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Preface

Multiprocessor platforms play an important role in modern computational systems,
and appear in various applications, ranging from energy-limited hand-held/battery-
powered devices to large data centers. As their performance increases, energy
consumption in these systems also increases significantly. Dynamic Voltage and
Frequency Scaling (DVFS), which allows processors to dynamically adjust the
supply voltage and the clock frequency to operate on different power/energy levels,
is considered an effective way to achieve the goal of saving energy. Recently,
energy-aware task scheduling on DVFS multiprocessor platforms has been a hot
topic. Our work in this book surveys existing researches that have been done on
this topic. We notice that energy-aware scheduling problems are intrinsically opti-
mization problems, the formulations of which greatly depend on the platform and
task models under consideration. Thus, we classify existing works according to two
key dimensions, namely, homogeneity/heterogeneity of multiprocessor platforms
and the task types under consideration. Under this classification, other sub-issues
are also included in this book, namely, slack reclamation, fixed/dynamic priority
scheduling, partition-based/global scheduling, task preemption/non-preemption and
application-specific power consumption, etc. Our work provides an overall and
comprehensive survey on energy-aware scheduling on multiprocessor platforms.

Philadelphia, PA, USA Dawei Li and Jie Wu
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Chapter 1
Introduction

Abstract This chapter introduces the energy consumption issue in modern
computational multiprocessor platforms and describes the basic concept of
Dynamic Voltage and Frequency Scaling (DVFS). For ease of understanding
and further discussions on multiprocessor platforms, important concepts related
to energy-aware scheduling on uniprocessor platforms are also made clear first.
For multiprocessor platforms, we mention that several new issues will also be
considered besides the ones considered for uniprocessor platforms. The organization
of the book is provided in the last paragraph.

The primary design goal of computational systems has been about system
performance improvement, where performance is often characterized by processing
speed for a given task. However, as the performance increases, energy consumption
in these systems also increases significantly. High energy consumption becomes
a key problem; in the mobile energy-limited devices, it results in a short lifetime,
and in large data centers, it results in high electricity bills. Thus, energy-aware task
scheduling is drawing more and more attention.

Dynamic Voltage and Frequency Scaling (DVFS), which allows processors to
dynamically adjust the supply voltage or the clock frequency to operate on different
power/energy levels, is considered an effective means of achieving the goal of
saving energy. DVFS is also called Dynamic Voltage Scaling (DVS) in various other
literature, because, in most cases, the supply voltage has a one-to-one corresponding
relation with the operating frequency, and thus dynamically adjusting the supply
voltage is equivalent to dynamically adjusting the clock frequency. Throughout this
book, for consistency, and to eliminate any confusion, only the term DVFS is used.

In past decades, energy-aware task scheduling in DVFS uniprocessor systems
attracted a lot of research interest. Generally, the active power consumption, when
a processor is running tasks, includes both dynamic power (due to switching
activity) and static power (due to leakage current). When static power consumption
is negligible, the active power consumption of a processor can be approximated
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2 1 Introduction

as proportional to the cube of the clock frequency, while the actual execution
time of a CPU cycle is just inversely proportional to the clock frequency. Thus,
the energy consumption per CPU cycle is proportional to the square of the clock
frequency. For a given task, its computation requirement is quantified as the required
number of CPU cycles and is regarded as fixed, more or less. Hence, slowing down
the processing speed (clock frequency) as much as possible, without missing its
predefined deadline, will significantly reduce the total energy consumption. When
static power is non-negligible, using a higher frequency to execute tasks and then put
the processor in shutdown/sleep mode, where power consumption is much less, may
save more energy. Hence, a tradeoff between slowdown and shutdown is required.

Multiprocessor platforms are playing important roles in modern computing
systems, and they significantly improve the performance of computational systems.
Consequently, energy consumption in these systems also increases significantly.
Recently, energy-aware scheduling in multiprocessor DVFS systems has become a
hot research topic in both academic and industrial societies. In addition to slowdown
and shutdown, in multiprocessor systems, it is also important to determine the
optimal number of processors that should be used. This is because, on the one hand,
by using more processors, these processors can operate at lower frequencies, leading
to the reduction of dynamic energy consumption; on the other hand, using more
processors will increase the static energy consumption. Besides, determining how
to assign tasks to different processors, and deciding whether and to which processor
to migrate tasks (if migration is allowed), are all important issues in energy-aware
scheduling on multiprocessor platforms. Such issues in energy-aware uniprocessor
scheduling as task preemption, slack reclamation, and priority constraints, etc., also
become more complicated on multiprocessor platforms.

Generally, energy-aware scheduling problems on multiprocessor platforms can
be formulated as optimization problems, the formulations and solutions of which
greatly depend on the platform and task models that are under consideration. Thus,
the classification of existing works discussed in this book are mainly based on the
platform types and task models considered.

In this book, we will first present the system models dealt with in most
research works in Chap. 2, which consists of task models, platform models, and
other concepts related to energy-aware scheduling on multiprocessor platforms.
A comprehensive survey of energy-aware scheduling problems are presented for
homogeneous platforms and heterogeneous platforms in Chaps. 3 and 4, respec-
tively. For homogeneous platforms in Chap. 3, problems are further classified
according to four task models, namely, frame-based tasks, tasks with precedence
constraints, periodic tasks, and sporadic tasks. For heterogeneous platforms, since,
to the best of our knowledge, little has been done for energy-aware scheduling
of sporadic tasks, we only survey problems for frame-based tasks, tasks with
precedence constraints, and periodic tasks. Some works that are similar to ours are
provided and discussed in Chap. 5. The conclusion and our future directions are
presented in Chap. 6.



Chapter 2
System Model

Abstract It is obvious that energy-aware scheduling problems largely depend on
the tasks and platform under consideration. This chapter provides the system models
that we consider in this book. Task models are presented in Sect. 2.1, which includes
four types of tasks, namely, frame-based tasks, tasks with precedence constraints,
periodic tasks, and sporadic tasks. Uniprocessor power consumption models are
provided in Sect. 2.2. Multiprocessor platform models are presented in Sect. 2.3.
Section 2.4 discusses other concepts and assumptions related to energy-aware
scheduling on multiprocessor platforms. These concepts and assumptions are also
important for energy-aware scheduling problems.

2.1 Task Models

Actually, various types of tasks/applications are considered for energy-aware
scheduling. In this book, four typical task models are included; they are frame-based
tasks, tasks with precedence constraints, periodic tasks, and sporadic tasks.

Frame-based Tasks: Frame-based tasks are a set of tasks, T = {τ1,τ2, · · · ,τn}
that are released at the same time 0 and share a common deadline D. The execution
requirement of task τi is denoted by Ci, which is defined as the Worst Case Execution
Time (WCET) at the processor’s maximum frequency. Denote WCECi as the Worst
Case Execution Cycles (WCECs) of task τi; then, Ci =WCECi/ f max. For tasks with
precedence constraints, Ci is defined with the same meaning. The utilization of task
τi is defined as ui =Ci/D.

Tasks with Precedence Constraints: Tasks in the set T = {τ1,τ2, · · · ,τn} that
have precedence constraints are modeled by a weighted Directed Acyclic Graph
(DAG). Let the DAG be (V,E); the node set V of this graph corresponds to tasks
τ1,τ2, · · · ,τn. The edge set E corresponds to precedence constraints. The weight
of each node, Ci represents the execution requirements of task τi. The overall
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4 2 System Model
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completion time of scheduling these tasks on multiple processors is called the
makespan or schedule length, denoted by D. The utilization of task τi is defined
as ui =Ci/D.

Consider an example of five tasks with worst case execution times, C1 = 3,
C2 = 5, C3 = 4, C4 = 3, and C5 = 2. Their precedence constraints are shown in
Fig. 2.1. A valid schedule with schedule length of 10 is shown in Fig. 2.2.

With the energy-aware consideration, two problems are usually associated with
scheduling framed-based tasks and tasks with precedence constraints: minimizing
the schedule length with an energy consumption constraint and minimizing energy
consumption with a schedule length constraint.

Periodic Tasks: A periodic task is an infinite sequence of task instances (or called
jobs), where each job/instance of a task comes in a regular period. Each task τi in a
periodic task set T = {τ1,τ2, · · · ,τn} is described by (Ai,Ci,Di,Ti), where, Ai is its
initial arrival time, Ci represents the worst cast execution time of its one job/instance,
Di represents its relative deadline, and Ti represents its period. If, initially, all of the
tasks are released at the same time 0, which means Ai = 0,∀i,1 ≤ i ≤ n, then Ai

is omitted; task τi is simply denoted by (Ci,Di,Ti). The jth job of τi is denoted by
τi, j. Besides, some useful terms are defined for periodic tasks. The utilization of a
periodic task is defined as ui = Ci/Ti. The total utilization of a task set is denoted
by Utotal = ∑τi∈T ui. The tasks are considered to have implicit deadlines if Di = Ti

and are considered to have constrained deadlines if Di ≤ Ti. Oftentimes, the hyper-
period H of a task set is defined as the minimal common multiplier of all periods
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Fig. 2.3 Examples of a
periodic task and a sporadic
task. (a) An example of a
periodic task. (b) An example
of a sporadic task

of the tasks. Then, the number of task τi’s jobs during the hyper-period is H/Ti.
Besides, a task τi’s density is defined as λi =Ci/Di. A typical example of a periodic
task τi with period Ti is shown in Fig. 2.3a. In the research community, a set of
periodic tasks are generally considered as a whole.

Sporadic Tasks: A sporadic task is also an infinite sequence of task instances/jobs,
where job arrivals have a minimal inter-arrival time rather than a fixed period.
Obviously, a periodic task is a special kind of a sporadic task. Because of this
relation between periodic tasks and sporadic tasks, the representation of periodic
tasks can also be used for sporadic tasks, with the slight difference that Ti represents
the sporadic task’s minimal inter-arrival time. Some research approaches and results
for periodic tasks can also be used for sporadic tasks. A typical example of a
sporadic task τi with minimal inter-arrival time Ti is shown in Fig. 2.3b. Notice that
Ti is just the minimal inter-arrival time. Practical inter-arrival times can be greater
than Ti. As shown in Fig. 2.3b, the inter-arrival time between τi,2 and τi,3 is T

′
i > Ti.

Generally, a set of sporadic tasks are considered as a whole.

2.2 DVFS Models

Our work in this book focuses on energy-aware scheduling on multiprocessor
platforms. In some sense, multiprocessor platforms can be regarded as consisting
of multiple uniprocessors. In this section, we will present the power consumption
model for a single processor first. Both homogeneous and heterogeneous multipro-
cessor platform models will be described in the next sections.

The practical power consumption model of a DVFS processor is quite complex
and varies among different manufacturing technologies.
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Generally, a DVFS processor can be in three kinds of operation modes: active
mode, also called busy mode or run mode, which refers to the mode in which the
processor is executing tasks; idle mode, which refers to the mode in which
the processor is on, but there is no task running on it; shutdown mode, also called
dormant mode or sleep mode, which refers to the mode in which the processor is
not running any tasks, is put in a very low power state, and can be recalled to active
mode when new tasks arrive. If a processor can be put into a shutdown mode, it
is called a shutdown-enabled processor; otherwise, it is called a shutdown-disabled
processor. A shutdown-disabled processor has to stay in idle mode and cannot be
put in shutdown mode, even when the processor has no task to execute.

In active mode, we use the general model which has been verified with the SPICE
simulation in [1]. In this model, the active power consumption is given by:

Pact = Pdyn +Psta +Pon

where Pdyn is the dynamic power consumption due to switching activity, Psta is
the static power consumption due to leakage current, and Pon is the intrinsic power
consumption needed to keep the processor on and is assumed to be a constant.

The dynamic power, Pdyn, is given by:

Pdyn =CeV
2
dd f

where Ce is the average switched capacitance per cycle, Vdd is the supply voltage,
and f is the clock frequency.

The static power, Psta, is given by:

Psta =VddIsubn + |Vbs|I j

in which Isubn is the sub-threshold leakage current, given by:

Isubn = K3eK4Vdd eK5Vbs

where K3, K4, K5 are constants. Vbs is the voltage applied between body and source,
and I j is the reverse bias junction current. Besides, there is a relation between
operating frequency, supply voltage, and threshold voltage:

f = (Vdd −Vth)
γ/LdK6

where γ and K6 are constants, and Ld represents the logic depth. The threshold
voltage is given by:

Vth =Vth1 −K1Vdd −K2Vbs

where all Vth1, K1, K2 are platform-specific constants.
Assuming that the minimum and maximum operating frequencies are f min and

f max, respectively, there are two types of processors: a processor is called ideal if
it can operate at any frequency in the range [ f min, f max], and it is called non-ideal
if it can only operate at a set of discrete frequencies in this range. If it can operate
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on K different frequencies, denote { f (1), f (2), · · · , f (K)} as the available frequency
set. Without loss of generality, assume that f min = f (1) < f (2) < · · ·< f (K) = f max.
f min can be or cannot be 0, and f max can be or cannot be +∞, according to different
assumptions. For a processor executing at frequency f , its speed s can be defined as
s = f/ f max.

This general active power consumption model is quite practical and complicated,
but in most research, a lot of assumptions are made under different contexts, and the
model is thus simplified based on this general model, as we will present later for
separate papers.

In idle mode, the power consumption is denoted as Pidl , which may be much less
than the active power. It’s exact value is determined by different assumptions or by
measuring practical platforms.

In shutdown mode, the power consumption is denoted as Psh, which is much
less than Pidl . It is assumed to be negligible in a lot of research literature or just a
small percent of Pidl in other ones.

Since the processor can transit between different modes, there might be some
transition overhead during the transitions. Generally, it is assumed that the transition
between an active mode and an idle mode can be done immediately and requires
no additional energy overhead. However, the transition between idle mode and
shutdown mode may require both time and energy overhead, denoted by tov and
Eov, respectively.

2.3 Platform Models

This section will describe multiprocessor models, which consist of a homogeneous
multiprocessor platform and a heterogeneous multiprocessor platform.

Homogeneous Platforms: Roughly speaking, if all of the processors on a
multiprocessor platform are identical, this platform is regarded as a homogeneous
platform. For homogeneous platforms, if all of the processors must operate at the
same supply voltage and clock frequency at any time, it is called a dependent
platform, which is the common case in a chip multiprocessor (CMP) or, in other
words, a multi-core chip. For a dependent platform, although all of the processors
must operate at the same supply voltage and clock frequency, they may transit
into idle mode or shutdown mode independently. If processors on a platform can
operate on different supply voltages and clock frequencies, and can adjust their
values independently, it is called an independent platform. In addition, a new type
of homogeneous platform is considered in previous and current researches. This
platform is called a partitioned multi-core, where all cores on the platform are
partitioned into different islands/blocks. Cores from the same block/island are
dependent, while cores from different blocks/islands are independent.
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Heterogeneous Platforms: If any processor is not identical to another one on
a multiprocessor platform, this platform is deemed a heterogeneous platform.
A typical example of a heterogeneous platform is one containing both DVFS
processors and non-DVFS Processing Units (PUs), such as FPGA. For non-DVFS
Processing Units (PUs), if its power consumption is dependent on the workload
assigned to it, it is called a workload-dependent non-DVFS PU. Otherwise, it is
called a workload-independent non-DVFS PU.

Also, a heterogeneous platform may consist of DVFS processors with different
frequency ranges or different power consumption functions. Consider a heteroge-
neous platform with m DVFS processors, M1,M1, · · · ,Mm. Since processors may
have different configurations and power consumptions, the previously presented
power consumption model should indicate this aspect by simply adding a processor
index. Namely, Pact

j , Pdyn
j , and Psta

j represent the active power, dynamic power, and
static power of processor M j, j ∈ [1, · · · ,m]. Pon

j represents the intrinsic power to
keep the processor M j on. The frequency range of processor M j is represented by
[ f min

j , f max
j ].

Tasks’ worst case execution requirements are also dependent on which processor
the tasks are assigned to. Thus, ci, j is used to represent the Worst Case Execution
Time (WCET) of task τi when it is assigned to processor M j at the maximum
frequency f max

j . ci, j = WCECi/ f max
j . Similarly, ui, j = ci, j/Ti is defined as the

utilization of τi when it is assigned to M j. The utilization of processor M j is the
sum of utilizations of all the tasks that are assigned to it, denoted by Uj =∑τi∈T j

ui, j,
where T j is the task set assigned to processor M j.

For shutdown-enabled processors, the time overhead and energy overhead of
putting the processor into shutdown mode and returning it to active mode are
denoted by tov

j and Eov
j , respectively. Generally, heterogeneous platforms are

assumed to be independent.
Notations that are consistently used in this book are provided in Table 2.1.

2.4 Other Related Concepts

This section will describe some important concepts that are related to energy-aware
scheduling. They reflect some characteristics of practical platforms and tasks. When
they are taken into consideration, more constraints and requirements should be
included in the energy-aware scheduling algorithms.

Slack Reclamation: A processor may stay idle for a short period of time, even
when it is allocated to execute some tasks, because of a task’s late arrival or
advanced completion. These idle periods of time are referred to as slacks. Generally,
there are two kinds of slacks. One of them results from the scheduling scheme
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Table 2.1 Notations used in this book

Notation Description

T Task set {τ1,τ2, · · · ,τn}
τi The ith task in task set T

n The number of tasks in T

τi, j The jth job of a periodic/sporadic task τi

Ai Initial arrival time of task τi

WCECi Worst case execution cycles of task τi for
frame-based tasks or precedence-constrained
tasks or WCEC of a job of periodic/sporadic
task τi

Ci Worst case execution time of task τi for
frame-based tasks or precedence constrained
tasks or WCET of a job of periodic/sporadic
task τi

D The common deadline of a frame-based task set T

Di Relative deadline of task τi

Ti Period of periodic task τi; or minimal inter-arrival
time of sporadic task τi

ui Utilization of τi

Utotal Total utilization of task set T

λi Density of task τi

H Hyper-period of a periodic task set T

M j jth processor/core or jth processor type
Pact (Pact

j ) Active power consumption (of M j)

Pdyn(Pdyn
j ) Dynamic power consumption (of M j)

Psta(Psta
j ) Static power consumption (of M j)

Pon(Pon
j ) Intrinsic power to keep processor (M j) on

Pidl(Pidl
j ) Power consumption (of M j) in idle mode

Psh(Psh
j ) Power consumption (of M j) in shutdown mode

f min( f min
j ) Minimum frequency of processor (M j)

f max( f max
j ) Maximum frequency of processor (M j)

s Processor speed defined as f / f max

f (k)( f k
j ) The kth frequency level of processor (M j)

ci, j WCET of τi when it is assigned to processor M j

ui, j Utilization of task τi assigned to M j

T j Task set assigned to M j

Uj Utilization assigned to M j

tov(tov
j ) Switching time overhead (of M j)

Eov(Eov
j ) Switching energy overhead (of M j)

m The number of processors

itself, while the other one results from the difference between a task’s Actual Case
Execution Time (ACET) and Worst Case Execution Time (WCET). In energy-aware
scheduling, the slacks can be used to slow down or shut down the processor to
achieve the goal of saving energy.
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Task Preemption: If the current task under execution can be preempted by higher
priority tasks, this task is considered to be preemptive; otherwise, it is considered
to be non-preemptive. Schedulability conditions for preemptive scheduling and
non-preemptive scheduling are quite different, resulting in the difference between
energy-aware preemptive scheduling and non-preemptive scheduling.

Fixed/Dynamic Priority Scheduling: If priority values of tasks will not change
during runtime, the scheduling is considered to be of fixed priority; otherwise, it
is considered to be of dynamic priority. Rate Monatomic (RM) scheduling, which
ranks the tasks according to tasks’ arrival frequencies/rates, is a typical example of
fixed priority scheduling. Earliest Deadline First (EDF), which dynamically assigns
priorities according to the task job’s deadlines during runtime, is a typical example
of dynamic priority scheduling.

Partition-based/Global Scheduling: The most commonly used approach of
scheduling tasks on multiprocessor platforms is partition-based scheduling,
where each task is assigned statically to one processor. Partition-based scheduling
allows schedulability to be verified by well-understood single-processor analysis
techniques. Partition-based scheduling also requires less scheduling overhead on
practical platforms. On the other hand, we have global scheduling, in which
there is a single job queue from which jobs are dispatched to any available
processor according to a global priority scheme. Global scheduling allows different
instances/jobs of the same task to be executed upon different processors. Each
instance/job can start its execution on any processor and may migrate during
runtime from one processor to another if it gets preempted by a higher priority job.

Task Migration: Task migration means that a task need not be entirely executed on
one processor. Given that task migration is allowed, for frame-based tasks and tasks
with precedence constraints, one task’s former part and the rest can be executed on
more than one processor sequentially; for periodic tasks, a task’s single job’s former
part and the rest can be executed on more than one processor sequentially; besides,
jobs released early and later jobs can be executed on different processors. If task
migration is not allowed, the whole part of a task must be executed on one processor.
It is obvious that whether task migration is allowed or not has a great influence on a
scheduling strategy. Consequently, it will also influence energy-aware scheduling.

Single Task Concurrent Execution (Parallel Task Execution): Traditionally, it
is assumed that one job instance of a task is unable to be executed on more than
one processor simultaneously, even when task migration is allowed. Unlike this
traditional assumption, in some research, it is assumed that one job of a task is
able to be executed on two or more processors concurrently and simultaneously;
although, early jobs must be completed before the subsequent job can begin to
be executed. This type of task is also called parallel tasks. Figure 2.4 provides a
trivial example of scheduling a periodic task under this assumption. This assumption
provides more space and the opportunity to use DVFS to achieve the goal of saving
energy, and it makes the problem more complex and difficult at the same time.
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Fig. 2.4 An example of a single task being concurrently executed. (a) Executed on one processor.
(b) Concurrently executed on two processors

Application-specific Power Consumption: Sometimes, it is assumed that the
power consumption function of a processor is dependent on the tasks running
on it, which is also the case in many practical systems. Thus, it is assumed that
some constants in the power consumption model of a processor are dependent on
the task(s) assigned onto it. When taking this aspect into consideration, problems
become more complex than when a processor’s power consumption is the same for
any task.



Chapter 3
Scheduling on Homogeneous DVFS
Multiprocessor Platforms

Abstract Homogeneous multiprocessor platforms are widely used on modern
computing systems. Energy-aware scheduling on homogeneous platforms also
receives wide research interest. This chapter surveys energy-aware scheduling
research that is done on homogeneous DVFS multiprocessor platforms. These
works are further classified by task types under consideration, namely, frame-based
tasks, tasks with precedence constraints, periodic tasks, and sporadic tasks. Detailed
techniques and algorithms are presented for various problems in the following.

3.1 Frame-Based Tasks

This section presents existing works on energy-aware scheduling algorithms for
frame-based tasks on homogeneous multiprocessor platforms. Yang et al. [2]
address frame-based task scheduling on dependent platforms without the considera-
tion of task migration; Chen et al. [3] address scheduling on independent platforms
with the consideration of task migration. Chen and Kuo [4] take application-specific
power consumption into consideration. Kong et al. [5] considers scheduling on
partitioned multi-core platforms. Li [6] makes some initial attempt to address
the problem of energy-efficient scheduling of parallel tasks on multiprocessor
platforms.

Scheduling on Dependent Platforms: For frame-based tasks on homogeneous
dependent multiprocessor platforms, where task migration is not allowed, [2] aims
to achieve scheduling with minimum energy consumption. Assuming that the
number of tasks is greater than the number of processors, a schedule consists of two
steps. The first step is to assign tasks to processors; the second step is to schedule
the shared frequencies/speeds during different time intervals. Notice that, although
the platform is dependent, which means that all processors are running at the same
frequency, the shared frequency can vary over time. The active power consumption

D. Li and J. Wu, Energy-aware Scheduling on Multiprocessor Platforms,
SpringerBriefs in Computer Science, DOI 10.1007/978-1-4614-5224-9 3,
© The Author(s) 2013
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Fig. 3.1 LTF strategy

model is simplified as Pact( f ) = α f 3. When a processor is idle, it consumes
zero power. It is proven that optimal scheduling requires the workloads assigned
to processors balanced, and this assignment problem is proven to be NP-hard. The
authors then adopt the Largest-Task-First (LTF) strategy to assign the task set among
processors. After tasks have been assigned, without loss of generality, assuming that
the utilization assigned to processor M j is Uj, and 0 = U0 ≤U1 ≤U2 ≤ ·· · ≤ Um,
the problem of finding the optimal speed scheduling can be formulated as an
optimization problem:

minimize ∑m
j=1(m− j+ 1)Pact((Uj −Uj−1)D f max/t j)t j

s.t. ∑m
j=1 t j = D

where t j is the time interval between the time when M j−1 completes its workload
and the time when M j completes its workload. (Uj − Uj−1)D f max/t j is the
frequency that should be used during time interval t j. The above optimization
problem can be solved by the Lagrange Multiplier Method. A trivial example of
scheduling five tasks on three processors is provided as follows. Tasks’ utilizations
are: u1 = 0.5, u2 = 0.45, u3 = 0.4, u4 = 0.35, and u5 = 0.2. After partitioning,
utilizations assigned to different processors are: U1 = 0.5, U2 = 0.65, and U3 = 0.75.
Figure 3.1 shows the partition of the LTF strategy; Fig. 3.2 illustrates the speed
scheduling after tasks are assigned.

Scheduling on Independent Platforms with Task Migration Consideration:
For frame-based tasks on homogeneous independent multiprocessor platforms,
when task migration is not allowed, the Largest Task First (LTF) strategy is also used
to partition tasks among processors [3], and it is shown to have a good performance
under various situations. When task migration and preemption are allowed, the
authors propose a LTF-M strategy for the problem. The LTF-M strategy assigns
each task with utilization ui ≥Utotal/m to one processor and uses frequency ui f max

(in other words, use speed s = ui) to execute the task such that the task completes
exactly at the deadline D; then, it assigns a task with utilization ui < Utotal/m to,
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Fig. 3.3 LTF-M scheduling on three processors

at most, two processors. Denote Uavg as the total utilization of tasks with ui <
Utotal/m divided by the number of remaining processors (processors that have not
been allocated to tasks with utilizations ui ≥Utotal/m). Using the LTF strategy, the
next task with utilization u j <Utotal/m is considered and is assigned to a processor
M ∗ at frequency Uavg f max. If after adding τ j to M ∗, τ j can meet its deadline, τ j

is added to processor M ∗; if τ j can’t meet its deadline, then the latter part of τ j

is selected to be executed on processor M ∗ at frequency Uavg f max, and it will be
completed exactly at deadline D; the former part of it will be executed on another
processor. In practical terms, τ j begins executing on a processor; after a certain
time, it is preempted by another task. After an additional period of time, it migrates
to another processor to finish its latter part.

Figure 3.3 provides a simple example that shows how the LTF-M strategy works.
u1 = 0.8, u2 = 0.4, u3 = 0.4, u4 = 0.3, u5 = 0.2, and m = 3. Since Utotal/m = 0.7,
u1 ≥ Utotal/m, firstly, τ1 is assigned to processor M1 to be executed at frequency
0.8 f max. Then, Uavg = (u2 + u3 + u4 + u5)/(3− 1) = 0.65. Next, τ2 is assigned to
another processor M2 to be executed at 0.65 f max; after that, try to assign τ3 to M2.
Unfortunately, τ3 can’t be finished on M2; thus, the latter part of τ3 will be executed
on M2 and the former part of τ3 will be executed on another processor M3, also at
frequency 0.65 f max. Finally, assign τ4 and τ5 to processor M3.

Application-specific Power Consumption: For a similar problem, the authors
in [4] consider scheduling tasks on homogeneous independent platforms where a
processors’ power consumption is dependent on the task(s) running on it. Task τi’s
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active power consumption function is phrased as Pacti = αi f ε , where ε is a
hardware-dependent factor, which is regarded as between 2 and 3 in the paper,
and αi is a parameter associated with the specific task τi. The authors consider
both Multiprocessor Energy-Efficient Scheduling with task Migration (MEESM)
and without task Migration (MEES).

The MEESM problem is formulated as an optimization problem:

minimize ∑τi∈T Ei(te
i )

s.t. ∑τi∈T te
i = mD,0 < te

i ≤ D,∀τi ∈ T

where te
i represents the execution time of τi, and Ei(te

i ) represents the energy
consumption if executing τi in time te

i . This optimization problem can be solved
by either the Karush-Kuhn-Tucker optimality condition or the Lagrange Multiplier
Method. The solution is the optimal execution times (te

1
∗, · · · , te

n
∗). Then, an optimal

algorithm based on the solution is provided.
Denote te

i
∗ as the estimated execution time of task τi. For the MEES problem,

since the disallowance of task migration places more constraints on task scheduling
compared to the MEESM problem, the optimal schedule for the MEESM problem
produces a lower bound for the MEES problem. The authors provide a feasible
schedule for the MEES problem, where task partitioning adopts the Largest
Estimated Execution Time first (LEET) strategy (similar to the LTF strategy), and
they prove that its approximation ratio is 1.412 by referring to the optimal schedule
of the MEESM problem.

Scheduling on Partitioned Multi-core Platforms: Kong et al. [5] also consider
energy-aware scheduling of frame-based tasks. The platform under consideration
is a symmetric cluster-based/partitioned multi-core, where, Nb ×Nc homogeneous
cores are partitioned into Nb islands/blocks, each of which contains Nc cores. Cores
on the same island operate at a same frequency, while cores from different islands
may operate at different frequencies. Each island can adjust the frequency/voltage
independently. The dynamic power consumption on a core is phrased as Pdyn =α f 3.
The dynamic power consumption of an island is the sum of the dynamic power of
all active cores, while the static power consumption is a constant Psta if at least one
core in the island is active.

Consider all cores M1,M2, · · · ,MNc on a single island; they have already been
assigned workloads U1,U2, · · · ,UNc , with U1 ≤ U2 ≤, · · · ,≤ UNc . The total energy
consumption can be computed as Etotal = ∑Nc

j=1(E
dyn
j + Esta

j ), where Edyn
j and

Esta
j represent the dynamic and static energy consumption during time interval t j,

respectively (t j is still the time interval between the time when M j−1 completes its
workload and the time when M j completes its workload). When there are no other
constraints, by the similar method in [2], the optimal frequency setting to minimize

Etotal can be obtained: f ∗j = 3
√

Psta

2α(Nc− j+1) . { f ∗1 , · · · , f ∗Nc
} is called the critical speed

sequence (if f ∗j > f max, let f ∗j = f max; if f ∗j < f min, let f ∗j = f min).
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When considering the deadline constraints, the critical speed sequence may not
be optimal. A constrained convex programming problem can be formulated to
minimize the energy consumption of each island:

minimize Etotal = ∑Nc
j=1 E j(t j)

s.t. ∑Nc
j=1 t j ≤ D, tmin

j ≤ t j ≤ tmax
j

where tmin
j = (Uj −Uj−1)D, tmax

j = (Uj −Uj−1)D f max/ f min. Algorithm Binary
Search (BS) is proposed to achieve the optimal energy consumption for this practical
problem.

Due to non-negligible leakage powers and operating frequency constraints in
various islands, mapping a task set to all islands will not always result in minimal
energy consumption. As for determining the proper number of active islands, several
steps are adopted in the paper: (a) Determine the lower bound of the number of
islands required to complete the task set before the deadline, nl

b = ∑n
i=1 Ci/(NcD),

and the upper bound nu
b = min(�n/Nc	,Nb), where n is still the number of tasks.

(b) Perform a linear search in the interval [nl
b,n

u
b] to determine the proper number of

active islands. For each nb ∈ [nl
b,n

u
b], the LTF strategy is used to partition the task set

onto nbNc cores. Then, Algorithm BS is used to determine the local minimal energy
consumption for the partition of this iteration. (c) The overall algorithm finally
returns the task schedule (including the number of active islands, task partition,
and frequency scheduling), which results in the minimal energy value among all of
the (nu

b − nl
b + 1) iterations.

Single Task Concurrent Execution (Parallel Task Execution): In [6], the author
studies the scheduling of parallel frame-based tasks on multiprocessor platforms
with the consideration of energy consumption. A three-level energy/time/power
allocation scheme is adopted for a given schedule for two problems, namely,
minimizing the schedule length under a total energy consumption constraint and
minimizing the overall energy consumption without missing any deadlines. Active
power consumption Pact on each processor is assumed to be sε , where s is the
processing speed and ε(≥3) is a constant. A parallel task τi considered in [6]
requires πi processors to execute it concurrently, and πi is defined as the size of
task τi. The execution requirement of task τi is represented by Ci (the execution
time at the maximum frequency), which is the maximum execution requirement
on the πi processors. Thus, the execution time of task τi, if executed at speed
si, can be calculated as ti = Ci/si. Notice that πi processors need to execute
task τi simultaneously. The total energy consumption for task τi can be derived:
ei = πisε

i ti = πiCisε−1
i .

As we have indicated, the author studies two problems: minimizing the schedule
length under the total energy consumption constraint and minimizing the overall
energy consumption without missing any deadlines. However, the scheduling
strategy and analysis process for these two problems are quite similar to each
other. Here, we only present the work for solving the first problem: minimizing
the schedule length under the overall energy consumption constraint.
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For the ease of analysis and scheduling, the author adopts a system partitioning
approach, which partitions the m processors into j(≥1) cluster(s) and partitions the n
tasks into j group(s) such that each cluster of processors executes one group of tasks.
Given a partition, the optimal frequency setting for each task can be analytically
derived.

• If πi > m/2, ∀1 < i < n, any two tasks cannot be executed simultaneously for
the lack of processors; in other words, all of the n tasks have to be executed
sequentially. Under this situation, the optimal frequency setting for each task can
be achieved.

• If πi ≤ m/ j, ∀1 < i < n, then the m processors are partitioned into j clusters.
The n tasks are partitioned into j groups. Thus, tasks in group k can be
executed on cluster k, 1 ≤ k ≤ j. Notice that all tasks in one group are still
executed sequentially, while tasks from different groups can be executed on
different clusters simultaneously. Given a partition, the optimal power allocation
for each group can also be achieved to minimize the overall schedule length.
Consequently, the optimal frequency setting for each task can also be derived.

For the general case, πi values may range randomly between 1 and m; by the
partitioning rule, the system can only be considered as one cluster. Obviously, it
is not efficient, because, when small-sized tasks are executed, a large number of
processors remain idle, which is a waste of time and energy. The author comes
up with a dynamic harmonic scheme to address the system partitioning and task
scheduling problem. The author proposes a scheme which divides the original list
of n tasks into c sub-lists (c is determined according to task sizes). For the jth
sub-list, where 1 ≤ j ≤ c−1, it contains tasks of sizes within (m/( j+1),m/ j]. For
sub-list c, it contains tasks of sizes within (0,m/c]. After this division, to schedule
the jth sub-list, all of the processors are partitioned into j clusters; tasks in the jth
sub-list are partitioned into the j clusters by a given List Scheduling (LS) algorithm,
and the c sub-lists are considered one by one.

This harmonic system partitioning and task scheduling scheme performs well
because tasks in one sub-list have similar sizes, which is claimed to guarantee
that processor utilization will be kept at a high level. Given a partition scheme
of scheduling a task group into clusters, the optimal supply voltage and frequency
setting can be obtained by the previous results.

We will give an example to show how all of the harmonic system partitioning
and task scheduling processes work. Consider scheduling 20 tasks on 12 processors,
where π1 = 10, π2 = 12, π3 = π5 = 5, π4 = π6 = 6, π7 = π8 = π9 = π10 = π11 =
π12 = 4, and π13 = π14 =π15 = π16 =π17 =π18 =π19 =π20 = 3. Since the minimum
size of all tasks is 3, we need to divide the list into 12/3= 4 sub-lists at most; in other
words, c = 4. According to the process, sub-lists 1, 2, 3 and 4 contain tasks with
sizes within (6, 12], (4, 6], (3, 4] and (0, 3], respectively. Assume that tasks within
the same sub-list are already in descending order of their execution requirement and
that the list scheduling algorithm adopts the largest requirement first strategy. For
sub-list 1, all of the 12 processors are considered as 1 cluster; for sub-list 2, all of the
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Fig. 3.4 Harmonic system partitioning and task scheduling. (a) Scheduling sub-list 1.
(b) Scheduling sub-list 2. (c) Scheduling sub-list 3. (d) Scheduling sub-list 4

12 processors are partitioned into 2 clusters; the similar partitions apply to sub-list
3 and sub-list 4. The overall system partitioning and task scheduling are shown by
Fig. 3.4a–d. Given this system partitioning and task scheduling, the optimal energy
allocation for each task sub-list and the optimal frequency setting for each task can
be determined, according to previously proven results.
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3.2 Tasks with Precedence Constraints

This section provides existing approaches for energy-aware scheduling tasks with
precedence constraints on homogeneous multiprocessor platforms. Li [7] provides
the design and analysis of several heuristic algorithms for energy-aware schedul-
ing of precedence-constrained tasks on multiprocessor platforms. Three types of
algorithms, namely, pre-power, post-power, and hybrid algorithms are provided
and analyzed in detail. de Langen and Juurlink [8, 9] also address precedence-
constrained tasks; besides, both of them take the leakage power consumption into
consideration. [8] addresses the situation when processors are not enabled to be
shut down. [9] addresses the situation when processors are enabled to be shut down.

Heuristic Algorithms for Precedence-constrained Tasks: In [7], the author
considers energy efficient scheduling of sequential tasks with precedence constraints
on DVFS multiprocessor platforms. Similar to [6], two problems are addressed:
minimizing the schedule length under an energy consumption constraint and
minimizing energy consumption with a schedule length constraint. Again, because
the similarity of these two problems, we will only provide details for the first
problem: minimizing the schedule length under an energy consumption constraint.
Three sub-problems compose the scheduling problem: precedence constraining,
task scheduling, and power supply. Three types of heuristic power allocation
and task scheduling algorithms are proposed for the problem, namely, pre-power
determination, post-power determination, and hybrid algorithms.

In pre-power determination algorithms, all tasks are assumed to be executed
with the same speed. Task scheduling and precedence constraining are dealt by a
list scheduling algorithm; after achieving a schedule, the optimal shared execution
speed (which is the same for all tasks) can be optimally determined.

In post-power determination algorithms, a level-by-level (a task’s level is its
depth in the directed acyclic graph) scheduling algorithm is used to deal with
precedence constraints; thus, tasks in the same level have no precedence constraints,
and can be scheduled by an arbitrary list scheduling algorithm; under this situation,
given a task schedule, the optimal power supply for each level and each task can be
optimally determined.

In hybrid algorithms, precedence constraints are also dealt with by a
level-by-level scheduling algorithm. Besides, hybrid algorithms further assume
that tasks at the same level should be executed at the same speed, although tasks
at different levels may be executed at different speeds. Under this situation, given
a task schedule, the optimal power supply for each level and each task can also be
optimally determined.

Consider the following example of scheduling seven tasks on three processors.
Tasks’ precedence constraints are shown in Fig. 3.5a. Their execution requirements
are as follows: C1 = 2, C2 = 5, C3 = 6, C4 = 1, C5 = 3, C6 = 7, C7 = 4. Assume
that when a list-scheduling algorithm is needed, the largest requirement first
strategy is adopted. In the pre-power algorithm, precedence constraining and task
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Fig. 3.5 Different energy-aware scheduling algorithms for precedence-constrained tasks. (a) Pre-
cedence constraints. (b) Pre-power algorithm. (c) Post-power algorithm. (d) Hybrid algorithm

scheduling are handled together by a list scheduling that incorporates the precedence
constraints. Figure 3.5b shows the pre-power algorithm. Figure 3.5b (1) gives the
original schedule. Under this scheduling and the assumption that all tasks should be
executed at the same speed, the optimal power supply can be determined, where a
speed as high as possible is adopted as long as the overall energy consumption is less
than or equal to the energy consumption constraint. Notice that we are discussing
minimizing the scheduling length here. Figure 3.5c shows the post-power algorithm.
From the precedence constraints in Fig. 3.5a, we can easily notice that τ1 is at the
first level, τ2,τ3,τ4 are at the second level, τ5,τ6 are at the third level, and τ7 is
at the fourth level. Figure 3.5c (1) shows the level-by-level scheduling. Under this
schedule, the optimal power supply can be determined and is shown in Fig. 3.5c (2).
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Notice that tasks at the same level can execute at different speeds. Figure 3.5d
shows the hybrid algorithm. The level-by-level scheduling is the same as that in
Fig. 3.5c (1). Under level-by-level scheduling and the assumption that tasks at the
same level should be executed at the same speed, the optimal power supply can be
determined and is shown in Fig. 3.5d (2). Notice that tasks at different levels can
still be executed at different speeds.

Leakage-aware Scheduling without Shutdown: For dependent platforms, in [8],
the authors consider energy-efficient scheduling for precedence-constrained tasks,
which are represented by a task graph model. Without considering the leakage
power or static power, the optimal scheduling involves assigning the tasks to as
many cores as possible, such that a minimum common speed can be adopted on all
of the cores.

While static power is non-negligible, using as many cores as possible may not
be the optimal solution. For this problem, the authors provide a Leakage-Aware
Multiprocessor Scheduling (LAMPS) algorithm. This algorithm consists of two
steps.

• Step 1: Determine the minimal number of processors. First, determine the lower
bound on the number of processors needed to complete the tasks before the
deadline, which is simply the overall workload divided by the deadline: Nl =
�∑τi∈τ Ci/D	, as well as the upper bound Nu = n (the number of tasks). Then,
determine the minimum feasible number of processors, Nmin, required to finish
the task set on time. This is achieved by a binary search between [Nl ,Nu]. First, it
is determined if N = (Nl +Nu)/2 will finish before the deadline. A list scheduling
that employs the Earliest Deadline First (EDF) scheme is used to check the
feasibility. If the makespan of the schedule produced by the list scheduler satisfies
the deadline constraints, the search continues on the interval [Nl ,N]; otherwise,
the search continues on the interval [N + 1,Nu].

• Step 2: Determine the number of processors that requires the least amount of
energy. This step also consists of two steps. First, determine the total power
consumption for Nmin processors. This is done by lowering the clock frequency
and supply voltage so that the task set is completed exactly at the deadline. This
is also done for Nmin + 1, Nmin + 2, etc., processors, until increasing the number
of processors no longer decreases the makespan of the schedule.

Finally, the optimal number of processors that requires the least amount of energy
is determined.

Leakage-aware Scheduling with Shutdown: In the above work [8], though
leakage power is considered to achieve energy efficient scheduling, it is assumed
that the processors are unable to be shutdown, even when they are idle. If
processors are able to be shutdown, energy consumption can be lowered further.
In [9] the authors propose a Leakage-Aware Multiprocessor Scheduling heuristic
with the option to Shutdown Processors, called LAMPS+PS, which provides
tradeoffs between three techniques: DVFS, processor shutdown, and finding the
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optimal number of processors. The number of processors that minimizes the energy
consumption is determined by calculating the energy consumption when using Nmin

processors, Nmin + 1 processors, until the makespan will not be reduced, even by
using more processors. For each number of processors, the tradeoff between DVFS
and processor shutdown is determined by scaling the frequency from the maximum
to the minimum frequency (which is required to meet the deadline) to achieve
the minimal energy consumption. Finally, the optimal number of processors that
requires the least amount of energy is obtained, as well as the corresponding optimal
tradeoff between DVFS and processor shutdown.

3.3 Periodic Tasks

This section surveys the state-of-the-art research that focuses on energy-aware
scheduling of periodic tasks on homogeneous multiprocessor platforms. Aydin and
Yang [10] address the problem of power-aware partitioning of periodic tasks among
multiple processors. Chen and Kuo [11] consider application-specific power con-
sumption. Chen et al. [12] take the leakage power consumption into consideration.
Xian et al. [13] consider the scheduling problem when probability distributions of
tasks’ execution requirements are known before scheduling. Lee [14] assumes that
one job from a task can be concurrently executed on multiple processors and deals
with the energy-aware scheduling under this assumption. Taking into consideration
the leakage power consumption and application-specific power consumption, [15]
addresses the problem of determining the optimal number of cores to use, and
after that, provide two online schemes to reduce energy consumption further: slack
reclamation and load refining. Seo et al. [16] provide two schemes to dynamically
determine the number of active cores and to migrate tasks during runtime. Zhang
et al. [17] provide an optimal energy-efficient global scheduling scheme, which
requires frequent task migration and preemption. Zeng et al. [18] provide a
scheduling algorithm (for both Earliest Deadline First (EDF) and Rate Monotonic
(RM) scheduling), which takes several practical constraints into consideration.

Partition-based Scheduling without Migration: In [10], the authors consider the
problem of partitioning periodic real-time tasks on a homogeneous multiprocessor
platform by considering both feasibility and saving energy, where task migration is
not allowed. The objective is to derive a feasible partitioning policy that results in
minimum energy consumption, while meeting all timing requirements with dynamic
priority EDF scheduling. Firstly, it is proven that this problem is NP-hard. It is then
shown that a task partition that evenly divides the total workload among all of the
processors, if it exists, will minimize the total energy consumption.

There are several heuristics for the partition problem: First-Fit (FF), Best-
Fit (BF), Next-Fit (NF), and Worst-Fit (WF). The authors provide heuristics for
this problem when either utilization ordering is known a priori or not. It is
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proven that when utilization ordering is known a priori, the Worst-Fit Decreasing
(WFD) heuristic always achieves balanced partitioning and thus optimal energy
conservation. When utilization ordering is not known before scheduling, it is
observed that there doesn’t exist a clear winner that performs well in all utilization
values in terms of both feasibility and energy consumption among FF, NF, BF
and WF. It has also been observed that FF, NF, and BF offer good performance
in terms of feasibility, while WF offers a good performance in terms of energy
consumption. Then, the authors provide an algorithm called RESERVATION to
tackle this problem, which is a trade-off between the good feasibility performance
of FF, BF and the good energy conservation of WF. The idea of RESERVATION is
basically to reserve 
m/2� processors for “light” tasks with utilization ui ≤Utotal/m
and allocate the remaining processors for other tasks with utilization ui >Utotal/m.

Application-specific Power Consumption: The authors in [11] address energy-
efficient multiprocessor scheduling of periodic real-time tasks with different power
consumption functions, where task migration is not allowed. The active power
consumption function of task τi is phrased as Pacti = αi f ε , where αi is a parameter
related to the specific task, and ε ≤ 3. Firstly, the minimization problem of the
energy consumption for multiprocessor scheduling considered in the paper is proven
to be NP-hard, and is reformulated as a convex optimization problem. By allowing
tasks to migrate to different processors, the convex optimization problem can be
relaxed to:

minimize ∑τi∈T Ei(te
i )

s.t. ∑τi∈T te
i /Ti = m,0 < te

i ≤ Ti

where te
i represents the execution time of a job of task τi, Ei(te

i ) is the amount of
energy consumed by all of the jobs of τi during the hyper-period H, if executing
at frequency WCECi/te

i . By applying the Karush-Kuhn-Tucker optimization condi-
tion, the optimal solution is achieved: (te

1
∗, te

2
∗, · · · , te

n
∗). Let u∗i = te

i
∗/Ti be called the

estimated utilization of τi. A Largest Estimated Utilization First (LEUF) strategy
is proposed for the practical problem without task migration and is denoted by

Algorithm LEUF, which is proven to have an approximation ratio of (ε−1)ε−1(2ε−1)ε

εε (2ε−2)ε−1 .

Leakage-aware Scheduling on Independent Platforms: Chen et al. [12] address
energy-efficient scheduling of periodic real-time tasks on ideal homogeneous
independent platforms, while considering the consideration of leakage power con-
sumption. The active power consumption of a processor is phrased as Pact = f 3 +β .
It is obvious that the power consumption is a convex and increasing function of f ,
while the energy consumption per cycle Eact = f 2+β/ f is just a convex function of
f and has a local minima, where the frequency is called critical frequency, denoted
by f crit . The Largest Task First is also applied for problems considered in this paper.
If the energy switching overhead Eov

j is negligible, using all off the processors
will not increase the switching overhead. Thus, after achieving a partition, if the
lowest required frequency of the workload on a processor is smaller than the critical
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frequency, the scheduler executes the tasks on that processor at the critical speed. It
is shown that the above algorithm, denoted by Algorithm LA+LTF (Leakage-Aware
+ Largest Task First), is a 1.283-approximation algorithm.

It can be noted that adopting the above process will result in a schedule
where multiple processors execute at the critical frequency. If the energy switching
overhead is non-negligible, the produced schedule will consume a significant
amount of switching energy. Thus, after achieving a partition by the LTF strategy,
efforts should be made to reduce the number of applied processors. The following
approach is applied to consolidate workloads on the processors that are executing at
the critical frequency.

• In the first step, collect all of the tasks that are executed at the critical frequency,
denoted by task set T ∗. Suppose that m∗ is the number of processors that
execute tasks at the critical speed after the LA+LTF (Notice that the other m−m∗
processors are operating at a frequency greater than f crit ).

• Then, reassign tasks in T ∗ to these m∗ processors (possibly a subset of these
processors) by applying the first-fit algorithm with a bin height of f crit/ f max.
Firstly, mark the m∗ processors as unused and the tasks in T ∗ as unassigned.
Then, assign an unassigned task to the first-used processor if, after assigning,
the accumulated utilization on this processor is still not greater than f crit/ f max;
if this task can’t be assigned to any used processor, such that the accumulated
utilization is not greater than f crit/ f max, it will use another processor in the group
of m∗ processors.

After these steps, the EDF strategy is adopted in each processor to meet all of the
tasks’ timing requirements. This algorithm is denoted by Algorithm LA+LTF+FF
(Leakage-Aware + Largest Task First + First Fit), which is proven to be a
2-approximation algorithm.

Consider the following example as shown in Fig. 3.6; after LA+LTF, U1 = 0.8,
U2 = 0.4, U3 = 0.2, assuming that f crit = 0.7 f max, then M1 will be executing at
0.8 f max. M2 and M3 will be executing at f crit . By the LA+LTF+FF algorithm,
workloads on M2 and M3 can be consolidated onto M2. Thus, the total energy
consumption is further reduced.

Scheduling Based on Probability Distributions of Tasks’ WCETs: The authors
in [13] also consider energy-aware scheduling for periodic tasks on homogeneous
platforms. The main difference and contribution is that they consider the Proba-
bilistic Distribution Functions (PDFs) of the tasks’ execution times to partition the
workload for energy conservation. Their consideration and method is based on the
previous work of [19], where the probabilistic distributions of the tasks’ execution
times is considered for energy-aware scheduling on a single processor, and the
optimal frequency scheduling is also provided. Consider the PDFs of tasks; though
their WCETs may be equal, their expected workloads can still be quite different.
Hence, to balance the workload partition among processors, based on the WCETs,
is not optimal. Instead, the authors aim to achieve the balanced expected workload
partition via the PDFs of tasks’ execution times. In [19], the range of [0,Ci] is



26 3 Scheduling on Homogeneous DVFS Multiprocessor Platforms

t

t

t

f

f

f

0.8

t

t

f

f

0.8

a

b

Fig. 3.6 LA+LTF VS LA+LTF+FF. (a) Scheduling by LA+LTF. (b) Scheduling by LA+LTF+FF

divided into li bins; each bin contains an equal amount of execution time: ei =Ci/li;
then, the distribution of a task’s execution time is expressed by the Cumulative
Distribution Function (CDF), denoted by Ψ . Thus, the probability of τi consuming
the jth bin of execution time is 1 −Ψi( j − 1). Obtaining the optimal frequency
scheduling requires knowing how to assign frequency to the jth bin for task τi,
denoted by fi, j , such that the overall energy consumption is minimized. Represent
the expected energy consumption in terms of Ψ and fi, j . The optimal frequency
scheduling is achieved in [19].

Xian et al. [13] extend this approach onto multiprocessor platforms. Their main
contribution is that they provide balanced partitioning in terms of expected execu-
tion time. Consider scheduling four tasks, τ1,τ2,τ3,τ4, on two identical processors,
all of which have the same WCET of 2 s. However, τ1 and τ2 are identical and
always consume this WCET; τ3 and τ4 are identical, and the probability to consume
1 s is 80 %, while the probability to consume 2 s is 20 %. If we are simply using
tasks’ WCETs to partition the task set, one optimal partition would require τ1,τ2 to
one processor and τ3,τ4 to another. However, this partition is not optimal in terms of
the expected execution requirement since, in most circumstances, τ3,τ4’s execution
times will be less than 2 s. Instead, assigning τ1,τ3 to one processor and τ2,τ4 to the
other is the optimal partition.

Assuming ideal processors with unbounded frequencies, the formulated expected
energy minimization problem can be transformed into a load balancing problem.
With practical values of tasks’ execution times, the workload cannot be exactly
balanced. Thus, the Worst-Fit Decreasing (WFD) algorithm is used, for WFD has
been shown to be the best bin-packing heuristic for balancing loads among multiple
bins [10]. After partitioning by WFD, the optimal ideal frequency scheduling is
achieved by the results in [19]. However, practical processors have bounded discrete
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frequencies. Then, a series of procedures is applied to restrict the frequencies within
the set { f min, · · · , f max}, while still meeting all of the tasks’ deadlines and achieving
minimal energy consumption.

Single Task Concurrent Execution (Parallel Task Execution): Lee [14]
addresses an energy-efficient scheduling scheme of periodic real-time tasks on
lightly loaded multi-core platforms, where the number of cores is greater than
the number of running tasks. Though migration is not allowed, it is assumed that
the periodic tasks are able to be executed concurrently on more than one core.
The authors first prove that this problem is NP-hard, and then propose a heuristic
algorithm to find an energy-efficient scheduling. Since static power consumption is
non-negligible, it is not optimal to use all of the cores. For a single core, the average
power consumption is determined by the utilization assigned to it. A threshold
utilization is defined as U th, such that P(2U th) = 2P(U th). Based on this utilization
threshold, the given tasks are classified into three categories: Heavy Tasks with
ui ≥ 2U th, Medium Tasks with U th ≤ ui ≤ 2U th, and Light Tasks with ui ≤ U th.
Based on the convexity and increasing property of P(U), it is derived that: assigning
two Light Tasks to a single core consumes less energy than assigning them to two
separate cores; if the accumulated utilization of a Light Task and a Medium Task is
no larger than 2U th, assigning the two tasks to a single core consumes less energy
than assigning them to two separate cores, and vice versa; assigning two Medium
or Heavy Tasks on two separate cores consumes less energy than assigning them to
a single core.

If the multi-core platform has sufficient cores, the algorithm may assign tasks to
as many cores as possible. For each Heavy Task, the algorithm calculates the total
power consumption of executions on all possible numbers of cores, i.e., P(Uη

m ) for
1≤η ≤ Bi, where Bi is the maximal number of cores that task τi can be concurrently
executed on. Denote the value of η , which minimizes P(Uη

i ), by ηi. Task τi will be
assigned to ηi cores. After that, Medium Tasks and Light Tasks are assigned to the
remaining cores (that are not used by Heavy Tasks). The First-Fit Decreasing (FFD)
heuristic, with a bin height of 2U th, is applied. The FFD sorts tasks in descending
order of utilization and assigns them one by one to the first core whose accumulated
utilization after assigning is not greater than 2U th.

If there are less available cores than, required by the above approach, the Worst-
Fit Decreasing (WFD) heuristic is used. Given m cores, the algorithm divides them
into m1 and m2 cores, such that m1 +m2 = m, and m1 ≥ mh, where mh is the number
of Heavy Tasks. First, it searches for the best assignment of the m1 cores, where the
total energy consumption of all Heavy Tasks is minimized. Next, it assigns Medium
Tasks and Light Tasks to m cores according to the WFD heuristic. The total energy
consumption of the m cores for each combination of m1+m2 = m is calculated, and
finally, the best combination is selected.

Consider the following example: u1 = 0.8, u2 = 0.4, u3 = 0.2. U th = 0.225.
Thus, τ1 is a Heavy Task, τ2 is Medium Task, and τ3 is a Light Task. Assume
that the optimal number of processors to execute τ1 concurrently is 3. After that,
U1 =U2 =U3 = 0.4 are the utilizations of τ1 split onto M1,M2,M3, respectively.
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Note that U1+U2+U3 can be greater than u1, for concurrent execution may call for
some overhead. Since u2 + u3 = 0.6 > 2U th = 0.45, τ2 and τ3 will be assigned to
separate processors. The final schedule is shown in Fig. 3.7.

If there are only three processors (less than that five that are used in the case of
sufficient cores), then there are three combinations of (m1+m2)= 3, since m1 can be
1,2, or 3. Suppose that the optimal combination is (m1,m2) = (2,1). After assigning
the Heavy Task τ1 to M1 and M2, U1 = U2 = 0.5, which are the utilizations of τ1

split onto M1 and M2, respectively. Notice again that U1 +U2 can be greater than
u1. τ2 and τ3 are assigned by the WFD strategy. One possible optimal assignment of
insufficient cores is shown in Fig. 3.8.

Scheduling on Dependent Platforms with Dynamic Coordination: The authors
in [15] undertake the problem of scheduling periodic tasks on dependent Chip
Multi-core Processors (CMPs) with the objective of minimizing the overall energy
consumption. The power consumption required to execute τi on processor M j

is modeled as: Pact
j = Psta + ai f 3 + Pindi , where ai and Pindi are dependent on

the tasks assigned to the processor. Based on the power model, a global energy-

efficient frequency threshold for k active cores is derived: fee(t) =
3
√

Pind(t)
2a(t) , where

Pind(t) = ∑k
i=1 Pindi and a(t) = ∑k

i=1 ai. fee(t) is similar to the critical frequency for
a uniprocessor, and this means that a scheduling operating frequency under fee(t)
will not result in energy conservation; in other words, as long as the processor is on,
it should operate at a frequency no less then fee(t) if it aims to consume less energy.



3.3 Periodic Tasks 29

For a given task set, the first step is to choose the number of active cores and
to conduct task partitioning. Three algorithms are proposed: Sequential Search
(SS) Algorithm, Greedy Load Balancing (BLB) Algorithm, and Threshold-based
Load Balancing Algorithm. Algorithm SS exhaustively searches from the minimum
number of necessary cores, �Utotal	, to m. For each k ∈ [�Utotal	,m], it generates
a partition Pk using WFD. It computes the expected energy consumption of the
feasible partition Pk. The k value with the least expected energy is returned.
Algorithm GLB invokes WFD once on all m cores. After partitioning, GLB tries
to move all tasks from the least loaded core to the second least loaded core, if and
only if feasibility is still guaranteed and the expected energy consumption is not
increased after moving these tasks. The algorithm iterates for the remaining cores
until it is no longer possible to conduct such a task moving. Algorithm TLB uses
the concept of load threshold, where a partition is accepted by TLB if the minimum
load on any core is no smaller than a predefined threshold. TLB first invokes WFD
once on all m cores and then iteratively tries to move all tasks from the core with
the least load to the core with the second least load, if the least load is smaller than
the threshold and doing so doesn’t contradict the feasibility. After such a move, the
algorithm is iteratively reinvoked on the new set of active cores.

After choosing the number of active cores and partitioning the task set to these
cores, two coordinated voltage and frequency scaling approaches are proposed.
Let Uj be the utilization assigned to core M j. U(t) = max(Uj), j = [1, · · · ,m] is
the largest load value among all active cores. The first approach, called CVFS,
consistently sets the shared frequency f (t) = max(U(t), fee(t)), which is based on
the static load values of active cores.

However, there are potential benefits in computing the instantaneous load U∗
j ,

which is addressed by CVFS*. CVFS* works for two reasons: (a) some jobs may
not take their WCECs and may complete early. Due to this unused CPU time, in
some intervals, the instantaneous load of M j may be less than Uj; (b) due to the
constraints imposed by fee(t) and the global voltage/frequency, a given processor
may be forced to execute at frequency levels that are higher than necessary. Hence,
its remaining workload may be lower than Uj in some intervals. Corresponding to
the first reason, a slack reclaiming technique is applied; corresponding to the second
reason, a load-refining technique is adopted. Both techniques are implemented by
dynamically setting the effective workload of task τi, denoted by ui(t). When a task
arrives, its initial ui is set to be Ci/Ti. In the slack reclaiming technique, if a job
of task τi, released at time tc, completes after executing ACECi(≤ WCECi) Actual
Case Execution Cycles, then the effective utilization of τi during interval [tc, tc +Ti]
is set to be ACECi/( f maxTi). In the load refining technique, the basic principle is: on
core M j, the execution of a task τi at a frequency U

′
j f max >Uj f max may be seen as

equivalent to executing a workload ACEC
′
i < WCECi at speed Uj f max. Thus, after

its completion, this core’s effective workload can also be refined.
Consider the following example: τ1 = (15,20,20), τ2 = (3,20,20), τ3 =

(4,20,20), τ4 = (7,40,40). Suppose that τ2, τ3, τ4 will consume their WCETs,
while τ1 will only consume 3 units of its WCET. τ1 is assigned to M1, τ2 and τ3
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are assigned to M2, and τ4 is assigned to M3. Utilizations of all cores are
U1 = 0.75, U2 = 0.35, U1 = 0.175. At the beginning, all cores must operate at
max(0.75,0.35,0.175) f max = 0.75 f max. After 4 time units, τ1 is completed. Thus,
τ1’s effective utilization is changed to 3/20 = 0.15; U1 is also changed to 0.15. By
the slack-reclamation scheme, after time 4, it is feasible to execute at frequency
max(0.15,0.35,0.175) f max = 0.35 f max. Both τ3 and τ4 will complete at time 15.4,
as shown in Fig. 3.9.

By the load-refining scheme, it is notable that, at time 4, τ2 also completes; it can
be regarded that τ2 only consumes 4 ∗ 0.35 = 1.4 units of its WCET at 0.35 f max.
Thus, the utilization of τ2 can also updated as 1.4/20 = 0.07. Hence, U2 is updated
as 1.4/20+ 4/20 = 0.27. It is feasible to operate at max(0.15,0.27,0.175) f max =
0.27 f max after time 4. Both τ3 and τ4 will complete at time 18.8, as shown in
Fig. 3.10. In this way, the load-refining scheme reduces the processors’ speed
further, thus reducing the energy consumption further as well.

Online Core Switching and Task Migration: The authors in [16] also consider
partition-based scheduling for periodic tasks. It is demonstrated that minimizing
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Pdyn in a multi-core processor for a given task set is essentially a problem of
generating the most balanced partition. However, even though the initial partitioned
state can be well-balanced, the performance demand on each core may change
during runtime. Thus, to achieve consistently low power consumption, the perfor-
mance demand of each core must stay balanced during runtime. The intuitive way
to solve this temporal imbalance is by migrating some tasks on the fly from a core
with a higher workload to a core with a lower workload. The slack between tasks’
actual case execution times and worst case execution times are considered when
determining the most effective utilization during runtime. At every task’s arrival
or completion, the proposed dynamic repartitioning algorithm updates the dynamic
utilization of all the active cores and repeatedly finds the cores with the maximum
and minimal utilization Mmax and Mmin, respectively. Then, migrate a task from
Mmax to Mmin, if all of the dynamic utilizations are more balanced after migration,
until the whole system achieves the most balanced state.

Also, since the leakage power is assumed to be non-negligible, it is not optimal
to use as many cores as possible. A dynamic core scaling algorithm is also proposed
to dynamically determine the optimal number of active cores. The expected power
consumption function depends on the number of active cores and the dynamic
utilization of the task set. Thus, given the current dynamic utilization of the task set,
the optimal number of active cores can be determined. If the number of currently
active cores is less than the optimal number, additional cores are activated and a
dynamic repartitioning algorithm is called to rebalance the workloads among all of
the cores; otherwise, cores with low utilization will be deactivated after migrating
their workloads to other cores.

Optimal Global Scheduling: In [17], Real-Time Static Voltage and Frequency
Scaling (RT-SVFS) techniques are proposed for periodic tasks on homogeneous
multiprocessor platforms. The techniques are regarded as static because after setting
the initial frequency/speed, processors’ supply voltages and execution frequencies
will not change during runtime, which is considered to be better than dynamic
scaling when transition overhead is significant. The authors proposed two separate
techniques for when the platform can control the voltage and frequency either
uniformly or independently, both of which are based on an optimal real-time
scheduling algorithm for multiprocessor platforms: LLREF algorithm [20]. LLREF
stands for Largest Local Remaining Execution First strategy.

In the following, we would like to introduce the LLREF algorithm first. Notice
that in LLREF, task migrations and preemptions are fully allowed, as long as
the same task is not executed parallel on more than one processor. The LLREF
algorithm is considered to be optimal because it can schedule tasks in a way such
that all tasks meet their deadlines when the total utilization demand does not exceed
the utilization capacity of the platform. Formally put, given a periodic task set
T = {τ1,τ2, · · · ,τn}, if and only if the total utilization of the task set Utotal satisfies
the condition: Utotal ≤ m, and ui ≤ 1 for all i = 1,2, · · · ,n, then this task set (with
implicit deadlines) can be scheduled to meet all deadlines by LLREF. The LLREF
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algorithm is based on the T-L plane (Time and Local Execution Time Domain
Plane), where the horizontal axis represents the current time, and the vertical axis
represents tasks’ local remaining execution times.

In the T-L plane, each task’s state is represented by a token. The token’s
horizontal-axis value describes the current time, and its vertical-axis value repre-
sents the task’s local remaining execution time. The remaining execution time of a
task here means that it must be consumed by the end of this T-L plane. Each token
moves in the T-L plane, while scheduling decisions are made over time. Tokens are
only allowed to move in two directions. When the task is selected and executed,
its token moves down diagonally. Otherwise, it moves horizontally. If m processors
are considered, at most m tokens can move down diagonally and simultaneously.
The scheduling objective in the current T-L plane is to make all tokens arrive at the
rightmost vertex of the T-L plane with zero local remaining execution time.

For ease of understanding, we will incorporate the T-L plane abstraction into a
scheduling process of a frame-based task set first. Consider scheduling the following
frame-based task set: C1 = 5, C2 = 4, C2 = 3, on two processors, where the tasks’
common deadline is 6. Obviously, there is no way that a partition-based scheduling
can schedule these three tasks; however, since their total utilization is exactly 1,
the LLREF algorithm can schedule them. Since the three tasks share a common
deadline, we only need to construct one T-L plane, as shown in Fig. 3.11, where,
tk1, tk2, and tk3 represent the states of tasks τ1, τ2, τ3, respectively. Initially, the
remaining execution times of τ1, τ2, τ3 are 5, 4, and 3. LLREF selects the tasks
with the largest local remaining execution time to execute, namely τ1 and τ2 in this
example. Thus, tk1, tk2 move down diagonally and tk3 moves horizontally. After
3 units of time, tk3 hits the No Local Laxity Diagonal (NNLD), which is called
a ceiling-hitting event (also called event C). At this time instant, task τ3 must be
selected to execute, otherwise it will miss its deadline. Thus, tk1 and tk3 will move
down diagonally and tK2 will move horizontally. After an additional 2 units of time,
tk1 hits the bottom line, which is called a bottom-hitting event (also called event B).
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At this time instant, LLREF considers selecting another task to execute, namely tk2

in this example. Thus, tk2 and tk3 will move down diagonally and tk1 will move
horizontally. At time instant 6, all tokens arrive at the rightmost point of this T-L
plane. The corresponding task execution is shown in Fig. 3.12.

For periodic tasks, LLREF divides the time axis into consecutive T-L planes,
such that each T-L plane ends at some task’s deadline and there are no deadlines
within any T-L plane. It is proven that if tasks’ execution requirements in each T-L
plane can be satisfied, the whole scheduling is feasible. To ensure that tasks in each
T-L plane consume their execution requirement, the LLREF adopts the following
strategy: in each T-L plane, initially, m of the largest local remaining execution
time tasks are selected first; when the system encounters an events B or C (refer
to the descriptions in the above frame-based task set example), the local remaining
execution time of tasks will be updated, and another set of m largest local remaining
execution time tasks are selected. In this way, local schedulability is guaranteed, and
the optimality of the algorithm is proven consequently.

Consider the following example where τ1 = (3,4,4), τ2 = (3,6,6), τ1 = (6,8,8).
Their total utilization is 2, so they can be feasibly scheduled on two processors. Task
τ1’s deadlines are 4, 8, 12, 16, 20, 24; task τ2’s deadlines are 6, 12, 18, 24; task τ3’s
deadlines are 8, 16, 24. Thus, the whole time domain in one hyper-period can be
divided into 8 T-L planes, with intervals (0, 4), (4, 6), (6, 8), (8, 12), (12, 16), (16,
18), (18, 20), and (20, 24), respectively, which is demonstrated in Fig. 3.13.

In the first T-L plane, within (0, 4), initially task τ1’s execution requirement is
3; task τ2’s execution requirement is 3/6 ∗ 4 = 2; task τ3’s execution requirement
is 6/8 ∗ 4 = 3. τ1 and τ3 have the largest local remaining execution times and are
selected to execute first. After 2 units of time, task τ2 hits the No Local Laxity
Diagonal (NNLD); in other words, an event C happens. Thus, task τ2 is selected to
execute. Either τ1 or τ3 will be executed on the other processor. Assume that task τ3

is selected to execute, then, after one more unit of time, tk1 hits the NNLD, and tk3

hits the bottom line. Tasks τ1 and τ2 will be selected to execute on two processors.
All three tokens, tk1, tk2, and tk3 will arrive at the rightmost vertex of the first
T-L plane. The first T-L plane is shown in Fig. 3.14. The other 7 T-L planes can
be achieved similarly and are shown in Fig. 3.15. Correspondingly, we can get the
optimal scheduling, which is shown in Fig. 3.16.

Based on the optimal LLREF algorithm described above, the authors in [17]
propose two static energy-efficient algorithms for homogeneous multiprocessor
systems. The first one is called Uniform RT-SVFS, which claims that a periodic task
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set with total utilization Utotal ≤ αm and Umax ≤ α will be scheduled to meet all
deadlines on m processors with frequency α by LLREF. Thus, the frequency of the
processors can be safely reduced to α . Notice that they assume power consumption
is proportional to the cube of the processing frequency, so the overall energy



3.3 Periodic Tasks 35

2416 18 20

2416 18 20

4 6 8 120

4 6 8 120

Fig. 3.16 Practical execution of the periodic tasks on two processors

0.8 0.7 0.6 .2

0.8 0.7 0.6 .2

Heavy task(s) Light task(s)

Fig. 3.17 Independent SVFS
algorithm: each heavy task
will be executed on a separate
processor at a unique
frequency; Light tasks will be
executed on remaining
processors by Uniform
RT-SVFS

consumption is reduced. Notice that, in the first algorithm, it is required that Umax ≤
α , which cannot always be satisfied. If processor’s execution frequencies can be
scaled independently, the authors propose the second algorithm, which is called In-
dependent RT-SVFS and does not have this requirement. The second algorithm uses
the technique of classifying tasks into heavy tasks and light tasks. This technique is
almost the same as that in [3]. Thus, we will not explain it again and will just give
another example as shown in Fig. 3.17. Consider scheduling four tasks: u1 = 0.8,
u1 = 0.7, u1 = 0.6, u1 = 0.2. By Uniform RT-SVFS, the common frequency should
be set as α = (0.8+0.7+0.6+0.2)/3= 0.7667. However, since u1 > 0.7667, task
τ1 can be scheduled. Uniform RT-SVFS fails here. Independent RT-SVFS detects
all possible heavy tasks first. Since u1 > Utotal/3, task τ1 is considered as a Heavy
Task and will be executed on a processor with frequency 0.8 f max, or, in other words,
with speed 0.8. After this, 0.7 < (0.7+ 0.6+ 0.2)/2 = 0.75; all of the remaining
tasks are considered as Light Tasks and will be executed by the first algorithm, all
at frequency 0.75 f max because the requirements of the first algorithm are satisfied
considering scheduling remaining tasks on the two remaining processors now.

Practical Scheduling for Both Dynamic and Fixed Priority Assumptions:
In [18], the authors target energy-efficient scheduling with practical constraints,
including discrete speed, idle power, application-specific power characteristics, and
inefficient speed, etc. Instead of theoretical calculation, the authors use measured
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power values of Pact( f ). When the processor is in idle mode, it consumes constant
Pidl , and the processor can only be shut down if no tasks are assigned to it. It
consumes zero power in shutdown mode. An Adaptive Minimal Bound First-Fit
(AMBFF) algorithm is proposed for both the Earliest Deadline First (EDF) dynamic
priority and the Rate Monotonic (RM) fixed-priority scheduled periodic tasks.

Considering non-ideal processors, it is shown that Worst-Fit Decreasing (WFD),
which can achieve optimal balanced workloads among multiple processors, doesn’t
work well for discrete speeds. Consider the following example: schedule tasks
with utilizations u1 = 0.35, u2 = 0.25, u3 = 0.25, u4 = 0.15 on two processors
with frequency set: {0.15 f max,0.4 f max,0.6 f max,0.8 f max, f max}. WFD strategy will
assign τ1 and τ4 to one processor, and τ2 and τ3 to another, as in Fig. 3.18a. Though
the workload assigned to each processor is 0.5, there is no speed 0.5 f max, so both
processors have to operate at 0.6 f max. The proposed AMBFF scheme assigns tasks
as in Fig. 3.18b. We can see that only one processor needs to operate at 0.6 f max, the
other one can operate at 0.4 f max. Thus, scheduling in Fig. 3.18b is better than that
in Fig. 3.18a, in terms of energy conservation.

The AMBFF algorithm works as follows: firstly, set the lowest frequency level as
the frequency upper-bound for all processors; under the bound, First-Fit Decreasing
(FFD) is applied; if a task cannot fit into any processor under this bound, a
subsequent higher frequency is chosen to be the new bound. For the example in
Fig. 3.18b, firstly, 0.15 f max is set as the bound, then 0.4 f max, and thus τ1 and τ2 are
assigned to two processors. Consider τ3: it cannot be assigned to either processor
under the 0.4 f max bound; thus, 0.6 f max is chosen to be the new bound. After this,
τ3 can be assigned to processor 1, and then τ4 can be assigned to processor M2.

In practice, operating the same workload at a higher frequency may consume less
energy due to the existence of idle power. Consider two consecutive frequencies, f

′

and f
′′
, f

′
< f

′′
, from the frequency set. If working at f

′
will consume more energy
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than working at f
′′
, f

′
is regarded as an inefficient frequency. The modified AMBFF

algorithm deals with an inefficient frequency as follows: whenever a inefficient
frequency will be used as the frequency bound, the subsequent higher frequency
is chosen instead.

Considering application-specific power consumption, after AMBFF, a swapping
step is applied, trying to assign tasks with higher power coefficients to the core with
lower speed settings.

Besides, AMBFF is applicable to both EDF and RM scheduling by using the
schedulability test of EDF and RM, respectively, in the algorithm.

3.4 Sporadic Tasks

This section focuses on energy-aware scheduling of sporadic tasks on homogeneous
multiprocessor platforms. Different from previous discussions, both [21] and [22]
consider global scheduling for sporadic tasks. Nelis et al. [21] provide an optimal
static scheduling method and a Multiprocessor One Task Extension (MOTE) scheme
to further reduce energy consumption. Nelis and Goossens [22] reclaim the slack
between the tasks’ worst case execution times and actual case execution times
to reduce energy consumption further. Zhang et al. [17] provide energy-efficient
scheduling based on an optimal scheduling algorithm for sporadic tasks.

Global Energy-aware Scheduling: Nelis et al. [21] consider power-aware
scheduling of sporadic constrained-deadline real-time tasks on homogeneous
multiprocessor platforms, where global scheduling is adopted instead of partition-
based scheduling. The active power consumption is assumed to only include
dynamic power, and thus to achieve optimal energy conservation is to use speed
as slow as possible while meeting all of the deadlines. Two distinct algorithms are
proposed.

The first one provides an offline speed determination scheme that provides an
identical speed for each processor, and this speed will not change during runtime.
Firstly, the authors provide the minimal speed when using pure Earliest Deadline
First (EDF) scheduling based on [23]’s EDF schedulability analysis. Although EDF
is proven to be optimal for single processor scheduling, it is shown to not be
optimal for multiprocessor scheduling. Then, the authors provide a superior offline
speed determination method based on the schedulability analysis of EDF(k) [24].
Assuming that the tasks’ densities λis are ranked as λ1 ≥ λ2 ≥ ·· · ≥ λn, 1 ≤ k ≤ m,
the EDF(k) adopts the following rules: (a) for all i < k, τi jobs are assigned the
highest priority (ties can be broken arbitrarily); (b) for all i ≥ k, τi jobs are assigned
priorities according to EDF (ties are also broken arbitrarily). The minimal speed is
denoted by sopt .

The second algorithm of [21] provides a runtime adaptive speed scheduling
for all of the processors, where processors’ speeds can all be different and can
change independently with time. The technique is termed Multiprocessor One Task
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Fig. 3.19 MOTE scheme

Extension (MOTE). The idea is that the speed of a CPU can be reduced below
sopt during the execution of a job if the reduced speed doesn’t change anything
with respect to the schedule of the subsequent jobs that are scheduled on that CPU.
Whenever a job is dispatched to a processor, it is calculated to what extent this job
can be slowed down. Let ttext be the amount of time this processor will be required
by another job (possibly a job from the same task). Then, it is safe to slow down the
job such that it completes exactly at min(tc +Di, ttext ), where tc is the current time.

Consider the simple example in Fig. 3.19. D1,1 and D2,1 represent the deadlines
of τ1,1 and τ2,1, respectively. A1,2 and A2,2 stand for the nearest arrival time of τ1,2

and τ2,2, respectively. When τ2,1 arrives, it has all the information on the other
processors; based on this information, it can predicate when processor M2 will
be requested by other jobs (possibly from the same task). In the example, tnext is
calculated as A2,2, which is the nearest possible arrival time of τ2,2. Thus, it should
be slowed down to compete exactly at time min(D2,1, tnext) = D2,1, as shown in
Fig. 3.19.

Global Energy-aware Scheduling with Slack Reclamation: For a similar
problem, [22] provides an online slack reclamation scheme, termed MORA. The
three main contributions of [22], compared to [21], are: [22] considers slack that
results from the difference between the worst case execution requirement and the
actual case execution requirement, non-ideal processors with discrete frequencies,
and application-specific power consumptions. Denote τi, j as the jth job of task

τi. Every τi, j is associated with two speeds, si, j and so f f
i, j , where si, j can change

at any time during the system execution, and so f f
i, j is the offline pre-computed

execution speed of τi, j that ensures that all of the deadlines are met. MORA is
based on reducing the execution speed si, j of the jobs online, in order to save energy
while still meeting all of the deadlines. MORA detects whenever the speed si, j can
be reduced by performing a comparison between the actual schedule and the offline
schedule, which provides the so f f

i, j ’s; MORA always refers to the offline schedule
to produce the actual schedule. The mechanism that MORA reclaims slacks is that,
when any job is finished in the actual schedule without consuming all of its WCET,
the unused time should be used by starting the execution of any waiting job in
that CPU earlier, and thus the execution speed of the selected waiting job can be
reduced while still meeting all of the deadlines and not influencing the subsequent
job executions.
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Fig. 3.20 Offline VS MORA
scheduling. (a) Offline
scheduling. (b) MORA
scheme

For example, consider the following six tasks, which are released at the same
time, 0. τ1 = (4,40,40), τ2 = (5,41,41), τ3 = (2,42,42), τ4 = (2,43,43), τ5 =
(4,44,44), τ6 = (4,45,45). According to EDF scheduling, from τ1 to τ6, tasks have
descending priority. One valid offline schedule is provided. At time 0, the waiting
jobs that will be assigned to processor M1 are τ3 and τ5, and those that will be
assigned to M2 are τ4 and τ6. However, in the practical case, τ1,1 and τ2,1 complete
without consuming their WCETs. Thus, after competing τ1,1, the scheduler should
select a waiting job from τ3 and τ5 to be executed on M1. Thus, the selected task
will be slowed down and will save energy. The selection from τ3 and τ5 is done by
comparing the energy reductions of all available selections. The selection with the
most energy saving is chosen. In the example shown in Fig. 3.20, we assume that τ3

and τ6 are selected, respectively.

Global Energy-aware Scheduling Based on an Optimal Scheduling for
Sporadic Tasks: In [17], the authors propose an energy-efficient real-time
scheduling algorithm for sporadic tasks, named LRE-DVFS-EACH. It is based
on LRE-TL [25], which is an optimal scheduling algorithm for sporadic tasks.
LRE-TL is an extension based on LLREF, and like LLREF, it uses the concepts of
the T-L plane. One improvement of LRE-TL against LLREF is that it reduces the
scheduling overhead of LLREF by eliminating some unnecessary migrations and
preemptions. Another important contribution of LRE-TL is that it provides scheme
that supports sporadic tasks. For periodic tasks, one task’s next instance/job arrives
exactly at the deadline of its current instance; however, for sporadic tasks, this is
not the case. LRE-TL proposes a scheme to deal with the unpredicted instance/job
arrivals of sporadic tasks. Initially, LRE-TL does the same thing as that of LLREF,
namely, constructing the T-L plane according to task deadlines. For periodic tasks,
there will be no new job arrivals during any T-L plane. However, there might be
a new job arrival during a T-L plane for sporadic tasks (the job arriving event in
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a T-L plane is called event A). If the new job has a deadline that is beyond the
current T-L plane, there is not much change compared to LLREF; LRE-TL just
calculates the execution requirement during the current T-L plane. If the new job
has a deadline that is within the current T-L plane, the LRE-TL will either check
if the new job can execute non-preemptively without causing any deadline misses,
or, if necessary, it will split the current T-L plane at the new job’s deadline, forming
two sub-T-L planes. In each sub-T-L plane, tasks are scheduled in a way similar to
that of LLREF.

Based on the optimal LRE-TL algorithm, the authors in [17] proposes the
LRE-DVFS-EACH to achieve the goal of saving energy. For feasible scheduling,
LRE-DVFS-EACH incorporates the schemes of LRE-TL for handling events A, B,
and C; for saving energy, it adopts a similar strategy to that in Independent SVFS,
which classifies tasks into Heavy and Light Tasks.



Chapter 4
Scheduling on Heterogeneous DVFS
Multiprocessor Platforms

Abstract As can be seen, a lot of research has been done for homogeneous
platforms; comparatively, less has been done for heterogeneous platforms. As
heterogeneous platforms are becoming more and more popular, energy-aware
scheduling on heterogeneous platforms also needs further research focus. This
chapter surveys existing works for energy-aware scheduling on heterogeneous
platforms. It consists of three sections: frame-based tasks (Sun W, Sugawara T
(2011) Heuristics and evaluations of energy-aware task mapping on heterogeneous
multiprocessors. In: Proceedings of IEEE international symposium on parallel and
distributed processing workshops and Phd forum, Alaska, May 2011, pp 599–607;
Li D, Wu J (2012) Energy-aware scheduling for fame-based tasks on heteroge-
neous multiprocessor platforms. In: Proceedings of international conference on
parallel processing, September 2012), tasks with precedence constraints (Lee YC,
Zomaya AY (2009) Minimizing energy consumption for precedence-constrained
applications using dynamic voltage scaling. In: Proceedings of the 9th IEEE/ACM
international symposium on cluster computing and the grid, Shanghai, May 2009, pp
92–99), and periodic tasks (Hung C-M, Chen J-J, Kuo T-W (2006) Energy-efficient
real-time task scheduling for a dvs system with a non-dvs processing element. In:
Proceedings of the 27th IEEE international real-time systems symposium, Rio de
Janerio, December 2006, pp 303–312; Yang C-Y, Chen J-J, Kuo T-W, Thiele L
(2009) An approximation scheme for energy-efficient scheduling of real-time tasks
in heterogeneous multiprocessor systems. In: Proceedings of design, automation
test in Europe conference and exhibition, Nice, April 2009, pp 694–699; Chen
J-J, Thiele L (2009) Task partitioning and platform synthesis for energy efficiency.
In: Proceedings of the 15th IEEE international conference on embedded and real-
time computing systems and applications, Beijing, pp 393–402; Chen J-J, Kuo T-W
(2006) Allocation cost minimization for periodic hard real-time tasks in energy-
constrained dvs systems. In: Proceedings of the 2006 IEEE/ACM international
conference on computer-aided design, San Jose, pp 255–260). Actually, both
(Yang C-Y, Chen J-J, Kuo T-W, Thiele L (2009) An approximation scheme for
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energy-efficient scheduling of real-time tasks in heterogeneous multiprocessor
systems. In: Proceedings of design, automation test in Europe conference and
exhibition, Nice, April 2009, pp 694–699) and (Chen J-J, Thiele L (2009) Task
partitioning and platform synthesis for energy efficiency. In: Proceedings of the 15th
IEEE international conference on embedded and real-time computing systems and
applications, Beijing, pp 393–402) consider frame-based tasks and periodic tasks
simultaneously; we put them under the category of periodic tasks. To the best of
our knowledge, little has been done for energy-aware sporadic task scheduling on
heterogeneous multiprocessor platforms.

4.1 Frame-Based Tasks

Heuristics for Minimizing Energy Consumption or Considering Makespan and
Energy Consumption Simultaneously: In [26], the authors address the problem
of mapping a set of frame-based tasks to heterogeneous multiprocessors. The
heterogeneous DVFS processors are assumed to have the same discrete voltage
levels. The maximal voltage is v1, and the voltage at level k is vk; there are
K different voltage levels. By assigning task set T = {τ1,τ2, · · · ,τn} to the m
processors, a task mapping is created and denoted by P , which consists of n tuples
{i∈ [1,n], j ∈ [1,m],k ∈ [1,K]}. Denote ETC3 = {ti, j,k}n×m×K as the Expected Time
to Compute matrix, and EEC3 = {ei, j,k}n×m×K as the Expected Energy to Complete
matrix. ti, j,k and ei, j,k represent the time and energy required to complete task τi on
processor M j at voltage level vk, respectively. Let ti, j,1 be the execution time and
ei, j,1 be the energy consumption at full processor speed; according to their simple
assumptions, ti, j,k =

v1
vk

ti, j,1, ei, j,k = ( vk
v1
)2ei, j,1. The schedule length of a set of tasks

under a given partition is denoted by:

D = max j∈[1,m]

(
∑

i∈[1,n],k∈[1,K]

ti, j,k[{i, j,k} ∈ P ]

)
.

which is the greatest timespan among all of the processors. The total energy
consumption is denoted by:

E = ∑
{i, j,k}∈P

ei, j,k.

Two approaches are proposed for the scheduling problem:

A1: First, find the minimum schedule length and a feasible mapping/partition if all
processors operate at the maximal voltage level v1 by the Min-min heuristic;
then, adjust the supply voltage for each mapped task to appropriately extend
the schedule length and to achieve the minimal energy consumption.

A2: Simultaneously consider schedule length and total energy consumption in
each step.
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Fig. 4.1 An example for Min-min heuristic. (a) ti, j,1. (b) Partition by Min-min heuristic

Here, we only present four heuristics that are proposed in the paper: H1 and H2
for A1, H3 and H4 for A2.

The first step of H1 and H2 is the same: find a mapping by the Min-min heuristic
at the maximal voltage level. The Min-min heuristic adopts the strategy of selecting
a task to assign to a processor, if the resulting completion time on this processor
is the minimal among all processors (also after assigning a task). The following
example in Fig. 4.1 shows how the Min-min heuristic works. Let ti, j,1 be the time to
complete task τi on processor M j at full speed. All of the ti, j,1 values for eight tasks
on three processors are given in Fig. 4.1a. Consider the time when τ1, τ2, τ3, τ5, and
τ7 have been assigned. Denote PATHj as the current accumulative execution time on
processor M j. We have PATH1 = 3, PATH2 = 2, PATH3 = 1; the remaining tasks
are τ4, τ6, τ8. After some simple calculations, we have min(PATH1 + ti,1,1) = 3+
t8,1,1 = 5, min(PATH2+ ti,2,1) = 2+ t6,2,1 = 7, and min(PATH3+ ti,3,1) = 1+ t6,3,1 =
6; obviously, the minimal among these three is min(PATH1 + t8,1,1) = 5, so in the
next step, task τ8 is assigned to processor M1. The final assignment, according to
the Min-min heuristic, is shown in Fig. 4.1b.

The second step of H1 and H2 is to optimize the supplied voltage for each task
without violating the predefined schedule length. For non-ideal DVFS processors,
finding the optimal voltage setting for each task on a processor M j is an Integer
Linear Programming (ILP) problem. Finding a solution by H1 is equivalent to
searching a full K-ary tree with the height equal to the number of tasks on a
processor. H2 is proposed to simplify H1. After mapping a task, the completion
time of each processor te

j and the schedule length D at the maximal voltage level
are known and a reasonable schedule length constraint Dc ≥ D is decided. If there

exists voltage level v1
te
j

Dc
, the schedule length will be exactly Dc if executing at this

voltage level. There must be vl ,vh ∈ {v1,v2, · · · ,vK}, such that vl ≤ v1
te
j

Lc
≤ vh. Each

task in M j only needs to choose vl or vh and the schedule length constraint will be
guaranteed. Thus, the K-ary tree search is reduced to a binary tree search, though
the height of the tree is still the number of tasks on the processor.
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H3 first searches for the next task to map like the Min-min heuristic. If, according
to the Min-min mapping, the completion time of this task is less than a threshold
which extends the current schedule length (namely, αDc,α > 1). The supplied
voltage to this task will be decreased and meanwhile the completion time of this
task will increase, but not by too much. It can be seen that the intuition of H3 lies
in trying to reduce energy consumption if the schedule length is not increasing too
fast. On the other hand, it is also applicable to map each next task in a way that
its energy consumption is with a given threshhold and increment of the resulting
schedule length is minimized. This aspect is the idea of H4. If such an assignment is
infeasible, the task at hand will be mapped to a processor with minimum completion
time.

A Novel Approach for Minimizing Energy Consumption: In our previous work
[27], we address the problem of scheduling a set of frame-based tasks on hetero-
geneous multiprocessor platforms with the goal of minimizing the overall energy
consumption while still meeting all tasks’ deadlines. We propose a Relaxation-based
Iterative Rounding Algorithm (RIRA) for the problem. This work falls into the
category of partition-based scheduling, and after partitioning, task migration and
preemption are not allowed. For the heterogeneity of the platform and difference
among tasks, an execution efficiency matrix λn×m is defined, where λi, j represents
the execution efficiency of processor j when it is used to execute task τi. In other
words, for a task τi with worst case execution cycles WCECi, the time required to
finish the task on processor j at frequency f can be calculated as WCECi/(λi, j f ).
Actually, three types of heterogeneous platforms are considered, namely, dependent
platforms without runtime adjusting, dependent platforms with runtime adjusting,
and independent platforms. For simplicity we will only explain the algorithm on the
first type of platform in detail.

We first consider the optimal frequency setting if we have already had a task
partition. Let binary variables xi, j be 1 if task τi is assigned to processor M j, and
0 otherwise. A given partition can be represented by a binary matrix xn×m. We
denote the shared frequency among all of the processors during the whole time by
f . Then, the time when processor M j will complete its workload can be calculated

as 1
f ∑n

i=1
xi, jWCECi

λi, j
. The shared frequency should guarantee that all processors will

finish the tasks assigned to it before the deadline:

1
f

n

∑
i=1

xi, jWCECi

λi, j
≤ D,∀ j = 1,2, · · · ,m.

The energy consumption on the jth processor M j can be calculated as:

E j = f 3

(
1
f

n

∑
i=1

xi, jWCECi

λi, j

)
= f 2

n

∑
i=1

xi, jWCECi

λi, j
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Thus, to achieve a partition with the goal of saving energy, the problem can be
formulated as the following binary integer programming problem:

min Etotal = f 2
m
∑
j=1

(
n
∑

i=1

xi, jWCECi
λi, j

)

s.t.
n
∑

i=1

xi, jWCECi
λi, j

− f D ≤ 0,∀ j = 1,2, · · · ,m.

xi, j = 0 or 1,∀i = 1,2, · · · ,n; j = 1,2, · · · ,m.

m
∑
j=1

xi, j = 1,∀i = 1,2, · · · ,n.

f ≥ 0.

where the optimization variables are the shared frequency f and the binary matrix
xn×m. It is known that binary integer programming problems are NP-complete. Thus,
we consider relaxing the binary variables xi, j’s to be any fraction in [0,1]. Denote
the relaxed optimization problem by P1, which is a convex optimization problem
that can be solved by the well-known interior point method in polynomial time
(in terms of the input problem size under a given precision requirement) [28]. The
optimization variables of P1 are the shared frequency f and the relaxed assignment
matrix xn×m. Here, xi, j represents the percentage of task τi that should be assigned
to processor Mj to achieve the minimal overall energy consumption.

Our intuition is that if we assign tasks in a way that is “closest” to the optimal
solution (for the relaxed problem), we will achieve a better partition in terms of
overall energy consumption. Introduce a reference execution time matrix, tn×m,
where ti, j = WCECi/λi, j. Further define task τi’s average execution requirement

as AERi =
∑m

j=1 ti, j
m . Without loss of generality, assume that all of the tasks are sorted

in descending order of their average execution requirement. This is also the order
that we will assign tasks in. Our intuition is that the task with the greatest average
execution requirement is the most influential task in terms of both schedulability
and energy consumption, and should be assigned first.

The solutions x1,1,x1,2, · · · ,x1,n for P1 indicate the optimal assignment of the most
influential task τ1. Then, we find the maximum among x1,1,x1,2, · · · ,x1,n, denoted by
x1, j∗ , and assign τ1 to processor Mj∗ . Denote the final assignment matrix for the task
set by Assignn×m. Then, we have Assign1, j = 0,∀ j �= j∗ and Assign1, j∗ = 1.

Before assigning the next most influential task τ2, we need to update the
optimization problem first. Notice that we have already assigned task τ1 to processor
Mj∗ , which means that x1, j = 0,∀ j �= j∗ and x1, j∗ = 1. The updated optimization
problem can be formulated as:

min Etotal = f 2
m

∑
i=1

(
n

∑
i=1

xi, jWCECi

λi, j

)

s.t.
n

∑
i=1

xi, jWCECi

λi, j
− f D ≤ 0,∀ j = 1,2, · · · ,m.
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Table 4.1 Example for RIRA

λi, j ti, j

i WCECi j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

1 7 0.7 0.4 0.1 10 17.5 70
2 8 0.5 0.2 0.3 16 40 26.67
3 3 0.4 0.1 0.2 7.5 30 15
4 5 0.5 0.2 0.4 10 25 12.5
5 9 0.6 0.9 0.7 15 10 12.86
6 5 0.8 0.3 0.5 6.25 16.67 10
7 4 0.3 0.9 0.6 13.33 4.44 6.67
8 4 0.4 0.6 0.8 10 6.67 5

0 ≤ xi, j ≤ 1,∀i = 2, · · · ,n;∀ j = 1,2, · · · ,m.

m

∑
j=1

xi, j = 1,∀i = 2, · · · ,n

f ≥ 0.

Denote this optimization problem by P2 since it will provide the solution
for assigning task τ2. Notice that P2 is quite different from P1 because now,
x1,1,x1,2, · · · ,x1,m have fixed values, namely, x1, j = 0,∀ j �= j∗, and x1, j∗ = 1.
The optimization variables in P2 only include the optimal frequency f and
x2,1,x2,2, · · · ,x2,m, x3,1,x3,2, · · · ,x3,m, · · · , xn,1,xn,2, · · · ,xn,m. Thus, we can assign
τ2 according to x2,1, x2,2, · · · , x2,m (solved for P2) based on the maximum value
among them, which is similar to what we do to assign task τ1. Then, we can update
the optimization problem as P3, keeping in mind that we have already assigned task
τ1 and τ2; solve it and assign task τ3. Then, solve P4 to assign τ4;· · · ; solve Pi to
assign τi; · · · . Repeat the process until we finish assigning (n− 1) tasks. It can be
seen that, in some cases, assigning the last task according to this iterative scheme
may not be optimal. Thus, for the last task, the assignment, which can achieve the
minimal overall energy consumption among all possible assignments for the last
task, is selected.

An illustrative example is provided below, which deals with assigning eight tasks
to three processors. Tasks’ WCEC’s and the processor efficiency matrix λ8×3 are
given in Table 4.1. A reference execution time matrix is denoted by t8×3, where
ti, j =WCECi/λi, j, which is also provided in the same table.

The proposed RIRA first solves the original optimization problem P1; assign τ1

according to solutions x1,1,x1,2,x1,3 (solved for P1). Then, it updates the optimiza-
tion problem to P2, solves it, and assigns τ2 according to solutions x2,1,x2,2,x2,3

(solved for P2). Repeat the above process until it assigns seven tasks; for the last task,
it selects the assignment that achieves the minimal energy consumption. Relevant
solutions are shown in Table 4.2. Figure 4.2 shows the partition by the proposed
RIRA.
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Table 4.2 Iterative assigning by RIRA

Relaxed Assignment xi, j solved for Pi Assign8×3

i j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

1 0.2920 0.7080 0 0 1 0
2 1 0 0 1 0 0
3 0.99984 0.00001 0.00015 1 0 0
4 0.00013 0.00001 0.99986 0 0 1
5 0 0.5379 0.4621 0 1 0
6 0.6504 0 0.3496 1 0 0
7 0 0.5062 04938 0 1 0
8 – – – 0 0 1

Fig. 4.2 Final partition by
RIRA

After a partition, the processors are slowed down dependently such that the
processor with the greatest completion time meets the predefined deadline D exactly.

4.2 Tasks with Precedence Constraints

Scheduling Simultaneously Considering Makespan and Energy Consumption:
Lee and Zomaya [29] considers scheduling precedence-constrained tasks/
applications on heterogeneous DVFS multiprocessor platforms. Each processor
has a distinct set of voltage levels. Power consumption is regarded as being
proportional to the square of the supply voltage. Besides, when consecutive tasks are
assigned to different processors, any communication between them is not neglected.
Applications/tasks under consideration are not deadline-constrained. Thus, the
scheduling quality for the task set is measured explicitly, considering both makespan
and energy consumption. The authors devise an Energy-Conscious Scheduling
(ECS) heuristic with a newly defined objective function: relative superiority, which
takes both the makespan and energy consumption into account. The tasks are firstly
sorted in an order that satisfies the original precedence constraints. Then, tasks are
considered according to this order, one by one, to be assigned to a processor with
the best relative superiority value.
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After this procedure, a Makespan Conservative Energy Reduction (MCER)
technique is incorporated. For each task, MCER considers all of the other com-
binations of (host processor, voltage supply level) to check whether any one of
these combinations reduces the energy consumption of the task without increasing
the current makespan. If such a combination exists, the task will switch to use this
combination.

4.3 Periodic Tasks

This section surveys existing works on energy-aware scheduling of periodic tasks
on heterogeneous multiprocessor platforms. Hung et al. [30] consider energy-aware
scheduling on a heterogeneous platform with one non-DVFS Processor Unit (PU)
and one DVFS processor. Yang et al. [31] deal with platforms with a fixed number
of heterogeneous processors. Chen and Thiele [32] consider platforms with a fixed
number of heterogeneous processor types, while one processor type may still have
multiple processors. Unlike previous discussions, [33] addresses the problem of
minimizing the allocation cost on heterogeneous platforms.

Scheduling on Platforms with a DVFS processor and a non-DVFS PU: The
authors in [30] address energy-efficient periodic task scheduling on heterogeneous
platforms, consisting of one DVFS processor and one non-DVFS Processing Unit
(PU). The non-DVFS PU can be either workload-dependent, where its energy
consumption in the hyper-period H is P2U2H, or workload-independent, where its
energy consumption in the hyper-period H is P2H. P2 is the constant power, and U2

is the utilization assigned to the non-DVFS PU. Denote μi as the utilization of task
τi on the non-DVFS PU.

For ideal DVFS processors, when the non-DVFS PU is workload-independent,
the optimization problem can be formulated as follows:

minimize ∑τi∈T xiCi/Ti

s.t. ∑τi∈T μixi ≥ (∑τi∈T μi)− 1

where, xi is 1 if τi is assigned to the DVFS processor and is 0 if τi is assigned to
the non-DVFS PU. Our intuition here is that, if a task has high computation demand
on the DVFS processor, but a low utilization on the non-DVFS PU, it will be a
good candidate to be assigned to the non-DVFS PU. According to this intuition,
Algorithm GREEDY is proposed and works as follows: (1) sort tasks in a non-
decreasing order of μi

Ci/Ti
and initialize the task set assigned to the non-DVFS PU,

T2 as empty; (2) for i = 1, · · · ,n, if μi +∑τ j∈T2
μ j ≤ 1, τi is added to T2; (3) assign

all of the tasks in T2 to the non-DVFS PU and all of the remaining tasks to the
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non-DVFS PU

DVFS processor

0.2
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0.35

Fig. 4.3 Algorithm
GREEDY

DVFS processor. Algorithm GREEDY is reasonable but does not provide a worst
case guarantee. Thus, based on Algorithm GREEDY, another enhanced algorithm,
E-GREEDY, is proposed and is proven to be an approximation algorithm.

Consider the following five tasks: τ1 =(6,10,10), τ2 =(4,8,8), τ3 =(12,20,20),
τ4 =(2,10,10), τ5 =(1.8,12,12); μ1 = 0.4, μ2 = 0.2, μ3 = 0.3, μ4 = 0.15, μ5 = 0.2.
Thus, their μi

Ci/Ti
values are: 0.67, 0.4, 0.5, 0.75, 1.33. Algorithm GREEDY works

as following: sort the tasks in non-decreasing order of μi
Ci/Ti

: τ2,τ3,τ1,τ4,τ5. Thus,
τ2, τ3, τ1 should be assigned to the non-DVFS PU, and the utilization on the non-
DVFS PU will be 0.9; since μ4 + 0.9 = 1.05 > 1, no more tasks will be assigned
to the non-DVFS PU. τ4 and τ5 will be assigned to the DVFS processor. The final
assignment is shown in Fig. 4.3.

When the non-DVFS PU is workload-dependent, the reduction of energy con-
sumption on the DVFS processor and the increase of the energy consumption on the
non-DVFS PU must be evaluated, while considering the assignment of a task to the
non-DVFS PU. Another algorithm, S-GREEDY, is proposed. Initially, tasks are still
sorted in a non-decreasing order of μi

Ci/Ti
. Put all of the tasks on the DVFS PE as

the initial solution. According to the sorted order, consider the assignment of task
τi in the ith iteration. According to the solution so far, if moving more portions of
task τi to the non-DVFS PU can reduce the energy consumption further, then assign
task τi to the non-DVFS PE; otherwise, assign τi on the DVFS processor. After n
iterations, a task assignment for task set T can be achieved.

Scheduling on Platforms with a Fixed Number of Heterogeneous Processors:
In [31], the authors consider how to partition real-time tasks on a heterogeneous
platform to achieve the minimal energy consumption, where, after partitioning, task
migration is not allowed. Let E j(Uj) be the energy consumed on M j with workload
Uj. Assuming that the energy consumption of a given processor with a higher
workload is larger than that with a lower workload, they propose an approximation
scheme for different power models and task types when the number of processors is
a constant.

The authors present an important inequality that many practical systems satisfy:

i f 0 <Uj,(1+ δ )Uj ≤ 1,0 ≤ σ ≤ δ

then E j((1+σ)Uj)≤ E j((1+ δ )Uj)≤ (1+ ε)E j(Uj)
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where δ is a polynomial function of constant ε in a specific range. The inequality
here means that energy consumption on M j is a non-decreasing function of Uj,
and the energy consumption of M j, with workload (1 + δ )Uj, is no more than
(1 + ε) times of the energy consumption with workload Uj . Based on various
power consumption models, it is shown that this inequality is true for both frame-
based tasks and periodic tasks on ideal DVFS shutdown-disabled processors and
shutdown-enabled processors without overhead (Eov

j = 0); it is also true for frame-
based tasks on ideal DVFS shutdown-enabled processors with overhead (Eov

j �= 0),
but it is not true for periodic tasks.

A dynamic programming approach is applied to tackle the problem, and it is
shown to be NP-hard. The basic idea of the dynamic programming is to keep tracing
a set of states S, where each state stands for a partition P for a subset of task set T .
A state that stands for a partition P is presented by a tuple p = (U p

1 ,U
p
2 , · · · ,U p

m).
The initial set of states S0 consists of one state p = (0,0, · · · ,0). When τi is
considered, a set Si of new states will be generated according to the existing states
Si−1. For each state p in Si−1, the dynamic programming constructs m new states
(U p

1 + ui,1,U
p
2 , · · · ,U p

m), (U
p
1 ,U

p
2 + ui,2, · · · ,U p

m), · · · , (U p
1 ,U

p
2 , · · · ,U p

m + ui,m) and
adds them into set Si. Eventually, all feasible partitions are in the set Sn. Then, based
on the energy inequality, which holds for various systems, a pruning approach is
applied to reduce considerable states in every step to achieve S1, S2, · · · , Sn. The
pruning approach modifies the dynamic programming process to be in polynomial
time and limits the sacrifice in the optimality of the final result. At the end, it is
proven that the algorithm, termed Algorithm MTRIM, has an approximation ratio
of (1+ ε) if the derived solution is feasible, where ε is a parameter adopted in the
procedure.

Scheduling on Platforms with a Fixed Number of Heterogeneous Processor
Types: The authors in [32] also explore how to partition tasks and select processors
on heterogeneous platforms with the goal of saving energy, where online migration
is not allowed. The platform under consideration has m processor types, and
each type may still have multiple processors. Two kinds of processor types are
considered: processors without the capability of DVFS, whose power consumption
is a constant, and processors with the capability of DVFS. The problem of energy-
efficient task partitioning with heterogeneous processor types is termed as the ETHE
problem when the number of processors of type M j is not restricted; when the
number of available processors of type M j is upper bounded by Nup

j , it is termed as
the R-ETHE problem.

Let E j(T j) be the minimal total energy consumption in hyper-period H for
scheduling a subset T j of task set T , while meeting all of the deadlines, on a
processor of type M j. Much like in [31], the authors in this paper first present a
statement that various systems satisfy:

i f ∑τi∈T j,a
ui, j ≤ ∑τi∈T j,b

ui, j

then E j(T j,a)≤ E j(T j,b)
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Fig. 4.4 All possible values of E(U)/v

Define the average energy consumption of tasks on a processor as the energy
consumption of the processor divided by the number of tasks executed on this
processor. A Minimum Average Energy First (MAEF) strategy is adopted to tackle
the task assignment and processor allocation problem, with the intuition that to
allocate a processor that can schedule more tasks with less energy consumption is
preferred. Let T rest be the set of tasks that are not assigned to allocated processors
yet, where T rest is initialized as T . Because energy consumption is an increasing
function of the total utilization of the tasks assigned to the processor, to assign
v tasks in T rest to a processor of type M j with the minimum average energy
consumption, it should choose those v lower utilization tasks in T rest on a processor
of type M j.

Let T rest
v, j be the set of tasks (in T rest ) that contains the v lower utilization

tasks when assigned to a processor of type M j. By considering all of the possible
assignments for j = 1,2, · · · ,m and v = 1,2, · · · , |T rest |, the processor allocation
and task assignment with the minimal average energy consumption T rest

v∗, j∗/v∗ can be
found. Thus, a processor of type M j∗ is allocated to T rest

v∗, j∗ . Then, T rest is updated
by subtracting T rest

v∗, j∗ from T rest . The above procedure is repeated until all of the
tasks are assigned to an allocated processor.

Consider the following example with four tasks whose utilizations are: u1,1 = 0.3,
u2,1 = 0.2, u3,1 = 0.2, u4,1 = 0.75, u1,2 = 0.1, u2,2 = 0.2 , u3,2 = 0.3 ,u4,2 = 0.3.
Assume that E1(U1) =U2

1 + 0.8, E2(U2) =U2 + 1.
The MAEF strategy works as follows: for j = 1, sort tasks according to their

ui,1 values in ascending order: u2,1 = 0.2, u3,1 = 0.2, u1,1 = 0.3, u4,1 = 0.75.
Choose the former v lower utilization tasks and calculate E1(U1)/v for v = 1,2,3,4:
0.84, 0.48, 0.43, +∞ (since the accumulated utilization is 1.25≥ 1); for j = 2,
sort tasks according to their ui,2 values in ascending order: u1,2 = 0.1, u2,2 = 0.2,
u3,2 = 0.3, u4,2 = 0.3. Choose the former v lower utilization tasks and calculate
E2(U2)/v for v = 1,2,3,4: 1.1, 0.65, 0.533, 0.475. To show it clearly, all E j/v
( j = 1,2,v = 1,2,3,4) values are given in Fig. 4.4. Obviously, E1(U1)/3 is the
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minimal. Thus, τ2, τ3, τ1 are assigned to a processor of type M1. T rest is updated
as {τ4}. Then, assigning τ4 to a processor of type M2 is better than assigning to a
processor of type M1. The final assignment is as follows: τ1, τ2, τ3 are assigned to
a processor of type M1, τ4 is assigned to a processor of type M2.

Then, it is proven that the Algorithm MAEF has an approximation ratio of
(1 + lnn) for the ETHE problem, where n is still the number of tasks. For the
R-ETHE problem, Algorithm MAEF is modified as follows: when determining the
minimum average energy consumption, if it has already allocated Nup

j (which is the
maximum number of processors of type M j) processors of type M j, it just ignores
the possibility of allocating one more processor of type M j. If the algorithm fails
to provide a feasible solution, the algorithm in [34] is applied to try to achieve a
feasible solution, because, at this time, feasibility matters more than saving energy.

Allocation Cost Minimization: For periodic tasks on heterogeneous platforms,
the objective of [33] is to allocate processors (of different processor types) with
the minimal allocation cost under timing and energy consumption constraints.
M = {M1 · · · ,Mm} is the set of all processor types. Each processor type has
multiple processors. Allocating η processors of type M j requires a cost of ηC j . The
available speeds and the power consumption function Pj() of processor type M j are
specified. Given that the maximum energy consumption of task set T in the hyper-
period H is bounded by Emax, the multiprocessor allocation for energy-constrained
real-time scheduling (MARTS) problem is proven to be NP-hard in a strong sense,
even when there is only one processor type for either ideal or non-ideal processors.

For non-ideal processors, the MARTS problem can be formulated as an integer
linear programming problem. Then, a series of relaxation techniques are applied to
achieve a feasible schedule and a proper allocation of processors in polynomial time.
Specifically, by applying a parametric relaxation, a polynomial-time approximation
algorithm is developed, based on a rounding technique. The algorithm to find all of
the feasible solutions is termed as Algorithm ROUNDING, and another enhanced
algorithm, E-ROUNDING, is developed to find the schedule with the minimum
cost. For ideal processors, the available speeds are divided into a user-defined
spectrum with a number of discrete speeds on each processor type. Then, Algorithm
ROUNDING and E-ROUNDING are applied to allocate processors and assign
tasks.



Chapter 5
Related Work

Abstract This chapter describes some works that are similar to, or very close to,
what we do in this book. These include a brief survey on energy-aware scheduling
on both uniprocessor and multiprocessor platforms, two research summaries of
specific issues with multiprocessor energy-aware scheduling, an extensive energy-
aware scheduling survey on uniprocessor systems that focuses on battery-powered
devices, as well as a pure scheduling survey on multiprocessor platforms.

Energy-aware scheduling has been a hot research topic for a long time. The most
recent comprehensive survey on energy-aware scheduling is Chen and Kuo [35].
It surveys research works on both uniprocessor and multiprocessor DVFS platforms.
However, it focuses mainly on uniprocessor platforms, and only a small part is
on multiprocessor platforms; overall, issues on multiprocessor platforms are not
extensively covered.

Chen et al. [36] summarize previous works, which provide approximation
algorithms for several issues on energy-efficient scheduling on multiprocessor
DVFS platforms; [37] summarizes several existing works that consider leakage
current and non-DVS components. However, only a limited number of issues
are covered in both [36] and [37]. Also, they do not provide comprehensive
classifications for energy-aware scheduling problems on multiprocessor platforms.

In [38], the authors survey previous studies on energy-efficient scheduling on
uniprocessor systems. They focus on techniques proposed for battery-powered
devices, aiming at using the right amount of energy in the right place at the
right time. Some imperative concepts are also provided, such as periodic tasks,
sporadic tasks, fixed/dynamic priority, preemptive and non-preemptive, etc. Their
major contribution is that they extend their work to deal with the problem of
scheduling tasks on platforms that are rechargeable [39]. They survey some studies
that deal with uniprocessor rechargeable systems. Besides, throughout their work,
they only deal with uniprocessor systems, though their works may share some light
on multiprocessor platforms. As can be seen, their work is quite different from ours.

D. Li and J. Wu, Energy-aware Scheduling on Multiprocessor Platforms,
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Davis and Burns [40] provides a survey of scheduling algorithms and
schedulability analyses for multiprocessor systems. However, this work only covers
scheduling algorithms for homogeneous multiprocessor platforms. Although it
is not about energy-aware scheduling, we have noticed that most energy-aware
scheduling algorithms are based on basic scheduling algorithms.

Our work in this book provides a comprehensive classification of energy-aware
scheduling research on both homogeneous and heterogeneous multiprocessor plat-
forms and presents clear definitions of several typical issues. Detailed techniques
and methods that are used to solve various problems are also included.



Chapter 6
Conclusion and Future Directions

Abstract We conclude our book in this chapter. Based on our work above, a
generalized description of energy-aware scheduling problems is presented. We also
retell the overall hierarchy of our work. After that, we predict future directions on
energy-aware scheduling on multiprocessor platforms according to three aspects,
namely, platform models, task models, and other related concepts.

As we can see, energy-aware scheduling problems on multiprocessor platforms are
intrinsically optimization problems, namely, minimizing energy consumption under
a time constraint (performance constraint), minimizing execution time (maximizing
performance) under an energy consumption constraint, especially for tasks with
precedence constraints/framed based tasks, and minimizing the allocation cost
under both energy consumption and time constraints. The formulations of these
optimization problems greatly depend on the platform, task model, and various
assumptions, so do the solutions for these problems. When models are simple,
the optimization problems may have explicit analytical solutions, based on which,
optimal scheduling can be derived directly. When models become complicated,
the optimization problems also become complicated or even NP-hard. Under
this situation, instead of finding the optimal solution, heuristic algorithms and
approximation algorithms can be achieved based on the solutions of the formulated
optimization problems or their relaxed versions.

As a brief conclusion, this book provides a comprehensive survey of what
has been done regarding energy-aware scheduling on multiprocessor platforms.
Two types of platforms are considered: homogeneous platforms and heterogeneous
platforms. For each type of platform, different types of tasks are considered:
frame-based tasks, tasks with precedence constraints, periodic tasks, and spo-
radic tasks. Under this classification, discussions on other issues, such as slack
reclamation, fixed/dynamic priority scheduling, partition-based/global scheduling,
and application-specific power consumption are also provided. For each specific
problem, the state-of-the-art scheduling algorithms are provided in detail.

D. Li and J. Wu, Energy-aware Scheduling on Multiprocessor Platforms,
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We believe that energy-aware scheduling on multiprocessor platforms will
continue to be an important issue in modern computational systems, and thus
deserves much research interest. We know that energy-aware scheduling on mul-
tiprocessor platforms, to a large extent, is based on basic scheduling algorithms
and schedulability analysis on similar platforms. For partition-based scheduling,
well understood scheduling algorithms for uniprocessors are widely used directly.
For example, the Earliest Deadline First (EDF) schedulability condition and the
Rate Monotonic (RM) schedulability condition [41]. For global scheduling, more
complex scheduling algorithms and schedulability analyses are also introduced
into energy-aware global scheduling. A typical example has been shown by Nelis
et al. [21], Bertogna et al. [23], and Goossens et al. [24]. Thus, before considering
energy-aware scheduling, we should first study basic scheduling algorithms and
schedulability analyses under similar assumptions.

The future directions can be given based on the three aspects, namely, platform
models, task models, and other related concepts. As for platform models, many
works have been done on homogeneous platforms, including all kinds of task
models; less have been done for heterogeneous platforms. Most existing works
tend to assume a too “ideal” power consumption model. Thus, the proposed
scheduling algorithms may not be suitable for practical systems. For task models, we
notice that only relatively simple tasks are considered thoroughly on heterogeneous
multiprocessor platforms, namely, frame-based tasks and periodic tasks. Tasks with
precedence constraints and sporadic tasks also need more research effort. For
other related concepts, we have mentioned that they can have great influences on
both schedulability and energy consumption. These concepts reflect how practical
platforms and tasks may have additional constraints and requirements for energy-
aware scheduling algorithms.
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