

Lecture Notes in Computer Science 3128

Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern

ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor

Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland

C. Pandu Rangan

Indian Institute of Technology, Madras, India

Bernhard Steffen

University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar

University of California, Berkeley, CA, USA

MosheY.Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

This page intentionally left blank

Dmitri Asonov

Querying Databases
Privately

A New Approach to Private Information Retrieval

Springer

eBook ISBN: 3-540-27770-6

Print ISBN: 3-540-22441-6

©2005 Springer Science + Business Media, Inc.

Print ©2004 Springer-Verlag

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Springer's eBookstore at: http://ebooks.springerlink.com

and the Springer Global Website Online at: http://www.springeronline.com

Berlin Heidelberg

Foreword

The Internet and the World Wide Web (WWW) play an increasingly im-

portant role in today’s activities. More and more we use the Web to buy
goods and to inform ourselves about cultural, political, economic, medical,
and scientific developments. For example, accessing flight schedules, medical

data, or retrieving stock information have become common practice in to-

day’s world. Many people assume that there is no one who “watches” them

when accessing this data.
However, sensitive users who access electronic shops (e-shops) might have

observed that this assumption often is not true. In many cases, e-shops track

the users’ “access behavior” when browsing the Web pages of the e-shops, thus
deriving “access patterns” for individual shoppers. Therefore, this knowledge
on access behavior and access patterns allows the system to tailor access to

Web pages for that user to his/her specific needs in the future. This tracking of

users might be considered harmless and “acceptable” in many cases. However,
in cases when this information is used to harm a person – for example, when

the information relates to a person’s health problems – or to violate his/her

privacy (for example, finding out about his/her financial situation), he/she

would like to be sure that such tracking is impossible and that the user’s

rights are protected.
These simple examples clearly demonstrate the necessity to shield the

user from such spying to protect his/her privacy. That is, a user should

be able to access a database (or a data source in general) without allowing
others to “observe” which data is requested and accessed by the user; neither

the query nor the answer should be visible or accessible to others. Surpris-
ingly, despite the urgent need for concepts and techniques to protect the user

from being spied on, very few results are known and available that address

the problem adequately. During the last 10 years the area of private infor-

mation retrieval (PIR) has addressed some of the problems concerning
privacy. However many of those results are of theoretical nature and thus do

not carry over into practical solutions for protecting privacy when accessing
information sources on the Web or in databases.

With this book Dr. Asonov is one of the first researchers who addresses
the topic of querying data privately in a systematic and comprehensive way,
developing practical solutions in the context of database systems. The results

VI Foreword

presented in this book sometimes might look theoretical, but they describe

his clear understanding of the problem as well as the solutions required for
“real-world” settings, in particular for scalable database solutions. As a ba-

sis Dr. Asonov first presents the framework for privately accessing databases

by developing several algorithms which also include the use of special hard-
ware. In the second part of the book he focuses on solving several important

subproblems; for them he also includes some validation by benchmarking to

show the efficiency of the solutions. Finally, Dr. Asonov shows how his so-
lutions could be used in solving some problems in the area of voting and

digital rights management. Initially these problems seem to be completely
unrelated to PIR, however Dr. Asonov shows how some of his results can be

used for creative solutions in the areas mentioned. Overall, the careful reader

will notice that – despite the many technical details – his in-depth treatment

of privacy in databases provides the insight into the problem necessary for
such an important topic.

In summary, with this book Dr. Asonov provides a systematic treatment of

the problem of how to access databases privately. The way he approaches the
problem and develops solutions makes this book valuable for both researchers

and practitioners who are interested in better understanding the issues. He
develops scalable solutions that are necessary and important in the context

of private information retrieval/private database access. The in-depth pre-

sentation of the algorithms and techniques is enlightening to students and a

valuable resource for computer scientists. I predict that this book will provide
the “starting point” for others to perform further research and development
in this area.

May 2004 Prof. Johann-Christoph Freytag, Ph.D.

Preface

People often retrieve information by querying databases. Designing databases

that allow a user to execute queries efficiently is a subject that has been in-
vestigated for decades, and is now often regarded as a “researched-to-death”

topic. However, the evolution of information technologies and society makes

the database area a consistent source of new, previously unimaginable re-
search challenges. This work is dedicated to partially meeting one of these

new challenges: querying databases privately.

This new challenge is due to a very fundamental constraint of the conven-
tional concept of querying information. Namely, in the conventional setting,

the one who queries (the user) must reveal the query content and, by im-

plication, the result of querying to the one who processes the query (the

database server). This constraint seems to be negligible if the user trusts the
server. However, the growing population of information providers makes it
extremely difficult for users to establish and rely on the trustworthiness of

information providers. Indeed, more and more cases are reported wherein in-

formation providers misuse the information provided by users’ queries against
the users, for example by sharing this information with third parties without

permission, or by using this information for unsolicited advertisements.

We approach this constraint in a direct manner: If it is difficult to trust
the server, we could try to remove the need for trust completely, by hiding

the content of the user query and the result from the server. This research

problem, called private information retrieval (PIR), has been under intensive
and mainly theoretical investigation since 1996. These results are classified

and analyzed in the first of four parts of this book. Our main contribution is
considering this problem from a practical angle, as follows.

In Part II, we accept the assumptions and simplifications made in previ-

ous related work, and focus on obtaining efficient solutions and algorithms

without changing the common model. Namely, we break the established belief

that the server must read the entire database for a PIR protocol to answer
a query. We further develop our solution by improving the processing and
preprocessing complexities of our PIR protocol.

In Part III we extend the common PIR model in two directions. First, we
relax the requirement that no information about a query must be revealed.
This allows us to offer the user a trade-off between the level of privacy required

and the response time for a query. The second extension of the model is done
by understanding the economics associated with the PIR problem. Namely,

VIII Preface

we assumed that information in the database is from different owners. We

then consider the problem of distributing royalties between the information

owners, given that no information about the content of the user queries is

revealed.
A number of questions remain to be answered before the problem of query-

ing databases privately can be regarded as completely investigated. However,
we argue that results presented in the book have pushed the state of the art in

this area, from the entirely theoretical level to the stage where implementing

an applicable prototype can be considered ultimately possible.

Acknowledgements

I am most indebted to Prof. Johann-Christoph Freytag for the success of this

work. Our interaction was an example of a brilliant collaboration between a

student and an adviser, so rarely found in science.

I was lucky to secure Prof. Oliver Günther as my second advisor. I learned
a lot from him. Prof. Günther naturally supplemented the image of a perfect

professor that I perceived from my first advisor.

I am very grateful to Rakesh Agrawal from IBM Almaden Research Center

for being an external reviewer of my dissertation. Prof. Sean W. Smith and

Alex Iliev from Dartmouth College, Ronald Perez from IBM T.J. Watson
Research Center, Christian Cachin from IBM Zürich Research Laboratory,

and Frank Leymann from IBM Laboratory Böblingen were my occasional,
but nevertheless most valuable external contacts.

I could not survive the hardship of doing a Ph.D. without the warm,

social support from my graduate school colleagues, and the team of the DBIS
department of Humboldt University. Especially, I would like to thank Markus

Schaal and Christoph Hartwich for our fruitful collaboration in CS research,

and my officemates Felix Naumann and Heiko Müller, who had to listen to

my erroneous German every day. Ulrike Scholz and Heinz Werner made DBIS
a very comfortable place to work in.

My Russian-speaking friends in Berlin, Stanislav Isaenko, Viktor Mal-

yarchuk, and Mykhaylo Semtsiv helped me better understand research as a
process by sharing their experiences in biological and physical research.

My teachers in Moscow provided the educational background from which

I am benefiting now. Among them Yulia A. Azovzeva, Alexei I. Belousov,
Valeri M. Chernenki, Maria T. Lepeshkina, Sergei V. Nesterov,
Valentina P. Strekalova, Sergei A. Trofimov, and Valeri D. Vurdov were most
helpful.

Last, but not least, I am thankful to my family who supported me all the

way through.

This research was supported by the German Research Society, Berlin-
Brandenburg Graduate School in Distributed Information Systems (DFG
grant nos. GRK 316 and GRK 316/2).

Table of Contents

1

2

3

2.1

2.2

2.3

23
23

24
26
27

27

11

11

11

12

13

14

14
16
17

18
18

18
19

20

3

3

6

8

8
9

Introduction

1.1

1.2
1.3

Problem Statement

Book Outline

Motivating Examples
1.3.1

1.3.2

Examples of Violation of User Privacy
Application Areas for PIR

Related Work
Naive Approaches Do Not Work

PIR Approaches

2.2.1

2.2.2

2.2.3

2.2.4

2.2.5
2.2.6

2.2.7

Theoretical Private Information Retrieval

Computational Private Information Retrieval

Symmetrical Private Information Retrieval

Hardware-Based Private Information Retrieval

Further Extensions of the Problem Setting
PIR with Preprocessing and Offline Communication

Work Related to PIR Indirectly
Analysis of the Previous Approaches
2.3.1

2.3.2
2.3.3

Evaluation Criteria for PIR Approaches
State of the Art

Open Problems

PIR with O(1) Query Response Time

and O(1) Communication
3.1 Basic Protocol

3.1.1

3.1.2
3.1.3

3.1.4

Database Shuffling Algorithm (SSA)

The Protocol
An Algorithm for Processing a Query
Trade-Off between Preprocessing Workload

and Query Response Time

Part I. Introduction and Related Work

Part II. Almost Optimal PIR

X Table of Contents

28

30

30
31

33

34
35

53
54

55

37

37

38
38

41

42

44
44

45

46

49

49

49
50

51

53

53

59

59
60
60

60

60

62

64
65
66

3.2

3.3
3.4

4.1

4.2

4.3

4.4

5.1

5.2

5.3

5.4

6.1

6.2

6.3

3.1.5

3.1.6

3.2.1
3.2.2

4.2.1
4.2.2

4.2.3

4.3.1
4.3.2

5.2.1
5.2.2
5.2.3

5.3.1

5.3.2

6.1.1
6.1.2

6.2.1
6.2.2

6.3.1
6.3.2

Choosing the Optimal Trade-Off

Multiple Queries and Multiple Coprocessors
Formal Definition of the Privacy Property

Basics of Information Theory

Privacy Definition
Proof of the Privacy Property of the Protocol
Summary

4 Improving Processing and Preprocessing Complexity
Decreasing Query Response Time

Decreasing the Complexity of Shuffling

Split-Shuffle-Gather Algorithm (SSG)
Balancing the Preprocessing Complexity between SC

and UC

Recycling Used Shuffled Databases
Measuring Complexity of the PIR Protocols

A Normalized Measure for the Protocol Complexity
The Measurement

Summary

5 Experimental Analysis of Shuffling Algorithms

Shuffling Based on Bitonic Sort (SBS)

Experiments
Setup Details

Experimental Data Collected

Analysis
The Superiority of SSG

Imperfection of the Theoretically
Estimated Complexity of SSG

On Minimal Bound for Shuffling Complexity

Summary

6 Repudiative Information Retrieval

The Need for Trade-Off between Privacy and Complexity

Our Results
Preliminaries and Assumptions

Defining Repudiation and Assessing Its Robustness

Repudiation Property
Assessing the Robustness of Repudiation

Basic Repudiative Information Retrieval Protocol
Analyzing the Robustness of the Protocol
Multiple Queries

Part III. Generalizing the PIR Model

Table of Contents XI

6.4

6.5

6.6

6.7

6.3.3
6.3.4

6.4.1
6.4.2
6.4.3

6.5.1
6.5.2

6.6.1

6.6.2

6.6.3

7.1

7.2
7.3

7.4

7.5
7.6

7.7

8.1

8.2

8.2.1

8.2.2

7.6.1
7.6.2
7.6.3
7.6.4

7.6.5

7.6.6

68

68
68
69

69
71

71

72
72

73

73

74
74

75

77
77

78
80

80

81

84
85

90

93

95

96

96

101
101

104

104

105

107

115

Complexity of Preprocessing

Summary of the Basic RIR
Varying the Robustness of the RIR Protocol

A Parameterized RIR Protocol

How Parameters Determine Robustness of Repudiation
Turning the RIR Protocol into a PIR Protocol

Related Work

Deniable Encryption
Alternatives to the Quantification of Repudiation

Discussion
Redefining Repudiation

Yet Another Alternative to the Quantification

of Repudiation
Misinforming the Observers

Summary

7 Digital Rights Management for PIR
The Collision between DRM and PIR

DRM without Repudiation
RIR Supporting DRM

Robustness of Repudiation vs. Precision

of Royalty Distribution

The Drawback of the Proposed DRM Scheme

Absolute Privacy in Voting

Preliminaries
Deterministic Voting Functions 88
Probabilistic Voting Functions
Related Work

Discussion

The Implication of Absolute Privacy
Summary

8 Conclusion and Future Work
Summary
Future Work

Querying Databases Privately without Tamper-Resistant

Hardware

Elaborate Query–Database Models

References

Index

Part IV. Discussion

This page intentionally left blank

Part

Introduction and Related Work

I

This page intentionally left blank

1 Introduction

In Section 1.1 we provide both informal and formal definitions of the Private
Information Retrieval problem. Section 1.2 lists the questions associated with
PIR that we answer in this book. Section 1.3 provides examples that motivate
research in the area of PIR.

1.1 Problem Statement

The existence of the Private Information Retrieval problem is due to a fun-
damental constraint of conventional querying. Namely, if one person, Tom,
wants to query something from another person, Bob, then Tom must reveal
the query content to Bob. For example, in a shop, the customer must tell
the seller what he wants to buy. This fundamental constraint is so natu-
ral and so freely accepted by human beings, that no one had ever thought
of overcoming it until it recently actually became necessary. By overcoming
the constraint, we mean solving a problem of querying without revealing the
content of the query. A simplified version of this problem bears the name
“Private Information Retrieval” problem (PIR), also alternatively called the
“querying databases privately” problem within this book (Figure 1.1). Nu-
merous motivating examples of applications that may benefit from a PIR
solution will be presented in Section 1.3. In this section, let us concentrate
on stating the problem.

The “querying databases privately” problem sketched in Figure 1.1 ap-
pears to be very difficult to solve for several reasons. Among them are uncer-
tainty about what kind of information is retrieved and what type of queries
must be answered. To simplify the problem, the initial work on PIR proposes
simple models for both the structure of information stored in a database and
the structure of user queries [CGKS95]. These models have been widely ac-
cepted and used by nearly every study on PIR. The information stored in a
database is assumed to be a one-dimensional array of N records (L bits for
each record). The query structure is assumed to be of type “return the
record” (Figure 1.2).

4 1 Introduction

Fig. 1.1. The problem of querying databases privately.

There are several ways to formally define the PIR problem. We present

the most readable and easy-to-use variant. However, this necessitates some

informality. For stricter definitions, please refer to the works cited in Sec-

tion 2.2.1.

Definition 1.1.1 (Private Information Retrieval). Private information

retrieval (PIR) is a general problem of privately retrieving the record

from an N-record array stored on the server. “Privately” means that the

server does not know about that is, the server does not learn which record

the user is interested in.

1.1 Problem Statement 5

Fig. 1.2. The model for PIR problem.

The informality of the definition above is in the words “does not know

about Defining this formally requires some effort, and will be done in
Chapter 3. There is no need for a more formal definition until then.

An assumption implied by the definition is that the user already knows

which record (record number to retrieve. We also presume for this model
that, from an economical perspective, there is only one price for processing

any query. That is, the price for a user retrieving a record does not depend

on the identity of the record. Otherwise it would be difficult for the server

(the information provider) to bill the user while possessing no information

about the content of the query by definition.

There are three remarks regarding the simplicity of the PIR model
1
. First,

the model is not oversimplified. As can be seen from the following chapters,
approaching solutions for this simple model is a very challenging and compli-
cated task. Before suggesting more complex models, a complete understand-

1 By the simplicity of the PIR model we mean that in this model, (i) the data is
presented not as a relational database, but as a plain array of records and (ii)
the queries are not of, for example, SQL type but of “return the i-th record”
type.

6 1 Introduction

ing of the basic nature of this problem is required. Second, solutions for this

simple model can be applied straightforwardly to most of the application ar-

eas mentioned below in Section 1.3. Third, we will discuss and motivate some

generalizations of this model in Section 1.2. Furthermore, the third part of
this book introduces and investigates several of such generalizations.

The Private Information Retrieval problem was originated by the security

community, which might explain why the possibility of confusion with Infor-
mation Retrieval was not taken into account. Although PIR is unrelated to

Information Retrieval, we stick to this notation within the book in order to be

consistent. In extreme cases, when clarity is of the highest importance (like

in this introductory section or in a book title), we name the problem “query-

ing databases privately”, which implies no assumptions about the database

model nor user queries. Thus, “querying databases privately” is a term that
we introduced to (i) denote a generalized version of PIR and (ii) to assure

that the name of the problem disassociates with the Information Retrieval

research area.
The initially proposed solutions for PIR suffer from high complexities and

a minimal PIR model. These two limitations prevented those solutions from
being applied in the real world. Our goal is to enable querying databases

privately as efficiently and as comfortably as we presently query databases,

without any privacy techniques. As a result, Part II of this book focuses on

constructing a PIR solution of acceptable complexity. Part III generalizes the

PIR model in order to provide a connectivity to real-world models.

1.2 Book Outline

In this section we enumerate the issues that motivated each of the following

chapters and our results in solving these issues. Chapters 3 through 5 deal
with issues associated with the conventional PIR model. Chapters 6 and 7

generalize the PIR model for the sake of efficiency or practical applicability,

respectively.

1. Issue: After analyzing the previous work on PIR [Aso01], we found that
all PIR solutions possess O(N) complexities in either query response time
[KO97, CMS99, SS00, SS01, KY01] or communication between the infor-
mation provider (the server) and the user [BDF00, SJ00]. Specifically, in
order to answer one query, the database server must read through the
entire database of N records, or the amount of information comparable

with the database size must be communicated between the server and
the user. Both cases are intolerable from the system point of view, as
well as from that of the user. In order to be practical, a PIR solution

must provide O(1) query response time and O(1) communication.

1.2 Book Outline 7

Result [AF01, AF02a]: In Chapter 3 we propose a PIR protocol with

O(1) query response time and communication. It is easy to show2 that

without a preprocessing phase, a query response time smaller than O(N)

is impossible. Our solution requires a preprocessing phase of complexity
and this preprocessing algorithm must be executed periodically.

Furthermore, we use Shannon theory of information [Sha48] to define and
to formally prove the privacy property of our protocol.

Issue: A) The protocol proposed in Chapter 3 implies a periodical prepro-
cessing wherein the server performs In a practical scenario,

such preprocessing may take weeks. B) Although our solution provides

for O(1) query response time, the response time is not constant and is

instead growing linearly with the number of answered queries.

Result [AF02b]: A) Chapter 4 demonstrates a preprocessing protocol with
complexity. In practice, this reduces weeks of preprocessing to

hours. B) We expose the fact that the query response time can be reduced
from to a constant. This reduction is implemented by applying

the preprocessing algorithm mentioned above, given that there is enough
time between queries for a preprocessing of complexity.
Issue: In related work we found an algorithm of complexity

as an alternative to our preprocessing algorithm. To determine
which one has the best performance in practice, we prototyped both algo-

rithms and analyzed the results of extensive, long-running experiments.

Result: In Chapter 5, after analyzing the experimental data we were

able to conclude that A) our algorithm outperforms the one from related
work by approximately one order of magnitude (for the tested interval

B) the exact complexity of our algorithm lies between
O(N) and depending on N, L, and the page size of secondary

storage.

Issue: All previous PIR algorithms reveal absolutely no information about

the content of the query and its result. That is, full privacy is one of the

properties of the conventional PIR model. However, the possibility of

reducing high complexities of PIR protocols by gradually relaxing the

privacy requirement has never been investigated.

Result [AF02c]: In Chapter 6 we propose an algorithm that offers the
user a choice in the trade-off between the protocol complexity and the

amount of privacy provided.
Issue: One of the simplifying assumptions of the PIR model is that no
royalties are paid to the producers of the digital goods (product owners).

Otherwise, it is unclear how the income should be distributed between the

product owners, because no information about identities of the products
sold is revealed.

Result [ASF01]: Chapter 7 generalizes the PIR model, whereby it re-
moves the assumption mentioned above. We show that, if we are to dis-

The proof is in Chapter 2, Section 2.2.5.

2.

3.

4.

5.

2

8 1 Introduction

tribute the royalties, the privacy of users can be preserved under certain
conditions. First, the function that calculates the royalties must be non-

deterministic. Second, we exhibit the only acceptable pattern for such
a function. Our work on this problem appears to be of independent in-

terest, bringing a new insight into the research area of secure electronic

voting.

1.3 Motivating Examples

We offer two types of examples. First, we enumerate several real-world ex-
amples of misuse of the user query content by information providers. These

abuses of user privacy, which actually took place, motivate the research in the
area of PIR in order to eliminate the possibility of them recurring. Second,

we present general application areas where PIR would help.

1.3.1 Examples of Violation of User Privacy

One of the biggest on-line media traders stated that its database containing
millions of user profiles and shopping preferences is one of the company’s

assets. Therefore, this database can be a subject of a commercial deal, i.e.,
the database can basically be sold to another company without the users’
permission [RS00, CNN00]. If the content of user queries were hidden from

this information provider, there would no information for him, like user pref-
erences, to sell.

The situation could be even worse to control in the case where the in-

formation provider is characterized as “honest but stupid”. In other words,

information providers may be unaware of flaws in their security levels, thus

allowing an intruder to access user preferences collected from the content

of their queries. Up to half of the leading on-line information providers are
reported to compromise user privacy in such a way [Rot99, Ols99]. If no in-

formation about user queries were revealed to a provider, this would solve
the problem.

In yet another scenario, information providers may be forced to misuse
user preferences. For example, one company was forced to sell its database of
user preferences due to bankruptcy [Bea00, San00, Dis00]. A more up-to-date

list of similar privacy violations can be found in [AKSX02].

In summary, the security of information contained in user queries depends

on the good faith of the information provider answering the queries, the qual-

ity of the provider’s security tier, and the financial situation of the provider.
There are too many assumptions that have to be upheld, both simultaneously

and forever. Moreover, the number of examples where these assumptions are
broken grows from year to year. This leads to the idea of solving the problem
in principle – by hiding the content of user queries from everyone, even the
one who answers the queries (the information provider).

1.3 Motivating Examples 9

Solutions to the PIR problem would make it possible for a user to keep
the content of his queries private from everybody, including the information
provider (sometimes referenced as server below).

1.3.2 Application Areas for PIR

In the following, we describe concrete as well as hypothetical examples where

PIR protocols might be useful. To some extent, all these application areas

are different examples of trading digital goods.

Patent Databases. If the patent server knows which patent the user is inter-
ested in, this could cause problems for the user if the user is a researcher,
inventor, or investor. Imagine if a scientist discovers a great idea, for example,
that “2+2=4”. Naturally, he wants to patent it. But first, he checks at an
international patent database to see whether such patent or a similar patent
already exists. The administrator of that server has access to the scientist’s
query “Are there patents similar to 2+2=4”, and this automatically gives
him the following information:

That “2+2=4” may possibly be an invention. Why not to try to patent it

first?
The research area in which the scientist is working is also notable.

Both observations are highly critical and should not be revealed. PIR solves
this problem: The user may pay for downloading a single patent with his
credit card (and thus reveal his identity), and the server will not know which
patent the user has just downloaded.

Pharmaceutical Databases. Usually, pharmaceutical companies are special-
ized either in inventing drugs, or in gathering information about the basic
components and their properties (pharmaceutical databases). The process of

synthesizing a new drug requires information on several basic components
from these databases. To hide the plans of the company, drug designers buy
the entire pharmaceutical database. These huge expenses could be avoided if
the designers used a PIR protocol, allowing them to only buy the information
about the few basic components [Wie00].

Media Databases. These are commercial archives of digital information, such
as electronic publications, music (mp3) files, photos, or video. As shown
above, it can be risky to trust an information provider with customer data.
In this context, the user may be interested in hiding his preferences from the
server while buying one of the digital products online. This means that the
user may be interested in a PIR protocol.

Academic Examples. Suppose that the Special Operations department of the
defense ministry is planning an operation in region R. In order to get a high-
resolution map of R, this department must make an appropriate request to
the IT department’s map database. Thus, the IT department’s staff could

10 1 Introduction

figure out that there will be a special operation in the region R soon. Is it

possible to keep the secret inside the Special Operations department and still

let a query to be processed at the external database? It is generally possible,

if PIR is used [Smi00].
Another hypothetical application is suggested by Isabelle Duchesnay

[BCR86]. A spy disposes of a corpus of various state secrets. In his cata-

logue, each secret is advertised with a tantalizing title, such as “Where is

Abu Nidal”. He would not agree to give away two secrets for the price of
one, or even partial information on more than one secret. You (the potential

buyer) are reluctant to let him know which secret you wish to acquire, be-
cause his knowledge of your specific interests could be a valuable secret for
him to sell to someone else (under the title: “Who is Looking for Terrorists”).

You could privately retrieve the secret of your choice using PIR, and both

parties can remain happy.
There are further real-world examples from biological and medical data-

bases, and the databases of stock information. The bottom line of this section
is this: There are enough real-world problems that could be eliminated if an

efficient PIR solution (or algorithm) was available.

2 Related Work

In Section 2.1, we demonstrate that solving the PIR problem is not a straight-
forward task. Sections 2.2 provides an all-out overview of PIR approaches,
and also reviews some work that indirectly relates to PIR. In Section 2.3

we analyze the previous section to establish the problems that remain to be

solved, and map these to the following parts of the book.

2.1 Naive Approaches Do Not Work

There are at least two straightforward approaches to the PIR problem (Fig-
ure 2.1). Both fail to solve the real-world problem. However, they show what

kind of properties the practical PIR solutions must have.

Encryption of Communication. Conventional encryption of a query and its

result would prevent third parties from accessing the content of the query

and the result as they travel through a communication channel between the

client and server. However, the problem is not solved: The content of the

query and its result still must be presented in cleartext to the information
provider.

Entire Database Download. Theoretically speaking, the entire database trans-
fer (from the server to the client) solves the PIR problem: The client can

process queries on his local copy of the database. Thus, the server is unaware

of the content of the user queries, and consequently, the server is unaware of
the user preferences.

This approach cannot be applied in reality, because of the great cost the

user has to pay for all of the records of the database. An additional cost is

communication, which is equal to the size of the database. But this cost is
usually negligible in comparison to the cost of purchasing the entire database
content.

2.2 PIR Approaches

Over 30 scientific papers have been published on the PIR subject since the
PIR problem had been formulated in [CGKS95]. We classify the results ac-

12 2 Related Work

Fig. 2.1. The straightforward approaches are: (a) encryption of the communication
and (b) entire database download.

cording to the assumptions that authors rely on in these papers. Algorithms
are not explained due to space limitations. Instead, basic ideas of some of the
algorithms are given.

2.2.1 Theoretical Private Information Retrieval

In theoretical PIR, the user privacy is unbreakable
1
 independently from any

intractability assumptions (that is, independently from the computational

power of a cheater). Chor et al. prove that any Theoretical PIR solution has
a communication with a lower bound equal to the database size [CGKS95].

1
The user privacy is unbreakable iff the content of his queries cannot be revealed.

2.2 PIR Approaches 13

Thus, downloading the entire database is an optimal solution with respect to

the communication amount. Such a solution is called trivial. Consequently, a
non-trivial PIR solution is one that has a communication amount less than

the database size.
With the idea in mind of getting a non-trivial Theoretical PIR solution,

Chor et al. relax the problem setting. They assume that there are several
(instead of one) database servers storing the same data and not communi-
cating with each other. This assumption makes a non-trivial Theoretical PIR
feasible.

The very basic idea in [CGKS95] is to send several queries to several
databases. The queries are constructed in such a way, that they give no

information to the servers about the record that the user is interested in.

But, using the answers from the queries, the user can construct the desired
record.

An additional type of theoretical PIR is considered , when up to servers
are allowed to cooperate against the user.

Ambainis [Amb97] improves the results of Chor et al., and demonstrates
the following non-trivial Theoretical PIR solutions:

A database PIR solution (i.e., a PIR solution with identical databa-
ses not communicating with each other), for any constant with
communication complexity
A database solution with communication complexity

1.

2.

Further research on Theoretical PIR appears in [IK99, Ito99, Mis00, Ray00,
BDS00, Yam01, BI01, Ito01, BS02, BIKR02, GKST02, YXB02, BFG02].
Quantum Private Information Retrieval is a related problem setting, first
mentioned in [KdW02].

PIR of Blocks. PIR of blocks is an extension of a PIR problem. Database
records are assumed to be blocks of several (instead of one) bits. Theoretical
PIR of blocks is introduced in [CGKS95] and further investigated in [CGN97,
Gil00]. Techniques for PIR of blocks are important for making PIR practical.

The cases for blocks were also partially considered in those papers mentioned
in the next sections. Alternatively, the term “block” may be denoted by
“record”.

2.2.2 Computational Private Information Retrieval

In order to obtain lower communication complexity, another assumption was
weakened by Chor and Gilboa [CG97]. “Computational” means that the ob-
server (the server) is presumed to be computationally bounded. That is, under
an appropriate intractability assumption the database servers cannot gain in-
formation about For every Chor and Gilboa present a two database
Computational PIR scheme with communication complexity

14 2 Related Work

In [OS97] Ostrovsky and Shoup construct PIR protocols with the option

to write record at the database in a way that the database servers do

not know about There are protocols both for the Theoretical PIR and

Computational PIR, with two or more servers. For example, for Theoretical

PIR with three servers, they offer a protocol with communication complex-
ity The Computational PIR protocol with poly-logarithmic

communication complexity requires O (log N) rounds in comparison to one

round for most PIR schemes presented in this chapter.

Computational PIR with a Single Database. The first paper on PIR proved

that the Theoretical PIR problem has no non-trivial solutions for the case of

a single database. Surprisingly, the substitution of an information-theoretic
security with an intractability assumption allows to achieve a non-trivial PIR

protocol for a single database schema [KO97]. Its communication complexity

is for any They use an intractability assumption, described
in [GM84]. The basic approach is to encrypt a query in such a way that
the server can still process it using special algorithms. However, the server

recognizes neither the clear-text query nor the result. The result can only

be decrypted by the client. This was also a first single-database protocol,
where designers consider and provide database privacy (please refer to Sec-

tion 2.2.3).

Using another intractability assumption [CMS99], Cachin et al. demon-

strated a single database Computational PIR protocol that has polylogarith-

mic communication. This is an improvement in comparison to polynomial

communication complexity in [KO97]. This result looks particularly effec-
tive, because the user has to send at least log N bits just to address the

bit (the bit he wants to receive) in the database, independently from whether

the protocol preserves privacy or not. A scheme with better results appears

in [KY01].

2.2.3 Symmetrical Private Information Retrieval

Symmetrical PIR is a PIR problem, where the privacy of the database is con-
sidered. That is, a Symmetrical PIR protocol must prevent user from learning

about more than one record of the database during a session. Clearly, sym-
metrical privacy (database privacy) would be required for practical applica-
tions, since only then is an efficient billing possible. Symmetrical PIR protocol
for a single server was first considered in [KO97]; and for several servers it

was considered in [GIKM98]. Other symmetrical PIR were later proposed in
[Mis00, MS00, NP99a]. The protocols presented in the next three subsections

satisfy the symmetrical PIR criteria as well.

2.2.4 Hardware-Based Private Information Retrieval

The protocol in [SS01] attains optimal communication complexity – O(1)
record per query (Figure 2.2). The protocol uses a secure coprocessor (SC)

2.2 PIR Approaches 15

Fig. 2.2. An example of a PIR protocol with SC.

[Yee94, SPW98, DLP+01], a device installed on the server that can be briefly

described as follows:

The SC consists of a processor with some RAM and ROM all-over protected
physically. No one can see the data processed inside the SC.

There is software installed inside the SC. In particular, it may be software

implementing a PIR protocol (see Figure 2.2).
The SC generates a private/public key pair. The private key is kept inside

the SC. The public key is available to everyone for securely communicating

with the SC, without revealing the data to third parties, including the

server.
To any user the SC can always prove, which software is installed and
whether it was changed in the past.

The idea of Smith et al. is to use a SC as a black box installed at the
server site. The selection of the requested record takes place inside the SC.

The basic protocol runs as shown in Figure 2.2. The client encrypts the query

“return the record” with a public key of the SC, and sends it to the SC
via the server. The SC receives the encrypted query, decrypts it, and reads

through the entire database (by interacting with the server), but but only

leaves the requested record in memory. The protocol is finished after the SC
encrypts the record with the user’s key and sends it to the client. The server

16 2 Related Work

has no evidence of because the SC asks the server for the entire database

in order not to reveal the record the user is interested in.
Whether it is possible to obtain a PIR protocol with the same communi-

cation complexity without a SC, i.e., using a software-based approach only,

is an open issue. Anderson points out that the well-believed statement “ev-
erything in hardware can be implemented in software” may not be the case

with secure coprocessors, in principle ([And01], p.278).

2.2.5 Further Extensions of the Problem Setting

As can be seen in previous sections, most of the initial work on PIR has fo-

cused on the goal of optimizing communication, because communication was

considered to be the most expensive resource. Despite considerable success
in realizing this goal (especially in [SS00]), the real-life applicability of the

proposed solutions remains questionable [BIM00]. The reason is that in most

solutions, the computation time required by the servers is at least linear in

database size
2
; and the typical scenario for using PIR protocols is when the

database is large.

To solve this problem, Gertner et al. propose a scheme where most compu-

tation workload is moved from the database server to special purpose servers

[GGM98]. While their protocols reduce computation for the database server
to O(1), the computation of the special-purpose servers is still linear for every

query.

Di-Crescenzo et al. present another PIR scheme [CIO98] that utilizes
special-purpose servers. In this model, most computation and communica-

tion is moved off-line (i.e., it is performed only once, independently from the

number of further queries). Both in [CIO98] and in [GGM98] the user privacy
is not protected if all servers cooperate against the user.

While Gertner et al. moved most computation to a more convenient place

(special-purpose servers) [GGM98], Beimel et al. shifted most computation

to a more convenient time (off-line). It is demonstrated that, while operating

without any preprocessing linear computation is unavoidable, with prepro-
cessing and some extra storage computation can be reduced. Namely, Beimel

et al. have the following results for the Theoretical PIR and any and

1. A k-server protocol with communication,

work, and extra storage bits.

2 . A k-server protocol with communication and work, and
extra storage bits.

The ability to offer targeted web advertising without revealing user pref-

erences (a problem similar to PIR) is investigated in [Jue01].

The server has to read the entire database to answer one query. If the server-side
protocol leaves one of the records unread, then the server can conclude that this
record is not preferred by the user. This breaks the user privacy.

2

2.2 PIR Approaches 17

Fig. 2.3. An example of a PIR protocol with preprocessing and offline communica-

tion. Steps 1 and 2 are made offline once, and the other steps are performed online
for every query submission.

Comparative Security Analysis of PIR. Relationships between different se-

curity primitives and the PIR problem are discussed in [CMO00, Man98,
KO00, BIKM99, CY01]. We skip any further details on this subject because

this does not relate to the work presented in this book.

2.2.6 PIR with Preprocessing and Offline Communication

Although it does not seem feasible to break the fundamental limitation -

O(N) I/Os to answer one query, one could try to reduce the O(N) query
response time. The idea is to let the database server preprocess as much work
as possible, so that when a query is submitted it would cost only O(1) I/Os

to answer it online. This approach differs from the preprocessing approaches
presented above in that it assumes no additional servers.

With this idea in mind, [BDF00, SJ00] independently present very similar

PIR protocols. Both utilize homomorphic encryption, which is used by the
server to encrypt every record of the database. All of these encrypted records

are sent to the client. This communication has to be done only once between
the client and the server when the PIR protocol starts, independently from

how many PIR queries will be processed online.
If the user wants to query or to buy a record, he selects the appropriate

(stored at the client) encrypted record and re-encrypts it. The user then sends

it to the server and asks to remove the server’s encryption. The server is able
to do this because of the homomorphic property of the encryption. The server

18 2 Related Work

removes its encryption, but cannot identify the record because of the user’s

encryption. It sends the processed record back to the client, where the user

removes his encryption. The protocol is done. Figure 2.3 demonstrates every

step of the protocol.

2.2.7 Work Related to PIR Indirectly

We briefly mention research which does not directly solve the PIR problem,

but from which some ideas may be used or are already in use for constructing

a PIR protocol.
Protocols for Theoretical PIR in [CGKS95, Amb97] have used ideas from

the instance hiding problem [AFK89, BF90, BFKR91] and multiparty com-

munication complexity problem, respectively.

An oblivious transfer problem is similar to the single database PIR prob-
lem, but its research history is 15 years older (see, for example, [Rab81,

BCR86, NP99b]). The similarities and differences between oblivious transfer

and PIR are discussed in [CMO00].

The PIR problem can also be seen as a simple case of secure multiparty

computations in general, and as a computing with encrypted function prob-
lem in particular. For example, the single database PIR protocol in [KO97]

has the same basic idea as used in the scheme of computing with encrypted

function introduced in [ST97]. A hardware-based PIR solution [SS00] is a par-

ticular case of secure multiparty computations based on secure coprocessors

[Yee94].

Finally, for completeness reason we mention, that the earliest (to our best

knowledge) record of a problem similar to PIR takes place in the 17-18th
century

3
; the author is unknown.

2.3 Analysis of the Previous Approaches

In this section, we first agree on the exact evaluation criteria for PIR ap-

proaches. Next, we choose the best (state of the art) PIR solutions in terms

of the evaluation criteria. In addition, we point out to the drawbacks of these
solutions and shortly outline the structure of this book.

2.3.1 Evaluation Criteria for PIR Approaches

Naturally, PIR protocols are judged by query response time and by the

amount of communication between the server and user required to execute a
query.

3 We refer the reader to the story “Go there, I won’t tell you where; Bring me
that, I won’t tell you what” [Afa76].

2.3 Analysis of the Previous Approaches 19

The lower bound of communication between the client and server should

be comparable to the size of one record. The reason for this is that exactly
one record is communicated from the server to the user while answering a

“return the record” query without any PIR.

The query response time depends on the number of database I/Os that

the server must perform. For most PIR protocols proposed, the number of

I/Os per query is O(N), since the server must read the entire database before

answering one query
4
. However, if no PIR is required, it takes only one record

I/O (reading the i-th record of the array) to answer a “return the record”

query. From this we can conclude that the natural lower bound for query

response time complexity for PIR is O(1).
In case there is a preprocessing phase in a protocol in addition to the

two mentioned criteria, two further criteria are considered: Communication

complexity at preprocessing phase and the number of database I/Os that the

server must perform for preprocessing.

2.3.2 State of the Art

The lower bound for communication complexity is reached by a single pro-
tocol in the related work – [SS00, SS01]. Indeed, O(1) records are sent from

the server to the user to answer one query. The main disadvantage of this

protocol is the same as for all other PIR protocols without preprocessing (in-
cluding [KO97, CMS99, KY01]): It is O(N) query response time implied by

the O(N) complexity of the number of I/Os to answer one query (Table 2.1).

The lower bound for query response time is demonstrated by the approach

presented in [BDF00, SJ00]. Using preprocessing and offline communication,

these protocols bypass the fundamental limitation, and gain O(1) query re-

sponse time, i.e., only one record must be processed online to answer a query.

However, the protocols suffer from another drawback: This is offline communi-
cation comparable to the size of the entire database that makes their practical
applicability questionable. Imagine if a user decides to buy a single digital
book or a music file. He will probably change his mind if asked to download

the entire encrypted content of the digital store in order to proceed with the
purchase. Another problem is keeping the client’s database copy up to date.

4 Recall that the server can observe the records uninteresting to the user whenever
the server does not read the entire database to answer a query. Thus, some
information about is revealed, violating the user’s privacy by definition.

20 2 Related Work

2.3.3 Open Problems

After analyzing the PIR model (described in Section 1.1) and the state of the
art PIR approaches (summarized in Section 2.3.2), we identify two general

problems associated with PIR
5
. This book tackles (and updates the state of

the art with new approaches for) both of them.

One general problem is that the existing state of the art in PIR forces the

user to decide between downloading the entire database or waiting O(N)

time for query response in order to execute a PIR query. Both alternatives

are intolerable for large databases. Part II of this book improves the state

of the art in PIR by approaching a solution that has both O(1) commu-

nication and query response time complexities. Note that we stick to the

conventional PIR model in this part.

Another general problem associated with PIR is its unpretentious model,
already discussed in Section 1.1. Part III generalizes the conventional (sim-

ple) PIR model to meet the real-world requirements.

Our observations partially intersect with those given in future work section of a
Ph.D. thesis of Tal Malkin [Mal00].

5

Almost Optimal PIR

Part II

This page intentionally left blank

3 PIR with O(1) Query Response Time

and O(1) Communication

In Section 3.1 we introduce a basic version of the PIR protocol with O(1)

query response time and communication. Section 3.2 formally defines the
privacy property of a PIR protocol. Based on the two previous sections and

Shannon’s information theory, we formally prove in Section 3.3 that the pro-

posed protocol provides privacy property.

3.1 Basic Protocol

Before describing the protocol itself, we will compare our solution to the
previously proposed state of the art PIR protocols. One protocol uses a se-
cure coprocessor to provide optimal O(1) communication complexity and

O(N) query response time [SS00, SS01]. Yet another set of protocols em-

ploys server preprocessing to reduce the response time complexity to O(1)

[BDF00, SJ00], but introduces O(N) communication between the client and

server (Table 3.1). Our protocol, described below, combines the properties

of secure coprocessors with a novel preprocessing approach, attaining O(1)

query response time with an optimal O(1) communication complexity. The
protocol is almost optimal; the only parameter left to improve is the server’s

preprocessing complexity - the least critical one
1
.

We start with the same basic model as described in Section 2.2.4. However,
as a preprocessing phase, the SC shuffles the records before starting the PIR

1 Moreover, improving preprocessing complexity is the subject of the next Chapter.

24 3 PIR with O(1) Query Response Time and O(1) Communication

protocol. That is, the SC computes a random permutation of all records,

and stores this permutation in an encrypted form. The idea is to reveal no
information to the server about which record is which in a shuffled database.

Thus, the SC could access the required records without reading the entire

database.

After the user sends the query “return the record”, the SC does not

read the entire database. Instead, the SC only reads the desired encrypted

record. Next, the encrypted record is decrypted inside the SC, encrypted with

the user’s key, and sent to the user. To answer this query, O(1) computation

and communication is necessary online, resulting in an O(1) query response
time complexity.

Assume that to answer a second query, the SC reads the requested record

only. If the SC reads a different record from the one accessed by the first
query, one concludes that the queries are different. If the SC reads the same

record, then the queries are the same. In both cases some information about

user queries is revealed. Even more information is revealed about one of the

queries if the other one is issued by (and known to) the server itself.

Therefore, to reveal no information about user queries, the SC must read

the previously accessed records first, and then the desired record. In case

the second query requests the same record as the first query, the SC chooses
some random record to read. We formally prove this strategy in Section 3.3.
In particular, the latter case is discussed in Example 3.2.1 of Section 3.2.

We note that the number of records read in order to answer one query

grows with the number of queries answered. Thus it is important to perform

preprocessing periodically to prepare new shuffled databases. Therefore, the

SC can switch to a new shuffled database when some threshold number of

records read per query is reached.

Having introduced the underlying idea, we propose the preprocessing al-

gorithm for the SC in Section 3.1.1, designed to to shuffle a database. The

protocol for the SC and the users is presented in Section 3.1.2. The algorithm
for the SC to process a query online is described in Section 3.1.3. The rest
of Section 3.1 is accessory material. Namely, we show a trade-off between

preprocessing workload and query response time, and discuss choosing the

optimal trade-off in Sections 3.1.4 and 3.1.5 respectively. Finally, we briefly
consider cases with multiple queries and multiple secure coprocessors. The

general scheme is illustrated in Figure 3.1.

3.1.1 Database Shuffling Algorithm (SSA)

The purpose of a shuffling algorithm is to generate a random permutation of
the database records ([Knu81], Section 3.4.2). However, the peculiarity of our

shuffling algorithm is that the SC must not reveal the permutation index to
anyone, not even to the server. We focus on building this specific algorithm,
omitting how the permutation index itself is obtained inside the SC.

25

Fig. 3.1. I/O flows in the proposed PIR protocol.

To produce a shuffled database, the SC executes Algorithm 1
2
. Offline,

the SC invokes a PIR protocol similar to the one described in Section 2.2.4

N times. With each of these invocations it privately reads one record that

is chosen according to the permutation index. It then encrypts and writes

this record to a new database. Having a permutation index to address

these records, the SC can now access any encrypted record directly, without
revealing the identity of the accessed record. The only operations observable

from outside the SC are the read and write operations, which are used to

access external storage.

The complexity of this algorithm is since the SC reads N records

to produce each of the N records in the shuffled database. This is because

we assume herein that only a constant number of records can be stored si-

multaneously in the RAM of a SC3. Otherwise, if for instance all N records
could be stored in a SC, the shuffling can be done with O(N) complexity.
In general, if the SC has enough memory to store records, the shuffling

complexity results in

2 Herein we do not mention the page where an algorithm appears if it is on the
same (or the next) page from where we are referring it.

3 For Algorithm 1, we assume two records (Temp, Record) can be stored in the
SC.

3.1 Basic Protocol

26 3PIR with O(1) Query Response Time and O(1) Communication

Algorithm 1: The basic database shuffling algorithm.

The shuffling algorithm could be run any given number of times before-
hand, to produce several shuffled databases. The only limitation for a prepro-
cessing algorithm is the quantity of additional storage available to the server.

Therefore, Section 3.1.4 defines the preprocessing workload parameter as an
average amount of additional storage (per query) used in preprocessing.

In the following chapters we will consider considerably more complex shuf-
fling algorithms. This is why we call this algorithm the straightforward shuf-
fling algorithm (SSA).

3.1.2 The Protocol

This subsection presents the protocol between the server and clients for pro-
cessing queries. To answer the query, the SC has to read previously
read records first. It then reads one additional record. Evidently, the SC has
to keep a track (T) of the accessed records.

As grows, the query response time grows as well. It is up to the server
to decide for which point to stop and to switch
to another preprocessed (shuffled) copy of the database, so that is equal to
1 again. Since is a constant independent of N, the server has to perform
O(1) computations and I/Os to answer each query online.

The protocol refers to an algorithm required by a SC to process a query,
which is described in the next section.

(1) The SC initializes a query counter loads the index of a shuffled
database into the internal memory, and initializes the track of accessed
records

3.1 Basic Protocol 27

(2)

(3)

(4)
(5)

(6)
(7)
(8)

(9)

(10)

The user comes up with a query Q = “return the record”, or simply

The client and the SC generate and exchange symmetric keys and

using a public key infrastructure.

The client sends the encrypted query E(Q, to the server.
The SC receives and decrypts the query.

The SC runs Algorithm 2 to get the answer
 4

.

The SC sends the encrypted answer E(A, to the client.
The client decrypts the answer.

The SC increments by one.

If the SC switches to a new shuffled database, reloads the

corresponding index, re-initializes the query counter and the

track of accessed records

To process another query, steps 2 through 9 are repeated.

3.1.3 An Algorithm for Processing a Query

Algorithm 2 is executed inside the SC, and is used as a part of the proto-
col. The only operations observable from outside the SC are read operations

for accessing the shuffled database. As discussed above, the complexity of
this algorithm is O(1). The logic of this algorithm was discussed above in

Section 3.1.

3.1.4 Trade-Off between Preprocessing Workload

and Query Response Time

For our protocol it is possible to balance the workload between query process-

ing and preprocessing. Decreasing the amount of online I/Os increases the

preprocessing work, and vice versa. As already introduced in Section 3.1.2,
let be a maximal number of records allowed to be read

online in response to a single query. Obviously, is a trade-off parameter.

As we show in this section, reducing will decrease the response time of the

server, but will increase the amount of preprocessing.

Let be the average number of encrypted records that the SC reads

online to answer a query. This parameter characterizes the average response
time of the server. Let be the average number of encrypted records

that the SC writes during the preprocessing stage in order to be prepared
to answer one query. This parameter characterizes the average amount of

additional storage used by the SC for answering one query. Our equations
below express both parameters using the trade-off parameter.

4
Algorithm 2 uses and T to privately retrieve the requested record into the
SC; it also updates T appropriately.

28 3 PIR with O(1) Query Response Time and O(1) Communication

Algorithm 2: An algorithm for processing k-th query.

The dependencies between the trade-off parameter the online work

and the preprocessing parameter are shown in Figure 3.2 (for N =

10000).

From equations 3.1 and 3.2 we derive the dependence between the pro-

cessing and preprocessing parameters of the protocol.

The last equation exhibits each reduction of the query response time by an

order leading to an increase in preprocessing work by an order.

3.1.5 Choosing the Optimal Trade-Off

One could easily determine the trade-off parameter given the limit for the

query response time of the server.

3.1 Basic Protocol 29

Fig. 3.2. The dependence between query response time (max and average number
of records to read online per query) and preprocessing workload (number of offline
write operations per query).

Another strategy for choosing the trade-off parameter might be minimiz-
ing the overall work defined as the sum of the normalized processing

and preprocessing workload parameters:

where is the normalization coefficient used to normalize the two pa-

rameters.

Fig. 3.3. The overall work done per query (calculated as a sum of normalized
processing and preprocessing parameters) is not constant for different values of the
trade-off parameter.

In Figure 3.3 we show that the overall work does not remain constant
while varying the trade-off parameter. We resolve the optimal trade-off by
finding the roots of the derivative of

30 3 PIR with O(1) Query Response Time and O(1) Communication

For example, if (reading one record while answering a query is

considered equal to writing and storing one record while preprocessing), and

N = 10000, then the optimal trade-off parameter is

3.1.6 Multiple Queries and Multiple Coprocessors

Multi-query optimization may be advantageous for our protocol. When sev-

eral queries arrive at the server, the SC may read previously accessed records
only once, thus eliminating the need to perform this operation for every

query
5
.

Splitting the workload across several SCs is an easy task. For example,

due to little online workload, one SC might be dedicated to answering queries;

and the rest of the secure coprocessors can do the preprocessing work, i.e.

preparing several shuffled copies of the database. Such a simple paralleliza-

tion is possible since preprocessing can be done independently from query

processing.

3.2 Formal Definition of the Privacy Property

The protocol in [SS00] reveals no information about user queries: The only

observable information is that the SC reads all records to answer each query.

It is not that obvious for our protocol that no information is revealed about

user queries. In the next section we formally prove the property that our

protocol reveals no information about user queries.

Before proceeding with the proof, we must formally capture the notion

“no information about user queries is revealed” in mathematical terms. Def-
initions in previous work, such as “communication between the server and
client must be indistinguishable”, are difficult to apply in this case. In our
protocol, not only the communication between the server and client is ob-

servable, but so is the preprocessing work of the SC.

We exploit Shannon’s information theory to use its definition of informa-

tion measure [Sha48]. It is essential for the presentation that we first give a

sketch of how the amount of information is formally measured using infor-

mation theory. In case the reader has a general understanding of information
theory, we advise skipping the next section and proceeding to the privacy
definition presented in Section 3.2.2.

5 Note that the detailed picture for multi-query processing may look more com-
plicated. We have only sketched the basic idea above.

3.2 Formal Definition of the Privacy Property 31

3.2.1 Basics of Information Theory

Informally, the information known about a variable is defined as a pre-

dictability of this variable [Jay94]. The measure of predictability is defined

using the measure of unpredictability (entropy) - the central notion in Shan-
non’s theory. Formally defining entropy is one of the main goals of the

theory. The way this goal is achieved is briefly explained below. During

the preparation of this short survey, several sources were used, including
[Sha48, Jay94, Mac00, Sch96].

Let X be a random variable, and let be the set of values this vari-

able may take. Let the number of elements of the set be N. Finally, by
we denote the element of A random variable X is

presented as a vector of probabilities Similarly,

The amount of information known about variable X is measured by the

entropy of this variable H(X). Informally, the entropy is a measure of the

“uncertainty” of X. If the entropy is zero, one knows the exact value of the

variable – as shown in Equation 3.7 below. If the entropy is maximal for this

variable, one knows nothing about this variable except its size – as shown in
Equation 3.8 below.

The entropy is defined as a function H with the following properties:

1.

2.

H should be continuous in the Otherwise an arbitrary small
change in the probability distribution would still lead to the same big

change in the amount of uncertainty.

This function should correspond qualitatively to common sense, in that

when there are many possibilities we are more uncertain than when there

are few. This condition implies that, for being all equal, the quan-

tity

3.
is a monotonically increasing function of N.

Informally, the measure H should be consistent, i.e., if there is more than
one way of working out its value, the answers must be the same. Formally,
if a choice is broken down into two successive choices, the original value of

H should be the weighted sum of the values of H for individual choices.
Figure 3.4 provides an example. For this special case, we require that

The coefficient 0.4 is the weighting factor.

Shannon’s Theorem proves that the only function satisfying the given prop-
erties is the following one (a multiplicative constant is usually omitted):

32 3 PIR with O(1) Query Response Time and O(1) Communication

Fig. 3.4. Decomposition of a choice from three possibilities.

With the definition of entropy, one can prove the following properties:

The joint entropy, i.e., the entropy of a set of variables is calculated by:

In case of variable independence, the joint entropy is calculated as a sum
of the entropies of the variables:

The joint entropy of a set of variables has the same meaning as the entropy
of a variable. That is, no information about a set of variables is revealed iff
the joint entropy is maximal.

It can be shown that the joint entropy H(X, Y) is maximal iff

Then the maximal entropy is due to (3.10) and (3.11):

In summary, we say that no information is revealed if the corresponding
entropy is maximal. In particular, no information is revealed about a set of
variables if the joint entropy of these variables is maximal. The joint entropy
may only reach its maximum for independent variables, and, in this case, it
can be calculated by the sum of the entropies of the variables.

3.2 Formal Definition of the Privacy Property 33

3.2.2 Privacy Definition

Based on the introduction to information theory, we define the privacy prop-

erty of a protocol as the absence of information about a set of processed

queries (and their results). Due to the information theory, there

is no information revealed about the set of variables if and only if

the joint entropy of these variables is maximal.

Definition 3.2.1 (Privacy Property of a Protocol). Assume that que-

ries are processed using a given protocol. This protocol is private

(i. e. this protocol attains privacy property) iff the joint entropy of variables

is maximal.

We offer the following example to demonstrate the definition.

Example 3.2.1 (Calculating the Joint Entropy). We consider two queries,

and Each of these queries is presented as a variable equal to a number

from 1 to N, meaning the number of the record being retrieved. We consider

two cases. First case: the observer has no information about the set of vari-

ables Second case: the observer has no information about variables,

except the fact that
Intuitively, half of the information about the set of two variables is re-

vealed in the second case. After calculating the joint entropies for both cases,

we check if the joint entropies correlate in the same way.

To calculate joint entropies we need the individual entropies and

The individual entropies and are calculated with (3.6,

Section 3.2.1), using the corresponding probabilities:

In both cases the individual entropies and are maximal
(3.6,3.8):

In the first case, the joint entropy is calculated as the sum of the individual
entropies (3.10):

In the second case, the joint entropy is calculated due to (3.9) for

34 3 PIR with O(1) Query Response Time and O(1) Communication

The last two equations demonstrate the correspondence between the notion

of entropy and our intuition in that the entropy of two unknown independent

variables is twice as large as the entropy of two unknown equal variables.

3.3 Proof of the Privacy Property of the Protocol

Based on the definition of the privacy property (Section 3.2, Definition 3.2.1)

and on the formal description of the protocol (Section 3.1), we formally prove

that our protocol has the privacy property.

Theorem 3.3.1 (The proposed protocol is private). The protocol pro-

posed in Section 3.1 attains privacy property (as defined by Definition 3.2.1).

Proof. Let S be a set of queries (for any executed so far using

the protocol. Due to the definition of privacy (Section 3.2), we have to prove

that, for any observer, e.g. the server, the joint entropy of the set of queries

is maximal:

To prove (3.12), it is sufficient (3.11) to prove two claims:

1.

2.

The queries are independent for an observer:

The entropy of each query is maximal:

We prove both claims by induction. First, we consider the number of queries

Second, we also consider the case of Third, we assume that the

claims are true for and prove the same for

For only one query is processed after the database was shuffled

with Algorithm 1. Due to Algorithm 2, the SC directly reads the required en-

crypted record to answer the query. The first claim is obviously true because

the set of answered queries contains only one query. Since the records were

randomly permutated with the shuffling algorithm, reading the encrypted

record reveals no correspondence to the original record. This proves the sec-

ond claim to be true too:

3.4 Summary 35

Consider the case Due to the protocol, the server answers the

second query after reading the previously accessed record and one of the

unread records from the shuffled database. Since the server reads one of the
unread records independently from whether or not (Lines 16 and
12 of Algorithm 2 respectively), and are independent variables for the

observer. This proves the first claim to be true. Since the database is shuffled,

may be any number from 1 to N with equal probabilities. This proves the

second claim to be also true.

We assume that the claims are true for i.e.,

We consider the execution of the query with Algorithm 2. Since
the SC reads all K previously read records plus one, there is no relationship

between the new query and the previous ones. Taking the last equation into
account, we have:

Similarly, since the SC accesses a shuffled database, could be of any

value with equal probability for the observer.

The proof by induction is complete.

3.4 Summary

Existing PIR protocols either incur intolerable query response time (linear

in the size of the database) or introduce offline communication (between the

user and the server) proportional to the size of the entire database. Thus, it
is infeasible to use these protocols for large databases.

We presented a new PIR protocol with preprocessing that has O(1) re-

sponse time and optimal communication complexity. This property is due
to new periodical preprocessing based on shuffling, and is also due to the

use of a secure coprocessor. Furthermore, we formally proved that our pro-

tocol reveals no information about user queries. We based our proof on the
Shannon’s Theory of Information.

In the next chapter we improve our protocol, in particular by designing a

shuffling algorithm of a lower complexity.

This page intentionally left blank

4 Improving Processing

and Preprocessing Complexity

Section 4.1 tunes the PIR protocol proposed in the previous chapter by re-

ducing its query response time. Section 4.2 tunes the same PIR protocol by
reducing shuffling (preprocessing) complexity. This problem appears to be

considerably more complex than the one in Section 4.1. Thus Section 4.2

presents theoretical results only. The experimental results form the nucleus

of Chapter 5.
In Sections 4.1 and 4.2, the approaches improve different characteristics

of the PIR protocol (query response time or preprocessing complexity). In
order to compare the effectiveness of these approaches with each other, we

propose a single combined criteria to evaluate them in Section 4.3.

4.1 Decreasing Query Response Time

According to our protocol, records must be read from the shuffled database
in order to answer a query online, where is the number of queries answered

using the same shuffled copy of a database. Here we present an approach to

keep the query response time independent from by employing preprocessing

online. The basic idea is to apply our protocol recursively [AS02].

After answering the query, we propose shuffling all the previously

read records. The shuffled database would then consist of the group of pre-
viously unread records and the group of previously read records, now newly

shuffled. Reading one record from each of the two groups would be enough

to answer a query privately. If the “reshuffling” of the previously accessed
records takes place after each query, the query response time remains deter-
mined by 2 I/Os, and is independent of

Periodical switching to a new shuffled database is inevitable however,

because the complexity of online shuffling of the previously accessed records
grows with the number of queries answered, possibly resulting in delays for

processing the following queries.

This unsophisticated approach only improves the query response time,
providing no insights into how the shuffling (preprocessing) complexity could
be decreased. In the next section we propose two approaches to decrease the
preprocessing complexity.

38 4 Improving Processing and Preprocessing Complexity

4.2 Decreasing the Complexity of Shuffling

In this section we describe two independent techniques that decrease the pre-

processing work. First, we design a shuffling algorithm with com-
plexity compared to the straightforward shuffling algorithm (SSA)
proposed in Chapter 3. Second, we show how to recycle used shuffled databa-

ses as another way to reduce the work required for producing a new shuffled

database.

4.2.1 Split-Shuffle-Gather Algorithm (SSG)

The shuffled database used in the protocol must be periodically substituted

with a new one, in order to keep the query response time under a given
threshold. The straightforward shuffling algorithm (SSA) introduced in Sec-

tion 3.1.1 possesses I/O complexity, which is rather heavy for an

algorithm that must be executed periodically. This subsection introduces a
novel shuffling algorithm with improved complexity (named SSG).

We present a preprocessing algorithm with complexity for a SC

(for any and complexity for an untrusted computer (UC)
1
.

Furthermore, we show the optimal complexity for a SC together with a UC

to be (for in contrast to the complexity of the

straightforward shuffling algorithm (SSA) proposed in Chapter 3.
The basic idea of the SSG algorithm is to (i) derive smaller databases

from the original one, (ii) shuffle each of the databases using the same per-
mutation vector, and (iii) gather the shuffled databases into a single shuffled

database. Algorithm 3 formalizes the SSG algorithm while referring to three

sub-algorithms that are explained in the following paragraphs.
Algorithm 4 splits each record of the database DB[N] into equal parts.

For example, the database would consist of the first parts of the

records of the original database; each record of the database would be
of size Obviously, there would be such databases

No SC is needed to perform this algorithm because it can be performed by an

untrusted computer (UC). Figure 4.1(b) shows the output of this algorithm
for

Using Algorithm 5, the SC shuffles all of the databases using the same
shuffling vector
one by one. Shuffling a small database takes I/Os for the SC, because
the SC reads sequential records into its memory at a time. This results in

sequential reads of blocks of size L to shuffle small databases.

Figure 4.1(c) shows an example of an output of this algorithm, for the input

of Figure 4.1(b).

1 By UC we mean any general purpose computational resource without tamper
resistance. For example, the server is an untrusted computer.

4.2 Decreasing the Complexity of Shuffling 39

Fig. 4.1. An example of the preprocessing algorithm for

Algorithm 3: The main preprocessing algorithm.

Algorithm 4: The algorithm for splitting the database.

40 4 Improving Processing and Preprocessing Complexity

Algorithm 5: The algorithm for shuffling the split databases.

Function map used in Algorithm 5 ensures that after each read of a
database (random) records remain in the memory of the SC (array Kept)

which are then written to secondary storage. Formally, at the end of the

read of the database the array Kept contains records from the

Algorithm 6 reassembles the “pieces” of each record into the one record,

such that at query processing time one can access an entire record immedi-
ately, instead of accessing each part of the record from different databases.

Like Algorithm 4, this algorithm can be performed by an UC, and requires
reads, which we count as

Note that we just made a simplification while calculating the complexity

of splitting and gathering parts of the protocol. Namely, we presumed that

splitting (gathering) a record into (from) smaller records requires

However, by one I/O we denote a writing or reading operation of one big

record of L bits. Therefore, in fact, the exact complexity of the splitting (or

gathering) operation ranges from to O(l) I/Os, depending on different
parameters, such as L, page size, seek time, etc.

2
. This is one of the main

reasons for partial disagreement between our theoretical calculations and

experimental ones, made in the next chapter. Chapter 5 provides an in-depth
analysis of the complexity of SSG protocol, backed up by experimental data.

2 For example, the complexity of splitting a record approaches O(1) if is rather
small and L is large. Similarly, the complexity approaches if is large and
L is small.

4.2 Decreasing the Complexity of Shuffling 41

Algorithm 6: The algorithm for assembling the shuffled database.

With the simplification mentioned above, the overall complexity of Algo-

rithms 5 and 6 is Namely, is the complexity of

the SC work, and complexity is due to the work performed by an

UC.

In the following subsection we determine the minimal complexity by vary-

ing parameter

4.2.2 Balancing the Preprocessing Complexity

between SC and UC

In this subsection we study into how many pieces to split the initial database

records, in order to gain optimal (i.e. minimal) complexity of the preprocess-

ing algorithm (Algorithm 3).

Theorem 4.2.1. The minimal complexity of Algorithm 3 is attained for

Proof. As follows from Section 4.2.1, the complexity of the preprocessing
algorithm can be estimated by given that the parameter

of the algorithm is specified.

To find the optimal we determine the minimum of the function

Consequently, the optimal preprocessing complexity is:

This is also demonstrated in Fig 4.2 for N = 10000.

The above result for an optimal is valid if which is a rather

reasonable assumption. Otherwise, if the parameter should be
assigned to the largest possible number, i.e.

42 4 Improving Processing and Preprocessing Complexity

Fig. 4.2. The overall work done to shuffle one database (calculated as a sum of the
number of I/Os for SC and UC) is not constant for different values of

The complexity of the work for the SC can be further reduced to O(N)

while at the same time leading to growth of the same order in the complexity

of the work done by an UC, as shown in Figure 4.3.

4.2.3 Recycling Used Shuffled Databases

Due to our PIR protocol, the SC switches to a new shuffled database after

answering queries, in order to keep the query response time from growing
above the threshold. However, after answering queries, not all
information about the records in the shuffled database is revealed. This can be

interpreted as the SC not using the shuffled database “completely” [AF02b,
AC02]. Instead, it stops using this database and starts using a new one. In

this subsection we sketch an approach towards recycling a used database to
produce a new shuffled database.

We propose to recycle the databases that cannot be used anymore for

query processing. The recycling may be of less complexity than producing
a shuffled copy of the database from scratch. Assume the SC has answered

queries before switching to a newly shuffled database. This means, the

identities of records must be presumed to be revealed. Consequently, the
identities of records remain unknown. We restore the shuffled database

using these records as a foundation. Formally, Algorithm 7 picks one
of the known records and the shuffled records and produces
shuffled records using The SC builds a completely shuffled

database by iterating this algorithm times.

We calculate the complexity for this “recycling” approach. Each of

the items in the equation below corresponds to the complexity of each of the
iterations of Algorithm 7:

4.2 Decreasing the Complexity of Shuffling 43

Fig. 4.3. At preprocessing, reducing the complexity of the SC results in the growth
of the complexity of the UC and vice versa.

Algorithm 7: The iterative shuffling algorithm for recycling a used shuffled
database.

The recycling only makes sense if its complexity is less than the complexity
of shuffling from scratch. The complexity of the proposed recycling is less

than shuffling a database from scratch using the SSA algorithm of
complexity, for all

44 4 Improving Processing and Preprocessing Complexity

This result shows that if the shuffled database is not used too extensively,

i.e., if less than 73 percent3
 of records are revealed, then the recycling is

preferred over shuffling from scratch with the SSA algorithm. On the other

hand, compared with the SSG algorithm presented in Section 4.2.1, our recy-

cling approach has no benefits. That is, shuffling from scratch using the SSG
algorithm takes approximately the same or less time than recycling a used

database
4
.

4.3 Measuring Complexity of the PIR Protocols

We proposed several techniques for improving query processing and prepro-

cessing parts of the almost optimal PIR protocol above. In this section, we

measure how these improvements influence the overall complexity of the pro-

tocol when compared to each other. In order to be able to do this, we must

first define a normalized complexity of a PIR protocol as follows.

4.3.1 A Normalized Measure for the Protocol Complexity

PIR protocols can be distinguished based on their preprocessing complexi-

ties and processing complexities. For example, the almost optimal protocol
proposed in Chapter 3 preprocesses records per query,

while exhibiting processing complexity. In the next subsection

we compare, for example, this protocol to another one with different com-

plexities of preprocessing and query response time. We define a single value
measure for comparing the PIR protocols below.

Let us fix the query response time of a PIR protocol to We then de-

fine the normalized complexity P of a PIR protocol by the complexity of the

preprocessing work done per query. Our definition of the normalized complex-
ity does not take into account the communication complexity of the protocol,
because we only consider the protocols with optimal communication.

For a better understanding of the measurement, assume two PIR proto-
cols. We adjust their processing complexities in such a way that they both

exhibit a query response time Now, the only difference in performance

between them is how much time each of them have spent on preprocessing

3

4

Please note that all calculations are done in O(), thus 73 is a very approximate
number.

The recycling algorithm can also be built based on the SSG algorithm to provide
better recycling complexity. However, consideration of this case lies too far from
the main goals of this book.

4.3 Measuring Complexity of the PIR Protocols 45

each answered query. That is, we assume that during the processing phase

the same amount of work is done. The protocols can then be differentiated
by how much preprocessing work per query is required.

4.3.2. The Measurement

In this section we measure and compare the normalized complexities of (i)

the PIR protocol described in Chapter 3, (ii) the same protocol with im-

proved preprocessing (SSG vs. SSA algorithm) as proposed in Section 4.2.1,

(iii) the same protocol with improved query response time as proposed in

Section 4.1. Finally, we consider the combination of both improvements and
draw conclusions.

1.

2.

3.

The protocol presented in Chapter 3 requires a preprocessing of com-
plexity to be done in order to answer each queries, providing the

following normalized complexity:

The protocol updated as proposed in Section 4.2.1 requires the prepro-

cessing of complexity to be done in order to answer each queries:

The protocol updated as proposed in Section 4.1 has the same processing

complexity in the worst case as the base protocol (Chapter 3). However,

the idea explained in Section 4.1 can be applied to regenerating a used

shuffled database. That is, after the queries are executed, the shuf-

fled database is not deleted. Instead, the accessed records could be

reshuffled, providing a shuffled database able to serve additional

queries5
. This approach can be applied several times. The complexity of

the protocol can be calculated as follows:

5
For details, please refer to Section 4.1.

46 4 Improving Processing and Preprocessing Complexity

Fig. 4.4. The normalized complexities of the basic protocol [AF01, AF02a], and
the two modifications proposed in this chapter are presented as functions of the
maximal query response time for N = 10000.

Finally, we combine the two proposed modifications and measure the nor-

malized complexity of the resulting protocol. Namely, we assume that the
shuffling complexity is (as proposed in Section 4.2.1), and that

the used shuffled databases are refreshed as proposed in Section 4.1. The

complexity of the resulting protocol is then calculated similarly to

To summarize, we show the normalized complexities through in Fig-
ure 4.4. The approach proposed in Section 4.2.1 reduces the normalized com-
plexity of the PIR protocol from to whereas the approach

proposed in Section 4.1 reduces the normalized complexity of the protocol by

a constant factor only.

4.4 Summary

In this chapter we proposed several techniques that improved the query re-
sponse time or preprocessing complexity of the almost optimal PIR protocol

proposed in the previous chapter. We also identified that, among the pre-

4.4 Summary 47

sented approaches, the improvement of the highest degree comes from sub-
stituting the SSA shuffling algorithm with the SSG algorithm proposed in this
chapter. However, all calculations of complexities were done in O() notation,

discarding (even big) constant factors. The next chapter will experimentally

determine the exact performances of SSG, SSA, and a shuffling algorithm

from related work.

This page intentionally left blank

5 Experimental Analysis

of Shuffling Algorithms

The previous chapter proposed a new shuffling algorithm (SSG) and esti-

mated its complexity theoretically. This chapter naturally amplifies the pre-
vious chapter with the experimental analysis of the performance of SSG and

concurrent approaches (SSA and SBS). Section 5.1 describes a shuffling al-

gorithm from related work (SBS). Section 5.2 explains the experiments we

performed to find the best shuffling algorithm among SSA, SSG, and SBS.
Section 5.3 focuses on explaining the paradoxical experimental result from
Section 5.2.

5.1 Shuffling Based on Bitonic Sort (SBS)

Related work suggests employing sorting networks for shuffling in such a
way that the resulting order is not deducible from the data access pattern

produced by sorting [GO96]. Indeed, the basic property of sorting networks is

that the order of comparisons required to sort an array is data independent. If
these comparisons are sequentially performed inside a SC, the sorting order
is not revealed, assuming the records are encrypted before leaving the SC

after each comparison.

Bitonic sort (also known as Batcher’s sort) is the best sorting network with

comparisons [Bat68]. Although there is an O(NlogN) sorting

network [AKS83], it possesses a high constant factor, making the bitonic sort

preferable for any reasonable N.

5.2 Experiments

It is unclear which one of the two algorithms, SSG or SBS, should be chosen

in practice, when shuffling a database. Figure 5.1 suggests, based on the O()

notation, that we use SSG for N < 65000 and SBS otherwise. However, this
suggestion is of a theoretical nature because the O() notation completely
ignores the constant factors. For a more accurate analysis we prototyped and

evaluated all three shuffling algorithms using an available SC.

50 5 Experimental Analysis of Shuffling Algorithms

Fig. 5.1. Theoretically estimated complexities for SSA, SSG, and SBS shuffling
algorithms.

The exact objective of the experiments was to answer the following ques-

tions:

1.

2.

3.

4.

Do the complexities of the shuffling algorithms correspond to the theo-
retically calculated complexities?

If the correspondence is not full, what imposes the difference?
Of the three available algorithms, which is the most efficient practically?

What time is needed to shuffle a sample database using a single secure

coprocessor and the best shuffling algorithm?

5.2.1 Setup Details

The experiments were run on a single machine (Intel 686 350 MHz, 256 MB
RAM, Linux OS), with a single secure coprocessor installed as a PCI device

(IBM 4758-023 with Intel 486 66MHz, 2MB RAM, CP/Q OS).

The general architecture of the prototype is presented in Figure 5.2. We
used C programming language to encode both the functions performed by
the host and the algorithms running in the coprocessor. The code residing
on the host performs I/O requests issued by the coprocessor code and gath-

ers the execution times of the shuffling algorithms. In order to enforce the
speed of coding and debugging the algorithms, a coprocessor emulator was
programmed and used to develop initial versions of the algorithms.

The tests were run automatically for 24 hours a day for 32 days in the
order defined by a test schedule prepared beforehand. The data collected

5.2 Experiments 51

Fig. 5.2. The architecture of the experimental prototype.

is condensed in Figures 5.3 and 5.4 and is discussed and analyzed in the
following subsections.

No encryption was used in the algorithms in order to simplify the tests.

The encryption module of the IBM 4758 introduces practically no delay in
I/O operations: Both with or without encryption the I/O throughout is ap-
proximately 1.0 Mbyte/sec.

5.2.2 Experimental Data Collected

Our data was automatically collected from 180 shufflings, performed using dif-
ferent shuffling algorithms and database parameters. Table 5.1 demonstrates
the parameter intervals governing the tests conducted.

Figure 5.3 shows how the shuffling time depends on the algorithm type
and the number of records in the database N, with the size of a record L and
parameter (for the SSG algorithm) being fixed.

Figure 5.4 is exclusively dedicated to the SSG algorithm, and demon-
strates how the shuffling time depends upon the parameter

52 5 Experimental Analysis of Shuffling Algorithms

Fig. 5.3. The summary of the performance tests for SSA, SSG, and SBS; and
approximating functions for them. The difference between the figure (experiments
for L = 1Mb) and the inset (experiments for L = 0.1Mb) is only observed for SSG
algorithm, whose running time approaches O(N) border for L = 1Mb and
border for L = 0.1Mb .

Fig. 5.4. Finding the optimal value for the parameter of the SSG algorithm
experimentally.

5.3 The Superiority of SSG 53

5.2.3 Analysis

The analysis of the experimental data collected allows us to answer the above
questions:

1.

2.

3.

4.

The experimental data backs up the expected complexities of the al-

gorithms except for SSG, which performs considerably better than ex-

pected. Additionally, the optimal value for SSG’s trade-off parameter
differs from the one calculated in theory.
We explain the difference between theoretical and practical results for

the SSG algorithm separately, in the next subsection (Section 5.3).

The SSG algorithm outperformed the rest in all of the tests that took

place. However, the preliminary calculations based on experimental data

suggest that SBS may dominate SSG for large This prelim-

inary number was obtained by intersecting the approximation functions

for SBS and SSG in the case of L = 1Mb

With a single SC, less than 2 hours are needed for shuffling a database

of 1000 records of 1 Mb each, using the most efficient algorithm available

(SSG). This compares to 294 hours or 26 hours needed for shuffling the
same database using SSA or SBS, respectively.

5.3 The Superiority of SSG

We now discuss two issues related to the unexpected high performance of

SSG revealed by the experiments.

First, we explain which assumptions in Section 4.2.1 led to the partial
disagreement between theoretical and experimental results for SSG. In par-

ticular, we show that under some refined assumptions, SSG performs shuffling
in linear time.

Second, we discuss why linear shuffling time is possible at all. Namely, we

argue that the problem is easier than sorting, and thus is solvable in linear
time in some cases.

5.3.1 Imperfection of the Theoretically Estimated Complexity

of SSG

In Section 4.2.1 we theoretically estimated the complexity of SSG to be
However, the experiments show that the real complexity of SSG

54 5 Experimental Analysis of Shuffling Algorithms

varies between and O(N) (see Figure 5.3), depending on the

database parameters. We enumerate the simplifications made during the es-
timation, which led to the imperfection of the theoretical results:

1.

2.

3.

We assumed the disk I/O speed to be the same as the SC I/O speed. In

fact, disk I/Os are faster (at factor 10 to 30) than SC I/Os. SSA and SBS

perform all I/O operations through the SC, thus this difference plays no

role and corresponding experimental data agree with the theory. SSG
uses the SC for only a part of its I/O operations (shuffling) and does the

rest of the operations (gathering) using the disk only. So these latter I/O
operations of SSG perform at considerably higher speed than SSA and

SBS I/Os, leading to a better performance from SSG than predicted.
We counted different I/Os during the splitting and gathering
parts of SSG, but we ignored that the size of each of these I/Os is

times smaller than the I/Os used by SSA, SBS, and the shuffling part

of SSG. This improves the actual performance of SSG and pushes the

optimal value for higher. Thus, the theoretically calculated optimal

value for parameter for the SSG algorithm is far less than the

experimentally observed one Figure 5.4).

We assumed that the speed of an I/O operation (in bytes per second) does
not depend on the number of bytes transmitted by this I/O. However,
this assumption does not hold for I/Os with a small number of bytes.

The I/Os speeds for (i) the disk, and (ii) especially for the SC, are slower
for I/Os with smaller number of bytes if this number is < 10Kb

 1
. Both

the former and latter affect the speed of SSG for L = 0.1Mb significantly,

because SSG operates with I/Os of size. For L = 1Mb this effect is

less significant. This is why the performance of SSG for L = 0.1Mb does
not resemble the performance for L = 1Mb, as can be seen on Figure 5.3.

On the other hand, the dynamics of SSA and SBS for L = 0.1Mb is the

same as for L = 1Mb, because the I/O size (L) they are dealing with is

larger than 10Kb.

We conclude that the theoretically estimated complexity provides

only an upper bound for the real complexity of SSG, due to simplifications

made in the theoretical calculations. Thus, SSG shuffles in time in
a worst case only, for very large N and small L. Otherwise the complexity is

lower, approaching O(N) for large L or moderate N.

5.3.2 On Minimal Bound for Shuffling Complexity

As discussed in Section 5.1, shuffling a database privately can be performed
by using a sorting network. The sorting network of the best performance is

1 The reason for the former is known to the database community: Seeking a disk
position takes equal time for different sizes of records; and seeking time is negli-
gible as the chunks become larger. The reason for the latter is the device driver
of a SC, which is optimized for large chunks.

5.4 Summary 55

the bitonic sort of complexity. The natural question arises: Why
is a shuffling algorithm (SSG) that outperforms a bitonic sort (SBS) possible?

We offer a simple answer: It is possible because using a sorting network
is not always the optimal way to approach the shuffling problem. That is,
the minimal bound for the sorting network problem is not true for private
shuffling. For example, in the previous subsection we observed that the SSG
algorithm reaches O(N) complexity for certain databases, whereas SBS re-
mains at complexity.

5.4 Summary

In this chapter we reported our experimental results for three shuffling algo-
rithms. The SSG algorithm proposed in the previous chapter is the superior
one, shuffling a sample database of 1000 records 1 Mb each in just 2 hours,
compared to 26 hours shuffling time for the nearest competitor from related
work. Experimental data collected significantly helped us to better estimate
the complexity of SSG, which is surprisingly approaching linear time for some
types of databases.

It seems likely that it is possible to reduce the shuffling times of all the
three algorithms by an order of magnitude if some specifics of the IBM 4758
architecture are taken into account to increase the I/O throughput of the SC
[Per02, LS01].

This page intentionally left blank

Part III

Generalizing the PIR Model

This page intentionally left blank

6 Repudiative Information Retrieval

Existing PIR algorithms reveal no information about a query, nor its results.

In this chapter we propose an algorithm that gives the user a choice in the

trade-off between the protocol complexity and the amount of privacy. Af-

ter the introduction, Section 6.2 defines the relaxed privacy (repudiation)
and a measure to assess the quality of privacy (robustness of repudiation).
Section 6.3 demonstrates a basic Repudiative Information Retrieval (RIR)

protocol with constant robustness of repudiation. Then we show how to con-

struct a RIR protocol with any given robustness of repudiation in Section 6.4.
In particular, we identify conditions that turn our RIR protocol into PIR.

Finally, we mention the related work and discuss some questionable points

of our approach.

6.1 The Need for Trade-Off
between Privacy and Complexity

Important characteristics of a PIR protocol from the user’s point of view are
(i) communication complexity between the user and server, and (ii) the query
response time. Initially proposed PIR protocols possess high complexity in

either communication between the server and user [BDF00, SJ00] or query

response time [KO97, CMS99, SS00, SS01, KY01]. An effort to achieve opti-

mal both communication and query response time results in heavy periodical

preprocessing. O(N log N) I/Os are required for preprocessing before answer-

ing a query (if the SBS preprocessing algorithm is used; Chapter 5 provides
details). With some realistic assumptions it takes the server several minutes
of preprocessing to prepare for answering one query, rendering it intolerable

for dynamic business applications.
A natural question arises as to whether it is possible to reduce the prepro-

cessing complexity by relaxing the strong privacy requirement from “no in-

formation about queries is revealed” to “not much information about queries
is revealed”.

By “not much”, we mean that even if some information is revealed, an

observer cannot determine for sure if the user queried the 1-st, the 2-nd, the

60 6 Repudiative Information Retrieval

3-rd, ..., or the N-th record. That is, the user can deny any claims of the

form “the record you queried is [not] the record”, for any If a pro-
tocol provides users with this repudiation property, we call it a Repudiative

Information Retrieval (RIR) protocol.
Apart from theoretical interest, such protocols would be valuable in prac-

tical scenarios where, provided that the repudiation property is preserved,
users agree to sacrifice some privacy for better performance.

6.1.1 Our Results

In this chapter, we show that if “not much” information should be revealed,

preprocessing complexity is achievable when keeping communication

and query response time optimal. In other words, we construct a RIR pro-
tocol with optimal communication and query response time, and

preprocessing complexity per query (in contrast to O(N log N) preprocessing

complexity required for PIR).

6.1.2 Preliminaries and Assumptions

The database model and the query type remain identical to those in the PIR

model
1
. The only change we introduce is that some information about the

content of the query may be revealed. We denote this information
This information is determined by the specific protocol used.

6.2 Defining Repudiation and Assessing Its Robustness

We define whether or not the repudiation property is supported by a given

protocol in Section 6.2.1. For the cases where the repudiation property is

supported, we suggest the assessment of this property’s robustness in Sec-
tion 6.2.2.

6.2.1 Repudiation Property

Let us assume that the user has run a protocol to execute his query

the record”, or for short. We say that this protocol assures the
repudiation property if can be of any value between 1 and N for an observer.

Therefore, the user can deny any claim of the type “the record you queried

is [not] the record”. Formally, the repudiation property is preserved iff:

1 Namely, we consider a model where users query a database of N records. The
content of a user query is presumed to be of the form “return the record”.
By observer, we mean (anyone in conspiracy with) the database server that
exclusively accesses the database, trying to figure out the content of the user
query.

6.2 Defining Repudiation and Assessing Its Robustness 61

That is, given the information revealed by the protocol that pro-
vides the repudiation property, it must be impossible to exclude any record
from being a target of the user query. If the protocol provides the repudiation
property, we call it a repudiative information retrieval (RIR) protocol. Exam-

ples of probability distributions provided by different hypothetical

protocols
2
 are shown in Figure 6.1 for N = 5.

Fig. 6.1. The probability distributions with or without repudiation property.

Now that we defined RIR, it is important to clearly understand the re-

lationship between RIR, PIR, and a simple retrieval of the required record

without any privacy techniques. We call the former a download for short.
All three are compared in Table 6.1 based on the distributions

they produce. Distribution belongs to a download protocol because all
information about query is revealed, i.e., Shannon’s entropy
Distributions represent protocols that hide some information

about the query. and are produced by RIR protocols (labeled as
in the table), so the user can decline any claims “the record you

queried is [not] the record” for any Note that distribution
although representing a RIR protocol, can also be classified for a PIR

protocol because no information about the query is revealed in this distribu-

2 The probabilities in the distributions on the figure are sorted (in the descending
order) to make it easier to compare the possible patterns of distributions.

62 6 Repudiative Information Retrieval

tion. Distribution does not satisfy 6.1, and thus a protocol with such a

distribution is not a RIR protocol3
.

6.2.2 Assessing the Robustness of Repudiation

As we can see from Figure 6.1, protocols providing the repudiation property

may have different distributions For example, for one RIR protocol

the user query can be guessed with probability 0.5, and for another protocol

with probability of 1/N = 0.2, as if no information about the query were

revealed. Formally, claims about the user query can be true with different

probabilities for different RIR protocols. This observation can be interpreted

as if the repudiation property provided can be of different quality or robust-

ness
4
.

We construct different RIR protocols in the next sections. In order to

differentiate these protocols by the quality of repudiation provided, we may

need an assessment for robustness of repudiation property.

6.2.2.1 Determining Criteria for Robustness. We postulate the min-

imal value for the robustness of repudiation (RR): We say that RR = 0 iff

repudiation (as defined in the previous section) is not preserved. We say that

the robustness of repudiation is maximal (RR = 1) iff no information about

the query is revealed. Thus, a RIR protocol with RR = 1 is a PIR protocol.

For example, we presume for the probability distributions shown in Figure 6.1

that:

In our definition of the criteria for robustness, we must decide how to assess

RR(P) in the open interval]0,1[. For instance, we must decide on values

for and This decision determines, for example, which of

3 However, such a distribution could belong to a RIR protocol if the number of
records in the database is reduced from 5 to 4. We denote protocols producing
such distributions as and do not consider them in this book. Please
refer to Section 6.6.1 for more discussion on the subject.

4 The meaning of the word robustness in statistical analysis is different from one
in plain English. Please do not be confused: We use the word robustness as in
plain English; it can be substituted with a synonym like quality.

6.2 Defining Repudiation and Assessing Its Robustness 63

the two protocols (corresponding to distributions and provides more
robust repudiation. Our approach towards assessing RR(P) in the interval
]0,1[is as follows.

We show how to obtain any distribution P by incrementally morphing

the perfect distribution that corresponds to RR = 1. Specifically, the
morphing is performed by applying a number of elementary changes. An

elementary change is made by altering only two points in the distribution.

This is done by adding some to one probability and subtracting from
another one.

Intuitively, a good assessment function RR(P) must monotonically de-

crease as the distribution is being morphed from to P, because the dis-
tribution moves further away from the perfect distribution with each new
change (Figure 6.2).

Fig. 6.2. The distribution is morphed into through three elementary changes.
Each change increases the difference between the current distribution and

In summary, we postulate that the following three properties are necessary
and sufficient for a function (RR) to serve as an assessment of the repudiation

robustness of a protocol:

1.

2.
3.

64 6 Repudiative Information Retrieval

In the example of Figure 6.2, the third property implies that for any function

RR(P) eligible for assessing robustness of repudiation it must hold:

The task now is to find a function satisfying all three criteria.

6.2.2.2 Function Satisfying The Criteria. An example of a function

satisfying all the three criteria is:

Other functions satisfying the three criteria include, for instance:

Although any of these functions can be used to assess robustness of repudi-

ation, we prefer alternative 6.2 due to its simplicity.

6.3 Basic Repudiative Information Retrieval Protocol

In this section we present an example of RIR protocol. This protocol pro-
vides a particular robustness of repudiation, namely In the

next section we will extend our protocol to provide any given repudiation

robustness.
Similar to the PIR protocols proposed in Part II of this book and in [SS00,

SS01, AF01, AF02a], our RIR protocol uses the notion of a secure coprocessor

(SC). We recall that, from a theoretical point of view, the notion of SC can

be substituted with the notion of the third party that (i) runs the protocol
certified by users and the server, (ii) cannot alter this protocol, and (iii)

discloses nothing above what the protocol specifies to disclose. Consequently,
the data processed inside the SC cannot be observed from outside of the SC.
For a more detailed introduction, we sketched a simple PIR protocol based

on SC in Section 2.2.4.
A basic RIR protocol is provided by Algorithm 8 that runs inside a SC

(Figure 6.4). Before starting this protocol, the SC must prepare database RS

6.3 Basic Repudiative Information Retrieval Protocol 65

Algorithm 8: An example of a RIR protocol.

which later is used as an input for Algorithm 8. Each record in RS is randomly
selected from the original database. Each record is also kept encrypted with
the SC’s private key, so that no one can determine its identity. Algorithm 8

takes one previously not accessed record from RS to answer one query. Thus,
the database RS must be renewed periodically.

In the rest of this section we (i) analyze the robustness of repudiation of
the proposed protocol, (ii) consider the case for multiple queries, and (iii)

discuss the complexity of preparing records for the database RS.

6.3.1 Analyzing the Robustness of the Protocol

The basic idea behind Algorithm 8 is the following. As the SC receives the
query, the SC decrypts it, and obtains – the number of a record desired
by the user. Then the SC reads the next unused record from RS, decrypts

it, and checks if it is the record requested by the user. If yes, the SC reads

a randomly selected record from the original database DB, but sends the

read RS record as a query response, encrypted with the user key. If no, the
SC reads the desired record directly from DB, and sends it as a response,

encrypted. The former and latter outcomes have probabilities of 1/N and

(N – 1)/N, correspondingly:

where function denotes the number of the record from the

original database DB, that record represents in an encrypted form;

denotes the record number read by the SC from DB to answer a query.

66 6 Repudiative Information Retrieval

The probability distribution provided by our protocol is

shown in Figure 6.3. This protocol is repudiative, i.e., equation 6.1 holds,

because an observer can neither reject nor prove that the record of interest

to the user was record number for all

Fig. 6.3. (a) An example of probability distribution corresponding to the proposed
RIR protocol, (b) The distribution pattern for N = 5 (with ordered probabilities).

Not surprisingly, robustness of repudiation provided by our protocol is

less than perfect:

6.3.2 Multiple Queries

The amount of information revealed remains zero for PIR (and for RIR pro-
tocols with full robustness of repudiation) as the number of answered queries

grows. Several questions arise when considering a RIR protocol with RR < 1
executing several queries, because in this case the amount of information re-
vealed is not zero, and may grow with the number of queries answered. If a
user queries a database several times using a RIR protocol, then:

1.

2.

Does the shape of the probability distribution change from
query to query?

Does the probability of a given record (number to be accessed by at
least one of the queries increase with the number of queries answered? If

yes, does it reach 1 for some number of queries?

6.3 Basic Repudiative Information Retrieval Protocol 67

Fig. 6.4. Scheme of a RIR protocol.

The shape of the probability distribution does not change from
query to query, because the queries are executed independently of each
other. Independently from the number of queries answered, the distribution

is of the same form for all queries5. The repudiation property holds
for every query answered.

To answer the second question, we assume that queries have been an-
swered. Formally, we are looking for the probability:

This probability grows with even if no information is revealed. However,
never reaches 1. As a consequence, the robustness of repudiation asso-

ciated with the distribution never reaches 0 even if all of the

user queries are equal. For example, in the case of PIR it holds for

To provide another example, we consider the RIR protocol described in this
section. We also assume that for all queries the SC reads the record number

from the open database. Then, based on equation 6.9 we obtain:

5 For the protocol presented above, this form is depicted in Figure 6.3.

68 6 Repudiative Information Retrieval

This formula can be interpreted as follows. The more times a certain record in
the open database is accessed, the greater the probability that this record was
a target for at least one of the processed queries. However, this probability

never reaches 1 independently from how many queries were answered.
We notice that the conclusions of this subsection also hold for the RIR

protocol presented in the next section, as well as for any other RIR protocol.

6.3.3 Complexity of Preprocessing

We briefly discuss the complexity of preparing one record for the database

RS. For simplicity, we assume that the internal memory of a SC is large
enough to store O(1) database records. The straightforward approach is to
read the entire database through the SC, but select one random record to keep

inside the SC. After the entire database is read through, the SC outputs the
encrypted record and stores it in the database RS. Since the SC must read N

database records, the upper bound for the I/O complexity of preparing one

record for RS is O(N). However, a better complexity can be achieved if the

SSG algorithm is used to generate an RS database
6
. SSG builds a database

of N records using
 7

. This database would be used to answer

N queries, resulting in a preprocessing complexity of I/Os per query.

6.3.4 Summary of the Basic RIR

We have constructed a RIR protocol with both query response time and
communication of O(1) complexity. The preprocessing complexity is

per query, compared to O(NlogN) for PIR with the same query response

time and communication. However, the user might be dissatisfied with the

low robustness provided by the protocol above. We therefore extend our RIR

protocol to provide any specific robustness of repudiation.

6.4 Varying the Robustness of the RIR Protocol

This section considers the problem of constructing RIR protocols with a given
robustness between 0 and 1. Specifically, the first part of this section presents
a RIR protocol with two parameters. Next, we show that by varying these

6 More precisely, a straightforward modification must be applied to the SSG algo-

rithm for it to handle the specific characteristics of the RS database.
7
 As it was explained in Chapter 5, I/O complexity is the upper bound
for the complexity of SSG, because SSG provides higher performance for certain
types of databases. However, in this chapter we will ignore this fact and will only
consider the worst case complexity of SSG.

6.4 Varying the Robustness of the RIR Protocol 69

parameters, a robustness between 0 and 1 can be achieved. In particular,

we show which parameters cause this protocol to gain full robustness, thus
turning it into a PIR protocol.

6.4.1 A Parameterized RIR Protocol

We present Algorithm 9 as an extension of Algorithm 8 (see also Figure 6.5).

The only difference between the two is that in the extended version, the SC

reads records from the RS database and records
from the DB database, whereas for the basic protocol presented

earlier. The query response time of the protocol is and the prepro-

cessing complexity per query is

Fig. 6.5. A RIR protocol with configurable robustness of repudiation.

6.4.2 How Parameters Determine Robustness of Repudiation

Our goal is to see how robustness of repudiation depends on and parame-

ters of the protocol. In order to find the protocol’s robustness of repudiation,

we first calculate the probability distribution
The probability of the query not being among is equal to the

probability of finding the required record among the records read from RS:

The probability of the query being among is calculated as:

70 6 Repudiative Information Retrieval

Algorithm 9: Parametric repudiative information retrieval protocol.

Now, we obtained values for for all (Figure 6.6a):

Finally, we can calculate robustness of repudiation as a function of and
also shown in Figure 6.7:

Note that for equation 6.14 is identical to equation 6.8.

6.5 Related Work 71

Fig. 6.6. The distribution for given probabilities are ordered. (Note
that this graph looks different for different

6.4.3 Turning the RIR Protocol into a PIR Protocol

This subsection determines and such that our RIR protocol can be viewed
as a PIR protocol. We look for and such that our RIR protocol reveals

no information about the query. No information is revealed when and only

when distributions and are identical in Figure 6.6:

Figure 6.8 exhibits the equation above, and shows the relationship between

and by which our protocol performs like a PIR protocol.
It can be shown that the response time of the protocol is equal

to or higher than O(N). This fact makes the use of this RIR protocol for PIR

inefficient, because response times of the original PIR protocols range from

O(1) to O(N) [AF02a, CMS99, SS01].

6.5 Related Work

So far, the literature has not reported any work on relaxing privacy require-

ments for PIR. However, some research that can still be related to our work
does exist.

72 6 Repudiative Information Retrieval

Fig. 6.7. Robustness of repudiation of a RIR protocol is a function of and
(N =1000).

6.5.1 Deniable Encryption

Encryption is deniable [CDNO97, Riv98] if several (or even any) cleartexts

can be thought of as a source of a given encrypted message. Repudiative

information retrieval is similar to deniable encryption, in that any of the

database records can be thought of as a user query target.

6.5.2 Alternatives to the Quantification of Repudiation

Different formalizations of anonymity have been proposed recently [SH02,

Shm02, SS99, SD02, DSCP02]. Most of these are designed to compare the

quality of different anonymizing networks or services.
We cannot apply these approaches to formalize the robustness of repu-

diation provided by a RIR protocol because the subjects differ principally.

Anonymity approaches aim to hide identities of the acting users, while RIR

(with PIR as its extreme form) aims to hide the actions performed by identi-
fiable users. To support the latter, we provided an original quantification for
the repudiation property of RIR, as described above.

An alternative approach to designing quantification for repudiation is
to consider existing measures of distance between probability distributions
[GS02]. Given the probability distribution of PIR as a stan-

dard, one could measure the distances between and any and in
order to compare the robustness of repudiation associated with and

6.6 Discussion 73

Fig. 6.8. Determining and that correspond to a PIR protocol (N = 1000).

We have examined several known measures of distance, and concluded

that these measures are inconvenient to use as a repudiation measure for
several reasons. The main reason is that an RR function based on those
measures would not satisfy the three properties defined in Section 6.2.2.

Finally, we note that Shannon’s entropy measure is unsuitable for measur-

ing the robustness of repudiation. This is because the entropy of a distribution
P with (for some is not necessarily 0, whereas the robustness of

repudiation must be zero in this case as is defined by equation 6.1.

6.6 Discussion

This section is mainly motivated by the questions raised by the WPES’02
auditorium on November 21, 2002.

6.6.1 Redefining Repudiation

We say that the repudiation property is preserved if the observer cannot

eliminate any of the N items as a possible result of the query. A related
question is this: What happens if we substitute the word “any” in the previous

sentence with “some < N”? In other words, one might consider a more
relaxed definition of repudiation, with a certain number of points in the

probability distribution being allowed to be equal to 0.
We did not investigate this relaxed definition because all of the conclusions

made using our strong definition would repeat themselves for the relaxed case.

That is, RIR based on the relaxed definition can be reduced to RIR based
on the strong definition of repudiation by simply considering a database of

records for which repudiation (in the strong definition) is provided.

74 6 Repudiative Information Retrieval

6.6.2 Yet Another Alternative to the Quantification
of Repudiation

This subsection completes the discussion in Section 6.5.2 regarding alterna-

tives for the definition of robustness of repudiation.

The alternative definition we discuss here is informal, and is based on

the following observation. The probability distribution corresponding to full
robustness is a straight horizontal line Figure 6.1, which is the case
of PIR). Furthermore, an example of a distribution with no robustness of

repudiation at all is a curve with a great peak Informally, one could

alternatively define the robustness of repudiation using a measure of the

smoothness of the distribution. A curve with larger and numerous peaks

corresponds to the less robust repudiation, and vice versa.

Our formal definition supports this observation indeed. The morphing

approach we used to formally define the robustness of repudiation is just

another interpretation of the described observation.

6.6.3 Misinforming the Observers

The concept of PIR (RIR) is to reveal no (or partial) information about the

user query. Now, one can consider a kind of generalized concept: Let the user

and the SC act so that not only all (or part of) true information about query

content is hidden, but some false information about the query content is also

revealed to confuse the observer [AD02].

For a better understanding, imagine a user intends to query a digital

book with some compromising title XXX. If he queries this item using PIR,
no information about the title is revealed. The questions are: (i) Does it make

sense (and, (ii) is it possible) to reveal false information about the content of
the query to misinform the observer? Misinformation in this context means

that it appears as if an item with a neutral title YYY is retrieved with

high probability. We believe that these questions require separate and more

detailed investigation; however, we will outline some preliminary answers.

Regarding the first question, it is important to recall that we assume

the sources of the protocols loaded into the SC to be publicly known. This

means, observers (such as the server) will be notified if the protocols are
modified to misinform observers. Thus they will not “buy” (or believe) the

misinformation, and will view any information revealed with scepticism. From
this perspective, such misinformation does not make sense.

Independently from the preliminary answer to the first question, we con-

sider the second one. The RIR protocol proposed in this paper can be easily

modified to support the misinforming feature. Namely, instead of randomly
choosing (or records to read from the plaintext DB[N] database,

the SC must only choose the records from the items with neutral content (as
defined by the user).

6.7 Summary 75

6.7 Summary

We relaxed the privacy requirement of the PIR model so that some infor-

mation about the query may be revealed. However, the information revealed

should not be enough to say definitely whether the user retrieved the record
number 1, or 2, ... or N. In this way the user is provided with the repudiation
property.

We constructed such protocols and we call them Repudiative Information
Retrieval protocols (RIR). Our RIR construction can be customized accord-

ing to the robustness of repudiation required. For a small value of robust-

ness, the preprocessing complexity up to per query can be achieved,

compared to O(NlogN) for PIR with the same query response time and

communication.
Full robustness of repudiation of a RIR protocol means PIR, and so our

RIR protocol can be chosen to serve as a PIR protocol. However, existing
PIR protocols have smaller complexities.

PIR protocols exist as two types: those based on general purpose hard-

ware, and those based on a tamper-proof device. We demonstrated a RIR
protocol constructed with the use of a tamper proof device. A practical RIR

protocol that does not require a tamper proof device remains to be con-

structed
8
 .

8 In fact, constructing a practical PIR protocol without use of a tamper proof
device also remains an open issue [AF02a].

This page intentionally left blank

7 Digital Rights Management for PIR

This chapter considers the problem of providing digital rights management
(DRM) for goods sold by means of PIR. Section 7.1 shows that DRM and PIR

cannot coexist perfectly. Furthermore, Section 7.2 demonstrates how applying
a straightforward DRM scheme violates user privacy. We construct a protocol

that provides for both DRM and user privacy in Section 7.3. In Section 7.4,

we expose a trade-off between the quality of DRM and the amount of privacy

provided, borrowing the relaxed privacy definition from the previous chapter.
Section 7.6 proves that a certain negative property of the proposed privacy–

preserving DRM scheme is unavoidable. This result is of independent interest,

bringing new insight into the research area of electronic voting.

7.1 The Collision between DRM and PIR

Private Information Retrieval provides an execution of user queries over a

database of digital goods such that no information about user queries is

revealed, even to the server that actually accesses the digital goods. Thus, the

provider of digital goods, although owning the server, can get no information

about the content of user queries. All the provider can do is count the number

of queries issued by a single user, and charge him on a pay-per-query basis.

Of course, a PIR protocol must be designed such that no more than one item

per query can be retrieved. It is also assumed that all digital goods cost the
same price. As we will show, even if one accepts these assumptions, a serious

economical problem remains to be solved in order to actually apply PIR.
In practice, the provider may be required to do more than bill the users

on a pay-per-query basis. Namely, he may be required to distribute interests
among copyright holders of the sold goods. If PIR is used to sell digital

goods the provider has no idea of how to distribute the interests, since he

has no information about how many times each digital item is retrieved. Any

distribution of interests based on query information reveals some information

about query content. If we stick to the PIR model (where information about
queries is revealed to no one except for the user), interest distribution is

impossible.

78 7 Digital Rights Management for PIR

Our goal is to eliminate this conflict between DRM and user privacy, by

relaxing the privacy constraint of PIR (i.e., by revealing some information
about user queries in order to be able to perform the distribution of interests).

We now recall our definition of relaxed privacy
1
. While revealing the in-

formation about queries, we aimed at making the disclosure as harmless as
possible to user privacy. Even if some information about queries should be

revealed, the users must be able to deny any claims about their queries. For-

mally speaking, for a database of N digital goods, the users can deny any

claims of the type “the record you queried is [not] the record”, for any

We introduced this property in the previous chapter, and called
it the repudiation property of the protocol. Furthermore, the protocols that

provide this property are Repudiative Information Retrieval (RIR) protocols.

In the following sections, we discuss how to distribute royalties in such
a way that the repudiation property is provided. Specifically, we start by

demonstrating that an obvious way for distributing royalties violates the

repudiation property. Next, in Section 7.3 we propose a RIR protocol with

royalty distribution. This means, we succeed in distributing the royalties

while preserving the repudiation property.
In order to preserve the repudiation property, the distribution of royalties

must be inexact. Section 7.4 analyzes the trade-off between the robustness of

the repudiation provided and the precision of royalty distribution.
Finally, we identify a considerable drawback of the proposed repudiation–

preserving DRM scheme in Section 7.5. Section 7.6 proves this drawback to

be unavoidable. Apart from the DRM context, this proof contributes to the
research in the area of electronic voting. It is partially for this reason that

the proof is conducted using electronic voting terminology.

7.2 DRM without Repudiation

In this section we describe an obvious scheme for distributing royalties. We
also show that this scheme does not support user privacy, i.e., the repudiation

property is not preserved.

The scheme is based on a generalized PIR model. As in the common
PIR model, in a database there are N digital records, each of which can be

retrieved by the users using a PIR protocol. The server bills every user on

a pay-per-query basis. However, each record is from a different owner, and
the server must pay royalties to these owners based on how many times their

records were retrieved.
Let us consider how the royalty for an owner of record is calculated.

We assume that a PIR protocol uses a SC. The SC has access to the content
of all queries processed so far. Therefore, the SC identifies the number of
times each of existing users queried the record (Figure 7.1). It then

1
 For the original discussion please refer to Sections 6.1 and 6.2.

7.2 DRM without Repudiation 79

Fig. 7.1. Straightforward royalty distribution with a SC.

adds these numbers to obtain the number of times the record was

retrieved:

By calculating such a number for every provider, the SC obtains the vector

that indicates how many times each record was retrieved, and

in which proportion the royalties should be paid to each of the N owners.
Herein, we will refer to as a royalty (amount of money)

paid to the owner of record A royalty should not necessarily be calculated
as a sum of accesses to the record.

As a result of this simple royalty distribution scheme, the privacy of the

user can be violated, even if calculating distribution is hidden by means of

the SC. As long as we make no assumptions about the user trusting other

users or owners of the records, it is possible for all participants (users and

record owners) to cooperate against one user (for example, Then, the

number of times this user retrieved a certain record can be calculated as:

This operation can be performed for each record thus provid-

ing a complete picture of how many times the queried every record in
the database.

One may argue that it is unlikely that all of the users would cooperate

against one to violate his privacy. The calculation of outlined above would

then be impossible. However, we argue that all users may indeed cooperate

against one user, because they all may turn out to be unreal, generated by

the server itself to confuse the SC. There is no reliable technique available

that would guarantee a SC or a user that the other users in the protocol
really exist. The same is true for the owners of the records.

In conclusion, a straightforward royalty distribution, even if calculated
inside a SC, would violate user privacy. To preserve privacy of users, the

royalty distribution must be based on a probabilistic function. We propose a
probabilistic royalty distribution scheme in the following section.

80 7 Digital Rights Management for PIR

Fig. 7.2. Repudiation–preserving royalty distribution with a SC.

7.3 RIR Supporting DRM

We propose to make the distribution of royalties non-deterministic. Then the
observer cannot make any claims about queries with confidence; therefore,

the repudiation property would be preserved.

For any executed query we propose that the SC

attaches the royalty to any of the N owners, based on the probability dis-
tribution F. Specifically, with the overwhelming probability the

royalty is assigned to the owner of the record and with the probabil-

ity to any of the rest of the owners
(Figure 7.2).

For any query, the observer cannot eliminate any of the N records as

the query target, even if possessing the information about the distributed
royalties.

In the next section we investigate the relationship between the precision

of the royalty distribution and the robustness of the repudiation provided.

7.4 Robustness of Repudiation vs. Precision
of Royalty Distribution

We employ the measure of the robustness of the repudiation (RR) proposed

in the previous chapter (Section 6.2). is used as the precision factor
for the royalty distribution.

In order to obtain the RR() function, we first discuss the probability
distribution drawn by the observer. We consider only the basic

case, when there is only one user posting one query. We assume that after
the SC receives the query, it assigns the royalty to the owner of the record

This provides for a straightforward calculation of

7.5 The Drawback of the Proposed DRM Scheme 81

Fig. 7.3. The relationship between precision factor for the royalty distribution and
the robustness of repudiation (N = 100).

Based on and the robustness of repudiation definition (equa-
tion 6.2 on page 64), we are now able to draw the RR function:

This equation reveals the relationship between robustness of repudiation
(RR) and the precision factor of the royalty distribution depicted
in Figure 7.3. This figure agrees with our intuition, in that for more robust
repudiation property, sacrificing more precision in the royalty distribution is
required. Furthermore, the repudiation property reaches 1 when the precision
factor i.e., when the royalty is distributed independently
from query content.

Another observation is that RR decreases not only for ap-
proaching 1 but also for approaching 0. The reason is that for

the observer can claim that the record was not the target
of the user query.

In summary, we have formally explained the dependence between the
robustness of repudiation and the precision of the royalty distribution. Gen-
erally speaking, a DRM of better quality decreases the level of user privacy
and vice versa.

7.5 The Drawback of the Proposed DRM Scheme

To identify the drawback associated with the proposed DRM scheme, we
consider Figure 7.2 that represents the scheme. The royalty for every query

82 7 Digital Rights Management for PIR

Fig. 7.4. Rounding off the sum of royalties to preserve the repudiation property
(for

is distributed probabilistically. That is, for every query, with high probability

the royalty is assigned to whom it belongs, otherwise it is assigned

to anyone from the rest of the owners. Therefore, theoretically speaking, it
is not forbidden that an owner receives no royalties, even if his record was
retrieved a number of times. Instead of him, these royalties may be distributed

to the other owners. The drawback of the royalty distribution scheme is that
an owner has no guarantee of receiving some minimal portion of the royalties

belonging to him.

One might try to avoid this drawback. Let us consider Figure 7.1 on

page 79 that presents a royalty distribution scheme without the repudiation

property. Furthermore, we describe two attempts of modifying the distribu-
tion function (sum) in order for this scheme to preserve repudiation while

avoiding the mentioned drawback
2
.

The first modification (Figure 7.4) is based on the idea of rounding off
the sum of the royalties for a given owner before making it public. Then it
is difficult to restore the input of a single user, even if the other inputs and

the rounded off sum are known. Specifically, if the inputs (0,1,1) of all but

the first user and the rounded off sum of the royalties (2) are known, it is

still impossible to say whether the input of the was 1 or 0. The reason

is that the rounded sum remains the same independently of the input of the

Obviously, this royalty distribution approach guarantees that a certain
portion of the royalties will be issued to the owner. However, it can be shown

that this approach does not preserve the repudiation property
3
. At this point,

we only demonstrate an example where the repudiation is broken. Assume
that instead of (0,1,1), the inputs of the all but the first user are (1,1,1).
Then, the result is This result is only possible

iff the input of is 1. That is, the input of the can be revealed.

2 We call these modifications “attempts”, because both will turn out to be unsuc-
cessful.

3 A formal proof is provided in the following section (Section 7.6.2).

7.5 The Drawback of the Proposed DRM Scheme 83

Fig. 7.5. Introducing uncertainty into the royalties to preserve the repudiation
property (for

The second modification (Figure7.5) extends the idea used in the first
modification. Namely, instead of rounding off the sum, we propose to vary

the result probabilistically. For example, if the sum is 3, we would output the

resulting royalty with high probability, and and with

lower probability.

With the second modification we avoid the drawback as well: At least

is assigned to the owner if three records of his are retrieved. However,

the repudiation property is not preserved for this modification. For

the input of the can be revealed, because is only possible if the

input of the is 1.
The discussion in this section is informal and the arguments are made

using examples and counterexamples only. Specifically, we have not proven
the general result: A royalty distribution scheme does not exist that preserves

the repudiation property and is free of the mentioned drawback. In the next

section we formally prove that the drawback explained above is unavoidable if

the repudiation is preserved. Surprisingly enough, we found that by proving

this statement we also resolve a certain problem in the area of electronic
voting. For this reason, we switch to electronic voting terminology while

conducting our proof in the next section. Another reason for switching to the

electronic voting terminology is to make the discussion easier to follow.
The conventions used for switching from DRM/RIR terminology to elec-

tronic voting terminology are shown in Table 7.1. Following these conventions,
the statement that we intend to prove can informally be expressed as follows.
We assume that all voters can cooperate against one voter to reveal his vote.

We also assume that the result is calculated inside a SC, using a given voting

function Then, for a voting function that preserves privacy of the voters

it must hold: For any fixed set of votes, any voting result is possible. Since
this finding is of independent interest, we did our best to present it in such

84 7 Digital Rights Management for PIR

a way that the reading can be performed independently from the rest of the

book.

7.6 Absolute Privacy in Voting

The problem of privacy in voting (e.g. [CGS97]) is assumed to be a special
case of secure multiparty computations [GMW87, Gol99]. That is, the pri-

vacy of a voter is presumed to be preserved if the computation of votes is

performed in a way that nothing but a result is revealed. This goal is trivially

achievable by assuming a third trusted party and private channels between

voters and the trusted party. Most of the work on improving privacy in vot-

ing is concentrated on achieving the same goal with more and more relaxed
cryptographic assumptions [Cha81, CF85, Coh86, Cha88, CFSY96, CGS97].

We claim that achieving the above goal is not sufficient to guarantee

a voter that his vote cannot be revealed, even if underlying cryptographic
assumptions hold. Namely, there is a second, independent problem: Voters,

by cooperating against another voter, may reveal his vote by deducing it from

their own votes and the result of voting4.

Only if both problems are solved, can a voter be sure of his privacy ab-

solutely. That is, a voter then can be sure that even if everybody colludes
against him, his vote stays private.

Clearly, if simply a sum function is used to calculate the result of voting,
then the all-but-one cooperation resolves (and can prove) the vote of a victim
by subtracting the sum of their votes from the result. We are interested
in finding and investigating functions that “smooth” the result in such a
way that the cooperation of all of the other voters cannot prove how the
victim voted (or how the victim did not vote – more on this later). Later in

4 This problem was passed over in all the previous work by assuming that the
majority would never cooperate to break someone’s privacy. The problem is
also present in the voting schemes with so-called unconditionally-secret ballots
[Cha88] or with information-theoretic privacy [CFSY96].

7.6 Absolute Privacy in Voting 85

this chapter, we call such functions “absolutely private voting functions” or

“private voting functions” for short.
If we find such functions, we say that the voters are provided with absolute

privacy, assuming, of course, that the first problem (of calculating a result in
such a way that nothing but a result is revealed) is solved too.

Any constant or, alternatively, some function unknown to the participants
would be a private voting function. So we require that any voting function
we consider cannot be a constant and must be officially known.

One motivation for this problem setting is to find out whether absolute

privacy exists at all or not. Although such a privacy is recognized to be
important

5, we are not aware of any results that deal with absolute privacy

in voting.
Along with its academic interest, the “absolutely private voting” setting

might be practically applicable in cases where the number of voters is small
enough to consider the possibility that all might cooperate against one to
break his privacy.

7.6.1 Preliminaries

Normally, the result of a voting is determined by a well-known function that
maps a set of casts to a voting result. We prove our theorems only for a
particular kind of functions that we call voting functions. A voting function

is defined in Sect. 7.6.1.2. A voting function can be deterministic (one set
of casts refers to only one result) or probabilistic (one set of casts refers to
several results with some probabilities).

Informally, we say that a voter has absolute privacy in voting if no co-
operation can break his privacy. His privacy is broken if some cooperation
of participants may prove how the voter voted. Privacy is also assumed to
be broken if some cooperation may prove how (with what vote) the voter
did not vote

6
. This is a privacy violation too because the voter cannot argue

anymore that he voted with some arbitrary vote. We give a formal definition
and motivation for this kind of privacy later in this section.

We assume that for any cooperation against any voter no information
about his cast is known except the voting result. This assumption is shown
to be impossible if no special hardware is used [Gol99]. However, this assump-
tion can be made due to the commercially available secure coprocessors that
passed FIPS 140-1 Level 4 test (the highest possible rank for a physical and
logical protection) [SPW98]. To avoid referring to earlier chapters, we briefly
recall that such a device provides the calculation of any function in such a
way that nothing but a result is revealed to several independent parties that

5 It is said in [Ger00]: “Voter privacy must be fail-safe - i.e., it must be assured
even if everything fails, everyone colludes and there is a court order to reveal all
election data.”

6 These two cases are the same, if two casts are possible only (like yes/no).

86 7 Digital Rights Management for PIR

provide inputs for this function. From the theoretical point of view, we as-
sume a third trusted party (a secure coprocessor), that processes privately
the result of a voting out of given votes.

We also assume that the result of a voting is made public after the voting.
Figure 7.6 demonstrates the basic architecture of the voting system that we

consider.

Fig. 7.6. Private voting using a secure coprocessor.

7.6.1.1 Our Results. We prove that:

1.

2.

3.

Absolute privacy is not possible for deterministic voting functions (Sect.
7.6.2, Theorem 7.6.2). That is, if one wants to have only one result pos-
sible for the given casts, one never gains absolute privacy in voting.
Absolute privacy is possible for probabilistic voting functions (Sect. 7.6.3,
Theorem 7.6.3). We give an example. Simply speaking, we show how to

conduct voting such that every voter has absolute privacy.
All (probabilistic) voting functions that preserve absolute privacy have a
well-recognized drawback (Sect. 7.6.3, Theorem 7.6.4). Namely, all results
must be assigned to every set of casts with non-zero probabilities, i.e.,
for any set of casts any result is possible.

7.6.1.2 Voting Function. The voting function is formally defined as a
function that satisfies the properties listed below. These three properties (we
call them influence, commutativity, and openness) are used later to prove our

results.
By N we denote the number of voters. R denotes the voting result. The

(values of) casts of participants are denoted by The arguments of
the function represent the casts of voters and are the values from the set V,
the number of elements in the set is The number of possible results is
denoted by For short, below we write instead of

Property 1: Influence. Voters must have an influence on the result of voting,
i.e.

7.6 Absolute Privacy in Voting 87

This means, that a constant is not a good function for voting. However, it
does not state that one vote changes the result. Instead, it only states that
some group of votes can change the result.

Property 2: Commutativity. By this property we require F to be commuta-

tive, i.e.

Property 3: Function Openness. By this property we state that a function
definition is known

7. This property allows us to presume in proofs that an
all-but-one cooperation (that, of course, may include organizers) knows how
to calculate the result of the function for any given input.

Evidently, if nobody knows how the result of a voting is processed, the voting
result does not carry any information. We do not consider this case.

Definition 7.6.1 (Voting Function). A function is a voting function, iff

it satisfies properties 7.2, 7.3, and 7.4.

7.6.1.3 Private Voting Function. In our definition of absolute privacy,
any conspiracy against one voter cannot prove that the voter did not vote
with a particular value.

We provide the following example to demonstrate our definition. A user
has participated in a voting and he is interested in keeping his cast absolutely

private. If one can prove that he did not vote C given that only three casts
were allowed (A, B,C), it would be natural for him to consider this as his
privacy violation. There is a more specific example of why our definition of
absolute privacy is appropriate: Our definition allows a voter to claim that he
voted with any arbitrary cast, while having no fear that someone can prove
opposite.

Herein “absolute privacy” and “absolutely private” are often reduced to
“privacy” and “private”. In this chapter, we do not consider any privacy,
except absolute one.

7 This is a voting scheme property which corresponds to a function used for the
result processing. Therefore this property cannot be expressed as a formal math-
ematical property of a function. This property might be defined as a voting
scheme property, but this would change neither the results nor the proofs. So we
call it “a voting function property” for the sake of a convenient presentation.

88 7 Digital Rights Management for PIR

Definition 7.6.2 (Private Voting Function). A voting function F is pri-

vate iff for any inputs given the first N – 1 inputs and the result

for any it is impossible to prove that

Example 7.6.1. Our example shows what a private voting function might look

like. We assume that there are 100 voters, each votes “1” or “0”. A function

F summarizes the votes and maps the sum to a number from 0 to 9: If the

sum is less or equal to 10, then the result of voting is 0; if the sum is larger

than 10 but less or equal to 20, then the result of voting is 1 and so on:

The function F satisfies all properties of a deterministic voting function.

Suppose only 15 out of the 100 voters vote with “1”. The sum of the

votes is 15, and the function F, by definition, produces the result R = 1.

Conspiracy of any 99 voters can say nothing about the cast of the 100-th

voter. No matter, what was the vote of the 100-th voter (“0” or “1”), the

result would not change. And, by our presumption, nothing but a result is

revealed.
Still, the voting function F is not private, because it does not preserve

privacy for arbitrary input. Let the number of those who voted with “1”

be 10. Then, the result of voting is 0. Now, consider any voter who voted

with “0”. The cooperation of the other 99 voters can realize his vote. More

precisely, in this case, one can prove that the voter did not vote with “1”,

7.6.2 Deterministic Voting Functions

First, we prove a theorem regarding a property any private deterministic

voting function must have. Second, we prove that there are no deterministic

voting functions that have that property.

To start with, we formally mention that we consider deterministic voting

functions:

Theorem 7.6.1. (A Necessary Condition for a Private Determinis-

tic Voting Function). A voting function F is private only if

We note that (7.6) is equivalent to

because if his cast were “1”, then the result would change to 1.

7.6 Absolute Privacy in Voting 89

Proof. Assume, by contradiction, that some voting function F is private, and

(7.6) does not hold:

Let the casts be exactly Thus, we have:

We conclude that N – 1 cooperating voters, who know their own votes
and the result of the voting R, can (due to (7.4)) compute

for all the range of the values of a vote They find

such an that

From the property 7.5 of a deterministic function the cooperating voters
conclude that That is, they can prove that the N-th voter did not

vote with value. (If there are only two possible values for votes, like “yes”

or “no”, they can even tell exactly what his vote was.) Formally, the coalition

of N – 1 voters has the right to conclude that

By definition 7.6.2, F is not a private function. Thus we have a contradiction.

Theorem 7.6.2. (Nonexistence of Private Deterministic Voting

Function). A deterministic voting function cannot be private.

Proof. Assume that a private deterministic voting function F exists. Then

the properties of a deterministic voting function (statements 7.2, 7.3, 7.4,

7.5) are true for F, and F satisfies the necessary condition of a private de-

terministic voting function (Theorem 7.6.1). Starting with this, we lead to a

contradiction.
Let the casts of the voters be and let the result be R:

STEP1. We can find the minimal number of voters that would change
the result by changing their casts. Due to the voting function property 7.2,

this number exists and it is less than or equal to N. Due to Theorem 7.6.1,

this number must be more than 1:

90 7 Digital Rights Management for PIR

STEP2. In (7.7), let us take :

By combining (7.8) and (7.9), we get:

In the last expression, if we take into account property 7.3 of a voting

function, then we get a contradiction to Theorem 7.6.1.

7.6.3 Probabilistic Voting Functions

We considered deterministic functions. Probabilistic functions are more gen-

eral functions, in that they make possible different results with different prob-
ability for unique input.

In our notation, we define a probabilistic function by assigning a finite

set of result–probability pairs for each possible set of casts (see Fig. 7.7).
Considering the example where the result is calculated inside a secure copro-

cessor, a secure coprocessor simply outputs the result in accordance to given
probability distributions.

Fig. 7.7. Visual representation of a probabilistic function.

In this section we prove that although private voting is possible with

probabilistic functions, any result is possible too. This statement might be
viewed as a significant drawback for those who “make some use” of a result
of an absolutely private voting.

From now on, whenever we refer to a voting function, or a private voting
function, we mean a probabilistic voting function or a private probabilistic

voting function, if not specified exactly.

7.6.3.1 Voting Function. First, we shortly rewrite the definitions of voting
function properties because the notations are slightly changed to carry the

notion of probability.

7.6 Absolute Privacy in Voting 91

Property 1: Influence. Voters have an influence on the result of voting, i.e.

This property means that if the distribution is the same for any casts, this

probabilistic function is not good for voting.

Property 2: Commutativity. Voters have an equal influence on the result of
voting, i.e.

Property 3: Function Openness. Voters (or at least organizers) know how the

votes are counted, i.e.

7.6.3.2 Private Voting Function. We continue using the same definition

of a private voting function as in the deterministic case (Definition 7.6.2).

Example 7.6.2. Let us start with the deterministic example given in Sec-

tion 7.6.1. We might try to fix the problem in that example in the following

way:

1.

2.

If the sum is not critical for privacy (like 1,2,3,4,5,6,7,8,9,12,13,14,15,...),
we output the result as before: No privacy is revealed as we discussed.
(Because, for these sums, changing one vote does not change the result.)
If the sum is critical (like 10 or 11), we run some probabilistic function

that outputs results (like 0 or 1) with equal probability.

Suppose 11 voters voted with “1” and the result announced is 1, and 99

voters cooperate against the one (who voted with “1”). They cannot argue

that his vote was “1” (as they do in the deterministic example) because he

could voted with “0” (with the same probability), then the sum would be 10,

but then it would be flipped to the result 1 due to our new voting function
for critical sums.

Still, the described probabilistic voting function does not preserve privacy.
Counterexample: Again, consider 11 voters who voted with “1” and the result

announced is 0, and 99 voters cooperate against the one (who voted with “0”).
They can argue, that his vote was not “1”, because if it were “1”, then the

sum would be 12 and the result 0 would be impossible.

Below we prove formally that the private voting is still possible, but (con-
sidering this example) only if sometimes (very rarely) for all 100 votes “1”

the result 0 appears, and (also very rarely) for all 100 votes “0” the result 9

appears.

92 7 Digital Rights Management for PIR

Theorem 7.6.3. (Existance of a Private Probabilistic Voting Func-
tion). There exists a private probabilistic voting function.

Proof. To prove the theorem, we give an example of a private probabilistic
voting function. In other words, we give an example of a function that satisfies

all three voting function properties listed before (statements 7.10, 7.11, 7.12)

and that preserves absolute privacy of any voter (Definition 7.6.2).
There are 3 voters, two possible casts (0/1 or yes/no) and 4 different

results (Fig. 7.8).

Fig. 7.8. An example of a private probabilistic voting function.

Clearly, the scheme might be generalized for any N, and
It also may be slightly adjusted so that the less the result corresponds to

the set of casts, the smaller probability it has. In our case, for simplicity, all

such probabilities are 0.01.

It is remarkable that removing any single arrow makes the function not pri-

vate. This is the subject of the next theorem.

The next theorem might be seen as a necessary condition for a function to

be a private probabilistic voting function. It also shows how “poor” the voting
functions must represent the result of a voting in order to provide absolute

privacy. Roughly speaking, it proves that nobody can give an example of an
absolutely private voting function, where for all 100 “yes” votes the result
“no” is impossible.

Theorem 7.6.4. (The Flaw of a Private Probabilistic Voting Func-
tion). Any private probabilistic voting function F has the following property:

Proof. We give a very short proof, although it might be extended for better
understanding.

7.6 Absolute Privacy in Voting 93

Let us consider possible results (the probabilities are not zero) for the set

of votes We take one of these (possible) results - R. Starting with
this, we prove that R has a non-zero probability for any other set of votes.
This proves the theorem.

So, we have

Then let us change one of the votes in the set to the arbitrary value. Let it

be Then we can write

If we cannot write the last equation, then, considering the equation before
the last, we have absolute privacy definition violation, if the first N – 1 voters

cooperate against the N-th.
Using the same technique, by changing votes one by one, we achieve

7.6.4 Related Work

To our best knowledge, nothing in the related work tackles the problem set-

ting we consider.

7.6.4.1 Secure Multi-Party Computation. Secure multi-party compu-
tation (SMPC) deals with computing securely any probabilistic function in

a distributed network where each participant holds one of the inputs. “Se-

curely” means that no more information is revealed to a participant than can
be computed from that participant’s input and a result [Gol99, GMW87].

Thus SMPC does not consider the question of how much information about

a single input can be revealed in the result given the other inputs. Our work

might be seen as a partial answer to this question.

7.6.4.2 Electronic Elections. In the research work on security and privacy

in electronic elections (see [Coh86, Cha88, CGS97] for example), an enormous
number of voting schemes have been proposed. The similarity between all
those schemes is that in none of them the voter’s privacy withstands an all-
against-one attack. There is only one exception: Stochastic anonymous voting

is discussed later in this section.
It seems that the hypothetical question of what it costs to protect the

privacy of a single voter (or can it be protected at all) if all-but-one voters

cooperate is not pondered even once.

94 7 Digital Rights Management for PIR

Receipt-Free Voting. To stop vote buying, receipt-free voting [BT94, HS00]

schemes are proposed that prevent (under such assumptions as “private
booth” and “private channel” only) a voter from proving his cast to some-
body else. So the all-against-one conspiracy of voters still may know the

victim’s vote, but they cannot prove it to somebody else. Because in order
to prove it they should prove their own votes, which is made impossible by
the receipt-freeness. Again, the question is not considered how a single vote

might be protected if all other votes are somehow made known.

Stochastic Anonymous Voting. In [KAGN98] a stochastic voting protocol is

proposed with the main idea that the voters have to randomize their votes

before submitting them. A technique is also proposed of how organizers can

force users to randomize their votes. Then, even if all votes are made known,
the voters’ privacy is preserved.

In that protocol, for any set of votes, any result is possible. However, the
question is not considered whether there exists such an absolutely private
voting scheme, that not all results are possible for any given set of votes

8
.

Instead, some statistical properties of the protocol are investigated. And the

primary result of that work is that the accuracy of the voting result improves
as the number of voters increases.

Real Systems. There are a lot of voting systems implemented and offered by

commercial companies. Some of them build their advertising campaigns on
terms like “absolute privacy”

9
. What they probably mean is privacy under

the assumption that an all-but-one conspiracy of voters is impossible.

7.6.4.3 Statistical Disclosure Control. The problem for a statistical

database is how to preserve the privacy of individual data from anyone who

wishes to get some statistics calculated on the set of several individual data

[WdW96]. The absolutely private voting problem is different, since not only
the result of the processing is known, but also all except one individual data
are known too.

7.6.4.4 One-Way Hash Functions. One-way hash functions produce the

result in a way that, given the result and not given some (even relatively

small) part of the input X, it is computationally difficult to say what
is this hidden input equal to [Sch96]. From the first point of view, such

functions might be considered as private voting functions. They are not,
because for one-way functions, although it is difficult to find A :
it costs nothing to find A : And the latter is a privacy violation in

case of voting.

8 And the main achievement of our work is that we give and prove the negative
answer to this question.

9 “Our technology provides for absolute privacy of an individual’s ballot ...” is
officially claimed by one electronic voting company. Yet another company claims
to provide “fail-safe” voter privacy, where fail-safe means that one cannot link a
voter to a vote even if everyone colludes, etc.

7.6 Absolute Privacy in Voting 95

7.6.4.5 Theories of Voting. The mathematics of voting (or, the theory of

voting), in spite of being rather developed [Saa95], has nothing relevant to the

problem we consider. One of the corner goals of the theory is to calculate votes

so that the winner (one of more than two candidates) is “whom the voters

really want” [Saa98]. In this context, an impossibility for some particular

electoral systems [Woo87] is just one of the paradoxes known to the voting

theory [Saa89, Nur99].

A probabilistic voting theory [Cou93] has a goal different from the voting

theory. Probabilistic voting theory is the mathematical prediction of can-

didate behavior in, or in anticipation of, elections in which candidates are

unsure of voters’ preferences. This theory, as well as similar ones – spatial

theory of voting [Ene84, EH90] and a unified theory of voting [SMG99], do

not consider privacy questions.

7.6.4.6 No Voting – No Problem. Some work was dedicated to show that

an election, as a main instrument of democracy, has many disadvantages. The

basic one is that after the election occurs, a winner holds the promises no

more. So, the election is just an illusion.

These disadvantages of an election might be removed just by avoiding

elections. Interestingly, one insists that democracy is still well possible with-

out elections [Mar96]. Instead of elections, other techniques are proposed to

make decisions in the society.

Some of those techniques, like referendums10, have the same mathematical

model as elections, so the privacy problem remains. Other alternatives are

completely different from normal elections, so that the notion of privacy is

meaningless for them. One of the most radical alternatives (the sortition) is

to take randomly one of all allowed outcomes as a result [CM99].

7.6.5 Discussion

We clarify some questionable points of the presented material.

7.6.5.1 The Absolutely Private Voting Scheme Proposed. From some

perspective, using the absolutely private voting function we proposed in The-

orem 3 is not very different from picking candidates at random. And so, one

might conclude the proposed voting scheme is useless.

The proposed voting scheme is a side-effect of our work. So we do not

discuss much about whether this system is good for voting or not - this is

done very well by Kikuchi et al. [KAGN98] using the probability theory. Our

main result is a proof of the paradoxical statement: If one wants to build an

absolutely private voting system, he can do no better than (accidentally very

similar) our or Kikuchi et al. [KAGN98] scheme.

10 Instead of electing politicians who then make policy decisions, these decisions
are made directly by the public voting [Mar96].

96 7 Digital Rights Management for PIR

7.6.5.2 The Definition of Voting Function. Our definition of a voting

function is very general. Basically, it is any non-constant function. The ques-
tion is whether we should define it more strictly. We think that the more

general the functions we consider to prove the theorems, the more universal

these theorems are.

For example, we could improve the definition of a voting function by say-

ing that the voting function should indicate undoubtedly if the majority (or

generally, a given amount) of voters voted for a proposition. But it follows
directly from Theorem 4 that such improved voting functions cannot be pri-

vate. It is also evident that if we substitute “undoubtedly” for “with high

probability” then such private functions exist.

7.6.6 The Implication of Absolute Privacy

In this section we summarize our results on absolute privacy in voting. Voting

is absolutely private if a voter can insist that he voted with an arbitrary cast

(to preserve his privacy) and nobody (in any conspiracy) can prove that he

lies.

Our goal was to investigate whether or not absolute privacy is possible.

And if it is possible, then under which conditions. We considered special types
of functions that are likely to reflect the most important properties of any
voting. For these functions, we proved that absolute privacy holds only if the
voting function is probabilistic and for any set of casts any result is possible.

In summary, absolute privacy has a price. It is up to the participants to

decide whether they want the “real” result or “real” privacy. It is impossi-

ble to have both simultaneously
11

. We have shown that there is a tradeoff

between the absolute privacy of a vote and the precision of a result of the

voting.

7.7 Summary

In the PIR model, distributing royalties between the owners of records would
require revealing information about user queries. However, revealing infor-
mation about queries is prohibited by the PIR model.

We showed how to distribute the royalties while violating user privacy as

little as possible. Namely, based on the concept of the repudiation property

introduced in the previous chapter, we demonstrated a protocol that dis-
tributes the royalties while preserving the repudiation property of the users.
Furthermore, we showed how the precision of our royalty distribution scheme
depends on the robustness of the repudiation provided.

11
 This might be seen as a self-contradiction of democracy: Privacy and voting
are two important aspects of democracy. But we have shown that they cannot
perfectly coexist, i.e., one or the other must inherently be flawed.

7.7 Summary 97

We identified a certain negative property of the royalty distribution

scheme. We also observed that a similar property belongs to any electronic
voting scheme that preserves user privacy. We then switched the context
from DRM/RIR to electronic voting, and proved that this property cannot

be avoided. This result contributes to the state of the art in the area of

electronic voting.

This page intentionally left blank

Part IV

Discussion

This page intentionally left blank

8 Conclusion and Future Work

This chapter summarizes the book by recalling the results of our research,
and by pointing out possible directions for future research.

8.1 Summary

Cormen, Leiserson, Rivest, [CLR90], page 16

Private Information Retrieval (PIR) is the problem of retrieving a single
record from a server’s database of N records such that the server gathers no
information about the identity of the record.

Previous work on PIR was dedicated to answering several theoretical ques-
tions, without paying attention to such practical characteristics as query
response time. This oversight resulted in solutions with low or intolerable

performance. The simple model of the PIR allows one to study this problem
very formally. However, the solutions that fully satisfy this simple model are
difficult to apply to real world problems.

The main contribution of this work is twofold: On the one hand, we de-
signed a PIR solution that outperforms the currently existing PIR approaches

by far, making an application of PIR practically feasible. On the other hand,
we generalized the PIR model such that it better fits the real world, thus mak-
ing our solutions even more practical. We call this book “querying databases
privately” to emphasize that our main goal is to perform research respected
not only by the security community, but by the database community as well.

We briefly enumerate each of the subproblems that we solved in order to
make PIR practical.

An efficient solution for the common PIR model. Our first con-
tribution is a PIR protocol whose communication complexity and query
response time are independent of the number of records in the database.

1.

... This example shows that
algorithms, like computer hardware, are a technology.

102 8 Conclusion and Future Work

a) O(1) Query response time and O(1) communication. The ini-
tially proposed solutions can be divided in two categories. The first
(and the largest) category of solutions aims at reducing communi-

cation between the server and the user; the best solution is based

on a secure coprocessor, and attains O(1) communication comple-
xity. However, all the solutions of the first category offer a query re-

sponse time of O(N) complexity, which is intolerable in many prac-

tical cases. The second category of solutions provides O(1) query
response time by employing preprocessing. However, an amount of

information comparable to the size of the database must be trans-

ferred from the server to the client before the protocol can start.

Our approach possesses the advantages of both categories, but avoids
their drawbacks. Namely, we designed a PIR protocol that has O(1)
communication and O(1) query response time, and requires no pre-

communication. Additionally, we formally prove the privacy property

of our protocol using the concept of maximal entropy from Shannon’s
theory of information.

Efficient shuffling algorithm. Our approach employs preprocess-

ing, as any PIR protocol with query response time less than O(N)

must do. The preprocessing, in our case, consists of shuffling the

database using a secure coprocessor, such that the server does not
know the identities of the records anymore. A single shuffled database

can be used to answer only a limited number of queries, which means
that the preprocessing must be performed periodically. Initially we
proposed a shuffling algorithm (SSA) that performs I/Os in

order to shuffle a database. However, even rough theoretical estima-
tions show that this complexity will result in days or even weeks of

preprocessing time. Therefore, we designed SSG – a shuffling algo-

rithm whose complexity we initially estimated to be Taking

into account that reading a database completely requires O(N) I/Os,

a database shuffling algorithm of complexity can be consid-
ered to be nearly optimal.

Experimental evaluation of shuffling algorithms. There is an
alternative shuffling algorithm that we discovered later in related
work. This algorithm (we denote it by SBS), is based on the bitonic

sorting network, and requires I/Os to shuffle a database.

The complexities of the SSG and SBS lie relatively near each other.
Additionally, these complexities are both presented in O() notation.

Therefore, even one order of difference in the factor (hidden under

O() notation) may determine whether SSG or SBS is superior. We
implemented SSA, SSG and SBS and used an available secure co-

processor to evaluate these protocols experimentally. In our tests,
SSG outperforms SBS by approximately one order of magnitude.
This observation, together with other experimental data, revealed

b)

c)

8.1 Summary 103

that our initial theoretical calculations underestimate the

performance of SSG. We took a closer look at the estimation of SSG

complexity and discovered that is only an upper boundary

for its complexity. More precisely, the complexity of SSG varies be-

tween and O(N), depending on database parameters such as

the size of the records and the number of records (N) . SSG employs

many I/O operations with fractions of a record, and the smaller the

record the slower the disk’s and SC’s I/Os. Generally speaking, SSG

approaches O(N) complexity either for large enough records or if the

random access memory is used instead of the secondary storage and

a SC is optimized for short I/Os.

Elaborating the PIR model. The second part of our results elaborates

the PIR model in order to make it more flexible and practically appli-
cable. There are two generalizations of the PIR model that we proposed

and investigated.

2.

a) Relaxed privacy definition (repudiation). All of the PIR pro-

tocols from related work only consider full privacy. Our first gener-

alization introduces the notion of relaxed privacy (repudiation). We

construct protocols that provide such privacy in order to offer the

user a trade-off between the level of privacy and the complexity of the

protocol. Before constructing protocols that provide relaxed privacy,

we faced the problem of defining relaxed privacy and quantitatively

measuring its robustness. An additional obstacle was that Shannon’s

measure of revealed information is not applicable as a measure of the

relaxed privacy for our case. Applying the same approach as Shannon

used to define his measure of information, we formulated a set of con-

ditions that must hold for the measure of relaxed privacy. We then

postulated that every function that satisfies these conditions is suit-

able for measuring the robustness of relaxed privacy, or robustness

of repudiation for short.

Repudiative information retrieval (RIR). Based on the defi-

nition of repudiation, we initially built a protocol that provides re-
pudiation, but this repudiation was only of a particular robustness.

Next, we extended our protocol to provide an arbitrary robustness

in the range from 0 (no repudiation) to 1 (full robustness of repudi-

ation). Naturally, the RIR protocol that provides full robustness of

repudiation resembles a PIR protocol, thus providing no advantages

(in this case) over PIR. However, if the user is ready to sacrifice some

privacy for better performance of the protocol, then RIR protocols

come into play, providing performance that none of the existing PIR

protocol has succeeded in demonstrating. We formally exposed the

exact relationship between the complexity of our RIR protocol and

the robustness of the repudiation provided.

b)

104 8 Conclusion and Future Work

Distribution of royalties. Our second generalization removes the

assumption that there is only one owner of digital goods stored in

the database. We consider the problem of distributing royalties be-

tween the owners of digital goods depending on how many retrievals

of each record took place. The challenge we had to overcome was that

PIR requires no information to be revealed about the content of the

queries. Thus, no information would be available for the server to use

in deciding how to distribute royalties. We employed our previous re-

search on relaxed privacy, which we called repudiation, to allow some

information about queries to be revealed for use in royalty distribu-

tion. However, this information should be revealed in a way that

the repudiation property is preserved. We demonstrated a royalty

distribution scheme that fulfills this requirement. Furthermore, we

identified that any royalty distribution scheme that provides repudi-

ation property for the users also produces a certain sort of inaccuracy

in the distribution of royalties. We proved that this drawback is un-

avoidable. Surprisingly, this negative result can also be interpreted

in the context of another research area – electronic voting.

c)

8.2

This section discusses problems that are associated with querying databases

privately, but go beyond the scope of this book. Solving any of these problems

would continue the research presented in this book.

8.2.1 Querying Databases Privately

without Tamper-Resistant Hardware

Most of the algorithms proposed in this book utilize a secure coprocessor –

a device that runs programs while ensuring that it is not tampered with.

Our protocols require a secure coprocessor at the server’s (service provider’s)

site only (and no secure coprocessor for clients is needed), which is still a

limitation.

It remains an open issue to prove formally that this limitation is unavoid-

able, or to find practical algorithms that run without (or with negligible
assistance of) a tamper-resistant device installed on the server.

Future Work

Frederick P. Brooks, Turing award recipient

Dissertations are not finished; they are abandoned.

8.2 Future Work 105

We provide two starting points for this direction of research.

Anderson, being one of the leading experts in the security community,
points out that the widely accepted statement “everything in hardware
can be implemented in software” may not be the case with secure co-
processors, in principle ([And01], p.278). However, the exact distinction
between what can be done by a secure coprocessor and what can be done
by software has not been drawn yet. Finding and formally stating this
distinction may help to clarify whether or not a SC is the only option for
querying databases privately.
In contrast to the general-purpose hardware, a secure coprocessor is a
type of special hardware, meaning it is not sold with every computer
server by default. An interesting direction would be to look for solutions
that employ general-purpose hardware instead of the special hardware.
More precisely, one might try to use emerging general-purpose tamper-
resistant technologies (like Compaq, HP, IBM, Intel and Microsoft’s ini-
tiative called TCPA [And02] or Transmeta’s initiative [Cor03]) to con-
struct protocols such as PIR. An obvious barrier in this direction is that
the emerging general-purpose tamper-resistant hardware is slower and
less secure, at least at the present time.

1.

2.

8.2.2 Elaborate Query–Database Models

We have made two efforts to extend the PIR model as described in Chapters 6
and 7. However, we believe that it might be of practical interest to further
extend and elaborate the PIR model. For example, an extension of the set of

supported query types is needed if we want to offer the user the capability
to fire not only queries of the type “return the record” but also of the
type “What books of Po Bronson do you have in your digital store?”.

This exact type of query appears to be of particular necessity for practical
applications, because very often the user must run a search query to find the
record of his interest before actually retrieving this record from the database.

Although we believe that this case requires additional investigation, there
are two straightforward approaches that allow the user to search privately.
One approach is to download the catalog (of patent abstracts or book de-
scriptions) and to browse it locally. Another approach is to execute search
queries with a SC on the server, by applying our approach of querying records
privately to access a search index.

A similar, but more complicated task is constructing an efficient Internet
search engine that allows the users to search privately.

This page intentionally left blank

References

[AC02]

[AD02]

[AF01]

[AF02a]

[AF02b]

[AF02c]

[Afa76]

[AFK89]

[AKS83]

[AKSX02]

[Amb97]

[And01]
[And02]

[AS02]
[ASF01]

[Aso01]

Dmitri Asonov and Don Coppersmith. Private communication, Novem-
ber 2002.
Dmitri Asonov and Neil K. Daswani. Personal communication, Novem-
ber 2002.
Dmitri Asonov and Johann-Christoph Freytag. Almost optimal pri-
vate information retrieval. Technical Report HUB-IB-156, Humboldt
University Berlin, November 2001.
Dmitri Asonov and Johann-Christoph Freytag. Almost optimal pri-
vate information retrieval. In Proceedings of 2nd Workshop on Privacy
Enhancing Technologies (PET2002), San Francisco, USA, April 2002.
Dmitri Asonov and Johann-Christoph Freytag. Private information re-
trieval, optimal for users and secure coprocessors. Technical Report
HUB-IB-159, Humboldt University Berlin, May 2002.
Dmitri Asonov and Johann-Christoph Freytag. Repudiative informa-
tion retrieval. In Proceedings of the 1st ACM Workshop on Privacy in
the Electronic Society (WPES2002), Washington DC, USA, November
2002.
Alexander Afanas’ev. Russian Fairy Tales. Random House, October
1976.
Martin Abadi, Joan Feigenbaum, and Joe Kilian. On hiding information
from an oracle. Journal of Computer and System Sciences, 39(1):21–50,
1989.
Miklós Ajtai, János Komlos, and Endre Szemeradi. An o(nlogn) sorting
network. In Proceedings of the 25-th ACM Symposium on Theory of
Computing, 1983.
Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu.
Hippocratic databases. In Proceedings of the 28th VLDB Conference,
Hong Kong, China, August 2002.
Andris Ambainis. Upper bound on the communication complexity of
private information retrieval. In Proceedings of 24th ICALP, 1997.
Ross Anderson. Security Engineering. Wiley, 2001.
Ross Anderson. Tcpa / palladium frequently asked questions.
http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html, July 2002.
Dmitri Asonov and Sean Smith. Private communication, April 2002.
Dmitri Asonov, Markus Schaal, and Johann-Christoph Freytag. Abso-
lute privacy in voting. In Proceedings of Information Security Confer-
ence 2001, Malaga, Spain, October 2001.
Dmitri Asonov. Private information retrieval - an overview and current
trends. In Proceedings of the ECDPvA Workshop, Informatik 2001,
Vienna, Austria, September 2001.

108 References

[Bat68]

[BCR86]

[BDF00]

[BDS00]

[Bea00]

[BF90]

[BFG02]

[BFKR91]

[BI01]

[BIKM99]

[BIKR02]

[BIM00]

[BS02]

[BT94]

[CDNO97]

[CF85]

[CFSY96]

[CG97]

Kenneth E. Batcher. Sorting networks and their applications. In Pro-
ceedings of AFIPS Spring Joint Comput. Conference, Vol.32, 1968.
Gilles Brassard, Claude Crépeau, and J. Robert. All-or-nothing disclo-
sure of secrets. In Proceedings of Crypto’86, 1986.
Feng Bao, Robert H. Deng, and Peirong Feng. An efficient and practical
scheme for privacy protection in the e-commerce of digital goods. In
Proceedings of the 3rd International Conference on Information Security
and Cryptology, December 2000.
Carlo Blundo, Paolo D’Arco, and Alfredo De Santis. A t-private k-
database information retrieval scheme. International J. of Information
Security, July 2000. http://dx.doi.org/10.1007/s102070100005.
Caroline Beaumont. What price privacy when dotcoms go down? NEW
ZEALAND HERALD, September 2000.
Donald Beaver and Joan Feigenbaum. Hiding instances in multioracle
queries. In Proceedings of the 7th STACS, LNCS Vol. 415, Springer
Verlag, 1990.
Richard Beigel, Lance Fortnow, and William Gasarch. Nearly tight
bounds for private information retrieval systems. Technical Note 2002-
L001N, NEC Laboratories America., 2002.
Donald Beaver, Joan Feigenbaum, Joe Kilian, and Phillip Rog-
away. Security with low communication overhead. In Proceedings of
CRYPTO’90, Springer-Verlag, pages 62–76, 1991.
Amos Beimel and Yuval Ishai. Information-theoretic private informa-
tion retrieval: A unified construction. ECCC Report TR01-015, Febru-
ary 2001.
Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. One-way
functions are essential for single-server private information retrieval. In
Proceedings of 31st STOC, 1999.
Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Jean-Francois Ray-

mond. Breaking the barrier for information-theoretic pri-
vate information retrieva. In Proceedings of the 43rd IEEE Symposium
on Foundations of Computer Science (FOCS), Vancouver, Canada,
November 2002.
Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers com-
putation in private information retrieval: PIR with preprocessing. In
Proceedings of CRYPTO’00, 2000.
Amos Beimel and Yoav Stahl. Robust information-theoretic private
information retrieval. In Proceedings of the 3rd Conference on Security
in Communication Networks, Amalfi, Italy, September 2002.
Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections.
In Proceedings of the 26th ACM Symposium on Theory of Computing,
pages 544–553, May 1994.
Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deni-
able encryption. In Proceedings of Advances in Cryptology, (CRYPTO-
97), June 1997.
Josh D. Cohen and Michael J. Fischer. A robust and verifiable crypto-
graphically secure election scheme. In Proceedings of 26th FOCS, 1985.
Ronald Cramer, Matthew Franklin, Berry Schoenmakers, and Moti
Yung. Multi-authority secret-ballot elections with linear work. In Pro-
ceedings of EUROCRYPT’96, LNCS 1070, 1996.
Benny Chor and Niv Gilboa. Computationally private information re-
trieval. In Proceedings of 29th STOC, 1997.

References 109

[CGKS95]

[CGN97]

[CGS97]

[Cha81]

[Cha88]

[CI098]

[CLR90]

[CM99]

[CMO00]

[CMS99]

[CNN00]

[Coh86]

[Cor03]

[Cou93]

[CY01]

[Dis00]

[DSCP02]

[EH90]

[Ene84]

Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Pri-
vate information retrieval. In Proceedings of 36th FOCS, 1995.
Benny Chor, Niv Gilboa, and Moni Naor. Private information retrieval
by keywords. Technical report, Technion: Israel Institute of Technology,
1997.
Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure
and optimally efficient multi-authority election scheme. In Theory and
Application of Cryptographic Techniques, pages 103–118, 1997.
David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–88, February 1981.
David Chaum. Elections with unconditionally-secret ballots and dis-
ruption equivalent to breaking RSA. In Advances in Cryptology: Proc.
of EuroCrypt’88, LNCS 330, Springer Verlag, pages 177–182, May 1988.
Giovanni Di Crescenzo, Yuval Ishai, and Rafail Ostrovsky. Universal
service-providers for database private information retrieval. In Proceed-

ings of 17th PODC, 1998.
Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. In-
troduction to Algorithms. MIT Press, Cambridge, Massachusetts, 1990.
Lyn Carson and Brian Martin. Random selection in politics. Praeger,
1999.
Giovanni Di Crescenzo, Tal Malkin, and Rafail Ostrovsky. Single
database private information retrieval implies oblivious transfer. In
EUROCRYPT 2000, volume 1807 of LNCS, pages 122–138, 2000.
Christian Cachin, Silvio Micali, and Markus Stadler. Computationally
private information retrieval with polylogarithmic communication. In
Proceedings of EUROCRYPT’99, 1999.
CNN. Amazon client checks out. CNN Financial Network,
http://cnnfn.cnn.com/2000/09/13/technology/privacy/index.htm,
September 2000.
Josh Cohen. Improving privacy in cryptographic elections. Technical
Report 454, Yale University, Department of Computer Science, Febru-
ary 1986.
Transmeta Corporation. Transmeta announces first embedded secu-
rity features for x86 microprocessors (press release). http: //investor.
transmeta.com/news/20030114-99407.cfm, January 2003.
Peter J. Coughlin. Probabilistic Voting Theory. Cambridge University
Press, February 1993.
Hsiao Clement Chun-Yun. Private information retrieval does not imply
one-way permutations. Master’s thesis, National Taiwan University,
2001.
Jennifer Disabatino. Disney offers to buy toysmart.com customer
list. CNN News Online, http://www.cnn.com/2000/TECH/computing/
07/14/disney.toysmart.list.idg/, June 2000.
Joan G. Dyer, Mark Lindemann, Ronald Perez, Reiner Sailer, Leendert
van Doorn, Sean W. Smith, and Steve Weingart. Building the ibm 4758
secure coprocessor. IEEE Computer, 34(10):57–66, October 2001.
Claudia Diaz, Stefaan Seys, Joris Claessens, and Bart Preneel. Towards
measuring anonymity. In Proceedings of 2nd Workshop on Privacy En-
hancing Technologies (PET2002), San Francisco, USA, April 2002.
James M. Enelow and Melvin J. Hinich, editors. Advances in the Spatial
Theory of Voting. Cambridge University Press, September 1990.
James M. Enelow, editor. Spatial Theory of Voting. Cambridge Univer-
sity Press, 1984.

110 References

[Ger00]

[GGM98]

[GIKM98]

[Gil00]

[GKST02]

[GM84]

[GMW87]

[G096]

[Gol99]

[GS02]

[HS00]

[IK99]

[Ito99]

[Ito01]

[Jay94]

[Jue01]

[KAGN98]

[KdW02]

[Knu81]

[KO97]

Ed Gerck. Internet voting requirements. The Bell, 1(7):3–5,11–13,
November 2000.
Yael Gertner, Shafi Goldwasser, and Tal Malkin. A random server model
for private information retrieval. In Proceedings of 2nd RANDOM, 1998.
Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting
data privacy in private information retrieval schemes. In Proceedings of
30th STOC, 1998.
Niv Gilboa. Topics in Private Information Retrieval. PhD thesis, Tech-
nion - Israel Institute of Technology, 2000.
Oded Goldreich, Howard Karloff, Leonard J. Schulman, and Luca Tre-
visan. Lower bounds for linear locally decodable codes and private
information retrieval. In Proceedings of 17th IEEE Annual Conference
on Computational Complexity, Montreal, Canada, May 2002.
Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal
of Computer and System Sciences, 1984.
Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any
mental game or a completeness theorem for protocols with honest ma-
jority. In Proceedings of STOC’87, May 1987.
Oded Goldreich and Rafail Ostrovsky. Software protection and simula-
tion on oblivious rams. Journal of ACM, 43(3), May 1996.
Oded Goldreich. Preface to special issue on general secure multi-party
computation, http: //www. wisdom.weizmann. ac. il/~oded/PS/preSI.
ps, October 1999.
Alison Gibbs and Francis Edward Su. On choosing and bounding prob-
ability metrics. International Statistical Review, 70(3), December 2002.
Martin Hirt and Kazue Sako. Efficient receipt-free voting based on
homomorphic encryption. In Bart Preneel, editor, Advances in Cryp-
tology – EUROCRYPT’00, volume 1807 of Lecture Notes in Computer
Science, pages 539–556. Springer-Verlag, May 2000.
Yuval Ishai and Eyal Kushilevitz. Improved upper bounds on
information-theoretic private information retrieval. In Proceedings of
31st STOC, pages 79–88, 1999.
Toshiya Itoh. Efficient private information retrieval. IEICE Transac-
tions, E82-A(1):11–20, January 1999.
Toshiya Itoh. On lower bounds for the communication complexity of
private information retrieval. IEICE Transactions, E84-A(1), January
2001.
Edwin Thompson Jaynes. Probability theory: the logic of science.
http://omega.math.albany.edu:8008/JaynesBook.html, 1994.
Ari Juels. Targeted advertising... and privacy too. In Proceedings of
RSA, April 2001.
Hiroaki Kikuchi, Jin Akiyama, Howard Gobioff, and Gisaku Naka-
mura. Stochastic anonymous voting. Technical Report CMU-CS-98-
112, Carnegie Mellon University, February 1998.
Iordanis Kerenidis and Ronald de Wolf. Exponential lower bound for 2-
query locally decodable codes via a quantum argument. In Proceedings
of Electronic Colloquium on Computational Complexity (ECCC), Vol. 9,
2002.
Donald E. Knuth. The art of computer programming, volume 2.
Addison-Wesley, second edition, Jan 1981.
Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed:
Single-database computationally private information retrieval. In Pro-
ceedings of 38th FOCS, 1997.

References 111

[KO00]

[KY01]

[LS01]

[Mac00]

[Mal00]

[Man98]

[Mar96]

[Mis00]

[MS00]

[NP99a]

[NP99b]

[Nur99]

[Ols99]

[OS97]

[Per02]
[Rab8l]

[Ray00]

[Riv98]

[Rot99]

[RS00]

Eyal Kushilevitz and Rafail Ostrovsky. One-way trapdoor permutations
are sufficient for single-database computationally-private information
retrieval. In EUROCRYPT 2000, volume 1807 of LNCS, 2000.
Aggelos Kiayias and Moti Yung. Secure games with polynomial expres-
sions. In Proceedings of 28th ICALP, 2001.
Mark Lindemann and Sean W. Smith. Improving des coprocessor
throughput for short operations. In Proceedings of 10th USENIX Secu-
rity Symposium, Washington D.C., USA, August 2001.
David J.C. MacKay. Textbook on Information Theory, http://wol.ra.
phy.cam.ac.uk/mackay/Book.html, 2000.
Tal Malkin. A Study of Secure Database Access and General Two-
Party computation. PhD thesis, Cryptography and Information Security
Group, Laboratory for Computer Science, MIT, February 2000.
Eran Mann. Private access to distributed information. Master’s thesis,
Technion - Israel Institute of Technology, 1998.
Brian Martin. Democracy without elections. Social Anarchism, (21):18–
51, 1995-96.
Sanjeev Kumar Mishra. On Symmetrically Private Information Re-
trieval. PhD thesis, Indian Statistical Institute, Calcutta, August 2000.
Sanjeev Kumar Mishra and Palash Sarkar. Symmetrically private infor-
mation retrieval (extended abstract). In Proceedings of INDOCRYPT,
LNCS 1977, December 2000.
Moni Naor and Benny Pinkas. Oblivious transfer and polynomial eval-
uation. In Proceedings of the 31th Annu. ACM Symp. on the Theory of
Computing, 1999.
Moni Naor and Benny Pinkas. Oblivious transfer with adaptive queries.
In Advances in Cryptology – CRYPTO’99, volume 1666 of LNCS,
Springer-Verlag, pages 573–590, 1999.
Hannu Nurmi. Voting Paradoxes and How to Deal with Them. Springer-
Verlag, 1999.
Stefanie Olsen. Top web sites compromise consumer privacy. CNET
News Archive,
http: //yahoo. cnet. com/news/0–1007–200–1500309.html, December
1999.
Rafail Ostrovsky and Victor Shoup. Private information storage. In
Proceedings of 29th STOC, 1997.
Ronald Perez. Private communication, November 2002.
Michael O. Rabin. How to exchange secrets by oblivious transfer. Tech-
nical Report TR-81, Aiken Computation Laboratory, Harvard, 1981.
Jean-François Raymond. Private information retrieval: Improved upper
bound, extension and applications. Master’s thesis, School of Computer
Science, McGill University, Montreal, December 2000.
Ronald L. Rivest. Chaffing and winnowing: Confidentiality without en-
cryption. http://theory.lcs.mit.edu/~rivest/chaffing.txt, April
1998.
Mark Rotenber. The online privacy protection act. Electronic Privacy
Information Center,
http://www.epic.org/privacy/internet/EPIC_testimony_799.pdf,
July 1999.
Keith Regan and Clare Saliba. Privacy watchdogs blast ama-
zon. E-Commerce Times, http://www.ecommercetimes.com/news/
articles2000/000914–3.shtml, September 2000.

112 References

[Saa89]

[Saa95]

[Saa98]

[San00]

[Sch96]

[SD02]

[SH02]

[Sha48]

[Shm02]

[SJ00]

[SMG99]

[Smi00]

[SPW98]

[SS99]

[SS00]

[SS01]

[ST97]

[WdW96]

[Wie00]
[Woo87]

Donald G. Saari. A dictionary for voting paradoxes. Journal of Eco-
nomic Theory, (48):443–475, 1989.
Donald G. Saari. Basic Geometry of Voting. Springer-Verlag, December
1995.
Donald G. Saari. Geometry, voting, and paradoxes. Mathematics Mag-
azine, (78):243–259, October 1998.
Greg Sandoval. Failed dot-coms may be selling your private information.
CNET News Archive,
http://yahoo.cnet.com/news/0–1007–200–2176430.html, June 2000.
Bruce Schneier. Applied Cryptography. Wiley, New York, 2nd edition,
1996.
Andrei Serjantov and George Danezis. Towards an information theo-
retic metric for anonymity. In Proceedings of 2nd Workshop on Privacy
Enhancing Technologies (PET2002), San Francisco, USA, April 2002.
Vitaly Shmatikov and Dominic J.D. Hughes. Defining anonymity and
privacy. In Proceedings of Workshop on Issues in the Theory of Security
(WITS ’02), January 2002.
Shannon. A mathematical theory of communication. Bell Systems Tech-

nical Journal, 27, 1948.
Vitaly Shmatikov. Probabilistic analysis of anonymity. In Proceedings
of 15th IEEE Computer Security Foundations Workshop (CSFW), June
2002.
Claus Peter Schnorr and Markus Jakobsson. Security of signed elgamal
encryption. In Proceedings of ASIACRYPT’00, LNCS 1976, December
2000.
III Samuel Merrill and Bernard Grofman. A Unified Theory of Voting.
Cambridge University Press, November 1999.
Sean W. Smith. Webalps: Using trusted co-servers to enhance privacy
and security of web transactions. IBM Research Report RC-21851, IBM
T.J. Watson Research Center, October 2000.
Sean W. Smith, Elaine R. Palmer, and Steve H. Weingart. Using a
high-performance, programmable secure coprocessor. In Proceedings of
the 2nd International Conference on Financial Cryptography, February
1998.
Paul F. Syverson and Stuart G. Stubblebine. Group principals and
the formalization of anonymity. In Proceedings of World Congress on
Formal Methods, September 1999.
Sean W. Smith and Dave Safford. Practical private information retrieval
with secure coprocessors. Technical report, IBM Research Division, T.
J. Watson Research Center, July 2000.
Sean W. Smith and Dave Safford. Practical server privacy with secure
coprocessors. IBM Systems Journal, 40(3), September 2001.
Tomas Sander and Christian F. Tschudin. Towards mobile cryptog-
raphy. Technical Report TR-97-049, International Computer Science
Institute, Berkeley, November 1997.
Leon Willenborg and Ton de Waal. Statistical Disclosure Control in
Practice, volume 111 of Lecture Notes in Statistics. Springer-Verlag,
1996.
Gio Wiederhold. Private communication, June 2000.
Douglas R. Woodall. An impossibility theorem for electoral systems.
Discrete Mathematics, (66):209–211, 1987.

References 113

[Yam01]

[Yee94]

[YXB02]

Akihiro Yamamura. Private information retrieval scheme based on the
subgroup membership problem. Symposium on Cryptography and In-
formation Security, January 2001.
Bennet S. Yee. Using Secure Coprocessors. PhD thesis, Carnegie Mellon
Univerisity, May 1994.
Erica Y. Yang, Jie Xu, and Keith H. Bennett. Private information
retrieval in the presence of malicious faults. In Proceedings of 26th
IEEE International Conference on Computer Software and Applications
(COMPSAC2002), Oxford, England, August 2002.

This page intentionally left blank

Index

Batcher’s sort, see SBS
bitonic sort, see SBS

Compaq, 105

DBIS, vi
defense applications, 9
democracy, 95
DFG, vi
distance, 72
DRM, 77

economics
associated with PIR, vi, 77

encryption
deniable, 72
homomorphic, 18

entropy, see Shannon’s theory

FIPS, 85

GRK, vi

HP, 105

IBM, vi, 105
IBM 4758, see secure coprocessor, 50,

55
Intel, 50, 105

Linux, 50

measure
of information revealed, 30, see
Shannon’s theory
of robustness of repudiation, see
robustness of repudiation

Microsoft, 105
morphing, 63

PCI, 50
PIR

definition
formal, 30
informal, 4

non-trivial, 13

of blocks, 13
quantum, 13

recycling, 42, see shuffling algorithms
repudiation, 59

property, 60
robustness of, 62

reshuffling, see shuffling algorithms
RIR, 59

definition, 60
RR, see repudiation

SBS, see shuffling
SC, see secure coprocessor
secure coprocessor, 15
secure multi-party computation, 18, 93
Shannon, see theory
shuffling

algorithm, 24
SBS, 49
SSA, 24
SSG, 38

experimental analysis, 49
SMPC, see secure multi-party

computation
SQL, 5
SSA, see shuffling
SSG, see shuffling

tamper-resistance, see secure
coprocessor

TCPA, 105
theory

information, see Shannon’s
probability, 62, 95
Shannon’s, 30
voting, 95

Transmeta, 105
trustworthiness, v

unpredictability, see Shannon’s theory

zero information revealed, 30, 66, see
Shannon’s theory

