
UNDERGRADUATE TEXTS IN COMPUTER SCIENCE

Springer Science+Business Media, LLC

Editors
David Gries

Fred B. Schneider

UNDERGRADUATE TEXTS IN COMPUTER SCIENCE

Beidler, Data Structures and Algorithms

Bergin, Data Structure Programming

Brooks, Problem Solving with Fortran 90

Brooks, CProgramming: The Essentials for Engineers and Scientists

Dandamudi, Introduction to Assembly Language Programming

Grillmeyer, Exploring Computer Science with Scheme

Jalote, An Integrated Approach to Software Engineering, Second Edition

Kizza, Ethical and Social Issues in the Information Age

Kozen, Automata and Computability

Merritt and Stix, Migrating from Pascal to C++

Pearce, Programming and Meta-Programming in Scheme

Zeigler, Objects and System

David R. Brooks

C Programming:
The Essentials for

Engineers and Scientists

With 39 IIlustrations

, Springer

David R. 8rooks
Department of Mathematics

and Computer Science
Drexel University
Philadelphia, PA 19104
USA

Series Editors
David Gries
Fred 8. Schneider
Department of Computer Science
Cornell University
Upson Hall
Ithaca, NY 14853-7501
USA

Library of Congress Cataloging-in-Publication Data
Brooks, David R., 1941-

C programming : the essentiaIs for engineers and scientists I
David R. Brooks.

p. cm. - (Vndergraduate texts in computer science)
Includes bibliographical references and index.

1. C (Computer program language). 1. Title. II. Series.
QA76.73.CI5B755 1998
500'.285'5 1 33-dc21 98-31041

Printed on acid- free paper.

© 1999 Springer Science+Business Media New York
OriginaIly published by Springer-Verlag New York. Inc. in 1999
Softcover reprint of the hardcover 1 st edition 1999
AII rights reserved. This work may not be translated or copied in whole or in part without the written per
mission of the publisher (Springer Science+Business Media, LLC).
except for brief excerpts in connection with reviews or scholarly analysis. Vse in connection with any form
of information storage and retrieval, electronic adaptation. computer software, or by similar or dissimilar
methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former
are not especiaIly identified, is not to be taken as a sign that such names, as understood by the Trade Marks
and Merchandise Marks Act. may accordingly be used freely by anyone.

Production coordinated by Robert Wexler and managed by Steven Pisano; manufacturing supervised by
Jacqui Ashri.
Photocomposed copy prepared from the author's Word Perfect files.

987654321

ISBN 978-1-4612-7161-1

ISBN 978-1-4612-7161-1 ISBN 978-1-4612-1484-7 (eBook)
DOI 10.1007/978-1-4612-1484-7

Preface

1 The Purpose of This Text

This text has been written in response to two trends that have gained considerable
momentum over the past few years. The first is the decision by many
undergraduate engineering and science departments to abandon the traditional
programming course based on the aging Fortran 77 standard. This decision is not
surprising, considering the more modem features found in languages such as
Pascal and C. However, Pascal never developed a strong following in scientific
computing, and its use is in decline. The new Fortran 90 standard defines a
powerful, modem language, but this long-overdue redesign of Fortran has come
too late to prevent many colleges and universities from switching to C. The
acceptance of C by scientists and engineers is based perhaps as. much on their
perceptions of C as an important language, which it certainly is, and on C
programming experience as a highly marketable skill, as it is on the suitability of
C for scientific computation. For whatever reason, C or its derivative C++ is now
widely taught as the first and often only programming language for undergraduates
in science and engineering.

The second trend is the evolving nature of the undergraduate engineering
curriculum. At a growing number of institutions, the traditional approach of
stressing theory and mathematics fundamentals in the early undergraduate years,
and postponing real engineering applications until later in the curriculum, has been
turned upside down. The result is a lab-intensive, tightly structured curriculum
with little time for elective courses such as programming in the early years. The
advantage of this approach is that, from the very beginning of their undergraduate
studies, engineering students spend a great deal of time participating in the
hands-on experiences that define the essential nature of engineering.

Nonetheless, many faculty and potential employers continue to believe that
learning a programming language is an important part of an engineering or science
education. Even if students never need to rely solely on their own programming
skills for solving computational problems, learning to program effectively provides
a unique opportunity to learn essential problem-solving strategies that are easily
transferable to other endeavors.

As a result of the restructuring of some engineering curricula, formal
programming courses may be delayed until after the freshman or sophomore years.
For example, students taking a course based on this text at Drexel University are
typically pre-juniors, as they are designated in Drexel's five-year curriculum. They
have had work experiences through Drexel's mandatory co-op program, and they
are expected to have had some significant exposure to computers, including
experience with specialized applications such as spreadsheets, statistical packages,
virtual laboratory software, or symbolic algebra software. Thus even though this
text does not assume a formal programming background, it moves quickly through

vi • Preface

introductory material by taking advantage of the fact that the intended audience
is no longer intimidated by the mechanics of using computers.

2 Decisions About Content

Even as the value of a formal programming course continues to be recognized, it
is widely conceded that, due to the pervasive availability of specialized computing
tools, such a course will no longer occupy the central position it once did in
undergraduate science and engineering curriculums. In recognition of this reality,
this text presents a problem-driven and somewhat abridged introduction to the C
programming language which will be useful to engineering and science students,
and which can be presented in a one-quarter or one-semester course.

C is a complex and sometimes obscure language that can be used for a
variety of purposes. Hence a short course aimed at a specific audience must have
limited and well-defined objectives. Within a problem-driven context, how should
these objectives be defined? I believe there are two essential considerations:

1. Engineering and science problems should be used to introduce programming
concepts based on the requirements of those problems, rather than the other way
around. As a result, even though C plays a major role as the fundamental language
underlying some operating systems and graphical interface applications, for
example, such uses of C are ignored in this text.

2. C's interface with external sources of data should be emphasized. It is my
experience that students generally are reluctant to use a programming language
outside a course in which they are required to learn that language. If a short
course in C is to have a lasting impact as one of several tools science and
engineering students can and will use to meet their computational needs, a great
deal of practice with processing external data is necessary in order to develop the
skills required to write useful programs. Early exposure to using data in the form
of ASCII text files is especially important because C is less convenient for
manipulating text data than languages such as Fortran. Thus, more practice is
required to reach what I consider to be a useful level of proficiency.

During the one-quarter course I teach at Drexel University, I cover
Chapters 1 through 7 so that students learn these basic skills:

1. How to solve problems using top-down design and modularized code
2. How to implement the basic sequential, selection, and repetition control

structures of a procedural programming language
3. How to use C's basic I/O functions
4. How to represent and manipulate data using arrays and structures

Preface • vii

This coverage leaves a little time at the end of the quarter for a brief look at one
or two applications from later chapters. A one-semester or longer course could,
of course, spend more time examining discipline-specific applications and general
purpose numerical analysis algorithms taken from this text or elsewhere. It would
also be worthwhile to spend more time discussing pointers and their application
to dynamic memory allocation and linked structures.

3 Pedagogical Issues

In the interest of presenting an abridged course in C for science and engineering
students, I have minimized detailed discussions of programming concepts that
would be appropriate for a more intensive course taught to computer science
majors, for example. Therefore, this text attempts to teach largely through
example, by providing many complete programs. To put it another way, the text
emphasizes the how over the why of programming. At the same time, it strives
to present a general approach to solving problems and a programming style that
can be applied to other languages and also to other computing applications.

In order to gain maximum benefit from this text and its learning-by-doing
approach, students should spend as much time as possible studying the
programming examples. It is insufficient simply to read the code. Instead, students
should enter the code into their own computers (my own preference is for students
to manually type code rather than downloading it), run the programs, and try
various modifications. This is simply the only way I know to become comfortable
with the mechanical process of creating and debugging source code.

I have tried to present many of the code examples in the text as templates
for solving a particular kind of problem. It is especially important for students to
focus on recycling code from such examples into other programs. This is a skill
that requires practice because it is not always obvious which parts of a program
are specific to a particular problem and which parts can easily be transferred to
a different problem. Weekly computing labs, if offered as part of a course, are the
ideal place to practice working with code in this way.

With the advent of C++ and other object-oriented languages, it is certainly
possible to argue that a process-oriented approach to programming is old
fashioned and needs to be replaced with a more modem object-oriented, problem
solving model. However, I continue to believe that engineering and scientific
problem solving is inherently procedural; that is, it remains centered around
processes rather than properties. Hence, the procedural programming language
model will never be irrelevant for solving these kinds of problems.

In view of the fact that C and its derivatives are widely used for
commercial applications, it is worth commenting on the nature of the
programming examples given in this text and, by implication, the programs
students are expected to write. Commercial software applications should be

viii • Preface

exceedingly robust in the sense that they should keep running no matter what, and
they should be as "idiot proof' as possible with respect to user input. It should be
obvious that no software developer can afford to market programs that crash,
although any user of commercial applications knows that this is apparently not as
obvious as it should be. Commercial programs should provide extensive testing
of the input supplied by the program user, and just this component of a program
can take a great deal of code. Consequently, a large percentage of the code for
commercial programs is devoted to the user interface, which is almost always
graphics-based.

In contrast, the programs in this text will be written exclusively in text
mode, mostly by the single user of that program. If such a program expects as
input a number in a specific range, it is reasonable in this context to assume that
the user will do that. If not, the program will crash or produce meaningless results.
If that happens, nothing is lost and the user simply starts over. To put it another
way, even though the design of an appropriate and robust user interface for
computer applications is an important topic in its own right, it is relatively
unimportant for a course based on this text. What is important is for students to
develop a working understanding of basic programming concepts, their
implementation in C, and their relationship to a particular class of computational
problems. In terms of user interface issues, it is sufficient for engineering and
science students in a first programming course to become proficient at choosing
appropriate representations for data and at prompting a program user to provide
just the information required to solve a problem-no more and no less-while
maintaining consistent physical units across the user-program interface.

4 The Programming Environment Used for This Text

I have used two different compilers to develop the programs in this text: an
ancient MS-DOS compiler-Microsoft QuickC-and Sun Microsystem's cc
compiler for UNIX systems. The cc compiler resides on the computer that
provides e-mail accounts for all Drexel University students, so it has the advantage
of being widely available to students from every discipline. There are always some
students who prefer to use a different compiler, but because this text uses ANSI
standard C and stresses straightforward rather than clever programming style, there
should be no compatibility problems. For an introductory programming course, I
can find no justification for asking students to overcome the additional learning
curve required to become proficient in the use of visual programming
environments for graphics-based operating systems such as Windows. The
extensive capabilities such environments provide for professional programmers
who develop large and complex applications is inconsistent with the goals of an
introductory course that requires writing many small standalone programs.

Preface • ix

Nonetheless, it is certainly possible for students to use such programming
environments if they wish.'

5 Succeeding at Learning a Programming Language

Finally, here is some advice to students about how to succeed in a programming
course. The first thing you need to know is what this text assumes about your
background. As noted above, you are expected to be computer literate in the sense
that you know how to use computers for word processing, e-mail, surfing the
Web, and perhaps solving some kinds of problems using applications such as
spreadsheets and database programs. Consequently, this text does not offer the
hand-holding introduction to computing that would be appropriate for neophytes;
this is an audience that has essentially disappeared from the colleges and
universities where this text is likely to be used.

If you have had some programming experience in another language, you
may find the material at the beginning of the text very simple. However, C is
sufficiently different from other languages that you will likely have a few
questions about implementation even with the early material. If you have never
done any computer programming, you may find the early material too terse and
insufficiently detailed. If so, you should ask your instructor for additional help as
soon as possible so you do not fall behind. You may also wish to study other
introductory programming texts that present material in a different way; my
experience is that good students rarely depend only on the assigned text.

My students often tell me that programming courses take more hours per
week, per credit hour, than any other course. This may simply be because it is
more obvious how to determine whether you have mastered the material; either
your program works properly or it doesn't! One way to minimize the work load
is to learn how to manage your time effectively. The basic rule is never to get
behind on programming assignments. Nothing is more frustrating than getting
stuck on a minor programming detail in the middle of the night before an
assignment is due. You can avoid this situation by starting early, finding out
where the difficulties are, and getting help as soon as possible. If your instructor
allows it, you should discuss programming problems with your peers; my opinion
is that it is unfair to ask students to learn a programming language on their own
without extensive interaction with their peers.

The first and best place to look for help on programming assignments
should be in your instructor's office. Many students, especially those who have

lOne programming environment used in my department at Drexel requires nearly a minute
to recompile and execute even a very short program. As beginning programmers need to write
many short programs and tend to make many mistakes, this environment is not an efficient
teaching or learning tool.

x • Preface

been very successful in high school, apparently believe that asking for help is a
sign of weakness, to be done only as a last resort. However, in my courses, I
expect some, if not most, students to need help to complete at least some of the
programming assignments. The sooner you accept this fact and learn to view it as
a part of the learning process, as essential as going to class and taking tests, the
more successful you will be.

Finally, you must understand that it is as impossible to learn how to write
programs just by reading about programming as it is to learn to speak Russian by
reading about Russia. Although careful study of this or any other text is obviously
a good idea, the only way to succeed at programming is to write code-lots of
code. Only in this way can you develop your skills, determine what parts of the
language you don't yet understand, and become proficient at finding and
correcting the inevitable errors that creep into your programs.

For most of you, it will not be enough just to write the programs that are
required for homework. In this text, I have tried to make homework exercises
interesting by dealing with real computational problems. As a result, the problems
themselves may require at least as much thought as the source code. In order to
solve such problems as efficiently as possible, you need to devote some time to
writing many short programs just to make sure you understand details of
implementation and syntax. If you don't do that during the regular study hours
you devote to a course based on this text, writing homework programs may be a
very difficult and discouraging task, and you will never develop the proficiency
you need to concentrate on solving problems rather than on language
implementation details.

6 Contacting the Author

I look forward to hearing about your experiences with this text. You can contact
me at dbrooks@mcs.drexel.edu. You can find source code and data files for all
complete programs included in the text, and data files required for the exercises,
at http://www.springer-ny.com/supplements/dbrooks. Instructors can contact me
directly to obtain source code for my solutions to the programming exercises. The
names of the source code files are given in brackets at the end of each exercise.

7 Suggested Supplementary Material

I have presented in this text only what I consider to be the most relevant elements
of the C language for students of science and engineering. However, it is
inevitable that students and instructors will have questions about C that are not
addressed in this text; neither I nor any other textbook author can possibly

Preface • xi

anticipate all those questions. At least part of the solution is to supplement this
text with a language reference manual. The one I require for my courses is:

Herbert Schildt, C/C++ Programmer's Reference, Osborne McGraw-Hill, 1997,
ISBN 0-07-882367-6.

8 Acknowledgments

I would like to thank my students, who collectively have lived through several
preliminary versions of this manuscript, and especially my partner, Susan
Caughlan, for her editorial oversight and for her many allowances for the time
required to complete this project.

David R. Brooks
Drexel University

Contents
Preface v

1 The Purpose of This Text v
2 Decisions About Content . vi
3 Pedagogical Issues vii
4 The Programming Environment Used for This Text viii
5 Succeeding at Learning a Programming Language ix
6 Contacting the Author .. x
7 Suggested Supplementary Material x
8 Acknowledgments . xi

1 Programming Preliminaries 1
1.1 A Five-Step Problem-Solving Process 1

1.1.1 Step 1: Define the Problem 1
1.1.2 Step 2: Outline a Solution 2
1.1.3 Step 3: Design an Algorithm 2
1.1.4 Step 4: Convert the Algorithm Into a Program 3
1.1.5 Step 5: Verify the Operation of the Program 3

1.2 Defining a Pseudocode Language for Algorithm Development . .. 3
1.3 Organizing Pseudocode Into a Program 9
1.4 Examples 10
1.5 What Is the Point of Programming? 19
1.6 Your First C Program . " 20

2 The Basics of C Programming•••.•.•...•.•..... 23
2.1 C Program Layout 23
2.2 Basic Input and Output .. 26

2.2.1 Keyboard Input and Monitor Output 26
Reading and Displaying Numbers " 26
Reading and Displaying Characters and Strings

of Characters 31
Reading Values With Leading Zeros and

Nonblank Separators 33
2.2.2 File VO 35
2.2.3 VO Redirection .. 37

2.3 Reading External Text Files of Unknown Length 38
2.4 Reading a File One Character at a Time " 46
2.5 Applications 48

2.5.1 Maximum Deflection of a Beam Under Load 48
2.5.2 Relativistic Mass and Speed of an Electron 51

2.6 Debugging Your Programs 55
2.6.1 Compile-Time Errors. .. 55
2.6.2 Run-Time Errors .. 57

2.7 Exercises. .. 58

xiv • Contents

3 Data Types, Operators, and Functions ..•.•.•.•......•.•.••. 71
3.1 Specifying and Using Data Types 71
3.2 Operators 75
3.3 Type Casting .. 79
3.4 Intrinsic Functions 82
3.5 Simple User-Defined Functions 87
3.6 Applications 96

3.6.1 Refraction of Light 96
3.6.2 Inverse Hyperbolic Functions 100

3.7 Debugging Your Programs 105
3.7.1 Problems With Data Types and Casting. 105
3.7.2 Problems With Intrinsic Functions. 106
3.7.3 Problems With User-Defined Functions 107

3.8 Exercises. .. 107

4 Selection and Repetition Constructs ..•.•.••••••.•.•.•.•... 121
4.1 Relational and Logical Operators. 121
4.2 Selection (IF THEN ELSE) Constructs 123
4.3 Choosing Alternatives From a List of Possibilities 128
4.4 Repetition (LOOP) Constructs 131

4.4.1 Count-Controlled Loops .. 131
4.4.2 Conditional Loops .. 136

Pre-Test Loops 137
Post-Test Loops 138
Loops for Input Validation 142

4.5 Applications 143
4.5.1 Solving the Quadratic Equation. 143
4.5.2 Maximum Deflection of a Beam With

Various SupportlLoading Systems. 145
4.5.3 Refraction of Light 148
4.5.4 Oscillating Frequency of an LC Circuit 151
4.5.5 Calculating Radiation Exposures for a Materials

Testing Experiment .. 154
4.6 Debugging Your Programs 158
4.7 Exercises. .. 159

5 More About Modular Programming. • . . • 177
5.1 Defining Information Interfaces in C 177
5.2 Menu-Driven Programs. .. 184
5.3 More About Function Interfaces. .. 188
5.4 Recursive Functions .. 190
5.5 Using Prewritten Code Modules. .. 193
5.6 Using Functions as Arguments and Parameters 196

Contents • xv

5.7 Passing Arguments to the main Function. 199
5.8 Applications 202

5.8.1 The Quadratic Equation Revisited 202
5.8.2 Finding Prime Numbers .. 204
5.8.3 The Towers of Hanoi. .. 206
5.8.4 Trapezoidal Rule Integration. 210

5.9 Debugging Your Programs 213
5.9.1 Passing Multiple Outputs Through Parameter Lists .. 213
5.9.2 Recursive Functions. .. 213
5.9.3 Reusable Code 214

5.10 Exercises " 214

6 Arrays • • • • • • • . •. 233
6.1 Arrays in Structured Programming 233
6.2 One-Dimensional Array Implementation in C 235
6.3 Using Arrays in Function Calls 243
6.4 Multidimensional Arrays .. 250
6.5 Accessing Arrays With Pointers .. 256
6.6 More About Strings 259

6.6.1 Strings as Arrays .. 259
6.6.2 String Functions 261

6.7 Applications 262
6.7.1 Cellular Automata and Sierpinski Triangles 262
6.7.2 Probability Analysis for Quality Control of

Manufacturing Processes 267
6.7.3 Parsing a String Containing an Unknown

Number of Numerical Values 272
6.8 Debugging Your Programs 274
6.9 Exercises. .. 275

7 User-Defined Data Objects 287
7.1 Creating User-Defined Data Objects. 287
7.2 Arrays of Structures .. 290
7.3 Functions With Structures as Parameters and Data Types 293
7.4 Applications 295

7.4.1 Finding the Perimeter and Area of a Plot of Land. .. 295
7.4.2 A Set of Functions to Perform Operations on

Complex Numbers 298
7.4.3 Analyzing Data From a Datalogger 302

7.5 Debugging Your Programs 307
7.6 Exercises. .. 308

xvi • Contents

8 Searching and Sorting Algorithms 313
8.1 Introduction .. 313
8.2 Searching Algorithms .. 314

8.2.1 Linear Searches 315
8.2.2 Binary Search .. 321
8.2.3 Choosing a Searching Algorithm 327

8.3 Sorting Algorithms .. 328
8.3.1 Selection Sort .. 328
8.3.2 Insertion Sort 332
8.3.3 The Recursive Quicksort Algorithm. 334
8.3.4 Efficiency of Sorting Algorithms. 341

8.5 Application: Merging Sorted Lists 342
8.6 Debugging Your Programs 348
8.7 Exercises .. 348

9 Basic Statistics and Numerical Analysis .. 355
9.1 Introduction .. 355
9.2 Basic Descriptive Statistics 356

9.2.1 The Sample Mean and Standard Deviation 356
9.2.2 Linear Regression and the Linear Correlation

Coefficient .. 358
9.2.3 Application: Analyzing Wind Speed Data. 366

9.3 Numerical Differentiation 371
9.3.1 Newton's and Stirling's Formulas 371
9.3.2 Application: Estimating the Speed of a Falling

Object. .. 372
9.4 Numerical Integration .. 376

9.4.1 Polynomial Approximation Methods 376
9.4.2 Application: Evaluating the Gamma Function 380

9.5 Solving Systems of Linear Equations 384
9.5.1 Linear Equations and Gaussian Elimination 384
9.5.2 Application: Current Flow in a DC Circuit With

Multiple Resistive Branches 392
9.6 Finding the Roots of Equations 393
9.7 Numerical Solutions to Differential Equations 400

9.7.1 Motion of a Damped Mass and Spring. 400
9.7.2 Application: Current Flow in a Series LRC Circuit .. 403

9.8 Exercises. .. 411

10 Binary Files, Random Access, and Dynamic Allocation 421
10.1 Binary and Random Access Files 421

10.1.1 Random Access File Concepts 421

Contents • xvii

10.1.2 Implementing Binary Files 422
File Access Modes 424
I/O for Binary Files. .. 426
Random Access to Binary Files 428

10.2 Dynamic Allocation and Linked Lists 430
10.2.1 The Concept of Dynamic Allocation 430
10.2.2 Dynamically Allocated Arrays , 430
10.2.3 Dynamically Allocated Linked Lists 433

Data Declarations 440
Function Prototypes ., 440
Function rnain. .. 441
Creating the List .. 441
Accessing Nodes in the List 442
Adding and Deleting Nodes 442

10.3 Queues and Stacks 444
10.3.1 Implementing Queues .. 444
10.3.2 Implementing Stacks 446

10.4 Application: Managing Data From Remote Instruments 447
10.5 Exercises .. 454

Appendices 457
Appendix I: Table of ASCII Characters for

Windows/DOS-Based PCs 457
Appendix 2: Program Listings by Chapter 459
Appendix 3: Glossary. .. 463

Index 473

1

Programming Preliminaries

1.1 A Five-Step Problem-Solving Process

There are two basic skills you must develop while learning to write programs in
C. Obviously, you must learn details of the C programming language. However,
it is equally important to develop a consistent strategy for solving computational
problems that is independent of the language in which the solutions are
implemented. Thus a course based on this text is as much about learning how to
solve typical science and engineering problems with computers as it is about C per
se. The skills you develop will be applicable when you learn other languages, or
even when you use other kinds of problem-solving applications such as
spreadsheets and symbolic algebra software.

For the purpose of developing a consistent problem-solving strategy, this
text will follow this five-step procedure:

1
2
3
4
5

Define the problem.

Outline a solution.

Design an algorithm.

Convert the algorithm into a program.

Verify the operation of the program.

1.1.1 Step 1: Define the Problem

In the real world, it is often difficult to formulate problems in a useful way in the
context of the range of available problem-solving tools. In fact, defining a problem
appropriately is often a large part of the solution to that problem.

D. R. Brooks, C Programming: The Essentials for Engineers and Scientists
© Springer-Verlag New York, Inc. 1999

2 • 1. Programming Preliminaries

In an introductory course, you can assume that problems have been
formulated correctly. However, instructors can explain problems poorly or make
mistakes! Thus the first step is to make sure you understand the problem and can
restate it in your own words. It's not possible to solve a problem you don't
understand. Common mistakes that students make include solving only part of a
problem or providing a solution that doesn't address the problem as stated. These
kinds of mistakes have nothing to do with programming per se.

1.1.2 Step 2: Outline a Solution

The second step is very informal, but important. You should focus on obtaining
information needed to solve the problem and especially on the nature of the
required input and output. Assignments in this course should provide you with
most of this information. This is so you can concentrate more on the programming
parts of the solution. However, you should be aware that many students have
difficulty thinking about solving problems in programming terms; that is, in terms
of specifying input to a procedure that processes information and returns output.

1.1.3 Step 3: Design an Algorithm

The third step is critical to writing successful programs. In a
programming context, an algorithm] consists of specific steps to
be followed in sequence to attain a clearly defined goal. This
may seem obvious, but a common problem students encounter when they begin
to write programs is that the algorithm on which the program is based, either as
explicitly written or implicitly assumed, makes no sense.

To the extent possible, algorithms should
be language independent. In some cases, the
problem may be simpler to solve in one language I

than another, so the algorithm may depend
somewhat on the capabilities of the language that will eventually be used to write
the program. More typically, however, problems in this course can be solved with
equal ease using any procedurallanguage-C just happens to be the language of
choice. The purpose of learning to write algorithms is not only to help you
organize your thoughts about a particular problem, but also to introduce you to the
concepts of procedural programming, with the understanding that these concepts
apply to all procedural languages, not just to C.

lWords appearing in the text in bold italics are defined in the glossary (Appendix 3).

1.2 Defining a Pseudocode Language for Algorithm Development • 3

1.1.4 Step 4: Convert the Algorithm Into a Program

The fourth step in the process is the only language-specific step, in which you will
translate your algorithm into a C program. We will discuss this step in great detail
in subsequent chapters.

1.1.5 Step 5: Verify the Operation of the Program

The fifth step-verifying your program's operation-is often overlooked.
Beginning programmers can be so overjoyed at writing a program without syntax
errors that they assume the answers the program produces must be right. This is
a dangerous assumption! It is wiser to assume that programs produce incorrect
answers unless proven otherwise. If you are lucky, incorrect errors will look
obviously wrong. However, it is common for incorrect answers to look as
reasonable as correct answers.

You can often verify a program's operation by checking representative
calculations by hand, and you should do this whenever possible. However, if it
were easy to check answers by hand, you probably wouldn't have needed to write
a computer program in the first place. In any case, devising a strategy for
verifying your solutions is an essential part of solving computational problems.

In the earlier days of computer science, computer programming was
considered a worthwhile skill on its own. In the extreme, the science and art of
writing elegantly constructed computer programs overshadowed the nature of the
problems being solved. Now, however, students from many disciplines must learn
to write computer programs, and correct answers presumably matter in all those
disciplines. If you overlook this fact, you will eventually be sorry, if not in one
of your courses, then in your first on-the-job programming assignment!

1.2 Defining a Pseudocode Language for Algorithm Development

The algorithm development step, Step 3 in the
problem-solving process, can best be undertaken
using what is often called pseudocode because the
resulting step-by-step instructions look something
like the instructions you write in a high-level programming language.2 However,
the instructions in the pseudocode don't have to, and generally won't, look exactly
like commands in a specific language. Pseudocode commands should specify an

2An alternate approach, traditionally favored by Fortran programmers but largely abandoned in
modem programming style, is to use flowcharts consisting of standardized symbols, lines, and
arrows to illustrate the steps in a program.

4 • 1. Programming Preliminaries

action to be taken without being restricted by the syntax details of a particular
language. Basically, your algorithm will consist of a series of action commands
which, when translated into a real programming language, will tell your computer
what to do. With this in mind, an informal language is useful to express these
commands. There aren't any syntax rules for this language. However, it is
important to define a set of actions that are common to all procedural
programming languages. C is one such language, but certainly not the only one
to which this pseudocode language could apply.

The list of such action commands is short because the list of basic actions
that can be taken within a program written in a high-level procedural language is
short. If you keep a description of this command language nearby when you start
to solve problems and write programs, you should be able to focus on the logical
design of the program without worrying about the syntax details.

Carefully written pseudocode should be relatively simple to convert to a
working program. This process emphasizes the fact that C, even with its
seemingly endless implementation details, is not an arbitrary or inherently
complicated language. In fact, it provides a simple and efficient mechanism for
transforming an algorithm-a problem solution-into a working program.
Remember that the problem solution comes first, then the program. Here is a list
of pseudocode action commands, in alphabetical order. Some of the terminology
may be unfamiliar now, but new terms will be explained as we need them later
in the text.

ASSIGN
Set a variable equal to a value, another variable, or an expression. See also

the INCREMENT and INITIALIZE commands.

CALL
Invoke a subprogram. (See SUBPROGRAM.) Your use of this command

should describe information flow between a subprogram and the point in your
pseudocode from which the CALL is invoked. It is especially important to
differentiate between input to and output from the subprogram. The ability to
modularize a program by creating subprograms is an essential element of modem
programming languages.

CHOOSE
This implies that a choice of actions can be taken based on a restricted list

of possibilities-responses to a menu of choices, for example. Often, each
response may be no more than a CALL to a SUBPROGRAM that takes action
appropriate to a particular choice.

1.2 Defining a Pseudocode Language for Algorithm Development • 5

CLOSE
Close an open file.

DEFINE
Define variables and user-defined data types. In this section of your

pseudocode, you should think about the kinds of variables and data objects, such
as arrays, your program will need. It is especially important in scientific and
engineering work to give physical definitions and units when you define variables.

IF...THEN...ELSE...
If something is true, then take a specified action. If it is false, then take

some other action. The ELSE..• branch is optional, as there may not be an "else"
when the "if' isn't true. In many languages, the sequence of actions can be
extended:

IF...THEN...ELSE IF...ELSE IF...ELSE...

In any case, implementation is based on the existence of relational operators, as
discussed later in this chapter.

INCREMENT
This is a special type of assignment command used to indicate operations

such as x =x + 1. (We'll discuss later the significance of this expression, which
has a clearly defined meaning in programming even though it makes no sense as
an algebraic expression.) It is often used inside loops to count the number of times
actions inside the loop have been taken.

INITIALIZE
This is a special kind of assignment command used to indicate that a

variable must be given an initial value before it can be INCREMENTed. This is
often required before a loop is started.

LOOP (conditions)...END LOOP
Execute instructions inside the loop repeatedly until (or as long as) certain

conditions are met. Loops may be pre-test, post-test, or count-controlled. With pre
test loops, a condition is tested before the instructions inside the loop are
executed. Depending on conditions in the program, the instructions inside the loop
may never be executed. With post-test loops, a condition is tested after
instructions inside the loop are executed. As a result, instructions inside the loop
will always be executed at least once. Count-controlled loops are appropriate when
your program knows prior to starting a loop how many times to repeat the
instructions inside that loop. Under some conditions, the instructions inside a
count-controlled loop may never be executed.

6 • 1. Programming Preliminaries

OPEN
Open an external file for reading or writing.

READ
This is the basic command for passing infonnation to a program. The

source of infonnation is typically either the keyboard or an external data file.

SUBPROGRAM
This command marks the start of a subprogram module. Use it to specify

the flow of infonnation between parts of a program. (See CALL.)

WRITE
This is the basic command for displaying or saving output from a program.

The destination is typically either the monitor screen or an external data file.

To what do these action commands apply?
Often, they define actions perfonned on values
stored in your program. At the machine level,
many of these commands result in changes to the
contents of specific memory locations. At the
programming level, these memory locations are
referred to symbolically by names. These names are called variable names or
variables. In strongly typed languages such as C, variables are always associated
with specific data types. High-level languages typically support several different
kinds of data, as shown in Table 1.1.

Table 1.1. Data types supported by high-level languages

integer numbers

real numbers

characters

strings of characters

logical (boolean) variables

-30000, 17

6.5xlO- lO
, -0.002

a, A, &,_

This is a character string.

true, false

When you design algorithms to solve problems, you must think carefully
about the kinds of infonnation your program will require, and you should choose
appropriate names and data types for this infonnation. Beginning programmers
often overuse the integer data type when real numbers would be more appropriate;

1.2 Defining a Pseudocode Language for Algorithm Development • 7

this is an easy mistake to make when physical values are expressed as whole
numbers. For example, temperature is often expressed as a whole number, such
as 70° Fahrenheit, even though it is more appropriate to represent temperatures as
real numbers rather than integers. On the other hand, integers typically require less
memory space and allow faster and more accurate arithmetic operations than real
numbers, so their appropriate use can result in faster program execution times and
more efficient use of your computer's resources.

In addition to action commands, various operators need to
be part of a pseudocode language; without them you couldn't
perform the mathematical operations that are at the heart of many
calculations. Table 1.2 shows some basic mathematical operators that are
supported by high-level programming languages.

Table 1.2. Mathematical operators supported by high-level languages

addition +

subtraction

multiplication

division

., x, or implied

/ or +

The operations +, -, ., or x, and / or + are familiar. Multiplication is often
implied; in the algebraic expression y =ax + b, ax implies "a times x." As we
will see, C supports all these mathematics operators as well as several others.
Note, however, that C does not support an exponentiation operator. That is, the
operation xY cannot be implemented directly with operator notation.3

Finally, relational and logical operators are needed to construct IF...
THEN...ELSE... statements. These are given in Table 1.3. We will discuss the C
implementation of all these operators later.

3In contrast, xY can be represented in Fortran by the expression x**y.

8 • 1. Programming Preliminaries

Table 1.3. Relational and logical operators

= equal to

i: not equal to

~ less than or equal to

~ greater than or equal to

< less than

> greater than

"and" logical "and"

"not" logical "not"

"or" logical "or"

Finally, keep in mind that any high-level language
will include some built-in functions, called intrinsic
functions, that allow you to perform common
calculations without having to reinvent the code every time you write a program.
Some functions-for example, trigonometric functions such as sin(x)-are
common to many procedural languages. Computers don't have any inherent ability
to evaluate these functions. When a programming language supports a function
such as sin(x), it means that the language can call upon a predefined algorithm to
evaluate the function in terms of basic mathematical operations. This is done
automatically and the programmer usually doesn't even have to be aware of how
the calculations are performed.

The advantage of intrinsic functions as part of a programming language
standard is that you can depend on the availability of these functions no matter
which version of the language you use. When you convert an algorithm into a
working program, it's important to be aware of the functions a language supports
as part of its standard. C has a relatively limited set of intrinsic mathematical
functions compared to Fortran, for example, but more than Pascal. A list of C
intrinsic functions will be given in Chapter 3.

Specific implementations of C and other
languages usually include many nonstandard
language extensions, including nonstandard
functions. For example, implementations of C and
its derivatives, such as C++ for Macintosh or
Windows-based computers, may include extensions that deal with the graphical

1.3 Organizing Pseudocde Into a Program • 9

user interface presented by the operating system. These can be important for some
programming applications, but this course will concentrate on ANSI-standard C,
a language with a text-based interface.

1.3 Organizing Pseudocode Into a Program

Once you understand the elements of a pseudocode
language for developing algorithms, you must organize
these elements in an appropriate way. Specifically, you
have to think about how to get from the beginning of
your algorithm to the end; this may seem obvious, but it is often a problem for
beginning programmers. Steps in an algorithm are executed one at a time. When
you transform your algorithm into a program, the steps in that program are also
executed one at a time. For all practical purposes, the compiler that converts your
program into machine language is restricted in the sense that it can never look
ahead. When you tell it to do something, it must have all the information it needs
to execute that instruction.

Does this mean that every statement in a program must necessarily be
executed one step at a time in sequence? To put it another way, is it impossible
to write code that deals with the programming equivalent of coming to a fork in
the road? No. However, the alternatives are limited and very specific. There are
only three basic ways to control the order in which steps in an algorithm or
program are executed:

1. Sequence
Steps are performed one after the other in sequence. Each step is

performed once and only once. See the ASSIGN, INITIALIZE, and INCREMENT
pseudocode commands.

2. Selection
One of several alternative sequences of actions is selected and executed,

bypassing the other alternatives. See the IF...THEN...ELSE and CHOOSE
pseudocode commands.

3. Repetition
One or more steps are performed repeatedly until a terminating condition

is met. See the LOOP...END LOOP pseudocode command.

It is a basic programming principle that any algorithm can
be implemented using a combination of these three
control structures. Sequence structures are implemented

10 • 1. Programming Preliminaries

simply by writing consecutive statements. As we will see, languages such as C
have specific syntax for implementing selection and repetition structures.

1.4 Examples

Once you understand pseudocode commands, operators, functions, and control
structures, you are ready to combine these pieces into an algorithm. In this section,
we will develop algorithms for some simple problems, using the formal five-step
problem-solving procedure outlined above. For now, we will skip the fourth
step-the writing of an actual program-since it will be the topic of the rest of
the text. These problems, except for the last one, may appear to be very simple,
but it's important to practice applying a formal step-by-step approach that will
work even when the problems aren't so easy.

Pseudocode Problem #1

1 Define the problem.

Find the largest and smallest score in a list of scores. Calculate the range
of the scores.

2 Outline a solution.

1. Assume that the first number in the list is both the largest and the smallest
score.
2. As you read each subsequent score in the list, reassign the largest and smallest
score as required.
3. The range is the largest score minus the smallest.

This approach for finding the largest and smallest scores may not be
intuitive. Consider this list of five numbers:

15 11 8 21 17

You can easily find the largest and smallest numbers in this list just by inspection.
An amazing characteristic of the human brain is that it can formulate and
implement an algorithm for solving this problem at an unconscious level.
However, computers can't do that. Instead, you must provide a specific algorithm.

1.4 Examples • 11

What would you do if the above list contained 5,000 numbers instead of five?
You would probably have to be more precise in your thinking. You might, for
example, write down the largest and smallest values in as much of the list as your
eyes could scan at once. Then you could scan another section of the list and
replace the largest and smallest values if required. The algorithm suggested here
is a simplified and formalized interpretation of this approach which can easily be
implemented in a step-by-step fashion.

3 Design an algorithm.

DEFINE largest, smallest, range, and score as real numbers
ASSIGN largest score = smallest score = first score in list
LOOP (until no more scores)

READ (score)
IF score> largest THEN ASSIGN largest =score
IF score < smallest THEN ASSIGN smallest =score

END LOOP
ASSIGN range = largest - smallest
WRITE (largest, smallest, range)

4

5

Convert the algorithm into a program.

Defer this step for now.

Verify the operation of the program.

Be sure to check the calculations with a set of scores for which the
smallest and largest values are known. Never assume that calculations done within
a computer program are correct until you have checked them by hand or verified
the operation of the program in some other way. (This isn't always easy!)

12 • 1. Programming Preliminaries

Pseudocode Problem #2

1 Define the problem.

Air quality is given as a numerical index value. If the index is less than
35, the air quality is rated as "pleasant." If it is between 35 and 60, the quality
is "unpleasant." If the index is greater than 60, the quality is "hazardous."

2 Outline a solution.

1. Read each index value.
2. Decide which message to print, based on the value of the index.

3 Design an algorithm.

DEFINE index as real number
LOOP (until no more input)

READ (index)
IF index<35 THEN WRITE ("pleasanfJ
IF index ~ 35 and::; 60 THEN

WRITE ("unpleasanf')
IF index> 60 THEN WRITE ("hazardous'')

END LOOP

Here's an alternate way to implement the IF... command:

IF index < 35 THEN WRITE ("pleasant'')
ELSE IF index::; 60 THEN WRITE ("unpleasanfJ
ELSE WRITE ("hazardous'')

The second implementation is a little less obvious than the first because you have
to be convinced that, within the IF... command structure, only one branch will be
taken. Suppose the index is 20. This value is less than 35, so the WRITE
("pleasant'') branch will be executed. This value is also less than 60, but the
second branch won't be executed because another branch has already been
executed. As you will see in Chapter 4, programming language implementations
of IF... structures really do work this way.

4

5

Convert the algorithm into a program.

Defer this step for now.

Verify the operation of the program.

1.4 Examples • 13

For this problem, it's important to implement the relational operators
correctly. The phrase "between 35 and 60" must be interpreted properly; you need
to check values at the break points to be certain your algorithm reflects the
problem statement. Exactly where the break points lie may be vague in the
problem statement, but you must be specific about them in your algorithm
definition.

Pseudocode Problem #3

1 Define the problem.

Your supervisor hands you a diskette with a file containing student names,
IDs, and GPAs and says, "Please create two new files. One should be the dean's
list file of students whose GPA is at least 3.0. The other should be a probation file
of students whose GPA is below 2.0."

2 Outline a solution.

1. Open the file containing student records.
2. Create two new files, one for the dean's list and the other for the probation list.
3. Read each record and compare the GPA with the criteria for the dean's and
probation lists. If it doesn't belong in one of the files, go on to the next record.
Otherwise, write the data into the appropriate file.
4. Close all the files when you're done with them.

The file opening and closing parts of the solution, steps 1 and 4, may not
be part of your initial thinking because these steps are not really part of the
solution. However, as noted previously, it is important in this step to consider the
sources of information required to solve the problem. The file-related steps remind

14 • 1. Programming Preliminaries

you to make sure that you understand the structure of the file containing the input
data and that you give some thought to the form of the output file.

3 Design an algorithm.

DEFINE student name and 10 as character strings
GPA as a real number

OPEN (original file)
OPEN (dean's list file)
OPEN (probation file)
LOOP (until there aren't any more names in original file)

READ (from original file, name, 10, GPA)
IF (GPA ~ 3) THEN WRITE (to dean's list file: name, 10, GPA)
IF (GPA < 2) THEN WRITE (to probation file: name, 10, GPA)

END LOOP
CLOSE (all files)

4 Convert the algorithm into a program.

Defer this step for now.

5 Verify the operation of the program.

You can verify the operation of this program by inspection, perhaps with
only a subset of the student data.

Pseudocode Problem # 4

1 Define the problem.

A data file contains many two-line records. Each pair of lines contains a
date and 24 hourly temperatures:

01/01/94
20,22,21,19,18, ... ,17,18

1.4 Examples • 15

Read the data for each day. Display the date and the maximum and minimum
temperature for the day, plus the hour, from I to 24, at which each of these values
occurred.

2 Outline a solution.

In this case, the problem itself contains an explanation of what you must
do. For a simple solution, you would like to be able to assume that there are no
missing data in the file. In the real world, this will not always be a good
assumption!

3 Design an algorithm.

DEFINE max, min, max_hour, min_hour, currenLhour
(all integer variables); date (character string)

OPEN (data file)
LOOP (until you get to the end of the file)

READ (from data file, date)
READ (from data file, 1st temperature)
ASSIGN max = 1st temperature

min = 1st temperature
min_hour = 1, max_hour = 1

INITIALIZE currenLhour = 1
LOOP (for current hour from 2 to 24)

READ (from data file: temperature)
IF temperature> max THEN

ASSIGN max = temperature
max_hour =currenLhour

(end IF...)
IF temperature < min THEN

ASSIGN min = temperature
min_hour =currenLhour

(end IF...)
END LOOP
WRITE (date, max, max_hour, min, min_hour)

END LOOP
CLOSE (data file)

Note that this algorithm uses an approach identical to the one discussed in
Pseudocode Problem #1 to find the maximum and minimum values.

16 • 1. Programming Preliminaries

4

5

Convert the algorithm into a program.

Defer this step for now.

Verify the operation of the program.

You can verify the operation of this program by inspection. If your
program works for one day, there is no reason to think it won't work for all days.
However, because of the way this algorithm is written, you should check examples
where the minimum or maximum temperature actually occurs at hour I to be sure
these initial values are not changed.

Pseudocode Problem #5

1 Define the problem.

Write a program that reads and stores a list of student names and grades.
The program should then be able to perform the following user-selected tasks:

I. Search for any student name.
2. Sort the list by name or grade.
3. Add a new name.
4. Delete an existing name.
5. Print a list of all students whose grades are above or below a specified value.

2 Outline a solution.

The structure of this problem lends itself to a modularized solution. The
main program will contain a menu of the indicated choices. Each choice will
invoke a subprogram that will perform one of the specific tasks listed. Assume
that the list is contained in a data file and that the data file can be entirely
contained in the amount of memory available to your computer program. (In
programming terms, this means that the data will be stored in a data structure
called an array, which we will discuss in Chapter 6.)

This is a more complex problem than the ones we have discussed so far.
You should solve it in steps, one menu choice at a time. The first task is to write
a subprogram to read the list and store it in your computer's memory. This needs

1.4 Examples • 17

to be done before you present the user of your program with the menu options.
It will be helpful to display the contents of the list, too. Until you can read the list
correctly and display its contents, there is no point worrying about the rest of the
program. Within the menu of choices, probably the easiest subprogram to write
is the one that looks for a specified name or grade; we will develop pseudocode
for this subprogram, but not the rest.

3 Design an algorithm.

Pseudocode for main program:
DEFINE (variables to hold the names and grades,

number of students, response to menu selection)
CALL Read_List (store list of names and grades in memory)
LOOP (until user wants to stop)

WRITE (display menu)
WRITE (What do you want to do?)
READ (response)
CHOOSE (based on response)

SEARCH: CALL Search (by name or grade)
SORT: CALL Sort (by name or grade)
ADD: CALL Add (a new name)
DELETE: CALL Delete (an existing name)
OUTPUT: CALL Output (list of students who meet specified

criterion)
QUIT: (end program)
OTHER: (print input error message)

(end CHOOSE)
END LOOP

Note how the CHOOSE statement attempts to trap an inappropriate response by
giving an "other" option.

Now, develop subprograms one at a time. The first step is to read the list
of names and grades:

SUBPROGRAM Read_List (IN: name of data file;
OUT: name_array, grade_array, number

of names and grades (n))
OPEN (data file)
INITIALIZE n =0

18 • 1. Programming Preliminaries

LOOP (as long as there are more records)
INCREMENT n =n + 1
READ (name_array(n), grade_array(n))
WRITE (name_array(n), grade_array(n))

END LOOP
CLOSE (data file)

(end Read_List)

Note how the index value n is used to notate parallel lists of names and
grades. That is, the nth name will always correspond to the nth grade. When the
loop is terminated, the value of n will be equal to the total number of students.
The WRITE statement can be removed when you're sure you can read the list
correctly.

Here's an algorithm to control a search of the lists.

SUBPROGRAM Search (IN: name_list,grade_list,n_students)
READ (search choice: name or grade?)
CHOOSE (based on search choice)
for name:

READ (which_name)
CALL SearchByName (IN:name_list,grade_list,

n_students, which_name)
for grade:

READ (which_grade)
CALL SearchByGrade (IN:name_list,grade_list,

n_students, which_grade)
(end Search)

Note that this algorithm uses the CHOOSE pseudocode command rather
than an IF... THEN...ELSE... approach. Either will work, but the former is easier
to extend to other choices. Here's an algorithm to search for a name. Because
more than one student may have the same name, the algorithm searches through
the entire list.

SUBPROGRAM SearchByName (IN:name_list,grade_list,
n_students, which_name)

DEFINE counter
LOOP (for counter =1 to n_students)

IF name_list(counter)=which_name THEN
WRITE (name_list(counter), grade_list(counter))

END LOOP

1.5 What Is the Point of Programming? • 19

A subprogram to search for a specified grade will be nearly identical to
SUBPROGRAM SearchByName. Although you could combine these functions
into a single subprogram at the pseudocode level, the actual code will need to be
different because names and grades are represented by different data types.

Suppose you decide to maintain a list of student IDs rather than names.
Presumably, IDs are unique. Therefore, the search should stop when the specified
ID is found, rather than searching through the entire list. Can you modify the
algorithm so that the loop terminates when it either gets to the end of the list or
finds the specified name?

Note that the names list and grades list must both be made available as
input to these subprograms. They are parallel lists in which, for example, the third
name in the names list is associated with the third grade in the grades list. This
has some important implications for writing the rest of this program. Suppose the
names list is originally sorted by name. If you decide to sort the lists by grade,
you must sort both lists at the same time to make sure that the relationship
between each name and grade is maintained. In C, as we will see later in the text,
it is possible to overcome this inconvenience by defining a new kind of data
structure that combines the names and grades into a single list.

4
5

Convert the algorithm into a program.

Defer this step for now.

Verify the operation of the program.

As noted, a large program such as this needs to developed one subprogram
at a time. You should check the operation of the program each time you add a
new subprogram.

1.5 What Is the Point of Programming?

Here's a reasonable question: Does the world really need more computer
programmers? After all, there are lots of software applications for solving a wide
range of computational problems. And it's a little discouraging to realize that even
the most straightforward application (such as Pseudocode Problem #5, above)
requires the accumulation of considerable programming skills.

Of course, there are many reasons to write your own programs. Some
people do it for fun (yes, that's really true), others need programming skills to do
research, and others need a thorough understanding of programming to continue
their studies in computer or information science. Almost any research organization

20 • 1. Programming Preliminaries

in any field will require programming skills for solving specialized research
problems. Graduate programs in any technical discipline you can name will expect
their students to have some programming skills.

However, the best reason for learning how to program a computer is to
teach yourself how to think logically. Even if you never have to write programs
for a living, as a necessary evil in the course of your work, or just for your own
use and amusement, the programming process is a good way to teach yourself
how to solve problems. A language like C is especially useful because it
encourages you to approach difficult problems in a step-by-step, top-down fashion
that separates each problem into a series of smaller and hopefully more
manageable tasks.

Even though this kind of thinking may not always be the best way to solve
problems, we will treat programming as an inherently linear process, so the kinds
of problems we will solve in this course will lend themselves to this kind of
solution.4

By the way, since we have decided that learning how to
program is a good idea, you are allowed to ask this follow-up
question: Why learn to program in C? A good answer is that C is the
basic language of choice for many commercial computer applications, and it is
fundamental to understanding the widely used UNIX computer operating system.
As I will point out from time to time in this text, C has some characteristics that
pose implementation problems in scientific and engineering programming.
However, this has not prevented C from gaining a prominent role in these
disciplines. Once you have become proficient in C, it is relatively easy to learn
languages such as Fortran, which is still widely used in science and engineering,
as well as more modem languages such as C++ and Java.

1.6 Your First C Program

You are now ready to create your first C program. This will be a "cookbook"
exercise that emphasizes the mechanics of writing and executing a program. You
are not yet expected to understand all the details of the code. The exercise
assumes you will be writing programs on a UNIX computer that supports Sun
Microsystem's cc compiler or its equivalent.

If you are a complete UNIX novice, you will need some help learning how
to use a UNIX-based system. Your institution or department probably provides
training courses on using UNIX systems. If such training isn't part of a
programming course, you will need to learn the fundamentals on your own.

Assuming you are successfully logged on to your UNIX account:

4Author's note: This problem-solving approach generally does not work with people.

1.6 Your First C Program • 21

1. Create a new source code file by typing pico
tes t . c. This invokes a simple text editor and
creates a new and currently empty file called
t est. c. The source code file will contain
instructions for solving a particular problem.
These instructions must be written according to
the syntax rules of C. To create the source code
file, which you will then compile and link to create an executable program file,
enter the following lines exactly as shown:

/* My first C Program. */
#include <stdio.h>
int main(void}
{

printf('Hello, world.\n");
return 0;

When you're done typing, you need to make sure your work is saved.
Enter "x by holding down the control (or Ctrl) key on your keyboard while
pressing the (unshifted) x key. This two-key combination is sometimes notated as
control-x or Ctrl-x. In this context, the " symbol has nothing to do with the
carat symbol in the uppercase position over the 6 key on your keyboard. Do not
press Shift-6 followed by x or Ctrl-Shift-X. Pressing "x exits the pico
editor. You will be asked if you want to "save modified buffer." Press y (for
"yes") and then the Return key. You can also save your work at any time from
within the pico editor by pressing the "0 key combination

IMPORTANT NOTE: Whenever you type a command on a UNIX
system, you must use the specified combination of lowercase and uppercase letters
because UNIX commands are case-sensitive. This is different from computers
using a WindowslDOS-based operating system, for example, which is case
insensitive. Also, the C language itself is case-sensitive. This means that when you
create the above code file above, you must preserve the use of uppercase and
lowercase letters. For example, printf is not the same thing as PRINTF or
PrintF, or any other combination.

You can also create source code with the more flexible but more
complicated UNIX vi text editor instead of pico. Refer to the documentation for
your system.

2. Once you have created a source code file, you must compile and link it to
create an executable file. The compiler/linker we will use is cc (for "C
compiler"). Type

cc test.c -otest.exe

22 • 1. Programming Preliminaries

This invokes the cc compiler, which tries to compile the source code file named
tes t . c. If the compilation is successful, cc translates your source code into
machine language instructions and creates an executable file named tes t . exe.
(If you do not include the -0 option, cc creates a file named a. out by default.)
If you get error messages, edit the file so that it looks exactly like the one above.
Then try again. When you no longer get any error messages,

3. Type

test.exe

to execute your C program. If you have done everything correctly, the text

Hello, world.

should appear on your screen. You have now created and executed your first C
program.

Note that although we will often speak of source code as
a program, it is actually the executable binary file that contains
machine-level instructions that the computer understands and
follows. In this example, we have given the binary file a . exe extension (for
"executable").5 The cc compiler generates, by default, a file with a . au t
extension. In common with other high-level languages, the source code file you
create with a text editor generally is portable to any computer that supports a C
compiler, as long as the source code does not include implementation-specific
features that are not part of the C language standard. However, the executable
program file is not portable to a different kind of computer. (Commercial
programs generally are not portable among various kinds of computers even at the
source code level, specifically because they take advantage of features of a
particular operating system and computer hardware architecture.)

4. Depending on how heavily you use your UNIX account, and for what, you may
wish to create a separate directory just for C programs. For example, typing

will create a new directory called c_s t u f f. You can move to this directory by
typing

From this directory, you can return to your "home" directory by typing cd.

5The convention of using a . exe extension will be familiar to MS-DOS users.

2

The Basics of C Programming

2.1 C Program Layout

The source code for a C program contains at least the following elements:

I. Preprocessor directives. including:
(a) standard header files
(b) constant definitions

2. Main function header and body
3. Reserved words and identifiers
4. Comments (optional. but required as a matter of style)

Program P-2.1 illustrates each of these elements. The program prints the message
Hello, world! and the numbers 3.14159 and 6.28318 on your monitor
screen.

P-2.1 [hello. c]

1* "Hello, world." *1
1* preprocessor directives *1
#include <stdio.h> 1* standard 1/0 header file *1
#define PI 3.14159 1* defines PI as a "constant" *1

int main(void) 1* main function header *1
{ 1* start of main body *1

1* variable declaration *1
double two-pi;

1* printf is the usual way to produce output on a monitor. *1
printf("Hello, world!\n");

1* assign value to two-pi *1
two-pi=2.0*PI;

1* "%If'' is a format specifier for displaying real numbers *1
1* Note that "1" is a lowercase letter L, and not the numeral 1 *1

printf (" %If %If\n'', PI, two-pi) ;
1* return value from main function *1

return 0;

1* end of main body *1

Running P-2.1

D. R. Brooks, C Programming: The Essentials for Engineers and Scientists
© Springer-Verlag New York, Inc. 1999

24 • 2. The Basics of C Programming

Every C program must have one and only one function
named main, the body of which is included inside braces
{ ... }. (In other programming languages, this would be
called the main program.)

For our purposes, every C source code file must include the preprocessor
directive

#include <stdio.h>

so it can access the standard
input/output (I/O) functions
through the s tdio. h header file.
You can think of a header file as a
source of information your program
needs in order to interpret certain kinds of instructions. There are many header
files that are part of the C standard that you can #inc1ude only as required, but
because every program needs to execute some I/O instructions in order to process
input and produce usable output, the s tdi 0 . h header file is needed for every
program. The angle brackets around s tdi 0 . h tell C to look in a particular
system-dependent directory for the header file. As a programmer, you usually
don't have to worry about where these files are stored.'

Although it might seem unnecessary for the main function in P-2.l to
return a value when it's done, it's a good idea to give the main function a data
type of int and have it return a value of 0 when it executes successfully. This
is because some operating systems can use this value to determine whether the
program has executed successfully. The alternative is to define the main function
as having data type void, which means that it doesn't return a value.

void main(void)
{

The void word inside parentheses following main means that this
program does not require any user input from the keyboard in order to execute.
The void is optional, and either int main () or void main () is also
acceptable syntax.

In this text, we will usually assume that the main function will return a
o when it executes, so the shell of a main function will usually look like this:

'Because s tdio. h is required for every program, it might seem reasonable for C to "include"
this file automatically. However, C simply doesn't work this way. It is even possible to
conceive of programs that don't use C's standard liD library, in which case stdio. h would
not be needed.

2.1 C Program Layout • 25

int main(void)
{
/* Program statements go here. */

return 0;

The #define preprocessor directive in P-2.1 performs a word-processor
like search-and-replace operation when your program is compiled. In P-2.1, the
directive

#define PI 3.14159

causes a C compiler to replace every occurrence of the
name PI with the characters 3.14159. (There is only one
such occurrence in P-2.l). Then the programming
environment will interpret the characters 3.14159 as a number, just as if you
had typed that number directly into the source code. It is common C programming
practice to use uppercase letters for the names of global constants defined in this
way, to distinguish them from variable names. Although you don't have to follow
this convention, it is so widely accepted that it is almost a style requirement.

The statementprintf ("Hello, world! \n") i displays the message
Hello, world! on your monitor screen.

Finally, P-2.1 calculates the value of the
variable twoJ)i and displays both PI and
twoJ)i. Before the program can use the
variable name twoJ)i, it must first be given an appropriate data type. The data
declaration statement

double two-pi;

associates twoJ)i with a real number. The significance of the data type
description double will be discussed in Chapter 3, along with other data types.

The assignment statement

two-pi=2.0*PI;

results in the variable twoJ)i having the value of 2n, or approximately
6.2831852. In an assignment statement, the value of an expression on the right
side of the = sign is assigned to a variable name on the left side of the = sign. It
looks like an algebraic equation, but it is not, as we will discuss further in Chapter
3.

With these brief explanations, you should be able to make sense of the
source code in P-2.1, even though you may not understand the details. We will,
of course, discuss at length the details of performing calculations and displaying
results in programs.

26 • 2. The Basics of C Programming

2.2 Basic Input and Output

Especially for scientific and engineering calculations, it is necessary to develop a
working knowledge of how a programming language interfaces with external data.
We will consider two situations:

1. The input required for a program to do its job is
supplied by a user typing values at the keyboard while
the program is running. This is known as an
interactive program, or interactive mode.

2. The input required for a program to do its job comes
from an external data file that is accessed while the
program is running. This is known as a batch program,
or batch mode. A user's intervention is not needed while
the program is running.

2.2.1 Keyboard 1nput and Monitor Output

In this section we will discuss how a C program communicates with two basic
devices: a keyboard for input and a monitor for output.

Reading and Displaying Numbers

Consider the following simple problem, which we will solve in accordance with
the five-step process outlined in Chapter 1.

1 Define the problem.

For a user-supplied value of the radius, calculate the area and
circumference of a circle.

2 Outline a solution.

The calculations are straightforward:

area =1tr
circumference = 21tr

2.2 Basic Input and Output • 27

If the radius must be given in some particular physical units, let the program user
know that. Be sure to label the output.

3 Design an algorithm.

This algorithm contains all the elements of simple programming problems:
defining variables, prompting the user for input from the keyboard, doing the
required calculations, and displaying the output on the monitor screen.

DEFINE radius, area, circumference as real numbers; "as a real constant
WRITE ("Give the radius of a circle (units?)'?
READ (radius)
ASSIGN area =".radius.2

circumference =2,,·radius
WRITE (area and circumference, with identifying labels)

4 Convert the algorithm into a program.

Program P-2.2 implements this algorithm.

P-2.2 [circle. c]

/* Calculate area and circumference of a circle. */
#include <stdio.h>
#define PI 3.14159

int main(void)
{

/* Declare data types. */
double radius, /* input - radius of a circle, cm */

area, /* output - area of a circle, cm A 2 */
circumference; /* output - circumference of a circle, cm */

/* Get the radius. */
printf("Enter the radius in cm: ");
scanfl"%lf",&radius) ;
/* Calculate the area and circumference. */
area = PI*radius*radius;
circumference = 2.0*PI*radius;
/* Display the output. */

printfl"The area is %If cm A2.\n",area);
printfl"The circumference is %If cm.\n",circumference);
return 0;

28 • 2. The Basics of C Programming

5 Verify the operation of the program.

Check your results with a hand calculator. Note that r = I is not a good
value with which to test the program. (Why not?)

In terms of the user interface for P-2.2, the essential code is contained in
the statements

printf("Enter the radius in em: ");
seanf("%lf",&radius) ;

The basic output-processing function for Cis print£ ("print formatted").
In this context, a function provides predefined code that enables a program to
perform certain common tasks, such as displaying output. We will return to the
topic of functions in Chapter 4. The general syntax of the pr in t £ function is

type int variable =
printf(eharaeter string describing output format

and/or other characters
(, one or more variables or constants»)

or
(void)printf(...

The large angle brackets <...) indicate an optional parameter. In this case, the
brackets indicate that the print£ function doesn't have to display the values of
variables or constants. An example is the first print£ statement in P-2.2, which
simply displays the text enclosed in quotation marks.

When variables or constants are displayed, each
must be matched with an appropriate format specifier in
the output string. These specifiers, which tell C how to
convert a number into its exernal representation and display that value, always
begin with the %symbol. Some examples are %1£ for type double variables and
%i for integers. A detailed list of format specifiers for a variety of data types is
given in Table 3.2 in Chapter 3.

As an example of how to use format specifiers, return to the final task in
P-2.2, which is to display the results of the calculations. The statements

2.2 Basic Input and Output • 29

printf("The area is %If cm"2.\n",area);
printf("The circumference is %If cm.\n",circumference);

display the values of the variables area and circumference along with an
explanatory message. The text messages, if there are any, and the format specifiers
for the values to be displayed are given as a character string surrounded by
quotation marks. Because area and circumference are type double
variables, a %1 f format specifier is used. The control character \ n causes C to
print a new-line character at the end of the line. Otherwise, the output from the
second p r i n t f statement would start on the same line as the end of the first
p r i n t f statement.

It is possible to display multiple values with a single printf statement:

printfl"The area and circumference are %If cm"2 and %If cm.\n",
area,circumference);

Each variable must have its own format specifier.
Most C functions return a value. The printf function returns an integer

value equal to the number of characters printed. In nearly all cases, this return
value can be ignored. Strictly speaking, the pr int f function should be preceded
by (void), as shown in the syntax box. This tells the compiler, "I know that
printf returns a value, but I'm choosing to ignore that value." However, as a
practical matter, it is also okay simply to use printf without assigning its output
to a variable and without the (void), as has been done in P-2.2. Some C
compilers may flag this use of a function with a warning message.

In P-2.2, the first printf statement provides a user prompt in the form
of a message displayed on the user's monitor screen. This prompt describes what
the program expects the user to do. Depending on the circumstances, this message
can be brief or very detailed. In scientific and engineering problems, the prompt
message will often specify the units for the physical quantities the user is expected
to provide. In P-2.2, the prompt message tells the user that the radius should be
provided in centimeters.

The basic C function for getting input from the keyboard is scanf. Its
general syntax is

type int variable =
scanflcharacter string describing input format,

one or more variable addresses)
or

(void) scanf (...

The input format string contains conversion specifiers,
which tell C how to interpret values entered at the

30 • 2. The Basics of C Programming

keyboard. These specifiers must match the data types of the variables whose
addresses are supplied in the list.

When a scanf function is encountered, the
program suspends further execution and waits for
the user to enter an appropriate response. When the
user presses the Enter (or Return) key, program execution resumes. Then the
scanf function reads (scans) the keyboard buffer and attempts to interpret what
it finds according to the conversion specifiers provided. In P-2.2, scanf is
instructed by the specifier "% 1 f" to look for a single real number (floating-point
number) of type double. (The character preceding the f in the format specifier,
which stands for "long" in "long float," is a lowercase L, not the numeral 1.)
Conversion specifiers use the same vocabulary of symbols as format specifiers.
Inside a scanf function, they tell C how to interpret characters typed on the
keyboard rather than how to display values.

The & in front of the variable name radius in the scanf statement is
the "address-of' operator. It means, "Place the value found by scanf into the
memory location (address) associated with the variable named radius." In many
other high-level programming languages, the association of a variable name with
a memory location is implemented transparently, without extra syntax
requirements. So, especially if you have done any programming in other
languages, it is easy to forget the & in the scanf argument list. If you do forget
it, your program may crash. As a minimum, your program will not have access
to the value you provided at the keyboard.

The calculations in P-2.2 are straightforward.
Remember to spell the symbol for 1t as PI because that's
how it is spelled in the #de fine directive, and C is
always case-sensitive in its interpretation of words and characters. In the printf
statements, text is intermixed with output format specifications. The characters \n
add new-line characters to the output. If you neglect to include them, all the
output will appear on the same line. The new-line symbol is one of several control
characters used for formatting output. These characters are always preceded by
a backslash. A list of control characters is given in Table 3.2 in Chapter 3.

In P-2.2, radius, area, and circumference are the variable names
used by the program. These are the symbolic names that the C programming
environment uses to assign and access memory locations. Indeed, a major
advantage of high-level programming languages is the ability to provide this kind
of symbolic access. The ANSI-standard C rules for assigning identifiers, of which
variable names are one type, are:

2.2 Basic Input and Output • 31

There are, in addition, two restrictions that should be followed even though they
are not syntax rules:

Finally, remember that C implementations always consider case to be
significant. Thus radius and Radius are interpreted as two different variable
names. A widely accepted programming style is that variable names use lowercase
letters and, as previously noted, constants appearing in a de fine directive use
uppercase letters. In general, you should avoid using variable names that differ
only in their use of uppercase and lowercase letters; ignoring this style convention
makes your programs hard to interpret and prone to errors.

Reading and Displaying Characters and Strings of Characters

Up to now, I/O has been restricted to string constants (as prompts to the program
user) and numerical values. However, it is also important to be able to read and
display text values. At a basic level, this is easy to do in C, but the nature of the
language imposes some significant restrictions that can be troublesome to
overcome. This section presents just the basics.

First, consider the problem of reading and displaying a single character.
This is simple, and it works just like numerical I/O:

char grade;

printf("What grade do you expect in this course? ");
scanf("%c",&grade) ;
printf("Well, I hope you get a %c.\n",grade);

The data type char is used to declare a character variable. Use the %c specifier
for I/O. The & operator is required just as it is for numerical values.

Now suppose you wish a program to request a student ID in the form of
a social security number. This isn't actually a number because it is usually given
in the format nnn-nn-nnnn. The presence of the dashes means that this ID value
must be treated as a string of characters.

There is no separate data type for strings of characters in C. Instead, use
the char data type with additional information about how many characters you
wish to represent. Here is the code to read a social security number:

32 • 2. The Basics of C Programming

char 10[12];

printf("Give your student 10 in the format nnn-nn-nnnn: ");
scanf (" %s" ,10) ;
printf("You told me that your student 10 is %s.\n",10);

First, the data declaration statement defines the variable ID as a character string
that can hold up to 12 characters. You might notice that a social security number
contains 11 characters rather than 12. In C, strings include a special terminating
character, so it is usual practice to declare strings that hold at least one more than
the maximum number of characters you wish to store.

In the scanf statement, the conversion specifier %s tells C to interpret
what you type as a string of characters. To display a string, use %s as a format
specifier. Note that the variable ID is not preceded by the address-of operator &

in the scanf statement. The reason for this won't become clear until we study
arrays in Chapter 6. (Basically, C treats a string of characters as an array of
characters.) The variable name associated with a character string is actually the
address of the first character in the string. Because it is already an address, the
address of operator & is not required.

A problem occurs with C's handling of character strings when these strings
include embedded blanks. For example, suppose a program asks you to enter your
name:

printf("Enter your full name: ");
scanf("%s",name) ;

You might reply by typing Laura Brooks. This will not work. The reason is
that C's "scan" of what you type starts at the first nonblank character and stops
at the first blank character. Thus, the variable name will contain just Laura and
not Laura Brooks. Even worse, the characters bBrooks remain in the
keyboard buffer. (The b represents a blank space.) This will cause problems if
your program contains another scanf statement.

The simple way around this difficulty is to store the first and last names
in separate variables:

printf("Enter your first and last name: .);
scanf (" %s %s', first_name, last_name) ;

However, suppose you use this code:

printf("Enter your name in the format last, first: .);
scanf (" %s %s", last_name, first_name) ;

This won't work. If you enter your name as Brooks, Laura, first_name
will have the value Laura, but las t_name will have the value Brooks,
(including the comma as part of the name), rather than just Brooks. As you can

2.2 Basic Input and Output • 33

see, reading strings in C can be tricky. The text will discuss solutions to specific
problems as they occur.

Reading Values With Leading Zeros and Nonblank Separators

Up to now, we have assumed that numerical values entered at the keyboard will
be separated by one or more blanks. This is not always a good assumption. A
good example involves reading a date in the American format mm/dd/yyyy, with
slashes separating the values. Another potential problem with the date format
arises when leading zeros are used with single-digit months and days; for example,
01/0911998 instead of 1/9/1998.

Special care is required to read such values correctly. First of all, we will
assume that the / in a date always follows directly after the number with no
intervening blank space. In that case, we can include the / character as part of the
conversion string. Second, we will treat the date values as integers. There are two
conversion specifiers that are available for reading integers, %i and %d. If there
is a possibility that an integer value might include a leading zero, we must use a
%d specifier to read the values. Here is some sample code:

printf("Give date in rrun/dd/yyyy format: ");
scanf("ld/ld/ld",&m,&d,&y) ;

Why is the %d specifier required? Generally, we will consider %i and %d
to be equivalent. (See Table 3.2 in Chapter 3.) However, this is not always true.
Consider program P-2.3.

P-2.3 [oct. c]

#include <stdio.h>

int main(void)
{

int i;

printf("Give integer: ");
scanf ("Ii" ,&i) ;
printfl"li Id\n",i,i);
printfl"Give integer: ");
scanf ("Id" ,&i) ;
printf("li Id\n",i,i);

return 0;

34 • 2. The Basics of C Programming

Running P-2.3 (three times)

The first execution of the program is straightforward, as either conversion
specifier interprets the digits 12 correctly. In the second execution, the 12 is
preceded by a leading O. If you expect C to ignore the leading 0, you will be in
for a surprise! When a %i specifier is used, the resulting value is 10, whereas a
%d specifier returns the expected value of 12. In the third execution, reading the
digits 09 with a %i specifier gives a value of 0, and the %d specifier returns the
expected value. You might encounter a similar situation if your program tries to
interpret a date in nun / dd / yyyy format as three integers. If the date
09/08 /2 0 0 1 is encountered, for example, the conversion string "% i / %i / %i "
will not work properly, but the conversion string" %d/ %d/ %d" will.

How can we explain this behavior? The answer lies in the fact that C
inteprets leading Os as indicating that the following digits are to be interpreted as
an octal (base 8) number rather than a decimal (base 10) number. We won't
provide a complete explanation of non-base-l°number systems, but it is sufficient
for this discussion to note that the octal number 12 (or 012 in C notation) is
equivalent to lx8 1 + 2x8°, or decimal 10. The digits 09 make no sense as an octal
number because the digit 9 doesn't exist in the base 8 number system.

P-2.3 demonstrates that the %i conversion specifier can be used to interpret
numbers expressed in base 10 (decimal) or octal notation. Thus the digits 012 are
processed on input as the octal number 12, equivalent to decimal 10. In the third
execution, the digit 9 is treated as a terminating character when the program tries
to interpret the characters 09 as an octal number, producing a result of 0. In
contrast, the %d conversion specifier always tries to interpret digits as base-10
integers, which is why it produces the expected result in P-2.3. Note that because
integers are always output as decimal (base 10) integers, %d and %i specifiers
work equivalently as format specifiers for output.

2.2 Basic Input and Output • 35

Exercises 10 and 11 at the end of this chapter involve problems in which
it is important to use a %d conversion specifier for input, for the reasons discussed
here.

2.2.2 File I/O

In order for a programming language to be useful for solving practical problems,
it must support interfaces with external sources. The simplest such source is
information typed on your computer's keyboard, as in P-2.2. However, keyboard
input is impractical for large amounts of data.

We will now consider a different version of P-2.2. The purpose of P-2.4
is the same as that of P-2.2, but the value for the radius will come from an
external data file rather than from the keyboard. Also, the output from P-2.4 will
be written to an external data file in addition to being displayed on the monitor
screen.

P-2.4 [circle_f. c]

/* Calculate the area and circumference of a circle
of specified radius, using an external data file. */

#include <stdio.h>
#define PI 3.14159

int main(void}
{

double radius,
area,
circumference;

FILE *inp, *outp;

/* input - radius of a circle */
/* output - area of a circle */
/* output - circumference of a circle */
/* pointers to input and output files */

/* Open the input and output files. */

inp = fopen("circle.dat","r"};
outp = fopen("circle.out", "w"};

/* Read the radius. */

fscanf(inp, ''%If'',&radius);
fprintf(outp, "The radius is %.2f\n",radius);
printf("The radius is %.2f\n",radius};
fclose(inp}; /* Close the input file. */

/* Calculate the area and circumference. */

area = PI*radius*radius;
circumference = 2*PI*radius;

/* Store the output. */

fprintf(outp, "The area is %.2f\n",area};
fprintf(outp, "The circumference is %.2f\n" ,circumference);

36 • 2. The Basics of C Programming

printf(
printf (

"The area is %.2f\n".area);
"The circumference is %.2f\n" ,circumference) ;

fclose(outp); /* Close the output file. */

return 0;

P-2.4 requires two files--one for input and one for output.
The identifier FILE is used to declare two pointers to the files,
* inp, and *outp:

FILE *inp. *outp; /* pointers to input and output files */

(The asterisk in front of the variable names inp and ou tp is what identifies them
as pointers rather than variables. We will have more to say about pointers in
Chapter 5.) In order to access the files, they must first be opened. The general
syntax for the f open function is

type FILE * variable fopen(file name. "status")

For now, we will specify either read-only ("r ") or write-only ("w") status
for a file. We will always need the return value from fopen, so we will not
include the (void) fopen (...) option in the syntax description.

In P-2.4, the statements

inp = fopen("circle.dat". "r");
outp = fopen("circle.out", "w");

open the two files needed for the program. The pointers inp and ou tp. which
have previously been declared as type FILE * variables, are assigned by the calls
to fopen. (These pointers can be given any convenient name.) In the first
statement, inp is associated with the data file circle. dat, and because this
is the input file, it is specified as an "r" (read-only) file. Similarly, the second
statement associates outp with a "w" (write-only) file, circle. out, to hold
the output from the program. The name of the input file to be read by the program
is specified by the character string "c i rc1e . da t ". The lack of any other
directory or folder reference in the file name implies that the file resides in the
same directory or folder in which the program is being created and is going to be
executed. If this is not true, then more information about the location of the file
must be given. In a WindowsIMS-DOS environment, for example, a full path
name could be specified as "c:\\c_stuff\\data\\circle.dat". The
double backslashes are necessary because C uses a single backslash character to

2.2 Basic Input and Output • 37

indicate that a control character follows, as in \n for the "new line" character in
a printf function.

In order to read one or more values from a file, use the f scanf function.
Its general syntax is

type int variable = fscanf(type FILE * variable,
format string, one or more variable addresses)

or
(void)fscanf(...

The syntax for f scanf is identical to that for scanf except that the input
device-the name of a file in this case-must be specified.

It's important to close a file when your program is finished with it. The
general syntax for f c los e is

or
type int variable fclose(type FILE * variable)

(void)fclose(...

You should not normally need the value returned from fclose; this value is
equal to 0 if the file is closed successfully and to the predefined value EOF if it's
not.

2.2.3 I/O Redirection

There is another way to get input from a data file that may not be so obvious.
Recall program P-2.2, which is designed for keyboard input and monitor output.
Assuming an executable version of circle. c exists, it is possible to replace
keyboard input with input from an external file by using input redirection. On MS
DOS or UNIX systems, the redirection statement

circle.exe < circle.dat

will produce the same results as the original program, except that the data will
come from the file c i r c 1e . da t. As a practical matter, it would be better to
modify P-2.2 so that the radius value is echoed in the output, just as it was in
P-2.4.

Likewise, output redirection can be used to send the output from a program
to an external file. The statement

circle> circle.out

38 • 2. The Basics of C Programming

sends the output from circle (P-2.2) to the file circle. out. However, the
prompt for the user to supply an input radius is also sent to the output file and
will not appear on the monitor screen. You can type the value even though you
don't see the prompt, and the program will then execute and send output to the
file, but this isn't very practical! Output redirection makes sense only for a batch
mode program that doesn't require user input or that gets its input from an
external data file.

2.3 Reading External Text Files of Unknown Length

The contents of files required as input to programs are usually more complicated
than those discussed in Section 2.2.2. Typically, these are text files prepared by
the programmer or obtained from some other source. Assuming you understand
the contents and structure of a file, how do you read it in C?

The fact is that C is a relatively inconvenient language for this task,
compared to Fortran or Pascal. Our approach will be to find some workable
solutions and stick with them. The purpose of presenting this kind of "cookbook"
approach early in the text is to help you develop a basic working knowledge of
how to access data for use in a program. We will return to some of the details
later in the text.

Consider the file structur .dat:

1 2 3 66.6
4 3 16 17.7

11 12 56 3.3
12 a 1 4.4
12 15 33 5.5
12 59 58 13.3
14 2 13 12.2

This short file contains three integers (they could be interpreted as hours, minutes,
and seconds, for example) and one real number in each record, or line, of the file.
We will assume that the program does not know ahead of time how many records
there will be in the file. This is a typical situation with external files and has
important implications for how a file is processed.

In order to develop a strategy for reading
text files, you need to know that every text file has
two important characteristics: it includes an end-of
line mark at the end of every line and an end-of
file mark at the end of the file. When you create a text file with a text editor, the
end-of-line (eol) mark is put in the file whenever you press the Enter or
Return key. When a program creates a text file, the eol mark is put in the file
whenever you include the \n control character as part of an fprintf format
string. The end-of-file (eof) mark is put in the file without any additional action

2.3 Reading External Text Files of Unknown Length • 39

on your part whenever you save a file from within a text editor or felose it in
a program.

The goal in writing code to read a text file is to read
one record at a time inside a loop structure that terminates
when the end of the file is detected. We haven't discussed
C's implementation of loop structures yet, but we described them in Chapter 1 in
the context of the LOOP... END LOOP pseudocode command. For now, we will
provide code for some loop structures to perform the specific task of reading a file
of unknown length. P-2.5 shows one way to read s true tur . da t.

P-2.5 [filetest. e]

#include <stdio.h>
#define FILE_NAME "structur.dat"

int main ()
{

FILE *Infile;
int count=O;
int hr,min,sec;
float x;
int status;

Infile=fopen(FILE_NAME, "r");
while (1)
{

status=fscanf(Infile, "Ii Ii %i %f",&hr,&min,&sec,&x);
if (status == EOF) break;
printf("%2i %2i %2i %6.2f\n",hr,min,sec,x);
count=count+1;

}
fclose (Infile) ;
printf("Lines in file
return 0;

Running P-2.5

%i",count) ;

The fseanf function is used to read the file in the same way that seanf
reads input from the keyboard. This function returns an integer value, and the
basic strategy of P-2.5 is to use this value to control the execution and termination

40 • 2. The Basics of C Programming

of the loop. Loop syntax will be discussed in more detail in Chapter 4, but the
intent of this code should be clear in context. The loop

while (1) {

causes statements inside the loop to execute indefinitely until something happens
inside the loop to terminate it. The C language includes a predefined value called
EOF, which is returned by f scanf through variable s ta tus, whenever f scanf
is unable to find any of the values whose addresses are given in the list following
the format string. As long as status isn't equal to EOF, the loop continues to
execute. In this example, as long as the file contains valid data that can be read
by the f scan f statement, the program displays the data and increments the
counter. The if ... statement is also an element of C we haven't discussed yet,
but its intent should be clear if you recall the IF... THEN... pseudocode command
from Chapter 1. (In C, the THEN part of the pseudocode command is implied.)
This statement examines the current value of variable s ta tus and terminates the
loop with a break; when status has a value of EOF.

The data declarations in P-2.5 illustrate another feature of C: variables can
be initialized at the same time they are declared. The initialization for count is
required in P-2.5 because coun t will later be incremented inside the whi 1e ...
loop; it is very poor programming practice to assume that any variable will
automatically be initialized to O. In P-2.5, count is initialized to 0 because of
how it is used, but any appropriate value is allowed. It is also always okay to
initialize a variable with an assignment statement rather than as part of its
declaration.

A different approach to reading files is shown in P-2.6.

P-2.6 [filetes2. c]

#include <stdio.h>
#include <string.h>
#define FILE_NAME "structur.dat"

int main ()
{

FILE *Infile;
char one_line [100] ;
int count=O;
int hr,min,sec;
float x;
char *line-ptr;
Infile=fopen(FILE_NAME, "r");

2.3 Reading External Text Files of Unknown Length • 41

while (1) {
/* First read the line into a string. */
line-ptr=fgets (one_line, sizeof (one_line) ,Infile);

/* Quit if at end-of-file. */
if (line-ptr == NULL) break;

/* Replace "new line" with null character (optional) .*/
one_line[strlen(one_line)-lJ=' \0' ;

/* Print the string just as a test (optional). */
printf("%s\n" ,one_line) ;

/* Then scan the line to get numerical data. */
(void) sscanf(one_line, "%d %d %d %f",&hr,&min,&sec,&x);
printf("%2i %2i %2i %6.2f\n",hr,min,sec,x);

/* Keep track of number of lines (optional). */
count++;

}
fclose(Infile) ;
printf("Lines in file
return 0;

%i", count) ;

Instead of reading values directly from the file, P-2.6
reads each line into string one_l ine using the f ge t s ("get
string") function and then performs an internal read on that
string to extract the numerical information. The general syntax for the fgets
function is

type char * variable = fgets(character string,
integer equal to size of character string,
type FILE * variable)

or
(void) fgets (...

The file-handling loop in P-2.6 shows another way to detect the end of a
file and exit the loop:

char *line-ptr;

while (1) {

line-ptr=fgets (one_line, sizeof(one_line) ,Infile);
if (line-ptr == NULL) break;

As was the case in P-2.5, this is an infinite loop that will continue until a
break; statement is executed, because the value I is interpreted by C as "true."

42 • 2. The Basics of C Programming

The fgets function reports the presence of an end-of-file mark in its return
value, which is a pointer to the first character in the character string one_line.
When an end-of-file is encountered, the pointer returned by fgets has a value
of NULL. We can test for this:

if (line-ptr == NULL) break;

and exit the loop using a break; .
When fgets reads a string, it adds a new-line character to the end of the

string. This is the same control character, \n, that is used in a printf statement
to start a new line. If we want to use the string itself for anything (we don't in
this program), we can get rid of the new-line character by replacing it with a null
character. If we are curious about the contents of one_l ine, we can print it.

one_line[strlen(one_line)-lJ='\O' ;
printf ("%s \n" ,one_line) ;

In C, characters are always enclosed in single quote marks. The '\ 0' is treated
like a single character because of the backslash. The s t r 1en function returns the
length of its string argument, including the new line character. According to the
ANSI C standard, programs that use strlen require access to the string. h
header file, even though not all compilers (including the cc compiler) require that
this header file be #included.

All that remains is to scan the line to extract the numerical data. Use the
sscanf ("string scan") function. This works just like scanf except that it gets
its input from a character string rather than from the keyboard buffer. Its general
syntax is

type int variable

or

sscanf(input string, conversion specifier,
list of variable addresses)

(void)sscanf(...

In P-2.6, the sscanf function is used to read the four numerical values
on each line:

(void) sscanf(one_line, "%i %i %i %f",&hr,&min,&sec,&x);
printf("%2i %2i %2i %6.2f\n",hr,min,sec,x);

In many cases, your program will want to know how many lines the file
contained, so increment a counter with the statement c oun t ++ ;. After the
termination of the while ... loop, close the file and print the results:

fclose(Infile);
printf("Lines in file = %i",count);

2.3 Reading External Text Files of Unknown Length • 43

An important difference between f scanf and f ge t s
is that fgets always reads an entire line from a text file; the
end of the line is detected by looking for an end-of-line mark.
On the other hand, fscanf reads one or more values as specified by a format
string. It treats the text file as an input stream of characters, and it treats end-of
line marks simply as "white space" separating the requested values. (That is, it
basically ignores the end-of-line marks.) This works well for reading numerical
values, but it can sometimes cause problems when characters, character strings,
and numerical values are mixed in the same file.

Here is a modified data file that contains some text information, in the
form of one character string at the beginning of each line of the file, in addition
to numerical values:

Jan 1 2 3 66.6
Apr 4 3 16 17.7
Nov 11 12 96 3.3

Program P-2.7 illustrates the minor modification of P-2.5 required to read this file
and display its contents. In this case, it is still possible to use scanf, rather than
fgets.

P-2.7 [filetes3. c]

#include <stdio.h>
#define FILE_NAME "structr2.dat"

int main ()
{

FILE *Infi1e;
char month [10] ;
int count=O;
int hr,min,sec;
float X;
int status;
Infile=fopen(FILE_NAME, "r");
while (1)
{

status=fscanf(Infile, "%s %i %i %i %f",
month,&hr,&min,&sec,&x);

if (status == EOF) break;
printf("%3s %2i %2i %2i %6.2f\n",month,hr,min,sec,x);
count++;

}
fclose(Infile);
printf("Lines in file
return 0;

%i", count) ;

An important point about P-2.7 is that the & operator is not used in front
of a variable name associated with a character string. Such a variable name is

44 • 2. The Basics of C Programming

actually a memory location; specifically, it is the address in memory of the first
character in that string.

Although programs P-2.5, P-2.6, and P-2.7 may seem somewhat repetitious,
each provides an example of code that solves a specific programming problem.
The choice of which approach to use depends on the task at hand. Some
programmers prefer fgets for accessing files, as they believe that f scanf is
sometimes unreliable. However, when you know ahead of time how many values
a line will hold, you should be able to use fscanf without problems. The code
in P-2.6, using fgets and sscanf, may be appropriate when you are not sure
ahead of time how many values are included in a specific record, or when you
have some other reason to hold a line from a file temporarily in a string variable.

In any event, it is important not to stray far from the code models in P-2.5,
P-2.6, and P-2.7 when you write your own programs to read external text files. In
all programs that use input files, it is important to concentrate on reading and
displaying the contents before tackling the rest of the program. By the time you
have finished Chapter 4, which presents a general discussion of loop structures,
you will have developed a much better understanding of the code presented in this
section. Then if you need to develop different file processing strategies, you will
be in a better position to do so.

As a final example, consider this typical problem:

A data collection system consists of several measurement stations, each
with its own ID, which is expressed as an integer. When a station reports
measurements, it sends its ID along with one or more measurements in the
form of real numbers, but it never sends more than eight measurements in
a single report. These station reports have been collected and compiled into
a text file for processing. Write a program that reads this file and
calculates the total number of reports and the total number of
measurements reported by all stations.

The data file used for this program, s ta tions . da t, can be found on the Web
site mentioned in Section 6 of the Preface.2 It looks like this:

1001 14 17.7 13.3 12.9 19.9 11 9 20
1002 17.7
1003 14 15 16 17 18 19 20
1001 4.4 5.5 6.6
1004 14 15 17.1 18.1
1004 11.1 12.1 13.3 4.4 8.8
1005 39 38 37 36 35 34 33 32

2All data files required for programs in the text as well as for the exercises can be found on
this Web site.

2.3 Reading External Text Files of Unknown Length • 45

The required calculations are remarkably easy to do in C if you take proper
advantage of the return values from the appropriate 110 functions, as demonstrated
in P-2.8.

P-2.8 [stations.c]

#include <stdio.h>

int main(void)
{

FILE *in;
int ID,status,n_reports=O,n_measurements=O;
char *line-ptr;
char one_line[80];
float x;

in=fopen("stations.dat", "r");
while (1) {

line-ptr=fgets (one_line,sizeof (one_line) ,in);
if (line-ptr == NULL) break;
status=sscanf(one_line, "%i %f %f %f %f %f %f %f %f",

&ID,&x,&x,&x,&x,&x,&x,&x,&x) ;
n_reports=n_reports+l;
n_measurements=n_measurements+(status-l) ;

}

fclose (in) ;
printf("There are %i records and %i measurements.\n",

n_reports,n_measurements) ;
return 0;

Running P-2.8

For this problem, the data cannot be read directly with fscanf, as it is
not clear ahead of time how many measurements (the floating-point numbers)
follow each station ID (the integer). Asking your program to read an ID and eight
data values will work for the first line but not for the second line. When your
program tries to read the second line, f scan f will try to find the requested
values by looking ahead to the third line. This will soon cause problems!
However, if each line of the file is first read separately into a string, sscanf can
then be used to read the ID and up to eight data values. It won't matter if
sscanf runs out of values in that string; it will simply "give up" and return the
total number of values successfully read. The total number of reports is obtained
by incrementing a counter after each successful fgets. The total number of
measurements reported by all stations is obtained by incrementing a counter by
status-l after each sscanf. (The number of measurements is one less than
the value returned in s ta tus because the ID isn't counted as a measurement.)

46 • 2. The Basics of C Programming

Note that in the sscanf statement, all the measurements are read into the same
variable address, &x. This isn't a very useful approach in general, but it is okay
for this simple problem.

2.4 Reading a File One Character at a Time

Occasionally, it is useful to read a
file one character at a time and this
section describes how to do that. One
application of this technique might be to deal with the transfer of text files created
on an MS-DOS system to some other system. In order to understand what is
required, we must mention briefly the ASCII character collating sequence. This
is a widely used standard for encoding characters. The sequence contains 256
characters, the first 128 of which are identical for all computer systems using this
standard.3 The second 128 characters are system-dependent. Appendix 1 gives a
table of ASCII characters for WindowsIMS-DOS-based computers.

When text files are created on a WindowslDOS computer, they have an
end-of-line mark that actually consists of two characters-a new-line character
(decimal value 10 in the ASCII character collating sequence) and a carriage return
character (decimal value 13). On Macintosh or UNIX systems, the end-of-line
character consists just of the new-line character. The default strategy of utilities
that convert MS-DOS text files to Macintosh is to remove the carriage return
character from the end of every line. However, it is certainly possible that an
MS-DOS file could be downloaded or copied onto a Macintosh or UNIX platform,
or vice versa, without this translation having been made. Depending on how the
file will be read by a program, it might be necessary to remove or add the carriage
return character.

Program P-2.9 examines a text file and displays the integer equivalent of
every character in the file except ASCII character 13, the carriage return character.
When the program encounters ASCII character 10, it prints a new-line character.

P-2.9 [fileview. c]

/* Displays contents of a text file character by character. */
#include <stdio.h>

int main(void)
{

FILE *in;
char name [20] ;
int ch;

JSome IBM mainframe computers use EBCDIC encoding, which is significantly different from
ASCII encoding. IBM and IBM-compatible personal computers use ASCII encoding.

2.4 Reading a File One Character at a Time • 47

printf("Give file to fix: "I;
seanf("%s",name);

in=fopen(name, Or");
if (in == NULL) {

printf("Can't find file. Abort program.");
exit () ;

}
while I! feof (in)) {

eh=fgete (in) ;
if (eh != 13) printf("%3i",eh);
if (eh == 10) printf("\n");

}

feloselin);

return 0;

P-2.9 contains some new syntax and three new functions. The syntax
involves the use of an if. . . statement. You can interpret its meaning based on
the IF... THEN... ELSE pseudocode command. (The THEN... is implied in C.)
We will discuss this syntax in Chapter 4. The new functions are feof, fgetc,
and exi t. The first of these returns a nonzero value when the file pointer is at
the eof mark and 0 otherwise. The second reads a single character from the file
and returns its integer value in the ASCII collating sequence-not its character
value, as you might expect. (That is why the variable ch is declared as type int
rather than as type char.) Actually, characters and integers are interchangeable
in the sense that you can easily switch back and forth between the two
representations. All that is required to display characters rather than integers is to
change the format specifier in the prin t f statement from %3 i to

printf ("%e", eh);

or

printf("e", (ehar)eh);

In the latter case, the (char) makes clear that you wish the variable ch to be
treated as a character rather than as an integer.4

The exi t function terminates the program immediately. By convention,
exi t (0) indicates normal program termination and a nonzero value indicates a
problem. Using the function without a value inside the parentheses is also okay.
In this text, we will not bother to write code that specifies exit values.

"This kind of operation is called type casting. and we will have more to say about it later in the
text.

48 • 2. The Basics of C Programming

2.5 Applications

In this section, and in similar sections in later chapters, we will develop programs
that use and sometimes extend the material discussed in the chapter. The purpose
of presenting detailed solutions even when the problems seem simple is to help
you develop a consistent problem-solving approach that you can use in
programming as well as in your other science, engineering, and mathematics
courses. It will always be helpful for you to read the problem statement and then
try to design the algorithm and write the program on your own.

2.5.1 Maximum Deflection of a Beam Under Load

1 Define the problem.

Consider a beam of length L supported at each end and subject to a
downward force of F pounds concentrated at the middle of the beam. The
maximum downward deflection of the beam (at its middle) is -FL3/(48EI), where
F is the downward force in pounds, L is the beam length in inches, E is the
elasticity in units of Ib/in2

, and I is the moment of inertia in units of in4
• Write a

program to calculate the maximum deflection for specified values of L, F, E, and
I. For a particular steel I-beam (a beam with an I-shaped cross-section),
E = 30x106 Ib/in2 and I = 797 in4

• The deflection of such a beam as a function of
length (in feet) is shown in Figure 2.1.

2 Outline a solution.

1. Create a data file containing the desired values of L, F, E, and I. Let your
program convert length from feet to inches, if required.
2. Calculate deflection according to the above formula. The sign of the deflection
can be either positive or negative as long as it's understood that the deflection is
in the downward direction.
3. Display the output.

2.5 Applications • 49

0.6~----------------------'

0.5 - ~ ······r············· :

.~ 0.4 ·········j··········t·········j··········j··········:·····················t·········;······· ..; .

j 0.3 ···1···· , : ·····1··· ···1··· ······i· ·t········· : ' .

0.2 + , -j-- i i ·······f : + .
: : : : : :

i IDO~nWard ~orce =:50,~ Ib I :
0.1 ········-r······T"······T·······T········:···· "T'"

: : :: :
~ :: ~

642o 8 10 12 14 16 18 20
Length, ft

Figure 2.1. Deflection of a steel I-beam under a central load.

3 Design an algorithm.

DEFINE (L = length, ft; F =central force, Ib; E =elasticity, Ib/ili;
I =moment of inertia, in4

; deflection, in)

OPEN (file containing input data)
READ (L,F,E,I)
CLOSE (file containing input data)
ASSIGN L =L-12.0 (convert to inches)

deflection = -F-e/(48EI)
WRITE (deflection)

4 Convert the algorithm into a program.

P-2.1O [beam. c]

#include <stdio.h>
#define FILENAME "beam.dat"

int main (void)
{

50 • 2. The Basics of C Programming

double length,force,elasticity,mom_of_inertia;
FILE *infile;

infile=fopen(FILENAME, "r");

fscanf(infile, ''%If %If'',&length,&force);
fscanf (infile, "%1£ %1£", &elastici ty, &mom_of_inertia) ;
fclose (infile) ;
printf(

"Length of beam (feet) and central force (lb): %.11f %.11f\n",
length,force);

length=length*12.0;
printf(

"Elasticity (lb/in'2) and moment of inertia (in'4): %e %.llf\n",
elasticity,mom_of_inertia) ;

printf("deflection = %If in\n" ,
-force*length*length*length/48.0/elasticity/mom_of_inertia);

return 0;

Running P-2.1O

5 Verify the operation of the program.

You probably don't have an intuitive feel for what the answer should be
for a beam having the values of elasticity and moment of inertia specified in the
problem statement. According to Figure 2.1, the maximum deflection of a 20-foot
beam with the indicated properties is about 0.6 inches when subjected to a load
of 50,000 pounds concentrated in the middle of the beam. What would you think
about using this formula if it returned an answer of 0.001 inches? How about 10
inches?

Problem Discussion
P-2.1O is a straightforward program using a simple external text file for

input, but there are some important details. First, it is important that the creator
of the data file (beam. dat) be aware of which units to use for input. In
particular, the elasticity and moment of inertia are given in units that use inches,
but the problem statement indicates that the beam length should be given in feet.
H is probably best to retain this unit for input and let your program do the

2.5 Applications • 51

conversion to inches. Regardless of the solution you choose, it is essential that
your program account for the fact that, for example, an input of 20 for the length
means 20 feet and not 20 inches! The value for elasticity of 30 x 106 can be
written in scientific notation as 3 0e 6.

Second, note that L3 is coded as length * length* length, as there is
no exponentiation operator in C. In Chapter 3, we will see that there is another
way to do this calculation using an intrinsic function.

Up to now, the %1 f conversion/format specifier has been used for I/O of
type double variables. However, the C language has several different specifiers
that control the appearance of displayed output. In P-2.1O, one of those
alternatives, %e, is used to display the elasticity and moment of inertia. This
specifier is useful for displaying very large or very small real numbers in scientific
notation. (See Table 3.2 in Chapter 3 for a list of conversion/format specifiers.)

Finally, it may be helpful to know that for a simple file such as the one
needed by P-2.1O, C doesn't care about the line-by-line arrangement of the values
in the file. The order in which the input values are given in the data file is
important, of course, but these values can be given either on the same line or on
two or more lines. For example:

20 50000 30e6 800

and

20
50000
30e6
800

are equivalent and equally acceptable ways to provide one set of input values.

2.5.2 Relativistic Mass and Speed of an Electron

This particular problem has been chosen specifically because the quantities
involved may be unfamiliar. Hopefully, this unfamiliarity will encourage you to
be careful when you translate this and every other problem statement into a
program, and also to be diligent when you verify that program's operation.

1 Define the problem.

An electron accelerated by a voltage V in an electron gun acquires an
energy of Ve = mc2

- moc
2

, where e = 1.602 x 10-19 coulomb is the charge on an
electron, mo = 9.109 x 10-31 kg is the rest mass, m is the relativistic mass in kg,

52 • 2. The Basics of C Programming

and c =2.9979 X 108 mls is the speed of light. The speed v of an electron of
relativistic mass m is obtained from mlmo = [l - (v/cfr 1l2

• Write a program that
reads several voltages from an external file and calculates the relativistic mass and
speed of an electron accelerated by that voltage. (Sample answer: For a voltage
of 1.5 x 106 V, m =3.58 x 10.30 kg and v =2.9 X 108 mls. See Figure 2.2 for
more information.)

, ,

0.9 ~... . ~ ··1················1················ ~ .
,· . . , .· , , . .

0.8 ·····,················~················l·············· .. : ~ .
, . , . .·· . , . ., . , . .

E 0.7 ···············f···············-f················i················i················1················

i::ILI!i
~ ., , . ,

~~:'Iiiii'

10

9

8

7

6 lG
E

5
iii
l!!

4 ~
E

3

2

0
32.50.5o 1.5 2

Electron volts
(Millions)

Figure 2.2. Relativistic mass and speed of an electron.

2 Outline a solution.

The terminology of this problem may be unfamiliar, but the required
algebraic manipulations are not difficult. The relativistic mass is a consequence
of relativity theory, which predicts that mass is not a constant property of matter,
but increases with speed with respect to a stationary observer. The solution is
straightforward:

1. Read the voltage of the electron gun.
2. Calculate the mass first, then the speed, using the equations given in Step 1.
3. Display the output.

3 Design an algorithm.

2.5 Applications • 53

DEFINE (All variables are real numbers. The resLmass,
charge e, and speed of light c are constants.)

OPEN (file containing voltages)
LOOP (as long as there are voltages to read)

READ (voltage)
WRITE (echo voltage from file)
ASSIGN mass = (voltage-e + resLmass*tf)/tf

velocity =c-[1 - (resLmass/massfr2

WRITE (mass and velocity)
END LOOP
CLOSE (file containing voltages)

4 Convert the algorithm into a program.

P-2.11 [rel_mass. c]

#include <stdio.h>
#include <math.h>

#define E 1.602e-19 /* Coulomb */
#define C 2.997ge8 /* m/s */
#define REST_MASS 9.l0ge-3l /* kg */
#define FILENAME "rel_mass.dat"

int main(void)
{

double voltage,speed,rel_mass;
FILE *infile;
int status;

infile=fopen(FILENAME, "r");
while (1) {

status=fscanflinfile, ''%If'',&voltage);
if (status == EOF) break;
printf("for voltage of : %e V\n",voltage);
rel_mass=(voltage*E+REST_MASS*C*C)/(C*C) ;
speed=C*sqrt(l.O-(REST_MASS/rel_mass)*(REST_MASS/rel_mass»;
printf ("relativistic mass and speed: %g %g\n", rel_mass, speed) ;

}
fclose(infile);

return 0;

54 • 2. The Basics of C Programming

Running P-2.11

5 Verify the operation of the program.

These calculations are easy to implement in C, but you must check them
by hand, using a calculator to do the math. Be careful when you calculate the
exponents on powers of 10. It is easy to make mistakes and accept wrong answers
when the numbers are so large or small that it is difficult to develop a feel for
them. If you have never had an introductory physics course, or even if you have,
the numbers may be essentially meaningless, so a wrong answer will look as
reasonable or unreasonable as the right one. As another test of the reasonableness
of your answers, you could add to your code the calculations for the ratio of the
electron's speed to the speed of light-it must be less than I-and the ratio of its
relativistic mass to its rest mass-it must be greater than 1; these are the values
shown in Figure 2.2.

Problem Discussion
As implied in the problem statement, the code should treat the data file as

a file of unknown length. Therefore, the voltages in the file are read with f scanf
inside a conditional loop that terminates when the end-of-file is detected.

Program P-2.11 gets a little ahead of our discussion of C in one respect:
it makes use of C's sqrt function to calculate the square root required to obtain
the electron's speed. In Chapter 3, we will give more details about using such
functions, which are essential for any language used to do scientific and
engineering calculations. For now, the intent of this function should certainly be
clear in the context of the program. It is necessary to include the <rna th . h>
header file in order to use the sqrt function. If you are using the UNIX cc
compiler, you will also have to include the option -1m (to link the math library)
in the command line when you compile this program:

cc rel_mass.c -orel_mass.exe -1m.

Note the use of scientific notation to express the physical constants in the
program. The voltage input can also be given in scientific notation, and it can still
be read with a %If specifier. In P-2.11, an alternative specifier, %g, is used for

bug ;. I
u/iaigiJIg .

2.6 Debugging Your Programs • 55

output. It displays real numbers in floating point or scientific notation, whichever
is shorter. This is useful when you're not sure of the magnitude of the answers
your program will produce.

2.6 Debugging Your Programs

There is no shortage of potential problems in even the
simplest C programs. The first errors you will encounter
are compile-time errors, or syntax errors, that your
programming environment will detect when it tries to
compile your program. Unfortunately, the messages that C compilers give about
these errors are not always very helpful. One result of the free-format nature of
C is that sometimes an error message will be reported far from its actual location,
as your compiler defers reporting the error until it is forced to give up on
determining how you wish your source code to be interpreted. The C language is
this way by design; the penalty to be paid for having a very flexible language is
that programmers must assume a great deal of responsibility for writing
syntactically correct code. All syntax errors must be removed from a source code
file before an executable program can be generated.

Even after your program is free of syntax errors,
there is another class of errors that. your programming
environment can detect only after a program has begun
executing. These run-time errors must be corrected by modifications to your
source code to allow your program to execute properly or to produce correct
answers.

The only way to become proficient at finding bugs and
debugging your programs is to make errors (not a problem!),
note the messages resulting from those errors, and learn how to
respond to those messages. Each programming environment is
a little different because the messages displayed in response to syntax or run-time
errors are generated by the compiler you are using; the content of these messages
isn't regulated by the C language standard. In the next sections, some common
compile-time and run-time errors are described.

2.6.1 Compile-Time Errors

I. Misspelled keywords and function names
This includes using inappropriate combinations of uppercase and lowercase

letters, such as Printf instead of printf. It is difficult for a C compiler to
give a useful message about such errors because it has no way of determining
what you actually meant. Your defense against this kind of error is to be careful
when you type your source code in the first place.

56 • 2. The Basics of C Programming

2. Undefined variable names
This is a "good" error because it forces you to declare every variable

appearing in your program. It is easy to make spelling errors when you type in
source code, and the messages resulting from this error will show you where
variable names have been misspelled.

3. Inappropriate use of semicolons on lines containing compiler directives
Compiler directives are not C statements, so they do not end with a

semicolon. For example, # inc1ude < s tdio . h> ; will produce an error, but
the message may not be very helpful and may appear to relate to an entirely
different part of your source code. Again, your only defense is to be careful.

4. Missing semicolons
Because of the free-format nature of C, this error is usually reported on the

line after the one on which the missing semicolon was expected. Remember that
every C statement must end with a semicolon.

5. Unbalanced curly braces ({ ... }) around statement blocks
This is another error that is difficult for a compiler to interpret because it

"keeps hoping" that the missing brace will be found. Thus the error message often
references a source code line, perhaps even the last line of the program, that is far
from where the missing brace should have been. Your defense against this kind
of error is to be consistent about indenting statement blocks so that it is easy to
see the correspondence between the start of a code block and its closing brace;
this has the added advantage of making your code much easier to read and
understand.

6. Unbalanced parentheses
Every left parenthesis must be balanced by a right parenthesis in an

assignment statement or a call to a function. You are encouraged to use extra
parentheses whenever their presence makes calculations more clear, but many
beginning programmers overuse parentheses in simple assignment statements.
Code such as

x = a + (b/e);

is okay, but these parentheses are not needed because multiplication and division
take precedence over addition and subtraction. The use of too many parentheses
in more complicated arithmetic expressions makes mistakes more likely and
should be avoided. A more detailed discussion of the precedence of operations
will be found in Chapter 3.

2.6 Debugging Your Programs • 57

7. Missing quote marks around conversion specifier strings in I/O statements
Quote marks around string constants (string literals) must always occur in

pairs-an opening quote and a closing quote. Your compiler will try to find a
missing quote mark and may report the error far from the line in which the error
actually occurred.

2.6.2 Run-Time Errors

1. Inappropriate I/O conversion specifiers
This error can result in "garbage" values or program crashes. Such errors

won't be detected as compile-time errors, but they can cause incorrect answers or
odd errors when you try to run your program. If values print as 0 even though you
know they have nonzero values, or if variables appear to have wildly inappropriate
values, the most likely cause is an inappropriate conversion specifier.

Your defense against this kind of error is to check compatibility between
variables and conversion specifiers in printf and scanf functions (and their
corresponding file I/O functions). Although some inconsistencies are of little
consequence-it is okay to use a %f format, rather than %1 f, to display a type
double variable, for example-it is better practice to be consistent about using
an I/O conversion specifier that is properly associated with the data type of the
quantity being read or written.

2. Omitting the address-of operator (&) for nonstring variables used as arguments
in input functions

Variable names associated with characters, integers, and real numbers must
always be preceded by the & character when your program reads their values using
scanf or some other input function. Failure to do so asks C to consider the
variable name as an address rather than as a symbolic name. When you read
strings, the names of string variables are considered by C to be addresses-a detail
which certainly isn't obvious, and which will be discussed later in more detail-so
the & operator isn't used. This kind of error will be detected only when your
program executes. The results range from variables having values of 0 to obscure
messages such as segmentation faul t.

3. Not finding a requested input file
Because nearly all C functions, including I/O functions, return values, the

C language depends on these values to detect certain kinds of error conditions.
You might want a program to crash if it can't find a file you asked it to read
from, but it won't do that. Instead, the fopen function will return a value that
can be interpreted as, "I couldn't find this file."

It is certainly possible, and even desirable, to write code that will respond
appropriately to such a message, but we have avoided it in the examples presented

58 • 2. The Basics of C Programming

in this chapter. Such code uses syntax we haven't discussed yet, and it makes
programs longer, harder to read, and less clear in their basic purpose. For
programs you write for your own use, it is not hard to keep track of where data
files are stored, so you aren't likely to ask your program to open a file that
doesn't exist.

4. Using inappropriate mixed-mode calculations
Consider this code fragment:

int min,sec;
float decimal_minutes;

decimal_minutes = min + sec/50;

Even though decimal_minutes is declared as type float, the result is an
integer always equal to the value of min. Why? Because sec /60 is an integer
calculation and always produces a value of 0 unless sec equals exactly 60. The
meaning imposed by C on the division operator depends on the data type of both
its operands. If both operands are integers, as in this case, the division operator
returns the integer quotient of dividing sec by 60. This is sometimes a desirable
result, but not in this code fragment.

To avoid this kind of error, always be aware of whether you are doing
integer or real arithmetic, regardless of the appearance of the values involved.
Physical quantities should almost always be associated with floating-point
variables even when the quantities are expressed as whole numbers. In this
example, you could get the correct answer by typing sec/60. O. The fact that
one of the operands is now a real number forces C to perform real arithmetic and
to generate a real number result. A better idea would be to declare all three
quantities as real variables and use 60. 0 rather than 60, even though 60 is a
whole number.

2.7 Exercises

In these exercises, the input may come either from values typed at the keyboard
or from an external data file, as specified by your instructor. When you use a data
file, be sure to echo the contents of the file as part of your program's output. Your
instructor also may ask you to write output to a file instead of or in addition to
your computer monitor. Also, if you use a data file for input, you can try using
your system's redirection operator to direct your program's output to another file
rather than to your computer monitor.

In this and subsequent chapters, data files mentioned in the exercises can
be downloaded from the Web site mentioned in Section 6 of the Preface.
Instructors can obtain source code for the exercise problems directly from the

2.7 Exercises • 59

author, as noted in Section 6 of the Preface. The names of the source code files
are given in brackets at the end of each exercise.

1. Write a program that calculates and displays the volume and surface area of a
cylinder, given the radius and height in meters. The volume of such a cylinder is
1trh, and its surface area is 21tr + 2mh. [cylinder. c]

Extra Credit:
1. Assuming that the cylinder is solid and the density (g/cm3

) of the
material is specified as input, calculate the mass of the cylinder. (Use an
engineering handbook to find densities for one or more materials and be sure to
specify in your program output what those materials are.)

2. Assuming that the cylinder is an empty container made of thin sheets
of material with a known mass per unit area (g/cm2

), calculate the mass of the
cylinder for a specified wall thickness. Is it appropriate to assume that this value
is just the surface area times the mass per unit area of the material?

3. Create a data file with several sets of material densities and dimensions
and modify your program so that it will read input values from this file rather than
from the keyboard. [cylindr2 . c]

Figure 2.3. Block-and-pulley configurations.

Mb

(b)

Ma

(a)

Ma

2. "Block and pulley"
problems are a staple
of introductory physics
courses.
(a) Consider a block of
mass rna hanging from
a massless string that
passes over a
frictionless pulley and
is connected to another
block of mass mb

resting upon a
horizontal surface as
shown in Figure 2.3(a).
The coefficient of
friction between the second block and the horizontal surface is 11. Under the
influence of gravity, the system of blocks undergoes an acceleration a, where the
balance of forces is

60 • 2. The Basics of C Programming

Write a program that calculates the acceleration of the block system for specified
values of rna' mb, and 11. What is the maximum value of 11 such that the hanging
block will fall?

(b) Consider the masses from part (a) hanging from either side of a frictionless
pulley, as shown in Figure 2.3(b). Now the balance of forces is

Add to your program the calculation for the acceleration of this block system.

3. The Carnot cycle describes a theoretical heat engine that absorbs heat at
temperature T!, converts some of the heat to work, and exhausts the rest at a
lower temperature T2• The efficiency of a Carnot engine, which is always less than
1, is determined by the ratio of output to input temperatures:

efficiency = 1 - T/T!

where temperatures are expressed in Kelvins and 00 C equals 273 K. Write a
program that accepts as input values of T, and T2 and calculates the efficiency.
Express the temperatures in units of degrees Centigrade and let your program do
the conversion to Kelvins. [carnot. c]

4. Young's modulus of elasticity Y, the ratio of stress to strain, characterizes the
response of materials to tension or compression forces. Assuming the elastic limit
is not exceeded, the change in length M. of a rod of initial length Land cross
sectional area A subjected to a tension or compression force F is related to
Young's modulus by

y stress
strain

FIA
aL/L

Table 2.1 lists Young's modulus and the elastic limit for several materials.
Write a program that determines, for each of the tabulated materials, the

change in length M. for a I-mm-diameter, 2-meter rod subjected to a specified
force F that will not cause the elastic limit to be exceeded for any of the
materials. For each material, calculate the minimum diameter a rod can have
without its elastic limit being exceeded for a user-specified force. Use an external
file to store all your input data. [young. c]

2.7 Exercises • 61

Table 2.1. Young's modulus and elastic limit for selected materials

aluminum 7.0 1.3

brass 9.1 3.8

copper 11.0 1.5

wrought iron 9.1 1.6

spring steel 10.0 4.1

5. Write a program that asks the user to supply the mass and velocity of an object
and then calculates and displays the kinetic energy and momentum of that object.
The kinetic energy is mv2/2 and the momentum is mv. Use metric units (mass in
kilograms, velocity in meters per second, energy in joules).

Extra Credit:
Include source code that will convert the kinetic energy and momentum to

their British system equivalents. The British unit of energy is ft-Ib and the unit of
momentum is slug-ft/s. 1 ft-Ib = 1.356 joule; 1 slug = 14.59 kg; 1 ftls = 0.3048
mls. [kinetic. c]

6. Write a program that asks the user to supply the mass m, radius r , linear speed
v, and rotational speed 0) of a rolling solid spherical ball. The total kinetic energy
of an object is the sum of its translational and rotational kinetic energies:

KEtola) = 10)2/2 + mv2/2

where I is the moment of inertia. For a solid sphere of radius r, the moment of
inertia is 2me2/5. Use metric units to calculate and display the linear, rotational,
and total kinetic energy in joules. Rotational speed is measured in units of rad/s.
[rolling. c]

7. The drag force FD on a moving object is given by

62 • 2. The Basics of C Programming

where p is the density of the gas or fluid through which an object of projected
(cross-sectional) area A m2 moves at a speed v mls. (For air, p = 1.23 kg/m3

.) The
dimensionless drag coefficient Cd has a value in the range 0.2 to 0.5 for
automobiles. The power required to overcome the drag is

For force and speed in mks units, power is measured in watts. One horsepower
is equivalent to 746 watts.

Write a program that asks the user to supply the speed in units of mph,
cross-sectional area in units of square feet, and drag coefficient of a moving
automobile and then calculates the drag force in newtons and the power in
horsepower required to overcome this drag force. [dragfore . e]

8. Write a program that calculates and prints the total resistance of three resistors
connected (a) in parallel and (b) in series, as illustrated in Figure 2.4. When they
are connected in parallel, the total resistance of n resistors is lIrT = lIr) + lIr2 +
lIr3 +... +lIrn• When they are connected in series, the total resistance of n resistors
is rT =rl + r2 + r3 +... + rn • Prompt the user to enter values in ohms, the usual unit
of resistance. [resistor. e]

R1 R2 R3

Figure 2.4. Resistors in parallel and in series.

9. Consider the reliability of a system consisting of three components connected
in series or in parallel. If the reliability of the components is given as R!, R2, and
R3, where 0 ~ R ~1, then the reliability of a system with the components wired
in series is

If the same components are wired in parallel, and if the system remains functional
as long as anyone of the components is working, then the system reliability is

2.7 Exercises • 63

Write a program to calculate the reliability of such systems for three user-specified
values of reliability.

Systems using components in series are vulnerable to failure even if the
individual components are very reliable. On the other hand, redundant systems,
with components in parallel, are very reliable even if the components aren't very
reliable individually. For example, if each component has a reliability of 0.900,
a system with these components in series has a reliability of only 0.729. If the
same components are in parallel, then the system reliability is 0.999.
[reliable. c)

10. Write a program that requests as input the clock time in hours (0 to 24),
minutes, and seconds in the format hh:mm:ss and displays the time in both
seconds and fractions of a day. One day contains 86,400 seconds. For example,
12:00:00 is 43,200 seconds, or 0.5 days.
Hint: Be sure to read the discussion at the end of Section 2.2.1 before writing the
code for this problem. [t irne . c)

11. Write a program that requests as input an angle expressed in degrees, minutes,
and seconds in the format dd:mm:ss and converts it to whole and fractional
degrees. There are 60 minutes in a degree and 60 seconds in a minute. For
example, 30: 15:04 equals 30.25111 degrees.
Hint: Be sure to read the discussion at the end of Section 2.2.1 before writing the
code for this problem. [angles. c)

12. Write a program that requests as input the time in seconds required to run a
distance of one mile and calculates the speed in units of feet per second, meters
per second, and miles per hour. For example, a 4-minute (240-second) mile is run
at an average speed of 22 feet per second, 6.71 meters per second, or 15 miles per
hour. There are 5280 feet in one mile and 3.2808 feet in one meter. [speed. c)

13. Write a program that calculates and prints the energy of a photon whose
wavelength A is given in centimeters. The energy = hf joule, where
h = 6.626 X 10-34 joule-s (Planck's constant), f = CiA, where c = 2.9979 X 108 m/s
(the speed of light) and wavelength is given in meters. (See Figure 2.5.)
Hint: Use a def ined constant and scientific notation to define the speed of light
and Planck's constant. As an example of using scientific notation in C, the number
6.626x 10-34 can be represented as 6 . 626 e - 34.

Extra Credit: A I eV (electron volt) photon has an energy of 1.602xlO-'9 joule.
Modify your program so it will also calculate the wavelength of a photon with an
energy of I eV. (Answer: about 1240x10-9 m. This is in the infrared part of the
electromagnetic spectrum.) [photon. c)

64 • 2. The Basics of C Programming

1098732

, ,, ,

ii'L;T!]!

, . . ,, , ,, , ,, . . ,, . , ,........., ! ! 7 ! ! ····t·········;··········,·········

.... -----~ - -_.. ~... ... ; _ ~.. _ : _.. _.. ~ .. _ _. --~ ~ ~ _..
, . . .

oLL~---L--==t'=t'=t'==t~~
o 456

Energy, eV

Figure 2.5. Wavelength of a photon as a function of energy.

5OOOr;--..,-----..,-----..,-----..,------,------,------,------,------,-------,

4500

4000

§ 3500
Q)

153000
~
~2500
t
a52000
~
~ 1500

1000

500

14. Recalling programs P-2.2 and P-2.4, which calculated the area and
circumference of a circle for a specified radius, write a version that performs these
calculations for several radius values stored in an external data file. Your program
should not assume ahead of time how many radius values there will be.
[circl_f2 . c]

15. (a) Write a program that asks for a student's name, ID (in the form of a social
security number), cumulative grade point average (GPA), and total number of
credit hours accumulated through the most recent grading period. Calculate the
total number of grade points by multiplying the number of credit hours by the
GPA. Now ask the user to supply information about a newly completed course.
This information should include the number of credit hours for the course and the
number of points for each credit hour-4 for an A, 3 for a B, 2 for a C, 1 for a
D, and 0 for an F. Multiply the credit hours by the number of points
corresponding to the grade earned in the new course and add it to the old number
of total grade points. Add the new credit hours to the old credit hours. Divide the
new grade point total by the new total credit hours to recalculate the GPA.
Display this value. [gpa. c]

(b) Rewrite the program in part (a) so that data about several students are
contained in a single data file. Create the file yourself, with whatever format you
think will simplify your programming. The file should contain, for each student,
the same information entered at the keyboard for the program in part (a). This new

2.7 Exercises • 65

program should require no keyboard input to run and should display the data in
the file as well as the new total credit hours and GPA. Do not assume that your
program knows ahead of time how many students will be represented in the file.
If you like, you can send output both to your monitor and to a new data file.
[gpa2 . c]

16. The ideal gas law describes the relationships among pressure (p), volume (V),
and temperature (T) of an ideal gas:

pV = flRT

where Il is the number of kilomoles of gas and R is the universal gas constant. For
volume in m3

, temperature in kelvins, and pressure in newtonlm2 (pascal),
R =8314.3 joule/kilomole-K, and 1.0132x105 pascal =1 standard atmosphere
(atm). Write a program that calculates the volume occupied by a specified number
of kilomoles of an ideal gas at temperature T (0C) and pressure p (atm). (Sample
answer: under standard conditions of T = 273.15 K (O°C) and a pressure of 1 atm,
1 kilomole of an ideal gas occupies a volume of about 22.4 m3

.) [gas_law. c]

Extra Credit:
1. If you were trying to determine the validity of the ideal gas law experimentally,
it would make more sense to use the law to calculate pressure for a specified
volume and temperature. Modify the program to do this calculation instead of the
calculation specified in the original problem statement.

2. Because molecules occupy volume and exert intermolecular forces on each
other, the ideal gas law becomes less accurate as density increases-that is, as
more molecules occupy the same volume. The van der Waals modification to the
ideal gas law attempts to take this into account with the following empirical
formula:

(p + a/v2)(v - b) = RT

where v is the specific volume (m3/kilomole, for example). The constants a and
b are different for each gas and are experimentally derived. Table 2.2 contains
data for several gases and Figure 2.6 shows pressure as a function of specific
volume for nitrogen.

66 • 2. The Basics of C Programming

28:,---_:______:-----:------:--~-__:_-_:__-_:______:-___r

, ,
24 ,..·..··..i· ····i·· ..·.. ·j·· ..·.. ··,..·· ..·..t·· ..·..·j·· .. ·· .. ·j· j .

1 l j f ~ ~ [

. : : : , : : : :
.!!l "'r" ······f·········r········y········y·········:·········T········T·········!·········

~ ~ :: P(ideal) - P(van der Waals) ! ~
if. ~ 16.... ..; :...... ·..r........T........r·........·t·......·,........·,........·
ei'i3 ' ; :
~ E. 12 f·r........ ·~~.. ·r(:-:-:..·~..·~..:::..·~.. ·:::-.. :i·T:7... ·:':":'..·~..+·:..,.,."...".,..,.."...;,.,,:...,.,.,.,..,.,.·.";·T,.,.,..,.,,..·~.. ·../.

c:
8

4

1000

750

500
C/)

250 ~
0..

ei'
0

;;]

III
l!!
0..

-250

·500

o -750o 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Specific volume, m3A<i1omole

Figure 2.6. Pressure as a function of specific volume for nitrogen at
T =273.15 K.

Table 2.2. Molar masses and van der Waals coefficients for selected gases

van der Waals coefficients
a, b, a, b,

Molar mass, kPa-m6
/ m'/kg l2-a tm/ l/mole

Gas gm/mole kg2 mole2

air 28.97 0.1630 0.001270 1. 350 0.0368
ammonia 17.03 1. 4680 0.002200 4.202 0.0375

carbon dioxide 44.01 0.1883 0.000972 3.600 0.0428
helium 4.00 0.2140 0.005870 0.034 0.0235

hydrogen 2.02 6.0830 0.013200 0.245 0.0267
methane 16.04 0.8880 0.002660 2.255 0.0427

nitrogen 28.02 0.1747 0.001380 1.354 0.0387
oxygen 32.00 0.1344 0.000993 1. 358 0.0318

propane 44.09 0.4810 0.002040 9.228 0.0899

Source: M. C. Potter and C. W. Somerton (1993), Schaum's Outline
Series: Theory and Problems of Engineering Thermodynamics,
Tables B-3, B-8.

2.7 Exercises • 67

Modify your program (the extra credit one, not the original one) to do calculations
for both the ideal gas law and the van der Waals modified law.
Hint: Be careful with units! I liter/mole is numerically identical to I m3/kilomole.
If the pressure is calculated in pascals, then the tabulated value for a must be
multiplied by 101320. [gas2 . c]

17. In braking tests on automobiles, the initial speed v and stopping distance d are
recorded. Write a program that reads several pairs of v and d values from an
external file. Assume that the automobile decelerates at a constant rate while the
brakes are applied. Calculate the time to stop t and the deceleration a for each pair
of values. The relevant formulas are

The initial speed should be given in units of miles per hour and the stopping
distance should be given in feet. Note that these units are inconsistent, so speed
should be converted to units of feet per second before you do the calculations.
[car_stop. c]

18. The Body Mass Index (BMI) provides a way to characterize normal weights
for human adult bodies as a function of height. It is defined by

BMI = wlh2

where w is mass in kilograms (2.2 kilograms mass per pound weight) and h is
height in meters. A BMI in the range 20-25 is considered normal and a BMI over
30 is considered obese.

One problem with the BMI is that it doesn't distinguish between fat and
muscle. Thus a professional football player might be considered obese because he
has an abnormal amount of muscle weight relative to his height.

An alternative formula that takes into account the source of body weight
is

where F and L are fat and lean weights (F + L = w) and aF and aL are constants
that give different weights (in the statistical sense) to muscle weight and fat
weight. The constants are chosen to satisfy these constraints:

1. BMI = BMI' for average adults with a body fat content of 20 percent.
2. aF =2aL

68 • 2. The Basics of C Programming

The second somewhat arbitrary constraint means that fat weight counts twice as
much as lean weight in the calculation of BMI'. To look at it another way, an
exercise program that replaced one pound of fat with two pounds of muscle would
leave BMI' unchanged. Let p equal the fraction of total body weight associated
with fat. Then

F= pw
L = (l - p)w
aFPw + aL(l - p)w = w
aF=2aL
0.2(2aL) + 0.8aL= 1
aL = 0.833
aF = 1.667

Write a program that calculates both BMI and BMI'. Ask the user to enter her or
his total weight in pounds, height in inches, and percent body fat.

19. An external data file (wea ther . 96) contains weather data for Philadelphia,
Pennsylvania, in the following format:

Date hi time 10 time rec. hi rec. 10 norm.
bar.6a noon 6p mid.

hum. hi 10 prec. mono year. norm. AQ c1 sun rise/set
01/01/96 43 12:45p 34 5:28a 62 1973 4 1881 39 24

29.92r 29.96f 29.93r 29.90f
85 64 TRACE TRACE TRACE 0.11 ---- -- 100 7:22a 4:46p

01/02/96 37 12:01a 32 9:50p 67 1876 7 1968 39 24
29.85f 29.83f 29.73s 29.57f
100 75 0.56 0.56 0.56 0.22 9 43 pa 100 7:23a 4:47p

(and so forth)

Using this file, find and print the maximum temperature and date of all days
during 1996 on which the maximum temperature was at least 90° F. You can
assume that:

1. The three header lines appear only once, at the beginning of the file.
2. There are no missing days.
3. Every day in the year is represented by three lines in the file, consistently
formatted as shown.
4. The maximum temperature, in contrast with some of the other parameters, is
always present and is right-justified in columns 1(}-12. [wea ther . c]

2.7 Exercises • 69

20. Consider the file track. da t, which contains winning times for the 1500
meter and marathon races in the modem Olympics.

Men Women
year 1500 m marathon
1896 4:33.20 2:58:50.00
1900 4:06.20 2:59:45.00
1904 4:05.40 3:28:53.00
1908 4:03.40 2:55:18.40
1912 3:56.80 2:36:54.80
1916
1920 4:01.80 2:32:35.80
1924 3:53.60 2:41:22.60
1928 3:53.20 2:32:57.00
1932 3:51.20 2:31:36.00
1936 3:47.80 2:29:19.20
1940
1944
1948 3:49.80 2:34:51.60
1952 3:45.20 2:23:03.20
1956 3:41.20 2:25:00.00
1960 3:35.60 2:15:16.20
1964 3:38.10 2:12:11.20
1968 3:34.90 2:20:26.40
1972 3:36.30 2:12:19.70 4:01.40
1976 3:39.17 2:09:55.00 4:05.48
1980 3:38.40 2:11:03.00 3:56.60
1984 3:32.53 2:09:21.00 4:03.25 2:24:52.00
1988 3:35.96 2:10:32.00 3:53.96 2:25:40.00
1992 3:40.12 2:12:23.00 3:55.30 2:32:41.00
1996 3:35.78 2:12:36.00 4:00.83 2:26:05.00

In some years since 1896, there haven't been any Olympic games at all because
of World Wars I and II. Also, the women's events were phased in at different
years starting in 1972.

Write a program that will read this file and report the years for which there
were no Olympic games. This programming problem can easily be solved in C by
using fgets to read each line of the file and then acting on the value returned
when the resulting string is interpreted with s scanf. You will need one
statement that requires syntax we have not discussed yet. Suppose the value
returned by sscanf is stored in int variable status. Then

if (status == 1) printf(...

will print an appropriate message for a year in which no Olympics were held.

3

Data Types, Operators, and Functions

3.1 Specifying and Using Data Types

C is a strongly typed language that demands a specific programmer-supplied data
type for every variable name used in a program. We have already used several
different data types in the programs presented in Chapter 2. In this section, we
will give a more detailed description of data types. C supports basic data types for
integers, real ("floating-point") numbers, and characters. For each of the numerical
data types, there are choices that define the number of digits that can be
represented as integers as well as the number of significant digits and the range
of real numbers. Some data types have one or more alias names that can be used
in a program. Table 3.1 lists these data types and gives ranges for one particular
C implementation, Microsoft's MS-DOS-based Quick C. It is important to realize
that these ranges are not fixed by the ANSI C standard and can differ among
various C implementations.

The nature of C requires that VO operations be associated with specific
data types. This association is made with format and conversion specifiers. When
used with input statements, conversion specifiers tell C what kind of variable is
being read. To put it another way, specifiers tell C how to translate characters
typed at the keyboard or read from a file. For example, the statement

scanf("%lf".&xl;

tells C to interpret characters typed at the keyboard as a real number of type
double. Each data type has its own conversion or format specifiers for reading
values with scanf or displaying values with printf, as shown in Table 3.2.

Within the format specifiers used with output statements such as printf,
it is possible to further control the appearance of the output by specifying the total
number of characters allocated for the output and, for floating-point numbers, the
number of digits appearing to the right of the decimal point. The general form is
w for character, string, and integer output and w. d for floating-point number
output, inserted between the % symbol and the format specifier. The hard-coded
value w is the total number of characters allocated for the output field. In the case
of real numbers, d is the number of digits appearing to the right of the decimal
point. Numbers are right-justified in their fields. For example, the value 17.7
displayed with format specifier "% 1 0 . 31 f" will be displayed as bbb1 7 . 7 00.
If the number of characters is insufficient to display the output, the field will be
expanded to allow the display. Thus the conversion specifier "% 3 . 31 f" will
display any numerical value, no matter how large, with three digits to the right of

D. R. Brooks, C Programming: The Essentials for Engineers and Scientists
© Springer-Verlag New York, Inc. 1999

72 • 3. Data Types, Operators, and Functions

the decimal point. For example, 17.7 will be displayed as 17.700. Numbers are
properly rounded when using the w. d option to specify the number of digits to
the right of the decimal point. Thus 17.766 will print as 17.77 with a
"%5.21£" specifier and as 18 with a "%2.01£" specifier.

Characters and character strings are also right-justified when their field
lengths are specified, and C will expand the field to display an entire character
string, if necessary.

Table 3.1. Some C data types

short short int, signed short -32767 to 32767
signed short int

in t signed in t -32767 to 32767
signed

long long int, signed long -2147483647 to 2147483647
signed long int

unsigned short I unsigned short int 0 to 65535

unsigned unsigned int 0 to 65535

unsigned long unsigned long int 0 to 4294967295

float (none) 1.175494e-038 to 3.402823e+038

double (none) 2.225074e-308 to 1.797693e+308

long double (none) 3.362103e-4932 to
l.l8973 le+4932

char (none) 'A' (example)

(character string) (none) char a [80] ; (example)

a='This is a string.";

The %£ and %1 £ specifiers will read numbers in either decimal or
scientific notation, but they display numbers in decimal notation, which can lead
to a loss of information. For example, a %1 £ specifier will read the value 3e - 9
correctly, but it will display this value as 0.000000. Use a %e or %g specifier to
display very small values correctly.

Especially for scientific and engineering applications, you need to be aware
of the limits on ranges for the various data types. These ranges are implementation
dependent. The only requirement of the ANSI C standard is that when progressing
from "smaller" to "larger" data types, the number of integers, the range, and the

3.1 Specifying and Using Data Types • 73

precision must be at least as large or precise as for the previous "smaller" data
type.

Table 3.2. Conversion/format specifiers and control characters for 110

%

%%

c

d (i), ld (Ii)

e (E), Ie (IE),
Le (LE)

f, If, Lf

g (G), 19 (lG),
Lg (LG)

s

u, lu

Begin conversion specification.

Display the character %.

Read/display character.

Read/display signed integer.

Display type float, double, or long double floating
point number in scientific notation. Read such data types
expressed in either decimal or scientific notation.

Display type float, double, or long double floating
point number in decimal notation. Read such data types
expressed in either decimal or scientific notation.

Display type float, double, or long double floating
point number in scientific or decimal notation, depending on
which is shorter. Read such data types expressed in either
decimal or scientific notation.

Read/display string.

Read/display unsigned short, unsigned,
or unsigned long.

escape character:
\ b move cursor one character to the left
\ f "form feed" to top of next page
\n go to beginning of next line
\ r go to beginning of current line
\ t go to next tab stop (eight character tabs)
\" print the character "
\ \ print the character \

Program P-3.1 shows how to determine the ranges and, for floating-point
numbers, the number of significant digits for your C implementation. This
program requires the standard header files 1 imi t s . hand f 1oa t . h to access
the built-in constants I NT_MAX, INT_MIN, FLT_MAX, FLT_MIN, DBL_MAX, and
DBL_MIN.

74 • 3. Data Types, Operators, and Functions

P-3.1 [ranges. c]

/* Find ranges for numeric data. */
#include <stdio.h>
#include <limits.h>
#include <float.h>
#include <stdlib.h>
#include <math.h>

int main(void)
{

printf("Range of short integer: %d %d\n",SHRT_MAX,SHRT_MIN);
printf ("Range of integer: %d %d\n", I NT_MAX , INT_MIN);
printf("Range of long integer: %ld %ld\n",LONG_MAX,LONG_MIN);
printf("Max unsigned short integer: %u\n",USHRT_MAX);
printf ("Max unsigned integer: %u \n" ,UINT_MAX) ;
printf("Max unsigned long integer: %lu\n",ULONG_MAX);
printf("Range of float: %e %e\n",FLT_MAX,FLT_MIN);
printf("Precision of float: %i\n",FLT_DIG);
printf("Range of double: %e %e\n",DBL_MAX,DBL_MIN);
printf("Precision of double: %i\n",DBL_DIG);
printf("Range of long double: %Le %Le\n",LDBL_MAX,LDBL_MIN);
printf (" Precision of long double: %i \n" ,LDBL_DIG) ;
printf (" %e\n" ,HUGE_VAL) ;
return 0;

Running P-3.1

Some programmers prefer to use type double variables for all numerical
calculations, even though this data type requires more memory than f 1 oa t and
may slow the performance of calculation-intensive programs. The justification for
this choice is that the so-called intrinsic functions for mathematical calculations,
which will be discussed later in this chapter, expect type double arguments and
return type double results. Thus the use of type double variables eliminates
the need for "downward" type casting, a topic we will deal with later. In ANSI
standard C, the minimum range for positive values of type double is from 10-37

to 1037
. However, you will likely find that even the float data type in your

3.2 Operators • 75

implementation supports numbers in this range, with seven or eight significant
digits. This is enough range and precision for many calculations, so it will
sometimes be acceptable to use type f loa t rather than type doub1e numerical
variables.

3.2 Operators

C supports a great many operators. Some of these are
straightforward, such as the +, -, *, and / operators for
the basic mathematical operations of addition, subtraction,
multiplication, and division. The * and / arithmetic
operators work only as binary operators. These require two operands, one to the
left of the operator and the other to the right, as in a *b. The + and - operators
work either as binary operators or as unary operators, in which a single operand
appears to the right of the operator, as in -x. Other operators are unique to C and
provide shortcuts for specifying certain common programming operations, such as
incrementing and decrementing values. Table 3.3 lists these operators.

Of the math operators, only the / and %deserve
special mention, as the operation of the others is
straightforward. The % is the modulus operator that
returns the remainder from integer division. For example, 7 %4 returns a value of
3. For two integer operands, or integer-valued expressions, the / operator returns
the integer quotient. For example, 7 /4 returns a value of 1. This perhaps
unexpected result, briefly mentioned in Section 2.6 of Chapter 2, is due to the fact
that, in C, the data type of the operands determines the data type of the result.

The real challenge in mastering C's
operators lies in learning the rules that
determine the order in which operations in an
expression are evaluated. These operator precedence rules are given in Table 3.4.
For now, we are interested in just the arithmetic operators. In an algebraic
expression, for example, multiplications and divisions are performed before
additions and subtractions, so, as expected, multiplication and division operators
have higher precedence than addition and subtraction operators. Just as in algebra,
the use of parentheses can alter the precedence of operations. As a matter of style,
parentheses should be used for any but the most straightforward expressions in
which there is no possibility of misinterpreting the precedence rules. We will
assume in this text that our definition of straightforward expressions is limited to
those for which the algebraic precedence rules for addition, subtraction,
multiplication, and division apply.

76 • 3. Data Types, Operators, and Functions

Table 3.3. C operators

+ add (binary) or multiply by +1 (unary) a+b, +a

subtract (binary) or multiply by -I (unary) a-b, -a

* multiply a*b

I divide alb

% remainder (modulus) in integer arithmetic i%j

simple assignment x=y

<operator>= compound assignment used with arithmetic x+=y (x=x+y)
operators x-=y (x=x-y)

x*=y (x=x*y)
xl=y (x=x/y)
i%=j (i=i%j)

equal a==b

! = not equal a! =b

< less than a greater than a>b

<= less than or equal a<=b

>= greater than or equal a>=b

logical NOT (unary operator) !a

&& logical AND (a==b) && (c<d)

II logical OR (a<b) II (c>d)

I See the text for a discussion of the implications of applying these operators before and after the
variable.

3.2 Operators • 77

Table 3.4. Precedence of C operations

function calls 1

!, unary +, unary -, unary & J, unary * 2 2

type casts 3

*, /, % 4

binary +, binary - 5

<, >,<=, >= 6

==, ! = 7

&& 8

I I 9

10

J & is the address-of operator as used in scanf, for example.
2 * is the dereferencing operator for pointers, a topic that will be discussed in Chapter 5.

P-3.2 demonstrates the use of some of the shorthand assignment and
incrementing/decrementing operators given in Table 3.3. It is never required to use
these operators, but their use is consistent with C's generally terse syntax.

P-3.2 [opera tor. c]

#include <stdio.h>
int main(void)
{

int x,y;
x=7; y=4;
printf("%i %i\n",x%y,x/y); /* (1) */
x+=y;
printf("%i\n",x); /* (2) */
x=y-- ;
printf("x= %i, y= %i\n",x,y); /* (3) */
x=--y;
printf("x= %i, y=%i\n",x,y); /* (4) */
printf("%i\n",x*=y); /* (5) */
return 0;

78 • 3. Data Types, Operators, and Functions

Running P-3.2

3 1
11
x= 4, y,. 3
x= 2, y= 2
4

From the printf function in the line labelled (1) I' refix c,rJo,.l
in P-3.2, the modulus and division operators applied to 7 II , t/il'0:e. '
and 4 yield 3 and 1. For line (2), the result is the same as POs ."'~ .
writing x=x+y, which equals 11. For the decrementing
and incrementing operators, the results depend on whether the operator appears
before (prefix operator) or after (postfix operator) a variable name. For line (3),
the postfix operation assigns the current value of Y (4) to x and then decrements
Y to 3. In line (4), the prefix operation first decrements y from 3 to 2 and then
assigns x this new value. The behavior of the incrementing/decrementing operators
can be confusing, so they should be used with care.

The relational operators described in Table 3.3 are used to compare values
and expressions. For example, the expression A < B has a value of True if A is
less than B and a value of False if it's not. Such comparisons are used in the
implementation of the IF... THEN... ELSE... pseudocode command: for example,
"If A is less than B, then take some action...." The C implementation of this
pseudocode will be discussed in Chapter 4.

Some languages support a logical or boolean
data type that has True or False as its two possible
values. One of these values is assigned as a result of a
comparison, such as A < B, being either True or False.
However, as noted in the discussion of selection structures in Chapter 4, C does
not support a logical data type. Therefore, it is sometimes useful to define
constants that make relational operations more clear:

#define TRUE 1
#define FALSE 0

Finally, C supports the logical operators NOT, AND, and
OR. These are used to form compound relational statements,
such as, "If A equals Band C is greater than 0, then...." In view
of the precedence rules, it is advisable to write such statements with parentheses
even at the algorithm design stage: "If (A = B) and (C > 0), then...." This
indicates that the expressions A = Band C > 0 are to be evaluated first, and the
relationship between those two results will then be tested. At that point, the truth
of an entire compound expression depends on truth tables, as shown in Table 3.5.
Again, the details of implementing relational and logical operators will be deferred
to Chapter 4.

3.3 Type Casting • 79

Table 3.5. Truth tables for logical expressions A and B

B is True B is False

True False

False False

B is True B is False

True True

IIA is False True False

The expression (A && B) is True only if both A and B are True. The expression
(A I I B) is True if either A or B is True.

3.3 Type Casting

C supports the ability to convert one kind of value into
another, an operation called type casting. When
programs work with numerical data, common type
casting operations include converting integer values
into floating-point values before performing arithmetic
operations (an upward type cast) and converting type
double return values from math functions into type
floa t values (a downward type cast). Type casts can be either implicit or
explicit. With an explicit type cast, the target data type is given in parentheses
directly to the left of the value, variable, or expression that will be cast. With an
implicit type cast, the variable on the left side of an assignment operator has a
different data type than the value, variable, or expression on the right side of the
assignment operator. C performs a type cast for the value, variable, or expression
so it conforms to the data type of the variable on the left side of the assignment
operator. This implicit type cast is performed regardless of whether it is a good
idea in the context of what you are asking your program to do.

With either kind of type cast, it is possible to lose information. For
example, a type f loa t or doub1e value, variable, or expression can be cast to
an int variable, although this is usually not a good idea. For example, consider
this code fragment:

int i;
double x=17.7;
i=x;

80 • 3. Data Types, Operators, and Functions

The third statement in this code assigns the type double variable x, with a value
of 17.7, to the type int variable i. Because of the implicit downward type cast,
the value of i is 17; this represents a loss of information, specifically the
fractional part of the value 17.7.

Because of the potential for loss of information, it is important to be aware
of the results of implicit (automatic) type casting, especially when multiplications
and divisions are being performed. P-3.3 illustrates a typical scenario in which an
upward type cast can be used to advantage.

P-3.3 [test_avg. c]

/* Demonstrate effect of explicit type casting. */
#include <stdio.h>

int main()
{

int total_score,num_students;
float average;

printf (, Enter sum of scores: ");
scanf("%d",&total_score) ;
printf('Enter number of students: ");
scanf (, %d" ,&num_s tudents) ;

average=total_score/num_students;
printf("Average score (no type casting) is %.2f\n",average);

average=(float)total_score/(float)num_students;
printf ("Average score (with type casting) is %. 2f\n", average) ;
return 0;

Running P-3.3

In P-3.3, the sum of several integer values is divided by the number of
values to give the average as a floating-point result. There is no loss of
information when integers are type cast to floating-point values. In this case, the
total score has been stored as an integer, presumably because the individual scores
from which the total score has been calculated are whole numbers. However, when
the scores are averaged, the result will not be a whole number, in general. In the
statements

average=total_score/nurn_students;

3.3 Type Casting • 81

the result of dividing the two type int variables is the truncated quotient, which
is not the desired result in this case; even if you want an integer result, you would
probably prefer the rounded result from the division. That is, the division
operation on two integers retains the integer quotient and throws away the
remainder.

The solution in this program is to use an explicit type cast:

average= (float) total_score/(float)nuffi_students;
printf (" Average score (with type casting) is %. 2f\n" ,average) ;

In this case, both the numerator and the denominator have been converted to
floating-point numbers because the name of the desired data type appears in
parentheses directly in front of a variable. The type cast operation has higher
precedence than division, so it converts the values to the target data type before
the division is performed. In this case, either

float(total_score)/nuffi_students

or

total_score/(float)nuffi_students

will achieve the desired result, but

(float) (total_score/nuffi_students) /* won't work */

won't work because the division is performed before the type cast operation.
This example should convince you that it is important to think carefully

about the data type of operands, especially when division operations are being
performed. In P-3.3 it would have been a better idea to declare total_score
as type float or double rather than into Then the type cast wouldn't have
been necessary.

The preceding discussion should also convince you to be especially careful
when you use implicit type casts. They are not usually necessary in scientific and
engineering calculations, and they can sometimes produce unexpected and
unwanted results. For now, you should restrict your casts to the implicit or explicit
integer-to-floating-point (type float or double) casts illustrated in P-3.2 and
P-3.3.

82 • 3. Data Types, Operators, and Functions

3.4 Intrinsic Functions

C supports many built-in (intrinsic) functions. Table 3.6 lists functions that enable
common mathematical calculations to be performed in C. Most of the functions
expect one or more type double arguments and return a type double result.
Unless otherwise noted, each function requires the inclusion of the rna tho h
standard header file. In your program design, you must ensure that a function is
called with an appropriate argument.

Although most intrinsic math functions expect type double arguments,
they will also accept arguments for which an upward type cast prevents loss of
information. Thus the function calls sqrt (3) and pow (4,3) produce answers
identical to the more proper calls sqrt (3 .) and pow (4. ,3 .) .

Some mathematical functions can produce values that approach 0 or ±oo.
For example, tan(O) approaches +00 as 0 approaches 90°, and e-x approaches 0 as
x approaches +00 or -00. In such cases, C returns ±HUGE_VAL or 0 where
HUGE_VAL is a constant defined in the rna th . h library; the actual value of
HUGE_VAL varies from compiler to compiler. Note that C programs won't crash
when you enter an inappropriate argument. For example, the sqrt function will
return a value of 0 if you call it with a negative argument. This has both
advantages and disadvantages. The advantage is that your program will continue
to execute. The disadvantage is that your program may no longer be producing
answers that make sense. Be careful!

For future reference, Table 3.7 includes some intrinsic functions for file
and I/O operations. As noted, these functions require that the standard header file
s tdi 0 . h be included in your program.

One of the functions in Table 3.7, fflush, hasn't been mentioned before.
Its purpose is to empty (flush) an input buffer. Its typical use is to clear the
keyboard buffer before more input is read: f flush (s tdin) ;, where s tdin is
the name of the keyboard, the default input buffer. This is sometimes needed
when a program contains multiple scanf statements. It is a good habit to precede
a scanf statement with f flush (s tdin) ; for any call to scanf after the first
in a program.

The cons t char * parameter type appearing in several of the functions
refers to a string constant; for example, a string containing I/O format specifiers.

3.4 Intrinsic Functions • 83

Table 3.6. Standard math functions (The rna th. h standard header file is
required except where noted. See P-3.4 [rna th. c].)

3.6(a) Trigonometric and hyperbolic functions

acos(x) double arc cosine of x, in acos(O.5)
radians, range o-1t for
Ix I :5 I, otherwise 0

asin(x) double arc sine of x, in radians, asin(O.5)
range ±7t/2 for Ix I :5 I,
otherwise 0

atan(x) I double arc tangent of x, in atan(O.5)
radians, range ±7t/2

atan2(y,x) double arc tangent of y/x, in atan2(-2.0,1.O)
radians, range 1t±, 0 if
both x and y are 0

cos (x) double cosine of x radians, 0 if cos(3.0)
not successful

cosh(x) double hyperbolic cosine of x, cosh(O.5)
HUGE_VAL if result is
too large

sin(x) double sine of x radians, sin(O.5)
oif not successful

sinh(x) double hyperbolic sine of x, sinh(O.5)
±HUGE_VAL if result is
too large

tan (x) Idouble tangent of x radians, 0 if tan(O.5)
not successful

tanh(x) double hyperbolic tangent of x tanh(O.5)

84 • 3. Data Types, Operators, and Functions

Table 3.6(b) Other math functions

abs(x) int integer absolute value of x abs(-7)
(requires stdlib.h)

ceil(x) double smallest whole number not less than x ceil(-3.3)

exp(x) double eX, HUGE_VAL on overflow, exp(O.5)

°on underflow

fabs(x) double absolute value of x fabs(-3.3)

floor (x) double largest whole number not greater than x floor (-3.3)

fmod(x,y) double remainder of xly fmod (1. , .3)

log (x) double natural logarithm of x for x > 0, log(O.5)
-HUGE_VAL if not successful

loglO(x) double base-IO logarithm of x for x > 0, loglO(O.5)
-HUGE_VAL if not successful

pow(x,y) double xY, °or ±HUGE_VAL if not successful;
if x < 0, Y must be a whole number pow(2.0,3.5

)

rand() int pseudorandom number in the range rand ()
[O,RAND_MAX] where RAND_MAX is a
constant defined in s tdlib. h

sqrt(x) double square root of x for x ~ 0, sqrt(O.5)°if not successful

srand(x) unsigned int none-argument of 1 reinitializes srand(3)
random number generator, any other
value sets random starting point for
generating series of pseudorandom
integers using randO

3.4 Intrinsic Functions • 85

Table 3.7. Some functions for file and I/O operations
(All functions require s tdio. h standard header file.)

fclose 1; FILE * int Close a file. Returns
oif successful, EOF
if not.

fflush 1; FILE * int Flush an input stream.
Returns 0 if success-
ful, EOF if not.

fgets 3; const char * , int, char * Get string input from
FILE * file. Returns pointer to

string if successful,
NULL if not.

fopen 2; const char * FILE * Open a file. Returns,
const char * pointer to file if suc-

cessful, NULL if not.

fprintf variable; FILE * , const int Write formatted output
char *, types matching to text file. Returns
conversion specifications number of characters

printed.

fscanf variable; FILE * int Get text file input.,
const char * , types Returns number of
matching conversion values read or EOF if
specifications no values (at end of

file).

printf variable; cons t char * int Write formatted output,
types matching conversion to screen. Returns
specifications number of characters

printed.

scanf variable; cons t char * int Read formatted input,
types matching conversion from keyboard buffer.
specifications Returns number of

values read.

sscanf variable; cons t char * int Read formatted input
types matching conversion from character string.
specifications Returns number of

values read, EOF if
at end of string.

86 • 3. Data Types, Operators, and Functions

Program P-3.4 shows how to use some of the math functions described in
Table 3.6. You should run this program yourself and examine the output carefully
to make sure you understand the results.

P-3.4 [rna th. c]

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
void main ()
{

double pi,x,y;
pi=atan(1.0)*4.0;
printf("acos(0.5) %If\n'',acos(0.5));
printf("asin(0.5) %If\n'',asin(0.5));
printf("atan2(-2.0,1.0) %If\n'',atan2(-2.0,l.0));
printf("cos(3.0) %If\n'',cos(3.0));
printf ("cosh (0.5) %If\n'' ,cosh (0.5)) ;
printf("sin(0.5) %If\n'',sin(0.5));
printf (" sinh (0.5) %If\n'' , sinh (0.5)) ;
printf("tan(0.5) %If\n'',tan(0.5));
printf ("tanh (0.5) %If\n'' , tanh (0.5)) ;
printf ("abs (-7) %d\n" , abs (-7)) ;
printf("ceil(-3.3) %If\n'',ceil(-3.3));
printf ("exp (0.5) %If\n'' , exp (0.5)) ;
printf("fabs(-3.3) %If\n'',fabs(-3.3));
printf("floor(-3.3) %If\n'',floor(-3.3));
printf("log(0.5) %If\n'',log(0.5));
printf("loglO(0.5) %If\n'',loglO(0.5));
printf ("pow(2. 0, 3.5) %If\n'' ,pow(2. 0, 3.5));
printf("%d %d\n",RAND_MAX,rand(»);
printf("sqrt(0.5) %If\n'',sqrt(0.5));
printf (" %e\n" , HUGE_VAL) ;

Running P-3.4

3.5 Simple User-Defined Functions • 87

3.5 Simple User-Defined Functions

The C language relies heavily on program modularization, as do other high-level
languages. Considering the growing importance of object-oriented languages such
as C++ and Java, it is even more important to learn to think about programs as
being built from pieces of code that are bound together in some kind of overall
structure.

The basic subprogram structure in C is a
user-defined function. (Indeed, as we have noted
previously, even the main program in a C program
is actually just a function.) Program P-3.5, which is a modification of earlier
programs for calculating the area and circumference of a circle, demonstrates the
use of some simple user-defined functions.

P-3.5 [circlepl. c]

/* Create simple functions. */
#include <stdio.h>
#define PI 3.14159265

/* function prototypes */
double area_func(doub1e radius);
double circurnference_func(double radius);

int main ()
{

double radius=3.0;
printf("From area_func: %8.3lf\n",area_func(radius));
printf(
'From circurnference_func: %8.3lf\n',circurnference_func(radius));
return 0;

double area_func(double radius)
/* PI must be available as a global constant. */
{

return PI*radius*radius;

double circumference_func(double r)
/* PI must be available as a global constant. */
{

return 2.0*PI*r;

88 • 3. Data Types, Operators, and Functions

In P-3.5, the calculations for area and
circumference are performed inside the user-defined
functions that follow the main function. A program can
contain as many user-defined functions as needed. Prior
to the main function, function prototypes for each function are given. Each
prototype consists of a single statement giving the data type of the function, the
name of the function, and the parameter list-a list of data types with optional
variable names. It is good programming style, and one we will follow in this text,
to include both data types and variable names in a function prototype's parameter
list, even though only data types are actually required. It is possible to write a
function with no parameters-the main function usually doesn't have any
parameters, for example. The general syntax for a function prototype is

data_type function_name(empty, void, or list of data types,
with or without variable names);

The general syntax for implementing functions as they are used in P-3.5 is

data_type function_name(empty, void, or list of data types with
variable names) {

body of function

return return_value or expression;

The parameter list in the function
implementation must include variable names
corresponding to the names by which the
parameters will be known locally within the function. In addition,

Because the parameter list of a function prototype doesn't even have to include
variable names, it is clear that the list acts essentially as a placeholder for the
actual values that will be used by the function.

Remember that every user-defined function must have a data type
associated with it. Both functions in P-3.5 are type double. It is possible to give
a function the void data type, and we will return to this possibility in Chapter 5.
It is also possible as a matter of syntax to write a function without a specific data

3.5 Simple User-Defined Functions • 89

type; by default, such a function is given type into It is generally considered
poor programming practice to use default data types in function definitions, and
we will never do it in this text.

When a function is called, the calling arguments,
values corresponding to each item in the parameter list,
are passed to the function through an argument list. The
general syntax for calling a function is

(variable_name)function_name(list of variables, constants,
expressions, or functions);

Two additional important rules about using functions are:

Why does the rule for the data type of arguments passed to a function state
only that the data type "should" agree with the function parameters? Because
certain kinds of implicit or explicit type casts are allowed even though it is usually
not a good idea to use them. It was noted earlier in this chapter that, for example,
the statement x =s qr t (2) ; is allowed even though the argument is an integer
rather than a real number. However, the statement i = abs (- 3 . 3) ; will generate
a compiler warning because the abs function expects type in t arguments. If you
allow the compilation to proceed in spite of the warning, the downward type cast
of -3.3 to -3 will produce a result of 3 rather than 3.3. The same interpretations
apply to user-defined functions. Consider this code:

double X(double x,int y);
int main(void) {

printf("%lf\n",X(2,3.3)) ;
}
double X(double x,int y) {

return x*y;

90 • 3. Data Types, Operators, and Functions

The argument 2 passed to the x parameter is allowed and will be type cast to the
real number 2.0. However, the argument 3 . 3 requires a downward type cast to
an int value and will result in at least a warning at compile time. If the
downward type cast is allowed, function X will return a value of 6, not 6.6. The
general rule is:

In P-3.5, the name of the parameter in area_func is radius, but the
name of the parameter in circumference_func is r. In the first case, the
parameter name agrees with the name of the calling argument. In the second case,
it does not. There is no justification for using different names other than to make
the point of this discussion, but the disagreement is of no consequence in the
program. All that matters from a syntax point of view is that the calling argument
is of type double. From an algorithm design point of view, all that matters is
that the calling argument contains the value of a radius, no matter what it is
called. As noted in the syntax description, an argument doesn't even have to be
a variable. It can also be a constant or an expression that returns a value of the
appropriate data type.

Each function can return only a single value to the calling program,
through a statement using the reserved word return. You shouldn't be surprised
to find that

Thus the values returned by the two functions in P-3.5 should be oftype
double. However, type casts are allowed in return statements. An upward
type cast will proceed unnoticed. Some compilers will not even flag a downward
type cast in this situation. In general, it is much better programming style to match
the data type of a returned expression to the declared data type of the function.
If you want to use a type cast, include an explicit type cast as part of the return
statement.

When a function is called, its returned value is associated with the name
of the function itself. Hence, function calls can be treated just like other values.
In P-3.5, the values returned by the two functions are displayed directly in
printf statements just by calling the functions inside a printf statement. It
is also possible to assign the value returned from a function to another variable.
Thus in the general syntax description, variable_name should have the same

3.5 Simple User-Defined Functions • 91

data type as the function itself, with the understanding that the kinds of implicit
type casts discussed above are allowed even though they represent poor
programming style. Consider this version of P-3.5's main function:

int main ()
{

double radius=3.0,area,circumference;
area=area_func(radius) ;
printf("From area_func: %8.3lf\n",area);
circumference=circumference_func(radius) ;
printf("From circumference_func: %8.3lf\n",circumference);
return 0;

In this case, the values returned from the two functions are stored in the locally
declared type double variables area and circumference. Either way of
using the value returned by a function is acceptable and the choice you make
depends, for example, on whether you need to do anything more with the value
returned from a function than display it.

Note that in both functions in P-3.5, a comment is included to make clear
the source of the value PI. The source of all the variables and values used in a
function should always be clear, so someone looking at the source code in a
function should not be required to look back at other parts of the program. In the
algorithm design sense, this means that every user-defined function should have
a clearly defined information interface.

In general, user-defined functions as they are used in P-3.5 are equivalent
to the intrinsic math functions in the sense that they accept one or more arguments
as input and provide a single output value associated with the name of the
function itself. Suppose that the variables x and y are declared as type double
in P-3.5. The statement y=area_func (x) ; is then equivalent in its syntax and
use to the statement y = sin (x) ;. In the latter case, the function prototypes for
math functions are included in the rna th . h header file and the implementation
is provided by your C programming environment. In the former case, the
prototypes and implementations are given explicitly within the source code.

It is not always necessary to use function prototypes. An alternative is to
let all function implementations appear before the main program, as shown in
Program P-3.6.

92 • 3. Data Types, Operators, and Functions

P-3.6 [circlep2 . c]

/* Create simple functions. */
#include <stdio.h>
#define PI 3.14159265

/* function definitions */

double area_func(doub1e radius)
/* PI must be available as a global constant. */
{

return PI*radius*radius;

double circumference_func(doub1e radius)
/* PI must be available as a global constant. */
{

return 2.0*PI*radius;

int main ()
{

double radius=3.0;
printf("From area_func: %8.31f\n",area_func(radiusJ J;
printf(

"from circumference_func: %8.31 f\n" ,circumference_func (radius)) ;
return 0;

The requirement for functions is that:

To put it another way, whenever a function is called ("invoked"), the compiler
must know where to find it. You can think of C as using a "one pass" compiler,
which means that it remembers everything it has read in a source code file-that
is, it can look backward in the source code-but it can't look ahead. Thus
whenever a function is called, either the function prototype or the function
implementation must already have appeared in the source code file. If a function
prototype appears before the main function, the corresponding code
implementation normally appears after the main function. Typical C programming
style is to use function prototypes, and that is the style we will usually use for
programs appearing in this text.

It's important to understand the relationship between the calling arguments
provided when a function is used and the function parameters that are part of the
function prototype and function header statement. We have already seen that in
program P-3.5 the single parameter is given a different name in each function. In
P-3.6, the parameter has the name radius in both functions. When these

3.5 Simple User-Defined Functions • 93

functions are used in the main program, the calling argument always has the name
radius. This is a design convenience because radius is a reasonable name for
this quantity. To help clarify these relationships, consider the following code,
which is a version of P-3.5 that works just like the original version.

/* Create simple functions. */
#include <stdio.h>
#define PI 3.14159265

/* function prototypes */
double area_func(double);
double circumference_func(double r);

main()
{

double radius=3.0;
printf ("From area_func: %8. 31f\n" ,area_func (3.0)) ;
printf

("from circumference_func: %8.31 f\n" ,circumference_func (radius)) ;

double area_func(double rad)
/* PI must be available as a global constant. */
{

return(PI*rad*rad) ;

double circumference_func(double R)
/* PI must be available as a global constant. */
{

return(2.0*PI*R) ;

The prototype for area_func has a parameter list with just a data type and no
variable name. However, a variable name is required when that function is
implemented. It is better style to use variable names in function prototypes, as it
makes the purpose of the function clearer, assuming that meaningful names are
used. In circumference_func, the variable name r in the prototype is
different than the name in that function's implementation. (Remember that r is a
different name than R.) When these functions are called from the main function,
a constant argument is used in One case but a different variable name is used in
the other case. Although it may be confusing from an algorithm design standpoint
to use several different names for the same thing, C will not be confused.

The utility of having function parameters serve simply as placeholders for
the actual values passed to the function is clear if you think about how the
intrinsic math functions are used. The internal workings of intrinsic functions are
hidden. You would have to see the actual source code for the intrinsic functions
to know what their parameter lists look like-including the names by which their
parameters are known internally to the function. However, not having this level
of access doesn't prevent you from using the intrinsic functions. All you need to

94 • 3. Data Types, Operators, and Functions

know to use sin (x) , for example, is that the single argument x must be a type
double variable, expression, or value.

Remember that not only can argument names and parameter names be
different, but the arguments don't even have to be single variable names. For the
user-defined functions in programs P-3.5 and P-3.6, the following statements are
all perfectly acceptable uses of area_func and circumference_func,
assuming that all the variables have been appropriately declared and that x, y, r,
and z have been assigned values:

area=area_func(r);
circurnference=circurnference_func(3.0) ;
area=area_func(x+3.*y);
circurnference=circurnference_func(sqrt(x*x+y*y)+log(z));

Here's another problem whose solution will provide more information on
how to create and use simple functions.

An approximate empirical formula that relates atmospheric pressure to
altitude is

P(h) = lOBe-o.12h

where pressure P is in units of millibars (gm/cm2
), and height h is in

kilometers. The formula applies to heights less than about 80 km.

Write a program that prints a table of pressures from sea level to 80 km in lO-km
steps. The values are shown in Figure 3.1.

,,
-----~-,,,,,

1200

1000

~
~en

600
~
'"
~

400a.

200

,,,,
, I I I I 1 I_____ J l J L j L J _
I I I I I I I
I I I I I I I
I I r t I I r
I r I I t I I
I I I I I I I
I I I til I____ ~ L ~ L ~ L ~ _

I I I I I I I
I I I 1 I I I
I I I l I I I
I l I I I I I
I I r I • I r
I I I I I , I

--~------~-----~------r-----~------r-----~------r I I I 1 I I
I I I I I I I
I I I I I I I
I I I I I I I
I I I I I I I
I I I I I I I---- ,------r-----'------r-----,------r-----'------
I I I I I I I

I I I I I I
I I I I I I
I I I I I I
I I I I I I___ L ~ L J L J _

I I I I I I
I I I I I I
I I I I , I

I I I I I
I I I I I

• I I I

80706050302010 40
Height, km

Figure 3.1. Atmospheric pressure as a function of height.

3.5 Simple User-Defined Functions • 95

Program P-3.7 produces the required table. The code uses a simple loop
structure, which we will discuss in detail in Chapter 4. For now, however, the
intent should be clear even if the details are not.

P-3.7 [atm-pres. c]

/* Calculate table of atmospheric pressure. */
#include <stdio.h>
#include <math.h>
double Pressure(double h);

int main()
{

int height;

printf('height pressure\n');
printf(" kIn gm/cm'2\n');
printf('-----------------\n');
for (height=O; height<=80; height+=10)

printf("%6i %10.3f\n",height,Pressure«double)height));
return 0;

}
double Pressure(double height)
{

return l035.0*exp(-O.12*height);

Running P-3.7

Problem Discussion
Program P-3.7 contains several features of interest. Recall that in programs

P-3.5 and P-3.6, the parameters in the function prototypes, the actual function
headers, and the arguments used when the functions were called from the main
program all had the same data types, even if their names were different. In P-3.7
this is no longer true. The function prototype uses a double parameter named
h. It would actually be better programming style to give this "placeholder"
parameter a more meaningful name, but this choice has been made to emphasize

96 • 3. Data Types, Operators, and Functions

the fact that parameter names in a function prototype need not be the same as the
parameter names in the actual function header or the argument names used when
the function is invoked in the program. Remember that it is not the names of the
parameters in a function prototype that are important, only their data types.

In the function header for Pressure in P-3.7, the parameter has, as it
must, the same data type (double) as in the function prototype, but a different
name (height) that will be used locally. The variable name height is also
used in the main program, but there it is type int, which (as will be discussed
in Chapter 4) is appropriate for its use as the loop control variable for generating
the table. In the call to function Pressure, height is explicitly cast to
double so it will agree with the data type in Pressure's parameter list.

The explicit type cast (double) height in the parameter list of
Pressure is good programming style but not actually required. That is, an
implicit cast from int to double is allowed.

P-3.7 also shows how variable definitions are localized within functions.
The type double variable height in the parameter list and the implementation
of function Pressure is local to-that is, known to-only that function, which
does not know or care about the definition of height as an integer in the main
function.

3.6 Applications

3.6.1 Refraction of Light

1 Define the problem.

Snell's Law describes the refraction (bending) of light as it passes from
one medium to another. If the refractive index of the incident medium is nj and
that of the refracting medium is nr , the angle of incidence i and angle of refraction
r of a ray of light, measured from the perpendicular to the boundary between the
two mediums, are related by

Figure 3.2 illustrates the geometry and Figure 3.3 gives some typical data.
Write a program that asks the user to provide two refractive indices and

the angle of an incident ray and then calculates the angle of a refracted ray.

3.6 Applications • 97

incident
beam

refracted
beam

Figure 3.2. Geometry for Snell's
Law of refraction.

45 ···········:··········T·········!···········r·········! j ··········r·········
···········:···········:-··········1·· wate,r (1.33) .

""""" .,..as" 35 .-_._ -:- --- .. ~ .. ----_:.._.._.. _.--~_ .. _.- -.- .. __ ..
"0
cD
0>
ffi

~
E!!

Q>
II:

9080702010o 30 40 50 60
Incident angle, deg

Figure 3.3. Angle of refraction as a function of angle of incidence.

98 • 3. Data Types, Operators, and Functions

2 Outline a solution.

1. Prompt the user to supply two indices and an incident angle.
2. Apply Snell's Law to determine the angle of the refracted ray:

. -I(n;sin(i)1r = sm
nr

3. Display the output.

Table 3.8 gives the angles of refraction for some common materials when
a light ray is directed from air, which has a refractive index equal to 1, into the
material. These data are shown in Figure 3.3.

Table 3.8. Calculations for Snell's Law

Angle of refraction for:

Angle of
incidence
(from air)

Refractive index:
1.33 1.50 2.42

Water Glass Diamond

3

o
10
20
30
40
50
60
70
80
90

Design an algorithm.

0.00
7.50

14.90
22.08
28.90
35.17
40.63
44.95
47.77
48.75

0.00
6.65

13 .18
19.47
25.37
30.71
35.26
38.79
41.04
41.81

0.00
4.11
8.12

11.92
15.40
18.45
20.97
22.85
24.01
24.41

DEFINE (n;, n" incidenLangle, refracted_angle as real numbers,
"and DegToRad (conversion from angles to radians) as real)

ASSIGN DegToRad = ,,/180
WRITE ("Give index of refraction for incident and refracting medium:'')
READ (n;, n,)
WRITE ("Give incident angle, in degrees:'')

3.6 Applications • 99

READ (incidencangle)
(Convert to radians before doing trig calculations.)
ASSIGN refracted_angle = sin-1(n; /nr-sin(incidenCangle-DegToRad))
(Display output in degrees.)
WRITE ("Refracted angle is", refracted_angle/DegToRad)

This algorithm specifically includes the conversions between degrees and
radians. This is optional for the algorithm design but essential for a C program.

4 Convert the algorithm into a program.

P-3.8 [refract. c]

/* REFRACT.C */
/* Do refraction calculations using Snell's Law */

#include <stdio.h>
#include <math.h>

int main (void)
{

double ni,nr; /* indices of refraction (dimensionless) */
double incident, refracted; /* angles from perpendicular (deg) */
double pi,deg_to_rad;

pi=4.0*atan(1.0) ;
deg_to_rad=pi/180.0;
printfl"Give indices of refraction for incident and refracting

medium, \n") ;
printf("separated by one or more spaces: ");
scanf("%lf %If",&ni,&nr);
printf("What is the angle of incidence? ");
fflush(stdin) ;
scanf("%lf",&incident) ;
refracted=asinlni/nr*sin(incident*deg_to_rad)) ;
printf("refracted angle = %.2lf degrees",refracted/deg_to_rad);

return 0;

Running P-3.8

100 • 3. Data Types, Operators, and Functions

5 Verify the operation of the program.

Check your results with a hand calculator. Compare your values with those
in Table 3.8.

3.6.2 Inverse Hyperbolic Functions

1 Define the problem.

Although C includes the hyperbolic functions among its intrinsic functions,
it doesn't include the inverse hyperbolic functions

sinh'l(x) =In[x + (x2 + 1)1/2]
cosh,l(x) = In[x + (x2 - 1)1/2]
tanh,l(x) =In[(l + x)/(l - x)]/2

Write a program that displays the hyperbolic functions and their inverses, using
user-defined functions for the inverse functions. Based on results from your
program, make a table for the inverse hyperbolic functions which shows the
theoretical range for arguments and the range of values returned for each function.
These three functions are plotted in Figure 3.4.

2 Outline a solution.

I. Ask the user to provide a real number.
2. Display the intrinsic hyperbolic functions.
3. Use each of the results as the argument in the corresponding inverse hyperbolic
function and display the results.

3.6 Applications • 101

~ q ~ ~ 4 ~ ~ ~ 0

X

Figure 3.4(a). Hyperbolic functions.

0.8

0.6

0.4

0.2 -x-0 ..c:
c:

-0.2
g

-0.4

-0.6

-0.8

-1
8

·31"""':::::+-----i--'--i-----i>---i----i-----i----i+::"'"
·'0 ·8 -6 -4 -2 0 2 4 6 8 10

g
.s:::. 0 .

.~ .1 ..1 inverse sinh(x) H

~ .2iJ~·':"'-o<.i..i
.~

x

Figure 3.4(b). Inverse hyperbolic
sine and cosine.

4~-------~-~--~

3 , , , , .

X 2j····· .. ··, ·.., ·, '-··· ·

f ,j , , O '- ,·..· ···, c)/

.l!l 0"

~ .,
~.l; -2'j/·········.' ,........ c ,.... , ..

.3Il ·........ • , c c ..

-41~----i----i---+--+-----i----+----i----
., -0.75 -0.5 -0.25 0.25 0.5 0.75

x

Figure 3.4(c). Inverse hyperbolic tangent.

102 • 3. Data Types, Operators, and Functions

3 Design an algorithm.

DEFINE (x, hyperbolic_sin, hyperbolic_cos, hyperbolic_tan as real numbers)
WRITE ("Give any real number. 'j
READ (x)
ASSIGN hyperbolic_sin = sinh(x)

hyperbolic_cos = cosh(x)
hyperbolic_tan = hyperbolic_sin/hyperbolic_cosine

WRITE (hyperbolic_sin,hyperbolic_cos,hyperbolic_tan)
WRITE (lnvSinh(hyperbolic_sin),lnvCosh(hyperbolic_cos),

InvTanh(hyperbolic_tan))
(Define functions for inverse functions-see problem statement.)

4 Convert the algorithm into a program.

P-3.9 [hyperbol . c]

#include <stdio.h>
#include <math.h>

double inv_sinh(double z)
{

return 10g(z+sqrt(z*z+1.0»;
)
double inv_cosh(double z)
{

double sign=l.O;

if (z < 0.0) sign=-l.O;
return sign*log(z+sqrt(z*z-l.O);

double inv_tanh(double z)
{

return 10g((1.0+z)/(1.0-z))/2.0;

int main (void)
{

double x,hyperbolic_sin,hyperbolic_cos,hyperbolic_tan;

printf ("Give a real number: ");
scanf("%lf",&x) ;
hyperbolic_sin=sinh(x) ;
hyperbolic_cos=cosh(x);
hyperbolic_tan=hyperbolic_sin/hyperbolic_cos;

printf(" Hyperbolic sin,cos,tan: %10.Slf %10.Slf %10.Slf\n",
hyperbolic_sin, hyperbolic_cos ,hyperbolic_tan) ;
printf ("Inverse hyperbolic sin, cos, tan: %10. Slf %10. Slf %10. Slf\n' ,

3.6 Applications • 103

inv_sinh(hyperbolic_sin),inv_cosh(hyperbolic_cos) ,
inv_tanh(hyperbolic_tan));

return 0;

Running P-3.9

5 Verify the operation of the program.

You can assume that the hyperbolic functions work correctly. Therefore,
your program should return the original input if the inverse hyperbolic calculations
are done correctly and the functions are used appropriately.

In response to the second part of the problem, Table 3.9 presents argument
and function ranges for the inverse hyperbolic functions. Make sure the results
from your program are consistent with these tabulated values.

Table 3.9. Argument and value ranges for inverse hyperbolic functions

sinh(x) (_00,00) (-00,00)

cosh(x) (-00,00) [1,00)

tanh(x) (-00,00) (-1,1)

(-00,00) (_00,00)

[;t!,±oo) [O~oo)

[-1,1] (-00,00)

Problem Discussion
Function inv_cosh in P-3.9 is notable because it is the first function we

have written that contains a local variable, sign. Any function can contain one
or more locally declared variables. A quantity that is needed for a function to do
its job but that isn't part of the input required for the function should be defined
locally. In this case, variable sign is part of the implementation, but it is of no

104 • 3. Data Types, Operators, and Functions

interest to the user of the function. Thus this variable does not belong in the
function's parameter list. A common mistake by beginning programmers is to put
local variables in a function's parameter list.

Variables declared locally within a function exist only within that function.
Thus, the variable name sign is unknown to other parts ofP-3.9. This means that
local variable names can be reused for other purposes in several parts of a
program without causing problems. Whether this is a good idea depends on
whether it is apt to be confusing.

P-3.9 is an excellent example of a program that appears very simple in its
implementation but that actually contains several potential programming problems.
First of all, cosh-1(x) requires that its argument be greater than or equal to I, and
it always returns a non-negative value. Because cosh(x) is always greater than or
equal to 0, regardless of the sign of x, cosh-1(cosh(x» will return a positive result
even if x is negative. This means that the inverse function won't give back the
original value of x unless the original sign of x is retained and used as part of the
inverse calculation. The function makes use of C's implementation of the
IF...THEN command even though we haven't discussed this yet.

A more serious problem concerns the accuracy of the underlying
computations for numbers of type double. An obvious trouble spot is the
calculation for the inverse hyperbolic tangent, which contains 1 - z, where
z = tanh(x) when the function is calculated in the program. How big, in absolute
magnitude, does x have to be before tanh(x) is so close to 1 that the 1 - z in the
denominator results in an apparent division by zero, or before it's so close to 1
that the calculation is no longer sufficiently accurate? The answer is, "Not very
big!" Why? Because tanh(x) is very close to 1 for any value larger than about 3.
Table 3.10 gives some representative values for the hyperbolic functions. With the
compiler used for the programs in this text, setting x to 20 causes the program to
crash with a divide-by-O error.

Table 3.10. Values for hyperbolic functions

3.76220.

10.06766

27.30823

74.20995

201.71564

548.31704

0.76159

0.96403

0.99505

0.99933

0.99991

0.99999

1.00000

3.7 Debugging Your Programs • 105

Similar computational problems arise in the
sinh and cosh calculations because the exponential
function eX causes an arithmetic overflow error for
large values of x.

These kinds of computational problems occur because the accuracy of
arithmetic calculations is limited by the accuracy with which real numbers are
represented in C. 1 Their impact can be minimized by using C data type
declarations that allow more accurate calculations, but they can't really be solved
in C or in any other procedural language, for that matter. As is so often the case,
you are responsible for appropriate use of a programming language. In many
situations, a loss of accuracy in calculations means that you should reformulate
your problem and its solution, rather than worrying about the limitations imposed
by the programming language. This topic is covered in courses on numerical
analysis, but is beyond the scope of this text.

3.7 Debugging Your Programs

3.7.1 Problems With Data Types and Casting

As has been stressed throughout this chapter, it is essential to choose appropriate
data types for representing data. Avoid using integer data types to represent
physical quantities, even when the values of those quantities are expressed as
whole numbers. Ignoring this rule can lead to programming errors that are difficult
to find because they don't produce error messages. Consider this problem:

Convert a time expressed in hours, minutes, and seconds, in the format
hh:mm:ss, to decimal hours.

The required calculation is

hours = hh + mm/60 + ss/3600

However, if this formula is translated verbatim into C as

int hh,mrn, ss;
double hours;

hours=hh+mrn/60+ss/3600;

'This problem is not restricted to C.

106 • 3. Data Types, Operators, and Functions

the result is wrong because of the integer divisions rnrn/60 and 88/3600. This
can be fixed by rewriting the assignment statement as

hours=hh+mm/60.0+ss/3600.0;

to force the division to produce a floating-point result. It would also be a much
better idea as a matter of style to declare hh, rnrn, and 88 as double rather than
into

3.7.2 Problems With Intrinsic Functions

For intrinsic functions, some common errors include:

1. Misspelling a function name or using uppercase letters in the name of the
function

For example, C doesn't recognize 8ine (x) or Sin (x) as equivalent to
8in(x) .

2. Forgetting to include the rna th . h header file
If you are using the cc compiler, remember that, in addition to including

the header file in your source code, you must also link the math library by using
the -1m option in the compile command: c c t e 8 t . c - 0 t e 8 t . exe -1m. (The
"1" is a lowercase L and not the number 1.)

Some more subtle errors include:

1. Supplying arguments of the wrong data type
Most math functions expect type double arguments. When in doubt, use

an explicit type cast: y= 8 in ((doub1 e) x) i, for example.

2. Using degrees as input to trigonometric functions and interpreting output from
the inverse functions as degrees

The trigonometric functions expect input in radians and the inverse
functions produce output in radians. When a program does a lot of internal
processing of trigonometric functions, the errors resulting from using degrees
rather than radians are often virtually undetectable. C is perfectly willing to
calculate 8 in (3 0 . 0), but it interprets the argument as 30 radians, not 30
degrees.

3.8 Exercises • 107

3. Supplying arguments with inappropriate values
Rather than causing a program crash, C functions typically return a value

even when the input argument is inappropriate. For example, the sqrt function
will return a value (0) even when its argument is negative. This may be good or
bad, depending on your expectations for a program, but it is the responsibility of
the programmer to provide adequate and appropriate protection against calling
math functions with inappropriate arguments, or at least to provide safeguards
against misusing what are essentially error-message returns from functions as valid
values.

3.7.3 Problems With User-Defined Functions

The same potential exists for problems with user-defined functions as with
intrinsic functions. However, we will be less diligent than the authors of C's
intrinsic functions about writing "bulletproof' functions that return a value under
all conditions of use or misuse. Instead, we will generally assume that the
programmer and the program user will take joint responsibility for meeting the
input expectations of a function.

It is important, of course, to be careful to provide arguments of the
required data type. Additionally, it is important to use meaningful names in
argument and parameter lists so that you will be less likely to use the wrong
variables when you are writing code. If a program calls a function with arguments
that have the correct data type but not the intended values, there is no way for the
C environment to detect this as an error.

3.8 Exercises

In each of these exercises, you should perform the required calculations inside an
appropriate function even if the problem statement doesn't specifically mention
such a function. In fact, in all your future programs, it is assumed that you will
use functions to modularize calculations without being asked specifically to do so.
Typically, the main function will prompt the user for input values and display the
output from the function. That is, the function that does the calculations will not
include input or output statements. The main function can also get input values
from an external data file and write output to a separate file if so specified by
your instructor.

For additional practice, the exercises in Chapter 2 can be rewritten so that
calculations are done in one or more functions of the kind discussed in this
chapter.

108 • 3. Data Types, Operators, and Functions

1. A simple pendulum consisting of a mass swinging at the end of a massless
string undergoes simple harmonic motion as long as the displacement of the mass
from the vertical is very small compared to the length of the string. The period
T of a simple pendulum is independent of its mass and is given by T = 27T".j[]g,
where the length L is given in meters and g =9.807 rn/s2

• (See Figure 3.5.) Write
a program that will determine (a) the period of a pendulum with a specified
length, and (b) the pendulum length required to produce a period of I second.
[pendulum. c]

7.----------------------------,

6 ··········I··········~···········f··········l·········.~ + : + ' .

5 / j : , ~ ! ······T"·······l·········!··········
.i 4 i··········~······················:··········~········ .

~ 3 ··········1············ ·······[··········,··········r··········[··········[··········r·····················

::L11LI'LI
O+----i---i---+-----i--+--+-----r-----i----;---I
o 2 3 4 5 6 7 8 9 10

Length. m

Figure 3.5. Period of a simple pendulum as a function of length.

2. Write a program that asks the user to enter a currency amount and then
calculates how many dollar bills, quarters, dimes, nickels, and pennies are required
to return this amount in change. Assume that the minimum total number of coins
should be returned. This means that your program should return first the maximum
number of one-dollar bills, then the maximum number of quarters, then dimes, and
so forth. That is, even though you obviously could return $0.66 in change as, for
example, six dimes and six pennies, the program should tell you to return this
change as two quarters, one dime, one nickel, and one penny. This restriction
actually makes the problem easier to solve. [change. c]

3. The terminal velocity V f of a single-stage rocket intended to launch a payload
into earth orbit is

3.8 Exercises • 109

where vexhaust is the speed of the gas exhaust from the rocket nozzle, m j is the
original weight of the rocket including its fuel, and mf is the final weight of the
rocket when all its fuel is gone. Write a program that gives the terminal velocity
of a single-stage rocket when its initial mass, final mass, and gas exhaust speed
are given. As an example, suppose a rocket engine produces an exhaust speed of
3000 mls and the fuel in such a rocket is 75 percent of the total launch weight.

Extra Credit:
Higher terminal velocities, such as are required for lunar and interplanetary

missions, can be obtained by using multiple rocket stages. The Saturn V, used for
the Apollo missions to the moon, was a three-stage rocket. The first stage of a
three-stage launch system consists of the rocket engine, its fuel and tanks, plus a
payload consisting of two more complete rocket stages. When the fuel from the
first stage is gone, the engine and its empty tanks are jettisoned. Then the second
stage rocket ignites. This process is repeated for the third stage. When the third
stage engine and tanks are jettisoned, all that is left is the mission payload. Write
a program that calculates the terminal velocity of the payload of a three-stage
rocket, given some appropriate assumptions about the three stages.

4. Paleontologists have discovered several sets of dinosaur footprints-preserved
in ancient river beds, for example. Is it possible to deduce from these footprints
the speed at which dinosaurs walked or ran? The two pieces of information that
can be determined directly from the footprints are the length of the dinosaur's foot
and the length of its stride, which is defined as the distance between the beginning
of a footprint made by one foot and the beginning of the next footprint made by
that same foot.

One way to approach this problem is to examine the relationship between
size, stride, and speed in modem animals. Because of the dynamic similarities in
animal motion, an approximate linear relationship between relative stride and
dimensionless speed applies to modem bipedal and quadrupedal animals as diverse
and differently shaped as humans, ostriches, camels, and dogs: 2

s = 0.8 + 1.33v

Relative stride s is defined as the ratio of stride length to leg length, s=S/L.
Dimensionless speed v is defined as the speed divided by the square root of leg
length times the gravitational acceleration g: VilLi. Although it might seem at
first analysis that gravitational acceleration shouldn't influence an animal's speed

1ne quantitative relationship between relative stride length and dimensionless speed can be
obtained from data given in R. McNeill Alexander, Dynamics of Dinosaurs & Other Extinct
Giants, Columbia University Press, New York, 1989.

110 • 3. Data Types, Operators, and Functions

on level ground, this isn't true, as gravity influences the up and down motions of
the body required even for walking.

Leg length from ground to hip joint for dinosaurs of a known species can
be determined from fossils. However, even when the dinosaur species responsible
for a particular set of tracks is unknown, its leg length can be inferred by
multiplying the footprint length by four. This is another relationship that is
approximately true for a wide range of modem animals. (You should try it for
humans.)

As an aside, note that the use of dimensionless ratios is common in
engineering as a way to scale phenomena from one size to another. These ratios
are required in aeronautical engineering, for example, in which it is necessary to
perform wind tunnel testing on models of real aircraft that are much smaller than
the real thing.

Write a program that uses the equation described here to calculate the
speed of a dinosaur based on measurements of its footprint and stride length. Use
metric units. Test your program with a large footprint 0.64 m long and a stride
length of 3.3 m. [dinosaur. c]

Extra Credit:
Based on similar calculations for humans, which you can easily do for your

own stride, can you speculate whether the dinosaur in the example was running
or walking? Try to justify your answer.

5. Write a program that asks the user to supply the mass and velocity of an object
and then calculates and prints the kinetic energy and linear momentum of that
object. The kinetic energy is mv2/2, and the momentum is mv. Use metric units
(mass in kilograms, velocity in meters per second, energy in joules). Use a
function for each calculation. [kinetic2 . c]

Extra Credit:
Include code for functions that will convert the kinetic energy and

momentum into their British system equivalents. The British unit of energy is ft
Ib, and the unit of momentum is slug-ft/s. 1 ft-lb = 1.356 joule; I slug = 14.59 kg;
1 ft/s = 0.3048 mls.

6. It is well known that cold weather feels even colder when the wind is blowing.
This effect gives rise to what is commonly described as the windchill
temperature-the temperature of still air that produces the same feeling of
coldness as a person experiences when exposed to a combination of temperature
and wind. A formula commonly used to compute the windchill temperature Twe

in OF, for ambient temperature T in OF and wind speed V in miles per hour, is

T
wc

= (0.279.jV + 0.550 - 0.0203 V)(T - 91.4) + 91.4

3.8 Exercises • III

where T < 91.40 F and V ~ 4 mph.3 Write a program that accepts as input the
temperature and wind speed and then calculates and displays the windchill
temperature. [windchil. c]

7. Radioactive elements decay at a rate characterized by their half life, defined as
the time required for the original quantity of radioactive material to decrease by
half. (The decayed material doesn't disappear, of course. The process produces
decay products that may themselves be stable or unstable.) For example, radon has
a half life of 3.8 days. If there are originally 100 mg of radon gas in an enclosed
container, there will be 50 mg after 3.8 days, 25 mg after 7.6 days, etc. The
process of radioactive decay can be described by the formula

A(t) = A
o
e-lito

where Ao is the initial amount, A(t) is the amount after time t, and to is
proportional to the half life tha1f• To relate to to tha1f, set A(t) =Ai2 and take the
logarithm of both sides:

For radon, to is about 5.48 days. Figure 3.6 shows the radioactive decay curve for
radon.

Write a program that calculates and prints the amount of radon remaining
from a given original sample mass after a specified number of days. Include the
calculation for to in the program rather than doing it by hand ahead of time.
[halflife. c]

Extra Credit:
(a) Half lives vary over a wide range, from small fractions of a second to
thousands of years. Modify your program so it will let the user provide both the
half life, in appropriate time units, and the elapsed time in the same units, so the
program will work for elements other than radon. (This would be a better way to
write the original program too, because it represents a more general approach to
the problem.)

(b) You may prefer to write A = A o(l/2)t/thalf to calculate radioactive decay.
Modify your program accordingly.

3Author's note: I found this fonnula on the Web in about five minutes by searching for "windchill"
at www.yahoo.com.

112 • 3. Data Types, Operators, and Functions

1000

900

en 800.t:
C
~

~ 700
l!!
.t:
£ 600I1l

~ 500~
0
E
I1l 400
Olc
"c 300"iii
E
Ql

200a::

100

" ,· , , , . . , . ,..._ ~ _ ~ _.. _ _.. _ _ ~_ .. _ _.. _ .· . ,· , , . . ," ...,.., , , , , , , . .
•••••••• ~ ••••••••••••• _ •• _ •• _ ••••• _ •••• _ ••••••••••••••••••• 4 ••••• __ .· , . . . , , . .· , , , .·· , , . " ,.·· , , . ., ,.· , , .

2018642 8 10 12 14 16
Time, days

Figure 3.6. Radioactive decay of radon.

O+---i-----i-----i-----i-----i-----i-----i-----i-----i-------I
o

8. Under natural conditions of ample food supplies, adequate living space, and a
stable environment, animal populations grow exponentially, as illustrated for the
global human population in Figure 3.7. That is, the projected population at some
future time will be proportional to the current population.where Yo and y are initial
and final years, and g is the net annual growth rate as determined by the
difference between births and deaths.

A simple model for extrapolating an initial population Po into the future is:

Write a program that uses this formula in a function to calculate the growth rate
needed to achieve a specified population at some time in the future. In 1992, the
global human population was about 5.4 x 109 people. Some estimates predict that
global population will be about 8.5 x 109 in the year 2025. It is not at all clear
that the natural conditions required to support exponential growth will continue
to exist for the human population. Food shortages, overcrowding, poor economic
conditions, war, and environmental degradation can significantly affect both birth
and death rates. [populatn. c]

3.8 Exercises • 113

20252020201520001995 2005 2010
Year

Figure 3.7. Exponential growth of global human population.

85
.,. ,.............................1" : '1" 1' .

~ 8 ~ : ~ : .

~ !: i i
:0. 7.5 . j : .:............... . .:. .

§
ia 7 , : , _ ..
"5
~ :
8. 65 J.. ~ J.. 1 ..
~ . i i I annual growth = 1.4% I i

"5: ••••••••···•••:••••••••••••.[1L11
. , .. ,

5+---...,.·------.·---....· ------r.-----;-------j.r-------1
1990

9. The loudness of a sound is measured in decibels (dB) on an arbitrary scale that
relates perceived loudness to the ratio of the intensity of a sound to the intensity
of the weakest audible sound 10' which is about 10-12 W/m2

:

Intensity is a physically measurable quantity, but loudness is a subjective human
perception. The perception of loudness has approximately the logarithmic
relationship indicated by the equation, but it varies among individuals. Write a
program that uses a function to calculate the intensity of sounds 10, 100, and 1000
times more intense than the weakest audible sound. [noise. c]

Extra Credit:
Modify your program to calculate and display the intensity of a sound with

a specified dB value. What is the intensity of a sound of 100 dB, which is loud
enough to cause permanent hearing damage?

10. Given the (x,y) coordinates of two points in a plane, write a program that
calculates (a) the shortest distance between the two points, and (b) the (x,y)
coordinates of a point halfway between the two points lying on a straight line
joining the points. (See Figure 3.8.) [points. c]

114 • 3. Data Types, Operators, and Functions

I
I
I
I
I
I
I

-----------------r------------
I
I
I
I
I
I
I I

- -- - --- --- - -- -- - -I- - -- - -- -- - ---, - - -- - - -- - - -_. (x2,y2)

4.5

4

3.5

>- 3

2.5

6i-,-------------------------,

5.5

1.5

1

0.5

o 0.5 1.5 2.5 3 3.5 4 4.5 5 5.5 6
x

Figure 3.8. Distance between two points in a plane.

Extra Credit:
Modify your program so it also calculates the slope of the line joining two

points in a plane. What restriction will this calculation impose on the location of
the two points?

11. The efficiency of solar energy systems depends critically on the ability to track
the sun's position. One required value is the solar elevation angle €-the angle to
the sun measured upward from the local horizontal. This angle depends on the
latitude of the subsolar point (solar declination) 0, the observer's latitude A, and
the hour angle ~, where hour angle is the angle from the observer's meridian to
the subsolar meridian. (~ =0° occurs at local high noon, which generally differs
from clock noon by a few minutes. One hour of clock time corresponds to
approximately 15° of hour angle. A meridian is a line of constant longitude
running from the north pole to the south pole.) The latitude of the subsolar point
is seasonally dependent, with a range of ±23.4°. The largest positive value occurs
at northern hemisphere midsummer, and the largest negative value occurs at
southern hemisphere midwinter. The solar elevation angle for any solar
declination, latitude, and hour angle is given by:

€ = 90° - cos-l(COS&OSAcOS~ + sinosinA)

3.8 Exercises • 115

Write a program that asks the user to supply an observer's latitude and the
solar declination and then calls a function to calculate the solar elevation angle.
Do this for hour angles of 60°, 30°, and 0° (corresponding approximately to 8 am,
10 am, and noon in clock time). Use your program to determine the range of high
noon (maximum) elevation angles as a function of season at a specified latitude.
What happens in the polar regions, where the sun may not shine at all during part
of the year? Figure 3.9 shows the elevation angle for 400 N latitude in the summer
and winter. [elevatin. c]

latitude =4~ deg NI
7 ·······;·····1······"]""·····,

·::::1,::·::'],,···· + + ~ ! .

.__ + _..+ ~ ~ .

____ l l L .

o,-I---''---1---1-.L...j.-...;---i---i---i'-----+--;.....>--+--~~

·120 ·100 -80 -60 40 -20 0 20 40 60 80 100 120
Hour angle, deg

Figure 3.9. Solar elevation angle in winter and summer at
40°N latitude.

12. The well-known factorial function n! is defined as

n! = n·(n - 1)·(n - 2)•...•2.1

For example, 5! =5·4·3·2·1 = 120. For large values of n, this is a very
impractical calculation. However, n! can be approximated for large values of n
with Stirling's formula:

n! ::; (n/e)n(2nn)I/2

Write a program that requests a value of n and calculates n! using
Stirling's approximation. How close is Stirling's approximation for values of n!
you can calculate yourself by hand? This approximation is especially useful when

116 • 3. Data Types, Operators, and Functions

calculating the ratio of two large factorials, as required for certain problems in
probability theory.
Hint: Declare n as a real number, not an integer. [stirling. c]

Extra Credit:
What is the largest value of n for which n! can be calculated from its

definition-that is, not from Stirling's approximation-when n is declared as the
default int data type? How about the long integer type? Can you establish the
maximum value of n for which you can use Stirling's approximation? The answers
to these questions are system-dependent.

13. Suppose a single measurement is taken from a standard normal (Gaussian)
distribution. For such a distribution, the mean (arithmetic average) is 0 and the
standard deviation is 1. The probability that a single measurement will be no
greater than some specified value z is equal to the area under the curve defined
by the standard normal probability density distribution function, integrated from
-00 to z.

The standard normal probability density function cannot be integrated
analytically. One solution is to approximate the integral with a polynomial:

cumulative probability"" 1 - r(a]t + a2e+ ai)

where

r = e-z2(2 /..(Iii
a2 =-0.1201676

t = (l + 0.3326zyl a l = 0.4361836
a3 = 0.9372980

The error resulting from using this approximation for appropriate values of z is
no more than about 10-4

•

Write a program that includes a function to calculate cumulative
probability for a specified value of z using this approximation. What restrictions,
if any, should you place on the allowed values of z? [norrna12 . c]

Extra Credit:
The standard normal variable z is related to measurements of normally

distributed quantities taken from populations whose sample mean m and standard
deviation s have values other than 0 and 1 by

z =
x - m

s

Modify your program so that it will calculate the probability that a single
measurement from a normally distributed population with sample mean m and

3.8 Exercises • 117

standard deviation s will not exceed the mean by more than some specified
amount.

14. (a) A production machine in use for several years is known to have produced
thousands of ball bearings with a mean diameter J.1 of 0.5 cm and a standard
deviation cr of 0.01 cm. A recent sample of 50 ball bearings had a mean diameter
m of 0.495 cm and a standard deviation s of 0.012 cm. Is it possible to conclude
on the basis of this single sample that the performance of the machine has
changed?

This is a common problem in statistics involving formulating a null
hypothesis, which in this case is that the random sample has been drawn from a
population whose mean is 0.500 cm. Then the data are examined and the
hypothesis is either accepted or rejected. The calculation is based on the z score:

where N is the sample size. In general, statistical calculations distinguish between
the population statistics, J.1 and cr, and the sample statistics, m and s. As implied
by their names, sample statistics are based on a single random sample and
population statistics are based on an entire population. The latter value is usually
not available in practice, and perhaps not even in principle, but statistics based on
a very large sample, as in this problem, are typically assumed to be equal to the
population statistics. The hypothesis about a sample that is small compared to the
total population is accepted or rejected at a certain confidence level based, in this
case, on values of z for a two-tailed significance test, as given in Table 3.11 for
commonly used significance levels.

Table 3.11. Calculations for two-tailed tests of significance

±2.81 ±3.08

The levels of significance represent the probability of being wrong in rejecting the
hypothesis, or making what is referred to as a Type I error. The smaller the level
of significance, the less likely that a Type I error will be made. For this problem,

z = (m - J.1)/(crN I12
) = (0.495 - 0.500)/(0.0117.071) = -3.54

118 • 3. Data Types, Operators, and Functions

Thus the hypothesis can be rejected with a very low probability of making a
Type I error. That is, it is very unlikely that the performance of the machine in
question has not changed. Note that the sample standard deviation is not used in
this problem.

(b) A manufacturer purchases a ball bearing machine that is claimed to produce
ball bearings with a mean diameter of 0.5 cm and a standard deviation of 0.01 cm.
A sample of 50 ball bearings from the machine has a mean m of 0.495 cm and
a standard deviation s of 0.012 cm.

This problem is similar to that in (a). The difference is that the population
statistics, based on a very large sample, have not been determined. The hypothesis
is still that the sample is taken from a population whose mean Il is 0.500 cm.
However, to calculate the z score, use the sample standard deviation as an
estimate of the population standard deviation:

z=m-JL

s/VN

For this problem,

z = (m - 1l)/(sNI12
) = (0.495 - 0.500)/(0.01217.071) = -2.95

Thus it is highly unlikely that the machine is performing according to its stated
specifications. Note that in this version of the problem, the claimed population
standard deviation is not used.

For parts (a) and (b) of this problem, write and test a function that
calculates the z score when the sample mean, population mean, population or
sample standard deviation, sample size, and critical z value are specified. Note that
the function does not "care" whether the standard deviation passed as input is the
population or sample standard deviation.

15. The day of the year n in the range 1-366 for a specified month m (1-12), day
d (1-31), and four-digit year y4 is given by

n = (275rn19) - «m + 9)/12)(1 + «mod(y,4) + 2)/3» + d - 30

where (...) means that a division is to be truncated to a whole number (for
example, (1113) = 3), and mod is the remainder from integer division (for

4At the time this manuscript was being written, the Y2K problem (the inability of older computer
software to process years later than 1999) was receiving lots of attention in the press. Hence it
seemed like a good idea to insist on four-digit years.

3.8 Exercises • 119

example, mod(11l3) =2). As written, the formula is valid for any year, including
leap years, except for those centurial years that are not evenly divisible by 400.
Thus the formula applies to the year 2000, which is a leap year, but not to 1900
or 2100, which are not leap years even though they are evenly divisible by 4.

Write a program with a function that calculates and returns the day of the
year for a specified month, day, and year.

Extra Credit:
Modify your function so that it returns the correct value for centurial years

not evenly divisible by 400. For example, your function should take into account
the fact that 2100 is not a leap year. You can look ahead to Chapter 4 to see how
to implement an IF... THEN... ELSE... statement that will allow your code to
respond appropriately in centurial years that are not leap years.

16. A cylindrical liquid storage tank of radius R and length L is buried
underground on its side; that is, with its straight sides parallel to the ground. In
order to determine how much liquid remains in the tank, a dip stick over the
centerline of the tank is used to measure the height of the liquid in the tank. The
formula for the area A of a circle of radius R with a cap cut off horizontally at
height D from the bottom of the circle is

Write a program that reads several values of R, L, and D from a file and
calculates the volume in the tank for each set of values.

4

Selection and Repetition Constructs

4.1 Relational and Logical Operators

Like other high-level programming languages, C has the ability to make decisions
by comparing values. Two values can be tested for equality, for example, and one
block of statements can be executed if the values are equal. Another block of
statements, or no statements at all, can be executed if the values aren't equal. The
purpose of such decision-making statements should already be clear from the
discussion of pseudocode commands in Chapter 1. Also, we have already used
some implementations of the pseudocode IF...THEN...ELSE statement in
Chapters 2 and 3 in code for reading files. For instance, in the statements

status=fscanf(infile, ...) ;
if (status == EOF) break;

and

infile=fopen(name, "r");
if (infile == NULL)

printf("Can't find file.");
else

if ... statements are used to respond appropriately when the end-of-file mark
is found or when the program can't find a requested file.

Table 4.1 summarizes the operators required to implement decision-making
statements. It contains the same operators given previously in Table 1.3, with the
addition of the C symbols for those operators. Expressions having more than one
relational operator are evaluated according to certain precedence rules in the same
sense that multiplication and division operations are performed before addition and
subtraction. The relational and logical operators have been given in Table 4.1 in
order of descending precedence, with level 1 having the highest precedence.
Relational and logical operators also have precedence relative to other kinds of
operations, as previously shown in Table 3.4 in Chapter 3.

Precedence rules for relational and logical operators can be difficult to
remember. Consequently, as a matter of style, we will be consistent about using
parentheses to make clear the order in which operations should be performed.
Even when parentheses aren't required, they can often help clarify a statement's
intent, and they can also be used to override the natural precedence whenever that
is desired.

D. R. Brooks, C Programming: The Essentials for Engineers and Scientists
© Springer-Verlag New York, Inc. 1999

122 • 4. Selection and Repetition Constructs

Table 4.1. Relational and logical operators

not logical "not" I

$ less than or equal to <= 2

~ greater than or >= 2
equal to

< less than < 2

> greater than > 2

= equal to 3

:/:. not equal to != 3

and logical "and" && 4

or logical "or" I I 5

As noted in Chapter 3, C does not support a separate data type for
manipulating logical expressions. Instead, C evaluates a relational statement and
assigns a value of I if it is True and a value of °if it is False. Consider the code
fragment

a=3;
b=4;
c=5;
printf (" %i \n" , (a<=3) + (a<b) + (a==c)) ;

What value is displayed by the printf statement? With the assignment
statements shown, a is less than or equal to 3, a is less than b, and a is not equal
to c. Thus the three relational expressions have values of I, I, and 0, and a 2 will
be displayed. We will generally restrict our use of relational expressions to writing
selection constructs, and we will not use the values associated with logical
expressions in this way.

The interpretation of relational and logical operations is straightforward,
but there are two common pitfalls in tests for equality. First, it is easy to forget
that the = sign by itself is not the relational operator for equality. The expression
a=b won't produce a syntax error when it is used in an if ... statement, but it
is not the same expression as a==b. This is because, in C, assignment statements
themselves have values, even though we don't usually think of them in that way.

4.2 Selection (IF...THEN...ELSE...) Constructs • 123

Thus an assignment statement a=b has a value that depends on the value of b.
Consider this code fragment:

int a=3,b=-4;
printf (" %i \n" ,a=b) ;

This code prints a value of -4 because the expression a=b has a value of -4. In
the relational sense, the assignment a=b as it appears in this code fragment will
be interpreted as True because C interprets any nonzero value (even a negative
value) as True.

The second pitfall involves testing real numbers for equality. If A and B
are type float or double, it is generally poor programming practice to test
them for equality. This is because C and other languages represent real numbers
only approximately and, hence, arithmetic with real numbers is inexact. The
algebraic expression (10/3)(3) is obviously equal to 10 in the algebraic sense.
However, when C evaluates this expression, it first performs the division:
10/3=3.333333.... Multiplying this result by 3 yields 9.999999... , which is not
exactly equal to 10. Some compilers and some languages may be better than
others about interpreting this source code representation of an algebraic
expression, but the potential for problems can never be eliminated entirely.

If you wish to test real numbers for equality, especially when those
numbers are obtained as the result of arithmetic operations, it is much better
programming practice to test the absolute value of their difference against some
suitably small value, as with the statement fabs (A-B) < small_value. An
appropriately small value would be 10-6 or 10-7

, but 10-20 would be inappropriate
because real arithmetic is not done at this level of precision with f loa t or
double variables, and also because such calculations are probably meaningless
in the physical or mathematical sense.

4.2 Selection (IF...THEN.•.ELSE...) Constructs

The relational operations described in the previous section are used with the
IF...THEN...ELSE... pseudocode command discussed in Chapter 1. This
pseudocode has a straightforward implementation in C. Its general syntax is

124 • 4. Selection and Repetition Constructs

if (condition_l)
{

statements
}

else if (condition_2)
{

statements
}

else if (condition_3)
{

statements

else
{

statements

where each condi ti on represents a relational expression. Note that the THEN
part of the IF...THEN... pseudocode command is implied in C; there is no "then"
word in the C language. Each branch of the if. . . statement can be associated
with a block of statements set off with curly braces, { ... }, but a single
statement doesn't have to be enclosed in braces.

Program P-4.1 illustrates several typical statements using logical and
relational operators. It includes several features of interest. Because C doesn't
have a separate logical (boolean) data type, the values TRUE and FALSE have
been assigned values 1 and 0 in de fine statements. This makes True and False
assignments easier to write and understand. Also, the if ... statements involving
character responses test for both lowercase and uppercase responses. This is
optional, but it helps to make the program a little more "idiot proof." Finally, note
the fflush (stdin) ; statements appearing before each scanf statement that
looks for a character typed at the keyboard. This is necessary to ensure that the
keyboard buffer is empty so that the character a user types will be the first
character in the buffer. Otherwise, a blank space or end-of-line character from any
previous scanf statement will remain in the buffer, and any new character the
user types will not be detected; this is a subtle point that is easy to forget, and it
can lead to programs that appear to be written properly, but which won't work as
expected. It is unnecessary to flush the keyboard buffer if a scanf statement is
expecting only numerical values, because blanks are ignored (or skipped over,
more precisely) when scanf searches for a numerical value.

4.2 Selection (IF...THEN••.ELSE•..) Constructs • 125

P-4.1 [selectin. c)

/* Demonstrate various selection structures */

include <stdio.h>
define TRUE 1
define FALSE 0

main()
{

int resting_heart_rate, temperature, raining;
char plane_type,rain;

printf ("What is your resting heart rate? ");
scanf ("%d" , &res ting_heart_ra te) ;
if (resting_heart_rate > 56)

printf("You need more exercise.\n");
else

printf("You are in good shape.\n");

printf ("What is the aircraft type, [b] omber or [c] argo? ");
fflush (stdin) ;
scanf ("%c" , &plane_type) ;
if ((plane_type == 'b') I I (plane_type == 'B')

printf ("The aircraft is a bomber. \n") ;
else if ((plane_type == 'c') I I (plane_type == 'C')

printf("The aircraft is a cargo plane.\n");
else

printf("I don't know what this aircraft is.\n");
printf("How hot is it (deg F)? ");
scanf ("%i" ,&temperature) ;
printf("Is it raining (y or n)? ");
fflush (stdin) ;
scanf("%c",&rain) ;
if ((rain == 'y') II (rain == 'Y')

raining=TRUE;
else raining=FALSE;
if ((temperature> 85) && !raining

printf ("Let's go swimming! \n") ;
else

printf("We'll stay inside.\n");
return(O);

Running P-4.1

126 • 4. Selection and Repetition Constructs

Here is a typical programming problem that requires a simple decision
structure.

Income taxes are assessed according to the following formula:

For incomes::; $50,000, the rate is 7%
For incomes> $50,000, the rate is 7% on the first $50,000 and 10% on the

amount greater than $50,000.

The pseudocode for the critical part of the code is:

IF (income::; $50,000) THEN
tax =$50,000.a.07

ELSE
tax =$50,000.a.07+(income - $50,000).a.10

A common mistake is to write this pseudocode instead:

IF (income::; $50,000) THEN
tax = income-0.07

ELSE
tax = income -0. 10

Make sure you understand why the second algorithm is wrong! Program P-4.2
gives a program to solve this problem.

P-4.2 [taxes. c]

/* Simple decision structure. TAXES.C */
#include <stdio.h>
#define LOW_RATE 0.07
#define HIGH_RATE 0.10
#define CUTOFF_INCOME 50000.0

int main()
{

double income, tax;

printf("Give income: $");
scanf("%lf",&income) ;
if (income <= CUTOFF_INCOME)

tax=income*LOW_RATE;
else

tax=CUTOFF_INCOME*LOW_RATE+(income-CUTOFF_INCOME)*HIGH_RATE;
printf{"On an income of $%.2lf, the tax is $%.2lf\n",income,tax);
return 0;

4.2 Selection (IF••.THEN...ELSE...) Constructs • 127

Running P-4.2

The interpretation of multiple-alternative if... statements can be
confusing. Consider the following table that relates loudness in decibels to human
perception:

Loudness (dB)
::;50
51-70
71-90
91-110
>110

Perception
quiet
intrusive
annoying
very annoying
uncomfortable

Suppose the goal of a program is to ask the user to provide a decibel level and
then to respond with an appropriate message. If the tests are arranged in the order
shown, the pseudocode could be written like this:

IF (dB::; 50) THEN WRITE (quiet)
ELSE IF (dB> 50 and dB::; 70) THEN WRITE (intrusive)
ELSE IF (dB> 70 and dB ::; 90) THEN WRITE (annoying)
and so forth...

For a value of 88 dB, for example, it is not true that the value is less than or
equal to 50 or is in the range 51-70. The second ELSE IF... branch is the only
one that returns a True result, and this will be the only branch executed. However,
the desired result can be achieved more simply like this:

IF (dB::; 50) THEN WRITE (quiet)
ELSE IF (dB::; 70) THEN WRITE (intrusive)
ELSE IF (dB::; 90) THEN WRITE (annoying)
ELSE IF (dB::; 110) THEN WRITE (very annoying)
ELSE WRITE (uncomfortable)

Suppose the noise level is 75 dB. This is greater than 50 but less than 70,
so the second branch will be executed. However, 75 is also less than the values
in the statements in the third and fourth branches. Does this mean that each of the
other branches will also be executed? No, because

128 • 4. Selection and Repetition Constructs

The second pseudocode algorithm doesn't require that both the upper and
lower limits on the range be specified, and therefore it's shorter and less cluttered
than the first alternative. This behavior, as described in pseudocode, also applies
to the programming language implementation of IF... statements. Programs that
implement the first kind of pseudocode will certainly work, but this kind of code
usually means that a programmer doesn't understand how IF... statements work.
Program P-4.3 gives C code for the noise level problem.

P-4.3 [decibels. c]

/* Illustrate multiple-alternative decisions. */

#include <stdio.h>

main()
{

printf("Enter the noise level as integer decibels: ");
scanf ("%i" ,&noise_db) ;

if (noise_db <= 50)
printf (" %i dB is quiet.", noise_db) ;

else if (noise_db <= 70)
printf (" %i dB is intrusive.", noise_db) ;

else if (noise_db <= 90)
printf (" %i dB is annoying.", noise_db) ;

else if (noise_db <= 110)
printf (" %i dB is very annoying.", noise_db) ;

else
printf ("%i dB is uncomfortable.", noise_db) ;

return(O) ;

Running P-4.3

4.3 Choosing Alternatives From a List of Possibilities

When there are many possible program branches to be considered, it is often
easier to construct what amounts to a table of choices, using an implementation
of the CHOOSE pseudocode command discussed in Chapter 1. Consider the

4.3 Choosing Alternatives From a List of Possibilities • 129

statement in P-4.1, which was implemented as a three-branch if. . . statement
to select an aircraft type. There were only three possibilities: bomber, cargo, and
unknown. Such a list of choices is cumbersome to expand. Program P-4.4
illustrates an alternative, with a new choice added.

P-4.4 [planes. c]

include <stdio.h>
int main()
{

char plane_type;
printf(

"What is the aircraft type, [b]omber, [c]argo, or [f]ighter? ");
scanf (" %s" ,&plane_type) ;
switch (plane_type) {

case 'b':
case 'B':

printf ("bomber\n") ;
break;

case 'c':
case 'C':

printf("cargo\n");
break;

case 'f':
case 'F':

printf("fighter\n") ;
break;

default:
printf ("unknown\n") ;

}
return 0;

P-4.4 uses the swi tch keyword to create another kind of selection construct. Its
general syntax is

switch(controlling expression)
{

case value:
(case value:)

statements
(break; or return;)

(more case values and statements)
default:

statements

where each value is an ordinal constant. The defaul t: branch is optional.
The swi tch construct differs significantly from C's if ... construct.

Recall that in a multibranched if ... statement, only the first True branch is
executed. However,

130 • 4. Selection and Repetition Constructs

This rule explains why multiple statements following one or more case labels
aren't grouped in a statement block with braces, { ... }, as they are for an
if. . . statement.

If you think of each case label (or group of case labels) as representing
the start of a branch to be taken, as is certainly reasonable from an algorithm
design viewpoint, the break; statement is required to ensure that only one
branch-that is, only one set of statements-within the structure is executed. This
is different from an if ... construct, in which no break statement is required
to ensure that only one branch is taken. In terms of syntax, the break; or
return; statement associated with each case value is optional, but it is almost
always required as a matter of algorithm design.

The data type of the controlling expression in the swi tch statement must
be ordinal (countable), which means that it may have an int or char type, but
not a floating point data type such as float or double. Also, the controlling
expression may not be a string of characters. I This also means that the values
appearing in the case labels must have appropriate data types. This restriction
precludes the use of a swi tch structure when decisions must be based on
floating-point values or on ranges of values (rather than individual values).
However, this construct is a good choice whenever decisions can be based on
single ordinal values.

Although it is perhaps not obvious and may not be a good idea as a matter
of style, C allows case labels associated with a swi tch statement to contain a
mixture of integer and character values regardless of whether the controlling
expression is of type int or char. This is possible because of C's willingness
to perform implicit type casting whenever required. Thus, this code fragment
causes no compilation problems even though the case labels mix data types in
what appear to be potentially inappropriate ways:

char chi
int i;
switch (ch)

case 1:;
case 'a I:;
break;

}
switch (i) {

case 1:;
case 'a 1:;

IThe reason is that character strings, as opposed to single characters, are not ordinal. For example,
the next character after k is I, but there is no way to tell what comes after the word kitten.

4.4 Repetition (LOOP...) Constructs • 131

4.4 Repetition (LOOP...) Constructs

In Chapter I, the pseudocode concept of a loop structure was described. Loop
structures are required to implement the third of the three program control
structures-sequence, selection, and repetition. This concept is so pervasive in
programming that we used some loop constructs as early as Chapter 2 in code to
read external data files. The LOOP (conditions)...END LOOP pseudocode
command includes a "plain English" description of the conditions that define when
(or if) the statements inside the loop are executed. In the C implementation, this
description can be implemented in two basic ways.

4.4.1 Count-Controlled Loops

The simplest loop, in concept, is the count
controlled loop. This is appropriate when the
program knows ahead of time or can determine how
many times the statements inside the loop should be executed. Consider this
problem:

Write a program that prints a table of angles and their sine, cosine, and
tangent over the range [00, 180°] in increments of 5°.

It is easy to determine that this table will contain 37 rows. You can perform the
calculation by hand or let your program do it: 18015 + 1. Because the limits on
the loop are known ahead of time, a count-controlled loop is appropriate. The
pseudocode might look like this:

LOOP (for i = 0 to 36)
ASSIGN angle =5-i
WRITE (angle, sin(angle), cos(angle), tan(angle))

END LOOP

When you implement this algorithm in C, remember to convert angles to
radians (because that's what the trigonometric functions expect as input), and you
should also take into account the fact that the tangent of nl2 radians is undefined.

The general syntax for a count-controlled loop in C is

for (initialization expression; repetition control condition;
update expression)

statements

132 • 4. Selection and Repetition Constructs

The loop starts with the reserved word for. Execution
of the loop is controlled by the value of an integer loop
counter. Inside the parentheses following the for, the initial
value of the counter is given first. Then a relational expression is given. As long
as this expression is true, the loop counter will be updated according to the update
expression and the statements inside the loop will be executed. If there is only one
statement, the braces aren't needed. If the loop repetition expression is false the
first time it is evaluated, the loop will terminate without executing the statements
inside the loop. When the loop terminates, program control is transferred to the
statement that immediately follows the loop.

The update expression defines how the loop variable will be changed at the
end of each trip through the loop. A common update expression, although by no
means the only legitimate one, increments the loop counter by one for each trip
through the loop.

A typical use of loops is to generate a table of values. Program P-4.5
shows one way to implement a loop that generates and displays a table of
trigonometric values.

P-4.5 [trigtabl. c]

/* Generate a table of trig values. Demonstrates count-controlled
loops. */
#include <stdio.h>
#include <math.h>

int main ()
{

double angle,deg_to_rad;
int i;

deg_to_rad=4.0*atan(1.0)/180.0;
printf(' i x sin(x) cos(x) tan(x)\n");
printf('-------------------------------\n") ;
for (i = 0; i <= 36; i++) {

angle=i*5.0;
printf('%3i %4.0If",i,angle);
angle=angle*deg_to_rad;
if (i*5 != 90) {

printf(
'%9. 4lf%9. 4lf%9. 4lf\n" ,sin (angle) ,cos (angle) , tan (angle)) ;

else {
printf('%9.4If%9.4If\n",sin(angle),cos(angle)) ;

} /* end if */
} /* end for */
return 0;

4.4 Repetition (LOOP...) Constructs • 133

Running P-4.5

In P-4.5, the loop counter i is given an initial value of 0, the repetition
condition is given as i < = 36, and i is incremented by I after each trip through
the loop. Thus, the statements inside the loop will be executed for values of i
between 0 and 36, inclusive. This interpretation of the loop termination condition
makes clear that the loop counter update expression is executed at the end of the
loop rather than at the beginning. If the counter is incremented at the beginning
of the loop, the fIrst value in the statement ang 1e = i * 5 . 0 will be I rather than
O. The last time the statements inside the loop are executed, i will have a value
of 36. At the end of the calculations, the incremented value will be 37. When the
loop repetition expression is evaluated, it will now be False and the loop will
terminate.

An alternative repetition condition could be i ! = 37, although this
choice is less clear than the one used. Also, the update expression could be
i = i + 1, i + = 1 or + + i rather than i + + .

Why does the loop counter use an integer in the range [0, 36] rather than
the angle values themselves? As a matter of syntax, C allows the use of real
numbers as loop control variables, so the loop could in principle be written like
this:

for (angle = 0.0; angle <= 180.0; angle += 5.0) {/* poor style! */
printf('%4.0lf·,angle);

134 • 4. Selection and Repetition Constructs

However, the practice of using noninteger loop control variables is strongly
discouraged because the approximations inherent to real number arithmetic mean
that the calculated values of real loop counters can sometimes lead to unexpected
results. The loop controls on angle seem reasonable, but it is possible that the
"final" incrementing operation could give a result of 179.99999, for example,
rather than exactly 180. In that case, the statements inside the loop would be
executed one more time than expected.

Even in view of this style rule, there is at least one more reasonable
alternative for constructing the loop in P-4.5:

for (i = 0; i <=180; i+=5) {
printf("%4i",i) ;
angle=(double)i*deg_to_rad;
if (i != 90) {

printf(
"%9.4lf%9.4lf%9.4lf\n",sin(angle) ,cos (angle) ,tan(angle));

}
else {

printf("%9.4lf%9.4lf\n",sin(angle),cos(angle») ;
/* end if. .. */
/* end for ... */

In this implementation, the loop counter takes on the integer values 5, 10, 15, and
so on. The assignment statement

converts the angle to radians. The (double) makes clear the type cast that is
performed, but it's not required because deg_to_rad is already a real value.

Here's another question about loop controls. Is it allowed to reassign the
value of the loop counter variable inside the loop? For example, is it possible to
write

for (i = 0; i != 37; i++) {

i+=3;
/* end for ... */

The answer in C is, "Yes, you can do that." However, this is generally considered
to be very poor programming style because altering the loop counter variable
inside the loop overrides the conditions established for loop termination as part of
the for ... statement.

4.4 Repetition (LOOP...) Constructs • 135

This style rule applies as well to implied assignment statements such as i + +.

What is the value of the loop counter variable after the loop is terminated?
In P-4.5, i has a value of 37 because that is the value required to terminate the
loop. However,

It is, however, OK to reuse the loop counter variable itself in another loop or even
for some other purpose, by reassigning its value. Thus the code fragment

for (i=l; i<=lO; i++)
printf("%i\n",i) ;

j=i+5;

is allowed as a matter of syntax, but is considered poor programming style
because the value of i is used after the loop is terminated. As a result of this code,
j will have a value of 16 rather than 15 because i has a value of 11 when the
loop terminates; this mayor may not be what you intended. This code fragment
is much better:

end_value=lO;
for (i=l; i<=end_value; i++)

printf("%i\n",i) ;
j=end_value+6;

assuming that, in fact, you wish j to have a value of 16 rather than 15.
It is possible to nest loops one inside the other. Consider this code:

for (row=l; row<=4; row++) {
printf("row # %2i, ",row);
for (col=l; col<=5; col++)

printf("%2i",col}; }
printf ("\n");

The output of this typical approach to producing a two-dimensional table of values
looks like this:

136 • 4. Selection and Repetition Constructs

112345
212345
312345
412 3 4 5

The inner loop is executed completely four times, once for each trip through the
outer 100p.The variable row is used to number each row in the table, and col is
used to number columns. Each time the inner loop is executed, its counter variable
col is automatically reset to l. The curly braces are not necessary for the inner
loop, which contains only one statement, but they serve as a reminder that you can
include as many statements as you need to take the required action inside the
inner loop. Note that the line-feed character \n is printed after the end of the
inner loop, but still inside the outer loop.

You can have as many levels of nested loops as your program needs. You
should not be surprised to learn that

In order to nummlze logical errors in your code, it is important to assign
meaningful names to counter variables in nested loops. That is why the counter
variables in the above example are called row and col rather than something less
descriptive such as i and j.

Finally, it is possible to construct loops that count down rather than up.
This requires only that the terminating expression and the update expression be
consistent. For the code

for (i=10; i>=O; i--)
{ ... }

i takes on values 10, 9, ... , 1, O.

4.4.2 Conditional Loops

It is often the case that the number of times the statements
inside a loop must be executed cannot be determined
ahead of time. In that case, a conditional loop must be
used. There are two possibilities. In a post-test loop,
statements inside the loop are always executed at least
once. At the bottom of the loop, a decision is made whether to continue. In a pre
test loop, a decision whether to execute statements inside the loop is made at the
top of the loop. This means that statements inside a pre-test loop might never be
executed.

4.4 Repetition (LOOP...) Constructs • 137

Pre-Test Loops

The general syntax for pre-test loops is

while (loop repetition condition)
{

statements

The braces are required only for multiple statements.
As an example, consider this problem:

Write a program that calculates the period of an earth-orbiting satellite in
a circular orbit with a user-specified altitude and displays the starting time
for each orbit during one day. Assume that the first orbit starts at a time
of O. The equation for the period T is

T = 2TraJa/G

where a is the radius of the orbit in km and G is the earth's gravitational
constant, 398601.2 km3/sec2

• The (equatorial) radius of the earth is 6378
km. There are 86,400 seconds in one day. Don't forget that the value of
a in the formula is the earth's radius plus the user-specified altitude.

This problem can be formulated in terms of a pre-test loop, which should
keep executing as long as the elapsed time is less than one day:

LOOP (as long as the total time is less than one day)

END LOOP

Program P-4.6(a) shows how to implement this algorithm as a pre-test loop.

P-4.6(a) [orbi tsl. c]

/* Print information about earth orbits. */
/* Use a pre-test loop. */

#include <stdio.h>
#include <math.h>

#def ne PI 3.1415927
#def ne G 398601.2 /* km A 3/s A 2 */
#def ne EARTH_RADIUS 6378.0 /* km */

138 • 4. Selection and Repetition Constructs

#define DAY 86400.0

int main ()
{

/* seconds */

double period,altitude,total_time=O.O;
int orbit_number=O;

printf("What is the altitude (km)? ");
scanf("%lf",&altitude);
period=2.0*PI*(EARTH_RADIUS+altitude)*

sqrt((EARTH_RADIUS+altitude)/G);
printf("The orbital period is %.11f seconds.\n",period);
while (total_time < DAY) {

orbit_number++;
printf("Orbit #%2i starts at time %7.11f seconds.\n",

orbit_number, total_time) ;
total_time+=period;

}
return 0;

Running P-4.6(a)

Note that this particular pre-test loop will always execute at least once because
total time is initialized to O.

Post-Test Loops

The general syntax for post-test loops is

4.4 Repetition (LOOP...) Constructs • 139

do
{

statements
}
while (loop repetition condition)

As before, braces are required only for multiple statements. The statement(s) in
this loop are always executed at least once because the repetition condition isn't
tested until the end of the loop.

The problem from the previous subsection can easily be formulated as a
post-test loop, as shown in P-4.6(b).

P-4.6(b) [orbi ts2 . c]

/* Print information about earth orbits. */
/* Use a post-test loop. */

#include <stdio.h>
#include <math.h>

#define PI 3.1415927
#define G 398601.2
#define EARTH_RADIUS
#define DAY 86400.0

int main ()
{

/* km A3/s A 2 */
6378.0 /* km */

/* seconds */

double period,altitude,total_time=O.O;
int orbit_number=O;

printf("What is the altitude (km)? ");
scanf("%lf",&altitude) ;
period=2.0*PI*(EARTH_RADIUS+altitude)

*sqrt«EARTH_RADIUS+altitude)/G) ;
printf("The orbital period is %.1lf seconds.\n",period);
do {

orbit_number++;
printf("Orbit #%2i starts at time %7.1lf seconds.\n",

orbit_number,total_time) ;
total_time+=period;

)
while (total_time < DAY);

return 0;

The output from P-4.6(b) is identical to that for P-4.6(a).

Sometimes you must think carefully about how to design a loop and its
terminating conditions properly. Consider this problem, to which we will apply the
entire five-step problem-solving process.

140 • 4. Selection and Repetition Constructs

1 Define the problem.

A small elevator can safely carry a load of no more than 500 pounds. If
this load limit is exceeded, the elevator cable will snap and all the occupants will
be killed. Initially the elevator is empty and several people are waiting in line.
There is a scale outside the elevator door so that each person can be weighed to
determine whether he or she will be allowed on the elevator. To make the problem
easier, assume that if the next person in line will cause the load limit to be
exceeded, the elevator doors will close. That is, no attempt is made to search
farther back in the line for a lighter person who will not cause the load limit to
be exceeded. Write a program to simulate this situation.

2 Outline a solution.

The load initially is O. Then, inside a loop, the program accepts proposed
weights typed at the keyboard. For each new value, the algorithm must calculate
a proposed new total load. If this proposed total does not exceed the maximum,
then the actual total load becomes the proposed total load. The loop should
continue as long as the proposed new load does not equal or exceed the load limit.

3 Design an algorithm

Here is an algorithm for the critical loop structure. It involves proposing
a new load based on the next weight and then responding appropriately.

LOOP (as long as actual new load or unacceptable proposed new
load does not equal or exceed the load limit)

READ (new_weight)
ASSIGN proposed_load =currenL/oad + new_weight
IF (proposed_load ~ limit) THEN

ASSIGN currenL/oad =proposed_load
ELSE (print message indicating that new_weight is not allowed)

END LOOP

It should also be possible to implement this loop as a pre-test loop. It will
still be necessary to think carefully about how to terminate the loop.

4

4.4 Repetition (LOOP...) Constructs • 141

Convert the algorithm into a program.

P-4.7 [elevator. c]

/* Purpose: To allow individuals to enter an elevator one by one
as long as the total weight doesn't exceed a specified maximum.

*/
#include <stdio.h>
#define MAX 500

int main(void)
{

int total_load=O,wt,proposed_load;

do {
printf("Give new proposed weight: ');
scanf("%i',&wt) ;
proposed_load=total_load+wt;
if (proposed_load <= MAX) {

total_load=proposed_load;
printf('new = %4i total = %4i\n",wt,total_load);

}
else

printf("NOT ALLOWED. This will give a total load of %i.\n",
total_load+wt) ;

while (proposed_load < MAX);

return 0;

5 Verify the operation of the program.

The single sample output shown here is insufficient to test the program
thoroughly. You should also test a case for which the first proposed weight
exceeds 500 pounds and one for which the weights add up to exactly 500 pounds.

142 • 4. Selection and Repetition Constructs

Loops for Input Validation

In interactive programs that require user input, it is often important to perform
some validation tests on keyboard input before using it. Consider the beginning
of a typical problem statement:

Write a program that asks a user to enter a dollar amount and then...

For this discussion, we don't care what will be done with the dollar amount.
However, we are concerned that a user may enter a dollar amount as $10,000 or
10,000 rather than 10000, even if the input prompt is specific about the program's
expectations. We know that C won't accept the first two examples as valid
numbers. Our goal is to scan the input before trying to interpret it as a number.
If the input is inappropriate, the program should give the user another chance.
Program P-4.8 presents one solution to this problem.

P-4.8 [dollars. c]

/* Perform input validation on numerical data. */
#include <stdio.h>
#include <string.h>
#define TRUE 1
#define FALSE 0

int main ()
{

double dollars;
char test_string[80] ,final_string[80];
int i,good_data;

do
{

printf("Give a dollar amount with no commas: $");
scanf("%s',&test_string) ;
good_data=TRUE;
i=-l;
while ((i <= strlen(test_string)-l) && (good_data)
{

i++i
if ((test_string[i] == ',') II (test_string[i] == '$')

good_data=FALSE;
}
if (! good_data)

printf("Your input of %s is unacceptable. Tryagain.\n".
test_string) ;

else
printf("Your input of %s is acceptable.\n',test_string);

}
while (! good_data);
return 0;

4.5 Applications • 143

The code in P-4.8 involves some new syntax that we won't discuss in
detail until Chapter 6. Basically, each character in a string of characters can be
accessed individually (starting with the first character, which C addresses as
character 0) and tested to see whether it is a comma or a dollar sign. The for ...
loop is controlled by the standard C function s t r 1en, which needs access to the
string. h header file and which counts the number of characters in the user's
input, excluding the terminating character.

4.5 Applications

4.5.1 Solving the Quadratic Equation

1 Define the problem.

Write a program that solves the quadratic equation a2x + bx + C =0 for its
real roots, using user-specified values for a, b, and c.

2 Outline a solution.

The well-known solution to the quadratic equation is

-b ± Jb 2
- 4ac

2a

When you apply this solution to finding real roots, there are three
possibilities:

1. If the discriminant is positive, there are two real roots.
2. If the discriminant is zero, there is one real root.
3. If the discriminant is less than zero, there are no real roots.

3 Design an algorithm.

The critical part of the algorithm is the test applied to the discriminant:

144 • 4. Selection and Repetition Constructs

IF (discriminant> 0) THEN
ASSIGN two real roots according to the formula

ELSE IF (discriminant =0) THEN
ASSIGN one real root equal to -b/2a

ELSE
there aren't any real roots

4 Convert the algorithm into a program.

P-4.9 [quadrate. e]

/* Quadratic equation with test for discriminant. */

#include <stdio.h>
#include <math.h>

int main (void)
{

double a,b,c,discriminant,rootl,root2,LIMIT=le-6;

printf('Enter coefficients for ax'2+bx+c: ');
scanf('%lf %If %If',&a,&b,&c);
discriminant=b*b-4.0*a*c;
printf('discriminant = %If\n',discriminant);
if (discriminant > LIMIT) {

rootl=(-b+sqrt(discriminant)/2.0/a;
root2=(-b-sqrt(discriminant)/2.0/a;
printf('rootl = %If, root2 = %If\n',rootl,root2);

}
else if (fabs(discriminant) <= LIMIT) {

root1=-b/2.0/a;
root2=0.0;
printf('The single real root = %If\n',rootl);

}
else

printf('There are no real roots.\n');
rootl=O.O;
root2=0.0;

return 0;

Running P-4.9

4.5 Applications • 145

There are no real roots for the quadratic equation x2 + 2x + 3 = O.
In the implementation of the algorithm, it is necessary to think carefully

about the implications of concluding that the discriminant is O. Suppose that the
discriminant b2

- 4ac is algebraically equal to O. It is not a good idea to assume
that this value will always be numerically equal to 0 because of the limitations on
the precision of real arithmetic. This problem is not so bad if the discriminant is
a very small positive number rather than 0; then your program will report that
there are two nearly identical real roots. However, this could be a serious problem
if the discriminant is a very small negative number. Then your program will report
that there are no real roots when, in fact, there is one real root. Program P-4.9
protects against this potential problem by testing the absolute value of the
discriminant against the hard-coded small value LIMIT. In this implementation,
a discriminant that is less than or equal to 10-6 is considered to be O.

5 Verify the operation of the program.

The obvious verification steps require supplying sets of coefficients that
test all three branches in the if. . . statement. It would be interesting to find a
case where the discriminant is algebraically equal to 0 but is represented
numerically as a very small negative number.

4.5.2 Maximum Deflection of a Beam With Various SupportlLoading Systems

1 Define the problem.

The problem of calculating the maximum deflection of a beam supported
at both ends and subject to a load concentrated at the center of the beam has
already been treated as an application in Section 2.5.1. In this application, the
calculations will be extended to cover several support/loading configurations.

2 Outline a solution.

Table 4.2 gives formulas for four support/loading options, including the
one discussed previously in Section 2.5.1.

146 • 4. Selection and Repetition Constructs

Table 4.2. Maximum deflection of a beam subject to
various support and loading conditions

Supported at each end,
concentrated force F

F
!

1 \ 1\
<------- L ------->

-FI}/(48EI)
at L/2

Supported at each end,
distributed weight W

1\ 1\
-5WL3/(384EI)
at L/2

Supported at one end,
concentrated force F
at free end

Supported at one end,
distributed weight W ----_.,.,.

~:~:=:~:~:~§~§~§~§~§~§~§~:~:~:=:~:=:~:=:~~~:~:~:~:::~:{~:~~~~~~~
:.:-:

-FU/(3EI)
at free end

-WL3/(8EI)
at free end

J For this table, force F and weight W have units of Ib; length L, in; elasticity E, Ib/in2
; and

moment of inertia, in'.

3 Design an algorithm.

Here is one way the support/loading options might be incorporated into an
algorithm, assuming that values for F (or W), L, E, and I are already available.

WRITE (menu describing four possible support systems, with input prompt)
READ (choice of support system 1-4)
CHOOSE (based on support/load 10)

1: ASSIGN deflection = -Ft3/(48EI)
2: ASSIGN deflection = -5Wt3/(384EI)
3: ASSIGN deflection = -Ft3/(3EI)
4: ASSIGN deflection = -WL3/(8EI)
anything else: WRITE ("Input error.'?

(end CHOOSE)
WRITE (deflection)

4 Convert the algorithm into a program.

4.5 Applications • 147

P-4.1O [beam2. c]

#include <stdio.h>

char MakeChoice(void);
double CalculateDeflection(char ch,double L,double F,

double E,double I);
int main(void)
{

double length,force,elasticity,mom_of_inertia,deflection;
char choice,more='y';
do {

printf("Give length (ft), force (lb),\n");
printf("elasticity (lb/in"21, moment of inertia (in"41: e);
scanf("%lf %If %If %If",

&length,&force,&elasticity,&mom_of_inertia);
choice=MakeChoice() ;
deflection=CalculateDeflection(choice,length*12.,force,

elasticity,mom_of_inertia);
printf("\nThe deflection is %.31f inches\n",deflectionl;
printf("\nMore (yin)? "I;
fflush(stdin) ;
scanf("%c",&morel;

} while (more == 'y' I ;
return 0;

char MakeChoice(voidl
{

char ch;
printf("\n") ;
printf("l - supported at both ends, central load\n" I ;
printf("2 - supported at both ends, distributed load\n" I ;
printf("3 - supported at one end, loaded at free end\n");
printf("4 - supported at one end, distributed load\n");
printf("\n");
printf("Choose one ... "I;
fflush(stdinl;
scanf("%c",&chl;
return ch;

double CalculateDeflection(char ch,double L,double F,
double E,double II

printf("Choice: %c %If %If %If %If\n",ch,L,F,E,I);
switch(ch) {

case '1':
return -F*L*L*L/48./E/I;

case '2':
return -5.*F*L*L*L/384./E/I;

case '3':
return -F*L*L*L/3./E/I;

5

148 • 4. Selection and Repetition Constructs

case '4':
return -F*L*L*L/8./E/I;

default:
printf("Inappropriate support/loading option.\n');
return 0;

Verify the operation of the program.

Representative values for the elasticity E and moment of inertia I are
3 x 107 Ib/in2 and 800 in4

, for which the deflection of a beam supported at each
end and subjected to a central load of 50,000 lb is about 0.6 in. You should check
calculations by hand for each of the four support/loading options.

Problem Discussion
P-4.1O is an excellent example of a program that can benefit from

modularization. The main function guides selection of one or more support/loading
options and a separate function perfonns the actual deflection calculations.
Separation of the code in this way is much better programming style than putting
all the code required to support the menu options and deflection calculations
inside the main function. The function to calculate the deflection includes a
swi tch construct to perfonn the appropriate calculation, as well as a provision
for responding to inappropriate input.

The main program contains a conditional loop. It is optional in this
program, but its purpose is to give the user a chance to perfonn more than one
calculation without having to reexecute the program. This is a typical structure for
menu-driven programs.

4.5.3 Refraction of Light

1 Define the problem.

Refer to the application in Section 3.6.1 for a discussion of Snell's Law,
which gives the angle of a refracted ray of light as a function of the angle of the
incident ray at the interface between two materials with different refractive
indices:

njsin(i) = nrsin(r)

4.5 Applications • 149

Table 3.8 in Section 3.6.1 gives angles of refraction for a ray of light passing from
air into three different materials over a range of incident angles from 0° to 90°.
Write a program that will produce the results given in that table.

2 Outline a solution.

1. Specify the refractive index for each of the three materials in Table 3.8. They
can be hard-coded within the program or read from a data file.
2. Use a count-controlled loop to generate the incident angles. Within the loop,
calculate refracted angles for an air-material interface with each of the three
materials.

3 Design an algorithm.

DEFINE (incidenLangle, water_angle, glass_angle, diamond_angle as
real numbers; ff and DegToRad (conversion from angles to
radians) as real numbers; water_index, glass_index,
diamond_index, aicindex as real numbers)

ASSIGN DegToRad =ff/180
water_index = 1.33
glass_index = 1.50
diamond_index =2.42
air_index = 1.00

WRITE (headings)
LOOP (incidenLangle =0 to 90, steps of 5)

ASSIGN incidenLangle = incidenLangle • DegToRad
water_angle =

sin"1[(aicindexlwater_index)*sin(incidenLangle)J
glass_angle =

sin" 1
[(air_indexlglass_index)*sin(incidenLangle)J

diamond_angle =
sin-1

[(aicindexldiamond_index) *sin(incidenLangle)J
(Display angles in degrees)

WRITE (incidenLangle, watecindexlDegToRad,
glass_indexlDegToRad, diamond_indexlDegToRad)

END LOOP

150 •

4
4. Selection and Repetition Constructs

Convert the algorithm into a program.

P-4.11 [snell. c]

/* Snell's Law */

#include <stdio.h>
#include <math.h>
#define PI 3.14159
#define FILENAME "snell.dat"

int main(void)
{

double n_inc;I.0,a_inc,ref_l,ref_2,ref_3;
double n_l,n_2,n_3;
double deg_to_rad;
int i;
char name_l [10] ,name_2[10] ,name_3[10];
FILE *snell_in;

snell_in=fopen(FILENAME, "r");
fscanf(snell_in,"%s %If %s %If %s %If'',name_l,&n_l,name_2,&n_2,

name_3 , &n_3) ;
fclose(snell_in);
printf("Indices of refraction for: \n"l;
printf("%10s %.2lf\n%10s %.2lf\n%10s %.2lf\n",name_l,n_l,

name_2,n_2,name_3,n_3);
deg_to_rad=PI/180.0;
printf("\n Incident Refracted angle (deg)\n");
printf(" (air) %9s %9s %9s\n",name_l,name_2,name_3);
printf("---------------------------------------\n") ;
for (i=O; i <= 90; i+=101 {

a_inc=(doubleli*deg_to_rad;
ref_l=asin(n_inc*sin(a_inc)/n_l)/deg_to_rad
ref_2=asin(n_inc*sin(a_inc)/n_2)/deg_to_rad
ref_3=asin(n_inc*sin(a_inc)/n_3)/deg_to_rad
printf("%8.21f %9.21f %9.21f %9.21f\n",

a_inc/deg_to_rad, ref_I, ref_2, ref_3) ;

return 0;

4.5 Applications • 151

Running P-4.11

5 Verify the operation of the program.

Verify the tabulated values with a hand calculator in addition to comparing
your results with the values in Table 3.8.

Problem Discussion
In P-4.11, the names of the three materials and their refractive indices have

been stored in an external text file. This arrangement makes it easy to change the
materials, but not the total number of materials. The input values are echoed in
the program's output. Note how the values for the angles are generated from the
integer loop counter.

4.5.4 Oscillating Frequency of an LC Circuit

1 Define the problem.

An electrical circuit that contains an inductance L (henrys, H) and a
capacitance C (farads, F) in series oscillates at a characteristic frequency

f = 1

152 • 4. Selection and Repetition Constructs

Write a program that generates a table of oscillating frequencies for a two
dimensional table of Land C values. Let the L values form the rows of the table
and the C values form the columns. Such a circuit can be used to tune radios or
TVs. The table for this problem should include values for a circuit to be used in
a radio that receives AM-band radio stations-frequencies on the order of 1000
kHz.

2 Outline a solution.

A circuit containing an inductance of 2.5 mH and a capacitance of 10 pF
oscillates at about 1000 kHz. Therefore the range of C values should be 2 to 20
pF in steps of 2 pF, and the range of inductance should be 1 to 4 mH in steps of
0.5 mHo

1. Generate appropriate column headings for the table.
2. Create a nested loop. The outer loop will step through the inductance values
and the inner loop will step through the capacitance values.
3. Just inside the outer loop, but outside the inner loop, display the inductance
value generated by the outer loop. Do not print a new-line character.
4. The calculation for the frequency at a particular set of inductance-capacitance
values goes inside the inner loop. Display the result.
5. Just after termination of the inner loop, print a new-line character.

3 Design an algorithm.

The critical part of the algorithm is the nested loop to generate the table:

LOOP (for C =2 to 20 pF, in steps of 2 pF)
WRITE (C, no carriage return)

END LOOP
WRITE (carriage return)
LOOP (for L = 1.0 to 4.0 mH, in steps of 0.5 mH)

WRITE (L, no carriage return)
LOOP (for C =2 to 20 pF, in steps of 2 pF)

Calculate and display oscillating frequency, no carriage return
END (inner) LOOP
WRITE (carriage return)

END (outer) LOOP

4 Convert the algorithm into a program.

4.5 Applications • 153

P-4.12 [lc" c]

/* LC.C Oscillating frequency of an LC circuit. */
#include <stdio.h>
#include <math.h>
#define CO 0.0
#define nC 10
#define dC 2.0
#define LO 0.0005
#define nL 6
#define dL 0.0005
#define PI 3.141596
int main (void)
{

int row, col;
double L, C, f;
printf("OSCILLATING FREQUENCY (kHz) OF AN LC CIRCUIT\n');
printf(' C(pF)=\n");
printf('L(H)= ');
for (col=1; col<=nC; col++)

C=CO+dC*col;
printf('%5.0lf',C) ;

}
printf ("\n") ;
for (row=1; row<=nL; row++)

L=LO+dL*row;
printf (" %6. 4lf" ,L) ;
for (col=1; col<=nC; col++)

C=CO+dC*col;
f=0.5/PI/sqrt(L*C*1e-12);
printf(' %4.0lf',f/1000.0);

}
printf ("\n") ;

}
return 0;
}

Running P-4.12

154 • 4. Selection and Repetition Constructs

5 Verify the operation of the program.

A crucial check is to make sure that a circuit with L = 2.5 mH and
C = 10 pF oscillates at about 1000 kHz. It is easy to get the wrong answers for
this problem if you are not careful about converting quantities into the appropriate
units; for example, picofarads to farads in the case of capacitance. If one set of
values produces the correct answer, you can be reasonably confident that the other
results are also correct.

Problem Discussion
P-4.12 is a typical use of nested loops to generate tabulated values. Note

. how a single loop is used before the nested loop to generate the capacitance
values across the columns of the table. Make sure you understand how the \ n
character is used to control the location of line feeds at the end of lines within the
table. The program uses several #de fine directives for constant values that are
used to control the operation of the nested loops. It is better programming style
to define these values in this way than to hard-code the needed values in the loops
themselves.

4.5.5 Calculating Radiation Exposures for a Materials Testing Experiment

1 Define the problem.

In a test of the effects of radiation on materials, an experiment protocol
requires that:

(I) a sample be subjected to several bursts of radiation of random intensity, each
of which must not exceed some specified maximum value; and
(2) the sum of all radiation delivered to the sample must not exceed a specified
limit for total exposure.

Write a program to simulate this experiment by generating a sequence of random
exposure levels that satisfy this protocol.

2 Outline a solution.

4.5 Applications • 155

1. Supply the maximum intensity for a single exposure and the limit on total
cumulative exposure; the former must be less than the latter. These values may be
hard coded.
2. Initialize the cumulative exposure to 0 and select a random exposure
value-call this value the current value.
3. Construct a loop that allows the execution of statements inside the loop only
if the cumulative exposure plus the current value doesn't exceed the allowed total
cumulative exposure.
4. Inside the loop, add the current value to the cumulative exposure. Print the
current and cumulative exposures. Select a new current exposure value.
5. Outside the loop, after it terminates, print the current exposure value along with
a message indicating that this exposure would have exceeded the allowed
maximum.

3 Design an algorithm.

Here is a design for the critical loop structure.

LOOP (as long as proposed_exposure is less than max_total)
ASSIGN currenLexposure =random value, ~ max_single
ASSIGN proposed_exposure =cum_exposure + currenLexposure
IF (proposed_exposure ~ max_total THEN

ASSIGN cum_exposure =proposed_exposure
ELSE

display appropriate message
END LOOP
WRITE (current exposure, "is too big')

4 Convert the algorithm into a program.

P-4.13 [dose. c]

#inc1ude <stdio.h>
#inc1ude <std1ib.h>
#inc1ude <time.h>
#define MAX TOTAL 1000.0
#define MAX=OOSE 200.0

generator */
T E S T\n");

is %5.0lf.\n",

156 • 4. Selection and Repetition Constructs

int main(void)
{

int i;
double total_dose=O.O, proposed_total, dose;

srand«unsigned)time(NULL)); /* initialize random
printf("R A D I A T ION S I M U L A T ION
printf(" The maximum total dose for this test

MAX_TOTAL) ;
printf("The maximum individual dose for this test is %5.0lf.\n\n",

MAX_DOSE) ;
printf(" dose total\n");
printf (" ---------------- \n") ;
do {

dose=MAX_DOSE*rand()/RAND_MAX;
proposed_total=total_dose+dose;
if (proposed_total <= MAX_TOTAL)

total_dose+=dose;
printf ("%8. Olf%8. Olf\n" ,dose, total_dose) ;

}
else

printf(
"The proposed dose of %.Olf will exceed the max. End test. \n",
dose) ;

} while (proposed_total < MAX_TOTAL);
return 0;

Running P-4.13

5 Verify the operation of the program.

4.5 Applications • 157

This problem is similar to the "elevator" problem described in Section 4.4.
The goal of your program testing must be to ensure that the specified maximum
limit is never exceeded. The only straightforward way to do this is to observe the
operation of P-4.13 many times. However, it is also worth temporarily replacing
the random levels generated in the program with user-supplied levels. That way
you can test specific combinations of levels. What happens if the first proposed
intensity is greater than the maximum allowed intensity? What happens if the
cumulative exposure is exactly equal to the total allowed exposure? These are
questions that are difficult to answer when each exposure is chosen randomly, but
you can test the program's response if you can select the exposures yourself.

Problem Discussion
There are several features of P-4.13 that are worth studying. First, note that

no physical units have been specified in the problem statement or program. In this
simulation, the units don't matter as long as the user-supplied values are given in
consistent units.

Second, this program requires a
sequence of random numbers. Programming
languages don't have access to truly random
numbers, but C and other high-level languages
include a software-based random number generator that can be used to produce
sequences of pseudorandom numbers that appear to be random.

In P-4.13, the statement

inside the loop generates the random values using the C function rand. This
function generates a random integer uniformly distributed between 0 and the
largest possible integer for the C implementation being used. This maximum value
is stored in the predefined value RAND_MAX. The calculation in this statement
requires access to the s tdl ib. h header file. Note that the calculation
rand () / RAND_MAX by itself will return a value of 0 because both the numerator
and denominator are integers! However, because MAX_DOSE has been defined
as a real number, dose will be assigned a value between 0 and MAX_DOSE.

The purpose of the statement

srand((unsigned)time(NULL»;

158 • 4. Selection and Repetition Constructs

before the loop is to reinitialize ("seed") the random number generator each time
the program is run. To do this, the intrinsic function srand accesses a value in
your computer's system clock, which essentially starts the sequence of random
numbers from a random position every time the program is executed. Access to
the system clock requires inclusion of the time. h header file.

4.6 Debugging Your Programs

Students often have trouble with selection and repetition statements. It is
important to separate algorithm design problems from implementation problems.
Here are some questions you should ask yourself when your code doesn't work.

1. Do I understand what a selection construct is supposed to accomplish in the
context of a particular problem? When I choose paths covering a range of values,
have I designed the algorithm so that all possible values are included, without any
overlap? Have I chosen appropriately beween "or" and "and" in designing
relational tests? Have I organized responses to a variety of conditions in a logical
way to minimize unnecessarily long and convoluted selection constructs? Have I
made a conscious choice between IF... and CHOOSE... algorithms and used the
latter whenever possible, to produce more readable code?

2. When I implement an IF... algorithm, have I been careful to group statements
within curly braces for each branch of the selection construct? Once the code is
working, have I tested each branch of the construct?

3. When I implement a CHOOSE... algorithm with a swi tch construct, have I
provided code for all possible values of the ordinal case expression, including a
defaul t path for out of range responses? Have I included break statements at
the end of the code for each path?

4. Do I understand what a repetition construct is supposed to accomplish in the
context of a particular problem? Have I chosen appropriately among count
controlled, pre-test, and post-test loops? For count-controlled loops, have I made
appropriate use of integer loop variables?

5. When I implement a count-controlled loop, have I made sure that the initial
value of the loop counter, the repetition condition, and the update expression are
internally consistent? Have I avoided changing the value of the loop counter inside
its loop or using a loop counter outside its loop? Have I reused loop counter
names in order to avoid needless proliferation of variable names?

4.7 Exercises • 159

6. When I implement a conditional loop, have I chosen
appropriately between while... (pre-test) and do ...
while (post-test) syntax? When a counter must be updated
inside the loop, have I done this at an appropriate place relative to the code that
uses the counter? (This can be a problem in loops that read and process data from
files.) Am I sure that the terminating condition is appropriate and will always be
satisfied? Inappropriate terminating conditions can result in infinite loops that will
continue to execute forever, or at least until you interrupt your program with some
system-dependent series of commands.

4.7 Exercises

1. Electric utility rates in the Philadelphia area are among the highest in the
country. Monthly charges for residential customers who use electric resistance
heating or an electric heat pump are calculated as follows:

Service Charge:
Energy Charge:

Winter:

Summer:

$5.08

$0.1345IkWh for first 600 kWh
$0.0679IkWh for additional kWh
$0.1345IkWh for first 500 kWh
$0.1530IkWh for additional kWh

The service charge appears on each month's bill. The energy charge changes from
summer to winter; the summer rate structure applies from June through September
and the winter rate structure applies during all other months.

Write a program that asks the user to specify the month, expressed as an
integer between I and 12, and the number of kWh (kilowatt hours) used during
that month and then calls a function to calculate the monthly bill.

Use a swi teh construct to choose between summer and winter rate
structures and an if. . . statement to perform the required calculation based on
monthly usage. For this program, even though it's not a good idea in general, you
may assume that the month passed to the function is never outside the range 1 to
12; this means that you can specify ease values of 6, 7,8, and 9 for the summer
months and use the defaul t: case to process the winter months. [peeo. e]

2. A tray is formed from a sheet of metal by cutting equal
squares from each comer and bending the sides up. Given
the length and width of the original sheet, what size square
comer cut gives a tray with maximum volume? Write a
program that will provide an approximate answer to this
question by starting with a user-specified size fonhe sheet

160 • 4. Selection and Repetition Constructs

and calculating the volumes based on a series of cut sizes in 0. I-inch increments.
Ignore the fact that bending the sheet will result in a small loss in the height of
the sides. [tray_vol. c] .

Extra Credit:
If you have had an introductory

course in differential calculus, you should
be able to determine the exact answer to
this problem. Compare it to the result from
your program.

3. (a) The population of a certain animal is 1,000,000 at the beginning of the year.
During each year, 6% of the animals alive at the beginning of the year die. The
number of animals born during the year that survive to the end of the year is
equal to I% of the population at the beginning of the year. Write a program that
prints out the births, deaths, and total population at the end of each year and stops
when the population falls to 10% or less of the original population.
Hint: Populations can have only integer values.

(b) Assuming the death rate stays the same as in part (a), what is the birth rate
required for the population to double in 20 years? Starting with the original
population of 1,000,000, print the births, deaths, and total population at the end
of each year for 20 years, using the newly calculated birth rate. The population
after 20 years will be twice the original population when 2 =(I + r)20, where r
is the overall population growth rate; that is, the birth rate minus the death rate.

You may include both parts of the problem in a single program.
[popula tn. c]

4. The average temperature of the earth/atmosphere system as viewed from space
depends on the solar constant So, which is about 1368 W/m2

, and the earth's
albedo (reflectivity). Assuming the earth acts like a blackbody (a perfect radiator),
the temperature is related to the solar constant by

where cr is the Stefan-Boltzmann constant, 5.67xlO-s W/(m2 'K4
), and a is the

earth's albedo, about 0.30. (Albedo is a dimensionless measure of the fraction of
incoming solar energy reflected by the earth/atmosphere system.)

Write a program that calculates the temperature as a function of changes
in the solar constant over the range ±1O%. Note that the temperature of the
earth/atmosphere system as viewed from space is not the same as the average

4.7 Exercises • 161

surface temperature of the earth, which is about 15°C, because of the well-known
greenhouse effect of the earth's atmosphere. [earthatm. c]

5. The wavelengths of the Balmer series of lines in the hydrogen spectrum are
given by

where n is an integer having values greater than 2. Write a program that generates
the first 10 wavelengths in the Balmer series. [balmer. c]

6. The resistivity p of tungsten wire is roughly l00xlO-6 ohm-cm at the operating
temperature of a lightbulb filament. Suppose a lightbulb consumes 100 W of
power on a Ito-volt circuit. The power can be expressed in terms of the voltage
Y and resistance R of the filament as

Power = y 2/R = y2f(pLlA)

where L is the length of the filament in cm and A is the cross-sectional area in
cm2

.

Write a program that generates a table of reasonable lengths and diameters
that will give the required resistance. It is up to you to decide what "reasonable"
means. [tungsten.c]

7. Write a program that calculates and displays the square root, cube root, fourth
root, and fifth root of the integers 2 through 20. Your table should look something
like this:

n 2 3 4 5
2 1.4142 1.2599 1.1892 1.1487
3 1.7321 1.4422 1.3161 1.2457

20 4.4721 2,7144 2.1147 1.8206

Be sure to use appropriate format specifiers so the decimal points in the table line
up. [rootable. c]

8. The series

00 n

L~
n=O n!

1
O!

+
z
1!

+
Z3

+ - +
3!

162 • 4. Selection and Repetition Constructs

converges for any value of z. That is, an individual term zn/n! approaches 0 and
the sum of all the terms approaches a definite value as n approaches infinity.
Write a function, and a program to test it, that accepts as input a value of z and
returns as output an estimate of the value of the series for that value of z. Use a
conditional loop that terminates when the absolute value of an individual term is
smaller than some hardcoded small value. Note that you can compute individual
terms in the series without actually calculating n! explicitly. The nth term is just
the (n_l)th term times z/n.

Your results can easily be checked once you recognize what this series
represents; you will find it in any tabulation of series expansions for common
mathematical functions. [series. c]

9. An external text file contains real numbers:

7.7
6.6
4.9
5.9
8.1
(and so forth)

Write a program that reads this file and calculates the average m and standard
deviation s for all the values in the file, using the formulas

s

10. One of the concerns in connection with global warming is that the average sea
level may rise. Suppose you are a civil engineer who has been asked to estimate
the potential loss of land along a coastline. Write a program that relates a sea
level rise of R cm to loss of land, in units of km2/km and acres/mi, along a
coastline with a specified range of grades. A grade of 0.1 %-10% with respect to
the sea, in increments of 0.1 %, is reasonable.

If the coastline makes an angle e with the sea, the distance lost from the
original coastline, measured along the sloping ground, is Rlsin(e). The grade is
defined as 100·tan(e) percent. Suppose the sea level rises 10 cm (about 4 in). A
10 slope (about 1.75% grade) means that the coastline will recede about 5.7 m,
with a loss of about 0.0057 km2 per km of coastline, or about 2.3 acres per mile
of coastline. (There are 1609.3 m/mile and 640 acres/mile2

.) [sea_levl. c]

4.7 Exercises • 163

11. Simulation studies in science, mathematics, and engineering often require
random numbers from a so-called normal distribution. Such numbers have a mean
of 0 and a standard deviation of 1. (The standard deviation is a measure of the
spread of values in a distribution.) C's random number generator produces
uniformly distributed integers that are easily convertible to uniformly distributed
real numbers in the range [0,1), rather than normally distributed numbers. (Recall
the application in Section 4.5.5.)

Fortunately, there is a simple way to generate a pair of normally distributed
numbers Xl and X2 from a pair of uniformly distributed numbers u, and U2 in the
range (0,1]:

Xl = J-Un(ul)cos(217'uz)

Xz = J-2fn(ul)sin(217'uz)

Write a program that uses this formula to generate a sample of 200
normally distributed numbers. You can check the numbers to see if they actually
appear to be normally distributed by calculating their mean and standard deviation,
using the equations given in Exercise 9.

Accumulate the sums of x and x2 inside the loop and use the sums to
calculate the mean and standard deviation when the loop is complete. The mean
and standard deviation (or the average of the means and standard deviations from
several sets of numbers) will be close to 0 and 1, but they won't be exactly 0 and
1. There are quantitative statistical tests for a normal distribution, but they are
beyond the scope of this problem.
Hint: Remember that this algorithm generates random numbers in pairs, so a
for ... loop from 1 to 100 generates 200 random numbers, not 100.

The formulas for generating normally distributed numbers require uniform
numbers in the range (0,1], rather than [0,1], because In(O) is undefined. In the
implementation, the upper limit of the range is of no concern. However, it's
possible that a value of exactly 0 might be generated. Therefore, your program
should protect itself against this possibility, no matter how unlikely, by testing Ul
and replacing it with a very small number if its generated value is exactly O.
[randorn . c)

12. One way to estimate the square root of a number n is to use Newton's
algorithm. For this algorithm, the value of the initial guess is relatively
unimportant; guess = nl2 is a reasonable choice. Then calculate a new estimate by
calculating a new guess:

guess = (guess + nlguess)/2

164 • 4. Selection and Repetition Constructs

Continue to make new estimates until the absolute value of the difference between
guess2 and n differs from the original number by less than some specified small
amount. Write and test a function that implements this algorithm. [newton. c]

13. The Internal Revenue Service acknowledges that the value of equipment used
in manufacturing and other businesses declines as that equipment ages. Therefore,
businesses can gain a tax advantage by depreciating the value of new equipment
over an assumed useful lifetime of n years. At the end of n years, the equipment
may have either no value or some small salvage value. Depreciation can be
computed three ways:

1. Straight-line depreciation. The value of an asset minus its salvage value
depreciates by the same amount each year over its useful life of n years.
2. Double-declining depreciation. Each year, the original value of an asset minus
previously declared depreciation (its book value) is diminished by 2/n.
3. Sum-oj-digits depreciation. Add the integers from I through n. The depreciation
on the original value of an asset minus its salvage value allowed in year i is
(n - i) + 1 divided by the sum of the digits.

Write a program that calculates the depreciation available for years I through n.
Assume that the salvage value is some small percentage (perhaps a value in the
range 5 to 10 percent) of the original value. Table 4.3 gives some sample output
for an asset originally valued at $1000 with a lifetime of 7 years and an assumed
salvage value of $100.

Table 4.3. Sample depreciation table

Original value $1000
Salvage value $ 100
Lifetime 7 years

Straight Asset Double Asset Sum of Asset
Year line value declining value digits value

1 128.57 871.43 285.71 714.29 225.00 775.00
2 128.57 742.86 204.08 510.20 192.86 582.14
3 128.57 614.29 145.77 364.43 160.71 421.43
4 128.57 485.71 104.12 260.31 128.57 292.86
5 128.57 357.14 74.37 185.93 96.43 196 .43
6 128.57 228.57 53.12 132.81 64.29 132.14
7 128.57 100.00 37.95 94.86 32.14 100.00

Note that the yearly depreciation for the double-declining method doesn't depend
at all on the salvage value. This means that not all the depreciation can actually
be taken in the seventh year if the asset really has a salvage value of $100.
[deprecia. c]

4.7 Exercises • 165

Extra Credit:
Businesses often like to maximize depreciation when equipment is new in

order to produce the greatest immediate tax advantage. Which method should they
choose? If businesses can change the method by which they calculate depreciation
at any time during the life of an asset, when (if ever) should they change
methods? (The answer to this question depends on the salvage value of the asset.)

14. Consider the following piecewise-continuous function, which is shown in
Figure 4.1:

f(x) = x, 0 ~ x ~ 30
30 + (x - 30)2/100, 30 < x ~ 80
55 + (x - 80)/2, x > 80

Write a program that calculates values of this function for values of x in the range
o to 100 in steps of 5 units. [piecewse. c]

70~----------------------~

60 ,,,,,,J·,,··,,,r,,,,r,,,,,i,,·,,,··(,""""'r""""r""""1·"'·"'" ;"""""

:IL'LII'IJ
~ ~ j j ~ : j j j 1

30 r- ·T ': 'r j 'f i j" T '
20 1"' ,i 'r '-r -r r 'r j 'T '..
10 i····· ·····_··········1····· _........, ···_··········1··· , , .

O-JL---+----i----ii----i---+----+--i----i---+-----I
o 10 20 30 40 50 60 70 80 90 100

x

Figure 4.1. Graph of a piecewise-continuous function.

15. In orbital mechanics, the angular position of an orbiting object as a function
of time must be calculated. For a circular orbit, the calculation is simple because

166 • 4. Selection and Repetition Constructs

the position is directly proportional to time. For noncircular orbits, the calculation
is more complicated.

First, some definitions. The time required for an orbiting object to
complete one revolution is called its period. The mean anomaly is the angular
position an object would have if it were in a circular orbit with the same period.
Mean anomaly is directly proportional to time.

The eccentric anomaly Ec is related to the mean anomaly M through a
transcendental equation:

where both angular quantities must be expressed in radians rather than degrees and
the eccentricity e is a measure of the shape of the orbit. The range of e is 0 to I,
with circular orbits having an eccentricity of O.

The true anomaly e is related to the eccentric anomaly through the
equation

cos(O)
cos(Ec) - e

1 - ecos(Ec)

Therefore, true anomaly can be related to mean anomaly, and hence to time,
through the eccentric anomaly. The geometry is illustrated in Figure 4.2.

True anomaly (for e=O.5)

Mean anomaly =90 degrees

.,.. ... ----- ...
,,/ --------

/"
I

(
I

{
I.....+ .
\
\

\ ,
"-
''-,

"

Perigee.
mean anomaly =

odegrees

Figure 4.2. Geometry of noncircular orbits.

The equation involving M (Kepler's equation) can't be solved directly for
eccentric anomaly, but it can be solved iteratively:

1. As a first guess, assume Ec = M.
2. Inside a loop, save the current value of Ec: Eo1d =Ec'

3. Recalculate Ec: Ec=M + eesin(Ec>.

4.7 Exercises • 167

4. Repeat steps 2 and 3 until the absolute magnitude of Ec minus Eo1d is less than
some specified small value (l0·5 or 1O-{; are reasonable choices).

Write a program that uses this algorithm to calculate true anomaly as a
function of mean anomaly for values of mean anomaly in the range 0°-360°
degrees, in increments of 5°, for these values of eccentricity: 0.1, 0.25, 0.50, 0.75,
and 0.90.
Hints:
1. All angular calculations must be done in radians. If you wish to display results
in degrees, convert angles to degrees within output statements.
2. It is possible for arithmetic errors to occur when the mean anomaly is 180°
because the argument of the arccosine function must never exceed 1. As the
eccentric anomaly approaches 180°, the calculation for cos(8) might produce a
value slightly greater than 1. Account for this possibility by testing the value of
cos(8) before you take its arccosine. Also, the arccosine function doesn't produce
values in the range 0 to 21t (0° to 360°). You can use the values of mean anomaly
to make sure your program produces answers in the appropriate range; whenever
the mean anomaly is greater than 180°, the true anomaly must also be greater than
180°. [kepler2. c]

16. A satellite flying over a cloudless desert carries an instrument that measures
the longwave radiance reflected in the direction of the instrument from a particular
spot on the desert's surface. The instrument records the radiance L as a function
of zenith angle 8 relative to the spot on the surface. An empirical model is used
to interpret the measured radiance as a function of zenith angle and the radiance
Lo that would be measured from a satellite passing directly over the site:

L = Losec(8Y, 8~60°
L = Losec(8Y-a[sec(8) - sec(600)], 8>60°

where x and a are empirically determined constants. The secant of the zenith angle
is proportional to the amount of atmosphere between the satellite and the ground
(the atmospheric path length). The model reflects the fact that the radiance
observed by a satellite is limb darkened because the satellite must look through
more atmosphere as the zenith angle increases. At large zenith angles, an
additional term is required to account for the rapidly decreasing transparency of
the atmosphere to longwave radiation.

Table 4.4 gives empirical model parameters for three desert surfaces
derived from measurements taken in January. This is winter in the northern
hemisphere, which explains why the value of Lo is higher for Australian deserts
than it is for the two northern hemisphere deserts. Because the satellite measures
longwave radiance, a larger radiance means that the surface is warmer. Figure 4.3
shows predicted radiances for these surfaces.

168 • 4. Selection and Repetition Constructs

90·

90

i : Australia
100 ············~············~············i············i·· : .

, , . . ,, ..,. .". ..
: ..l. ~~~~~:~~~~~ .. j i ; .~

~
~ 80 ~~o.-:'r. .
a:
'g 70 ············f··········+··········+···········j············I···········+···········i······

: I I : I I '

60fT!"!"
500 10 20 30 40 50 60 70 80

Zenith angle, degrees

Figure 4.3. Predicted longwave radiances for three desert sites.

Table 4.4. Model parameters for longwave radiance from deserts

Australia 110 -0.2116 3.184

Sahara 85 -0.0998 1.854

Saudi Arabia 90 -0.0974 1.241

Write a program that will calculate predicted values of radiance as a
function of satellite zenith angle for the three sets of model parameters given in
Table 4.4. What happens as the zenith angle approaches 90°? What can you
conclude about the validity of the model as the satellite approaches the horizon?
What might you conclude about the fact that, as the zenith angle increases, the
differences in radiances observed from different surfaces tend to decrease?
[limbdark. c]

17. A rectangular container with specified length, width (as viewed from the side),
and depth contains a liquid (molten metal, for example). The container is rotated

4.7 Exercises • 169

about an axis parallel to the depth dimension at a constant angular rate, and the
contents of the container spill into a mold. Write a program that will calculate the
total volume of liquid poured into the mold as a function of container angle. Also,
calculate an approximation to the "instantaneous" rate at which liquid pours from
the container as a function of container angle and rotation rate.
Hints: Rotate the container in equal angular increments and calculate the resulting
volume that has been emptied from the container. Subtract from this the volume
at the previous angular value and divide by the angle increment. If the angle
changes at a constant rate with respect to time, this calculation gives an
approximation of the changing volume rate with respect to time.

Divide the calculations into two parts. First calculate angles from the time
the container starts to rotate to the time the liquid level reaches the bottom comer
of the container. Then calculate angles between this point and 90°, at which time
the container is empty. The angle at which this transition occurs is given by

tan(9)=height/width

[pouring. c]

Extra Credit:
I. Suppose you need to pour liquid at a constant rate. Modify your program to
calculate how the angle must change with respect to some arbitrary time unit. One
way to visualize this problem discretely rather than continuously is to imagine that
the molten metal is used to fill 100 identical molds; that is, each mold uses 1%
of the liquid. How much should the angle increase to fill each mold? Clearly, the
change in angle required to fill each mold is not constant.

2. Suppose the container is cylindrical rather
than rectangular. The equations for emptying
the first half of the container are easy because
the volume at any angle is simply half a
cylinder whose height is measured at the point where the liquid intersects the side.
However, after the liquid reaches the bottom comer of the container, the shape
becomes a conic section, the volume of which is harder to calculate.

18. A simple model of population growth assumes that a new population pI is
linearly related to the current population p; that is, pI = rp. Such a population will
increase or decrease monotonically, depending on the value of r. Biologists have
long recognized that populations are usually bounded in some way. For example,
as populations grow, limited food resources may constrain further growth.
Conversely, once populations shrink, those same food resources may be able to
support a population that can start to grow again.

170 • 4. Selection and Repetition Constructs

Here is a simple equation that models this bounded behavior:

pI = rp(l - p)

where, for simplicity, the population has a value in the range [0,1]. Clearly, this
model has the desired properties of bounding p'. As p grows, I-p shrinks, and vice
versa. Suppose r = 2. Here are the first few values from iterating this equation
with an initial value of p = 0.2:

cycle p p'

1 0.20 0.32000
2 .32 .43520
3 .4352 .49160
4 .4916 .49986
5 .49986 .50000

One remarkable property of this function is that for r = 2, the population stabilizes
at a value of 0.5 for any value of initial population p in the range (0,1) (that is,
for any value between, but not including, 0 and 1).

For many years, however, some interesting properties of this disarmingly
simple equation went unnoticed. Suppose p = 3.2. Iterate on the equation, starting
with p =0.9 (an arbitrary choice):

cycle p p'

1 0.90000 0.28800
2 .28800 .65618
3 .65618 .72195
4 .72195 .64237

37 .79946 .51305
38 .51305 .79945
39 .79945 .51305
40 .51305 .79945

Now the population no longer stabilizes at a single value. Instead, it cycles back
and forth between two values. Figure 4.4 shows the first 20 population values.

For r = 3.5, the population cycles among four different values. For a
slightly higher value, it cycles among eight values. For r just in excess of 3.57,
the population oscillates randomly. As r continues to increase, other cycles
emerge, only to disappear into randomness as r continues to increase. What is the
upper limit on r in order for the population to remain bounded; that is, to oscillate
between fixed limits? What is the maximum value of r for which the population
is stable rather than bounded?

4.7 Exercises • 171

0.9l1l-------------------------,

0.8

c:o
~
"'5a.8. 0.6 .

re
'n;
Eg

2 4 6 8 10 12 14 16 18 20

time, arbitrary units

Figure 4.4. Normalized population as a function of time.

The discovery that an apparently simple dynamical system can produce this
odd kind of random behavior gave birth to what is now known as chaos theory.
This theory has found applications in many fields of science and has had a
profound effect on science during the second half of the twentieth century.

Fortunately, it is easy to investigate the behavior of this remarkable
population equation. Write a program that requests values for rand p, where the
value of p must be between 0 and 1. Calculate future populations in a count
controlled loop. The lower limit on r is 0, but what is the upper limit? Can you
find the smallest value of r for which the population (a) no longer converges on
a single value; (b) oscillates between two or more values; (c) is still bounded but
appears to be random? [popchaos . c]

19. A heat wave occurs whenever the high temperature is at least 90°F for at least
three consecutive days. Using the file weather. dat, print the date and high
temperature for any day on which the high temperature was at least 90°F. If that
day was part of a heat wave, print an appropriate message after the high
temperature for the third day, which is the first day on which the heat wave can
be recognized. The message should include the number of days in the current heat
wave, starting with day 3. Keep track of the total number of days with highs of
at least 90°F and display this value when you have processed all the days.

172 • 4. Selection and Repetition Constructs

In the file wea ther . da t, the data are given in sets of three lines. The
daily high temperature always appears right-justified in columns 10 through 12 of
the first line in each set. Here are the data for the first two days of June 1997.

06/01/97 79 3:16p 62 6:56a 97 1895 44 1984 78 58
29.92r 29.90f 29.83f 29.888
100 63 0.00 0.00 14.09 16.95 g 33 02 80 5:34a 8:24p

06/02/97 63 1:01a 57 8:00p 98 1925 46 1907 78 58
29.89r 29.95r 29.968 ------

100 92 0.63 0.63 14.72 17.07 g 33 02 100 5:33a 8:24p

Here is some partial output for temperatures recorded during the summer of 1997.
[heatwave. c]

06/21/97 94
06/22/97 93
06/24/97 91
06/25/97 96
06/26/97 93 OFFICIAL HEAT WAVE, day 3
06/28/97 90
07/03/97 92
07/04/97 91
07/09/97 93
07/13/97 94
07/14/97 94
07/15/97 98 OFFICIAL HEAT WAVE, day 3
07/16/97 96 OFFICIAL HEAT WAVE, day 4
07/17/97 97 OFFICIAL HEAT WAVE, day 5
07/18/97 97 OFFICIAL HEAT WAVE, day 6
07/27/97 94
07/28/97 91

20. The student body of a university is 60 percent women. Within this student
body, 25 percent of the women and 15 percent of the men are majoring in some
branch of engineering. If a student chosen at random is majoring in engineering,
what is the probability that the student is a woman?

Write a program to solve this problem by simulating a specified large
number of trials, where a trial is defined as selecting a student, randomly
assigning gender with the specified probability, and determining whether the
student is majoring in engineering, with a probability based on gender. Keep count
of the number of simulated male and female students who are studying
engineering. The probability that a student majoring in engineering is a woman is
the ratio of the number of women majoring in engineering to the total number of
students majoring in engineering. If you have had a probability and statistics
course, you should be able to compare the results of this simulation to the
theoretical probability. [students. c]

21. Assume that a simple two-chromosome model of gender determination holds
for humans-XX = female, XY = male-and that the probability of inheriting a
Y chromosome from a male parent is 50 percent.

4.7 Exercises • 173

(a) Write a program that you can use to fill in Table 4.5, giving child gender
distributions for four-child families?

(b) Suppose that the probability of inheriting an X chromosome from a male
parent is only 40 percent? How will this affect the values in Table 4.5? What is
the population distribution of males and females after 10 generations? After 100
generations? Write a program that will help you answer these questions.

Table 4.5. Expected child gender distributions for four-child families

4

3

2

I

o

o
1

2

3

4

Note: See the discussion of simulations in Exercise 20. [chromo. c)

2This is a standard problem from probability and statistics.

174 • 4. Selection and Repetition Constructs

22. A factory assembly line consists of four machines producing the same product.
Production statistics for the machines are given in Table 4.6.

Table 4.6. Statistics for production machinery

A 10 0.1

B

c
D

20

30

40

0.05

0.5

0.2

What is the probability that a product chosen randomly from the total assembly
line production will be defective? If a randomly chosen product from the assembly
line is found to be defective, what is the probability that the item was produced
by machine A? By B? By C? By D?

Write a program to solve this problem by simulating the selection of a
large number of products, assigning each product to a machine, and determining
if it is defective.
Hint: See the discussion of simulations in Exercise 20. [factory. c]

23. A factory manufactures N widgets per year. The storage cost of raw materials
for widgets is D dollars per widget per year. The cost to order raw materials for
widgets is 0 dollars regardless of the amount of raw material ordered.

(a) Write a program that will determine:

(1) how many units of raw material U the factory should order at one time in
order to minimize the total yearly cost to maintain an inventory of raw materials
for making widgets;
(2) the minimum total yearly inventory cost.

Assume that the total yearly inventory cost to store raw material for widgets is
given by

C = D (UI2) + 0 (NIU)

4.7 Exercises • 175

where U/2-half the size of each order-is the average number of raw material
units stored during the year.3 Use N = 10,000 widgets per year, D = $1000 per
raw material unit per year, and 0 = $100 per order as a test case.

This optimization problem can easily
be solved with calculus: Set the derivative
of C equal to 0 and solve for U. However,
it is also easily solved simply by trying all
values of U from 1 to 10,000 and saving the value of U that gives the minimum
total cost. If you have had a course in differential calculus, you should check your
program's numerical solution against the analytical solution.

(b) The numerical solution has the advantage that it is easy to modify. Add code
to your program that will determine how many units of raw material to order at
one time when the order cost is 0 plus a term that depends on the number of units
ordered. Use an additional order charge of $0.50 per unit as a test case. [eoq. c]

24. There is not much justification for writing code to do single-variable
optimizations, as in Exerise 23, other than as a programming exercise. However,
with more variables, the calculus required to find the analytic optimum solution
even for an unconstrained problem becomes more unwieldy. When the variables
are constrained, then different approaches are required. One typical multivariable
problem from economics is maximizing total profit on sales of more than one item
as a function of the cost to advertise each item, when the total advertising budget
is constrained not to exceed a specified amount. Suppose a retailer wishes to
maximize total profit on the sales of two items, A and B. Economic research has
shown that the profit for two products A and B, as a function of advertising
expenditures x for product A and y for product B, can be expressed as

PA =-aAx2 + bAx + cA
PB= - aBy2 + bBy + cB

A reasonable initial assumption is that profit is directly proportional to the amount
of money spent on advertising. However, these equations reflect the fact that at
some point, additional advertising is counterproductive and can even result in
losses rather than profits.

Write a program that will determine the optimum amount of money to
spend for advertising products A and B such that the total profit, PA + PB' is
maximized. Your output should include at least this test case:

JThis is a standard economic order quantity model from economics.

176 • 4. Selection and Repetition Constructs

aA = 2
bA = 40
cA = 2000
x + Y S; 25

aB = 0.5
bB = 60
cB = 3000

Can you increase profits for this case by increasing the total amount spent on
advertising? Use your program to determine the total advertising budget that will
produce the maximum total profits for these two profit models. (You can do this
simply by trying different values in place of 25. Your program doesn't have to
find this optimum value on its own.)
Hints: Assume the advertising expense variables x and y are integers, with units
(thousands or millions of dollars?) such that the value of these variables will not
exceed the range of data type int. Use nested loops to try all appropriate
combinations of x and y. [prof_max. c]

5

More About Modular Programming

5.1 Defining Information Interfaces in C

User-defined functions, as an implementation of the CALL and SUBPROGRAM
pseudocode statements, were first introduced in Chapter 3. In that discussion,
functions, including C's intrinsic functions, had a simple information interface.
The input consisted of one or more values, and the output consisted of a single
value associated with the name of the function through the use of a return
statement. Thus, assuming that a, b, and c are declared and given appropriate
values, these kinds of statements are possible:

y=user_function(a,b,c) ;

and

printf('%lf\n",user_function(a,b,c» ;

With this function interface, information flows into the function from the argument
list specified when the function is called, along a "one-way street" through the
parameter list. The result generated by the function is associated with the name
of the function, which can be used in an assignment statement or by itself.

In general, subprogram implementations need to be more flexible than this.
Consider a programming problem in which a large computational task will be
divided into several smaller tasks under the control of a main program. Each small
task is associated with a subprogram. Some of the subprograms may be called by
the main program and some may be called by other subprograms. Each
subprogram may require multiple inputs to do its job and may return multiple
outputs. Such a model is illustrated in Figure 5.1.

In this program, the controlling program (the main function in a C
implementation) calls subprograms 1, 3, 4, and 5 directly. Subprogram 1 calls
subprogram 2. Subprogram 5 is called by subprogram 4 as well as by the
controlling program.

Input to and output from these subprograms are indicated by the arrows in
Figure 5.1. We already know that we can provide multiple inputs to C functions,
but we would like not to be restricted to a single output. In the algorithm design
sense, the In arrow should provide a symbolic path for whatever information a
subprogram needs to do its job and the Out arrow should provide a path for all
the results of calculations done within that subprogram.

D. R. Brooks, C Programming: The Essentials for Engineers and Scientists
© Springer-Verlag New York, Inc. 1999

178 • 5. More About Modular Programming

Controlling
Program

SUbprogram 1

Subprogram 2

Subprogram 3

Figure 5.1. Function interface model.

Before we explore a more general information interface model for C
functions, we should consider once again the simple function model of Chapter 3.
An important consequence of passing information along a "one-way street"
through a parameter list is that, although the values of parameters can be changed
inside a function, the values of the arguments corresponding to those parameters
will not be affected by any local changes. Consider this proposed change to the
function area_func, which first appeared in program P-3.5:

double area_func(double radius)
/* PI must be available as a global constant. */
{

radius=O.O;
return PI*radius*radius;

The value returned by the function is 0 because the local value of radius has
been changed to 0, for no reason other than to make a point. However, the value
of the argument corresponding to radius in the calling function will remain
unchanged. (You should verify this by making the indicated change to P-3.5 and
displaying the value of radius in the main function after the call to
area_func.)

The function interface model described here is called
pass-by-value. C protects the original values of the arguments
by making a copy of those values rather than using the
original values themselves. The process is illustrated schematically in Figure 5.2.
Note that it is only copies of the arguments a, b, and c which are passed to the

y = func(a,b,c);

5.1 Defining Infonnation Interfaces in C • 179

r---------------------------,
I copy of a, copy of b, copy of c :
~ J

inl func(int x,inl y,int z) {

return ...;
}

Figure 5.2. Pass-by-value function interface model.

parameter list. Remember that the names in the argument and parameter list and
parameter lists are independent of each other. In Figure 5.2, the parameter names
x, y, and z are (but don't have to be) different from the argument names a, b,
and c.

A consequence of the fact that values of arguments associated with items
in a parameter list cannot be changed by a call to a function is that functions
cannot return "output" values, in the algorithm design sense, through the
parameter list. Consider again the simple problem solved in programs P-3.5 and
P-3.6: given a radius, calculate the area and circumference of a circle. Those
programs defined two functions, each of which returned one quantity. Is it
possible to overcome the single-output restriction on functions and combine both
these calculations in a single function? Yes, and Figure 5.3 presents a model for
implementing multiple return values in C.

In this case, the function contains four parameters. The first two are passed
by value, with copies of arguments a and b being passed to the parameters x and
y. The second two arguments are the addresses of the variables c and d; hence
the use of the & operator. The corresponding parameters r-ptr and s-ptr are
pointers to the locations of values of type into Note that the data type of
func_by_ref is void. This is because the function does not contain a return
statement. Instead, calculated values are returned indirectly through the parameter
list. How is this possible if the values of arguments are passed to the parameter
list along a "one-way streetT The answer lies in the use of pointers in the
parameter list.

When func_by_ref is called, the third and
fourth arguments are addresses rather than values.
Within function circle_stuff, the appearance of
the indirection operator * with the names r-ptr and s-ptr in the parameter
list indicates that these names are not meant to be given values directly, as
variables. It is not the values of these pointers which will be changed inside the
function, but the contents of the memory locations to which the pointers point.

180 • 5. More About Modular Programming

void func_by_ref(int x,int y,int *r-ptr,int *s-ptr) {

*r-ptr= ;
*s-ptr= ;
}

Figure 5.3. Pass-by-reference function interface model.

Hence, the quantities on the left side of the two assignment statements in
func_by_ref,

*r-ptr= ;
*s-ptr= ;

are references to the memory locations that will hold the results of the calculations
on the right side of the assignment operation. Based on the syntax of the
parameter list in func_by_ref, assignment statements such as r-ptr= ... i

make no sense and will generate a syntax error; such a statement would be an
attempt to change not a value, but a memory address. Also, because
func_by_ref does not include a return statement, it makes no sense for this
function to appear on the right side of an assignment statement.

Through the use of pointers to change the
contents of memory locations, C has overcome the
limitations of the pass-by-value subprogram model. The
ability to operate on a memory location passed as a parameter is called
pass-by-reference. (This is why the function in Figure 5.3 is called
func_by_ref.) With pass-by-value and pass-by-reference models, parameters
can be described as "input" or "output" with a specific meaning as defined by the
language syntax: quantities passed by value (which may be expressions or values
as well as variables) are always input, whereas variables passed by reference are
output in the sense that changes to their values inside a subprogram are passed
back to the calling subprogram.

You can conclude that C only simulates pass-by-reference because the
address of a variable must be passed as an argument, rather than just the variable
name, and because the indirection operator must be used when assigning values

5.1 Defining Information Interfaces in C • 181

by changing the contents of memory locations. I However, from the algorithm
design point of view, the availability of pointers and the indirection operator at
least allows C programmers to design algorithms in which parameters have either
an "input" or "output" attribute.

To see how pass-by-reference works in practice, we will now return to the
task of combining the calculations of the area and circumference of a circle into
a single function, as shown in P-5.1.

P-5.1 [circlep3. c]

#include <stdio.h>
#define PI 3.14159265
void circle_stuff (double radius, double *a-ptr, double *c-ptr);
int main(void)
{

double radius=3.0;
double area, circumference;

circle_stuff (radius, &area, &circumference);
printf("%8.3f %8.3f\n",area, circumference);
return 0;

)
void circle_stuff (double radius, double *a-ptr, double *c-ptr)
{

*a-ptr=PI*radius*radius;
*c-ptr=2.0*PI*radius;

In P-5.1, the function circle_stuff has been given the data type
void. As indicated in the discussion of Figure 5.3, the void declaration means
that this function will not return a value in the sense that there is no return
statement in the function. Instead, we will use pointers as an alternate way of
accessing values in memory, following the model shown in Figure 5.3. The goal
of function c i r c 1e_s t u f f is to calculate the area and circumference and then
to pass these values back to the calling function. However, in P-5.1, the values of
area and circumference do not appear in the argument list when function
circle_stuff is called; instead, through the use of the & (address of) operator,
the addresses of the memory locations used by area and circumference are
passed in the argument list. In function c i rc 1e_s t u f f' s parameter list, the
memory locations specified in the calling argument list are associated with
pointers, using the notation double *aJ)tr, double cJ)tr.

Within function c i r c 1e_s t u f f, the appearance of the indirection
operator * with the names aJ)tr and cJ)tr in the parameter list indicates that
these names are not meant to be given values directly, as variables. It is not the

ISome languages, such as Pascal and C++, offer a more transparent implementation of pass-by
reference.

182 • 5. More About Modular Programming

values of these pointers which will be changed inside the function, but the
contents ofthe memory locations to which the pointers point. Hence, the quantities
on the left side of the two assignment statements in circle_stuff,

*a-ptr=PI*radius*radius;
*c-ptr=2.0*PI*radius;

are references to the memory locations that will hold the results of the calculations
on the right side of the assignment operation. In P-5.1, these locations correspond
to the addresses of a-ptr and c-ptr. Because these pointers are associated with
the addresses of area and circumference, the values of these variables have
been changed, even though this change never involved the variable names area
and circumference (or their local names in a function) appearing on the left
side of an assignment statement.

The concept of assigning values indirectly through pointers can be difficult
to understand, and it may help to look at an example unrelated to how pointers are
used in P-5.1. Consider program P-5.2:

P-5.2 [ptr_demo. c]

#include <stdio.h>
int main(void) {

int i=2,j=3,*i-ptr,*j-ptr;

i-ptr=&i;
j-ptr=&j;
printf ("%i %i %i %i %i %i \n" , i, j , * i-ptr, *j-ptr,

*i-ptr+*j-ptr, (*i-ptr) * (*j-ptr»;
return 0;

In P-5.2, the data declaration statement
includes two pointers associated with values of type
int-*i-ptr and *j-ptr. When pointers are
declared, they are said to be bound to their
declared data type. In the two assignment statements following the declaration
statement, i-ptr and j-ptr are assigned values equal to the addresses of i and
j. As demonstrated by the printf statement, it is possible to access the values
associated with i and j either directly, in the usual way, or indirectly by
dereferencing the pointer to the memory location in which i or j is stored, using
the dereferencing operator (*). It is also possible to perform arithmetic operations
using these memory locations, such as *i_p t r + * j -p t rand
(* i-ptr) * (* j-ptr) . In the second of these statements, the parentheses are
optional and are used just to make clear the multiple uses of the * character; the
fact that C correctly interprets such a statement without extra parentheses implies

5.1 Defining Infonnation Interfaces in C • 183

that the dereferencing operation has precedence over the multiplication operator
(recall Table 3.4 in Chapter 3, which gave the precedence rules for C operators)
and that C can appropriately interpret the asterisks used in this context.

It is easy to confuse the multiple uses of the asterisk symbol. Depending
on context, it can be interpreted as the multiplication operator (a *b), an operator
that creates a pointer bound to a specified data type (int *a;), or (as in this
case), an indirection operator that accesses the contents of a memory location to
which a pointer points (* a = 3 . 0 ;).

In a program such as P-5.2, there is no reason to do arithmetic using
pointers other than as a demonstration of what it means to access memory
locations indirectly in this way. However, this approach is required in function
circle_stuff in P-5.1 in order to provide a means of returning multiple
results to a calling function.

In P-5.1, the names of pointer parameters are given the suffix J)tr. This
can be helpful for understanding the code, but it is certainly not necessary. There
is nothing wrong with this function implementation, in which the pointers have
physically meaningful names:

void circle_stuff (double r, double *area, double *circumference);
{

*area=PI*r*r;
*circumference=2.0*PI*r;

Removing the J)tr suffix doesn't alter the fact that it is still necessary to use the
indirection operator to assign values; the name of the parameter has nothing to do
with the syntax of its use.

It may help to consider C's simulation of pass by reference on two
different levels. At one level you can be aware of how C uses pointers to change
memory locations indirectly. As an implementation aid, you can use J)tr
suffixes on appropriate parameters and you will be aware that when you use the
indirection operator you are accessing the memory locations to which the pointers
point. At another level you can think of the * symbol appearing in the parameter
list to define a pointer, and within the function when assignments are made
through indirection, as a purely notational device for distinguishing between input
to and output from the function. C doesn't actually make the distinction between
input and output as a part of its syntax, but it can be useful to think in these terms
when you implement algorithm designs.

It is critical to understand how P-5.1 works because it provides a window
onto C's extensive use of pointers and illustrates an essential piece of the
information flow model for C programs. In C, a programmer can, and sometimes
must, write code that uses pointers to make changes directly in memory locations.
This model, which bypasses the layer of insulation that a variable name provides
between a program and user-accessible computer memory locations, is in some

184 • 5. More About Modular Programming

ways simpler and in other ways conceptually more difficult and dangerous. As a
minimum, it imposes an extra burden on the programmer, for it is relatively easy
in C to crash some computer operating systems by using pointers to manipulate
the contents of memory. The same kind of damage is more difficult to inflict with
languages such as Pascal that are more restrictive about how they let programmers
use pointers.

5.2 Menu-Driven Programs

A typical modular program structure is one in which the main program requests
user input to choose one of several tasks for the program to perform. Using an
if. .. or swi tch construct, as discussed in Chapter 4, program control is
transferred to one of several subprograms. Once the overall layout of the program
is established, the subprograms can be written separately, one at a time. By using
pass-by-values and pass-by-reference function interface models, as described in
Section 5.1, C gives programmers a great deal of flexibility to design modular
programs.

Here is a problem that lends itself to a menu-driven approach.

Newton's Law of Cooling describes the change in temperature as
a function of time of a body that is warmer than the ambient temperature.
Not surprisingly, the temperature decay is exponential, with the
temperature approaching the ambient temperature T. in the limit as t
approaches infinity:

-kt
T(t) = T. + (To - T.)e

Write a program that offers a user two choices:

(1) Given values of To, T., and k, calculate the temperature at a specified
time.

(2) Given three temperatures observed at three distinct times, calculate To,
T., and k.

The first of these calculations is trivial-it involves simple substitution into the
formula-but the second is much harder. In order to obtain a solution for the
second calculation, assume that the time intervals between temperature
measurements are equal; that is, that t3 - ~ =~ - t l = t l - to = ~t. This means that
k will be in units of lI~t rather than per second, for example. The solutions are

5.2 Menu-Driven Programs • 185

tedious to work out by hand, but they are easy to obtain with symbolic algebra
software such as Maple y®. Here are the results from a Maple y® session.

> T:=t->Ta+(TO-Ta)*exp(-k*t);

T := t -> Ta + (TO - Ta) exp(- k t)

> solve({T(1)=Tl,T(2)=T2}, {Ta,k});

2
- T2 + Tl TO T2 - Tl

{k = - In(---------), Ta = --------------}
TO - Tl TO - 2 Tl + T2

> solve({subs(TO=Tl,T(1)=T2) ,subs(TO=Tl,T(2)=T3)}, {Ta,k});

{Ta

> solve(T(l)=Tl,TO);

2
Tl T3 - T2

Tl - 2 T2 + T3
k

- T3 + T2
In (---------) }

- T2 + Tl

Ta - exp(- k) Ta - Tl

exp (- k)

First solve for Ta and k using the first temperature, T" in place of To, T2 in place
of T" and T3 in place of T2:

k

Finally, solve for To using T]. This solution can also be used to find the
temperature at any time previous to t" with time t measured in units of ~t. To put
it another way, the initial temperature can be measured at any desired time (in
units of ~t) along the exponential temperature decay curve:

-kt
To = (T] - Ta)/e + Ta

186 • 5. More About Modular Programming

Program P-5.3 implements this solution.

P-5.3 [cooling. c]

#include <stdio.h>
#include <math.h>

/* function prototypes */
void get_k(double TI, double T2, double T3,

double *k, double *T_ambient, double *TO);
double get_t(double TO, double T_ambient, double k, double t);

int main ()
{

char flag, again;
double TO,T_ambient,Tl,T2,tl,t2,T3,t3,k,t;

do {
again=' n' ;
printf (" [k]: Solve for k, initial T, and ambient T, \n");
printf(" given T at three equally spaced times.\n");
printf("[t]: Solve for T at specified time, given intial T,

ambient T, and k. \n");
fflush (stdin) ;
scanf("lc",&flag) ;
swi tch (flag) {

case 't':
case 'T':
printf ("Give initial T, ambient T, k, and time: ");
fflush (stdin) ;
scanf("llf Ilf Ilf Ilf",&TO,&T_ambient,&k,&t);
printf("T = Ilf\n",get_t(TO,T_ambient,k,t»;
break;
case 'k':
case 'K':
printf("Give Tl, T2, T3: ");
fflush (stdin) ;
scanf("llf Ilf Ilf",&Tl,&T2,&T3);
get_k(Tl,T2,T3,&k,&T_ambient,&TO) ;
printf(

"k = Ilf, T_ambient = IlL To = Ilf\n",k,T_ambient,TO);
break;
default:
printf("INPUT ERROR. Try again ... \n");

}
printf("Do again (y or n)?\n");
fflush (stdin) ;
scanf("lc",&again) ;

} while (again == 'y');
return 0;

double get_t(double TO, double T_ambient, double k, double t)
{

return(T_ambient+(TO-T_ambient)*exp(-k*t» ;

5.2 Menu-Driven Programs • 187

void get_k(double Tl, double T2, double T3, double *k, double *Ta,
double *TO)
{

*k = -log((T2-T3)j(TI-T2»;
*Ta (T3*TI-T2*T2)j(Tl+T3-2.0*T2);
*TO = (Tl+exp(-*k)**Ta-*Ta)jexp(-*k);

Running P-5.3

The main program in P-5.3 presents a menu of choices and asks the user
to select one option. Then a swi tch construct is used to obtain the required user
input and access a function that perfonns the required calculations. The defaul t
case handles inappropriate user input. The subprograms in P-5.3 include a function
(get_t) that returns a single value and a type void function get_k that returns
output by modifying the contents of several locations to which pointers point.

188 • 5. More About Modular Programming

The output displayed for P-5.3 is intended to check the operation of the
program. The user chooses the t option three times and selects an initial
temperature of 500, an ambient temperature of 30, a time constant of 0.5, and
times of 1, 2, and 3. The temperature units are arbitrary, but the ambient
temperature corresponds to a warm room if the temperature units are degrees
centigrade. The time units are also arbitrary, and could represent anything from
seconds to days. The program calculates the temperatures at each of those three
times. Then, the user chooses the k option and specifies the three temperatures
previously found. If the program is working properly, it should return the same
initial temperature, ambient temperature, and time constant as the user originally
specified. This is, in fact, what happens.

5.3 More About Function Interfaces

As discussed in Section 5.1 and illustrated by functions circle_stuff from
P-5.1 and get_k from P-5.3, the argument/parameter list interface in C functions
is complicated by the fact that C allows, and sometimes requires, direct access to
memory locations through pointers. Suppose a function, function_A, is called
from a main program, and the input argument(s) to that function will be variables
local to the main program. That is the model we have used up to the present.
Now, however, suppose function_A is called from some other function,
function_B. In that case, the arguments appearing in calls to a function could
be a combination of variables local to function_B and input parameters
appearing in function_B's parameter list. In the latter case, the parameters are
passed through as arguments in a call to function_A. A third possibility is that
one or more arguments in the call to function_A also appear as output
parameters in function_B's parameter list.

Program P-5.4 illustrates the third possibility. It is yet another version of
a program that calculates the area and circumference of a circle. In previous
versions, the radius was determined outside function circle_stuff (in the
main program) and passed as input to this function. In this case, however, the
request for the user to provide a radius appears within circle_stuff, and the
value is passed back to the main program (as output) in addition to being used to
calculate the area and circumference.

P-5.4 [circl-p2 . c]

#include <stdio.h>
#define PI 3.14159265

/* function prototypes */
void circle_stuff(double *radius.

double *area. double *circumference);

5.3 More About Function Interfaces • 189

int main(void)
{

double radius, area, circumference;

circle_stuff (&radius, &area, &circumference);
printf("%8.3lf %8.3lf %8.3lf\n",radius,area,circumference);
return(O) ;

void circle_stuff(double *radius-ptr,
double *area-ptr, double *circumference-ptr)

printf("Give radius: ");
Bcanf("%lf",radiuB-ptr);
area-ptr=PI(*radius-ptr)*(*radius-ptr);
*circumference-ptr=2.0*PI*(*radius-ptr) ;

In P-5.4, all three parameters in circle_stuff have been given names
consistent with their status as pointers. This certainly isn't necessary, as noted in
the discussion of P-5.1, but it will be helpful for this discussion. The critical line
of code in this function is the call to scanf in circle_stuff, which is
printed in bold italics. Previously, whenever we have used scanf in a program,
we have used the address-of operator to store output values from scanf in the
memory locations associated with particular local variable names. In this case, the
formal parameter r adius---J) tr in c i rc 1e_s t u f f already contains the address
of a memory location-it is a pointer and not a "value." Because scanf stores
its output values in one or more memory locations specified by the programmer,
the appropriate calling argument is radius---J)tr rather than &radius---J)tr.

What about the calculations for area and circumference done in
c i r c 1 e_s t U f f in the two lines following the call to scanf? These calculations
need to access not the value of radius---J)tr itself-it contains the address of
a memory location-but the value in the location to which radius---J)tr points.
This value is obtained by using the indirection operator *. Note that, again, the
asterisk symbol has two different meanings in the assignment statements. Used as
a unary operator, it is the indirection operator that obtains a value from a location
referenced by a pointer. Used as a binary operator, it is the multiplication operator.
Recall that the parentheses in, for example, * (*radius---J)tr) help to clarify
this distinction, but they aren't actually required because the interpretation of the
asterisk will be clear to a C compiler in context.

Where do the calculations for area and circumference go? Not into local
variables, but into the memory locations pointed to by area---J)tr and
circurnference---J)tr, as accessed through the indirection operator.

At the risk of belaboring the points raised by P-5.4, consider the
modification to circle_stuff shown in P-5.5.

190 • 5. More About Modular Programming

P-5.5 [circlJ)3 . c] (partial)

void circle_stuffldouble *radius-ptr,
double *area-ptr, double *circurnference-ptr)

double r;

printf("Give radius: ");
scanf("%lf",&r) ;
*area-ptr=PI*r*r;
*circurnference-ptr=2.0*PI*r;
*radius-ptr=r;

In P-5.5, the local variable r is used for the radius, hence the use of &r

in the scanf function. However, in order to pass this value back to the calling
program, the last statement in the function uses the indirection operator to store
the value of r in the location to which radiusJ)tr points. There is no good
reason to define a local variable to use in this way-there's nothing terribly wrong
with the code, either, and it's a little easier to read-but the code in P-5.5 may
help to clarify the difference between variable names that refer to values and
names that refer directly to memory locations; that is, the difference between
variables and pointers.

5.4 Recursive Functions

There are several functions in science and engineering mathematics that are most
easily defined recursively. A simple example is the factorial function nt, which is
defined for non-negative integer values of n as

O! = I! = 1 n! = n·(n - 1)!, n > I

The definition of n! in terms of nand (n - 1)! isn't as circular as it seems because
of the specific definitions for O! and I!. (The first of these, O! = 1, is just a
mathematically convenient definition.) Thus, if 4! is defined in terms of 4 and 3!,
3! can be calculated in terms of 2!, and 2! in terms of 11, the value of which is
known. Thus any value of n! can be bootstrapped from previous values.

This definition of the factorial function can be
implemented in C, as it can in many other languages,
as a recursive algorithm, that is, in terms of an
algorithm that calls itself. It is sometimes difficult to follow the detailed behavior
of recursive algorithms, so it is usually better simply to try to write the algorithm
in the most natural possible way and trust the programming environment to handle
the details. Recursive algorithms are usually very short. Program P-5.6

5.4 Recursive Functions • 191

demonstrates how easily the recursive definition of the factorial function can be
translated into C.

P-5.6 [factoral. c]

#include <stdio.h>

long factorial (int n);

int main(void)
{

int n;

printf("Give an integer: ");
scanf ("%i" ,&n) ;
printf("%ld\n",factorial(n) ;
return 0;

long factorial (int n)
/* Assumes n is always >= o. */
{

if (n <=1)
return (long)l;

else
return (long)n*factorial(n-l);

Function factorial in P-5.6 follows a typical pattern for recursive algorithms.
It has code that generates a recursive call to the function and a terminating
condition that allows a specific calculation to be completed. In general, all
recursive algorithms must have at least one terminating condition and at least one
recursive call that is executed whenever the terminating condition isn't satisfied.
In this case, the recursive call is simply the recursive definition translated into C
syntax. The code in P-5.6 assumes that factorial will never be called with a
negative argument. If it is, however, the function will still return a value of I.

The value of n! grows rapidly with n, and the declaration of the
factorial function as long allows much larger values of n to be specified
than would be the case with an in t data type. (The limitations on size are
implementation-dependent.)

It is perhaps not obvious that the syntax in P-5.6 should work. Indeed, the
programming environment provides a great deal of behind-the-scenes help to
support recursion. Each call to factorial generates activity that keeps track of
the local values of input parameters, among other things. It is C's ability to keep
track of these local values on its own that makes recursive functions look so
simple.

In the first call to factorial, from P-5.6's main function, the local
value of n is whatever the user specifies through the scanf statement. The

192 • 5. More About Modular Programming

multiplication (long) n*factorial (n-1) is delayed by the recursive call, for
which the argument is n -1. As a result, the new local value of n will be the
current value of n - 1. The calculation in the return statement will continue to
be deferred by the recursive calls until, eventually, the local value of n will be 1,
and the return 1; statement will be executed. Next, C will perform all the
deferred calculations that have been created by the recursive calls before control
is returned to the calling program. The value of 2! will be calculated as 2-1, 3!
as 3-2, 4! as 4-6, and so forth.

Recursive algorithms aren't restricted to a single recursive call within a
function. Consider the well-known Fibonacci series: 1 1 2 3 5 8 13 21...,
which can be defined recursively as

f l = f2 = 1
fn = fn_1 + fn_2

This definition is straightforward to implement as a recursive function, as shown
in P-5.7.

P-5.7 [fibonaci. c]

#include <stdio.h>

int fibonacci (int n);

int main (void)
{

int n;

printf ("Which term? ");
scanf ("%i" ,&n) ;
printf("%i\n",fibonacci(n)) ;
return 0;

int fibonacci lint n)
{

if (n <= 2) return 1;
else return fibonacci (n-1) +fibonacci (n-2) ;

Recursive algorithms are often inefficient in their use of computer
resources. In the case of the factorial function, it is so easy to calculate n!
iteratively, with a loop, that writing recursive code doesn't make much sense. A
function to generate Fibonacci numbers is only a little harder to write iteratively.
In fact, any problem that can be solved recursively can also be solved iteratively.
However, there are some kinds of problems for which a recursive algorithm is
much simpler to write than an iterative algorithm. In those cases, it is very helpful

5.5 Using Prewritten Code Modules • 193

to be able to use recursive algorithms to write programs that are as simple as
possible at the source code level. For the kinds of problems addressed in this text,
inefficient use of computing resources is usually not a significant factor in how
a computer program performs. An interesting example of the power of recursive
algorithms will be presented as an application later in this chapter.

5.5 Using Prewritten Code Modules

One of the major advantages of writing modularized programs is that you can
reuse code previously written to perform specific tasks. Obviously, this avoids
"reinventing the wheel" for many kinds of programming tasks. For languages
widely used in scientific and engineering programming, such as C and Fortran,
there are many commercial libraries of subprograms for solving common and
perhaps difficult programming problems. However, you can and should create your
own libraries of reusable code based on your own needs. Special care is required
when you write code for libraries. It is, of course, essential to make sure that the
code works properly under specified conditions. In addition, you should design
and document function interfaces so they are as easy as possible to incorporate
into programs.

To demonstrate how to create reusable code, we will consider a simple
example from the previous section in this chapter-<:alculating the nth term in the
Fibonacci series. We will modify P-5.7 so that the function to calculate a specified
term in the Fibonacci series is not included explicitly in the program. That is, we
would like to assume that this code has already been written and can simply be
used in any program that needs a Fibonacci number.

The simplest modification we can make to P-5.7 is to create a source code
file containing the function fibonacci and simply #include it in the source
code file containing the main function. This approach is used in P-5.8(a). The
code for function fibonacci, stored in file fib_func. c, is given in P-5.8(b).

P-5.8(a) [fibonac3. c]

#include <stdio.h>
#include "fib_func.c"

int main(void)
{

int n;

printf("Which term? ");
scanf ("%i " ,&n) ;
printf("%i\n",fibonacci(n));
return 0;

194 • 5. More About Modular Programming

P-5.8(b) [fib_func. c]

/* Fibonacci function source code. */
int fibonacci (int n)
{

if (n <= 2) return(l);
else return(fibonacci(n-l)+fibonacci(n-2»;

Remember that the angle brackets < ... > in # inc 1ude directives tell
your program to look for standard header files in a directory specified by the
programming environment. You don't have to know or specify the name of this
directory. However, when you #include files of your own, such as
f ib_func . c, you must specify both the directory and the file name-a complete
path through directories and subdirectories in MS-DOS or UNIX terminology, or
folder specification in Windows or Macintosh terminology.

When you # inc1ude a source code file, that file is literally copied into
the specified location at compile time. In the case of P-5.8(a), the file given in
P-5.8(b) is copied into P-5.8(a) right before the main function. Thus, at compile
time, P-5.8(a) is completely equivalent to P-5.7.

The second method of incorporating prewritten code
takes advantage of the fact that C source code can be compiled,
assuming it is free of syntax errors, even if the code doesn't
contain a main function. This means that entire files of functions can be compiled
into object code and then linked to another program that contains a main
function.

In this case, we will compile the function shown in P-5.8(b). On a UNIX
system using the cc compiler, type

cc fib_func.c -c

The -c option produces an object file called fib_func. 0, but it prevents the
compiler from trying to generate an executable binary file; this isn't possible
because f ib_func . c doesn't contain a main function.

Program P-5.9(a) shows how to use the object file f ib_func . o.

P-5.9(a) [fib_main. c]

#include <stdio.h>
extern int fibonacci(int n);

int main(void)
{

int n;

5.5 Using Prewritten Code Modules • 195

printf ("Which term? ");
scanf ("%i " ,&n) ;
printf("%i\n",fibonacci(n}) ;
return 0;

The main function in P-5.9(a) contains a reference to function
fibonacci, but the source code for this function does not appear anywhere in
this code, either explicitly or implicitly through an #inc 1ude directive.
However, the function prototype for fibonacci includes the extern reserved
word, which tells the program that the function will be found externally, in a
precompiled file that will be linked with this code after it is compiled.

By default, functions appearing in a function prototype but not found in the
source code file are assumed to be external. Thus, the extern word appearing
in the function prototype for f ibonacc i clarifies the status of this function, but
the word isn't actually required.

In this case, we will assume that the external function P-5.9(a) is looking
for is f ib_func .0, the compiled f ib_func . c file. (On MS-DOS systems,
.OBJ is the default file name extension for object files.) To create the executable
file fib_main. exe on UNIX systems using the cc compiler, type

The specific steps required to link a file containing a main function with other
precompiled files vary from environment to environment. For this simple example,
a single command suffices. For large and complex programs, the C programming
environment typically includes some kind of "make" facility that can be used to
direct the linking of several files to create an executable program; consult the
documentation for your system.

Especially for large programs, it is common practice to create a separate
header file that gives the function prototypes for all required user-defined
functions, just as header files are included for standard library functions. To do
this for P-5.9(a), create a text file called f ib_func . h, containing the single line:

extern int fibonacci(int n);

Then modify the source code file to look like this:

P-5.9(b) [fib_main. c (modified)]

#include <stdio.h>
#include "fib_func.h"
int main(void}

196 • 5. More About Modular Programming

The modification in P-5.9(b) now contains a reference to a header file,
f ib_func . h, that works just like standard library header files. The only
difference is that you must give an explicit directory (path) reference for the file,
with its path and name in quotation marks, because a header file you create
yourself is probably not in the same directory as the standard header files.

What is the point of creating separate header files? For this simple
program, there isn't any reason to create a separate header file for a single
function reference. However, suppose you have created a large code library that
contains many different functions. You wish to distribute the library without
distributing the source code. By distributing the object code for the library along
with a header file, you can document the use of functions in the library, through
comments and function prototypes in the header file, without revealing the
contents of the source code.

5.6 Using Functions as Arguments and Parameters

Suppose the purpose of a user-defined function is simply to evaluate a
mathematical function and display the result. This is straightforward for intrinsic
functions. For example, P-5.1O(a) prints values of sin(x) for angles at a specified
increment between specified lower and upper limits, where conversion
includes the conversion of angles from degrees to radians.

P-5.10(a) [func_arl. c]

#include <stdio.h>
#include <math.h>
#define PI 3.14159

void print_flint lower,int upper,int step,double conversion);

int main(voidl
{

print_f(0,10,1,5.*PI/180.) ;
return 0;

void print_flint lower,int upper,int step,double conversion) {
int i;
double X;

for(i=lower; i<=upper; i+=step) {
x=i*conversion;
printf("%2i %5.21f %10.31f\n",i,x,sin(x»;

5.6 Using Functions as Arguments and Parameters • 197

If you wish to perform the same task for a user-defined function, the
obvious way to do it is to define the function and call it, as in P-5.1O(b).

P-5.1O(b) [func_ar2 . c]

#include <stdio.h>
#include <math.h>
void print_f(int lower,int upper,int di,double conversion);
double f_of_x(double x);

int main (void)
{

print_f(0,10,1, .5);
return 0;

double f_of_x(double x) {
return sqrt (x) ;

void print_f(int lower,int upper,int di,double conversion) {
int i;
double x;

for(i=lower; i<=upper; i+=di) {
x=i*conversion;
printf (" %2i %5. 2lf %10. 3lf\n" ,i, x, f_of_x (x)) ;

A potential problem is that if you wish to change the name of the function
to be evaluated and displayed, you have to recode print_f. This may not seem
like a significant problem for programs you write yourself. However, suppose
function print_f is replaced by a function that performs some more significant
and complicated calculation that you wish to distribute to other programmers. Now
those programmers must know the details of that code and they must create a
function such as f_of_x whose name agrees with your code.

Although this still may seem like a minor problem, it can be avoided
altogether by including in the parameter list the name of the function being
evaluated. This is possible in C because the name of a function is actually a
pointer to the code for that function. Program P-5.1O(c) modifies P-5.1O(b) to
include in pr int_f' s parameter list the name of the function to be evaluated and
displayed. The function f can be either an intrinsic or a user-defined function. The
only restriction on f is that, according to the parameter list, it must be called with
a single type double argument and must return a type double result.

198 • 5. More About Modular Programming

P-5.1O(c) [func_ar3 . c]

#include <stdio.h>
#include <math.h>

void print_f(int lower,int upper,int di,double conversion,
double (*f) (double x});

double f_of_x{double x};

int main(void}
{

print_f(O,lO,l, .5,f_of_x};
return 0;

double f_of_x(double x) {
return sqrt (x) ;

void print_f(int lower,int upper,int di,double conversion,
double (*f) (double x» {

int i;
double x;

for(i=lower; i<=upper; i+=di) {
x=i*conversion;
printf("%2i %5.2lf %10.3lf\n",i,x,f{x});

In the function reference double (* f) (double x), the parentheses
around * f are required in order for C to interpret the asterisk properly. The
dummy parameter list provides information about arguments to be supplied to the
function.

Although the differences among the various versions of P-5.1O may seem
to be minor matters of programming style, they are actually extremely important.
In P-5.1O(c), print_f now works with any appropriate function and is therefore
completely portable to other programs without modification. Portability is essential
in large-scale programming projects and should be maximized whenever possible.
In P-5.9(b), the function to be evaluated inside print_f is given an alias name
by which it will be known locally inside print_f. Thus the users of print_f
don't have to have access to the code inside print f_f. They need be told only
that a proper call to print_f includes the address of a function that requires a
single type double argument and returns a single type double result. This
requirement is obvious from an examination of print_f's prototype.

It is worth noting that although print_f's parameter list calls for a type
double function with a single input argument, a function in a parameter list can,
in general, return any desired data type and can have any required number of input
arguments. Again, this information is conveyed by the function prototype.

I

5.7 Passing Arguments to the main Function • 199

An important application of passing pointers to functions to other functions
is to perform numerical integration on mathematical functions that lack an
analytical integral. In order to increase the portability of such code, the numerical
integration function should be written so that the programmer can simply pass to
the integration function the name of the mathematical function whose integral is
sought. An example of this technique using Trapezoidal Rule integration will be
given in Section 5.8.4.

5.7 Passing Arguments to the main Function

Previously, we have written the main function header like this:

int main (void) ;

This form is also acceptable:

void main () ;

The void or empty parameter list informs C that the main function requires no
input values.

However, it is possible to give the main
function a parameter list. In computing
environments that use a command-line interface
to execute programs, such as UNIX and MS-DOS, it is possible to pass arguments
from the command line when the program is executed. In fact, C provides some
predefined variables for this purpose. Consider this problem:

Write a program that accepts three command-line inputs: two integer
values and a character flag that tells the program to determine and display
the larger or smaller of the two numbers.

P-5.11 solves this problem.

P-5.11 [larger. c]

#include <stdio.h>
#include <stdlib.h>

int main(int argc,char *argv[])
{

int nl,n2,display;
if (argc < 4) {

printf("Please enter two integers on the command line,\n");
printf("then -s or -1 to return smaller or larger value.\n");
printf (" Separate input by spaces. \n") ;

200 • 5. More About Modular Programming

return -1;
}
else {

n1=atoi(argv[1]);
n2=atoi(argv[2]) ;
printf('%i %i\n",n1,n2);
printf('%c\n",argv[3] [1]);
switch (argv[3] [1]) {

case's' :
case'S' :

if (n1 <= n2) printf("%i\n",n1);
else printf("%i\n",n2);
break;

case '1':
case 'L':

if (n1 >=n2) printf("%i\n',n1);
else printf("%i\n',n2);
break;

default:
printf("Unknown command line option.\n");
return -2;

}
return 0;

To run P-5.1l after it has been compiled, type, for example:

larger.exe 2 3 -s

The program will display the result 2, the smaller of 2 and 3. The -s is
treated as a command-line option. On UNIX systems, for example, options are
typically preceded by a hypen, although there is no reason why this must be so;
that is, you could write the program so that the command line would be
larger. exe 2 3 s.

How does C read this command-line input into the program? First, consider
the main function header:

int main(int argc, char *argv[]);

The parameter list contains two variables: an integer variable, argc, and an array
of pointers to characters, argv. Both of these names are predefined in C. They
can, in fact, be given other names, but these names are generally accepted by
convention.

To interpret argc and argv, it is first necessary to understand that C
treats values entered on the command line as strings, even if they look like
numbers, as in this example. The integer variable argc contains the number of
command-line strings, including the name of the executable file. In P-5.1l, the
program expects that argc will have a value of 4: a string for the executable file
name, two integers, and the - s or -1 option.

5.7 Passing Arguments to the main Function • 201

The variable argv is an array of pointers to the first character in each of
these strings. Thus in P-5.11 argv [1] points to the first integer, argv [2] to
the second integer, and argv [3] to the option flag. Numbers entered in this way
can be interpreted by using standard intrinsic ASCII-to-number conversion
functions, as described in Table 5.1.

Table 5.1. ASCII-to-number conversion functions

atoi(char *string)

atof(char *string)

Converts string to a type integer
value. Include s tdl ib . h.

Converts string to a type double
value. Include stdlib.h or math.h.

Both functions require as arguments pointers to the first character in a string. In
P-5.1O, a toi is used because the string must be converted to an integer.

In order to interpret the command line flag - s or -1, or its uppercase
equivalent - S or - L, the program looks at the second character of argv [3] ,
argv [3] [1], and uses this value to control a swi tch construct. If the
command-line input can be intepreted as expected, the program displays the
smaller of the two integer values.

If the user doesn't enter enough information on the command line, an
explanatory message is displayed and the program terminates. If the user enters
enough information but doesn't enter an appropriate flag, the program is again
terminated. In principle, the system on which the program is being executed could
make use of the different return values, -lor -2, but we won't deal with that
problem here.

The technique of passing arguments from the command line is best applied
when the input requirements are not complicated. This is because there is no user
prompt for input, but only, at most, a message describing what was wrong if the
user did not provide the expected information. A typical use involves passing the
name of a file to a program. For example, data may be collected for each month
of the year and stored in files with names that identify the months. As long as
files for different months are formatted identically, the program can process any
of those monthly files, and the desired file can be specified when the program is
executed.

202 • 5. More About Modular Programming

5.8 Applications

5.8.1 The Quadratic Equation Revisited

1 Define the problem.

Recall from the discussion of the application in Section 4.5.1 of Chapter
4 that the quadratic equation ax2 + bx + C =0 has two, one, or no real roots,
depending on the value of the discriminant b2

- 4ac. In P-4.9, the calculations for
the real root(s) were made and a value of 0 was assigned to one or more roots that
didn't exist, so as not to leave the variable unassigned. Write a function that
determines how many real roots a quadratic equation has, calculates the real roots
as appropriate, and then returns a "status" flag equal to 0, 1, or 2, depending on
how many real roots were found.

2 Outline a solution.

Refer to the application Section 4.5.1 for a discussion of the quadratic
equation and conditions for finding real roots.

3 Design an algorithm.

It is typical C programming style for a function to return multiple output
values indirectly through pointers. However, instead of giving such a function a
data type of void, it is given type int and an output flag is returned directly so
the calling program can interpret the values produced by the function. For this
problem, the output flag will return a value of 0, 1, or 2.

4 Convert the algorithm into a program.

P-5.12 [quadrat2. c]

#include <stdio.h>
#include <math.h>

int GetRoots(double a,double b,double c,double *rl,double *r2);

int main(void)

5.8 Applications • 203

double a,b,c,rootl,root2;
int n_roots;

printf ("Enter coefficients for ax'2+bx+c: ");
scanf("%lf %If %If'',&a,&b,&c);
n_roots=GetRoots(a,b,c,&rootl,&root2) ;
printf ("%i \n" , n_roots) ;
switch (n_roots) {

case 2:
printf("The 2 real roots are: %If %If\n'',rootl,root2);
break;

case 1:
printf("The 1 real root is: %If %If\n'',root1);

case 0:
printf("There are no real roots.\n");

}
return 0;

int GetRoots(double a,double b,double c,double *r1,double *r2) {
/* Returns single root in r1, assigns non-existent roots

a value of O. */
double discriminant;
int n_roots;

discriminant=b*b-4.0*a*c;
printf("discriminant = %If\n'',discriminant);
if (discriminant> 0.0) {

*rl=(-b+sqrt(discriminant))/2.0/a;
*r2=(-b-sqrt(discriminant))/2.0/a;
n_roots=2;

}
else if (discriminant == 0.0) {

*r1=-b/2.0/a;
*r2=0.;
n_roots=l;

else {
*r1=0.;*r2=0.;
n_roots=O;

}
return n_roots;

Running P-5.12

204 • 5. More About Modular Programming

5 Verify the operation of the program.

Use a calculator to evaluate the determinant and find the real root(s).

5.8.2 Finding Prime Numbers

1 Define the problem.

Write and test a function that determines whether a specified integer is
prime.

2 Outline a solution.

An integer is prime if it can be divided evenly only by itself and 1. To
design an algorithm for finding prime numbers, we can make use of these facts:

1. The numbers 1, 2, and 3 are prime.
2. Any even number greater than 2 cannot be prime.
3. Every number that is not prime has at least one divisor less than or equal to its
square root. (For example, 49 is divisible only by its square root, 7.)

The third fact is especially useful because it tells us how to limit the range
of possible divisors that must be tested.

3 Design an algorithm.

An algorithm that expresses the facts given in Step 2 looks like this:

IF n :::; 3, n is prime.
ELSE IF remainder from integer division n/2 equals 0, n is not prime.
ELSE IF remainder from integer division n/divisor equals 0, n is not prime.
ELSE IF divisor> ;n, n is prime.
ELSE try divisor + 2 (a recursive call).

4 Convert the algorithm into a program.

5.8 Applications • 205

P-5.13 [prime. c]

#include <stdio.h>
#include <math.h>
#define TRUE 1

int IsPrime(int n, int trial);

int main ()
{

int prime,n;
do {

printf ("Give an integer, 0 to qui t: ");
scanf (" %i" ,&n) ;
if (n == 0) break;
prime=IsPrime(n,3) ;
if (prime == TRUE)

printf("%i is prime.\n",n);
else

printf("%i isn't prime.\n",n);
while (n != 0);

return 0;

int IsPrime(int n, int trial)
{

if (n <= 3)
return 1;

else if (n%trial == 0)
return 0;

else if (trial >= (int)sqrt«double)n)
return 1;

else
return IsPrime(n,trial+2);

Running P-5.13

206 • 5. More About Modular Programming

5 Verify the operation of the program.

There is no simple general solution to determine whether an integer is
prime-otherwise this program should use that solution-but this program can be
tested with several numbers that are known to be prime or not prime. If it works
for these, there is no reason to think that it won't work for other numbers.

Problem Discussion
The function in P-5.13 suffers only from the fact that a test divisor must

be included in the parameter list and hence must be provided when the function
is called. The smallest divisor that must be tried is 3. Therefore, the function call
must be IsPrime (n, 3) rather than the more natural call IsPrime (n). This
can easily be avoided by making IsPrime a "dummy" function whose parameter
list includes only n and which then calls a second function to do the actual work
of determining whether n is prime, including the first test divisor.

5.8.3 The Towers of Hanoi

1 Define the problem.

The Towers of Hanoi problem is a famous programming exercise that
provides a striking demonstration of the power of recursive algorithms. Suppose
ten rings are stacked on a pole and are graduated in size from the largest on the
bottom to the smallest on top. Nearby are two other poles. The object is to move
the stack of ten rings from their original pole to one of the other poles, using the
third pole as a working space during the transfer. There are only two rules
governing how the rings can be moved:

(I) The rings are moved one at a time.
(2) At no time can a larger ring be moved onto a smaller ring.

Write a program that solves the Towers of Hanoi problem by printing a list of all
steps required to move the rings from one pole to another.

2 Outline a solution.

5.8 Applications • 207

It takes some thought and planning to figure out how the transfers should
be made. Consider the problem with only four rings. The original pole is labelled
A, the destination pole is C, and the intermediate pole is B. Table 5.2 shows the
required transfers, which can easily be worked out with a little trial and error. This
transfer requires 15 moves. In general, moving n rings from one pole to another
requires 2" - 1 moves.

3 Design an algorithm.

Although it might not be obvious how to instruct a program to make a
large number of moves in what seems like a complicated pattern, it is actually
easy to write an algorithm for moving n rings in a programming language that
supports recursion. Consider this statement of the problem of moving n rings from
A to C:

1. Move n - 1 rings from A to B.
2. Move the nth ring from A to C.
3. Move n - 1 rings from B to C.

This solution takes a typical recursive approach of defining one level of a
problem's solution in terms of a previous level. Specifically, the problem of
moving n rings is stated in terms of the problem of moving n - 1 rings in the
same sense that the recursive algorithm for nl defined nl in terms of n and
(n - I)!. By making successive recursive calls with argument n-l, the problem of
moving n rings can be reduced to the point that eventually the only problem the
algorithm needs to solve directly is the trivial problem of moving one ring. The
algorithm design looks like this:

DEFINE (n as initial number of rings, start, aux, and final as strings)
INITIALIZE start = 1, aux =2, final =3
CALL MoveRings(n, 1,3,2)

SUBPROGRAM MoveRings(n, start, final, aux)
IF nJings > 0 THEN

CALL MoveRings(nJings - 1, start, aux, final)
WRITE ('Transfer ring ",nJings, " from ",start," to ",final)
CALL MoveRings(nJings - 1,aux,final,start)

(end IF)

208 • 5. More About Modular Programming

Table 5.2. Transfers for the Towers of Hanoi problem when n = 4

Move A B C
(Start) ..
1 from A to B .. •
2 from A to C - • •
1 from B to C - .I.
3 from A to B .I.-1 from C to A .-- •
2 from C to B .--
1 from A to B •4 from A to C •1 from B to C _.-
2 from B to A .-• -1 from C to A .I. -3 from B to C .I. -
1 from A to B -• •
2 from A to C ..•
1 from B to C ..

4

5.8 Applications • 209

Convert the algorithm into a program.

The algorithm in Step 3 is easy to convert into a very short C program.

P-5.14 [towers. c]

#include <stdio.h>

void MoveRings(int n_rings, int start, int finish, int aux);

main()
{

printf ("Give number of rings to move: ");
scanf ("%i " , &n_rings) ;
MoveRings(n_rings, 1,3,2) ;
return(O) ;

void MoveRings(int n, int start,int finish,int aux)
{

if (n > 0)
{

MoveRings(n-1,start,aux,finish) ;
printf("Move ring %i from %i to %i\n",n,start,finish);
MoveRings(n-1,aux,finish,start) ;

Running P-5.14

210 • 5. More About Modular Programming

5 Verify the operation of the program.

If P-5.14 works for four rings and reproduces the steps shown in Table 5.2,
there is no reason to think it will not work for other values of n. If n is too large,
a particular programming environment may not be able to handle the large number
of recursive calls, but this is not a fault of the algorithm. Certainly your
programming environment should handle values of n as large as 10.

Problem Discussion
You may find it hard to believe that such an apparently difficult problem

can be solved with so little code, because the algorithm doesn't actually contain
a solution in terms of specifying directly how the rings must be moved. However,
the solution implemented in P-5.14 is typical of recursive algorithms, which work
because of the way calls to subprograms keep track of the local values of their
parameters.2 The variables start, aux, and final are initially given the values
1, 2, and 3, but their local values change when the recursive calls are made. It is
possible to write an iterative version of the Towers of Hanoi algorithm (because,
as noted previously, this is possible for all recursive algorithms), but it requires
a more specific set of instructions from the programmer, and it is certainly more
trouble than it's worth!

5.8.4 Trapezoidal Rule Integration

1 Define the problem.

Write a program that uses Trapezoidal Rule numerical integration to
evaluate the normal probability density function.

2 Outline a solution.

As previously noted, the normal probability density function does not have
an analytic integral, so numerical methods are required. In this discussion, we will

l-rhe infonnation is maintained on the run-time stack. To find out more about this, consult a
computer science text on programming or data structures.

5.8 Applications • 211

simply present the formula for Trapezoidal Rule integration; this and other related
techniques will be discussed more fully in Chapter 9. Assuming that the range
[xa,xb] is divided into n equal intervals of size ~x, the integral of f(x) over that
range can be approximated by

where Xi = xa + i·~.

3 Design an algorithm.

The algorithm for the Trapezoidal Rule integration function is trivial-it
involves no more than a direct translation of the formula into C. The main
function should serve as a simple driver program to test the operation of the
Trapezoidal Rule integration.

4 Convert the algorithm into a program.

P-5.15 [trapezoi. c]

#include <stdio.h>
#include <math.h>

double pdf (double x);
double Trapezoidal_Rule(double xl,double x2,double (*f) (double));
double t(double xl,double x2,double (*f) (double)) {

int i,n=IOO;
double sum=O.,dx;
dx=(xl+x2)!n;
for (i=l; i<=n; i++)

sum+=f(xl+(i-l)*dx)+f(xl+i*dx) ;
return sum*dx!2.;

int main(void)
{

double z;

printf("Give value of standard normal variable, >0: ");
scanf("%lf",&z) ;
printf (" %If\n" ,Trapezoidal_Rule (0. ,z, pdf)) ;
printf("%lf\n",t(O.,z,pdf)) ;

212 • 5. More About Modular Programming

return 0;

double pdf (double x) {
return exp(-x*x/2.)/sqrt(8.*atan(I.»;

double Trapezoidal_Rule(double xl,double x2,double (*f) (double» {
int i,n=IOO;
double sum=O.,dx;

dx=(x2-xl)/n;
for (i=l; i<n; i++)

sum+=f(xl+i*dx);
return (f(xl)+f(x2»*dx/2.+sum*dx;

Running P-5.15

5 Verify the operation of the program.

Tabulated values for the integral of the standard normal probability density
function (pdt) can be found in any book on statistics. These tables often give the
integral from 0 to z rather than from -00 to z. For z =0.5, the integral of the pdf
from 0 to 0.5 is 0.1915. Note that the integral of the pdf from -00 to z, which is
the value usually required in statistics applications, is 0.5 plus the integral from
oto z, so that the integral from -00 to 0.5 is 0.5 + 0.1915 = 0.6915.

Problem Discussion
The primary point of this application is to illustrate how to pass a function

through the parameter list of another function. The program defines the normal
probability density function in pdf and the name of this function is given as the
argument corresponding to the parameter doub1 e (* f) (doub1e) in the
Trapezoidal_Rule function. In generalizing this application to other
problems, it is important to realize that the driver program can pass any
appropriate function to Trapezoidal_Rule. The only requirement is that the
function must require a single type double argument and must return a type
double result.

5.9 Debugging Your Programs • 213

5.9 Debugging Your Programs

5.9.1 Passing Multiple Outputs Through Parameter Lists

The C syntax for using pointers to pass multiple output values through the
parameter list of a function can be confusing. At the design level, it is important
to be clear about which parameters are Input and which are Output. When you
implement an algorithm design, it is essential to keep track of which names refer
to variables and which to pointers. It may be helpful to develop the habit of using
a J)tr suffix with pointer names. Within functions that have Output values, you
must use the dereferencing operator (*) when you assign a value because you
need to assign values not to the parameter (pointer) name itself but to the memory
location to which the pointer points. Also, when you use scanf, fscanf, or
sscanf to read a value for an Output variable, remember not to use the
address-of operator, again because the name is a pointer and hence is already an
address.

When you call a function with pointers in its parameter list, remember that
the corresponding variable names in the argument list must be preceded by an
address-of operator. Failure to do so will not produce a compile-time error but
may generate a run-time error and in any case will not produce the desired results.

5.9.2 Recursive Functions

C's implementation of recursive functions is straightforward, but the algorithm
development for such functions is sometimes challenging. The trick for such
algorithms is not to worry about the details of how the programming environment
keeps track of the values of local variables during the recursive calls; such manual
tracking of calculations can be a difficult task for an algorithm that generates
multiple recursive paths. If your algorithm correctly states the recursive
relationship that you wish to implement, the programming environment will do the
rest. Although it is possible in principle to exhaust your programming
environment's resources for managing multiple recursive calls, this is rarely a
problem in practice.

Remember that every recursive algorithm must have both a terminating
branch and at least one branch that generates the recursive call. These branches
are typically defined with IF... THEN... or CHOOSE pseudocode statements.
Recursive algorithms generally replace count-controlled or conditional loops.
Rather than having a terminating condition coded as part of a loop structure, the
terminating branch of the IF... THEN... or CHOOSE statement is responsible for
terminating the recursive calls. If your recursive algorithm contains a loop

214 • 5. More About Modular Programming

structure, it is probably wrong. A recursive algorithm is typically very short; if
yours is not, it probably needs to be redesigned. If your recursive algorithm isn't
properly terminated, your program will continue to generate recursive calls until
the programming environment space reserved for such calls is exhausted. Then
your program will crash.

5.9.3 Reusable Code

This chapter has outlined briefly how to incorporate previously written code
modules into your programs. In a course based on this text, you are generally
responsible for all your own code, but this is certainly not true for the professional
application of programming languages in science and engineering. You can
practice creating your own libraries of source code and object code files.

Remember that the #include statement is used only for uncompiled
source code files and not for object code files, which have already been compiled.
Don't forget to specify a complete path reference for #include files; that
reference usually is not the same as the one in which the standard header files
reside.

5.10 Exercises

For each of these exercises, write one or more functions to perform the required
calculations. Where reasonable, use functions with multiple outputs returned
indirectly through pointers. The purpose of your main function should be to get
user input, call the function(s), and display results.

1. (a) Write a program that asks the user to enter a currency amount and then
calculates how many dollar bills, quarters, dimes, nickels, and pennies are required
to return this amount in change. Assume that the minimum total number of dollar
bills and coins should be returned. This means that your program should return
first the maximum number of bills, then the maximum number of quarters, then
the maximum number of dimes, and so forth. That is, even though you obviously
could return $0.66 in change as, for example, six dimes and six pennies, the
program should tell you to return this change as two quarters, one dime, one
nickel, and one penny. This restriction actually makes the problem easier to solve.
Do the calculations in a function that returns the number of each coin required to
make change. (For comparison, see Exercise 2 in Chapter 3.) [change. c]

(b) Modify the program from part (a) so that the currency amount is entered
directly from the command line. [change2 . c]

5.10 Exercises • 215

2. Write a program that asks the user to supply the mass and velocity of an object
and then calculates and prints the kinetic energy and linear momentum of that
object. The kinetic energy is mv2/2, and the momentum is mv. Use metric units
(mass in kilograms, velocity in meters per second, energy in joules). Use a single
function to return both values. (For comparison, see Exercise 5 in Chapter 3.)
[kinetic2 . c]

Extra Credit:
Include code for functions that will convert the kinetic energy and

momentum into their British system equivalents. The British unit of energy is
ft-Ib, and the unit of momentum is slug-ftls. I ft-Ib = 1.356 joule; 1 slug = 14.59
kg; 1 ftls = 0.3048 mls.

3. Given the (x,y) coordinates of two points in a plane, write a program that
calculates (a) the shortest distance between the two points, and (b) the (x,y)
coordinates of a point halfway between the two points lying on a straight line
joining the points. (Refer to Figure 3.8.) Use a single function to return all three
values. (For comparison, see Exercise 10 in Chapter 3.) [points. c]

Extra Credit:
Modify your program so it also calculates the slope of the line joining two

points in a plane. What restriction will this calculation impose on the location of
the two points?

4. An incompressible fluid such as water flows at speed v I through a cylindrical
pipe with diameter d l. The pipe then narrows gradually to diameter d2• The mass
flowing through the tube must remain constant, so the velocity V2 of the fluid in
the smaller pipe is given by the equation of continuity:

where Al and A2 are the cross-sectional areas of pipes with diameters dl and d2 •

The mass flux through the pipe is

mass flux = pAv

where p is the fluid density of kg/m3 and either Al and VI or A2 and V2 may be
used.

Write a program that asks the user to supply the two pipe diameters and
speed VI and then calculates V2 and the mass flux flowing through the pipe,
assuming the fluid is water with a density of 1000 kg/m3

. [flu i d . c]

216 • 5. More About Modular Programming

S. The root-mean-square (nns) speed of gas molecules Vim, is given by

v = ~ 3kT
rms m

where k is Boltzmann's constant, 1.38 x 10-23 11K, T is temperature in Kelvins, and
mass is in kg. Express mass in tenns of the atomic weight of the gas times the
mass of one atomic mass unit, 1.660 x 10-27 kg.

The average speed vavg for gas molecules is approximately related to nns
speed by

Write a program that calculates vim, and vavg for a specified gas and
temperature; for example, oxygen molecules at 25°C. An oxygen molecule (02)
has a mass of 32 atomic mass units. Don't forget to convert °C to K, where O°C
= 273.15 K. [gas_spd. c]

6. A text file contains real numbers in this fonnat:

7.7
6.6
5.5
8.8
5.5
(and so forth)

Write a program that calculates the average value (mean) and the standard
deviation of all values in the file according to the fonnulas:

mean

n

o
standard deviation

t xj
2

- (txJ10

0-1

where n is the total number of points in the file.
For comparison, see Exercise 9 in Chapter 4. The difference here is that

you should write a separate function to calculate the mean and standard deviation,
given Lx j

2, (Lxi, and n as inputs. [stats2. c]

5.10 Exercises • 217

7. Recall Exercise 12 in Chapter 4, in which you were asked to write a function
that estimates the square root of a number using Newton's algorithm. Rewrite that
function as a recursive function.

8. A special set of functions called Legendre polynomials are sometimes required
in science and engineering applications. Table 5.3 gives the Legendre polynomials
Pn(x) for 0 S; n S; 7.

Table 5.3. The first eight Legendre polynomials

0 1

x

2 (3x2
- 1)/2

3 (5x3
- 3x)/2

4 (35x4
- 30x2 + 3)/8

5 (63x5
- 70x3 + l5x)/8

6 (23lx6
- 3l5x4 + 105x2

- 5)/16

7 (429x7
- 693x5 + 3l5x3

- 35x)/16

By making use of the fact that Ro(x) = 1 and R.(x) = x, Legendre
polynomials of order n ;::: 2 can be generated through a recursion relation:

Write a recursive function to evaluate the Legendre polynomial for any value of
n and x, where n ;::: O. [legendre. c]

9. Bessel functions are sometimes encountered in advanced engineering and
science mathematics (for example, to describe electric charge configurations in
cylindrical coordinates). Bessel functions of the first kind, In(x), for nonnegative
integer values of n and any real number x, can be defined in terms of an infinite
series:

218 • 5. More About Modular Programming

t (-It (.!)n+2s
s=os!(n+s)! 2

where

00

L Gs(n.x)
s=o

x n

and

Gs(n,x) G (-1) (X)2
s_l(n,x) s(n+s) "2

Figure 5.4 illustrates these functions for n = 0 and n = 1.

1..,.....,-.--....--....----.---.-----,------r----r----r---,

0.8 ---

0.6

g
........,
g
o...,

-0.2

-0.4

-0.6
0 2 3 4 5

X

6 7 8 9 10

Figure 5.4. Bessel functions of order 0 and 1.

5.10 Exercises • 219

Write and test a function to evaluate Bessel functions for specified values of nand
x, using the first 10 terms in the infinite series expansion. When you test this
function, you should print out the values of the individual terms in the series to
make sure that evaluating only the first 10 terms is reasonable.

Note that the function Gs(n,x) is defined recursively. However, you might
wish to consider if using a recursive function is the best way to evaluate Bessel
functions. Do not let your decision be based just on the fact that recursive
functions is a topic covered in this chapter. [bessel. c]

Extra Credit:
Bessel functions of the first kind for n > 1 may be obtained from the

recursive relation

Write a recursive function that calculates higher order Bessel functions in this way
and compare your results with calculating the functions directly from the series
expansion.

10. A standard problem in numerical analysis is to find the roots of the equation
f(x) = O. One well-known approach is called the bisection method.

How can we tell whether there are any roots over the closed interval
[xa,xb]? Suppose that the sign of f(xa) is different from the sign of f(xb). The
obvious interpretation of this fact is that the function has crossed the x-axis at
least once in the range [xa,xb]. It is also possible that the function crossed the
x-axis more than once, in which case the total number of crossings must be odd.
This means that f(x) must have at least one real root in the range [xa,xb].

A second possibility is that the sign of f(xa) is the same as the sign of
f(xb). This means that there may be no roots or that the function has crossed the
x-axis an even number of times, so that f(x) must have either no roots or an even
number of roots in the range [xa,xb].

A third possibility is that f(x) just touches the x-axis without crossing it.
For example, this is true for the function

f(x) =x2
- 6x + 9 =(x - 3)(x - 3)

This function, which never crosses the x-axis, has two identical real roots, thereby
complicating the search for a generally applicable root-finding algorithm. Figure
5.5 illustrates these three possibilities.

-10

220 • 5. More About Modular Programming

1S,-------r-----,----,--------,-----,-------,
I
I

: Crosses axis twice (two real roots)
10 - - - - - - - - -~ - - - !r_=::::;::===::;:===::::::i==~_i...-"L

I
I
I
I

I
I
I
I
I I
I I

-S ---------~---------~--
I I
I I
I I
I I
I I

---------~---------~--------~I I I
I I I
I I I
I I I
I I I
I I I

-1S+-----+-----+----+------\-----+--------i
023 4 S 6

X

Figure 5.5. Polynomials with one or more real roots.

For the purpose of this exercise, we will proceed on the assumption that
roots can be found by identifying the places where a function crosses the x-axis.
(That is, we will ignore the third possibility mentioned above.) Assume that the
interval [xa,xb] is divided into subintervals [XL,XR] sufficiently small that each
subinterval contains either one root or no roots. However, we shouldn't overlook
the possibility that we may select the subintervals so that either f(xL) =0 or
f(xR) =0, or both may equal zero in the case where f(x) can have more than one
root. In that case, either XL or XR, or both XL and XR' are roots.

If neither of the subinterval endpoints is a root, continue the search for the
root in the open interval (XL,XR). Find the midpoint in the interval [XL,XR]. There
are then three possibilities, which take into account the fact that if the product
f(xL)·f(xR) is less than zero, the function crosses the x-axis somewhere in the
interval (XL,XR):

(1) f(xmid) = 0
(2) f(xJ·f(xmid) < 0
(3) f(xmid)·f(xR) < 0

If (1) is true, then Xmid is a root. In general, it is unlikely that f(Xmid) will ever be
exactly zero, so this condition needs to be implemented as If(xmid) I < E, where E

is some appropriately small user-supplied value.

5.10 Exercises • 221

If (2) is true, then the root must lie in the interval [XL,Xmid]. Let xR= Xmid
and try again with this new interval. If (3) is true, then the root must lie in the
interval [Xmid,xRl Let XL =Xmid and try again. As a result of repeatedly halving the
interval in this way, Xmid will eventually satisfy the inequality If(xmid) I < £, based
on the assumption that the original interval (XL,XR) contains one root. It is also
possible to terminate the algorithm when the interval becomes sufficiently small:
XR- XL < £', where £' is some other user-supplied small value. In that case, we can
also assume that f(xmid) is sufficiently small.

This description of the bisection algorithm is easy to implement
recursively. Divide the search interval in half and look again in the appropriate
half. These repeated searches on a new interval half the size of the current interval
generate the recursive calls. The other possibilities, such as If(xmid) < £ I, provide
multiple terminating conditions for the recursive function.

Using this discussion of the bisection algorithm, write a program that finds
one or more roots of a function over a specified interval. Test your program by
defining a function that contains at least two roots, such as x2

- 2, and by
specifying an initial interval that includes those roots. Use a count-controlled loop
to divide the initial interval into 10 equal subintervals. Each such subinterval
defines one of the intervals [XuxR] discussed above. Search recursively for a root
within each of those subintervals and display the results of each search.
[bisect2. c]

11. Recall Exercise 13 in Chapter 3, in which you were asked to write a
polynomial function that approximated the integral of the normal probability
density function (pdf). In this exercise you will write a program to compare that
approximation with a numerical integration of the pdf, as was done in this chapter
in Section 5.8.4. Your main function should not do any calculations itself; rather,
it should simply call functions to do the two calculations.

For this exercise, functions to do the calculations should be written in
another source code file that will be compiled separately and then linked to the
main function. Give the main function access to the functions by #includeing
an appropriate header file. The code for numerically integrating a function of one
variable using Simpson's Rule is given below.

double F(double z)
{

return exp(-z*z/2.0)/sqrt(8.0*atan(1.O);
}
double Simpson(double xl,double x2,int n_segs,double (*F) (»
{

int i;
double dX,sum_odd,sum_even;

dx=(x2-xl)/n_segs;
sum_odd=O.O; sum_even=O.O;
for (i=l; i<=n_segs-l; i+=2)

sum_odd+=F(xl+(double)i*dx) ;

222 • 5. More About Modular Programming

for (i=2; i<=n_segs-2; i+=2)
sum_even+=F(xl+ (double) i*dx) ;

return (F(xl)+F(x2)+4.*sum_odd+2.*sUffi_even)*dx/3.;

Note that the numerical integration function Simpson requires four
parameters: the lower integration limit, which is 0 for this problem; the upper
limit, which is the standard normal variable z; the number of integration steps,
which could be given a value of 100; and a reference to a function that evaluates
the normal probability density function. Also, Simpson integrates the function
from 0 to z rather than from --00 to z. Although Simpson could be called directly
to evaluate the integral, a cleaner information interface involves creating another
function that requires only the standard normal variable z as its single argument
and which returns the value returned from Simpson plus 0.5 (because the
integral of the pdf from --00 to 0 is 0.5). With such a function, your main program
code will look something like this:

printf("Give value of standard normal variable z: ");
scanf("%lf",&z) ;
printf ("From Simpson's rule integration: %If\n'',

normal_int(z) ;
printf(" From polynomial approximation: %If\n",

normal-poly(z) ;

When you write the header file, it should contain references only to those
functions needed directly by your main function:

extern normal-poly(double z);
extern normal_int(double z);

As they should, these function prototypes hide the details of implementing the
calculations, especially for the numerical integration. [normal3 . c]

12. The Julian day system is used in astronomical calculations to overcome the
complexities inherent in the civil calendar system. These problems occur because
the length of a solar year is not an even number of calendar days. (One solar year
is approximately 365.25 days.) Every day is assigned a unique, consecutively
numbered Julian day starting with the January 1, -4712. Julian days begin at
Greenwich noon; that is, noon at the Greenwich Observatory near London. For
example, midnight at the start of Greenwich calendar day January 1, 1998, (or
January 1.0, 1998) is Julian day 2450814.5, and Greenwich noon on January 1,
1998, (or January 1.5, 1998) is Julian day 2450815.0. Note that days are allowed
to include fractional parts. Thus days should be represented as real numbers rather
than integers.

It is possible to write algorithms for converting back and forth between
dates given in the Gregorian calendar (the modem civil calendar) and Julian days,

5.10 Exercises • 223

although they are certainly not obvious.3 For a specified month m, day d, and year
y, the Julian day JD is given by the following algorithm:

1. If m > 2, leave y and m unchanged. If m equals 1 or 2, replace y by Y- 1 and
m by m + 12.

2. Calculate A = (y/lOO) and B = 2 - A + (N4), where (00') indicates that a
division is truncated to a whole number. That is, (7/4) = 1.

3. The Julian Day is then

JD = (365.25(y + 4716) + (30.6001(m + 1) + d + B - 1524.5

where JD can include a fractional part, as noted above. The number 30.6001,
rather than 30.6, is required to prevent inappropriate truncations due to
inaccuracies in handling real arithmetic. For example, 5 times 30.6 gives 153
exactly, but this calculation done in real arithmetic might give a result of
152.999999, a value that will then be truncated to 152.

The conversion from the older Julian calendar to the modem Gregorian
calendar took place in many parts of Europe in 1582. The day following October
4 on the Julian calendar became October 15 on the Gregorian calendar. However,
because the change was mandated by the Pope in Catholic countries, some non
Catholic countries resisted or delayed the change. In Great Britain, the change
wasn't made uniformly until 1752. Thus, caution is required when converting
historical calendar dates to Julian dates.

The inverse operation, to convert a Julian day to its corresponding
Gregorian calendar day, is:

1. Add 0.5 to the Julian day. Let z be the integer part and f the decimal part of
the result. If z < 2299161, let A =z. If z ~ 2299161,

a = «z - 1867216.25)/36524.25)
A = z + 1 + a - (al4)

2. Calculate
B = A + 1524
C =«B - 122.1)/365.25)
D = (365.25C)
E = «B - D)/30.6001)

3The algorithms given here are from Jean Meeus, Astronomical Algorithms, Willmann-Bell, Inc.,
Richmond, VA, 1991. (www.willbell.com)

224 • 5. More About Modular Programming

3. Calculate
d = B - D - (30.6001E) + f (day including decimal part)
m = E - 1 if E < 14, or E - 13 if E = 14 or 15
y = C - 4716 if m > 2 or C - 4715 if m = 1 or 2

Do not replace 30.6001 with 30.6. Note that d can include a fractional part.
Implement these algorithms in two functions. Test the functions in a

program that asks the user to provide a calendar date, calculates the Julian day,
and converts that Julian day back to its calendar date. [julcal. c)

13. Certain kinds of atmospheric measurements are made with a sun photometer,
an instrument consisting of a detector that views a narrow beam of sunlight and
responds only to a narrow range of frequencies. In order to interpret such
measurements, the position of the sun must be known relative to the observer and
relative to a horizontal plane at the earth's surface. Although it is possible in
principle to measure directly the solar elevation angle (the angular distance of the
sun above the horizontal plane) or its zenith angle (900 degrees minus the
elevation angle), it is usually more accurate to calculate the solar position from
astronomical equations. Such equations, based on astronomical theory and
observations, are complicated because the geometry of the earth's rotation around
the sun and about its own axis is complicated.4

The terminology in these equations is probably unfamiliar and the
equations are probably obscure. However, your task is to write a program that
implements the equations, not to derive them or even to understand their
derivation. For the most part, you will not be able to determine independently
whether your program produces the correct answer. Consequently, you must be
extremely careful when you translate these algorithms into C.

Julian centuries from 2000:

T = (JD - 2451545.0)/36525.0
(Use the Julian day calculation from the previous exercise to get JD.)

Solar position in ecliptic coordinates:

geometric mean longitude of the sun:
La = 280.46645 + 36000.76983T + 0.OOO3032T2

mean anomaly of the sun:
M = 357.52910 + 35999.05030T - 0.0001 559T2

- 0.OOOOO048T3

4See, for example, Jean Meeus, Astronomical Algorithms, Willmann-Bell, Inc., Richmond, VA,
1991. (www.willbell.com)

5.10 Exercises • 225

eccentricity of the earth's orbit:
e =0.016708617 - 0.000042037T - 0.0000001236T2

equation of the sun's center:
C =(1.914600 - 0.004817T - 0.000014T2)sin(M)

+ (0.019993 - 0.OOOI01T)sin(2M) + 0.000290sin(3M);

true longitude of the sun:
Ltrue = (Lo + C) modulus 360. If Ltrue < 0°, add 360°.

true anomaly of the sun:
f=M+ C

earth-sun distance:
R = 1.000001018(1 - e2)/[1 + e·cos(f)]

Angular position of the Greenwich meridian:

sidereal time:
eo = 280.46061837 + 360.98564736629(JD - 2451545) + 0.000387933T2

- T3/38710000
Replace eo with eo modulus 360. If eo < 0°, add 360°.

Obliquity of the ecliptic:

S = 23 + 26/60 + 21.448/3600 - 46.8150/3600T - (0.00059/3600)T2

+ (0.001813/3600)T3

Conversion of solar coordinates to equatorial (earth-centered) and observer
coordinates:

right ascension:
tan(a) =tan(Ltrue)cos(s)

declination:
sin(o) = sin(s)sin(Ltrue)

hour angle of the sun with respect to the observer's longitude (Lobs):
H = eo + Lobs - a

azimuth angle of sun at the observer's longitude and latitude (I"Ob.) , relative to
south:

tan(~) = sin(H)/[cos(H)sin(Lobs) - tan(o)COS(l"ObS)]

226 • 5. More About Modular Programming

elevation angle of sun above a horizontal plane at the observer's position:
sin(e) = sin(l"obs)sin(o) + cos(l"obs)cos(o)cos(H)

The equations giving angular quantities as a function of time T-Lo and
M, for example-assume angles specified in degrees. When you use these angular
quantities as arguments in trigonometric functions-sin(H), for example-be
careful to convert the angles from degrees to radians. You must also be careful to
use real arithmetic when appropriate. In the equation for the obliquity of the
ecliptic, for example, the quantity 26/60 translated into source code as the integer
division 26/60 will give a value of O!

For the right ascension and azimuth, use the a tan2 function to obtain an
angle in the proper quadrant. To do this for the right ascension, replace tan(Ltrue)
with sin(Ltrue)/cos(Ltrue)'

14. Equations of the form

eat _ at - b = 0

are sometimes encountered in heat transfer problems. This is an equation that
cannot be solved analytically, but it can easily be solved numerically. If the
equation is rewritten as

eat =at + b

then an obvious graphical solution is to plot each side of the equation separately,
as shown in Figure 5.6 for a =0.5 and b = 10. Any point where the two curves
intersect is a root of the original equation.

A standard numerical approach to solving this kind of equation involves
rewriting the original equation in the form t = get). For this equation, there are two
obvious possibilities:

at
t = (e - b)/a
t = fn(at + b)/a

To find t, first make an initial guess; any reasonable value should work. Then
evaluate the right side of the equation to get a new value of t. Substitute this new
value and evaluate the expression again. Repeat the procedure of reevaluating t in
this way until the difference between the new and old values of t becomes less
than some specified small number. Although such an approach is not guaranteed
to work, it is often the case that this iterative algorithm will converge to a value
of t that is a root of the original equation.

5.10 Exercises • 227

25.0.-----~------------------..,-----,

105o-10 -5
t, arbitrary units

-15-20

200
. . , . . ,. . ··························r··············f· .

15.0 ~ ; c ~ ! + .
.c+ ::: I . I:i 10.0 Tim; 051+

10 I ,mm ~m m

c: 5.0 "!" !" ···············r···············\········· ·····r···············

il 0.0 i i m:ml exp(0.51) I
, . ,. . .-5.0 ··T······· .

-10'~25

Figure 5.6. Graphical solution to I' - at - b =O.

For the coefficients used here (a =0.5, b = 10), Figure 5.6 shows that there
are two real roots-one at about t = -20, and another at about t = 5. If the
independent variable t represents time in a heat transfer problem, for example,
only the positive root has physical significance. Which root will the iterative
solution find? It is interesting that, for this equation, one formulation of t = get)
will find the positive root and the other will find the negative root.

Write a program that will solve this equation iteratively. Implement a
function that will iterate on a function passed through its parameter list. Define
two functions, gl and g2, one for each formulation of t = get) given above, and
call the iterating function twice, once with each of these functions as an argument.
What are the roots and which definition of get) gives the physically significant
positive root?
Hint: This algorithm can be implemented either iteratively or recursively. It would
be good practice to do it both ways. [heat_xfr. c]

15. In astronomy, the so-called equation of time is used to account for the fact
that standard time (clock time) is based on a fictitious mean sun that rotates
around the earth at a constant rate. The motion of the real sun around the earth is
complicated by two facts: (1) the earth's equator is tilted with respect to the

228 • 5. More About Modular Programming

ecliptic plane (the plane in which the earth rotates around the sun); (2) the earth's
orbit around the sun is slightly elliptical rather than circular.

Thus, true solar time is different from clock time. For an observer at the
Greenwich meridian (0° longitude) whose clock reads standard time, the difference
between clock time and true solar time (clock time - solar time) E is given in
minutes by

E = (0.000075 + 0.001868 cosf - 0.032077 sinf
- 0.014615 cos2f - 0.04089sin2f)(229.18)

where f is the day angle. In radians, and ignoring leap years:

f = 21t(day - 1)/365

Note that this value may be positive or negative. The maximum time correction
is about 16 minutes, with a maximum error of a little more than 0.5 minute.s

Write a program that asks a user to supply a day number and then
calculates and displays the equation of time correction. [sol_time. c]

Extra Credit:
(1) Write a function that calculates the day number from the calendar date (month,
day, and year). This function should account for leap years. Modify the equation
for f so that the denominator is 365 or 366 depending on whether the year is a
leap year. Include a function that will convert the day of the year back to the
calendar date, correctly accounting for leap years. Meeus6 gives the following
equation for day number n:

(
275m) (m+9)n = INT -9- - k-INT U + d - 30

where k is 1 for a leap year and 2 for a common year. The reverse calculation is:

If n < 32, then m = 1 and d = n. Otherwise,

SSee Chapter 1 of Muhammad Iqbal: An Introduction to Solar Radiation, Academic Press, 1983.

6See Jean Meeus, Astronomical Algorithms, Willmann-Bell, Inc., Richmond, VA, 1991.
(www.willbell.com)

5.10 Exercises • 229

m = INT[9(k+n) + 0.98]
275

(
275m) (m +9)d = n - INT -9- + k·INT 12 + 30

(See also Exercise 15 in Chapter 3.)

(2) In the original problem statement, the time correction is calculated relative to
Greenwich Mean Time, at a standard time longitude of 0°. At other longitudes, an
additional correction must be made: 4 minutes per degree of longitude difference
between the observer's standard time longitude Ls and the observer's actual
longitude La:

true solar time = 4(Ls - L.) + E

The standard longitudes for time zones in North America and Hawaii are given
in Table 5.4.

Table 5.4. Standard time zones for North America

Atlantic 4 600 W

Eastern 5 75°W

Central 6 900 W

Mountain 7 105oW

Pacific 8 1200 W

Alaska 9 135°W

Hawaii 10 1500 W

(3) Write a function based on these equations that calculates the time of true solar
noon, i.e., the clock time at which true solar time is 12:00 noon, for a specified
day and longitude.

16. Write and test a recursive function that calculates x", where x is any real
number (positive or negative) and n is any integer (positive or neegative). Define

230 • 5. More About Modular Programming

0" =0 and x" = X_X"-l. If n is negative, then x" = l/X-". Note that for the intrinsic
function pow, the exponent is type double rather than into As a result the pow
function will produce errors if the base is negative and the exponent is not a
whole number.

17. Write and test a recursive function that finds the greatest common divisor of
two integers m and n, using Euclid's algorithm:

1. Find the integer remainder of min (m mod n).
2. If the remainder is 0, then n is the largest integer divisor of both m and n.
3. If the remainder is not 0, replace m with n and n with the integer remainder
from the original division. Repeat the steps until the remainder is O.

For example, what is the greatest common divisor of 30 and 12?

I. The integer remainder of 30/12 is 6.
2. The remainder is not O.
3. The integer remainder of 12/6 is O. Therefore, 6 is the largest integer divisor
of both m and n.

This algorithm implies that m is greater than n, but this is not a requirement, as
you can see by trying 12 and 30 rather than 30 and 12.

18. Write and test a recursive function that returns I if an integer is prime and 0
if it is not. You can take advantage of the following facts:

I. The integers I, 2, and 3 are prime.
2. Any even integer greater than 2 is not prime.
3. If an integer has no divisor less than or equal to its square root, it must be
prime. That is, if an integer has a divisor greater than or equal to its square root,
it must also have a divisor less than or equal to its square root. Odd integers that
are perfect squares, such as 49, have two divisors, each of which is equal to the
square root.

To implement this algorithm, it is helpful the use two separate functions, one of
which has a single parameter associated with the integer to be tested. The
prototypes should look like this:

int Is_Prime(int n);
int Get_Prime(int n,int m);

where n is the integer to be tested and m is a trial divisor. Only the function
I s_Prime is called directly. Then I s_Pr ime conducts some preliminary tests

5.10 Exercises • 231

on n and calls Get_Prime only if the other tests cannot determine whether n is
prime. Of these two functions, only Get_Prime is called recursively.

6

Arrays

6.1 Arrays in Structured Programming

Up to now, we have discussed only data objects for which a
variable name corresponds to a single value and a single
memory location consisting of one or more bytes, as appropriate
for the data type of the variable. In this chapter, we will
develop a new model for data representation which allows us to manage many
pieces of related information. This important user-defined data object, called an
array, is a collection of related values organized under a single name. Although
arrays can be implemented as purely abstract entities, in science and engineering
they more often serve as implementations for vectors or representations for
tabulated data. In this section, we will develop the basic concepts of arrays by
posing a specific data management problem and describing a way of organizing
the information required to solve that problem.

Suppose you are conducting an experiment to monitor the concentration
of tropospheric ozone, the levels of which are subject to federal regulation. You
have in place equipment that produces one measurement per hour for 24 hours.
You would like to store these measurements and then write a program to analyze
the data. How should your program handle this task? One way would be to
associate a unique variable name with each ozone measurement:

ozonel
ozone2
ozone3
ozone4

ozone23
ozone24

This already seems a little awkward, and it will quickly become unworkable if you
decide that what you really need is hourly measurements for an entire month.
Suddenly you're faced with creating up to 744 variable names!

Fortunately, there's an easier way: define a single name-02one-and an
indexing system that can be used to access all the ozone measurements under this
single variable name. Symbolically, each measurement could be addressed like
this:
ozone(l)
ozone(2)

ozone(24)

D. R. Brooks, C Programming: The Essentials for Engineers and Scientists
© Springer-Verlag New York, Inc. 1999

234 • 6. Purays

The interpretation of this system is the obvious one: ozone (1) is the
measurement at the first hour, ozone (2) is the measurement at the second hour,
and so forth. If you need more measurements, all you have to do is increase the
value of the largest index from 24 to 744 for an entire month:

ozone(l)
ozone(2)

ozone(743)
ozone(744)

At the algorithm design level for this problem, the information is awkward to
manage even conceptually without some kind of indexing scheme. Also, as we
will see, it is difficult and impractical to implement solutions to some kinds of
programming problems without an array-based approach. Thus when you
implement this conceptual model for representing data in a programming language,
you will use an array.

One-dimensional arrays are often associated with vectors
in the physical and mathematical sense, or with vector data in
a more generalized sense, as opposed to scalar data. This is a
distinction that should be familiar from an introductory physics
course. To cite some examples, the speed of a moving object is represented by a
single number and is a scalar quantity, but the velocity of a moving object is a
vector quantity that describes both speed and direction with components in each
of three coordinates in physical space. Mass is a scalar quantity, but weight as a
consequence of the gravitational force acting on mass is a vector quantity.

The association of arrays with vectors is especially relevant to problems
in mathematics, science, and engineering, but the use of arrays in programs isn't
restricted to applications that can be physically associated with vectors. In
programming, arrays are organizational tools for managing large amounts of
related information. You should use array notation any time you need to
manipulate collections of related values, regardless of whether that use is
associated with some kind of physical vector operation. For example, the problem
of managing ozone measurements has no physical vector significance, but it is
nonetheless a natural candidate for an array representation. You can think of the
ozone data as a vector in "data space" rather than in physical space.

It is easy to misinterpret the meaning of dimension when
that word is applied to arrays. In physics, a three-dimensional
vector might refer to the position or velocity of an object in
space because space has three dimensions.' However, such a
vector is represented by a rank one (one-dimensional) array in

'Note to physics students: This statement refers to the properties of space as described by
Newtonian mechanics.

6.2 One-Dimensional Array Implementation in C • 235

programming. To put it another way, the dimension of an array, in the
programming use of that term, does not describe the size or extent of an
array-the number of values stored in the array-but is related along with the
extent to its shape. A vector describing position or velocity or, more abstractly,
a stream of measurements, has shape one, regardless of how many components it
contains, but a table organized into several rows and columns is most naturally
represented as an array of shape (rank) two, regardless of how many rows and
columns it has.

You could represent monthly ozone data with a one-dimensional array of
size 744. However, in terms of organizing this kind of information, it makes more
sense to define a rank two array-essentially, a table of values. One index-from
an implementation point of view, it won't matter which one-will represent a day
of the month and the other will represent an hour in the day. The entire array still
requires 31 x24 = 744 values, but each dimension has its own extent; 31 for the
first dimension and 24 for the second. Assume the first index represents the day
and the second the hour. Then a two-dimensional (rank two) representation in an
array called ozone will look like this:

On day 1:

On day 2:

ozone (1, 1)
ozone(1, 2)

ozone(1,24)
ozone (2, 1)
ozone(2, 2)

ozone(2,24)

On day 31: ozone (31, 1)
ozone(31, 2)

ozone(31,24)

As you can see from this example, the dimensionality of an array is
associated with the number of array indices required to access values in the array.
A rank two array requires two indices. Organizing the rank two ozone array so
that its first dimension represents days and its second dimension represents hours
is an arbitrary but reasonable choice. The next section will describe the
implementation of rank one arrays. We will return later to the problem of
representing ozone in a two-dimensional table with a rank two array.

6.2 One-Dimensional Array Implementation in C

In this section, we will discuss the C implementation of array concepts. Consider
the implementation of a one-dimensional array to hold 24 ozone values. Like any
other data object, an array must be declared before it can be used in a program:

236 • 6. PuTays

float ozone[24];

What can we learn from this single statement? First, as a matter of good
programming style,

For the ozone example, a name such as ozone makes sense both for algorithm
design and for the implementation. There is no justification for using an
abbreviated or meaningless name for a physical quantity, although we will often
use a short name such as A when we are discussing or using arrays in the abstract.

The number in brackets following the array name defines its size, or
extent.

The extent of an array can be declared with the aid of a #define directive:

#define MAX 24
float ozone [MAX] ;

In general, this is better programming style than the previous declaration, as it
makes references to the maximum number of values an array can hold, which
often appear in several places in a program, easy to modify.

A value in an array is called an array element. The
array elements are related in the organizational sense. In
addition, as a matter of implementation,

As indicated in the declaration statement, each of the 24 elements of the ozone
array is a type f loa t number. Array elements can have any defined data type,
including any of C's intrinsic types and, as we will see in Chapter 7, user-defined
data types.

Previously in this text, we have generally associated the values of physical
quantities with type double real numbers. We will sometimes make exceptions
to this choice when we use arrays. Why? Because arrays can occupy a lot of space
in memory, and it is sometimes reasonable to conserve that space by using a data
type that requires no more bytes per element than necessary.

It is important to realize that the declared extent of an array represents the
maximum number of values an array can hold. It is not necessary to use all of the

6.2 One-Dimensional Array Implementation in C • 237

elements. When arrays are used in programs that process data from external
sources, is it often true that the actual number of values that must be processed
is unknown at the time the code is written. Thus, the working size of an array
may be significantly smaller than its declared size.

Elements in an array must be given values one at a time; there are no
operations in C that apply to an array object as a whole.2 Usually, it is a good idea
to initialize all the elements in an array because it is a mistake, at least as a matter
of programming style, to use an uninitialized array element on the right side of
an assignment operator, just as this is a mistake for scalar variables. Again, it is
possible to distinguish between the declared extent of an array and its working
size. Unused elements can simply be ignored and need never be given a value; it
is of no consequence that declared space is wasted if the working size of the array
is smaller than its extent.

Later in this chapter, there are several examples showing how to assign
values to array elements. However, we will demonstrate here how to initialize an
array's elements as part of its declaration:

float a[]={1.1,3.7,4.4};

In this statement, the square brackets that specify the extent of the array are
empty, and its size is inferred from the number of values appearing within curly
brackets. Although this is not a very practical strategy for large arrays, it can be
useful in some circumstances-for example, in programs that process three
dimensional physical vectors with only three components.

Now let's see how to access the values in an array. Assume we have
already given a value to each element in a one-dimensional array of extent 10, and
that we now wish to display those values.

int i;
float A[lO];

for (i=O; i<lO; i++)
printf("%f\n",A[ij) ;

The loop counter variable i serves as an array index for
accessing the values in A. Note that i takes values in the range
0-9 rather than 1-10. This is because

Prhere is no inherent reason why a programming language cannot implement operations that can
be applied to entire arrays. Fortran 90, for example, contains many such operations.

238 • 6. PuTays

In terms of this important rule, e differs from other languages such as Fortran and
Pascal, in which you may select values for both the upper and lower value of an
array index. In the ozone example discussed earlier in this chapter, the natural
mathematical notation for the fourth measurement in the day is ozone(4), or
ozone4• In e, however, the fourth measurement in a one-dimensional array holding
ozone measurements would be accessed as ozone [3] because the array index
values for the first four measurements are 0, 1, 2, and 3, rather than 1, 2, 3, and
4.

Another difference between C's array notation and a mathematical notation
that might use parentheses or subscripts is that

Thus, the mathematical notation A(i) or Ai is implemented in e as A [i], or
A [i -1] if you consider the mathematical index as starting at 1 rather than 0 (so
i-I =0 when i = 1). In a two-dimensional representation of ozone
measurements, the second measurement on the second day is accessed in e by
ozone [1] [1] and not ozone [2] [2]. Note that the notation ozone [1, 1]

is meaningless to e and will generate a syntax error because each dimension
needs its own pair of brackets.

The differences between how arrays are usually notated in mathematics,
or how you express positions in a one- or two-dimensional table, and e's array
notation are easy to forget; consequently, a great deal of care is required when you
write e programs that use arrays. Using parentheses rather than brackets for array
indices and forgetting to enclose a reference to each dimension in its own pair of
brackets are common mistakes that generate syntax errors. These mistakes are
relatively easy to detect and fix.

On the other hand, using an inappropriate array element in a program will
cause problems with your program that can be very difficult to detect because

Attempts to access values in an array which lie
outside the declared limits are called array
boundary violations. An array boundary violation
will go undetected at compile time and may not produce an obvious error at run
time. The results of such violations range from the obvious, such as crashing your
computer system, to the subtle and mostly undetectable. The former is the best
kind of violation with respect to the integrity of your computer program and the
latter is the worst. There is no strategy for avoiding array boundary violations

6.2 One-Dimensional Array Implementation in C • 239

other than being careful when you write code. The inability to detect array
boundary violations is a serious deficiency in the design of C that sets it apart
from other languages such as Fortran and Pascal.3

When you are using arrays, it is important to distinguish between the data
type of the values held in the array and the data type of the array indices used to
access those values. The elements of an array can have any data type-they are
type float real numbers in the ozone array-but

It is important to remember that the data type of an array index and the data type
of its elements need not be, and generally are not, related.

In a more general sense, array indices must be ordinal because the indices
must provide a means of one-to-one labelling for the elements of an array. Hence
it makes no sense to consider a real number index for an array. However, in C,
the restriction to integer indices has one not-so-obvious exception: you can use
characters for array indices because C will perform an implicit type cast. Thus, as
long as x has a declared size of at least 66, the references x [, A '] and x [65]
are equivalent because the uppercase letter A occupies position 65 in the ASCII
collating sequence; that is, its value typecast to intis 65.

Especially in science and engineering, arrays are often used to process data
from an external source. Here is a simple generic data processing problem that
will illustrate the basics of using arrays in C:

Read measurements from a file. Calculate the average of all
measurements. Display all measurements greater than or equal to the
average.

In designing a solution to this problem, it's important to realize that only
the requirement to display values greater than or equal to the average of all
measurements suggests the use of an array. The average can be calculated on the
fly, as your program reads through the data file. However, the code to display
only some measurements requires that all the measurements be accessed again;
your program can't decide which measurements to display until all of them have
been processed.

30ne could argue that this deficiency in C renders it unsuitable for use in scientific and engineering
programming. Obviously, this is an argument that has fallen on deaf ears.

240 • 6. Purays

One solution to this problem is to close and reopen the original file, or
rewind the file back to the beginning4 and read through it again. This is an
unappealing solution because file I/O is slow compared to operations that take
place in memory. A better idea is to store the values in an array so they can be
manipulated in memory. In general, this is a much more flexible approach because
it removes some restrictions that apply to sequential access (text) files. When data
are stored in an array, you can access values in any order and alter them simply
by reassigning them. In the text file implementation we have used so far in this
text, values are accessible only in sequence, and you cannot read and write values
in the file at the same time because sequential access text files are opened as
either read-only or write-only.

Program P-6.1 shows how to use an array to implement a solution to the
problem of displaying measurements greater than or equal to the average of all
measurements. It uses data file arrays. dat.

P-6.1 [averages. c]

/* A typical array-based problem. */
#include <stdio.h>
#define FILENAME "arrays.dat"
#define MAX_SIZE 20

int main(void)
{

float x [MAX_SIZE] ,avg;
int n=O,status,i;
FILE *infile;

infile=fopen (FILENAME, "r") ;
while (1) {

status=fscanf(infile, "%f",&x[n]);
if (status == EOF) break;
avg+=x[n] ;
printf("%i %f\n",n,x[n]);
n++;

)
fclose (infile) ;
printf("There are %i values.\n",n);
avg/=(double)n;
printf("The average value is %f\n",avg);
printf ("Values >= average: \n") ;
for (i=O; i<n; i++)

if (x[i] >= avg) printf("%i %f\n",i+1,x[i]);
return 0;

4We haven't discussed how to rewind a file, but you can look up the rewind function in a C
reference manual. The word is related to earlier computers in which information was stored on
magnetic tapes that literally had to be rewound to return to the beginning of a file.

6.2 One-Dimensional Array Implementation in C • 241

Running P-6.l

Remember that in C, there is no special keyword to use in a data
declaration for an array. Space for the array is allocated by including it in a
declaration statement with the data type of its elements and specifying the
maximum number of elements in brackets. Because problem specifications can
change, it is often convenient, but not required as a matter of syntax, to define the
maximum number of elements as a constant, as has been done in P-6.l with
MAX_SIZE. Then, if the maximum size of the array needs to be changed, the
change can be made in just one place in the source code.

A crucial point about C arrays is that they use
static allocation. This means that the maximum number of
elements in an array is set at the time the source code is
compiled. As a consequence,

In P-6.l, this means that the data file averages. da t must contain no
more than 20 values. Actually, the file should contain no more than 19 values.
Why? Consider the operation of the while ... loop when MAX_SIZE equals 20
and averages. da t contains 20 values. Suppose the loop has processed all 20
values. When the fscanf function tries to read another value, it encounters an
end-of-file mark. At that time, the current value of n is 20, so f scanf will be
trying to read a value for x [2 0] . However, the element x [2 0] doesn't exist
because the array x has been allocated only 20 locations, for indices 0 through 19.
Even though, in this example, the program encounters an end-of-file mark and

242 • 6. Arrays

never actually tries to write a value into element x [2 0] , it is better programming
style in general to assume that

In P-6.1, the array elements are declared as type f 1oa t, rather than
double, which we have usually preferred for physical quantities. This isn't
essential, but it takes into account the fact that the space set aside for arrays in C
implementations is limited, and type f 1oa t variables may take less space than
type double variables.

It's important to understand the statement

for (i=O; i<n; i++)

used to display values at the end of P-6.1. When the while ... loop terminates
after encountering an end-of-file mark, n has a value equal to the total number of
values found in the file. This value is the working size of the array, and it must
never be larger than the declared array extent. The for ... loop initializes i to
0, and it executes only as long as i is less than n. That is, the value of the array
index takes values in the range o-(n - I), as is appropriate.

It is very easy to make indexing errors when you're manipulating arrays.
For example, replacing the for ... loop statement in P-6.1 with

for (i=l; i <= n; i++);

probably doesn't look unreasonable, and it certainly won't generate a compile-time
or run-time error message. However, this loop will start with the second array
element (index 1), and it will attempt to display element x [n] . In P-6.1, element
x [n] has not been assigned a value. If n equals MAX_SIZE, the element x [n]

doesn't even exist. The former situation is an algorithm design error. The latter
situation is an implementation error that results in an array boundary violation
because the array reference lies outside the allowed range of indices, which must
be in the range o-(MAX_SIZE - I).

The code in P-6.1 is important because it serves as a template for how to
avoid logical errors and array boundary violations in this very common data
processing situation. Remember that an array boundary violation does not
automatically or immediately cause your program to crash. It simply forces your
program to access memory locations that lie outside the memory space allocated
for the array. Your program will certainly be willing to read from an unintended
location, with unknown consequences. If you try to write information in such a

6.3 Using Arrays in Function Calls • 243

forbidden location, by assigning a value to a nonexistent array element, the
consequences can include crashing your computer system.

Finally, note that when values are read into the elements of arrays
containing numerical or character (as opposed to string) elements, as in the
statement

fscanf (infile, "%f", &x [i]) ;

the address-of operator must be used to reference the address of that element, just
as this operator is required when scalar values are read. This makes sense because
each element of an array is, in fact, just a scalar quantity. It is only the array
entity itself that is no longer a scalar quantity.

Of course, there are ways to assign array elements other than by reading
them directly from a data file. Array elements can appear on the left side of an
assignment operator just as scalar variables can. The statements

x [4] =x[l] ;
x[2]=3;
x[(n+2)/2]=O;
x[c-65]+=1;

are all reasonable, assuming appropriate declarations. Variable n is probably an
integer rather than a character. Variable c could be either an integer or a character
that will be type cast to an integer; if c has the value 'A', the statement would
reference element x [0] .

As noted earlier in this chapter, one thing you can't do in C is assign a
value to an entire array with a single statement. It is often required to initialize
all the elements of an array before that array is used in a program. This code,
which appears to be a temptingly simple way to initialize array elements, makes
no sense and will generate a compilation error:

float x[lO];
x=O.; /* Makes no sense! */

6.3 Using Arrays in Function Calls

Arrays can appear in function argument and parameter lists, but there are some
important new rules to learn. It is straightforward to use array elements as
arguments in calls to functions, as opposed to an entire array, because array
elements are treated just like scalar variables. Indeed, when an array element is
passed by value as an argument in a function call, the function has no way of
distinguishing between that value and a scalar variable because the value of the
array element is copied into a temporary location. Similarly, when a function
performs calculations on output quantities by modifying their memory locations

244 • 6. PuTays

through pointers, as discussed in Chapter 5, the function has no way of knowing
whether the location it is asked to modify is associated with a scalar variable or
an array element.

The new rules apply to including an entire array in a function's parameter
list. The syntax for an array parameter is

The empty brackets, which are required, are used to indicate that the parameter
is an entire array and not just a simple variable. The extent of the array is not
given in the parameter list. This is because

This is an important difference between the treatment of arrays and simple
variables when they are passed to functions. When a scalar variable is passed as
an input argument to a function, it is passed by value. That is, the function
allocates new memory space and copies the value of the argument into this newly
allocated space. Thus the function works with its own local copy of the variable
and not with the value in the original memory location.

However, this information flow model does not apply to arrays passed as
arguments. Instead,

This is true regardless of whether, in the algorithm design sense, you think of the
array as input or output. The significant consequence of how C treats arrays
passed to functions is:

This treatment of arrays, as pass-by-reference parameters, isn't at all obvious at
the source code level, where the symbolic names used to identify arrays make
them look just like scalar variables.

The fact that an array isn't treated strictly as input to a C function raises
the possibility that unwanted changes can be made to the contents of an array. It
is basically up to the programmer to make sure this doesn't happen. One way is

6.3 Using Arrays in Function Calls • 245

to include the cons t keyword prior to the array type declaration in the parameter
list: const int A[] rather than int A[]. Using this keyword doesn't alter
the fact that arrays are passed by reference (that is, that the function still has
access to the original memory locations in the array), but it does allow the
compiler to produce executable code that will prevent changes to the contents of
the array.

P-6.2 shows how to pass an array to a function. It uses the same data file,
arrays . da t, as P-6.1. The function ArrayModi fy modifies the array
elements by multiplying each array element by -1.

P-6.2 [arrays2 . c]

/* Passing arrays to functions. */
#include <stdio.h>
#define MAX_SIZE 10

void ArrayModify(double a[]);

void main ()
{

int i;
double x [MAX_SIZE] ;
FILE *infile;

infile=fopen("arrays.dat", "r");

for (i=O;i<MAX_SIZE;i+=l)
{

fscanf (infile," %If", &x[i]);
printf("%d %If\n",i,x[i]l;

}
fclose(infile) ;
ArrayModify (xl;
for (i=O; i<MAX_SIZE; i+=l)

printf("%d %If\n",i,x[i]);

void ArrayModify(double all)
{

int i;

for (i=O; i < MAX_SIZE; i+=l)
{

a[i]=-a[i];
printf("%d %If\n",i,a[i] I;

Because of the way C treats arrays, it is also possible to call ArrayModi fy like
this:

246 • 6. Arrays

ArrayModify(&x[O]);

This use of the address-of operator is equivalent to passing the entire array
because

To put it another way, what the function gets is a pointer to the first element in
the array, which is equivalent to a pointer to the entire array. We will avoid using
this address-of syntax in order not to confuse passing an entire array with passing
just one element of an array to be treated as output from a function, which we
may also wish to do.

Program P-6.3 gives another example of using arrays. In this case, the
program must read the following external data file (planets. da t) containing
data about the sun and the planets:

Name Dia (kIn) Distance(10'6 kIn)
Sun 1302000 0
Mercury 4878 57.9
Venus 12102 108
Earth 12760 150
Mars 6786 228
Jupiter 142800 778
Saturn 120660 1427
Uranus 52400 2870
Neptune 50460 4500
Pluto 2200 5900

These data will be stored in three parallel arrays, which
means that a particular index in each array must always be
associated with the same planet. For example, the third
element (index 2 in C) of the name, diameter, and distance arrays must refer to
the planet Venus.

Even though it is easy to determine just by inspection that this file contains
10 data records, the code will treat it as a file of unknown length and must
therefore look for the end-of-file mark. This kind of code is applicable to many
programming problems, and it should be studied carefully. The program first uses
fgets to read the header line in the data file and then, inside the loop, uses
fscanf to read the data records. It uses status, the return value from
fscanf, to look for the end-of-file mark.

P-6.3 [planets2 . c]

#include <stdio.h>
#define NAME_LENGTH 8

void main()

6.3 Using Arrays in Function Calls • 247

FILE *InFile;
double distance[ll] ,diameter[ll];
char name [NAME_LENGTH] [11], one_line [81] ;
char *line-ptr;
int index, status;

if((InFile=fopen("planets.dat" , "rt")) != NULL)
{

printf("Opening file ... \n"l;
line-ptr=fgets (one_line, sizeof (one_line) ,InFile);
index=O;
while(l)
{

status=fscanf(InFile, "%s %If %If'',name[index] ,
&distance[index] ,&diameter[index]);

if (status == EOF) break;
printf(" (%2i) %-8s %10.0lf %10.llf\n",index,name[indexJ,

distance [index] ,diameter [index]);
index+=l;

}
printf ("done ... \n");

}
else printf("Trouble opening file ... \n");
fclose(InFile);

Running P-6.3

Here's another example. Consider the basic statistics required to describe
a set of measurements, the average m and standard deviation s, defined as

m

n

n
s

n-l

248 • 6. AuTays

The n - 1 (rather than n) in the denominator of the expression for s indicates that
the statistics are for a sample taken from a presumably normal population whose
true statistics, usually represented by J.! and cr, are unknown. That is, these are
"sample statistics" rather than "population statistics," and they are normally the
correct ones to use in experimental work. The sample standard deviation is greater
than the population standard deviation and takes into account the fact that, when
taking measurements of a physical quantity, the population statistics for that
quantity are not known because they require an infinite number of measurements.

In P-6.4, C's random number generator is used to create an array of
uniformly distributed numbers in the range [0,1]. It then calculates the mean and
standard deviation as though the number were normally distributed. (For
comparison, see Exercise 11 in Chapter 4, in which a pair of uniformly distributed
numbers is converted to a pair of normally distributed numbers.)

P-6.4 [statistc.c]

#include <stdio.h>
#include <stdlib.h> /* for random number generator */
#include <math.h>
#include <time.h> /* for seeding random number generator */
#define N_SAMPLES 100

/* function prototypes */
void get_data(double array[]);

void main ()
{

double data_array [N_SAMPLES] ;
double sum_x=O.O, sum_x2=O.0;
double average, std_dev;
int i;

get_data (data_array) ;
for (i=O; i < N_SAMPLES; ++i)
{

printf (''%If\n'' ,data_array [i]) ;
sum_x=sum_x+data_array[i] ;
sum_x2=sum_x2+data_array[i]*data_array[i] ;

}
/* printf("%lf %If %If\n'',sum_x,sum_x2, (double)N_SAMPLES); */

std_dev=sqrt((sum_x2-sum_x*sum_x/(double)N_SAMPLES)/
((double)N_SAMPLES-l.O» ;

average=sum_x/(double)N_SAMPLES;
printf(

"average = %If, standard deviation = %If\n'',std_dev,average);

void get_data(double data_array[])
{

int i;
/* Reinitialize rand each time, using

seed from system clock.
Use 1 to get the same values every time. */

srand((unsigned)time(NULL» ;

6.3 Using Arrays in Function Calls • 249

for (i=O; i < N_SAMPLES; ++i)
data_array[i]=(double)rand()!(double)RAND_MAX;

Running P-6.4

Problem Discussion
Program P-6.4 is a straightforward application of arrays. It is of particular

interest because it shows how to use C's rand function to generate an array of
pseudorandom real numbers uniformly distributed in the range [0,1]. If you have
forgotten how the random number generator works, refer to the application in
Chapter 4, Section 4.5.5. Don't forget to use an explicit type cast for either the
numerator or denominator, or both, in this calculation. Otherwise, the integer
division will be truncated to O.

Typically for random number generators implemented as part of a
programming language, the algorithm must be initialized (seeded) with a single
random value that serves as the starting point in order to avoid producing the
same sequence of pseudorandom numbers every time the program runs. In this
code, the time library provides access to the system clock. A "tick" from this
clock, extracted while the program is running, is essentially a random integer that
can be used as the argument for srand, the function that seeds rand. Not all
random number generating algorithms perform adequately in the statistical sense,
so it may be necessary to test the randomness of the resulting sequence for certain
kinds of applications. However, for any program encountered in an introductory
programming course, you may assume that rand produces integers that really are
random.

As noted in the comments in P-6.4, you should include the s tdl i b . h
header file to use C's random number generator and the time. h header file to
access the system clock.

250 • 6. Aurrays

6.4 Multidimensional Arrays

For the ozone problem discussed in Section 6.1, it was suggested that the natural
way to represent the ozone data was with a rank two array in which one
dimension represented days and the other represented hours. The declaration of
multidimensional arrays is straightforward:

data_type array_name[first extent] [second extent] [...]

The dimension for each rank is enclosed in brackets. The ANSI C standard
requires that a compiler support at least rank six arrays. However, it is unlikely
that you will need to use more than rank three arrays; one reason is that
multidimensional arrays can occupy a lot of memory. For example, the array
A [10] [10] [10] [10] requires 10,000 memory locations. Some C compilers
will not support arrays of this size, even if they seem necessary for the algorithm.

For the ozone problem, the array could be declared like this:

#define MAX_DAYS 31
#define MAX_HOURS 24

int ozone [MAX_DAYS] [MAX_HOURS];

It is always acceptable, and usually better programming style, to give the extent
value for each array dimension in a #define directive so that changes in the
extent for each array dimension are easy to modify later. In this case, you might
argue that these particular extents-the maximum number of days in a month and
the number of hours in the day-are unlikely to change. However, it is sometimes
useful to test a program that manipulates a relatively large set of data with a
smaller subset of those data, in which case it might be desirable to limit the extent
of the array dimensions to smaller values during program development.

Remember that each array dimension has its own set of brackets, so that
a reference to row 3, column 4 in array ozone must be written ozone [2] [3].
It is a common mistake to write something like 0 zone [row I co1] , especially
if you have written programs in some other language, but at least this mistake will
generate a syntax error.

Once you have learned how to define multidimensional arrays, you need
to know how to enter data into the elements of such arrays. In typical science and
engineering problems, as noted previously, data for the kinds of problems that
require the use of multidimensional arrays are often contained in external text files
that must be accessed by a program for processing. We will examine this problem
and its solution first by writing a simple demonstration program, P-6.5, to read
data into a two-dimensional array, and then by writing a program to process data
for the monthly ozone data problem discussed in Section 6.1.

6.4 Multidimensional Arrays • 251

P-6.5 expects a data file containing 12 numbers, which will be stored in
a two-dimensional array representing a matrix of data containing three rows and
four columns. What should the data file look like? First of all, we will assume that
the data file contains just numbers. That is, there are no header lines or other text
information in the file.

The obvious way to arrange the data file is in three rows containing four
numbers each. Then the layout of the data will mirror their organization in the
program. This choice, in tum, presumably mirrors the problem the program is
intended to solve. However, it is not obvious that the nested for ... loop in
P-6.5 will read such a file successfully. In a Fortran program, for example, the
corresponding loop structure and "read" command would imply that the data file
contained only one value per line. Potential problems arise because each line of
a text file contains an end-of-line mark. In Fortran, the READ statement (only
approximately the equivalent of C's f scanf function) always reads past an end
of-line mark, so the Fortran equivalent of the code in P-6.5 would read only one
value on a line regardless of how many values were actually present. In Pascal,
to cite another example, there are different functions (read and readln) that
can be used depending on whether you wish to read all the values on a line or just
one value. However, in C, the code in P-6.5 will work regardless of whether the
values in the data file are arranged on one or more lines. As a practical matter,
the end-of-line mark is treated by C simply as "white space" separating the last
number on one line from the first number on the next line. You can see this for
yourself by trying P-6.5 first with the file readaray . dal, which contains one
value per line, and then replacing readaray. dal with readaray. da2, which
contains the same values arranged in three lines containing four numbers each.

readaray.da1
1.1
1.2
1.3
1.4
2.1
2.2
2.3
2.4
3.1
3.2
3.3
3.4

P-6.5 [readaray. c]

readaray.da2
1.1 1.2 1.3 1.4
2.1 2.2 2.3 2.4
3.1 3.2 3.3 3.4

/* Demonstrate reading data into 2-D array. */
/* The data can be either one value per line (readaray.da1l or */
/* row-by-row (3 rows of 4 values each. see readaray.da2). */
#inc1ude <stdio.h>
#define N_ROWS 3

252 • 6. AJrays

#define N_COLS 4
void main()
{

FILE *infile;
float data_array [3] [4] ;
int row,col;

infile = fopen("readaray.dal", "r");
for (row=O; row < N_ROWS; row+=l)
{

for (col=O; col < N_COLS; col+=l)
{
fscanf (infile, "%f" ,&data_array [row] [col]) ;
printf("%5.1f",data_array[row] [col]);
}

printf (" \n");
}
fclose(infile) ;

Running P-6.5

Program P-6.5 operates identically in either case. Note that the code in
P-6.5 assumes that the total number of values in the file is known ahead of time.
If this weren't true, it would be necessary to include code to test for the end-of
file, as was done in P-6.3.

Finally, note how the new-line character (\n) is printed in a separate
statement outside the inner loop in P-6.5. Thus the data are displayed row-by-row
regardless of how they are arranged in the original data file.

Now we will return to the ozone problem. The data are contained in file
ozone. da t. The file contains two header lines that describe the contents of the
file and a third line that contains the number of days in the month. These three
lines are then followed by hourly measurements for each day in the month. We
will make two important assumptions about the records containing the hourly data:

(l) There are no missing data.
(2) The numerical values are separated by spaces only and not, for example, by
commas.

6.4 Multidimensional Arrays • 253

Program P-6.6(a) shows how to read a file containing ozone measurements
and store the values in a two-dimensional array for processing.

P-6.6(a) [ozone. c]

/* Process ozone data. */
#include <stdio.h>
#define MAX_DAYS 31
#define MAX_HOURS 24
#define FILE_NAME "ozone.dat"

void main()
{

char one_line [100] ;
int day, hour, n_days;
static int ozone [MAX_DAYS] [MAX_HOURS];
FILE *infile;

infile=fopen(FILE_NAME, "r");
/* Read and print two header lines. */

(void) fgets (one_line, sizeof (one_line) ,infile);
printf("%s\n" ,one_line) ;
(void) fgets (one_line, sizeof (one_line) ,infile);
printf("%s\n",one_line) ;

/* Get days in month. */
fscanf (infile, "%d" ,&n_days) ;
printf("There are %d days in this month.\n",n_days);

/* Read ozone data. */
for (day=O; day < n_days; ++day)

for (hour=O; hour < MAX_HOURS; ++hour)
fscanf(infile, "%i",&ozone[day] [hour]);

fclose(infile) ;
/* Display ozone data. */

for (day=O; day < n_days; ++day)
{

printf(" (%2i) ",day+1);
for (hour=O; hour < MAX_HOURS; ++hour)

printf ("%3 i" ,ozone [day] [hour]) ;
printf (" \n");

254 • 6. PuTays

Running P-6.6(a)

Remember that the indices for a C representation of these data have values
0-30 and 0-23 rather than 1-31 and 1-24. Also, note that each dimension has its
own set of brackets. This is different from the notation that you would probably
use in algorithm design. For example, you might write (30,23) to represent data
for 11pm on the 30th day of the month. However, neither (29, 22) nor [29, 22]
will work in C; the array indices [29] [22] represent Ilpm on the 30th of the
month.

For the compiler used to write P-6.6(a), an array of size 31 x 24 is too
large to be stored with the usual declaration. The addition of the s ta tic
keyword as part of the declaration causes the array to be stored in a different (and
presumably larger) part of memory. You can include this reserved word with any
array declaration.

The two header lines in ozone. dat are treated as strings. However,
because there are spaces in the text of the header lines, fscanf won't work
properly because, as pointed out in the discussion of P-6.5, f scanf doesn't read
past the end-of-line mark. Consequently, P-6.6(a) uses fgets to read the header
into the string variable one_l ine. This function will read the end-of-line mark
and will also insert a new-line character (\n) as the last character in one_line.
(That's why there is a blank line in the output of this program following the

6.4 Multidimensional Arrays • 255

display of each of the first two header lines.) The (vo i d) type cast in the
fgets statements tells the compiler to ignore the return value from fgets, as
we don't need it in this program.

The third line, which contains a single numerical value (the number of
days in the month), is read with fscanf. Finally, the nested for ... loop and
f scan f are used to read and store the ozone data. The success of this approach
depends on the two assumptions we made about the contents of the data file. If
data were missing, or if the program had to check for extraneous characters in the
file, the code to read the file would be much more complicated!

There is an important restriction that applies to using multidimensional
arrays as parameters in functions. Consider P-6.6(b), which illustrates a
modification of P-6.6(a) in which the code required to display the ozone data is
given in a function.

P-6.6(b) [part of ozone_f. c]

void Display(int Or] [24] ,int n);

/* Display ozone data. */
Display (ozone,n_days) ;

}
void Display(int Or] [24] ,int n)

int day, hour;

for (day=O; day < n; ++day)
{

printf (" (%2i) ",day+l);
for (hour=O; hour < MAX_HOURS; ++hour)

printf("%3i",O[day] [hour]);
printf (" \n");

Only the first dimension can be left blank when a multidimensional array
appears in a function's parameter list. In the ozone problem, this means there is
really no choice about using an array in which days is the first dimension and
hours is the second. If this order is used, the first dimension is "variable" in the
sense that it is possible in principle to rewrite the source code to expand, or even
to shrink, the ozone array to handle as many days as required to process the
available data. However, the extent of the second dimension is fixed because every
day will have 24 hours. In general, this restriction means that arrays have to be
constructed so that the potentially variable dimension comes first. This requires
careful planning when you design your algorithm.

256 • 6. Aurays

6.5 Accessing Arrays With Pointers

Section 6.3 explained that when an array is passed to a function, the function
actually gets the address of the location of the first element of the array. Or, to put
it another way, what is passed is a pointer to the first element of the array.
Although it's possible to write programs that don't explicitly acknowledge this
special relationship between arrays and pointers, as the programs presented so far
in this chapter have done, typical C programming style makes heavy use of
pointers. A pointer-based approach to accessing arrays is illustrated in program
P-6.7. This is a version of P-6.2 in which the name of the array (x) doesn't appear
at all in any of the statements that assign values to the elements of the array or
display those values. Instead, the elements of the array are accessed by
manipulating the value of a pointer to the array. The pointer is declared and
initialized so that it points to the first element:

double x [MAX_SIZE] ;
double *ptr=x;

The initialization of ptr along with its declaration is optional. The statements

double *ptr;

ptr=x;

would have the same effect. In fact, ptr is reset to x in an assignment statement
twice later in the program. The operation of the assignment statement itself is a
little different. Previously, an assignment meant, "Evaluate the expression on the
right of the assignment operator and store it in the memory cell associated with
the variable name on the left of the assignment operator." However, this
assignment statement means, "Give the pointer on the left of the assignment
operator a value equal to the memory location at which the array on the right of
the assignment statement starts."

P-6.7 [arrays3 . c]

#include <stdio.h>
#define MAX_SIZE 10

void ArrayModify(double a[]);

void main ()
{

int i;
double x [MAX_SIZE] ;
double *ptr=x; /* Initialize to beginning of array. */
FILE *infile;

infile=fopen("arrays.dat", "r");

6.5 Accessing Arrays With Pointers • 257

for (i=l;i <= MAX_SIZE;i+=l)
{

fscanf(infile, "%If",ptr++);
}
fclose(infile) ;
ptr=x; /* Point to beginning of array. */
for (i=l; i <= MAX_SIZE; i+=l)

printf("%d %d %If\n",i,ptr,*ptr++};
ArrayModify (x) ;
ptr=x;
for (i=l; i <= MAX_SIZE; i+=l)

printf("%d %If\n",i,*ptr++);

void ArrayModify(double *ptr)
{

int i;

for (i=l; i <= MAX_SIZE; i+=l)
{

*ptr=-(*ptr); /* The parentheses are optional. */
ptr+=l;

As a result of the declaration statement for ptr in P-6.7, in which a
pointer is bound to the array x, it is now possible to access the elements of x by
manipulating the pointer. A critical difference between P-6.7 and P-6.2 can be
seen in the loop that fills the array with values from the arrays. da t file. In
P-6.2, the loop looked like this:

for (i=O;i<MAX_SIZE;i+=l)
{

fscanf (infile, "%If" ,&x [il) ;

In P-6.7, the loop looks like this:

for (i=l;i <= MAX_SIZE;i+=l)
{

fscanf(infile, "%If",ptr++);

In P-6.2, the loop counter starts at 0 and ends at MAX_SIZE-l. In P-6.7,
the counter starts at 1 and ends at MAX_SIZE, which is incorrect when usual
array notation is being used. The loop in P-6.7 has been written in this way (it
wouldn't have to be different from the loop in P-6.2) to emphasize the fact that
the individual array elements aren't mentioned by name in the loop and the loop
counter is used just as a counter and not as an index. Instead, the pointer variable
ptr, which has been initialized to point to the first element of x, is incremented
inside the fscanf statement.

258 • 6. PuTays

The statement executed inside the loop could also be written (perhaps a
little more clearly) as

fscanf(infile, "%If",ptr);
ptr+=l;

It's important to note that the & operator does not appear in front of ptr in
fscanf because ptr is itself an address, not a value.

It might seem curious that incrementing operators can be used in
statements like ptr++ or ptr+=l that involve pointers. What does it mean to
increment a pointer (using the ++ or += operators)? Up to now, incrementing
operations have been applied only to scalar variables. However, when these
operations are applied to a pointer, they increment (or decrement) the pointer by
moving to the next (or previous) memory location appropriate to a particular data
type. That is, the 1 appearing directly in the statement ptr+=l i or by
implication in the statement p t r + + i is interpreted not as the numerical value 1,
but as "advance one memory location for the data type to which the pointer is
bound." (The number of bytes in memory by which the pointer is advanced
depends on the data type of the array elements.) Although you can do this as a
matter of syntax with pointers to simple variables, the next or previous memory
location wouldn't normally have any useful significance. Thus these operations
make sense only when they are applied to pointers bound to arrays. In P-6.7, for
example, incrementing (or decrementing) ptr results in ptr pointing to the next
(or previous) element of x. The number of bytes by which ptr actually changes
depends on the data type of the elements of x.

As you can see from the statement

printf("%d %d %If\n",i,ptr,*ptr++);

it is possible to print the value of a pointer in C. This value is the address of the
first byte in memory occupied by the current array element to which ptr is
pointing. If the value of ptr is printed directly after it is initialized to x, it points
to the first memory location occupied by the array. If you run this program on
your own system, you can see that incrementing ptr increases its value by
(probably) eight bytes, indicating that a type double variable occupies eight
bytes in memory. This output also demonstrates that C stores elements in an array
in contiguous memory locations, as you would expect. For the most part,
information about the actual location of an array and its elements in memory falls
into the "interesting, but. .." category.

Finally, examine the header statement and prototype for function
ArrayModi fy. In the prototype, the declaration is given as double a [J,

which indicates that the parameter represents an array. Also, when
ArrayModify is called, the argument is the name of the array x. However, the
parameter in the function implementation is a pointer to a quantity of type

6.6 More About Strings • 259

double. Although the declarations for this parameter may appear to be
inconsistent, they are not. This is because C automatically interprets the name of
an array in a function parameter list as a pointer to the first element of that array.

Regardless of the notation used, function ArrayModi fy expects as input
a pointer bound to a value of type double. As long as this pointer contains the
location of the first element of the array, ArrayModi fy can access all the other
elements just by incrementing that pointer. Note that ArrayModi fy in P-6.7
contains no explicit array notation at all.

The warnings about array boundary violations apply when you're using
pointers to access arrays just as they do when you're using explicit array notation.
C does not include any mechanism for checking for such violations, regardless of
the notation you're using. If you're not careful, your program can produce results
that may look okay even though they're wrong, or you can crash your computer
system. (Some operating systems are more vulnerable to crashes than others.)

It may seem awkward and unintuitive to access arrays by using pointers,
but this notation is more descriptive of how C actually handles arrays. In fact, it
is fair to say that array notation is simply a high-level translation of array
operations that makes C a little easier to use as a procedural language because
array notation is closer to the mathematical representation of arrays. It is common
C programming practice to make use of pointers when dealing with arrays, and
sometimes there are good reasons to do so. In Chapter 7, we will discuss more
complex (and larger) data structures and arrays of those structures. If, for example,
an array containing large data structures as its elements must be sorted, it may be
more efficient to sort pointers to array elements rather than to sort the array
elements themselves. However, for straightforward problems in which arrays are
used to organize information, array notation remains the simpler and more
desirable choice.

6.6 More About Strings

6.6.1 Strings as Arrays

A chapter on arrays may seem an odd place to discuss the string data type. Why
here? Previously, we used strings of characters as a natural and very useful
extension of the char data type. Now, however, we are in a position to develop
a better understanding of strings because the notation for declaring a string implies
that C treats strings as arrays of characters. For example, the declaration

char name [15] ;

means that the variable name is associated with an array of characters. That is,
name is a pointer to the location containing the first character in the string. It

260 • 6. luTays

should be clear now why, when a character string is read as input, the & operator
is not used, as in this example:

printf ("Enter your Social Security number (xxx-xx-xxxx) and age: ");
scanf('%s %i",ssn,&agel;

The reason is that variable ssn is already an address because it is the name of
an array of characters.

Because character strings are arrays, it is possible to apply array-like
operations to their elements, but you must be careful. Consider P-6.8.

P-6.8 [strings. c]

/* STRINGS.C */

#include <stdio.h>
#include <string.h>

int main(voidl
{

char name[15];
int i;

printf("Enter your first and last name: ');
scanf (" %s" ,name) ;
printf ('length: %i \n" ,strlen (name)) ;
for (i=O; i<strlen(namel; i++1

printf("%c',name[i]) ;
printf ('\n' I;
for (i=O; i<15; i++ I

printf('%4i', (intlname[i] I;
printf ('\n') ;
printf('Enter your first and last name: ');
fflush(stdinl;
fgets (name,sizeof (namel ,stdinl;
printf ("%s %i \n" ,name, strlen (namel) ;
return 0;

With the &s conversion specifier, the scanf function reads characters typed at
the keyboard up to the first blank or end-of-line character (created by pressing the
Enter key). Thus if you type David Brooks, the string saved by scanf will
be just David. The first for ... loop in P-6.8 displays this string one character
at a time. The loop terminating condition is obtained from an intrinsic function,
s tr1en, that counts the number of characters in the string-five, because David
contains five letters. (String-handling functions will be discussed further in Section
6.6.2.) The second loop attempts to look at allIS characters in the character array,
based on the fact that the array has been declared as having extent 15. However,
everything following the last letter before a blank space entered at the keyboard
is "garbage;" the Brooks part of the typed input is nowhere to be found.

6.6 More About Strings • 261

On the other hand, the fgets reads everything up to and including the
end-of-line character, whether from the keyboard (the stdin input device) or
from some other data source, and then automatically adds a null character (, \ 0 ')
to the end of those characters. Thus strlen returns a value of 13 if David
Brooks is entered for the name-12 characters, including the space between the
first and last name, plus the character generated by pressing the Enter or Return
key. The differences between scanf and f scanf can be important (and
frustrating if you forget them) when you use these functions in your programs.

6.6.2 String Functions

In order to use strings successfully, you must become familiar with the several
intrinsic functions for dealing with strings. These are sometimes required in
unexpected places because of the way C treats strings. For example, suppose you
wish to compare two strings for equality. The obvious code is

if (string! == string2) ... ; /* won't work! */

However, this won't work because the names stringl and string2 are
addresses (pointers to the first character in the string), and not values. Although
it would certainly be possible to write a compiler that understood this expression
in context, the C language typically does not make this kind of concession to
programmers. Instead, there is a separate intrinsic function for comparing two
strings; it is included in Table 6.1, which describes several functions for
manipulating strings. All functions in Table 6.1 require inclusion of the
< s t ring. h> header file. There are often different or additional functions in a
particular implementation of C, so if you have problems using these functions or
wish to make use of additional string manipulation capabilities, you must consult
the documentation for your version of C.

262 • 6. PuTays

Table 6.1. Some intrinsic functions for manipulating strings

strcat(Sl,S2)

strcmp(Sl,S2)

strcpy(81,S2)

str1en(Sl)

strncat(81,S2)

strncmp (81, S2, n)

strncpy(Sl,S2,n)

6.7 Applications

For null-terminated strings, appends S2 to the end of Sl, adds
a null character, and returns modified S1.

For null-terminated strings, compares Sl to S2. Returns 0 if
Sl and S2 are identical, a negative value if Sl is less than
S2, and a positive value if Sl is greater than S2.

For null-terminated strings, copies S2 to 81 and returns
modified 81.

Returns length of 81, not counting null termination character.

For null-terminated strings, appends at most n characters of
82 to Sl, adds a null character, and returns modified 81.

Compares at most the first n characters of 81 and 82, with
return values identical to s trcmp.

For null-terminated strings, copies n characters of 82 to 81
and returns modified 81. If n is less than length of S2, a null
character is not automatically appended to end of S1. If n is
greater than length of S2, Sl is padded with null characters.

6.7.1 Cellular Automata and Sierpinski Triangles

1 Define the problem.

A topic of great interest in biology and engineering is the study of artificial
organisms called automata. These can be thought of as artificial life forms that,
with the aid of a set of rules for reproducing themselves and dying, appear to be
self-organizing. When rules are incorporated into a computer program, they can
lead to surprising patterns, some of which can also be derived from fractal theory.
One interesting pattern is the Sierpinski triangle, illustrated in Figure 6.1.

6.7 Applications • 263

Figure 6.1. A Sierpinski triangle.

When a single cell-represented by an asterisk-is given an appropriate
set of organizing rules, it will propagate into multiple cells in a pattern that
resembles a Sierpinski triangle. The rules are:

For cell i, if cell i-I is occupied and cells i and i + 1 are not, or if cell
i-I is empty and cell i + 1 is occupied, then an organism will appear in
cell i in the next generation. Otherwise the cell will be empty.

Write a program that uses these rules to produce a pattern that looks like
a Sierpinski triangle.

2 Outline a solution.

1. Consider an array of cells. The contents of each cell are represented by a
single character. When a cell is alive, it will contain an asterisk; when it's not,
it will contain a blank space. Start with an initial population that consists of a
single live cell somewhere near the middle of the array. Display this state by
printing the contents of the array as a single line of output.
2. Now apply the organizing rules, encoded as boolean expressions, to get from
this initial state to the next state.
3. Display this new state.
4. Repeat steps 2 and 3 for a specified number of generations.

264 • 6. Purays

3 Design an algorithm.

There is one tricky part to implementing this algorithm: The tests to
determine the contents of a cell in the next generation must be applied to a copy
of the current generation. Otherwise, a cell that will not be occupied until the
next generation may be modified so that it will already appear to be populated in
the current generation, or a cell that will be empty in the next generation will no
longer be occupied in the current generation, thereby affecting the evaluation of
adjacent cells.

DEFINE (logical arrays cell(40), old_cell(40); character array ch(40);
of generations; i and j as loop counters)

INITIALIZE arrays cell = false
ASSIGN cell(20) = true (Put an organism in the middle.)
WRITE (0 and ch) (Display generation 0.)
ASSIGN n = 15 (number of generations)

LOOP (for j = 1 to n)
(Apply the propagation rules.)
ASSIGN old_cell =cell (Make temp copy.)
LOOP (for i =2 to 39) (Stay away from ends of array.)

(Apply rules...)
IF (old_cell(i-1) & not(old_cell(i)) & not(old_cell(i+ 1)))

OR (not(old_cell(i-1)) & old_cell(i+1))
THEN

cell(i) = true
ELSE

cell(i) = false
END LOOP
(Display new generation.)
LOOP (for i = 1 to 40)

IF (cell(i) = true) THEN WRITE('*')
ELSE WRITE(' ')

END LOOP
END LOOP

4 Convert the algorithm into a program.

6.7 Applications • 265

P-6.9 [sierpins. c]

/* One-dimensional cellular automata with rule that generates
a Sierpinski triangle. */

#include <stdio.h>
#define SIZE 40
#define N_CYCLES 15

void Display(int a[] ,int size);
void Update(int a[] ,int size);

int main(void)
{

int a[SIZE] ,i;

for (i=O; i<SIZE; i++)
a [i] =0;

a[SIZE/2]=1;
printf ("Generation 0: ");
Display(a,SIZE) ;
for (i=l; i<= N_CYCLES; i++)

Update (a, SIZE) ;
printf("Generation %2i: ·,i);
Display(a,SIZE);

}

return 0;
}
void Update(int a[], int size)
{

int old_a[SIZE] ,a_1,aO,a1,i;

for (i=O; i<size; i++)
old_a [i] =a [i] ;

for (i=l; i<size-1; i++)
a[i]=(old_a[i-1] && !old_a[i] && !old_a[i+1])

I I (! old_a [i-1] && old_a [i+1]) ;

void Display(int a[] ,int size)
{

int i;
for (i=O; i<size; i++)

if (a[i] == 1) printf("*");
else printf (" ");

printf ("\n") ;

266 • 6. PuTays

Running P-6.9

5 Verify the operation of the program.

The printed output of P-6.9 either will look like a Sierpinski triangle or it
won't. An incorrect implementation of the propagation rules will yield some other
perhaps equally interesting pattern.

Problem Discussion
This problem presents an ideal opportunity to use boolean (logical) data

types because there are only two possible states for a cell--occupied or empty.
However, because C lacks a separate boolean data type, such a representation must
be simulated; P-6.9 uses Is and Os.

Note how the relational and logical operators are used in P-6.9. In keeping
with the suggestion made in Chapter 3 that learning the precedence rules for these
operators is a thankless task, you might feel compelled to add some parentheses.
Alternatively, you can simply try writing the expression with a minimum of
parentheses and see what happens; the worst outcome is that you will get an
unintended result, in which case you can simply rewrite the code.

It may seem amazing that such a well-organized pattern can result from
following a few simple rules. It would be interesting to apply these rules to
different starting configurations containing more than one organism, or to change
the propagation rules.

6.7 Applications • 267

6.7.2 Probability Analysis for Quality Control of Manufacturing Processes

This application makes specific use of how C treats strings of characters as arrays
of characters.

1 Define the problem.

A manufacturer's experience has shown that 10 percent of all integrated
circuits (ICs) will be defective. Because of this high failure rate, a quality control
engineer monitors the manufacturing process by testing random samples every
day. What is the probability that:

(a) Exactly two ICs in a sample of 10 will be defective?
(b) At least two will be defective?
(c) No more than two will be defective?

2 Outline a solution.

You are not expected to know how to solve this problem, even in principle,
unless you have had a probability and statistics course. However, you should be
able to write the source code once you know what the solution is.

(a) The probability that, for example, the first two ICs in a sample of 10 will be
defective is (0. V(0.9)8 =0.004305. However, there are IOC2 =45 possible
combinations of two defective and eight good ICs. From probability theory, the
number of combinations of n things taken k at a time is

nCk = n!/[k!(n - k)!]

where ! indicates the factorial function. Therefore, the probability that any two
ICs in a sample of 10 will be defective is

P(=2) = IOC2(0.l)2(0.9)8 = (45)(0.004305) = 0.1937

(b) The probability of finding at least two defective ICs is equal to 1 minus the
probability of finding 0 defective ICs minus the probability of finding I defective
IC:

268 • 6. Purrays

(Remember that 0!=1 by definition.)

(c) The probability of finding no more than two defective ICs is

There are several approaches that could be taken to writing a program to
solve this problem. One solution would be simply to "hard code" the required
calculations. This program would need to include, as a minimum, a user-defined
function to calculate the factorial function.

However, in the context of C's string manipulation capabilities discussed
in this chapter, there is a more elegant solution. The program described here will
include user-defined functions for calculating combinations and a function for
calculating factorials. Then, the user will type a character string that can be
parsed to yield values to use as arguments for function calls and for the other
calculations that are required. For example, for part (b) of the problem, the user
could type

1-c(10,O, .1)-c(10,1, .1)

This character string would result in the evaluation of the expression P(~2), as
shown above. The first two values inside the parentheses will be used as
arguments for a function to calculate the combinations of n things taken k at a
time. The third value is the probability of a defective Ie. The probability of a
good IC (0.9) is just I minus this value.

The key to the program is to enclose the desired numerical values inside
parentheses. If your program then searches for a left parenthesis and its matching
right parenthesis, the characters inside that set of parentheses can be copied into
a string and read with sscanf. This probably sounds more difficult than it
actually is. (As you will see, the C code to do this isn't really very hard to write.)

Note that such a program doesn't know how to solve probability problems.
It just performs the required calculations based on user input. Also, because the
magnitude of n! grows rapidly with n, there may be some restrictions on the size
of the sample if default int data types are used for nand k.

6.7 Applications • 269

3 Design an algorithm.

DEFINE (character string (a); integers: length of string, loop counter (i),
nand k, sign (+ 1 or -1), location of a left parenthesis;
probability, prob_a (real numbers).

(NOTE: prob_a is the probability that a single unit will be defective.
"probability" is the probability that the event defined by the string will
occur.)
WRITE (Prompt user for string. Give "syntax" example.)
READ (a)
INITIALIZE probability =0

sign = 1
(Values in parentheses after string variable refer to character position,
not to C array indices.)
IF a(1:1) = '1' THEN ASSIGN probability =1
LOOP (through the string, one character at a time)
NOTE:

a(i:j) means a substring consisting of j characters starting at position i.
CHOOSE (based on value of a(i: 1)
'+' ASSIGN sign = 1
!....' ASSIGN sign = -1
'(' ASSIGN left = i
?' process substring:

READ(a(left+ 1:i-1), *)n,k,prob_a
INCREMENT probability =probability+sign-G(n,k)-prob_ak

(1 - prob_ayn'k)
WRITE (n,k,C(n,k) (optional)

(end IF.. .)
END LOOP
WRITE (probability)

4 Convert the algorithm into a program.

P-6.1O [prob. c]

/* Evaluate probabilities by parsing a string expression and
performing the implied calculations. */

#include <stdio.h>

270 • 6. Purays

#include <string.h>
#include <math.h>

double ParseString(char a[]);
void SubString(char a[] ,int left,int right,char sub_a[]);

long unsigned Fact(int n) {
long unsigned prod=(long unsigned) 1;
int i;

if (n>l) for (i=2; i<=n; i++) prod*=(long unsigned)i;
return prod;

}

int Clint n,int k) {
int c;
c= (int) (Fact (n) IFact (k) IFact (n-k»;
printf("C(13i,13i) = 13i\n",n,k,c);
return c;

int main(void)
{

char a [80] ;
double probability;

printf(
"Enter expression to be evaluated (no syntax checking) .\n");

printf("Example: 1-c(10,0, .2)-c(10,1, .2)\n");
printf("----> ');
scanf("Is" ,a);
probability=ParseString(a) ;
printf("probability = Ilf\n" ,probability) ;
return 0;

double ParseString(char all)
{

int sign,left,right,i,n,k;
char b[10];
double probability=O.,prob_a;

if (a [0] == '1') probability=1.;
sign=l;
for (i=O; i<strlen(a); i++) {

swi tch (a [i]) {
case '+':
sign=l;
break;
case '-':
sign=-l;
break;
case' (' :
1eft=i;
break;
case ')':
SubString(a,left+1,i-1,b) ;
sscanf (b, "Ii, Ii, Ilf", &n, &k, &prob_a) ;
probability+=sign*(double)C(n,k)*pow(prob_a, (double)k)*

pow(l.-prob_a, (double) (n-k»;

6.7 Applications • 271

break;
default:; /* Ignore everything else. */

}
return probability;

}
void SubString(char a[] ,int left,int right, char b[])
/*Create substring of a starting at "left" and ending at "right. "*/
{

int i,i_b=-l;
for (i=left; i<=right; i++) {

i_b++;
b[i_b]=a[i] ;

}
b [i_b+ 1] = ' \ a . ;

5 Verify the operation of the program.

This program needs to be checked carefully by hand to ensure both that
the user-defined functions work properly and that the character string is interpreted
correctly. It's easy to be confused by probability calculations, which sometimes
produce counterintuitive results, so it takes some time to achieve a high level of
confidence in the answers produced by this program.

Problem Discussion
P-6.1O allows you to do each of the probability calculations specified in

the problem statement, as well as others. Both the required values and the
algebraic form of the calculations are given as user input, which makes the
program versatile. By forcing the user to specify how the user-defined
combination function C is to be used, the program is actually simplified. Instead
of having to know a lot about probability calculations, all the program has to do
is use the general-purpose functions in a user-specified way. Note that, although
the e's in the suggested user response string (as in e (10,1, .1)) make the input
look more algebraic, they are optional. Only the balanced left and right
parentheses are required for the program to work.

272 • 6. AuTays

The program doesn't perform any syntax checking on the user's input. In
particular, it assumes that every left parenthesis is matched by a right parenthesis
and that the characters inside a set of parentheses can be read as three numerical
values with the specified format conversion. This means that the values must be
separated by commas and a comma must directly follow each of the first two
numbers, with no intervening blanks.

Choosing appropriate data types and using type casting are extremely
important in P-6.1O. The factorial function has type long unsigned because
even 8! may be too big for an int variable in some C implementations. However,
the number of combinations resulting from dividing possibly large factorials is
unlikely to be too large for an int variable, so the C function is type into

6.7.3 Parsing a String Containing an Unknown Number of Numerical Values

In this application, we will return to the problem discussed in Section 2.3, in
which we wrote a program to do some simple processing on a file of "station
reports" using this data file:

1001 14 17.7 13.3 12.9 19.9 11 9 20
1002 17.7
1003 14 15 16 17 18 19 20
1001 4.4 5.5 6.6
1004 14 15 17.1 18.1
1004 11.1 12.1 13.3 4.4 8.8
1005 39 38 37 36 35 34 33 32

The integer value is interpreted as a station ill, and the real numbers are
interpreted as measurements reported by that station. In Section 2.3, a restriction
placed on this file was that a report could contain no more than eight
measurements. This restriction made it easy to read each report using f scanf
(see P-2.8 in Section 2.3):

in=fopen("stations.dat", "r");
while (1) {

line-ptr=fgets (one_line, sizeof (one_line) ,in);
if (line-ptr == NULL) break;
one_line[strlen(one_line)-lJ='\O' ;
printf("%s\n" ,one_line) ;
status=sscanf(one_line, "Ii %f %f %f %f %f %f %f %f",

&ID,&x,&x,&X,&X,&X,&x,&x,&x) ;
n_reports=n_reports+1;
n_measurements=n_measurements+(status-1) ;

}
fclose(in) ;

The variable status returned from sscanf tells the program how many
measurements (status-i) were actually found in each report. With this

6.7 Applications • 273

restriction, it is also easy to save each measurement value simply by using an
array containing no more than eight values:

float x [8] ;

status=sscanf(one_line, "Ii If If If If If If If If",
&ID,&x[O],&x[l] ,&x[2] ,&x[3],&x[4] ,&x[5],&x[6],&x[7]);

However, it is not so easy to process the station reports if your program
does not know ahead of time the maximum number of measurements in each
report. Because there is no limit on the number of measurements in a report, it is
no longer feasible to write an appropriate format for sscanf. To solve this
problem, we will make use of some relatively obscure string manipulation
functions-strcspn and strspn. Program P-6.ll reads the stations. dat
data file and extracts numerical values when it is unknown ahead of time how
many numerical values there will be in the string. The only requirement imposed
on the string is that the numerical values be separated by one or more spaces.
(Compare this code to that of P-2.8.)

P-6.ll [extract. c]

#include <stdio.h>
#include <string.h>

int main(void) {
char a[80],separators[]=" ",*p;
int ID;
float x;
FILE *in;
in=fopen("stations.dat", "r");
while (1) {

p=fgets(a,sizeof(a),in) ;
if (p == NULL) break;
sscanf (p, "Ii", &ID) ;
printf("li",ID) ;
p+=strspn(p,separators);

while (1) {
p+=strcspn(p,separators) ;
if (*p == 0) break;
sscanf(p, "If",&x);
printf(" 15.1f",x);
p+=strspn(p,separators);

}
printf ("\n") ;

}
fclose(in) ;
return 0;

274 • 6. AJrays

The intrinsic functions strspn and strcspn allow C to search for a
user-specified set of characters within a null-tenninated string (in this case, just
one character-a blank space-is involved) and position a pointer within the string
at the first matching (strcspn) or nonmatching (strspn) character. Then the
program can locate the beginning of a numerical value (with s trcspn), read that
value using sscanf, reposition the pointer to the end of the numerical value
(with s trspn), read another value, and so forth.

This problem has a somewhat obscure relationship to arrays. However, note
how P-6.11 makes use of the fact that the name of the character array a is
equivalent to a pointer to that array. This equivalence is established in the calls
to fgets. (The call to fgets also appends the control character '\ 0' to the
end of the array to create a properly tenninated character string.) Thereafter,
access to the character elements of the array is through the pointer p rather than
through an index notation. The pointer is easy to manipulate and C does not care
where in the character string the pointer is positioned. Advancing the pointer loses
the characters positioned to the left of the pointer. In general, it's certainly not a
good idea to lose part of an array in this way, but it is okay in this code because
when it occurs, all the values to the left of the pointer have already been
processed.

6.8 Debugging Your Programs

There are many pitfalls in using arrays. Many of these are syntax errors that will
be detected by your compiler and can easily be fixed. These errors are most likely
to involve inappropriate references to array elements, and they can be a nagging
problem if you have done any programming in some other language. The
references A (1, 1) , A [1, 1] , A (1) (1) will all generate syntax errors, assuming
that A [1] [1] is what you meant to write.

The major hidden problem with C arrays is array boundary violations. As
noted in this chapter, the C standard does not provide a way to check for such
violations, which can have serious consequences in a program. It is not uncommon
for programs to appear to work even though they produce incorrect answers.
Hence, the responsibility for using arrays falls directly on the programmer.

With multidimensional arrays, a major source of problems is incorrect use
of array indices in the logical sense-interchanging row and column indices, for
example. No programming language can detect this kind of error because
interchanging a row and column index might be precisely what a programmer
intends to do. Again, because of C's lack of array boundary checking, certain
index interchanges that generate undefined array element references, and which
might be detectable in some other language, will go unreported in C. The best
way to avoid such logical errors is to use meaningful names for the indices of
multidimensional arrays-row and col rather than i and j, for example.

6.9 Exercises • 275

Loop structures, and especially count-controlled loops, go hand in hand
with arrays. The nested loop structures required to access multidimensional arrays
can be confusing to write and debug. It is important always to use unique variable
names for counter variables in each level of the loop and never to reassign loop
counter variables within their loops. On the other hand, it is good style to reuse
loop counters in order to avoid a proliferation of unnecessary variable declarations
for sequential (rather than nested) loop structures.

Finally, it is tempting to use arrays even when a problem does not require
them. This should be done sparingly. The programming overhead required to
manage arrays in a program, and the potential for errors, argue for using scalar
variables whenever possible. For example, if a problem can be solved simply by
reading values from a file and performing some kind of one-time processing of
those values, then it is unnecessary and somewhat misleading to store the values
in an array. However, if the problem requires multiple uses of data values or if it
is likely that the problem statement may change so that additional access to the
values will be needed, then it makes sense to define array structures for storing
values as they are being read from a file.

6.9 Exercises

1. Referring to Section 2.3 and the problem addressed by program P-2.8, use a
two-dimensional array to modify P-2.8 so the output includes the total number of
reports from each station and the total number of measurements for each station.
Assume that there will be no more than 11 stations with IDs 1000 through 1010
and, as before, no more than 8 measurements per report. (Alternatively, you can
use the approach to reading reports demonstrated in P-6.ll from the application
in Section 6.7.3.) Make use of the ID numbers to generate appropriate array
element references. [8 ta tion2 . c]

2. A bored postal employee is playing with a row of mailboxes. Initially, all the
boxes are closed. Then, starting with the second box, the employee opens every
second box. Then, starting with the third box, the employee opens every third box
if it's closed and closes it if it's open. Then, starting with the fourth box,... and
so forth. When the employee gets to the end of the line of mailboxes, which ones
are still closed?
Hint: Use an array of Is and Os to represent the state of the boxes, with 1
representing a closed box; 40 or so elements are sufficient to see the pattern.
[mailbox. c]

3. A table contains two columns of numerical values. The first column gives
values of an independent variable and the second column gives values of the
corresponding dependent variable. In engineering applications, it is often required

276 • 6. AuTays

to interpolate between tabulated values. You can hold a table of such values in
two arrays. Suppose array X holds n values of an independent variable and array
Y holds n values of a tabulated dependent variable. Write a program that accepts
a value of an independent variable x, where X(1) :s; x :s; X(n), and then interpolates
a value of y for that value of x.

The formula for calculating y by linearly interpolating between values y I

and Y2 for a value of x that lies between corresponding values of the independent
variable XI and x2 is

Use these values to test your program:

x Y
5.0 5.9

10.0 6.6
15.0 7.1
20.0 8.3
25.0 10.0
30.0 12.2

In your program, make sure that when the user provides a value of x, it lies within
the limits of the tabulated values of the independent variable; that is, it is not
allowed to extrapolate past the tabulated values in either direction. Make sure to
test your program for values of x at each end of the table. That is, for the data
shown here, test the program when x =5 and when x = 30, as well as at
intermediate values of x.
Hint: Separate this problem into two parts. First, determine the two positions in
the table between which the interpolation will be done. Then do the interpolation.
[interp2 . c)

4. When a time sequence of measurements is made on a noisy system, it is often
desired to smooth the data so that trends are easier to spot. One simple smoothing
technique is a so-called unweighted moving average. Suppose a data set consists
of n values. These data can be smoothed by taking a moving average of m points,
where m is some number significantly less than n. The average is unweighted
because old values count just as much as newer values. The formula for
calculating the ith smoothed value Sj is

Si (L xym i~m
j =i-m+l

6.9 Exercises • 277

Figure 6.2 shows an unweighted moving average with m =0 for a data set of 100
random numbers in the range [0,200]. A moving average does smooth these data,
but because the data are random, by definition there shouldn't be any trend to
spot.

The algorithm for calculating a moving average over m values for a data
set containing n values is:

1. Calculate the sum of the first m points. The first average is sum/m.

2. For i = m + 1 to n, add the ith value to the sum and subtract the (i-m)th value.
Then calculate the average for this new sum.

3. Repeat Step 2 until i =n. If the data set contains n points, there will be n - m
+ 1 moving average calculations.

Write a subroutine that calculates and displays a moving average over a
specified number of points for a one-dimensional array of specified size. Store the
results in a second array of the same size. For a moving average over m points,
the first m-l elements of the second array should be set to O. Test the subroutine
in a program that generates an array of random numbers and smoothes that array
with the moving average subroutine. [move_avg. c]

200-r----,-------,--~-~-----,--,__:-:->c:--.,-----....,.......--,-----,
:>c, ,l!C: >ic: : ~>c

:: :::~::l:~::::::j~~~I:::~:~j:::::::::r:::~::J::·::~:::[:~:>c:r::::::::l::::::::::
>c: : >c: :>c: : >C:>c : :>C>cJg 140 ~ ! : ! ~ ~ ~ ~ ! .

~ 120 ·········r····~·r-····· ;,,~,,···,~,,·,··0·········r)(,··,···f······~·j .. ····1··········! 100 ; ;.. ; : >c: .,;.. ~ 1 ~ .. ;--- .
(1j >c >c: : >c: :>«: : ~ : :
~ 80 ·········r·········i·>C.. ···r···>C···;··········r···~~··· j j")C x.;.. . .

~ :~J~r£J~.FJ.£r:J~.
00 10 20 30 40 50 60 70 80 90 100

Time, arbitrary units

Figure 6.2. Unweighted moving average with m=10 for 100 random
values.

278 • 6. PuTays

5. Simulation problems often require that values be selected randomly from a
predefined set. This is a trivial problem if the same value can be used more than
once. More care is required if each value in a set of n values can be used only
once, or to put it another way, if it is required that after n values have been used,
every value in the set has been used once. The latter problem is analogous to
dealing cards randomly from a deck.

Suppose a deck of cards is represented by the integer values 1-52. One
way to shuffle this deck is to use a loop to swap every card in the deck with
another randomly chosen card. It is of no concern that cards can be swapped more
than once and that a card can be swapped with itself. Here is an algorithm to swap
a pair of cards:

ASSIGN temp =card(i)
index = random #, 0-51
card(i) =card(index)
card(index) = temp

Note that the array elements have values from 1 to 52, but the array indices have
values from 0 to 51. Incorporate this algorithm into a complete program that will
deal four random hands of 13 cards each. [carddeck. c]

6. Consider the following main function that tests a user-defined function for
finding the largest element in an array:

#include <stdio.h>
int get_max(int all ,int n);

int main(void)
{

in t a [] = {l , 2 , 3 , 15, 4, 6} ;
printf('%i\n',get_max(a,5)) ;
return 0;

}
int get_max(int a[] ,int n)

static int max=-lOOOOOO;
/* Put your code here. */

(a) Write a function that returns the position of the largest element in array a. Use
a for ... loop.

(b) Write a recursive function that returns the position of the largest element in
array a. To implement this code, you need to use the static reserved word
when a variable is declared in a function that is called more than once. For
example, the statement

6.9 Exercises • 279

static int max=O;

in a function results in the initialization of variable max to 0 only once, the first
time the function is called. The variable will not be reinitialized on subsequent
calls to the function. Specifically, the variable will not be reinitialized on
subsequent recursive calls to the function. [arraymax. c]

7. Consider the following program, the purpose of which is to linearly interpolate
values in a one-dimensional array.

/* Interpolate values along a one-dimensional array. */
#include <stdio.h>
#include <math.h>
#define N 10

void interpolate(float a[] ,int n);

int main(void)
{

float a [N] ;
int i;

for (i=O; i<N; i++) a[i]=O.;
a[O]=lO.;
a[9]=100.;
for (i=O; i<N; i++) printf("%6.lf",a[i]);
printf (" \n");
interpolate(a,N) ;
for (i=O; i<N; i++) printf('%6.1f",a[i]);
printf ("\n") ;

return 0;

void interpolate(float a[] ,int n) {

The program specifies the values at each end of the array, which are fixed. Then
it calls function interpolate. For this example, with an array of size 10, the
program should print

10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

You must implement an iterative solution with a do ... while loop. For each
trip through this loop, use a for ... loop to recalculate the inner elements of the
array (in this case, elements with indices 1 through 8) according to this algorithm:

280 • 6. Aurays

(1) Set each inner element equal to the average of the preceding and following
elements.
(2) Exit the do ... while loop when the new value of the middle element in
the array differs from its previous value by less than some small specified amount.
Regardless of whether the value of n passed as an argument is even or odd, you
can define the middle element as having the index mid=n/2, where mid is a
variable defined locally inside function interpolate.

Note, however, that the specified terminating condition for the do ...
whi le loop will not work if array element 0 has a value of O. This is because the
middle element will keep its original initial value of 0 through the first iteration
and will therefore terminate the loop after only one iteration.

Physically, you can think of this program as estimating the steadystate
temperature distribution along a slender uniform rod, each end of which is held
at a fixed temperature. Clearly, there are simpler ways to do linear interpolation.
However, this algorithm is relatively simple to modify for other than linear
interpolation. and for problems involving two-dimensional interpolations. (See
Exercise 13 below.) [interpol. c]

8. The intrinsic function s trncpy copies a specified number of characters from
one string into another string, starting at the beginning of the "from" string. (See
Table 6.1.) Write a function that copies n characters from string a into string b,
starting at any specified character. The prototype for such a function could look
like this:

void sub_string(char a[l ,char b[] ,start,n);

The variable s tart should refer to an array index. That is, to start copying at the
first character of string a, s tart should have a value of 0, not 1.

This function prototype is different from s trncpy's because the
arguments are reversed-string a is the "from" string and string b is the "to"
string-and because sub_string does not have a return value. String b should
always include a terminating character (, \ 0 ') even though the string returned by
s trncpy may not. If you like, you can make the prototype for this function more
like that of s trncpy, even though it seems more useful for the copied string to
include a null terminating character.5 Be sure to write a short program to test and
verify your function. [substrng. c]

9. Write a program that declares a type double two-dimensional array with
extents [SIZE] [SIZE+l], where SIZE is a #define constant. Fill the array,

5Author's note: the prototype of sub_string is the way it is simply because that's the way I
prefer it; the s trncpy syntax seems backwards to me.

6.9 Exercises • 281

except for the righthand column, with random numbers. Use the righthand column
to hold the average of the numbers in the each row. Display the entire array,
including the column that holds the row averages. You can assume SIZE is small
enough that each row of the array can be stored on a single line.

10. Consider file tempphi 1 . da t, which contains average monthly temperatures
from Philadelphia for the years 1960-1990.

Average Temperature (deg F)
60 34.2 35.4 32.7 56.7 61.2 70.6 73.3 74.5 67.3 54.8 45.5 27.6
61 25.0 34.0 43.1 49.8 58.6 69.9 75.6 73.5 71.5 55.7 45.2 31.0
62 30.0 30.4 40.5 52.0 64.1 71.7 72.0 72.0 63.1 56.3 42.1 31.0
63 27.5 26.5 42.9 52.5 60.2 70.4 76.0 71.2 62.8 57.1 48.0 27.9
64 33.0 31.8 42.7 50.8 65.1 72.4 76.6 72.2 67.2 52.6 47.1 37.5
65 29.2 33.3 37.6 49.0 65.5 70.0 74.1 73.1 69.2 53.7 44.2 37.0
66 29.1 31.5 42.5 47.8 59.5 72.1 77.9 74.8 65.2 53.1 46.8 35.5
67 36.0 29.0 38.5 51.7 55.9 72.1 76.6 75.1 67.0 56.8 42.8 38.5
68 28.9 30.4 44.4 54.6 59.7 71.2 77.1 77.8 69.4 58.1 45.6 32.3
69 29.8 32.0 39.7 55.3 64.6 73 .4 75.1 75.2 67.2 55.0 44.4 33.5
70 24.5 33.1 38.3 51. 5 64.9 71.6 76.9 76.7 72.0 60.1 48.2 35.8
71 27.8 36.1 40.7 51. 6 60.9 74.3 77.4 75.3 71.6 63.5 46.1 41.6
72 35.1 32.4 40.7 49.7 63.6 68.7 77.1 76.0 69.2 52.7 43.6 39.9
73 34.4 33.6 47.2 53.4 60.3 74.6 77.9 78.8 70.7 59.2 48.0 38.6
74 35.9 31.7 43.3 55.8 62.4 70.3 76.9 76.8 68.1 54.8 48.5 39.4
75 37.3 35.8 41. 2 48.7 66.6 72 .2 76.6 77.1 66.6 61. 2 52.7 36.9
76 28.7 40.9 46.3 56.6 62.7 75.2 75.3 74.8 67.3 52.5 39.9 30.3
77 20.2 33.6 48.8 57.2 65.8 68.6 77.8 76.2 69.9 54.3 46.4 32.6
78 28.0 24.7 39.0 50.6 61. 4 72.6 75.6 79.2 68.5 55.5 47.9 38.6
79 32.5 23.0 47.0 52.3 66.4 69.1 76.2 75.5 68.5 54.9 50.1 38.2
80 31.8 29.7 40.2 54.7 65.4 70.6 78.5 80.0 72.2 54.9 43.2 32.5
81 25.3 37.9 40.0 54.7 62.6 72 .0 76.9 74.9 66.8 53.1 45.6 34.6
82 24.7 34.4 41.7 50.2 65.9 68.7 76.9 73.5 67.6 56.9 48.4 41. 3
83 34.1 34.0 43.7 51. 0 62.1 72.0 77.9 77.1 69.0 56.6 46.7 33.2
84 26.2 38.7 35.5 50.2 60.2 73.0 73.9 75.2 64.7 61.2 44.4 41.9
85 27.3 35.3 44.6 55.5 64.5 68.8 75.4 74.1 69.1 59.3 51. 3 33.3
86 32.8 32.1 44.5 53.3 66.8 73.8 78 .1 74.0 68.3 57.8 44.5 37.9
87 31.9 32.5 45.7 53.1 63.9 74.6 79.5 75.4 68.8 52.5 48.0 39.2
88 27.3 34.6 44.7 51.3 63.6 72.3 80.7 78.3 66.7 51.8 47.7 35.4
89 36.5 34.8 42.3 52.4 62.4 74.7 76.3 75.6 69.7 58.3 44.9 25.5
90 40.3 41.2 46.1 53.3 61.3 72.2 78.0 75.8 68.0 61. 9 49.7 42.1

Write a program that uses these values to calculate the average temperature for
each year and the average of the monthly average temperature for all years in the
file; that is, calculate the averages across each row and down each column. Your
program's output should reproduce all the values in the file, as shown. Display the
yearly average temperature at the end of each line. When all data have been
processed, add an additional line of output that displays the average of all the
monthly average temperatures.

In terms of design and implemention for this kind of problem, it may be
helpful first to design and write code that does nothing but reproduce the contents
of the data file, as shown. It is convenient in terms of reading data from the file

282 • 6. PuTays

to store the monthly average temperatures in an array that is overwritten with new
values as you process each year.

After you have succeeded in reading and displaying the file, you can then
add data definitions and code to do the required calculations. Note that the yearly
average temperatures don't need to be held in an array because each yearly
average can be calculated on the fly and displayed as it is calculated.

It is possible, and acceptable as a matter of style, to implement this
problem using one-dimensional arrays. However, you may find it easier to store
all the temperature measurements in a two-dimensional array whose second
dimension is 12. [tempphil. c]

11. The game of Life provides a simple two-dimensional model of how organisms
are born, survive, and die. It is played on a two-dimensional board with m rows
and n columns. The game is started by establishing an initial distribution of
organisms in a small region of the board. The distribution of the next generation
of the population is calculated according to three rules:

(I) A new organism will appear in the next generation in any empty square with
exactly three living neighbors.

(2) An organism in a square surrounded by less than two neighbors will die from
loneliness in the next generation, and an organism in a square surrounded by more
than three neighbors will die from overcrowding in the next generation.

(3) An organism with two or three neighbors will survive into the next
generation.

Write a program that plays this game. A 20 x 20 board is certainly large
enough. You should produce output for several generations using at least the
following initial population distributions, where an X indicates that an organism
occupies that square:

(1)
--xxx--
---x---

---x--
----x-
--xxx-

Some initial configurations die out, some form patterns that grow, oscillate, or
become stable, and others form patterns that reproduce themselves and move
across the board. The second of the two initial configurations shown above is
called the glider, for reasons that are apparent from following it through four
generations:

(2) --x-
---x
-xxx -->

-x-x
--xx -->

--x-

---x
-x-x
--xx

--x--
--> ---xx

--xx-

---x-
--> ----x

--xxx

6.9 Exercises • 283

Question: What happens to two gliders that start from opposite sides of the board
and "collide" in the middle?
Hint: You can simplify the code by assuming that any organism occupying a row
or column at the edge of the game board simply disappears in the next generation.
This means that the rules for the game apply only to (m - 1) x (n - 1) squares on
the board. One way to apply the rules is to create an intermediate board
configuration that marks births and deaths for the next generation. This is
necessary because organisms don't die immediately when you detect that they
have less than two or more than three neighbors. They stay there until all the rules
have been applied to all squares on the board for the current generation. Similarly,
new organisms aren't born until the start of the next generation, so they can't
count as neighbors during the current generation. [life. c]

12. A terrain map is stored in digital form as integers in a two-dimensional array.
Write a program to examine the array and find high and low spots in the terrain.
The criterion for a high or low spot will be a user-specified amount above or
below the average of the eight surrounding values.

For the purposes of this program, you can assume that the values are in the
range (}-9. Print the original array and, next to it, an array that has high and low
spots marked with the letters Hand L. A 20 x 20 array is large enough. You can
either use a random number generator to create the original array or manually
create some more meaningful pattern such as a "mountain range" or "valley."
Some sample output for a random configuration is shown in Figure 6.3.

L
L

LH
L

L LH
L L

L H
L

L H

Figure 6.3. Sample output from the terrain map program.

284 • 6. Purays

Hint: You can't look for high and low spots in the rows and columns at the edges
of the map because you must look at all eight surrounding values. [terrain. c]

13. A computer engineer designing a new computer chip is concerned about
operating temperatures within the chip. Tests show that passive heat sinks attached
to each side of the rectangular chip can maintain each edge of the chip at a
specified temperature. The four edges can be at different temperatures, which
allows the engineer to design the component layout so that the most temperature
sensitive components can be located near the coolest edge. Write a program to
determine the temperature distribution within the chip.

One way to solve this problem is to divide the rectangular area into a two
dimensional grid, as shown in Figure 6.4. Initialize the nodes at each edge of the
chip to the specified temperatures. Initialize the interior nodes to some other
value; a good choice would be the average of all the edge temperatures. Then,
using an iterative loop, recalculate the temperature of each interior node as the
average of the temperatures of the four surrounding nodes. Terminate the iteration
when the difference between the current and recalculated temperature for every
node is less than some specified small amount.
Hint: The conditional loop to conduct the iteration could be in the main function.
It should call a function whose purpose is to recalculate the node temperatures and
return a flag value that indicates whether the terminating conditions for the
iteration have been met.

T1

interior
node (3,9)

erimeter
ode (10,10)

l-----
L..oII! :.--

T2

p
....... Vn

T4

T3

Figure 6.4. Nodes on a circuit board for determining
interior temperature distribution.

6.9 Exercises • 285

One obvious verification for your program is to set all four edges to the
same temperature. Then a successful iteration should result in all the interior nodes
reaching this temperature. In this case, it would not be helpful to initialize the
interior temperatures to the average of the edge temperatures because then no
iteration would be necessary. Try a different initial value, such as zero or half the
edge temperature. [circt_bd. c)

14. Write a series of functions that perform the following operations on vectors
having type double components:

1. addition of two n-component vectors

n

A + B = L (A j + B j)

i= 1

2. subtraction of two n-component vectors

n

A - B = L (Ai - B j)

i= 1

3. scalar (dot) product of two n-component vectors

n

A-B = LAjBj
i= 1

4. vector (cross) product of two three-component vectors

AxB = (AyBz - ByA
Z

' AzBx - BzAx' AxBy - YxAy)

Each function should accept as input two vectors and return as output through its
parameter list either a third vector or, in the case of the dot product, a single
number.

When you have tested all your functions, create a header file and save the
function implementations in a separate library file. You can also compile the
function implementations into an object file for use by other programs.
[vectorl . c)

15. Write a program that reads a text file one character at a time and counts the
number of times each letter appears in the file. Store the results in an array of

286 • 6. AJrays

integers of size 26-0ne element for each letter in the alphabet-and display the
contents of the array after reading the file.

Your program must take into account the fact that letters can be either
uppercase or lowercase. Write your own function to convert uppercase letters to
lowercase, or vice versa, or use the intrinsic function isupper or islower.
(Consult a C reference manual or the documentation for your compiler.) The
uppercase alphabet starts at position 65 in the ASCII collating sequence and the
lowercase alphabet starts at 97. [cnt_alph. c]

16. Write and test a recursive function that accepts as input a string and the length
of the string and prints the string backwards, one character at a time.
[backward. c]

17. Write and test a function that converts the day of the year (an integer in the
range 1-366) into the month and day of the month. Your function should store the
number of days in each month in an array declared like this:

int month[]={31,28,31,30,31,30,31,31,30,31,30,31};

The function should then modify the number of days in February depending on
whether the year is a leap year. Be sure to account for the fact that century years
not evenly divisible by 400 are not leap years-for example, 2000 is a leap year,
but 2100 isn't. [day_conv. c]

7

User-Defined Data Objects

7.1 Creating User-Defined Data Objects

The array, discussed in Chapter 6, is a simple example of a user-defined data
object that is implemented in C and other high-level languages. It is also possible
to construct other kinds of user-defined data objects within a program. The
purpose of doing so is to simplify the representation and management of related
pieces of information. As an example, think of a card file that contains
information about chemicals-their names, symbols, molecular weights, etc. Each
card contains information for a specific chemical, so all the information on each
card is related. It doesn't make sense to store each fact about each chemical on
separate sets of cards-all the names on one set, all the symbols on another set,
and so forth. For this problem, the basic conceptual storage unit is a single card
containing all the information about a single chemical, not each value on the card.

In C, this card file model can be implemented by defining a data object
that exists just while the program containing that definition is executing. There are
two syntax forms:

struct structure_name {
one or more data field declarations

}
typedef struct structure_name data_type;

or

typedef struct {
one or more data field declarations

} da ta_ type;

The reserved word struct is used to define the data object,
the data fields of which appear in a statement block enclosed
with curly braces. Especially in the context of object-oriented
programming, the fields defined in a struct are also called
data members. In the first syntax form, the structure
definition is followed by a typedef statement in which the user-supplied
structure_name is given a user-supplied alias-data_type in the syntax
example-by which the structure will be known within a program. It is okay for
this new name to be the same as the structure name; hence the syntax

D. R. Brooks, C Programming: The Essentials for Engineers and Scientists
© Springer-Verlag New York, Inc. 1999

288 • 7. User-Defined Data Objects

typedef struct structure_name structure_name

is allowed.
In the second syntax form, the definition of a new data type is contained

within a single statement. We will usually use this syntax because it is simpler.
In either case, da ta_type becomes the name for the object's data type definition
and it can be used to declare variables in the same way that variables are
associated with any of C's intrinsic data types.

Within a data structure, one or more various fields are defined. In the
chemical data card file example, these fields will correspond to the name, symbol,
and so forth, for each chemical. Often, the fields consist of one or more intrinsic
data types or character arrays (character strings), as appropriate for the problem
at hand. However, the fields can also be arrays of numbers, other s true ts, or
even arrays of other s true ts. If a field is declared as having a data type
associated with a structure, that structure must already have been defined in the
source code.

Once a variable is declared as having the data type of a s true ture, that
variable name can be used with the names of fields in the structure to access and
manipulate information. With this syntax, it is easy to become confused about the
difference between a data type and a variable name declared as having that data
type. Thus it may be helpful to be consistent about using a _type suffix (for
example, when you create s truets).

Program P-7.1 shows how to define a data object, declare a variable as
having that data type, read values for the fields of the variable from an external
file of unknown length, and display the results. Each record consists of four
numbers-the time, in hours, minutes, and seconds, and a measurement of some
physical quantity. The first few records of the file might look like this:

01 15 45 19.9
10 07 05 20.1
12 33 59 33.3
(and so forth)

P-7.1 [struetur. e]

/* Demonstrate use of structures. */

#inc1ude <stdio.h>
#define FILE_NAME "structur.dat"

int main (void)
{

typedef struct (
int hr,min,sec;
float measurement;

Jdata_record_type;

7.1 Creating User-Defined Data Objects • 289

/* struct data_record
int hr,min,sec;
float measurement;

} ;
typedef struct data_record data_record_type; */

FILE *Infile;
int count=O;
int status=O;
data_record_type measurements;

Infile=fopen(FILE_NAME, "r");
while (status != EOF) {

status=fscanf(Infile, "%d %d %d %f",&measurements.hr,
&measurements.min,&measurements.sec,
&measurements.measurement) ;

if (status != EOF) {
printf("%d %d %d %f\n",measurements.hr,measurements.min,

measurements.sec,measurements.measurement);
count++;

}
printf ("There are %d records.", count) ;
fclose (Infile) ;
return 0;

In P-7.1, the two equivalent syntax possibilities for defining a data object
are shown. The first, which we will usually use in this text, is printed in bold
italics, and the second is commented out. The remaining statement in bold italics
declares the variable measurements as having data type
da ta_record_type. It is this declaration statement that causes C to set aside
enough memory to hold all the fields defined in the struct block.

P-7.l answers some important questions about --401--...,.----
accessing the fields within a stuctured variable. In this
program, each "value" of the variable measurements
actually consists of four values-the four numerical fields declared in the s truct
definition. Each field of the record must always be referred to in association with
the name of its structured variable. The syntax uses the dot operator (.) to
separate a field name from its variable name:

The dot operator is also called the
component access operator or member access
operator. Examples of this syntax are found in
the fscanf and printf statements in P-7.1.
Values are read into the fields hr, min, sec,

etIIfIIHII'MI eua ..,.".
.....,.eua ",.,.,.,.

and measurement with the

290 • 7. User-Defined Data Objects

f scan f statement; the & operator is required for any field that would otherwise
require it based on its data type.

More than one variable can be declared as having the same type. For
example, in P-7.1, you could write

data_record measurements,m2;

so that both measurements and m2 have data type data_record. Then you
could assign either individual fields or an entire record. Both these statements are
allowed:

m2.measurement=measurements.measurement;
m2=measurements;

As you might expect, the second statement results in all the fields in
measurements being copied into the fields ofm2; this is an important and very
useful syntax feature.

It might occasionally be useful to know that it is possible to declare
variable names in a program which have the same name as fields in a struct
definition. Thus in P-7.1, it would be possible to define variables named hr, min,
and sec that are completely independent of the fields of the same name in
structure da ta_record_type. However, this can be confusing. Even if these
duplicate names seem like a reasonable idea at the time you write a program, if
you ever need to modify the code or examine it to try to understand why the
program works as it does, you will probably wish you had used different names.

Although it may seem like a lot of trouble to define and use structured data
types in this way, the aggravation of the extra typing associated with the dot
operator is more than compensated by the self-documenting nature of the resulting
statements and by the flexibility the syntax offers in the management of
information. Also, as we will see later in the chapter, s truc ts can be used to
simplify considerably the writing of functions.

7.2 Arrays of Structures

In scientific and engineering programming, s truc ts are often used to hold
collections of measurements. Hence it is important to consider how to use arrays
of structs. Recall from Chapter 6 that one requirement imposed on arrays is
that every element in an array must hold the same type of data. In the card file
model illustrated in Figure 7.1, the box holding the cards becomes the array, the
cards-through their definition within a s truc t-become the array elements, and
the various pieces of information written on each card become the fields of the
struct.

7.2 Arrays of Structures • 291

array element

..'
.......

Card 3
Card 2

Card 1

Field 1
Field 2

Fieldn

Cardn

Field 1

Array of structures

Figure 7.1. A card file model for arrays of structures.

In Chapter 6, program P-6.3 showed how to store information about the
planets in three parallel arrays--one each for the name, diameter, and distance
from the sun. Parallel arrays can be awkward when large amounts of related
information must be manipulated. For example, suppose more information about
each planet must be added to a database. A new array for each quantity will have
to be created. It will be even more inconvenient if the planetary data need to be
sorted-by the planet's diameter, for example-because then the contents of all
the parallel arrays need to be rearranged at the same time.

The struct data type can alleviate this problem by collecting all the
information about a planet in a single user-defined data object. Then it is easy to
define an array whose elements have this data type. With this approach, it is as
easy to add new information about planets as it is to add new planets. Program
P-7.2 produces the same results as P-6.3, but it uses an array of structures to hold
the values.

P-7.2 [planets4. c]

#include <stdio.h>
#define NAME_LENGTH 8

typedef struct {
char name[NAME_LENGTH];
double diameter, distance;

} planet_type;

void main()
{

FILE *InFile;
int status=O;
int index=O;

292 • 7. User-Defined Data Objects

planet_type planets[ll];
char header_line[8l];

if((InFile=fopen('planets.dat" , "rt'») != NULL) {
printf('Opening file ... \n');
(void) fgets (header_line, sizeof (header_line) ,InFile);
while (1) {

status=fscanf(InFile, 'Is %If %If'',planets[index] . name ,
&planets[index] .distance,&planets[index] .diameter);

if (status == EOF) break;
printf ("%-8s %10.01£ %10 .1lf\n" ,planets [index] .name,

planets [index] .distance,planets[index] .diameter);
index++;

}
printf("done ... \n");
/* Note that "index" is number of records, not last accessible

array element, which is index-I. */
printf("Found %i records.\n",index);

}
else printf("Trouble opening file ... \n");
fclose (InFile) ;

The first essential task for any program that uses external data is to read,
store, and play back the stored information. Often, setting up an appropriate data
structure and echoing the data after they have been stored is the hardest part of
writing a program. In P-7.2, the return value from the f open function is used to
determine whether the file has been opened successfully. This shouldn't be
necessary for programs and data files you write yourself, because presumably you
are certain that the files really do exist. Nonetheless, because C is notoriously
unhelpful about reporting problems with finding files, it certainly doesn't hurt to
add this extra code.

As usual, P-7.2 uses the return value from fscanf to control the loop.
The string fields in each array element don't need the & operator (because the
string fields are, themselves, arrays of characters), but the numerical fields do, just
as though they were simple variables. As usual in code to store data in an array,
the final value of index after the loop terminates is the total number of records
found (la, including the sun and its nine planets), and not the index of the last
array element used (9). It is important to remember what index contains to avoid
problems if you extend this program to access the array elements.

There is another consequence of how the conditional loop is written in
P-7.2. The final call to fscanf, which results in status being assigned the
value EOF, contains references to array element 10. Nothing is placed in this array
element, because the fscanf function fails to find more data. However, the
potential reference to the out-of-bounds array element 10 is the reason the size of
the array has been set to 11 rather than 10. If you rewrite the conditional loop to
use fgets, which reads each record into a string rather than directly into the
array elements, you could test for the end-of-file before incrementing the array

7.3 Functions With Structures as Parameters and Data Types • 293

index and parsing the string into its component fields. This would allow the size
of the array to be set to its natural value of 10.

7.3 Functions With Structures as Parameters and Data Types

We have previously considered several implementations of code to calculate the
area and circumference of a circle of specified radius. These included

(a) using two functions, one which returns the area, and the other which returns
the circumference:

double circle_area(double radius);
double circle_circumference(double radius);

(b) using one function that returns both area and circumference indirectly through
pointers:

void circle_stuff (double radius, double *area, double *circumference) ;

There is yet another choice: use a typedef to create a structure circle_type
that includes as its fields the radius, area, and circumference. In the main
function, ask the user to provide the radius field. Then call a function with this
prototype:

The function should calculate the area and circumference fields and return the
variable c, which will now contain the desired values in its fields.

This implementation is possible because not only can a function include
user-defined data types in its parameter list, it can also have a user-defined
structure as its data type. In effect, this allows functions to return multiple values
directly through the fields of that structure, thereby circumventing one of the
limitations of using the return statement in a function. Program P-7.3 shows
how to do this.

P-7.3 [circle_s. c]

/* Calculate the area and circumference of a circle
of specified radius, using a structure to hold all values. */

#include <stdio.h>
#define PI 3.14159

t.ypedef Bt.ruCt. {
double radiuB,area,circumference;

} circle_t.ype;

294 • 7. User-Defined Data Objects

int main(void)
{

circle_type circle;

printf("Give radius: ');
scanf('%lf',&circle.radius) ;

/* Calculate the area and circumference. */

circle=circle_stuff(circle);

printf('The area is %.2f\n',circle.area);
printf('The circumference is %.2f\n',circle.circumference);

return (0);
)
circle_type circle_stuff(circle_type c) (

c.area=PI*c.radius*c.radius;
c.circumference=PI*2.*c.radius;
return c;

)

The critical code for this program is printed in bold italics. The first block
of code uses a typedef to define a data object containing the radius (the input)
and the area and circumference (the output) for this problem. As in other
approaches to managing the flow of information within a program, the designation
of a quantity as input or output has significance only at the algorithm design level;
it makes no difference from C's point of view what significance a programmer
attaches to a particular field in a structure. In particular, it is okay in P-7.3 for the
struct to contain fields for both the input to (radius) and the output from
(circumference) the function.

Function c i rc1e_s t u f f has as its single parameter a data object with
type circle_type. Inside the function, the area and circumference fields
are calculated based on the values of the radius field, and the entire data object
is returned to main. In main, the statement

circle=circle_stuff(circle) ;

passes the object circle as input to circle_stuff and replaces circle
with its updated value returned as output from circle_stuff.

Although defining and using structs may seem more trouble than it is
worth because of the extra programming overhead they impose, the judicious use
of s truc ts can simplify code by making functions easier to write and existing
programs easier to modify. Using data objects in parameter lists shortens those
lists because the multiple parameters that may be required when only intrinsic data
types are used can be replaced by a single parameter having a user-defined data
type. Also, using a data object as the type for the returned value from a

7.4 Applications • 295

function can eliminate the need for pointers to return multiple outputs through a
function's parameter list.

7.4 Applications

7.4.1 Finding the Perimeter and Area of a Plot of Land

1 Define the problem.

The boundaries of a plot of land are defined by three or more straight line
segments. The coordinates for three or more corner points, in the form of (x,y)
pairs, are stored in a data file. Write a program that accesses this file and
calculates the length of each line that
defines the boundary, the perimeter of
the plot of land, and its area. A sample
set of coordinates for the plot shown in
Figure 7.2, in arbitrary units, is

>-'1······················ ;(

1 1
2 0
3 0
3 2
2 2

For the sample illustrated in Figure
7.2, the perimeter of this plot is 6.828,
and its area is 3.000.

Figure 7.2. Sample land boundaries.

2 Outline a solution.

The length of segment i is

length j ~ J(x j -xi-i + (Yi -Yi-i

for i > 1 and

296 • 7. User-Defined Data Objects

for i = 1. The area is

3 Design an algorithm.

Here is an algorithm for the loop that calculates segment length (L), perimeter,
and area.

INlnALIZEperimerer=O
area =0

LOOP (from 2 to n)
ASSIGN Li =[(Xi - Xi.lf+(Yi - Yi.tfY12
INCREMENT perimeter by Li

END LOOP
ASSIGN L I =[(XI - X'/+(YI - y,/r2

INCREMENT perimeter by LI

LOOP (from 1 to n-1)
INCREMENT area by Xi-Yi+1 - Yi-Xi+1

END LOOP
INCREMENT area by (xn-YI - Yn -xl)12

4 Convert the algorithm into a program.

Represent each coordinate pair and its associated boundary length segment in an
array of structures. Each plot of land has only one perimeter and area, so these
values will be defined separately.

P-7.4 [boundary. c)

#include <stdio.h>
#include <math.h>
#define FILENAME "boundary.dat"
#define MAX 15

typedef struct {
double x,y,L;

} land_type;

7.4 Applications • 297

void ReadData(char filename[] ,land_type a[] ,int *n);
void Calculate (land_type a[] ,int n,double *perimeter,double *area);
void DisplayData(land_type a[] ,int n);

int main ()
{

land_type a [MAX] ;
int n;
double perimeter,area;

ReadData(FILENAME,a,&n) ;
Calculate(a,n,&perimeter,&area) ;
printf("%i coordinate pairs\n",n);
DisplayData(a,n) ;
printf("perimeter and area: %If %If\n",perimeter,area);

return 0;
}
void Calculate (land_type a[] ,int n, double *perimeter,double *area)
{

int i;
*perimeter=O.;
*area=O.;
for (i=l; i<n; i++) {

a [i] .L=sqrt ((a [i] .x-a [i-1] .x) * (a [i] .x-a [i-1] .x) +
(a [i] .y-a[i-1] .y) * (a [i] .y-a [i-1] .y)) ;

*perimeter+=a[i] .L;

a [0] .L=sqrt ((a [n-1] .x-a [0] .x) * (a [n-1] .x-a [0] .x) +
(a [n-1] .y-a [0] .y) * (a [n-1] .y-a [0] .y)) ;

*perimeter+=a[O] .L;
for (i=O; i< (n-1); i++)

*area+=a[i] .x*a[i+1] .y-a[i] .y*a[i+1] .x;
*area= (*area+a [n-1] .x*a [0] .y-a [n-1] .y*a [0] .x) /2. ;

}
void ReadData(char filename[] ,land_type a[] ,int *n)

FILE *in;
int status=O;

in=fopen(filename, "r");
*n=-l;
while (1) {

(*n)+=l;
status=fscanf(in, "%If %If",&a[*n] .x,&a[*n] .y);
if (status == EOF) break;
/* printf("%1f %1f\n",a[*n].x,a[*n].y); */

}
fclose (in) ;

}

void DisplayData(land_type a[] ,int n)
{

int i;
for (i=O; i<n; i++)

printf("%8.41f %8.41f %8.41f\n" ,ali] .x,a[i] .y,a[i] .L);

298 • 7. User-Defined Data Objects

Running P-7.4

5 Verify the operation of the program.

The results shown in the sample output from P-7.4 are easy to verify by
hand. If the program works for these simple data, there is no reason to expect that
it won't work for larger files.

7.4.2 A Set of Functions to Perfonn Operations on Complex Numbers

1 Define the problem.

The C language doesn't directly support a complex number data type.
However, computations involving complex numbers are important in many science
and engineering disciplines. The goal of this application is to create a set of
functions that will perform the following operations:

1. Add, subtract, multiply, and divide two complex numbers.

2. Find the polar coordinates (radius and angle with respect to the x-axis) of a
complex number "vector."

2 Outline a solution.

For calculations with two complex numbers c i = a1 + bli and Cz = az + bzi which
produce a third complex number c:

addition:

subtraction:

7.4 Applications • 299

multiplication:

division:

For operations on a single complex number:

magnitude = Ja 2+ b 2

angle = tan-1(b/a)

3 Design an algorithm.

Create a separate function for each of the above operations. In addition,
create one function to accept the real and imaginary components of a single
complex number from the keyboard and another to display a single complex
number. The design of these algorithms is straightforward and need not be given
in explicit detail here.

There are some implementation decisions concerning how to display a
complex number when one of its components is O. We will choose to display the
number in the format a + bi even when a or b is O. The input function will work
somewhat analogously to the scanf function in the sense that it will return a
status flag of 1 when the read operation is successful and a 0 if it is not; usually
this flag can be ignored. The components of the complex number will be returned
indirectly through a pointer to a structure containing the components.

The division operation cannot be carried out if both az and bz are O. You
may wish to add code to take this fact into account.

4 Convert the algorithm into a program.

P-7.5 [complex. c]

#include <stdio.h>
#include <math.h>

typedef struct{
double a,b;

} complex_t;

300 • 7. User-Defined Data Objects

int scan_c(complex_t *c) {
int status=O;
printf("Give components of complex number a+bi in format a b: ");
status=scanf("%lf %If'' ,&l*c) .a,&l*c) .b);
if (status == 2) return 1;
else return 0;

}
void print_c(complex_t c) {

printf("%+lf%+lfi\n",c.a,c.b) ;
)
complex_t add_c(complex_t cl,complex_t c2) {

complex_t c;
c.a=cl.a+c2.a;
c.b=cl.b+c2.b;
return c;

}

complex_t subtract_c(complex_t cl,complex_t c2) {
complex_t c;
c.a=cl.a-c2.a;
c.b=cl.b-c2.b;
return c;

}
complex_t multiply_clcomplex_t cl,complex_t c2) {

complex_t c;
c.a=cl.a*c2.a-cl.b*c2.b;
c.b=cl.a*c2.b+c2.a*cl.b;
return c;

}
complex_t divide_clcomplex_t cl,complex_t c2) {

complex_t c;
double d;
d=c2.a*c2.a+c2.b*c2.b;
c.a=lcl.a*c2.a+cl.b*c2.b)/d;
c.b=lc2.a*cl.b-cl.a*c2.b)/d;
return c;

}
double mag_c(complex_t c) {

return sqrtlc.a*c.a+c.b*c.b);
}
double angle_c(complex_t c) {

return atan2(c.b,c.a);
}
int main (void)
{

complex_t cl,c2,c;
(void)scan_c(&cl); (void)scan_c(&c2);
print_c(cl); print_c(c2);
printf("addition and subtraction:\n");
print_cladd_clcl,c2»;
print_clsubtract_clcl,c2» ;
printf I "multiplication and division: \n");
print_c(multiply_c(cl,c2» ;
print_c(divide_c(cl,c2));
printf("polar coordinates (length, radians) :\n");
printf I" %If %If\n'', mag_c (cl) ,angle_c (cl)) ;
printf(''%If %If\n'' ,mag_clc2) ,angle_c(c2»;
return 0;

7.4 Applications • 301

Running P-7.5

5 Verify the operation of the program.

It is essential to test the results from each function against a hand-worked
example.

Problem Discussion
Most of the code in P-7.5 is straightforward. The main function serves

simply as a driver program for testing all the other functions. The code for the
complex number functions is given prior to the main function rather than using
function prototypes with the function code following the main function. This
facilitates saving just the functions as a separate file that can be #included in
other programs.

One important feature of P-7.5 is the a tan2 function, which is used to
return the angle between the real and complex components; this function, but not
a tan, returns an angle in the appropriate quadrant, based on the signs of the real
and imaginary components of a complex number. It would be a serious program
design error, which might be invisible at the algorithm design stage, to use the
a tan function instead.

A possible source of confusion concerns the syntax for scanf as it is used
inside the scan_c function:

s tatus = scan f (" %1 f %1 f " , & (*c) . a , & (*c) . b) ;

The expression & (*c) . a means "the address of the field in a complex_t
structure pointed to by the pointer c." The parentheses are required because of the
relative precedence of the & and * operators.

A final detail concerns the %+ 1 f format specifier in print_c. This forces
display of a + or - sign along with a number.

302 • 7. User-Defined Data Objects

7.4.3 Analyzing Data From a Datalogger

1 Define the problem.

The computer revolution has profoundly influenced how scientific data are
collected. Analog instruments can be connected to a datalogger that performs
analog-to-digital (A-D) conversions and uses its own onboard memory to store
thousands of measurements in digital form along with a date and time stamp. Such
devices typically can be programmed to collect data at specified intervals.

For the purposes of this application, we will consider data collected with
a simple datalogger that samples, at intervals of one minute, a single analog
voltage input in the range from 0 to 2.5 V. It converts the analog signal to a
digital value in the range from 0 to 255-that is, the datalogger performs an eight
bit A-D conversion. Data from the datalogger can be downloaded to a computer
and exported as an ASCII text file containing the date and time, to the nearest
second, the converted digital count, and the analog voltage corresponding to that
count. Because of the relatively coarse (eight-bit) A-D conversion, this device has
an analog resolution of only 10 mV for a full-scale signal of 2.5 V.

Write a program that reads an exported file from the datalogger and saves
the average, minimum, and maximum voltages over 30-minute periods, where
each period starts with minute 1 or 31 and ends at minute 30 or 60 (or 0). The
data collection can start and end at any time relative to the start of a half hour, but
you can assume that there are never any missing data once the datalogger starts
collecting data. Ignore incomplete sequences of data that don't include 30 values,
which may occur only at the beginning or end of the file. Round off minutes and
seconds to the nearest minute; that is, 30m 58s is minute 31 and 30m 12s is
minute 30. A sample file, apr06 .dat, the first few lines of which are shown
here, can be found on the Web site given in Section 6 of the Preface. Note that
the file contains one header line. The first six values are the month, day, year,
hour, minute, and second of the measurement. The eighth value is the digital count
resulting from the A-D conversion of the analog input signal, and the seventh
value is the analog voltage corresponding to that digital count, based on a 2.5 V
full-scale analog signal.

Date Time V A-D
4 5 97 13 56 58 0.000 1
4 5 97 13 57 58 0.000 1
4 5 97 13 58 58 0.000 1
4 5 97 13 59 58 0.725 75
4 5 97 14 a 58 0.598 62
4 5 97 14 1 58 0.618 64

2 Outline a solution.

7.4 Applications • 303

The most compact way to represent data for this program is in terms of a
structure defining all the numerical data in each record. Although it might
seem that an array is required to store the groups of 30 measurements, this is not
true, as all the data can be processed on the fly. The required calculations for
obtaining the average, minimum, and maximum values are not difficult. The most
challenging part of the program involves grouping the measurements properly in
sets of 30, starting with minute 1 or 31, as specified.

Each time the program reads a record from the data file, calculate the
rounded minute from the minute and second fields. Increment a counter and
update a variable that contains the sum of all measurements within a 3D-minute
period. Update the minimum or maximum if required, by comparing the current
values against the current measurement. Then there are two possibilities:

(1) The rounded minute has a value other than 30, 60, or O.
Continue to the next record.

(2) The rounded minute has a value of 30, 60 or O.
Check the counter to see if it has a value of 30. If it does, divide the sum

by 30 to get the average during this 3D-minute period. When the rounded minute
has a value of 60 or 0, this represents the end of an hour. If the rounded minute
has a value of 0, set it to 60 and decrement the hour by 1. Thus a time of
2hr Om l7s will be displayed as lh 60m. This makes sense because this calculated
time represents the time at the end of a 3D-minute averaging period, so the time
that represents this period is the ending time minus 15 minutes. Thus for lh 60m,
the average time for the interval from lh 30min to lh 60m will be lh 45m.

Display the average, minimum, and maximum. Regardless of the value of
the counter, reset both the variable containing the sum of all measurements and
the counter variable to O. Then continue to the next record.

3 Design an algorithm.

Here is an algorithm for the data processing loop in the main program.

OPEN (data file)
READ (header line)
INITIALIZE average =0, counter =0

304 • 7. User-Defined Data Objects

LOOP (until end of file)
READ (one record)
INCREMENT counter by 1

average =average plus new measurement
IF (voltage> max) THEN ASSIGN max =voltage
IF (voltage < min) THEN ASSIGN min =voltage
ASSIGN minJound =Round(min + sec/60)
(optional, during program development) WRITE (all fields)
IF (minJound =30, 60, or 0) THEN

CALL DumpData(lN: data record, minJound;
IN/OUT: average, max, min, counter)

END LOOP
CLOSE(data file)

Here is a subprogram to process and display the 30-minute averages. The
decision has been made to display a rounded minute of 0 as 60. The WRITE
command can be interpreted as directing output to the monitor during program
development and to a file when the program development is complete.

SUBPROGRAM DumpData(IN: data record, minJound;
IN/OUT: average, max, min, counter)

IF (counter =30) THEN (this is a complete 30-minute sequence)
IF (minJound =0) THEN ASSIGN minJound =60 (for display)
ASSIGN average =average/30
WRITE (month, day, year, hour, minute, average, min, max)

(end IF)
ASSIGN counter= 0

average =0
min =large number
max =small number

(end SUBPROGRAM)

4 Convert the algorithm into a program.

P-7.6 [datalog8. c]

/* DATALOG8.C */

#include <stdio.h>
#include <math.h>
#define N_MEAS 30
#define FILENAME "apr06.dat"
#define OUTFILE "apr06.out"

7.4 Applications • 305

typedef struct {
int mon,day,yr,hr,min,sec;
float V;
int d;
data_type;

void DumpData(FILE *out,data_type m,int min_rnd,
float *avg,float *min,float *max,int *kount);

int main (void)
{

int n-pts=O,min_rnd,kount=O,status=O;
float avg=0.,min=500.,max=-500.;
FILE *in, *out;
char one_line[80];
data_type m;

in=fopen(FILENAME, "r");
out=fopen (OUTFILE, "w") ;
(void) fgets (one_line,sizeof(one_line) ,in);
/* printf("%s",one_line); */
while (1) {

status=fscanf(in, "%i %i %i %i %i %i %f Ii",
&m.mon,&m.day,&m.yr,&m.hr,&m.min,&m.sec,&m.V,&m.d) ;

if (status == EOF) break;
n-pts ++;
kount++;
avg+=m.V;
if (m.V > max) max=m.V;
if (m.V < min) min=m.V;
min_rnd=(int)floor(m.min+m.sec/60.+.5) ;
/* printf("%5i %2i %2i %2i %2i %2i %2i %6.3f %3i (%2i)\n",

n-pts,m.mon,m.day,m.yr,m.hr,m.min,m.sec,m.V,m.d,min_rnd); */
if ((min_rnd == 30) I I (min_rnd == 60) I I (min_rnd == 0))

DumpData(out,m,min_rnd,&avg,&min,&max,&kount);
/* fflush(stdin); scanf(); */

)
fclose (in) ;
fclose (out) ;
printf ("There are %i records in this file. \n" ,n-pts) ;
return 0;

)
void DumpData(FILE *out,data_type m,int min_rnd,

float *avg,float *min,float *max,int *kount) {
printf("kount = %i\n",*kount);

if (*kount == N_MEAS) {
if (min_rnd == 0) {

min_rnd=60;
m.hr-- ;

}

printf("%2i %2i %2i %2i %2i %6.3f %6.3f %6.3f\n",
m.mon,m.day,m.yr,m.hr,min_rnd,*avg/(float)N_MEAS,*min,*max);

fprintf(out, "%2i %2i %2i %2i %2i %6.3f %6.3f %6.3f\n",
m.mon,m.day,m.yr,m.hr,min_rnd, *avg/(float)N_MEAS, *min, *max);

)
*kount=O;
*avg=O; *min=500.; *max=-500.;

306 • 7. User-Defined Data Objects

Running P-7.6 (These are the contents of the APR06 . OUT file produced by the
program.)

5

7.4 Debugging Your Programs • 307

Verify the operation of the program.

During the development of P-7.6, it was important to verify that the
measurement groups were formed correctly at half-hour time boundaries. This
verification step is the reason for the #define N_MEAS 30 statement in the
code. The algorithm is written so that it looks for half-hour groups based on the
value of the rounded minute in each record. However, the algorithm doesn't
"know," except through the value of N_MEAS, that there are supposed to be 30
measurements in each such group. Therefore, a small test file was created with
only five measurements in each 30-minute interval. For processing that file,
N_MEAS was given a value of 5 rather than 30. The results of processing this
small test file were then compared with hand calculations, which would have been
much more tedious with data from the original file.

7.5 Debugging Your Programs

Often the most difficult part of writing a program is defining an appropriate data
object and writing code to reference the various parts of that object. Therefore, it
is important to give careful consideration to these preliminary parts of a program.
No matter what the nature of a problem that involves storing and processing data,
your first programming goal should always be to write code that defines an
appropriate structure and then reads and displays the input data fields in that
structure. Often, this includes writing code that will read at least some of the data
fields from an external file.

As a matter of programming style, don't forget that data objects can have
arrays as fields. This is often a better implementation choice than a two
dimensional array because of the ease with which additional information can be
added to a struet.

When you need arrays of struets, it is important in the interests of
conserving memory not to "over-type" the data fields. Thus, you may wish to
consider abandoning the practice followed throughout this text of defining physical
quantities as type double variables in favor of using more memory-efficient
f loa t variables wherever possible.

The syntax problems involved in using s true ts are minor and center
around field references. It is particularly easy to get confused about the syntax of
referencing fields in elements of arrays of s true ts. For example, given an array
of struets A, the proper way to reference the datal field in the loth element
of A is A[9] .datal, not A.datal [9]. If datal is itself an array, an
appropriate reference might be A [9] . da ta1 [1] .

308 • 7. User-Defined Data Objects

Finally, it is easy to become confused about the difference between a user
defined data type and a variable name declared as having that data type. It may
be helpful to establish for yourself a naming convention for structures; for
example, always including the suffix _type in the name of a struet.

7.6 Exercises

In each of these exercises, your program must use s true ts even if you believe
there are reasonable alternatives.

1. Referring to Exercise lOin Chapter 6, modify that program so that it uses a
struet to store the year, monthly temperature data, and yearly average
temperature. [tempphi2. e)

Extra Credit:
Use a one-dimensional array of structures to hold all the input and

calculated values for this problem. (Successful allocation of space for this array
may require that the array declaration be preceded by the static keyword.)

2. Referring to Section 2.3 and the problem addressed by program P-2.8, use an
array of struets to modify P-2.8 so the output includes the total number of
reports from each station and the total number of measurements at each station.
Assume that there will be no more than 11 stations with IDs 1000 through 1010
and, as before, no more than eight measurements per report. Use the ID numbers
to generate appropriate array element references. Compare this exercise to
Exercise 1 in Chapter 6. [station2. e)

3. Consider the file hi_lo. da t, containing the date and the high and low
temperature for that date. The first 10 records for Philadelphia in 1997 look like
this:

01/01/97
01/02/97
01/03/97
01/04/97
01/05/97
01/06/97
01/07/97
01/08/97
01/09/97
01/10/97

30 16
46 31
60 43
59 44
66 45
56 36
37 28
39 26
31 26
41 33

The term "heating degrees" is defined as 65° F minus the daily average
temperature in degrees Fahrenheit. Suppose you can approximate the daily average
temperature by taking the average of the high and low temperature for the day.

7.6 Exercises • 309

Then the heating degrees on January 1, 1997, are 65 - (30 + 16)/2 =42. These
calculations, or more accurate ones obtained by averaging hourly temperatures,
can be used by energy companies to monitor and, based on projected high and low
temperatures, to predict the demand for energy. In the summer, a negative value
for heating degrees may be interpreted as "cooling degrees."

Write a program that uses an appropriate array of s true tures to store the
data in this file and also the calculated heating degrees for each day. Your
program should display all the information in the file, plus the heating degrees.
Note that even though this exercise asks you to store information in an array, the
required calculations could be done one record at a time, without using an array.
[deg_day. e]

4. See Exercise 5 in Chapter 6. Modify that problem so the deck is represented
by card values 1-13 in each of four suits: clubs. diamonds. hearts, and spades.
Aces have value 1 and the face cards-jacks, queens, and kings-have values 11,
12, and 13. Define an appropriate structure for this card representation. Hold the
deck in an array of structures and shuffle the array using the algorithm shown.
[earddee2 . e]

Extra Credit:
Modify the structure so the values of cards can be represented by both

numerical values and words. Then the 11 of spades can be printed as the jack of
spades. Number cards can be printed as either the 2 of clubs or the two of clubs.
[earddeek. e]

5. Consider the file me ta1s . da t, which contains the name, chemical symbol,
and density in grn/cm3 of several metals:

aluminum Ai 2.7
cobalt Co 8.9
copper Cu 8.9
gold Au 19.1
silver Ag 9.4

Write a program that performs the following tasks:

1. Stores data about the metals in an appropriate structure.
It is not allowed simply to store the data as a one-dimensional array of

strings.

2. Prompts the user enter part or all of the name of a metal, starting from the
beginning of the name.

This means that the program must compare what the user enters against the
corresponding number of characters in the metal name field and display all

310 • 7. User-Defined Data Objects

matches. For example, the program will respond to the user entering co by
finding matches with cobalt and copper. However, no matches will be found if the
user types 0, because no metal name in the list begins with the letter o.

3. Displays all fields for each match.
If no matches are found, the program should print an appropriate message.

4. Gives the user a chance to quit the program or enter another name.

Hint: It may not be obvious how to compare part or all of two strings in C. The
statement

if (test_string == from_unit) ...

will not work, even though it doesn't produce a syntax error. Why not? Because
C treats strings as arrays of characters, rather than as single entities, and there is
no "built-in" way in C to compare an entire array with a single statement.
(Because the name of a string is equivalent to the address of the first character in
the string, the statement will never be true because the strings reside in different
memory locations even if all the characters are the same.) However, such
comparisons can be made by using the standard C functions s trcmp, for
comparing two entire strings, and s trncmp, for comparing the first n characters
of a string; see Table 6.1 in Chapter 6. If you did Exercise 8 in Chapter 6, you
can avoid potential incompatibilities among different C implementations by using
the function you were asked to write in that exercise to extract substrings to be
compared with the standard C function strcmp. [metals. c]

6. In Section 7.1 at the beginning of this chapter, the discussion of why and how
to create data objects used a chemical database as an example. Write a program
similar to the one in Exercise 5 that allows a user to search for a particular
chemical name in a record that includes name, symbol, and density or some other
relevant numerical quantity. Be sure to take into account the fact that a chemical
name may consist of more than one word, unlike the names of metals for the
problem posed in Exercise 5.
Hint: You will not be able to use scanf to get keyboard input for a name that
contains more than one word, because scanf treats blanks as separators between
values, not as part of a value. Instead, you must use gets or fgets to extract
an entire string from the keyboard buffer. We haven't used the intrinsic function
gets in this text, but fgets will work perfectly well. See, for example, P-2.6
in Chapter 2. To substitute the keyboard for an external file, simply replace the
file name with s tdin, the standard "file name" for the keyboard buffer.

7.6 Exercises • 311

Remember that the string returned by fgets includes the end-of-line
character, which you will need to remove as shown in P-2.6. Also, you should
make sure the keyboard buffer is empty before you read from it; include a
fflush(stdin); statement before each fgets statement in your program.
[chemical. c]

7. As any science or engineering student knows, it's easy to make mistakes when
converting physical quantities from one system of units to another. One way to
minimize such errors is to develop your own database of unit conversions. Here
is a short database of conversions. The first column contains the "from" unit, the
second column contains the "to" unit, and the third column contains the number
by which a quantity expressed in the "from" unit must be multiplied to get the
corresponding quantity expressed in the "to" unit.

fathoms
feet
feet
inches
miles per hour
miles per hour

feet
inches
yards
centimeters
feet per second
meters per second

6.0
12.0
0.33333333
2.54
1.4666667
0.4470408

Write a program that stores the contents of this or a similar file in an appropriate
array of s truc ts. The program should prompt the user to enter part or all of the
first word in the name of a "from" unit. The program should then display all
"from" unit matches and ask the user to choose the desired one.

Here are some specifications your program must meet.

1. The user must start typing the name of the "from" unit from the beginning, but
not all of the name needs to be entered.

This means that the program must compare what the user enters against the
corresponding number of characters in the "from" unit name and display all
matches. For example, the program will respond to the user entering f by
displaying the first three conversions, but it won't display anything if the user
enters ee because no "from" unit name begins with the letters ee.

2. The "from" unit response from the user must not contain any spaces.
This restriction means that the user should enter no more than a single

word even if the "from" unit name consists of several words. If you use scanf
to read user input of the "from" unit, which is the simplest code to write, your
program will think that the keyboard entry miles per hour represents three
separate character strings and not just one. Thus C will assign only the first word
of these three, mi 1e s, to the "from" unit, and ignore the other two. It is
important to use a flush(stdin); statement prior to each scanf, in order
to clear the keyboard buffer before reading each new unit name.

312 • 7. User-Defined Data Objects

3. When your program displays one or more matches, it must number them and
ask the user to select one. Your program must also contain some protection
against an inappropriate choice.

4. Once an appropriate conversion is selected, your program can either simply
display the requested conversion or prompt the user to enter a numerical value to
be converted. Although it's certainly true that this last step is the whole point of
the program, its implementation is trivial compared to the code required to get to
this point. However, if you choose simply to display the conversion as text, it is
not allowed to store information about the conversion simply as part of a single
string. That is, your program must store separately in appropriate s true ture
fields the matching "to" unit name as well as the numerical conversion constant.
Hints:
1. See Exercise 5 for comments about how to compare two strings.
2. The restriction in specification 2 can easily be removed by using fgets to
read a string from the keyboard. See Exercise 5 for comments about how to
handle strings with embedded blanks.

Extra Credit:
Remove the restriction that the user's keyboard input must not contain any

embedded blank spaces in the name of the "from" unit. [uni ts. c]

8. Any real number n (positive or negative) can be expressed in scientific notation
in the format

n =mantissa x loexponent

where 0.1 :5 mantissa < 1.0. Write a program that includes functions to extract the
mantissa and exponent for a real number and to find the mantissa and exponent
for the sum, difference, product, and quotient of two real numbers. A call to a
function to do mathematical operations could look like this:

c = sci_note(a, '+' ,b)

where a, b, and c are variables declared as s true ts having a mantissa and
exponent as their two fields. [sci_note. c]

8

Searching and Sorting Algorithms

8.1 Introduction

There are many algorithms that are basic to computing in any technical discipline.
Some of these are routinely included as part of an introductory computer science
course. Some are of interest to particular areas of science and engineering. Others
fall under the general category of numerical analysis algorithms; these will be
covered separately in Chapter 9.

It is important for every programmer to have
some sense of these widely applicable algorithms to
avoid wasting large amounts of time whenever certain
common programming problems arise. In this chapter
we will discuss searching algorithms and sorting algorithms. These are important
because in many computer applications, a great deal of time is spent looking for
particular things in a collection of related things. Admittedly, "things" is a vague
and untechnical word, but it is chosen to convey the sense that searching
algorithms should be applicable regardless of the nature of what is being sought.

As we will see later in this chapter, the efficiency of searching algorithms
can be improved dramatically by performing the search on a list of things that are
in order. For a collection of numbers, "in order" means that the numbers appear
in either ascending or descending order. For a list of words, "in order" means that
the words are alphabetized as they would be in a dictionary, either with or without
case sensitivity.

Sorting algorithms are therefore of great practical interest because it is so
often necessary to reorganize lists of things so they are in a useful order. We will
discuss three different sorting algorithms in this chapter. They vary greatly in their
efficiency when they're applied to lists originally in random order, but each of
them may be a reasonable choice in certain circumstances.

Before we begin the process of designing and implementing
searching and sorting algorithms, note that we will often refer to a
collection of values as a list and we will often use the words list and
array as if they were equivalent. However, there is a significant difference
between these two terms. A list is an abstract entity for which certain operations
such as searching and sorting can be defined. An array is a specific
implementation of a list, although by no means the only possible one. (In fact, we
will examine an alternative implementation for lists in Chapter 10.) In this chapter,
lists of things to be searched or sorted will be implemented as arrays. Except for
the inevitable C-specific implementation details, the material in this chapter isn't
as much about C per se as it is about the applying a high-level programming

D. R. Brooks, C Programming: The Essentials for Engineers and Scientists
© Springer-Verlag New York, Inc. 1999

314 • 8. Searching and Sorting Algorithms

language and the concept of arrays to solving some important computing
problems.

A specific goal of this chapter is to develop a library of functions that
perform searching and sorting operations. You should be able to use these
functions in your own programs even if you don't spend a great deal of time
understanding the details of their operation. Consider, for example, an algorithm
to search for all occurrences of a specified value in a list. That algorithm will be
implemented as a C function that will then be incorporated into a driver program
to test its operation. In order to use that function in your own programs, you need
only understand how it is used in the driver program. Then you can either copy
the source code for the function into your own source code or link a precompiled
library in which the desired function resides.

Ideally, such a library of functions should
operate with a high level of data abstraction; that is,
the code inside the functions should be independent of
the contents of the list the function is intended to
manipulate. Assuming the list is implemented as an array, then the function can
be used with any array of values, including arrays of structures, as discussed in
Chapter 7. In practice, a small amount of code will typically be required to
accommodate the contents of a specific array of values. However, this additional
code can be restricted to one or more data-aware functions that will be provided
separately from the library functions. In order to achieve the desired level of data
abstraction, we will use an alias for the data type of an array when it appears as
a parameter in functions that implement searching and sorting algorithms, as
described in Chapter 7. This alias will be given a specific global data type, either
an intrinsic data type or a s truct, whenever the library functions are used.

8.2 Searching Algorithms

We will begin our discussion of searching algorithms with a specific example.
However, the goal of data abstraction will never be far from our thoughts as we
implement this example. Suppose you are asked to write a program to find
information in a database of chemicals. The database mayor may not be sorted
by chemical name. In either case, the program will contain a menu of options that
include:

1. Find any occurrence of a specified chemical name or string of characters.
2. Find all occurrences of a specified chemical name or string of characters.

Each of these requests is reasonable and may even appear equivalent from
a program user's point of view, but each imposes different requirements on
algorithm design. Suppose, for the first option, that there are multiple occurrences

8.2 Searching Algorithms • 315

of the same name or more than one chemical that contains a specified string of
characters. Do you wish your program to find the first occurrence or will you be
satisfied with any occurrence? The second option may force you to search through
the entire database because it specifically asks for all occurrences of a specified
string of characters.

For either of these options, as long as you cannot
assume that the list of chemicals is sorted in some useful
order, there is no generally applicable approach other than to
search through the list, starting at the beginning. An appropriate algorithm, called
a linear search, is conceptually very simple and is the topic of Section 8.2.1.
Section 8.2.2 will deal with the possibility that you may wish to find an item in
a sorted list. In this case a more efficient algorithm is available.

8.2.1 Linear Searches

An algorithm that searches for a single occurrence of a specified value in a list is
simple, as long as we are satisfied to find only the first such occurrence in the list.

SUBPROGRAM FindOne(lN: list, size, search_value;
OUT: integerposition of first occurrence, "found'?

INITIALIZE "found" to value that can't be an array element (-1 in C)
LOOP (through list with index i until search_value is found or to end of list)

IF (current item in list matches searCh_value) THEN
ASSIGN "found" = i

END LOOP

Note the double terminating condition for the LOOP structure. The loop
terminates when the desired value is found or the end of the list is reached; this
condition is required to handle the case in which the desired item is not found in
the list.

An algorithm for finding all occurrences of a specified value is also
simple: look through the entire list and save the position of each list value that
matches.

SUBPROGRAM FindAI/(IN: list, size, search_value;
OUT: integer array of positions, "found'?

DEFINE integer index
INITIALIZE elements of found to values that can't be array elements

(-1 in C)
index to 0 (current element of "found" array)

316 • 8. Searching and Sorting Algorithms

LOOP (through list with index variable i)
IF (list[i] =search_value) THEN

ASSIGN found[index] = i
INCREMENT index by 1

END LOOP

In this pseudocode implementation, it is assumed that the found array has the
same size as the original list. Each of its elements is initialized to -1, a value that
cannot represent an index to any array element. Inside the loop, whenever a match
is found, the current found array element is given the value of the list index, and
the found array index is incremented by I. When the subprogram terminates,
found contains the positions of all matches in the list.

Both these algorithms are called linear searches because the search starts
at the beginning of the list and continues sequentially either to the end of the list
(FindAII) or until the first occurrence of the specified value is found (FindOne).
Program P-8.1(a) gives the C implementation of these two algorithms. The source
code file srchsort. c contains code for other functions, too, but only the
relevant functions are shown. P-8.I(b) shows how to use the functions to search
through an array of integers.

P-8.1(a) [srchsort. c (partial listing)]

void FindAll (data_type a [] ,int 10, int hi, data_type what, int found [] ,
int (*compare) (data_type a,data_type b) {

int i,index=O,n_items;

n_items=hi-lo+1;
for (i=O; i<n_items; i++)

found[i]=-l;
for (i=lo; i<=hi; i++)

if (compare(a[i] ,what) 0) {
found [index] =i;
index++;

void FindOne(data_type at] ,int 10,int hi,data_type what,int *found,
int (*compare) (data_type a,data_type b)) {

int i=O;

*found=-l;
do {

if (compare(a[i] ,what) 0) *found=i;
i++i

} while ((*found == -1) && (i<=hi));

8.2 Searching Algorithms • 317

P-8.1(b) [srchtest. c)

#include <stdio.h>
#define N 10

typedef int data_type;

#include "srchsort.h"
#include "srchsort.c"

void MakeArray(data_type a[] ,int n);
int SearchCompare(data_type a,data_type b);

int main(void)
{

data_type a[N] ,what;
int found[N] ,found_one,i;
char yes_no;

srand(3);
MakeArray(a,N) ;

1* Test linear sort routine. *1
while (1) {

printf("Look for what? ");
fflush (stdin) ; scanf (" %i", &what) ;
FindOne(a,O,N-1,what,&found_one,SearchCompare);
if (found_one != -1)

printf ("Found one match at (%i) %i \n" , found_one, a [found_one]) ;
else

printf("Didn't find any match.\n");
FindAll(a,0,N-1,what,found,SearchCompare) ;
printf("Found matches at:\n");
for (i=O; i<N; i++)

if (found[i] != -1) printf("(%i) %i\n",found[iJ,a[found[i]]);
printf("More (yin)? ");
fflush (stdin) ; scanf ("%c" ,&yes_no) ;
if (yes_no == 'n') break;

}
return 0;

void MakeArray(data_type a[] ,int n) {
int i;

for (i=O; i<n; i++) {
a[i]=rand()%20;
printf(" (%2i) %i\n",i,a[i]);

int SearchCompare(data_type a,data_type b) {
if (a == b) return 0;
else if (a < b) return -1;
else return 1;

318 • 8. Searching and Sorting Algorithms

Problem Discussion
Note that as an implementation detail, low and high indices (10 and hi)

are passed to the functions in P-8.1(a), rather than just the size of the array, as
was done in the pseudocode. This allows part or all of a list to be searched.
Remember that 10 and hi must be array indices in the range from 0 to n - 1 and
not from 1 to n. The found array returned as output from FindA11 is assumed
to have a declared size of at least (hi - 10 + 1).

Program P-8.1(b) tests each of the linear search algorithms using an array
of integers, as defined by the typede f statement printed in bold italics. The files
srchsort . hand srchsort . c contain function protypes and implementations
for a library of several searching and sorting functions. These files are
#inc1uded in P-8.I(b) even though only the two functions described in P-8.1(a)
are needed to implement the algorithms discussed in this section. While it may
appear "wasteful" to copy these files in their entirety into a program that needs
only some of the code, it is no more wasteful than including the s tdi 0 . h header
file and linking to its associated VO functions. The presence of unnecessary files
can slow compilation and create executable files that are larger than necessary.
However, this is rarely a significant problem in practice.

The header file srchsort. h contains all the information a programmer
needs to use srchsort. c. It should not be necessary for the programmer to
examine the code in srchsort . c in order to use the functions. Here is a partial
listing of srchsort. h., with documentation and prototypes for FindAll and
FindOne.

/* FindAll searches elements "10" through "hi" of the array "a" for
occurrences of "what." The values of "10" and "hi" must be
array element references, from 0 to n-1, where n is the declared
size of "a," and not "position" references 1 to n. The integer
array "found" is initialized to -1 and, on return, contains the
positions of matching elements in array "a."

The data_type of the elements of "a" must be specified prior to
a call to FindAll, typically prior to the main function, through
an appropriate typedef statement.

FindAll requires access to a user-supplied function "compare"
that compares two quantities of type data_type and returns a
o if they are equal.

*/
extern void FindA11(data_type a[] ,int 10,int hi,data_type what,

int found[] ,int (*compare) (data_type a,data_type b»;

/* FindOne searches elements "10" through "hi" of the array "a" for
the first occurrence of "what." It returns a pointer to the index
for which the match was found and a pointer to the value -1
otherwise. See also the documentation for FindAl1.

*/
extern void FindOne(data_type a[] ,int 10,int hi,data_type what,

int *found,int (*compare) (data_type a,data_type b»;

8.2 Searching Algorithms • 319

It is important to understand how the data abstraction discussed in Section
8.1 has been achieved in P-8.1(a) and P-8.1(b). The parameter lists of the
functions shown in P-8.1(a) use the alias data_type for the array and for values
that must have the same data type as elements of the array. The typedef
statement in P-8.1(b), printed in bold italics, associates this alias with a specific
data type-integers in this case.

P-8.1(b) contains code for two other functions, MakeArray and
SearchCompare, that are data-aware. MakeArray is of no general interest, as
its only purpose in this program is to generate an array of values to test the search
functions. The SearchCompare function is needed whenever the search
functions are applied to a specific array of data; this function must be tailored to
the actual data type of the array elements used in srchtes t . c . Function
SearchCompare is made available to FindOne and FindAll by the inclusion
of a pointer to the function in the parameter list of these two functions, using the
syntax discussed in Section 5.6.

Function SearchCompare returns three possible results, -1, 0, or 1,
depending on whether the first parameter is less than, equal to, or greater than the
second parameter. As used by the functions in P-8.1(a), the first parameter
corresponds to an array element argument and the second parameter corresponds
to the value being searched for. Remember that only the returned data type and
parameter list of the comparison function, and not its name, must agree with the
function given in the function prototype and implementation. For the linear search
algorithms, it is necessary only to have an "equal to" or "not equal to" response,
as noted in the documentation in srchsort . h. However, the sorting algorithms
discussed in the next section will require "less than" and "greater than" responses,
as well.

The value returned indirectly through FindOne's parameter list is -1 if
no match is found and the location of the array element if a match is found. In
FindAll, the array found is initialized to -1 and, on return, contains the indices
for all matching elements in array a.

As noted, data_type in P-8.1(b) has been defined as having type into
It is this alias data type definition, along with a user-supplied function for
comparing values, which allows the search algorithms to work with any kind of
array. Suppose the list contains character strings or real numbers rather than
integers. Then the criterion for defining and implementing a match will change.
For example, we know that we cannot compare two strings with a statement like

if (stringA == stringS) ... ; /* won't work */

(We must use the intrinsic function s trcmp instead.) Also, we know it is
generally undesirable to compare real numbers for equality, so we might choose
to write something like

if (fabs(a-b) < LIMIT) ... ;

320 • 8. Searching and Sorting Algorithms

The effort to write a data-aware comparison function is more than
compensated by the increased flexibility to search lists regardless of their contents.
For example, it is easy to use the search functions to match a specified field in an
array of structures. The changes necessary to accommodate such a search are
made not in the search functions themselves, but in the user-supplied compare
function.

To see how this might work, consider again the simple problem addressed
by program P-7.1: read and display a list of measurements from a file with format

01 02 03 66.6
04 03 16 17.7
11 12 56 3.3
(and so forth)

where the first three values in each record are the hour, minute, and second at
which a measurement is made, and the fourth value in each record is the
measurement itself. Suppose you are required to find all measurements taken
during a user-specified hour. This search criterion is easy to accommodate with
the functions included in srchsort . c. Program P-8.2 is an extension of P-7.1
which stores the measurements in an array of s truc ts and adds the required
capability to compare values.

P-8.2 [structu2. c]

#include <stdio.h>
#define FILE_NAME "structur.dat"
#define MAX 20

typedef struct {
int hr,min,sec;
float measurement;

}data_type;

#include "srchsort.h"
#include "srchsort.c"

int SearchTime(data_type a,data_type b);

void main ()
{

FILE *Infile;
int status=O.count=O, found [MAX] ,i;
data_type measurements[MAX],time_rec;
char yes_no;

Infile=fopen(FILE_NAME, Or"};
while (I)
{

status=fscanf(Infile. "Id Id Id If".
&measurements[count] .hr,
&measurements[count] .min,

8.2 Searching Algorithms • 321

&measurements[count] .sec,
&measurements[count] .measurement};

if (status == EOF) break;
{

printf (" %2d %2d %2d %f\n" ,measurements [count] .hr,
measurements [count] .min,
measurements [count] .sec,
measurements [count] .measurement);

count++;

}
printf("There are %d records.\n" ,count} ;
fclose (Infile) ;

1* Get search hour. *1
while (1) {

printf ("Which hour (0-24)? ");
fflush (stdin); scanf (" %i", &time_rec .hr) ;
FindAll (measurements,0,count-1,time_rec, found,SearchTime);
for (i=O; i<count; i++)

i f (found [i] ! = -1)
printf("%2d %2d %2d %f\n",measurements[found[i]] .hr,

measurements[found[i]] .min,
measurements[found[i]] .sec,
measurements[found[i]] .measurement};

printf ("More (yin)? ");
fflush(stdin); scanf("%c",&yes_no);
if (yes_no != 'y') break;

int SearchTime(data_type a,data_type b) {
if (a.hr == b.hr) return 0;
else return 1;

In P-8.2, it has been necessary to declare time_rec, another variable
with type data_type, in order to have a place to hold the specified hour for use
in SearchTime, even though only the hr field is used. You might be tempted
to read the hour into an int variable and pass just that value to SearchTime.
However, this would generate a compilation error because the data type of the
arguments for the compare function in FindAll must be the same as that of
the elements of the array being searched. It does not matter that the other fields
in t ime_rec have not been assigned values, because they are not used anywhere
in the program.

8.2.2 Binary Search

Recalling the options discussed earlier in the chapter for a program that searches
a list of chemical names, consider how to implement a request to find a certain
chemical name. If the names are in random order, the linear search algorithms
from Section 8.2.1 must be applied. This is okay for small lists, but it seems

322 • 8. Searching and Sorting Algorithms

inefficient for large lists. Is there any way to construct a more efficient algorithm?
If the list is sorted in order-alphabetically by chemical name, in this case-then,
in fact, a much more efficient algorithm exists for finding a single occurrence of
a specified name.

Let's investigate the possibilities by playing a simple game:

l. You will pick an integer between I and 100.
2. I will guess the number.
3. You will tell me whether the number I have guessed is too big or too small
relative to the number you've picked.

How many tries will I need to guess your number?
Here's one way to play the game: you pick 33.

My guess
50
25
37
31
34
32
33

Your response
too big
too small
too big
too small
too big
too small
you guessed it!

Obviously, another way to play the game is to use a linear search of the
numbers from I to 100: "Is the number I? Is it 2? Is it 3?... On the average, if
you pick a number randomly from this range, it will take 50 tries to guess the
number. For the above example, it will take 33 tries. However, the solution here
requires only seven guesses! In fact, it should never require more than seven
guesses to find a number in the range 1-100.

This solution requires that guesses be chosen in a particular way. My first
guess of 50 is in the middle of the range of possible numbers. When you reply
that 50 is too big, then I know that the number must be in the range 1-49.
Therefore, my next guess is 25-the number in the middle of the range 1-49.
When you tell me that 25 is too small, I select 37, a number in the middle of the
range 26-49. At each step I discard half the possible range of numbers, and by
continuing in this way I must eventually arrive at the number you have selected.

This algorithm is called a binary search. By selecting
a value that is at the midpoint of the remaining range at each
step and discarding half the list after each unsuccessful
guess, this algorithm guarantees that I can find any value in an ordered list of size
n (or determine that the value doesn't exist in the list) in no more than login)
guesses. For finding a value in a list of 100 numbers, no more than seven guesses
should ever be required because 27

:=; 100. (To put it another way, a range of

8.2 Searching Algorithms • 323

numbers as large as 128 can be divided in half no more than seven times-64, 32,
16, 8, 4, 2, 1.) This is a significant improvement over a linear search. Suppose
you have to find a value in a list containing 1,000,000 values. A linear search will
require an average of 500,000 comparisons. However, a binary search on an
ordered list of 1,000,000 values will require no more than 20 comparisons because
220

"" 1,000,000.
The number guessing game is a simplified version of the general binary

search problem because if everybody follows the rules of the game, the number
to be guessed is guaranteed to exist within the range of numbers 1-100. In order
to generalize the binary search algorithm, the problem must be formulated
properly. First of all, the list must be in order; it makes no conceptual sense to
attempt a binary search on a randomly ordered list. Second, a binary search will
find only one occurrence of a specified value. If that value appears more than
once in the list, you have no way of knowing which occurrence the binary search
will locate. (However, because the list must be in order, you could use a binary
search to find one occurrence and then look forward and backward in the list to
find additional occurrences.) These restrictions must be compatible with the
problem the binary search is being used to solve. Third, a binary search must
account for the possibility that the specified value doesn't exist in the list of
available values.

The outline of a solution follows the steps used in the number guessing
game:

1. Select a value in the middle of the possible range.
2. If that value is the desired value, stop.
3. If the value is smaller than the desired value, reset the lower boundary of the
possible range to the middle position plus I, and search the upper half of the
range.
4. If the value is larger than the desired value, reset the upper boundary of the
possible range to the middle position minus 1, and search the lower half of the
range.
5. Repeat steps 1-4 until the desired value is found or until the lower boundary
is larger than the upper boundary.

It should be clear from the way steps 3 and 4 are worded that this is a solution
that lends itself to a recursive algorithm. P-8.3(a) is a function that performs a
recursive binary search on a sorted array; it is included in the srchsort . c file.
P-8.3(b) is a test program that finds a specified value in a hard-coded array of
integers. As before, the code is written so that the BinarySearch function can
be applied to part or all of any array. The header file srchsort. h contains
documentation for BinarySearch, which from the perspective of a program
that uses the function, should behave exactly like F indOne from P-8.1.

324 • 8. Searching and Sorting Algorithms

P-8.3(a) [srchsort. c (partial listing)]

void BinarySearch(data_type a[], int 10, int hi,
data_type what,int *found,
int (*compare) (data_type a,data_type b)) {

int mid;

if (10 > hi) *found=-l;
else

{
mid=(10+hi)/2;
if (compare (a[mid] ,what) == 0)
*found=mid;
else if (compare(what,a[mid]) < 0)
BinarySearch(a,10,mid-1,what,found,compare) ;
else
BinarySearch(a,mid+1,hi,what,found,compare) ;

P-8.3(b) [bintest. c]

#include <stdio.h>
#define N 10

typedef int data_type;

#include "srchsort.h"
#include "srchsort.c·

int SearchCompare(data_type a,data_type b);

int main(void)
{

data_type a[]={-17,-3,0,1,4,6,7,18,29,30);
data_type what;
int found_one,i;
char yes_no;

srand(3) ;
1* Test binary sort routine. *1

for (i=O; i<N; i++) printf("%i\n",a[i]);
while (1) {

printf("Look for what? ");
fflush(stdin) ;scanf("%i" ,&what);
BinarySearch(a, 0,N-1,what, &found_one , SearchCompare) ;
if (found_one != -1)

printf("Found one match at (%i) %i\n",
found_one, a [found_one]);

else
printf("Didn't find any match.\n");

printf("More (yin)? ");
ff1ush(stdin) ;scanf("%c",&yes_no);
if (yes_no == 'n') break;

}
return 0;

8.2 Searching Algorithms • 325

int SearchCompare{data_type a,data_type b) {
if (a == b) return 0;
else if (a < b) return -1;
else return 1;

Problem Discussion
The binary search algorithm is deceptively simple. It's easy to write code

that looks okay and works most of the time. Clearly, this is unacceptable;
therefore, all such algorithms must be tested in a driver program. Search
algorithms should be tested with a list whose contents you know. Be sure to
search for values at the beginning and end of the list, as well as for values that
don't exist in the list.

As a demonstration of how to modify the binary test program to search for
a different kind of value, consider a program whose task is to search a list of
names that are in alphabetical order, as shown in Table 8.1.

Table 8.1. Data file for use with binary search algorithm

Alice
Allen
Bob
Carla
David
Evelyn
Frank
Frank
Grace
Grace
Grace
Hal
Laura
Susan
Ted
Wanda

This file is in alphabetical order, but it contains duplicate names, so we know that
a binary search will find one occurrence of a duplicate name but not necessarily
the first one.

How should data_type be defined? A name needs to be represented as
an array of characters, so the obvious representation of a list of names is as a two
dimensional array of characters. However, BinarySearch expects a one
dimensional array of type da ta_type. A simple solution that is easily extended
to accommodate more complicated data structures is to define a name as a
struct whose single field is an array of characters:

326 • 8. Searching and Sorting Algorithms

typedef struct {
char name [20] ;

} data_type;

Program P-8.4 shows how to use this definition.

P-8.4 [namefind.c]

#include <stdio.h>
#include <string.h>
#define N 20

typedef struct {
char name [20] ;

} data_type;

#include "srchsort.h"
#include "srchsort.c"

int SearchCompare(data_type a,data_type b);
void GetData(data_type a[] ,int *n_rec);

int main(void)
{

data_type a[N] ,what;
int found_one,i,n_recs;
char yes_no;

GetData(a,&n_recs);
for (i=O; i<n_recs; i++) printf("%s\n",a[i].name);
while (1) {

printf("Look for what? ");
fflush (stdin) ; scanf ("%s" , what. name) ;
BinarySearch(a,0,n_recs-1,what,&found_one,SearchCompare);
if (found_one != -1)

printf ("Found one match at (%i) %s\n",
found_one, a [found_one] .name);

else
printf("Didn't find any match.\n");

printf("More (yin)? ");
fflush (stdin) ; scanf ("%c", &yes_no) ;
if (yes_no == 'n') break;

}
return 0;

void GetData(data_type a[] ,int *n) {
FILE *in;
int i=O,status=O;

in=fopen("names.dat", "r");
while (1) {

status=fscanf(in, "%s' ,a[i] .name);
if (status == EOF) break;
printf("%s\n",a[i] .name);
i++;

8.2 Searching Algorithms • 327

r~Ibse (in) ;
}

int SearchCompare(data_type a,data_type b) {
if (strcmp(a.name,b.name) == 0) return 0;
else if (strcmp(a.name,b.name) < 0) return -1;
else return 1;

8.2.3 Choosing a Searching Algorithm

As indicated earlier in the chapter, linear searching
algorithms are required under some circumstances. In
particular, if a list isn't sorted in any useful order, then a
linear search is required. Linear searching algorithms are
referred to as order N algorithms. They are often represented in what is known as
big 0 notation as O(N) algorithms. For any O(N) algorithm, the number of
operations required to complete the algorithm is directly proportional to N.
Because operations on your computer translate directly into time, doubling the size
of the list means that the search will take twice as long with an O(N) algorithm.

On the other hand, as noted in Section 8.2.2, a
binary search is an O(logJJl) algorithm, which means
that the number of operations is proportional to the log
to the base 2 of N. As noted above, this represents a tremendous increase in
efficiency for large lists, with a binary search taking no more than 20 comparisons
to find a value in a list of l,Ooo,OOO items, rather than the average of 500,000
comparisons required by a linear search.

The savings represented by a binary search are so significant that it is often
worth the extra effort to devise algorithms that combine binary and linear
searching techniques. For example, you know that a binary search finds only one
occurrence of a specified value even if that value occurs several times
(sequentially) in a sorted list. In the list of names used by P-8.4, the name Grace
appears three times. You can use a binary search to locate one occurrence of
Grace, but you won't know whether it's the first, second, or third. Therefore, once
you have found one occurrence of Grace, you can do a linear search forward and
backward to find additional occurrences. Since the list is in order, you can stop
the search in either direction when you find a name other than Grace. A hybrid
algorithm might seem like a waste of time for a short list, but it makes sense as
an efficient way to search a large list. Note that the prototype and output for such
a hybrid function should be identical to those of function FindAll previously
given in P-8.1(a).

328 • 8. Searching and Sorting Algorithms

8.3 Sorting Algorithms

The discussion of searching algorithms in Section 8.2 makes clear the importance
of putting lists in sorted order so that an efficient binary search algorithm can be
used. In this section, we will develop three different algorithms for sorting lists.
As in the previous section, we will implement lists as arrays, and we will design
algorithms so they can be applied easily to different kinds of data, including arrays
of structures. The first two algorithms are somewhat intuitive in nature, but the
third, and generally best, method is much less obvious.

Regardless of the algorithm used, the problem statement for developing the
algorithms is the same: start with a list represented as an array of values and sort
the list into ascending or descending order.

8.3.1 Selection Sort

In order to develop this sorting algorithm, it will help to work with a specific
example. Suppose this list of seven integers is stored in an array A:

17 4 11 9 13 3 5

1. Assume the value in the first element of the array is the smallest value in the
entire list.

Assume smallest = A(l) = 17.

2. Starting at the second element, compare all the remaining elements with the
first element. If you find a smaller one, mark it as the smallest element.

Assign new smallest = A(6) = 3.

3. When you have found the position of the smallest remaining element, exchange
this element with the first element. Now the smallest element is where it belongs.

These operations look like this:

~411 913[DS

I

3 4 11 9 13 17 5

In this and following steps, the integers in bold type indicate values that have been
put in their proper place in the array.

4. Repeat steps 1-3 starting at the second, third, etc., position, up to the (n_l)st

8.3 Sorting Algorithms • 329

position.
After each of five repetitions of steps 1-3, the array looks like this:

(2nd repetition)

(3fd repetition)

(4th repetition)

(5 th repetition)

(6th repetition)

3 4 11 9 13 17 5 (no exchange required)

3 4 ~ 9 13 17 j;l
L ...J L ...J

I I

3 4 5 9 13 17 11

3 4 5 9 13 17 11 (no exchange required)

3 4 5 9 ~ 17 ~
L ...J L ...J

I I

3 4 5 9 11 17 13

3 4 5 9 11 ~~
L ...J L ... J

L-.J
3 4 5 9 11 13 17

Note that in some cases, the element initially chosen as the smallest remains the
smallest. Then it's not necessary to exchange a pair of elements.

An algorithm to implement these steps looks like this.

SUBPROGRAM Selection(lN/OUT: array A of type data_type; IN: size)
DEFINE (current, test, smallest, as integers)
LOOP (current = 1 to size - 1)

ASSIGN smallest =current
LOOP (test =current + 1 to size)

IF (A(test) < A(smallest)) THEN
ASSIGN smallest =test

END LOOP
IF (A(current) <> A(smallest)) THEN

CALL Swap(A(current),A(smallest))
END LOOP
(end of subprogram)

SUBPROGRAM Swap(IN/OUT: a, b of type data_type)

330 • 8. Searching and Sorting Algorithms

DEFINE (temp as data_type)
ASSIGN temp =a

a=b
b =temp

(end of subprogram)

We will reuse the Swap subprogram in subsequent algorithms.
P-8.5(a) contains the source code for a function that implements the

Selection Sort algorithm.

P-8.5(a) [srchsort. c (partial listing)]

void Swap(data_type *x,data_type *y)
data_type temp;
temp=*x;
*x=*y;
*y=temp;

}
void SelectionSort(data_type a[] ,int 10,int hi,

int (*compare) (data_type a,data_type b))

int i, j ,min;

for (i=lo; i<hi; i++) {
min=i;
for (j=i+1; j <=hi ; j++)

if (compare(a[j] ,a[min])
Swap(&a[i] ,&a[min]);

-1) min=j;

Similar to the implementations of searching algorithms in Section 8.2, the
code implementation of the Selection Sort algorithm requires both a lower and an
upper limit on the elements of the array to be sorted, rather than just the size of
the array. Remember, however, that for a list containing n items, these values are
array indices in the range 0 to n - 1 and not list positions in the range I to n. The
header file srchsort. h contains a prototype for SelectionSort but not for
Swap, which is local to srchsort . c:

/* SelectionSort sorts elements "10" through "hi" of array "a." The
data_type of the elements of "a" must be specified by the main
program through an appropriate typedef statement.

SelectionSort requires access to the same user-supplied compare
function as PindAll.

*/
extern void SelectionSort(data_type a[] ,int lo,int hi,

int (*compare) (data_type a,data_type b));

Program P-8.5(b) shows how to use SelectionSort.

8.3 Sorting Algorithms • 331

P-8.5(b) [sorttest. c]

#include <stdio.h>
#include <math.h>
#define MAX_SIZE 20

typedef float data_type;

#include "srchsort.h"
#include "srchsort.c"

void GetData(data_type a[] ,int *n);
int SortCompare(data_type a,data_type b);

int main(void)
{

int i,n_recs;
float a [MAX_SIZE] ;

GetData(a,&n_recs);
SelectionSort(a,O,n_recs-l,SortCompare) ;
printf("After sorting:\n");
for (i=O; i<n_recs; i++)

printf("%d %If\n",i,a[i]);

return 0;

void GetData(data_type a[] ,int *n) {
FILE *infile;
int i=O,status=O;

infile=fopen("arrays.dat", Or");
while (l) {

status=fscanf(infile, "%f",&a[i]);
if (status == EOF) break;
printf("%d %f\n",i,a[i]);
i++;

}
fclose(infile) ;
*n=ii

int SortCompare(data_type a,data_type b) {
if (fabs(a-b) < le-5) return 0;
else if (a < b) return -1;
else return 1;

It is easy to verify the operation of such an algorithm for a particular list,
but it's not so easy to be confident that it will work correctly for every list. Thus
P-8.5(b) should be expanded to test SelectionSort not only for lists originally
in random order, but also for lists already in order, lists that are backwards, and
lists whose contents are all the same value.

332 • 8. Searching and Sorting Algorithms

Problem Discussion
Because of the nested for ... loops appearing in N' ..i_ '11m I

the code, the Selection Sort algorithm is an O(N2
) 0(>. ...o'rlt,. .

algorithm. That is, the number of operations required to
sort a list is proportional to the square of the number of items in the list.
However, Selection Sort has the advantage that elements in a list are exchanged
only when the final location of an element is known. It performs the same number
of comparisons regardless of the initial order of values in the array. This isn't
necessarily a disadvantage in most circumstances. However, if the list is initially
almost in order, Selection Sort performs a lot of unnecessary comparisons. The
next section describes an algorithm that performs substantially better than
Selection Sort if a list is already almost in order.

Also, note that the code in SelectionSort always swaps two elements
at the end of the interior loop, even if i is equal to min, in which case there is
no reason to swap the elements. This makes the code a little shorter, but it would
certainly be reasonable to modify the code so that Swap is called only if i and
min are different.

8.3.2 Insertion Sort

Insertion Sort is another intuitive sorting algorithm. Suppose you're being dealt
a hand in a card game such as bridge. Every time you're given a new card, you
sort the hand by automatically inserting the new card into its proper place. The
same process can apply to sorting a list. Again, it will help to use a specific
example. Suppose the list contains these values:

17 4 11 9 13 3 5

Start with the second value. If it is greater than or equal to the first element, leave
it alone. Otherwise, put the second value in its proper place by moving the first
value up one position and putting the second value where the first value used to
be.

~Gll 913 3 5

L--J
4 17 11 9 13 3 5

The values in bold type represent a subset of the list that is sorted.

Repeat this step until you get to the end of the list.

3 4 11 9 13 17 5

3 4 n 11 ~ 13 17 5
L ... J L ...J

I I

3 4 9 11 13 17 5

349 11 13 17 5

349 11 13 17 5

3 4 5 9 11 13 17

We can implement this easily in pseudocode.

8.3 Sorting Algorithms • 333

(3'd element already in place)

(4th element is out of place)

(insert 4th element in its place)

(5 th element already in place)

(6th element already in place)

(7th element is out of place)

(insert 7th element in its place)

LOOP (for i from 2 to n)
Insert the list{i] item in its proper place if it isn't where it belongs.

END LOOP

It is perhaps not obvious how to move elements to their proper positions if they
are out of position. Here is the pseudocode.

ASSIGN temp = list{i]
LOOP (as long as temp < Iist[i-1] and i> 1)

ASSIGN list{i] =list{i - 1]
DECREMENT i by 1

END LOOP
ASSIGN list{i] = temp

Program P-8.6 gives source code for the InsertionSort function from
srchsort . c. To test this function, it is necessary only to substitute a call to
InsertionSort for a call to SelectionSort in P-8.5(b). The header file
srchsort . h contains a prototype for InsertionSort; its documentation is
identical to that for SelectionSort.

P-8.6 [srchsort . c (partial listing)]

334 • 8. Searching and Sorting Algorithms

void InsertOne(data_type a[] ,int i) {
data_type temp;

temp=a[ij;
while ((compare(temp,a[i-1j)

a[i]=a[i-1j;
i--;

}
a[i]=temp;

-1) && (i > 0)) {

}

void InsertionSort(data_type a[] ,int lO,int hi,
int (*compare)data_type a,data_type b) {

int i;
for (i=lo+l; i<=hi; i++)

InsertOne(a,i) ;

Problem Discussion
The algorithm has been implemented as two separate functions. Although

this may make the code easier to understand, the primary reason is that function
InsertOne can be used separately from function InsertionSort. For
example, it can be used to insert into its proper place a new item in a list that is
already sorted. For this reason, the header file srchsort. h contains function
prototypes for both these functions.

The Insertion Sort is still an O(N2
) algorithm; its nested loop comes from

the fact that InsertOne, which contains its own loop, is called from within a
loop in InsertionSort. However, this algorithm is more efficient than the
Selection Sort algorithm for lists that are already almost in order.

8.3.3 The Recursive Quicksort Algorithm

Because of their nested loop structures, the Selection Sort and Insertion Sort
algorithms discussed in Sections 8.3.1 and 8.3.2 are both O(N2

) algorithms, which
means that if you double the length of the list to be sorted, the sorting time
increases by a factor of four rather than two. Thus sorting operations performed
on large lists can take a very long time. (This will be discussed in more detail in
Section 8.3.4.) Fortunately, it is possible to design a sorting algorithm that is more
efficient, but this is not an intuitive approach you are expected to discover on your
own.

First, consider Table 8.2, which shows the number of operations required
to sort a list containing 128 items and then the number of operations to sort that
list if it can be subdivided into two or more sublists. The initial size of 128 is
significant only because it can be evenly divided by 2 down to size 1. The effort
required to sort the original and subdivided lists is an arbitrary measure of

8.3 Sorting Algorithms • 335

computer operations or elapsed time. If 0(N2
) algorithms are assumed, this effort

is proportional to N2
, and for the purposes of this discussion this value will simply

be set to N2
• On modem computers, the actual time required to sort even large

lists may be small, so whether the fact that an algorithm is 0(N2
) is of any

practical concern depends on the application. For the sake of this discussion, we
will assume that the performance of the algorithm is at least potentially
significant.

Listing the time required to sort 128 lists of size 1, as shown in Table 8.2,
might appear to be pointless because no sorting actually has to be done. However,
as we shall soon see, this limiting case isn't as irrelevant as it seems.

Table 8.2. Effort to sort lists with an 0(N2
) algorithm, relative units

1 1-1282 = 16,384

2 2_642 =8,192

4 4-322 =4,096

8 8-162 =2,048

16 16-82 = 1,024

32 32-42 =512

64 64_22 =256

128 128-12 = 128

The message of Table 8.2 is that it should take only half
as long to sort two lists of size N/2 as it does to sort one list of
length N, one quarter as long to sort four lists of size N/4, etc. Is
there some way to take advantage of these savings? Suppose we arbitrarily divide
a list of length N into two sublists or partitions of length NI2; this is an operation
that can be done for free in the sense that the small computational effort required
is the same no matter how large the list. Can we save time or operations simply
by sorting these two lists? No, because the two individually sorted lists have to
be merged back together again, and this operation carries its own computational
cost that offsets the savings achieved by sorting two shorter lists.

336 • 8. Searching and Sorting Algorithms

However, suppose we could subdivide a list into two
parts so that one partition contains small values and the other
contains large values. To do this, select one value in the
original list, called the pivot value, and use this value to subdivide the list into
two partitions, one that contains values less than or equal to the pivot value and
the other that contains values greater than or equal to the pivot value:

I <= pivot value I I >= pivot value I

Although the "less than or equal to" and "greater than or equal to" phrases appear
to create overlapping lists, this definition is required to account for the special
situation in which all values in the list are the same.

If we now sort these two partitions, the result is equivalent to sorting the
entire list. The algorithm can be stated in three steps:

(1) Divide a list into two partitions, one containing small values and the other
containing large values.
(2) Sort the lefthand partition if it contains more than one value.
(3) Sort the righthand partition if it contains more than one value.

If we can construct the partitions with no computational cost, it's obvious that
even if we use an O(N2

) sorting algorithm, we have devised a more efficient
approach to sorting a list. Of course, it should be clear that the partitioning can't
be done for free. However, once we have written a partitioning algorithm, we
don't actually have to worry about selecting a sorting algorithm. All we have to
do is continue to subdivide the partitions. Eventually, every partition will contain
no more than one value. When this occurs, the entire list will be sorted. In effect,
the apparently trivial final entry in Table 8.2, sorting 128 lists of size 1, will
become a reality. Essentially, we have traded partitioning effort for sorting effort.
As it turns out, this will be an excellent trade!

The three-step sorting algorithm above involves repeatedly performing the
same operations until a terminating condition is reached. Not surprisingly, such
an algorithm can easily be implemented recursively:

SUBPROGRAM Quicksort(IN/OUT: array; IN: lower, upper)
DEFINE left, right
CALL Partition(array, lower, upper,/eft,right)
IF first < right THEN CALL Quicksort(array,lower,right)
IF left < last THEN CALL Quicksort(array,left,upper)

This is called a Quicksort algorithm. The values lower and upper are the
boundaries of the original list or, during recursive calls, the boundaries of the

8.3 Sorting Algorithms • 337

subset of the list currently being sorted. In the original call to the subprogram,
lower and upper would typically be 1 and n for a list containing n values (0 and
n - 1 in a C implementation). The values left and right are the lower and upper
boundaries of the lefthand and righthand partitions returned from the Partition
subprogram:

(original list)

lower

(partitioned list)

lower right left

upper

upper

___I 11..- _
As noted above, partitioning requires computational resources. The first

step is to select the pivot value. Table 8.2 implies that the best results will be
achieved if each partitioning operation divides a list into equal halves-plus or
minus one, depending on whether the list contains an odd or even number of
values. Ideally, then, the pivot value should be the median value in the list.
However, the median can't be found without sorting the list first!

If the list is originally almost in order, or in reverse order, a good
approximation to the median is the element in the middle of the list. If the list is
originally in random order, then there is no computation-free way to find the
median and, in fact, there is no way to pick a pivot value that is better than a
randomly chosen value without performing time-consuming operations on the list.
Thus, an element in the middle of the list is still as reasonable a choice as any
other. The middle element between two specified limits lower and upper is
simply the element (lower + uppet)/2, assuming integer division.

To illustrate the partitioning process, consider this list of seven random
integers:

110 -1 14 9 3 11 131

The pivot value 9, element (l + 7)/2 = 4, is printed in bold type. Our task is to
create two partitions, one that contains elements less than or equal to 9 and the
other that contains values no less than 9. How can we produce these two partitions
"in place," using the memory locations occupied by the original list?

The solution may not be immediately obvious. Start at the left end of the
list and move a "list pointer," which will become an array index in the code

338 • 8. Searching and Sorting Algorithms

implementation, to the right as long as the element is less than 9. Save its
location. Now start at the right end of the list and move to the left as long as 9
is less than the element. Save its location. For this example, the left pointer
doesn't move at all because the first element, 10, must be moved to the upper
partition. Moving down from the right, the first element that is out of place in the
upper partition is 3.

L R
J- J-

110 -1 14 9 3 11 131

Now exchange these two elements. Increment the left pointer by one position and
decrement the right pointer by one position.

L R
J, J,

13 -1 14 9 10 11 131

Move the left pointer to the right as long as the element is less than 9 and move
the right pointer to the left as long as 9 is less than the element. Save the
locations. For this example, the right pointer doesn't move at all.

L R
J, J,

13 -1 14 9 10 11 131

Exchange the elements and advance the pointers:

R L
J, J,

13 -1 9 14 10 11 131

At this point, the right pointer is less than the left pointer, and this condition
defines the first two partitions:

Note that the two partitions haven't been sorted because that's not the purpose of
creating the partitions. All that has happened is that they are divided into small

8.3 Sorting Algorithms • 339

and large values. Continue to apply this algorithm on the new partitions. In each
case, the pivot value is printed in bold type.

13 -1 91 1'-1-0-1-4-1-1-1-31

B ~ 1
10

13 111 B
BEJ~BBB

BEJ~B§]BB

The translation of this process into a complete algorithm requires a great
deal of care to ensure that it will produce the appropriate partitions regardless of
the size or contents of the sublist being partitioned. There are several problems
that can occur when the left and right pointers meet in the interior of the list, and
it is very easy to come up with an algorithm that looks reasonable but that won't
work under all conditions. Here is the complete pseudocode for a partitioning
algorithm:

SUBPROGRAM Partition(IN: array, lower, upper; OUT: left, right)
DEFINE (pivot)
ASSIGN left = lower

right=upper
pivot =a[(lower + upper)/2] (use integer division)

LOOP (until right ~ left)
(Move up from the left as long as the element is less than pivot.)

LOOP (while a(left) < pivot)
INCREMENT left = left + 1

END LOOP
(Move down from the right as long as pivot is less than the element.)

LOOP (while pivot < a(right))
INCREMENT right = right - 1

END LOOP
(Swap if required and increment/decrement pointers.)

IF (left <= right) THEN
IF (left *right) THEN CALL Swap(a(left),a(right))
INCREMENT left = left + 1

right = right - 1
(end IF.. .)

END LOOP

340 • 8. Searching and Sorting Algorithms

The partItIoning part of the Quicksort
algorithm is a binary process (because it repeatedly
divides the list into two parts) and therefore is an
O(lOg2N) algorithm for the same reason that the binary search algorithm is an
O(lOg2N) algorithm. The operations required to create each partition are O(N)
because they involve a single loop (rather than a nested loop). Therefore, the
Quicksort algorithm is an O(NlogzN) algorithm. This is a major improvement over
O(N2) algorithms. Consequently, Quicksort is the favored algorithm for general
purpose sorting tasks.

Partitioning and Quicksort functions can now be included in the
srchsort . c source code file. They are given in P-8.7. The srchsort. h
header file will contain the prototype for the QuickSort function but not for the
partitioning function, which is not accessed directly by a program that needs to
call a sorting algorithm. Again, the code is written so that this algorithm can be
applied to any kind of array, including an array of structures. The Quicksort
function can be tested in P-8.5(b) by substituting its name for SelectionSort.
Indeed, an important feature of all these sorting algorithms is that the information
interface is the same for each of them, so they can be used interchangeably in a
program.

P-8.7 [srchsort. c (partial listing)]

void MakePartition(data_type a[],
int lower, int upper, int *right, int *left,
int (*compare) (data_type a,data_type b»

int mid, flag;

mid=(lower+upper)/2;
*left=lower;
*right=upper;
while (compare(a[*left] ,a[midl) < 0) *left+=l;
while (compare (a[mid] ,a[*right]) < 0) *right-=l;
while (*left < (*right-l»
{

Swap(&a[*right] ,&a[*left]);
(*left)+=l;
(*right)-=l;
while (compare(a[*left] ,a[midJ) < 0) (*left)+=l;
while (compare (a [mid] ,a[*right]) < 0) (*right)-=l;

}
if (*left <= *right)
{

if (compare(a[*left] ,a[*right]) < 0) Swap(&a[*right] ,&a[*leftJ);
(*left)+=l;
(*right)-=1;

8.3 Sorting Algorithms • 341

void QuickSort(data_type a[l, int lower, int upper,
int (*compare) (data_type a,data_type b)) {

int upper_left, lower_right;

if (lower < upper)
{

MakePartition(a,lower,upper,&upper_left,&lower_right,compare);
if (lower < upper_left) QuickSort(a,lower,upper_left,compare);
if (upper> lower_right) QuickSort (a, lower_right, upper, compare) ;

Problem Discussion
The success of the Quicksort algorithm in producing O(Nlog2N) behavior

rests on the assumption that partitions will be consistently of approximately equal
size. If this assumption is not justified in practice, then Quicksort can deteriorate
into an O(N2) algorithm. Even though Quicksort could be implemented as an
iterative algorithm, as all recursive algorithms can, this is more trouble than it's
worth. l

8.3.4 Efficiency of Sorting Algorithms

Recall that in Section 8.2.3, we identified linear and binary search algorithms as
O(N) and 0(10g2N) algorithms. We can characterize sorting algorithms in the same
way, to determine the relationship between the number of operations required to
sort a list and the size of the list being sorted.

Consider the Selection Sort algorithm, which contains nested for ...
loops. For an array of size N, the statements inside the outer loop are executed
approximately N times and the statements inside the inner loop are executed, on
average, approximately N/2 times each time the inner loop is executed. Altogether,
then, each operation inside the inner loop is executed approximately (N)(N/2)
times. If N = 100, the if. .. statement is executed roughly 10,000/2 = 5,000
times. If N = 200, the if ... statement is executed roughly 20,000 times, a factor
of four increase. In general, if the size of the array increases, the number of
operations required to sort the array with a Selection Sort algorithm increases as
the square of the factor by which the array size increases.

This relationship between array size and performance characterizes an
O(N2) algorithm. An N2dependence on array size represents a severe performance
penalty for large values of N, with the result that the Selection Sort and Insertion

1Versions of Fortran prior to Fortran 90 did not support recursion. As a result, older Fortran
programming texts generally did not discuss the Quicksort algorithm because of the difficulty of
writing a nonrecursive version of the algorithm.

342 • 8. Searching and Sorting Algorithms

Sort algorithms are not very efficient for large arrays. Although computer
scientists and programmers may not be happy with a theoretically inefficient
algorithm, acceptable perfonnance is largely a matter of perception, depending on
your own definition of a severe perfonnance penalty for a particular problem.

The Selection Sort algorithm requires the same number of comparison
operations regardless of the original state of the list being sorted. On the other
hand, the perfonnance of the Insertion Sort depends strongly on the original state
of the list. If the list is backwards, for example, the Insertion Sort is very
inefficient. However, if the list is originally almost in order, the Insertion Sort is
very efficient (because it makes only about N comparisons and no exchanges if
the list is already in order). If the list is in random order, the Insertion Sort is still
an 0(N2

) algorithm. In this case, a conditional loop is nested inside a for ...
loop.

In summary, the Selection Sort is a reasonable choice for small lists that
are originally in random order, but the Insertion Sort is better if the list is
originally almost in sorted order. As noted above, the Quicksort algorithm is
always the appropriate choice for large lists that are believed to be originally in
random order.

8.5 Application: Merging Sorted Lists

Even though this application doesn't make direct use of the material in this
chapter, it belongs to the same family of algorithms for manipulating the contents
of lists.

1 Define the problem.

A common data management problem involves merging two sorted lists
of data. Write a program that will merge two lists of numbers.

In a practical science or engineering problem, this problem might involve
two sets of measurements made with two different instruments over the same
period. If the data include the time of each measurement, it might be desirable to
merge the two sets into a single set of measurements in chronological order.

It is certainly possible simply to append one set of sorted measurements
to another and then sort the resulting combined set of measurements. If the two
lists are not already individually sorted by time, the most reasonable choice is to
append one list to the other and sort the entire list at once. Algorithms for doing
this have been discussed earlier in this chapter. However, assuming that each list
of measurements is already arranged in time sequence, it is more efficient to
merge the two lists than to sort the combined list. This is especially true if the

8.5 Application: Merging Sorted Lists • 343

combined list of measurements is very large; for example, too large to be stored
in memory in an array.

Even though we can easily imagine real applications of a merging
algorithm, such as combining lists of measurements sorted by time, the abstract
merging process requires careful thought and meticulous algorithm design outside
the context of a particular practical application. Therefore we will consider the
simple problem of merging two lists of integers, assuming that each list is already
sorted in ascending order. In order to make this problem more easily applicable
to a practical situation, we will store the lists of integers in two files, and we will
operate directly on the contents of the files rather than storing their contents in
arrays within the program. This will allow us to apply the solution to lists that are
too large to be stored in arrays. We will use the files 1 i s ta . da t and
li s tb. da t, as shown in Table 8.3.

Outline a solution.

These two lists have several
characteristics that are important for
developing and testing a merging algorithm:
they are of different lengths, each list contains
some duplicate values, and the lists have some
values in common.

2

list b
3
5
5
6
6
7
7
8
9

11
12
13
14
15
16
17
18
22
24
25
26
27

list a
1
3
5
7
7
9

11
17
21
21
22
22

Table 8.3. Data for testing a
list-merging algorithm

It's easy to see how to start the process
of merging the two lists, but you will have to
be especially careful toward the end of each
list. You can assume that each list contains at
least one value, as there is no point trying to
merge two lists if one of them is empty.

Also, you can assume that a
pseudocode instruction to print a value will
initially mean nothing more than displaying
that value on your monitor screen. Once you're
convinced that the algorithm is working

properly, you can replace this instruction with an instruction that writes a value
into a new file.

344 • 8. Searching and Sorting Algorithms

With these assumptions in mind, here is an algorithm.

1. Read one value from each list.

2. Compare the values. If one value is smaller than the other, print the smaller
value and read another number from the same list. If both values are the same,
print both values and read another number from each list.

3. Eventually, you will come to the end of one of the lists. Be sure the last value
from that list is printed. If there are still numbers in the other list, they will be
larger than all the numbers printed so far. Read the remaining numbers and print
them all. Note that you will not necessarily reach the end of the shorter list fIrst;
when you reach the end of a list is determined not by its length, but by its
contents.

This solution outline doesn't include the details of what to do when you
reach the end of a list. The best way to develop a complete algorithm is to work
through the sample lists given above:

Operation Value: Compare Output
a b

read a 1
read b 3
(now we are inside a loop)

a<b (1<3)
print a 1
read a 3

a=b (3=3)
print a and b 3

3
read a and b 5 5

a=b (5=5)
print a and b 5

5
read a and b 7 5

a>b (7)5)
print b 5
read b 6

a>b (7)6)
print b 6
read b 6

a>b (7)6)
print b 6
read b 7

a=b (7=7)
print a and b 7

7
read a and b 7 7

a=b (7=7)
print a and b 7

7

read a and b

print b

print a and b

read a and b

9

22

22

8

22

24

8.5 Application: Merging Sorted Lists • 345

a>b (9)8)
8

a=b (22=22)
22
22

a<b (22<24)
print a 22
(end of H a " list and end of loop)

Now that the algorithm has reached the end of the a list, what remains to
be done? The current value of b (24) hasn't yet been printed. Therefore, the
algorithm must print that value and then read and print the rest of the b list.

As you know from previous discussions, it is not allowed to try to read
past the end of a file. You will have to incorporate a test for the end-of-file when
you design the merging algorithm.

3 Design an algorithm.

DEFINE ("a" and "b" lists; a and b values;
end_a and end_b as logical variables)

OPEN ("a" and "b" lists)
READ (a and b from "a" and ''b'' lists)
LOOP (as long as there are data in both lists)

IF (a < b) THEN
WRITE (a)
IF (NOT end_a) CALL ReadOne(from "a",a,end_a)
IF (end_b) WRITE (b)

ELSE IF (a =b) THEN
WRITE (a,b)
IF (NOT end_a) CALL ReadOne(from "a",a,end_a)
IF (NOT end_b) CALL ReadOne(from ''b'',b,end_b)

ELSE
WRITE (b)
IF (NOT end_b) CALL ReadOne(from "b",b,end_b)
IF (end_a) WRITE (a)

(end IF.. .)
END LOOP

346 • 8. Searching and Sorting Algorithms

IF (NOT end_a) THEN
WRITE (a)

LOOP (to end of "a'')
READ (from "a",a)
WRITE (a)

END LOOP
(end IF.. .)
IF (NOT end_b) THEN

WRITE (b)
LOOP (to end of lib'')

READ (from "b",b)
WRITE (b)

END LOOP
(end IF...)

4 Convert the algorithm into a program.

P-8.8 [merge. c]

#include <stdio.h>
typedef int list_type;
int ReadOne(FILE *in_a,list_type *a);
void ReadAll(FILE *in);

int main(void)
{

FILE *in_a, *in_b;
int status_a,status_b;
list_type a,b;

in_a=fopen("lista.dat", "r");
if (in_a != NULL) printf("List a is open.\n");
in_b=fopen("listb.dat", "r");
if (in_b != NULL) printf("List b is open.\n");
status_a=ReadOne(in_a,&a) ;
status_b=ReadOne(in_b,&b) ;
while ((status_a == 0) && (status_b == 0)) {

if (a < b) {
printf("%i\n",a) ;
if (status_a == 0) status_a=ReadOne(in_a,&a);
if (status_b != 0) printf("%i\n",b);

}
else if (a == b) {

printf("%i\n%i\n',a,b) ;
if (status_a 0) status_a=ReadOne(in_a,&a);
if (status_b == 0) status_b=ReadOne(in_b,&b);

}
else {

printf ("%i \n' ,b) ;

8.5 Application: Merging Sorted Lists • 347

if (status_b 0) status_b=ReadOne(in_b,&b);
if (status_a != 0) printf('%i\n',a);

}
if (status_a 0) {

printf (" %i \n', a) ;
ReadAll (in_a) ;

}
if (status_b == 0) {

printf("%i\n" ,b);
ReadAll (in_b) ;

}
fclose (in_a) ;
fclose (in_b) ;
return 0;

}

int ReadOne(FILE *in,list_type *x) {
int status=O;
list_type a;

(void)fscanf(in, '%i',&a);
*x=ai
status=feof(in) ;
return status;

}
void ReadAll(FILE *in)

list_type X;
int status=O;

while (1) {
status=fscanf(in, '%i",&x);
if (status == EOF) break;
printf('%i\n",x) ;

Running P-8.8

(To save space, the output values are listed horizontally across the output box. In
the actual program output, the values are listed one per row.)

5 Verify the operation of the program.

It is not a trivial matter to verify the operation of this program under all
possible input conditions! As a minimum, you need to test situations for which the
"a" or "b" list has only one value, the values in one or both lists are all the same,

348 • 8. Searching and Sorting Algorithms

and all the values in one list are larger (or smaller) than all the values in the other
list. If you use the program on real data of your own, be sure to test it with a
subset of the data that is small enough to verify by hand.

Problem Discussion
Although P-8.8 prints a message when each file is successfully opened, it

assumes that this will be true and does not take action if either file isn't found.
This is consistent with our usual goal of keeping code simple and focused on the
specific problem at hand. It is easy to add code to check for the successful
opening of both files if you think it is necessary.

The major implementation challenge in P-8.8 is keeping track of the end
of-file status of each file. This is accomplished by using the intrinsic feof
function, which returns a nonzero value when the end-of-file mark is the next
character in the file and 0 otherwise. Function ReadOne reads one value from an
open file and returns the end-of-file status after reading that value. The arguments
used in a call to this function determine whether the "a" or "b" list is read. Once
the end of the shorter list has been found, then function ReadAll is used to read
to the end of the remaining list.

8.6 Debugging Your Programs

The code presented in this chapter is meant to be incorporated into other programs
that need searching and sorting capabilities. Assuming that the functions work as
intended, their application is straightforward. You should create your own library
of source code and compile it on your own computer system. If you study the
header file and driver programs, it should be clear in each case what is required
to use each function. Remember that you must tailor the data-aware compare
function, which can have whatever local name you choose for it, to meet the
needs of your program.

The fact that a program uses library functions that have have been tested
under a range of conditions does not mean it is a good idea to assume those
functions will always work. It is still important to test your program with your
data.

8.7 Exercises

1. Recalling Exercise 5 in Chapter 7, modify that program to use the search
functions given in P-8.1.

2. Write a function whose prototype and output are identical to function
FindAll, as described in P-8.1(a). This function should use a binary search to

8.7 Exercises • 349

find one occurrence of a name in an array. Then it should search linearly in both
directions to find all the remaining occurrences of that name in the array. Add this
function to your library of searching and sorting functions and also to the header
file. Include appropriate documentation.

3. Write a version of the Insertion Sort algorithm that can be used to maintain the
order of a sorted list when new values are added to the list. First add the new
value to the end of an array. Then use function InsertOne as given in P-8.6 to
insert this new value in its proper place.

4. A database of drugs contains the name of the drug, the recommended maximum
daily dose, and the recommended maximum cumulative dose. In some cases, both
the daily and cumulative maximums are assumed to be proportional to body
weight and are given in the database for a I50-pound individual of either gender.
In some cases, drugs may be approved for only men or only women. The
maximum dose for a drug that is not approved is given as O.

Proposed treatments for patients are also available in a database. The
information includes the proposed drug, the gender and weight of the patient, the
proposed daily dose, and the number of days the treatment will last.

Write a program that will read and store drug information in an array and
will then read and process a file containing information about proposed treatments.
Search through the drug file for the drug name given in a proposed treatment. If
the proposed treatment exceeds either the maximum daily or the cumulative dose,
print an appropriate message. Assume that the daily dose remains constant
throughout the treatment. Account for the possibility that one or more proposed
treatments will include drugs that are not yet entered into the drug database.

Sample data files, which can be downloaded from the Web site mentioned
in Section 6 of the Preface, include drugbase. dat (the drug database) and
drugbase. in (the treatment database). You should add records to
drugbase. in to ensure that all program branches are tested. (That is not
currently the case.) [drugbase. c]

drugbase.dat

Maximum dose: P = weight-dependent, with value for 150 lb
Drug Name Daily (M) Cum (M) Daily (F) Cum (F)

abracap P2.3 100 3.0 100
betalit 0.5 10 0.5 100
deproved PO.01 0.05 0 0
ethicoo PO 0 500 5000
gonagain 1.5 15 1.5 10
heptez 0.001 0.05 0.0005 0.025

350 • 8. Searching and Sorting Algorithms

drugbase.in

drug wt. daily, mg days

abracap
gonagain
newdrug

M 300
F 120
F 135

900
.1

100

10
200

20

5. In Section 8.2.3, it was suggested that a binary search could be combined with
a linear search to find all the occurrences of a specified value in the list. Using
a sorted list that contains some duplicate values (the data type of items in the list
can be whatever you like), write and test a function that uses a binary search to
find one occurrence of a value and then searches backward and forward in the list
to find all occurrences of that value. Add this function to your library of searching
and sorting functions. Its information interface should be identical to function
FindAll, as listed in P-8.1(a). [hybrid.c]

6. Especially if a large sorted list contains many duplicate values, it may make
sense to construct an index to values in the array. An index array will hold this
kind of information in a structure:

value first location
17 1
19 11
22 52
33 65
(and so forth)

number of values
10
41
13
17

For the value 19, for example, the index array indicates that the first 19 is in
element 11 and that there are 41 values of 19 altogether.

Create a data file based on these and a few additional values. Then write
a program that generates an index array and uses the array to search for and
display all occurrences of a specified value. When you test your program, be sure
to include a test for a value that doesn't exist in the array. The assumption is that
the index array is small compared to the array being searched. If so, you could
justify using a linear search of the index array. However, as long as the indexed
values (the lefthand column in the example) are sorted, you can also apply a
binary search to this array. [index_to. c]

7. Under special conditions, it's possible to devise an O(N) sorting algorithm.
Suppose you wish to sort a large list of lowercase letters initially in random order
and stored in an array A. There are only 26 possible values, a number that is
assumed to be much smaller than the number of letters to be sorted. The Counting
Sort algorithm takes advantage of this situation. Here is an outline.

8.7 Exercises • 351

1. Define an index array with 26 elements, one for each letter of the alphabet.

2. Read through an array A of lowercase letters. Convert each character to an
integer in the range 0 through 25 and increment the corresponding element of the
index array by one. When you're done, the index array will contain the number
of a's, b's, and so on.

3. Read through the index array from positions 0 through 25 and set each element
equal to itself plus the previous element. When you're done, the index array will
contain the last position occupied by each letter in a new sorted array. For
example, if the original list contains 23 a's, 33 b's, and 41 c's, the first three
elements of the index array will be 23, 56, and 97.

4. Read through the original array of letters again. Convert each letter to an
integer in the range 0 through 25 and use this value to access the corresponding
element in the index array. Put the letter into its indicated position in a new array
B, which will hold the sorted data. Then decrement the value in the index array
by 1. Consider the example in step 3. Here's what will happen in this loop:

Letter in A Letter in B 1st 3 Components of Index Array
23 56 97 (original contents)

a B(23)=a 22 56 97
a B(22)=a 21 56 97
b B(56)=b 21 55 97
b B(55)=b 21 54 97
b B(54)=b 21 53 97
c B(97)=c 21 53 96

The first letter in the A array is an a. It goes in element 23 of the B array. The
first element in the index array is decremented by 1, from 23 to 22. The next
letter in A is also an a. It goes in element 22 of the B array, and the first element
in the index array is decremented again. The third letter in the A array is a b. It
goes in element 56 of the B array, and the second element of the index array is
decremented by 1. This continues until all the letters have been placed in the B
array.

5. Print the list of sorted letters.
Note that this algorithm doesn't contain any nested loops; that's why it's

an O(N) algorithm. Also, it should be clear that the B array isn't actually required
to sort letters because a sorted array of letters can easily be created just by
overwriting the original A array with the appropriate number of a's, b's, and so
on. However, the algorithm has been written this way, with two arrays, in order
to make possible the Extra Credit part of this problem, in which all the original
values in the A array must be saved.

352 • 8. Searching and Sorting Algorithms

Extra Credit:
Create an array of words in random order. (The words could be just

random combinations of letters.) Use a Counting Sort to put all words starting
with a together, all words starting with b together, and so forth. You can use the
index array to determine the first and last positions for words beginning with a,
b, and so on. Then use Quicksort to sort groups of words beginning with the same
letter. This is an efficient way to sort a large list of words. [knt_sort. c]

8. As director of a wildlife tracking project, one of your jobs is to collect field
reports of radio tracking data and enter them in a database. Each report consists
of a tracking number for each animal, the date, and two location coordinates. For
the purposes of this problem, the coordinates are arbitrary real numbers. A small
sample set of reports might look like this (see file wildli fe. da t):

101 05/05/97 55.3 44.8
101 05/06/97 57.1 43.4
102 05/05/97 66.0 13.3
102 06/01/97 66.8 22.1
102 06/05/97 69.0 25.7
101 06/01/97 50.0 50.9

Note that the tracking reports for a particular animal aren't necessarily
consecutive, but you can assume that all reports for each animal are in
chronological order.

Write a program that will perform these three functions:

1. Add new reports to the database, entered from the keyboard.
2. Print out all the tracking reports for a specified animal.
3. Print all reports for a specified date.

One way to solve this problem is to store the data in an array of
structures and use the searching algorithms described earlier in this chapter.
However, for this exercise we will take a different approach. Although we will
still use arrays, this approach can easily be generalized to the case where there are
too many reports to store in an array.

What you need to do is create a data structure that provides links from one
data object to the next:

struct TrackType
int 10;
char date[9];
float x,y;
int SameAnimal,SameOate;

8.7 Exercises • 353

The variables SameAnimal and SameDa te are pointers,2 in the form of array
indices, to the next report on the same animal and the next report on the same
date. For example, in the above example, the first mention of animal 101 is in the
first record of a file. Hence the array index of the first mention of animal 101 is
O. The SameAnimal field in the structure should contain a value of 1, which
points to the next element containing a reference to animal 101. That element
should "point" to element 5. Finally, the SameAnimal field in element 5 should
contain a -lor some other value that cannot be interpreted as an array index.

If we wish to access the reports for animal 101, we need to know where
the first report is stored in the array. If we need to add another report for animal
101, we need to know where the last report is stored. We will save this kind of
information in two additional arrays that provide an index to the first and last
locations of each animal and date. The complete access and storage scheme is
illustrated in Figure 8.1.

Animal Index Array

100 -1 -1

101 0 5

102 2 4

103 -1 -1

Date Index Array

05/05/97 0 2

05/06/97 1 1

06/01/97 3 5

06/05/97 4 4

-1 -1

Data Array

101 05/05/97 55.3 44.8 1 2

101 05/06/97 57.1 43.4 5 -1

102 05/05/97 66.0 13.3 3 -1

102 06/01/97 66.8 22.1 4 5

102 06/05/97 69.0 25.7 -1 -1

101 06/01/97 50.0 50.9 -1 -1

Figure 8.1. Storage scheme for the wildlife tracking problem.

Although you might reasonably argue that this approach is a lot of work,
especially for such a small data set, it does make sense for accessing very large
collections of data. Once the index and data arrays are set up, the data array is
essentially self-searching because each array elemen,t contains all the information
needed to find the next occurrence of either the animal ill or the report date. The

2Although the concept is similar, this use of the word pointer is not the same as the programming
implementation of this term as we have used it throughout this text.

354 • 8. Searching and Sorting Algorithms

major justification for this approach is not yet evident because we have not yet
discussed random access files. (We will discuss this topic in Chapter 10.)
However, if you imagine large amounts of data being stored in a file structure that
can be accessed randomly, then the index arrays, which can be stored permanently
as text files, can be used to access information in this large data file without
applying any searching or sorting algorithms.

To create the index arrays, define an appropriate structure for the fields as
shown. Initialize the first pointer and last pointer fields to -1. Read the report file
and, one at a time, store new reports. Set the SameAnimal and SameDate
fields in the new element to -1. Then:

(a) If an animal or ID doesn't yet exist in its index array, add it and save the data
array index in the first pointer and last pointer fields of the index array.

(b) If an ID and/or date already exists in its index array, set the SameAnimal
and SameDate field(s) in the current last pointer element for the corresponding
ID or date report to point to the new report. Then replace the last pointer value
in the index array(s) to point to the newly added report.

To print all reports for a specified animal or date, first search for the
animal code or date in its index array. Then use the first pointer value to locate
the first report. Thereafter, use the pointer from the SameAnimal or SameDate
field in the record to locate the next record. When the SameAnimal or
SameDat e field contains a -I, then you are at the end of the list of reports for
that animal. Follow the same procedure to print all reports for a specified date.
Hints:
1. For a shorter version of this exercise, construct just the index array for finding
animals by their ID.
2. The animal IDs are defined so that you don't actually have to search for a
particular animal in the animal index array. Use the remainder of dividing its ID
by 100 to find it in the index array; for example, 107 %1 00 equals 7 .
3. As shown in Figure 8.1, the pointer fields give your program access to animals
and dates from the oldest to the newest. It is equally easy to build links that work
the other way around. [wildlife.c]

9

Basic Statistics and Numerical Analysis

9.1 Introduction

Statistical and numerical analysis are among the most important applications in
scientific and engineering programming. This chapter describes algorithms for
basic descriptive statistics and for some standard problems in numerical analysis,
including:

• mean, standard deviation, and linear regression (Section 9.2)
• numerical differentiation and integration (Sections 9.3 and 9.4)
• solving systems of linear equations (Section 9.5)
• finding the roots of an equation (Section 9.6)
• numerical solutions to differential equations (Section 9.7)

The topics in this chapter require a greater degree of mathematical
sophistication than earlier material. Although the text does not presume to provide
all the necessary background, the discussion of each topic includes at least a
sketchy mathematical introduction. It is an understatement to say that there are
several possible approaches to most of the problems discussed in this chapter,
which are quite properly the subject of entire texts and courses. For each of these
problems, this text will discuss just one simple approach and will present a
complete solution in the form of an algorithm, an implementation using one or
more functions, and a simple driver program to test the functions.

In contrast to earlier chapters, applications are included with each section
of the chapter rather than at the end. In this way, each section is independent of
the others. For example, if you understand algebraic equations, you should be able
to understand the section that deals with solving systems of linear equations,
which does not rely on calculus, even if you bypass the sections on numerical
differentiation and integration, which do require some understanding of calculus.
To further underscore the independence of each section, equations are numbered
starting with (l) within each section.

Although the algorithms discussed in this chapter will work satisfactorily
for a wide range of problems, it is a mistake to apply them blindly. For many
kinds of realistic problems, more robust algorithms will be needed to minimize
computational problems. l It's important to remember that all numerical methods

'There is an entire software industry built around the development of C function libraries for
professional use in solving difficult problems in numerical analysis.

D. R. Brooks, C Programming: The Essentials for Engineers and Scientists
© Springer-Verlag New York, Inc. 1999

356 • 9. Basic Statistics and Numerical Analysis

have inherent limitations. Quantification of those limitations is largely absent from
the discussions in this chapter not because it is unimportant, but because an
appropriate treatment lies well beyond the scope of this text. With this caveat,
however, it is equally true that it never hurts to try the relatively simple
algorithms presented here as long as you are willing to retain a healthy skepticism
about the results.

9.2 Basic Descriptive Statistics

Statistical characterization of data is essential in all areas of science and
engineering. Hence, some basic algorithms for this task are essential tools for any
programmer. This section is restricted to the statistics of normal distributions and
linear regression. The results will not be derived, but will simply be stated in a
way that facilitates their computation.

9.2.1 The Sample Mean and Standard Deviation

Consider a collection of measurements x that are
assumed to be drawn from a normally distributed
population. These measurements can be characterized
by two quantities: their arithmetic mean and standard
deviation. The arithmetic mean (what is commonly
called the average) m of n such measurements is defined as

n

m
n

(1)

The standard deviation s is a measure of the variability in the data. It is defined
as the square root of the variance S2:

(2)

n - 1

This definition can be put into a form that is easy to calculate on the fly from a
list of measurements because the calculation doesn't require that the mean be
obtained ahead of time:

9.2 Basic Descriptive Statistics • 357

(3)

The standard deviation has the property that approximately 68 percent of all
normally distributed measurements of a quantity will be within ± s, 95 percent
within ±2 s, and 99.7 percent within ±3 s. The "plus or minus three standard
deviations" rule is sometimes used as a basis for discarding measurements outside
these limits; this mayor may not be a good idea, depending on the application and
the nature of the quantity being measured.2

Because tables of cumulative probabilities are based on the standardized
normal variable z, having a mean of 0 and a standard deviation of 1, it is often
desirable to transform the mean and standard deviation of a set of measurements
into the corresponding standardized normal variable. For any measurement x,

z =
x - m

s
(4)

Figure 9.1 illustrates the standard normal distribution which, for obvious reasons,
is referred to as the bell curve.

Especially for small sets of data, it is important to distinguish between the
sample mean and standard deviation m and s and the population mean and
standard deviation J..l and a. The former are available from direct observation, but
the latter are usually unknown; it is often assumed that statistics derived from a
large sample are the same as population statistics. The n - 1 in the denominator
of the formula for standard deviation is there specifically because s is the sample
standard deviation and not the population standard deviation. For small data sets,
this has the effect of increasing the sample standard deviation compared to the
population standard deviation. To put it another way, the smaller the sample, the
greater the uncertainty about the properties of the entire population from which
the sample is drawn.

Prhe existence of the Antarctic ozone hole was confirmed in the 1980s only after scientists rewrote
satellite data analysis algorithms to accept measurements that had previously been rejected by such
a statistical test.

358 • 9. Basic Statistics and Numerical Analysis

5432o
x

-1-2-3-4-5

0.05

0.4,------------""",-------------,

0.1

f025
a. 0.2

i 0.15

0.3

Standard normal distribution:
0.35 mean=O

standard deviation=1

Figure 9.1. The standard normal distribution.

9.2.2 Linear Regression and the Linear Correlation Coefficient

Assume that a collection of measurements has been taken of a quantity y that is
a function of an independent variable x. Further assume that these data can be
represented by an equation of form

y(x) = a + bx (5)

where a and b are the intercept and slope of a
straight line called the linear regression line. In
general, this linear relationship will be an imperfect
representation of both the observed and the actual relationship between x and y,
either because there is noise in the system or because the relationship is not really
linear. Linear regression attempts to determine the values of a and b that best
represent the data, assuming that a linear relationship is a reasonable choice for
the data being examined.

The usual definition of the best representation uses
the sum of squares of the residuals, defined as the sum of
the squares of the differences between measured and
modeled values of y:

9.2 Basic Descriptive Statistics • 359

n

sum of squares = L (Yi - YmOde,)2
;=1

(6)

The method of least squares asserts that the best values of a and b are those that
minimize the sum of squares for a particular set of measurements. These
parameters are given by

a =

b

(LYi)(L x j
2
) - (L x)(L xiY)

nLx j
2

- (Lxi

nLxiYi - (LX)(LY)

nLx;2 - (Lxi

(7)

The standard error of estimate of y on
x is a measure of the variability about the
regression line. It is obtained from

(8)

The value n - 2 in the denominator once again reflects the fact that this statistic
is calculated from a sample of measurements rather than from an entire
population. The standard error of estimate of y on x has properties similar to the
standard deviation. If lines are drawn parallel to and at vertical distances Sy,x' 2sy,x'

and 3sy,x above and below the best-fit regression line, 68, 95, and 99.7 percent of
the measurements will fall within these lines.

A quantitative measure of the applicability of
a linear regression model is given by the correlation
coefficient. This is a dimensionless quantity in the
range [-1,+ 1], which is equal to the ratio of the explained variation in a set of data
to the total variation, with respect to the best-fit regression line:

r = +_ explained variation J 2 2
= ± 1 - sy;x/sy

total variation

(9)

The explained variation is equal to the total variance s/ of all the measurements
calculated using equation (2) or (3) from Section 9.2.1, minus the square of the

360 • 9. Basic Statistics and Numerical Analysis

standard error of estimate Sy,x' When r is + I, all the data lie exactly along the
regression line, with positive slope. A negative value of r denotes a regression line
with negative slope. When r equals 0, y and x are totally unrelated to each other;
that is, a value of x provides no information about what the corresponding value
of y might be. Intermediate values of r indicate that a linear relationship is only
partially successful as a model to explain the behavior of y as a function of x.
Note that a linear model for data with a strong random component (as opposed to
an inherently nonlinear relationship) can still be reasonable even if the correlation
coefficient isn't close to 1.

When, as is often the case, a regression line is forced to pass through the
coordinates (0,0) (i.e., it is required that y =0 when x =0), the slope is the only
coefficient required for the model:

and the standard error of estimate of y on x is given by

Lyj2 - 2bL xiYj + b2LXj2

n - 2

(10)

(11)

We can now develop and implement algorithms for two functions---one for
calculating mean and standard deviation and another for performing linear
regression on a set of data. In each case, the data will be held in one or more
appropriate arrays. In the first algorithm, we will include a test on the variance as
a precaution to make sure it is non-negative before taking the square root to
calculate the standard deviation. However, the variance should never be less than
O. If the data have a standard deviation of 0 (which requires all the measurements
to be the same), then it is possible for arithmetic roundoff errors to produce a very
small negative value for the variance.

We will also include in the first algorithm a provision for calculating either
the population or the sample standard deviation, as specified by a user-supplied
character flag. For experimental data, as noted above, the sample statistic is
generally accepted as the appropriate choice.

SUBPROGRAM NormalStats(lN: A (array of real numbers),
n (# of elements), flag (character);

OUT: avg, std_dev)
DEFINE sum, sum_sq, variance, i (loop counter)
ASSIGN sum =(sum of A;'s)

sum_sq =(sum of Ats)

9.2 Basic Descriptive Statistics • 361

CHOOSE (between flag= 'p' for population stats and '5' for sample stats)
'p': ASSIGN variance =(sum_sq + surrf/n)/n
'5': ASSIGN variance = (sum_sq + surrf/n)/(n-1)

IF variance ~ 0 THEN
ASSIGN std_dev = ,;Variance

ELSE
WRITE (appropriate message?)
ASSIGN std_dev =some "error" value (optional?)

(end IF...)
ASSIGN avg =sum/n

For the linear regression analysis, there are two choices to be made: one
for population or sample statistics and the other for a regression line that either
is or isn't forced through x-y coordinates (0,0). This function requires
NormalStats as part of the calculations for the correlation coefficient. Note that
the intercept parameter a is declared as an IN/OUT variable. This is because its
value on input is used to determine whether the regression should be forced
through (0,0); if that value is other than 0, a full regression is assumed. Note that
the standard error of estimate is also included in the output. Several sums over the
components of data vectors, as defined in equations (7), (8), (10), and (11), are
required in this algorithm. These sums are represented with shorthand ASSIGN
statements in the algorithm.

SUBPROGRAM LinearRegression(IN: x, y (arrays), n, flag (character);
IN/OUT: a; OUT: b, s_yx, r)

DEFINE sum_x, sum_y, sum_xy, sum_xx, sum_w, temp, avg, std_dev
i (loop counter)

ASSIGN sum_x = (sum elements of x)
sum_y =(sum elements of y)
sum_xy =(sum elements of x.y)
sum_w =(sum elements of y.y)

(Get regression parameters.)
IF (a *0) THEN (calculate full regression)

ASSIGN temp =n ·sum_xx • sum_Ji
a =(sum_y.sum_xx-sum_x.sum_xy)ltemp
b =(n.sum_xy - sum_x·sum_y)/temp

s_yx = vSUl7J.YY- 2bsutrLxy + b2sutrLxx)/n
ELSE (just calculate slope)

ASSIGN b =sum_ylsum_x
~----------=-----

s_yx = ((sutrLyy- 2bsuf7J...xy + b2suf7J...xx)/n)
IF (flag = '5') THEN ASSIGN s_yx = ~yxln/(n - 2) (for sample stats)

362 • 9. Basic Statistics and Numerical Analysis

(Get correlation coefficient.)
CALL NormaIStats(y, n, flag, avg,std_dev)

ASSIGN r = 11- (~Yxlstc£.de~(assume std_dev is OK)

P-9.1 implements these algorithms and tests them by calculating a
regression line for linear data upon which a random "noise signal" is
superimposed.

P-9.1 [stats.c]

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>
#define SIZE 50

int NormalStats(double a[] ,int n,char flag,
double *avg,double *std_dev);

void NormalArray(double a[] ,int n};
void LinearRegression(double xl] ,double y[] ,int n,char flag,

double *a,double *b,double *s-yx,double *r};
int main(void)
{

double x[SIZE] ,y[SIZE] ,avg,std_dev;
double a,b ; /* intercept and slope for linear regression */
double S-YX; /* standard error of estimate of y on x */
double corr; /* correlation coefficient */
int n=SIZE,i;

NormalArray(x,n) ;
printf("array generated\n"};
NormalStats(x,n, 'p' ,&avg,&std_dev};
printf("population mean and std dev: %If %If\n",avg,std_dev);
NormalStats(x,n, 's' ,&avg,&std_dev);
printf(" sample mean and std dev: %If %If\n",avg,std_dev);
NormalArray(y,n) ;
for (i=O; i<n; i++) {

x[i]=(double)i;
y[i]=2.*i+lO.*y[i] ;
printf("%8.3lf %8.3lf\n",x[i] ,y[i]);

}
a=l.; /* Set a != ° for full regression analysis. */
LinearRegression(x,y,n, 's' ,&a,&b,&s-yx,&corr);
printf("FOR FULL REGRESSION ... \n"};
printf("regression coefficients: %If %If\n",a,b);
printf("standard error of estimate of y on x : %If\n",s-yx);
printf("correlation coefficient: %If\n",corr);
a=O.; /* Set a=O for regression forced through (0,0). */
LinearRegression(x,y,n, 's' ,&a,&b,&s-yx,&corr);
printf (" FOR REGRESSION FORCED THROUGH (0, O) ... \n"} ;
printf("regression coefficients: %If %If\n",a,b);
printf ("standard error of estimate of y on x : %If\n", s-yx);
printf("correlation coefficient: %If\n",corr);
return 0;

9.2 Basic Descriptive Statistics • 363

int NormalStats(double a[] ,int n,char flag,
double *avg,double *std_dev) {

double sum=O. ,sum_sq=O. ,variance;
int i,return_value=l;

for (i=O; i<n; i++)
sum+=a[i] ;
sum_sq+=a[i]*a[i] ;

}
switch (flag)

case 'p':
printf("variance for population statistics\n");
variance=(sum_sq-sum*sum/n)/n;
break;

case's' :
printf ("variance for sample statistics\n");
variance=(sum_sq-sum*sum/n)/(n-l.) ;
break;

default :
printf("From NormalStats: FLAG ERROR, 's' assumed.\n");
variance=(sum_sq-sum*sum/n)/(n-l.) ;
return_value=O;

}
if (variance < 0.) {

printf("From NormalStats: NEGATIVE VARIANCE %If\n" ,variance) ;
*std_dev=-l.;
return_value=-l;

}
else

*std_dev=sqrt(variance) ;
*avg=sum/n;
return return_value;

}
void LinearRegression(double xl] ,double y[] ,int n,char flag,

double *a,double *b,double *s-yx,double *r)
double avg,std_dev;
double sum_x=O.,sum-y=O.,sum_xy=O.,sum_xx=O.,sum-yy=O.,temp;
int i;

for (i=O; i<n; i++)
sum_x+=x[i] ;
sum-y+=y[i];
sum_xy+=x[i]*y[i] ;
sum_xx+=x[i]*x[i] ;
sum-yy+=y[i]*y[i] ;

}

if ((*a) != 0.) { /* calculate full regression */
temp=n*sum_xx-sum_x*sum_x;
*a=(sum-y*sum_xx-sum_x*sum_xy)/temp;
*b=(n*sum_xy-sum_x*sum-y)/temp;
*s-yx=sqrt((sum-yy-(*a)*sum-y-(*b)*sum_xy)/n);

}
else { /* just calculate slope */

*b=sum-y/sum_x;
s-yx=sqrt(sum-yy-2.(*b)*sum_xy+(*b)*(*b)*sum_xx)/n) ;

}
swi tch (flag)

case 'p':
printf("Linear regression for population statistics\n");\
break;

364 • 9. Basic Statistics and Numerical Analysis

case's' :
printf("Linear regression for sample statistics\n");
*s-yx=(*s-yx)*sqrt((double)n/(n-2.»;
break;

default:
printf("FROM LinearRegression: FLAG ERROR, 'p' assumed\n");

)
/* Use NormalStats to get standard deviation of y. */

NormalStats(y,n,flag,&avg,&std_dev);
if (std_dev > 0.) {

temp=l.-(*s-yx)*(*s-yx)/std_dev/std_dev;
if (temp>=O.)

*r=sqrt (temp) ;
else { /* an error condition exists */

*r=O. ;
printf ("FROM LinearRegression: ERROR CONDITION %If\n'', temp);

}
else { /* an error condition exists */
printf ("FROM LinearRegression: ERROR CONDITION %If\n'', std_dev);
*r=O. ;

}
}
void NormalArray(double a[] ,int n)

int i;
double two-pi=8.*atan(1.),u1,u2;

srand((unsigned) time (NULL));
for (i=0; i<n; i+=2) {

u1=(double)rand()/RAND_MAX;
u2=(double)rand()/RAND_MAX;
if (u1 == 0.) u1=le-15; /* u1 must not be 0 */
ali] =sqrt(-2.*log(u1))*cos(two-pi*u2);
a[i+1]=sqrt(-2.*log(u1))*sin(two-pi*u2);
printf("%lf %If\n'',u1,u2);

}
if (n%2 == 1) { /* create one more value */

u1=(double)rand()/RAND_MAX;
u2=(double)rand()/RAND_MAX;
if (u1 == 0.) u1=le-15;
a[n-1]=sqrt(-2.*log(u1»*cos(two-pi*u2) ;

9.2 Basic Descriptive Statistics • 365

Running P-9.1 (partial output)

Figure 9.2 shows the data and the full linear regression for this sample output.

Problem Discussion
The code in P-9.1 contains some safeguards against potential problems

with the calculations-primarily taking the square root of a negative number.
However, these safeguards don't test the code itself. The only way to verify the
accuracy of all the code is to check it carefully and compare results against an
example worked through by hand. Even though normal statistics aren't intended
to be applied to very small samples, the calculations themselves can be checked
adequately with a data set of only three or four measurements.3

lC

10 15 20 25 30 35 40 45 50

X
5

lC

I
I

I I I I I , I I I
I I I I I I I 1)C I

----~----T----~----~-----~----~----T----~----~)f-: : : : : : : * >eM I

: : : : : : :>e I :>C>e----j----T----'----'-----r----r----T--- T----'-----
I I I I I • I I I
I I I I I I 1)C
I I I I I)(I I I
I I I I I t)(I I

- - - -I- - -- -+---- -t -)f - ~- - - - -:- -- I - - - +----+---- ~- ----
: : :: *:::

____ ~ ~l J__ ~_)c~ L L_~ __ l 1 J _
I I)IC I I I I I I

i ~ : >e:)(: i i : i
-- __ ~_~_I __ ~----~-----~_---~_---~-_--+-_--~-_---

I 1>0< ,)(I I I I I I

)()(I i)(: i : i i : i
___ L_)C __ ~ J ~ L L ~ ~ ~ _

I I I I I I I I I
I I I I I I I I I
I I I I I I I I I
I I I I I I I I I
I I I I I I I I I

·20+-----if----+--+---+--+-----i---+--+---+------i
o

>-

Figure 9.2. Randomized linear data with linear regression line.

lIf you have access to a spreadsheet, it should include built-in functions for performing these
calculations. Make sure you understand whether your spreadsheet calculates population or sample
statistics; some spreadsheets have separate functions for each.

366 • 9. Basic Statistics and Numerical Analysis

9.2.3 Application: Analyzing Wind Speed Data

1 Define the problem.

Because of the straightforward implementation and interpretation of normal
statistics, it is tempting to apply them even when their use may not be justified.
Consider an instrument that records wind speed. The measurements are averaged
over an hour, and these hourly averages are collected for an entire year. Figure 9.3
shows a count histogram of 8697 wind measurements in 0.5 mile per hour
increments. The data are from data file windspd. dat. The entire file is too
large to list here.4 The data presented in Figure 9.3 are calculated from the
program developed in this application.

These wind speed data are not normally distributed, and the physical
reason is clear. The average wind speed (about 6.2 mph) is small, and therefore
relatively close to 0, compared to the upper range of observed wind speeds, but
the lower limit must be O. Thus the distribution of wind speeds is strongly skewed
from the bell shape of a normal distribution.

600..------:-----:--------:-------:------,

252015105

..., ,
, .· .· .· .· .· .· .· .· .· .· .· .. ----,----------_ .

o

g
z

· ,500 ··i·····················c : ·········f .

: :
400 + ··..···:···· · ·+······· ·· ·1 ··········· ..

x

Figure 9.3. Count histogram of wind speed in increments of 0.5 mph.

"The file windspd. da t contains real wind speed data from a state-maintained air quality
monitoring station near Philadelphia, Pennsylvania.

9.2 Basic Descriptive Statistics • 367

Is it possible to transform such data into a normal distribution? One
common approach is to calculate the statistics of the logarithms of the
measurements. If the logarithms are normally distributed, they create a so-called
lognormal distribution.5 In this application, we will write a program that assumes
wind speed is lognormally distributed.

2 Outline a solution.

The solution is straightforward: Read the data file and accumulate the sums
Ifn(x) and I[fn(x)f

3

4

Design an algorithm.

The algorithm design is straightforward.

Convert the algorithm into a program.

P-9.2 [windspd. c]

#include <stdio.h>
#include <math.h>
#define FILENAME "windspd.dat"
#define N_HIST 50

void ReadFile(char filename[],
double *sum_ln,double *sum_ln_sq,int *n,int hist[]);

int main (void)
{

int hist[N_HIST];
double sum_ln,sum_ln_sq;
double mean,std_dev;

int ion;
FILE *out;

ReadFile (FILENAME,&sum_ln,&sum_ln_sq, &n,hist) ;
mean=sum_ln/n;
std_dev=sqrt(sum_ln_sq-sum_ln*sum_ln/n)/(n-l.O»);

SBrief discussions of the lognonnal distribution can be found in statistics texts. The classic work
on this topic is Aitchison, J., and J. A. C. Brown, The Lognorrrwl Distribution, Cambridge
University Press, NY, 1957.

368 • 9. Basic Statistics and Numerical Analysis

printf (" Number of hourly values: %li \n" ,n) :
printf(" Mean and std. dev. of In(data): %10.3If %10.3If\n",

mean, s td_dev) :

for (i=O: i<N_HIST: i++) {
printfl"%4.1If %i\n",i/2.,hist[i]):

)
return 0:

void ReadFilelchar filename[],
double *sum_In,double *sum_In_sq,int *n, int hist[]) {

int mon,day,hr:
int m,yr,n_days,index:
FILE *infile:
int status=O:
double In_x,x:

infile=fopen(filename, "r"):
for lindex=O: index<N_HIST: index++)

hist[index]=O.O:
*sum_In=O.O: *sum_In_sq=O.O: *n=O:
for (mon=O: mon<12: mon++) {

status=fscanf(infile,"%i %i %i",&m,&yr,&n_days):
/* printf("%i %i %i\n",m,yr,n_days): */

for (day=O: day<n_days: day++) {
for (hr=O: hr<24: hr++) {
status=fscanf(infile, ''%If, ",&x):
/* printf("%5.lf",x): */
if (x >= 0.0) {

/* Accumulate data for statistics. */
(*n) ++:
if (x == 0.0) x=le-6:
In_x=log (x) :
*sum_In+=ln_x:
sum_In_sq+=ln_x In_x:

/* Generate histogram data. */
index=x*2.0:
hist[index]+=l:

)
)
/* printf("\n"): */

}
fclose(infile):

Running P-9.2

9.2 Basic Descriptive Statistics • 369

370 • 9. Basic Statistics and Numerical Analysis

5 Verify the operation of the program.

These calculations are straightforward-it makes no difference that the
mean and standard deviation are being calculated for the logarithm of the
measurements. The real question is whether the calculations make sense for these
data.

Problem Discussion
An unknown for coding this problem is the size of the histogram array, as

it is not known ahead of time what the maximum wind speed is. In this case, it
seemed reasonable to assume that the maximum hourly averaged wind speed
would not exceed 25 mph. This turned out to be a good guess.

It is clear that the calculations can be done for this problem without
difficulty. However, it is an entirely different matter to demonstrate that the
primary assumption made for the problem-that the natural logarithm of wind
speeds is normally distributed-is justified. Figure 9.4 shows the count histogram
for the logarithm of the wind speed.

600,----------------------------,

3.532.521 1.5
In(X)

0.5o-0.5

500 ········--·f··········+··········+···__ ·····+-_····· +_·······--i-··········i-··········i········ __·

I~97 me~ureme~ts I ! !::

~: •••••••••••'••••••••••'•••••••••• '••••••••.•' •••••••••············,········[········1··········

~:r:LT]I:1
O'+---4------+---i---+------+--t---+-.----'!IIIIIIII-------1

-1

Figure 9.4. Count histogram of the logarithm of wind speed in
increments of 0.5 mph.

9.3 Numerical Differentiation • 371

The distribution of fn(wind speed) is certainly "more normal" than the distribution
of wind speed itself, and it seems reasonable that such data might be lognormally
distributed. Air pollution data often have distributions similar to these wind speed
data. Lognormal statistics are often applied to such data in spite of the fact that
they are not really lognormally distributed, simply because the calculations are
easy to do and the interpretation of the resulting numbers within the context of a
normal distribution is straightforward. It is beyond the scope of this application
either to investigate the lack of lognormality or to decide whether assuming
lognormality is a useful thing to do just because the numbers are easy to obtain.

9.3 Numerical Differentiation

9.3.1 Newton's and Stirling's Formulas

Consider the function f(x). The derivative f(x) is the rate of change of f(x) with
respect to x. Although the derivatives of analytic functions are usually available
without much difficulty,6 rates of change are often required for experimental data
that are not expressed in analytic form. For example, you might collect data as a
function of time and then require an estimate of rates of change with respect to
time based on those data. In either case, an estimate of a function's rate of change
can be obtained by calculating the slope between two evaluations of the function
at two closely spaced values of x. Here are three intuitive formulas based on a
simple graphical interpretation of the derivative as the slope of a function:

f(x) '" [f(x+~x) - f(x)]/~ (Newton's forward formula) (1)

f(x) '" [f(x+~x) - f(x-~)I]/(2~) (Stirling's formula) (2)

f(x) '" [f(x) - f(x-~)]I~ (Newton's backward formula) (3)

where ~x is a small interval. The second of these formulas averages the
calculation in the forward and backward direction and seems generally the best
choice. Note that it does not matter whether a function has been evaluated
analytically at x±L1x or whether the ~'s correspond to some interval between
experimental data.

These formulas are trivial to implement in C. However, there are reasons
to be cautious in their application. They (and similar higher order versions) are

&rhe availability of symbolic algebra software such as Maple V means that even difficult analytic
derivatives can be obtained with little effort.

372 • 9. Basic Statistics and Numerical Analysis

basically polynomial approximations. Even if the difference between f(x) and its
polynomial approximation is small, there is no guarantee that the same is true of
the difference between an analytic derivative and the polynomial approximation
to that derivative. Additionally, for functions whose derivatives can become large
(in absolute magnitude), it is important to select appropriately small values of Llx.;
the criteria for defining "small" may not always be obvious.

If the formulas are used to approximate rates of change for experimental
data, the dominant error source is most likely the data themselves, through the
independent or dependent variable or some combination of the two. Suppose
measurements are taken as a function of time so that the interval ilx becomes ilt.
In general, you would expect that the best approximation to the derivative would
be obtained when ilt is small. However, because ilt appears in the denominator,
small errors in measuring time intervals can produce approximations to the
derivative that are wildly in error.

In some experimental situations, therefore, it might be preferable to
approximate the data with a well-behaved analytic function whose derivative can
be calculated analytically; this is a tradeoff between representing accurately all
measurements of a dependent variable and "smoothing" the numerically generated
rates of change of that variable. In other situations, a numerical derivative is
actually the desired result. Suppose production cost data are available monthly for
a manufacturing facility. A backward formula using this month's and last month's
costs gives the true rate of change in sales from last month to this month; there
is no reason to think of this value as an approximation.

9.3.2 Application: Estimating the Speed of
a Falling Object

Table 9.1. Distance and speed
as a function of time

Table 9.1 gives time, distance, and speed
for an object accelerating under the influence of
gravity (9.8 m/s2

), ignoring air resistance. (See
the file fall ing . da t.) Suppose time and
distance are measured. Distance is measured
accurately, but time is measured with an error
in the range to.2 s. Write a program that
simulates such measurements and uses them to
estimate the speed as a function of time using
an appropriate approximation formula.

speed
o
9.80

19.60
29.40
39.20
49.00
58.80
68.60
78.40
88.20
98.00

107.80
117.60
127.40
137.20
147.00
156.80
166.60
176.40
186.20
196.00

distance
0.00
4.90

19.60
44.10
78.40

122.50
176.40
240.10
313.60
396.90
490.00
592.90
705.60
828.10
960.40

1102.50
1254.40
1416.10
1587.60
1768.90
1960.00

time
o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Define the problem.1

2 Outline a solution.

9.3 Numerical Differentiation • 373

When an object is accelerating, a backward approximation formula will
underestimate the true speed. For example, using the values for distance at t = 0
and t = 1, the estimated speed is 4.9/ =4.9 mis-half the true value. For the same
reason, a forward formula will overestimate the speed. Therefore, Stirling's
formula is the best choice from the three possibilities previously discussed. If the
acceleration is constant and if there are no errors in any of the measurements, this
formula will yield the actual speed.

The solution to this problem should include a general-purpose subprogram
that approximates the derivative using Stirling's formula. (See Equation (2)
above.) Its implementation is straightforward. However, note that the original
definition of Stirling's formula assumes that the interval ~ between f(x) and its
forward and backward values is the same. This is an unnecessary assumption and
one that may not be true when experimental data are being used. (In this problem,
the true time intervals are equal, but because of the random component, the
measured time intervals will not be equal, in general.) Therefore, replace the
definition of Stirling's formula with:

f(Xz) = [f(Xz) -f(xl)]/(Xz -Xl) + [f(JS) -f(Xz)]/(JS -Xz)
2

(4)

The main program should read the data file and use the subprogram to
calculate the speed, assuming there is a random error in the time measurement. It
will be adequate for this problem to assume that time errors are linearly
distributed over the range ±O.2 s.

3 Design an algorithm.

The design of a subprogram to implement this version of Stirling's formula
is trivial.

SUBPROGRAM Stirling(lN: XI'X2,X3'Yl'Y2'Y3; OUT: derivative)
ASSIGN derivative=[(Y2 - Yl)/(X2 - X1)+(Y3 - yJ/(x3- xJ]/2

The design of the driver program is straightforward, and no algorithm design
should be required.

374 • 9. Basic Statistics and Numerical Analysis

4 Convert the algorithm into a program.

true measured\n");
speed speed\n");

P-9.3 [falling. c]

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define G 9.8 /* m/s'2 (gravitational acceleration) */
#define DT 0.2 /* range for time error, s */
#define N 21
#define FILENAME "falling.dat"

typedef struct {
float true_time ,measured_time,

true_distance,true_speed,measured_speed;
fall_data;

float Stirling(float xl,float x2,float x3,
float yl,float y2,float y3) {

return ((y2-yl)/(x2-xl)+(y3-y2)/(x3-x2))/2.;

int main(void) {
fall_data fall[N];
float g,x,speed;
int i,n,status;
FILE *in;
char one_line [80] ;

in=fopen(FILENAME, "r");

/* Get data. */
fgets (one_line,sizeof (one_line) ,in); /* Read past header line. */
srand(unsigned)time(NULL)) ;
n=O;
while (1) {

status=fscanf(in, "If %f %f",
&fall[n] .true_time,&fall[n] . true_distance,

&fall[n] . true_speed) ;
if (status == EOF) break;
fall[n] .measured_time=fall[n] .true_time+(rand()%5-2.)*DT;

/* printf("%6.2f %8.2f %6.2f\n",
fall[n] .true_time,fall[n] .true_distance,fall[n] .measured_time); */

n++i
}
fclose(in);
printf(" true true measured
printf(" time distance time
for (i=O; i<n; i++) {

fall[i] .true_speed=fall[i] .true_time*G;

9.3 Numerical Differentiation • 375

if ((i > 0) && (i < (n-l))) {
fall[i] .measured_speed=Stirling(fall[i-l] .measured_time,

fall[i] .measured_time,
fall[i+l] .measured_time,

fall[i-l] .measured_time*fall[i-l] .measured_time*G/2.,
fall[i] .measured_time*fall[i] .measured_time*G/2.,
fall[i+l] .measured_time*fall[i+l] .measured_time*G/2.);
printf("%6.2f %8.2f %8.2f %8.2f %8.2f\n",fall[i].true_time,

fall[i] .true_distance,fall[i] . measured_time ,
fall[i] .true_speed,fall[i] .measured_speed);

)
else

printf("%6.2f %8.2f %8.2f %8.2f\n",fall[i] . true_time,
fall[i] .true_distance,fall[i] .measured_time,
fall[i] . true_speed) ;

Running P-9.3

5 Verify the operation of the program.

These calculations are easy to verify with a calculator.

376 • 9. Basic Statistics and Numerical Analysis

Problem Discussion
Because Stirling's fonnula requires values from one step backward and one

step forward, the loop to calculate and display speed starts at i =1 and ends at
n - 1. There is no loss of infonnation at t =0 because the speed is zero. However,
the speed at the final time step cannot be calculated using this method.

The code in P-9.3 applies to experimental data taken at discrete values of
an independent variable, even though the data for this particular problem have
been generated with an analytic function so that results from the numerical
procedure can be evaluated. In general, experimental data may not correspond to
an analytic function, so there may not even be an analytic derivative for
comparison.

However, suppose you wish to estimate the derivative of an analytic
function-one whose value exists and can be calculated everywhere over a range
of interest. (You may additionally wish to require that the analytic derivative of
the function also exists and that it can be calculated everywhere over the range,
even though you don't know what it is.) Then a function that implements
Stirling's fonnula can take a slightly different fonn:

double Stirling_f(double (*f) (double x) ,double dx);

where f is the name of a function passed from the calling program and dx is the
interval over which the backward and forward values are to be calculated. The
implementation of S t i r 1 ing_f is left as an end-of-chapter exercise.

9.4 Numerical Integration

9.4.1 Polynomial Approximation Methods

It is often the case that functions cannot be integrated analytically. Such functions
don't even have to be very complicated. (See the application in this section.) In
such a situation, numerical integration techniques must be used. There are several
widely used methods, including those that use polynomials to piece together an
approximation of a function y =f(x). We will present equations for three closely
related polynomial approximation methods: the Rectangular Rule, the Trapezoidal
Rule, and Simpson's Rule. These all have in common the fact that the integration
range of the independent variable is divided into many intervals of equal size.

The Rectangular Rule is the easiest algorithm to understand because it has
a simple graphical interpretation. Assume that the value of y = f(x) is known for
any value of x in the range [xa,xb]. The integral of f(x) over the range Xato Xb can
be approximated by dividing the range into n equal segments of length dx and
taking the sums of the function evaluated at the midpoints of each segment:

9.4 Numerical Integration • 377

!f(X)dx = rt,f(X,-<W2) lAX
x.

(1)

where Xi = Xl + i·Llx. This process is illustrated in Figure 9.5, although in practice
many more than eight subdivisions of the integration interval would be used.

Trapezoidal Rule integration also has a simple graphical interpretation. The
integral of a function y = f(x) between two closely spaced points X and X + Llx
can be approximated by the area of the trapezoid formed by the points (x,O),
(x,f(x)), (x + Llx,f(x + Llx)), and (x + Llx,O). To put it another way, the integral can
be approximated by the average of f(x) evaluated at x and x + Llx, multiplied by
Llx:

x+AxJf(x)dx = (f(X)+f(~+~)]~

x

(2)

Hence, assuming the range [xa,xb] is divided into n equal intervals of size Llx, the
integral of f(x) over that range can be approximated by

xb (n-1)~ (f(x) + f(x)]~ n-1
[f(X)dX= tt(f(x)+f(Xi+~X)]2= a 2 b + ~ttf(x) (3).

where Xi = xa + i·Llx.
Simpson's Rule is similar in principle to the other two; it approximates the

integral of f(x) over the range from x - Llx to x + Llx by a second-order
polynomial. For the range Xl to X2 divided into n equal intervals of size Llx, where
n must be an even number, and where Xi = xa + i·Llx, it can be shown that

(4)

378 • 9. Basic Statistics and Numerical Analysis

35,.-----------------------

I
I
I25 ~ .
I
I
I
IX 2 ~ .

~ : :
II : :>.. 15 , , .

I I
I I
I I
I I I
I I I""'1""-- '----'1""" j .

I I I
I I I
I I I
I I I I I

5 --_._~-_._-- _.. _.. ~...... . ~ o·t······ . } .
, I I I I I I
I I I I I I I
I I I I I I I
t I I I ~ I:

o 2 3 4

X

5 6 7 8

Figure 9.5. Rectangular Rule integration.

In this section we will develop an algorithm for Simpson's Rule
integration, and we will write and test a function that implements this algorithm.
(A corresponding implementation for Rectangular Rule integration is left for end
of-chapter exercises. Trapezoidal Rule integration has been implemented as an
application in Chapter 5.) Here is an algorithm to be implemented as a C function.

SUBPROGRAM (IN: F, xa' xb' n_steps; OUT: integral)
DEFINE (odd sum, even sum, i)
ASSIGN LIx = (xb - x)/n_steps
INITIALIZE odd sum =0

even sum =0
LOOP (for i = 1 to n_steps-1, steps of 2)

INCREMENT odd sum =odd sum + F(xa + i-LIx)
END LOOP
LOOP (for i =2 to n_steps-2, steps of 2)

INCREMENT even sum =even sum + F(xa + i-LIx)
END LOOP
ASSIGN integral = [F(x) + F(xJ + 4-(odd sum) + 2-(even sum)J-L1xI3

9.4 Numerical Integration • 379

P-9.4 contains code for a function that implements this algorithm.

P-9.4 [simpson. c]

#include <stdio.h>
#include <math.h>
#define N 100

double simpson(double a,double b,int n,double (*f) (»;
double f_of_x(double x);
double pdf (double x);

int main(void)
{

printf("Integral of x'2 from 1 to 5: %If\n",
simpson(l. ,5.,N,f_of_x»;

printf("Integral of pdf from 0 to 2: %If\n",simpson(0.,2.,N,pdf));
return 0;

}
double simpson(double a,double b,int n,double (*f) (» {

double h,odd,even;
int i;
odd=O. ; even=O. ;
h=(b-a)/(double)n;
for (i=2; i<=n; i+=2)

odd+=f(a+(i-l)*h) ;
for (i=2; i<=n-2; i+=2)

even+=f (a+i*h);
return h/3.*(f(a)+f(b)+4.*odd+2.*even);

}
double f_of_x(double x)

return x*x;
}

double pdf (double z) {
return exp(-z*z/2.)/sqrt(8.*atan(1.»;

Running P-9.4

Problem Discussion
In program simpson. c, the numerical integration function is used to

integrate x2 from I to 5 and the standard normal probability distribution function

pdf

from 0 to 2. The first example can be integrated analytically: Ix2dx = x3/3. The

380 • 9. Basic Statistics and Numerical Analysis

second example cannot be integrated analytically, but a table of values can be
found in any statistics text.

As implemented, the number of integration steps is provided as input to the
function. It would certainly be okay to replace this parameter with a hardcoded
value defined inside function simpson.

9.4.2 Application: Evaluating the Gamma Function

Once you have developed a computer algorithm and satisfied yourself that it
works for several cases of interest, you are likely to trust it in the future. That
trust is easily misplaced, in this application, which is full of traps for the
mathematically unsophisticated programmer. The mathematical details of this
application won't make much sense if you haven't had a course in integral
calculus, but the code itself isn't very difficult to follow.

1 Define the problem.

The gamma function appears in physics problems involving wave functions
and probabilities; it is defined for positive values of n in terms of an integral:

When n is an integer,

00

f(n) = !e-Xxo-1dx
o

ren) = (n - 1)!

(5)

(6)

That is, the gamma function is just a generalization of the factorial function to
noninteger numbers. Gamma functions for noninteger values of n are defined
through a recursion relationship:

ren + 1) = nren) (7)

The integral that defines the gamma function can't be evaluated
analytically except in special cases, so numerical integration is required to
calculate the gamma function for noninteger values of n. Write a program that will
evaluate the gamma function for any positive value of n.

9.4 Numerical Integration • 381

2 Outline a solution.

At first, this problem might appear hopeless because one of the limits on
the integral is infinity. Fortunately, the integrand (the function being integrated)
decreases rapidly toward zero as x increases. Figure 9.6 shows the integrand as
a function of x for n = 0.5, 1.5, and 2.5, for x from 0 to 5. At x = 20, the value
of the integrand for n = 2.5 is about 1.8xlO-7

• This suggests that it should be
possible to obtain a useful approximation to r(n) by limiting the range over which
a numerical integration is done.

Furthermore, once the integral has been evaluated for 0 ~ n ~ I, the
recursion relationship can be used to evaluate the gamma function for all other
values of n. It will be helpful to know that, as a special case, the integral for
r(ll2) can be evaluated analytically; it yields a value of fiT-.

5".-----..,.-----,-----------------,

543
x

2o

45
. . . ,

. . - : :- ··············[·······················r··············· .

~3:;111
~ 3 ·····················t······················j········· \ : .

<!J 2.5

'0

Figure 9.6. Integrand of the gamma function.

382 • 9. Basic Statistics and Numerical Analysis

3 Design an algorithm.

4

The algorithm is straightforward: Incorporate Simpsons's Rule into a
subprogram and include it in a driver program that evaluates the integral of e-xxn

-
1

•

Convert the algorithm into a program.

In P-9.5, the driver program tests the algorithm for the hard-coded values n = 0.5
and n = 1.5.

P-9.5 [gamma. c]

#include <stdio.h>
#include <rnath.h>

double gamma_integrand(double x,double z);
double gamma(double z);

int main(void) {
double g;

g=gamma(O.5) ;
prin tf ("gamma (0.5)
g=gamma(1.5) ;
printf ("gamma (1.5)

%If\n'',g);

%If %If %If\n'',g,g*2.,sqrt(4.*atan(1.)));
)
double gamma_integrand(double x,double z) {

return exp(-x)*pow(x,z-l.);
)
double gamma(double z) {

int n=20000,i;
double dX,surn=O.,x_max=20.;

dx=x_rnax/n;
for (i=2; i<=(n-2); i+=2)

sum+=2.*gamma_integrand(i*dx,z) ;
for (i=1; i<=(n-l); i+=2)

sum+=4.*gamma_integrand(i*dx,z) ;
surn=(surn+gamma_integrand(x_max,z))*dx/3.;
return sum;

Running P-9.5

5

9.4 Numerical Integration • 383

Verify the operation of the program.

One test of the operation of P-9.5 is to compare its direct calculation of
nO.5), given in the first line of output as 1.732652, with the known value of .;:rr
= 1.772454. Even though the intervals used in the Simpson's Rule calculation
seem very small (there are 20,000 steps over the range [0,20]), the numerical
result is not very close to the right answer. Why not? Can the accuracy be
improved by increasing the number of steps? In fact, the accuracy will improve
somewhat for a step size of 0.0001. However, examine Figure 9.6 again and note
that for n =0.5, the integrand approaches infinity as x approaches 0; to put it in
mathematical terminology, the integrand has a singularity at x = 0 for any n in the
range 0 ~ n < 1.

The significance of this application should now be clear. Even though the
numerical integration algorithm appears to work and even produces an answer that
isn't too far from the correct one, the process is fatally flawed because of the
nature of the function we have tried to evaluate.

Fortunately, because of the recursion relationship that applies to the gamma
function, we can salvage the situation. Whereas in the integrand,
X

1/2
-
1 = X-

1/2 = lIx In has a singularity at x =0, X
312

-
1 =xl12 does not. This means that

we can evaluate n1l2) by first evaluating n312) and then applying the recursion
relationship given in equation (7). This strategy will work for any value of n in
the range 0 ~ n < 1. When r(l.5) is evaluated and used to obtain nO.5), the result
of 1.772449 is very close to the correct value of .;:rr.

Even though the recursion relationship apparently allows us to circumvent
a problem with this application of numerical integration, it is still prudent to be
concerned about the behavior of the gamma function. For reasons that are beyond
the scope of this text, some functions are better candidates for Simpson's Rule
integration than others, and you should be wary of applying any numerical
integration algorithm unless you can develop confidence in the results by referring
to independent sources.

Problem Discussion
In P-9.5, the step size used in the Simpson's Rule algorithm has been hard

coded within the function. If you wish, you can require this value to be provided
as input by the user or by the calling program. It might be a good idea to do this
while you're testing the function. However, in the same sense that a programmer
shouldn't have to worry about the details of how C evaluates the sin function,
you shouldn't have to ask the user of this function to provide values that are
relevant only to the internal details of how the gamma function will be evaluated.

384 • 9. Basic Statistics and Numerical Analysis

9.5 Solving Systems of Linear Equations

9.5.1 Linear Equations and Gaussian Elimination

The behavior of many physical systems can be represented, or at least
approximated, by a system of linear equations. This section presents one technique
for solving such a system.

1 Define the problem.

Consider the following system of three equations, linear in x:

Xlall + x 2a 12 + x 3 a 13

Xlan + x 2a 22 + x 3a 23

Xla 3l + x 2a 32 + x 3a 33

(I)

In vector notation, this system is expressed as AX = C. Implement an algorithm
that will solve this system of equations for Xl' x2' and x3• The method should be
easy to generalize to larger systems.

2 Outline a solution.

One widely used technique for solving a system of linear equations is
Gaussian elimination. Suppose system (1) could be replaced with the following
system:

Xl + x 2a' 12 + x 3a' 13

x 2 + x 3a' 23

x 3

c' 1

c' 2

c' 3

(2)

The matrix formed by the terms to the left of the
equal sign in system (2) is called an upper
triangular matrix, in which all the coefficients
below the left-to-right, top-to-bottom diagonal are O. (We will henceforth refer to
this particular diagonal simply as the diagonal.) The coefficients along the
diagonal are I. We now claim, without proof or additional discussion, that a
solution for system (2) is equivalent to a solution for system (1). We further claim
that, for many systems of equations related to properly formulated problems of

9.5 Solving Systems of Linear Equations • 385

physical interest, it is possible to convert a set of system (1) equations into a set
of system (2) equations. This process is called triangularizing the matrix.?

If such a triangularized system can be found, it is _ I
straightforward to solve for all the x's, using a process bJIb,.."
called backsubstitution:

c' 3

C '2 - x 3a' 23

c '1 - x 2a' 12 - x 3a' 13

(3)

We will now work through the calculations required to convert system (1)
into the upper triangular form (2). It will be easier to follow the calculations if we
use a numerical example with coefficients that can be expressed as rational
numbers. (Rational coefficients are used only for demonstration purposes and do
not affect the general applicability of the method.) Consider this system of
equations:

Xl • (1/3) + x 2 • (1/2) + x 3 • (1/4)
Xl • (2) + x 2 • (1/3) - x 3 • (1/4)
Xl • (1/4) - x 2 • (1/8) + x 3 • (1)

6
6
8

(4)

The coefficients along the diagonal are called the pivot values. The first
step in the solution is to find the row with the pivot value (in absolute magnitude)
in the first column and interchange that row with the top row in system (4). In this
example, the largest coefficient in the first column occurs in the second row.
Therefore, interchange the first and second rows:

Xl • (2) + x 2 • (1/3) - x 3 • (1/4)
Xl • (1/3) + x 2 • (1/2) + x 3 • (1/4)
Xl • (l / 4) - x 2 • (1/8) + x 3 • (1)

6
6
8

(5)

The next step is to divide row I by the coefficient in the first column. The
result is that the first pivot will have a coefficient of 1:

Xl • (1) + X 2 • (1/6) + x 3 • (-1/8)
Xl • (1/3) + X 2 • (1/2) + x 3 • (1/4)
Xl • (1 /4) + x 2 • (-1 / 8) + x 3 • (1)

7For additional discussion, see any text on numerical analysis.

3
6
8

(6)

386 • 9. Basic Statistics and Numerical Analysis

The next step is to multiply the first row by the coefficient in column 1 of
the second row and subtract row 1 from row 2. Then multiply the (original) first
row by the coefficient in column 1 of the third row and subtract row 1 from row
3. This produces a reduced system of equations:

Xl - (1) + X 2 - (1 / 6) + X 3 - (-1 / 8)
x 2 -(1/2-1/18) + x 3 -(1/4+1/24)
X 2 - (-1 / 8 -1 /24) + X 3 - (1 +1/3 2)

3
5
29/4

(7)

Xl - (1) + x 2 -(1/6) + x 3 -(-1/8)
X 2 - (8 / 18) + x 3 - (7 /24)
X 2 - (- 4 /24) + X 3 - (33 /3 2)

3
5
29/4

Of the remaining coefficients in column 2 of rows 2 and 3, 8/18 is larger
in magnitude than -4/24, so these rows don't need to be interchanged. Divide row
2 by the coefficient of the second pivot:

Xl - (1) + X 2 - (1/6) + x 3 - (-1 /8)
x 2 - (1) + x 3 - (21/3 2)
X 2 - (- 4/24) + X 3 -(33/3 2)

3
45/4
29/4

(8)

Now, multiply row 2 by -4/24 and subtract row 2 from row 3:

Xl - (1) + x 3 - (-1/8)
+ x 3 - (21/3 2)

x 3 - (73/64)

3
45/4
219/24

(9)

Finally, divide row 3 by the coefficient of x3:

xl -(1) + x2-(1I6) + x3-(-1I8) = 3
x2-(1) + x3-(21132) = 45/4 (10)

x 3 - (1) = (219/24) - (64/73) = 8

This immediately gives x3 = 8 for one of the solutions. Now substitute X3

into row 2:

X 2 = 45/4 - (21/3 2) - 8

and x3 and x2 into row 1:

Xl = 3 - 6/6 + 8/8 = 3

6 (11)

(12)

It is easy to verify that these values satisfy the original equations. For example,
3(113) + 6(1/2) + 8(114) = 6.

3 Design an algorithm.

9.5 Solving Systems of Linear Equations • 387

Based on the example from Step 2, we can design an algorithm. The
sequence of operations is sufficiently involved that it is worth designing the
algorithm first in outline form and then in more detail.

1. Define an array to hold the coefficients (a) and the constants (c):

2. Read a data file containing a value for n and the (n)e(n+ 1) elements of A.

3. Triangularize the matrix.

LOOP (through each row)
a. For each row below current row, look for a coefficient

A(row,currenLrow) that is larger in absolute magnitude than the
coefficient A(currentJow, currenLrow).

b. If a larger coefficient exists, exchange that row with currenLrow.
c. Divide all columns in the current row of A by

A (current_row,currenLrow)
d. For all rows below currentJow, multiply the coefficients in

(original) currenLrow by the first coefficient in the row and
subtract from the corresponding coefficient in row.

END LOOP

4. Backsubstitute to find solutions.

a. Solve directly for last root.
b. Substitute in previous row, continuing to first row.

Here is the algorithm in more detail.

DEFINE (array of real numbers A with n rows and n+1
columns and array of size n to hold roots)

OPEN (data file)
READ (n)
READ (n.(n+1) elements of A)
(Triangularize the matrix.)
LOOP (for row = 1 to nJows)

(Search for row with larger pivot.)
IF (row < nJows) THEN ASSIGN PivotRow=row

388 • 9. Basic Statistics and Numerical Analysis

LOOP (for i = row+ 1 to nJows)
IF jA(i,row) j>jA(PivotRow'pivotRow) j
THEN ASSIGN PivotRow=i

END LOOP
(Swap rows if required.)

IF (PivotRow I: row) THEN
LOOP (for col = row to n_cols)

ASSIGN temp =A(PivotRow,col)
A(PivotRow,col) = A(row,col)
A)row,col) = temp

END LOOP
(end IF.. .)

(end IF.. .)
(Divide all coefficients in row by pivot.)
ASSIGN DivideBy =A(row,row)
LOOP (for col = row to n_cols)
ASSIGN A(row,col) = A(row,col)/DivideBy

END LOOP
(Reduce the (row)th column to 0.)
IF (row < nJows) THEN

LOOP (for i = row+1 to nJows)
LOOP (for col =row+ 1 to n_cols)

ASSIGN A(i,col) =A(i,col- A(row,col).A(i,row)
END LOOP
ASSIGN A(i,row) = 0

END LOOP
(end IF.. .)
(optional for testing: print reduced matrix)

END LOOP
(Backsolve for roots.)
ASSIGN roots(nJows) =A(nJows,n_cols)
LOOP (for row =n_rows-1 (down) to 1)

ASSIGN roots(row) =A(row,n_cols)
LOOP (for i = row+ 1 to nJows)

ASSIGN roots(row) = roots(row) - A(row,i).roots(i)
END LOOP

END LOOP

4 Convert the algorithm into a program.

Program P-9.6 uses the data file gauss. dat.

9.5 Solving Systems of Linear Equations • 389

P-9.6 [gauss. c]

#include <stdio.h>
#include <math.h>
#define MAX_ROWS 4
#define MAX_COLS 5
#define FILENAME "gauss.dat"

void GaussianElimination(double a[] [MAX_COLS] ,int n_rows,
int n_cols, double solutions[]};

void PrintMatrix(double a[] [MAX_COLS] ,int n_rows,int n_cols);

int main ()
{

double a [MAX_ROWS] [MAX_COLS] ,solutions[MAX_COLS];
int n_rows,n_cols,rows,cols;
FILE *in;

in=fopen(FILENAME, "r"};
(void) fscanf (in, "%i" ,&n_rows) ;
n_cols=n_rows+l;
for (rows=O; rows < n_rows; rows++)

for (cols=O; cols < n_cols; cols++)
fscanf(in, ''%If'' ,&a[rows] [cols]);

PrintMatrix(a,n_rows,n_cols);
GaussianElimination(a,n_rows,n_cols, solutions} ;
printf("solutions: "};
for (rows=O; rows < n_rows; rows++)

printf("%8.2lf",solutions[rows]};
printf ("%\n");

void GaussianElimination(double a[] [MAX_COLS] ,int n_rows,
int n_cols, double solutions[])

{
/* Solve system of linear equations using Gaussian

elimination with partial (row) pivoting. */

int row,col,pivot_row,i,j;
double divide_by,temp;

for (row=O; row < n_rows; row++)
/* Search for pivot row. */

if (row < n_rows-l) {
pivot_row=row;
for (i=row+l; i < n_rows; i++)

if (fabs(a[i] [row]) > fabs(a[pivot_row] [pivot_row]})
pivot_row=i;

/* Swap pivot row if required. */
if (pivot_row != row) {
for (col=row; col < n_cols; col++)

temp=a[pivot_row] [col];
a [pivot_row] [col]=a[row] [col];
arrow] [col]=temp;
/* for ... */

} /* if. .. * /
/* if. .. */

390 • 9. Basic Statistics and Numerical Analysis

/* Divide by pivot. */
divide_by=a[row] [row];
for (i=row; i < n_cols; i++)

arrow] [i]=a[row] [iI/divide_by;

/* Reduce the (row)th column to O. */
if (row < (n_rows-I)) {

for (i=row+l; i < n_rows; i++) {
for (j=row+l; j < n_cols; j++)
ali] [j]=a[i] [j]-a[row] [j]*a[i] [row];
ali] [row]=O.O;
}

/* Print reduced matrix. */
PrintMatrix (a, n_rows , n_cols) ;

) /* end for ... */

/* Backsolve for solutions. */
solutions [n_rows-l]=a[n_rows-I] [n_cols-I];
for (row=n_rows-2; row >= 0; row--) {

solutions [row] =a[row] [n_cols-I];
for (i=row+l; i < n_rows; i++)

solutions [row] =solutions [row]-a[row] [i]*solutions[i];

void PrintMatrix(double at] [MAX_COLS] ,int n_rows,int n_colsl
{

int rows,cols;

printf("From PrintMatrix\n');
for (rows=O; rows < n_rows; rows++) {

for (cols=O; cols < n_cols; cols++)
printf("%8.2If',a[rows] [cols]);

printf ("\n") ;

Running P-9.6

-0.13
0.66
1.00

IS-OP

5

9.5 Solving Systems of Linear Equations • 391

Verify the operation of the program.

For the example used to develop the algorithm, the intermediate
calculations with fractions all cancel out to give exact solutions in terms of integer
values. However, in general, the potential loss of accuracy as a result of
cumulative errors involving real arithmetic on computers is always a concern in
any algorithm that involves many calculations. For reasons that aren't obvious, the
algorithm we have used seeks to minimize arithmetic errors by searching for the
row with the largest coefficient in the pivot column and interchanging it with the
current row.s However, there is still no guarantee that unacceptable errors won't
accumulate. If the physical problem represented by the equations is poorly
defined, it is possible that the algorithm will give answers that look okay but, in
fact, are wrong. (This can happen with so-called ill-conditioned matrices. A
famous example is presented in Exercise 11 at the end of this chapter.) In
extreme cases, divisions by zero can occur, and the program will crash. This might
be distressing, but it is a better result than obtaining wrong answers with a
program that doesn't crash.

In any algorithm involving many calculations with real numbers, you
should never assume that the results are correct until you have checked them
thoroughly. This is not always easy to do! One test you can perform is to
substitute the x values into the original equations. In Exercise 7 at the end of this
chapter, you are asked to modify P-9.6 to include calculation of a residual vector.
Each component of the residual vector should be very close to zero for a good
solution. However, this is what mathematicians call a necessary but insufficient
condition to guarantee a good solution. III-conditioned matrices can result in
solutions for which the residuals are small even though the solution is not correct.
Such matrices may not even have a good solution.

8It is also possible to interchange both columns and rows to move the absolutely largest coefficient
in the reduced system to the pivot position. However, it can be shown that this results in relatively
small improvements to the overall accuracy of the method. Such a solution is called "Gaussian
elimination with full pivoting." The solution described here is called "Gaussian elimination with
partial pivoting."

392 • 9. Basic Statistics and Numerical Analysis

9.5.2 Application: Current Flow in a DC Circuit With Multiple Resistive Branches

1 Define the problem.

Consider the DC circuit shown in Figure 9.7. It consists of a voltage source
connected to several resistive branches. Kirchoff's Laws state that the voltage drop
around any closed branch of such a network of resistances must be zero. This fact
leads directly to a series of linear equations that describe the current flow in the
three branches of this circuit:

(R] + R2)1, - R213 =0
(R3 + R4)12 - R413 = E

-RJ, - R412 + (R2 + R4 + RS)l3 = 0

Solve this equation for these values:

Rl = 100 n R4 = 250 n
R2 =200 n R5 = 150 n
R3 =300 n E =6 V

2 Outline a solution.

In a physics course, you would
probably be asked to derive the equations
yourself, which is the only difficult part of
this problem. Note that the direction of current
flow is normally considered positive in the
direction from the positive (+) terminal of a
battery (or other voltage source) to the
negative (-) terminal. If you guess wrong
about the direction of flow in a particular
branch of the circuit, the current will have a
negative value in the solution.

R1

~

R2

+
V

R3

Figure 9.7. Current flow in a
DC circuit with resistive

branches.

3 Design an algorithm.

9.6 Finding the Roots of Equations • 393

There is no need to design an algorithm for this problem, as it is a
straightforward application of functions already written.

4 Convert the algorithm into a program.

There is also no need to write any new code to solve this problem. Simply
create an appropriate data file in the same format as gaus s . da t, as used by
P-9.6, and run gauss. c.

5 Verify the operation of the program.

This is a problem that should not cause significant numerical difficulties.
It is relatively easy to check the value for 12 by noting that R1 and R2 are in
parallel. Then, the resistance of this parallel combination plus Rs is in parallel with
R4• Finally, this parallel combination is in series with R3. If you do these
calculations by hand, you should find that 12 is approximately 14.4 rnA.

9.6 Finding the Roots of Equations

Consider a function y = f(x). A common problem in mathematics is finding the
value(s) of x for which the equation f(x) =O. As a simple example, consider the
polynomial

f(x) = x2
- 8x + 15

It is easy to determine the values of x for which this function equals zero because
the polynomial can be factored by inspection:

f(x) =(x - 5)(x - 3)

The values x = 5 and x = 3 are called the roots of the function.
In general, it is not this easy to find the roots of a function. For example,

although there are standard methods for finding the roots of a quadratic equation,
there are no comparable methods for high-order polynomials. Consequently,
numerical methods are often needed. In this section we will develop one

394 • 9. Basic Statistics and Numerical Analysis

intuitively simple numerical method. Often, it is of interest to find all real roots
over a specified range, so that is how we will formulate the problem.

1 Define the problem.

Write a subprogram that will estimate the real roots for the equation
f(x) = 0 over the range [xa,xb].

2 Outline a solution.

The approach we will discuss is called the bisection method. How can we
tell whether there are any roots in the range [xa,xb]? Suppose that the sign of f(xa)
is different from the sign of f(xb). The obvious interpretation of this fact is that the
function has crossed the x-axis at least once in the range [xa,xb]. It is also possible
that the function crossed the x-axis more than once, in which case the total
number of crossings must be odd. This means that f(x) must have at least one real
root in the range [xa,xb].

A second possibility is that the sign of f(xa) is the same as the sign of
f(xb). This means that there may be no roots or that the function has crossed the
x-axis an even number of times, so that f(x) must have either no roots or an even
number of roots in the range [xa,xb].

A third possibility, which is applicable in either of the above two
situations, is that f(x) just touches the x-axis without crossing it. This is true for
the function

f(x) = x2
- 6x + 9 = (x - 3)(x - 3)

This function, which never crosses the x-axis, has two identical real roots. Such
possibilities complicate the search for a generally applicable root-finding
algorithm. Figure 9.8 illustrates these three possibilities.

9.6 Finding the Roots of Equations • 395

15..---------.------.---------,-----,----,-------,

Crosses axis twice (two real roots)

I
I
1
1
I
1

---------1---- -
I
I
I

I
I
1
1
I I
I I

-5 ---------~---------~--
I I
I 1
I I
I I
I I_________L L ~

I I I
I I I
I I I
I I I
I I I
I I I

-10

Figure 9.8. Polynomials with one or more real roots.

In any case, we will proceed on the assumption that roots can be found by
identifying the places where a function crosses the x-axis. (That is, we will ignore
the third possibility mentioned above.) Assume that the range [xa,xb] is subdivided
into intervals sufficiently small that each interval contains either one root or no
roots. If the sign of f(x) at the left boundary XL of the interval is different from the
sign at the right boundary of the subinterval xR' we will assume that the interval
contains one real root. Otherwise, we will assume that the interval contains no
roots. It is important to realize that this is just an assumption, and there is no way
to guarantee whether the assumption is justified.

Now divide the interval [XL,XR] in half. There are three possibilities,
making use of the fact that if f(xL)·f(xR) < 0, then the function crosses the x-axis
somewhere in the interval [XL,XR]:

(1) f(xmid) = 0
(2) f(xL)·f(xmid) < 0
(3) f(xmid)·f(xR) < 0

If (1) is true, then Xmid will be accepted as a root. It isn't quite accurate to say that
Xmid is a root because of the limitations on real arithmetic. However, as a practical
matter, we can usually assume that Xmid is sufficiently close to the real root. Also

396 • 9. Basic Statistics and Numerical Analysis

as a practical matter, it is unlikely that the value f(xmid) will ever equal exactly
zero (recalling the discussion of real-number arithmetic and if. .. tests in
Chapter 4).

If (2) is true, then the root must lie in the interval [XL,Xmid]. Let XR=Xmid and
repeat the test. If (3) is true, then the root must lie in the interval [Xmid'XR]. Let
XL=Xmid and repeat the test. As a result of repeatedly halving the interval in this
way, [XL,XR] will eventually become smaller than some specified small value. At
that point, we can assume that the algorithm has converged and that the root is
located at Xmid • It is also possible to terminate the algorithm based on the absolute
magnitude of f(xmid).

3 Design an algorithm.

As usual, it is important to specify the input to and output from the
algorithm and to isolate the algorithm in a subprogram that can be applied in a
variety of circumstances. This algorithm assumes that the name of a function will
be passed as input to the subprogram.

SUBPROGRAM Bisect(IN: Xu xR' F; OUT: root, finaUnterval)
DEFINE (Xmid' hit (logical), epsilon_f, epsilon_x (values to test for

convergence))
ASSIGN epsilon_f = ?

epsilon_x = ?
Xmid = (xR+ xJ/2
hit = false

LOOP (while IXR - xLI> epsilon_x and IF(xmijI> epsilon_f and not hit)
IF F(xmij = 0 THEN hit = true (found "exact" root)
ELSE IF F(xJ -F(xmij < 0 THEN xR=Xmid (root in left half)
ELSE F(xR)-F(xmij < 0 THEN XL = Xmid (root in right half)
ASSIGN Xmid = (XL + xR)/2

END LOOP
ASSIGN root =f(xmij

final_interval = IXR - XLI

This algorithm assumes that the values against which convergence will be tested
can be hard coded into the subprogram. You might instead wish to supply them
as parameters. Note that Bisect returns the length of the final subinterval as well
as the estimated root. This gives the calling (sub)program an additional chance to
decide whether to accept the root.

Bisect will typically be called from another subprogram that divides the
original range [x.,xb] into a specified number of intervals and calls Bisect once

9.6 Finding the Roots of Equations • 397

for each such interval. The design of this subprogram is straightforward. The
expectation is that some of these intervals will contain a root and some won't.
One way to store the results is to create an array to hold a value for each of the
specified intervals. When control is returned to the calling program, each element
of this array will hold either a root or an initial value chosen such that it can't be
mistaken for a root.

4 Convert the algorithm into a program.

P-9.7 [bisect2. c]

#include <stdio.h>
#include <math.h>
#define N_STEPS 10
#define LIMIT le-6

double f_of_x(double x);
int bisect (double left, double right, double (*f) (double) ,double
*root) ;

int main (void)
{

double left,right,dx,xl,x2,root;
int i,found;

printf("Give left and right search limits: ');
scanf("%lf %If",&left,&right);
dx=(right-left)/N_STEPS;
for (i=l; i<=N_STEPS; i++) {

xl=left+dx*(i-l) ;
x2=left+dx*i;
found=bisect(xl,x2,f_of_x,&root) ;
if (found)

printf('There is a root between %8.21f and %8.21f: %If\n',
xl,x2,root) ;

else
printf("There is no root between %8.21f and %8.21f.\n',xl,x2);

}

return 0;

double f_of_x(double x)
{

return x*x-2.0;

int bisect(double left, double right,double (*f) (double),
double *root)

double mid;
int found;

398 • 9. Basic Statistics and Numerical Analysis

if (f(left)*f(right) > 0.) /* No root in this interval. */
found=O;

else {
if (fabs(f(left)) < LIMIT) {

*root=left;
found=!;

}

else if (fabs(f(right» < LIMIT) {
*root=right;
found=!;

)
else {

mid=(left+right)/2.;
if (fabs(f(mid) < LIMIT)
*root=mid;
found=!;
}
else if (f(left)*f(mid) < 0.)
found=bisect(left,mid,f,root) ;
else
found=bisect(mid,right,f,root) ;

}
return found;

Running P-9.7

5 Verify the operation of the program.

The results from any root-finding algorithm can always be tested directly
by substituting the estimated root back into the original function. In P-9.7, the
function is tested with the simple function x2

- 2, with obvious roots. The result
should differ from zero by no more than some specified tolerance. As long as the
function actually changes sign within a specified interval, the algorithm is
guaranteed to converge as long as the specified tolerance is reasonable relative to
the accuracy with which real arithmetic is performed; a tolerance of 10- 15 is

9.7 Numerical Solutions to Differential Equations • 399

unreasonable when real arithmetic is perfonned only to seven or eight significant
figures!

Once the bisection algorithm has converged, you should check values of
the function in the vicinity of the root to examine its slope-essentially, its
numerical derivative. If the derivative is very small, it means that the root returned
by the algorithm will be very sensitive to the criteria you have chosen for
terminating the bisection algorithm.

Although it is possible to test the roots returned by the bisection method,
it is not so easy to guarantee that all the roots in the original range have been
found. For any interval supplied to the parameter list, the bisection method will
find one root. In the previous discussion of this method, we have assumed that
when the original range of x values is divided into subintervals, which are then
passed to bisect, each subinterval will contain either one root or no roots.
However, it may be true that more than one root lies within an interval. As
implemented, the algorithm searches for a sign change first in the left half of an
interval. If the bisection algorithm finds one, it thereafter ignores the right half of
the original interval. Therefore, a root that lies within the right half will not be
found.

9.7 Numerical Solutions to Differential Equations

There are several numerical techniques for solving differential equations of various
kinds. In general, the technique must be matched carefully with the problem. In
this section, we will focus on a particular class of second-order differential
equations that demonstrate clearly how mathematics can tie together apparently
unrelated physical concepts. The equations we will discuss here all have analytic
solutions, and we will give those solutions for the purpose of comparing them
with the numerical calculations. However, you are not expected to be able to
derive the solutions yourself unless you have had a course in differential
equations. In general, the mathematical sophistication required to understand these
results goes beyond that required in any other part of this text.

We will begin by presenting a particular problem. It may seem that this
problem is more like a specific application than a general approach to solving a
class of differential equations, but associating the results with a simple physical
system will make the mathematics easier to follow. In addition, the solutions to
this conceptually simple physical problem are broadly and directly applicable to
other important problems in science and engineering.

400 • 9. Basic Statistics and Numerical Analysis

9.7.1 Motion of a Damped Mass and Spring

Consider a mass hanging from the end of a massless spring. If this system is in
static equilibrium-that is, if nothing is moving-the spring is stretched and the
force due to gravity acting on the mass is counterbalanced by a restoring (upward)
force provided by the spring. If the displacement in the spring is small, then
according to Hooke's Law the restoring force provided by the spring is
proportional to the displacement:

mg - kL = 0 (I)

where k is a spring constant that can be determined experimentally by measuring
the displacement resulting from hanging a known weight on the spring (mg =
mass times the gravitational acceleration).

Now suppose that the mass is displaced from its equilibrium position in the
downward (assumed positive) direction by an amount f. As long as the total
displacement L + e is still small (i.e., as long as Hooke's Law still applies) the
restoring force is still proportional to the displacement. If the mass is now
released, it will vibrate around its equilibrium position. Ignoring damping forces,
the equation of motion for the mass is

(2)

Because mg = kL, this equation reduces to

(3)

The solution to this equation is a cosine-shaped curve with period T:

(4)

where T = 2n/roo = 21TVmlk, A = Rcos(o), B = Rsin(o), R = JA 2 + B 2, and the
phase angle 0 = tanO'(B/A). The quadrant of 0 must be determined from the signs
of cos(O) and sin(O). The initial conditions for the system determine values for the
constants. In a typical situation in which the mass is initially displaced downward
(in the positive direction) by an amount L and released, A=L, the initial velocity
equals 0, and Band 0 are both equal to O.

Because this motion is undamped, the amplitude of the oscillation does not
decrease as a function of time. This is a physically unrealistic situation. Therefore,
suppose that the motion is damped by having the spring move in a resisting
medium. The resistance could be provided incidentally just by air or it could be
an intentional part of the system, through the addition of a mechanical damping

9.7 Numerical Solutions to Differential Equations • 401

device (sometimes called a dashpot), for example. Such situations can be modelled
by adding another term to the equation of motion, proportional to velocity:

(5)

where D is a damping coefficient. For the interesting case of "small" damping, it
can be shown that D2

- 4km must be less than O. Then the general solution is

-DU2m .
e(t) = e [Acos(~t) + Bsm(~t)) (6)

where ~ = J4km - D 212m. It is at least qualitatively clear that this solution has
the desired properties. The sine and cosine terms provide the oscillating
component, and the exponential term guarantees that the amplitude of the
oscillation will approach zero as time approaches infinity, no matter what its
initial amplitude.

The presence of damping changes the period previously derived for
undamped motion. This new quasiperiod T' still gives the time between successive
maxima or minima of the function:

(7)

which approaches the period for undamped motion as D approaches zero. This
value is important when applying numerical methods because in order to
characterize the behavior of the motion, it is of course necessary to use step sizes
that are small compared to the period for undamped motion or to this quasiperiod
for damped motion.

A standard technique for solving a second-order differential equation in the
form of (5) is to rewrite it as a system of two first-order equations. For the mass
and spring problem, the result is especially easy to understand because of the
simple physical nature of the problem. Making use of the fact that velocity v is
the time derivative of position (v = dxldt) and that acceleration is the time
derivative of velocity (d2etdt2 =dv/dt),

detdt = vet)
dv/dt =aCt) =-[Dv(t) + ke(t))/m (8)

There are several numerical methods applicable to equations such as these,
having the general form dy/dx = f(x,y). They all involve, in some fashion,
selecting a small interval Llx and estimating the value of y for this future value of
x. (Again, this concept is easy to grasp when the independent variable is time, as
is the case for the equations of motion we are discussing.) We will use the well-

402 • 9. Basic Statistics and Numerical Analysis

known Runge-Kutta method, which has the advantage that no higher order
derivatives are required. In general,

K) = ~t·f(x,y)

K2 = ~t·f(x+~2,y+k/2)

K3 = ~t·f(x+~2,y+k/2)

K4 = ~t·f(x+~,y+k3)

y(x+~x) '" y(x) + (K) + 2K2 + 2K3 + K4)/6

For the equations of motion in (8):

(9)

K1.(= ~t·v(t)

K2.(= ~t·[v(t+~t/2)] = ~t·[v(t) + a(t)~t/2] (10)
K3.(= ~t.[v(t) + a(t)~t/2]

K4,(= ~t·[v(t) + a(t)~t]

K1.v = -~t·[Dv(t) + kf(t)]/m
K2•v = -~t·{D[vet) + K1./2] + kf(t+~t/2)}IM

= -~t·{D[v(t) + K1./2] + k[f(t)+v(t)~t/2]}IM (11)
K3.v = -~t·{D[v(t) + Kd2] + k[f(t)+v(t)~t/2]}IM

K4,v = -~t·{D[v(t) + K3.y] + k[f(t)+v(t)~t]}IM

from which

f(t+~t) = f(t) + K),(+ 2K2.(+ 2K3•e + K4,()l6
v(t+~t) = vet) + K1•v + 2K2,v + 2K3.v + K4)/6 (12)

These kinds of numerical solutions suffer from I
several sources of error. Even if it can be assumed
(which it can't) that there is no error due to the
limitations of real arithmetic on computers, there remains an inherent
discretization error. This is due to the fact that estimated values one step into the
future are used as the initial conditions for the next step. However, these
conditions are, by definition, estimates and not the true values. For each step,
therefore, there is a local discretization error that propagates over the rest of the
solution as accumulated discretization error. These errors can be analyzed-a topic
that is beyond the scope of this text-but they are unavoidable whenever methods
such as these are used. As always, therefore, it is necessary to be extremely
cautious when applying numerical methods to real problems.

9.7 Numerical Solutions to Differential Equations • 403

9.7.2 Application: Current Flow in a Series LRC Circuit

As mentioned earlier in this section, the equations of motion used to describe the
motion of a mass attached to a spring can also be used to describe other physical
systems.

1 Define the problem.

An electrical circuit contains a resistor R (ohms) and an inductor L
(henrys) in series with a source of constant (DC) voltage V (volts). A switch is
initially opened and is then closed at time t = O. What is the current flow in the
circuit after the switch is closed? How does the addition of a capacitor C (farads)
in series with the resistor and inductor change the current flow?

2 Outline a solution.

The generally applicable equation for this problem is

Ld2q/dt2 + Rdq/dt + q/C = V (13)

where the current i is the time derivative of the charge q. This equation has the
same form as the equation of motion for a damped mass and spring. The
correspondence between the variables is:

m~L

D ~ R
k ~ lIC
e ~ q
v ~ dq/dt = i
f(t)~ V(t)

The first part of the problem, with lIC=O and V a constant, is a special
case of the general problem. The second-order equation reduces immediately to
a single first-order equation:

The solution is

di/dt = (V - Ri)1L

-Rt/L
i(t) = VIR(1 - e)

(14)

(15)

404 • 9. Basic Statistics and Numerical Analysis

There is no oscillating component because there is no spring constant term
(corresponding to parameter k). The solution satisfies the condition that i = 0 and
di/dt = VIL at t = 0 and that i~VIR (from Ohm's Law) as t~oo.

For the second part of the problem, which adds capacitance to the circuit,
assume that 4L1C - R2 > O. Then the solution for charge q is

(16)

This solution is a damped oscillation that exhibits the desired properties. At t = 0,
q = O. As t~oo, q~CV. It is also true that the current (i =dq/dt) approaches 0 as
t~oo, as required by the fact that the voltage V is constant.

3 Design an algorithm

One property of these calculations is that it is easier to calculate the
Runge-Kutta coefficients in the context of a specific problem. It may not be worth
the trouble required to write a general purpose Runge-Kutta integration routine.
We will first design an algorithm that can be used to solve mass-and-spring type
problems such as the one in this application.

SUBPROGRAM MassAndSpring(IN: 0, K, M, F, dt; OUT x, v)
DEFINE kCx, k2_x, k3_x, k4_x, kCv, k2_v, k3_v, k4_v
(Calculate Runge-Kutta coefficients.)

ASSIGN k1_x =v
k2_x =v + AofT(x, v,D, K, M, F)-dtl2 (see SUB. AofT)
k3_x =v + AofT(x, v, 0, K, M, F) -dtl2
k4_x =v + AofT(x, v, 0, K, M, F)-dt
kCv =AofT(x, v, 0, K, M, F)
k2_v =AofT(x + v-dtl2, v + kCv-dtl2, 0, K, M, F)
k3_v =AofT(x + v-dtl2, v + k2_v-dtl2, 0, K, M, F)
k4_v =AofT(x + v-dt, v + k3_v-dt, 0, K, M, F)

(Propagate solution.)
ASSIGN x =x + (k1_x + 2-k2_x + 2-k3_x + k4_x)-dtl6

v = v + (kCv + 2-k2_v + 2-k3_v + k4_v)-dtl6

Because of the way AofT is used, make a note in the algorithm that it should be
implemented as a separate function:

SUBPROGRAM AofT(IN: x, v, 0, K, M, F)
ASSIGN AofT = -(-F + D-v + K -x)/M

9.7 Numerical Solutions to Differential Equations • 405

Now design the algorithm for solving the first part of the problem: Ldi/dt+Ri=V.

WRITE (prompt for input)
READ (V, L, R, Lfinal,n)
INITIALIZE i =0

t =0
ASSIGN dt =Lfinalln
LOOP (for j = 1 to n)
(Calculate Runge-Kutta coefficients.)

ASSIGN kCi =(V - R·i)IL
k2_i =[V -R·(i + kCi~t/2)JIL

k3_i =[V - R.(i + k2_i~t/2)JIL

k4_i =[V - R·(i + k3_i~t)JIL

(Propagate solution.)
INCREMENT i = i + (kCi + 2*k2_i + 2*k3_i + k4_i)*dt/6

t=t+dt

WRITE (t, i, (VIR).(1 - iRt/L) (Include analytic solution.)
END LOOP

Finally, solve the second part of the problem: Ld2q/de+Rdq/dt+q/C=V. Include the
analytic solution for q.

WRITE (prompt for input)
READ (V, L, R, C, Lfinal, n
INITIALIZE q = 0

i =CVR/(2L)
t=O

ASSIGN dt=Lfinalln
LOOP (for j = 1 to n)

CALL MassAndSpring(q, i, R, 11C, L, V, dt)
INCREMENT t =t + dt
WRITE (t, q, i, CV[1 - i

R
t/(2L)cos((4UC _ ~?12 .t/(2L))])

END LOOP

406 • 9. Basic Statistics and Numerical Analysis

4 Convert the algorithm into a program.

P-9.8 [circui t. c]

#include <stdio.h>
#include <math.h>

double AofT(double x,double v,double D,double K,double M,double F)
{

return -(-F+D*v+K*x)/M;
)
void MassAndSpring(double *x,double *v,double D,double K,

double M,double F,double dt) {
double kl_x,k2_x,k3_x,k4_x,kl_v,k2_v,k3_v,k4_v;

/* Runge-Kutta coefficients ... */
kl_x=*v;
k2_x=*v+AofT(*x,*v,D,K,M,F)*dt/2.;
k3_x=*v+AofT(*x,*v,D,K,M,F)*dt/2.;
k4_x=*v+AofT(*x,*v,D,K,M,F)*dt;
kl_v=AofT(*x,*v,D,K,M,F) ;
k2_v=AofT(*x+(*v)*dt/2., (*v)+kl_v*dt/2.,D,K,M,F);
k3_v=AofT(*x+(*v)*dt/2., (*v)+k2_v*dt/2.,D,K,M,F);
k4_v=AofT(*x+(*v)*dt, (*v)+k3_v*dt,D,K,M,F);

/* Propagate solution ... */
*x=*x+(kl_x+2.*k2_x+2.*k3_x+k4_x)*dt/6.;
*v=*v+(kl_v+2.*k2_v+2.*k3_v+k4_v)*dt/6.;

}
int main(void)
{
/* Use Runge-Kutta method to solve LRC circuit problems.

Variable equivalences with mass-and-spring problem:
V => force F
q => displacement x
i => velocity v
L => mass m
R => damping constant °
l/C => spring constant K */

double i,q,L,C,R,V,t,dt,t_final;
double kl_i,k2_i,k3_i,k4_i;
int j,n;
char choice;

9.7 Numerical Solutions to Differential Equations • 407

/* Choose circuit type ... */
printf("Specify [o]scillating or [n]o oscillating term ... \n"l;
scanfl"%c",&choicel;
switch (choice) {

case '0':
case '0':

/* Ld'2q/dt'2+Rdq/dt+q/C=V */
do {
printf(" Give V, L, R, C (4L/C-R'21 > O:\n"l;
scanf("%lf %If %If %If",&V,&L,&R,&C);
printf("one period at t=%lf s\n",

4.*3.14159*L/sqrtI4.*L/C-R*R» ;
printf("Give t_final and number of points: "I;
scanf("%lf %i",&t_final,&nl;
} while «4.*L/C-R*RI <= 0.1;
q=O.; i=C*V*R/2./L; t=O.; /* Initial values */
dt=t_final/ldouble)n;
printf(" time q i analytic q\n");
for lj=l; j<=n; j++) {

MassAndSpring(&q,&i,R,l./C,L,V,dtl;
t=t+dt;
printf("%12.6e %12.4e %12.4e %12.4e\n",
t,q,i,C*V*(1.-exp(-R*t/2./L)*coslsqrt(4.*L/C-R*RI*t/2./LIII;

}

break;
case 'n':
case 'N':

/* Ldi/dt+Ri=V (no oscillating term) ... */
printf I "Give V, L, R: "I;
scanf("%lf %If %If",&V,&L,&RI;
printf("time constant at t= %If s\n",L/R);
printf ("Give t_final and number of points: \n" I ;
scanf("%lf %i",&t_final,&n);
i=O.; t=O.; /* Initial values */
dt=t_final/(doubleln;
printf(" time i analytic i\n"l;
for (j=1; j<=n; j++) {

/* Runge-Kutta coefficients ... */
kl_i=IV-R*i)/L;
k2_i=IV-R*(i+kl_i*dt/2.1)/L;
k3_i=(V-R*(i+k2_i*dt/2.1)/L;
k4_i= (V-R* (i+k3_i*dtl) IL;

/* Propagate solution ... */
i=i+(kl_i+2.*k2_i+2.*k3_i+k4_i)*dt/6.;
t=t+dt;
printf("%12.6e %12.4e %12.4e\n",t,i,V/R*(1.-exp(-R*t/LI) I;

}
break;

default:
printf("No such choice. Try again ... \n");

}
return 0;

408 • 9. Basic Statistics and Numerical Analysis

Running P-9.8 (LR circuit)

Figure 9.9 shows more of the solution.

4r--'--:-:::~_IIII!IIlII~-IIIII'JlI&-~"

E = 100 Volts
L =0.02 Henrys
R=25Ohms

3.5

lJ) 2.5
~

&
E
~

"- 1.5

0.5

-:-···_······!·········_·1······_···_~···_····_···t-·· · __ ····t···········

.... l··· __···_--j_·····--···i-··········j············r····__ ···-t···········
, , ,, , ,

: ,:
, "- -- : -- ---1-·····- ~ -_ -:-. --_..--_. -r _..--_.- --

--_._-_ - -.. _- - -_ .. - .

._- - _ _--

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
time, S

Figure 9.9. Current in an LR circuit.

9.7 Numerical Solutions to Differential Equations • 409

Running 9.8 (LRC circuit)

Figure 9.10 shows more of this solution.

0.00018..-=:-----,-------,--------------

0.00016 .. -

0.00012
.2
E 0.0001
.Q
::;,

8 8E-05' ... --

6E-05 ---

4E-OS

2E-05

------- ...•........... , -- .- ~ ...

------- .. i··········T·------1---·······;··········-:---

- - - - - - ! - - - - "1" '"1 .---------.~.- -t _.

----l-----···-r··········
'-1 -- ----. --.~ ;. ---- ----. "i" -.••••••••:••••••••••••

E =100 Volts
L = 0.02 Henrys
R=250hms
C = 0.000001 Farads

Ol:t-----+---+--~:::::;::==::;:::::=::::=::;:=---+--J
o 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

time,s

Figure 9.10. Charge in an LRC circuit.

410 • 9. Basic Statistics and Numerical Analysis

5 Verify the operation of the program.

The code in P-9.8 includes the analytic solution, which can be compared
side-by-side with the numerical solution. Even though this problem is identical to
the mass-and-spring problem discussed earlier, it is important to test the program
with physically reasonable values. It is easy to imagine a mass on the order of a
few hundred grams or so bouncing up and down at the end of a spring, with a
period on the order of a second. For LRC circuits in radio circuits, for example,
the magnitudes of the quantities are much different. Millihenrys, microfarads or
picofarads, kilo- or mega-ohms, and megahertz frequencies are typical working
units for quantities in such circuits. When you select values for testing, make sure
that the time step is appropriately chosen so that it is much less than one
oscillating period; ~t = tosdlOO would be reasonable.

For this problem, we can cheat in the sense that we know the analytic
solution. In the code, the user is asked to input V, L, and R for the nonoscillating
circuit, or V, L, R, and C for the oscillating circuit. In the former case, the
program displays the time constant LIR to give an idea of the decay time. In the
latter case, the program displays the oscillating period t = 41TLlV4L/C - R 2.

Problem Discussion
Of the numerical analysis problems presented in this chapter, solutions to

differential equations pose the greatest difficulties. The Runge-Kutta algorithm has
been chosen because it is a classic approach and is relatively simple to implement.
However, it is in no sense a generally applicable technique or one that can always
be depended upon to produce reliable results. Additional examination of this topic
lies beyond the scope of this text. In contrast, Simpson's Rule integration as
discussed earlier in this chapter will generally produce predictable and reliable
results for functions without singularities and is therefore a reasonable working
tool for evaluating many kinds of nonanalytic integrals.

For the LRC circuit treated in P-9.8 (and other oscillating systems), it is
easy to pick values that don't work. If you don't have some idea of the oscillating
period of the system, it is hard to pick time units and step sizes that will give a
reasonable depiction of the motion. It is possible, for example, to pick a time step
that produces what looks like the periodic motion of your system but which, in
fact, is sampling from periodic motion taking place on a much smaller time scale.
In other cases, your program will simply crash.

Incidentally, the Runge-Kutta algorithm can be implemented in a
spreadsheet without much difficulty, and such an implementation was used to
generate Figures 9.9 and 9.10. It is easy to try different values for the circuit and,

9.8 Exercises • 411

of course, a spreadsheet has built-in graphics capabilities that make it easy to
visualize the solutions.

9.8 Exercises

1. The "plus or minus three standard deviations" rule mentioned in Section 9.2.1
can also be applied to linear regression models.
(a) Modify P-9.1 so that it prints a report of all data values that fall more than
three standard deviations above or below the regression line.
(b) Include an additional modification that replaces all such outlying data values
with the modeled value. [outlyer. c]

2. Referring to the Problem Discussion following P-9.3 in Section 9.3.2, write a
function St i r 1 ing_f that implements Stirling's fonnula for an analytic function
whose derivative you know. Test this function with a driver program.
[stir_f. c]

3. Refer to the application discussed in Section 9.3.2 and the measured distances
and measured times (the ones generated with random errors) in Table 9.1. Assume
that a functional relationship exists between time t and distance D: D =at212 for
constant acceleration a. Calculate the acceleration value that best fits the data by
detennining which value produces the smallest sum of squares of the differences
between true and "measured" distances; a trial-and-error approach is okay.
Detennine the speed v at each measured time by taking the analytic derivative of
your model: v =dD/dt =at. Are these values closer to the true values than the
values obtained using Stirling's fonnula to estimate the speed? [fa1l2 . c]

4. Write a function to implement Rectangular Rule integration. For a function
whose integral is known, compare the results from Rectangular Rule integration
with the results from Simpson's Rule integration as implemented in P-9.4 and
Trapezoidal Rule integration as implemented in P-5.15 in Chapter 5. [rect. c]

5. Modify P-9.7 so that the convergence criteria are specified by the user and
supplied to the subroutine. One possibility might be to specify the criterion for the
size of the interval as a fraction of the original interval. [bisect3 . c]

6. The Regula-Falsi method is a simple modification of the bisection method for
finding roots which attempts to speed convergence to a root by making an
infonned guess about where the value Xmid that subdivides an interval should be.
The bisection method puts this point in the middle of the current subinterval, but
this is not the best place, in general. The Regula-Falsi method puts this point at

412 • 9. Basic Statistics and Numerical Analysis

the place where a straight line joining f(xL) and f(xR) crosses the x-axis. Modify
P-9.7 to implement this modification. [regula. c]

7. Modify P-9.6 so that it calculates a residual vector R = AX - C. It is necessary
(but not necessarily sufficient) that the residual vector be small before the vector
X can be considered a good solution for the system. [gauss2 . c]

8. The bisection method of finding roots
was discussed in Section 9.6. Its advantage
is that an understanding of calculus is not
required to understand and implement this
method. Its disadvantage is that it is relatively inefficient and may be unreliable.
Newton's method is an alternative that may work better in some cases. Its
potential disadvantage is that both f(x) and its derivative f'(x) are required.

To implement Newton's method, guess a root and recalculate X,oot using
the two-step algorithm

xoJd = X,oot
Xroot = Xroot - f(x,ool)/f(xrool)

Continue to recalculate X,oot until If(x,oot) I or IXOJd - Xroot I is less than some
specified value.

There are some situations in which this algorithm fails, for example,
whenever f(x) equals zero for an initial guess or any subsequent estimate of a
root. Therefore, it is a good idea to limit the maximum number of iterations. Note
that, in contrast with the bisection method, a root found by Newton's algorithm
may lie far from an initial guess and not necessarily within an initially specified
range of x values. A function for which Newton's method will work well is
f(x) = eX - 3x, for which f'(x) = eX - 3.
Hint: This algorithm can be implemented either iteratively or recursively. It would
be good practice to do it both ways. [newton. c]

9. A manufacturer of laminated panels wishes
to mold some ripple-shaped panels. The
finished size of the sheet is 4' x 8', with the
ripples running along the 8' side. Assume that
the ripples are in the shape of a sine curve, with a specified amplitude ±b and
length L, for example, ±OS' and 3". (See Figure 9.11.) How long must the
original sheet of material be to produce a finished panel with a length of 8'?

9.8 Exercises • 413

Figure 9.11. Parameters for a rippled panel.

The length of a segment ds along a curve formed by a function y(x) is

For a sine curve of amplitude b and length L,

ds =
[
21Tb (21TX)f1+ TcosT dx

The length of the material required to make L inches of panel is the integral of
ds from 0 to L. This integral cannot be evaluated analytically. Use Simpson's Rule
to evaluate the integral for user-specified values of band L.

Extra Credit:
If b « L, ds can be approximated by a series expansion, the terms of

which can be integrated analytically. Use the first two terms in the binomial series
for (l + X)1I2 to verify the results of Simpson's Rule integration as b approaches
O. [ripple. c]

10. This chapter has discussed the Gaussian elimination method for solving
systems of linear equations. Another method (one of a class of so-called relaxation
methods) is Gauss-Seidel iteration. To illustrate, consider a system of three
equations:

x,all + x2a'2 + x3a13 = c1
x,a21 + x2a22 + x3a23 = c2
x1a3, + x2a32 + x3a33 = c3

414 • 9. Basic Statistics and Numerical Analysis

Make an initial estimate for the unknowns (Xl' X2, X3); (I, 1, 1) is a reasonable
choice. Then solve the first equation for Xl in terms of X2 and X3, the second for
x2 in terms of Xl and X3, and the third for x3 in terms of Xl and X2:

Repeat this process iteratively until convergence criteria are met. Note that the
newest estimated value is always used in subsequent calculations. That is, the first
iteration on X2 uses the new estimate of Xl and the original estimate of X3, because
a new estimate of x3 isn't yet available.

Convergence can be either relative or absolute. If absolute convergence is
required, for all values of Xi on the kth iteration:

I
k k-l

lxi - Xk < E

If relative convergence is acceptable, for all values of Xi on the k1h iteration:

I
k k-l

lXi -Xi
< E

where E is some user-specified small number.
This method is trivial to generalize to larger systems, and it is relatively

easy to program. However, for a variety of reasons that are beyond the scope of
this text, the iteration will not converge for all systems of equations. (One obvious
requirement is that all the diagonal coefficients must be nonzero.) Chances for
convergence are good for diagonally dominant matrices of coefficients. Therefore,
it is a good idea to arrange the equations so that, if possible, the diagonal terms
are larger than all the others. It may also be helpful to normalize all the equations
by dividing each equation by the diagonal coefficient so that the diagonal
coefficients are all equal to 1. If the off-diagonal terms are all small compared to
1, then chances for convergence are good.

Because of possible convergence problems, your program should set a
maximum number of iterations as one of the terminating conditions in the loop
that controls the iterations.

Here is a system of equations for which Gauss-Seidel iteration will
converge:

56x, + 22x, + 11x3 - 18x. 34
17x, + 66x, - 12x3 + 7x. 82

3x, - 5x, + 47x3 + 20x. 18
11x, + 16x, + 17x3 + lOx. 26

9.8 Exercises • 415

Note that the diagonal terms are largest in all but the last equation.
[gaus_sei . c]

11. In the text (Section 9.5.1) it was stated that some matrices are ill-conditioned
and resist attempts at solution with Gaussian elimination. One well-known
example is the Hilbert matrix. Here is a 5 x 5 Hilbert matrix for AX = C.

1 1/2 1/3 1/4 1/5 1

1/2 1/3 1/4 1/5 1/6 0

A 1/3 1/4 1/5 1/6 1/7 C 0

1/4 1/5 1/6 1/7 1/8 0

1/5 1/6 1/7 1/8 1/9 0

Express the decimal fractions with seven significant digits (e.g., 0.3333333). What
is the solution when you apply Gaussian elimination to this matrix? What is the
solution if you express the decimal fractions with only four significant digits (e.g.,
0.1667)?

12. Consider a radioactive particle inside a cube-shaped block. What is the
probability, as a function of its original location, that the particle will exit the
block on a particular side? Assuming that travel in all directions is equally
probable, an answer to a simplified version of this question can be obtained by
modeling the problem in two dimensions. Set up a grid of possible locations.
Three rows of three locations each is sufficient:

1-2-3
4-5-6
7-8-9

What is the probability that a particle will escape through a specified face of the
grid? Suppose the bottom is chosen. The probability can be expressed as a system
of equations in which Pn is the probability that a particle at position n will escape
through the bottom of the grid. This probability is one-fourth the sum of the
probabilities that a particle in the four locations surrounding n will escape through
the bottom:

PI = (0 + P2 + P4 + 0)/4
P4 = (PI + Ps + P7 + 0)/4
P7 = (P4 + Pg + 1 + 0)/4

P2 =(0 +PJ + Ps + PI)/4
Ps = (P2 + P6 + Ps + P4)/4
Ps = Ps + P9 + 1 + P7)/4

PJ = (0 + 0 + P6 + P2)/4
P6 = (PJ + 0 + P9 +Ps)/4
P9 = (P6 + 0 + 1 + Pg)/4

416 • 9. Basic Statistics and Numerical Analysis

Rewrite these equations in the form AP =C and solve for P. Try both Gaussian
elimination as described earlier in this chapter and Gauss-Seidel iteration as
described in Exercise 10. For Gauss-Seidel iteration, are the results sensitive to the
initial (reasonable) guesses for P?

One test of your program's output is the fact that the probability of a
particle initially in the center of the grid escaping through any specified side of
the grid should be exactly 0.25. [escape. c]

13. Recall Exercise 15 in Chapter 4, in which, as one step in finding the angular
position (true anomaly) of an orbiting object as a function of time, you were asked
to solve Kepler's equation

M =E - eesinE

for the eccentric anomaly E as a function of mean anomaly M. In that exercise,
you were expected to use an iterative approach to find E for specified values of
e and M.

Another way to solve Kepler's equation is to use the bisection method to
find the root of

M - E + eesinE =0

Use a version of program P-9.7 with the necessary changes to the parameter list
to solve this equation; you must pass both M (the independent variable) and e to
the function. Be sure to read Exercise 15 in Chapter 4 before starting this
program. If you already wrote the program for that exercise, you might wish to
modify it to print out the value of E (which is an intermediate calculation required
to find the true anomaly) so you can compare it with the result produced by the
program you write for this exercise. Remember to use radians rather than degrees
where appropriate.

14. An alternate method for solving sets of linear equations is called Cramer's
rule. It involves the so-called determinant, a single numerical value derived in a
specific way from the matrix containing the coefficients of the unknowns in a
system of equations. It can be shown that if the determinant is not equal to zero
then the system has a unique solution. The determinant is easy to calculate for sets
of two or three equations but becomes cumbersome and computationally
inefficient for systems with more unknowns.

Consider the linear system

allx + al2y =c1

a21x + a22y = c2

9.8 Exercises • 417

for which the matrix of coefficients is

The determinant D is

If D :1= 0, the solutions are N/D and N/D, where N l and N2 are obtained by
calculating the determinant of a matrix for which the indicated column in the
coefficient matrix is replaced with the constant coefficients:

N. =cla22 - c2al2
N2 = c2all - c la21

For the system

a1lx + a12y + al3z = Cl
a21x + a22y + a23z = c2
a31 x + a32y + a33z =C3

the matrix of coefficients is

and

If D :1= 0 then

N l = cla22a33 + al2a23c3 + a l3c2a32 - a13a22c3- a12c2a33 - cla23a32
N2 = allc2a33 + cla23a31 + al3a2lc3 - al3c2a31 - cla2la33 - a lla23c3
N3 =alla22c3 + al2c2a31 + cla21a32 - c1a22a31 - al2a21c3 - allc2a32

Write a program that implements Cramer's rule for linear systems with two or
three unknowns. Because of the multiple calculations of determinants with

418 • 9. Basic Statistics and Numerical Analysis

different sets of coefficients (which is why this method is inefficient for large
systems of equations), your program should include a separate function to
calculate the determinant. Try to implement the code in a general way with nested
loops so the function will calculate the determinant regardless of whether there are
two or three sets of coefficients, based on an input value-the number of
equations-passed through the parameter list. That is, do not "hard code" the
calculations for D for two or three equations. Test your program with equations
for which the determinant is not zero. Store the coefficients and constants in an
external data file in which the first line in the file contains the number of
equations. [cramer. c]

15. A datalogger is used to capture measurements of UV-B radiation expressed in
units of minimum erythemal dose per hour (MEDlhr). (One MED is the amount
of UV-B radiation, weighted by the skin's spectral response, that will produce a
discernible color change in a light-skinned Caucasian who has not previously been
exposed to significant amounts of UV-B radiation for the previous 30 days.) The
datalogger averages 30 measurements taken at I-minute intervals every half hour.
A spreadsheet is used to produce an output file (aug96. txt) of these averaged
measurements in the following format:

August 1, 1996
-0.005 285
-0.002 315

0.009 345
0.055 375
0.113 405
0.166 435
0.337 465
0.649 495
0.698 525
1.029 555
1. 039 585
1.279 615
1.463 645
1.908 675
1.817 705
1.402 735
2.332 765
2.256 795
2.431 825
2.050 855
1. 814 885
1.327 915
1.008 945
0.677 975
0.424 1005
0.253 1035
0.128 1065
0.052 1095
0.014 1125

August 2, 1996
-0.003 285

0.003 315
(and so forth)

9.8 Exercises • 419

where the first value is the 30-minute average in units of MED/hr and the second
is the time in minutes corresponding to the middle of each 30-minute interval.

Write a program that uses Trapezoidal Rule integration to calculate the
cumulative UV-B radiation for each day in the file. (The file aug96. txt is
incomplete for the month.) Assume that the MED/hr values preceding and
following the first and last tabulated values for each day are equal to O.

Although you may not assume that data for every day in the month will
be included in the file, you may assume that each date present in the file is
followed by 29 half-hourly averages. The first value is the 30-minute average over
the times 4:30am-5:00am, and the last value is the 30-minute average over the
times 6:30pm-7:00pm.

Because of drift in the UV-B detector's calibration, some of the averaged
measurements at the beginning and end of the set of 29 may be small negative
numbers. This is not physically reasonable, and your program should set such
values to zero before using them to calculate the daily cumulative UV-B radiation.
[uvb_l. c]

10

Binary Files, Random Access, and
Dynamic Allocation

10.1 Binary and Random Access Files

10.1.1 Random Access File Concepts

In this section we will discuss a different kind of file that
stores information in a binary format rather than as text.
Recall from previous examples throughout this book that
data files were always text files in the sense that they could be created with a text
editor or a word processor in a human-readable format. Even numerical
information was stored in terms of readable characters-the digits 0-9 plus other
appropriate characters such as a period serving as a decimal point. Through the
use of appropriate conversion specifiers, the contents of this kind of file could be
interpreted by a program either as text (characters) or as numerical information.
We treated such files as sequential access files in which we always started reading
information at the beginning of the file and proceeded sequentially from one value
to the next. We stopped either when we found what we were looking for or, more
typically, when we got to the end of the file.

Sequential access text files are simple to use, but they have some
limitations that are especially obvious when you are faced with manipulating more
information than can be stored in a statically allocated array while your program
is running. One typical use of arrays is to store a list in a way that makes it
efficient to look for things in the list. Once the list is stored in an array, you can
sort the list and then use a binary search; the required algorithms were discussed
in Chapter 8. However, you cannot perform a binary search on a sequential access
file even if the information in the file is sorted in the desired order, and you
cannot sort such a file. The inefficiency of using linear searches is most noticeable
for large files-that is, just those files that may be too large to store in an array.

The solution to this kind of data management problem is to remove the
restriction of sequential access. The easiest way to do this is to store data in
records of fixed length. The problem with text files is that they do not lend
themselves naturally to the imposition of a fixed record length. For example,
consider these two lines (records) in a text file:

1001 17.77 313.5
999 3.3 2.1

This file is simply a string of characters, including blanks and end-of-line marks.
We know that it can be interpreted in an appropriate way by using C intrinsic

D. R. Brooks, C Programming: The Essentials for Engineers and Scientists
© Springer-Verlag New York, Inc. 1999

422 • 10. Binary Files, Random Access, and Dynamic Allocation

functions such as f scanf along with appropriate conversion specifiers. Thus it
is easy to read the six values in this file, perhaps three at a time. However, the
first line contains 16 characters and the second line contains only 11 characters.
This is due simply to how the numerical information is represented in this form.

When a program stores the six values in this file in its internal binary
format (that is, as a series of Is and Os), the space required in memory is
independent of how the values are originally represented as text because the
internal storage of numerical values depends only on the data type of the values
and not on how they are expressed as characters. Thus, assuming the numbers
1001 and 999 are stored as integers, both values require the same number of
bytes. Similarly, assuming the values 17.77,313.5,3.3, and 2.1 are all stored as
real numbers, the memory requirements are identical for all four values. Internally
then, each "record" of this file requires the same amount of storage space.

It is possible to copy the internal representation of values into a file and
also to read such a file simply by reversing the process; that is, by copying the
contents of the file directly into memory. Such a file, which preserves the internal
binary format in which values are stored, is called a binary file. VO operations are
more efficient for binary files than for text files because it is no longer necessary
to translate back and forth between internal and external (text-based)
representations for numerical values. Most significantly, however, it is easy to
implement random access to information in a binary file. This because each record
in a binary file has the same length, based on the data types of the values stored
in the record.

Finally, do not confuse the terms binary format or binary file in this
discussion with terms such as binary search. The first two terms describe a way
of storing data. The third term describes an algorithm.

10.1.2 Implementing Binary Files

To see how binary files work, we will return to a problem that first appeared as
a file-processing example in Chapter 2. In Section 2.3, a programming problem
was posed in which several remote instrument stations report measurements to a
central data collection facility. The reports are then assembled into a data file for
processing. A station can submit multiple reports, not necessarily sequentially, and
it can submit up to eight measurements in a single report. A program was
presented with the limited goal of counting the number of reports and the total
number of measurements. Modifications of this problem presented as Exercise 1
in Chapters 6 and 7 used arrays or arrays of structs to keep track of the total
number of reports and measurements for each station. If you did Exercise 1 in
Chapter 7, your program should have used an array of structures whose index
values 0 through 10 were obtained directly from the station IDs, assumed to be
numbers in the range 1000 through 1010. (If you didn't do those exercises, it
would be worthwhile to do them now.)

10.1 Binary and Random Access Files • 423

To see how binary files work, we will now present an alternative way of
storing and manipulating the infonnation in the original s ta tions . da t text file.
Symbolically, the file will be arranged in records that will look like this:

\10011110011 1
1005

114.0 17.7 ... 32.0

Now, however, the values in the file will be stored in their internal binary fonnat
and will no longer appear in a human-readable fonnat. Obviously, some of the
infonnation appearing just once in the original text file is stored in more than one
place in the new binary file; the station ID is stored with every measurement
rather than just at the start of a particular station report. This allows every record
to be identical in its fonnat. We will assume that the extra file space required will
have no significant negative consequences.

Suppose our objective is to write a program to sort the contents of the
binary file by measurement, from smallest to largest. We will not store the data
in an array. Instead-and this is the entire point of the example-we will actually
move records in the file so they will be in sorted order. Initially, we will write a
program that reads s ta t ions. da t and creates a binary file with the desired
record fonnat. Program 10.1 will also read the binary file, just to make sure
everything is working properly. The rest of the problem is left as an end-of
chapter exercise.

P-lO.I [station4. c)

/* Read data from reporting stations and save in binary file. */
#include <stdio.h>
#define FILENAME "stations.dat"
#define FILEOUT "stations.bin"
#define MAX_REPORTS 8

typedef struct {
int ID;
float measurement;

}
station_type;

int main(void)
{

FILE *in,*bin;
float m[MAX_REPORTS];
int i,status,n_values,tot_values=O;
station_type station;
char *line-ptr, one_line [80] ;

in=fopen (FILENAME, "r") ;
bin=fopen(FILEOUT, "wb+");

424 • 10. Binary Files, Random Access, and Dynamic Allocation

/* Start main data processing loop. */
while (1) {

line-ptr=fgets (one_line, sizeof(one_line) ,in);
if (line-ptr == NULL) break;
status=sscanf (one_line, "%i %f %f %f %f %f %f %f %f", &station. 10,

&m[O] ,&m[l] ,&m[2] ,&m[3] ,&m[4] ,&m[5] ,&m[6] ,&m[7]);
n_values=status-l;
for (i=O; i<n_values; i++) {

station.measurement=m[i] ;
tot_values++;
printf("%5i %6.1f\n',station.10,station.measurement);
fwrite(&station,sizeof(station_type),l,bin);

}
fclose(in);
printf('Total values: %i\n',tot_values);
rewind(bin);
printf("Reading from bina~ fi1e.\n");
for (i=l; i<=tot_va1ues; i++) (

fread(&station,sizeof(station_type),l,bin);
printf("%5i %6.1f\n",station.ID,station.measurement);

)
fc1ose(bin);

P-IO.I was written in two stages. First, code was written to read
sta tions. dat and assign field values to a variable of type station_type.
After this part was complete, the code printed in bold italics was added to create
the binary file and verify its contents. This is a typical two-step strategy that you
should follow when you create binary files. It is within the context of those few
lines of new code that we will discuss C's implementation of binary files.

File Access Modes

Previously, we opened files as sequential access text files in either read-only
(" r ") or write-only (" w") mode. However, C supports several other file access
modes for both text and binary files. For example, in P-IO.I we have used the
mode "wb+", which is interpreted as, "Create a binary file in read/write mode."

Table I0.1 gives a complete list of file access modes. The choices include
opening existing files in read or read/write mode and creating new files in write
or read/write mode.

10.1 Binary and Random Access Files • 425

Table 10.1. File access modes

Text file modes

"a " Append to existing text file.

"a+" Open existing text file in append mode for read/write.

" r " Open existing text file for reading.

" r + " Open existing text file for read/write.

"w " Create text file for writing.

"w+" Create text file for read/write.

Binary file modes

"ab " I Append to existing binary file.

"ab+" Open existing binary file for read/write.

"rb"

"rb+"

II wb II

"wb+"

Open existing binary file for reading.

Open existing binary file for read/write.

Create binary file for writing.

Create binary file for read/write.

The alert reader may notice that, according to Table 10.1, it appears
possible to open text files in read/write mode as well as read-only or write-only.
Even though this is, in fact, allowed as a matter of C syntax, we will not use
read/write mode for text files. The basic problem is the implication that files with
no fixed record structure can nonetheless be accessed randomly rather than
sequentially. Consider the following text file that contains two numbers:

17.7 13.3330
...

where the D symbol represents an end-of-line mark and the A

symbol represents the initial position of a file pointer that is
created when the file is opened. Suppose you wish to read
values in the file and then change them; this is certainly a reasonable thing to do
with a file opened in read/write mode. You can think of read and write operations
as moving the file pointer from place to place in the file. After reading the first
number, 17.7, with an appropriate conversion specifier, the file pointer is
positioned on the space just after the 7:

426 • 10. Binary Files, Random Access, and Dynamic Allocation

17.7 13.3330
...

In order to replace the 17.7, you must move the file pointer backward to the 1 in
the text representation of 17.7. How many characters must you move the pointer?
In this case it's four. If you had just read the second number, 13.333, the file
pointer would be positioned on the end-of-line mark, and you would have to move
the pointer back six spaces to replace the 13.333.

This presents a problem because the positioning of the file pointer required
for read/write operations depends unpredictably on the representation of the value
and not just on the data type of the value. But that's not the only problem. What
happens when you try to write a new number? Because this is a text file, you
must supply a conversion format. Suppose you want to replace 17.7 with 187.345.
There is not enough room to print this number in a character-based representation
without overwriting some digits in the second value.

In principle, it is possible to overcome these problems. You could, for
example, impose a uniform format on all values saved in a text file. However,
read/write mode for text files really make sense only when their contents are being
accessed one character at a time. This is usually not very practical for the kinds
of problems addressed in this text, and it explains why we have used text files
only in read-only or write-only mode. As we will see, binary files can be used to
overcome these kinds of problems.

UO for Binary Files

The UO functions for binary files are fread and fwri te, with identical syntax:

int_variable=fread(address of first data object,
size of one data object,
number of data objects, pointer to file)

or (void)fread(...)

int_variab1e=fwrite(address of first data object,
size of one data object,
number of data objects, pointer to file)

or (void)fwrite(...)

The integer variable returned by fread is equal to the number of records
successfully read and the variable returned by fwri te is equal to the number of
records successfully written. Both functions are used in P-lO.1. A notable feature
of UO operations on binary files is that when read and write operations are applied
to records of s tructs, they operate on an entire record rather than one field at
a time. Consider, for example, the statements

10.1 Binary and Random Access Files • 427

fread(&station, sizeof (station_type) ,l,bin);
fwrite(&station, sizeof (station_tpe) ,l,bin);

These read or write an entire record of type station_type from or to a file.
To read or write the same infonnation from or to a text file would require code
something like this to read one value at a time:

fprintf(in, "%i %f\n",station.ID,station.rneasurernent);
fscanf(in, '%i %f',&station.ID,&station.rneasurernent);

The \n control character in the fprintf statement is optional, depending on
whether you would like the text file to retain a line structure that will make it
easier for humans to read. However, binary files aren't easily read by humans and
end-of-line characters make no sense. Binary files consist just of a stream of
bytes. There is no line structure and hence no end-of-line marks.

It is important to remember that the address-of operator is required for both
read and write operations on binary files, because infonnation is being copied
either to or from an address in memory. That is, the first parameter of both
fread and fwri te is the address of the data object being read or written and
not its variable name. Hence &station is required in the fwrite function,
rather than just station.

How is it possible to read an entire binary record at once? I/O on binary
files works by copying groups of bytes directly back and forth between a file and
computer memory, without any fonnat conversion. The definition of
station_type in P-lO.l tells your program, through the sizeof operation,
how many bytes are required to hold a record of type station_type. In the
above example, f read copies the appropriate number of bytes from the file into
the address of the variable s ta t i on. When a record is written to a file, the
reverse happens: bytes are copied directly from memory into the file. Note, by the
way, that the records in binary files don't have to be user-defined. They can also
consist just of intrinsic data types whose size can still be determined for a
particular C implementation with s i zeo f. However, every record in a binary file
should hold the same kind of data object.

Because the number of bytes in a binary record is fixed by the data type
of the field(s) in the record and not by the value(s) of the field(s), every binary
record contains the same number of bytes. That is, they are fixed-length records.
This makes random access easy to implement, as we shall see. For now, the code
in P-lO.I accesses the records in the binary file sequentially, after using the
rewind function to reset the file pointer to the beginning of the file:

I void rewind(pointer to file) I

428 • 10. Binary Files, Random Access, and Dynamic Allocation

Random Access to Binary Files

Previously, in P-lO.l, we created the binary file stations. bin and read it
sequentially from beginning to end. In P-1O.2, we will show how to read this
binary file in reverse order. Although this isn't a particularly significant
programming achievement, the program is important because of the information
it conveys about using binary files.

P-1O.2 [stationS. e]

/* Read data from stations.bin in reverse order. */
#include <stdio.h>
#define FILENAME "stations.bin"

typedef struct {
int ID;
float measurement;

int main(void)
{

FILE *in;
int n_recs,i;
station_type station;

in= fopen (FILENAME, "rb") ;
fseek(in,O,SEEK_END);
n_recs=ftell (in)/sizeof(station_type);
for (i=n_recs-l; i>=O; i--) {

fseek(in,i*sizeof(station_type),SEEK_SET);
fread(&station,sizeof(station_type),l,in);
printf("%5i %6.1f\n",station.ID,station.measurement);

}
fclose(in);
return 0;

First of all, P-1O.2 uses the binary file written previously by P-lO.1. In
order to use this file, it is essential to use a s true t to create a data type identical
to the one in P-lO.1. The names of the fields don't have to be the same (although
there is no reason why they shouldn't be), but the data types and the order in
which they appear must be the same.

How will we control the reading of the file in a loop? If we were reading
the file sequentially from beginning to end, we could use a conditional loop
similar to what we have used previously for text files:

while (1) {
status=fread(&station,sizeof(station) ,l,in);
if (status == 0) break;

10.1 Binary and Random Access Files • 429

The only difference is that f read returns a 0 if no record is found, rather than
EOF. This could also work for reading the file backward, using some syntax
similar to that in P-1O.2:

i=O;
while (1) {

i++;
fseek(in,i*sizeof(station_type) ,SEEK_END);
status=fread(&station, sizeof (station_type) ,1,in);
if (status == 0) break;
printf("%5i %6.1f\n",station.ID,station.measurement);

However, P-1O.2 illustrates another approach to determining ahead of time
how many records the file contains. With this knowledge, we can use a count
controlled loop rather than a conditional loop. First we need a way to set the
position of the file pointer. This is done with the f seek function, whose general
syntax is

int variable = fseek(pointer to file, byte offset, origin)
or lvoid)fseek(...)

where origin is SEEK_SET, SEEK_CUR, or SEEK_END

Together, the offset and origin determine where to move the file pointer
prior to a read or write operation. The offset value is in bytes and the origin
has one of three predefined values-SEEK_SET (offset measured from the
beginning of the file), SEEK_CUR (offset measured from the current position of
the file pointer), or SEEK_END (offset measured from the end of the file)-which
indicates the position from which the byte offset is to be measured. The f seek
function returns an integer value of zero if the seek operation is successful, and
nonzero otherwise. With properly written code, there is never any reason for
fseek to be unsuccessful.

Next we use the ftell function to find the current position of the file
pointer relative to the beginning of the file. Its general syntax is

I int variable = ftell(pointer to file) I

In P-1O.2, the statements

fseek(in,O,SEEK_END) ;
n_recs=ftell(in)!sizeof(station_type);

first position the file pointer to the end of the file (that is, with an offset of 0

430 • 10. Binary Files, Random Access, and Dynamic Allocation

relative to the end of the file) and then determine the number of records in the file
by dividing the return value from ftell by the size of the data object. This
division is guaranteed to be a whole number because every record has length
station_type.

A call to fseek is required whenever it is desired to read from or write
to a file at some place other than the current file pointer position. In P-1O.2,
because we want to read the file in something other than sequential order from the
beginning, we must use fseek to reposition the file pointer to
i*sizeof (stations_type) bytes from the beginning of the file before
every call to fread. The limits on the for ... loop control variable in P-1O.2
are tot_values - 1 and 0, rather than tot_values and 1. To position the
file pointer at the beginning of the last record in the file, the offset relative to the
beginning of the file must be one less than the total number of records in the file.
To position the file pointer at the beginning of the file, the offset must be zero.

10.2 Dynamic Allocation and Linked Lists

10.2.1 The Concept of Dynamic Allocation

In this section, we will consider some different ways to store and access data
within a program. These new approaches are significantly different from how we
have previously managed data, so we will devote considerable space to developing
the concepts before applying them to specific programming problems.

Previously, we have stored information in an array holding either intrinsic
or user-defined data types. As discussed in Chapter 6, space for arrays must be
statically allocated at compile time and cannot be changed once your program is
running.

An alternative is to allocate space for storing
information while a program is running; that is, at
runtime rather than at compile time. This is called
dynamic allocation. Dynamic allocation takes place in
an area of memory known as heap space, rather than
in the area known as stack space. One potential advantage is that there may be
more space available for dynamic allocation than there is for static allocation. An
additional advantage is that dynamically allocated space can be "released" and
reused while your program is running.

10.2.2 Dynamically Allocated Arrays

The simplest way to make use of dynamic allocation is to consider how to create
arrays whose size is set at runtime rather than at compile time. Program P-1O.3

10.2 Dynamic Allocation and Linked Lists • 431

shows a simple example of how to create an array of real numbers. In contrast to
earlier programs, however, this program does not contain a static array declaration.
Rather, the user is asked after the program starts running to specify how many
elements the array should hold.

P-lO.3 [calloc. c]

#include <stdio.h>
#include <stdlib.h>

void make_array(double *ptr,int n);

int main (void)

int i,n;
double *ptr;

printf("Give number of elements: ");
scanf ("%i" ,&n) ;
ptr=(double *)calloc(n,sizeof(double));
make_array(ptr,n) ;
for (i=l; i<=n; i++) {

printf("%lf\n",*ptr) ;
ptr++;

return 0;
}
void make_array(double x[],int n) {

int i;

for (i=O; i<n; i++)
x[iJ=100.*rand()/RAND_MAX;

The critical statement in P-lO.3, printed in bold italics, uses the calloc
function, whose general syntax is

pointer to data_type=(data_type *)calloc(n,sizeof(data_type))

where data_type is the data type of the elements of the "array" and n is the
number of memory locations to be allocated. The word array is in quotation marks
here because all calloc does is assign n*sizeof (data_type) contiguous
bytes in memory; it is up to the programmer to make use of this space in an
array-like way. The return value from calloc is a pointer to the first of the
allocated memory locations; this value is functionally equivalent to the name of
a statically allocated array or the memory location &x [0] for the statically
allocated array x. Note that it is required for the programmer to provide an

432 • 10. Binary Files, Random Access, and Dynamic Allocation

explicit type cast for calloc in order for the pointer it returns to be bound to the
appropriate data type.

In P-1O.3, you can see two approaches to making use of dynamically
allocated array space. For the function make_array, the function prototype
includes a pointer to values of type double, but the function implementation uses
array notation for this same parameter; we have already discussed the equivalence
of such parameters in Chapter 6. In particular, we know that functions do not
reallocate space for an array. Instead, they are passed the address of the first
memory location associated with an array. After that, it is the programmer's
responsibility to make sure that the program does not attempt to access memory
locations beyond those that have been allocated.

The advantage of this arrangement is that, inside a function such as
make_array, we are free to use a more natural index notation for generating
and manipulating values stored in the array. In the context of dynamic allocation,
the notational equivalence between a pointer and an array name followed by
empty square brackets (e.g., x []), may now make more sense: the bracket syntax
is simply a notational device to tell the compiler that we will be using index
notation to manipulate the contents of memory locations we have decided to treat
as an array, instead of the pointer notation that C actually uses to access
contiguous memory locations.

In the main function of P-1O.3, we have not used array notation because
there is no array declaration. However, it is still possible to access the elements
that have been allocated (that is, the elements we wish to treat as an array) by
incrementing the pointer. Again, this notation has been discussed in Chapter 6,
although we typically have avoided using it with statically allocated arrays, in
favor of index notation. As always, it is the programmer's responsibility to restrict
access to only those memory locations that have been allocated.

Dynamically allocated arrays are not always reasonable replacements for
statically declared arrays. In many of the problems in this text, starting with
Chapter 6, we have depended on an array to hold values read from a file of
unknown length. In that situation, we do not know how many memory locations
we will need until we have read the complete file. This means that we are no
more able to use calloc to allocate just the right amount of space while the
program is running than we are able to statically allocate an array of just the right
size. In the next section, we will examine another approach to dynamic allocation
that will allow us to allocate memory locations on the fly, so our program will
always have exactly the space it needs. If this sounds too good to be true, don't
worry-the price we will pay is that we will no longer be able to apply an array
like model when manipulating these memory locations.

10.2 Dynamic Allocation and Linked Lists • 433

10.2.3 Dynamically Allocated Linked Lists

As mentioned at the end of the previous section, a typical programming problem
involves processing data from an external file on the fly, without knowing ahead
of time how much data there will be. The solution posed in Chapter 6, and
extended to structs in Chapter 7, is to define a statically allocated array of
sufficient size to store the maximum amount of data that might be encountered.
At the time, we were willing to overlook the fact that this solution might waste
memory if the actual amount of data was less than we had anticipated. In addition,
this solution assumes that our programming environment is able to allocate the
required amount of space, an assumption that can easily prove unwarranted.

An alternative is to use a dynamically allocated data
structure called a linked list to store data. In a linked list, data
nodes are created that contain, in addition to data fields for the
information to be stored, at least one additional field-a pointer
bound to the data type of the node. Each data node, which is roughly equivalent
to an element in an array, is linked to at least one other node through its pointer
field. Access to the linked list is provided by a separate pointer that points to the
beginning of the list, where the definition of beginning depends on how the list
is going to be used.

In a linearly linked list, the pointer to the
beginning of the list points to the first node created.
Information in the list can be accessed only from the
begining and only in the forward direction from the oldest node (the first one
created) to the newest node (the last one created). The pointer field in each node
points to the next node in the list. The pointer field in the newest node has a value
of NULL to mark the end of the list.

Because of the way C treats arrays, by storing a pointer to the first element
in the array, a linked list is roughly equivalent to an array restricted to allow only
sequential access to its elements. That is, once you have accessed element n, you
can access element n + 1, but never element n - 1. This restriction is also similar
to the restrictions placed on sequential access files, in which to access a value
somewhere in the middle of the file, you must start at the beginning of the file
and read through all records prior to the one of interest.

It is possible to relax the restriction of sequential
access in only one direction by defining nodes with more
than one pointer. In a data structure called a doubly
linked list, each node has two pointers that can be interpreted as forward and
backward or left and right pointers to adjacent nodes. In this case, two additional
pointers must be saved, one to the oldest node and one to the newest node. It is
also possible to provide direct access to nodes other than the first node just by
saving pointers to these nodes.

434 • 10. Binary Files, Random Access, and Dynamic Allocation

Programs that use linked list structures have two basic components. First,
there is the structure of the node itself as defined through a struct. For our
purposes, every linked list contains nodes of s tructs because every node must
contain at least one data record and one pointer to another node. Second, there are
the algorithms required to manage the data in a linked list. It is important to keep
these two components separate. The code for creating and accessing linked lists
can (and should) be developed independently from the data contents of the nodes
in the list. Thus, in our discussion of linked lists, we will think of each data node
as a "black box" containing some data, along with a separate box for each pointer
field. We are generally unconcerned about the contents of the data box except in
a generic way, as in, "Store data in the node." As a result, the concept of a data
record becomes more abstract than it has been in the past.

To begin our exploration of linked lists, here is a sketch of a linearly
linked list.

>
I

J> (data)

NULL

The list contains several nodes, each of which is linked by a pointer to the next
node. The "handle" on the list is first-ptr, a pointer that points to the first
node in the list. This handle is roughly equivalent to the name of an array. The
end of the list is marked by the presence of a NULL pointer in the last node. It is
a linearly linked list because the nodes can be accessed only from the beginning
and only in the forward direction.

In order to use linearly linked lists, there are five essential operations that
must be implemented:

1. Create a list.
2. Access all nodes in a list.
3. Append a new node to the end of a list.
4. Add a new node within a list.
5. Delete a node from a list.

The algorithms for these operations are not conceptually difficult, but their
implementation requires a great deal of care because code involving pointers and
dynamic allocation is notoriously difficult to debug. To help with algorithm
development, we will invent a new pseudocode command,

10.2 Dynamic Allocation and Linked Lists • 435

NEW (pointer)

which creates a new node and associates a pointer with that node.
Here are algorithms for implementing each of the five required operations

on linearly linked lists. Each algorithm is in the form of a subprogram.

1. Create a list.

SUBPROGRAM Create_List(lN: source of data for nodes;
OUT: firsLpointer)

DEFINE currenLpointer

a. Create the first node in the list and save pointer to this node.

NEW (currenLpointer)
ASSIGN data fields in node
ASSIGN pointer field =NULL
ASSIGN firsLpointer =currenLpointer

b. Create the remaining nodes.

LOOP (as long as more nodes are needed)
NEW (pointer field of current node)
ASSIGN current node =pointer field of current node
ASSIGN data fields in current node
ASSIGN current pointer field =NULL

END LOOP

2. Access all nodes in a list.

SUBPROGRAM Access_List(lN: pointer to first data node (currenLpointer))
LOOP (while currenLpointer is not NULL)

WRITE (data fields in current node)
ASSIGN currenLpointer =pointer field of current node

END LOOP

3. Append a new node to the end of a list.

SUBPROGRAM Append_List(lN: pointer to first data node (currenLpointer))
(Move to end of current list.)
LOOP (while currenLpointer is not NULL)

ASSIGN currenLpointer =pointer field of current node
END LOOP

436 • 10. Binary Files, Random Access, and Dynamic Allocation

(Add new node.)
NEW (pointer field of current node)
ASSIGN currenLpointer =pointer field of current node
ASSIGN data fields in current node
ASSIGN pointer field of current node =NULL

4. Add a new node within a list.
This code assumes that a new node will be inserted after a specified node.

This code is relatively easy to write, but it may be more likely that you wish to
insert a new node before a specified node. This code is left for an end-of-chapter
exercise.

SUBPROGRAM InserLPrior(lN: pointer to first data node (currenLpointer),
search_condition)

DEFINE temp as pointer to node
LOOP (while currenLpointer is not NULL

and search_condition is not met)
ASSIGN currenLptr =pointer field of current node

END LOOP
IF (search_condition is met) THEN

NEW (temp)

[! current-ptr ~ temp

Br8 8
ASSIGN data fields in node to which temp points
ASSIGN pointer field of temp =pointer field of currenLpointer

[! current-ptr [! temp

W(lJ1

10.2 Dynamic Allocation and Linked Lists • 437

ASSIGN pointer field of current node = temp

Ccurrent-ptr [temp

~
(end IF)

5. Delete a node from a list.
This code assumes that the node after a specified node will be deleted.

This code is relatively easy to write, but it may be more likely that you would like
to delete a specified node itself rather than the node following a specified node.
Code to do this is left for an end-of-chapter exercise.

SUBPROGRAM Delete_After(IN: pointer to first data node (currenCpointer),
search_condition)

DEFINE temp as pointer to node
LOOP (while currenCpointer is not NULL

and search_condition is not met)
ASSIGN currencpointer =pointer field of current node

END LOOP
IF (search_condition is met and pointer is not pointing at last node)
THEN

ASSIGN temp = pointer to pointer field of current node
(i.e., temp points to node to be deleted)

ASSIGN pointer field of current node =
pointer field of next node

[
current-ptr
~ temp

8f~Br>···

438 • 10. Binary Files, Random Access, and Dynamic Allocation

"Deassign" location to which temp points to free up space.

Program P-lOA implements these algorithms. It creates a linearly linked list with
10 nodes and then displays the contents of each node. This is a "bare bones"
program in which the purpose of the linked list is not addressed at all. Thus each
node contains the bare minimum for the concept to make sense: one data field and
one pointer field. We will examine each part of the program in detail.

P-lOA [linklist.c]

/* Demonstrate linked lists. */
#include <stdio.h>
#include <string.h>
struct data_type
{

double data_field;
struct data_type *next-ptr;

} ;
typedef struct data_type data_type;

data_type *create_list();
void access_list (data_type *first-ptr);
void append_end(data_type *first-ptr,data_type new_data);
void append-post(data_type *first-ptr,data_type what,

data_type new_data,int (*compare) (data_type,data_type));
void delete-post(data_type *first-ptr,data_type what,

int (*compare) (data_type,data_type));
int compare(data_type x,data_type y);

int main ()
{

data_type *first-ptr,new_data,what;

first-ptr=create_list() ;
access_list (first-ptr) ;
new_data.data_field=9999.;
append_end (first-ptr, new_data) ;
printf("After append:\n");
access_list (first-ptr) ;
what.data_field=9999.;
new_data.data_field=8888.;
append-post(first-ptr,what,new_data,compare) ;
printf("After insert:\n");
access_list (first-ptr) ;
what.data_field=8888.;
delete-post (first-ptr,what, compare) ;
printf("After delete:\n");
access_list (first-ptr) ;

10.2 Dynamic Allocation and Linked Lists • 439

return 0;
}
int compare(data_type x,data_type y) {

if (x.data_field > y.data_field)
return 1;

else if (x.data_field < y.data_field)
return -1;

else return 0;

void access_list(data_type *ptr)
{

while (ptr != NULL)
{

printf (" %If\n'' ,ptr->data_field);
ptr=ptr->next-ptr;

}
data_type *create_list()
{

data_type *current-ptr, *first-ptr;
int i;

printf("Creating node l\n");
current-ptr=(data_type *)malloc(sizeof(data_type»;
current-ptr->data_field=lOO.O;
current-ptr->next-ptr=NULL;
first-ptr=current-ptr;
for (i=2; i <= 10; i+=l)
{

printf("Creating node %i\n",i);
current-ptr->next-ptr=(data_type *)malloc(sizeof(data_type»;
current-ptr=current-ptr->next-ptr;
current-ptr->data_field=100.0*i;
current-ptr->next-ptr=NULL;

}
return (first-ptr) ;

}
void append_end(data_type *ptr,data_type new_data) {

while (ptr->next-ptr != NULL)
ptr=ptr->next-ptr;

ptr->next-ptr=(data_type *)malloc(sizeof(data_type»;
ptr=ptr->next-ptr;
*ptr=new_data;
ptr->next-ptr=NULL;

}
void append-post(data_type *ptr,data_type what,data_type new_data,

int (*compare) (data_type,data_type»

data_type *temp;

while ((ptr != NULL) && (compare (*ptr,what) != 0))
ptr=ptr->next-ptr;

if (compare(*ptr,what) == 0) {
temp=(data_type *)malloc(sizeof(data_type»;
*temp=new_data;
temp->next-ptr=ptr->next-ptr;
ptr->next-ptr=temp;

440 • 10. Binary Files, Random Access, and Dynamic Allocation

void delete-post(data_type *ptr,data_type what,
int (*compare) (data_type, data_type))

data_type *tempi
while ((ptr != NULL) && (compare (*ptr,what) != 0)

ptr=ptr->next-ptri
if ((ptr != NULL) && (ptr->next-ptr != NULL)

temp=ptri
ptr->next-ptr=ptr->next-ptr->next-ptri

Problem Discussion
First of all, P-lO.4 contains some new syntax for accessing the fields in a

struct through a pointer to that struct. The first instances of this syntax in
access list and create list are printed in bold italics. In
create_list, the statement

current-ptr->data_field=100.0i

is identical to the statement

(*current-ptr) .data_field=100.0;

That is, current-ptr->data_field means "the contents of the
data_field field in the data object to which current-ptr points." Either
syntax form is acceptable, but the" - >" notation is a little more compact and is
preferred by many C programmers; we will use it extensively in the programs in
this chapter.

Data Declarations

The data record for the nodes in P-lO.4 is declared in a s truc t statement and
consists of a numerical field that serves as a placeholder for data in a real
problem, and a next-pointer field. The t ypede f statement allows the reference
to struct data_type to be represented by the alias data_type in
subsequent statements. Note, however, that the s truc t syntax used, which is
different from what we preferred in Chapter 7, is required because the struct
contains a reference to its own data type.

Function Prototypes

The c r ea t e_l i s t function requires no input in this example, but returns a
pointer to the beginning of the list. Hence its declaration as

10.2 Dynamic Allocation and Linked Lists • 441

In general, such a function needs to be data aware and, for example, would require
as input the name of a file from which would come the data to be stored in the
linked list.

The rest of the linked list manipulation functions are type void because
they do not need to return a value.

Function main

The minimum local variable requirements for managing the list include a pointer
to the head of the linked list of nodes of type da ta_type,

data_type *first-ptr;

and two nodes of type da ta_type, one containing new values to be added to a
list and another containing one or more search criteria in its data fields.

Creating the List

The most critical part of the code in P-lOA is creating the list. The
implementation requires that new memory be allocated for each node as it is
created. To do this, use the malloc function to allocate enough memory to store
a single data node, as has been done in the statements printed in bold italics. The
general syntax is

pointer to data_type=(data_type *)malloc(sizeof(data_type))

Compare this with the syntax of calloc in the previous section, which was used
to allocate memory for a block of structs. As with calloc, the programmer
must provide an appropriate explicit type cast for the pointer returned by malloc.

In create_list, the task of creating an entire list is divided into two
parts. In the first part, the first node in the list is created using variable
currentJ)tr. The data node is filled with a value, and the variable
firstJ)tr is assigned the value current-ptr. Clearly, based on this
example, it is okay to have more than one pointer pointing to the same node. The
step of saving a pointer to the beginning of a list is critical. Without this pointer,
the list will still occupy memory in heap space, but it will be useless because it
can't be accessed by your program.

442 • 10. Binary Files, Random Access, and Dynamic Allocation

The second step uses a count-controlled loop to create the remaining nine
nodes. If you were reading data from a file of unknown length, you would use a
conditional loop instead. Inside this loop, the new node is created and assigned to
the pointer field in the current node. Hence, the statement

current-ptr->next-ptr=(data_type *)malloc(sizeof(data_type»;

After this assignment, the statement

current-ptr=current-ptr->next-ptr;

moves the current pointer to the new node. Finally, the statement

current-ptr->next-ptr=NULL;

terminates the list. The same statement in the code prior to the loop is merely a
formality in this example, because you know ahead of time that there will be more
nodes. However, it is good programming style to "terminate" every new node in
a linked list as soon as you create it. If there are more nodes, then this NULL
value will be overwritten with a new pointer.

In P-IO.4, a single statement such as

current-ptr->data_field=lOO.O;

is responsible for assigning the single data field in a node. In a larger problem,
such statements could be replaced with a call to a separate function.

Accessing Nodes in the List

The function acces s_l i s t in P-lO.4 receives as input a pointer to the
beginning of the list. It then uses a conditional loop to step through the list one
node at a time, looking for the node containing a NULL pointer in its next-pointer
field. There is no need to define a local variable to hold the pointer, as it is passed
by value to the function (that is, the function operates on a copy of the original
pointer) so the value of the original pointer will be unchanged when control is
returned to the calling function.

Adding and Deleting Nodes

In order to make the code for adding and deleting nodes as generic as possible,
a separate function to compare data nodes is included in these functions'

10.2 Dynamic Allocation and Linked Lists • 443

parameter lists. This is the same approach used to make searching and sorting
code data-independent, as discussed in Chapter 8.

Because pointers in linearly linked lists always look ahead to the next
node, the easiest place to add or remove a node is after the current node. This is
not necessarily the best approach from a problem-solving point of view. As noted
earlier, alternative approaches are left as end-of-chapter exercises.

For the purposes of appending a new node to the end of a list, the current
code finds the end of the list by reading through all the existing nodes. It might
be worthwhile to store a pointer to the node to the end of the list so your program
can go immediately to this point. This code is left for an end-of-chapter exercise.

A minor modification of P-lO.4 would be to include a so-called header
node that contains no data. The header node would be created in the steps prior
to the loop and would be useful if the linked list were being created from data
stored in an external file. Suppose the external file is empty. You may still wish
to have a linked list associated with this file, even though the list doesn't contain
any data. In that case, the pointer field in the header node will be NULL and you
can test for this value to determine if the list contains any real data.

Note that functions for accessing and manipulating the data fields in a
linearly linked list are not aware of whether the list contains a header node. If the
list includes a header node, the calling argument is the pointer field in the node
to which firstJ)tr points (firstJ)tr .nextJ)tr) rather than
fir s tJ) t r itself. In some cases, it may be possible to store useful information
in the header node by using the existing data fields for some other purpose. For
example, any integer data field could be used to store the total number of data
nodes in the list.

Of course, there's nothing to prevent you from saving pointers to other
nodes in the linked list so that, in principle, you can access the list from
anywhere. However, you are still restricted to moving forward through the list
from any starting point. One useful pointer you could save is a pointer to the last
(and most recent) entry in the list. Then if you want to add a new record to the
list, you can go directly to the end of the list rather than starting at the beginning
and following the links through the list to the end.

It is very easy to become confused over the kind of code demonstrated in
P-lO.4. It is a good idea to write your own simple list-managing programs
containing only the essentials, to serve as models for larger programming projects.
Even though P-lO.4 may seem complicated, it is actually very modest in its goals:
to create a list, access its contents, and add or delete nodes. The actual purpose
of the list is of no concern for this demonstration program, which therefore has
no practical value.

444 • 10. Binary Files, Random Access, and Dynamic Allocation

10.3 Queues and Stacks

The linearly linked list has some important variants for managing different kinds
of data. These data structures are defined in an abstract sense by the kinds of
operations that can be performed on them.

The first such structure we will discuss is called a queue. Its
operation is analogous to a line (queue in British English usage) at
a theater. Newcomers (new nodes) enter the line at the end farthest
from the theater (the "tail" end), and people who have been waiting the longest
(old nodes) get into the theater first (from the head end). That is, a queue
implements a first-in/first-out data management model.

The second structure we will discuss is called a stack. This is
analogous to a stack of dinner plates. The old plates (old nodes) are
buried at the bottom of the stack and the newest plate (newest node)
added to the stack is also the first to be removed. That is, a stack implements a
last-in/first-out data management model. Each of these structures must be
supported by at least two basic operations: adding a node and deleting a node.
These are sometimes called push and pop operations.

10.3.1 1mplementing Queues

First consider a queue. Although it is linearly linked, two pointers are required
because push operations happen at the opposite end of the queue from pop
operations. We will call these two pointers the tail pointer and the head pointer.
The head pointer is to the old end (the end at the theater door, to use that
metaphor) and the tail pointer is to the new end (where arriving people join the
line). The interior nodes of a queue are never available, by definition, so there is
no need for code to search through all the nodes of a queue. Schematically, a
queue looks like this:

(oldest)

>

C tailJltr
>

J>(data)

NULL

(newest)

10.3 Queues and Stacks • 445

Program P-1O.5 shows how to create a queue and implement push and pop
operations.

P-1O.5 [queue. c]

/* Demonstrate queues. QUEUE.C */
#include <stdio.h>
#include <string.h>

struct data_type{
double data_field;
struct data_type *next-ptr;

} ;
typedef struct data_type data_type;

void create_queue(data_type **head-ptr,data_type **tail-ptr);
void access_queue(data_type *head-ptr);
void push_queue(data_type **tail-ptr,data_type new_data);
void pop_queue(data_type **head-ptr};

int main (void) {
data_type *head-ptr,*tail-ptr,new_data;
create_queue(&head-ptr,&tail-ptr};
access_queue (head-ptr) ;
new_data.data_field=9999.;
push_queue (&tail-ptr, new_data) ;
printf('After push:\n'};
access_queue (head-ptr) ;
pop_queue(&head-ptr);
printf("After pop:\n'};
access_queue(head-ptr};

return(O);
}

void access_queue(data_type *ptr} {
while (ptr ! = NULL) {

printf('%lf\n',ptr->data_field) ;
ptr=ptr->next-ptr;

}
void create_queue(data_type **head-ptr,data_type **tail-ptr) {

data_type *current-ptr;
int i;
printf("Creating node l\n");
current-ptr=(data_type *)malloc(sizeof(data_type}};
current-ptr->data_field=100.0;
current-ptr->next-ptr=NULL;
*head-ptr=current-ptr;
for (i=2; i <= 10; i+=l) {

printf("Creating node %i\n",i);
current-ptr->next-ptr=(data_type *)malloc(sizeof(data_type});

current-ptr=current-ptr->next-ptr;
current-ptr->data_field=100.0*i;
current-ptr->next-ptr=NULL;

}

*tail-ptr=current-ptr;

446 • 10. Binary Files, Random Access, and Dynamic Allocation

void push_queue (data_type **tai1-ptr,data_type new_data) {
(*tai1-ptr)->next-ptr=(data_type *)malloc(sizeof(data_type));
(*tail-ptr) = (*tail-ptr)->next-ptr;
**tai1-ptr=new_data;
(*tail-ptr)->next-ptr=NULL;

}
void pop_queue (data_type **head-ptr)

data_type *temp;
temp=*head-ptr;
(*head-ptr)= (*head-ptr)->next-ptr;
free (temp) ;

Running 10.5
The syntax in functions that return pointers

through their parameter lists is relatively obscure, so
these examples require careful study. However, the
operations performed on queues are conceptually
simpler than those for linearly linked lists because
nodes can be added to and deleted only from one end or
the other of the queue rather than to and from the
interior of the queue; these restrictions are, in fact, what
distinguish a queue from a linearly linked list. Finally,
note that pop_queue will delete even the last node in
a queue, leaving a pointer with a value of NULL.

A useful variant of a queue is a circularly linked
queue, in which the tail of the queue is linked back to
the head, rather than having a null pointer. In this way,
it is easy to access both the newest and the oldest node
in the queue without having to store two separate
pointers. The implementation of such a data structure is
left as an end-of-chapter exercise.

10.3.2 Implementing Stacks

In this special linked list, we need only a single pointer
because push and pop operations both occur at the "top"
of the stack. As with a queue, there is no need for code
to search through a stack because, by definition, only
the top node is available at any time. Thus, the code is
once again conceptually simple; its implementation is
left for an end-of-chapter exercise. Schematically, a
stack looks like this:

10.4 Application: Managing Data From Remote Instruments • 447

(newest)

>
I

J>(datal

NULL

(oldest)

10.4 Application: Managing Data From Remote Instruments

In this application, we will apply dynamic allocation and linked lists to a problem
addressed previously in Chapters 2 and 6.

1 Define the problem.

In Section 2.3, a programming problem was posed in which several remote
instrument stations reported measurements to a central data collection facility. The
reports were then assembled into a data file for processing. A station can submit
multiple reports, not necessarily sequentially, and it can submit up to eight
measurements in a single report. A program was presented with the limited goal
of counting the number of reports and the total number of measurements.
Modifications of this problem presented as Exercise 1 in Chapters 6 and 7
produced a program to keep track of the total number of reports and
measurements for each station. If you did Exercise 1 in Chapter 7, your program
should have used an array of structures whose index values 0 through 10 were
obtained directly from the station IDs, assumed to be numbers in the range 1000
through 1010.

An additional reasonable program requirement is to save each individual
report for future reference in the program. Also, we would like to remove the
somewhat artificial restriction that each report can contain no more than eight
measurements. The purpose of this exercise will be to write a program that will
provide access to all measurements contained in the data file, by station, in the
order in which the measurements were reported.

448 •

2
10. Binary Files, Random Access, and Dynamic Allocation

Outline a solution.

If you did Exercise 1 in Chapter 7, you should have defined an array
whose elements are structures holding the station report and measurement
summaries. One way to solve this new problem is to add an additional field to that
structure-an array of real numbers to hold all the measurements for each station.
(Remember that a structure can include an array as one of its fields.)

This approach has the advantage of making all measurements accessible
in the form of a two-dimensional table provided by the array of structures.
However, there is a potential disadvantage. Suppose that the number of reporting
stations is large, even though most of them won't be included in anyone data
report. Furthermore, suppose that the number of measurements that can appear in
a single report is no longer restricted to the maximum of eight as in the original
problem specification, even though the typical number of measurements reported
is much less than this maximum.

With statically allocated arrays, it is necessary to allocate enough memory
space to hold the maximum possible amount of data even if it is likely that most
of the space in the array will be wasted. Although this kind of potential
inefficiency may have no practical consequences, it is certainly possible that the
maximum space requirements for a statically allocated array will exceed the
available space in your programming environment.

An alternative approach to this situation is to use linked lists, which will
work whenever the total space required for data nodes does not exceed the
available heap space for your C implementation. For this problem, every time a
measurement is read from the data file, its station ID is noted and memory space
for the measurement is allocated on the fly. We would like to implement a
solution that will allow us to access all measurements through their station ID.
That is, the user should be able to specify a station ID and the program should
print all measurements reported from that station.

In order to meet this objective, we will use a series of linearly linked lists,
one for each station ID. There will still be a statically allocated array in this
solution, which will be used to manage access to the linked lists. Each element of
the array of structs will contain, in addition to the number of reports and total
number of measurements for a station, pointers to the first and last measurements
recorded for that station. Each data node includes the measurement itself and a
pointer to the next measurement for that station. The last measurement reported
for a station contains a NULL pointer. The linked lists are shown schematically in
Figure 10.1 for the data originally given in Section 2.3 of Chapter 2.

10.4 Application: Managing Data From Remote Instruments • 449

~
8

tjJtjJBBBBtjJB~
~r3
08

8r23
08

BtjJtjrtjJBtjJtjJj::~:1

BtjJtjrBBBtjstjsasj~:1

BBtjJBtjJtjrtjJBj::~:1

1:::1
(and so forth)

Figure 10.1. Representing station reports as a series of linearly linked lists.

In general, the advantage of maintaining a series of linearly linked lists is
that memory is allocated for data storage-measurements from remote stations,
in this case-only as it is needed. The advantage of this arrangement for the
current problem is certainly not obvious, because space for a single measurement
must now be augmented by the space required to store a pointer to the next data
node. However, the advantages become more apparent if there are many data
nodes and if each data node contains many pieces of information rather than just
a single measurement. Then the space required for a statically allocated table of
measurements in which most of the cells remain empty can quickly become
excessive.

450 • 10. Binary Files, Random Access, and Dynamic Allocation

Once the data structure shown in Figure 10.1 is implemented, we will be
able to access all the measurements for any specified station, in the order in which
they were reported. Also, we should be able to add one or more measurements
from any station as a result of processing another data file or by entering new
reports from the keyboard, and we should be able to remove measurements from
the list; implementing these features will be left as an end-of-chapter exercise.

3 Design an algorithm.

The critical part of the algorithm is the design of the loop that reads and
processes measurements from the data file. We will first sketch an outline of this
algorithm, which will require some careful thought (and probably several iterations
with code). The array A referred to in the outline is an array of structures
containing for each station the number of reports, the number of measurements,
and pointers to nodes containing the first and last reports from that station. To
simplify the code a little, the station IDs are defined so that the index into this
array can be derived from the ID itself. For example, the station IDs start at WOO,
so 1002 corresponds to an index value of 2 for a C array.

For each report:
1. Read the station ID and find the index for A that corresponds to the ID (AID)'
2. Update the number of reports for AID.
Inside a loop:
3. Read the measurements in each report one at a time.
4. Update the measurement count for the station in AID'
5. If this is the first measurement in the report:

(a) Create a new node.
(b) If this is the first report from this station, assign the first-position

pointer in AID to the new node. Otherwise, append the new node to
the end of the current list, using the last-position pointer in AID as
the reference.

Otherwise,
(a) Create a new node appended to the end of the current list, using the

pointer to the current node as the reference.
(b) Move the current pointer to point to the new node.

(end of loop)
6. After the termination of the loop that reads all measurements in a report, assign
the last-position pointer field in AID to the current node.

The third step in this algorithm outline, "Read the measurements in each
report one at a time," when the maximum number of measurements is unknown

lOA Application: Managing Data From Remote Instruments • 451

presents a programming challenge that we have addressed previously in program
P-6.11 from an application in Chapter 6.

4 Convert the algorithm into a program.

P-IO.6 [station3. c]

/* Read data from reporting stations. */
/* Includes individual station report summaries. */
#include <stdio.h>
#include <stdlib.h>
#define FILENAME "stations.dat"
#define N_STATIONS 11
#define MAX_REPORTS 8

struct data_type {
float measurement;
struct data_type *next;

} ;
typedef struct data_type data_type;

typedef struct {
int reports, measurements;
data_type *first, *last;
summary_type;

void Initializations(summary_type A[l ,int n);
void StationDisplay(summary_type A[]);
void ProcessingLoop(char filename[] ,summary_type A[]);

int main(void)
{
/* Declare array to hold initial pointers and summary. */

summary_type A[N_STATIONS] ;

int i;

/* Initialize summary/pointer array. */
Initializations(A,N_STATIONS) ;
ProcessingLoop(FILENAME,A) ;
for (i=O; i<N_STATIONS; i++)

printf("%4i %2i %2i\n",i+l000,A[i] .reports,A[i] .measurements);
/* Search through array of stations. */

StationDisplay(A) ;
return 0;

void StationDisplay(summary_type A[])
{

int i;
data_type *current;

for (i=O; i<N_STATIONS; i++)
if (A[i] .first != NULL) {

452 • 10. Binary Files, Random Access, and Dynamic Allocation

printf("%4i ",i+1000);
current=A[i] .first;
while (current != NULL) {

printf("%5.1f", (*current) .measurement);
current=(*current) .next;

}
printf (" \n");

}
void Initializations(summary_type A[] ,int n) {

int i;

for (i=O; i<n; i++) {
A[i] .reports=O; A[i] .measurements=O.;A[i] .first=NULL;
A[i] .1ast=NULL;

}
void ProcessingLoop(char filename[] ,summary_type A[]) {

FILE *in;
int IO,status=O,n_lines=O,n_values=O,index,i,tot_values;
double x;
char *line-ptr;
char one_line[80] ,seps[]=" \0";
float m;
data_type *new;

in=fopen(FILENAME, "r");

/* Start main data processing loop. */
tot_values=O;
while (1) {

line-ptr=fgets(one_line,sizeof(one_line) ,in);
if (line-ptr == NULL) break;
sscanf(line-ptr, "%i" ,&10);
line-ptr+=strspn(line-ptr,seps) ;

/* Update report summary fields. */
index=IO%1000;
A[index] .reports+=l;
n_lines++;
n_values=O;
while (1) {

line-ptr+=strcspn(line-ptr,seps);
if (*line-ptr == 0) break;
sscanf (line-ptr, "%f" ,&m) ;
line-ptr+=strspn(line-ptr,seps) ;
A[index] .measurements++;
n_values++;
tot_values++;
if (n_values == 1) {

/* Allocate space for first data node. */
new=malloc(sizeof(data_type)) ;
new->measurement=m;
new->next=NULL;

/* If this is the first node for this station, assign first ptr. */
if (A[index] .first == NULL) {

A[index] .first=new;

10.4 Application: Managing Data From Remote Instruments • 453

/* Otherwise, set current pointer to previous last pointer. */
else

A[index] .last->next=new;
}

/* Allocate more space as needed. */
else {
new->next=malloc(sizeof(data_type)) ;
new=new- >next i
new->measurement=mi
new->next=NULLi
}

}
A[index] .last=newi

}
fclose(in) i
printf("There are %i records and %i values.\n",

n_lines, tot_values) i

Running P-IO.6

5 Verify the operation of the program.

It is easy to write linked list code that doesn't work, and such code can be
very difficult to debug. However, if P-1O.6 correctly associates each of the
measurements in the s ta tions . da t file with the proper station, which can be
verified by comparing the output against the contents of the file, it is reasonable
to assume that the program will work for larger files, as well.

454 • 10. Binary Files, Random Access, and Dynamic Allocation

10.5 Exercises

1. Complete the problem discussed in Section 10.1.2, for which Program P-IO.1
is a partial solution. That is, modify this program so that it sorts the records by
measurement, from smallest to largest. Do not store the data in an array. To solve
this problem, you can use the sorting algorithms discussed in Chapter 8, but you
will have to modify the implementation of those algorithms to read and write
records in a file rather than accessing elements of an array of records.

2. Modify the create_list function in P-IO.4 so that it returns two
pointers-one to the beginning of the list and one to the end. Then modify
append_l i s t so that its input/output parameter is a pointer to the end of the
list rather than one to the beginning. This will make append operations more
efficient because you will no longer need to search through the list from the
beginning in order to append a new node.

Remember that C passes output through a parameter list by referencing a
pointer to the output quantity. In order to pass a pointer as output, the parameter
list must include a pointer to a pointer. The new function prototype should look
like this:

with two levels of indirection indicated by the double asterisk. [1 inkli s 2 . c]

3. Add a function to P-IO.4 that will enable the program to delete a specified node
in a linearly linked list rather than the node after a specified node.
[linklis2 . c]

4. Add a function to P-IO.4 that will enable the program to insert a new node
prior to a specified node in a linearly linked list rather than after a specified node.
[linklis2 . c]

5. Write a program similar to P-IO.5 that implements stack operations as defined
in Section 10.3.2. [s tack. c]

6. Write a program that implements a doubly linked list. Such a data structure
contains two pointer fields, one pointing to the left and one to the right. With such
a structure, you must save two nodes, one each for the left and right ends of the
list. You should be able to append/delete a node to/from either end of the list,
search in either direction for a node in the list, and insert and delete nodes inside
the list. [dbl_l ink. c]

10.5 Exercises • 455

7. Implement algorithms for a circularly linked queue as discussed briefly in
Section 10.3.1 and as shown schematically in the sketch below. Your program
should implement functions to add new nodes and remove old ones. In addition,
your program should set the maximum number of nodes in the queue. That is, the
queue should be thought of as defining a holding area (a buffer) of fixed size.
When the buffer is full, a new node should replace the oldest node in the queue.
This data management model is often used in dataloggers, for example.

(oldest)

>

c::::: tailJ)tr
>

J>(datal

Next

(newest)

8. Recalling the station measurement problem, write a program that works like
P-IO.6, but which permanently stores the results in output files. Your program
should produce one text file that stores the array created in P-IO.6 and one binary
file that stores the linked lists created when the program executes. In this case,
however, the pointer fields are replaced with record indices in a binary file.

The advantage of this approach is that, unlike the linked lists that exist
only while the program is executing, the binary file provides a permanent record
of station measurements stored in a particular way. Suppose that tomorrow you
wish to add some new reports. With the linked list approach, you must start all
over again and create linked lists with all the original reports before you can add
the new reports. With a file-based approach, you can open the previously created
file and append new measurements.

Extra Credit:
Modify your program so it will append data from new reports to an

existing set of files. [stationf. c]

Appendices

Appendix 1: Table of ASCII Characters for WindowsIDOS-Based PCS

Dec Hex Dec Hex Dec Hex Dec Hex
0 0 32 20 64 40 @ 96 60
1 1 9 33 21 65 41 A 97 61 a

2 2 • 34 22 66 42 B 98 62 b

3 3 • 35 23 # 67 43 C 99 63 c
4 4 • 36 24 $ 68 44 D 100 64 d

5 5 • 37 25 % 69 45 E 101 65 e
6 6 ~ 38 26 & 70 46 F 102 66 f
7 7 39 27 71 47 G 103 67 g

8 8 C 40 28 72 48 H 104 68 h
9 9 0 41 29 73 49 1 105 69

10 A [t] 42 2A * 74 4A J 106 6A j

11 B 0 43 2B + 75 4B K 107 6B k

12 C 'i' 44 2C 76 4C L 108 6C I
13 D » 45 2D 77 4D M 109 6D m

14 E ~ 46 2E 78 4E N 110 6E n

15 F {) 47 2F / 79 4F 0 111 6F 0

16 10 ~ 48 30 0 80 50 P 112 70 P
17 11 '" 49 31 1 81 51 Q 113 71 q
18 12 ~ 50 32 2 82 52 R 114 72

19 13 !! 51 33 3 83 53 S 115 73
20 14 ~ 52 34 4 84 54 T 116 74
21 IS § 53 35 5 85 55 U 117 75 u

22 16 54 36 6 86 56 V 118 76 v

23 17 t 55 37 7 87 57 W 119 77 w
24 18 i 56 38 8 88 58 X 120 78 x
25 19 J, 57 39 9 89 59 y 121 79 Y
26 IA ~ 58 3A 90 SA Z 122 7A z
27 1B ~ 59 3B 91 5B [123 7B {

28 IC 60 3C < 92 5C \ 124 7C I
29 10 H 61 3D 93 5D] 125 7D }
30 IE .. 62 3E > 94 5E /I 126 7E
31 IF '" 63 3F ? 95 SF 127 7F Ll

458 • Appendices

Dec Hex Dec Hex Dec Hex Dec Hex
128 80 <;: 160 AO a 192 co L 224 EO a
129 81 ii 161 Al 193 Cl .1 225 El B
130 82 e 162 A2 6 194 C2 T 226 E2 r
131 83 a 163 A3 U 195 C3 ~ 227 E3 1t

132 84 a 164 A4 ii 196 C4 228 E4 L
133 85 11 165 A5 N 197 C5 t 229 E5 (J

134 86 a 166 A6 198 C6 230 E6 I!
135 87

'"
167 A7 199 C7 I~ 231 E7 t

136 88 e 168 A8 i., 200 C8 11 232 E8 II>

137 89 e 169 A9 201 C9 If 233 E9 e
138 8A e 170 AA -. 202 CA J1 234 EA n
139 8B 171 AB Y2 203 CB 'if 235 EB 0
140 8C 172 AC 'A 204 CC I~ 236 EC 00

141 8D 173 AD 205 CD 237 ED cI>

142 8E A 174 AE « 206 CE JL 238 EE £lr
143 8F A 175 AF » 207 CF ,b 239 EF fl

144 90 E 176 BO I 208 DO JL 240 FO =

145 91 re 177 Bl • 209 Dl T 241 Fl ±
146 92 JE 178 B2 • 210 D2 1r 242 F2 ~

147 93 0 179 B3 I 211 D3 Ii 243 F3 ~

148 94 0 180 B4 -j 212 D4 b 244 F4 r
149 95 0 181 B5 9 213 D5 F 245 F5 J
150 96 fi 182 B6 ~I 214 D6

*
246 F6 +

151 97 U 183 B7 11 215 D7 247 F7
152 98 ij 184 B8 9 216 D8 + 248 F8
153 99 6 185 B9 ~I 217 D9 J 249 F9
154 9A D 186 BA II 218 DA

I
250 FA

155 9B ¢ 187 BB] 219 DB 251 FB ~

156 9C £ 188 BC 220 DC 252 FC n

157 9D ¥ 189 BD .II 221 DD

~
253 FD

158 9E Pt 190 BE J 222 DE 254 FE •
159 9F f 191 BF 1 223 DF 255 FF

Note: 0 is a null character, 32 is a space, obtained by pressing the space bar, and 255
is a blank.

Appendix 2: Program Listings by Chapter • 459

Appendix 2: Program Listings by Chapter

This appendix lists every complete program appearing in the text, along with the
names of data files if required. Program numbers marked with an asterisk are
found in the Applications section of the chapter. The source code and data files
for all listed programs are available on the Web site given in Section 6 of the
Preface.

Chapter 1
(There are no programs in this chapter except for the "Hello, world!" program to
type in for practice in using your computer system's C programming
environment.)

2.7

2.8

2.9

2.6

2.4
2.5

Chapter 2
2.1 hello. c
2.2 circle. c
2.3 oct.c

2.10* beam. c

Using the printf function
Calculate area and circumference of a circle
Demonstrate difference between %i and %d conversion
specifiers

c i rc I e_f . c Getting data from an external file (c i rc Ie. da t)
filetest. c Reading external data file using fscanf

(s tructur . da t)
filetes2 . c Reading external data file using fgets and sscanf

(structur.dat)
filetes3 . c Reading external data file with strings and numbers

(structr2.dat)
s ta t ions. c Reading external data file when each line contains a

different number of values (s ta tions . da t)
fileview. c Reading external data file one character at a time (user

supplied file)
Deflection of a supported beam under a central load
(beam.dat)

2.11 * re I_mas s . c Speed and relativistic mass of an accelerated electron
(reI_mass. da t)

Data files for exercises: wea ther .96, track. da t.

Chapter 3

3.1
3.2
3.3
3.4
3.5
3.6

ranges.c
operator.c
test_avg.c
math.c
circlepl.c
circlep2.c

Information about range and precision of C data types
Demonstrate use of various C operators
Demonstrate effect of explicit type casting
Demonstrate various C intrinsic math functions
Create simple user-defined functions with prototype
Create simple user-defined functions without prototype

460 • Appendices

3.7
3.8*
3.9*

atrn-pres.c
refract.c
hyperbol.c

Atmospheric pressure as a function of altitude
Refraction calculations using Snell's Law
Hyperbolic and inverse hyperbolic functions

4.11* snell.c

4.6(b) orbi ts2 . c

4.6(a) orbi tsl. c

Chapter 4
4.1 selectin. c
4.2 taxes. c
4.3 decibels. c
4.4 planes.c
4.5 trigtabl. c

elevator.c
dollars.c
quadratc.c
bearn2.c

Demonstrate selection constructs
Calculate income tax with income bracket selection
Characterize noise levels using if. . . construct
Demonstrate swi tch constructs
Generate table of trigonometric values using for ...
construct
Starting times for earth orbiting satellites, with pre-test
loop
Starting times for earth orbiting satellites, with post-test
loop
Controlling access to an elevator
Validate input values using if. . . construct
Solve quadratic equation
Calculate maximum deflection of a beam with various
support and loading options
Calculate table of refraction values using for ...
construct [snell.dat]

4.12* 1c . c Table of oscillating frequencies for an LC circuit
4.13* dose. c Simulating a radiation dose experiment
Data file for exercises: wea ther . da t

4.7
4.8
4.9
4.10*

Chapter 5

5.1 circlep3. c

ptr_derno.c
cooling.c
circl-p2.c
circl-p3.c
factoral.c
fibonaci.c
fibonac3.c
fib_func.c
fib_rnain.c

5.2
5.3
5.4
5.5
5.6
5.7
5.8(a)
5.8(b)
5.9(a)
5.9(b)
5.IO(a)func_arl. c
5.IO(b)func_ar2 . c
5.IO(c)func_ar3 . c

Demonstrate use of pointers to simulate pass-by
reference
Demonstrate use of pointers to do arithmetic
Newton's Law of Cooling
Additional uses of pointers as parameters
(modification of P-5.4)
Recursive evaluation of n!
Recursive evaluation of Fibonacci function
Using #include to copy source code file
Source code for function to evaluate Fibonacci function
Using extern and object file
Modification of P-5.8 to use . h header file
Print value of sin(x) in function
Print value of user-defined function in function
Print value of user-defined function passed as parameter

5.11 larger. c
5.12* quadrat2.c

5.13* prime. c

5.14* towers. c

5.15* trapezoi. c

Appendix 2: Program Listings by Chapter • 461

Demonstrate passing arguments to main function
Solve quadratic equation and return roots through
parameter list
Recursive algorithm to determine whether an integer is
prime
Recursive algorithm to solve the Towers of Hanoi
problem
Trapezoidal Rule integration

Data file for exercises:

Chapter 6
6.1 averages. c

6.2
6.3

6.4

6.5

6.6(a)

6.6(b)
6.7
6.8
6.9*
6.10*
6.11 *

arrays2.c
planets2.c

statistc.c

readaray.c

ozone.c

ozone_f.c
arrays3.c
strings.c
sierpins.c
prob.c
extract.c

Calculate average and display all values above average
[arrays. dat]
Passing arrays to a function [arrays. da t]
Store related information in parallel arrays
[planets. dat]
Calculate mean and standard deviation for an array of
random numbers
Read values into a two-dimensional array
[readaray . dal or readaray. da2]
Store ozone measurements in a two-dimensional array
[ozone.dat]
(partial) Passing two-dimensional arrays to a function
Array access using pointer notation [arrays. da t]
Treating strings as arrays of characters
Generate a Sierpinski triangle
Using string input to generate probability calculations
Extracting an unknown number of numerical values from
a string [stations .dat]
tempphil.dat

Chapter 7
7.1 structur. c
7.2 planets4 . c
7.3 circle_s. c
7.4* boundary.c

Storing data in a struct [structur. dat]
Store planet data in a struct [planets.dat]
Using a struct as the return data type of a function
Calculate perimeter and area of a plot of land
[boundary. dat]

7.5* complex. c Define operations on complex numbers
7.6* da talog8 . c Process data stored in a datalogger [aprO 6. da t]
Data files for exercises: hi_lo. da t, metal s . da t

Chapter 8
8.1(a) srchsort. c
8.I(b) srchtest. c

(partial) FindAll and FindOne search functions
Driver program for P-8.1

462 • Appendices

8.2 structu2. c Find measurements taken during a specified hour
[structur. dat]

8.3(a) srchsort. c (partial) BinarySearch function
8.3(b) bintest.c Driver program for P-8.3
8.4 namefind. c Comparing character strings [names. dat]
8.5(a) srchsort. c (partial) SelectionSort function
8.5(b) sort tes t. c Driver program for P-8.5 [arrays. da t]
8.6 srchsort. c (partial) InsertionSort function
8.7 srchsort. c (partial) QuickSort function
8.8* merge. c Merge two sorted lists [lista. dat, listb. dat]
Data files for exercises: drugbase. dat, drugbase. in, wildli fe. dat

Chapter 9
9.1 stats. c
9.2* windspd. c

9.3* falling. c
9.4 simpson.c
9.5* gamma. c

9.6 gauss. c

9.7 bisect2. c
9.8* circuit. c

Chapter 10
10.1 station4. c
10.2 station5. c
10.3 calloc . c
10.4 linklist. c
10.5 queue. c
10.6* station3. c

Calculate standard normal statistics
Apply normal statistics to windspeed data
[windspd.dat]
Apply numerical differentiation to data [falling. da t]
Implement Simpson's Rule integration
Apply Simpson's Rule integration to gamma function
(with unsatisfactory results)
Implement Gaussian elimination method to solve linear
equations [gauss. dat]
Implement bisection method of finding roots of equations
Current flow in a series LRC circuit (numerical solution
to differential equation)

Create binary file [stations. dat]
Read binary file in reverse order
Dynamic array allocation
Implement a linearly linked list
Implement a queue
Implement station reports as array of pointers to linearly
linked lists [stations .dat]

Appendix 3: Glossary • 463

Appendix 3: Glossary

ASCII character 2
collating sequence

assignment 2
statement

backsubstitution 9

batch mode 2

Term

algorithm

alias
ANSI-standard C

arithmetic mean
argument list

arithmetic overflow

array

array boundary
violation

array element

array index

batch program
big 0 notation

Ch. Definition

1 A step-by-step solution to a computing problem.

7 An alternate name for a data type in C.
1 The standard that defines the language syntax and

structure that all compliant C compilers must support.
9 The sum of n items divided by n.
3 A list of one or more values, variables, or

expressions passed to a function when it is called.
(See parameter list.)

3 A condition in which a calculation that a program is
asked to perform involves numbers larger than the
program can support.

6 A data object that provides access to a number of
related values through one or more indices.

6 A condition, not tested by C during compilation or
execution, in which a program attempts to access
an array element that does not exist based on the
declaration of that array.

6 One value in an array, accessed through an array
index.

6 The integer value that identifies a particular array
element. Multidimensional arrays require more than
one index to identify an element.
A code for representing characters, as defined by
the American Standard Code for Information
Exchange.
A statement that results in the value of an expression on
the right side of an = sign being assigned to a variable
on the left side of an = sign.
A process of calculating roots starting from the last
row in an upper triangular matrix.
A program mode in which a program completes its
task without human intervention during the time
program is executing. (In contrast, see interactive
mode.)

2 A program that runs in batch mode.
8 A symbolic way to describe the dependence of a

searching or sorting operation on the number of
items to be searched or sorted.

464 • Appendices

Tenn

binary file

binary fonnat

binary operator

binary search

boolean data type

bug
calling argument

command-line
interface

compile

compile-time error

compiler

component access
operator

conditional loop

control character

control structure

Ch. Definition

Any file whose contents are not representations of
characters.

10 A means of storing infonnation that does not use
character representations of numbers. (See binary
file.)

3 An operator that requires two operands, one appearing
on the left of the operator and the other on the right.
(In contrast, see unary operator.)

8 An algorithm that searches for an item in an ordered
list by continuously dividing the list into partitions,
ideally of equal size, one of which may contain the
desired value and the other of which cannot contain
that value.

3 A representation for variables that are restricted to the
values true and false.

2 A mistake in a computer program. (See debugging.)
3 A value, variable, or expression passed to a function

when it is called.
5 A text-based interface that allows a user to execute a

program by typing commands at the keyboard.
The conversion of source code into an executable
program.

2 An error, usually a syntax error, that is detected
during the compilation process. (In contrast, see
run-time error.)
A program that converts source code into machine
level instruction.

7 In C, the dot operator that gives a program access to
a field defined in a s true t.

4 A repetition (loop) structure in which the number of
repetitions is detennined while the loop is executing.

2 Any of several characters that can be included as part
of a character string or as part of the output fonnat string
associated with an output function such as printf.
These characters provide access to such nonprintable
characters as tab (\ t)or new line (\n).
A program statement or statements defining or modifying
the order in which other program statements are
executed.

Appendix 3: Glossary • 465

Term Ch. Definition

data-aware function 8

conversion specifier 2

2

9

9

6

5

5

8

A character string that tells C how an input function
should interpret characters typed at the keyboard or read
from an external text file.
A dimensionless value between 0 and I that is a measure
of how well a regression line represents data.

4 A repetition (loop) structure in which the number of
repetitions is specified prior to the start of the loop.
An approach to manipulating information in which the
allowed operations on the data are defined independently
of the nature of the data.
A function that operates on data objects of a specified
data type, as opposed to a function that operates on
a generic data type such as an array whose contents are
specified elsewhere.
A statement that associates variable names with a
specific data type.

7 A defined member of a s truct.
7 See data field.
10 One in a group of data entities created with, for example,

malloc, in which the relationship among entities is
maintained through the use of pointers to one or more
other entities of the same type.
An abstract structure for manipulating information in
which certain operations can be defined regardless of
the nature of the information.
Any of several representations, intrinsic or user-defined,
for information used by a program.

2 The process of looking for and correcting errors (bugs)
in a computer program.
Referring to the memory location to which a pointer
points.
One use for the * symbol, which allows a program to
reference the memory location to which a pointer points.

6 The storage space represented by one set of brackets in
a C array declaration. Arrays can have more than one
dimension.
A typically cumulative error resulting from the fact that
real number arithmetic is only an approximation.

7 See component access operator.
lOA series of data nodes in which pointers are maintained

to both the next and previous node.

debugging

data object

dereferencing
operator

dimension

dereferencing

data type

discretization error

dot operator
doubly linked list

data declaration
statement

data field
data member
data node

correlation
coefficient

count-controlled
loop

data abstraction

466 • Appendices

Tenn Ch. Definition

extent

function

global constant

header file
heap space

downward type cast 3 The process in which the value associated with an
intrinsic data type is assigned to a variable of a lower
data type, for example, float to integer, with a
possible loss of infonnation. (In contrast, see upward
type cast.)

dynamic allocation 10 The process of allocating memory space while a program
is executing, for example, with malloc. (In contrast,
see static allocation.)

2 One or more characters that mark the end of a file and
which can be detected by a program.

2 One or more characters that mark the end of a line in a
text file and which can be detected by a program.
A binary file containing instructions that can be
interpreted and executed directly by a computer.

3 An upward or downward type cast written explicitly into
the source code. (In contrast, see implicit type cast.)

6 The number of elements along a particular array
dimension.

2 A file accessed by a program while it is executing.
lOA pointer that keeps track of which location in a file

is immediately accessible to a program.
2 A number that can include a decimal part, as opposed

to an integer number.
2 A character string that tells C how to display values as

a result of calling an output function such as printf.
2 A C subprogram that, given appropriate input values,

perfonns specified calculations and returns one or more
specified values.

3 The code that implements the calculations that a function
is expected to perfonn.

3 The code that defines the infonnation interface for a
function, specifically its input and output.

2 A constant value defined previous to the main function
so that it is available to all functions in a program.

2 A file that contains one or more function prototypes.
10 A part of computer memory that can be accessed by

dynamic allocation functions such as malloc. (In
contrast, see stack space.)

floating-point
number

fonnat specifier

external data file
file pointer

function
implementation

function prototype

end-of-file (eof)
mark

end-of-line (eol)
mark

executable program
file

explicit type cast

Appendix 3: Glossary • 467

Term Ch. Definition

list

link

linked list

linear search

linearly linked list

3 An upward or downward type cast that takes place
because of discrepancies between data types appearing
to the left and right of an assignment operator. (In
contrast, see implicit type cast.)

indirection operator 5 An operator that accesses the contents of the memory
location to which a pointer points.

4 An unterminated count-controlled or conditional loop.
2 A series of bytes that can be interpreted as numerical

and other values by a C program.
2 A program mode in which a user must provide input

values while the program is executing, typically through
the keyboard. (In contrast, see batch mode.)

interactive program 2 A program running in interactive mode.
internal read 2 A process in which a C program can extract values from

a stored character string.
I Any of several functions for performing I/O, numerical,

and other calculations that are supported by the C
language standard. (In contrast, see user-defined
function.)

language extension 1 A language feature that is supported by a particular C
implementation but which is not supported by the ANSI
C standard.

linear regression line 9 A statistically derived best fit line through a collection
of data.

8 A searching algorithm that examines each item in a list,
starting typically at the beginning of the list.

lOA series of data nodes in which a pointer is maintained
to the next node in the list.

1 The process whereby a compiled program is associated
with previously compiled program elements, such as
I/O and math libraries, which are required for the
program to execute.

10 A series of data nodes in which one or more pointers
maintain a relationship between nodes in the list. (See
doubly linked list and linearly linked list.)

8 An abstract entity on which certain operations such as
searching and sorting can be performed. An array is one
example of a list implementation.

3 See boolean data type.

intrinsic function

infinite loop
input stream

interactive mode

implicit type cast

logical data type

468 • Appendices

member access 7
operator

modulus operator 3

nonstandard function 1

O(logzN) algorithm 8

O(N) algorithm 8

O(Nz) algorithm 8

O(NlogzN) algorithm 8

object code 5

operator 1

operator precedence 3
rules

parallel arrays 6

parameter list 3

partition 8

Term

loop counter

loop structure

machine language

main program

Ch. Definition

4 A value that keeps track of the number of times
statements in a loop have been executed. As a matter of
good programming style, loop counters in C should be
integers.

2 statements that provide the capability to execute one or
more statements more than once.
The native language in which computer instructions are
written, as opposed to a high-level language such as C.

2 The group of statements that maintain overall control of
the execution of a program, which typically includes
several subprograms. In C, the main program is
implemented as the main function.
See component access operator.

The arithmetic operator (%) that returns the remainder
from the division of two integers.
A function supported by a particular implementation of
C that is not supported by the ANSI C standard.
An algorithm for which the number of operations to be
performed on a list of size N is proportional to 10gzN.
An algorithm for which the number of operations to be
performed on a list of size N is directly proportional
to N.
An algorithm for which the number of operations to be
performed on a list of size N is proportional to NZ

•

An algorithm for which the number of operations to be
performed on a list of size N is proportional to NlogzN.
Compiled source code before it is linked with other files
to create an executable program.
A symbol that is used to perform arithmetic, logical,
and relational operations on one or more values.
The rules governing the order in which operators
appearing in a statement are executed.
Two or more arrays containing related information such
that an element of one array is associated with the same
element in the other arrays.
A list of type-declared placeholders for variables
appearing in a function prototype or implementation.
(See argument list.)
A subdivision of a list.

pivot value 8
pointer 2
postfix operator 3

post-test loop 4

prefix operator 3

preprocessor 2
directive

pre-test loop 4

procedural language I

procedural
programming

Term

pass-by-reference

pass-by-value

pseudocode

pseudocode
command

pseudorandom
numbers

queue

random number
generator

Appendix 3: Glossary • 469

Ch. Definition

5 A means of passing information to a subprogram
whereby the subprogram has direct access to the memory
location(s) occupied by a calling argument.

5 A means of passing information to a subprogram
whereby the subprogram has access only to a copy of
the contents of the memory location(s) occupied by a
calling argument.
The value used to separate a list into two partitions.
A variable whose value is an address in memory.
An increment/decrement operator in which the operator's
action is applied to a variable after the variable is used
in the expression.
A conditional loop in which the decision to terminate
or continue the loop is made at the end of the loop
rather than at the beginning.
An increment/decrement operator in which the operator's
action is applied to a variable before the variable is used
in the expression.
An instruction in source code to be carried out by a
compiler prior to the actual compilation step.
A conditional loop in which the decision to terminate
or continue the loop is made at the beginning of the
loop rather than at the end.
Any programming language that supports procedural
programming.
An approach to programming in which large tasks are
subdivided into several smaller tasks and solutions to
computing problems are implemented as a series of
algorithms applied to user-supplied information.

I A means of writing algorithms using generic
representations of statements in a real programming
language.
A generic command that can be represented with real
commands in a procedural language.

4 Algorithmically generated numbers that appear to be
random and which therefore can be assumed to be
random for a particular application.

10 A linked list characterized by operations at the head
and tail of the list. (In contrast, see stack.)

4 An algorithm that generates pseudorandom numbers.

470 • Appendices

Tenn Ch. Definition

Allocation of memory space that cannot be changed
while a program is executing. (In contrast, see
dynamic allocation.)
A language, such as C, that requires a programmer to
provide explicit data types for every variable.
Typically, the sum of the squares of the differences
between all individual values in a list minus the mean
of all values in the list.
An error that arises from violation of the syntax rules for
a programming language.
The set of rules that determine how statements can be
written in a programming language.
A table that specifies the outcome (true or false) of
evaluating two logical expressions joined by a relational
operator.

6

strongly typed
language

sum of squares 9
of the residual

syntax error 2

syntax rules 2

truth table 3

rank
recursive algorithm
run-time error

stack space

6 The number of dimensions in an array.
S An algorithm that calls itself.
2 An error that occurs when a program is executing.

(In contrast, see compile-time error.)
6 Unrelated values, each of which is represented by a

distinct variable name. (In contrast, see vector data.)
searching algorithm 8 An algorithm whose function is to locate one or more

items in a list.
6 An array property defined by its size and extent.
8 An algorithm whose function is to rearrange items in a

list so they are in ascending or descending order.
A text file containing instructions written according to
the syntax rules of a particular language.

lOA linked list characterized by operations taking place
only at the top of the list. (In contrast, see queue.)

10 A portion of computer memory available for declaring
variables, including statically declared arrays. (In
contrast, see heap space.)

9 A statistical measure of the variability of values in a
collection of values. The square root of the variance.

9 A statistical measure of the extent to which a model
represents values in a collection of data.
Intrinsic functions that manage 110 operations in C.

scalar data

standard error
of estimate

standard input/output 2
(110) functions

static allocation

standard deviation

source code file

shape
sorting algorithm

stack

unary operator 3

UNIX 1

upper triangular 9
matrix

upward type cast 3

Tenn

type casting

user-defined
function

variable

variable name

variance
vector data

Appendix 3: Glossary • 471

Ch. Definition

3 The act of reassigning a data type explicitly or implicitly
as a result of executing an assignment statement that
contains different data types on either side of the
assignment operator.
An operator that requires a single operand, appearing
to the right of the operator.
A popular operator system having an especially close
association with the C language.
A matrix in which all values below the left-to-right,
top-to-bottom diagonal are zero.
An explicit or implicit type cast in which a value is
promoted to a data type that can contain more
infonnation than the original data type; for example,
int to float. (In contrast, see downward type cast.

3 A function whose prototype and implementation are
provided by a programmer for use in a specific program
or included in a programmer-written library. (In contrast,
see intrinsic function.)
A unit of infonnation represented by a specified data
type.

1 The symbolic name by which a variable is known within
the source code for a program.

9 See standard deviation.
6 Related values organized within a user-supplied data

structure, typically an array. (In contrast, see scalar
data.)

Index
All intrinsic functions are indexed under "functions." Conversion and format
specifiers are listed under "specifiers" and are not individually indexed. Page
references to glossary definitions are not indexed.

76, 77
25, 29

#define 25
#include 24
% 76,77
& 30
&& 76,77

42
(...) 237
* (mathematics symbol) 7
* (operator) 76,77, 179
+ (mathematics symbol) 7
+ (operator) 76, 77
++ 76
- (mathematics symbol) 7
- (operator) 76, 77

-- 76
. (operator) 289
/ (mathematics symbol) 7
/ (operator) 77
/ * ... * / 23

56
< (mathematics symbol) 8
< (operator) 8, 76, 77
~ (mathematics symbol) 8
<= 76,77
=(mathematics symbol) 8
= (operator) 76, 77
:I: (mathematics symbol) 8
== 76,77
> (mathematics symbol) 8
> (operator) 76, 77
>= 76, 77
~ (mathematics symbol) 8
[...] 236
\ 73
I I 76,77

A
address-of operator 30

algorithms
design 2
efficiency 327
iterative 166, 192
partitioning 339
recursive 190
search 313, 314

binary 321
comparison of 322
linear 315

sorting 313, 328
comparison of 341
Insertion Sort 332
Quicksort 334
Selection Sort 328

alias 72, 287
ANSI-standard C 8
arithmetic mean 356
argument list 89
arguments

calling 89
function 89

arithmetic mean 356
arithmetic overflow 105
arrays 233

accessing 237, 256
and character strings 259
as function arguments 243
assigning values to 237
boundary violations 238
declaring 236
dimension 234
displaying 237
dynamically allocated 430
elements 236
extent 234, 242
implementation 235
in function calls 243
indices 237, 239
multidimensional 250
of structures 290
one-dimensional 235

474 • Index

arrays (continued)
parallel 246
pointers to 256
rank 234
shape 234
statically allocated 241
two-dimensional 251

ASCII character collating sequence 46
ASSIGN pseudocode command 4
assignment

operation 25
operator 76
statement 25

B
backsubstitution 385
batch mode 26
batch program 26
big 0 notation 327
binary file 22, 421, 422
binary format 421
binary operator 75, 77
binary search 321
bisection algorithm 394
boolean data type 6, 78
boundary violation, array 238
bug 55

C
card file data model 290
CALL pseudocode command 4
calling argument 89
cellular automata 262
case 128
character 6

control 73
reading and displaying 31
string 6
variable 31

CHOOSE pseudocode command 4
CLOSE pseudocode command 5
code

binary 22
merging object 194
merging source 193
modules, prewritten 193

code (continued)
object 194
source 21

collating sequence 46
command-line interface 199
comment 23
compile 21
compile-time error 55
compiler 9
complex numbers 298
component access operator 289
conditional loop 137
constants

global 25, 87
literals 57
named (see #define)

control character 30, 73
control structure 9, 123
conversion specifier 29, 73
correlation coefficient 359
count-controlled loop 131
current flow in a DC circuit 392
current flow in a series

LRC circuit 403

D
data

abstraction 314
declarations (see type)
field 287
initializing 40
member 287
node 433
object 233, 287
scalar 234
structures 287
types 6

derived (user-defined)
intrinsic 72
specifying and using 71

vector 234
data-aware function 314
datalogger, analyzing data from 302
debugging 55
define (see #define)
DEFINE pseudocode command 5

deflection of a beam 48, 145
degree to radian conversion

99, 106, 131, 134
dereferencing 182
dereferencing operator 182
differential equations

numerical solutions 399
Runge-Kutta method 402

differentiation, numerical 371
dimension 234
directive, compiler 24
discretization error 402
distribution, standard normal 356
division, remainder from 76
do 139
dot operator 289
doubly linked list 433
downward type cast 79
dynamic allocation 430

E
e 1 s e statement 124
else if statement 124
end-of-file (eof) mark 38
end-of-line (eol) mark 38
errors

compile-time 55
discretization 402
run-time 55
syntax 55

executable program file 21
execution, program 22
explicit type cast 79
expressions, relational 122
extent 235
external data file 26
external representation 28

F
factorial function 190
field

data 287
output 71
width 71

figures, significant 71, 73
FILE 36

Index • 475

files
access modes 424
ASCII (text) 46
binary 421
closing 37
data 26
direct (random) access 421
executable 21, 37
extent 234
external 38
input/output (I/O) 35, 426
object 194
opening 36, 424
pointer to 36, 425
random access to 428
reading 38
sequential access 421
source code 21
text (ASCII) 46
writing 36

floating point number 30
for 131
format specifier 28, 73
function 24
function argument list 89
function implementation 88
function parameter list 88
function prototype 88
functions

as arguments and parameters 196
intrinsic 8, 82
intrinsic ASCII-to-number

atof 201
atoi 201

input/output (I/O) 24
fclose 37, 85
fflush 85
fgets 41, 85
fopen 36,85
fprintf 38,85
fscanf 37,85
fseek 429
ftell 429
printf 28,85
rewind 427
scanf 29,85
sscanf 42, 85

476 • Index

functions (continued)
intrinsic math

abs 84
acos 83
asin 83
atan 83
atan2 83
ceil 84
cos 83
cosh 83
exp 84
fabs 84
floor 84
fmod 84
log 84
loglO 84
pow 84
rand 84
sin 83
sinh 83
sqrt 84
srand 84
tan 83
tanh 83

intrinsic string 262
strcat 262
strcmp 262
strcpy 262
strlen 42,262
strncmp 262
strncpy 262

memory allocation
calloc 431
malloc 441

nonstandard 8
recursive 190
user-defined 87

G
gamma function 380
Gaussian elimination 384
global constant 25

H
hard-coded 71
header file 24

heap space 430

I
index, array 237
indirection operator 179
if statement 40, 102, 124
IF...THEN...ELSE

pseudocode command 5,7, 123
implicit type cast 79
include (see #include)
INCREMENTpseudocode command 5
indirection operator 179
information flow 177
INITIALIZE pseudocode command 5
input

external 35
file 35
keyboard 26
stream 43

Insertion Sort 332
integration, numerical 376
interactive mode 26
interactive program 26
interface

command-line 199
function 188
information 177

internal read 41
iterative algorithms 166, 192
intrinsic functions (see functions)
inverse hyperbolic functions 100

J
Julian date (Julian time) 222

K
keyboard I/O 26
keyword 55
Kirchoffs Laws 392

L
language

extension 9
high-level 3
machine 9
procedural 2

language (continued)
pseudocode 3
syntax 3,21

LC circuit 151
leading zeros, reading 33
linear equations, solving 384
linear regression line 358
linear search 315
link 21
linked list

accessing 442
adding and deleting nodes 442
doubly 433
linearly 433

list 313
argument 89
parameter 88

local variable 88, 96, 103, 104
logical

data type 78
error
expression
numbers 6
operators

loop counter 132
LOOP...END LOOP

pseudocode command 5, 39
loops

conditional 136
count-controlled 131
counter variable 132
design considerations
do
do ... while
for input validation 142
infinite
nested 136
post-test 136, 138
pre-test 136, 137
structure 39
style 134

LRC circuit

M
machine language 9
main function 24
main program 24

Index • 477

matrix, upper triangular 384
mean

arithmetic 356
population 357
sample 357

member access operator 289
memory
menu-driven programs 184
merging sorted lists 342
modularization 87
modulus operator 75

N
Newton's formulas 371
nonblank separators, reading 33
numbers

complex 298
integer 6, 28, 105
reading and displaying 26
real 6,30

o
O(log2N) algorithm 327
O(N) algorithm 327
O(N2) algorithm 332
O(Nlog2N) algorithm 340
object code 194
OPEN pseudocode command 6
operating systems

MS-DOS 37
~ 20, 37, 194

operators
addition 7, 26
and 8, 122
arithmetic 7, 76
assignment 76
binary 75, 77
decrement 76
dereferencing 182, 213
division 7, 76
increment 76
indirection 179
logical 122
modulus 75
multiplication 7, 76
not 8, 122

478 • Index

operators (continued)
or 8, 122
postfix 78
precedence rules 75, 77
prefix 78
relational 122
subtraction 7, 76
unary 75,77

output
formatted 28
redirection 37
saving to file 36
to monitor 24, 25, 29

p
parallel arrays 246
parameter list 88
parameters, arrays as 244
parentheses, balancing
parsing a string of numbers 272
partition 335
pass-by-reference 180
pass-by-value 178
path name 36
perimeter and area of plot of land 295
pivot value 336
pointers

arithmetic 182
dereferencing 182
fields in nodes 434
in linked lists 430
in parameter lists 213
to arrays 246, 256
to files 36, 425
to variables 179

polynomial approximations
(numerical integration) 376

postfix operator 78
post-test loop 136, 138
precedence rules 75,77
precision 73
prefix operator 78
preprocessor directive 24
pre-test loop 136, 137
prime numbers, finding 204
problem solving, five-step process

procedural language 2
procedural programming 2
program

batch 26
compilation 9, 21, 25, 54
execution 21
interactive 26
layout 23
modularization 87
saving output from 36, 37
style 25, 31

programming, structured
pseudocode 3

commands 3
in algorithm development 3

pseudorandom numbers 157

Q
quadratic equation 143, 202
quality control analysis 276
queue 444
Quicksort algorithm 334

R
radiation exposure 154
random number generator 157
range of numbers 71, 72
rank 234
read, internal 41
Rectangular Rule integration 376
recursive functions 190
READ pseudocode command 6
redirection, output 37
refraction of light (see Snell's Law)
regression, linear 358
relational operator (see operators)
relativistic mass and speed 51
remote instruments, data from 485
representation of numbers 422
roots, finding

bisection method 393
Runge-Kutta method

run-time error 55, 57

S
scalar data 234

searching algorithm 313
binary 321
linear 315

selection constructs 123
Selection Sort 328
shape 234
Sierpinski Triangles 262
Simpson's Rule integration 377
Snell's Law 96, 148
sorting algorithms 313

efficiency of 341
Insertion Sort 332
Quicksort 334
Selection Sort 328

source code file 21
specifiers,

conversion and format 71, 73
speed of a falling object 372
stack 444, 446
stack space 430
standard deviation 356
standard error of estimate 359
standard input/output (I/O)

functions 24
statements, assignment 25
static allocation 241
statistics 356
Stirling's formulas 371
strings

as arrays of characters 259
declaring 41
concatenating 262

strongly typed language 6
structures

control 9
data (user-defined) 287
as parameters and data types 293
loop 39
repetition 9, 131
selection 9, 123
sequence

SUBPROGRAM pseudocode
command 6

Index • 479

sum of squares of the residuals 358
swi tch construct 128

syntax
errors 55
rules 21

T
text file 46
top-down design 20
Towers of Hanoi 206
Trapezoidal Rule integration 210, 377
truth table 78
type

casting 79, 90
declaration 25, 90

U
unary operator 75, 77
UNIX 20, 37, 194
upper triangular matrix 384
upward type cast 79
user-defined function 87

V
variable 6

character 31
declaring 25, 90
integer 28
local 88, 96, 103, 104
name 6
real 30
standard normal 357

variance 356
vector data 234
void 24,36,37,41,42

W
while 137
wind speed data 366
WRITE pseudocode command 6

