigation by a caregiver.

3.1 Introduction

This paper describes a system designed for the purpose of supporting independent
living. The activities of the occupant are detected and a model of behavior built.
In this context, a behavior is defined as a pattern in a sequence of activities. Ac-
tivity is captured by an array of sensors embedded in the environment in such a
way as to unobtrusively record daily activities. The objective is to discover pat-
terns in the data leading to differentiation of activities and to discover patterns in
sequences of activities described as behaviors. Thus models of activities and be-
havior are built. Predictive models can be used in a number of ways: to enhance
user experience, to maximize resource usage efficiency (e.g., energy consumption),
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to enhance safety and security. This work focuses on prolonging independent liv-
ing and enhancing quality of life of older persons. To this end, the system must be
capable of distinguishing between normal and anomalous activity. The steps are to
detect activities, categorize these activities, detect trends and patterns in the activ-
ities and infer anomalous behaviors when these occur. The modeling of activities
based on supervised learning techniques is described in [15]. The results indicate
that supervised classification of activity is feasible. However, annotating raw data is
time consuming. The work described here are the results of applying unsupervised
techniques and behavior learning. With improved health care and living standards,
an increasing number of people are living well into their old age. A challenge for
society is to provide adequate care allowing older persons to maintain the desired
level of autonomy while ensuring an enhanced quality of life. In a study conducted
by Giuliani et al. [7] on the attitudes of older persons towards technology, the au-
thors found against the stereotype of technology aversion by the elderly who would
in fact be prepared to use it if benefits were perceived. In this study, a home was
equipped with a number of sensors and actuators. The sensor and actuator status
was recorded over a period of time and the resulting data used to model behavior.
The sensors employed are small in size to facilitate embedding and no cameras are
employed to promote acceptance by users. The relative simplicity of the sensor data
output means that data preprocessing is relatively simple. However, the large num-
ber of sensors and the frequency of data capture result in a large data set which
increases the complexity of data mining. In Section 3.2 published work related to
the proposed system will be described. In Section 3.3 the methodology is described
followed by a description of the experimental setup in Section 3.4. In Section 3.5 the
results are presented and a discussion follows in Section 3.6 before concluding in
Section 3.7.

3.2 Related work

In recent years, there have been significant advances in the field of intelligent envi-
ronments. The advances were made possible in part by progress in sensor and device
technology, network and computer technology. A number of research projects and
a smaller number of fielded projects addressing issues of intelligent environments
have been published. These include Microsoft’s EasyLiving project ([4]), the Intelli-
gent Dormitory iDorm [26], [6], the Interactive Room iRoom [27], the HyperMedia
Studio [25], The MavHome project [5], [23], and the Evidence-Based Nursing Care
Support System [9] to name a few and fielded applications such as The Elite Care
project [24]. Technology is gradually gaining acceptance as a means to complement
the work of caregivers and to assist persons with reduced physical or cognitive ca-
pacity in their day-to-day living. A review of published work, fielded systems and
the state of the art in assistive technologies can be found in Pollack [18]. There are
a number of ways in which an intelligent environment can be employed: to assist an
individual in daily activities, to facilitate and complement the caregiver or to assess
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the person cared for. Recent advances in technology have made it possible to embed
sensors into an environment. These range from arrays of relatively simple sensors
that record on/off status for temperature, lighting ([14], [19]) to more complex sen-
sors to record sound and images ([2], [3]). From these embedded sensors, various
environmental attributes can be detected and activity inferred. The physical or cog-
nitive status of the user/occupant can be inferred from the activity and a decision can
be made regarding the health status of the occupant. A number of researchers are
currently working on the problem of modeling human behavior based on input from
multimodal sensor arrays. Supervised and unsupervised learning algorithms have
been applied to learning a model of activity. In supervised model learning, [17] and
[19] use naïve Bayes classification to identify activities. In the latter case, the data
is supplied by a large number of very simple binary-valued sensors, while in the
former case, the data source consists of PDA, keyboard, and telephone usage infor-
mation. Brdiczka et al. [3] employ Bayesian classifier and Support Vector Machine
to classify activities based on video data. An example of activity learning based on
speech data is described by Brdiczka et al. [2]. A drawback of supervised learning
is the need for a teacher to provide answers. This may take the form of annotated
data. Typically the sensors will produce a very large amount of data that must be an-
notated. Unsupervised learning has the advantage of not requiring a teacher. Doctor
et al. [6] model activity in the iDorm unsupervised employing fuzzy rule learning;
Rivera-Illingworth et al. [22] employ neural networks. Mozer [14], in the ACHE
project, employs reinforcement learning to learn models of behavior from obser-
vations for the purpose of predicting low level actuator status. In the MavHome
project [5], [23], [21] predictive models are built based on Hidden Markov Model
techniques. As with the ACHE project, the aim is to predict low-level activity such
as on/off switching. By contrast, the work presented in this chapter aims to predict
high-level activity and thus the occupant’s behavior.

3.3 Methodology

The aim is to build a model to allow prediction of the next activity given the cur-
rent activity and in so doing detect anomalous behavior. The first step is to dif-
ferentiate between activities. The activities in the experiment are sleeping, bath
(ablution), out/no activity, entry/exit, cooking, eating, working at a desk/study, and
relaxation/watching TV. The second step is to discover patterns in the sequences of
activities.

3.3.1 Unsupervised Classification Techniques

The techniques employed are based on clustering. This is the partitioning of the
data set into subsets (clusters). The criterion for assigning a datum to a cluster is
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proximity according to some distance measure. Clustering algorithms are either
hierarchical or partitional. In the former, clusters are found successively using pre-
viously found clusters. In the latter, all clusters are determined at once. Hierar-
chical algorithms are either agglomerative using a bottom-up approach or divisive
using a top-down approach. Agglomerative algorithms begin with each datum as
a separate cluster and recursively merge the clusters into larger clusters until the
stopping criterion is satisfied. Divisive algorithms begin with the complete data set
dividing it successively into subsets. The classification algorithms employed in the
experiments are all well-established algorithms and include partitioning methods
(KMeans, KMedoids, and EM - the latter is a probabilistic method) and a hierarchi-
cal agglomerative method. A brief overview of the similarities and differences [1]
is presented here. Partitioning algorithms differ in the method by which the iterative
relocation of points is performed. Methods such as KMeans [12] and KMedoids use
a single point to represent a cluster. The KMeans centroid is the arithmetic mean of
all points in the cluster. KMeans is thus sensitive to outliers. The KMedoid point is
selected based on the location of a larger fraction of points and thus is less sensitive
to outliers. KMeans is better suited to numeric data since the centroid is an arith-
metic mean while the KMedoid can be used with nonnumeric data. Hierarchical
algorithms use a proximity matrix for representing pairwise similarity. The simi-
larity between two clusters can be determined as the minimum distance between
elements of each cluster (single linkage). Alternatively the similarity is the maxi-
mum distance between elements of each cluster (complete linkage). Single linkage
can cope with nonelliptical shapes but it is sensitive to noise and outliers. Complete
linkage is less susceptible to noise and outliers because the similarity is determined
by all pairs of points in the two clusters. However, it breaks down for large clus-
ters [8]. In probabilistic partitioning methods, the cluster is identified with a model
that consists of a mixture of distributions. The aim is to find the parameters of these
distributions that maximize the log-likelihood. Advantages of the hierarchical meth-
ods over the partitioning methods are flexibility in terms of granularity and the use
of any form of similarity or distance metric; however, the stopping criteria can be
vague if it is not the number of clusters [1]. In partitioning methods, intermediate
clusters are revisited for improvements while most hierarchical algorithms make no
attempt at improving intermediate clusters. Partitioning methods generally suffer
from time complexity. The distance measure used to determine the similarity be-
tween two points influences the shape of the clusters, as two points may be close
according to one distance measure and far apart according to another distance mea-
sure. Some of the distance measures used are the Euclidean distance, the Manhattan
distance, the Mahalanobis and the Normalized Google Distance (NGD).

3.3.2 Using HMM to Model Behavior

The Hidden Markov Model (HMM) is a statistical technique for modeling based
on the assumption that the process is a Markov process with hidden parameters.
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The states are not directly observable but the process has observable parameters
and the hidden parameters can be determined. A Markov model is a stochastic state
automaton in which a state has associated a prior probability and a set of transition
probabilities. The prior probability of a process describes the probability of starting
in a given state, and the transition probability describes the likelihood of a process
moving into a new state. Evaluation of the HMM parameters requires calculating

• the prior probability πi for each state Si, representing the probability that a par-
ticular state is the starting state,

• the transition probabilities ai j between two states Si and S j and
• the probability distribution function b j(O) of an observation vector O for a state,

S j, i.e., the conditional probability of a particular observation O given the state
S j.

Model selection can be performed by finding the model λ which yields the high-
est a posteriori likelihood P(λ | O) given the sequence of N observations O =
(O1, . . . ,ON) associated with a time series. Reproducing the work of Rabiner [20],
the probability of the observation set O given the model λ is

P(O | λ ) = ∑
q1qT

πq1bq1(O1)aq1q2 . . .aqT−1qT bqT (OT ). (3.1)

At each moment in time, the likelihood of a model given the current set of observa-
tions is calculated. The model λ that yields the highest a posteriori probability is the
one currently providing the most likely interpretation, i.e., λ ∗ = argmaxλ∈aP(O | λ ).

The most likely model is calculated using the classical forward iterative proce-
dure. The process is repeated until the termination stage in which the a posteriori
probability of a model λ is computed by summing over all final values of the α
variables computed for the model λ .

3.4 Experimental Setup and Data Collection

In this section, the experimental setup and the data collection are described. The
array comprises temperature sensors, motion detectors, pressure mat, window and
door status (open or closed), light level, light status (on, off and brightness level),
smoke detector and Radio Frequency Identification Devices (RFID). Appliance sta-
tus is captured by sensors. The nature of sensor output varied from binary valued
data to continuous range. The sensors are located throughout a home, each room
having at least one motion detector, one temperature sensor, one light level detector
and two lighting status (on, off and light level setting) sensors. It is intended to use
the RFID systems in future work as a means to disambiguate between users (occu-
pant) of the home. RFID was not used in the experiment. In all data were captured by
47 sensors. For the purpose of the experiment, closed loop feedback control is dis-
abled so that the inhabitant operates directly all actuators that control temperature,
door/windows, and lighting. The control points (e.g., light switches) are located at
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the same positions as would be standard controls i.e., the actuator controls belong-
ing to the experiment are located where one would expect to find them in a home
so as not to skew the behavior and hence data collection and analysis. The reason
for maintaining open-loop control is that users are monitored to allow a model of
their behavior to be built. The monitoring took place over several periods each last-
ing a week; data logging was continuous, taking place night and day. The data were
collected and analyzed using the algorithms described in Section 3.3.

3.4.1 Noisy Data: Sources of Error

There are various sources of error that add noise to the data collected. These are
mainly due to intermittent failure of equipment to measure and/or record activities
that trigger the sensors and are relatively rare. The sources of error are:

1. Failure of equipment to record an action, for example, a sensor failing to trigger.
This was considered the most frequent and likely error.

2. Failure of equipment to take an action due to radio signal interference.
3. Random activation due to noise on mains or radio signal interference.
4. Sensor activation shorter than the sampling time during data processing. This

happens particularly with motion detectors that trigger for a specific length of
time.

The impact of these errors is discussed in this section. Type 2 error has no impact
on data mining; the problem is user inconvenience as the action must be repeated,
for example, the user must activate a switch a second time. Type 1 and 3 errors
are problematic; the result is potentially one inaccurate datum (1) or missing datum
(3). An example of this is a light recorded as on when it is in reality off or vice
versa. These types of problems show up as an ON without an OFF i.e., a persisting
ON/OFF beyond the expected duration. Graphical representations of the data very
easily show outliers that can be further investigated. Note that errors in these two
classes are relatively infrequent. Error type 4 results in missing data because the
sensor ON time is shorter than the data processing sampling time. This problem
is minimized by reducing the sampling interval. Heuristics can be used to perform
some data cleansing; in addition, the heuristics can be inferred from data. These
heuristics relate to temporal characteristics of sensor activity; examples are average
ON/OFF times of sensors, exploiting the repetitive characteristics of activities.

3.4.2 Learning activities

The activities to distinguish are listed in Table 3.1 with the percentage instances
in the data set. The nature of the different activities means there will always be an
imbalance. The effect of this will be investigated in the future.
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Table 3.1 List of activities and percentage of instances in the data set

Activity ID Description % instances

0 NO-ACTIVITY 50
1 BED TIME 3
2 ABLUTION 16
3 COOKING 6
4 EATING 6
5 RELAX-TV 1
6 ENTRANCE-EXIT 8
7 WORK 6

3.5 Experimental Results

In this section, the results are described. Unsupervised classifiers were employed.
Prior to modeling, the data was processed, i.e., the raw sensor data converted to a
vector time series. Each vector is of dimension n where n is the number of sensors.

3.5.1 Instance Class Annotation

The objective was to produce annotated sequences for the purpose of cross vali-
dation. Annotated dated is not used for modeling. Each sequence is a list of snap-
shots of the sensor status at discrete time steps. The sequences were then used to
build a model of the activity over a period of time. Each sensor represents a di-
mension; there are 47 sensors. Sensors are either binary-valued or analogue with an
output range of 0 to 1. The data were collected over a period of weeks. The raw
data format is a time stamp followed by a sensor ID, name/description and status. A
typical record is [15/02/2007 06:20:55 22855.7 0 BathMotionDetect 0]. During pre-
processing, an additional attribute indicating period of the day was added. The day
is divided into six periods. The raw data was annotated in a semiautomatic manner.
Instances with two or more concurrent activities were annotated manually.

3.5.2 Data Preprocessing

Outliers can be identified and discarded if proved to be anomalous data result-
ing from equipment failure. Such data cleansing can be performed manually or
automatically as described in this section. Manual data cleansing involved graph-
ical representations to identify outliers. The automated method is a filtering process
that makes use of two or more classification algorithms to generate an initial
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classification and remove instances that were misclassified (by all classifiers) from
the data set prior to the modeling [29].

Identification of outliers Pre-processed data are displayed as histograms show-
ing the frequency of occurrence of sensor active state. Examples are shown in
Figures 3.1 and 3.2. The data were grouped into six classes corresponding to
different times of the day. The time periods are 0–4, 4–8, 8–12, 12–16, 16–20, and
20–24. With some prior knowledge of the patterns of behavior of the occupant,
outliers can easily be identified and removed from the data set as anomalous data
points if explained by any one of the error sources described above. In Figure 3.1

Fig. 3.1 Graphical representation of the active time (2 sensors) - no expected errors
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Fig. 3.2 Graphical representation of the active time (3 sensors) - outlier detected
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given prior knowledge of the expected activities and most likely time of day for the
activities, the histogram (trend) shows no outlier. By contrast, Figure 3.2 shows an
outlier. It can be seen that a light sensor (purple, ceiling light) is active during all six
periods. Investigation of the raw data indicated that the sensor status was incorrectly
recorded; the light was active for an extended period of time during which it was
known not to be active. One such outlier can significantly affect the overall trends.
The overall modeling would be greatly biased by this outlier. There is functional
redundancy in the system’s design and therefore some errors may be corrected once
outliers are identified. The above process can easily be automated to operate on a
large data set.

Data filtering The removal of outliers can be automated employing a filter to
remove misclassified instances prior to the final classification. In this method of
cleansing, the filter consisted of a combination of classification algorithms; misclas-
sified data were removed if they coincided in all [29]. In the experiments described
here it was decided not to employ this technique as valid outliers can be removed.
In general, removal of outliers by any means limits the capability of the system as
an autonomous system.

3.5.3 Models: Unsupervised Classification: Clustering
and Allocation of Activities to Clusters

The clustering algorithms were applied to the data and evaluated against the anno-
tated classes (activities). Two experiments were conducted. In the first experiment
clustering algorithms were applied to the processed data as discussed above. In the
second, prior to applying the clustering algorithms, useless attributes were removed
automatically. The selection criteria for removal were (1) nominal attributes having
the same value for more than p percent of all examples and (2) numerical attributes
with standard deviation less than or equal to a given deviation threshold. Apply-
ing these criteria to the data, 3 attributes were removed. KMeans, KMedoids and
Agglomerative algorithms require the number of clusters as a parameter. This was
set to 8 equal to the number of activities. Furthermore the Agglomerative algorithm
employed the Euclidean distance measure and complete linkage. The EM clustering
algorithm can determine the number of clusters through cross-validation; however,
in this mode the performance was poor. In subsequent experiments the number of
clusters was set to 8 for the EM algorithm. The results (classification accuracy) of
cross-validated activities against the annotated data are shown in Table 3.2.

The Kappa statistic is a measure of the classification agreement that is not the
result of chance. Based on Landis and Koch [11], a Kappa statistic in the range 0.41
to 0.6 indicates that the strength of agreement is moderate.

The results of cluster-activity association are shown in Table 3.3 . The associa-
tion was performed using a supervised classifier (RIPPER). This classifier was se-
lected because it performed well on the same data sets (training and test sets) in the
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Table 3.2 Comparison of correct rates and kappa values

Useless attributes All used
removed attributes

%Accuracy Kappa %Accuracy Kappa

KMeans 73.4 0.659 76.5 0.595
KMedoids 66.73 0.601 74.32 0.601
EM 71.23 0.586 73.77 0.558
Agglomerative 65.90 0.559 71.23 0.457

Table 3.3 Comparison of activity classification sensitivity

Class sensitivity (recall) (%)

Activity KMeans KMedoids EM Agglomerative

A0 99.64 99.52 99.76 98.57
A1 98.70 98.70 98.70 97.40
A2 75.65 23.77 40.41 40.41
A3 0.00 76.41 0.00 18.03
A4 97.9 67.41 75.9 76.41
A5 0.00 0.00 0.00 0.00
A6 40.28 42.36 21.53 0.00
A7 0.00 0.00 98.00 52.00

supervised classification experiments [16]. In Table 3.3 the sensitivity is the relative
number of examples correctly classified as positive among all positive examples.
The class sensitivity is averaged over 20 runs. From Table 3.3, it is seen that there
is not a one-to-one correspondence between clusters found and activities. All algo-
rithms fail to generate a cluster corresponding to activity A5. The poor sensitivity
for activity A5 may be explained by the relatively small percentage of instances for
this activity in the training set (see Table 3.1 ). The number of examples for A5
represents only 1% of the total data set. According to Jain et al [10], the minimum
amount of training examples required is at least 10 times the vector dimension. In
this specific case this means approximately 6% of the total examples. All partition-
ing clustering algorithms with the exception of the EM algorithm fail to find a cluster
that corresponds to activity A7 and the hierarchical algorithm performs poorly. The
nature of the measurement system (sensors) meant that this activity is seen to over-
lap with other activities. The simple error rates (accuracy) in Table 3.2 would be
adequate assuming that all errors have equal importance. In this application a false
negative is more serious than a false positive. The latter represents a nuisance while
the former could be life threatening. In addition certain activities may be consid-
ered to have greater diagnostic value in indicating the health status of the inhabitant.
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Table 3.4 Confusion matrix for the Kmeans classifiers

True
class
(%)

A0 A1 A2 A3 A4 A5 A6 A7

A0 835 1 32 0 1 23 2 7
A1 2 76 10 28 1 8 3 0
A2 0 0 146 13 19 1 27 35
A3 0 0 0 0 0 0 50 0
A4 0 0 0 0 148 0 4 0
A5 0 0 0 0 0 0 0 0
A6 1 0 5 81 19 0 58 0
A7 0 0 0 0 0 0 0 0

For example, the activity Cooking is more informative watching TV. Another dis-
advantage of a simple rate is that it is dependent on the instance distribution. The
confusion matrix provides more information by listing the true classification against
the prediction for each class as shown in Table 3.4 for the KMeans classifier. In the
case of the KMeans, looking along the diagonal, incorrect associations are made for
two of the activities (A3 and A6) and no association for another two (A5 and A7).
The impact of this is assessed when modeling behaviors.

3.5.4 Behaviors: Discovering Patterns in Activities

Learning patterns of normal behavior is a necessary step in detecting anomalous
behavior, that is, detecting those behaviors deviating from the norm. Having dis-
covered activities we now attempt to model the pattern in the sequence of clusters
(activities). The behavior will be modeled as a sequence of activities. The model
can then be used to predict the next behavior and so determine with a probability
the occurrence of an anomalous behavior. A pattern of activities is modeled with a
Hidden Markov Model. In this experiment, the behavior is modeled based on clus-
ters identified in the unsupervised classification experiment. The observed states
are the clusters. The number of symbols is set to the number of clusters. Models
were thus obtained based on the classification produced by each of the techniques
described in Section 3.3. Figure 3.3 shows the Log likelihood for each model as
a function of number of hidden states. From the graphs in Figure 3.3, it is clear
that irrespective of the number of hidden states selected, the model generated from
the KMedoid cluster sequences produces the worst performance. The model based
on the EM cluster sequence improves significantly with number of hidden states,
surpassing the KMeans based model with 11 hidden states.
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Fig. 3.3 Log likelihood as a function of hidden states (based on results of KMeans model)

The HMM model based on the KMeans clusters was selected for further assess-
ment. Sequences of different length selected at random were generated from a test
data set. The log likelihood as a function of hidden states for each of the sequence
lengths chosen is shown in Figure 3.4. The graphs represent the average over 25
sequences for each length. From the graphs in Figure 3.4, it is clear that irrespective
of the number of hidden states selected, the probability of the model generating the
shorter sequences is higher.

3.5.5 Behaviors: Discovering Anomalous Patterns of Activity

The experiment described in this section was carried out to establish whether the
system can detect anomalous patterns. To this end, a sequence length of 50 selected
from the KMeans model (number of hidden states equal to 20) was chosen. Sub-
stitutions were introduced into this sequence, for example replacing cluster 7 with
cluster 1 and obtaining the log likelihood for the new test sequence. This was re-
peated a number of times to obtain an average. The results are shown in Figure 3.5.
The graph shows that in a sequence length of 50, the log likelihood is statistically
unaffected for up to 10 substitutions and steadily worsens beyond that.
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Fig. 3.4 Log likelihood as a function of hidden states for sequences of different length (inst. stands
for instances in the sequence)

Fig. 3.5 Log likelihood as a function of cluster substitutions in a sequence
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3.6 Discussion

A perceived drawback of learning in the context of an intelligent environment is
the necessity for the occupant to be trained to use the system at least for the du-
ration of the (computational) model learning. This would be particularly unhelpful
in this context. In addition, as discussed in [14], there is a tendency for the user to
attempt to enforce regular habits which would skew the data. This work attempts to
overcome the problem by the use of very simple unobtrusive sensors. The selection
criterion for the sensors and actuators and placement of these within the environ-
ment is to mimic existing technology. For example, the light switches resemble and
operate in the same manner as ordinary light switches. A subset of the data set was
annotated for the purpose of cross-validating the results of unsupervised modeling.
The amount of data produced in a long-term investigation precludes the use of su-
pervised classification. In addition, it is not always possible to observe inhabitants
for the purpose of collecting information for annotating sensor data. The results of
supervised classification have been described in previous work [16]; the unsuper-
vised classifiers as expected performed less well. Validation of the unsupervised
classifier results against annotated data indicates activity detection rates up to 76%.
Experimental results showed that any filtering produced only marginal differences
and did not necessarily improve the overall results. The cluster-activity association
is not necessary in order to detect anomalous behavior. Models of behavior were ob-
tained using an HMM algorithm with the clusters as observable states. The HMM
generatedmodels were assessed by plotting the average probability of a sequence
of observations given the model for various lengths of sequence. The capability
of the system to detect anomalous behavior was assessed by investigating the ef-
fect of cluster substitutions in sequences produced by the KMeans classifier. The
prediction for anomalous behavior is given in term of log-probability; comparing
an incoming new sequence to sequences representative of normal behavior. In real
terms this means how probable that the lack of kitchen activity at a given time rep-
resents a condition for raising the alarm. The decision to act or not to act remains
with the caregiver. Additional information regarding past activities within a time
window may be provided to help the decision making. The action of the caregiver
may also be graded according to the probability assigned to the anomalous behavior.
For example if the alarm is raised with a probability below a predefined threshold,
then the caregiver may choose in the first instance to provide remote assistance. It is
not considered a requirement to achieve 100% detection rates for the system to be
regarded as successful. However, failure to detect an anomalous behavior will result
in either false alarms or in missed alarms. The former is not considered a major issue
if the false alarm rate is low. However the latter may present a danger in the con-
text of care in terms of delayed warning. The system performs better with mutually
exclusive activities, that is, only one activity can take place at any given time. This
assumption will not always hold true; particularly if there is more than one occu-
pant. Multiple occupancy can be dealt with by other types of sensors, e.g., voice
recognition or RFID technology worn by the inhabitants. The issue of concurrent
overlapping activities has been addressed in the context of multiple occupancy. The
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method relies on the fact that one important characteristic of multiple occupancy
is concurrent activities. Multiple activities are classified but the different occupants
are not distinguished.

3.7 Conclusions

In previous work, supervised classification was investigated, but annotating data is
a long process and would be difficult as the number of sensors and number of activ-
ities increased. In some circumstances, it may not be possible to observe inhabitants
in order to gain sufficient information for annotation. In this paper, the results of un-
supervised classification of activities based on data gathered from multiple simple
sensors installed in a home are described. The aim was to identify activities based
on information such as lights status, motion detectors, pressure mat status, and cre-
ate a model of daily activity that will help in detecting anomalous behavior. The
results indicate that unsupervised classification is inferior; however, for anomalous
behavior detection based on HMM modeling activity classification is not a prereq-
uisite. The HMM technique was employed for modeling behavior as a sequence
of activities. Future work is aimed at improving the performance of unsupervised
classification and carrying out a formal assessment of the system’s ability to detect
anomalous behavior over an extended period of time is needed.
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Chapter 4
Sequential Pattern Mining for Cooking-Support
Robot

Yasushi Nakauchi

Abstract Recent technological advances have meant that many electrical household
appliances are computer-controlled and can be networked. In this chapter, we intro-
duce a human activity recognition system, which infers the next human action by
taking account of the past human behaviors observed so far. Based on the recogni-
tion system, we have developed a cooking support system which uses an LCD touch
panel on the kitchen counter and a mobile robot on the floor. The system suggests
the next action to carry out using voice and gestures. Experimental results confirm
the feasibility of the inference system and the quality of the support is investigated.

4.1 Introduction

Recent technological advances have meant that electrical household appliances
carry a processor and can be networked. If the environments within which we live
can recognize our activities indirectly through sensors, novel services to support our
activities can be developed. This idea was first proposed by Weiser as ubiquitous
computing [18] and has emerged as Aware Home [5], Intelligent Space [9], Robotic
Room I, II [17, 12], Easy Living [3, 8], Smart Rooms [15, 16], etc.

One of the most important factors for such systems is the recognition of human
behavior using ubiquitous sensors. In the Intelligent Space system, the position of a
human is detected with the use of multiple cameras on the ceiling allowing the hu-
man to be followed by a mobile robot [9]. Easy Living also detects the position of a
human and switches on a light in close proximity to the human [3, 8]. These systems
provide services by taking into account human intentions where the intention is in-
ferred from the location of the human. On the other hand, one of the applications
in Robotic Room I requires the human to express explicitly his intention. Robotic
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Room I will recognize a patient lying on a bed pointing at an object using the vision
system and the robotic manipulator will hand the object to the patient [17].

In order to recognize implicit human intentions, Asaki et al. have proposed a
human behavior (i.e., changing clothes, preparing meals, etc.) recognition system
based on state transition models [1]. Moore et al. have proposed a Bayesian clas-
sification method, which enables recognition of the various kinds of human behav-
ior through a learning mechanism [10, 11]. We also developed a ubiquitous sensor
room, Vivid Room (see Figure 4.1), and proposed a human intention recognition
system employing an ID4-based learning algorithm [13]. With the proposed learn-
ing algorithm, we succeeded in recognizing what a human intends to do such as
studying, eating, arranging, and resting (see Figure 4.2).

Fig. 4.1 Vivid Room.

Fig. 4.2 An example of recognized intentions in Vivid Room.
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In all the above-mentioned research, certain types of human activities are recog-
nized. However, even if we know that a human is cooking something, systems sup-
porting human activity are rather limited. Suppose that a human is making a cup of
coffee, it will be useful to suggest where the cream is, when the human picked up
a cup and the coffee. In order to provide such suggestions, the system should know
the time series of procedures and infer the next action that would be executed by the
human based on past and present observed actions.

In this chapter, we introduce a human activity recognition system, which infers
the next human action by taking account of past human behaviors. All the merchan-
dise in supermarkets has a one-dimensional bar code. But in near the future, they
will be replaced by IC tags, which maintain information such as manufacturer name,
type of merchandise, place of production, expiration date, etc. This means that all
items in a home will be labeled with IC tags. So in this paper, we presume foods,
cooking tools, tableware, and cutlery in the kitchen are labeled with IC tags and the
movements of these items can be tracked with the use of antennas placed on shelves
and kitchen counters.

We developed human a activity support system for a kitchen using an LCD touch
panel on the kitchen counter and a mobile robot on the floor. The panel displays the
recipes with pictures. The robot suggests the next action human should take using
voice and gestures. We also conducted experiments to verify the adequacy and the
quality of activity support.

4.2 System Design

4.2.1 Inference from Series of Human Actions

At first, we discuss the characteristics of human behaviors we need to recognize.
We define an observed action by sensors as action ai and a set of actions as A =
{a1,a2, ...,an}. For example, a set of action sequence will be a1: “take a cup from
the cupboard”, a2: “take an instant coffee from the cupboard”, a3: “take a spoon
from the drawer”, and a4: “take an electric pot for pouring hot water” when someone
is making a cup of coffee.

We also define a set of time series actions in arbitrary length as action pattern pi
and a set of action patterns as P = {p1, p2, ..., pm}. We have observed the action
pattern po = {a3,a2,a4} by watching a human and there exists an action pattern
pi = {...,a3,a2,a4,a6, ...} in database P, which is the collection of action patterns
observed so far.

We could find the same time series action pattern in pi and can infer that the next
action the human should execute is action a6.

Humans sometimes behave redundantly or concurrently. For example, po may
contain an as {a3,a2,an,a4} or pi may contain an as {...,a3,an,a2,a4,a6, ...}. These
actions are considered as noise when the original time series actions consist of the
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actions for making coffee, cooking hamburgers, etc. So we must develop the in-
ference system, which could infer the next human action even if such noises are
contained.

Add to that, human procedures (time series actions) may have branches. For ex-
ample, one may add sugar and the other may add cream after he/she has made black
coffee. These phenomena mean that there may exist p j = {...,a3,a2,a4,a7, ...} in
addition to pi mentioned above. If the inference system uses not only time series
information but also frequency of action patterns observed so far, it can predict the
preferred next action the human should perform. For example, when you see your
familiar person who always drinks black coffee has added cream in it, you will eas-
ily be aware of it.

4.2.2 Time Sequence Data Mining

The data mining methods can be roughly categorized into four kinds (i.e., correlation
analysis, time sequence analysis, clustering, and learning) [6]. The time sequence
analysis is the one which is suited to our purpose. In this section, we explain briefly
the typical algorithms that extract temporal orders in time series patterns.

The Apriori algorithm proposed by Agrawal is one of the famous data min-
ing methods for temporal sequential data [2]. We will explain the a priori al-
gorithm by using examples. Supposed that there are four time series data sets
p1 = {a3,a2,a4,a6}, p2 = {a3,a2,a4,a6}, p3 = {a3,a2,a5,a6}, p4 = {a3,a1,a4,a6}
in a database. The Apriori algorithm extracts the partial sequences from the data sets
by taking into account the number of occurrences and certainty given by a user. For
example, it finds the partial sequences {a3,a4}, which means “a4 occurs after a3”.
The certainty is the occurrence ratio (i.e., a4 happens after a3 at the ratio of 75%).
It is known experimentally that the calculation costs increase exponentially as the
number of data sets increases with the a priori algorithm.

On the other hand, Pei proposed the PrefixSpan algorithm, which extracts multi-
ple frequency patterns efficiently in terms of computational costs [14]. Suppose that
there are four time series data sets p1 = {a3,a2,a4,a6}, p2 = {a3,a2,a4,a6}, p3 =
{a3,a2,a5,a6}, p4 = {a3,a1,a4,a6} in the same as the above example. PrefixS-
pan extracts the partial sequences with the number of occurrences as shown in
Figure 4.3. {a3/4,a2/3,a4/2,a6/2} in the figure denotes that there is a time se-
ries data {a3,a2,a4,a6} with the frequency shown as suffix (i.e., the occurrence of
a3 alone is 4 and the occurrence of {a3,a2,a4,a6} as the time series data is 2).

4.2.3 Human Behavior Inference Algorithm

Since the above-mentioned time sequence data mining methods allow exact
matching, we will propose a human behavior inference algorithm that takes into
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Fig. 4.3 Time series data generated by PrefixSpan.

Fig. 4.4 Overview of proposed inference engine.

consideration noise both in the time sequence data within the database and in the
human observation data .

The method to predict the human’s next behavior is to find a time sequence data
that is the same as the window data from the behavior database. The database con-
tains a large amount of time sequence data generated from observations of past
behaviors. We employ PrefixSpan for generating partial time sequence data from
the behavior database because PrefixSpan has lower computational costs and easy
to utilize compared with other similar tools.

A diagram of the proposed inference engine is shown in Figure 4.4. We devel-
oped the window-based matching method that is insensitive to noise. We also em-
ploy a certainty measure to indicate the confidence of the inferred results.
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First, we will define the terms used in the algorithm. Every behavior observed by
sensors is defined as input data wi. Suppose that the latest input data is wi and the
number W of input data recently observed is {wi−W+1, · · · ,wi}; these W time series
data are defined as window data of width W .

The matching between the input data and the behavior database is done by win-
dow size. For example, if we start to find the time series input data of window size 5
and could not find an exact match, we will reduce the window width to 4,3,2. In
this way, even if the input data contains some noise, we will be able to find an ex-
act match in the database. The maximum window size used at the beginning of the
search is defined as Wmax and the minimum window size is defined as Wmin. In or-
der to infer the human’s next action, several time sequence data are required and so
Wmin is used for terminating the search.

The inferred event is the action that succeeds the matched time sequence with
window size W at the highest certainty. The certainty is calculated as follows:

certainty =
Oia

Opa
, (0 ≤ certainty ≤ 1) (4.1)

where Oia is the Occurrence of the Inferred Action and Opa is the Occurrence of the
Preceding Action to the Inferred Action calculated by PrefixSpan. The occurrence
is the number of events observed in a learning instance. In the example shown in
Figure 4.5, since both Oia and Opa are 2, the certainty is calculated as 100%(= 2

2 ).

Time Series Actions
WindowWidth:W= 5

a1 3 a 2 a 2 a 2 a 2 a 2 a 2 a 2
a 3 a 2 a 2 a 2 a 2 a 2 a 2
a 3 a 2 a 2 a 2 a 2 a 2 a 2
a 3 a 2 a 2 a 2 a 2 a 2
a 3 a 2 a 2 a 2 a 2 a 2 a 2
a 3 a 2 a 2 a 2 a 2 a 2
a 3 a 2 a 2 a 2 a 2 a 2
a 3 a 2 a 2 a 2 a 2
a 3 a 2 a 2 a 2 a 2 a 2 a 2
a 3 a 2 a 2 a 2 a 2 a 2
a 3 a 2 a 2 a 2 a 2 a 2
a 3 a 2 a 2 a 2 a 2
a 3 a 2 a 2 a 2 a 2 a 2

2 3 4 5 6 7 8

1 2 3 4 5 6 8

1 2 3 4 5 7 8

1 2 3 4 5 8

1 2 3 4 6 7 8

1 2 3 4 6 8

1 2 3 4 7 8

1 2 3 4 8

1 2 3 4 6 7 8

1 2 3 5 6 8

1 2 3 5 7 8

1 2 3 5 8

1 2 3 5 7 8

PredictedNextEvent:a6

Certainty:100%( )a 26

a 25

Fig. 4.5 Matching algorithm.
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The outputs of the inference engine are one of the following three kinds: EOS
(End Of Sequence), inferred event with certainty, or NULL. EOS is the output when
the observed time series data was matched in the database but the observed most
recent event is the end of sequence in the matched database. So the inference en-
gine could not infer the next event in this case. When the inference engine found
the matched time series data and there was a succeeding event in the database,
it outputs the succeeding event as the inferred event with the certainty calculated
by formula 4.1. NULL is the output when the inference engine could not find the
matched data in the database even though it reduced the time series actions window
width to Wmin.

The overall algorithm of our proposed inference engine is as follows:
1) At first, it creates the window with the size W = 5 and initializes all contents

as NULL.
2) Then, it inputs the observed events at most W = 5 to the window so that the

most recent event becomes wW .
3) It finds the time series data that is the exact match of the window in the data-

base.
4) If there was only one match, it outputs the inferred event ((W + 1)th event in

the database) with its certainty calculated by Equation 4.1. If (W + 1)th event does
not exist, it outputs EOS.

5) If there was more than one match, it selects all matches with a high cer-
tainty, then chooses the longest sequences1. If there remain multiple candidates after
applying the strategy mentioned above, it selects a candidate arbitrarily and outputs
the inferred event or EOS as in step 4.

6) If there were no matched data from step 3, it reduces the window size to
W =W −1 as shown in Figure 4.6. It then finds the matched data with these multiple
windows as step 3. When the window size becomes W < Wmin, it outputs NULL
since it could not find a match in the database. The above-mentioned procedure is
summarized in Table 4.1.

4.2.4 Activity Support of Human

If the system suggests the next action to be performed, it would be very helpful. At
the same time, it is important not to perturb a human’s free activities based on his/her
own preferences. So in this research, we develop a mobile robot that recommends
the human’s next action by voice and gesture.

In order to minimize unhelpful or unsuitable recommends, we employed a thresh-
old for certainty (see formula 4.1). The robot would only suggest a next action when
the certainty of inferred event is above the threshold.

1 This is because the longer the time series data, the better it describes the detailed procedures.
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Fig. 4.6 Reduction of window size.

Table 4.1 The procedure of matching algorithm.

No. Procedures
1 Set W = 5 and creates the window {w1,w2,w3,w4,w5} with all values as

NULL.
2 Inputs the observed at most W = 5 events to the window so that the most

recent event becomes wW .
3 Finds the exact same time series events as in the window in the database.

No. of matched data is singular. ⇒ go to 4.
No. of matched data is plural. ⇒ go to 5.
No. of matched data is none. ⇒ go to 6.

4 Outputs the inferred event ((W +1)th event in the database) with its
certainty calculated by formula 4.1.
Outputs EOS if (W +1)th event does not exist.

5 Selects the highest certainty ones, then selects the longest sequence of ones.
6 Reduces the window size to W = W −1. ⇒ go to 3.

If the window size becomes W < Wmin, it outputs NULL.

We conducted the experiments with 10 subjects and collected the subjects’
comments regarding the usefulness of the recommendations (inferred events). The
results suggest that the certainty below which the subjects felt that the recommen-
dations were unsuitable was 0.55. So we have set the threshold to 0.55; the robot
will not issue recommendations whose certainty is below this value.
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4.3 Implementation

4.3.1 IC Tag System

We presume that all the merchandise in supermarkets and department stores will
have IC tags in the near future, replacing bar codes. Thus in the future most of
the items in a house and office will have IC tags, enabling location and movement
tracking using antennae.

In this work, we employed the IC tag system developed by Feig Electronics Co.
Ltd. The size of the IC tag (sticker label) is approximately 2 cm × 5.5 cm. The size
of the antenna is approximately 30 cm × 40 cm and it can read/write the information
from/to the IC tags at a distance up to approximately 15 cm.

We have attached IC tags to the items (cup, glass, pot, instant coffee, tea bag,
cream, sugar, potato, carrot, spoon, fork, knife, medicine box, disinfectant, cot-
ton, adhesive plaster, etc.), which are usually available in a kitchen or home (see
Figure 4.7).

Information from the tag is downloaded to the PC via an RS-232C serial link.
The inference engine is implemented on the PC and the inferred event is transferred
to the mobile robot via wireless LAN (see Figure 4.8).

Fig. 4.7 Items labeled by IC tags.
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Fig. 4.8 System configuration of cooking support robot.

Fig. 4.9 Example of learning data.

4.3.2 Inference of Human’s Next Action

In order to obtain the learning instances for PrefixSpan, we asked 10 subjects to
perform five kinds of tasks, which are 1) make a cup of coffee, 2) make a cup of tea,
3) treat a cut on a finger, 4) take a medicine for a cold, and 5) make a curry and rice.
The examples of the learning instances are as shown in Figure 4.9.

In order to predict precise human behaviors, we have employed not only the IC
tag information that provides the name of the item, but also location information
i.e., where the item was sensed (a: cupboard, b: cabinet, c: medicine box) and the
human action (0: taken out, 1: stored). For example, the event Spoon-a0 denotes that
the spoon was taken from the cupboard.
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Fig. 4.10 Example of time series data generated by PrefixSpan.

In the current implementation, we are using only one antenna thus forcing users
to scan the items on the antenna. The system knows that the tagged object was taken
when the IC tag is sensed by the antenna the first time and recognizes that the object
is stored when the same IC tag is sensed a second time. The storage locations of
the items are predefined and they are hard-coded. But in the future, by installing IC
tag antennas on each of the shelves and kitchen counters, the system will locate the
items in realtime without the need for users to scan.

The time sequence database generated by PrefixSpan from the learning data
shown in Figure 4.9 is as shown in Figure 4.10. For example, the data {Cup-a0/20,
Pot-a1/10, TeaBag-a1/10, Spoon-a0/3} denotes that the event Cup-a0 on its own
was observed 20 times in the learning data. But the sequence of {Cup-a0, Pot-a1,
TeaBag-a1, Spoon-a0} (the cup was taken out of the cupboard, the pot was stored in
the cupboard, the tea bag was stored in the cupboard, and the spoon was taken out
of the cupboard) was observed 3 times.

4.3.3 Cooking Support Interface

We employed the Robovie mobile robot developed at ATR [7] as the cooking-
support robot (see Figure 4.11). We programmed the robot to recommend the in-
ferred next human action using synthesized voice and gestures.

We also installed an LCD touch panel on the wall of kitchen counter. It dis-
plays recipes with instructions as shown in Figure 4.12. In the left frame, step num-
ber of the cooking procedures is shown. In the right frames, two steps of detailed
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Fig. 4.11 Cooking-support robot recommending a presumed next action to human by voice and
gesture.

Fig. 4.12 Recipe shown on LCD.

instruction with pictures is shown. For example, when the system recognized a pot
picked by using the IC tag, the instruction for pouring hot water to make coffee will
be shown on the right-upper frame and the instruction of the succeeding step on the
right-bottom frame. When the system infers the next action, the panel displays the
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instruction for the inferred one on the right-bottom frame. The example shown in
Figure 4.12 is the case where the system inferred the next step as putting cream in
the cup. Automatic scrolling allows users to browse through steps of the recipe by
touching the step numbers displayed in the left frame.

We confirmed that the following supports have been realized. When a user took
out a cup and instant coffee from the cupboard, the robot recommends the next ac-
tion by saying “sugar is in the cupboard” and by turning toward the cupboard and
pointing the shelf where the sugar is located. When a user took cold medicine and
stored it in the medicine box, the robot recommends the next action by saying “the
medicine box should be stored on the shelf” and pointing to the shelf. These recom-
mendations are automatically generated from the inferred events such as Sugar-a0,
MedicineBox-b1, etc.

4.4 Experimental Results

To evaluate the adequacy and the quality of action support, we conducted experi-
ments with 10 subjects other than those used for collecting learning instances. We
instructed new subjects to speak out the short phrases according to the adequacy
they feel, each time they hear suggestions from the robot. The phrases we instructed
were as shown in Table 4.2 and they are scored from −1 to 1. We videotaped the
experiments and counted the scores each time the robot made a suggestion.

First to confirm the adequacy of suggestions in each task (tasks 1 to 4 explained in
Section 4.3.2), we asked subjects to perform each of the tasks. The averaged scores
are shown in Figure 4.13 and all scores were greater than 0.8. From the results, we
confirmed that the system could infer a suitable next action and the suggestion made
by the robot were accepted by the subjects. There were no incorrect suggestions
observed during the experiments. Some suggestions such as recommending the use
of a spoon for stirring were ignored (scored as 0), because some users did not use a
spoon, e.g., for black tea.

In order to evaluate the robustness to noise in the time series of observed, we
instructed a pair of subjects to perform different tasks. For example, we instructed
one subject to make a cup of coffee and the other to take a medicine for a cold. Their
actions (usages of items) will be interleaved and the actions of one subject are noise
to the other. The averaged scores were as shown in Figure 4.14.

Table 4.2 Phrases used for evaluation.

Score Phrase
1 “Thank you.”
0 (silent/ignore)
−1 “No thanks.”
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Fig. 4.13 Evaluation of adequacy in each task.

Fig. 4.14 Evaluation of adequacy when two tasks were interleaved.

Even though the two tasks were interleaved, the averaged scores were still high
(about 0.7). From the results, we confirmed that the reduction of window size (ex-
plained in section 4.2.3) was effective to make the system robust to noise in observed
action sequences. Again, there were no incorrect suggestions observed during the
experiments. Since some recommendations by the system are for the other subject,
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Fig. 4.15 Evaluation of the support by LCD and mobile robot.

those are just ignored (scored as 0). The subjects understood that those recommen-
dations were for the subject working nearby.

In order to evaluate the adequacy of two types of supporting media, we asked
subjects to make a cup of coffee under three conditions (i.e., (1) support by LCD,
(2) support by robot, and (3) support by both LCD and robot). After the task, we
asked the subject to score (from −2 to 2) the quality of support in terms of (a) com-
prehensibility of instructions, (b) comprehensibility of object locations, (c) compre-
hensibility of progress within the recipe, and (d) pleasantness of task.

As shown in Figure 4.15, it was confirmed that the instruction supported with the
LCD is suitable for understanding instructions and progress. On the other hand, the
instructions given by the robot are suitable for indicating the location of objects and
increase the pleasantness of the work. In all cases, the combined use of two media
increases the quality of human support over that of a single medium.

4.5 Conclusions

In this paper, we propose a human behavior recognition system which infers the
typical next human action by taking into account the accumulated human behaviors
observed in the past. We also developed a cooking support system by using an LCD
touch panel and a mobile robot, which recommends the presumed next human ac-
tion. From experimental results with subjects, we confirmed the adequacy of the
proposed inference system and the quality of support.

The characteristics of the proposed recognition system are as follows. (1) It is
robust to noise both in the time sequence data within the database and in the human
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observation data. These noises are inevitable for the system that allows user’s free
activities in intelligent spaces. The robustness is confirmed as the experimental re-
sults. (2) The certainty is calculated with the inferred next action. (3) The data min-
ing method is employed. Therefore, the system could be adapted to different types of
applications by expanding the data. If we import recipes conducted by professional
cooks, it will be attractive for both novice cooks as well as skilled cooks.

In future work, the system will suggest a recipe taking into account the foods
available in the kitchen. We also plan to extend the system so that it detects more
precise and detailed human activities by using heterogeneous sensors such as vision,
laser, etc.
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Chapter 5
Robotic, Sensory and Problem-Solving
Ingredients for the Future Home

Amedeo Cestaa, Luca Iocchib, G. Riccardo Leonea,b, Daniele Nardib,
Federico Pecoraa, and Riccardo Rasconia

Abstract ROBOCARE has been a three-year Italian research project aimed at as-
sessing the extent to which different state-of-the-art technologies can benefit the
creation of an assistive environment for elder care. In its final year, the project
focused on producing a demonstration exhibiting an integration of robotic, sen-
sory and problem-solving software agents. This article describes the ROBOCARE
Domestic Environment, an experimental three-room flat in which a number of het-
erogeneous robotic, domotic, and intelligent software agents provide domestic cog-
nitive support services for elderly people. The RDE is a deployed multiagent system
in which agents coordinate their behavior to create user services such as nonintru-
sive monitoring of daily activities and activity management assistance. This article
provides a summary of the system’s key features, focusing on the integrated pro-
totypical environment which was deployed in the ROBOCARE lab in Rome and
exhibited at the RoboCup 2006 competition.

5.1 Introduction

ROBOCARE has been a three-year research project1 which aimed at developing mul-
tiagent systems for the care of the aging population. The principal aim of ROBO-
CARE is to assess the extent to which different state-of-the-art technologies can
benefit the creation of an assistive environment for elder care, one of its main
driving forces being the increasing abundance of “intelligent” domestic devices and
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1 This research was sponsored by MIUR (Italian Ministry of Education, University and Research)
under project ROBOCARE (A Multi-Agent System with Intelligent Fixed and Mobile Robotic
Components), L. 449/97.
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affordable pervasive computing technology. It is with this aim that the final year
of the project focused on producing a demonstration exhibiting an integration of
robotic, sensory and problem-solving software agents. To this end, an experimen-
tal setup which re-creates a three-room flat was set up at the ISTC-CNR in Rome,
named The ROBOCARE Domestic Environment (RDE). The RDE is intended as a
testbed environment in which to test the ability of heterogeneous robotic, domotic,
and intelligent software agents to provide cognitive support services for elderly peo-
ple at home. Specifically, the RDE is a deployed multiagent system in which agents
coordinate their behavior to create user services such as nonintrusive monitoring of
daily activities and activity management assistance. A key feature of the RDE is a
context-aware domestic robot developed by the RoboCare team at the ISTC-CNR2.

The robot is aimed at demonstrating the feasibility of an embodied interface be-
tween the assisted elder and the smart home. Thus, the RDE can be viewed as a “ro-
botically rich” environment composed of sensors and software agents whose overall
purpose is to (a) predict/prevent possibly hazardous behavior; (b) monitor the ad-
herence to behavioral constraints defined by a caregiver; (c) provide basic services
for user interaction.

The system was partially re-created in the RoboCup@Home domestic environ-
ment during the RoboCup 2006 competition in Bremen3 where it was awarded third
prize.

5.1.1 Components of the Multiagent System

The RDE is equipped with the following agents, which provide services of various
nature:

- A domestic service robot, endowed with laser-based scan matching algorithms
for robust self-localization, and with path planning and obstacle avoidance algo-
rithms (see Figure 5.1).

- An Interaction Manager which coordinates Speech-act synthesis and user feed-
back interpretation, therefore providing an intuitive User Interface to/from the
robot.

- Two fixed stereo cameras providing a People Localization and Tracking (PLT)
service, and a Posture Recognition (PR) service.

- An ADL (Activities of Daily Living) monitor, a scheduling and execution mon-
itoring system which is responsible for monitoring the assisted person’s daily
activities and assessing the adherence to behavioral constraints defined by a care-
giver.

2 The development team is the result of a combined development effort stemming from two partners
of the RoboCare project, namely, the Planning and Scheduling Team at ISTC-CNR and SPQR at
the University of Rome “La Sapienza”.
3 Competition homepage: http://www.ai.rug.nl/robocupathome/.
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- One personal data assistant (PDA) on which a very simple four-button interface
is deployed. The interface allows to (1) summon the robot, (2) send the robot
to a specific location, (3) relay streaming video from the robot to the PDA, and
(4) stop the robot.

The robotic mediator was built to explore the added value of an embodied com-
panion in an intelligent home. Its mobility also provides the basis for developing
a number of added-value services which require physical presence. Because of the
tasks that the robot has to accomplish in the environment, its localization and map-
ping capabilities have great importance and will be described in Section 5.2.

The Interaction Manager (IM) is the module that coordinates the services pro-
vided by a Voice Recognition agent and by a Speech Synthesis agent; thanks to the
IM, simple natural language bidirectional communication between the robot and the
user can be established. The IM will be briefly discussed in Section 5.3.

The Stereo-vision-based People Localization and Tracking service (PLT) pro-
vides the means to locate the assisted person. The system is scalable as multiple
cameras and can be used to improve area coverage and precision: in addition, vision-
based Posture Recognition (PR) can be cascaded to the PLT computation in order
to provide further information on what the assisted person is doing. The sensory
subsystem is described in Section 5.4.

Continuous feedback from the sensors allows to build a symbolic representation
of the state of the environment and of the assisted elder. This information is em-
ployed by a CSP-based schedule execution monitoring tool (T-REX [2, 1]) to follow
the occurrence of Activities of Daily Living (ADLs). The aspects of daily life to be
monitored are specified by a caregiver in the form of complex temporal constraints
among activities. Constraint violations lead to system intervention (e.g., the robot
suggests “how about having lunch?”, or warns “don’t take your medication on an
empty stomach!”). The details of the ADL monitor are shown in Section 5.5.

Overall, the RDE is a collection of service-providing components of various na-
ture. Sensors contribute to building a symbolic representation of the state of the
environment and of the assisted person. Based on this information, automated rea-
soning agents infer actions to be performed in the environment, principally through
the robotic mediator. Both enactment and sensing require the synergistic coopera-
tion of multiple capabilities from different agents, such as robot mobility, speech
synthesis and recognition, and so on. For this reason, multiagent coordination is an
important aspect of the RDE scenario. Section 5.6 is dedicated to the description of
the coordination mechanism, which occurs in the RDE’s current configuration by
means of ADOPT-N [3], a distributed constraint reasoning algorithm.

5.2 The Robotic Platform Mobility Subsystem

This present Section briefly describes the functionalities of navigation, path plan-
ning, mapping and localization providing the basis for added-value services which
require physical presence.
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Fig. 5.1 The Robot’s Mobility
and Interaction modules.

Localization and mapping is the primary require-
ment for implementing a robust mobile platform in
the domestic environment. Underlying the mobil-
ity services is a Sampling Importance Resampling
(SIR) particle filtering algorithm, which is exten-
sively described in [4]. A significant part of our re-
search in the early stages of the ROBOCARE project
was dedicated to obtaining a reliable and robust
mobility subsystem for the robotic mediator. The re-
sults of this research are a set of key mobility ser-
vices consisting in primitives which can be invoked
to make the robot reach any position in the domestic
environment. In particular, SIR is particularly suited
for the domestic scenario, in which the map of the
environment may change in an unpredictable man-
ner. Indeed, the approach allows to take into account

the position of chairs, tables, sofas, or any other object whose position is likely to
change over time.

Given the capability of localizing itself in the environment, the mobile platform
must provide a “goto-place” service which can be invoked in order to make the
robot move robustly from one position in the environment to the other. In partic-
ular, the ROBOCARE robotic platform provides two levels of mobility services: a
goto-XY(x,y) function on the one hand, which triggers the robot to reach a
certain (x,y) position in the environment, and a goto-place(dest) primitive
through which the robot can be sent to a particular known destination (such as “the
sofa”, or “the lamp”). Clearly, the latter functionality is at a higher level of abstrac-
tion than the former, and in our system consists in a naming scheme which associates
names to coordinate pairs. Therefore, invoking the goto-place() command will
result in a look-up in the location database followed by the appropriate invocation of
the goto-XY() functionality. Since the core of the mobility infrastructure comes
into play at the goto-XY() invocation level, we here briefly describe the topolog-
ical path planning algorithm underlying this primitive.

Autonomously navigating toward a given coordinate pair in the domestic setting
is not a trivial problem. It poses both general problems pertaining to autonomous
navigation, as well as problems which are unique to the domestic environment.
Using complete algorithms to find the topology of the environment (e.g., Voronoi
diagrams) is very expensive and, since we have a different map at each cycle, a
probabilistic approach is more convenient for the topological path-planner.

The most widely used approach that builds a graph representing a roadmap of
the environment is the Probabilistic RoadMap (PRM) [5] algorithm. This algorithm
works by picking random positions in the configuration space and trying to connect
them with a fast local planner. The problem with this algorithm is that it expects as
input a map that does not change over time. This requirement cannot be upheld in
the domestic environment, where some furniture is frequently moved (e.g., chairs,
small tables, etc.) and new objects can clutter the environment semipermanently.
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In order to overcome this limitation, we employ an algorithm which combines
PRM with Growing Neural Gas (GNG) [6]. GNG is a neural network with unsu-
pervised learning, used to reduce the dimensionality of the input space. In this kind
of network, nodes represent symbols and edges represent semantic connections be-
tween them; the Hebbian learning rule is used in many approaches to update nodes
and create edges between them. Given a system which has a finite set of outputs,
applying the Hebbian rule allows for modifying the network in order to strengthen
the output in response to the input. Otherwise, given two outputs that are correlated
to a given input, it is used to strengthen their correlation. For our concerns, the nodes
(symbols) represent locations and the edges the possibility to go from one location
to another. In this sense, we can use, together with the Hebbian learning rule, a sim-
ple visibility check in order to create a link between two nodes, as PRM does. GNG
cannot be straightforwardly used in a robot motion problem, because the topological
information is valid only when the graph has reached a state of equilibrium.

5.3 The Interaction Manager

Interaction within ROBOCARE is a multifaceted problem that presents many in-
teresting challenges. All the agents operating within the environment contribute to
form the assistive behavior by maintaining a continuous exchange of updated in-
formation among one another. Recent psychological studies performed within the
context of the ROBOCARE project [7] have stressed the importance of using an em-
bodied assistant, the robot, as the main interactor between the environment and the
user. Since the robot plays the role of cognitive mediator, “speech” was chosen as
the main user-interaction modality.

Verbal interaction to/from the user is enacted by the Interaction Manager (IM),
which is in charge of controlling and integrating the services exported by the fol-
lowing subsystems:

- The Speech Synthesis Module, called Lucia, developed at the Institute of Cogni-
tive Sciences and Technologies of Padua;

- The Speech Recognition Module, called Sonic, developed at the University of
Colorado.

The Lucia subsystem allows the generation of speech acts according to a text-to-
speech fashion; it accepts text strings in input, which are afterward verbally pro-
nounced by a talking face through realistic labial movements. The IM is in charge
of assembling the correct textual string to be submitted to Lucia, in conjunction with
the ADL monitor constraint analyzer and in accordance to the environment overall
status, in order to provide “user-oriented” suggestions, warnings and answers.

Originally designed for the English language, the Sonic subsystem has been en-
hanced for the Italian language during the third year of the ROBOCARE project’s de-
velopment, through the implementation of an Italian grammar that allows to capture
a basic lexicon based on Italian phonemes. The recognized words and/or sentences
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are successively returned in text format; the IM is in charge of interpreting the re-
turned strings and adjusting the involved environmental variables in accordance to
the received messages. Both the previous modules have been lightly reengineered
in order to suite the ROBOCARE environment’s utilization needs.

In summary, the interaction between the intelligent assistant and the user may
occur in two different directions:

User → Intelligent Assistant: the assisted person can interact with the assistant
according to two different modalities, one of which is verbal communication. Gen-
eral questions can be asked to the assistant, which eventually provides the answer
(e.g., “At what time should I take my pill?”). It is worth highlighting how this type
of interaction can be considered as “passive” from the intelligent assistant point of
view, because the system only reacts if some sort of action is requested by the user
(on demand interaction). Alternatively, interaction is ensured through the use of
an ordinary Personal Data Assistant (PDA) endowed with a user-friendly interface
which allows the user to have a direct control on the Robot Motion Skills. Through
the PDA it is possible to impart commands to the robot and order it to move to a
specific location, to relay streaming video from the robot’s current location to the
PDA, as well as to stop the robot.

Intelligent Assistant → User: in order to provide a truly proactive environment,
an intelligent assistant should also be able to autonomously understand when to
interact, in order to support the user. For this reason our work also focused on
the implementation of active services from the assistive environment. According
to the ROBOCARE view, the activities that are to be monitored describe the behav-
ior that the assisted person should adhere to; such activities cannot be mandatory,
even though their execution represents an important objective for the safeguard of
the assisted person’s health. Therefore, failing to perform some prescribed action
is considered as a trigger by the system to start a dialog with the user. In general,
the violation of the constraints that exist among the activities is intented as a trigger
for the system to take the initiative and perform some actions, like approaching the
assisted person to offer assistance, or issuing verbal warnings and/or suggestions
(spontaneous interaction).

5.4 Environmental Sensors for People Tracking
and Posture Recognition

A major objective of the ROBOCARE project was the integration of different intel-
ligent components that are deployed not only on board a mobile robot, but also as
“intelligent” sensors in the environment. In particular, we have developed a Peo-
ple Localization and Tracking service4 (PLT) based on a stereo vision sensor, which
provides the means to locate the assisted person and other people in the environment.
This environmental sensor was deployed at RoboCup@Home 2006 in Bremen in the

4 http://www.dis.uniroma1.it/~iocchi/PLT
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form of an “intelligent coat-hanger”, demonstrating easy setup and general applica-
bility of vision-based systems for indoor applications. The system is scalable as
multiple cameras can be used to improve area coverage and precision. In addition,
vision-based posture recognition can be cascaded to the PLT computation in order
to provide further information on what the assisted person is doing.

Our stereo-vision-based tracking system is composed of three fundamental mod-
ules: (1) background modeling, background subtraction and foreground segmen-
tation, which are used to detect foreground people and objects to be tracked;
(2) plan-view analysis, which is used to refine foreground segmentation and to com-
pute observations for tracking; (3) tracking, which tracks observations over time
maintaining association between tracks and tracked people (or objects).

The PLT service is effectively capable of tracking the position of a human being
within a domestic environment. In addition, the system is resilient to changes in the
lighting conditions of the environment, thus enabling portability and easy setup (as
demonstrated at the RoboCup@Home competition). This characteristic is particu-
larly useful in domestic environments, where strong differences may occur due to
artificial and natural lighting conditions. The key solutions which have made these
features possible are:

1. The background model, which is a composition of intensity, disparity and edge
information; it uses a learning factor that varies over time and is different for
each pixel in order to adaptively and selectively update the model; moreover, it
uses a new notion of activity based on edge variations.

2. Plan-view projection computes height maps, which are used to detect people in
the environment and refine foreground segmentation in case of partial occlusions.

3. Plan-view positions and appearance models are integrated in the tracker and an
optimization problem is solved in order to determine the best matching between
the observations and the current status of the tracker.

The output of these three phases of the computation is depicted in Figure 5.2.
In addition to the PLT service, the system also provides a Posture Recognition

(PR) service. Specifically, this module is cascaded to the PLT module, as its input is
the person-blob obtained by the PLT algorithm. In addition, the service relies on a
3D human body model which has been carefully chosen by considering the quality
of data available from the segmentation steps. In our application the input data are
not sufficient to cope with hand and arm movement. This is because arms are often
missed by the segmentation process, and noises may appear as arms. Without taking
into account arms and hands in the model, it is not possible to retrieve information
about hand gestures, but it is still possible to detect most of the information that
allows to distinguish among the principal postures, such as STANDING, SITTING,
BENT, KNEELING, and LAYING. Our application is mainly interested in classifying
these main postures and thus we adopted a model that does not contain explicitly
arms and hands.

A detailed description of the PLT and PR services is outside the scope of this pa-
per, and the interested reader is referred to [8, 9] for further descriptions of the tech-
nology underlying the PLT and PR services. Nevertheless, we should underscore
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Fig. 5.2 The phases of the PLT service (from left to right, top to bottom): original image, intensity
foreground, disparity foreground, plan-view, foreground segmentation, and person segmentation.

that these services are key enabling factors for the sophisticated cognitive support
services provided by the smart home. Constant tracking and posture recognition
allows to deduce the state of the assisted person, and is therefore responsible for
activity recognition. As we briefly explain in the next Sections, recognized activi-
ties are propagated within a temporal representation of the assisted person’s daily
schedule, which in turn triggers the proactive behavior of the robotic mediator (in
the form of suggestions, warnings, and so on).

5.5 Monitoring Activities of Daily Living

This Section focuses on the Execution Monitoring System, or Activity of Daily Liv-
ing (ADL) monitor. Activity recognition and management plays a significant role
in advice and warning synthesis, as will be shown shortly. The desired behavior is
initially synthesized in terms of a set of activities to be monitored (schedule), bound
to one another through complex temporal relationships. These temporal links are of
great importance: in fact, not only does the schedule need to be constantly moni-
tored in order to know which activities are indeed being executed; also, the time at
which the activities are performed is essential, as delays or anticipations on tempo-
rally related tasks might trigger some initiative on behalf of the monitoring system.
Through temporal constraint analysis, the ADL monitor decides which pieces of
information to store and make available to the other agents, in order to ensure a
correct global reaction. Some intervention might even be directly triggered by the
ADL monitor analysis itself in a more reactive fashion, depending on the gravity
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of the occurred circumstance. In general, the system is able to assess the situation
by querying all available agents, which are designed to act independently and asyn-
chronously.

5.5.1 Schedule Representation and Execution Monitoring

The scheduling technology underlying the whole system is based on Constraint
Satisfaction Problem (CSP) solving techniques. More specifically, the baseline
schedule defined by the caregiver (a doctor, or a family member) is represented
in a temporal CSP, usually called Temporal Constraint Network (TCN) [10]. The
variables in a temporal CSP represent the time points, which can be constrained one
another by binding the distance between any two variables. Every activity in the
schedule is associated with two time points (the start and the end time); by impos-
ing distance constraints among the time points in the TCN, it is possible to define
complex temporal relations among the activities, task durations as well as general
separation constraints. TCN’s consistency on insertion of new time points and/or
new constraints among existing time points is checked through proper propagation
algorithms [10].

In our schedule representation model, each activity Ti is characterized by a start
point st(Ti), an end point et(Ti) and a duration d(Ti). A Schedule is defined as a
set of such activities that are supposed to be bound by minimum and/or maximum
temporal constraints imposed by the caregiver: the duration of the task Ti can be
set by defining temporal constraints between st(Ti) and et(Ti), while by properly
constraining the start and end times of different tasks, it is generally possible to
model the desired temporal relationships among Ti and any other activity of the
schedule.

Under the hypothesis that the schedule represents the activities that have to be
monitored, each imposed constraint helps to specify the desired behavior we would
like the assisted person to adhere to. For instance, activity Ti might represent the
activity of having breakfast and Tj the activity of taking a medicine: in this case, it
is possible to impose constraints so as to model the circumstance that the medicines
should not be taken neither too soon nor too late after eating; the values associated
with the temporal constraints quantitatively specify the extent of such bounds. Ac-
cording to this representation it is possible to describe behavioral patterns which can
be very complex, either in terms of the number of activities involved, or in terms of
temporal constraints which may insist among them.

Note that this modeling paradigm implicitly allows for temporal flexibility in the
synthesis of the desired behavioral pattern: in fact, the possibility to introduce mini-
mum and maximum temporal constraints permits to specify temporal slacks in order
to allow for some tolerance before a constraint is deemed violated. It is straightfor-
ward how this is the only viable solution in the context of execution monitoring of
human behaviors, as it avoids putting the assisted person (and the caregiver!) against
unacceptably strict, and thus unmanageable, action sequences.
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The problem of execution monitoring of activities belonging to a predefined
schedule represents a delicate issue, the main reason being that the words “con-
trol” and “monitoring” are often interpreted as synonyms5. For precision’s sake,
“control” should be interpreted as the deployment of a corrective action aiming at
altering the state of the world, while “monitoring” should be simply interpreted as
the action of observing reality, giving up any volition of interference. Therefore,
scheduling can play a different role, depending on the particular domain: the more
the domain allows to see the schedule activities as commands to be dispatched in
the environment, the more that scheduling can be seen as a control action, as the
sequencing decisions on the activities will directly influence the future evolution of
the world.

In the ROBOCARE context, we obviously have no control whatsoever in the
actions the assisted person is going to perform, despite the caregiver’s prescrip-
tions. Therefore, the task of following the person’s behavior falls exclusively in the
monitoring category. The system limits itself in taking note of the evolution of the
environment, continuously keeping an updated internal representation of the latter,
and possibly reacting to some significant events, if deemed necessary. The moni-
toring efforts will therefore focus upon: (1) keeping the internal representation of
the real world consistent with the behavioral decisions of the assisted person at all
times, and (2) performing the necessary rescheduling actions so as to keep at a max-
imum the number of temporal constraints originally imposed by the caregiver. This
second point is of great importance as the maintenance of temporal information
in terms of constraints is essential in order to perform correct situation assessment
and/or future-consistent what-if analysis.

5.5.2 Constraint Management in the ROBOCARE Context

An extremely important role in the execution monitoring problem within the ROBO-
CARE context is played by the management of all the temporal constraints present in
the schedule. As the environment sensing cycle commences, the system periodically
checks the state of the monitored area, trying to detect and recognize the execution
state of all the activities.

Regardless of the prescribed behavior represented in the baseline schedule, the
assisted person is obviously free to act as she likes: this basically means that at
each detection cycle, the system is called to precisely assess the possible differences
between the actual and desired state. Assessing such differences does not necessarily
entail the necessity for a system reaction, as the schedule is in general synthesized
according to flexibility criteria: only when a true constraint violation occurs, shall
reaction be triggered.

To be more concrete, let us consider the monitoring of a behavioral pattern
described by a schedule composed of activities A = {a1,a2, . . . ,an} be the set of

5 In the Italian language, for instance, “to control” and “to monitor” are translated with the same
term “controllare”.
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activities involved, and C = {c1,c2, . . . ,cm} the set of temporal constraints imposed
among the activities. In order to represent an executable schedule, 〈A,C〉 must be
both temporally and resource consistent. It is the responsibility of the caregiver to
synthesize a semantically correct plan, while the system is able to detect possible
temporal and resource inconsistencies, after the problem loading phase. In case of
resource inconsistencies (i.e., should the assisted person be wrongly scheduled to
perform two activities at the same time), the system automatically proposes an al-
ternative plan and waits for the caregiver’s acceptance; instead, temporal inconsis-
tencies require immediate corrective intervention on behalf of the user.

Algorithm 5.1 The Execution Monitoring Algorithm.

1. while true do
2. Eventst ← St

3. if Eventst �= /0 then
4. Cr,t ← removeConstraints()
5. insertContingencies(Eventst )
6. Kt ← /0
7. while Cr,t �= /0 do
8. c j ← chooseConstraint(Cr,t )
9. if ¬ re-insertConstraint(c j) then
10. Kt ← Kt ∪ c j

Algorithm 5.1 shows the execution monitoring algorithm employed in the ROBO-
CARE context. As shown in the algorithm, an “environment sensing” action is peri-
odically performed (line 2). This occurs by accessing the symbolic representation of
the current situation (St). As we show in Section 5.6, this information is obtained by
means of a cooperative multiagent deduction process. The details of how deduction
occurs starting from the symbolic information deriving from the sensors are the ob-
ject of Section 5.6. As a result, the set Eventst of the occurred events is periodically
acquired. By event we mean any mismatch between the expected situation, accord-
ing to the caregiver’s prescriptions, and the actual situation (i.e., a planned action
which fails to be executed, is considered as an event).

If events are detected, the first action is to remove all the active constraints present
in the schedule (line 4). By active constraints, we mean those which do not com-
pletely belong to the past, with respect to the actual time of execution tE . More
formally, given an execution instant tE and a constraint ck binding two time points
ta and tb, ck is considered idle if and only if (ta < tE)∧ (tb < tE). All constraints that
are not idle are active. Obviously, idle constraints do not take part in the analysis
because they will not play any role in the evolution of the future states of the world.

In the next step (line 5) all the detected contingencies, properly modeled as fur-
ther constraints, are inserted in the plan. This is the step where the system updates
the internal representation of the schedule in order to preserve consistency with the
world’s true state.
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Lines 7–10 implement the constraint reinsertion cycle, where the algorithm tries
to restore as many caregiver requirements as possible given the current situation.
Notice in fact that it is probable that not all the original constraints will be accepted
at this point: the occurrence of the contingencies might in fact have changed the tem-
poral network constrainedness, so as to make impossible the complete reinsertion
of the constraints removed at the previous step. During the cycle, all the constraints
which are rejected are stored in the set Kt .

Constraint insertion (and rejection) is an extremely delicate issue, for at least
three reasons. First, system reaction may consist in verbal suggestions or warnings:
the information conveyed by these messages strongly depends on the contents of the
set Kt . The analysis of all the rejected constraints quantitatively and qualitatively
determines the system’s response. Given a temporal network T N underlying the
current schedule, the set Kt = {kt,1,kt,2, ...,kt,r} must be such that: (1) the insertion
of each kt, j in T N causes a propagation failure; (2) the cardinality of Kt is maximum.
Condition (1) ensures that every constraint in Kt plays a role in determining the
system’s reaction, ruling out false-positive situations; condition (2) ensures that no
contingency escapes the system’s attention.

Second, the acceptance of each constraint c j (and complementarity, the contents
of Kt ) is generally dependent on the particular order chosen for reinsertion. In gen-
eral, a number of different choice heuristics (chooseConstraint() method) can be
envisaged, leading to different approaches for contingency management. To clar-
ify this issue, let us consider a temporal network T N and two constraints c1 and
c2 such that the attempt of posting both of them in T N would determine an in-
consistency: in this case, if the insertion order is {c1,c2}, then c2 is going to be
rejected; if the opposite order is used, c1 is rejected. Since in the ROBOCARE con-
text it is essential that the reaction be related to the closest contingency with respect
to execution time tE , the particular heuristic employed for reinsertion is backward-
chronological. The result of this choice is that the rejected constraints will be the
ones which are temporally closer to the actual instant of execution, therefore meet-
ing the condition of reaction urgency. In other terms, the ROBOCARE monitoring
system is oriented toward synthesizing a suggestion regarding the primary cause of
a violation, rather than forming one based on a distant effect of the assisted per-
son’s behavior. The constraints are chronologically ordered taking into account the
values of the time point pairs they are connected to. More formally, given a set
of constraints {c1(t1,s, t1,e),c2(t2,s, t2,e), . . . ,cn(tn,s, tn,e)}, where each ci(ti,s, ti,e) con-
nects the time points ti,s and ti,e, the constraint ci(ti,s, ti,e) chronologically precedes
the constraint c j(t j,s, t j,e), if min(ti,s, ti,e) < min(t j,s, t j,e).

Lastly, the importance of maximizing the number of accepted constraints is di-
rectly linked to the need to maintain a schedule’s representation which is at all times
as close as possible to the original specifications, despite the assisted person’s ac-
tions. The reason is twofold:

1. The system should at all times be able to give correct answers to questions related
to future allocations of the activities, as well as to the temporal bounds imposed
among them: Questions like: “At what time do I have to take my medication?”
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or “How much time have I got between lunch and dinner?” should always be
answered correctly (according to the original caregiver’s plan);

2. The system should retain the ability to perform correct what-if analysis, in or-
der to deliver reliable information in case of requests like:“If I go for a walk
at four o’clock, will I come back in time to watch my favorite TV show?” It is
straightforward how the reliability of the answer is strictly related to the quan-
tity of original temporal information that the system is able to retain during the
monitoring.

5.5.3 From Constraint Violations to Verbal Interaction

Objective of this Section is to give a hint of how the information regarding the
constraint violations can be interpreted by the Interaction Manager (see Section 5.3)
into semantically meaningful speech acts that the user may immediately understand.

As we have seen in the description of Algorithm 5.1, each element in the violated
constraints set Kt is either a minimum or a maximum constraint. Temporal relations
between activities are generally represented through minimum and/or maximum
constraints imposed between the end time of the previous activity and the start time
of the following activity; duration constraints are defined through both a minimum
and a maximum constraint insisting between the start and end time points of the
same activity and representing, respectively, the minimum and the maximum dura-
tion allowed.

At a basic level, the violation of each constraint can immediately be given the
following semantic interpretation, depicted in Figure 5.3:

• the violation of the minimum constraint ci j
min between activities Ai and A j (where

Ai can be the SOURCE activity6), directly involves the following semantics: “A j
is taking place too soon.” (Figure 5.3(a));

• the violation of the maximum constraint c ji
max between activities A j and Ai (where

Ai can be the SOURCE activity), involves the semantics: “A j is being delayed too
much.” (Figure 5.3(b));

Duration constraints undergo a slightly different analysis: in fact, a violation of a
duration constraint on activity Ai might either entail the violation of the minimum
or of the maximum constraints involved:

• the violation of the minimum duration constraint implies the semantics: “Ai has
lasted too short.” (Figure 5.3(c));

• the violation of the maximum duration constraint implies the semantics: “Ai is
lasting too long.” (Figure 5.3(d)).

The previous bullets represent the building blocks for higher level interpretations of
the events related to constraint violations. Through a deeper analysis of the temporal

6 The SOURCE is a particular activity with zero duration whose start time coincides with the origin
of the temporal axis.
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(a) A j is taking place too soon. (b) A j is being delayed too much.

(c) Ai has lasted too short. (d) Ai is lasting too long.

Fig. 5.3 The Building Blocks for Speech Act Generation based on constraint violations.

network underlying the assisted person’s monitored behavior, it is possible to cap-
ture a number of useful interrelations among the violated constraints: the idea is to
build more and more articulated responses through the fusion of all the semantically
useful data carried by each building block associated to a violation.

Nonetheless, constraint violation alone is generally not enough to synthesize
meaningful warning speech acts; integrating in the analysis the execution state of
the scheduled activities provides a great deal of meaningful information. This se-
mantic integration is performed by the IM agent, which is also responsible for the
coordination and management of information synthesis and exchange to/from the
robot, through the talking face.

As an example, let us consider a simple plan consisting of a cooking and a lunch
activity, where the cooking must be executed before lunch, and the two activities
must be separated by a temporal constraint of at least 30 minutes (in other words,
the assisted person is expected to cook first, then wait at least 30 minutes, and finally
have lunch). During the monitoring process, if the system detects a violation of the
minimum constraint existing between the two activities, depending on whether the
assisted person has performed the cooking or not, the system might respectively
suggest to delay the lunch or to prepare something warm to eat.

5.6 Multiagent Coordination Infrastructure

Coordination of multiple services is achieved by solving a Multiagent Coordination
(MAC) problem. The MAC is cast as a Distributed Constraint Optimization Problem
(DCOP), and solved by ADOPT-N [3], an extension of the ADOPT (Asynchronous
Distributed Optimization) algorithm [11] for dealing with n-ary constraints.

One of the most crucial issues which arise when integrating diverse agents is that
of coordination. Specifically, the combination of basic services provided by all these
agents is accomplished by a distributed constraint reasoning infrastructure. The co-
ordination scheme provides a “functional cohesive” for the elementary services, as
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it defines the rules according to which the services are triggered. Each service cor-
responds to a software agent to which tasks are dynamically allocated in function of
the current state of the environment and of the assisted person. For instance, if the
PLT and PR services recognize that the assisted person is lying on the floor in the
kitchen (a situation which is defined as “anomalous” in the overall rule set), then
the coordination mechanism will trigger the robot to navigate toward the assisted
person’s location and ask whether everything is all right.

The coordination of the above-mentioned elementary services is defined so as to
demonstrate complex added value services which require the cooperation of multi-
ple elementary services. Some examples of global behaviors are the following:

Scenario 1 The assisted person is in an abnormal posture-location state (e.g., lying
down in the kitchen). System behavior: the robot navigates to the person’s location,
asks if all is well, and enacts a predefined contingency plan, such as placing an
emergency phone call.

Scenario 2 The ADL monitor detects that the time bounds within which to take a
medication are jeopardized by an unusual activity pattern (e.g., the assisted per-
son starts to have lunch very late in the afternoon). System behavior (option 1):
the robot will reach the person and verbally alert him/her of the possible future in-
consistency. System behavior (option 2): the inconsistency is signaled through the
PDA.

Scenario 3 The assisted person asks the robot, through the PDA or verbally, to go
and “see if the window is open”. System behavior: the robot will navigate to the
designated window (upon obtaining its location from the fixed stereo cameras) and
(option 1) relay a streaming video or snapshot of the window on the PDA, or (option
2) take a video/snapshot of the window, return to the assisted person and display the
information on its screen.

Scenario 4 The assisted person asks the intelligent environment (through the PDA
or verbally to the robot) whether he/she should take a walk now or wait till after
dinner. System behavior: the request is forwarded to the ADL monitor, which in
turn propagates the two scenarios (walk now or walk after dinner) in its temporal
representation of the daily schedule. The result of this deduction is relayed to the
assisted person through the PDA or verbally (e.g., “if you take a walk now, you will
not be able to start dinner before 10:00 pm, and this is in contrast with a medication
constraint”).

5.6.1 Casting the MAC Problem to DCOP

As mentioned, multiagent coordination is cast as a distributed constraint optimiza-
tion problem and solved by the agents according to the (distributed) ADOPT-N
algorithm. Specifically, a distributed constraint optimization problem is a
tuple 〈V ,D ,C 〉 where V = {v1, . . . ,vn} are variables with values in the domains
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{D1, . . . ,Dn} = D , and C is a set of constraints among variables. Constraints
may involve an arbitrary subset of the variables (n-ary constraints): a constraint
among the set C ⊂ V of k variables is expressed as a value function in the form
fC : D1 × . . .× Dk → N. For instance, a constraint involving the three variables
{v1,v3,v7} may prescribe that the cost of a particular assignment of values to these
variables amounts to c, e.g., fv1,v3,v7 (0,3,1) = c. The objective of a constraint op-
timization algorithm is to calculate an assignment A of values to variables while
minimizing the cost of the assignment ∑C∈C fC(A ), where each fC is of arity |C|.

In the specific case of the RDE, the cost function is modeled so as to reflect the
desiderata of system behavior. Specifically, the domains of the variables model the
states of the services (i.e., what the system can provide) as well as the possible states
of the environment and of the assisted person (i.e., what can occur). Constraints
bind these variables to model relations among services, that is, the overall behavior
of the smart home and how knowledge is shared among the agents. A high-level
representation of how the RDE’s components are connected to the underlying DCOP
problem formulation is shown in Figure 5.4.

PDA
Call robot
Send robot to
Show video
Stop robot

PDA Agent

RoboCare domestic Robot
Mobility

Robot Mobility
Agent
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Fig. 5.4 The ROBOCARE DCOP for service integration.
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In the RDE DCOP, variables represent input for the decision process and/or in-
structions for controlling the enactment of the services provided by the RDE. For
instance, the PLTState variable represents the position of the assisted person in
the environment (whose domain is the enumeration {KITCHEN, LIVINGROOM,
BATHROOM, BEDROOM, UNKNOWN}, while the PRState variable carries the
information on the person’s posture (the domains of the variables are shown in the
figure). These two variables are purely “sensory”, as their value is determined by the
sensory input obtained from the PLT and PR services. An example of “enactment”
variable is RobotCommand, which is set autonomously by its agent according to
the decisions taken during the execution of the ADOPT-N cooperative solving al-
gorithm. Moreover, agents can have more than one variable. This is the case of the
agent representing the robot, which also has the variable RobotState representing the
current task in which the robot is engaged, i.e., {DONE, COMPUTING, FAILED,
INACTIVE}.

The value functions which model the constraints in the system describe a global
cost function whose minima represent the desired system behavior. In first approx-
imation, it is easy to see this reduction as a set of crisp constraints: all consistent
states evaluate to a global cost of 0, while inconsistent situations evaluate to ∞.
Consistent states establish a correspondence between observations from the sensors
and the desired combination of behaviors of the services. For reasons of space we
cannot describe the full set of constraints which models the behavior of the RDE as
it is instantiated in the ROBOCARE lab. One meaningful example of such constraints
is the following: when the PLT and PR sensors assess that there is an emergency sit-
uation (e.g., the assisted person is lying on the floor in the kitchen), the PLTState
and PRState variables are set to KITCHEN and LY ING, respectively; we wish to
model the fact that the variable representing the assisted person’s current activity
(Activity) should be set to EMERGENCY in the event of anomalous situations such
as this one.

Following the same reasoning, we can model the overall activity recognition
problem in the RDE with a ternary constraint fC = {PLTState,PRState,Activity},
depicted in Figure 5.5. PRState PLTState Activity fC

SITTING KITCHEN LUNCH 0
STANDING KITCHEN COOKING 0

LAYING KITCHEN EMERGENCY 0
STANDING BATHROOM MEDICATION 0

LAYING BATHROOM EMERGENCY 0
LAYING BEDROOM NAP 0
SITTING �= KITCHEN UNKNOWN 0

STANDING �= KITCHEN, UNKNOWN 0
�= BATHROOM

Fig. 5.5 Constraint modeling activity recognition through
the PLT and PR services.

In addition, we add tuples sta-
ting that all assignments that
are not described by the above
zero-cost tuples (e.g., standing
in the bathroom having lunch)
have infinite cost. This opera-
tion can be done automatically,
as it consists of calculating the
transitive closure of the zero-
cost tuples, and associating to
the newly generated tuples infinite cost.

Constraints such as the above are employed to model all aspects of the RDE, such
as the proper enactment of the robotic mediator in case of an emergency (i.e., when
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the Activity variable indicates that the assisted person, is in a state of emergency,
the robot will enact a predefined plan as described in scenario 1).

5.6.2 Cooperatively Solving the MAC Problem

As noted, an ADOPT-N agent is instantiated for each service provided by the com-
ponents of the RDE. Given the current situation S, these agents communicate to
each other messages which allow them to trigger the appropriate behavior. Clearly,
the state of the environment, of the assisted person, and of the services themselves
changes in time: let the situation (i.e., the state of the environment, of the assisted
person and of the services) at time t be St . The DCOP formulation of the MAC
described earlier represents the desired behavior of the system in function of the
possible states of the RDE. Therefore, if St �= St−1, the ADOPT-N agents must trig-
ger an “instance of coordination” so as to decide the assignment A which represents
the desired enactment of services.

One of the challenges of the RDE scenario with respect to distributed coordina-
tion is the heterogeneity of the agents. The strong difference in nature between the
various components of the RDE reflects heavily on the coordination mechanism.
This is because of the uncertainty connected to the time employed by services to
update the symbolic information which is passed on to the agents.

Algorithm 5.2 Synchronization schema followed by each ADOPT-N agent a in the RDE.
t ← 0
St ← getSensoryInput(Va)
while true do

St−1 ← St
while (St = St−1)∧ (t ≥ a′.t, ∀a′ �= a) do

St ← getSensoryInput(Va)
t ← t +1
forall di ∈ Dv∈Va do

lb(di) ← 0 /** Reset lower and **/
ub(di) ← ∞ /** upper bounds **/

A |Va ← runAdopt() /** Iteration terminates on ADOPT-N termination **/
triggerBehavior(A |Va )

As a consequence, it is in general impossible to have strict guarantees on the re-
sponsiveness of the agents. For this reason the albeit asynchronous solving proce-
dure needs to be iterated synchronously. More specifically, ADOPT-N is deployed in
the RDE as described in Algorithm 5.2, according to which the agents continuously
monitor the current situation, and execute the ADOPT-N algorithm whenever a dif-
ference with the previous situation is found. The getSensoryInput() method in the
pseudo-code samples the state of the environment which is represented by agent a’s
variables Va (what we have informally called “sensory” variables). Specifically, the
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values of these variables are constrained to remain fixed on the sensed value during
the execution of the ADOPT-N decision process. In practice, this occurs by posting a
unary constraint which prescribes that any value assignment which is different from
the sensed value should evaluate to ∞, and is therefore never explored by the agent
controlling the variable. This constraint posting mechanism is a feature of ADOPT-N.
Clearly, it is also possible to restrict the values of these variables by modifying the
problem before each iteration. The constraint posting strategy was employed to fa-
cilitate representation and reuse of code. In fact, the DCOP problem never needs
to change between iterations, and this allows to minimize the reinitialization phase
between iterations (which can be reduced to resetting the lower and upper bounds
of the domain values for each variable as shown in the algorithm — see [3, 11] for
details on the ADOPT and ADOPT-N algorithms). Moreover, posting a unary con-
straint on a variable for the entire duration of the solving process does not affect the
computational complexity of the algorithm.

Notice, though, that ADOPT and its variant ADOPT-N do not rely on synchronous
communication between agents, thus natively supporting message transfer with ran-
dom (but finite) delay. This made it possible to employ ADOPT-N within the RDE
scenario without modifying the algorithm internally. Furthermore, while most dis-
tributed reasoning algorithms (like ADOPT itself) are employed in practice as con-
current threads on a single machine (a situation in which network reliability is rather
high), the asynchronous quality of ADOPT-N strongly facilitated the step toward
“real” distribution, where delays in message passing increase in magnitude as well
as randomness.

5.7 Conclusions

During the first two years of project development, efforts were concentrated on de-
veloping the technology to realize the individual components (or services) of the
RDE. The services provided by this technology were deployed in the environment
according to a service-oriented infrastructure, which is described in [12]. This al-
lowed to draw some interesting conclusions on the usefulness of robots, smart sen-
sors, and proactive domestic monitoring in general (see, e.g., [13]).

In the final year of the project, and in part toward the goal of participating in the
RoboCup@Home competition, the attention shifted from single component devel-
opment to the functional integration of a continuous and context-aware environment.
The issue was to establish a convenient way to describe how the services should be
interleaved in function of the feedback obtained from the sensory subsystem and
the user. The strategy we chose was to cast this problem, which can also be seen
as a service-composition problem, in the form of a multiagent coordination (MAC)
problem.

It is interesting to notice that the specific constraint-based formulation of the
MAC problem is strongly facilitated by the possibility to encode n-ary constraints.
As discussed, this is convenient for modeling the functional relationship among
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multiple services as it allows to precisely indicate the relationships between sensed
input and the resulting enactment. Another advantage of the constraint-based for-
mulation is that the system is easily scalable. In fact, adding another sensor, service
or intelligent functionality requires adding an ADOPT-N agent and its variables to
the problem, and system behavior can be specified incrementally.

Finally, as noted earlier, an interesting area for future research is the develop-
ment of more powerful formalisms for specifying service interaction and invocation
in terms of a DCOP problem. One of the goals of ROBOCARE has been to develop
technology which is at least to a certain degree usable by non-experts7. The knowl-
edge acquired in three years of ROBOCARE can certainly contribute to building
systems which are close to becoming market-level products.
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Chapter 6
Ubiquitous Stereo Vision for Human Sensing

Ikushi Yoda and Katsuhiko Sakae

Abstract We are now researching real-time recognition technology mainly for hu-
mans (of human existence, the face, intentional gestures and trajectories) in the real-
world environment. We placed stereo cameras ubiquitously and used both high- and
low-speed network. This chapter describes the concept of this “Ubiquitous Stereo
Vision” and a new method for human sensing. The objectives of this research were
to use 3D information and texture image, and to develop a real-time new human
sensing method. We place the stereo cameras statically, utilize range information as
a key, and understand the scene of human behavior. The cases of indoor life space
support and safety improvement support are described as the specific applications.

6.1 Introduction

Computer and communication technologies are changing rapidly, with higher speeds,
lower costs, and larger network capacity. Given this, further progress in image
recognition and human interface technology using large numbers of cameras is im-
portant.

The final goal of our research is to develop a real-time recognition methodology
which can adapt to real scenes involving mainly humans (concerning the presence of
people, tracking, face recognition, gestures, and so on). We have conducted exper-
iments on general-purpose human sensing in a ubiquitous environment (with mul-
tiple cameras) and with a large-capacity network. This chapter describes the basic
concepts and techniques for recognizing people with this type of system.
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Learning stereo vision [1] has been developed to achieve a more natural inter-
action for the man-machine interface. This is fundamental for the concept of one
stereo camera for one user. Here, we expand the mechanism of the vision interface
to consist of multiple stereo cameras for multiple users. The ultimate purpose of this
research is to develop a new method of learning and recognizing multiple images in-
put from a large number of cameras connected via a high-speed network. We utilize
range information from the stereo cameras to clip the areas containing the people at
a location.

There has been much research on 3D reconstruction using information from a
large number of cameras [3, 4, 5]. Using images from multiple viewpoints, much of
this research focuses on contents generation. The generation of a middle viewpoint
has thus become a realistic goal.

On the other hand, there is also research that simply uses the range information
obtained from a stereo camera for human sensing [6]. Stereo cameras are placed in
a room, and the system recognizes the position of a person. Not only stand-alone
stereo cameras, however, but also touch sensors and fingerprint ID devices are used
in this research. Therefore, the vision sensors are mere tools, and the research fo-
cuses on more effective utilization of personal computers.

There is also much research on vision systems based on elemental technologies
[2]: distribution, cooperation, and activation. Most of this research, however, uses
active cameras, which are slower than real people.

In the experiments described here, we installed stereo cameras ubiquitously. Re-
gions containing multiple people were locally clipped by using range information
from the cameras, and then all information is recognized and integrated in parallel.
Figure 6.1 shows the conceptual scheme of this system, called Ubiquitous Stereo Vi-
sion. In our system, 3D and texture (color or monochrome) image information are
acquired at a video or semi-video rate. Multiple people are recognized after segmen-
tation by taking the 3D information as a key. In addition, all results are integrated to
understand the human behavior at a location.

Fig. 6.1 Concept of Ubiquitous Stereo Vision.
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6.2 Ubiquitous Stereo Vision

6.2.1 Concept of Ubiquitous Stereo Vision

The Ubiquitous Stereo Vision (USV), which we propose here, conceptually pro-
vides real-time operation, in a real environment, with real utilization. USV should
be easily adaptable to real environments. Table 6.1 lists key specifications for the
concept of USV.

For acquisition of 3D structures, a control device connected with each stereo
camera reconstructs 3D information and extracts features as a local process. We
call this device a stereo camera server. Next, the range information and color or
monochrome images from each stereo camera server are sent to a PC via a network.
By integrating all the results on one computer, the system acquires 3D information
as a global process. We call this computer integrating all necessary information from
the stereo camera servers an application client. The integration method depends on
the application.

6.2.2 Server-Client Model for USV

The stereo camera servers and the application client must work regardless of the
number of stereo camera servers. We conducted experiments using four to twelve
stereo camera servers.

Because the stereo camera servers are integrated and perfectly synchronized
when the cameras are placed around a small space, all information is perfectly

Table 6.1 USV specifications.

Recognition based on appearance.

Attention based on range information, with no specific models.

Basic, non-dynamic controls (pan, tilt, and zoom).

Utilization on both high- and low-speed networks.

Static arrangement: one-time calibration of stereo cameras.

Stand-alone operation of stereo cameras.

Utilization in real environments (indoors and outdoors).

Utilization in real time.

3D range and texture image information input from multiple stereo cameras.

Recognition based on appearance.

Attention based on range information, with no specific models.

Basic, non-dynamic controls (pan, tilt, and zoom).

Utilization on both high- and low-speed networks.

Static arrangement: one-time calibration of stereo cameras.

Stand-alone operation of stereo cameras.

Utilization in real environments (indoors and outdoors).

Utilization in real time.

3D range and texture image information input from multiple stereo cameras.
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integrated while being synchronized. By integrating information from multiple
sources, the system should operate robustly, even if the reliability of a camera de-
creases for some reason.

On the other hand, a large number of cameras are used when the target is a wider
space, such as a train platform. Then, it is not necessary to exchange information
among all cameras. In this case, each camera works and processes information inde-
pendently, and the information integrated in real time becomes symbolic informa-
tion. Table 6.2 classifies the application of USV according to the integration method
and network speed.

6.2.3 Real Utilization Cases

For specific utilization cases, we consider human sensing both indoors and outdoors.
Table 6.3 lists various cases.

Table 6.2 Integration and independence in USV.

One camera operates in a narrow area.
e.g., interface for a narrow area, personal interface for severely disabled person

iii. Independent operation

Range and color information are processed locally, and only necessary 
information is integrated.
e.g., platform safety management, traffic management

ii. Synchronous integration (via low-speed network)

Both range and color information are integrated, and reliability is improved.
e.g., controlling indoor space, monitoring railroad crossing

i. Synchronous integration (via high-speed network)

One camera operates in a narrow area.
e.g., interface for a narrow area, personal interface for severely disabled person

iii. Independent operation

Range and color information are processed locally, and only necessary 
information is integrated.
e.g., platform safety management, traffic management

ii. Synchronous integration (via low-speed network)

Both range and color information are integrated, and reliability is improved.
e.g., controlling indoor space, monitoring railroad crossing

i. Synchronous integration (via high-speed network)

Table 6.3 USV utilization cases indoors and outdoors.

Safety management, including train platform edges, railroad crossing
Traffic management

B. Human sensing outdoors (without personal identification)

Acquisition of personal behavior logs
Interface for controlling indoor equipments
Amusement applications

A. Human sensing and interaction indoors (with personal identification)

Safety management, including train platform edges, railroad crossing
Traffic management

B. Human sensing outdoors (without personal identification)

Acquisition of personal behavior logs
Interface for controlling indoor equipments
Amusement applications

A. Human sensing and interaction indoors (with personal identification)
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Table 6.4 Relationships between people and stereo cameras.

Personal vision interface, home care assistance

c. Multiple (single) stereo cameras for single person

Public space, traffic management, train platform edge, railroad crossing

b. Multiple stereo cameras for undefined multiple people

Specific indoor working space

a. Multiple stereo cameras for multiple people

Personal vision interface, home care assistance

c. Multiple (single) stereo cameras for single person

Public space, traffic management, train platform edge, railroad crossing

b. Multiple stereo cameras for undefined multiple people

Specific indoor working space

a. Multiple stereo cameras for multiple people

Table 6.4 classifies the relationships between the people and stereo cameras.
The utilization cases described in the rest of this paper are included in these

classifications. In addition, this system and its concept can be adapted to various
other cases of human sensing.

6.3 Hierarchical Utilization of 3D Data and Personal Recognition

This section describes the handling of 3D information, which is common to all appli-
cations. The basic algorithm must work regardless of the number of stereo cameras.
Common purposes for the system include determining and tracking the locations of
people, as well as identifying people and recognizing poses. Whether the system
operates indoors or outdoors, 3D information is used to achieve these purposes. In
principle, we do not choose a precise model like a robot model [11], but rather a
model in which algorithm installation is easy and operation is high speed.

6.3.1 Acquisition of 3D Range Information

The stereo cameras are mounted on ceilings or poles and placed facing the area
monitored. The origin of a 3D coordinate system derived from a camera is the center
of the camera’s view field. As Figure 6.2 shows, the plane parallel to the surface
of the camera lens (or the camera surface) is the XY plane, and the optical axis
extending from the lens is the Z axis. The 3D coordinate points for the system are
thus expressed as (X, Y, Z). The coordinate system differs from camera to camera,
and the statistical processing is easier when the coordinates are converted into an
integrated coordinate system for the space inside the crossing, as seen on the left side
of Figure 6.2. Thus, a coordinate point (X, Y, Z) in the camera’s coordinate system
is converted into a coordinate point (x, y, z) in the integrated system, according to
the following affine equation, Equation 6.1. Here, a - i and tx - tz are parameters for
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Fig. 6.2 Camera and coordinate systems.

rotation and parallel movement in the affine conversion matrix and are determined
by measuring the positions of the cameras.

[
x y z 1

]
=
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]
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a b c 0
d e f 0
g h i 0
tx ty tz 1

⎤
⎥⎥⎦

a b c
d e f
g h i

�= 0 (6.1)

6.3.2 Projection to Floor Plane

Searching from acquired range information for the head of a target person can be
treated mathematically as a multi-point search problem. Considering the accuracy of
the acquired range images and the need for a system working in real time, however,
we have converted the problem here to one of image processing.

First, as illustrated in Figure 6.3, we project all points of a range to the floor
surface and create eight binary projections Pn at different heights. Here, we refer
to these projections as “planes.” There are two ways to make the planes. One is
the addition draw-out method, which is suitable for representing each person as a
cloud while rejecting personal features. The other is the crossing hierarchy draw-out
method, which is useful for human poses, because the resulting projections maintain
information for each plane level. We can choose either method for the purpose of
our application. The 3D coordinate points in space are represented as (x, y, z), while
the 2D coordinate points in the projected plane Pn are represented as (Xn, Yn). Here,
Pn is derived by Equation 6.2(1) or 6.2(2), where a is the number of planes, d is
the distance between planes, and h is the lowest detected height. The planes are
equidistant from one another.
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Fig. 6.3 Projections on planes using draw-out methods (with 8 levels). Top: Addition draw-out
method; bottom: crossing hierarchy draw-out method.

For the addition method, in order to easily detect a stable center of gravity for the
cluster shape of each level, to each plane we add the data from the plane above it.

(
Xn

Yn

)
=

(
1 0 0
0 1 0

)⎛
⎜⎝

x
y
z

⎞
⎟⎠

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

h+(a−1)d ≤ z ≤ h+ad n = a
...
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h ≤ z ≤ h+ad, n = 0

6.2(1)

For the crossing hierarchy method, we project the 3D points onto many planes
parallel to the floor surface. Because information about the boundary between two
planes is lost, the 3D points are projected onto each plane in an overlapping manner,
as shown at the bottom of Figure 6.3. Because all small spaces are laid to overlap
each other, it is possible to continuously obtain changes in the projected images.
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6.2(2)

Figure 6.4 shows an example of an actual projection. The scene includes a
man, a girl, and a small child. For the addition method, the shapes of clusters
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Fig. 6.4 Projection examples (4 levels). Bottom right: addition draw-out method; bottom left:
crossing hierarchy draw-out method.

transform gradually between the highest plane and the lowest plane, so we can eas-
ily determine the top of each person’s head. On the other hand, for the crossing
hierarchy method, the outlines of the clusters have significant differences between
planes, but we can recognize the plane that includes the man’s pointing arm.

6.4 Recognition of Multiple Persons and Interface

There are many systems that detect face positions, face angles, speakers, and so on
[7], and commercial face recognition engines [8] also exist. These systems detect
faces by using a few cameras and measure face angles, lines of sight, and other
characteristics according to detection of structural face elements (eyes, nose, and
mouth). Therefore, the recognition object is a human who is viewing a space, such
as a specific display, and these systems can be used only in a very narrow space. In
addition, the user identification could only coexist with the limited simple detection
of characteristics such as face angles, lines of sight, and nodding actions by the
systems.

On the other hand, whole-body recognition systems [9] are based on extending
the visual field. The resolution of human images in these systems is low. Therefore,
they do not provide an interface coexisting with personal identification by gestures
or interaction specialized to the person.

In addition, a system of recognizing hand signs [10] utilizes hand images that
closed up in a fixed environment in front of a camera, as an interface system. There-
fore, this system can work only in a narrower environment. In a wide space like a
room, it does not offer a personal interface with hand signs.
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Our study aims to use USV to simultaneously identify multiple people and large
personal gestures in a room-sized space. This section describes the concepts of
personal pose detection and identification, and the use of our system as a personal
interface.

6.4.1 Pose Recognition for Multiple People

As an experiment, four stereo cameras were placed in the four ceiling corners of a
room (4.5 m × 3.6 m). The functions were to determine the following:

• Who entered the room and when?
• When did they leave?
• What did they do in the room?
• Could they interact with large gestures?

These functions were to be executed in real time.
The goal was thus pose recognition of several people (less than four or five) in

a room of about 16 m2, distinguishing among three conditions: standing, sitting or
lying, and movement.

Figure 6.5 illustrates recognition of postures, faces, and an arm-pointing gesture.
Two people stand, and one sits. The system recognizes their basic postures and the
arm-pointing gesture, and it extracts their faces. Figure 6.6 shows the results of

Fig. 6.5 Recognition of postures, faces, and arm pointing.
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Fig. 6.6 Utilization of 3D data by the crossing hierarchy draw-out method.

(a)Input image (b)Mask region (c)Facial region (d)Edge image

Fig. 6.7 Extraction of face images.

projections by the crossing hierarchy draw-out method. The left image of Figure 6.6
shows only the result for 16 planes, while the right image indicates three personal
territories and the tops of the three people.

6.4.2 Personal Identification

The personal identification is carried out after personal pose detection and is based
mainly on face recognition, although we do not apply normal face recognition from
a static, narrow point. Using the range information, we try to recognize selected
faces [14]. The direction of the body is obtained from the range information, and
the system selects only the front of the face. The results are shown in the center
of Figure 6.5. Range information from only one camera was selected, and the face
parts were clipped. The system utilized only these faces for learning and recognition.
During this learning period, people walked naturally in the room, and the system
recognized them under the same conditions. The system automatically classified
many face images varying according to the person’s position and posture through
self-organization (unsupervised learning). A discrimination circuit was then created
using only those face images that were suitable for recognition. Figure 6.7 illustrates
the process for a clipped face image.
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6.4.3 Interface for Space Control

After pose detection and personal identification in the space, the objective is contact-
free, unconstrained, position-free interaction. Namely, we aim to develop a per-
sonal interface function for the ubiquitous environment by using human sensing
technologies.

The initial goal is to recognize arm-pointing gestures by using USV [13]. For
example, arm-pointing gestures are used for controlling a mouse cursor in a large
display in a specific area. We can expand this function to the whole of an indoor
area. Specifically, a large arm-pointing gesture by a person is acquired in real time
from a range image. We try to seamlessly recognize the intended arm-pointing ges-
tures in all normal poses (standing and sitting). Furthermore, arm-pointing gestures
corresponding to multiple people are useful, except for the case in which there are
multiple people at short range (less than about 50 cm). Thus, we aim to create an in-
terface providing personal identification. Possible applications include televisions,
air conditioners, curtains, and cable broadcasting. At this time, we utilize Bluetooth
for communication and control between the electronic equipment.

6.5 Human Monitoring in Open Space (Safety
Management Application)

In this section, we describe experiments with human sensing in huge open spaces,
which is different from the above-mentioned case of close human sensing. Specif-
ically, we adapted the system to outdoor spaces. We have conducted many contin-
uous experiments with monitoring railroad crossings, the edges of platforms, and
exhibitions.

The purpose of these experiments was to research the possibility of stereo vision
in a real situation, in terms of the algorithms, the stereo hardware specifications, and
so on. Table 6.5 summarizes the main experiments, which we discuss in turn.

6.5.1 Monitoring Railroad Crossing

Existing sensing technologies for controlling the safety of railroad crossings include
the following:

(1) Electromagnetic sensors consisting of loop coils installed under the road
surface, which detect changes in inductance when metal objects pass over
the coils; and
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Table 6.5 Continuous monitoring experiments for huge open spaces.
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(2) Infrared sensors that detect obstacles by monitoring the blocking of light
between emitters and receivers.

These sensors can only detect obstacles of a certain size or larger, and their res-
olutions are low. They can detect the presence of obstacles but cannot follow their
movements, so they are not effective for monitoring people. On the other hand,
about 60% of the people killed at railroad crossings are pedestrians in Japan. To
detect all people at a crossing and take action flexibly, according to the situation, we
developed a stereo vision sensing technology for railroad crossings [15].

The system consists of stereo cameras installed at the corners of a crossing fac-
ing the center. The cameras monitor the people passing through the crossing and
detect people who are acting dangerously and are within the crossing when a train
approaches. By using stereo cameras, the shadows cast by people, trains, and so
on, which are problematic for differential-image-based systems, can easily be ex-
cluded by extracting range information and using it as a key. Furthermore, by using
texture image data along with the range information, it is possible to differentiate
birds, scraps of paper blowing around, and other objects that might cause false read-
ings at railroad crossings. Figure 6.8 illustrates the monitoring of a railroad cross-
ing. The four images at the four corners were obtained from four stereo cameras,
while the center image is a 3D reconstruction obtained from the four stereo camera
servers.
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Fig. 6.8 Monitoring a railroad crossing by using USV.

6.5.2 Station Platform Edge Safety Management

Every year, dozens of people die by falling from platform edges at train stations in
Japan. In particular, this is an urgent problem for railways in urban areas. USV is
utilized for managing the safety of station platform edges [16]. The stereo cameras
are arranged in a straight line in order to see the track area from the ceiling of
the station. The platform edge and the behaviors of people near the platform edge
are monitored. The system distinguishes the following: people, baggage, garbage,
birds, and so forth. The purpose is to distinguish whether people and things are in
a dangerous place at the platform edge, and whether a human has fallen onto the
tracks. This assumes automatic switching of the surveillance monitor or automatic
connection to an emergency brake system.

At Japan Railway’s Ushiku station, scenes of people falling and situations as-
sumed dangerous are captured on Platform 3. The actions of falling from the
platform, sitting, sleeping, neglect of baggage on the platform, and so forth were
recorded for both the platform edge and the railroad track edge. We also recorded
some boxes and chairs as examples of baggage left on the platform. It was confirmed
that the existence of a person on the platform could be clearly detected at all times.

For a platform edge monitoring experiment at Tokyu Yokohama station, five
stereo cameras were placed in a row at the platform edge of Track No. 1, and the
coming and going of actual passengers were captured continuously from the first to
the last train during the day. The captured range overlapped between adjacent cam-
eras, and the length of one car (18 m) was completely covered. Figure 6.9 shows
an entire 3D reconstruction of the platform, while Figure 6.10 shows the passenger
recognition results during the morning rush hour, at 8 s.m The recognition was most
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Fig. 6.9 3D reconstruction of a platform edge.

Fig. 6.10 Traffic management by using USV.

difficult when the morning sun created silhouettes. Through the recognition from
the stereo range images, we confirmed that the system could distinguish crowds of
passengers.

6.5.3 Monitoring Huge Space

Our monitoring technology is meant not only for safety, but is also adaptable to
trajectory tracking in a huge open space. We applied our vision system at Aichi Expo
2005, in the Orange Hall of the Global House. We used four stereo camera servers to
see the floor from the ceiling of the hall. The system monitored the trajectories of all
attendees for a half year. The main purposes of this experiment were the following:
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environment
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Fig. 6.11 Orange Hall of the Global House at Aichi Expo 2005.

1: Counting the number of people in each large block in real time;
2: Analyzing behavior through the camera; and
3: Experimenting simultaneously with RF-ID technology (Aimulet).

Figure 6.11 shows a schematic map of the hall, including the monitored areas,
and the tracks through one area. Because all attendees had to pass through the four
monitored areas, the system could count the numbers of people inside the three large
areas in real time.

Because all sensors have the advantages and disadvantages of sensing, we are
also researching combinations of vision and other sensing methods. We consider
this research field to offer great possibilities and great promise.

6.6 Conclusion and Future Work

We have described the basic concepts of Ubiquitous Stereo Vision and examples of
real applications. The purpose of our research is to obtain information by statically
placing stereo cameras in a location. In other words, we are developing a useful
technique that simultaneously utilizes 3D and color image information obtained at a
semi-video rate. We have explained the hierarchical utilization of three-dimensional
information, a personal segmentation method, and a personal expression method as
fundamental techniques for this technology.
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In addition, we have shown specific cases of indoor space control, safety man-
agement, and tracking in a huge space. As another example, we aim to develop a
vision interface for manipulating all objects in a specific working area. We also aim
to develop applications such as safety management and traffic management for pub-
lic spaces. Furthermore, we can apply this method to measuring the movements of
many people in a huge space. We are thus developing an automatic learning method,
an object description method, and a recognition method for actual locations involv-
ing people.
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Chapter 7
Augmenting Professional Training, an Ambient
Intelligence Approach

B. Zhan, D.N. Monekosso, S. Rush, P. Remagnino, and S.A. Velastin

Abstract This chapter presents interdisciplinary research work carried out at
Kingston University, as a joint effort between the Faculties of Computing and Nurs-
ing. The cross-Faculty project aims at developing algorithms able to automatically
interpret behavior in an extremely complex scene. The application is the profes-
sional training of student nurses and medical students, carried out in a large sim-
ulation where actors play the role of patients while instructors test individual and
group medical skills of students. The chapter introduces the problem, the experi-
mental setup and discusses some of the implemented algorithms for behavior analy-
sis. In the context of our project, the Ambient Intelligence paradigm is interpreted
as a set of guidelines to develop algorithms capable of interpreting behavior in a
very complex environment monitored by an array of cameras. Intelligent algorithms
were studied to enhance and automate the professional training of nurses.

7.1 Introduction

This chapter summarizes research carried out for an interdisciplinary project to aid
professional skills’ practitioners at Kingston University 1. The project has engaged
the computer vision team in the Faculty of Computing, Information Systems and
Mathematics and the School of Nursing at Kingston University.

The School of Nursing at Kingston Hill campus trains student nurses, paramedic
and medical students (in a joint degree with St. George’s Medical School, London).
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Fig. 7.1 Pictures illustrating two individual skills and two instances of a typical simulation.

The training consists of individual and group practical exercises based on taught
techniques (Figure 7.1 illustrates examples of individual and team skills), entail-
ing both medical and managerial skills. Group skills are tested in large simulations.
During term time, practice skills training is organized in series of morning and after-
noon sessions. Simulations involve a preliminary preparatory roundtable discussion
to introduce the practical exercises, the actual simulation where skills are tested at
individual and team level and a final roundtable discussion, where strengths and
weaknesses of the assessed students as individuals and groups are discussed.

Intelligent algorithms were studied to enhance and automate the professional
training of nurses. The inter-faculty project is the first attempt at Kingston Univer-
sity to design an Ambient Intelligence system, for use in the training of profes-
sionals. Ambient Intelligence is a paradigm introduced by the European community
in 2000 [10], to describe a user-centric intelligent system, capable of serving the
generic or specific user, responding to the needs of the individual and the group.
In the context of our project, the paradigm is interpreted as a set of guidelines to
develop algorithms capable of interpreting behavior in a very complex environment
monitored by an array of cameras. At present the implemented algorithms do not
incorporate the necessary user feedback, but this will be part of future work.

Conventional training of nurses and medical students is very time consuming and
when large numbers of students are involved, it is very hard for an instructor to as-
sess correctly the performance of a student or a group of students. The School of
Nursing runs state-of-the-art training methodology, engaging students in individual
and team work. Assessment is usually carried out during the practice with on-the-
fly verbal feedback but also by recording video footage of students’ performance,
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Fig. 7.2 Pictures of the experimental setup, including two pan-tilt-zoom (PTZ) cameras, the used
router, some views of the skills’ laboratory and an example of roundtable meeting.

discussed in classes to illustrate best practice, encouraging less capable students,
praising best practice of better students. The Skills’ laboratory situated at Kingston
Hill campus at Kingston University can host up to 30 students at a time with instruc-
tors and role players engaged in large simulations. The lab is currently endowed
with a variety of medical equipment and mobile and fixed cameras. The images in
Figure 7.2 illustrate the experimental setup, the used skills’ large laboratory (med-
ically equipped), and a roundtable example.

The inter-faculty collaboration was established in 2001; it started thanks to a
common research interest on human behavior in complex scenes. Both partners were
driven by complementary research interests: the nursing practitioner interested in an
innovative educational methodology using video recordings and the computer vision
team interested in studying algorithms to describe automatically a scene, in terms
of human dynamics.

Computer vision techniques used in monitoring applications lend themselves
well to the automatic understanding of semantics (identification, classification and
dynamics explanation of a simulation) in a professional training environment. Auto-
matic understanding of scenes has been studied in [5] where the scene understanding
is achieved through the creation of event models and in [11], where behavior pro-
files are built to identify anomalous behavior. In [7] and [9] semantic information
is employed to cluster and index the video data. Our application bears resemblance
to monitoring applications, as all scenes are extremely complex and the main goal
is to model nominal behavior (best practice) and deviations thereof (bad practice).
The objectives of this project, described in this chapter, include the identification
and classification of role players and algorithms to describe the dynamics in the
environment.
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The algorithms described in this chapter are tested on video data where all role
players in the scene wear a colored tabard. Four colors are used to distinguish among
instructors (blue), student nurses (yellow), medical and paramedic students (green)
and patients (red). The color coding was introduced to simplify the computer vision
processes. In our experiments, we have employed four cameras (pan-tilt-zoom used
as fixed cameras). A preliminary study was carried out by analyzing the four views
independently, attempting at generating the automatic understanding of an evolving
scene.

Section 7.2 describes the algorithm used to track people in the environment,
Section 7.3 describes a simple algorithm employed to provide a coarse count of peo-
ple in the environment and the algorithm designed to deliver an automatic reasoning
about the scene. Section 7.4 illustrates some results and Section 7.5 summarizes the
proposed method and introduces some future work.

7.2 Color Tracking of People

Color models have been used in computer vision research to recognize and track
people and objects of interest. In particular, color models are trained by using video
data of a given color using template patches, for instance, using the expectation
maximization algorithm [4]. A color model is fairly robust to changes in illumina-
tion but it has the weakness of being specific to a given camera. In all our tests, each
camera we used to acquire video data was color calibrated (i.e., a color model for
each specific camera was built). Color calibration is an off-line process and does not
affect the overall performance of the algorithms deployed for recognition and track-
ing. Color models were trained for the four different colors used to recognize the
categories of people. These include the student nurse (yellow), the instructor (blue),
the patient (red) and the medical student (green).

In order to track color patches, we have implemented the CAMSHIFT algorithm
originally proposed in [1], as an evolution of the MEANSHIFT algorithm [3, 8].
CAMSHIFT adapts to the evolution of a probability density function (PDF) by alter-
nating cycles of the MEANSHIFT algorithm with a resizing of the search window.
The window size is a function of the center of mass of the probability density map
(zeroth moment).

Tracking color patches entails running the CAMSHIFT algorithm for each patch.
However, this is not sufficient to maintain hypotheses in a rapidly evolving scene.
That is why our method keeps track of a list of alive patches, by tracking them
throughout the scene with the CAMSHIFT algorithm, removing those which have
too low a probability associated for a number of frames and introducing new
patches, whenever sufficiently large new patches appear in the scene with a suf-
ficiently high probability. More details of the developed algorithm can be found
in [2].
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7.3 Counting People by Spatial Relationship Analysis

Color segmentation generates fragmentation, by identifying one person with more
blobs. Segmentation could also cause false groupings, by clustering together more
people in close proximity. Both problems are due to occlusions (between people and
objects) and self-occlusions (between people body parts), and also by the reflections
of artificial illumination on the monitored person.

In our algorithm spatial relationships group the blobs split from a single person.
At first, for each frame a graph is created with links between all identified blobs.
Each link is then evaluated to judge whether the linked blobs should be merged
into a cluster to recover an individual or they should be kept separate, making the
assumption that both blobs are disjoint, likely to be part of different people in the
scene.

First we describe a simple algorithm that can provide a qualitative counting of
the people acting in the monitored scene. We will then deal with a more elaborate
algorithm, whose performance is also quantified using conventional performance
measures.

7.3.1 Simple People Counting Algorithm

As mentioned previously in this chapter, one of the main problems caused by the
color segmentation is the fragmentation or over-segmentation of people in the scene.
When a person is close to the camera, it is usually represented by a number of blobs
bearing the same color.

One way of solving the problem is by grouping the blobs, using a proximity con-
straint. A first attempt at providing the user with a rough count of people in the scene
can be done by employing an accumulator along the horizontal axis of the scene.
Such accumulator will accrue information of existing blobs of a given color. The im-
plemented algorithm simply accumulates vertically the contributions of each blob
and adds such contributions to the accumulator. This is illustrated in Figure 7.3.

Fig. 7.3 The bounding box of a blob representing a person or part of a person is collapsed onto the
horizontal axis. It will contribute to the profile of the scene for that specific category of people.
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The rationale is that more blobs in close neighborhood contribute to peaks in the
1D signature, and that the likelihood of blobs belonging to people next to one an-
other is lower than the likelihood of belonging to the same person. The algorithm
simply accumulates over time the blobs identified in the video sequence and it nor-
malizes the signature to a given maximum height. The signature is then smoothed
a few times with a Gaussian filter, and the modes are identified on this signature,
as the highest peaks. The signature works effectively as a probability density func-
tion of the presence of blobs in the scene. Peaks which are suboptimal, as closer
to higher peaks, are eliminated, removing false alarms, and peaks which are suffi-
ciently close are merged together by the Gaussian smoothing, effectively integrating
information.

By no means this can be claimed a perfect method. In fact, it clearly suffers from
the loss of vertical dimension, collapsing vertically each blob, therefore losing the
information of how far a person is in the scene. The algorithm also underestimates
the people count, by suppressing peaks that may be small, but still identify the pres-
ence of a person in the scene. The sparseness of blobs oversegmenting a person,
could also introduce noise and identify more people than there are in the scene.

Figure 7.4 illustrates the pros and cons of the developed algorithm. In the fol-
lowing, the frames in Figure 7.4 are referred to using an incremental numbering,
starting from the top left with frame 1. In frames 1, 3 and 15, people are isolated
and thus the algorithm is successful. In frame 11 for instance, the color segmentation
fails and introduces false alarms, which are in turn identified as peaks in the related
PDFs. Frames in which people are at different distance from the camera, but not
aligned can be correctly interpreted as shown in frames 13 and 14. In other cases,
the algorithm fails to disambiguate perfectly aligned people as shown in frames 2
and 9. The algorithm might fail to detect people in the scene, due to illumination
problems or because people are too far from the camera, as shown in frame 1.

7.3.2 Graphs of Blobs

Graphs are generated from the previously detected blobs. The nodes in the graph
represent blobs while the links in the graph joining pairs of blobs represent the
spatial relationship between the two blobs. The creation, deletion and updating of
the links are required to be automatic according to the change of the situation. The
algorithm we developed enforces links between a blob, say A, with all the other
blobs in the scene during its life cycle. During the life cycle of A, another blob, say
B, could appear in the scene and then leave the scene. Under such circumstance,
A should then be linked to B once B has entered and the link should be eliminated
right after B has left the scene. The complexity of the problem increases when the
number of people involved increases. The creation of the links are triggered by the
appearance of blobs, deletions are triggered by the disappearance of blobs, while
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Fig. 7.4 From top left to bottom right frames are numbered frame 1 to frame 15. The above figure
illustrates fifteen frames. The frames include the bounding rectangles, detected by our color tracker,
and the profiles representing the probability density functions of the defined categories of role
players. The white vertical lines illustrate the detected peaks, corresponding to an estimate of the
modes. Each mode represents a person in the monitored scene.
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updating is carried out at regular intervals every ∆ t, taking into consideration all the
blobs at that moment in time.

Following with the above example, a link is created between A and B, when B
enters the scene. The link should be kept updated while B is in the scene. The link
should then be removed when B is no longer in the scene. For algorithmic simplicity,
a link is bidirectional, so each link between blob A, for instance, and any other blob,
also implies that all linked blobs keep track of the existence of A. When a blob leaves
the scene, it sends a signal to all the links connected to it, to release and delete them.
At each frame, sampled at a given ∆ t, the system checks the blobs to create, delete
or update the existing links. Algorithm 7.1 illustrates this process.

Algorithm 7.1 The creation, deletion and update of the links

if objects: O−
0...m are leaving the scene then

for i = 0 to m do
Object O−

i send signals to all the links connected with it
Delete O−

i
end for

end if
Delete links with signals
if objects: O+

0...n are entering the scene then

for j = 0 to n do
Build links between object O+

j and all of the existing objects in the scene
end for

end if
Update all of the existing links

7.3.3 Estimation of Distance Between Blobs

Spatial relationships between blobs are represented as distance information con-
tained within the links connecting nodes. The distance between blobs is calculated
as the Euclidean distance between the blobs’ centers. Because of the perspective dis-
tortion, the absolute value of the Euclidean distance cannot be used to estimate the
spatial relation between the blobs. For instance, two blobs at an absolute distance
of 50 pixels could be close to each other when they are in front of the camera while
they could be far from each other when they are distant from the camera. Hence, a
method for calculating relative distance by comparing the absolute distance with the
size of connected blob has been proposed here, i.e., the ratio of the absolute distance
and the blob size was used. In this method the variation of dimensions of blobs at
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different locations is considered. The Euclidean distance used as the absolute dis-
tance between blob i and j is as below:

Di j =
√

(xi − x j)2 +(yi − y j)2 (7.1)

where (xi,yi) and (x j,y j) are the coordinates of center points of blob i, j, respec-
tively, and the temporal relative distance of blob i and j is calculated as

di j =
Di j√

w2
k +h2

k

, k =
{

j, if yi −0.5hi < y j −0.5h j
i, otherwise. (7.2)

where wk and hk are the width and height of the blob. The denominator is a measure
of the size (its diagonal) of the blob and is used as a weight, as a compensating
factor for the link.

The above calculations are carried out in a single frame. A temporal average op-
erator has been applied every ∆ t frames for each distance calculation. This operation
can reduce the instability caused by the tracking algorithm, thus the video sequence
has been sampled at fixed regular time intervals, i.e., each time segment contains
distance information for ∆ t frames. Equation (7.3) describes the calculation of this
distance,

di j(T ) =
1

∆ t ∑
∆ t

di j(T −∆ t) (7.3)

so the distance between blobs i and j at time T is the average of the distances over
the previous ∆ t frames. The main reason for this temporal smoothing operation is
to stabilize the distance. ∆ t is a short time interval, for example in our case we use
an 8-frame ∆ t, which is equivalent to 0.5 second.

7.3.4 Temporal Pyramid for Distance Estimation

Short-term spatial relations are not sufficient for clustering blobs. A temporal pyra-
mid of distance scheme has been introduced to maintain longer term distance in-
formation. In our algorithm, two blobs belong to the same cluster if they are close
to each other, during their life span. A coarse pyramid was used, where the current
time frame is represented by the top of the pyramid, while the whole lifetime of the
blob and half of its lifetime represent the other two layers. For each pair of blobs,
the algorithm takes into account the distance information from each level of the
pyramid and calculates the overall probability that they belong to the same cluster.
This scheme is based on an assumption that two persons are not likely to stay next
to one another for a very long time period. This is clearly not true in general, but
it suits well the application of nurse training, where nurses, instructors and medical
students are continuously moving about.
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Fig. 7.5 Temporal Distance Pyramid: The bottom layer represents the overall distance information
from time 0 to time T , the middle layer represents the distance information from time T

2 to T and
the top layer holds the distance information for the current time slice T .

The temporal pyramid consists of three levels: the bottom layer holds the overall
distance information between two blobs from their appearance in the scene to the
present time, the top layer holds the present distance information and the middle
layer holds the information from the half time to the present; this is illustrated in
Figure 7.5. The generation of the temporal distance pyramid is:

T P0(T ) = d(0 → T ) =
1
T

T

∑
t=1

d(t) (7.4)

T P1(T ) = d(T/2 → T ) =
1
T
2

T

∑
t= T

2

d(t) (7.5)

T P2(T ) = d(T ) = d(T ) (7.6)

where T P0(T ) to T P2(T ) represents the distance information held from the bottom
layer to the top layer at time T. In practice to reduce the redundant calculations of top
layer (T P0(T )) and middle layer (T P1(T )), a recursive method has been employed
and the equations are modified as follows:

T P0(T ) =
1
T

(T P0(T −1)× (T −1)+d(T )) (7.7)

T P1(T ) =
1
T
2

(T P1(T −1)× T −1
2

−d(
T
2
−1)+d(T )) (7.8)

T P2(T ) = d(T ) (7.9)
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7.3.5 Probabilistic Estimation of Groupings

A probabilistic clustering scheme was devised to eliminate over-segmentation in the
scene. As mentioned earlier in the chapter, one person may be identified with more
than one blob.

Clustering is carried out for each category, so, if two blobs belong to col-
ors/categories that refer to two different role players, for instance instructor (blue)
and student nurse (yellow), then their link has probability zero and they cannot be
linked to the same graph. In all other cases, spatial relation is the main criterion
used for clustering. This means that the probability associated with the link between
blobs is inversely proportional to their Euclidean distance. This rule is represented
by a function ϕ(d):

P(d) = ϕ(d) =

⎧⎨
⎩

1, when d = 0
1− 1

θd
×d, when 0 ≤ d ≤ θd

0, when d > θd

(7.10)

where θd is the threshold of distance. When the distance falls below this value, the
probability of clustering is equal to 0. When the distance is equal to 0, the proba-
bility is equal to 1. The probability of clustering two blobs with a distance that falls
between 0 and θd is interpolated with a linear function. Each layer of the temporal
distance pyramid provides a probability of clustering and the outcome of the three
layers has been averaged as follows:

Pdis =
1
3
(P(T P0)+P(T P1)+P(T P2)) (7.11)

The overall size of the blobs is also used to bias the probability of clustering blobs.
A linear approximation of the blob size at different locations of the scene has been
used as reference. The size of the overall bounding box between blobs is compared
against the estimated reference, according to their locations. This comparison is
represented by the ratio

s =
So

Sr
(7.12)

where So is the size of the blobs and Sr is the reference size from the linear approx-
imation. The probability of clustering by area is calculated by ϕ(s):

Psize = P(s) = ϕ(s) =

⎧⎨
⎩

1, when s = 0
1− 1

θs
× s, when 0 ≤ s ≤ θs

0, when s > θs

(7.13)

where θs is the threshold of the ratio of the size (s). ϕ(s) is employed for the rea-
son that smaller fragments should increase the probability to cluster. The overall
probability of clustering is

P = Pdis ×Psize = P(d)×P(s) (7.14)
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7.3.6 Grouping Blobs

For each frame, the clustering takes place in two steps, we call pair clustering and
sub-clustering. Pair clustering checks all pairs of blobs, clustering together all the
pairs with high probability. This rule ensures that all the blobs which potentially
belong to the same person are clustered together. If two blobs are selected to be
clustered and they already belong to two clusters, then the clusters can be merged
as shown in Figure 7.6(a). Pair clustering may generate bad clustering. In fact,
blobs which belong to different persons could be clustered together as shown in
Figure 7.6(b). The second step, sub-clustering is used to get the scores of different
number n (1 ≤ n ≤ N) of sub-clusters of a cluster C which contains N blobs. In a
cluster generated in the pair clustering step, each pair of blobs is associated with
a probability of clustering which is generated by the method described in Section
7.3.5. The strength Γ of a cluster is defined as

Γ =
1

C2
N

C2
N

∑
i=0

Pi (7.15)

where N is the total number of blobs, so there are C2
N pairs of blobs. We define

Connected and Unconnected as the pairs of blobs with a probability of clustering
respectively higher and lower than a given threshold. Creating sub-clusters requires
that, every time the weakest Connected link is removed, the blobs are reclustered by
the remaining Connected list. The score of the operation is equal to the energy cost
E of removing the Connected list and the related Unconnected list.

Λ =
1
n ∑E +

1
m ∑Γ (7.16)

(a) A frame in which multiple blobs (il-
lustrated with a black oval) should be
clustered together.

(b) A frame in which blobs belong to
different persons could be clustered to-
gether (illustrated with a black oval).

Fig. 7.6 Two frames of problems in clustering.
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Fig. 7.7 An example of sub-clustering. Solid lines between blobs show the Connected and the
dashed lines are the Unconnected. In each step, the black Connected is removed, and the related
Unconnected are removed. This operation is updated until all the Connected are moved and all the
blobs are isolated.

where the energy cost of removing a Connected list with probability of clustering
P is

E = 1−P (7.17)

This operation is kept to carry on until all the Connected are removed, meanwhile
all the blobs are isolated. Figure 7.7 shows an example of the sub-clustering process
of a cluster containing four blobs.

During the operation, the scores are accumulated for different number of sub-
clusters. In this case the number of sub clusters with highest score is selected to
be added to the person-count and the sub-clusters are regarded as individuals. The
total number of people is the sum of the selected numbers of sub-clusters of all the
clusters in the frame.

7.4 Experimental Results

We have tested the implemented algorithm with a number of video sequences con-
sisting of at least 300 frames. The sequences are a selected sample from a large
database of video data acquired at Kingston Hill, during a number of simulation
sessions. Selected excerpts of video sequences were ground truthed.

For a video sequence, the number of people as well as their locations are retrieved
for each frame. To access the system performance, ground truth is manually marked
up by the ViPER Ground Truth Authoring Tool(ViPER-GT tool), which is a part of
The Video Performance Evaluation Resource (ViPER) developed by the Language
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Fig. 7.8 A ground truth example from ViPER-GT.

and Media Processing Laboratory, University of Maryland2. The ground truthing
process is carried out every frame, and each person is selected by a bounding box
(Figure 7.8). In our work, performance was evaluated using measures borrowed
from the information retrieval literature. Recall and Precision, which have been used
in evaluating search strategies, are used here to test the results of our algorithm
against ground truth information. Recall is the ratio between the number of relevant
records retrieved and the total number of relevant records in the database. Precision
is the ratio between the number of relevant records retrieved and the total number
of irrelevant and relevant records retrieved. The Precision-Recall curve is employed
to provide a quantitative assessment of the performance of the algorithm [6]. The
bounding boxes of the ground truth GT and the bounding boxes generated by the
presented algorithm RE are used to estimate the following measures:

Recall =
GT

⋂
RE

GT
(7.18)

Precision =
RE

⋂
GT

RE
(7.19)

Category information is also considered, i.e., intersections of GT s and REs with
different colors are not taken into account. The Recall and Precision estimates have
been recorded along with time scale in all the video sequences, and each pair of the
measures contributes as a point on the Precision-Recall curve. Figure 7.9 shows the
Precision-Recall curve for a video sequence. The graph in Figure 7.10 illustrates
the counting results from different situations with different number of people and
different number of professions. These results show that the system has a stable
performance under different circumstances.

2 The details of ViPER and ViPER Ground Truth Authoring Tool are available online at
http://viper-toolkit.sourceforge.net/.
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Fig. 7.9 Precision-Recall curve.

Fig. 7.10 Counting people: In these figures, ellipses represent the original blobs; thick outlines of
shapes (rectangles, ellipses) show the existences of individuals; thin outlines of ellipses show the
existences of clustered blobs.
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7.5 Conclusions

This chapter has described an intelligent system that follows the guidelines of the
Intelligent Environment paradigm. At present, only cameras are used to recognize
behavior and estimate the category and number of people in the scene. Color models
are used to track people in the scene and provide sufficient information for the sys-
tem to generate graphs of detected and tracked color patches. The generated graphs
are then automatically analyzed by an algorithm, to cluster blobs and estimate the
number of people in the scene.

The major challenge is to identify individuals from the color segments in a com-
plex dynamics environment. The basic assumption is that two individuals will not
always remain in close proximity over a long period of time. The current system
provides a fairly good estimation of number of people. High precision values in
quantitative results suggest that the system has a low false alarm rates. This is also
confirmed by observing the qualitative results. However as the analysis is limited to
2D information, the system would fail to count a person when seriously occluded
and most of their patch is not visible from the view. As a result recall sometime
drops to relatively low values. To tackle the problem of miss-counting, the next step
for performance improvement is either to introduce an occlusion handling scheme
or to fuse information from different views.

The contribution of this chapter is in the design of a robust algorithm for the in-
terpretation of a complex scene. In terms of algorithm development future work will
fpcus on the description of level of cluttering of the scene and dynamics descriptions
of the scene such as descriptions of people interactions. Also, evidence from all the
cameras can be combined to provide 3D information. In terms of technology, radio
frequency technology will be introduced to help with the recognition of positional
information of scene actors.
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Chapter 8
Stereo Omnidirectional System (SOS)
and Its Applications

Yutaka Satoh and Katsuhiko Sakaue

Abstract The Stereo Omnidirectional System (SOS) is a completely new camera
system that consists of 36 cameras arranged in the shape of a ball, only 11.6 cm in
diameter. It can be used to acquire color images in all directions and obtain range
data in real time with no dead angles. Since the SOS has a spherical field of view
with no dead angles, it can recover completely from any camera rotation. And be-
cause its field of view is unrestricted, the SOS does not suffer from the problem
when an object being observed leaves the image frame. Therefore, the SOS is perfect
for applications in robot vision systems and security systems. This paper discusses
the basic technology underlying the SOS and gives examples of applications.

8.1 Introduction

A Stereo Omnidirectional System (SOS) is a novel camera system capable of cap-
turing omni-directional color images and range data simultaneously and in real time
with a complete spherical field of view.

The greatest feature of the SOS is that its field of view is unrestricted, unlike those
of conventional camera systems. Ever since cameras were invented, a restricted field
of view has been accepted as inevitable. However, it is clearly better if there is no
such restriction due to structural limits. The SOS represents a new concept in that it
is not limited by a restricted field of view.

Several designs have previously been proposed to provide similar functionality
with hyperbolical mirror omni-directional camera systems [1, 2, 3, 4, 5, 6]. The
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SOS offers the following advantages over such systems: (1) spatial information is
captured evenly and at high resolution, due to the large number of cameras: (2)
complete absence of blind spots in any direction, due to a spherical construction; and
(3) simultaneous, real-time capture of color images and range data. These features
of the SOS enable the construction of applied systems of higher definition than
previous designs.

The chapter proceeds as follows: Section 8.2 presents an outline of the SOS.
Section 8.3 suggests a way of integrating individual images. Section 8.4 considers
rotation recovery of omni-directional images. Section 8.5 discusses some applica-
tions of the SOS, and Section 8.6 concludes the chapter.

8.2 System Configuration

Figure 8.1 shows the external appearance of the SOS. As a completely novel camera
system developed by the authors [7, 8], the SOS realizes an extremely compact de-
sign (with a diameter of 11.6 cm and a weight of 600 g) while having the capability
to completely capture color images from the entire surroundings and obtain range
data in real-time. The basic structure of the SOS consists of a regular dodecahedron
(12 faces), with a trinocular stereo camera unit located on each face (making a total
of 36 individual cameras).

To ensure the accuracy of the range data, the distance between the cameras in
each stereo camera unit (i.e., the stereo baseline) must be assured. However, it is
a problem that the size of a camera-head becomes excessively large when stereo
camera units are arranged in such a regular-dodecahedron fashion. To address this

Fig. 8.1 Stereo Omnidirectional System (SOS).
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Fig. 8.2 Stereo camera unit.
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Fig. 8.3 Examples of images captured by the stereo camera unit.

problem, the three cameras of each stereo camera unit (see Figures 8.2 and 8.3) are
mounted on a T-shaped arm, and by arranging the base planes of the stereo camera
units so that they crisscross one another, we have ensured that and downsizing is
possible while keeping a constant stereo baseline.

Each camera mounted to the stereo camera unit is on the same plane, and the op-
tical axis of each is mutually parallel to the others. And the center camera is placed
at right angles to the other two cameras so that their 50-mm baselines intersect at the
center camera. In this way, each stereo camera unit satisfies the epipolar constraint;
as a result, the processing cost of searching for corresponding points is decreased.

Stereo calibration is performed for each stereo camera unit in advance. And for
the camera heads together, we place the SOS inside a 1 cubic meter calibration
box (see Figure 8.4). From inside the box the SOS observes a pattern printed on
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Fig. 8.4 A calibration box. (The SOS is placed on the bottom of the box. And the bottom is covered
by the left-hand side body, that is to say, the SOS is placed inside the box.)
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Fig. 8.5 Block diagram of the SOS.

the inside wall of the calibration box, and misalignments between camera units are
eliminated by software.

The system configuration of the SOS is shown in Figure 8.5. Groups of images
taken by the camera head are output as two 1.2-Gbps optical signals by means of an
electro-optical conversion unit fitted in the main body. A memory unit and a control
unit are mounted on one PCI-Express (x4) board, and all image acquisitions and
control processes can be done by just a single PC.
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8.3 Image integration

The SOS provides 12 individual color images (each image is 640×480 pixels) at 15
frames per second. Since the optical centers of constituent cameras of the SOS do
not coincide, central projection image without any error makes use of range data.

For aiming at viewing, however, we can assume that the targets for observation
exist in a fixed distance because compact camera head size has a small influence on
inter-camera parallaxes. This assumption provides high-speed image integration as
we mention in what follows.

As a prerequisite, the system calibration of the SOS must be completed and the
global coordinate system with origin at the center of the SOS is defined (the in-
ternal parameters and external parameters of the cameras are known). Moreover,
we assume that lens distortion compensation (rectification) for each camera is also
completed.

Since the SOS covers its spherical field of view with 12 individual cameras, the
image integration can be considered to be the division problem of the spherical
surface.

Let S be the sphere of radius r in a coordinate system with origin at the center of
the SOS (see Figure 8.6). Each vector p on S defines the camera set

Cp ⊆ {1,2, · · · ,12}, (8.1)

of which each member camera has p in its FOV. Once (non-empty) Cp is given, the
optimal camera c to observe p is decided by the condition

p•nc = max{p•nc′ |c′ ∈Cp}. (8.2)
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Fig. 8.6 Projection from Mercator coordinate system to a local camera coordinate system.
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Note that this condition is designed to choose the best camera to observe p near the
center of FOV.

Now we consider how to combine 12 images into a Mercator projection image.
This argument also shows how to construct Cp. Let Q be the Mercator projection
image of size M ×N and let q = q(i, j) be any point on Q, which is the projection
of p on S. Suppose p has three dimensional homogeneous coordinate (x,y,z,1)T .
Then, the following relation holds:

⎛
⎜⎜⎝

x
y
z
1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−cos(b)cos(a) · r
cos(b)cos(a) · r

−sin(b) · r
1

⎞
⎟⎟⎠ , (8.3)

where a =
2 jπ
M

and b =
(2i−N)π

2N
.

We want to know the location (say, w ) of p in the camera-coordinate system for a
camera c, assuming p is included in FOV of c. The location w = (u,v,0,1)T in the
camera image Wc can be calculated as follows:

w = Ac[Rctc]p. (8.4)

Here, Ac is the matrix of internal parameter and [Rctc] is the matrix of external
parameter, both for the camera c. The size of the image of camera c determines
whether w is actually in Wc or not. If not, we conclude w �∈ Wc, which means
c �∈ Cp. In other words, the camera c is not the appropriate camera to observe the
point p. Starting from {1, · · · ,12}, the iterated removal of inappropriate camera
gives us Cp.

Of course, if we had had the ideal SOS, we wouldn’t have needed to mention Cp,
and could choose the optimal camera c for p by the condition

p•nc = max{p•nc′ |1 ≤ c′ ≤ 12}. (8.5)

However, the image centers of constituent cameras of the SOS practically may have
shifted from the physical design center. In such a case, the selected camera may be
unable to cover point p. The above-mentioned method enables us to choose another
camera to cover point p, since the SOS has overlapping regions near the boundaries
between constituent cameras.

By the method explained above, we can construct the mapping F : Q→W1∪·· ·∪
W12, which associates each q in Q to the point w in the optimal camera. Figure 8.7
shows the Mercator projection image which shows the sphere division. The num-
bered regions in the figure show that each of the region c belongs to the camera c.
Figure 8.8 shows an example of the Mercator projection image of a real scene.

The mapping F depends only on the design of the SOS and parameters of the
constituent cameras. Therefore, the mapping F can be implemented as a lookup
table, which enables high-speed rendering of the Mercator projection image.
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Fig. 8.7 Mercator projection image which shows the sphere division.

Fig. 8.8 An example of the Mercator projection image of a real scene.

8.4 Generation of Stable Images at Arbitrary Rotation

Since the SOS presents a complete surround view (i.e., a spherical field of view),
theoretically speaking the shooting condition in response to arbitrary camera rota-
tion stays constant. This means that if the pose of the SOS is known, it is possible
to generate rotation invariant images.

To detect the pose of the SOS, motion sensors are attached to the camera support
pole as shown in Figure 8.9. When the SOS is in a stationary state, the direction of
the gravitational force (i.e., vertically down) is determined by means of the acceler-
ation sensor, and the pose of the SOS is obtained. Figure 8.10 shows an example of
an image whose rotation has been corrected by using the obtained pose parameters.

The upper image shows the original image (take the direction of the camera sup-
port pole as the Z axis); the lower one is the image after correction (take the vertical
direction obtained by the sensor as the Z axis). It is clear that after the correction,
the effect of the camera rotation has been canceled.

In the following, we investigate the arbitrary rotation of the SOS that occurs when
the SOS is in motion. Under such conditions, to continually generate stable camera
images, it is necessary to estimate the pose of the SOS in real time. The authors
have already developed a high-speed, high-accuracy method for the pose estima-
tion, which simultaneously utilizes sensors and omni-directional images [9]. Due
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Fig. 8.9 Motion sensors.

Fig. 8.10 Rotation recovery. The original image (top) and the corrected image (bottom).

to limitations of space, only the method for generating rotation-corrected images in
real-time is described here.

In the case that the pose is not changing, integration of individual images into
omni-directional panoramic images (as described in Section 8.3) is enabled at high
speed by utilizing a pre-prepared lookup table based on fixed-orientation parame-
ters. In the case that the pose is changing, however, the orientation parameters are
unknown beforehand, so such a pre-prepared lookup table cannot be prepared and
geometric-conversion processing, which incurs an extremely high cost, must be
performed on each frame. To address this processing issue, we use the method
described next. By means of this method, it is possible to perform correction of
arbitrary camera rotation simply by using C++ pointer operation and referring to
lookup tables three times.

A general outline of this procedure is shown in Figure 8.11. Here we represent the
rotation of the SOS with the rotation angles of α,β and γ around the axes of X ,Y and
Z, respectively. If the omni-directional spherical image when the rotation changes is
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Fig. 8.11 Generation of rotation-corrected images in real time.

expressed in the three-axis angular coordinate system (A,B,Γ ), the rotation invariant
spherical image can be recovered as (A−α, B−β , Γ − γ). Utilizing this principle,
we can generate a rotation invariant cylindrical expansion of the spherical image
efficiently.

First, the correspondence relations between the cylindrical image (θx,φx) ex-
panded around X-axis of the global coordinate system of the SOS and the images
of each camera of the SOS. These correspondence relations are created by planar
projection between camera coordinate system and the global coordinate system of
the SOS, and are represented as cx(θx.φx), ix(θx.φx) and jx(θx.φx). Here cx is the
camera number and ix and jx are the coordinates of the image of camera cx. Next,
the correspondence relations between the cylindrical images (θy,φy) and (θx,φx) ex-
panded around Y -axis and X-axis, respectively, are computed, and are represented as
xθ (θy,φy) and xφ (θy,φy). Similarly, the correspondence relations between the cylin-
drical images (θz,φz) and (θy,φy) expanded around Z-axis and Y -axis, respectively,
can be obtained as yθ (θz,φz) and yφ (θz,φz). Using those correspondence relations,
we can recover a rotation invariant cylindrical expansion of the spherical image with
full FOV from the rotation parameters α,β and γ of the SOS, by adopting a multi-
plex indexing strategy. The following formulas show the correspondence relations
of camera numbers:

cy(θy,φy) = cx(xθ (θy,φy)−α,xφ (θy,φy)) (8.6)

cz(θz,φz) = cy(yθ (θz,φz)−β ,yφ (θz,φz)) (8.7)

cr(θ ,φ) = cz(θ − γ,φ) (8.8)

In the same way as for the above formulas, the multiplex index tables can be built
for ir(θ ,φ) and jr(θ ,φ) as well.

According to the procedure above, a PC fitted with dual 3.6-GHz CPUs can gen-
erate images corrected for rotation in about 15 ms.



136 Y. Satoh and K. Sakaue

8.5 An example Application: Intelligent Electric Wheelchair

8.5.1 Overview

Since the capability of the SOS is extremely powerful, it is expected to have a wide
variety of useful applications especially for robot vision systems. By utilizing the
capacity of the SOS, we are developing an intelligent electric wheelchair.

Figure 8.12 gives an outline of the system. Omnidirectional color images and
range data acquired by the SOS are transmitted to a remote support person and/or a
control PC (installed in the electric wheelchair) equipped with an automatic danger
avoidance function.

In addition to being able to monitor the scene via a mobile phone or other means,
the conveyed omni-directional images can be observed in an immersive display sys-
tem to achieve a “telepresence” effect [10], which makes the remote support person
feel present at the scene.

The automatic danger avoidance system uses omni-directional range information
to detect obstacles and ground surface irregularities in real time, and then effects
control to reduce speed or stop the wheelchair, as necessary. This kind of automatic
danger avoidance function can serve to reduce the burden on the remote support
person. For example, it makes conceivable a model in which one remote support
person is able to support multiple electric wheelchair users.

8.5.2 System Configuration

Figure 8.13 shows the external appearance of the prototype intelligent electric
wheelchair. Figure 8.14 shows omni-directional images rendered on a spherical

Fig. 8.12 The SOS supports safety of the electric wheelchair.
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Fig. 8.13 External view of the prototype intelligent electric wheelchair.

Fig. 8.14 Spherical view of omni-directional images provided by the electric wheelchair.

surface using OpenGL. Figure 8.15 presents a block diagram explaining the sys-
tem. The positioning of the SOS above and forward of the user’s head offers the
following advantages: (1) a wide observation range can be provided, without blind
spots in the electric wheelchair’s surroundings; (2) there is no hindrance to getting
in and out of the wheelchair; and (3) the SOS is positioned at approximately body
height (approx. 150 cm), thereby providing clearance in normal living spaces.

Integrated control of the SOS and electric wheelchair is handled by an on-board
PC. The SOS and PC are connected by two 1.2 Gbps fiber optic lines, while con-
trol connection between PC and electric wheelchair is via RS232C. In addition to
being used for obstacle avoidance and other automatic electric wheelchair control
functions, the omni-directional data from the SOS can also be transmitted to remote
locations over a wireless network.
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Fig. 8.15 Block diagram of the system.

Fig. 8.16 Omnidirectional depth image (bottom).

8.5.3 Obstacle Detection

Here we describe the function for automatic detection and avoidance of dangers
that tend to occur commonly and frequently, such as impacts with obstacles and tip-
ping over due to level irregularities. In this system, danger factors in the traveling
environment are detected from the omni-directional range data supplied from the
SOS. The detection objects considered in this study are as follows: (1) travel obsta-
cles: obstacles on the ground surface, level irregularities, etc; (2) collision objects:
pedestrians, walls, desks, etc; (3) other: ropes or beams suspended in the air, etc.

Figure 8.16 shows an omni-directional depth image actually captured by the
SOS. The higher the brightness of the pixels, the shorter the range is. Figure 8.17 is
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Fig. 8.18 Histogram representing an orthogonal projection of the range data onto the floor surface.

a histogram plotting vertical frequency of the range data. The vertical axis maps the
vertical height, relative to the camera center (=0), and the horizontal axis maps the
frequency. Since the SOS always measures uniformly in all directions, the range his-
togram accurately expresses the structural features of a room; we can see that large
peaks are obtained at the positions corresponding to the ceiling and floor. (Since
objects (e.g., desks) are present on the floor, the size of the peak for the floor is
smaller than that for the ceiling.) Using this peak, the system automatically ob-
tains the floor surface and ceiling reference position (only the floor surface in the
case of outdoors). Figure 8.18 is a histogram representing an orthogonal projection
of the range data onto the floor surface. This shows how objects that can poten-
tially obstruct the movement of the electric wheelchair (center) can be detected. As
the wheelchair is in actual movement, the histogram is used to narrow down the
possible region of travel. Subsequently, the system uses the previously obtained in-
formation on the range to the ground to carefully examine the obstacles and level
irregularities on the ground surface. Furthermore, in order to detect objects that are
difficult to express in a histogram, such as a rope or beam suspended in the air, the
system considers the 3-D position of edges that are near the wheelchair in the di-
rection of travel. Note also that, in consideration of the user’s intentions, the system
will, in principle, effect automatic avoidance only by reducing speed or stopping the
wheelchair.
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Fig. 8.19 Detection of user’s behavior.

8.5.4 Gesture / Posture Detection

In this system, the SOS is positioned above and in front of the head of the user. Thus,
while the environment surrounding the electric wheelchair is sensed, as described
above, the user’s riding posture and gestures can also be detected. Figure 8.19 shows
an example of the system detecting an abnormality in riding posture (the user is
slumped), and effecting an emergency stop of the wheelchair. Since during ordinary
travel the upper body of the user remains essentially static, when the system detects
any large change in posture it judges that an abnormality has arisen in the condition
of the user, and thus activates an emergency stop. To detect the posture of the user,
detailed position and shape information can be obtained, using the range information
obtainable from the SOS. From this, the concept can be expanded to the detection
of more intentional gestures such as finger-pointing gestures.

8.6 Conclusions

We have introduced a novel camera system capable of capturing omni-directional
color images and range data simultaneously and in real time with a complete spheri-
cal field of view. Since the capability of the SOS is extremely powerful, it is expected
to have a wide variety of useful applications. In this paper, we introduced an appli-
cation to an intelligent electric wheelchair as the example. We also plan to consider
another application such as for video surveillance systems.
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Chapter 9
Video Analysis for Ambient Intelligence
in Urban Environments

Andrea Prati and Rita Cucchiara

Abstract Ambient Intelligence (AmI) is an emerging field of research that comprises
new paradigms, techniques and systems for intelligent processing of distributed
sensing. A challenging arena for AmI framework is represented by urban environ-
ments that are characterized by high complexity, numerous sources of data, and
spreading of interesting and non-trivial applications. In this context, the project
LAICA (Laboratory of Ambient Intelligence for a Friendly City) represents a real
experiment on the usefulness of AmI for advanced services for citizens. This chapter
will address solutions of video analysis that can be directly applied in urban AmI. It
describes in detail the uniqueness of LAICA approach, focusing in particular on the
use of computer vision techniques for monitoring public parks. People surveillance
and Web-based video broadcasting will be taken into account.

9.1 Introduction

With the term “Ambient Intelligence” (or AmI) we typically refer to new paradigms,
techniques and systems for acquiring data, processing information, and creating and
spreading knowledge in distributed environments. This new multi-disciplinary field
of research has spread in the scientific community in recent decades, also thanks to
the diffusion of sensors and the increase of processing power.

The typical contexts are areas where more heterogeneous sources of data coex-
ist and can share raw and processed data. This sharing/cooperation among sensors
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contributes to the common scope of improving the “intelligence”, with the Latin
meaning of the act of “intelligere”, i.e., to comprehend the world.

Ambient intelligence research can be applied in the house, to improve the
processing capabilities of past generations of home automation systems [15, 16],
in distributed virtual communities for data sharing with autonomous mobile agents
[33, 34, 35], in complex systems, such as the interaction between remote patients
and health care systems [32]. Among the possible applications, one of the most
challenging is the urban context, i.e., the city as a complex entity with people and
numerous sources of data. The regional project LAICA (acronym for Laboratorio
di Ambient Intelligence per una Città Amica - in English: Laboratory of Ambient
Intelligence for a Friendly City) has been conceived in this framework and will be
detailed in Section 9.2.1.

Among the many sources of information, videos assume a central role for many
reasons. First, visual data can now be acquired at reasonable costs by using cheap
cameras already installed in many public places (train stations, intersections, public
parks, airports, etc.). Second, visual data are now much easier to transfer due to
distributed wired and wireless networks available in most of the cities. Last but not
the less important, visual data contain the highest amount of information about the
environment and people who live in it.

For all these reasons, within LAICA we investigated the exploitation of visual
data to extract information on status, behavior, and interaction of people and ve-
hicles in urban contexts. Moreover, privacy and ethical issues will be taken into
account and examples of applications in the LAICA projects will be described.

9.2 Visual Data for Urban AmI

In the past decades, visual documents have been the principal media of communica-
tion for tourist (virtual guides) and planning (remote sensing, SAR images) purposes
for our cities. Nowadays, instead, the principal sources of visual information are live
visual data acquired in real time from the hundreds of webcams and often cameras
installed everywhere. Most of these cameras were installed only for tourist purposes
(such as in the case of webpages of Times Square in New York City1 - (USA) - or in
Graz2 - (Austria) - in which also PTZ control is made available to the user). How-
ever, also the thousands of cameras mounted as part of video surveillance systems
can be potentially used.

The expression video surveillance is now synonymous of whichever system that
uses cameras, acquires videos, possibly - but not necessarily - processes them, trans-
fers them to remote displays in control centers and stores the data for posterity log-
ging. However, existing video surveillance systems are constrained by strict privacy
laws.

1 http://www.earthcam.com/usa/newyork/timessquare/
2 http://www.graz.at/cms/ziel/1097909/DE/
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9.2.1 Video Surveillance in Urban Environment

Video surveillance is motivated by three main purposes, also known as the S3 moti-
vations: security, safety, statistics.

After the terrorist acts of September 11, 2001, every city in the world became in-
secure and the possibility to add “electronic eyes” to control the urban environment
became an unavoidable requirement. This requirement reflected on the spreading of
video surveillance systems in public places (especially metro and train stations, and
airports) in order to prevent crimes, vandalism, or even terrorist attacks.

In Modena (Italy) the project “Modena Secure City” consisted of installing 42
cameras in critical locations, connected to the police control center and equipped
with PTZ (Pan Tilt Zoom) capabilities to allow active control and zooming. Stored
videos are available for forensic analysis. In the city of Reggio Emilia (Italy), before
the start of the LAICA project, more than 100 cameras had been installed near the
railway station and in several public parks. Other examples can be found all over the
world, like New York City which has about 5000 cameras in Manhattan, or London
which is the city with the highest number of cameras (approximately 150,000 in
2004) in the world. In total, Italy counted about 2 million cameras in 2004, while
the UK reached, in the same year, the considerable count of 4 million with a citizen’s
picture taken on average 300 times per day.

The European commission has also expressed much interest in video surveillance
in urban environments, since the Fifth Framework Programme (e.g., the Urbaneye
Project3, or CAVIAR project4 in Sixth FP), and still much interest will be devoted
to this research in the task of security in the Seventh Framework Programme, where
a specific strategic objective (among others) called “Intelligent urban environment
observation system” is included.

Finally, many commercial systems have been developed in recent years, some
of them rather sophisticated, for instance the system developed by Bosch Security
Systems5, or the iOmniscient6 (Australia) company that claims to have the most
intelligent video surveillance system.

Video surveillance is becoming more and more popular for private use, in houses,
offices, banks, to guarantee the safety of citizens and workers. New generations of
video surveillance systems have also been mounted on mobile platforms. An exam-
ple of this is the system developed by ELSAG (Italy) to automatically read vehicle
license plates of stolen cars while a police car is moving. As an example of safety
application, a system for smart deployment of airbags in the car has been developed
at UCSD (USA) by the group of Mohan Trivedi [8]: here, multiple cameras (both
standard and omnidirectional) are used to detect the driver’s posture in real time in
order to decide whether to deploy the airbag or not.

3 http://www.urbaneye.net/index.html
4 http://homepages.inf.ed.ac.uk/rbf/CAVIAR/caviar.htm
5 http://www.boschsecurity.com
6 http://iomniscient.com/
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Finally, video surveillance can also be used for collecting statistics on people,
behaviors, vehicles, etc.. These statistics can be used for dissemination to citizens
or public officers, or for planning purposes. This is often the purpose of vision-based
traffic monitoring systems, for both urban roads and highways, employed to measure
queues, quantify lane occupancy and turning rates, detect incidents, measure speed,
for access control to restricted areas, and so on. An interesting application related to
traffic control and part of the LAICA project is that of monitoring roundabouts for
occupancy analysis and license plate recognition.

For instance, the Belgian company Traficon N.V. is one of the world’s leader
in vision-based traffic control systems and has collaborated with us for more than
two years on the development of a board-based system for safety in highway tun-
nels (called VIP-T) capable of detecting automatically incidents, monitoring vehicle
flows, and collecting statistical data. Computer vision algorithms have been devel-
oped for vehicle detection and tracking with the purpose to measure speeds, classify
vehicles, and detect stopped vehicles inside tunnels [11].

Statistical analysis is going to be of interest also when related to people, for
example to analyze crowds of people in public places. Examples of applications
are the monitoring of bus stops to plan frequencies of bus runs, crowd dynamics in
department stores, etc. In all these cases privacy is a very relevant issue, because
people are monitored without their explicit consent. This issue will be discussed in
depth in Section 9.4.

As a final, emerging application, it is worth mentioning the use of video analysis
for posterity logging to postprocess huge amounts of data for supporting forensic
investigation in cases of crimes, vandalism, or terrorist attacks. For example, fol-
lowing the assassination of Professor Marco Biagi in Italy in 2002 more than 50,000
hours of videotapes have been watched and manually annotated by police officers.
Having a (semi)automatic process for preprocessing these data would definitely help
in such situations.

Summarizing, possible applications of video analysis in urban environments are
reported in Table 9.1 and examples shown in Figure 9.1.

Table 9.1 Examples of applications of video analysis in urban environments.

Application Example of system features
Traffic control Queue analysis, incident detection, traffic light

control
Monitoring and diffusing general information Webcam broadcasting
People detection for safety purposes Secure road crossings, metro/bus stop control
People tracking for security and surveillance Surveillance of public areas (stadium, museum,

etc.) or, in general, crowd areas
Environmental condition analysis Fire and smoke detection, flood control
Citizen-to-computer interactions Video interaction and communication systems

(e.g., Infopoints)
Support for investigation Posterity analysis for forensic purposes
Security for children In the surroundings of schools or public parks,

also in connection with the soliciting of minors
Control systems for cultural heritage Monitoring of natural and historical parks, ...
Safety for elderly and children Remote assistance for monitoring patients in

intensive care units or quarantined patients
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(a) Traffic control (b) People tracking

(c) Web diffusion

Fig. 9.1 Some snapshots of possible applications of video surveillance in urban environments.

Video surveillance systems have greatly improved in recent decades. As reported
in [25], broadly there are three generations of video surveillance systems. The first
generation (up to 1980) was based on analog signal; videos were viewed remotely
by human operators by means of a large set of monitors. These systems have the
huge limitation of requiring the operators’ attention, resulting in a high miss rate
of the events of interest. Moreover, analog signal is very noisy and requires much
bandwidth to be transmitted and much space to be stored. Thanks to the rapid im-
provements in camera resolution, the availability of low-cost computers, and com-
munications improvements, in late 1980s, the second-generation systems began to
emerge. These systems benefited from early advances in digital video communica-
tions (e.g., digital compression, bandwidth reduction, and robust transmission) and
in computer vision algorithms, and were mainly used to show the feasibility of dig-
ital, intelligent attention focusing systems on video from limited sets of cameras
and for real-time analysis and segmentation of image sequences, identification and
tracking of multiple objects in complex scenes, human behavior understanding, etc.
At the beginning of the 21st century, the third generation of video surveillance sys-
tems came about, providing a “full digital” solution to the design of surveillance
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systems: sensor and local processing layers can be physically organized together in
a so-called intelligent camera; at the operator layer, an active interface is presented
to the operator, assisting the operator by focusing his/her attention on a subset of
interesting events.

Despite this classification, most of the existing video surveillance systems pro-
vide limited automated processing capability, by incorporating motion detectors for
automatic storage of videos or a few more features. The goal of automated video
surveillance is to extract meaningful objects from the observed scene, recognize
them and their behavior, understand the scene by reasoning about objects and back-
ground, and infer specific conditions, alarms or interesting events.

A very promising advance to be included in the next (commercial) systems can
be provided by including computer vision capabilities to the system. New types of
alarms (not automatically provided in the majority of the current systems) could be:

• Low-level alarms: motion detectors, long-term change detectors, ...;
• Feature-based spatial alarms: specific-object detection in monitored areas (e.g.,

unattended bags in airports);
• Behavior-related alarms: anomalous trajectories, suspicious behaviors, ...;
• Complex event alarms: detection of complex scenarios related to multiple events.

9.2.2 The LAICA Project

The project LAICA is an example where many of the above-mentioned advanced
capabilities have been tested in a distributed environment.

LAICA is a two-year (2005–2006) project funded by Regione Emilia-Romagna
for a total budget of over 2 million euros and that involves universities, industries
and public administrations for a total of about 320 man-months. The main objective
of the LAICA project is to explore the AmI capabilities in a medium-size Italian
city such as Reggio Emilia. LAICA partners aim at defining innovative models and
technologies for AmI in urban environments, and at studying and developing ad-
vanced services for the citizens and the public officers in order to improve personal
safety and prevent crimes. The project brings together the academic expertise and
the industrial knowledge from several fields, ranging from low-power sensor net-
works, to computer vision, to middleware and mobile agents, and communication.
Multimedia and multimodal data have been collected from different sources, such
as cameras, microphones, and textual data about the traffic, security and the general
situation of the city. As shown in Figure 9.2, the LAICA project has a three-layer
architecture, corresponding to three different levels of granularity of the knowledge
provided by sensors (punctual, local, and global). The processed information has
been made available to both police control centers and citizens by means of a dedi-
cated webpage.
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Fig. 9.2 The three layers of the LAICA AmI architecture.

The foreseen services should be provided by a set of prototypical systems, as for
instance:

• a system for the automatic monitoring of pedestrian subways by means of mobile
and low-power audio and proximity sensors [45];

• a system for the automatic monitoring of traffic scenes by cameras for data col-
lection and Web-based delivery of traffic news to citizens and police officers;

• a system that generates a feedback in pedestrian crossing systems to select the
best duration of the green signal for the crossing [4];

• a platform of Urban TV to broadcast in interactive ways the data to the citizens;
• a system for the automatic monitoring of public parks with a plethora of cameras

(both fixed and PTZ) [5, 41], also accounting for privacy issue [12].

In the next Section the last prototype will be discussed in detail to show how
people can be detected and tracked in urban environments.

9.3 Automatic Video Processing for People Tracking

The motivations for tracking people in surveillance applications are numerous. The
following is a list of the most important:

• Recognition of Human Motion, e.g.:

– tracking people for statistical and security reasons, detecting moving people
in dangerous zones;

– walking, gait recognition;
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– counting, locating pedestrians;
– abandoning an object;

• Gesture Recognition, e.g.:

– hand, arm tracking for gestures;
– sign language recognition;

• Tracking Faces in Video, e.g.:

– face detection;
– eye tracking and gaze tracking;
– lip reading, lip tracking;
– face recognition.

Most of these applications are particularly relevant in urban environments. More-
over, the city areas under surveillance are typically large, requiring multiple cameras
to cover them. Finally, PTZ cameras are often employed to either “patrol” a large
scene or zoom onto a specific zone/target. With these premises, the following sub-
sections will briefly report on the research activity in the field of people detection
and tracking by means of computer vision, starting from a single static camera, to
multiple (static) cameras, to the use of PTZ cameras.

9.3.1 People Detection and Tracking from Single Static Camera

Detection of “moving objects” in video scenes is the basic step of major applications
such as tracking and visual surveillance. This problem has been tackled for many
years in both the scientific literature and the R&D for commercial systems and good
solutions have already been proposed for static cameras. Among the many different
approaches proposed, background suppression is the most used for its generality
and reliability. The aim is to separate the foreground (moving visual objects, or
MVOs) from the background model, i.e., a (probabilistic) model of the background
as it changes in time. Thus, it is required to build and keep updated the background
model, to adapt it to short- and long-term changes in illumination, to detect MVOs
in the current frame (i.e., to suppress the background from it), and to handle dif-
ficult situations, such as shadows and the so-called “ghosts” (i.e., the false objects
generated by a real still object that starts to move).

According to this, Table 9.2 shows a sketchy summary of these features (namely,
background model construction, adaptive updating, suppression, and detection of
other types of objects) and the most relevant approaches for background suppression
used in the literature.

We also proposed an approach for background suppression from a single static
camera. The approach is part of the SAKBOT (Statistical And Knowledge-Based
Object Tracker) described with full details in [9]. The background pixels are defined
by two models: the first statistical model updates the pixels at each frame using the
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Table 9.2 Summary of seminal approaches to background suppression

Feature Approach used
Background model construction Median [19, 9]

Single Gaussian [43, 26]
Mixture of Gaussians [38]
Eigenbackground [29]

Adaptive updating Kalman-based [23]
Previous backgrounds [43, 19]

Background suppression Intensity [23]
Color [19, 26, 9]
Malahanobis distance [43]
Multi-valued distance [38]
Eigenbackground distance [29]

Detection of other objects Shadows [26, 9], Ghosts [38, 9]

(a) (b) (c)

Fig. 9.3 Examples of the SAKBOT output: (a) segmentation result with blue pixels indicating
the MVO, and red ones indicating the shadow points; (b) complete classification of pixels for
frame (a) with MVO, MVO shadow, Ghost, and Ghost shadow; (c) another example of SAKBOT’s
segmentation (with corresponding bounding boxes).

temporal median function over the previous n sampled pixels; the second model
exploits the knowledge of previous background and of the corresponding moving
objects. Specifically, the pixels belonging to the current moving objects are not used
for updating the model in order to prevent the gradual inclusion of slowly mov-
ing objects into the background. Instead, pixels detected as foreground at previous
steps but classified as noise or shadows are included in the statistical model. This ap-
proach is critical when a stopped object starts to move, generating two “foreground”
objects, one real and one apparent (the “ghost”). To avoid deadlock situations for the
ghosts, a specific ghost suppression algorithm has been conceived. Moving shadows
are classified using their appearance and assuming that shadows lower the bright-
ness of the background underlying them, leaving the color components almost un-
changed. Further details can be found in [31]. Figure 9.3 shows some examples of
the output of the SAKBOT system.

Tracking of MVOs is crucial for most of the applications reported above. “Track-
ing” means that the same label/identity is kept constant over time for the same
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object, allowing computation of trajectory, speed, and behavior analysis. People
tracking is one of the most widely explored topics in computer vision. There are
many surveys in the field: the works of Cedras and Shah [7], of Gavrila [17], of
Aggarwal and Cai [1] and Moeslund and Granum [28], or more recently, the work
by Hu et al. in video surveillance [20] and the work by Wang et al. [42]. In people
tracking, in order to cope with non-rigid body motion, frequent shape changes and
self-occlusions, probabilistic and appearance-based tracking techniques are com-
monly proposed [26, 37]. In non-trivial situations, when several people interact
overlapping each other, most of the basic techniques tend to lose the previously
computed tracks, detecting instead the presence of a group of people, and possibly
restoring the situation after the group has split up [26]. These methods aim at keep-
ing the track history consistent before and after the occlusion only. Consequently,
during an occlusion, no information about the appearance of the single person is
available, limiting the efficacy of this solution in many cases. Conversely, a more
challenging solution is to try to separate the group of people into individuals also
during the occlusion.

Our approach to moving object tracking is based on appearance [40]. This al-
gorithm uses a classical predict-update approach. It takes into account not only the
status vector containing position and speed, but also the memory appearance model
and the probabilistic mask of the shape [10]. The former is the adaptive update of
each pixel in the color space. The latter is a mask whose values, ranging between 0
and 1, can be viewed as the probability for that pixel to belong to that object. These
models are used to define a MAP (Maximum A Posteriori) classifier that searches
the most probable position of each person in the scene. The tracking algorithm is a
suitable modification of a work, previously proposed by Senior [37], that includes
a specific module for coping with large and long lasting occlusions. Occlusions are
classified into three categories: self-occlusions (or apparent occlusions), object oc-
clusions, and people occlusions. Occlusion handling is very robust and has been
tested in many applications. It can keep the shape of the tracked objects very pre-
cisely.

9.3.2 People Detection and Tracking from Distributed Cameras

The previous Section briefly described the relevant issues for detecting and track-
ing people from a single static camera. However, as reported above, in most of
the urban scenarios a single camera does not suffice to handle large areas and
complex/cluttered scenes. For this reason, multiple cameras are used to both pro-
vide multiple viewpoints (useful for disambiguating difficult situations by using
redundant data and for handling occlusions) and obtain the coverage of a wider
area. Unfortunately, in automatic video surveillance multiple cameras are useless
if uncorrelated. The exploitation of the multiple viewpoints to correlate data from
multiple cameras is often called consistent labeling, referring to the fact that the
label/identity of moving objects is made consistent not only over time (as in the
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case of tracking from a single camera) but also over space (in the sense of different
cameras). Consistent labeling permits tracking people in wide areas, increasing the
potentiality of video-surveillance applications in urban scenarios.

Often cameras’ fields of view are disjoint, due to installation and cost constraints.
In this case, consistent labeling should be based on appearance only, basing the
matching essentially on the color of the objects (such as color histogram matching
[30]).

If the fields of view are overlapped, consistent labeling can exploit geometry-
based computer vision. These approaches exploit geometrical relations and con-
straints between different views.

This could be done with a precise system calibration and 3D reconstruction could
be used to solve any ambiguity [44]. However, this is not often feasible, in partic-
ular if the cameras are pre-installed and intrinsic and extrinsic parameters are not
available. Thus, partial calibration or self-calibration methods can be adopted to ex-
tract only some of the geometrical constraints, e.g., to compute the ground-plane
homography. An approach, based on the image projections of overlapped cameras’
field of view lines, has been initially proposed by Khan and Shah in [22]: the lines
delimiting the overlapping zones in the fields of view of the cameras are computed
in a training phase with a single person moving in the scene. At run time, when
one or more people have a camera hand-off, the distances from the lines are used to
disambiguate objects, assuring label consistency.

Another class of approaches presented in the literature deals with multiview
geometry to analyze and impose continuity in the objects’ trajectory across cam-
era streams (e.g., [2, 39]).

In [6], we have proposed a novel method, called HECOL (Homography and
Epipolar-based COnsistent Labeling), to provide consistent labeling of people seg-
mented in large areas covered by multiple overlapped cameras. The method takes
into account both geometrical and shape features in a probabilistic framework. Ho-
mography and epipolar lines are computed to create relationships between cameras.
The multi-camera system is modeled as a Camera Transition Graph (CTG) that de-
fines the possible overlap between cameras in a given setup. When a new object is
detected, the exploration of the graph selects a subset of compatible labels which
may be assigned to the object in order to limit the search space. An off-line training
phase allows computation of the Entry Edges of Field of View that define the area of
overlapped FoV between cameras and permits construction of the homography. The
learning phase also allows computing the location of the epipoles of the overlapped
cameras with a robust algorithm based on RANSAC optimization.

At run time, the system checks for inconsistency in label assignments among
the modules of the overlapped cameras. The main novelty of the paper lies in the
phase of consistent labeling that defines a probabilistic framework with forward and
backward contributions: it checks the mutual correspondence of people using the
axis of the objects precisely warped in the other FoV using epipolar lines. It accounts
for the matching of the warped axis and the shapes of people. This makes the method
particularly robust against segmentation errors and allows to disambiguate groups
of people. Figure 9.4 shows some images on the HECOL system.
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Fig. 9.4 Examples of the HECOL system: (a) sketch of the process for axis warping on which the
consistent labeling is based (see [6] for further details); (b) and (c) report examples from a real
system working on a public park in Reggio Emilia within the LAICA project.

Multiple cameras can also be exploited directly to obtain 3D reconstruction of the
moving object. In this case, the objective is not to have a consistent assignment of
label among views but to correlate single points belonging to the object’s shape, thus
exploiting a sort of wide-baseline stereo system. An example of this use of multiple
cameras can be found in [27]. The complete 3D reconstruction of the human shape
has the obvious advantage of being crucial for applications such as human body
modeling, gesture recognition, and similar.

9.3.3 People Detection and Tracking from Moving Cameras

In video-surveillance systems with multiple cameras it happens frequently that at
least one of them is a PTZ camera. PTZ cameras have the main advantage of reduc-
ing the costs of covering large areas, allowing the use a single camera (even though
more expensive than normal cameras), instead of a set of static cameras. PTZ cam-
era can be programmed to patrol (automatically or manually by the operator) the
scene. While patrolling, the camera should be able to extract and track moving peo-
ple or even detect and track faces in order to zoom on one of them. Using a single
PTZ camera solution has the advantages of being basically a cheaper solution, of
not requiring synchronization/communication among cameras, and of requiring, in
principle, lower computational load. It has, however, also some drawbacks, namely,
the need for more complex computer vision techniques and the limitation of not
allowing simultaneous coverage of a certain area.

Detecting and tracking people from a PTZ (i.e., moving) camera requires a rather
different approach compared to what is reported in Section 9.3.1 for static cameras.
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One possible approach is that of creating in real time a mosaic image of the whole
scene (by registering overlapped images provided by successive frames of the active
camera) then detecting and tracking moving people on the mosaic image.

The segmentation of moving objects becomes more critical when the video is
acquired by a moving camera with an unconstrained and a priori unknown mo-
tion. Proposals from single camera can be grouped into three classes: based on
ego-motion computation, on motion segmentation, and on region merging with mo-
tion. The approaches in the first class aim at estimating the camera motion (or ego-
motion) through the evaluation of the dominant motion with different techniques and
models in order to obtain compensated videos and to apply algorithms developed for
fixed camera (frame differencing, as in [14], or background suppression, as in [36]).
In [21] Kang et al. define an adaptive background model that takes into account the
camera motion approximated with affine transformation. Tracking of moving ob-
ject is achieved by means of a joint probability data association filter (JPDAF). In
methods based on motion segmentation the objects are mainly segmented by using
the motion vectors computed at pixel level [24]. The vectors are then clustered to
segment objects with homogeneous motion. Finally, the approaches based on region
merging with motion are hybrid approaches in which the objects are obtained with
a segmentation based on visual features, and then merged on motion parameters
computed at a region-level [18]. It is worth noting that most of the reported ap-
proaches are computationally very expensive and cannot meet real-time constraints
(and those that meet them use either special-purpose devices or a set of limiting
assumptions).

In [41] we proposed a new method for fast ego-motion computation based on the
so-called direction histograms. The method works with an uncalibrated camera that
moves with an unknown path and it is based on the compensation of the camera
motion (i.e., the ego-motion) to create the mosaic image and on the frame differ-
encing to extract moving objects. Successive steps eliminate the noise and extract
the complete shape of the moving objects in order to exploit an appearance-based
probabilistic tracking algorithm. Figure 9.5 shows an example of the segmentation
of a moving person by means of a single PTZ camera and its exploitation for auto-
matically following the person.

9.4 Privacy and Ethical Issues

All the considerations reported in previous Sections are related to the usefulness
of video surveillance in urban environments for increasing (the sense of) security,
safety or for the collection of statistical information. These are obvious and un-
doubted advantages of (automatic) video surveillance. The use of cameras in public
places creates, however, serious problems regarding the citizen privacy. There is a
worldwide controversy regarding the use of video surveillance in public places. This
has to do with privacy violations. The dichotomy security vs. privacy was and is, for
instance, very debated in United States after September 11. K.W. Bowyer wrote a
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Fig. 9.5 Examples of the detection of a single moving person by using a single PTZ camera.
Additionally, PTZ camera moves automatically to follow the moving person.

very interesting paper on pros and cons of surveillance and analyzed the risks of
false claims in privacy violations [3].

In Europe, the privacy debate has been magnified following the terrorist inci-
dents in Madrid in March 2004 and on the London underground in July 2005. In
both cases, the recorded videos provided valuable help for the identification of the
terrorists only after the crime.

In Europe visual data processing is within a more general Directive (95/46/EC)
than in United States. This Directive covers specific features of the processing of
personal information included in sound and image data and ensures “the protection
of privacy and private life as well as the larger gamut of protection of personal data
with regard to fundamental rights and freedoms of natural persons”. A considerable
portion of the information collected by means of video surveillance concerns iden-
tified and/or identifiable persons, who have been filmed as they moved in public
and/or publicly accessible premises. As a final remark, the directive states that “in
public places no automatic visual surveillance should limit the freedom of people”.

Each European country has then its own specific law. For instance, in Denmark
surveillance of public streets, roads, squares or any similar area used for common
travel is forbidden to private entities. Also in Italy, there exists a specific set of laws
for video surveillance. These laws propose a basic principle called “proportionality
principle”, for which acquired data must be adequate, relevant and not excessive. As
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Fig. 9.6 Example of face obscuration taken from [12].

an example, acquiring and storing videos from a supermarket for statistical analysis
is excessive, doing that for forensic analysis of crimes is not.

A good compromise between security and privacy comes from the use of com-
puter vision. It allows the extraction of “biometric” information (such as faces) from
the video, but still preserving semantic content to be freely distributed. This requires,
as depicted in previous Sections, to detecting and track people from multiple cam-
eras, detect their faces and automatically obscuring them to prevent “identification”
of the person.

In the framework of the project LAICA we have studied and developed two
different solutions: the first makes use of passive sensors to develop a video-
surveillance system integrated with the cameras [13], the second automatically ex-
tracts and obscures people’s faces from videos [12]. An example of face obscuration
is given in Figure 9.6.
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Chapter 10
From Monomodal to Multimodal: Affect
Recognition Using Visual Modalities

Hatice Gunes and Massimo Piccardi

Abstract Affective computing has emerged with the aim to enable affective human-
computer interaction by designing machines and interfaces that will sense, recog-
nize, understand and interpret human emotional states via language, speech, facial
and bodily gesture and respond accordingly. Although much progress has been
achieved in the last decade, one major present limitation of affective computing
has been that most of the research on emotion recognition has focused on one sin-
gle sensorial source, or modality, at a time and especially the face display. While it
is true that the face is the main display of a human’s affective state, other sources
can improve the recognition accuracy. As natural human-to-human interaction is
multimodal, the single sensory observations are often ambiguous, uncertain, and
incomplete. Despite this fact, the research community has only recently started
proposing emotion recognition systems using affective multimodal data. This chap-
ter introduces recent advances in multi-modal affect. It explicitly focuses on systems
that include vision as one of the input modalities, and attempt to analyze affective
face and body movement either as a pure monomodal system or as part of a bi-
modal/multimodal affective framework introduced during the period 2002-2006.

10.1 Introduction

Research on automatic emotion recognition did not start until the 1990s. Although
researchers like Ekman published studies on how people recognized emotions from
face display in the 1960s [16], people would find it absurd that anyone would even
propose giving machines such abilities when emotional mechanisms were not con-
sidered to have a significant role in various aspects of a human’s life. However,
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scientists found out that even in the most rational of decisions, emotions persist:
emotions always exist, we always feel something.

In the early 1990s, Mayer and Salovey published a series of papers on emo-
tional intelligence [56]. They suggested that the capacity to perceive and understand
emotions defines a new variable in personality. Goleman popularized his view of
emotional intelligence or Emotional Quotient (EQ) in his 1995 best-selling book by
discussing why EQ mattered more than Intelligence Quotient (IQ) [23]. Goleman
drew together research in neurophysiology, psychology and cognitive science. Other
scientists also provided evidence that emotions were tightly coupled with all func-
tions that humans are engaged with: attention, perception, learning, reasoning, de-
cision making, planning, action selection, memory storage and retrieval [31, 49].

This new scientific understanding of emotions provided inspiration to various re-
searchers for building machines that will have abilities to recognize, express, model,
communicate, and respond to emotions. The initial focus has been on the recogni-
tion of the prototypical emotions from posed visual input, namely, face expressions.
All existing work in the early 1990s attempted to recognize prototypical emotions
from two static face images: neutral and expressive. In the second half of the 1990s,
automated face expression analysis started focusing on posed video sequences and
exploiting temporal information in the displayed face expressions. In parallel to the
automatic emotion recognition from visual input, works focusing on audio input
emerged.

Rosalind Picard’s award-winning book, Affective Computing, was published in
1997, laying the groundwork for giving machines the skills of emotional intelli-
gence. The book triggered an explosion of interest in the emotional side of com-
puters and their users and a new research area called affective Computing emerged.
Affective Computing advocated the idea that it might not be essential for machines
to possess all the emotional intelligence and skills humans do. However, for natural
and effective human-computer interaction, computers still needed to look intelligent
to some extent [50]. Experiments conducted by Reeves and Nass showed that for an
intelligent interaction, the basic human-human issues should hold [54].

One major limitation of affective computing has been that most of the past re-
search had focused on emotion recognition from one single sensorial source, or
modality. However, as natural human-human interaction (HHI) is multimodal, the
single sensory observations are often ambiguous, uncertain, and incomplete. It was
not till 1998 that computer scientists attempted to use multiple modalities for recog-
nition of emotions/affective states. The combined use of multiple modalities for
sensing affective states in itself triggers another research area. What channels to use?
And how to combine them? The initial interest was on fusing visual and audio data.
The results were promising; using multiple modalities improved the overall recog-
nition accuracy helping the systems function in a more efficient and reliable way.
Starting from the work of Picard in 2001, interest in detecting emotions from phys-
iological signals emerged. Moreover, researchers moved their focus from posed to
spontaneous visual data [5]. Although a fundamental study by Ambady and Rosen-
thal suggested that the most significant channels for judging behavioral cues of
humans appear to be the visual channels of face expressions and body gestures [2],
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the existing literature on automatic emotion recognition did not focus on the expres-
sive information that body gestures carry till 2003 [30].

Although the most common approach has been that of combining face expres-
sions with audio information, following the new findings in psychology, some
researchers advocate that a reliable automatic affect recognition system should at-
tempt to combine face expressions and body gestures. Accordingly, a limited num-
ber of approaches have been proposed for such sensorial sources [3], GUNES-
Gun2006-1, GUNES-Kap2005, GUNES-Lis2002, GUNES-Mad2004. With all these
new areas, a number of new challenges have arisen. The stage affective computing
has reached today is combining multiple channels for affect recognition and moving
from posed data toward spontaneous data. Achieving these aims is an open chal-
lenge. At this level, scientists expect emotion recognition to be solvable by machine
in the near future, at least as well as people can label such patterns [49].

10.2 Organization of the Chapter

There is a vast body of literature on emotion recognition from individual modalities
like face expression and audio signals. Here, instead of a comprehensive survey, we
discuss work not included in previous surveys while highlighting the main research
issues.

Currently, there are very few multimodal systems attempting to analyze com-
binations of communication means for human affective state analysis. There ex-
ist bimodal systems for affect recognition combining audio and video signals by
processing face expression and vocal cues. Such systems have been reviewed else-
where [47]. Examples of similar systems introduced from the year 2002 onwards
are [8], [22] and [60].

In relation to what this chapter has set out to explore, we are interested in systems
that attempt to analyze the nonverbal communication of emotions. We explicitly fo-
cus on systems that include vision as one of the input modalities, and attempt to
analyze affective face and body movement either as a pure monomodal system or
as part of a bimodal/multimodal affective framework introduced during the period
2002–2006. Facial expression recognition systems have been reviewed in [20] and
[48]. Hence, we only briefly focus on the most recent research conducted in the
area in the last five years. Automated systems analyzing and recognizing affective
body movement first emerged in 2002. As these systems do not have a lengthy
background similar to that in face expression analysis, the attempts are relatively
few. The review of these systems naturally leads to exploration of the literature in
the combination of modalities for emotion recognition. We thus describe the most
notable multimodal systems combining face and body modalities for emotion recog-
nition.

The rest of the chapter is organized as follows. Section 10.3 is concerned with the
challenges faced when moving from monomodal affect recognition systems to mul-
timodal ones and discusses the problem domain of multimodal affective computing.
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Section 10.4 explores the systems recognizing affective face or body movement,
either by focusing on the prototypical face expressions/face action units (AUs) or
body expressions. Due to limitation in space, the chapter in general and this sec-
tion in particular only briefly cover the representative systems, referring the reader
to [24] for further details. Section 10.5 covers the systems recognizing affective
bimodal/multimodal data from visual and/or haptic modalities. Representative sys-
tems are analyzed and compared. The last part of this chapter discusses the future of
affective multimodal recognition systems, lists the limitations of the current systems
and summarizes the features of an ideal multimodal affect analyzer.

10.3 From Monomodal to Multimodal: Changes and Challenges

This section is concerned with the challenges faced when moving from monomodal
affect recognition systems to multimodal ones. We describe the new problems oc-
curring and changes needed by this shift and propose some solutions. Functional
blocks for an affect recognition system with a comparison of monomodal vs. mul-
timodal are provided in Figure 10.1. By looking at the figure, one can note that
some of the assumptions made when building monomodal affect recognizers still
hold (e.g., affect data collection is still needed). However, specific problems exist
for multimodal affect recognition (e.g., multiple sensors are now required). There-
fore, some new assumptions need to be taken into consideration. We choose to fo-
cus specifically on the following challenges: background research, data collection,
data annotation, synchrony between modalities, data integration/fusion, informa-
tion complementarity/redundancy and information content of modalities. We dis-
cuss them in detail in the following subsections.

10.3.1 Background Research

As we already stated in the introduction of this section, development of affective
multimodal systems depends significantly on the progress in emotion research. Such
progress is likely to take place thanks to the interaction of researchers on human
emotions and computer scientists.

People are challenged in daily life with the task of decoding and making sense
of multiple simultaneously presented emotional signals. Emotional information is
conveyed by various physical changes in the body: changes invisible to others (e.g.,
blood chemistry, brain activity, neurotransmitters) and/or physical changes that can
be differentiated by humans (voice, tone, face, gesture) [38]. Hence, a broad range of
modalities is available, including speech and language, gesture and head movement,
body movement and posture, as well as face expression. Psychologists state that
93% of HHI and communication is nonverbal and humans display their emotions
most expressively through face expressions and body gestures [41].

Computers can also measure affect that is clearly expressed to them. It is possible
to measure face and body activities that might not be visible using electromyography
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Fig. 10.1 Functional blocks for an affect recognition system: monomodal vs. multimodal.

(EMG) [38]. However, visual communicative cues are commonly accepted to be a
social sign for their signification of intent as the way humans interact with each
other. Moreover, within the visual communicative cues expressive face and body
gesture are among the main nonverbal communication channels in HHI [2, 14, 41].
Hence, understanding human emotions through these nonverbal means is one of the
necessary skills both for humans and computers to interact intelligently.
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One limitation of prior work on human emotion perception is the focus on sep-
arate channels for expression of affect, without adequate consideration for the mul-
timodal emotional signals that people encounter in their environment [59]. Most
research on the development of emotion perception has focused on human recog-
nition of face expressions, and thus we know little about the relative influence of
other emotional expressions on human perceptual and attentional abilities. The in-
vestigation of various ways in which people learn to perceive and attend to emotions
multimodally will likely provide a more complete picture of the complex HHI.

Herewith, we provide a summary of the findings from emotion research relevant
to what this chapter has set out to explore: emotion communication from face and
body display.

Face Expression

Ekman conducted various experiments on human judgment on still photographs of
posed face behavior and concluded that seven basic emotions can be recognized
universally: neutrality, happiness, sadness, surprise, fear, anger and disgust [18].
Several other emotions and many combinations of emotions have been studied but
it remains unconfirmed whether they are universally distinguishable. Although pro-
totypic expressions, like happiness, surprise and fear, are natural, they occur in-
frequently in daily life and provide an incomplete description of face expression.
To capture the subtlety of human emotion and paralinguistic communication, auto-
mated recognition of fine-grained changes in face expression is needed. Ekman and
Friesen developed their Facial Action Coding System (FACS) for describing face
expressions by face action units (AUs) [17]. FACS is based on the enumeration of
all “face action units” causing face movements (see Figure 10.2(a) for examples

(a) (b)

Fig. 10.2 (a) Examples of AU activations (from left to right: neutral; AU17: chin raised; AU26: jaw
dropped; AU17+AU28: chin raised and lips sucked) and (b) representation of Russell’s circumflex
model (based on [55]).
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of AUs). After an extensive analysis, Ekman and Friesen decided for a final num-
ber of 46 AUs which account for changes in face expression, 30 AUs anatomically
related to the contractions of specific face muscles: 12 for the upper face and 18
for the lower face. A set of translation rules are used to link the AU coding into
basic emotions. For instance, the presence of four AUs can be interpreted as the
emotion “surprise” [17]: AU1+ AU2+ AU5+AU26==Surprise (AU1: Inner Brow
Raised; AU2: outer brow raised; AU5: upper lid raised; AU26: jaw dropped). To
date, Ekman’s theory of emotion universality [18] and the Facial Action Coding
System (FACS) [17] are the most commonly used schemes in vision-based systems
attempting to recognize face expressions.

Body Expression

Compared to research in face expression, the expressive information body gestures
carry has not been adequately exploited yet. However, the interest is growing. Neu-
roscientists conducted an experiment to determine the underlying neural mecha-
nisms of perception of body expression of emotion [29]. Their findings suggest that
the brain reacts as quickly and with the same pair of neural structures as it does in
the case of face expressions, thus confirming the fact that body expression is an in-
tegral part in emotion communication [29]. Coulson presented experimental results
on attribution of six emotions (anger, disgust, fear, happiness, sadness and surprise)
to static body postures by using computer-generated figures [13]. He found out that
in general, human recognition of emotion from posture is comparable to recognition
from the voice, and some postures are recognized as effectively as face expressions.
Moreover, a fundamental study by Ambady and Rosenthal suggested that the most
significant channels for judging behavioral cues of humans appeared to be the visual
channels of face expressions and body gestures [2].

In general, the body and hand gestures are much more varied than face gestures.
There is an unlimited vocabulary of body postures and gestures with combinations
of movements of various body parts. Despite the effort of Laban in analyzing and
annotating body movement [36, 37] unlike the face action units, body action units
that carry expressive information have not been defined with a Body Action Coding
System (BACS). Communication of emotions by body gestures is still an unresolved
area in psychology.

When recognizing and labeling affect data from body display, Russell’s theory
of arousal and valence [55] is commonly used. Russell viewed affective states not
independent of one another; rather, related to one another in a systematic manner
[55]. Russell argued that emotion is best characterized in terms of a small number
of latent dimensions, rather than in a small number of discrete emotion categories.
He proposed that each of the basic emotions is a bipolar entity as part of the same
emotional continuum. The proposed polarities are arousal (relaxed vs. aroused) and
valence (pleasant vs. unpleasant). The model is illustrated in Figure 10.2(b).
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10.3.2 Data Collection

When shifting our focus from monomodal to multimodal affect recognition, data-
bases containing representative samples of human multimodal expressive behaviors
are needed for the development of such systems. Hence, the requirement now be-
comes that of databases containing data from multiple channels/sensors.

In order to describe the problem domain of multimodal affect data collection, we
should first focus on the factors that affect the extent and the nature of this task.
These factors were defined by Picard as follows [51]:

• Posed/spontaneous: Is the emotion elicited by the subject upon request or is there
an actual reason or situation creating the affective activation?

• Expression/emotion: Is the actual target on expression (how people externalize)
or emotion (what people feel internally)?

• Laboratory setting/real life: Is the recording obtained in a laboratory with con-
trolled background/lights/noise or in real life with unconstrained conditions?

• Open recording/hidden recording: Does the subject know that s(he) is being
recorded?

• Emotion-purpose/other-purpose: Does the subject know that s(he) is expected to
create emotional response?

To foster development of natural human-computer interfaces, an ideal multi-
modal affect database should contain data obtained in a natural setup; in other words,
data that are spontaneous and obtained in a real life situation with non-emotion pur-
pose. Taking into account the aforementioned factors, an ideal multimodal affect
database thus should have the following features:

• The subjects are present in their natural environment (e.g., office or house).
• The subjects are in a particular affective state due to some real-life event or trig-

ger of events (e.g., stressed at work).
• The subjects do not try to hide nor exaggerate what they feel, on the contrary,

display what they feel using multiple communicative channels (e.g., face expres-
sion, head movement, body gestures, voice, etc.).

• The subjects are not aware of the recording, hence will not restrain themselves
unlike the case when they are part of an experiment; but know they can be seen
(e.g., public/not alone).

• There are occurrences of occlusions (e.g., hands occluding each other or hand
occluding the face) and noise (e.g., in audio recordings).

• There may be multiple sensing devices (e.g., multiple cameras, multiple micro-
phones, haptic sensors, etc.).

• Viewing and lighting conditions are realistic (e.g., with background noise) and
not uniform.

• The sessions are long and varied, expanding between one day and possibly a cou-
ple of weeks, capturing all variations of expressive1-expressive2-expressive3-
neutral behavior in every possible order or combination.

• The subjects are of diverse age, gender and ethnic background.
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At present publicly available databases exist mainly for single expressive modal-
ities such as face expressions, static and dynamic hand postures, and dynamic hand
gestures. Recently, there have been a limited number of attempts to create publicly
available multimodal affect databases. These are: the SmartKom Corpora [1], FABO
[25], the Database collected at the University of Amsterdam [58] and the Databases
collected at the University of Texas [61]. These are reviewed in [26] in detail. To
date, FABO is the first and only bimodal affect database consisting of expressive
face and upper-body display [26].

In a multimodal affect database, when evaluating posed versus spontaneous data,
artificial occurrences should be distinguished from natural occurrences [15]. As con-
firmed by many researchers in the field, directed affective face and body action tasks
differ in appearance and timing from spontaneously occurring behavior [10]. Delib-
erate face and body behavior are mediated by separate motor pathways and differ-
ences between spontaneous and deliberate actions may be significant [32]. Very few
of the aforementioned databases contain spontaneous data. However, even then the
“spontaneity” of the recorded data remains questionable. Most of the spontaneous
expressions were still recorded in unnatural/artificial settings (e.g., the University
of Texas Database). Even if the subjects are shown movies that stimulate certain
emotions, if they are aware of being filmed, their emotional response may not be
as spontaneous anymore (e.g., will be masked or controlled). And even in the case
where the subjects are unaware of being filmed, the laboratory situation may not
encourage natural or usual emotion response.

Current bimodal/multimodal databases are yet to improve their features, content
and annotation schemes to achieve the level of specifications listed above. Creating a
spontaneous multimodal affect database is a challenging task involving ethical and
privacy concerns together with technical difficulties (diverse and large set of sub-
jects, high resolution, illumination, multiple sensors, consistency and repeatability
within acceptable time limits). Given these restrictions, a database of directed emo-
tional display has been the only alternative possible to date. Another challenging
issue is that of creating a database that contains samples of both staged and sponta-
neous data in order to study the differences between these and how this procedure
can be automated. No attempts are reported yet toward that goal.

10.3.3 Data Annotation

In order to foster development of affective multimodal systems, acquiring multi-
modal data is not enough; they need to be annotated and analyzed to form the ground
truth for machine understanding of the human affective multimodal behavior.

As stated previously, when annotating or labeling affect data from face display,
Ekman’s theory of emotion universality [18] and the Facial Action Coding System
(FACS), [17] are used. When it comes to annotating body gestures, unlike the AUs,
there is not one common annotation scheme that can be adopted by all the research
groups. The most common annotation has been command-purpose annotation, for
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instance calling the gesture as “rotate” or “click” gesture. Another type of annotation
has been based on the gesture phase, e.g., “start of gesture stroke-peak of gesture
stroke-end of gesture stroke”. However, a more detailed annotation scheme, simi-
lar to that of FACS is needed. A general body gesture annotation scheme, possibly
named the Body Action Unit Coding System (BACS), should include information
and description as follows: body part (e.g., left hand), direction (e.g., up/down),
speed (e.g., fast/slow), shape (hands made into fists), space (flexible/direct), weight
(light/strong), time (sustained/quick), and flow (fluent/controlled) as defined by La-
ban and Ullman, [36, 37]. Additionally, temporal segments (neutral-start of gesture
stroke-peak of gesture stroke-end of gesture stroke-neutral) of the gestures should
be included as part of the annotation scheme.

Besides the aforementioned issues, affective state annotation in itself faces three
main challenges: (a) the type of emotion encoded(e.g., some emotions are encoded
easily compared to others), (b) the specific ability of the encoder (e.g., some cultures
encode differently compared to others), and (c) specific, discriminative movement
indicators for certain emotions versus indicators of the general intensity of the emo-
tional experience (e.g., body movements are easily distinguishable from each other
compared to face feature movements) [63]. Therefore, annotation of multimodal
data is a very tiresome procedure overall as it requires extra effort and time to view
and label the sequences with a consistent level of alertness and interest (e.g., it takes
more than one hour to AU code one minute of face video). It is also not easy to
obtain a significant number of qualified emotion coders representing various age
and ethnic groups. Hence, obtaining the emotion- and quality-coding for all the data
contained in multimodal databases is very difficult to achieve. Moreover, for the
annotation purposes it is almost impossible to use emotion words that are agreed
upon by everybody. The problem of what different emotion words are used to refer
to the same emotion display is not, of course, a problem that is unique to this; it is
by itself a topic of research for emotion theorists and psychologists. It is a problem
deriving from the vagueness of language, especially with respect to terms that refer
to psychological states [44].

As a rule of thumb, at least two main labeling schemes, in line with the psy-
chological literature on descriptors of emotions, should be used: verbal categorical
labeling (perceptually determined, e.g., happiness) and broad dimensional label-
ing: arousal (arousal–sleep) and valence (activated-Űdeactivated). This labeling is
in accordance with emotion theories in psychology: (a) Ekman’s theory of emotion
universality [18] and (b) Russell’s theory of arousal and valence [55].

Taking into account these facts an ideal multimodal affect database should be
annotated as follows: (a) Experimenters, preferably a group consisting of an expert
in the affective computing field or an emotion researcher, should view and label
the multimodal data. (b) Subjects’ own evaluation should be obtained by asking the
subjects after the recordings, to view and fill in a survey about their expressions.
This feedback will form each subject’s own evaluation of his affective state. (c) The
multimodal data should additionally be annotated by independent human observers
with different ethnic and/or cultural background in order to obtain independent in-
terpretations. Moreover, it should be further analyzed whether being exposed to the
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expressions (hearing/seeing, etc.) from one sensor (face camera only) or another
(body camera only), or from multiple sensors simultaneously (cameras and head-
phones) affects the observer’s interpretations. Annotation should also be analyzed
statistically (e.g., how female observers annotate compared to male observers, how
older observers annotate compared to younger observers, etc.).

10.3.4 Synchrony/Asynchrony Between Modalities

In affective multimodal systems, the kind of feature processing and fusion strategy
to choose depends on the input data and modalities to be fused. There might be an
inherent asynchrony between the modalities.

The asynchrony between modalities may be two-fold: (a) asynchrony in subject’s
signal production (e.g., the face movement might start earlier than the body move-
ment) and (b) asynchrony in processing the signals coming from various sensing
devices. For instance, assume that the computer is able to accept input coming from
an affect sensitive mouse equipped with a psychological sensor and a camera cap-
turing the body gestures. At the production level, the subject will continuously be
sending psychological signals when touching the mouse whereas producing/making
a gesture will probably take longer. At the processing level, the computer might
complete processing data coming from the mouse sensor tens or even hundreds of
milliseconds before the hand and/or body gestures are actually produced. Moreover,
the difference between time responses of devices can be very large (a speech recog-
nition system might need more time to recognize a word and link it to an affective
state than a touch sensitive mouse to compute the current affective state of the user).
If the modalities are not synchronized, then this might introduce pending recogni-
tion results. Or the system might receive an information stream in an order which
does not correspond to the real chronological order of user’s actions. Incorrect fu-
sion may occur due to the different time scales required to process data specified
through distinct devices.

In the field of multimodal human-computer interaction (HCI) the researchers
found that there exist synchrony issues based on the actual users. Experiments con-
ducted on how humans integrate different modalities when working on a computer
task showed that there are two different ways people integrate modalities: (a) syn-
chronously and (b) asynchronously. Research shows that it is possible to group the
users into either of these categories with simple experiments [45] (e.g., synchro-
nous vs. asynchronous users). Interestingly, when the users were instructed in order
to force them to change their integration pattern, the result was that the users would
change the pattern for the time being but go back to their natural way of integration
weeks later [45].

We are not yet aware how such findings will influence affective multimodal sys-
tems. All of the existing affective multimodal systems have been developed without
much knowledge about how the potential final users would combine the distinct
modes to interact with the system. Depending on the context or task at hand, some
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users might tend to communicate with the affective system unimodally (e.g., an
angry look only/ angry tone of voice only/ swearing words only, etc.), using one
particular modality only. For another context or some other tasks, the users might
tend to use multimodal channels (e.g., combining both their face and upper-body
gestures for expressing their affective state). Therefore, prior to building an affec-
tive multimodal system, a detailed study of the tasks and users’ multimodal behavior
is needed to decide on how to customize the system according to the users’ needs.

However, the main difference between the current human-computer interfaces
and the foreseen affective multimodal systems is that affective systems will not need
the user to adapt to them, instead they will adapt to the user, by mimicking HHI.
Therefore, the user being synchronous or asynchronous might not be an issue at all.

10.3.5 Data Integration/Fusion

In affective computing, modality fusion is to combine and integrate, if possible, all
incoming unimodal events into a single representation of the emotion most likely
expressed by the user. Thus, fusion needs to synchronize the recognition and analy-
sis components so that every unimodal event that could potentially contribute to the
integrated meaning of a multimodal utterance is considered.

When it comes to integrating the multiple modalities the major issues are: (a)
when to integrate the modalities (i.e., at what abstraction level to do the fusion)
and (b) how to integrate the modalities (i.e., which criteria to use). Typically, the
multimodal fusion problem is either done at the feature level in a maximum likeli-
hood estimation manner or deferred to the decision level. To make the fusion issue
tractable, the individual modalities are usually assumed independent of each other
[12]. This simplification allows employing simple parametric models for the joint
distributions that cannot capture the complex modalities’ relationships. More im-
portantly, this does not support mutual estimation (i.e., using the speech recognition
information to inform the gestural recognition processing, or the processing of any
other modality) [12].

Time has a primary role in fusion; a real-time multimodal interface needs to con-
tinuously attempt to combine input data. However, we cannot simply assume that
input from all channels will be readily available at all times. Temporal analysis of
affective multimodal data relies on time proximity [12, 43]: time-stamped features
from different input channels are merged if they occur within a predefined time
window. In a real-time multimodal system there might be such cases when only uni-
modal results are available. For instance, one of the recognizers finished recognition
without any meaningful results and produced a time-out for reporting (e.g., the user
is not using/touching the affect sensitive mouse). In this case the fusion component
has to take only the hypotheses of the remaining modalities into account. However,
in case all the modality recognizers reported some kind of error or time-out, the
fusion component should inform the system about this and terminate the analysis
procedure for the time window at hand [64].
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Depending on how closely coupled the modalities are, there are three typical
levels of integration: low level (data level), intermediate level (feature level/early
fusion) and high level (decision level/semantic/late fusion).

Low-level fusion, also called data fusion, combines several sources of raw data to
produce new raw data that is expected to be more informative and compact than the
inputs (e.g., typically, in image processing, images presenting several spectral bands
of the same scene are fused to produce a new image that ideally contains in a single
channel all of the information available in the various spectral bands). Low-level
fusion has not been particularly exploited in multimodal affective computing.

Feature-level fusion is performed by concatenating the feature vectors from each
modality and using a single classifier, which uses the combined information to as-
sign likelihoods to the recognizer’s hypotheses. Early fusion enables use of some
relationship between the different channels, for classification. To minimize the
classification errors, some adaptation strategy can be adopted (e.g., weighting co-
efficients) [42]. When fusing the multimodal information at the feature level, the
feature set can be quite large. Therefore, this level of fusion requires a large amount
of data for the training and has high computational costs [12]. It is necessary to use
a feature selection technique to find the features from both modalities that maxi-
mize the performance of the classifier(s). Typically, early integration architectures
assume a strict time synchrony between the modalities.

In decision-level fusion each classifier processes its own data stream, and the two
sets of outputs are combined at a later stage to produce the final hypothesis (sequen-
tial integration). Decision fusion (late integration) is most commonly found in CHI
(e.g., speech and gesture) and is mostly applied to modalities that differ in the time
characteristics of their features. Timing plays an important role and hence all frag-
ments of the modalities involved are time-stamped and further integrated in confor-
mity with some temporal neighborhood condition [12]. Designing optimal strategies
for decision-level fusion has been of interest to researchers in the fields of pattern
recognition, machine learning, and neural networks and more recently in data min-
ing, knowledge discovery and data fusion. One approach, which has become pop-
ular across many disciplines, is based upon the combination of multiple classifiers,
also referred to as an ensemble, committee or expert fusion. There has been some
work on combining classifiers and providing theoretical justification for using sim-
ple operators such as majority vote, sum, product, maximum/minimum/median and
adaptation of weights [21, 35]. Decision-level fusion can also be obtained in the
following levels: (a) soft-level (a measure of confidence is associated with the de-
cision) and (b) hard-level (the combining mechanism operates on single hypothesis
decisions).

Which level of fusion to choose depends on the application. Usually, in auto-
mated affect analysis, late integration is chosen instead of early integration for the
following reasons [12, 64]:

• The feature concatenation used in early integration results in a high-dimensional
data space, making a large multimodal database necessary for robust statistical
model training.

• Late integration allows asynchronous processing of the available modalities.
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• Late integration provides greater flexibility in modeling. With late integration,
it is possible to train different classifiers on different data sources and integrate
them without retraining.

• Using late integration off-the-shelf recognizers can be utilized for single modal-
ities (e.g., speech).

• Late integration allows adaptive channel weighting between the different modal-
ities based on environmental conditions, such as the signal-to-noise ratio.

However, one should note that co-occurrence information is lost if late integra-
tion is chosen instead of early integration.

Wu and colleagues claim that fusion at the feature-level is appropriate for closely
coupled and synchronized modalities (e.g., speech and lip-movements) [64]. They
state that feature-level fusion tends to generalize if it consists of modes that differ
substantially in the time scale characteristics of their features (e.g., speech and ges-
ture input). Therefore, if the modalities are asynchronous but temporally correlated,
like gesture and speech, decision-level integration is the most common way of in-
tegrating the modalities [64]. In summary, there is not a general consensus when
fusing multiple modalities. Which fusion method to choose depends on the applica-
tion, the modalities and users’ integration patterns of these modalities (synchronous
vs. asynchronous users). The right way to go could be by experimenting with each
fusion technique separately and evaluating the performance of the system. Features
could also be aggregated at different abstraction levels: lower visual primitives (e.g.,
optical flow) versus higher abstraction (e.g., face/body action units).

10.3.6 Information Complementarity/Redundancy

Various affective signals are typically congruent, and this redundancy facilitates ef-
ficient processing of multiple emotional signals in humans [59]. Indeed, people are
able to accurately perceive multimodal signals in their daily lives. Moreover, al-
though inputs from different modalities are processed in separate areas of the brain,
our conscious experience is one of coherent, unified perceptions, reflecting that in-
formation becomes integrated across sensory modalities.

In multimodal systems, complementary input modalities provide the system with
non-redundant information whereas redundant input modalities allow increasing
both the accuracy of the fused information by reducing overall uncertainty and the
reliability of the system in case of noisy information from a single modality [12].
In some cases the situation may be of mixed nature: for many emotions, multiple
modalities may prove redundant; however, for some emotions, they might be the
minimum informative set (i.e., indispensable). Complementary modalities need to
be merged to result in the recognition of the best possible affective state. Then, what
happens if the modalities contradict each other? For instance, in a bimodal system
that consists of face and upper-body input, if the face input is recognized as dis-
playing happiness but the body input is recognized as displaying anger, then what
does/should the system output? More importantly, if feature-level fusion is applied,
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what happens with the features that are not supporting each other? What does the
system output? None of the available multimodal systems have attempted to answer
these questions. Most of the time the researchers assume that the modalities comple-
ment each other and increase the recognition accuracy. But what if there are cases
or even emotion categories that are expressed in a non-complementary way?

In order to understand this problem we have to look at HHI and see how peo-
ple use such information. Ambady and Rosenthal state that people look at the face
and body more than any other channel when they judge nonverbal behavior [2].
However, they also note that exposing people to more than two channels causes
ambiguity and people might get confused in their judgment (i.e., their recognition
accuracy drops occasionally). Ekman found that the relative weight given to face
expression, speech, and body cues depend both on the judgment task (i.e., what
is rated and labeled) and the conditions in which the behavior occurred (i.e., how
the subjects were simulated to produce the expression) [15]. Despite the aforemen-
tioned findings, there is no evidence in the actual HHI on how people attend to the
various communicative channels (speech, face, body, etc.). Assuming that people
judge these channels separately or the information conveyed by these channels is
simply additive, is misleading [57]. It has been proposed that multimodal percep-
tion in humans occurs in three stages: evaluation, integration, and decision making
[59]. First, each separable source of information is evaluated based on prototypes of
particular emotional expressions. Next, integration involves the combination of the
degree to which each source supports a given alternative (e.g., happy, angry, sad).
Finally, a decision is made based on the amount of support for each alternative.
When one source of information only weakly supports a possible alternative, other
sources of information are given more influence [59]. Gunes and Piccardi found that
in general, bimodal face-and-body data helps with resolving ambiguity carried by
the face data alone. However, in some cases body adds ambiguity to the recognition
[27]. What should be the strategy to follow in such cases? One option would be
to leave out such data from the training stage of the multimodal affect recognizers
hoping it will improve run-time accuracy. Another option would include training
the system to ambiguous data and when the need arises forcing it to output results
labeled as ambiguous. It would also be interesting to conduct some experiments on
how humans operate in such cases and use those results while building an auto-
mated system. Another possible solution is introducing a simple mechanism such as
weight or confidence factor for modeling uncertainty when ambiguous cases occur.

Redundant modalities instead would theoretically produce the same result either
combined or taken separately. In this case, the system would need rules to iden-
tify the redundant input and possibly use some, if not all, of the redundant data.
For instance, a user may utter swearing words while pointing his index finger at
the computer, producing an angry face expression and touching the affect sensitive
mouse (i.e., redundancy for the features coming from the same modality: gaze, head
pose, face expression). If it is sufficient to use just the head pose, then it might save
computational cost as estimating face expressions is much more complicated. In
such cases, one of the user’s actions should be ignored if not processed simultane-
ously. Redundancy check in such cases will help to avoid pending affect recognition



176 H. Gunes and M. Piccardi

results. However, this might work only for a particular combination of data as a real-
time system needs to be designed for all possible scenarios.

If the number of extracted features from each modality are too many, redundancy
might occur at the feature level. A possible way to deal with such redundant data
would be applying some feature selection criteria prior to (for late fusion) or after
fusion (for early fusion) by keeping in mind noise and non-ideal conditions.

10.3.7 Information Content of Modalities

In affective multimodal systems, which modality is more reliable than others? Input
modes differ in both their information content and recognition accuracy. It is likely
to be the case that we get good measures of some affective states but not others.
In general, the reliability of the modalities depends on the task at hand, the eth-
nic background of the user and the emotion expressed (e.g., Japanese are taught to
mask negative face expressions and to display emotions on a lesser scale compared
to Westerners [7, 53]. Therefore, some modalities might be better than others for
recognition of affective states in some cases.

Do people have modality preferences in the actual HHI? What does modality
preference depend on? In general, there is no evidence of general modality dom-
inance in humans; that is, people do not exhibit consistent preferences for either
visual or auditory information [59]. However, there exist reports that modality pref-
erences change with development and that environmental factors may influence
modality preferences during middle childhood. The research reported in [59] sug-
gests that the importance of auditory versus visual percepts is influenced by the
meaning attached to particular emotions contained in each expression and by the fa-
miliarity of the individual expressing the emotion. For instance, children exhibited
an auditory preference when presented with emotions expressed by their mothers,
and a visual preference for emotions expressed by a stranger. This is consistent with
the idea that vocal emotion may be more difficult to identify when expressed by
unfamiliar individuals. Perceptual processing was also influenced by emotion: chil-
dren demonstrated a preference for visual over auditory expressions of happiness.
This finding is consistent with reports that although happiness is an easily recogniz-
able face expression, it is more difficult to identify it in the voice. However, future
research should examine whether people are able to deliberately control the deploy-
ment of their attention to one channel versus another or whether shifts in attention
truly occur automatically.

Research suggests that humans are able to recognize an emotional expression in
neutral-content speech with about 60% accuracy, and in face images with about 70–
98% accuracy choosing from among about six different affective labels exhibited
by actors [51]. Computer speech recognition that works at about 90% accuracy on
neutrally-spoken speech (i.e., recognizing what is said) tends to drop to 50–60%
accuracy on emotional speech (i.e., recognizing how it was said) [51]. Recent ef-
forts indicate that combining audio and video signals for emotion recognition can
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give improved results. Computers have obtained 81% recognition accuracy on eight
categories of emotion from physiological signals.

As can be seen from the aforementioned studies, overall recognition accuracy
of different input modes cannot be assumed to be equally reliable. By reliability we
mean the extent to which one modality yields the same recognition results as another
modality. Some of the modalities might be corrupted by measurement noise and/or
modeling errors. A single highly reliable modality alone may sometimes yield a
correct decision, whereas its linear fusion with some other less reliable modality
may give incorrect results. On other occasions, results obtained by fusion of two
modalities may outperform those obtained from each modality alone. Even within
the same mode, recognition accuracy varies considerably from one constituent to
another [12]. A way of measuring the reliability of the modalities can potentially
help improve the accuracy. As proposed in [19], for fusion of multiple modalities,
certain reliability measures and rules can be created to compensate possible mis-
classification errors of a certain classifier with other available classifiers and to end
up with a more reliable overall decision.

10.4 Monomodal Systems Recognizing Affective Face
or Body Movement

In this section we briefly review automatic systems that are capable of recognizing
AUs, facial expressions/both, or affective body movements and analyze some of the
recent representative works introduced during the period 2002–2006. For research
on automatic face expression analysis up to year 2000, the reader is advised to see
[20] and [48].

Existing automated face expression analyzers can be grouped in two categories,
based on the type of face data they contain: (a) prototypical face expressions or (b)
AU activations. The first group follows from [18] and contains face display of the
six basic emotions (happiness, sadness, fear, disgust, surprise and anger) from either
single images or image sequences. The second group of databases contain more
subtle changes in face features (i.e., AUs) and are coded using the Facial Action
Coding System (FACS) [17].

Herewith, we briefly mention representative systems introduced during the pe-
riod 2002-2006. We provide a detailed comparison of the aforementioned sys-
tems against various criteria (feature extraction, recognition, and other criteria)
in [24]. The reviewed works have been developed at the following universities:
Delft University of Technology (TUDelft) [46], University of California, San Diego
(UCSD) [4], Carnegie Mellon University (CMU) [10, 11], University of Amster-
dam (UoA)/University of Illinois (UIUC) [9, 58], and Massachusetts Institute of
Technology (MIT) ([34]). For simplicity, we use these names henceforth.

In general, the aforementioned systems are similar in the sense that they all (a)
extract some features from the video sequences, (b) use the extracted features to
feed a classifier/set of classifiers, and (c) produce an output either as detected AUs
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or emotions. They, however, differ in (a) the approaches they use for processing of
the images, i.e., feature-based (detecting/tracking specific features such as the inner
corners of the eyes) or region-based (measuring face motion in certain regions on
the face such as mouth region), (b) features and number of features extracted, (c)
outputting the recognition results as AUs or emotions, or both, and (d) the number
of AUs detected.

According to the analysis provided in [24], the aforementioned face expres-
sion/AU recognizers show the following limitations:

• Some of them still require manual initialization of the features and/or face in the
first frame of the face video.

• None of them is yet able to detect all 46 AUs present in FACS.
• Except for the TUDelft group, none of the groups has attempted to automate the

annotation of the temporal segments of AUs.
• Except for the UIUC group, none of the groups has attempted to analyze se-

quences that contain multiple emotion displays.
• Except for the MIT system, all of the systems rely on the assumption that the first

frame is a neutral frame.
• Although significant progress has been achieved, comparative evaluation of the

various systems is still an issue, as they were all tested on different spontaneous
behavior databases.

Most of the gesture-based systems exploited gesture input for command entry
purposes [26] (e.g., selecting menus) using one-hand gestures only [57]. There exist
gesture-based non-command interfaces (actions or events used to indirectly tune
the system to the user’s needs). Our focus is not on such systems. Instead, we
briefly review automatic systems that attempt to recognize expressive body move-
ment/gestures for affective computing.

In general, affective body recognition systems are similar to one another as
they all do (a) motion segmentation, (b) object classification, (c) tracking, and (d)
interpretation [57]. They differ in the detailed methodology they use for the afore-
mentioned procedures. We mention here three representative systems that aim ges-
ture/body motion analysis for affect/emotion recognition introduced in the literature
in the context of CHI during the period 2002–2006. The reviewed works have been
developed at the University of Genoa (UoG) by Camurri and his colleagues [62]
and at the Rutgers University (RU) by Burgoon and her colleagues [6, 39]. We also
provide a detailed comparison of these systems against various criteria (data, feature
extraction and recognition) in [24].

The aforementioned body expression recognizers show the following limitations:

• The proposed approaches did not acquire data in natural settings over various
periods of time.

• The proposed approaches have only trained their systems to automatically ana-
lyze 3 to 4 affective states.

• The proposed approaches have not attempted to analyze both the propositional
(e.g., shape of the hand, posture of the head, posture of the body) and
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non-propositional (e.g., speed, weight, trajectory, etc.) qualities of the expressive
body display.

• The existing systems have not attempted automatic annotation of the temporal
segments of the expressive body movements.

• The proposed approaches have not tested their system for culture dependency.

Overall, research in affective body expression recognition is relatively new and is
clearly behind that of affective face analysis.

10.5 Multimodal Systems Recognizing Affect from Face
and Body Movement

In this section we briefly review automatic systems that attempt to recognize affect
from multimodal expressive behavior, face and body movement in particular. We
present representative projects/systems introduced in the literature in the context
of CHI (in chronological order) during the period 2002–2006. We also provide a
detailed comparison of these systems against various criteria in Table 10.1 (data and
feature extraction/tracking) and Table 10.2 (recognition).

10.5.1 Project 1: Multimodal Affect Analysis for Future Cars

Lisetti and her colleagues introduce the concept of utilizing a multimodal affective
user interface for future cars in [38]. They argue that an ideal multimodal affective
user interface should at least integrate the visual, haptic, and auditory modalities.
The proposed system is also intended to receive input from linguistic tools in the
form of linguistic terms for emotion concepts. However, of all the modalities pro-
posed initially for the multimodal system, the authors seem to have integrated the
face expression and kinesthetic part only. Although they claim that their system
can perform real-time face expression recognition, the details of the system are not
presented.

In order to map certain physiological signals to certain emotions, the authors
designed an experiment. Ten undergraduate and graduate college students (5 fe-
male, 5 male) participated in their 35 minute experiment. During the experiment
they elicited five emotions (neutral, anger, fear, sadness, and frustration) and mea-
sured three physiological signals (galvanic skin response (GSR), heartbeat, and tem-
perature). For their experiment, they designed a slide show, which they presented to
the participants. The slide show started with a relaxation period followed by a pic-
ture/movie clip/scenario presented to the participant in order to elicit one of the five
emotions. This was followed by another relaxation period and another emotion elic-
itation period. This process was repeated until all the emotions were elicited. They
used two different algorithms to analyze the data collected: k-Nearest Neighbor



180 H. Gunes and M. Piccardi

Ta
bl

e
10

.1
A

co
m

pa
ri

so
n

of
ex

is
tin

g
m

ul
tim

od
al

sy
st

em
s

an
al

yz
in

g
ex

pr
es

si
ve

fa
ce

an
d/

or
bo

dy
m

ov
em

en
t:

da
ta

an
d

fe
at

ur
e

ex
tr

ac
tio

n.

cr
ite

ri
a

L
is

et
ti

et
al

.[3
8]

B
al

om
en

os
et

al
.[3

]
K

ap
oo

r&
Pi

ca
rd

[3
3]

G
un

es
&

Pi
cc

ar
di

[2
8]

af
fe

ct
se

ns
in

g
fa

ce
ex

pr
es

si
on

an
d

ph
ys

io
lo

gi
ca

l
si

gn
al

s(
ga

lv
an

ic
sk

in
re

sp
on

se
(G

SR
),

sk
in

te
m

pe
ra

tu
re

,h
ea

rt
be

at
)

up
pe

r-
bo

dy
m

ov
em

en
tc

om
bi

ne
d

w
ith

fa
ce

ex
p.

a
ca

m
er

a
an

d
a

pr
es

su
re

se
ns

in
g

ch
ai

r
tw

o
ca

m
er

as
,o

ne
fo

ru
pp

er
bo

dy
an

d
on

e
fo

rf
ac

e

se
ns

or
su

se
d

1
ca

m
er

a
an

d
1

B
od

yM
ed

ia
Se

ns
e

w
ea

r
fo

rp
hy

si
ol

og
ic

al
si

gn
al

s
1

ca
m

er
a

ch
ai

rs
en

so
ra

nd
1

ca
m

er
a

2
ca

m
er

as

na
tu

ra
ls

et
tin

gs
/s

po
nt

an
eo

us
da

ta
?

no
no

ye
s

no

co
nt

ex
tu

se
d

fu
tu

re
ca

rs
no

ga
m

e
co

nt
ex

t
H

H
I/

C
H

I

m
et

ho
ds

us
ed

fo
r

re
co

rd
in

gs
B

od
y

M
ed

ia
Se

ns
e

w
ea

rf
or

re
co

rd
in

g
th

e
ph

ys
io

lo
gi

ca
ls

ig
na

ls
.P

ar
tic

ip
an

ts
w

er
e

sh
ow

n
cu

ts
fr

om
m

ov
ie

s
w

hi
le

ob
ta

in
in

g
th

e
re

co
rd

in
gs

.

no
ts

pe
ci

fie
d

fo
rt

he
fa

ce
;b

od
y

ge
st

ur
e

se
qu

en
ce

s
w

er
e

ob
ta

in
ed

of
3

m
al

es
,w

ith
m

ax
im

um
du

ra
tio

n
of

3
se

c,
ca

pt
ur

ed
by

a
w

eb
-c

am
er

a
at

a
ra

te
of

10
fp

s.

C
hi

ld
re

n
w

er
e

as
ke

d
to

pl
ay

a
ga

m
e

fo
r

ab
ou

t2
0

m
in

ut
es

,
3

ch
an

ne
ls

of
da

ta
(f

ac
e,

po
st

ur
e

an
d

ga
m

e
in

fo
rm

at
io

n)
w

er
e

re
co

rd
ed

.

pa
rt

ic
ip

an
ts

w
er

e
as

ke
d

to
di

sp
la

y
fa

ce
an

d
bo

dy
ge

st
ur

es
ac

co
rd

in
g

to
th

e
vi

ge
ne

tte
s

pr
ov

id
ed

fo
re

ac
h

em
ot

io
n

ca
te

-
go

ry
.

#
of

su
bj

ec
ts

10
3

8
ch

ild
re

n
4

#
of

da
ta

in
st

an
ce

s
fr

om
10

su
bj

ec
ts

10
in

st
an

ce
s

of
35

m
in

no
ts

pe
ci

fie
d

fo
rf

ac
e,

90
se

qu
en

ce
s

fo
rt

he
bo

dy
ge

st
ur

es
61

sa
m

pl
es

of
hi

gh
in

te
re

st
,5

9
sa

m
pl

es
of

lo
w

in
te

re
st

an
d

16
sa

m
pl

es
of

ta
ki

ng
a

br
ea

k
54

vi
de

os
,2

7
fo

rf
ac

e
an

d
27

fo
rb

od
y

af
fe

ct
iv

e
st

at
es

5:
ne

ut
ra

l,
an

ge
r,

fe
ar

,f
ru

st
ra

tio
n,

sa
dn

es
s

6:
jo

y,
sa

dn
es

s,
an

ge
r,

di
sg

us
t,

fe
ar

,s
ur

pr
is

e
3:

lo
w

in
te

re
st

,h
ig

h
in

te
re

st
,r

ef
re

sh
in

g
6:

ha
pp

in
es

s,
di

sg
us

t,
fe

ar
,a

ng
er

,u
nc

er
ta

in
ty

,a
nx

ie
ty

da
ta

la
be

le
d

by
in

de
pe

nd
en

to
bs

er
ve

rs
?

no
no

ye
s,

se
ve

ra
lt

ea
ch

er
s

fo
rt

he
fa

ce
m

od
al

ity
no

qu
al

ity
of

m
ov

em
en

t?
no

no
no

no

us
ag

e
of

sp
ac

e?
no

no
no

ye
s,

as
pa

rt
of

th
e

fe
at

ur
e

se
t

up
pe

r
bo

dy
?

no
ye

s
ye

s
ye

s

bo
dy

po
st

ur
e?

no
no

ye
s

no

ha
nd

m
ov

em
en

t/p
os

tu
re

?
no

ye
s

no
ye

s

re
la

tio
ns

hi
p

bt
w

.b
od

y
pa

rt
s?

no
no

no
ye

s

vi
de

o/
st

at
ic

im
ag

e
an

al
ys

is
?

un
kn

ow
n

st
at

ic
fr

am
e

fo
rf

ac
e,

vi
de

o
ba

se
d

fo
rb

od
y

bo
th

st
at

ic
fr

am
e-

by
-f

ra
m

e
an

al
ys

is
an

d
se

qu
en

ce
-b

as
ed

an
al

ys
is

fe
at

ur
e

ex
tr

ac
tio

n
an

d
tr

ac
ki

ng
w

as
do

ne
fo

ra
w

ho
le

vi
de

o

fe
at

ur
es

us
ed

ph
ys

io
lo

gi
ca

ls
ig

na
ls

,n
um

be
rn

ot
sp

ec
ifi

ed
ex

tr
ac

tin
g

th
e

ey
es

an
d

th
e

lip
s,

tr
ac

ki
ng

th
e

fa
ce

po
in

ts
(l

ip
s,

ey
es

,e
ye

br
ow

s)
fr

om
M

PE
G

–4
co

m
pa

tib
le

an
im

at
io

n;
m

ov
in

g
sk

in
m

as
ks

fo
rh

an
ds

an
d

he
ad

U
pp

er
Fa

ce
(b

ro
w

sh
ap

e,
ey

e
sh

ap
e,

lik
el

ih
oo

d
of

no
d/

sh
ak

e/
bl

in
k)

;L
ow

er
Fa

ce
(p

ro
ba

bi
lit

y
of

fid
ge

t/s
m

ile
);

cu
rr

en
tp

os
tu

re
an

d
le

ve
lo

fa
ct

iv
ity

;l
ev

el
of

di
ffi

cu
lty

,s
ta

te
of

th
e

ga
m

e

m
or

e
th

an
10

0
fe

at
ur

es
fo

r
ea

ch
m

od
al

ity
,u

se
d

fe
at

ur
e

se
-

le
ct

io
n

to
m

in
im

iz
e

th
e

nu
m

be
r

fe
at

ur
e

ex
tr

ac
tio

n
m

et
ho

ds
us

ed
bo

dy
m

ed
ia

w
ea

r’
s

an
al

ys
is

to
ol

s
no

te
xp

la
in

ed
fo

rt
he

fa
ce

,a
ss

um
in

g
he

ad
an

d
ha

nd
s

ar
e

in
iti

al
ly

lo
ca

te
d

at
ce

rt
ai

n
pl

ac
es

in
th

e
fr

am
e;

tr
ac

ki
ng

th
e

ce
nt

ro
id

of
th

e
he

ad
an

d
th

e
ha

nd
s

w
ith

a
sk

in
m

as
k

pu
pi

ls
tr

ac
ke

d
by

in
fr

ar
ed

ca
m

er
a;

th
e

pu
pi

lp
os

iti
on

s
us

ed
fo

rh
ea

d-
no

d/
he

ad
-s

ha
ke

de
te

ct
io

n;
th

e
m

ou
th

lo
ca

liz
ed

by
ex

tr
ac

tin
g

tw
o

re
al

nu
m

be
rs

:
sm

ile
s

an
d

fid
ge

ts
;

po
st

ur
es

ar
e

re
co

gn
iz

ed
us

in
g

tw
o

m
at

ri
ce

s
of

pr
es

su
re

se
ns

or
s.

fo
r

fa
ce

:
ge

om
et

ri
c

ba
se

d
m

et
ho

ds
,

sk
in

co
lo

r
se

gm
en

ta
-

tio
n,

hi
st

og
ra

m
eq

ua
liz

at
io

n,
th

re
sh

ol
di

ng
,e

dg
e

m
ap

s,
X

-a
nd

Y
-a

xi
s

pr
oj

ec
tio

n
of

th
e

fa
ce

hi
st

og
ra

m
,m

in
-m

ax
an

al
ys

is

tr
ac

ki
ng

of
fe

at
ur

es
?

N
A

ye
s,

ha
nd

s
an

d
he

ad
;n

ot
sp

ec
ifi

ed
fo

rf
ac

e
ye

s
no

fo
rf

ac
e;

ye
s

fo
ru

pp
er

bo
dy

(h
an

d
an

d
fa

ce
re

gi
on

)



10 From Monomodal to Multimodal 181

Ta
bl

e
10

.2
A

co
m

pa
ri

so
n

of
ex

is
tin

g
m

ul
tim

od
al

sy
st

em
s

an
al

yz
in

g
ex

pr
es

si
ve

fa
ce

an
d/

or
bo

dy
m

ov
em

en
t:

re
co

gn
iti

on
.

cr
ite

ri
a

L
is

et
ti

et
al

.[3
8]

B
al

om
en

os
et

al
.[3

]
K

ap
oo

r&
Pi

ca
rd

[3
3]

G
un

es
&

Pi
cc

ar
di

[2
8]

fu
lly

au
to

m
at

ic
?

no
no

,c
ro

pp
in

g
th

e
fa

ce
re

gi
on

m
an

ua
lly

ye
s

no

fe
at

ur
e

se
le

ct
io

n?
no

no
ye

s
ye

s,
be

st
-fi

rs
ts

ea
rc

h
m

et
ho

d

re
co

gn
iti

on
m

et
ho

d
k-

N
ea

re
st

N
ei

gh
bo

ra
nd

di
sc

ri
m

in
an

tf
un

c-
tio

ns
H

M
M

s
fo

rg
es

tu
re

SV
M

s,
H

M
M

s,
m

ix
tu

re
of

G
au

ss
ia

ns
B

ay
es

N
et

cl
as

si
fie

ri
n

W
E

K
A

tr
ai

ni
ng

da
ta

no
tr

ai
ni

ng
ap

pl
ie

d
60

vi
de

os
fr

om
3

pe
op

le
fo

rb
od

y
ge

st
ur

es
50

%
of

th
e

da
ta

(6
8

vi
de

os
)

50
%

of
th

e
da

ta
(2

7
vi

de
os

)

te
st

in
g

da
ta

m
et

ho
d

te
st

ed
on

al
lt

he
da

ta
ob

ta
in

ed
30

vi
de

os
fr

om
3

pe
op

le
fo

rb
od

y
ge

st
ur

es
50

%
of

th
e

da
ta

(6
8

vi
de

os
)

50
%

of
th

e
da

ta
(2

7
vi

de
os

)

da
ta

et
hn

ic
al

ly
di

ve
rs

e?
un

kn
ow

n
no

no
ts

pe
ci

fie
d

ye
s

fu
si

on
m

et
ho

d
da

ta
no

tf
us

ed
de

ci
si

on
le

ve
l,

pr
ed

efi
ne

d
w

ei
gh

ts
fe

at
ur

e-
an

d
de

ci
si

on
-l

ev
el

fu
si

on
fe

at
ur

e-
an

d
de

ci
si

on
-l

ev
el

fu
si

on

re
co

gn
iti

on
ac

cu
ra

cy
fo

r
fa

ce
m

od
al

ity
no

tr
ep

or
te

d
85

%
up

pe
rf

ac
e

67
%

;l
ow

er
fa

ce
53

%
76

%

re
co

gn
iti

on
ac

cu
ra

cy
fo

r
bo

dy
m

od
al

ity
N

A
94

%
po

st
ur

e
82

%
90

%

ot
he

r
m

od
al

ity
N

A
N

A
ga

m
e

st
at

us
57

%
N

A

m
ul

tim
od

al
re

co
gn

iti
on

ac
cu

ra
cy

kN
N

:7
2%

,D
FA

:
74

%
,M

B
G

:
84

%
fo

r
6

em
ot

io
ns

no
tp

ro
vi

de
d

86
%

fe
at

ur
e

le
ve

l:9
4%

;
de

ci
si

on
le

ve
l:s

um
91

%
,

pr
od

uc
t

87
%

,
w

ei
gh

t8
0%

ha
nd

le
sm

is
si

ng
ch

an
ne

ls
/n

oi
sy

la
be

ls
?

no
no

ye
s

no

au
to

m
at

ic
re

co
gn

iti
on

co
m

pa
re

d
to

hu
-

m
an

re
co

gn
iti

on
?

no
no

ye
s,

fo
rf

ac
e

no

cu
ltu

re
de

pe
nd

en
cy

te
st

ed
?

no
no

no
no

au
to

m
at

ic
te

m
po

ra
l

se
gm

en
t

an
no

ta
-

tio
n?

no
no

no
no



182 H. Gunes and M. Piccardi

Algorithm and Linear Discriminant functions. The best results were provided by the
k-Nearest Neighbor Algorithm with the following recognition accuracies: neutral
(100%), anger (100%), fear(80%), frustration (80%) and sadness (60%).

Overall, they implemented separately two portions of the system they proposed:
face expression recognition and physiological signal analysis. However, they did
not attempt to acquire bimodal data using the camera and the physiological sensor
simultaneously. They also did not report on data fusion and compare the monomodal
and bimodal recognition results.

10.5.2 Project 2: Emotion Analysis in Man-Machine
Interaction Systems

Balomenos and his colleagues combined face expressions and hand gestures for
recognition of prototypical emotions by using face points from MPEG-4 compatible
animation and defining certain hand movements under each emotion category [3].
They recognize six emotion categories, namely: anger, fear, disgust, joy, sadness
and surprise.

Face detection is performed through detection of skin segments or blobs, merging
them based on the probability of their belonging to a face area, and identification
of the most salient skin color blob or segment. Primary face features, such as eyes,
mouth and nose, are dealt with by major discontinuities on the segmented, arbitrarily
rotated face. Following face detection, morphological operations are used to define
first the most probable blobs within the face area to include the eyes and the mouth.
Searching through gradient filters over the eyes and between the eyes and mouth
provide estimates of the eyebrow and nose positions. Based on the detected face
feature positions, feature points are computed and evaluated. They achieved 85%
accuracy for emotion recognition from face features alone. The system is further
based on apriori knowledge that the head is expected to be located in the middle
area of the upper half of the frame and the hand segments near the respective lower
corners. They track the position of the centroid of the head and the hands over time.
They experimented on gesture sequences of three male subjects, with maximum
duration of three seconds, that were captured by a typical web-camera at a rate of
10 frames per second. For each of the gesture classes 15 sequences were acquired, 3
used for initialization of the HMM model, 7 for training and parameter re-estimation
and 5 for testing. Each training sequence consisted of 15 frames (selected manually
and off-line). Testing sequences were subsampled at a rate of 5 frames per second.
An overall recognition rate of 94% was achieved for emotion recognition from hand
gestures.

They fused the results from the two subsystems at a decision level using pre-
defined weights (0.75 for face modality and 0.25 for body modality). However, in
[3] they do not report the recognition accuracy for the fused data. It is also not clearly
explained in their paper how the recordings were obtained or how experiments were
conducted for the bimodal data.
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10.5.3 Project 3: Multimodal Affect Recognition in Learning
Environments

Kapoor and Picard described a project on machine recognition of affect using mul-
tiple modalities [33]. They looked at the problem of detecting the affective states of
high interest, low interest, and a state called “taking a break” (a forward-backward
postural fidget/stretching) in a child who is solving a puzzle. To this aim, they com-
bined sensory information from the face, the postures and the state of the puzzle
using a unified Bayesian approach based on a mixture of Gaussian Process (GP)
classifiers.

Overall, the proposed system extracts the following features for each channel:
upper face (eyebrow shape, eye shape, likelihood of nod, likelihood of shake, like-
lihood of blink); lower face (probability of fidget, probability of smile); posture
(current posture, level of activity); and game (level of difficulty, state of the game).

Postures were recognized using two matrices of pressure sensors placed on a
chair. An in-house built version of the IBM Blue Eyes Camera was used to track
pupils using two sets of IR LEDs. The rest of the face feature extraction techniques
were based on the pupil detection and tracking module. Tracked pupils were first
used to recover shape information of eyes and the eyebrows. The details of the
automatic upper face feature extraction and AU detection can be found in [34].
Second, the pupil positions were passed to an HMM-based head-nod and head-shake
detection system, which provided the likelihoods of head-nods and head-shakes.
Another HMM used the radii of the visible pupil as inputs to produce the likelihoods
of blinks. Third, the detected pupil positions were used to localize the candidate
mouth region. Two real numbers corresponding to two kinds of mouth activities
were extracted: smiles and fidgets. To this aim, the sum of the absolute difference
of pixels of the extracted mouth image in the current frame with the mouth images
in the last 10 frames were utilized. The assumption used was that a large difference
in images should correspond to mouth movements (i.e., the fidgets). The probability
of a smile was computed by a previously trained support vector machine (SVM).

The idea behind GP classification is that the hard labels depend upon hidden
soft-labels, which are assumed to be jointly Gaussian with the covariance between
outputs specified using a kernel function applied to inputs. The task then becomes
inferring the label for an unlabeled data point. See [33] for details. The inferral of
the class probability of an unlabeled data was obtained by using a mixture of GPs.
All the posterior probabilities obtained from all different classifiers for each sensor
were used for the final decision.

The final database used to train and test the system included 8 different children
with 61 samples of high interest, 59 samples of low interest and 16 samples of taking
a break. The experiments were performed to classify the state of interest (65 sam-
ples) vs. uninterest (71 samples). The experimental methodology was to use 50% of
the data for training and use the rest for testing. The classification results obtained
by GPs for each individual modality are as follows: upper face 67%, lower face
53%, posture 82%, and game 57%. The fusion was obtained by a unified Bayesian
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approach based on a mixture of GP classifiers where classification using each chan-
nel is learned via Expectation Propagation. This resulted in 87% accuracy. The pos-
ture channel seemed to classify the modalities best, followed by features from the
upper face, the game and the lower face. Fusion significantly outperformed classifi-
cation using the individual modalities [33]. The Mixture of GPs also outperformed
mixed rule-based decision fusion of the individual SVM and GP classifiers. Further
to the comparison with the individual modalities, comparison of the mixture of GPs
with an HMM-based expert-critic scheme and a naive feature-level fusion were also
provided. They tested a naive feature level fusion where they used -1 as a value of
all those observations that were missing, thus fusing all the channels into one single
vector. The Mixture of GPs performed better than other approaches both in the case
of data where all channels were present and incomplete data.

Note that Kapoor and Picard did not test their system for unseen subjects; accu-
racy of their system might be lower for totally unseen subjects.

10.5.4 Project 4: FABO-Fusing Face and Body Gestures
for Bimodal Emotion Recognition

Gunes and Piccardi created a bimodal database that consisted of recordings of face
expressions alone and combined face and body expressions [25]. They recorded the
sequences simultaneously using two fixed cameras with a simple setup and uni-
form background. The FABO database has already been used for the validation of
the approach proposed in [28] which could not have been possible with any ex-
isting databases due to their lack of combined affective face and body displays.
In [28], the authors presented an approach to automatic visual recognition of ex-
pressive face and upper-body gestures from video sequences suitable for use in a
vision-based affective multimodal framework. The feature vectors consisted of dis-
placement measures between two major frames; namely, a frame with the neutral
expression (“neutral frame”) and one where the expression is at its apex (“expres-
sive frame”). The following steps were taken for extraction of face features: (a) skin
color segmentation based on HSV color space was applied, (b) the face region was
obtained by choosing the largest connected component among the candidate skin
areas, (c) closing (dilation and erosion) was employed and the contour of the face
was obtained together with the filled face region. For feature extraction two basic
methods were applied: (a) the gray-level information of the face region combined
with edge maps and (b) the min-max analysis to detect the eyebrows, eyes, mouth
and chin, by evaluating the topographic gray-level relief. After detecting the key
features in the neutral frame and defining the bounding rectangles for face features,
the temporal information in subsequent frames was considered by computing the
optical flow in such bounding rectangles. The wrinkle changes were analyzed by
using edge density per unit area against a threshold.

The following steps were taken for body feature extraction: (a) in each frame
a segmentation process based on a background subtraction method was applied in
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order to obtain the silhouette of the upper body, (b) thresholding followed by noise
cleaning and morphological filtering was applied, (c) a binary connected component
operator was used to find the foreground regions, and small regions were eliminated.
A set of features were generated for the detected foreground object, including its
centroid, area, bounding box and expansion/contraction ratio for comparison pur-
pose. For the segmentation and tracking of the body parts, the face and the hands
were located exploiting skin color information. The centroid of these regions were
calculated in order to use them as reference points for the body movement. The
Camshift technique was employed for tracking the hands and comparison of bound-
ing rectangles was used to predict their locations in subsequent frames.

For the experiments, they processed 54 sequences in total, 27 for face and 27
for body from four subjects, by using only the “neutral” and “expressive” or “apex”
frames for training and testing. Half of these were used for training and the other
half for testing purposes. For monomodal emotion recognition, the best recognition
results were obtained with the BayesNet classification algorithm (76% for face and
90% for body). For bimodal emotion recognition both feature-level and decision-
level fusion were performed. For feature level fusion, a feature selection method
was utilized prior to classification. On a dataset consisting of 412 training and 386
testing instances, with 14 attributes, BayesNet provided the best classification ac-
curacy (94% recognition accuracy). For decision-level fusion the sum, product, and
weight rules (0.7 for the face modality and 0.3 for the body modality) were used.
The late fusion results obtained were as follows: 91% recognition accuracy for sum,
87% product, and 80% for weight criteria.

Overall, the system of Gunes and Piccardi has the following limitations: (a) as
the neutral and apex frames need to be chosen manually, the system remains semi-
automatic; (b) although they perform tracking they do not utilize full-length ex-
pressive video sequences; (c) their experiment tests unseen instances from the same
subjects used for the training phase, but they did not test their system for unseen
subjects, and accuracy of their system might be lower for totally unseen subjects.

10.6 Multimodal Affect Systems: The Future

This chapter focused on affective multimodal systems taking face and body modal-
ities as input, as these systems have been introduced in the last few years and the
interest is relatively new. Representative systems were described and compared.

One major finding of the survey on the multimodal affect systems is that body
gestures or postures provided better information than other modalities for affect
recognition [3, 28, 33]. Although it was previously stated that analyzing both the
propositional (e.g., thumbs up) and non-propositional gestures (e.g., how smooth/
jerky the movement is) might be more promising [30], none of the existing systems
have attempted this. In summary, the aforementioned multimodal systems have the
following limitations:
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• The existing systems have not attempted automatic annotation of the temporal
segments of affect modalities.

• The existing systems have not acquired natural data over various periods of time
(in different sessions).

• The existing systems have not analyzed the quality of body movement (i.e., how
fast/smooth/jerky movements are).

• The existing systems have not captured and analyzed whole body movement (i.e.,
mostly upper-body movement was analyzed).

• The existing systems have not attempted to analyze the coordination of the input
modalities (i.e., what happens with the face when hands start moving, etc.).

• All of the proposed systems can handle limited number of modalities (2 or 3),
none of them have combined or explored all possible modalities for automatic
affect recognition: speech (i.e., linguistic terms/words), audio (i.e., pitch, etc.),
face expression/AUs, body posture, expressive body gesture, physiological sens-
ing, brain signals, olfactory signals, etc.

In order to understand where the current state-of-the art in multimodal affect
recognition stands compared to what is aimed, we now discuss the features of an
ideal multimodal affective system. An ideal multimodal affect analyzer should have
the following features:

• Achieve automatic real-time multimodal data acquisition, processing and affec-
tive state recognition.

• Handle and recognize all possible affective states: expressed synchronously or
asynchronously, expressed with intention (e.g., joy) or without intention (e.g.,
boredom, fatigue).

• Handle large head or body movements as well as moving subjects in various
environments (e.g., office or house, not just restricted to one chair or room).

• Deal with both posed and spontaneous data where the subject is not aware of the
recording, hence will not restrain himself/herself unlike the case when s(he) is
part of an experiment, will express emotions due to real-life event or trigger of
events (e.g., stressed at work).

• Handle occurrences of occlusions (e.g., hands occluding each other or hand oc-
cluding the face), noise (e.g., in audio recordings) and missing data.

• Obtain and analyze input from multiple sensing devices (e.g., multiple cameras
& microphones & haptic/olfactory/taste/brain sensors, etc.).

• Handle non-uniform and noisy (lighting/voice recording) conditions.
• Handle long sessions, expanding between one day and possibly a couple of

weeks, capturing all variations of expressive1- expressive2- expressive3- neu-
tral behavior in every possible order or combination.

• Deal with subjects of diverse age, gender and ethnic background.
• Adaptive to user, task and context.

Every research group agrees that multiple modalities should be explored in
order to understand which channels provide better information for automatic af-
fect/emotion recognition. Looking at Figure 10.1, in general, among the available
modalities in HHI, for affective CHI, sight, sound and physiological sensing have
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been explored to some extent. Although there is a recent interest in the thought
modality (i.e., brain-computer interfaces) [52], channels such as smell and taste re-
main totally unexplored. Overall, multimodal affect systems are still in their infancy.
Further progress is mandatory in order to achieve natural multimodal affective CHI
comparable to that of HHI.
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Chapter 11
Importance of Vision in Human-Robot
Communication: Understanding Speech
Using Robot Vision and Demonstrating Proper
Actions to Human Vision

Yoshinori Kuno, Michie Kawashima, Keiichi Yamazaki, and Akiko Yamazaki

Abstract Vision plays an important role in communication. We observe situations
and human actions through vision to obtain information necessary for smooth com-
munication. In order to develop robots that can coexist with humans, it is necessary
to take into account vision. There are two crucial tasks robots have to be able to
perform. First, they have to be able to obtain visual information from human action.
Second, they have to be able to respond (i.e., move their bodies) in such a way that
their actions can convey proper information to human vision. In this paper, we will
report on the results of our research in relation to these two points. In relation to the
first, we will report on a helper robot that can respond to simplified utterances with
deixis or ellipsis by recognizing human actions with vision. In relation to the second,
we will discuss a museum guide robot that can move its head in a communicative
way while explaining exhibits to visitors.

11.1 Introduction

Vision plays an important role in communication in various ways. We observe situ-
ations and human actions through vision and obtain information necessary for com-
munication to proceed smoothly. In order to develop robots that can coexist with
humans in various capacities (e.g., museum guides, elderly care), it is necessary to
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consider how robots can manage communication through vision. There are two cru-
cial tasks robots need to be able to do for this purpose. First, they have to be able to
obtain visual information from human action. Second, they have to be able to move
their bodies in such a way that their actions can convey proper information to hu-
man vision. This paper presents the results of our research on such vision-and-action
issues in human-robot communication.

Speech is an important means of the human interface for helper robots, which
are becoming increasingly useful in a rapidly aging society. Thus, studies have in-
vestigated robots with speech interface [1, 2]. In addition to explicit utterances (e.g.,
Get the red book), robots must also be able to deal with implicit utterances such as
those that contain deixis (e.g., Get that for me) and ellipsis (e.g., Get for me), as
these are common phenomena in daily conversation. Their use in relation to con-
text and a priori knowledge has been investigated in the fields of natural language
and speech understanding [3, 4]. We may omit or mention things that are apparent
to the listener(s) in the immediate scene. For example, we may say, “Get that for
me,” even though the object referenced by ‘that’ was not mentioned in the prior dis-
course. When the object is available in the immediate scene and the listener appears
to be gazing in its direction, we assume that he or she can identify the object ref-
erenced by ‘that’. In order to be “user-friendly”, robots should be able to respond
to utterances based on information supplied in both talk and the visual field. Grice
has proposed several conversational maxims [5]. According to one, conversation is
a cooperative endeavor between speaker and listener where both offer necessary and
sufficient related information briefly and clearly. Based on this, we assume we can
obtain important information in part through vision about things not mentioned in
speech. Actually, there are various inexplicit utterances not interpretable through vi-
sion alone (e.g., prior shared experience between speaker and hearer). These types
of utterances are beyond the scope of the present endeavor.

In this paper, we present a method for understanding speech by using computer
vision. In particular, we are developing a helper robot that is able to bring an ob-
ject to the speaker that the speaker requests through speech [6]. Here, we show how
the robot can also attend to requests in relation to the visual field. This is an ini-
tial attempt to use computer vision to properly respond to requests embedded with
interactional phenomena such as ellipsis and deixis.

In addition to responding to human actions through speech and vision, robots
need to display proper actions to humans for smooth communication. We are in-
vestigating this issue through a museum guide robot. In this project, we place an
emphasis on “personable” human-robot interaction through nonverbal behavior. In
previous research, there were several museum guide robot projects, e.g., [7]. These
mainly focused on robot autonomy and not on interaction with humans. Yet, we
recognize that it is important to utilize nonverbal behavior in order to develop a per-
sonable and effective robot. Sidner et al. [8] have conducted a similar experiment on
a guide robot designed to explain some innovative items. Bennewitz et al. [9] have
recently developed a humanoid guide robot that interacts with multiple persons. This
robot can direct the attention of its listeners toward objects of interest through point-
ing and eye gaze. In addition, Shiomi et al. [10] have done a longitudinal study on
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human-robot interaction at Osaka Science Museum. These studies, however, have
not paid attention to the ways gestures and body movements can potentially be co-
ordinated with talk in human-robot communication.

Recent research has attempted to develop effective gestures such as head move-
ment in human-robot communication by studying human communication with a
focus on gesture, head movement and eye gaze. In particular, Sidner et al. [8] de-
veloped a penguin robot and examined how users reacted toward the robot in the
context of the robot explaining an exhibit; in the first condition, the robot contin-
uously gazed toward the user, whereas in the second the robot moved its head and
arms occasionally during the explanation. Under the second condition, it appeared
that user attention was more greatly captured as the users appeared to respond to the
robot’s head movements and gaze direction by changing their own gaze and head
directions. Though primarily focusing on emotion, Breazeal’s study [11] suggests
the importance of nonverbal interaction between humans and robots. As revealed
in the above studies, research on human-robot communication has illuminated the
importance of robot head movement and gesture in listener attention and response.

To investigate what proper actions robots need to display to their human recip-
ients, we first examined the behavior of human guides through analytical methods
employed in sociology. Based on these findings, we developed a museum guide
robot that moves its head in particular ways. The results reveal some of the poten-
tialities of coordinating talk and gesture in human-robot communication, arrived at
through collaboration between engineering and sociology researchers.

11.2 Understanding Simplified Utterances Using Robot Vision

11.2.1 Inexplicit Utterances

As mentioned above, visual information shared by speaker and listener often allows
the speaker to produce inexplicit utterances. Among such utterances are deixis and
ellipsis, which may also appear in the speech interface with the helper robot [6].

Human utterances directed toward the robot are in the form of requests (i.e.,
utterances that get the addressee to do an action, such as “Bring the remote control”).
Such utterances may consist of a verb and an object. The verb indicates the action
the human wants the robot to do. The object indicates the target of the action. For
each verb and object, the human may say it either definitely, ambiguously, or omit
it completely. In our protocol, saying the verb or object “directly” means using a
full noun or verb (e.g., remote control [N], bring [V]). Saying the verb or object
“ambiguously” means using a relatively nonspecific verb (e.g., do, make), or deixis
in place of a noun (e.g., this, that). Finally, “omitting” an object or verb means not
saying it at all. Based on these two parts of speech (verb and object) and three ways
to refer to it (definitely, ambiguously, or omitting it), utterances were classified into
nine cases as shown in Table 11.1. It should be noted that the original language was
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Table 11.1 Utterance classification

Verb Object Example

Case 1 omitted omitted “Hello.”
Case 2 omitted ambiguous “That one.”
Case 3 omitted definite “That apple.”
Case 4 ambiguous omitted “Make to four” (while watching televi-

sion).
Case 5 ambiguous ambiguous “Do that.”
Case 6 ambiguous definite “Do the red one.” (“Red one.”)
Case 7 definite omitted “Get." (“Get it.”)
Case 8 definite ambiguous “Get that.”
Case 9 definite definite “Get the red book.”

Japanese. Here, we provide direct translations with clarifications in parentheses.
Cases 2-8 were considered inexplicit utterances for the purposes of this study.

11.2.2 Information Obtained by Vision

When we interact with others, we monitor each other in order to understand what
the conversation partner is doing, intending, referring to, and the like. Visual infor-
mation is often crucial to understanding inexplicit utterances such as those given
above. In this section we will illustrate what kinds of visual information can be used
to make out the object in inexplicit utterances. We may omit an object through el-
lipsis or mention it ambiguously through deixis because we assume it is apparent
to the listener. It is presumed that the interactants are committed to the object in
some sense. Thus, the object must be something related to action. Embodied move-
ments and other contextual features that allow for such ambiguity or omission are
as follows.

1. Proximity: Objects close to the human or the robot.
2. Gaze: Objects in the line of vision of the human.
3. Pointing: Objects pointed toward by the human’s arm and hand.
4. Manipulation: Objects touched or manipulated by the human or the robot.

If the object is uncertain after taking in the language and analyzing it, the system
tries to detect the object based on the above features. If multiple objects have been
detected, the object being pointed at is given first priority, since pointing is highly
intentional. In other cases, the robot asks the human for clarification of the target
object.

The robot recognizes the name of objects based on a computerized dictionary.
Nouns are classified into two groups: (1) things moved frequently and easily such
as ‘book’ and ‘apple’, and (2) things moved infrequently and not easily such as



11 Importance of Vision in Human-Robot Communication 195

‘bookshelf’ and ‘television’. Gibson classified things perceived into five categories:
places, attached objects, detached objects, persisting substances, and events [12].
Here, we employ Gibson’s terminology as in our previous research [6]. According
to this terminology, objects in the former group (e.g., book and apple) are consid-
ered detached objects, and those in the latter (e.g., bookshelf and television) are
considered attached objects.

The system predicts the verb based on the object mentioned definitely or guessed
at based on the method described above. The list of possible verbs for each object
is registered in the dictionary. The default verb for detached objects is “get”. If a
detached object can have other possible verbs, these are supplied for each object. For
example, a human may ask the robot to do various actions with a TV remote control
(e.g. turn it on, raise the volume, or change the channel). For attached objects, the
default action is to go to the object. When there are multiple possible verbs, we did
not assign priorities in the current implementation. In such cases, the robot asks the
user for clarification through speech.

11.2.3 Language Processing

We have employed ViaVoice by IBM for speech recognition. We divided speech
recognition output into morphemes and parsed them using software developed at
Nara Institute of Advanced Science and Technology [13]. From the parsing result,
we classified sentences into the nine patterns shown in Table 11.1.

Figure 11.1 shows several examples of the parsing results. After parsing, we
assigned either D (definite) or A (ambiguous) to the object and the verb. If the
verb or the object is omitted (missing), M is assigned. Example 1 in Figure 11.1 is
analyzed as a perfect (explicit) request, Case 9, since the result is {D, D}. Examples
2, 3, and 4 are inexplicit requests, Case 4 {A, M}, Case 8 {D, A}, and Case 3
{M, D}, respectively. After the utterance is classified, vision processes are initiated
depending on the case.

11.2.4 Vision Processing

We have developed a robot system with two stereo camera pairs as shown in
Figure 11.2. The lower stereo pair using IEEE 1394 cameras (DFW-V500, Sony)
watches the user’s face and hands, obtains the face direction (rough gaze direction),
recognizes pointing gestures, and detects the objects touched or manipulated by
the hands. The upper stereo pair of pan-tilt controllable cameras (EVI-D100, Sony)
searches for objects along the 3-D line of the face direction or pointing direction
using a zero-disparity filter (ZDF) [14]. These cameras also detect objects in front
of the human and the robot.
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Fig. 11.1 Judgment of inexplicit request patterns.

Fig. 11.2 Robot system with two stereo camera pairs.

We use the 3D human motion recognition system MARIO developed at Kyushu
University [15] to detect face and hands. The system then computes the 3-D direc-
tion of the face (or arm). We consider face direction to be approximate gaze direc-
tion. The two pan-tilt controllable cameras rotate while their optical axes converge
on the 3-D line indicating face (or arm) direction. The system calculates the correla-
tion between the central regions of the two camera images. If the correlation is high,
the system judges that an object exists there. Figure 11.3 shows an experimental
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Fig. 11.3 Experimental
scene.

Fig. 11.4 Object detection result.

scene. Here the robot detected the electric pot that the human was looking at using
the ZDF. Figure 11.4 shows a stereo pair of images (left and center) and the ZDF
result (right). The detected object is indicated with a square.

11.2.5 Synchronization Between Speech and Vision

We also need to consider synchronization between speech and vision. Vision processes
that track the face and hands are working all the time. If a hand is raised during an
utterance, this hand motion is considered a pointing gesture. Actions of being near
and manipulating are not so fast so the robot can start the vision processes after the
analysis of utterances. Gaze, however, moves faster. Furthermore, gaze may change
(multiple times) during the course of producing an utterance. Object detection based
on the ZDF cannot work as fast as the speed of human eye movements. Even if it
could, the robot needs to determine the target object if multiple objects are detected
in multiple gaze directions. Thus, we performed an experiment to examine synchro-
nization between speech and gaze direction.

In this experiment we put five objects in the scene. A subject sat close to the robot
as shown in Figure 11.3, asking it, “Ano (that) [object name] totte (get).” (‘Get that
[object name].’) The robot computed the gaze (face) direction during the period
from a little before the utterance to a little after. We utilized three participants, all
graduate students in our department. We asked them to change the [object name]
randomly and make the request. Each subject made twenty requests to the robot.
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Fig. 11.5 Gaze direction
changes when making a re-
quest.

Figure 11.5 shows the results. We considered gaze direction holding for more
than five frames (0.17 s) to be meaningful, while others are transient. The figure
shows the frequency (percentage out of 60 trials) of gaze direction during the pe-
riod of each word utterance (approximately 10 frames) and during 10-frame (0.3 s)
periods before and after each utterance. In the figure, gaze direction is specified by
what exists there such as “Robot” and “Object” (the target object). For example,
“Robot” indicates that the participant looked toward the robot. “Others” indicates
objects other than the target object. “Moving” means gaze direction was changing
during the period and no meaningful gaze direction was observed. The results in-
dicate that the subjects begin to gaze toward the target object before the utterance
and continue to gaze toward it when they utter its name. This is congruent with the
findings of Kaur et al. on their gaze-speech input system [16].

We used explicit utterances (Case 9) in the above experiment as it proved diffi-
cult to design experiments in which subjects used inexplicit utterances in a natural
way. When we asked subjects to use inexplicit utterances (as in Cases 2–8 earlier),
subjects tended to fix their gaze on the target object. Experiments in which we test
the use of inexplicit utterances are left for future work. Still, the above experimental
results suggest how the robot can determine gaze direction when it searches for a
target object. Important findings from this experiment are that primary gaze direc-
tion is toward the object or robot, and that gaze tends to begin moving toward the
object before the speaker produces the utterance. Thus, we have set up the system as
follows. After the utterance, the robot starts searching for an object in the gaze di-
rection observed most frequently during the period from a little before the utterance
until the end (excluding the speakers’ gaze toward the robot). If multiple stable gaze
directions are observed during this time period, the one around the starting time of
the utterance is examined first.
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11.2.6 Experiments

We performed experiments in various cases to confirm the usefulness of our ap-
proach. Here, we show an example of a dialog between a user and the robot. In this
case, both participants were looking in the same direction toward two red apples.
The dialog and the robot actions in this experiment were as follows.

User: “Get that.”

The utterance was classified as Case 8 (verb definite, object ambiguous). The ro-
bot recognized the user’s face direction, and detected two objects in the direction
(Figure 11.6). The robot then verbally conveyed its current understanding status
(image processing result) to the user.

Robot: “I have found two red round objects. Which should I get?”
User: “Get the left apple .”
Robot: “This one?”
(The robot shows the user the display where the target object is placed).
User: “Yes.”

Figures 11.7, 11.8 and 11.9 show other typical examples. The robot was able to
understand the utterances by using vision in these cases.

Although the current system was used only to conduct a small experiment with a
vocabulary size of 300 words, the results show that the system can understand such
inexplicit utterances as in Section 11.2.1.

Fig. 11.6 Experimental scene
for an example of human-
robot dialog. The objects in
the user’s face direction (left),
and the detected objects by
vision (right).

Fig. 11.7 Experimental example 1. When the user said, “Get that,” the robot recognized the object
in the right figure as the one referenced by ‘that’ because it was close to the robot and in the
direction of the user’s face.
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Fig. 11.8 Experimental example 2. When the user said, “Get that,” while pointing toward the
object, the robot recognized the object in the rightmost figure as the one indicated by ‘that’ because
it was being pointed at.

Fig. 11.9 Experimental ex-
ample 3. When the user said,
“Throw this,” the robot recog-
nized the object in the right
figure as the one indicated by
‘this’ because was being held
by the user.

The robot may find multiple objects associated with the human’s various actions.
In the current implementation, we have not specified a hierarchy among them except
in the case of pointing. The robot asks the human through speech in such cases. More
detailed language analysis and/or the use of other visual information may solve this
issue. This is left for future work.

In relation to the above experiments, we used uncluttered simple scenes in order
to confirm that the mechanism can interpret and respond to inexplicit utterances
through visual information. Currently, the robot may have trouble detecting objects
in cluttered scenes. In order to deal with such situations, we are working on an
interactive object recognition [17, 18, 19], in which the robot asks the user to provide
further information about the object when it cannot immediately detect it.

11.3 Communicative Head Gestures for Museum Guide Robots

In this section, we discuss our research exploring proper actions for smooth human-
robot communication. We are investigating this issue through developing a museum
guide robot that moves its head appropriately while providing an explanation of
exhibits.
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11.3.1 Observations from Guide-Visitor Interaction

Before attempting to develop a guide robot, we observed how human guides behave
in two situations. We performed both experiments in our lab. In this experiment, one
guide explained an exhibit of the history of roof tiles in ancient Korea. The guide
did four explanations for fifteen minutes each to four visitors (one at a time), and
two explanations for thirty minutes to two pairs of visitors. The guide was a re-
searcher on the exhibit and the visitors were university students. We video recorded
the experiments. Figure 11.10 shows the experimental scene.

We performed the second experiment using an exhibition of photographs intro-
ducing Thailand. The guide was the photographer himself, who explained to three
different visitors and a pair of visitors, each for about thirty minutes. The visitors
were university students. We recorded the experiments with video cameras.

Upon reviewing the video segments, we extracted 136 instances in which the
guides clearly turned their heads toward the visitor. Table 11.2 summarizes the in-
stances of head movements. The guides made frequent head movements at transition
relevance places (TRPs) -places in the talk where it is most appropriate for the lis-
tener to take a turn [20] such as at the completion of a sentential unit.

Figure 11.11 shows an example. The guide is on the left and the visitor is on
the right. The guide was explaining the process of making roof tiles. The following
excerpt shows talk and gaze direction by both the guide and the visitor. In the left
figure, the guide faces the visitor, which comes toward the end of a sentential unit.

Fig. 11.10 Guide scene at
Saitama University.

Table 11.2 Number of cases guides turned their heads in the two experiments

Number of occurrences

TRP (transition relevance place) 61
When saying key words with emphasis 14
When saying unfamiliar words or citing figures 6
When using deictic words such as “this” 26
With hand gestures 41
When the visitors asked questions 12

Total 136 times: counted multiple if multiple conditions are satisfied.
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Fig. 11.11 Examples of the TRP case. Left: The guide (left) turns toward the visitor (right). Right:
The guide turns back toward the exhibit to proceed to the next explanation.

Fig. 11.12 The guide points
while saying, “Here.”

Excerpt 1 (Gaze direction and gesture: X= gaze toward the exhibition, P=pointing, V=gaze
toward the visitor, N=nodding)

01 G: De ma: kore ga kansei ban to, kouiu katachi de ma: kawara ga dekirun desuNE:.
so well this final form and this form so well tile made is
‘So, this is the final form, and the tile is made into this form.’

G: XXXXPPPPPPPPPPPPPPXXPPPPPPPPPPPPPPPPP....VVVVVVVNNV.....
V: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXNNNNNNN

In this excerpt, the guide is pointing toward the exhibit while explaining the tile.
In particular, when the guide says the deictic terms “this” (kore) and “like this”
(kouiu), he is pointing toward the exhibit. The beginning element of this turn “so”
(de) marks this sentence as the final element of explanation. When he says “the tile is
made”, the guide starts to move his head slightly toward the visitor. This movement
allows him to check whether or not the visitor is displaying understanding at this
point. This sentence ends with a slight rise in intonation, in particular at “made”
(dekirun), indicating the turn is coming to completion. At this point, both the guide
and the visitor start nodding at the same time. These movements display a certain
degree of mutual understanding.

In addition to TRPs, guides also turned their heads toward the visitor when saying
key words. Figure 11.12 shows one example from the second experiment. In this
example, the guide was showing some pictures of small shrines in Thailand. In
excerpt 2, the guide turns his head toward the visitor as he says the name of the
ghost (Pi), a keyword.
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Excerpt 2

01 G: Koko- you wa, kokoni (0.3) e:::to (0.8) you wa .hhh tai no yuurei.
here in short here well in short Thailand ghost
‘Here in short here well in short ghost in Thailand’

G: XPPPPPPPPPPPPPPPPPPPPPP PPPPXXXXXXXXXXXXXXXXXX
V: XXXXXXXXXXXXXGGGGXXXXXXXXXXXXXXXXNNNNX

02 G: Pi: toiu [noga oru] pi::.
“Pi” called is exist “Pi”
‘ “Pi” is here “Pi” ’.

G: ...VVVVVVVVVVVV...

03 V: [ pi::? ]
V: ...GGGGGGGGGGNNNNXX

04 G: .hhh de, sorega sunderu.
and that live

‘And they live (in there).’
G: ...XXXXXXXXXXXXXXXXXXXX
V: XXXXXXXXXXXXXXXXXXXXXX

At line 1, the guide is pointing and gazing toward the picture while explaining
that the ghost resides inside the small shrine. At line 2, he marks the term “Pi”
(name of the ghost) as new or unfamiliar information by prefacing it with “toiu
(it is called)”. While saying “Pi”, the guide turns his head toward the visitor. The
guide’s gaze indicates an attempt to check the visitor’s understanding. At this point,
the visitor also starts looking at the guide, and repeats the term “Pi” (with rising
intonation) at line 3. This repetition functions as a check for understanding. The
visitor starts nodding as the guide confirms the term by repeating it. This exchange
and mutual gaze during the exchange clearly display that the visitor registers the
term as something new and significant in the guide’s explanation.

The guides often turned their heads and also made hand gestures when using de-
ictic words. These two actions typically appeared simultaneously. Again, in excerpt
2, and shown in Figure 11.12, the guide points at a certain part in the picture at
line 1, while producing the deictic word “here” (koko).

These experiments show that head movements and other embodied actions occur
at fairly predictable places within the talk of exhibit guides. In employing robots
to do the work of guides at a museum, it may be important for a robot to deploy
nonverbal behavior at interactively appropriate points to create a more naturalistic
interaction in general and a more personable robot in particular.

11.3.2 Prototype Museum Guide Robot

Based on the above findings from our guide experiment, we developed a prototype
museum guide robot that moves its head while explaining exhibits. Figure 11.13
shows a photograph of the robot. The robot has two pan-tilt-zoom cameras
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Fig. 11.13 Guide robot. The
robot consists of a mobile
robot, Pioneer II by Activ-
Media, a laptop PC, and two
pan-tilt-zoom cameras.

(EVI-D100, Sony). We attached a plastic head on the upper camera and used the
pan-tilt mechanism of the camera to move the head. We did not use the images of
the upper camera in the current implementation. The robot uses the images of the
lower camera to make eye contact and to observe the visitor’s face.

Visitor eye contact toward the robot may function as request for help. When a
visitor stands close to an exhibit and makes eye contact, the robot approaches the
person and asks, “May I explain this exhibit?” If the visitor answers “Yes”, the robot
begins explaining the exhibit. The actual eye contact process is as follows. The robot
pans around with its lower camera to find a visitor who is gazing toward the robot. If
it finds such a visitor, it turns its body toward him/her. If he/she is still gazing toward
the robot, the robot assumes that the visitor might like an explanation of the exhibit.
This eye contact process is the same as the one in our eye contact robot [21, 22],
except that the current robot has a head-shaped figure instead of a Computer Graphic
head.

Now let us briefly describe the face image processing method used for eye con-
tact. Our robot first searches for face candidates with the zoomed-out camera. When
a candidate is detected, the camera zooms in. The robot then examines detailed fa-
cial features.

The candidate face regions can be detected in the images with a wide field of
view. First, skin color regions are extracted. Then, small regions and greater elon-
gated regions are removed. Inside the remaining regions, subtraction between con-
secutive frames is computed. The largest region among those where the sum of
absolute values of the subtraction exceeds a given threshold is considered a face
candidate. Figure 11.14 illustrates an example of a face candidate. The pan, tilt, and
zoom of the camera adjust so that the candidate region can be taken large enough to
examine facial features. Experiments show that it can detect human faces indoors at
a distance of six meters.
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Fig. 11.14 Face image processing. Left: Face candidate. Right: Face direction computation.

The system detects the eyes (pupils) and the nostrils in the zoomed-in image. We
use the feature extraction module in the face recognition software library by Toshiba
[23]. Then, the system measures the horizontal distance between the left pupil and
the left nostril dl and that for the right side dr as shown in Figure 11.14. From
these two values it determines the direction of the gaze (face). The robot does not
actually need to compute the accurate direction. It only needs to determine whether
or not the person is looking at the robot. Since the camera has turned in the human’s
direction, the frontal face must be observed if the human is looking at the robot’s
face. If the ratio between dl and dr is close to 1, the human face can be considered to
be facing toward the robot. This same computation process is used while the robot
is explaining the exhibit.

The robot explains the exhibit using synthesized speech. While speaking, the ro-
bot turns its head toward the visitor at similar points identified in the human guide
experiment described above. There are two types of head motions: predetermined
and online. The observations from the guide-robot interactions showed that human
guides often turn their heads at certain points during the explanation. We manually
inputted annotation marks for the robot to turn its head at such positions in the text
of the explanation. We call such cases predetermined ones. In the current implemen-
tation, we chose the following points based on our earlier guide experiments.

-TRP 1: At the end of a certain explanation.
-TRP 2: When the robot asks a question.
-When the robot says a key word or unfamiliar word.
-When the robot uses a deictic word to refer to something.

In the online cases, the robot reacts to the visitor. In particular, the robot turns its
head when it sees the visitor turning his/her head toward the robot. The robot is able
to do this since it continuously monitors the visitor’s face direction with the lower
camera. In response to the visitor’s head movement toward the robot, the robot turns
its head toward the visitor and says, “Do you have any questions?”

The robot can obtain the movement of the visitor’s face when it turns its head
in predetermined cases. This information can indicate the visitor’s response to the
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explanation by the robot. The robot should be able to modify the explanation de-
pending on the visitor’s response. However, the current robot is not yet able to do
this. This is a task for future work. In addition, the current robot cannot answer
questions if the visitor asks them. As a result, we have not implemented the online
head turning in the experiments described below.

11.3.3 Experiments at a Museum

We organized an interactive art exhibition using magnetic fluid by Sachiko Kodama
and Minako Takeno at Science Museum, Tokyo, from December 3 through 17, 2005.
We demonstrated our robot on December 12 and performed experiments.

Sixteen visitors agreed to participate in our experiments (14 females, 2 males,
ages 20–28, students and office clerks). When a visitor stands near the artwork Mor-
photower, and makes eye contact with the robot, the robot comes close to the visitor
and explains the work. The robot explains the work in two modes: the proposed
mode in which the robot turns its head to the visitor at predetermined points and the
fixed mode in which the robot continuously gazes toward the exhibit without turning
its head. In the former mode, however, the robot does not use online head turning,
because the robot cannot answer the visitor when the visitor asks a question in the
current implementation.

Eight participants engaged in the fixed mode followed by the proposed mode
(Group A). The other eight participants did so in the reverse order (Group B). We
allowed about a half an hour interval between the two modes. The participants were
asked to look around the museum during the interval and not to observe the ex-
periments by the other participants. We did not tell the participants the differences
between the two modes. We videotaped the experiments. Figure 11.15 shows an
experimental scene.

After the experiments, we asked the participants which presentation mode they
would prefer if the robot were to provide an explanation again. For the participants
of Group A, six preferred the proposed mode and two the fixed mode. These num-
bers, 6 and 2, are the same for the participants of Group B. The results suggest that
while viewing the museum exhibits with a robot guide, visitors prefer robot head
movements to no head movements, although the evidence is not decisive since the

Fig. 11.15 Robot experi-
ments at Science Museum,
Tokyo.



11 Importance of Vision in Human-Robot Communication 207

number of participants was small, and gender and ages of the participants did not
vary much.

As a quantitative evaluation, we examined when and how often participants
turned their heads toward the robot. In the proposed mode, the robot turned its head
7 times for each trial at predetermined points as follows.

1. When the robot approaches the visitor, the robot gazes toward the visitor, and
then turns its head toward the work while saying that it will now explain the exhibit.
At this time, head-turning direction is different from the other six points where the
robot turns its head from the exhibit to the visitor.
2. The robot emphasizes the key word ‘magnetic fluid’.
3. The robot uses the deictic word ‘this’.
4,5,7 TRPs: The robot finishes an explanation.
6. TRP: The robot asks a question.

Figures 11.16 and 11.17 show the percentages of the participants moving their
heads around each predetermined point for Group A and for Group B, respec-
tively. In these figures, the horizontal axes indicate the time scale with the seven

Fig. 11.16 Rate of participants moving their heads when robot turned its head. (For participants
who tried the fixed mode first (Group A).)

Fig. 11.17 Rate of participants moving their heads when the robot turned its head. (For participants
who tried the proposed mode first (Group B).)
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Fig. 11.18 Number of head
movements of each partici-
pant in both fixed and pro-
posed modes.

predetermined points. At the first predetermined point, both figures show the per-
centages of participants who turned their head from the robot to the exhibit in re-
sponse to the head movement of the robot. At other predetermined points, the figures
show the percentages of participants who turned their heads from the exhibit to the
robot.

Both figures show that the percentages of participants’ heads movements increase
significantly in the proposed mode (p< 0.01, paired t-test). This significance appears
in both groups A and B, which suggests that the increase in head movement is not
dependent upon the order of the two trials. In the fixed mode, the participants move
their heads toward the robot at the point where the content of the explanation solicits
the participants’ attention toward the robot such as when the robot asks a question.

Figure 11.17 shows that the participants who experienced the proposed mode first
gradually decrease their number of head movements, even though they are moving
their heads in the beginning of the fixed mode. The participants also turn their heads
toward the robot at the sixth point where the robot asks a question.

In Figure 11.18, the horizontal axis indicates the number of head movements in
the fixed mode, and the vertical axis shows the same in the proposed mode for each
participant. This figure also shows that the participants’ head movements increased
in the proposed mode.

We recognize there is a possibility that it may be a natural response for humans
to turn their heads toward the robot when the robot turns its head toward them, and
the larger number of head movements of the participants may not necessarily mean
that the robot in the proposed mode is more user-friendly or personable. However,
considering the finding that 12 participants out of 16 conveyed a preference for the
proposed mode, we suggest that it may be effective for guide robots to turn their
heads toward the visitor(s) at certain points while explaining exhibits.

11.4 Conclusion

We have presented two robot systems through which we have shown the importance
of vision and action for human-robot communication.
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The first robot can understand simplified utterances through computer vision. In
daily conversation, we often omit some information or mention ambiguously things
we assume the listener can identify through vision. We have presented a robot that
can appropriately respond to user requests based on speech and vision. The robot
tracks human gaze direction, detecting objects in its direction. It also recognizes
other human actions such as pointing. Based on visual information, the robot under-
stands simplified utterances that contain ellipsis and deixis.

The second robot suggests that proper head gestures can increase the engage-
ment of humans with the robot, and possibly lead to a more enjoyable experience
for visitors. Face and head movements play an important role in human communica-
tion. We have presented a museum guide robot that moves its head in an attempt to
communicate with humans. By analyzing the behavior of human guides when they
explain exhibits to visitors, we used this information to develop a robot system that
turns its head at predetermined places and in response to human behavior.

These robots are still in their early stages of development. To understand human
utterances (and intentions) more fully, there are other actions the robot has to recog-
nize. Even though our current robot can recognize some mundane actions, the robot
cannot yet detect target objects in complex environments. We need to improve the
capability of object recognition. In cases where the robot fails to recognize objects,
we are working on interactive object recognition [17, 18, 19]. The robot asks the user
to give information about the object when it cannot detect it. The research presented
in this paper can be called “Vision for Communication,” whereas this interactive
object recognition can be called “Communication for Vision.”

In terms of the guide robot, we have used the mechanical part of a pan-tilt camera
to move the robot’s head. Thus, the robot cannot move its head as fast and as subtly
as humans. We have recently obtained Robovie-R ver.2 [24]. We are now working
on implementing the head-turning method for the robot. We will perform more ex-
periments with the robot to confirm the usefulness of head gestures. We will also
examine the effects of other actions such as hand gestures and body movements. We
also plan to investigate ways to modify the robot’s explanation in accordance with
the observation results of the museum visitors.
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