UNDERGRADUATE TEXTS IN COMPUTER SCIENCE

Editors
David Gries
Fred B. Schneider

Springer Science+Business Media, LLC

UNDERGRADUATE TEXTS IN COMPUTER SCIENCE

Beidler, Data Structures and Algorithms

Bergin, Data Structure Programming

Brooks, Problem Solving with Fortran 90

Brooks, C Programming: The Essentials for Engineers and Scientists
Dandamudi, Introduction to Assembly Language Programming
Grillmeyer, Exploring Computer Science with Scheme

Jalote, An Integrated Approach to Software Engineering, Second Edition
Kizza, Ethical and Social Issues in the Information Age

Kozen, Automata and Computability

Merritt and Stix, Migrating from Pascal to C++

Pearce, Programming and Meta-Programming in Scheme

Zeigler, Objects and System

David R. Brooks

C Programming:
The Essentials for
Engineers and Scientists

With 39 lllustrations

€Y Springer

David R. Brooks
Department of Mathematics
and Computer Science

Drexel University
Philadelphia, PA 19104
USA

Series Editors

David Gries

Fred B. Schneider

Department of Computer Science
Cornell University

Upson Hall

Ithaca, NY 14853-7501

USA

Library of Congress Cataloging-in-Publication Data
Brooks, David R., 1941-
C programming : the essentials for engineers and scientists /
David R. Brooks.
p. cm.— (Undergraduate texts in computer science)
Includes bibliographical references and index.
ISBN 978-1-4612-7161-1 ISBN 978-1-4612-1484-7 (eBook)
DOI 10.1007/978-1-4612-1484-7
1. C (Computer program language). 1. Title. Il Series.
QA76.73.C15B755 1998
500°.285'5133—dc21 98-31041

Printed on acid-free paper.
© 1999 Springer Science+Business Media New York

Originally published by Springer-Verlag New York, Inc. in 1999
Softcover reprint of the hardcover 1st edition 1999

All rights reserved. This work may not be translated or copied in whole or in part without the written per-

mission of the publisher (Springer Science+Business Media, LLC),

except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form
of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar

methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former
are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks

and Merchandise Marks Act, may accordingly be used freely by anyone.

Production coordinated by Robert Wexler and managed by Steven Pisano; manufacturing supervised by

Jacqui Ashri.
Photocomposed copy prepared from the author’s Word Perfect files.

987654321

ISBN 978-1-4612-7161-1

Preface

1 The Purpose of This Text

This text has been written in response to two trends that have gained considerable
momentum over the past few years. The first is the decision by many
undergraduate engineering and science departments to abandon the traditional
programming course based on the aging Fortran 77 standard. This decision is not
surprising, considering the more modern features found in languages such as
Pascal and C. However, Pascal never developed a strong following in scientific
computing, and its use is in decline. The new Fortran 90 standard defines a
powerful, modern language, but this long-overdue redesign of Fortran has come
too late to prevent many colleges and universities from switching to C. The
acceptance of C by scientists and engineers is based perhaps as. much on their
perceptions of C as an important language, which it certainly is, and on C
programming experience as a highly marketable skill, as it is on the suitability of
C for scientific computation. For whatever reason, C or its derivative C++ is now
widely taught as the first and often only programming language for undergraduates
in science and engineering.

The second trend is the evolving nature of the undergraduate engineering
curriculum. At a growing number of institutions, the traditional approach of
stressing theory and mathematics fundamentals in the early undergraduate years,
and postponing real engineering applications until later in the curriculum, has been
turned upside down. The result is a lab-intensive, tightly structured curriculum
with little time for elective courses such as programming in the early years. The
advantage of this approach is that, from the very beginning of their undergraduate
studies, engineering students spend a great deal of time participating in the
hands-on experiences that define the essential nature of engineering.

Nonetheless, many faculty and potential employers continue to believe that
learning a programming language is an important part of an engineering or science
education. Even if students never need to rely solely on their own programming
skills for solving computational problems, learning to program effectively provides
a unique opportunity to learn essential problem-solving strategies that are easily
transferable to other endeavors.

As a result of the restructuring of some engineering curricula, formal
programming courses may be delayed until after the freshman or sophomore years.
For example, students taking a course based on this text at Drexel University are
typically pre-juniors, as they are designated in Drexel’s five-year curriculum. They
have had work experiences through Drexel’s mandatory co-op program, and they
are expected to have had some significant exposure to computers, including
experience with specialized applications such as spreadsheets, statistical packages,
virtual laboratory software, or symbolic algebra software. Thus even though this
text does not assume a formal programming background, it moves quickly through

vi = Preface

introductory material by taking advantage of the fact that the intended audience
is no longer intimidated by the mechanics of using computers.

2 Decisions About Content

Even as the value of a formal programming course continues to be recognized, it
is widely conceded that, due to the pervasive availability of specialized computing
tools, such a course will no longer occupy the central position it once did in
undergraduate science and engineering curriculums. In recognition of this reality,
this text presents a problem-driven and somewhat abridged introduction to the C
programming language which will be useful to engineering and science students,
and which can be presented in a one-quarter or one-semester course.

C is a complex and sometimes obscure language that can be used for a
variety of purposes. Hence a short course aimed at a specific audience must have
limited and well-defined objectives. Within a problem-driven context, how should
these objectives be defined? I believe there are two essential considerations:

1. Engineering and science problems should be used to introduce programming
concepts based on the requirements of those problems, rather than the other way
around. As a result, even though C plays a major role as the fundamental language
underlying some operating systems and graphical interface applications, for
example, such uses of C are ignored in this text.

2. C’s interface with external sources of data should be emphasized. It is my
experience that students generally are reluctant to use a programming language
outside a course in which they are required to learn that language. If a short
course in C is to have a lasting impact as one of several tools science and
engineering students can and will use to meet their computational needs, a great
deal of practice with processing external data is necessary in order to develop the
skills required to write useful programs. Early exposure to using data in the form
of ASCII text files is especially important because C is less convenient for
manipulating text data than languages such as Fortran. Thus, more practice is
required to reach what I consider to be a useful level of proficiency.

During the one-quarter course I teach at Drexel University, I cover
Chapters 1 through 7 so that students learn these basic skills:

1. How to solve problems using top-down design and modularized code

2. How to implement the basic sequential, selection, and repetition control
structures of a procedural programming language

3. How to use C’s basic I/O functions

4. How to represent and manipulate data using arrays and structures

Preface ® wvii

This coverage leaves a little time at the end of the quarter for a brief look at one
or two applications from later chapters. A one-semester or longer course could,
of course, spend more time examining discipline-specific applications and general-
purpose numerical analysis algorithms taken from this text or elsewhere. It would
also be worthwhile to spend more time discussing pointers and their application
to dynamic memory allocation and linked structures.

3 Pedagogical Issues

In the interest of presenting an abridged course in C for science and engineering
students, I have minimized detailed discussions of programming concepts that
would be appropriate for a more intensive course taught to computer science
majors, for example. Therefore, this text attempts to teach largely through
example, by providing many complete programs. To put it another way, the text
emphasizes the how over the why of programming. At the same time, it strives
to present a general approach to solving problems and a programming style that
can be applied to other languages and also to other computing applications.

In order to gain maximum benefit from this text and its learning-by-doing
approach, students should spend as much time as possible studying the
programming examples. It is insufficient simply to read the code. Instead, students
should enter the code into their own computers (my own preference is for students
to manually type code rather than downloading it), run the programs, and try
various modifications. This is simply the only way I know to become comfortable
with the mechanical process of creating and debugging source code.

I have tried to present many of the code examples in the text as templates
for solving a particular kind of problem. It is especially important for students to
focus on recycling code from such examples into other programs. This is a skill
that requires practice because it is not always obvious which parts of a program
are specific to a particular problem and which parts can easily be transferred to
a different problem. Weekly computing labs, if offered as part of a course, are the
ideal place to practice working with code in this way.

With the advent of C++ and other object-oriented languages, it is certainly
possible to argue that a process-oriented approach to programming is old-
fashioned and needs to be replaced with a more modern object-oriented, problem-
solving model. However, I continue to believe that engineering and scientific
problem solving is inherently procedural; that is, it remains centered around
processes rather than properties. Hence, the procedural programming language
model will never be irrelevant for solving these kinds of problems.

In view of the fact that C and its derivatives are widely used for
commercial applications, it is worth commenting on the nature of the
programming examples given in this text and, by implication, the programs
students are expected to write. Commercial software applications should be

viii ® Preface

exceedingly robust in the sense that they should keep running no matter what, and
they should be as “idiot proof” as possible with respect to user input. It should be
obvious that no software developer can afford to market programs that crash,
although any user of commercial applications knows that this is apparently not as
obvious as it should be. Commercial programs should provide extensive testing
of the input supplied by the program user, and just this component of a program
can take a great deal of code. Consequently, a large percentage of the code for
commercial programs is devoted to the user interface, which is almost always
graphics-based.

In contrast, the programs in this text will be written exclusively in text
mode, mostly by the single user of that program. If such a program expects as
input a number in a specific range, it is reasonable in this context to assume that
the user will do that. If not, the program will crash or produce meaningless results.
If that happens, nothing is lost and the user simply starts over. To put it another
way, even though the design of an appropriate and robust user interface for
computer applications is an important topic in its own right, it is relatively
unimportant for a course based on this text. What is important is for students to
develop a working understanding of basic programming concepts, their
implementation in C, and their relationship to a particular class of computational
problems. In terms of user interface issues, it is sufficient for engineering and
science students in a first programming course to become proficient at choosing
appropriate representations for data and at prompting a program user to provide
just the information required to solve a problem—no more and no less—while
maintaining consistent physical units across the user-program interface.

4 The Programming Environment Used for This Text

I have used two different compilers to develop the programs in this text: an
ancient MS-DOS compiler—Microsoft QuickC—and Sun Microsystem’s cc
compiler for UNIX systems. The cc compiler resides on the computer that
provides e-mail accounts for all Drexel University students, so it has the advantage
of being widely available to students from every discipline. There are always some
students who prefer to use a different compiler, but because this text uses ANSI-
standard C and stresses straightforward rather than clever programming style, there
should be no compatibility problems. For an introductory programming course, I
can find no justification for asking students to overcome the additional learning
curve required to become proficient in the use of visual programming
environments for graphics-based operating systems such as Windows. The
extensive capabilities such environments provide for professional programmers
who develop large and complex applications is inconsistent with the goals of an
introductory course that requires writing many small standalone programs.

Preface = ix

Nonetheless, it is certainly possible for students to use such programming
environments if they wish.'

5 Succeeding at Learning a Programming Language

Finally, here is some advice to students about how to succeed in a programming
course. The first thing you need to know is what this text assumes about your
background. As noted above, you are expected to be computer literate in the sense
that you know how to use computers for word processing, e-mail, surfing the
Web, and perhaps solving some kinds of problems using applications such as
spreadsheets and database programs. Consequently, this text does not offer the
hand-holding introduction to computing that would be appropriate for neophytes;
this is an audience that has essentially disappeared from the colleges and
universities where this text is likely to be used.

If you have had some programming experience in another language, you
may find the material at the beginning of the text very simple. However, C is
sufficiently different from other languages that you will likely have a few
questions about implementation even with the early material. If you have never
done any computer programming, you may find the early material too terse and
insufficiently detailed. If so, you should ask your instructor for additional help as
soon as possible so you do not fall behind. You may also wish to study other
introductory programming texts that present material in a different way; my
experience is that good students rarely depend only on the assigned text.

My students often tell me that programming courses take more hours per
week, per credit hour, than any other course. This may simply be because it is
more obvious how to determine whether you have mastered the material; either
your program works properly or it doesn't! One way to minimize the work load
is to learn how to manage your time effectively. The basic rule is never to get
behind on programming assignments. Nothing is more frustrating than getting
stuck on a minor programming detail in the middle of the night before an
assignment is due. You can avoid this situation by starting early, finding out
where the difficulties are, and getting help as soon as possible. If your instructor
allows it, you should discuss programming problems with your peers; my opinion
is that it is unfair to ask students to learn a programming language on their own
without extensive interaction with their peers.

The first and best place to look for help on programming assignments
should be in your instructor’s office. Many students, especially those who have

'One programming environment used in my department at Drexel requires nearly a minute
to recompile and execute even a very short program. As beginning programmers need to write
many short programs and tend to make many mistakes, this environment is not an efficient
teaching or learning tool.

X ® Preface

been very successful in high school, apparently believe that asking for help is a
sign of weakness, to be done only as a last resort. However, in my courses, I
expect some, if not most, students to need help to complete at least some of the
programming assignments. The sooner you accept this fact and learn to view it as
a part of the learning process, as essential as going to class and taking tests, the
more successful you will be.

Finally, you must understand that it is as impossible to learn how to write
programs just by reading about programming as it is to learn to speak Russian by
reading about Russia. Although careful study of this or any other text is obviously
a good idea, the only way to succeed at programming is to write code—lots of
code. Only in this way can you develop your skills, determine what parts of the
language you don’t yet understand, and become proficient at finding and
correcting the inevitable errors that creep into your programs.

For most of you, it will not be enough just to write the programs that are
required for homework. In this text, I have tried to make homework exercises
interesting by dealing with real computational problems. As a result, the problems
themselves may require at least as much thought as the source code. In order to
solve such problems as efficiently as possible, you need to devote some time to
writing many short programs just to make sure you understand details of
implementation and syntax. If you don’t do that during the regular study hours
you devote to a course based on this text, writing homework programs may be a
very difficult and discouraging task, and you will never develop the proficiency
you need to concentrate on solving problems rather than on language
implementation details.

6 Contacting the Author

I look forward to hearing about your experiences with this text. You can contact
me at dbrooks @mcs.drexel.edu. You can find source code and data files for all
complete programs included in the text, and data files required for the exercises,
at http://www.springer-ny.com/supplements/dbrooks. Instructors can contact me
directly to obtain source code for my solutions to the programming exercises. The
names of the source code files are given in brackets at the end of each exercise.

7 Suggested Supplementary Material

I have presented in this text only what I consider to be the most relevant elements
of the C language for students of science and engineering. However, it is
inevitable that students and instructors will have questions about C that are not
addressed in this text; neither I nor any other textbook author can possibly

Preface ®» xi

anticipate all those questions. At least part of the solution is to supplement this
text with a language reference manual. The one I require for my courses is:

Herbert Schildt, C/C++ Programmer’s Reference, Osborne McGraw-Hill, 1997,
ISBN 0-07-882367-6.

8 Acknowledgments

I would like to thank my students, who collectively have lived through several
preliminary versions of this manuscript, and especially my partner, Susan
Caughlan, for her editorial oversight and for her many allowances for the time
required to complete this project.

David R. Brooks
Drexel University

Contents

Prefacec.iiiiiiiiiiiiiiiiiiiiiinersnenenresnnnes v
1 The Purpose of This Text v
2 Decisions About Content, vi
3 Pedagogical Issues vii
4 The Programming Environment Used for This Text viii
5 Succeeding at Learning a Programming Language ix
6 Contacting the Author X
7 Suggested Supplementary Material X
8 Acknowledgments xi

1 Programming Preliminaries i, 1
1.1 A Five-Step Problem-Solving Process 1

1.1.1 Step 1: Define the Problem 1
1.1.2 Step 2: Outline a Solution 2
1.1.3 Step 3: Design an Algorithm 2
1.1.4 Step 4: Convert the Algorithm Into a Program 3
1.1.5 Step 5: Verify the Operation of the Program 3
1.2 Defining a Pseudocode Language for Algorithm Development . . . 3
1.3 Organizing Pseudocode Into a Program 9
14 Examples 10
1.5 What Is the Point of Programming? 19
1.6 Your First CProgram 20

2 The Basicsof CProgrammingcc0ieieveraneeanns 23
2.1 CProgram Layoutcuiivininnunno.. 23
22 BasicInputand Output 26

2.2.1 Keyboard Input and Monitor Output 26
Reading and Displaying Numbers 26

Reading and Displaying Characters and Strings
of Characters 31

Reading Values With Leading Zeros and

Nonblank Separators 33
222File VO .. e 35
2231/0ORedirection, 37
2.3 Reading External Text Files of Unknown Length 38
2.4 Reading a File One Character ata Time 46
25 Applications 48
2.5.1 Maximum Deflection of a Beam Under Load 48
2.5.2 Relativistic Mass and Speed of an Electron 51
2.6 Debugging Your Programs 55
2.6.1 Compile-Time Errors 55
262Run-Time Errors 57

27 EXEICISES . . o v it e e e e 58

xiv = Contents

3 Data Types, Operators, and Functions00 71
3.1 Specifying and Using Data Types 71
32 0Pperators 75
33Type Casting 79
34 Intrinsic Functions 82
3.5 Simple User-Defined Functions 87
3.6 Applications 96

3.6.1 Refractionof Light 96
3.6.2 Inverse Hyperbolic Functions 100
3.7 Debugging Your Programs 105
3.7.1 Problems With Data Types and Casting 105
3.7.2 Problems With Intrinsic Functions 106
3.7.3 Problems With User-Defined Functions 107
BB EXErciseso 107

4 Selection and Repetition Constructscc00viveeenns 121
4.1 Relational and Logical Operators 121
4.2 Selection (IF...THEN...ELSE...) Constructs 123
4.3 Choosing Alternatives From a List of Possibilities 128
4.4 Repetition (LOOP...) Constructs 131

4.4.1 Count-Controlled Loops 131
4.4.2 Conditional Loops 136
Pre-TestLoops 137
Post-Test Loops 138
Loops for Input Validation 142
4.5 Applications 143
4.5.1 Solving the Quadratic Equation 143
4.5.2 Maximum Deflection of a Beam With
Various Support/Loading Systems 145
4.53 Refraction of Light 148
4.5.4 Oscillating Frequency of an LC Circuit 151
4.5.5 Calculating Radiation Exposures for a Materials
Testing Experiment 154
4.6 Debugging Your Programs 158
4T EXEICISES « v v v v et et e e e e 159

5 More About Modular Programmingcccoveeeeeens 177
5.1 Defining Information Interfacesin C 177
5.2 Menu-Driven Programs 184
5.3 More About Function Interfaces 188
54 Recursive Functions 190
5.5 Using Prewritten Code Modules 193

5.6 Using Functions as Arguments and Parameters 196

Contents XV
5.7 Passing Arguments to the main Function 199
5.8 Applications 202
5.8.1 The Quadratic Equation Revisited 202
5.8.2 Finding Prime Numbers 204
5.83 The Towersof Hanoi 206
5.8.4 Trapezoidal Rule Integration 210
5.9 Debugging Your Programs 213
5.9.1 Passing Multiple Outputs Through Parameter Lists .. 213
5.9.2 Recursive Functions 213
593 Reusable Code 214
STOEXEICISES . . o vt v vttt et 214
6 ATTAYS ..t iiieveennoronronerseasssassosesassnsoaenons 233
6.1 Arrays in Structured Programming 233
6.2 One-Dimensional Array ImplementationinC 235
6.3 Using Arrays in Function Calls 243
6.4 Multidimensional Arrayst 250
6.5 Accessing Arrays With Pointers 256
6.6 More About Strings 259
6.6.1 Strings as Arrays i 259
6.6.2 String Functions 261
6.7 Applications e 262
6.7.1 Cellular Automata and Sierpinski Triangles 262
6.7.2 Probability Analysis for Quality Control of
Manufacturing Processes 267
6.7.3 Parsing a String Containing an Unknown
Number of Numerical Values 272
6.8 Debugging Your Programs 274
6.9 EXEICISES oo v i 275
7 User-Defined DataObjectscc0iiveirenennenennss 287
7.1 Creating User-Defined Data Objects 287
7.2 Arrays of Structures e 290
7.3 Functions With Structures as Parameters and Data Types 293
7.4 Applications 295
7.4.1 Finding the Perimeter and Area of a Plot of Land ... 295
7.4.2 A Set of Functions to Perform Operations on
Complex Numbers 298
7.4.3 Analyzing Data From a Datalogger 302
7.5 Debugging Your Programs 307
TOEXEICISES oot 308

xvi m Contents

8 Searching and Sorting Algorithms 313
8.1 Introduction i 313
8.2 Searching Algorithms 314

8.2.1 Linear Searches 315
822 Binary Search 321
8.2.3 Choosing a Searching Algorithm 327
8.3 Sorting Algorithms 328
8.3.1 Selection Sort 328
832 Imsertion Sort 332
8.3.3 The Recursive Quicksort Algorithm 334
8.3.4 Efficiency of Sorting Algorithms 341
8.5 Application: Merging Sorted Lists 342
8.6 Debugging Your Programs 348
8.7 EXCICISES . o v v v vttt et e e 348

9 Basic Statistics and Numerical Analysisc.cu... 355
9.0 Introductiont 355
9.2 Basic Descriptive Statistics 356

9.2.1 The Sample Mean and Standard Deviation 356
9.2.2 Linear Regression and the Linear Correlation
Coefficient 358
9.2.3 Application: Analyzing Wind Speed Data 366
9.3 Numerical Differentiation 371
9.3.1 Newton’s and Stirling’s Formulas 371
9.3.2 Application: Estimating the Speed of a Falling
Object ...t 372
9.4 Numerical Integration 376
9.4.1 Polynomial Approximation Methods 376
9.4.2 Application: Evaluating the Gamma Function 380
9.5 Solving Systems of Linear Equations 384
9.5.1 Linear Equations and Gaussian Elimination 384
9.5.2 Application: Current Flow in a DC Circuit With
Multiple Resistive Branches 392
9.6 Finding the Roots of Equations 393
9.7 Numerical Solutions to Differential Equations 400
9.7.1 Motion of a Damped Mass and Spring 400
9.7.2 Application: Current Flow in a Series LRC Circuit .. 403
0.8 EXCICISES . . o v vt et ettt e e 411

10 Binary Files, Random Access, and Dynamic Allocation 421

10.1 Binary and Random Access Files 421

10.1.1 Random Access File Concepts 421

Contents = xvii

10.1.2 Implementing Binary Files 422

File Access Modes 424

I/O for Binary Files 426

Random Access to Binary Files 428

10.2 Dynamic Allocation and Linked Lists 430

10.2.1 The Concept of Dynamic Allocation 430

10.2.2 Dynamically Allocated Arrays 430

10.2.3 Dynamically Allocated Linked Lists 433

Data Declarations 440

Function Prototypes 440

Functionmainc.iiinnnn.n 441

Creating the List 441

Accessing Nodes in the List 442

Adding and Deleting Nodes 442

10.3 Queues and Stacks i, 444

10.3.1 Implementing Queues 444

10.3.2 Implementing Stacks 446

10.4 Application: Managing Data From Remote Instruments 447

105 Exercises oo v 454

ApPendiCesttt ittt ettt it 457
Appendix 1: Table of ASCII Characters for

Windows/DOS-Based PCs 457

Appendix 2: Program Listings by Chapter 459

Appendix 3: Glossary e 463

1

Programming Preliminaries

1.1 A Five-Step Problem-Solving Process

There are two basic skills you must develop while learning to write programs in
C. Obviously, you must learn details of the C programming language. However,
it is equally important to develop a consistent strategy for solving computational
problems that is independent of the language in which the solutions are
implemented. Thus a course based on this text is as much about learning how to
solve typical science and engineering problems with computers as it is about C per
se. The skills you develop will be applicable when you learn other languages, or
even when you use other kinds of problem-solving applications such as
spreadsheets and symbolic algebra software.

For the purpose of developing a consistent problem-solving strategy, this
text will follow this five-step procedure:

Define the problem.

Outline a solution.

Convert the algorithm into a program.

3 Design an algorithm.

Verify the operation of the program.

1.1.1 Step 1: Define the Problem

In the real world, it is often difficult to formulate problems in a useful way in the
context of the range of available problem-solving tools. In fact, defining a problem
appropriately is often a large part of the solution to that problem.

D. R. Brooks, C Programming: The Essentials for Engineers and Scientists
© Springer-Verlag New York, Inc. 1999

2 = 1. Programming Preliminaries

In an introductory course, you can assume that problems have been
formulated correctly. However, instructors can explain problems poorly or make
mistakes! Thus the first step is to make sure you understand the problem and can
restate it in your own words. It’s not possible to solve a problem you don’t
understand. Common mistakes that students make include solving only part of a
problem or providing a solution that doesn’t address the problem as stated. These
kinds of mistakes have nothing to do with programming per se.

1.1.2 Step 2: Outline a Solution

The second step is very informal, but important. You should focus on obtaining
information needed to solve the problem and especially on the nature of the
required input and output. Assignments in this course should provide you with
most of this information. This is so you can concentrate more on the programming
parts of the solution. However, you should be aware that many students have
difficulty thinking about solving problems in programming terms; that is, in terms
of specifying input to a procedure that processes information and returns output.

1.1.3 Step 3: Design an Algorithm

The third step is critical to writing successful programs. In a
programming context, an algorithm’ consists of specific steps to
be followed in sequence to attain a clearly defined goal. This
may seem obvious, but a common problem students encounter when they begin
to write programs is that the algorithm on which the program is based, either as
explicitly written or implicitly assumed, makes no sens

To the extent possible, algorithms should :
be language independent. In some cases, the
problem may be simpler to solve in one language
than another, so the algorithm may depend
somewhat on the capabilities of the language that will eventually be used to write
the program. More typically, however, problems in this course can be solved with
equal ease using any procedural language—C just happens to be the language of
choice. The purpose of learning to write algorithms is not only to help you
organize your thoughts about a particular problem, but also to introduce you to the
concepts of procedural programming, with the understanding that these concepts
apply to all procedural languages, not just to C.

'Words appearing in the text in bold italics are defined in the glossary (Appendix 3).

1.2 Defining a Pseudocode Language for Algorithm Development = 3

1.1.4 Step 4: Convert the Algorithm Into a Program

The fourth step in the process is the only language-specific step, in which you will
translate your algorithm into a C program. We will discuss this step in great detail
in subsequent chapters.

1.1.5 Step 5: Verify the Operation of the Program

The fifth step—verifying your program’s operation—is often overlooked.
Beginning programmers can be so overjoyed at writing a program without syntax
errors that they assume the answers the program produces must be right. This is
a dangerous assumption! It is wiser to assume that programs produce incorrect
answers unless proven otherwise. If you are lucky, incorrect errors will look
obviously wrong. However, it is common for incorrect answers to look as
reasonable as correct answers.

You can often verify a program’s operation by checking representative
calculations by hand, and you should do this whenever possible. However, if it
were easy to check answers by hand, you probably wouldn’t have needed to write
a computer program in the first place. In any case, devising a strategy for
verifying your solutions is an essential part of solving computational problems.

In the earlier days of computer science, computer programming was
considered a worthwhile skill on its own. In the extreme, the science and art of
writing elegantly constructed computer programs overshadowed the nature of the
problems being solved. Now, however, students from many disciplines must learn
to write computer programs, and correct answers presumably matter in all those
disciplines. If you overlook this fact, you will eventually be sorry, if not in one
of your courses, then in your first on-the-job programming assignment!

1.2 Defining a Pseudocode Language for Algorithm Development

The algorithm development step, Step 3 in the
problem-solving process, can best be undertaken
using what is often called pseudocode because the
resulting step-by-step instructions look something
like the instructions you write in a high-level programming language.” However,
the instructions in the pseudocode don’t have to, and generally won’t, look exactly
like commands in a specific language. Pseudocode commands should specify an

ZAn alternate approach, traditionally favored by Fortran programmers but largely abandoned in
modern programming style, is to use flowcharts consisting of standardized symbols, lines, and
arrows to illustrate the steps in a program.

4 = 1. Programming Preliminaries

action to be taken without being restricted by the syntax details of a particular
language. Basically, your algorithm will consist of a series of action commands
which, when translated into a real programming language, will tell your computer
what to do. With this in mind, an informal language is useful to express these
commands. There aren’t any syntax rules for this language. However, it is
important to define a set of actions that are common to all procedural
programming languages. C is one such language, but certainly not the only one
to which this pseudocode language could apply.

The list of such action commands is short because the list of basic actions
that can be taken within a program written in a high-level procedural language is
short. If you keep a description of this command language nearby when you start
to solve problems and write programs, you should be able to focus on the logical
design of the program without worrying about the syntax details.

Carefully written pseudocode should be relatively simple to convert to a
working program. This process emphasizes the fact that C, even with its
seemingly endless implementation details, is not an arbitrary or inherently
complicated language. In fact, it provides a simple and efficient mechanism for
transforming an algorithm—a problem solution—into a working program.
Remember that the problem solution comes first, then the program. Here is a list
of pseudocode action commands, in alphabetical order. Some of the terminology
may be unfamiliar now, but new terms will be explained as we need them later
in the text.

ASSIGN
Set a variable equal to a value, another variable, or an expression. See also
the INCREMENT and INITIALIZE commands.

CALL

Invoke a subprogram. (See SUBPROGRAM.) Your use of this command
should describe information flow between a subprogram and the point in your
pseudocode from which the CALL is invoked. It is especially important to
differentiate between input to and output from the subprogram. The ability to
modularize a program by creating subprograms is an essential element of modern
programming languages.

CHOOSE

This implies that a choice of actions can be taken based on a restricted list
of possibilities—responses to a menu of choices, for example. Often, each
response may be no more than a CALL to a SUBPROGRAM that takes action
appropriate to a particular choice.

1.2 Defining a Pseudocode Language for Algorithm Development = 5

CLOSE

Close an open file.

DEFINE

Define variables and user-defined data types. In this section of your
pseudocode, you should think about the kinds of variables and data objects, such
as arrays, your program will need. It is especially important in scientific and
engineering work to give physical definitions and units when you define variables.

IF...THEN...ELSE...

If something is true, then take a specified action. If it is false, then take
some other action. The ELSE... branch is optional, as there may not be an “else”
when the “if” isn’t true. In many languages, the sequence of actions can be
extended:

IF...THEN...ELSE IF...ELSE IF...ELSE...

In any case, implementation is based on the existence of relational operators, as
discussed later in this chapter.

INCREMENT

This is a special type of assignment command used to indicate operations
such as X = x + 1. (We’ll discuss later the significance of this expression, which
has a clearly defined meaning in programming even though it makes no sense as
an algebraic expression.) It is often used inside loops to count the number of times
actions inside the loop have been taken.

INITIALIZE

This is a special kind of assignment command used to indicate that a
variable must be given an initial value before it can be INCREMENTed. This is
often required before a loop is started.

LOOP (conditions)...END LOOP

Execute instructions inside the loop repeatedly until (or as long as) certain
conditions are met. Loops may be pre-test, post-test, or count-controlled. With pre-
test loops, a condition is tested before the instructions inside the loop are
executed. Depending on conditions in the program, the instructions inside the loop
may never be executed. With post-test loops, a condition is tested after
instructions inside the loop are executed. As a result, instructions inside the loop
will always be executed at least once. Count-controlled loops are appropriate when
your program knows prior to starting a loop how many times to repeat the
instructions inside that loop. Under some conditions, the instructions inside a
count-controlled loop may never be executed.

6 = 1. Programming Preliminaries

OPEN
Open an external file for reading or writing.

READ
This is the basic command for passing information to a program. The
source of information is typically either the keyboard or an external data file.

SUBPROGRAM
This command marks the start of a subprogram module. Use it to specify
the flow of information between parts of a program. (See CALL.)

WRITE
This is the basic command for displaying or saving output from a program.
The destination is typically either the monitor screen or an external data file.

To what do these action commands apply?
Often, they define actions performed on values
stored in your program. At the machine level,
many of these commands result in changes to the
contents of specific memory locations. At the
programming level, these memory locations are
referred to symbolically by names. These names are called variable names or
variables. In strongly typed languages such as C, variables are always associated
with specific data types. High-level languages typically support several different
kinds of data, as shown in Table 1.1.

Table 1.1. Data types supported by high-level languages

integer numbers -30000, 17

real numbers 6.5x10°, -0.002

characters a, A, _&, -

strings of characters This is a character string.
L logical (boolean) variables | true, false

When you design algorithms to solve problems, you must think carefully
about the kinds of information your program will require, and you should choose
appropriate names and data types for this information. Beginning programmers
often overuse the integer data type when real numbers would be more appropriate;

1.2 Defining a Pseudocode Language for Algorithm Development = 7

this is an easy mistake to make when physical values are expressed as whole
numbers. For example, temperature is often expressed as a whole number, such
as 70° Fahrenheit, even though it is more appropriate to represent temperatures as
real numbers rather than integers. On the other hand, integers typically require less
memory space and allow faster and more accurate arithmetic operations than real
numbers, so their appropriate use can result in faster program execution times and
more efficient use of your computer’s resources.

In addition to action commands, various operators need to
be part of a pseudocode language; without them you couldn’t
perform the mathematical operations that are at the heart of many
calculations. Table 1.2 shows some basic mathematical operators that are
supported by high-level programming languages.

Table 1.2. Mathematical operators supported by high-level languages

addition +

subtraction -

multiplication e, X, or implied

division /or +

The operations +, —, ¢, or X, and / or + are familiar. Multiplication is often
implied; in the algebraic expression y = ax + b, ax implies “a times x.” As we
will see, C supports all these mathematics operators as well as several others.
Note, however, that C does not support an exponentiation operator. That is, the
operation x’ cannot be implemented directly with operator notation.?

Finally, relational and logical operators are needed to construct IF...
THEN...ELSE... statements. These are given in Table 1.3. We will discuss the C
implementation of all these operators later.

In contrast, x’ can be represented in Fortran by the expression x *y.

8 = 1. Programming Preliminaries

Table 1.3. Relational and logical operators

= equal to

not equal to

< less than or equal to

2 greater than or equal to
< less than

> greater than

“and” logical “and”

“not” logical “not”

“or” logical “or”

Finally, keep in mind that any high-level language
will include some built-in functions, called intrinsic
Junctions, that allow you to perform common
calculations without having to reinvent the code every time you write a program.
Some functions—for example, trigonometric functions such as sin(x)—are
common to many procedural languages. Computers don’t have any inherent ability
to evaluate these functions. When a programming language supports a function
such as sin(x), it means that the language can call upon a predefined algorithm to
evaluate the function in terms of basic mathematical operations. This is done
automatically and the programmer usually doesn’t even have to be aware of how
the calculations are performed.

The advantage of intrinsic functions as part of a programming language
standard is that you can depend on the availability of these functions no matter
which version of the language you use. When you convert an algorithm into a
working program, it’s important to be aware of the functions a language supports
as part of its standard. C has a relatively limited set of intrinsic mathematical
functions compared to Fortran, for example, but more than Pascal. A list of C
intrinsic functions will be given in Chapter 3.

Specific implementations of C and other
languages usually include many nonstandard
language extensions, including nonstandard
Junctions. For example, implementations of C and
its derivatives, such as C++ for Macintosh or
Windows-based computers, may include extensions that deal with the graphical

1.3 Organizing Pseudocde Into a Program = 9

user interface presented by the operating system. These can be important for some
programming applications, but this course will concentrate on ANSI-standard C,
a language with a text-based interface.

1.3 Organizing Pseudocode Into a Program

Once you understand the elements of a pseudocode
language for developing algorithms, you must organize
these elements in an appropriate way. Specifically, you
have to think about how to get from the beginning of
your algorithm to the end; this may seem obvious, but it is often a problem for
beginning programmers. Steps in an algorithm are executed one at a time. When
you transform your algorithm into a program, the steps in that program are also
executed one at a time. For all practical purposes, the compiler that converts your
program into machine language is restricted in the sense that it can never look
ahead. When you tell it to do something, it must have all the information it needs
to execute that instruction.

Does this mean that every statement in a program must necessarily be
executed one step at a time in sequence? To put it another way, is it impossible
to write code that deals with the programming equivalent of coming to a fork in
the road? No. However, the alternatives are limited and very specific. There are
only three basic ways to control the order in which steps in an algorithm or
program are executed:

1. Sequence

Steps are performed one after the other in sequence. Each step is
performed once and only once. See the ASSIGN, INITIALIZE, and INCREMENT
pseudocode commands.

2. Selection

One of several alternative sequences of actions is selected and executed,
bypassing the other alternatives. See the IF...THEN...ELSE and CHOOSE
pseudocode commands.

3. Repetition
One or more steps are performed repeatedly until a terminating condition
is met. See the LOOP...END LOOP pseudocode command.

It is a basic programming principle that any algorithm can
be implemented using a combination of these three
control structures. Sequence structures are implemented

10 = 1. Programming Preliminaries

simply by writing consecutive statements. As we will see, languages such as C
have specific syntax for implementing selection and repetition structures.

1.4 Examples

Once you understand pseudocode commands, operators, functions, and control
structures, you are ready to combine these pieces into an algorithm. In this section,
we will develop algorithms for some simple problems, using the formal five-step
problem-solving procedure outlined above. For now, we will skip the fourth
step—the writing of an actual program—since it will be the topic of the rest of
the text. These problems, except for the last one, may appear to be very simple,
but it’s important to practice applying a formal step-by-step approach that will
work even when the problems aren’t so easy.

Pseudocode Problem #1

1 Define the problem.

Find the largest and smallest score in a list of scores. Calculate the range
of the scores.

2 Outline a solution.

1. Assume that the first number in the list is both the largest and the smallest
score.

2. As you read each subsequent score in the list, reassign the largest and smallest
score as required.

3. The range is the largest score minus the smallest.

This approach for finding the largest and smallest scores may not be
intuitive. Consider this list of five numbers:

15 11 8 21 17

You can easily find the largest and smallest numbers in this list just by inspection.
An amazing characteristic of the human brain is that it can formulate and
implement an algorithm for solving this problem at an unconscious level.
However, computers can’t do that. Instead, you must provide a specific algorithm.

1.4 Examples = 11

What would you do if the above list contained 5,000 numbers instead of five?
You would probably have to be more precise in your thinking. You might, for
example, write down the largest and smallest values in as much of the list as your
eyes could scan at once. Then you could scan another section of the list and
replace the largest and smallest values if required. The algorithm suggested here
is a simplified and formalized interpretation of this approach which can easily be
implemented in a step-by-step fashion.

3 Design an algorithm.

DEFINE largest, smallest, range, and score as real numbers
ASSIGN largest score = smallest score = first score in list
LOOP (until no more scores)

READ (score)

IF score > largest THEN ASSIGN largest = score

IF score < smallest THEN ASSIGN smallest = score
END LOOP
ASSIGN range = largest - smallest
WRITE (largest, smallest, range)

1 Convert the algorithm into a program.

Defer this step for now.

5 Verify the operation of the program.

Be sure to check the calculations with a set of scores for which the
smallest and largest values are known. Never assume that calculations done within
a computer program are correct until you have checked them by hand or verified
the operation of the program in some other way. (This isn’t always easy!)

12 = 1. Programming Preliminaries

Pseudocode Problem #2

1 Define the problem.

Air quality is given as a numerical index value. If the index is less than
35, the air quality is rated as “pleasant.” If it is between 35 and 60, the quality
is “unpleasant.” If the index is greater than 60, the quality is “hazardous.”

2 Outline a solution.

1. Read each index value.
2. Decide which message to print, based on the value of the index.

3 Design an algorithm.

DEFINE index as real number
LOORP (until no more input)

READ (index)

IF index<35 THEN WRITE (‘pleasant’)

IF index 2 35 and < 60 THEN

WRITE (“unpleasant’)

IF index > 60 THEN WRITE (“hazardous”)

END LOOP

Here’s an alternate way to implement the IF... command:

IF index < 35 THEN WRITE (‘pleasant’)
ELSE IF index < 60 THEN WRITE (“unpleasant”)
ELSE WRITE (“hazardous”)

The second implementation is a little less obvious than the first because you have
to be convinced that, within the JF... command structure, only one branch will be
taken. Suppose the index is 20. This value is less than 35, so the WRITE
(‘pleasant”) branch will be executed. This value is also less than 60, but the
second branch won’t be executed because another branch has already been
executed. As you will see in Chapter 4, programming language implementations
of IF... structures really do work this way.

1.4 Examples = 13

1 Convert the algorithm into a program.

Defer this step for now.

5 Verify the operation of the program.

For this problem, it’s important to implement the relational operators
correctly. The phrase “between 35 and 60” must be interpreted properly; you need
to check values at the break points to be certain your algorithm reflects the
problem statement. Exactly where the break points lie may be vague in the
problem statement, but you must be specific about them in your algorithm
definition.

Pseudocode Problem #3

1 Define the problem.

Your supervisor hands you a diskette with a file containing student names,
IDs, and GPAs and says, “Please create two new files. One should be the dean’s
list file of students whose GPA is at least 3.0. The other should be a probation file
of students whose GPA is below 2.0.”

2 Outline a solution.

1. Open the file containing student records.

2. Create two new files, one for the dean’s list and the other for the probation list.
3. Read each record and compare the GPA with the criteria for the dean’s and
probation lists. If it doesn’t belong in one of the files, go on to the next record.
Otherwise, write the data into the appropriate file.

4. Close all the files when you’re done with them.

The file opening and closing parts of the solution, steps 1 and 4, may not
be part of your initial thinking because these steps are not really part of the
solution. However, as noted previously, it is important in this step to consider the
sources of information required to solve the problem. The file-related steps remind

14 = 1. Programming Preliminaries

you to make sure that you understand the structure of the file containing the input
data and that you give some thought to the form of the output file.

3 Design an algorithm.

DEFINE student name and ID as character strings
GPA as a real number
OPEN (original file)
OPEN (dean'’s list file)
OPEN (probation file)
LOOP (until there aren’t any more names in original file)
READ (from original file, name, ID, GPA)
IF (GPA > 3) THEN WRITE (to dean’s list file: name, ID, GPA)
IF (GPA < 2) THEN WRITE (to probation file: name, ID, GPA)
END LOOP
CLOSE (all files)

1 Convert the algorithm into a program.

Defer this step for now.

5 Verify the operation of the program.

You can verify the operation of this program by inspection, perhaps with
only a subset of the student data.

Pseudocode Problem # 4

1 Define the problem.

A data file contains many two-line records. Each pair of lines contains a
date and 24 hourly temperatures:

01/01/94
20,22,21,19,18,..., 17,18

1.4 Examples = 15

Read the data for each day. Display the date and the maximum and minimum
temperature for the day, plus the hour, from 1 to 24, at which each of these values
occurred.

2 Outline a solution.

In this case, the problem itself contains an explanation of what you must
do. For a simple solution, you would like to be able to assume that there are no
missing data in the file. In the real world, this will not always be a good
assumption!

3 Design an algorithm.

DEFINE max, min, max_hour, min_hour, current_hour
(all integer variables); date (character string)
OPEN (data file)
LOOP (until you get to the end of the file)
READ (from data file, date)
READ (from data file, 1st temperature)
ASSIGN max = 1st temperature
min = 1st temperature
min_hour = 1, max_hour = 1
INITIALIZE current_hour = 1
LOORP (for current hour from 2 to 24)
READ (from data file: temperature)
IF temperature > max THEN
ASSIGN max = temperature
max_hour = current_hour
(end IF...)
IF temperature < min THEN
ASSIGN min = temperature
min_hour = current_hour

(end IF...)
END LOOP
WRITE (date, max, max_hour, min, min_hour)

END LOOP
CLOSE (dala file)

Note that this algorithm uses an approach identical to the one discussed in
Pseudocode Problem #1 to find the maximum and minimum values.

16 = 1. Programming Preliminaries

4 Convert the algorithm into a program.

Defer this step for now.

5 Verify the operation of the program.

You can verify the operation of this program by inspection. If your
program works for one day, there is no reason to think it won’t work for all days.
However, because of the way this algorithm is written, you should check examples
where the minimum or maximum temperature actually occurs at hour 1 to be sure
these initial values are not changed.

Pseudocode Problem #5

1 Define the problem.

Write a program that reads and stores a list of student names and grades.
The program should then be able to perform the following user-selected tasks:

1. Search for any student name.

2. Sort the list by name or grade.

3. Add a new name.

4. Delete an existing name.

5. Print a list of all students whose grades are above or below a specified value.

2 Outline a solution.

The structure of this problem lends itself to a modularized solution. The
main program will contain a menu of the indicated choices. Each choice will
invoke a subprogram that will perform one of the specific tasks listed. Assume
that the list is contained in a data file and that the data file can be entirely
contained in the amount of memory available to your computer program. (In
programming terms, this means that the data will be stored in a data structure
called an array, which we will discuss in Chapter 6.)

This is a more complex problem than the ones we have discussed so far.
You should solve it in steps, one menu choice at a time. The first task is to write
a subprogram to read the list and store it in your computer’s memory. This needs

1.4 Examples = 17

to be done before you present the user of your program with the menu options.
It will be helpful to display the contents of the list, too. Until you can read the list
correctly and display its contents, there is no point worrying about the rest of the
program. Within the menu of choices, probably the easiest subprogram to write
is the one that looks for a specified name or grade; we will develop pseudocode
for this subprogram, but not the rest.

3 Design an algorithm.

Pseudocode for main program:
DEFINE (variables to hold the names and grades,
number of students, response to menu selection)
CALL Read_List (store list of names and grades in memory)
LOOP (until user wants to stop)
WRITE (display menu)
WRITE (What do you want to do?)
READ (response)
CHOOSE (based on response)
SEARCH: CALL Search (by name or grade)
SORT: CALL Sort (by name or grade)
ADD: CALL Add (a new name)
DELETE: CALL Delete (an existing name)
OUTPUT: CALL Output (list of students who meet specified
criterion)
QUIT: (end program)
OTHER: (print input error message)
(end CHOOSE)
END LOOP

Note how the CHOOSE statement attempts to trap an inappropriate response by
giving an “other” option.

Now, develop subprograms one at a time. The first step is to read the list
of names and grades:

SUBPROGRAM Read _List (IN: name of data file;
OUT: name_array, grade_array, number
of names and grades (n))
OPEN (data file)
INITIALIZE n = 0

18 = 1. Programming Preliminaries

LOORP (as long as there are more records)
INCREMENT n=n + 1
READ (name_array(n), grade_array(n))
WRITE (name_array(n), grade_array(n))
END LOOP
CLOSE (data file)
(end Read_List)

Note how the index value n is used to notate parallel lists of names and
grades. That is, the n™ name will always correspond to the n™ grade. When the
loop is terminated, the value of n will be equal to the total number of students.
The WRITE statement can be removed when you’re sure you can read the list
correctly.

Here’s an algorithm to control a search of the lists.

SUBPROGRAM Search (IN: name_list,grade_list,n_students)
READ (search choice: name or grade?)
CHOOSE (based on search choice)
for name:
READ (which_name)
CALL SearchByName (IN:-name_list grade_list,
n_students,which_name)
for grade:
READ (which_grade)
CALL SearchByGrade (IN:name_list,grade_list,
n_students,which_grade)
(end Search)

Note that this algorithm uses the CHOOSE pseudocode command rather
than an IF... THEN...ELSE... approach. Either will work, but the former is easier
to extend to other choices. Here’s an algorithm to search for a name. Because
more than one student may have the same name, the algorithm searches through
the entire list.

SUBPROGRAM SearchByName (IN:name_list,grade_list,
n_students,which_name)
DEFINE counter
LOOP (for counter = 1 to n_students)
IF name_list(counter)=which_name THEN
WRITE (name_list(counter), grade_list(counter))
END LOOP

1.5 What Is the Point of Programming? = 19

A subprogram to search for a specified grade will be nearly identical to
SUBPROGRAM SearchByName. Although you could combine these functions
into a single subprogram at the pseudocode level, the actual code will need to be
different because names and grades are represented by different data types.

Suppose you decide to maintain a list of student IDs rather than names.
Presumably, IDs are unique. Therefore, the search should stop when the specified
ID is found, rather than searching through the entire list. Can you modify the
algorithm so that the loop terminates when it either gets to the end of the list or
finds the specified name?

Note that the names list and grades list must both be made available as
input to these subprograms. They are parallel lists in which, for example, the third
name in the names list is associated with the third grade in the grades list. This
has some important implications for writing the rest of this program. Suppose the
names list is originally sorted by name. If you decide to sort the lists by grade,
you must sort both lists at the same time to make sure that the relationship
between each name and grade is maintained. In C, as we will see later in the text,
it is possible to overcome this inconvenience by defining a new kind of data
structure that combines the names and grades into a single list.

‘ 1 Convert the algorithm into a program.

Defer this step for now.

5 Verify the operation of the program.

As noted, a large program such as this needs to developed one subprogram
at a time. You should check the operation of the program each time you add a
new subprogram.

1.5 What Is the Point of Programming?

Here’s a reasonable question: Does the world really need more computer
programmers? After all, there are lots of software applications for solving a wide
range of computational problems. And it’s a little discouraging to realize that even
the most straightforward application (such as Pseudocode Problem #5, above)
requires the accumulation of considerable programming skills.

Of course, there are many reasons to write your own programs. Some
people do it for fun (yes, that’s really true), others need programming skills to do
research, and others need a thorough understanding of programming to continue
their studies in computer or information science. Almost any research organization

20 = 1. Programming Preliminaries

in any field will require programming skills for solving specialized research
problems. Graduate programs in any technical discipline you can name will expect
their students to have some programming skills.

However, the best reason for learning how to program a computer is to
teach yourself how to think logically. Even if you never have to write programs
for a living, as a necessary evil in the course of your work, or just for your own
use and amusement, the programming process is a good way to teach yourself
how to solve problems. A language like C is especially useful because it
encourages you to approach difficult problems in a step-by-step, top-down fashion
that separates each problem into a series of smaller and hopefully more
manageable tasks.

Even though this kind of thinking may not always be the best way to solve
problems, we will treat programming as an inherently linear process, so the kinds
of problems we will solve in this course will lend themselves to this kind of
solution.*

By the way, since we have decided that learning how to
program is a good idea, you are allowed to ask this follow-up
question: Why learn to program in C? A good answer is that C is the
basic language of choice for many commercial computer applications, and it is
fundamental to understanding the widely used UNIX computer operating system.
As I will point out from time to time in this text, C has some characteristics that
pose implementation problems in scientific and engineering programming.
However, this has not prevented C from gaining a prominent role in these
disciplines. Once you have become proficient in C, it is relatively easy to learn
languages such as Fortran, which is still widely used in science and engineering,
as well as more modern languages such as C++ and Java.

1.6 Your First C Program

You are now ready to create your first C program. This will be a “cookbook”
exercise that emphasizes the mechanics of writing and executing a program. You
are not yet expected to understand all the details of the code. The exercise
assumes you will be writing programs on a UNIX computer that supports Sun
Microsystem’s cc compiler or its equivalent.

If you are a complete UNIX novice, you will need some help learning how
to use a UNIX-based system. Your institution or department probably provides
training courses on using UNIX systems. If such training isn’t part of a
programming course, you will need to learn the fundamentals on your own.

Assuming you are successfully logged on to your UNIX account:

“Author’s note: This problem-solving approach generally does not work with people.

1.6 Your First C Program = 21

1. Create a new source code file by typing pico
test.c. This invokes a simple text editor and
creates a new and currently empty file called
test.c. The source code file will contain
instructions for solving a particular problem.
These instructions must be written according to
the syntax rules of C. To create the source code
file, which you will then compile and link to create an executable program file,
enter the following lines exactly as shown:

/* My first C Program. */
#include <stdio.h>
int main(void)
{
printf("Hello, world.\n");
return 0;

When you’re done typing, you need to make sure your work is saved.
Enter ~x by holding down the control (or Ctrl) key on your keyboard while
pressing the (unshifted) x key. This two-key combination is sometimes notated as
control-xor Ctrl-x. In this context, the » symbol has nothing to do with the
carat symbol in the uppercase position over the 6 key on your keyboard. Do not
press Shift-6 followed by x or Ctr1l-Shift-X. Pressing ~x exits the pico
editor. You will be asked if you want to “save modified buffer.” Press vy (for
“yes”) and then the Return key. You can also save your work at any time from
within the pico editor by pressing the o key combination

IMPORTANT NOTE: Whenever you type a command on a UNIX
system, you must use the specified combination of lowercase and uppercase letters
because UNIX commands are case-sensitive. This is different from computers
using a Windows/DOS-based operating system, for example, which is case-
insensitive. Also, the C language itself is case-sensitive. This means that when you
create the above code file above, you must preserve the use of uppercase and
lowercase letters. For example, printf is not the same thing as PRINTF or
PrintF, or any other combination.

You can also create source code with the more flexible but more
complicated UNIX v1i text editor instead of pico. Refer to the documentation for
your system.

2. Once you have created a source code file, you must compile and link it to
create an executable file. The compiler/linker we will use is cc (for “C
compiler”). Type

cc test.c -otest.exe

22 = 1. Programming Preliminaries

This invokes the cc compiler, which tries to compile the source code file named
test.c. If the compilation is successful, cc translates your source code into
machine language instructions and creates an executable file named test.exe.
(If you do not include the -o option, cc creates a file named a . out by default.)
If you get error messages, edit the file so that it looks exactly like the one above.
Then try again. When you no longer get any error messages,

3. Type
test.exe

to execute your C program. If you have done everything correctly, the text

Hello, world.

should appear on your screen. You have now created and executed your first C
program.

Note that although we will often speak of source code as
a program, it is actually the executable binary file that contains
machine-level instructions that the computer understands and
follows. In this example, we have given the binary file a .exe extension (for
“executable”).’ The cc compiler generates, by default, a file with a .out
extension. In common with other high-level languages, the source code file you
create with a text editor generally is portable to any computer that supports a C
compiler, as long as the source code does not include implementation-specific
features that are not part of the C language standard. However, the executable
program file is not portable to a different kind of computer. (Commercial
programs generally are not portable among various kinds of computers even at the
source code level, specifically because they take advantage of features of a
particular operating system and computer hardware architecture.)

4. Depending on how heavily you use your UNIX account, and for what, you may
wish to create a separate directory just for C programs. For example, typing

mkdir c_stuff

will create a new directory called c_stuff. You can move to this directory by
typing

cd c_stuff

From this directory, you can return to your “home” directory by typing cd.

The convention of using a . exe extension will be familiar to MS-DOS users.

2

The Basics of C Programming

2.1 C Program Layout
The source code for a C program contains at least the following elements:

1. Preprocessor directives, including:
(a) standard header files
(b) constant definitions
2. Main function header and body
3. Reserved words and identifiers
4. Comments (optional, but required as a matter of style)

Program P-2.1 illustrates each of these elements. The program prints the message
Hello, world! and the numbers 3.14159 and 6.28318 on your monitor
screen.

P-2.1 [hello.c]

/* "Hello, world." */

/* preprocessor directives */

#include <stdio.h> /* standard I/0 header file */
#define PI 3.14159 /* defines PI as a "constant" */

int main(void) /* main function header */
{ /* start of main body */

/* variable declaration */
double two_pi;
/* printf is the usual way to produce output on a monitor. */
printf('Hello, world!\n");
/* assign value to two_pi */
two_pi=2.0*PI;
/* "%1f" is a format specifier for displaying real numbers */
/* Note that "1" is a lowercase letter L, and not the numeral 1 */
printf("%1lf %$1f\n",PI, two_pi);
/* return value from main function */
return 0;

} /* end of main body */

Running P-2.1

D. R. Brooks, C Programming: The Essentials for Engineers and Scientists
© Springer-Verlag New York, Inc. 1999

24 = 2. The Basics of C Programming

Every C program must have one and only one function
named main, the body of which is included inside braces
{...}. (In other programming languages, this would be
called the main program.)

For our purposes, every C source code file must include the preprocessor
directive

#include <stdio.h>

so it can access the standard
input/output (1/0) functions
through the stdio.h header file.
You can think of a header file as a
source of information your program
needs in order to interpret certain kinds of instructions. There are many header
files that are part of the C standard that you can #include only as required, but
because every program needs to execute some I/O instructions in order to process
input and produce usable output, the stdio.h header file is needed for every
program. The angle brackets around stdio.h tell C to look in a particular
system-dependent directory for the header file. As a programmer, you usually
don’t have to worry about where these files are stored.'

Although it might seem unnecessary for the main function in P-2.1 to
return a value when it’s done, it’s a good idea to give the main function a data
type of int and have it return a value of O when it executes successfully. This
is because some operating systems can use this value to determine whether the
program has executed successfully. The alternative is to define the main function
as having data type void, which means that it doesn’t return a value.

void main (void)

{
}

The void word inside parentheses following main means that this
program does not require any user input from the keyboard in order to execute.
The void is optional, and either int main() or void main() is also
acceptable syntax.

In this text, we will usually assume that the main function will return a
0 when it executes, so the shell of a main function will usually look like this:

'Because stdio.h is required for every program, it might seem reasonable for C to “include”
this file automatically. However, C simply doesn’t work this way. It is even possible to
conceive of programs that don’t use C’s standard I/O library, in which case stdio.h would
not be needed.

2.1 C Program Layout = 25

int main(void)

{

/* Program statements go here. */
return 0;

}

The #define preprocessor directive in P-2.1 performs a word-processor-
like search-and-replace operation when your program is compiled. In P-2.1, the
directive

#define PI 3.14159

causes a C compiler to replace every occurrence of the
name PI with the characters 3.14159. (There is only one
such occurrence in P-2.1). Then the programming
environment will interpret the characters 3.14159 as a number, just as if you
had typed that number directly into the source code. It is common C programming
practice to use uppercase letters for the names of global constants defined in this
way, to distinguish them from variable names. Although you don’t have to follow
this convention, it is so widely accepted that it is almost a style requirement.

The statement printf ("Hello, world!\n") ; displays the message
Hello, world! on your monitor screen.

Finally, P-2.1 calculates the value of the
variable two_pi and displays both PI and
two_pi. Before the program can use the
variable name two_pi, it must first be given an appropriate data type. The data
declaration statement

double two_pi;

associates two_pi with a real number. The significance of the data type
description double will be discussed in Chapter 3, along with other data types.
The assignment statement

two_pi=2.0*PI;

results in the variable two_pi having the value of 2w, or approximately
6.2831852. In an assignment statement, the value of an expression on the right
side of the = sign is assigned to a variable name on the left side of the = sign. It
looks like an algebraic equation, but it is not, as we will discuss further in Chapter
3.

With these brief explanations, you should be able to make sense of the
source code in P-2.1, even though you may not understand the details. We will,
of course, discuss at length the details of performing calculations and displaying
results in programs.

26 = 2. The Basics of C Programming

2.2 Basic Input and Output

Especially for scientific and engineering calculations, it is necessary to develop a
working knowledge of how a programming language interfaces with external data.
We will consider two situations:

1. The input required for a program to do its job is
supplied by a user typing values at the keyboard while
the program is running. This is known as an
interactive program, or interactive mode.

2. The input required for a program to do its job comes
from an external data file that is accessed while the
program is running. This is known as a batch program,
or batch mode. A user’s intervention is not needed while
the program is running.

2.2.1 Keyboard Input and Monitor Output

In this section we will discuss how a C program communicates with two basic
devices: a keyboard for input and a monitor for output.

Reading and Displaying Numbers

Consider the following simple problem, which we will solve in accordance with
the five-step process outlined in Chapter 1.

1 Define the problem.

For a user-supplied value of the radius, calculate the area and
circumference of a circle.

2 Outline a solution.

The calculations are straightforward:

area = T’

circumference = 2nr

2.2 Basic Input and Output = 27

If the radius must be given in some particular physical units, let the program user
know that. Be sure to label the output.

3 Design an algorithm.

This algorithm contains all the elements of simple programming problems:
defining variables, prompting the user for input from the keyboard, doing the
required calculations, and displaying the output on the monitor screen.

DEFINE radius, area, circumference as real numbers; i as a real constant
WRITE (“Give the radius of a circle (units?)”)
READ (radius)
ASSIGN area = rreradius’
circumference = 2rreradius
WRITE (area and circumference, with identifying labels)

1 Convert the algorithm into a program.

Program P-2.2 implements this algorithm.

P-2.2 [circle.c]

/* Calculate area and circumference of a circle. */
#include <stdio.h>
#define PI 3.14159

int main(void)
{
/* Declare data types. */
double radius, /* input - radius of a circle, cm */
area, /* output - area of a circle, cm?2 */
circumference; /* output - circumference of a circle, cm */
/* Get the radius. */
printf ("Enter the radius in cm: ");
scanf("%1f", &radius);
/* Calculate the area and circumference. */
area = PI*radius*radius;
circumference = 2.0*PI*radius;
/* Display the output. */

printf ("The area is %1f cm*2.\n",area);
printf ("The circumference is %1f cm.\n",circumference);
return 0;

28 = 2. The Basics of C Programming

Running P-2.2

5 Verify the operation of the program.

Check your results with a hand calculator. Note that r = 1 is not a good
value with which to test the program. (Why not?)

In terms of the user interface for P-2.2, the essential code is contained in
the statements

printf ("Enter the radius in cm: ");
scanf ("%$1f", &radius) ;

The basic output-processing function for C is print £ (“print formatted”).
In this context, a function provides predefined code that enables a program to
perform certain common tasks, such as displaying output. We will return to the
topic of functions in Chapter 4. The general syntax of the printf function is

type int variable =
printf (character string describing output format
and/or other characters
(,one or more variables or constants))

(void)printf (...

The large angle brackets (. . .) indicate an optional parameter. In this case, the
brackets indicate that the printf function doesn’t have to display the values of
variables or constants. An example is the first printf statement in P-2.2, which
simply displays the text enclosed in quotation marks.

When variables or constants are displayed, each
must be matched with an appropriate format specifier in
the output string. These specifiers, which tell C how to
convert a number into its exernal representation and display that value, always
begin with the $ symbol. Some examples are $1 £ for type double variables and
%i for integers. A detailed list of format specifiers for a variety of data types is
given in Table 3.2 in Chapter 3.

As an example of how to use format specifiers, return to the final task in
P-2.2, which is to display the results of the calculations. The statements

2.2 Basic Input and Output = 29

printf('The area is %1f cm*2.\n",area);
printf ("The circumference is %1f cm.\n",circumference);

display the values of the variables area and circumference along with an
explanatory message. The text messages, if there are any, and the format specifiers
for the values to be displayed are given as a character string surrounded by
quotation marks. Because area and circumference are type double
variables, a $1f format specifier is used. The control character \n causes C to
print a new-line character at the end of the line. Otherwise, the output from the
second printf statement would start on the same line as the end of the first
printf statement.

It is possible to display multiple values with a single printf statement:

printf ("The area and circumference are %1f cm?2 and %1f cm.\n",
area,circumference) ;

Each variable must have its own format specifier.

Most C functions return a value. The printf function returns an integer
value equal to the number of characters printed. In nearly all cases, this return
value can be ignored. Strictly speaking, the printf function should be preceded
by (void), as shown in the syntax box. This tells the compiler, “I know that
printf returns a value, but I'm choosing to ignore that value.” However, as a
practical matter, it is also okay simply to use printf without assigning its output
to a variable and without the (void), as has been done in P-2.2. Some C
compilers may flag this use of a function with a warning message.

In P-2.2, the first printf statement provides a user prompt in the form
of a message displayed on the user’s monitor screen. This prompt describes what
the program expects the user to do. Depending on the circumstances, this message
can be brief or very detailed. In scientific and engineering problems, the prompt
message will often specify the units for the physical quantities the user is expected
to provide. In P-2.2, the prompt message tells the user that the radius should be
provided in centimeters.

The basic C function for getting input from the keyboard is scanf. Its
general syntax is

type int variable =
scanf (character string describing input format,
one or more variable addresses)
or
(void)scanf (...

The input format string contains conversion specifiers,
which tell C how to interpret values entered at the

30 = 2. The Basics of C Programming

keyboard. These specifiers must match the data types of the variables whose
addresses are supplied in the list.

When a scanf function is encountered, the
program suspends further execution and waits for
the user to enter an appropriate response. When the
user presses the Enter (or Return) key, program execution resumes. Then the
scanf function reads (scans) the keyboard buffer and attempts to interpret what
it finds according to the conversion specifiers provided. In P-2.2, scanf is
instructed by the specifier "$1£f " to look for a single real number (floating-point
number) of type double. (The character preceding the f in the format specifier,
which stands for “long” in “long float,” is a lowercase L, not the numeral 1.)
Conversion specifiers use the same vocabulary of symbols as format specifiers.
Inside a scanf function, they tell C how to interpret characters typed on the
keyboard rather than how to display values.

The & in front of the variable name radius in the scanf statement is

the “address-of” operator. It means, “Place the value found by scanf into the
memory location (address) associated with the variable named radius.” In many
other high-level programming languages, the association of a variable name with
a memory location is implemented transparently, without extra syntax
requirements. So, especially if you have done any programming in other
languages, it is easy to forget the & in the scanf argument list. If you do forget
it, your program may crash. As a minimum, your program will not have access
to the value you provided at the keyboard.

The calculations in P-2.2 are straightforward.

Remember to spell the symbol for & as PI because that’s I
how it is spelled in the #define directive, and C is

always case-sensitive in its interpretation of words and characters. In the printf
statements, text is intermixed with output format specifications. The characters \n
add new-line characters to the output. If you neglect to include them, all the
output will appear on the same line. The new-line symbol is one of several control
characters used for formatting output. These characters are always preceded by
a backslash. A list of control characters is given in Table 3.2 in Chapter 3.

In P-2.2, radius, area, and circumference are the variable names
used by the program. These are the symbolic names that the C programming
environment uses to assign and access memory locations. Indeed, a major
advantage of high-level programming languages is the ability to provide this kind
of symbolic access. The ANSI-standard C rules for assigning identifiers, of which
variable names are one type, are:

2.2 Basic Input and Output = 31

There are, in addition, two restrictions that should be followed even though they
are not syntax rules:

Finally, remember that C implementations always consider case to be
significant. Thus radius and Radius are interpreted as two different variable
names. A widely accepted programming style is that variable names use lowercase
letters and, as previously noted, constants appearing in a define directive use
uppercase letters. In general, you should avoid using variable names that differ
only in their use of uppercase and lowercase letters; ignoring this style convention
makes your programs hard to interpret and prone to errors.

Reading and Displaying Characters and Strings of Characters

Up to now, I/O has been restricted to string constants (as prompts to the program
user) and numerical values. However, it is also important to be able to read and
display text values. At a basic level, this is easy to do in C, but the nature of the
language imposes some significant restrictions that can be troublesome to
overcome. This section presents just the basics.

First, consider the problem of reading and displaying a single character.
This is simple, and it works just like numerical I/O:

char grade;

printf ("What grade do you expect in this course? ");
scanf ("%c", &grade) ;
printf ("Well, I hope you get a %c.\n",grade);

The data type char is used to declare a character variable. Use the %c specifier
for I/O. The & operator is required just as it is for numerical values.

Now suppose you wish a program to request a student ID in the form of
a social security number. This isn’t actually a number because it is usually given
in the format nnn-nn-nnnn. The presence of the dashes means that this ID value
must be treated as a string of characters.

There is no separate data type for strings of characters in C. Instead, use
the char data type with additional information about how many characters you
wish to represent. Here is the code to read a social security number:

32 = 2. The Basics of C Programming

char ID{12];

printf ("Give your student ID in the format nnn-nn-nnnn: ");
scanf ("%s",ID);
printf("You told me that your student ID is %s.\n",ID);

First, the data declaration statement defines the variable ID as a character string
that can hold up to 12 characters. You might notice that a social security number
contains 11 characters rather than 12. In C, strings include a special terminating
character, so it is usual practice to declare strings that hold at least one more than
the maximum number of characters you wish to store.

In the scanf statement, the conversion specifier %s tells C to interpret
what you type as a string of characters. To display a string, use %$s as a format
specifier. Note that the variable ID is not preceded by the address-of operator &
in the scanf statement. The reason for this won’t become clear until we study
arrays in Chapter 6. (Basically, C treats a string of characters as an array of
characters.) The variable name associated with a character string is actually the
address of the first character in the string. Because it is already an address, the
address of operator & is not required.

A problem occurs with C’s handling of character strings when these strings
include embedded blanks. For example, suppose a program asks you to enter your
name:

printf ("Enter your full name: ");
scanf ("%s",name) ;

You might reply by typing Laura Brooks. This will not work. The reason is
that C’s “scan” of what you type starts at the first nonblank character and stops
at the first blank character. Thus, the variable name will contain just Laura and
not Laura Brooks. Even worse, the characters YBrooks remain in the
keyboard buffer. (The I represents a blank space.) This will cause problems if
your program contains another scanf statement.

The simple way around this difficulty is to store the first and last names
in separate variables:

printf ("Enter your first and last name: ");

"o

scanf ("%s %s",first_name, last_name);
However, suppose you use this code:

printf ("Enter your name in the format last, first: ");
scanf ("%s %s",last_name, first_name) ;

This won’t work. If you enter your name as Brooks, Laura, first_name
will have the value Laura, but last_name will have the value Brooks,
(including the comma as part of the name), rather than just Brooks. As you can

2.2 Basic Input and Output = 33

see, reading strings in C can be tricky. The text will discuss solutions to specific
problems as they occur.

Reading Values With Leading Zeros and Nonblank Separators

Up to now, we have assumed that numerical values entered at the keyboard will
be separated by one or more blanks. This is not always a good assumption. A
good example involves reading a date in the American format mm/dd/yyyy, with
slashes separating the values. Another potential problem with the date format
arises when leading zeros are used with single-digit months and days; for example,
01/09/1998 instead of 1/9/1998.

Special care is required to read such values correctly. First of all, we will
assume that the / in a date always follows directly after the number with no
intervening blank space. In that case, we can include the / character as part of the
conversion string. Second, we will treat the date values as integers. There are two
conversion specifiers that are available for reading integers, %i and %d. If there
is a possibility that an integer value might include a leading zero, we must use a
%d specifier to read the values. Here is some sample code:

printf("Give date in mm/dd/yyyy format: ");
scanf ("%d/%d/%d", &m, &4, &Y) ;

Why is the %d specifier required? Generally, we will consider 1 and %d
to be equivalent. (See Table 3.2 in Chapter 3.) However, this is not always true.
Consider program P-2.3.

P-2.3 [oct.c]

#include <stdio.h>

int main(void)
{

int 1;

printf("Give integer: ");
scanf ("%1",&1);
printf("%i %d\n",1i,1);
printf("Give integer: ");
scanf ("%d",&1);

printf ("%i %d\n",i,i);

return 0;

34 = 2. The Basics of C Programming

Running P-2.3 (three times)

The first execution of the program is straightforward, as either conversion
specifier interprets the digits 12 correctly. In the second execution, the 12 is
preceded by a leading 0. If you expect C to ignore the leading 0, you will be in
for a surprise! When a $1i specifier is used, the resulting value is 10, whereas a
%d specifier returns the expected value of 12. In the third execution, reading the
digits 09 with a %1i specifier gives a value of 0, and the %d specifier returns the
expected value. You might encounter a similar situation if your program tries to
interpret a date in mm/dd/yyyy format as three integers. If the date
09/08/2001 is encountered, for example, the conversion string "%1/%1/%1"
will not work properly, but the conversion string "%$d/%d/%d" will.

How can we explain this behavior? The answer lies in the fact that C
inteprets leading Os as indicating that the following digits are to be interpreted as
an octal (base 8) number rather than a decimal (base 10) number. We won’t
provide a complete explanation of non-base-10 number systems, but it is sufficient
for this discussion to note that the octal number 12 (or 012 in C notation) is
equivalent to 1x8' + 2x8°, or decimal 10. The digits 09 make no sense as an octal
number because the digit 9 doesn’t exist in the base 8 number system.

P-2.3 demonstrates that the $1 conversion specifier can be used to interpret
numbers expressed in base 10 (decimal) or octal notation. Thus the digits 012 are
processed on input as the octal number 12, equivalent to decimal 10. In the third
execution, the digit 9 is treated as a terminating character when the program tries
to interpret the characters 09 as an octal number, producing a result of 0. In
contrast, the $d conversion specifier always tries to interpret digits as base-10
integers, which is why it produces the expected result in P-2.3. Note that because
integers are always output as decimal (base 10) integers, $d and %i specifiers
work equivalently as format specifiers for output.

2.2 Basic Input and Output = 35

Exercises 10 and 11 at the end of this chapter involve problems in which
it is important to use a $d conversion specifier for input, for the reasons discussed
here.

2.2.2 File I/O

In order for a programming language to be useful for solving practical problems,
it must support interfaces with external sources. The simplest such source is
information typed on your computer’s keyboard, as in P-2.2. However, keyboard
input is impractical for large amounts of data.

We will now consider a different version of P-2.2. The purpose of P-2.4
is the same as that of P-2.2, but the value for the radius will come from an
external data file rather than from the keyboard. Also, the output from P-2.4 will
be written to an external data file in addition to being displayed on the monitor
screen.

P-24 [circle_f.c]

/* Calculate the area and circumference of a circle
of specified radius, using an external data file. */

#include <stdio.h>
#define PI 3.14159

int main(void)

{

double radius, /* input - radius of a circle */
area, /* output - area of a circle */
circumference; /* output - circumference of a circle */
FILE *inp, *outp; /* pointers to input and output files */

/* Open the input and output files. */

inp
outp

fopen("circle.dat","'r");
fopen("circle.out", "w");

/* Read the radius. */

fscanf (inp, "%$1f",&radius) ;

fprintf (outp, "The radius is %.2f\n"',radius);
printf ("The radius is %.2f\n",radius);
fclose(inp); /* Close the input file. */

/* Calculate the area and circumference. */

area = PI*radius*radius;
circumference = 2*PI*radius;

/* Store the output. */

fprintf (outp, "The area is %.2f\n",area);
fprintf (outp, "The circumference is %.2f\n",circumference) :

36 ® 2. The Basics of C Programming

printf ("The area 1is %.2f\n",area);

)

printf ("The circumference is %.2f\n",circumference);
fclose(outp); /* Close the output file. */

return 0;

P-2.4 requires two files—one for input and one for output.
The identifier FILE is used to declare two pointers to the files,
*inp, and *outp:

FILE *inp, *outp: /* pointers to input and output files */

(The asterisk in front of the variable names inp and outp is what identifies them
as pointers rather than variables. We will have more to say about pointers in
Chapter 5.) In order to access the files, they must first be opened. The general
syntax for the fopen function is

type FILE * variable = fopen(file name, "status")

For now, we will specify either read-only (" r ") or write-only ("w") status
for a file. We will always need the return value from fopen, so we will not
include the (void) fopen(...) option in the syntax description.

In P-2.4, the statements

inp = fopen('"circle.dat',"r");
outp = fopen("circle.out", "w");

open the two files needed for the program. The pointers inp and outp, which
have previously been declared as type FILE * variables, are assigned by the calls
to fopen. (These pointers can be given any convenient name.) In the first
statement, inp is associated with the data file circle.dat, and because this
is the input file, it is specified as an "r" (read-only) file. Similarly, the second
statement associates outp with a "w" (write-only) file, circle.out, to hold
the output from the program. The name of the input file to be read by the program
is specified by the character string "circle.dat". The lack of any other
directory or folder reference in the file name implies that the file resides in the
same directory or folder in which the program is being created and is going to be
executed. If this is not true, then more information about the location of the file
must be given. In a Windows/MS-DOS environment, for example, a full path
name could be specified as "c:\\c_stuff\\data\\circle.dat". The
double backslashes are necessary because C uses a single backslash character to

2.2 Basic Input and Output = 37

indicate that a control character follows, as in \n for the “new line” character in
a printf function.

In order to read one or more values from a file, use the £scanf function.
Its general syntax is

type int variable = fscanf(type FILE * variable,
format string, one or more variable addresses)
or

(void) fscanf (...

The syntax for fscanf is identical to that for scanf except that the input
device—the name of a file in this case—must be specified.

It’s important to close a file when your program is finished with it. The
general syntax for fclose is

type int variable = fclose(type FILE * variable)
or

(void) fclose(...

You should not normally need the value returned from fclose; this value is
equal to 0 if the file is closed successfully and to the predefined value EOF if it’s
not.

2.2.3 I/0 Redirection

There is another way to get input from a data file that may not be so obvious.
Recall program P-2.2, which is designed for keyboard input and monitor output.
Assuming an executable version of circle.c exists, it is possible to replace
keyboard input with input from an external file by using input redirection. On MS-
DOS or UNIX systems, the redirection statement

circle.exe < circle.dat

will produce the same results as the original program, except that the data will
come from the file circle.dat. As a practical matter, it would be better to
modify P-2.2 so that the radius value is echoed in the output, just as it was in
P-2.4.

Likewise, output redirection can be used to send the output from a program
to an external file. The statement

circle > circle.out

38 = 2. The Basics of C Programming

sends the output from circle (P-2.2) to the file circle.out. However, the
prompt for the user to supply an input radius is also sent to the output file and
will not appear on the monitor screen. You can type the value even though you
don’t see the prompt, and the program will then execute and send output to the
file, but this isn’t very practical! Output redirection makes sense only for a batch
mode program that doesn’t require user input or that gets its input from an
external data file.

2.3 Reading External Text Files of Unknown Length

The contents of files required as input to programs are usually more complicated
than those discussed in Section 2.2.2. Typically, these are text files prepared by
the programmer or obtained from some other source. Assuming you understand
the contents and structure of a file, how do you read it in C?

The fact is that C is a relatively inconvenient language for this task,
compared to Fortran or Pascal. Our approach will be to find some workable
solutions and stick with them. The purpose of presenting this kind of “cookbook”
approach early in the text is to help you develop a basic working knowledge of
how to access data for use in a program. We will return to some of the details
later in the text.

Consider the file structur.dat:

1 2 3 66.6

4 3 16 17.7
11 12 56 3.3
12 0 1 4.4
12 15 33 5.5
12 59 58 13.3
14 2 13 12.2

This short file contains three integers (they could be interpreted as hours, minutes,
and seconds, for example) and one real number in each record, or line, of the file.
We will assume that the program does not know ahead of time how many records
there will be in the file. This is a typical situation with external files and has
important implications for how a file is processed.

In order to develop a strategy for reading
text files, you need to know that every text file has
two important characteristics: it includes an end-of-
line mark at the end of every line and an end-of-
file mark at the end of the file. When you create a text file with a text editor, the
end-of-line (eol) mark is put in the file whenever you press the Enter or
Return key. When a program creates a text file, the eol mark is put in the file
whenever you include the \n control character as part of an fprintf format
string. The end-of-file (eof) mark is put in the file without any additional action

2.3 Reading External Text Files of Unknown Length = 39

on your part whenever you save a file from within a text editor or fclose it in
one record at a time inside a loop structure that terminates
the context of the LOOP... END LOOP pseudocode command. For now, we will

a program.
The goal in writing code to read a text file is to read I

when the end of the file is detected. We haven’t discussed

C’s implementation of loop structures yet, but we described them in Chapter 1 in

provide code for some loop structures to perform the specific task of reading a file

of unknown length. P-2.5 shows one way to read structur.dat.

P-2.5 [filetest.c]

#include <stdio.h>
#define FILE_NAME "structur.dat"

int main()

{
FILE *Infile;
int count=0;
int hr,min, sec;
float x;
int status;

Infile=fopen(FILE_NAME, "r");

while (1)

{
status=fscanf(Infile, "%1 %1 %1 %f',&hr,&min, &sec, &X) ;
if (status == EOF) break;
printf ("%21 %21 %21 %6.2f\n",hr,min, sec,x);
count=count+1;

}

fclose(Infile);

printf("Lines in file = %i"',count);

return 0;

Running P-2.5

=

The £scanf function is used to read the file in the same way that scanf
reads input from the keyboard. This function returns an integer value, and the
basic strategy of P-2.5 is to use this value to control the execution and termination

40 = 2. The Basics of C Programming

of the loop. Loop syntax will be discussed in more detail in Chapter 4, but the
intent of this code should be clear in context. The loop

while (1) {
;..

causes statements inside the loop to execute indefinitely until something happens
inside the loop to terminate it. The C language includes a predefined value called
EOF, which is returned by fscanf through variable status, whenever fscanf
is unable to find any of the values whose addresses are given in the list following
the format string. As long as status isn’t equal to EOF, the loop continues to
execute. In this example, as long as the file contains valid data that can be read
by the fscanf statement, the program displays the data and increments the
counter. The 1 f. .. statement is also an element of C we haven’t discussed yet,
but its intent should be clear if you recall the IF... THEN... pseudocode command
from Chapter 1. (In C, the THEN part of the pseudocode command is implied.)
This statement examines the current value of variable status and terminates the
loop with a break; when status has a value of EOF.

The data declarations in P-2.5 illustrate another feature of C: variables can
be initialized at the same time they are declared. The initialization for count is
required in P-2.5 because count will later be incremented inside the while. . .
loop; it is very poor programming practice to assume that any variable will
automatically be initialized to 0. In P-2.5, count is initialized to 0 because of
how it is used, but any appropriate value is allowed. It is also always okay to
initialize a variable with an assignment statement rather than as part of its
declaration.

A different approach to reading files is shown in P-2.6.

P-2.6 [filetes2.c]

#include <stdio.h>
#include <string.h>
#define FILE_NAME 'structur.dat"'

int main()
{
FILE *Infile;
char one_line[100];
int count=0;
int hr,min, sec;
float x;
char *line_ptr;
Infile=fopen (FILE_NAME, "r");

2.3 Reading External Text Files of Unknown Length = 41

while (1){
/* First read the line into a string. */
line_ptr=fgets(one_line,sizeof (one_line),Infile);

/* Quit if at end-of-file. */

if (line_ptr == NULL) break;

/* Replace '"new line" with null character (optional).*/
one_line[strlen(one_line)-1]1='\0";

/* Print the string just as a test (optional). */

printf("%s\n",one_line);

/* Then scan the line to get numerical data. */
(void) sscanf(one_line, "%d %d %4 %f", &hr, &min, &sec, &x) ;
printf ("%2i %2i %21 %6.2f\n",hr,min, sec,x);

/* Keep track of number of lines (optional). */
count++;

}

fclose(Infile);

printf("Lines in file = %i",count);

return 0;

Instead of reading values directly from the file, P-2.6
reads each line into string one_11ine using the fgets (“get
string”) function and then performs an infernal read on that
string to extract the numerical information. The general syntax for the fgets
function is

type char * variable = fgets{character string,
integer equal to size of character string,
type FILE * variable)
or
(void) fgets (...

The file-handling loop in P-2.6 shows another way to detect the end of a
file and exit the loop:
char *line_ptr;
while (1) {

line_ptr=fgets(one_line,sizeof (one_line),Infile);
if (line_ptr == NULL) break;

As was the case in P-2.5, this is an infinite loop that will continue until a
break; statement is executed, because the value 1 is interpreted by C as “true.”

42 = 2. The Basics of C Programming

The fgets function reports the presence of an end-of-file mark in its return
value, which is a pointer to the first character in the character string one_line.
When an end-of-file is encountered, the pointer returned by fgets has a value
of NULL. We can test for this:

if (line_ptr == NULL) break;

and exit the loop using a break;.

When fgets reads a string, it adds a new-line character to the end of the
string. This is the same control character, \n, that is used in a printf statement
to start a new line. If we want to use the string itself for anything (we don’t in
this program), we can get rid of the new-line character by replacing it with a null
character. If we are curious about the contents of one_line, we can print it.

one_line[strlen(one_line)-1]='\0";
printf("%s\n",one_line);

In C, characters are always enclosed in single quote marks. The '\ 0" is treated
like a single character because of the backslash. The strlen function returns the
length of its string argument, including the new line character. According to the
ANSI C standard, programs that use strlen require access to the string.h
header file, even though not all compilers (including the cc compiler) require that
this header file be #included.

All that remains is to scan the line to extract the numerical data. Use the
sscanf (“string scan”) function. This works just like scanf except that it gets
its input from a character string rather than from the keyboard buffer. Its general
syntax is

type int variable = sscanf (input string, conversion specifier,
list of variable addresses)
or
(void) sscanf (...

In P-2.6, the sscanf function is used to read the four numerical values
on each line:

(void) sscanf (one_line, "%i %1 %i %$f",&hr,&min, &sec, &x) ;
printf ("%21i %21 %21 %6.2f\n",hr,min,sec,x);

In many cases, your program will want to know how many lines the file
contained, so increment a counter with the statement count++;. After the
termination of the while. .. loop, close the file and print the results:

fclose(Infile);
printf("Lines in file = %i",count);

2.3 Reading External Text Files of Unknown Length = 43

An important difference between fscanf and fgets
is that fgets always reads an entire line from a text file; the
end of the line is detected by looking for an end-of-line mark.
On the other hand, fscanf reads one or more values as specified by a format
string. It treats the text file as an input stream of characters, and it treats end-of-
line marks simply as “white space” separating the requested values. (That is, it
basically ignores the end-of-line marks.) This works well for reading numerical
values, but it can sometimes cause problems when characters, character strings,
and numerical values are mixed in the same file.

Here is a modified data file that contains some text information, in the
form of one character string at the beginning of each line of the file, in addition
to numerical values:

Jan 1 2 3 66.6
Apr 4 3 16 17.7
Nov 11 12 96 3.3

Program P-2.7 illustrates the minor modification of P-2.5 required to read this file
and display its contents. In this case, it is still possible to use scanf, rather than
fgets.

P-2.7 [filetes3.c]

#include <stdio.h>
#define FILE_NAME '"structr2.dat"

int main{()
{
FILE *Infile;
char month[107];
int count=0;
int hr,min, sec;
float x;
int status;
Infile=fopen (FILE_NAME, "r");
while (1)
{
status=fscanf (Infile, "%s %i %i %i %f",
month, &hr, &min, &sec, &x) ;

if (status == EOF) break;
printf ("%3s %21 %21 %21 %6.2f\n",month,hr,min, sec,x);
count++;

}

fclose(Infile);

printf("Lines in file = %i",count);
return 0;

An important point about P-2.7 is that the & operator is not used in front
of a variable name associated with a character string. Such a variable name is

44 = 2 The Basics of C Programming

actually a memory location; specifically, it is the address in memory of the first
character in that string.

Although programs P-2.5, P-2.6, and P-2.7 may seem somewhat repetitious,
each provides an example of code that solves a specific programming problem.
The choice of which approach to use depends on the task at hand. Some
programmers prefer fgets for accessing files, as they believe that fscanf is
sometimes unreliable. However, when you know ahead of time how many values
a line will hold, you should be able to use £scanf without problems. The code
in P-2.6, using fgets and sscanf, may be appropriate when you are not sure
ahead of time how many values are included in a specific record, or when you
have some other reason to hold a line from a file temporarily in a string variable.

In any event, it is important not to stray far from the code models in P-2.5,
P-2.6, and P-2.7 when you write your own programs to read external text files. In
all programs that use input files, it is important to concentrate on reading and
displaying the contents before tackling the rest of the program. By the time you
have finished Chapter 4, which presents a general discussion of loop structures,
you will have developed a much better understanding of the code presented in this
section. Then if you need to develop different file processing strategies, you will
be in a better position to do so.

As a final example, consider this typical problem:

A data collection system consists of several measurement stations, each
with its own ID, which is expressed as an integer. When a station reports
measurements, it sends its ID along with one or more measurements in the
form of real numbers, but it never sends more than eight measurements in
a single report. These station reports have been collected and compiled into
a text file for processing. Write a program that reads this file and
calculates the total number of reports and the total number of
measurements reported by all stations.

The data file used for this program, stations.dat, can be found on the Web
site mentioned in Section 6 of the Preface.” It looks like this:

1001 14 17.7 13.3 12.9 19.9 11 9 20
1002 17.7

1003 14 15 16 17 18 19 20

1001 4.4 5.5 6.6

1004 14 15 17.1 18.1

1004 11.1 12.1 13.3 4.4 8.8

1005 39 38 37 36 35 34 33 32

?All data files required for programs in the text as well as for the exercises can be found on
this Web site.

2.3 Reading External Text Files of Unknown Length = 45

The required calculations are remarkably easy to do in C if you take proper
advantage of the return values from the appropriate I/O functions, as demonstrated
in P-2.8.

P-2.8 [stations.c]

#include <stdio.h>

int main(void)
{
FILE *in;
int ID,status,n_reports=0,n_measurements=0;
char *line_ptr;
char one_line[80];
float x;

in=fopen('stations.dat","r");

while (1) {
line_ptr=fgets(one_line, sizeof (one_line),in);
if (line_ptr == NULL) break;
status=sscanf (one_line, "%1 %f %f %f %f %f %f %f %f",

&ID, &X, &X, &X, &X, &X, &X, &X, &X) ;

n_reports=n_reports+1;
n_measurements=n_measurements+ (status-1);

}

fclose(in) ;

printf ('There are %i records and %i measurements.\n",

n_reports,n_measurements) ;
return 0;

Running P-2.8

For this problem, the data cannot be read directly with fscanf, as it is
not clear ahead of time how many measurements (the floating-point numbers)
follow each station ID (the integer). Asking your program to read an ID and eight
data values will work for the first line but not for the second line. When your
program tries to read the second line, fscanf will try to find the requested
values by looking ahead to the third line. This will soon cause problems!
However, if each line of the file is first read separately into a string, sscanf can
then be used to read the ID and up to eight data values. It won’t matter if
sscanf runs out of values in that string; it will simply “give up” and return the
total number of values successfully read. The total number of reports is obtained
by incrementing a counter after each successful fgets. The total number of
measurements reported by all stations is obtained by incrementing a counter by
status-1 after each sscanf. (The number of measurements is one less than
the value returned in status because the ID isn’t counted as a measurement.)

46 = 2. The Basics of C Programming

Note that in the sscanf statement, all the measurements are read into the same
variable address, &x. This isn’t a very useful approach in general, but it is okay
for this simple problem.

2.4 Reading a File One Character at a Time

Occasionally, it is useful to read a
file one character at a time and this
section describes how to do that. One
application of this technique might be to deal with the transfer of text files created
on an MS-DOS system to some other system. In order to understand what is
required, we must mention briefly the ASCII character collating sequence. This
is a widely used standard for encoding characters. The sequence contains 256
characters, the first 128 of which are identical for all computer systems using this
standard.’ The second 128 characters are system-dependent. Appendix 1 gives a
table of ASCII characters for Windows/MS-DOS-based computers.

When text files are created on a Windows/DOS computer, they have an
end-of-line mark that actually consists of two characters—a new-line character
(decimal value 10 in the ASCII character collating sequence) and a carriage return
character (decimal value 13). On Macintosh or UNIX systems, the end-of-line
character consists just of the new-line character. The default strategy of utilities
that convert MS-DOS text files to Macintosh is to remove the carriage return
character from the end of every line. However, it is certainly possible that an
MS-DOS file could be downloaded or copied onto a Macintosh or UNIX platform,
or vice versa, without this translation having been made. Depending on how the
file will be read by a program, it might be necessary to remove or add the carriage
return character.

Program P-2.9 examines a text file and displays the integer equivalent of
every character in the file except ASCII character 13, the carriage return character.
When the program encounters ASCII character 10, it prints a new-line character.

P-29 [fileview.c]

/* Displays contents of a text file character by character. */
#include <stdio.h>

int main(void)
FILE *in;

char name[20];
int ch;

3Some IBM mainframe computers use EBCDIC encoding, which is significantly different from
ASCII encoding. IBM and IBM-compatible personal computers use ASCII encoding.

2.4 Reading a File One Character at a Time = 47

printf("Give file to fix: ");
scanf ("%s",name) ;

in=fopen(name, "r");

if (in == NULL) {
printf("Can't find file. Abort program.");
exit();
}
while (!feof(in)) {
ch=fgetc(in) ;
if (ch != 13) printf('%3i",ch);
if (ch == 10) printf('\n");

}

fclose(in);

return 0;

P-2.9 contains some new syntax and three new functions. The syntax
involves the use of an 1f ... statement. You can interpret its meaning based on
the IF... THEN... ELSE pseudocode command. (The THEN... is implied in C.)
We will discuss this syntax in Chapter 4. The new functions are feof, fgetc,
and exit. The first of these returns a nonzero value when the file pointer is at
the eof mark and O otherwise. The second reads a single character from the file
and returns its integer value in the ASCII collating sequence—not its character
value, as you might expect. (That is why the variable ch is declared as type int
rather than as type char.) Actually, characters and integers are interchangeable
in the sense that you can easily switch back and forth between the two
representations. All that is required to display characters rather than integers is to
change the format specifier in the printf statement from %31 to

printf("%c",ch);
or
printf("c", (char)ch);

In the latter case, the (char) makes clear that you wish the variable ch to be
treated as a character rather than as an integer.*

The exit function terminates the program immediately. By convention,
exit (0) indicates normal program termination and a nonzero value indicates a
problem. Using the function without a value inside the parentheses is also okay.
In this text, we will not bother to write code that specifies exit values.

“This kind of operation is called type casting, and we will have more to say about it later in the
text.

48 = 2. The Basics of C Programming

2.5 Applications

In this section, and in similar sections in later chapters, we will develop programs
that use and sometimes extend the material discussed in the chapter. The purpose
of presenting detailed solutions even when the problems seem simple is to help
you develop a consistent problem-solving approach that you can use in
programming as well as in your other science, engineering, and mathematics
courses. It will always be helpful for you to read the problem statement and then
try to design the algorithm and write the program on your own.

2.5.1 Maximum Deflection of a Beam Under Load

1 Define the problem.

Consider a beam of length L supported at each end and subject to a
downward force of F pounds concentrated at the middle of the beam. The
maximum downward deflection of the beam (at its middle) is -FL*/(48EI), where
F is the downward force in pounds, L is the beam length in inches, E is the
elasticity in units of Ib/in? and I is the moment of inertia in units of in®. Write a
program to calculate the maximum deflection for specified values of L, F, E, and
I. For a particular steel I-beam (a beam with an I-shaped cross-section),
E = 30x10° Ib/in® and I = 797 in*. The deflection of such a beam as a function of
length (in feet) is shown in Figure 2.1.

2 Outline a solution.

1. Create a data file containing the desired values of L, F, E, and I. Let your
program convert length from feet to inches, if required.

2. Calculate deflection according to the above formula. The sign of the deflection
can be either positive or negative as long as it’s understood that the deflection is
in the downward direction.

3. Display the output.

2.5 Applications

49

Deflection, in
o
w

[2 B it s
Downward force = 50,000 1b
OJ-““""“"“"""? """"""" D Sl e
o e : ;
0 2 4 6 8 10 12 14 16 18 20

Length, ft

Figure 2.1. Deflection of a steel 1-beam under a central load.

3 Design an algorithm.

DEFINE (L = length, ft; F = central force, Ib; E = elasticity, Ib/ir’;
| = moment of inertia, in*; deflection, in)

OPEN (file containing input data)

READ (L,F,E,)

CLOSE (file containing input data)

ASSIGN L = L+12.0 (convert to inches)
deflection = -F«%/(48El)

WRITE (deflection)

1 Convert the algorithm into a program.

P-2.10 [beam. c]

#include <stdio.h>
#define FILENAME "beam.dat"

int main(void)

{

50 = 2. The Basics of C Programming

double length, force,elasticity,mom_of_inertia;
FILE *infile;

infile=fopen(FILENAME, "r");

fscanf (infile, "%$1f %1f",&length, &force);
fscanf (infile, "%$1f %1f",&elasticity, &mom_of_inertia);
fclose(infile);
printf (
"Length of beam (feet) and central force (lb): %.11f %.11f\n",
length, force) ;
length=length*12.0;
printf(
"Elasticity (1lb/in”*2) and moment of inertia (in*4): %e %.11f\n",
elasticity,mom_of_inertia);
printf ("deflection = %1f in\n",
-force*length*length*length/48.0/elasticity/mom_of_inertia);

return 0;

Running P-2.10

5 Verify the operation of the program.

You probably don’t have an intuitive feel for what the answer should be
for a beam having the values of elasticity and moment of inertia specified in the
problem statement. According to Figure 2.1, the maximum deflection of a 20-foot
beam with the indicated properties is about 0.6 inches when subjected to a load
of 50,000 pounds concentrated in the middle of the beam. What would you think
about using this formula if it returned an answer of 0.001 inches? How about 10
inches?

Problem Discussion

P-2.10 is a straightforward program using a simple external text file for
input, but there are some important details. First, it is important that the creator
of the data file (beam.dat) be aware of which units to use for input. In
particular, the elasticity and moment of inertia are given in units that use inches,
but the problem statement indicates that the beam length should be given in feet.
It is probably best to retain this unit for input and let your program do the

2.5 Applications = 51

conversion to inches. Regardless of the solution you choose, it is essential that
your program account for the fact that, for example, an input of 20 for the length
means 20 feet and not 20 inches! The value for elasticity of 30 x 10° can be
written in scientific notation as 30e6.

Second, note that L* is coded as length*length*1length, as there is
no exponentiation operator in C. In Chapter 3, we will see that there is another
way to do this calculation using an intrinsic function.

Up to now, the $1£ conversion/format specifier has been used for I/O of
type double variables. However, the C language has several different specifiers
that control the appearance of displayed output. In P-2.10, one of those
alternatives, %e, is used to display the elasticity and moment of inertia. This
specifier is useful for displaying very large or very small real numbers in scientific
notation. (See Table 3.2 in Chapter 3 for a list of conversion/format specifiers.)

Finally, it may be helpful to know that for a simple file such as the one
needed by P-2.10, C doesn’t care about the line-by-line arrangement of the values
in the file. The order in which the input values are given in the data file is
important, of course, but these values can be given either on the same line or on
two or more lines. For example:

20 50000 30e6 800
and

20
50000
30e6
800

are equivalent and equally acceptable ways to provide one set of input values.

2.5.2 Relativistic Mass and Speed of an Electron

This particular problem has been chosen specifically because the quantities
involved may be unfamiliar. Hopefully, this unfamiliarity will encourage you to
be careful when you translate this and every other problem statement into a
program, and also to be diligent when you verify that program’s operation.

1 Define the problem.

An electron accelerated by a voltage V in an electron gun acquires an
energy of Ve = mc’ — m¢%, where e = 1.602 x 10"° coulomb is the charge on an
electron, m, = 9.109 x 10" kg is the rest mass, m is the relativistic mass in kg,

52 = 2. The Basics of C Programming

and ¢ = 2.9979 x 10°® m/s is the speed of light. The speed v of an electron of
relativistic mass m is obtained from m/m, = [1 — (v/c)*]"”%. Write a program that
reads several voltages from an external file and calculates the relativistic mass and
speed of an electron accelerated by that voltage. (Sample answer: For a voltage
of 1.5x 10° V, m = 3.58 x 10 kg and v = 2.9 X 10® m/s. See Figure 2.2 for
more information.)

mass/rest mas

0 05 1 15 2 25 3
Electron volts
(Millions)

Figure 2.2. Relativistic mass and speed of an electron.

2 Outline a solution.

The terminology of this problem may be unfamiliar, but the required
algebraic manipulations are not difficult. The relativistic mass is a consequence
of relativity theory, which predicts that mass is not a constant property of matter,
but increases with speed with respect to a stationary observer. The solution is
straightforward:

1. Read the voltage of the electron gun.
2. Calculate the mass first, then the speed, using the equations given in Step 1.
3. Display the output.

2.5 Applications

53

3 Design an algorithm.

DEFINE (All variables are real numbers. The rest_mass,
charge e, and speed of light ¢ are constanis.)
OPEN (file containing voltages)
LOORP (as long as there are voltages to read)
READ (voltage)
WRITE (echo voltage from file)
ASSIGN mass = (voltage+e + rest_mass*c’)/c?
velocity = ce[1 — (rest_mass/mass)’]'"”?
WRITE (mass and velocity)
END LOOP
CLOSE (file containing voltages)

1 Convert the algorithm into a program.

P-2.11 {rel_mass.c]

#include <stdio.h>
#include <math.h>

#define E 1.602e-19 /* Coulomb */
#define C 2.9979%e8 /* m/s */
#define REST_MASS 9.10%e-31 /* kg */
#define FILENAME 'rel_mass.dat"’

int main(void)

{
double voltage, speed,rel_mass;
FILE *infile;
int status;

infile=fopen (FILENAME, "r");

while (1) {
status=fscanf (infile, "$1f",&voltage);
if (status == EOF) break;

printf("for voltage of : %e V\n',voltage);
rel_mass={voltage*E+REST_MASS*C*C) / (C*C);

speed=C*sqgrt(1.0- (REST_MASS/rel_mass) * (REST_MASS/rel mass));

printf('relativistic mass and speed: %g %g\n",rel_mass, speed);

}
fclose(infile);

return 0;

54 = 2. The Basics of C Programming

Running P-2.11

Verify the operation of the program.

These calculations are easy to implement in C, but you must check them
by hand, using a calculator to do the math. Be careful when you calculate the
exponents on powers of 10. It is easy to make mistakes and accept wrong answers
when the numbers are so large or small that it is difficult to develop a feel for
them. If you have never had an introductory physics course, or even if you have,
the numbers may be essentially meaningless, so a wrong answer will look as
reasonable or unreasonable as the right one. As another test of the reasonableness
of your answers, you could add to your code the calculations for the ratio of the
electron’s speed to the speed of light—it must be less than 1—and the ratio of its
relativistic mass to its rest mass—it must be greater than 1; these are the values
shown in Figure 2.2.

Problem Discussion

As implied in the problem statement, the code should treat the data file as
a file of unknown length. Therefore, the voltages in the file are read with fscanf
inside a conditional loop that terminates when the end-of-file is detected.

Program P-2.11 gets a little ahead of our discussion of C in one respect:
it makes use of C’s sqrt function to calculate the square root required to obtain
the electron’s speed. In Chapter 3, we will give more details about using such
functions, which are essential for any language used to do scientific and
engineering calculations. For now, the intent of this function should certainly be
clear in the context of the program. It is necessary to include the <math.h>
header file in order to use the sgrt function. If you are using the UNIX cc
compiler, you will also have to include the option -1m (to link the math library)
in the command line when you compile this program:

cc rel_mass.c -orel_mass.exe -1lm.

Note the use of scientific notation to express the physical constants in the
program. The voltage input can also be given in scientific notation, and it can still
be read with a $1f specifier. In P-2.11, an alternative specifier, %g, is used for

2.6 Debugging Your Programs ® 535

output. It displays real numbers in floating point or scientific notation, whichever
is shorter. This is useful when you’re not sure of the magnitude of the answers
your program will produce.

2.6 Debugging Your Programs

There is no shortage of potential problems in even the
simplest C programs. The first errors you will encounter
are compile-time errors, or syntax errors, that your
programming environment will detect when it tries to
compile your program. Unfortunately, the messages that C compilers give about
these errors are not always very helpful. One result of the free-format nature of
C is that sometimes an error message will be reported far from its actual location,
as your compiler defers reporting the error until it is forced to give up on
determining how you wish your source code to be interpreted. The C language is
this way by design; the penalty to be paid for having a very flexible language is
that programmers must assume a great deal of responsibility for writing
syntactically correct code. All syntax errors must be removed from a source code
file before an executable program can be generated.

Even after your program is free of syntax errors,
there is another class of errors that.your programming
environment can detect only after a program has begun
executing. These run-time errors must be corrected by modifications to your
source code to allow your program to execute properly or to produce correct
answers.

The only way to become proficient at finding bugs and
debugging your programs is to make errors (not a problem!),
note the messages resulting from those errors, and learn how to
respond to those messages. Each programming environment is
a little different because the messages displayed in response to syntax or run-time
errors are generated by the compiler you are using; the content of these messages
isn’t regulated by the C language standard. In the next sections, some common
compile-time and run-time errors are described.

2.6.1 Compile-Time Errors

1. Misspelled keywords and function names

This includes using inappropriate combinations of uppercase and lowercase
letters, such as Printf instead of print£. It is difficult for a C compiler to
give a useful message about such errors because it has no way of determining
what you actually meant. Your defense against this kind of error is to be careful
when you type your source code in the first place.

56 = 2. The Basics of C Programming

2. Undefined variable names

This is a “good” error because it forces you to declare every variable
appearing in your program. It is easy to make spelling errors when you type in
source code, and the messages resulting from this error will show you where
variable names have been misspelled.

3. Inappropriate use of semicolons on lines containing compiler directives
Compiler directives are not C statements, so they do not end with a
semicolon. For example, #include <stdio.h>; will produce an error, but
the message may not be very helpful and may appear to relate to an entirely
different part of your source code. Again, your only defense is to be careful.

4. Missing semicolons

Because of the free-format nature of C, this error is usually reported on the
line after the one on which the missing semicolon was expected. Remember that
every C statement must end with a semicolon.

5. Unbalanced curly braces ({ . .. }) around statement blocks

This is another error that is difficult for a compiler to interpret because it
“keeps hoping” that the missing brace will be found. Thus the error message often
references a source code line, perhaps even the last line of the program, that is far
from where the missing brace should have been. Your defense against this kind
of error is to be consistent about indenting statement blocks so that it is easy to
see the correspondence between the start of a code block and its closing brace;
this has the added advantage of making your code much easier to read and
understand.

6. Unbalanced parentheses

Every left parenthesis must be balanced by a right parenthesis in an
assignment statement or a call to a function. You are encouraged to use extra
parentheses whenever their presence makes calculations more clear, but many
beginning programmers overuse parentheses in simple assignment statements.
Code such as

X = a + (b/c);

is okay, but these parentheses are not needed because multiplication and division
take precedence over addition and subtraction. The use of too many parentheses
in more complicated arithmetic expressions makes mistakes more likely and
should be avoided. A more detailed discussion of the precedence of operations
will be found in Chapter 3.

2.6 Debugging Your Programs = 57

7. Missing quote marks around conversion specifier strings in I/O statements

Quote marks around string constants (string literals) must always occur in
pairs—an opening quote and a closing quote. Your compiler will try to find a
missing quote mark and may report the error far from the line in which the error
actually occurred.

2.6.2 Run-Time Errors

1. Inappropriate I/O conversion specifiers

This error can result in “garbage” values or program crashes. Such errors
won’t be detected as compile-time errors, but they can cause incorrect answers or
odd errors when you try to run your program. If values print as O even though you
know they have nonzero values, or if variables appear to have wildly inappropriate
values, the most likely cause is an inappropriate conversion specifier.

Your defense against this kind of error is to check compatibility between
variables and conversion specifiers in printf and scanf functions (and their
corresponding file I/O functions). Although some inconsistencies are of little
consequence—it is okay to use a $f format, rather than %1f, to display a type
double variable, for example—it is better practice to be consistent about using
an I/O conversion specifier that is properly associated with the data type of the
quantity being read or written.

2. Omitting the address-of operator (&) for nonstring variables used as arguments
in input functions

Variable names associated with characters, integers, and real numbers must
always be preceded by the & character when your program reads their values using
scanf or some other input function. Failure to do so asks C to consider the
variable name as an address rather than as a symbolic name. When you read
strings, the names of string variables are considered by C to be addresses—a detail
which certainly isn’t obvious, and which will be discussed later in more detail—so
the & operator isn’t used. This kind of error will be detected only when your
program executes. The results range from variables having values of O to obscure
messages such as segmentation fault.

3. Not finding a requested input file

Because nearly all C functions, including I/O functions, return values, the
C language depends on these values to detect certain kinds of error conditions.
You might want a program to crash if it can’t find a file you asked it to read
from, but it won’t do that. Instead, the fopen function will return a value that
can be interpreted as, “I couldn’t find this file.”

It is certainly possible, and even desirable, to write code that will respond
appropriately to such a message, but we have avoided it in the examples presented

58 = 2. The Basics of C Programming

in this chapter. Such code uses syntax we haven’t discussed yet, and it makes
programs longer, harder to read, and less clear in their basic purpose. For
programs you write for your own use, it is not hard to keep track of where data
files are stored, so you aren’t likely to ask your program to open a file that
doesn’t exist.

4. Using inappropriate mixed-mode calculations
Consider this code fragment:

int min, sec;
float decimal_minutes;

decimal_minutes = min + sec/60;

Even though decimal_minutes is declared as type float, the result is an
integer always equal to the value of min. Why? Because sec/60 is an integer
calculation and always produces a value of 0 unless sec equals exactly 60. The
meaning imposed by C on the division operator depends on the data type of both
its operands. If both operands are integers, as in this case, the division operator
returns the integer quotient of dividing sec by 60. This is sometimes a desirable
result, but not in this code fragment.

To avoid this kind of error, always be aware of whether you are doing
integer or real arithmetic, regardless of the appearance of the values involved.
Physical quantities should almost always be associated with floating-point
variables even when the quantities are expressed as whole numbers. In this
example, you could get the correct answer by typing sec/60.0. The fact that
one of the operands is now a real number forces C to perform real arithmetic and
to generate a real number result. A better idea would be to declare all three
quantities as real variables and use 60 .0 rather than 60, even though 60 is a
whole number.

2.7 Exercises

In these exercises, the input may come either from values typed at the keyboard
or from an external data file, as specified by your instructor. When you use a data
file, be sure to echo the contents of the file as part of your program’s output. Your
instructor also may ask you to write output to a file instead of or in addition to
your computer monitor. Also, if you use a data file for input, you can try using
your system’s redirection operator to direct your program’s output to another file
rather than to your computer monitor.

In this and subsequent chapters, data files mentioned in the exercises can
be downloaded from the Web site mentioned in Section 6 of the Preface.
Instructors can obtain source code for the exercise problems directly from the

2.7 Exercises ® 59

author, as noted in Section 6 of the Preface. The names of the source code files
are given in brackets at the end of each exercise.

1. Write a program that calculates and displays the volume and surface area of a
cylinder, given the radius and height in meters. The volume of such a cylinder is
nrth, and its surface area is 2nr? + 2nth. [cylinder.c]

Extra Credit:

1. Assuming that the cylinder is solid and the density (g/cm’) of the
material is specified as input, calculate the mass of the cylinder. (Use an
engineering handbook to find densities for one or more materials and be sure to
specify in your program output what those materials are.)

2. Assuming that the cylinder is an empty container made of thin sheets
of material with a known mass per unit area (g/cm®), calculate the mass of the
cylinder for a specified wall thickness. Is it appropriate to assume that this value
is just the surface area times the mass per unit area of the material?

3. Create a data file with several sets of material densities and dimensions
and modify your program so that it will read input values from this file rather than
from the keyboard. [cylindr2.c]

2. “Block and pulley”

problems are a staple

of introductory physics (@) (b)
courses.
(a) Consider a block of Mb
mass m, hanging from
a massless string that
passes over a
frictionless pulley and
is connected to another Mal
block of mass m,
resting upon a
horizontal surface as
shown in Figure 2.3(a). Figure 2.3. Block-and-pulley configurations.
The coefficient of

friction between the second block and the horizontal surface is p. Under the
influence of gravity, the system of blocks undergoes an acceleration a, where the
balance of forces is

Ma |Mb

F = (m, - pmy)g = (m, + m,)a

60 = 2. The Basics of C Programming

Write a program that calculates the acceleration of the block system for specified
values of m,, m,, and p. What is the maximum value of p such that the hanging
block will fall?

(b) Consider the masses from part (a) hanging from either side of a frictionless
pulley, as shown in Figure 2.3(b). Now the balance of forces is

F = (ma - mb)g = (ma + mb)a
Add to your program the calculation for the acceleration of this block system.

3. The Carnot cycle describes a theoretical heat engine that absorbs heat at
temperature T,, converts some of the heat to work, and exhausts the rest at a
lower temperature T,. The efficiency of a Carnot engine, which is always less than
1, is determined by the ratio of output to input temperatures:

efficiency = 1 - T,/T,

where temperatures are expressed in Kelvins and 0° C equals 273 K. Write a
program that accepts as input values of T, and T, and calculates the efficiency.
Express the temperatures in units of degrees Centigrade and let your program do
the conversion to Kelvins. [carnot. c]

4. Young’s modulus of elasticity Y, the ratio of stress to strain, characterizes the
response of materials to tension or compression forces. Assuming the elastic limit
is not exceeded, the change in length AL of a rod of initial length L and cross-
sectional area A subjected to a tension or compression force F is related to
Young’s modulus by

stress F/A

y - S8
strain AL/L

Table 2.1 lists Young’s modulus and the elastic limit for several materials.

Write a program that determines, for each of the tabulated materials, the
change in length AL for a 1-mm-diameter, 2-meter rod subjected to a specified
force F that will not cause the elastic limit to be exceeded for any of the
materials. For each material, calculate the minimum diameter a rod can have
without its elastic limit being exceeded for a user-specified force. Use an external
file to store all your input data. [young. c]

2.7 Exercises = 61

Table 2.1. Young’s modulus and elastic limit for selected materials

aluminﬁm 7.0 1.3
brass 9.1 3.8
copper 11.0 1.5
wrought iron 9.1 1.6
spring steel 10.0 4.1

5. Write a program that asks the user to supply the mass and velocity of an object
and then calculates and displays the kinetic energy and momentum of that object.
The kinetic energy is mv?/2 and the momentum is mv. Use metric units (mass in
kilograms, velocity in meters per second, energy in joules).

Extra Credit:

Include source code that will convert the kinetic energy and momentum to
their British system equivalents. The British unit of energy is ft-1b and the unit of
momentum is slug-ft/s. 1 ft-Ib = 1.356 joule; 1 slug = 14.59 kg; 1 ft/s = 0.3048
m/s. [kinetic.c]

6. Write a program that asks the user to supply the mass m, radius r , linear speed
v, and rotational speed m of a rolling solid spherical ball. The total kinetic energy
of an object is the sum of its translational and rotational kinetic energies:

KE,,, = [0’/2 + mv¥/2
where I is the moment of inertia. For a solid sphere of radius r, the moment of
inertia is 2mr%/5. Use metric units to calculate and display the linear, rotational,
and total kinetic energy in joules. Rotational speed is measured in units of rad/s.
[rolling.c]

7. The drag force F, on a moving object is given by

F, = (p/2)v’AC,

62 = 2. The Basics of C Programming

where p is the density of the gas or fluid through which an object of projected
(cross-sectional) area A m* moves at a speed v m/s. (For air, p = 1.23 kg/m®.) The
dimensionless drag coefficient C; has a value in the range 0.2 to 0.5 for
automobiles. The power required to overcome the drag is

P=Fyv

For force and speed in mks units, power is measured in watts. One horsepower
is equivalent to 746 watts.

Write a program that asks the user to supply the speed in units of mph,
cross-sectional area in units of square feet, and drag coefficient of a moving
automobile and then calculates the drag force in newtons and the power in
horsepower required to overcome this drag force. [dragforc.c]

8. Write a program that calculates and prints the total resistance of three resistors
connected (a) in parallel and (b) in series, as illustrated in Figure 2.4. When they
are connected in parallel, the total resistance of n resistors is 1/r; = 1/r; + l/r, +
1/r; +... +1/r,. When they are connected in series, the total resistance of n resistors
iSIr =1, + I, + 1; +... + 1,. Prompt the user to enter values in ohms, the usual unit
of resistance. [resistor.c]

R1 R2 R3

NVWW VNVVVN-AN VN~

Figure 2.4. Resistors in parallel and in series.

9. Consider the reliability of a system consisting of three components connected
in series or in parallel. If the reliability of the components is given as R, R,, and
R,, where 0 < R <1, then the reliability of a system with the components wired
in series is

R... =RRR,

series
If the same components are wired in parallel, and if the system remains functional
as long as any one of the components is working, then the system reliability is

R

paralle

=1-(1-R)A -RY(1 -Ry

2.7 Exercises ® 63

Write a program to calculate the reliability of such systems for three user-specified
values of reliability.

Systems using components in series are vulnerable to failure even if the
individual components are very reliable. On the other hand, redundant systems,
with components in parallel, are very reliable even if the components aren’t very
reliable individually. For example, if each component has a reliability of 0.900,
a system with these components in series has a reliability of only 0.729. If the
same components are in parallel, then the system reliability is 0.999.
[reliable.c]

10. Write a program that requests as input the clock time in hours (0 to 24),
minutes, and seconds in the format hh:mm:ss and displays the time in both
seconds and fractions of a day. One day contains 86,400 seconds. For example,
12:00:00 is 43,200 seconds, or 0.5 days.

Hint: Be sure to read the discussion at the end of Section 2.2.1 before writing the
code for this problem. [time. c]

11. Write a program that requests as input an angle expressed in degrees, minutes,
and seconds in the format dd:mm:ss and converts it to whole and fractional
degrees. There are 60 minutes in a degree and 60 seconds in a minute. For
example, 30:15:04 equals 30.25111 degrees.

Hint: Be sure to read the discussion at the end of Section 2.2.1 before writing the
code for this problem. [angles.c]

12. Write a program that requests as input the time in seconds required to run a
distance of one mile and calculates the speed in units of feet per second, meters
per second, and miles per hour. For example, a 4-minute (240-second) mile is run
at an average speed of 22 feet per second, 6.71 meters per second, or 15 miles per
hour. There are 5280 feet in one mile and 3.2808 feet in one meter. [speed. c]

13. Write a program that calculates and prints the energy of a photon whose
wavelength A is given in centimeters. The energy = hf joule, where
h = 6.626 x 10 joule-s (Planck’s constant), f = c/A, where ¢ = 2.9979 x 10° m/s
(the speed of light) and wavelength is given in meters. (See Figure 2.5.)

Hint: Use a def ined constant and scientific notation to define the speed of light
and Planck’s constant. As an example of using scientific notation in C, the number
6.626x10™* can be represented as 6.626e-34.

Extra Credit: A 1 eV (electron volt) photon has an energy of 1.602x10™" joule.
Modify your program so it will also calculate the wavelength of a photon with an
energy of 1 eV. (Answer: about 1240x10° m. This is in the infrared part of the
electromagnetic spectrum.) [photon. c]

64 = 2. The Basics of C Programming

Wavelength, nanometers

0 ; ; ; ; i i

Energy, eV
Figure 2.5. Wavelength of a photon as a function of energy.

14. Recalling programs P-2.2 and P-2.4, which calculated the area and
circumference of a circle for a specified radius, write a version that performs these
calculations for several radius values stored in an external data file. Your program
should not assume ahead of time how many radius values there will be.
[circl _f2.c]

15. (a) Write a program that asks for a student’s name, ID (in the form of a social
security number), cumulative grade point average (GPA), and total number of
credit hours accumulated through the most recent grading period. Calculate the
total number of grade points by multiplying the number of credit hours by the
GPA. Now ask the user to supply information about a newly completed course.
This information should include the number of credit hours for the course and the
number of points for each credit hour—4 for an A, 3 for a B, 2 for a C, 1 for a
D, and O for an F. Multiply the credit hours by the number of points
corresponding to the grade earned in the new course and add it to the old number
of total grade points. Add the new credit hours to the old credit hours. Divide the
new grade point total by the new total credit hours to recalculate the GPA.
Display this value. {[gpa. c]

(b) Rewrite the program in part (a) so that data about several students are
contained in a single data file. Create the file yourself, with whatever format you
think will simplify your programming. The file should contain, for each student,
the same information entered at the keyboard for the program in part (a). This new

2.7 Exercises ® 65

program should require no keyboard input to run and should display the data in
the file as well as the new total credit hours and GPA. Do not assume that your
program knows ahead of time how many students will be represented in the file.
If you like, you can send output both to your monitor and to a new data file.

[opa2.c]

16. The ideal gas law describes the relationships among pressure (p), volume (V),
and temperature (T) of an ideal gas:

pV = UuRT

where p is the number of kilomoles of gas and R is the universal gas constant. For
volume in m’, temperature in kelvins, and pressure in newton/m’ (pascal),
R = 8314.3 joule/kilomole-K, and 1.0132x10° pascal = 1 standard atmosphere
(atm). Write a program that calculates the volume occupied by a specified number
of kilomoles of an ideal gas at temperature T (°C) and pressure p (atm). (Sample
answer: under standard conditions of T = 273.15 K (0°C) and a pressure of 1 atm,
1 kilomole of an ideal gas occupies a volume of about 22.4 m*.) [gas_law.c]

Extra Credit:

1. If you were trying to determine the validity of the ideal gas law experimentally,
it would make more sense to use the law to calculate pressure for a specified
volume and temperature. Modify the program to do this calculation instead of the
calculation specified in the original problem statement.

2. Because molecules occupy volume and exert intermolecular forces on each
other, the ideal gas law becomes less accurate as density increases—that is, as
more molecules occupy the same volume. The van der Waals modification to the
ideal gas law attempts to take this into account with the following empirical
formula:

(p + aV)(v - b) = RT

where v is the specific volume (m’/kilomole, for example). The constants a and
b are different for each gas and are experimentally derived. Table 2.2 contains
data for several gases and Figure 2.6 shows pressure as a function of specific
volume for nitrogen.

66 = 2. The Basics of C Programming

28 : : : ' ; ; H 1 T 1000

750
@ | “
§§15..... ? -250 g
©§ £
g3 § "
2 I =]
127 A . 0 2
ie <¥ A Pdeal) g
o ideal &

81 \\\ : N B

st A SR . ———

<@ P(van der Waals) | |
' e ——— -750

0 t t + + t t t t
0 02 04 06 08 1 12 14 16 18 2
Specific volume, m3/kilomole

Figure 2.6. Pressure as a function of specific volume for nitrogen at
T=27315K

Table 2.2. Molar masses and van der Waals coefficients for selected gases

van der Waals coefficients

a, b, a, b,
Molar mass, kPa-m®/ m*/kg 1l*-atm/ 1l/mole

Gas gm/mole kg? mole?
air 28.97 0.1630 0.001270 1.350 0.0368
ammonia 17.03 1.4680 0.002200 4.202 0.0375
carbon dioxide 44.01 0.1883 0.000972 3.600 0.0428
helium 4.00 0.2140 0.005870 0.034 0.0235
hydrogen 2.02 6.0830 0.013200 0.245 0.0267
methane 16.04 0.8880 0.002660 2.255 0.0427
nitrogen 28.02 0.1747 0.001380 1.354 0.0387
oxygen 32.00 0.1344 0.000993 1.358 0.0318
propane 44 .09 0.4810 0.002040 9.228 0.0899

Source: M. C. Potter and C. W. Somerton (1993), Schaum’s Outline
Series: Theory and Problems of Engineering Thermodynamics,
Tables B-3, B-8.

2.7 Exercises ® 67

Modify your program (the extra credit one, not the original one) to do calculations
for both the ideal gas law and the van der Waals modified law.

Hint: Be careful with units! 1 liter/mole is numerically identical to 1 m*/kilomole.
If the pressure is calculated in pascals, then the tabulated value for a must be
multiplied by 101320. [gas2.c]

17. In braking tests on automobiles, the initial speed v and stopping distance d are
recorded. Write a program that reads several pairs of v and d values from an
external file. Assume that the automobile decelerates at a constant rate while the
brakes are applied. Calculate the time to stop t and the deceleration a for each pair
of values. The relevant formulas are

d=at’/2
v = at

The initial speed should be given in units of miles per hour and the stopping
distance should be given in feet. Note that these units are inconsistent, so speed
should be converted to units of feet per second before you do the calculations.
[car_stop.c]

18. The Body Mass Index (BMI) provides a way to characterize normal weights
for human adult bodies as a function of height. It is defined by

BMI = w/h®

where w is mass in kilograms (2.2 kilograms mass per pound weight) and h is
height in meters. A BMI in the range 20-25 is considered normal and a BMI over
30 is considered obese.

One problem with the BMI is that it doesn’t distinguish between fat and
muscle. Thus a professional football player might be considered obese because he
has an abnormal amount of muscle weight relative to his height.

An alternative formula that takes into account the source of body weight
is
BMI' = (a;F + aL)/h’
where F and L are fat and lean weights (F + L = w) and a; and a; are constants
that give different weights (in the statistical sense) to muscle weight and fat

weight. The constants are chosen to satisfy these constraints:

1. BMI = BMI' for average adults with a body fat content of 20 percent.
2. ap=2a,

68 = 2. The Basics of C Programming

The second somewhat arbitrary constraint means that fat weight counts twice as
much as lean weight in the calculation of BMI'. To look at it another way, an
exercise program that replaced one pound of fat with two pounds of muscle would
leave BMI' unchanged. Let p equal the fraction of total body weight associated
with fat. Then

F = pw

L=(1-pw

apw + a (1l -ppw=w
ap = 2a;

0.2(2a;) + 0.8a; =1
a, = 0.833

ap = 1.667

Write a program that calculates both BMI and BMI'. Ask the user to enter her or
his total weight in pounds, height in inches, and percent body fat.

19. An external data file (weather . 96) contains weather data for Philadelphia,
Pennsylvania, in the following format:

Date hi time lo time rec. hi rec. lo norm.
bar.6a noon 6p mid.
hum. hi lo prec. mon. year. norm. AQ cl sun rise/set

01/01/96 43 12:45p 34 5:28a 62 1973 4 1881 39 24
29.92r 29.96f 29.93r 29.90f
85 64 TRACE TRACE TRACE 0.11 ---- -- 100 7:22a 4:46p
01/02/96 37 12:01la 32 9:50p 67 1876 7 1968 39 24
29.85f 29.83f 29.73s 29.57f
100 75 0.56 0.56 0.56 0.22 g 43 pa 100 7:23a 4:47p

(and so forth)

Using this file, find and print the maximum temperature and date of all days
during 1996 on which the maximum temperature was at least 90° F. You can
assume that:

1. The three header lines appear only once, at the beginning of the file.

2. There are no missing days.

3. Every day in the year is represented by three lines in the file, consistently
formatted as shown.

4. The maximum temperature, in contrast with some of the other parameters, is
always present and is right-justified in columns 10-12. [weather.c]

2.7 Exercises ®» 69

20. Consider the file track.dat, which contains winning times for the 1500
meter and marathon races in the modern Olympics.

Men Women
year 1500 m marathon
1896 4:33.20 2:58:50.00
1900 4:06.20 2:59:45.00
1904 4:05.40 3:28:53.00
1908 4:03.40 2:55:18.40
1912 3:56.80 2:36:54.80
1916
1920 4:01.80 2:32:35.80
1924 3:53.60 2:41:22.60
1928 3:53.20 2:32:57.00
1932 3:51.20 2:31:36.00
1936 3:47.80 2:29:19.20
1940
1944
1948 3:49.80 2:34:51.60
1952 3:45.20 2:23:03.20
1956 3:41.20 2:25:00.00
1960 3:35.60 2:15:16.20
1964 3:38.10 2:12:11.20
1968 3:34.90 2:20:26.40
1972 3:36.30 2:12:19.70 4:01.40
1976 3:39.17 2:09:55.00 4:05.48
1980 3:38.40 2:11:03.00 3:56.60
1984 3:32.53 2:09:21.00 4:03.25 2:24:52.00
1988 3:35.96 2:10:32.00 3:53.96 2:25:40.00
1992 3:40.12 2:12:23.00 3:55.30 2:32:41.00
1996 3:35.78 2:12:36.00 4:00.83 2:26:05.00

In some years since 1896, there haven’t been any Olympic games at all because
of World Wars I and II. Also, the women’s events were phased in at different
years starting in 1972.

Write a program that will read this file and report the years for which there
were no Olympic games. This programming problem can easily be solved in C by
using fgets to read each line of the file and then acting on the value returned
when the resulting string is interpreted with sscanf. You will need one
statement that requires syntax we have not discussed yet. Suppose the value
returned by sscanf is stored in int variable status. Then

if (status == 1) printf(...

will print an appropriate message for a year in which no Olympics were held.

3

Data Types, Operators, and Functions

3.1 Specifying and Using Data Types

C is a strongly typed language that demands a specific programmer-supplied data
type for every variable name used in a program. We have already used several
different data types in the programs presented in Chapter 2. In this section, we
will give a more detailed description of data types. C supports basic data types for
integers, real (“floating-point™) numbers, and characters. For each of the numerical
data types, there are choices that define the number of digits that can be
represented as integers as well as the number of significant digits and the range
of real numbers. Some data types have one or more alias names that can be used
in a program. Table 3.1 lists these data types and gives ranges for one particular
C implementation, Microsoft’s MS-DOS-based Quick C. It is important to realize
that these ranges are not fixed by the ANSI C standard and can differ among
various C implementations.

The nature of C requires that I/O operations be associated with specific
data types. This association is made with format and conversion specifiers. When
used with input statements, conversion specifiers tell C what kind of variable is
being read. To put it another way, specifiers tell C how to translate characters
typed at the keyboard or read from a file. For example, the statement

scanf ("%1f", &x);

tells C to interpret characters typed at the keyboard as a real number of type
double. Each data type has its own conversion or format specifiers for reading
values with scanf or displaying values with printf, as shown in Table 3.2.
Within the format specifiers used with output statements such as printf,
it is possible to further control the appearance of the output by specifying the total
number of characters allocated for the output and, for floating-point numbers, the
number of digits appearing to the right of the decimal point. The general form is
w for character, string, and integer output and w.d for floating-point number
output, inserted between the % symbol and the format specifier. The hard-coded
value w is the total number of characters allocated for the output field. In the case
of real numbers, d is the number of digits appearing to the right of the decimal
point. Numbers are right-justified in their fields. For example, the value 17.7
displayed with format specifier "$10.31£f" will be displayed as p17.700.
If the number of characters is insufficient to display the output, the field will be
expanded to allow the display. Thus the conversion specifier "%3.31f" will
display any numerical value, no matter how large, with three digits to the right of

D. R. Brooks, C Programming: The Essentials for Engineers and Scientists
© Springer-Verlag New York, Inc. 1999

72 = 3. Data Types, Operators, and Functions

the decimal point. For example, 17.7 will be displayed as 17.700. Numbers are
properly rounded when using the w. d option to specify the number of digits to
the right of the decimal point. Thus 17.766 will print as 17.77 with a
"%5.21f" specifier and as 18 witha "%$2.01f" specifier.

Characters and character strings are also right-justified when their field
lengths are specified, and C will expand the field to display an entire character
string, if necessary.

Table 3.1. Some C data types

i

short int, signed short -32767 to 32767

short
signed short int

int signed int -32767 to 32767
signed

long long int, signed long -2147483647 to 2147483647
signed long int

unsigned short unsigned short int 0 to 65535

unsigned unsigned int 0 to 65535

unsigned long

unsigned long int

0 to 4294967295

float (none) 1.175494¢-038 to 3.402823e+038
double (none) 2.225074e-308 to 1.797693e+308
long double (none) 3.362103e-4932 to
1.189731e+4932
char (none) 'A" (example)
(character string) (none) char a([80]; (example)

a="This is a string.";

The %f and %1f specifiers will read numbers in either decimal or
scientific notation, but they display numbers in decimal notation, which can lead
to a loss of information. For example, a %1 specifier will read the value 3e-9
correctly, but it will display this value as 0.000000. Use a $e or %g specifier to
display very small values correctly.

Especially for scientific and engineering applications, you need to be aware
of the limits on ranges for the various data types. These ranges are implementation
dependent. The only requirement of the ANSI C standard is that when progressing
from “smaller” to “larger” data types, the number of integers, the range, and the

3.1 Specifying and Using Data Types = 73

precision must be at least as large or precise as for the previous “smaller” data
type.

Table 3.2. Conversion/format specifiers and control characters for I/O

% Begin conversion specification.
%% Display the character %.
c Read/display character.

d (1), 14 (11) Read/display signed integer.

e (E), 1le (1E), Display type float, double, or long double floating
Le (LE) point number in scientific notation. Read such data types
expressed in either decimal or scientific notation.

£,1f, Lf Display type float, double, or long double floating
point number in decimal notation. Read such data types
expressed in either decimal or scientific notation.

g (G), 1g (1G), Display type float, double, or long double floating
Lg (LG) point number in scientific or decimal notation, depending on
which is shorter. Read such data types expressed in either
decimal or scientific notation.

S Read/display string.

u, 1u Read/display unsigned short, unsigned,
or unsigned long.

\ escape character:

\b move cursor one character to the left

\f “form feed” to top of next page

\n go to beginning of next line

\r go to beginning of current line

\'t go to next tab stop (eight character tabs)
\" print the character "

\\ print the character \

Program P-3.1 shows how to determine the ranges and, for floating-point
numbers, the number of significant digits for your C implementation. This
program requires the standard header files 1imits.h and float.h to access
the built-in constants INT_MAX, INT_MIN, FLT MAX, FLT_MIN, DBL_MAX, and
DBL_MIN.

74 = 3. Data Types, Operators, and Functions

P-3.1 [ranges.]

/* Find ranges for numeric data. */
#include <stdio.h>

#include <limits.h>

#include <float.h>

#include <stdlib.h>

#include <math.h>

int main(void)

{
printf ("Range of short integer: %d %d\n"', SHRT_MAX, SHRT_MIN) ;
printf ("Range of integer: %d %d\n', INT_MAX, INT_MIN) ;
printf ("Range of long integer: %$1d %1d\n", LONG_MAX, LONG_MIN) ;
printf ("Max unsigned short integer: %u\n'",USHRT_MAX) ;

printf ("Max unsigned integer: %ul\n",UINT_MAX) ;
printf ("Max unsigned long integer: %lu\n",ULONG_MAX) ;
printf ("Range of float: %e %e\n",FLT_MAX,FLT_MIN) ;

(
(
(
printf ("Precision of float: %i\n"',FLT_DIG);
(
(
(

printf ("Range of double: %e %e\n",DBL_MAX, DBL_MIN) ;
printf ("Precision of double: %i\n"',DBL_DIG) ;
printf ("Range of long double: %Le %Le\n',LDBL_MAX,LDBL_MIN) ;

printf ("Precision of long double: %i\n",LDBL_DIG) ;
printf ("%$e\n",HUGE_VAL) ;
return 0;

Running P-3.1

Some programmers prefer to use type double variables for all numerical
calculations, even though this data type requires more memory than £loat and
may slow the performance of calculation-intensive programs. The justification for
this choice is that the so-called intrinsic functions for mathematical calculations,
which will be discussed later in this chapter, expect type double arguments and
return type double results. Thus the use of type double variables eliminates
the need for “downward” type casting, a topic we will deal with later. In ANSI-
standard C, the minimum range for positive values of type double is from 10*
to 10%’. However, you will likely find that even the float data type in your

3.2 Operators = 75

implementation supports numbers in this range, with seven or eight significant
digits. This is enough range and precision for many calculations, so it will
sometimes be acceptable to use type £1oat rather than type double numerical
variables.

3.2 Operators

C supports a great many operators. Some of these are
straightforward, such as the +, -, *, and / operators for
the basic mathematical operations of addition, subtraction,

multiplication, and division. The * and / arithmetic

operators work only as binary operators. These require two operands, one to the
left of the operator and the other to the right, as in a*b. The + and — operators
work either as binary operators or as unary operators, in which a single operand
appears to the right of the operator, as in -x. Other operators are unique to C and
provide shortcuts for specifying certain common programming operations, such as
incrementing and decrementing values. Table 3.3 lists these operators.

Of the math operators, only the / and % deserve '
special mention, as the operation of the others is l
straightforward. The % is the modulus operator that
returns the remainder from integer division. For example, 7%4 returns a value of
3. For two integer operands, or integer-valued expressions, the / operator returns
the integer quotient. For example, 7/4 returns a value of 1. This perhaps
unexpected result, briefly mentioned in Section 2.6 of Chapter 2, is due to the fact
that, in C, the data type of the operands determines the data type of the result.

The real challenge in mastering C’s
operators lies in learning the rules that
determine the order in which operations in an
expression are evaluated. These operator precedence rules are given in Table 3.4.
For now, we are interested in just the arithmetic operators. In an algebraic
expression, for example, multiplications and divisions are performed before
additions and subtractions, so, as expected, multiplication and division operators
have higher precedence than addition and subtraction operators. Just as in algebra,
the use of parentheses can alter the precedence of operations. As a matter of style,
parentheses should be used for any but the most straightforward expressions in
which there is no possibility of misinterpreting the precedence rules. We will
assume in this text that our definition of straightforward expressions is limited to
those for which the algebraic precedence rules for addition, subtraction,
multiplication, and division apply.

76 = 3. Data Types, Operators, and Functions

Table 3.3. C operators

add (binary) or multiply by +1 (unary)

+ a+b, +a
- subtract (binary) or multiply by -1 (unary) a-b, -a
* multiply a*b
/ divide a/b
% remainder (modulus) in integer arithmetic i%7

++

add one to operand

= simple assignment X=y
<operators= compound assignment used with arithmetic X+=y (X=x+Yy)
operators -=y (x=%x-Y)
x*=y (x=x*y)
x/=y (x=x/y)
1%=7 (1=1%3)

++1,

subtract one from operand

--x,

== equal a==b

1= not equal al=b

< less than a greater than a>b

<= less than or equal a<=b

>= greater than or equal a>=b

! logical NOT (unary operator) la

&& logical AND (a==b) && (c<d)
Il logical OR (a<b) 11 (c>d)

! See the text for a discussion of the implications of applying these operators before and after the

variable.

3.2 Operators = 77

Table 3.4. Precedence of C operations

function calls 1
!, unary +, unary -, unary & ’, unary * 2 | 2
type casts 3
* /% 4
binary +, binary - 5
<, >, <=, >= 6
==, = 7
&& 8
Il 9
= 10

! & is the address-of operator as used in scanf, for example.

2 » js the dereferencing operator for pointers, a topic that will be discussed in Chapter 5.

P-3.2 demonstrates the use of some of the shorthand assignment and
incrementing/decrementing operators given in Table 3.3. It is never required to use
these operators, but their use is consistent with C’s generally terse syntax.

P-3.2 [operator.c]

#include <stdio.h>
int main(void)
{

int x,v;

x=7; y=4;

printf("%$i %i\n",x%y,x/vy); /* (1) */
X+=y;

printf("%i\n",x); /* (2) */
X=y--;

printf ('x= %i, y= %i\n",x,y); /* (3) */
X=--Y;

printf('x= %1i, y=%i\n",x,v); /* (4) */
printf("%$i\n",x*=y); /* (5) */
return 0;

78 = 3. Data Types, Operators, and Functions

Running P-3.2

From the printf function in the line labelled (1)
in P-3.2, the modulus and division operators applied to 7
and 4 yield 3 and 1. For line (2), the result is the same as
writing x=x+y, which equals 11. For the decrementing
and incrementing operators, the results depend on whether the operator appears
before (prefix operator) or after (postfix operator) a variable name. For line (3),
the postfix operation assigns the current value of v (4) to x and then decrements
v to 3. In line (4), the prefix operation first decrements y from 3 to 2 and then
assigns x this new value. The behavior of the incrementing/decrementing operators
can be confusing, so they should be used with care.

The relational operators described in Table 3.3 are used to compare values
and expressions. For example, the expression A < B has a value of True if A is
less than B and a value of False if it’s not. Such comparisons are used in the
implementation of the IF... THEN... ELSE... pseudocode command: for example,
“If A is less than B, then take some action....” The C implementation of this
pseudocode will be discussed in Chapter 4.

Some languages support a logical or boolean
data type that has True or False as its two possible
values. One of these values is assigned as a result of a
comparison, such as A < B, being either True or False.
However, as noted in the discussion of selection structures in Chapter 4, C does
not support a logical data type. Therefore, it is sometimes useful to define
constants that make relational operations more clear:

#define TRUE 1
#define FALSE O

Finally, C supports the logical operators NOT, AND, and
OR. These are used to form compound relational statements,
such as, “If A equals B and C is greater than 0, then....” In view
of the precedence rules, it is advisable to write such statements with parentheses
even at the algorithm design stage: “If (A =B) and (C > 0), then...” This
indicates that the expressions A = B and C > 0 are to be evaluated first, and the
relationship between those two results will then be tested. At that point, the truth
of an entire compound expression depends on truth tables, as shown in Table 3.5.
Again, the details of implementing relational and logical operators will be deferred
to Chapter 4.

3.3 Type Casting = 79

Table 3.5. Truth tables for logical expressions A and B

B is True B is False
A is True True False
A is False False False

B is True B is False
A is True True True

A i1s False True False

=]

The expression (A && B) is True only if both A and B are True. The expression
(A 11 B) is True if either A or B is True.

3.3 Type Casting

C supports the ability to convert one kind of value into
another, an operation called type casting. When
programs work with numerical data, common type
casting operations include converting integer values
into floating-point values before performing arithmetic
operations (an upward type cast) and converting type
double return values from math functions into type
float values (a downward type cast). Type casts can be either implicit or
explicit. With an explicit type cast, the target data type is given in parentheses
directly to the left of the value, variable, or expression that will be cast. With an
implicit type cast, the variable on the left side of an assignment operator has a
different data type than the value, variable, or expression on the right side of the
assignment operator. C performs a type cast for the value, variable, or expression
so it conforms to the data type of the variable on the left side of the assignment
operator. This implicit type cast is performed regardless of whether it is a good
idea in the context of what you are asking your program to do.

With either kind of type cast, it is possible to lose information. For
example, a type float or double value, variable, or expression can be cast to
an int variable, although this is usually not a good idea. For example, consider
this code fragment:

int i;
double x=17.7;
i=x;

80 = 3. Data Types, Operators, and Functions

The third statement in this code assigns the type double variable x, with a value
of 17.7, to the type int variable i. Because of the implicit downward type cast,
the value of i is 17; this represents a loss of information, specifically the
fractional part of the value 17.7.

Because of the potential for loss of information, it is important to be aware
of the results of implicit (automatic) type casting, especially when multiplications
and divisions are being performed. P-3.3 illustrates a typical scenario in which an
upward type cast can be used to advantage.

P-3.3 [test_avg.c]

/* Demonstrate effect of explicit type casting. */
#include <stdio.h>

int main()

{
int total_score,num_students;
float average;

printf ("Enter sum of scores: ");
scanf ("%d", &total_score) ;

printf ("Enter number of students: ");
scanf ("%d", &num_students) ;

average=total_score/num_students;
printf ("Average score (no type casting) is %.2f\n"',average);

average=(float) total_score/ (float)num_students;
printf ("Average score (with type casting) is %.2f\n",average);
return 0;

Running P-3.3

In P-3.3, the sum of several integer values is divided by the number of
values to give the average as a floating-point result. There is no loss of
information when integers are type cast to floating-point values. In this case, the
total score has been stored as an integer, presumably because the individual scores
from which the total score has been calculated are whole numbers. However, when
the scores are averaged, the result will not be a whole number, in general. In the
statements

average=total_score/num_students;

3.3 Type Casting = 81

the result of dividing the two type int variables is the truncated quotient, which
is not the desired result in this case; even if you want an integer result, you would
probably prefer the rounded result from the division. That is, the division
operation on two integers retains the integer quotient and throws away the
remainder.

The solution in this program is to use an explicit type cast:

average={(float)total_score/ (float)num_students;
printf ("Average score (with type casting) is %.2f\n",average);

In this case, both the numerator and the denominator have been converted to
floating-point numbers because the name of the desired data type appears in
parentheses directly in front of a variable. The type cast operation has higher
precedence than division, so it converts the values to the target data type before
the division is performed. In this case, either

float (total_score) /num_students

or

total_score/ (float)num_students

will achieve the desired result, but

(float) (total_score/num_students) /* won't work */

won’t work because the division is performed before the type cast operation.

This example should convince you that it is important to think carefully
about the data type of operands, especially when division operations are being
performed. In P-3.3 it would have been a better idea to declare total_score
as type float or double rather than int. Then the type cast wouldn’t have
been necessary.

The preceding discussion should also convince you to be especially careful
when you use implicit type casts. They are not usually necessary in scientific and
engineering calculations, and they can sometimes produce unexpected and
unwanted results. For now, you should restrict your casts to the implicit or explicit
integer-to-floating-point (type float or double) casts illustrated in P-3.2 and
P-3.3.

82 w 3, Data Types, Operators, and Functions

3.4 Intrinsic Functions

C supports many built-in (intrinsic) functions. Table 3.6 lists functions that enable
common mathematical calculations to be performed in C. Most of the functions
expect one or more type double arguments and return a type double result.
Unless otherwise noted, each function requires the inclusion of the math.h
standard header file. In your program design, you must ensure that a function is
called with an appropriate argument.

Although most intrinsic math functions expect type double arguments,
they will also accept arguments for which an upward type cast prevents loss of
information. Thus the function calls sgrt (3) and pow (4, 3) produce answers
identical to the more proper calls sqrt (3.) and pow(4.,3.).

Some mathematical functions can produce values that approach 0 or Zeo,
For example, tan(8) approaches +c- as 6 approaches 90°, and ¢™ approaches 0 as
x approaches +eo or —oo. In such cases, C returns THUGE_VAL or O where
HUGE_VAL is a constant defined in the math.h library; the actual value of
HUGE_VAL varies from compiler to compiler. Note that C programs won’t crash
when you enter an inappropriate argument. For example, the sgrt function will
return a value of 0 if you call it with a negative argument. This has both
advantages and disadvantages. The advantage is that your program will continue
to execute. The disadvantage is that your program may no longer be producing
answers that make sense. Be careful!

For future reference, Table 3.7 includes some intrinsic functions for file
and I/O operations. As noted, these functions require that the standard header file
stdio.h be included in your program.

One of the functions in Table 3.7, £ £ 1ush, hasn’t been mentioned before.
Its purpose is to empty (flush) an input buffer. Its typical use is to clear the
keyboard buffer before more input is read: £f1lush (stdin) ;, where stdin is
the name of the keyboard, the default input buffer. This is sometimes needed
when a program contains multiple scanf statements. It is a good habit to precede
a scanf statement with fflush (stdin) ; for any call to scanft after the first
in a program.

The const char * parameter type appearing in several of the functions
refers to a string constant; for example, a string containing I/O format specifiers.

3.4 Intrinsic Functions = 83

Table 3.6. Standard math functions (The math.h standard header file is
required except where noted. See P-3.4 [math.c].)

acos (x)

3.6(a) Trigonometric and hyperbolic functions

double

arc cosine of x, in
radians, range O-7 for
|x| <1, otherwise 0

acos (0.5)

asin(x)

double

arc sine of x, in radians,
range n/2 for |x <1,
otherwise 0

asin(0.5)

atan(x)

double

arc tangent of x, in
radians, range tn/2

atan(0.5)

atan2 (v, x)

double

arc tangent of y/x, in
radians, range 7+, O if
both x and y are 0

atan2(-2.0,1.0)

cos (x)

double

cosine of x radians, 0 if
not successful

cos(3.0)

cosh (x)

double

hyperbolic cosine of x,
HUGE_VAL if result is
too large

cosh(0.5)

sin({x)

double

sine of x radians,
0 if not successful

sin(0.5)

sinh(x)

double

hyperbolic sine of x,
+HUGE_VAL if result is
too large

sinh(0.5)

tan (x)

double

tangent of x radians, O if
not successful

tan(0.5)

tanh (x)

double

hyperbolic tangent of x

tanh(0.5)

84 =

3. Data Types, Operators, and Functions

Table 3.6(b) Other math functions

random number generator, any other
value sets random starting point for
generating series of pseudorandom
integers using rand()

abs (x) int integer absolute value of x abs (-7)
(requires stdlib.h)
ceil (x) double smallest whole number not less than x ceil (-3.3)
exp (x) double ¢*, HUGE_VAL on overflow, exp (0.5)
0 on underflow
fabs (x) double absolute value of x fabs(-3.3)
floor (x) double largest whole number not greater than x floor (-3.3)
fmod (x,v) double remainder of x/y fmod (1., .3)
log (x) double natural logarithm of x for x > 0, log(0.5)
-HUGE_VAL if not successful
logl0(x) double base-10 logarithm of x for x > 0, 1logl0(0.5)
-HUGE_VAL if not successful
pow (X,Y) double xY, 0 or +HUGE_VAL if not successful;
if x < 0, y must be a whole number pow(2.0,3.5
)
rand () int pseudorandom number in the range rand ()
[0,RAND_MAX] where RAND_MAX is a
constant defined in stdlib.h
sgrt (x) double square root of x for x = 0, sqgrt (0.5)
0 if not successful
srand (x) unsigned int none—argument of 1 reinitializes srand(3)

3.4 Intrinsic Functions = 85

Table 3.7. Some functions for file and I/O operations
(All functions require stdio.h standard header file.)

fclose 1; FILE * int Close a file. Returns
0 if successful, EOF
if not.
fflush 1; FILE * int Flush an input stream.
Returns O if success-
ful, EQOF if not.
fgets 3; const char *, int, char * Get string input from
FILE * file. Returns pointer to
string if successful,
NULL if not.
fopen 2; const char *, FILE * Open a file. Returns
const char * pointer to file if suc-
cessful, NULL if not.
forintf variable; FILE *, const int Write formatted output
char *, types matching to text file. Returns
conversion specifications number of characters
printed.
fscanf variable; FILE *, int Get text file input.
const char *, types Returns number of
matching conversion values read or EOF if
specifications no values (at end of
file).
printf variable; const char *, int Write formatted output
types matching conversion to screen. Returns
specifications number of characters
printed.
scanf variable; const char *, int Read formatted input
types matching conversion from keyboard buffer.
specifications Returns number of
values read.
sscanf variable; const char *, int Read formatted input
types matching conversion from character string.
specifications Returns number of
values read, EOF if
at end of string.

86 = 3. Data Types, Operators, and Functions

Program P-3.4 shows how to use some of the math functions described in
Table 3.6. You should run this program yourself and examine the output carefully
to make sure you understand the results.

P-3.4 [math.c]

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
void main()

{
double pi,x,y;
pi=atan(1.0)*4.0;
printf("acos(0.5) %1lf\n",acos(0.5));
printf("asin(0.5) %1f\n",asin(0.5));
printf("atan2(-2.0,1.0) %1f\n",atan2(-2.0,1.0));
printf("cos(3.0) %21f\n",cos(3.0));
printf("cosh(0.5) %1f\n",cosh(0.5));
printf("sin(0.5) %1f\n",sin(0.5));
printf("sinh(0.5) %1f\n",sinh(0.5));
printf("tan(0.5) %1f\n"',tan(0.5));
printf ("tanh(0.5) %1lf\n",tanh(0.5));
printf("abs(-7) %d\n",abs(-7));
printf('ceil(-3.3) %1lf\n",ceil(-3.3));
printf('"exp(0.5) %1lf\n",exp(0.5));
printf("fabs(-3.3) %lf\n",fabs(-3.3));
printf("floor(-3.3) %1lf\n",floor(-3.3));
printf("log(0.5) %1lf\n",log(0.5));
printf("logl0(0.5) %1f\n",logl0(0.5));
printf("pow(2.0,3.5) %1lf\n",pow(2.0,3.5));
printf("%d %d\n",RAND_MAX,rand());
printf("sgrt(0.5) %1f\n",sqgrt(0.5));
printf ("%e\n",HUGE_VAL) ;

}

Running P-3.4

3.5 Simple User-Defined Functions = 87

3.5 Simple User-Defined Functions

The C language relies heavily on program modularization, as do other high-level
languages. Considering the growing importance of object-oriented languages such
as C++ and Java, it is even more important to learn to think about programs as
being built from pieces of code that are bound together in some kind of overall
structure.

The basic subprogram structure in C is a
user-defined function. (Indeed, as we have noted
previously, even the main program in a C program
is actually just a function.) Program P-3.5, which is a modification of earlier
programs for calculating the area and circumference of a circle, demonstrates the
use of some simple user-defined functions.

P-3.5 [circlepl.c]

/* Create simple functions. */
#include <stdio.h>
#define PI 3.14159265

/* function prototypes */
double area_func(double radius);
double circumference_func (double radius);

int main{()
{
double radius=3.0;
printf("From area_func: %8.31f\n",area_func(radius));
printf (
"From circumference_func: %8.31f\n",circumference_func (radius));
return 0;

}

double area_func(double radius)
/* PI must be available as a global constant. */
{

return PI*radius*radius;

}

double circumference_func(double r)
/* PI must be available as a global constant. */
{

return 2.0*PI*r;

}

88 = 3. Data Types, Operators, and Functions

In P-3.5, the calculations for area and
circumference are performed inside the user-defined
functions that follow the main function. A program can
contain as many user-defined functions as needed. Prior
to the main function, function prototypes for each function are given. Each
prototype consists of a single statement giving the data type of the function, the
name of the function, and the parameter list—a list of data types with optional
variable names. It is good programming style, and one we will follow in this text,
to include both data types and variable names in a function prototype’s parameter
list, even though only data types are actually required. It is possible to write a
function with no parameters—the main function usuvally doesn’t have any
parameters, for example. The general syntax for a function prototype is

data_type function_name(empty, void, or list of data types,
with or without variable names);

The general syntax for implementing functions as they are used in P-3.5 is

data_type function_name(empty, void, or list of data types with
variable names) {

body of function

return return_value or expression;

)

The parameter list in the function
implementation must include variable names
corresponding to the names by which the
parameters will be known locally within the function. In addition,

Because the parameter list of a function prototype doesn’t even have to include
variable names, it is clear that the list acts essentially as a placeholder for the
actual values that will be used by the function.

Remember that every user-defined function must have a data type
associated with it. Both functions in P-3.5 are type double. It is possible to give
a function the void data type, and we will return to this possibility in Chapter 5.
It is also possible as a matter of syntax to write a function without a specific data

3.5 Simple User-Defined Functions = 89

type; by default, such a function is given type int. It is generally considered
poor programming practice to use default data types in function definitions, and
we will never do it in this text.

When a function is called, the calling arguments,
values corresponding to each item in the parameter list,
are passed to the function through an argument list. The
general syntax for calling a function is

(variable name =)Yfunction_name(list of variables, constants,
expressions, or functions);

Two additional important rules about using functions are:

Why does the rule for the data type of arguments passed to a function state
only that the data type “should” agree with the function parameters? Because
certain kinds of implicit or explicit type casts are allowed even though it is usually
not a good idea to use them. It was noted earlier in this chapter that, for example,
the statement x=sqgrt (2) ; is allowed even though the argument is an integer
rather than a real number. However, the statement i=abs (-3 .3) ; will generate
a compiler warning because the abs function expects type int arguments. If you
allow the compilation to proceed in spite of the warning, the downward type cast
of -3.3 to -3 will produce a result of 3 rather than 3.3. The same interpretations
apply to user-defined functions. Consider this code:

double X(double x,int vy);
int main(void) {

printf ("%1f\n",X(2,3.3));
}

double X(double x,int y) {
return x*vy;
}

90 = 3. Data Types, Operators, and Functions

The argument 2 passed to the x parameter is allowed and will be type cast to the
real number 2.0. However, the argument 3 . 3 requires a downward type cast to
an int value and will result in at least a warning at compile time. If the
downward type cast is allowed, function X will return a value of 6, not 6.6. The
general rule is:

In P-3.5, the name of the parameter in area_func is radius, but the
name of the parameter in circumference_func is r. In the first case, the
parameter name agrees with the name of the calling argument. In the second case,
it does not. There is no justification for using different names other than to make
the point of this discussion, but the disagreement is of no consequence in the
program. All that matters from a syntax point of view is that the calling argument
is of type double. From an algorithm design point of view, all that matters is
that the calling argument contains the value of a radius, no matter what it is
called. As noted in the syntax description, an argument doesn’t even have to be
a variable. It can also be a constant or an expression that returns a value of the
appropriate data type.

Each function can return only a single value to the calling program,
through a statement using the reserved word return. You shouldn’t be surprised
to find that

Thus the values returned by the two functions in P-3.5 should be of type
double. However, type casts are allowed in return statements. An upward
type cast will proceed unnoticed. Some compilers will not even flag a downward
type cast in this situation. In general, it is much better programming style to match
the data type of a returned expression to the declared data type of the function.
If you want to use a type cast, include an explicit type cast as part of the return
statement.

When a function is called, its returned value is associated with the name
of the function itself. Hence, function calls can be treated just like other values.
In P-3.5, the values returned by the two functions are displayed directly in
printf statements just by calling the functions inside a printf statement. It
is also possible to assign the value returned from a function to another variable.
Thus in the general syntax description, variable_name should have the same

3.5 Simple User-Defined Functions = 91

data type as the function itself, with the understanding that the kinds of implicit
type casts discussed above are allowed even though they represent poor
programming style. Consider this version of P-3.5’s main function:

int main()

{
double radius=3.0,area,circumference;
area=area_func(radius) ;
printf ("From area_func: %8.31f\n",area);
circumference=circumference_func (radius) ;
printf ("From circumference_func: %8.31f\n",circumference);
return 0;

}

In this case, the values returned from the two functions are stored in the locally
declared type double variables area and circumference. Either way of
using the value returned by a function is acceptable and the choice you make
depends, for example, on whether you need to do anything more with the value
returned from a function than display it.

Note that in both functions in P-3.5, a comment is included to make clear
the source of the value PI. The source of all the variables and values used in a
function should always be clear, so someone looking at the source code in a
function should not be required to look back at other parts of the program. In the
algorithm design sense, this means that every user-defined function should have
a clearly defined information interface.

In general, user-defined functions as they are used in P-3.5 are equivalent
to the intrinsic math functions in the sense that they accept one or more arguments
as input and provide a single output value associated with the name of the
function itself. Suppose that the variables x and y are declared as type double
in P-3.5. The statement y=area_func (x) ; is then equivalent in its syntax and
use to the statement y=sin (x) ;. In the latter case, the function prototypes for
math functions are included in the math.h header file and the implementation
is provided by your C programming environment. In the former case, the
prototypes and implementations are given explicitly within the source code.

It is not always necessary to use function prototypes. An alternative is to
let all function implementations appear before the main program, as shown in
Program P-3.6.

92 = 3. Data Types, Operators, and Functions

P-3.6 [circlep2.c]

/* Create simple functions. */
#include <stdio.h>
#define PI 3.14159265

/* function definitions */

double area_func (double radius)
/* PI must be available as a global constant. */
{

return PI*radius*radius;

}

double circumference_func (double radius)
/* PI must be available as a global constant. */
{

return 2.0*PI*radius;

}

int main()
{
double radius=3.0;
printf ("From area_func: %8.31f\n",area_func(radius));
printf(
"from circumference_func: $8.31f\n",circumference_func(radius));
return 0;

The requirement for functions is that:

To put it another way, whenever a function is called (“invoked”), the compiler
must know where to find it. You can think of C as using a “one pass” compiler,
which means that it remembers everything it has read in a source code file—that
is, it can look backward in the source code—but it can’t look ahead. Thus
whenever a function is called, either the function prototype or the function
implementation must already have appeared in the source code file. If a function
prototype appears before the main function, the corresponding code
implementation normally appears after the main function. Typical C programming
style is to use function prototypes, and that is the style we will usually use for
programs appearing in this text.

It’s important to understand the relationship between the calling arguments
provided when a function is used and the function parameters that are part of the
function prototype and function header statement. We have already seen that in
program P-3.5 the single parameter is given a different name in each function. In
P-3.6, the parameter has the name radius in both functions. When these

3.5 Simple User-Defined Functions = 93

functions are used in the main program, the calling argument always has the name
radius. This is a design convenience because radius is a reasonable name for
this quantity. To help clarify these relationships, consider the following code,
which is a version of P-3.5 that works just like the original version.

/* Create simple functions. */
#include <stdio.h>
#define PI 3.14159265

/* function prototypes */
double area_func(double);
double circumference_func(double r);

main ()

double radius=3.0;
printf ("From area_func: %8.31f\n",area_func(3.0));
printf
("from circumference_func: $8.31f\n",circumference_func(radius));

}

double area_func(double rad)
/* PI must be available as a global constant. */

{
}

return(PI*rad*rad) ;

double circumference_func(double R)
/* PI must be available as a global constant. */

{
return(2.0*PI*R);

}

The prototype for area_func has a parameter list with just a data type and no
variable name. However, a variable name is required when that function is
implemented. It is better style to use variable names in function prototypes, as it
makes the purpose of the function clearer, assuming that meaningful names are
used. In circumference_func, the variable name r in the prototype is
different than the name in that function’s implementation. (Remember that r is a
different name than R.) When these functions are called from the main function,
a constant argument is used in one case but a different variable name is used in
the other case. Although it may be confusing from an algorithm design standpoint
to use several different names for the same thing, C will not be confused.

The utility of having function parameters serve simply as placeholders for
the actual values passed to the function is clear if you think about how the
intrinsic math functions are used. The internal workings of intrinsic functions are
hidden. You would have to see the actual source code for the intrinsic functions
to know what their parameter lists look like—including the names by which their
parameters are known internally to the function. However, not having this level
of access doesn’t prevent you from using the intrinsic functions. All you need to

94 = 3. Data Types, Operators, and Functions

know to use sin (x), for example, is that the single argument x must be a type
double variable, expression, or value.

Remember that not only can argument names and parameter names be
different, but the arguments don’t even have to be single variable names. For the
user-defined functions in programs P-3.5 and P-3.6, the following statements are
all perfectly acceptable uses of area_func and circumference_func,
assuming that all the variables have been appropriately declared and that x, v, r,
and z have been assigned values:

area=area_func(r);
circumference=circumference_func(3.0);

area=area_func (x+3.*y);
circumference=circumference_func (sqrt (x*x+y*y)+log(z));

Here’s another problem whose solution will provide more information on
how to create and use simple functions.

An approximate empirical formula that relates atmospheric pressure to
altitude is

P(h) = 1013¢ 120

where pressure P is in units of millibars (gm/cm?®), and height h is in
kilometers. The formula applies to heights less than about 80 km.

Write a program that prints a table of pressures from sea level to 80 km in 10-km
steps. The values are shown in Figure 3.1.

1200

- . - — ——
1 1 1]]] 1
| ' 1 I]] I
I 1 ! 1]] 1
.' : | | : : |
10004~~~ A=memes R S M bomoodooooe
] 1 1l 1]]]
1 i] I 1 t 1
1] t] 1 1 1
| | | | : | :
% L e [e
| | | '. | | |
g I IO . I B
g 6007y~ H— I A A Pty
2 | | : : | | :
2 | : : : : : |
o 400 q------ Fo---- 1m----- Fo---- q--==-- Fo---- q---=--
1 | ' 1 1 1 I
!]] 1 ! b
1) 1 1 1 1
i 1 1 1 I 1 !
N S e e e
)] i 1 1 1 1
1 ! ' 1) ! 1
: . | : : | |
0 : : . : : : :
0 10 20 30 40 50 60 70 80
Height, km

Figure 3.1. Atmospheric pressure as a function of height.

3.5 Simple User-Defined Functions = 95

Program P-3.7 produces the required table. The code uses a simple loop
structure, which we will discuss in detail in Chapter 4. For now, however, the
intent should be clear even if the details are not.

P-3.7 [atm_pres.c]

/* Calculate table of atmospheric pressure. */
#include <stdio.h>

#include <math.h>

double Pressure(double h);

int main{()

{

int height;

printf ("height pressure\n") ;
printf (" km gm/cmr2\n") ;
printf("-------como - \n");

for (height=0; height<=80; height+=10)
printf ("%61i $10.3f\n",height, Pressure({double)height));
return 0;
}
double Pressure(double height)
{

}

return 1035.0*%exp(-0.12*height) ;

Running P-3.7

Problem Discussion

Program P-3.7 contains several features of interest. Recall that in programs
P-3.5 and P-3.6, the parameters in the function prototypes, the actual function
headers, and the arguments used when the functions were called from the main
program all had the same data types, even if their names were different. In P-3.7
this is no longer true. The function prototype uses a double parameter named
h. It would actually be better programming style to give this ‘“placeholder”
parameter a more meaningful name, but this choice has been made to emphasize

96 = 3. Data Types, Operators, and Functions

the fact that parameter names in a function prototype need not be the same as the
parameter names in the actual function header or the argument names used when
the function is invoked in the program. Remember that it is not the names of the
parameters in a function prototype that are important, only their data types.

In the function header for Pressure in P-3.7, the parameter has, as it
must, the same data type (double) as in the function prototype, but a different
name (height) that will be used locally. The variable name height is also
used in the main program, but there it is type int, which (as will be discussed
in Chapter 4) is appropriate for its use as the loop control variable for generating
the table. In the call to function Pressure, height is explicitly cast to
double so it will agree with the data type in Pressure’s parameter list.

The explicit type cast (double)height in the parameter list of
Pressure is good programming style but not actually required. That is, an
implicit cast from int to double is allowed.

P-3.7 also shows how variable definitions are localized within functions.
The type double variable height in the parameter list and the implementation
of function Pressure is local to—that is, known to—only that function, which
does not know or care about the definition of height as an integer in the main
function.

3.6 Applications

3.6.1 Refraction of Light

1 Define the problem.

Snell’s Law describes the refraction (bending) of light as it passes from
one medium to another. If the refractive index of the incident medium is n, and
that of the refracting medium is n,, the angle of incidence i and angle of refraction
r of a ray of light, measured from the perpendicular to the boundary between the
two mediums, are related by

nsini = nsinr
Figure 3.2 illustrates the geometry and Figure 3.3 gives some typical data.

Write a program that asks the user to provide two refractive indices and
the angle of an incident ray and then calculates the angle of a refracted ray.

3.6 Applications = 97

incident
beam i

refracted
beam

Figure 3.2. Geometry for Snell’s
Law of refraction.

e i

407 S A & Water(1 33) -------------
35+ ------------ - = . Glass (1 50) -----

W
<

e e e e e

N
Q

..

Refracted angle, deg

e

..

..

0 f f f : : ;
0 10 20 30 40 50 60 70 80 90
Incident angle, deg

Figure 3.3. Angle of refraction as a function of angle of incidence.

98 = 3. Data Types, Operators, and Functions

2 Outline a solution.

1. Prompt the user to supply two indices and an incident angle.
2. Apply Snell’s Law to determine the angle of the refracted ray:

_| mysin(i)

I = sin

nl’

3. Display the output.
Table 3.8 gives the angles of refraction for some common materials when
a light ray is directed from air, which has a refractive index equal to 1, into the

material. These data are shown in Figure 3.3.

Table 3.8. Calculations for Snell’s Law

Angle of refraction for:

Angle of Refractive index:

incidence 1.33 1.50 2.42
(from air) Water Glass Diamond
0 0.00 0.00 0.00

10 7.50 6.65 4.11

20 14.90 13.18 8.12

30 22.08 19.47 11.92
40 28.90 25.37 15.40
50 35.17 30.71 18.45
60 40.63 35.26 20.97
70 44.95 38.79 22.85
80 47.77 41.04 24.01
90 48.75 41.81 24.41

3 Design an algorithm.

DEFINE (n, n, incident_angle, refracted_angle as real numbers,

7z and DegToRad (conversion from angles to radians) as real)
ASSIGN DegToRad = 7/180
WRITE (“Give index of refraction for incident and refracting medium:”)
READ (n, n,)
WRITE (“Give incident angle, in degrees:”)

3.6 Applications = 99

READ (incident_angle)

(Convert to radians before doing trig calculations.)

ASSIGN refracted_angle = sin’(n, /n esin(incident_angle DegToRad))
(Display output in degrees.)

WRITE (“Refracted angle is”, refracted_angle/DegToRad)

This algorithm specifically includes the conversions between degrees and
radians. This is optional for the algorithm design but essential for a C program.

1 Convert the algorithm into a program.

P-3.8 [refract.c]

/* REFRACT.C */
/* Do refraction calculations using Snell's Law */

#include <stdio.h>
#include <math.h>

int main(void)

{
double ni,nr; /* indices of refraction (dimensionless) */
double incident,refracted; /* angles from perpendicular (deg) */
double pi,deg _to_rad;

pi=4.0*atan(1.0);

deg_to_rad=pi/180.0;

printf ("Give indices of refraction for incident and refracting
medium, \n") ;

printf ("separated by one or more spaces: ");

scanf("%1f %1f",&ni, &nr);

printf ("What is the angle of incidence? ");

fflush(stdin) ;

scanf("%1f", &incident) ;

refracted=asin(ni/nr*sin(incident*deg_to_rad));

printf ("refracted angle = %.21f degrees',refracted/deg_to_rad);

return 0;

Running P-3.8

100 = 3. Data Types, Operators, and Functions

5 Verify the operation of the program.

Check your results with a hand calculator. Compare your values with those
in Table 3.8.

3.6.2 Inverse Hyperbolic Functions

1 Define the problem.

Although C includes the hyperbolic functions among its intrinsic functions,
it doesn’t include the inverse hyperbolic functions

sinh'(x) = In[x + (x> + 1)'?]
cosh'(x) = In[x + (x* - 1"
tanh(x) = In[(1 + x)/(1 - x)]/2

Write a program that displays the hyperbolic functions and their inverses, using
user-defined functions for the inverse functions. Based on results from your
program, make a table for the inverse hyperbolic functions which shows the
theoretical range for arguments and the range of values returned for each function.
These three functions are plotted in Figure 3.4.

2 Outline a solution.

1. Ask the user to provide a real number.

2. Display the intrinsic hyperbolic functions.

3. Use each of the results as the argument in the corresponding inverse hyperbolic
function and display the results.

3.6 Applications = 101

—
X
S
3
—
Q X
© <
> [
x &
e o
<
£
7]
— N M
= // 3
L 2
[%2] / < 2
8 . 3
1 Llnverseoosh(m— =]
— c 1
5 [g -
£ 0 0
= 3 —
17 I : gl &
® -1 [lnversesmh(x)l 4
Q \, E e
g =2 e < N
£ L e, ;
o 8 6 4 2 0 2 4 6 8 10 * o7 05 <025 0 025 05 075 1
X X

Figure 3.4(b). Inverse hyperbolic Figure 3.4(c). Inverse hyperbolic tangent.
sine and cosine.

102 = 3. Data Types, Operators, and Functions

3 Design an algorithm.

DEFINE (x, hyperbolic_sin, hyperbolic_cos, hyperbolic_tan as real numbers)
WRITE (“Give any real number.”)
READ (x)
ASSIGN hyperbolic_sin = sinh(x)
hyperbolic_cos = cosh(x)
hyperbolic_tan = hyperbolic_sin/hyperbolic_cosine
WRITE (hyperbolic_sin,hyperbolic_cos,hyperbolic_tan)
WRITE (InvSinh(hyperbolic_sin),InvCosh(hyperbolic_cos),
InvTanh(hyperbolic_tan))
(Define functions for inverse functions—see problem statement.)

1 Convert the algorithm into a program.

P-3.9 [hyperbol.c]

#include <stdio.h>
#include <math.h>

double inv_sinh(double z)
{

return log(z+sqgrt(z*z+1.0));
}

double inv_cosh(double z)
double sign=1.0;

if (z < 0.0) sign=-1.0;
return sign*log(z+sqrt(z*z-1.0));
}

double inv_tanh (double z)
{

return log((1.0+z)/(1.0-2))/2.0;
}

int main(void)
{
double x,hyperbolic_sin,hyperbolic_cos,hyperbolic_tan;

printf ("Give a real number: ");
scanf ("$1f", &x);
hyperbolic_sin=sinh (x);
hyperbolic_cos=cosh (x) ;
hyperbolic_tan=hyperbolic_sin/hyperbolic_cos;
printf (" Hyperbolic sin,cos,tan: %10.51f $10.51f %10.51f\n",
hyperbolic_sin, hyperbolic_cos,hyperbolic_tan) ;
printf ("Inverse hyperbolic sin,cos,tan: $10.51f %$10.51f $10.51f\n",

3.6 Applications = 103

inv_sinh (hyperbolic_sin), inv_cosh (hyperbolic_cos}),
inv_tanh{(hyperbolic_tan));
return 0;

}

Running P-3.9

Verify the operation of the program.

You can assume that the hyperbolic functions work correctly. Therefore,
your program should return the original input if the inverse hyperbolic calculations
are done correctly and the functions are used appropriately.

In response to the second part of the problem, Table 3.9 presents argument
and function ranges for the inverse hyperbolic functions. Make sure the results
from your program are consistent with these tabulated values.

Table 3.9. Argument and value ranges for inverse hyperbolic functions

sinh(x)

«cosh(x). ’

tanh(x)

cosh''(

i [ELT [¢

Problem Discussion

Function inv_cosh in P-3.9 is notable because it is the first function we
have written that contains a local variable, sign. Any function can contain one
or more locally declared variables. A quantity that is needed for a function to do
its job but that isn’t part of the input required for the function should be defined
locally. In this case, variable sign is part of the implementation, but it is of no

104 = 3. Data Types, Operators, and Functions

interest to the user of the function. Thus this variable does not belong in the
function’s parameter list. A common mistake by beginning programmers is to put
local variables in a function’s parameter list.

Variables declared locally within a function exist only within that function.
Thus, the variable name sign is unknown to other parts of P-3.9. This means that
local variable names can be reused for other purposes in several parts of a
program without causing problems. Whether this is a good idea depends on
whether it is apt to be confusing.

P-3.9 is an excellent example of a program that appears very simple in its
implementation but that actually contains several potential programming problems.
First of all, cosh'(x) requires that its argument be greater than or equal to 1, and
it always returns a non-negative value. Because cosh(x) is always greater than or
equal to 0, regardless of the sign of x, cosh’’(cosh(x)) will return a positive result
even if x is negative. This means that the inverse function won’t give back the
original value of x unless the original sign of x is retained and used as part of the
inverse calculation. The function makes use of C’s implementation of the
IF...THEN command even though we haven’t discussed this yet.

A more serious problem concerns the accuracy of the underlying
computations for numbers of type double. An obvious trouble spot is the
calculation for the inverse hyperbolic tangent, which contains 1 -z, where
z = tanh(x) when the function is calculated in the program. How big, in absolute
magnitude, does x have to be before tanh(x) is so close to 1 that the 1 — z in the
denominator results in an apparent division by zero, or before it’s so close to 1
that the calculation is no longer sufficiently accurate? The answer is, “Not very
big!” Why? Because tanh(x) is very close to 1 for any value larger than about 3.
Table 3.10 gives some representative values for the hyperbolic functions. With the
compiler used for the programs in this text, setting x to 20 causes the program to
crash with a divide-by-0 error.

Table 3.10. Values for hyperbolic functions

3.7 Debugging Your Programs = 105

Similar computational problems arise in the
sinh and cosh calculations because the exponential
function ¢* causes an arithmetic overflow error for
large values of x.

These kinds of computational problems occur because the accuracy of
arithmetic calculations is limited by the accuracy with which real numbers are
represented in C.' Their impact can be minimized by using C data type
declarations that allow more accurate calculations, but they can’t really be solved
in C or in any other procedural language, for that matter. As is so often the case,
you are responsible for appropriate use of a programming language. In many
situations, a loss of accuracy in calculations means that you should reformulate
your problem and its solution, rather than worrying about the limitations imposed
by the programming language. This topic is covered in courses on numerical
analysis, but is beyond the scope of this text.

3.7 Debugging Your Programs
3.7.1 Problems With Data Types and Casting

As has been stressed throughout this chapter, it is essential to choose appropriate
data types for representing data. Avoid using integer data types to represent
physical quantities, even when the values of those quantities are expressed as
whole numbers. Ignoring this rule can lead to programming errors that are difficult
to find because they don’t produce error messages. Consider this problem:

Convert a time expressed in hours, minutes, and seconds, in the format
hh:mm:ss, to decimal hours.

The required calculation is
hours = hh + mm/60 + ss/3600

However, if this formula is translated verbatim into C as

int hh,mm, ss;
double hours;

hours=hh+mm/60+ss/3600;

'This problem is not restricted to C.

106 = 3. Data Types, Operators, and Functions

the result is wrong because of the integer divisions mm/60 and ss/3600. This
can be fixed by rewriting the assignment statement as

hours=hh+mm/60.0+ss5/3600.0;

to force the division to produce a floating-point result. It would also be a much
better idea as a matter of style to declare hh, mm, and ss as double rather than
int.

3.7.2 Problems With Intrinsic Functions
For intrinsic functions, some common errors include:

1. Misspelling a function name or using uppercase letters in the name of the
function

For example, C doesn’t recognize sine (x) or Sin(x) as equivalent to
sin(x).

2. Forgetting to include the math.h header file

If you are using the cc compiler, remember that, in addition to including
the header file in your source code, you must also link the math library by using
the - 1m option in the compile command: cc test.c -otest.exe -1m. (The
“1” is a lowercase L and not the number 1.)

Some more subtle errors include:

1. Supplying arguments of the wrong data type
Most math functions expect type double arguments. When in doubt, use
an explicit type cast: y=sin ((double)x) ;, for example.

2. Using degrees as input to trigonometric functions and interpreting output from
the inverse functions as degrees

The trigonometric functions expect input in radians and the inverse
functions produce output in radians. When a program does a lot of internal
processing of trigonometric functions, the errors resulting from using degrees
rather than radians are often virtually undetectable. C is perfectly willing to
calculate sin(30.0), but it interprets the argument as 30 radians, not 30
degrees.

3.8 Exercises = 107

3. Supplying arguments with inappropriate values

Rather than causing a program crash, C functions typically return a value
even when the input argument is inappropriate. For example, the sgrt function
will return a value (0) even when its argument is negative. This may be good or
bad, depending on your expectations for a program, but it is the responsibility of
the programmer to provide adequate and appropriate protection against calling
math functions with inappropriate arguments, or at least to provide safeguards
against misusing what are essentially error-message returns from functions as valid
values.

3.7.3 Problems With User-Defined Functions

The same potential exists for problems with user-defined functions as with
intrinsic functions. However, we will be less diligent than the authors of C’s
intrinsic functions about writing “bulletproof” functions that return a value under
all conditions of use or misuse. Instead, we will generally assume that the
programmer and the program user will take joint responsibility for meeting the
input expectations of a function.

It is important, of course, to be careful to provide arguments of the
required data type. Additionally, it is important to use meaningful names in
argument and parameter lists so that you will be less likely to use the wrong
variables when you are writing code. If a program calls a function with arguments
that have the correct data type but not the intended values, there is no way for the
C environment to detect this as an error.

3.8 Exercises

In each of these exercises, you should perform the required calculations inside an
appropriate function even if the problem statement doesn’t specifically mention
such a function. In fact, in all your future programs, it is assumed that you will
use functions to modularize calculations without being asked specifically to do so.
Typically, the ma in function will prompt the user for input values and display the
output from the function. That is, the function that does the calculations will not
include input or output statements. The main function can also get input values
from an external data file and write output to a separate file if so specified by
your instructor.

For additional practice, the exercises in Chapter 2 can be rewritten so that
calculations are done in one or more functions of the kind discussed in this
chapter.

108 = 3. Data Types, Operators, and Functions

1. A simple pendulum consisting of a mass swinging at the end of a massless
string undergoes simple harmonic motion as long as the displacement of the mass
from the vertical is very small compared to the length of the string. The period
T of a simple pendulum is independent of its mass and is given by T = 2m/L/g,
where the length L is given in meters and g = 9.807 m/s”. (See Figure 3.5.) Write
a program that will determine (a) the period of a pendulum with a specified
length, and (b) the pendulum length required to produce a period of 1 second.
[pendulum. c]

o 1 2 3 4 5 6
Length, m

~A
o]
©
)

Figure 3.5. Period of a simple pendulum as a function of length.

2. Write a program that asks the user to enter a currency amount and then
calculates how many dollar bills, quarters, dimes, nickels, and pennies are required
to return this amount in change. Assume that the minimum total number of coins
should be returned. This means that your program should return first the maximum
number of one-dollar bills, then the maximum number of quarters, then dimes, and
so forth. That is, even though you obviously could return $0.66 in change as, for
example, six dimes and six pennies, the program should tell you to return this
change as two quarters, one dime, one nickel, and one penny. This restriction
actually makes the problem easier to solve. [change. c]

3. The terminal velocity v, of a single-stage rocket intended to launch a payload
into earth orbit is

Vf - Vexhausten(mi/mf)

3.8 Exercises = 109

where v, is the speed of the gas exhaust from the rocket nozzle, m; is the
original weight of the rocket including its fuel, and m; is the final weight of the
rocket when all its fuel is gone. Write a program that gives the terminal velocity
of a single-stage rocket when its initial mass, final mass, and gas exhaust speed
are given. As an example, suppose a rocket engine produces an exhaust speed of
3000 m/s and the fuel in such a rocket is 75 percent of the total launch weight.

Extra Credit:

Higher terminal velocities, such as are required for lunar and interplanetary
missions, can be obtained by using multiple rocket stages. The Saturn V, used for
the Apollo missions to the moon, was a three-stage rocket. The first stage of a
three-stage launch system consists of the rocket engine, its fuel and tanks, plus a
payload consisting of two more complete rocket stages. When the fuel from the
first stage is gone, the engine and its empty tanks are jettisoned. Then the second-
stage rocket ignites. This process is repeated for the third stage. When the third-
stage engine and tanks are jettisoned, all that is left is the mission payload. Write
a program that calculates the terminal velocity of the payload of a three-stage
rocket, given some appropriate assumptions about the three stages.

4. Paleontologists have discovered several sets of dinosaur footprints—preserved
in ancient river beds, for example. Is it possible to deduce from these footprints
the speed at which dinosaurs walked or ran? The two pieces of information that
can be determined directly from the footprints are the length of the dinosaur’s foot
and the length of its stride, which is defined as the distance between the beginning
of a footprint made by one foot and the beginning of the next footprint made by
that same foot.

One way to approach this problem is to examine the relationship between
size, stride, and speed in modern animals. Because of the dynamic similarities in
animal motion, an approximate linear relationship between relative stride and
dimensionless speed applies to modern bipedal and quadrupedal animals as diverse
and differently shaped as humans, ostriches, camels, and dogs:?

s =0.8+ 1.33v

Relative stride s is defined as the ratio of stride length to leg length, s=S/L.
Dimensionless speed v is defined as the speed divided by the square root of leg
length times the gravitational acceleration g: V//Lg. Although it might seem at
first analysis that gravitational acceleration shouldn’t influence an animal’s speed

*The quantitative relationship between relative stride length and dimensionless speed can be
obtained from data given in R. McNeill Alexander, Dynamics of Dinosaurs & Other Extinct
Giants, Columbia University Press, New York, 1989.

110 = 3. Data Types, Operators, and Functions

on level ground, this isn’t true, as gravity influences the up and down motions of
the body required even for walking.

Leg length from ground to hip joint for dinosaurs of a known species can
be determined from fossils. However, even when the dinosaur species responsible
for a particular set of tracks is unknown, its leg length can be inferred by
multiplying the footprint length by four. This is another relationship that is
approximately true for a wide range of modern animals. (You should try it for
humans.)

As an aside, note that the use of dimensionless ratios is common in
engineering as a way to scale phenomena from one size to another. These ratios
are required in aeronautical engineering, for example, in which it is necessary to
perform wind tunnel testing on models of real aircraft that are much smaller than
the real thing.

Write a program that uses the equation described here to calculate the
speed of a dinosaur based on measurements of its footprint and stride length. Use
metric units. Test your program with a large footprint 0.64 m long and a stride
length of 3.3 m. [dinosaur.c]

Extra Credit:

Based on similar calculations for humans, which you can easily do for your
own stride, can you speculate whether the dinosaur in the example was running
or walking? Try to justify your answer.

5. Write a program that asks the user to supply the mass and velocity of an object
and then calculates and prints the kinetic energy and linear momentum of that
object. The kinetic energy is mv®/2, and the momentum is mv. Use metric units
(mass in kilograms, velocity in meters per second, energy in joules). Use a
function for each calculation. [kinetic2.c]

Extra Credit:

Include code for functions that will convert the kinetic energy and
momentum into their British system equivalents. The British unit of energy is ft-
Ib, and the unit of momentum is slug-ft/s. 1 ft-1b = 1.356 joule; 1 slug = 14.59 kg;
1 ft/s = 0.3048 m/s.

6. It is well known that cold weather feels even colder when the wind is blowing.
This effect gives rise to what is commonly described as the windchill
temperature—the temperature of still air that produces the same feeling of
coldness as a person experiences when exposed to a combination of temperature
and wind. A formula commonly used to compute the windchill temperature T,
in °F, for ambient temperature T in °F and wind speed V in miles per hour, is

T,. = (0.279yV + 0.550 - 0.0203V)(T - 91.4) + 91.4

3.8 Exercises ® 111

where T < 91.4° F and V > 4 mph.> Write a program that accepts as input the
temperature and wind speed and then calculates and displays the windchill
temperature. [windchil.c]

7. Radioactive elements decay at a rate characterized by their half life, defined as
the time required for the original quantity of radioactive material to decrease by
half. (The decayed material doesn’t disappear, of course. The process produces
decay products that may themselves be stable or unstable.) For example, radon has
a half life of 3.8 days. If there are originally 100 mg of radon gas in an enclosed
container, there will be 50 mg after 3.8 days, 25 mg after 7.6 days, etc. The
process of radioactive decay can be described by the formula

At) = A, e

t/t

(]

where A, is the initial amount, A(t) is the amount after time t, and t; is
proportional to the half life t,,;. To relate t, to t., set A(t) = A/2 and take the
logarithm of both sides:

A/2 — A g_lhalf/[o
ty = ~tha/ €0(1/2)

o

For radon, t, is about 5.48 days. Figure 3.6 shows the radioactive decay curve for
radon.

Write a program that calculates and prints the amount of radon remaining
from a given original sample mass after a specified number of days. Include the
calculation for t, in the program rather than doing it by hand ahead of time.
[halflife.c]

Extra Credit:

(a) Half lives vary over a wide range, from small fractions of a second to
thousands of years. Modify your program so it will let the user provide both the
half life, in appropriate time units, and the elapsed time in the same units, so the
program will work for elements other than radon. (This would be a better way to
write the original program too, because it represents a more general approach to
the problem.)

(b) You may prefer to write A = A0(1/2)1/Ihalf to calculate radioactive decay.
Modify your program accordingly.

’Author’s note: I found this formula on the Web in about five minutes by searching for “windchill”
at www.yahoo.com.

112 = 3. Data Types, Operators, and Functions

Remaining amount, arbitrary units

200

100

0 2 4 6 8 10 12 14 16 18 20
Time, days

Figure 3.6. Radioactive decay of radon.

8. Under natural conditions of ample food supplies, adequate living space, and a
stable environment, animal populations grow exponentially, as illustrated for the
global human population in Figure 3.7. That is, the projected population at some
future time will be proportional to the current population.where y, and y are initial
and final years, and g is the net annual growth rate as determined by the
difference between births and deaths.

A simple model for extrapolating an initial population P, into the future is:

P =P, (1+g)>

Write a program that uses this formula in a function to calculate the growth rate
needed to achieve a specified population at some time in the future. In 1992, the
global human population was about 5.4 X 10° people. Some estimates predict that
global population will be about 8.5 x 10° in the year 2025. It is not at all clear
that the natural conditions required to support exponential growth will continue
to exist for the human population. Food shortages, overcrowding, poor economic
conditions, war, and environmental degradation can significantly affect both birth
and death rates. [populatn.c]

3.8 Exercises ® 113

9

[72]

c

S

3

2

S

B e]

3

o H H

[=] : : : H :

R oN E s < oIS N FOTS

% | annual growth = 1.4%

o R R R e e
s s s s S
1990 1995 2000 2005 2010 2015 2020 2025

Year
Figure 3.7. Exponential growth of global human population.

9. The loudness of a sound is measured in decibels (dB) on an arbitrary scale that
relates perceived loudness to the ratio of the intensity of a sound to the intensity
of the weakest audible sound I,, which is about 10> W/m?:

Loudness = 10log,(I/1,)

Intensity is a physically measurable quantity, but loudness is a subjective human
perception. The perception of loudness has approximately the logarithmic
relationship indicated by the equation, but it varies among individuals. Write a
program that uses a function to calculate the intensity of sounds 10, 100, and 1000
times more intense than the weakest audible sound. [noise.c]

Extra Credit:

Modify your program to calculate and display the intensity of a sound with
a specified dB value. What is the intensity of a sound of 100 dB, which is loud
enough to cause permanent hearing damage?

10. Given the (x,y) coordinates of two points in a plane, write a program that
calculates (a) the shortest distance between the two points, and (b) the (x.,y)
coordinates of a point halfway between the two points lying on a straight line
joining the points. (See Figure 3.8.) [points.c]

114 = 3. Data Types, Operators, and Functions

[-3 A (x1,y1)

------------- (2y2)

1
1
}
}
!
I
1
=1
f
1
I
|
|
|
1
1
1
1
1
1
1
)
]
I
]
}
1
T

25 3 35 4 45 55 6
X

o
o
()}
sy
e
[3)]
N

Figure 3.8. Distance between two points in a plane.

Extra Credit:

Modify your program so it also calculates the slope of the line joining two
points in a plane. What restriction will this calculation impose on the location of
the two points?

11. The efficiency of solar energy systems depends critically on the ability to track
the sun’s position. One required value is the solar elevation angle e—the angle to
the sun measured upward from the local horizontal. This angle depends on the
latitude of the subsolar point (solar declination) 8§, the observer’s latitude A, and
the hour angle 3, where hour angle is the angle from the observer’s meridian to
the subsolar meridian. (§ = 0° occurs at local high noon, which generally differs
from clock noon by a few minutes. One hour of clock time corresponds to
approximately 15° of hour angle. A meridian is a line of constant longitude
running from the north pole to the south pole.) The latitude of the subsolar point
is seasonally dependent, with a range of £23.4°. The largest positive value occurs
at northern hemisphere midsummer, and the largest negative value occurs at
southern hemisphere midwinter. The solar elevation angle for any solar
declination, latitude, and hour angle is given by:

€ = 90° — cos™'(cosdcosAcosP + sindsin))

3.8 Exercises ® 115

Write a program that asks the user to supply an observer’s latitude and the
solar declination and then calls a function to calculate the solar elevation angle.
Do this for hour angles of 60°, 30°, and 0° (corresponding approximately to 8 am,
10 am, and noon in clock time). Use your program to determine the range of high
noon (maximum) elevation angles as a function of season at a specified latitude.
What happens in the polar regions, where the sun may not shine at all during part
of the year? Figure 3.9 shows the elevation angle for 40°N latitude in the summer
and winter. [elevatin.c]

Latitude = 40 deg N : i : i
2 PN Solar declination= |....

\ 23.4 deg (summer)
7 \
/ A\

TN

7 N
/ / Solar declination = \ \

/ /| -23.4 deg (winter) \ ‘\
0 ; ; ; ;

120 100 80 -60 40 20 O 20 40 60 80 100 120
Hour angle, deg

\,

o
N
S

3

Solar elevation, deg
5

N
Q

-

Figure 3.9. Solar elevation angle in winter and summer at
40°N latitude.
12. The well-known factorial function n! is defined as
n! = ne(n - 1)e(n - 2)s...02¢1
For example, 5! = 5¢4¢3¢2¢] = 120. For large values of n, this is a very

impractical calculation. However, n! can be approximated for large values of n
with Stirling’s formula:

n! = (n/€)"(2nm)"?
Write a program that requests a value of n and calculates n! using

Stirling’s approximation. How close is Stirling’s approximation for values of n!
you can calculate yourself by hand? This approximation is especially useful when

116 = 3. Data Types, Operators, and Functions

calculating the ratio of two large factorials, as required for certain problems in
probability theory.
Hint: Declare n as a real number, not an integer. [stirling.c]

Extra Credit:

What is the largest value of n for which n! can be calculated from its
definition—that is, not from Stirling’s approximation—when n is declared as the
default int data type? How about the 1ong integer type? Can you establish the
maximum value of n for which you can use Stirling’s approximation? The answers
to these questions are system-dependent.

13. Suppose a single measurement is taken from a standard normal (Gaussian)
distribution. For such a distribution, the mean (arithmetic average) is O and the
standard deviation is 1. The probability that a single measurement will be no
greater than some specified value z is equal to the area under the curve defined
by the standard normal probability density distribution function, integrated from
—o0 10 Z.

The standard normal probability density function cannot be integrated
analytically. One solution is to approximate the integral with a polynomial:

cumulative probability = 1 — r(a,t + a,t* + a,t’)
where

r= 2?2 t=(1+ 0.3326z)" a, =0.4361836
a, = -0.1201676 a, = 0.9372980

The error resulting from using this approximation for appropriate values of z is
no more than about 10™*.

Write a program that includes a function to calculate cumulative
probability for a specified value of z using this approximation. What restrictions,
if any, should you place on the allowed values of z? [normal2.c]

Extra Credit:

The standard normal variable z is related to measurements of normally
distributed quantities taken from populations whose sample mean m and standard
deviation s have values other than O and 1 by

X -1
S

Modify your program so that it will calculate the probability that a single
measurement from a normally distributed population with sample mean m and

3.8 Exercises ®» 117

standard deviation s will not exceed the mean by more than some specified
amount,

14. (a) A production machine in use for several years is known to have produced
thousands of ball bearings with a mean diameter p of 0.5 cm and a standard
deviation ¢ of 0.01 cm. A recent sample of 50 ball bearings had a mean diameter
m of 0.495 cm and a standard deviation s of 0.012 c¢m. Is it possible to conclude
on the basis of this single sample that the performance of the machine has
changed?

This is a common problem in statistics involving formulating a null
hypothesis, which in this case is that the random sample has been drawn from a
population whose mean is 0.500 cm. Then the data are examined and the
hypothesis is either accepted or rejected. The calculation is based on the z score:

m -

o/yN

zZ =

where N is the sample size. In general, statistical calculations distinguish between
the population statistics, p and &, and the sample statistics, m and s. As implied
by their names, sample statistics are based on a single random sample and
population statistics are based on an entire population. The latter value is usually
not available in practice, and perhaps not even in principle, but statistics based on
a very large sample, as in this problem, are typically assumed to be equal to the
population statistics. The hypothesis about a sample that is small compared to the
total population is accepted or rejected at a certain confidence level based, in this
case, on values of z for a two-tailed significance test, as given in Table 3.11 for
commonly used significance levels.

Table 3.11. Calculations for two-tailed tests of significance

The levels of significance represent the probability of being wrong in rejecting the
hypothesis, or making what is referred to as a Type I error. The smaller the level
of significance, the less likely that a Type I error will be made. For this problem,

z = (m - W/(oN"?) = (0.495 - 0.500)/(0.01/7.071) = -3.54

118 = 3. Data Types, Operators, and Functions

Thus the hypothesis can be rejected with a very low probability of making a
Type I error. That is, it is very unlikely that the performance of the machine in
question has not changed. Note that the sample standard deviation is not used in
this problem.

(b) A manufacturer purchases a ball bearing machine that is claimed to produce
ball bearings with a mean diameter of 0.5 cm and a standard deviation of 0.01 cm.
A sample of 50 ball bearings from the machine has a mean m of 0.495 cm and
a standard deviation s of 0.012 cm.

This problem is similar to that in (a). The difference is that the population
statistics, based on a very large sample, have not been determined. The hypothesis
is still that the sample is taken from a population whose mean p is 0.500 cm.
However, to calculate the z score, use the sample standard deviation as an
estimate of the population standard deviation:

m - p

s/yN

Z:

For this problem,
z = (m - W/(sN") = (0.495 - 0.500)/(0.012/7.071) = -2.95

Thus it is highly unlikely that the machine is performing according to its stated
specifications. Note that in this version of the problem, the claimed population
standard deviation is not used.

For parts (a) and (b) of this problem, write and test a function that
calculates the z score when the sample mean, population mean, population or
sample standard deviation, sample size, and critical z value are specified. Note that
the function does not “care” whether the standard deviation passed as input is the
population or sample standard deviation.

15. The day of the year n in the range 1-366 for a specified month m (1-12), day
d (1-31), and four-digit year y* is given by

n = (275m/9) — ((m + 9)/12)(1 + {(mod(y,4) + 2)/3)) + d — 30

where {...) means that a division is to be truncated to a whole number (for
example, (11/3) = 3), and mod is the remainder from integer division (for

*At the time this manuscript was being written, the Y2K problem (the inability of older computer
software to process years later than 1999) was receiving lots of attention in the press. Hence it
seemed like a good idea to insist on four-digit years.

3.8 Exercises = 119

example, mod(11/3) = 2). As written, the formula is valid for any year, including
leap years, except for those centurial years that are not evenly divisible by 400.
Thus the formula applies to the year 2000, which is a leap year, but not to 1900
or 2100, which are not leap years even though they are evenly divisible by 4.

Write a program with a function that calculates and returns the day of the
year for a specified month, day, and year.

Extra Credit:

Modify your function so that it returns the correct value for centurial years
not evenly divisible by 400. For example, your function should take into account
the fact that 2100 is not a leap year. You can look ahead to Chapter 4 to see how
to implement an /F... THEN... ELSE... statement that will allow your code to
respond appropriately in centurial years that are not leap years.

16. A cylindrical liquid storage tank of radius R and length L is buried
underground on its side; that is, with its straight sides parallel to the ground. In
order to determine how much liquid remains in the tank, a dip stick over the
centerline of the tank is used to measure the height of the liquid in the tank. The
formula for the area A of a circle of radius R with a cap cut off horizontally at
height D from the bottom of the circle is

A - chos‘l(R—l;D) ~ (R - D){2RD - D2

Write a program that reads several values of R, L, and D from a file and
calculates the volume in the tank for each set of values.

4

Selection and Repetition Constructs

4.1 Relational and Logical Operators

Like other high-level programming languages, C has the ability to make decisions
by comparing values. Two values can be tested for equality, for example, and one
block of statements can be executed if the values are equal. Another block of
statements, or no statements at all, can be executed if the values aren’t equal. The
purpose of such decision-making statements should already be clear from the
discussion of pseudocode commands in Chapter 1. Also, we have already used
some implementations of the pseudocode [F...THEN...ELSE statement in
Chapters 2 and 3 in code for reading files. For instance, in the statements

status=fscanf(infile,...);
if (status == EOF) break;

and

infile=fopen(name, "r");

if (infile == NULL)
printf('Can't find file.");

else

if... statements are used to respond appropriately when the end-of-file mark
is found or when the program can’t find a requested file.

Table 4.1 summarizes the operators required to implement decision-making
statements. It contains the same operators given previously in Table 1.3, with the
addition of the C symbols for those operators. Expressions having more than one
relational operator are evaluated according to certain precedence rules in the same
sense that multiplication and division operations are performed before addition and
subtraction. The relational and logical operators have been given in Table 4.1 in
order of descending precedence, with level 1 having the highest precedence.
Relational and logical operators also have precedence relative to other kinds of
operations, as previously shown in Table 3.4 in Chapter 3.

Precedence rules for relational and logical operators can be difficult to
remember. Consequently, as a matter of style, we will be consistent about using
parentheses to make clear the order in which operations should be performed.
Even when parentheses aren’t required, they can often help clarify a statement’s
intent, and they can also be used to override the natural precedence whenever that
is desired.

D. R. Brooks, C Programming: The Essentials for Engineers and Scientists
© Springer-Verlag New York, Inc. 1999

122 = 4. Selection and Repetition Constructs

Table 4.1. Relational and logical operators

not logical “not” ! 1
< less than or equal to | <= 2
2> greater than or >= 2
equal to
< less than < 2
> greater than > 2
= equal to == 3
+ not equal to = 3
and logical “and” && 4
or logical “or” I 5

As noted in Chapter 3, C does not support a separate data type for
manipulating logical expressions. Instead, C evaluates a relational statement and
assigns a value of 1 if it is True and a value of 0 if it is False. Consider the code
fragment

Ntf("$i\n’, (a<=3)+(a<b)+(a==c)) ;

What value is displayed by the printf statement? With the assignment
statements shown, a is less than or equal to 3, a is less than b, and a is not equal
to c. Thus the three relational expressions have values of 1, 1, and 0, and a 2 will
be displayed. We will generally restrict our use of relational expressions to writing
selection constructs, and we will not use the values associated with logical
expressions in this way.

The interpretation of relational and logical operations is straightforward,
but there are two common pitfalls in tests for equality. First, it is easy to forget
that the = sign by itself is nor the relational operator for equality. The expression
a=b won’t produce a syntax error when it is used in an 1 f. .. statement, but it
is not the same expression as a==Db. This is because, in C, assignment statements
themselves have values, even though we don’t usually think of them in that way.

4.2 Selection (IF...THEN...ELSE...) Constructs = 123

Thus an assignment statement a=b has a value that depends on the value of b.
Consider this code fragment:

int a=3,b=-4;
printf("%$i\n",a=b);

This code prints a value of —4 because the expression a=b has a value of —4. In
the relational sense, the assignment a=Db as it appears in this code fragment will
be interpreted as True because C interprets any nonzero value (even a negative
value) as True.

The second pitfall involves testing real numbers for equality. If A and B
are type float or double, it is generally poor programming practice to test
them for equality. This is because C and other languages represent real numbers
only approximately and, hence, arithmetic with real numbers is inexact. The
algebraic expression (10/3)(3) is obviously equal to 10 in the algebraic sense.
However, when C evaluates this expression, it first performs the division:
10/3=3.333333.... Multiplying this result by 3 yields 9.999999..., which is not
exactly equal to 10. Some compilers and some languages may be better than
others about interpreting this source code representation of an algebraic
expression, but the potential for problems can never be eliminated entirely.

If you wish to test real numbers for equality, especially when those
numbers are obtained as the result of arithmetic operations, it is much better
programming practice to test the absolute value of their difference against some
suitably small value, as with the statement fabs (A-B) < small_value. An
appropriately small value would be 10° or 107, but 10 would be inappropriate
because real arithmetic is not done at this level of precision with float or
double variables, and also because such calculations are probably meaningless
in the physical or mathematical sense.

4.2 Selection (/F...THEN...ELSE...) Constructs

The relational operations described in the previous section are used with the
IF...THEN...ELSE... pseudocode command discussed in Chapter 1. This
pseudocode has a straightforward implementation in C. Its general syntax is

124 = 4. Selection and Repetition Constructs

if (condition_1)

{ Statements
else}if (condition_2)
{ statements
elseiif (condition_3)

statements

statements

}

where each condi tion represents a relational expression. Note that the THEN
part of the IF...THEN... pseudocode command is implied in C; there is no “then”
word in the C language. Each branch of the 1 f£. . . statement can be associated
with a block of statements set off with curly braces, {...}, but a single
statement doesn’t have to be enclosed in braces.

Program P-4.1 illustrates several typical statements using logical and
relational operators. It includes several features of interest. Because C doesn’t
have a separate logical (boolean) data type, the values TRUE and FALSE have
been assigned values 1 and O in define statements. This makes True and False
assignments easier to write and understand. Also, the i f. . . statements involving
character responses test for both lowercase and uppercase responses. This is
optional, but it helps to make the program a little more “idiot proof.” Finally, note
the fflush (stdin) ; statements appearing before each scanf statement that
looks for a character typed at the keyboard. This is necessary to ensure that the
keyboard buffer is empty so that the character a user types will be the first
character in the buffer. Otherwise, a blank space or end-of-line character from any
previous scanf statement will remain in the buffer, and any new character the
user types will not be detected; this is a subtle point that is easy to forget, and it
can lead to programs that appear to be written properly, but which won’t work as
expected. It is unnecessary to flush the keyboard buffer if a scanf statement is
expecting only numerical values, because blanks are ignored (or skipped over,
more precisely) when scanf searches for a numerical value.

4.2 Selection (JF...THEN...ELSE...) Constructs = 125

P-4.1 [selectin.c]

/* Demonstrate various selection structures */

include <stdio.h>
define TRUE 1
define FALSE 0

main ()

{
int resting_heart_rate, temperature,raining;
char plane_type, rain;

printf ("What is your resting heart rate? ");
scanf ("%d", &resting_heart_rate);
if (resting_heart_rate > 56)

printf("You need more exercise.\n");
else

printf ("You are in good shape.\n");

printf ("What is the aircraft type, [blomber or [clargo? ");
fflush(stdin) ;
scanf ("%c",&plane_type) ;

if ((plane_type == 'b') !l (plane_type == 'B'))
printf ("The aircraft is a bomber.\n");

else if ((plane_type == 'c') Il (plane_type == 'C'))
printf ("The aircraft is a cargo plane.\n");

else

printf ("I don't know what this aircraft is.\n");

printf ("How hot is it (deg F)? ");
scanf ("%1", &temperature);
printf("Is it raining (y or n)? ");
fflush(stdin);
scanf ("%c", &rain) ;
if ((rain == 'y')} |l (rain == 'Y'))

raining=TRUE;
else raining=FALSE;

if ((temperature > 85) && !raining)
printf{"'Let's go swimming!\n");
else
printf("We'll stay inside.\n");
return(0) ;

Running P-4.1

126 = 4. Selection and Repetition Constructs

Here is a typical programming problem that requires a simple decision
structure.

Income taxes are assessed according to the following formula:

For incomes < $50,000, the rate is 7%
For incomes > $50,000, the rate is 7% on the first $50,000 and 10% on the
amount greater than $50,000.

The pseudocode for the critical part of the code is:

IF (income < $50,000) THEN
tax = $50,000+0.07
ELSE
tax = $50,000+0.07+(income - $50,000)+0.10

A common mistake is to write this pseudocode instead:

IF (income < $50,000) THEN
tax = income«0.07
ELSE
tax = income«0.10

Make sure you understand why the second algorithm is wrong! Program P-4.2
gives a program to solve this problem.

P-4.2 [taxes.c]

/* Simple decision structure. TAXES.C */
#include <stdio.h>

#define LOW_RATE 0.07

#define HIGH_RATE 0.10

#define CUTOFF_INCOME 50000.0

int main()
{

double income, tax;

printf ("Give income: $");
scanf("%1f", &income) ;
if (income <= CUTOFF_INCOME)

tax=income*LOW_RATE;
else

tax=CUTOFF_INCOME*LOW_RATE+ (income-CUTOFF_INCOME) *HIGH_RATE;
printf("On an income of $%.21f, the tax is $%.21f\n",income, tax);
return 0;

4.2 Selection (IF...THEN...ELSE...) Constructs = 127

Running P-4.2

The interpretation of multiple-alternative if... statements can be
confusing. Consider the following table that relates loudness in decibels to human
perception:

Loudness (dB) Perception
<50 quiet

51-70 intrusive
71-90 annoying
91-110 very annoying
>110 uncomfortable

Suppose the goal of a program is to ask the user to provide a decibel level and
then to respond with an appropriate message. If the tests are arranged in the order
shown, the pseudocode could be written like this:

IF (dB < 50) THEN WRITE (quiet)

ELSE IF (dB > 50 and dB < 70) THEN WRITE (intrusive)
ELSE IF (dB > 70 and dB < 90) THEN WRITE (annoying)
and so forth...

For a value of 88 dB, for example, it is not true that the value is less than or
equal to 50 or is in the range 51-70. The second ELSE JF... branch is the only
one that returns a True result, and this will be the only branch executed. However,
the desired result can be achieved more simply like this:

IF (dB < 50) THEN WRITE (quiet)

ELSE IF (dB < 70) THEN WRITE (intrusive)
ELSE IF (dB < 90) THEN WRITE (annoying)
ELSE IF (dB < 110) THEN WRITE (very annoying)
ELSE WRITE (uncomfortable)

Suppose the noise level is 75 dB. This is greater than 50 but less than 70,
so the second branch will be executed. However, 75 is also less than the values
in the statements in the third and fourth branches. Does this mean that each of the
other branches will also be executed? No, because

128 = 4. Selection and Repetition Constructs

The second pseudocode algorithm doesn’t require that both the upper and
lower limits on the range be specified, and therefore it’s shorter and less cluttered
than the first alternative. This behavior, as described in pseudocode, also applies
to the programming language implementation of IF... statements. Programs that
implement the first kind of pseudocode will certainly work, but this kind of code
usually means that a programmer doesn’t understand how [F... statements work.
Program P-4.3 gives C code for the noise level problem.

P-4.3 [decibels.c]

/* Illustrate multiple-alternative decisions. */
#include <stdio.h>

main ()
{

int noise_db;

printf ("Enter the noise level as integer decibels: ');
scanf ("%i",&noise_db) ;

if (noise_db <= 50)

printf("%$i dB is quiet.",noise_db);
else if (noise_db <= 70)

printf("%1i dB is intrusive."',noise_db);
else if (noise_db <= 90)

printf ("%i dB is annoying.",noise_db);
else 1f (noise_db <= 110)

printf("$i dB is very annoying.",noise_db);
else

printf ("%i dB is uncomfortable.",noise_db);
return(0) ;

Running P-4.3

4.3 Choosing Alternatives From a List of Possibilities

When there are many possible program branches to be considered, it is often
easier to construct what amounts to a table of choices, using an implementation
of the CHOOSE pseudocode command discussed in Chapter 1. Consider the

4.3 Choosing Alternatives From a List of Possibilities =

129

statement in P-4.1, which was implemented as a three-branch if. .

. statement

to select an aircraft type. There were only three possibilities: bomber, cargo, and
unknown. Such a list of choices is cumbersome to expand. Program P-4.4
illustrates an alternative, with a new choice added.

P-4.4 [planes.c]

include <stdio.h>
int main ()
{
char plane_type;
printf (
"What is the aircraft type,
scanf ("%s"', &plane_type) ;
switch (plane_type) {

case 'b':

case 'B':
printf ("bomber\n") ;
break;

case 'c':

case 'C':
printf("cargo\n") ;
break;

case 'f':

case 'F':
printf ("fighter\n");
break;

default:
printf ("unknown\n") ;

}

return 0;

}

[b]omber,

[clargo, or [flighter? ");

P-4.4 uses the switch keyword to create another kind of selection construct. Its

general syntax is

switch(controlling expression)
{
case value:
{case value:)
statements
(break; or return;)

default:
statements

{(more case values and statements)

where each value is an ordinal constant. The default: branch is optional.

The switch construct differs significantly from C’s if. .

Recall that in a multibranched if.. .
executed. However,

. construct.
statement, only the first True branch is

130 = 4. Selection and Repetition Constructs

This rule explains why multiple statements following one or more case labels
aren’t grouped in a statement block with braces, {...}, as they are for an
if... statement.

If you think of each case label (or group of case labels) as representing
the start of a branch to be taken, as is certainly reasonable from an algorithm
design viewpoint, the break; statement is required to ensure that only one
branch—that is, only one set of statements—within the structure is executed. This
is different from an if. .. construct, in which no break statement is required
to ensure that only one branch is taken. In terms of syntax, the break; or
return; statement associated with each case value is optional, but it is almost
always required as a matter of algorithm design.

The data type of the controlling expression in the switch statement must
be ordinal (countable), which means that it may have an int or char type, but
not a floating point data type such as float or double. Also, the controlling
expression may not be a string of characters.! This also means that the values
appearing in the case labels must have appropriate data types. This restriction
precludes the use of a switch structure when decisions must be based on
floating-point values or on ranges of values (rather than individual values).
However, this construct is a good choice whenever decisions can be based on
single ordinal values.

Although it is perhaps not obvious and may not be a good idea as a matter
of style, C allows case labels associated with a switch statement to contain a
mixture of integer and character values regardless of whether the controlling
expression is of type int or char. This is possible because of C’s willingness
to perform implicit type casting whenever required. Thus, this code fragment
causes no compilation problems even though the case labels mix data types in
what appear to be potentially inappropriate ways:

char c¢h;

int 1i;

switch (ch) {
case 1:;
case 'a':;
break;

}

switch (1) {
case 1:;
case 'a':;

}

'The reason is that character strings, as opposed to single characters, are not ordinal. For example,
the next character after k is 1, but there is no way to tell what comes after the word kitten.

4.4 Repetition (LOOP...) Constructs = 131

4.4 Repetition (LOOP...) Constructs

In Chapter 1, the pseudocode concept of a loop structure was described. Loop
structures are required to implement the third of the three program control
structures—sequence, selection, and repetition. This concept is so pervasive in
programming that we used some loop constructs as early as Chapter 2 in code to
read external data files. The LOOP (conditions)...END LOOP pseudocode
command includes a “plain English” description of the conditions that define when
(or if) the statements inside the loop are executed. In the C implementation, this
description can be implemented in two basic ways.

4.4.1 Count-Controlled Loops

The simplest loop, in concept, is the count-
controlled loop. This is appropriate when the
program knows ahead of time or can determine how
many times the statements inside the loop should be executed. Consider this
problem:

Write a program that prints a table of angles and their sine, cosine, and
tangent over the range [0°, 180°] in increments of 5°.

It is easy to determine that this table will contain 37 rows. You can perform the
calculation by hand or let your program do it: 180/5 + 1. Because the limits on
the loop are known ahead of time, a count-controlled loop is appropriate. The
pseudocode might look like this:

LOORP (fori= 0 to 36)

ASSIGN angle = 5+

WRITE (angle, sin(angle), cos(angle), tan(angle))
END LOOP

When you implement this algorithm in C, remember to convert angles to
radians (because that’s what the trigonometric functions expect as input), and you
should also take into account the fact that the tangent of 7/2 radians is undefined.

The general syntax for a count-controlled loop in C is

for (initialization expression; repetition control condition;
update expression)
{
statements
}

132 = 4. Selection and Repetition Constructs

The loop starts with the reserved word for. Execution
of the loop is controlled by the value of an integer loop
counter. Inside the parentheses following the for, the initial
value of the counter is given first. Then a relational expression is given. As long
as this expression is true, the loop counter will be updated according to the update
expression and the statements inside the loop will be executed. If there is only one
statement, the braces aren’t needed. If the loop repetition expression is false the
first time it is evaluated, the loop will terminate without executing the statements
inside the loop. When the loop terminates, program control is transferred to the
statement that immediately follows the loop.

The update expression defines how the loop variable will be changed at the
end of each trip through the loop. A common update expression, although by no
means the only legitimate one, increments the loop counter by one for each trip
through the loop.

A typical use of loops is to generate a table of values. Program P-4.5
shows one way to implement a loop that generates and displays a table of
trigonometric values.

P-45 [trigtabl.c]

/* Generate a table of trig values. Demonstrates count-controlled
loops. */

#include <stdio.h>

#include <math.h>

int main()

{
double angle,deg_to_rad;
int 1i;

deg_to_rad=4.0*atan(1.0)/180.0;

printf (" i x sin(x) cos (X) tan(x)\n");
printf('--—-----~-------- e \n");
for (1 = 0; 1 <= 36; 1++) |

angle=1*5.0;
printf ("%$31 %4.01f",1,angle);
angle=-angle*deg_to_rad;
if (i*5 '= 90) {
printf (
"%$9.41f%9.41£%9.41f\n",sin(angle),cos(angle), tan(angle)) ;
}

else {
printf("%9.41£%9.41f\n", sin(angle),cos(angle));
} /* end if... */
} /* end for... */

return 0;

}

4.4 Repetition (LOOP...) Constructs = 133

Running P-4.5

In P-4.5, the loop counter i is given an initial value of 0, the repetition
condition is given as i <= 36, and 1 is incremented by 1 after each trip through
the loop. Thus, the statements inside the loop will be executed for values of i
between 0 and 36, inclusive. This interpretation of the loop termination condition
makes clear that the loop counter update expression is executed at the end of the
loop rather than at the beginning. If the counter is incremented at the beginning
of the loop, the first value in the statement angle=1*5.0 will be 1 rather than
0. The last time the statements inside the loop are executed, i will have a value
of 36. At the end of the calculations, the incremented value will be 37. When the
loop repetition expression is evaluated, it will now be False and the loop will
terminate.

An alternative repetition condition could be i != 37, although this
choice is less clear than the one used. Also, the update expression could be
i=i+1, i+=1 or ++1 rather than i++.

Why does the loop counter use an integer in the range [0, 36] rather than
the angle values themselves? As a matter of syntax, C allows the use of real
numbers as loop control variables, so the loop could in principle be written like
this:

for (angle = 0.0; angle <= 180.0; angle += 5.0) {/* poor style! */
printf("%4.01f",angle);

134 = 4. Selection and Repetition Constructs

However, the practice of using noninteger loop control variables is strongly
discouraged because the approximations inherent to real number arithmetic mean
that the calculated values of real loop counters can sometimes lead to unexpected
results. The loop controls on angle seem reasonable, but it is possible that the
“final” incrementing operation could give a result of 179.99999, for example,
rather than exactly 180. In that case, the statements inside the loop would be
executed one more time than expected.

Even in view of this style rule, there is at least one more reasonable
alternative for constructing the loop in P-4.5:

for (1 = 0; 1 <=180; 1+=5) {
printf("%4i",1i);
angle= (double)i*deg_to_rad;
if (i '= 90) {
printf (
"%9.41£%9.41£%9.41f\n",sin(angle),cos(angle), tan(angle));
}
else { :
printf("%9.41£f%9.41f\n",sin(angle),cos(angle));
} /* end if... */
} /* end for... */

In this implementation, the loop counter takes on the integer values 5, 10, 15, and
so on. The assignment statement

angle= (double)i*deg_to_rad;

converts the angle to radians. The (double) makes clear the type cast that is
performed, but it’s not required because deg_to_rad is already a real value.

Here’s another question about loop controls. Is it allowed to reassign the
value of the loop counter variable inside the loop? For example, is it possible to
write

for (i = 0; i '= 37; i++) {
i;;3;
¥ /* end for... */

The answer in C is, “Yes, you can do that.” However, this is generally considered
to be very poor programming style because altering the loop counter variable
inside the loop overrides the conditions established for loop termination as part of
the for. .. statement.

4.4 Repetition (LOOP...) Constructs w135

This style rule applies as well to implied assignment statements such as 1 ++.

What is the value of the loop counter variable gfter the loop is terminated?
In P-4.5, i has a value of 37 because that is the value required to terminate the
loop. However,

It is, however, OK to reuse the loop counter variable itself in another loop or even
for some other purpose, by reassigning its value. Thus the code fragment

for (i=1; 1<=10; 1i++)
printf ("%i\n",1i);
j=1i+5;

is allowed as a matter of syntax, but is considered poor programming style
because the value of i is used after the loop is terminated. As a result of this code,
5 will have a value of 16 rather than 15 because i has a value of 11 when the
loop terminates; this may or may not be what you intended. This code fragment
is much better:

end_value=10;

for (i=1; i<=end_value; i++)
printf ("%i\n",1);

j=end_value+6;

assuming that, in fact, you wish j to have a value of 16 rather than 15.
It is possible to nest loops one inside the other. Consider this code:

for (row=1; row<=4; row++) {
printf('row # %2i,",row);
for (col=1; col<=5; col++) {
printf("%21i",col); }
printf("\n");
}

The output of this typical approach to producing a two-dimensional table of values
looks like this:

136 = 4, Selection and Repetition Constructs

W N
R e
[SENY RN
wwww
[N NN
LRGSR

The inner loop is executed completely four times, once for each trip through the
outer loop.The variable row is used to number each row in the table, and col is
used to number columns. Each time the inner loop is executed, its counter variable
col is automatically reset to 1. The curly braces are not necessary for the inner
loop, which contains only one statement, but they serve as a reminder that you can
include as many statements as you need to take the required action inside the
inner loop. Note that the line-feed character \n is printed after the end of the
inner loop, but still inside the outer loop.

You can have as many levels of nested loops as your program needs. You
should not be surprised to learn that

In order to minimize logical errors in your code, it is important to assign
meaningful names to counter variables in nested loops. That is why the counter
variables in the above example are called row and col rather than something less
descriptive such as i and j.

Finally, it is possible to construct loops that count down rather than up.
This requires only that the terminating expression and the update expression be
consistent. For the code

for (i=10; i>=0; 1i--)
{...}

i takes on values 10, 9, ..., 1, 0.

4.4.2 Conditional Loops

It is often the case that the number of times the statements
inside a loop must be executed cannot be determined
ahead of time. In that case, a conditional loop must be
used. There are two possibilities. In a post-test loop,
statements inside the loop are always executed at least
once. At the bottom of the loop, a decision is made whether to continue. In a pre-
test loop, a decision whether to execute statements inside the loop is made at the
top of the loop. This means that statements inside a pre-test loop might never be
executed.

4.4 Repetition (LOOP...) Constructs = 137

Pre-Test Loops

The general syntax for pre-test loops is

while (loop repetition condition)
{

statements

}

The braces are required only for multiple statements.
As an example, consider this problem:

Write a program that calculates the period of an earth-orbiting satellite in
a circular orbit with a user-specified altitude and displays the starting time
for each orbit during one day. Assume that the first orbit starts at a time
of 0. The equation for the period T is

T = 2ma/a/G

where a is the radius of the orbit in km and G is the earth’s gravitational
constant, 398601.2 km*/sec’. The (equatorial) radius of the earth is 6378
km. There are 86,400 seconds in one day. Don’t forget that the value of
a in the formula is the earth’s radius plus the user-specified altitude.

This problem can be formulated in terms of a pre-test loop, which should
keep executing as long as the elapsed time is less than one day:

LOORP (as long as the total time is less than one day)
END LOOP

Program P-4.6(a) shows how to implement this algorithm as a pre-test loop.

P-4.6(a) [orbitsl.c]

/* Print information about earth orbits. */
/* Use a pre-test loop. */

#include <stdio.h>
#include <math.h>

#define PI 3.1415927
#define G 398601.2 /* kmtr3/sr2 */
#define EARTH_RADIUS 6378.0 /* km */

138 = 4. Selection and Repetition Constructs

#define DAY 86400.0 /* seconds */

int main()

{
double period,altitude, total_time=0.0;
int orbit_number=0;

printf ("What is the altitude (km)? ");
scanf ("%$1f", &altitude);
period=2.0*PI* (EARTH_RADIUS+altitude) *
sqgrt ((EARTH_RADIUS+altitude) /G) ;
printf ("The orbital period is %.11f seconds.\n",period);
while (total_time < DAY) {
orbit_number++;
printf ("Orbit #%2i starts at time %7.11f seconds.\n",
orbit_number, total_time);
total_time+=period;
}
return 0;

}

Running P-4.6(a)

Note that this particular pre-test loop will always execute at least once because
total_time is initialized to O.

Post-Test Loops

The general syntax for post-test loops is

4.4 Repetition (LOOP...) Constructs = 139

do
{
statements

while (loop repetition condition)

As before, braces are required only for multiple statements. The statement(s) in
this loop are always executed at least once because the repetition condition isn’t
tested until the end of the loop.

The problem from the previous subsection can easily be formulated as a
post-test loop, as shown in P-4.6(b).

P-4.6(b) [orbits2.c]

/* Print information about earth orbits. */
/* Use a post-test loop. */

#include <stdio.h>
#include <math.h>

#define PI 3.1415927

#define G 398601.2 /* kmAr3/s42 */
#define EARTH_RADIUS 6378.0 /* km */
#define DAY 86400.0 /* seconds */

int main()

{
double period,altitude, total_time=0.0;
int orbit_number=0;

printf("what is the altitude (km)? ");
scanf ("$1f",&altitude);
period=2.0*PI* (EARTH_RADIUS+altitude)
*sqgrt ((EARTH_RADIUS+altitude) /G);

printf ("The orbital period is %.11f seconds.\n",period);
do {

orbit_number++;

printf("Orbit #%21 starts at time %7.11f seconds.\n",

orbit_number, total_time) ;

total_time+=period;
}
while (total_time < DAY);

return 0;

}

The output from P-4.6(b) is identical to that for P-4.6(a).

Sometimes you must think carefully about how to design a loop and its
terminating conditions properly. Consider this problem, to which we will apply the
entire five-step problem-solving process.

140 = 4. Selection and Repetition Constructs

1 Define the problem.

A small elevator can safely carry a load of no more than 500 pounds. If
this load limit is exceeded, the elevator cable will snap and all the occupants will
be killed. Initially the elevator is empty and several people are waiting in line.
There is a scale outside the elevator door so that each person can be weighed to
determine whether he or she will be allowed on the elevator. To make the problem
easier, assume that if the next person in line will cause the load limit to be
exceeded, the elevator doors will close. That is, no attempt is made to search
farther back in the line for a lighter person who will not cause the load limit to
be exceeded. Write a program to simulate this situation.

2 Outline a solution.

The load initially is 0. Then, inside a loop, the program accepts proposed
weights typed at the keyboard. For each new value, the algorithm must calculate
a proposed new total load. If this proposed total does not exceed the maximum,
then the actual total load becomes the proposed total load. The loop should
continue as long as the proposed new load does not equal or exceed the load limit.

3 Design an algorithm.

Here is an algorithm for the critical loop structure. It involves proposing
a new load based on the next weight and then responding appropriately.

LOORP (as long as actual new load or unacceptable proposed new
load does not equal or exceed the load limit)

READ (new_weight)

ASSIGN proposed_load = current_load + new_weight

IF (proposed_load < limit) THEN

ASSIGN current_load = proposed_load

ELSE (print message indicating that new_weight is not allowed)

END LOOP

It should also be possible to implement this loop as a pre-test loop. It will
still be necessary to think carefully about how to terminate the loop.

4.4 Repetition (LOOP...) Constructs = 141

Convert the algorithm into a program.

P-4.7 [elevator.c]

/* Purpose: To allow individuals to enter an elevator one by one
as long as the total weight doesn't exceed a specified maximum.

*/

#include <stdio.h>

#define MAX 500

int main(void)
{
int total_load=0,wt,proposed_load;

do {
printf ("Give new proposed weight: ");
scanf ("%1i", &wt) ;
proposed_load=total_load+wt;
if (proposed_load <= MAX) {
total_load=proposed_load;
printf('new = %41 total = %4i\n",wt,total_load);

else
printf ("NOT ALLOWED. This will give a total load of %i.\n",
total_load+wt);
} while (proposed_load < MAX);

return 0;

}

Running P-4.7

Verify the operation of the program.

The single sample output shown here is insufficient to test the program
thoroughly. You should also test a case for which the first proposed weight
exceeds 500 pounds and one for which the weights add up to exactly 500 pounds.

142 = 4, Selection and Repetition Constructs

Loops for Input Validation

In interactive programs that require user input, it is often important to perform
some validation tests on keyboard input before using it. Consider the beginning
of a typical problem statement:

Write a program that asks a user to enter a dollar amount and then...

For this discussion, we don’t care what will be done with the dollar amount.
However, we are concerned that a user may enter a dollar amount as $10,000 or
10,000 rather than 10000, even if the input prompt is specific about the program’s
expectations. We know that C won’t accept the first two examples as valid
numbers. Our goal is to scan the input before trying to interpret it as a number.
If the input is inappropriate, the program should give the user another chance.
Program P-4.8 presents one solution to this problem.

P-4.8 [dollars.c]

/* Perform input validation on numerical data. */
#include <stdio.h>

#include <string.h>

#define TRUE 1

#define FALSE 0

int main()

{
double dollars;
char test_string[80],final_string[80];
int 1,good_data;

do

{
printf ("Give a dollar amount with no commas: $");
scanf ("%s",&test_string) ;
good_data=TRUE;

l=—1;
while ((i <= strlen(test_string)-1) && (good_data))
{
1++;
if ((test_stringl[i] == ',') |l (test_stringli] == '$"'))

good_data=FALSE;

}
if (! good_data)
printf ("Your input of %s is unacceptable. Try again.\n"',
test_string);
else
printf ("Your input of %s is acceptable.\n",test_string);

while (! good_data);
return 0;

4.5 Applications = 143

The code in P-4.8 involves some new syntax that we won’t discuss in
detail until Chapter 6. Basically, each character in a string of characters can be
accessed individually (starting with the first character, which C addresses as
character 0) and tested to see whether it is a comma or a dollar sign. The for. ..
loop is controlled by the standard C function strlen, which needs access to the
string.h header file and which counts the number of characters in the user’s
input, excluding the terminating character.

4.5 Applications

4.5.1 Solving the Quadratic Equation

1 Define the problem.

Write a program that solves the quadratic equation a’x + bx + ¢ = 0 for its
real roots, using user-specified values for a, b, and c.

2 Outline a solution.

The well-known solution to the quadratic equation is

-b + b? - dac

2a

When you apply this solution to finding real roots, there are three
possibilities:

1. If the discriminant is positive, there are two real roots.

2. If the discriminant is zero, there is one real root.
3. If the discriminant is less than zero, there are no real roots.

3 Design an algorithm.

The critical part of the algorithm is the test applied to the discriminant;

144 = 4, Selection and Repetition Constructs

IF (discriminant > 0) THEN

ASSIGN two real roots according to the formula
ELSE IF (discriminant = 0) THEN

ASSIGN one real root equal to -b/2a
ELSE

there aren't any real roots

1 Convert the algorithm into a program.

P-4.9 [quadratc.c]

/* Quadratic equation with test for discriminant. */

#include <stdio.h>
#include <math.h>

int main(void)
{
double a,b,c,discriminant, rootl, root2, LIMIT=1e-6;

printf ("Enter coefficients for ax*2+bx+c: ");
scanf ("%1f %1f %1f",&a, &b, &c);
discriminant=b*b-4.0*a*c;
printf("discriminant = %1f\n",discriminant) ;
if (discriminant > LIMIT) {
rootl=(-b+sgrt(discriminant))/2.0/a;
root2=(-b-sqrt(discriminant))/2.0/a;
printf ("rootl = %1f, root2 = %1f\n",rootl,root2);
}
else if (fabs(discriminant) <= LIMIT) {
rootl=-b/2.0/a;

root2=0.0;
printf ("The single real root = %1f\n',rootl);
}
else
printf ("There are no real roots.\n");
rootl=0.0;
root2=0.0;
return 0;

Running P-4.9

4.5 Applications = 145

There are no real roots for the quadratic equation x* + 2x + 3 = 0.

In the implementation of the algorithm, it is necessary to think carefully
about the implications of concluding that the discriminant is 0. Suppose that the
discriminant b® — 4ac is algebraically equal to 0. It is not a good idea to assume
that this value will always be numerically equal to 0 because of the limitations on
the precision of real arithmetic. This problem is not so bad if the discriminant is
a very small positive number rather than O; then your program will report that
there are two nearly identical real roots. However, this could be a serious problem
if the discriminant is a very small negative number. Then your program will report
that there are no real roots when, in fact, there is one real root. Program P-4.9
protects against this potential problem by testing the absolute value of the
discriminant against the hard-coded small value LIMIT. In this implementation,
a discriminant that is less than or equal to 10 is considered to be 0.

5 Verify the operation of the program.

The obvious verification steps require supplying sets of coefficients that
test all three branches in the 1f. .. statement. It would be interesting to find a
case where the discriminant is algebraically equal to O but is represented
numerically as a very small negative number.

4.5.2 Maximum Deflection of a Beam With Various Support/Loading Systems

1 Define the problem.

The problem of calculating the maximum deflection of a beam supported
at both ends and subject to a load concentrated at the center of the beam has
already been treated as an application in Section 2.5.1. In this application, the
calculations will be extended to cover several support/loading configurations.

2 Outline a solution.

Table 4.2 gives formulas for four support/loading options, including the
one discussed previously in Section 2.5.1.

146 = 4. Selection and Repetition Constructs

Table 4.2. Maximum deflection of a beam subject to
various support and loading conditions

Supported at each end, -FL*/(48EI)

concentrated force F at L/2

Supported at each end,

distributed weight W -SWL*/(384EI)
at L/2

Supported at one end, T

concentrated force F -FL*/(3EI)

at free end at free end

W

Supported at one end, LLdlLlbibd

distributed weight W -WL*/(8EI)
at free end

! For this table, force F and weight W have units of Ib; length L, in; elasticity E, 1b/in*; and
moment of inertia, in*.

3 Design an algorithm.

Here is one way the support/loading options might be incorporated into an
algorithm, assuming that values for F (or W), L, E, and I are already available.

WRITE (menu describing four possible support systems, with input prompt)
READ (choice of support system 1-4)
CHOOSE (based on support/load ID)
1: ASSIGN deflection = -FL*/(48EI)
2: ASSIGN deflection = -5WL%/(384EI)
3: ASSIGN deflection = -FL°/(3El)
4: ASSIGN deflection = -WL%/(8EI)
anything else: WRITE (“Input error.”)
(end CHOOSE)
WRITE (deflection)

4.5 Applications = 147

4 Convert the algorithm into a program.

P-4.10 [beam2. c]

#include <stdio.h>

char MakeChoice (void);
double CalculateDeflection{char ch,double L,double F,

double E,double I);
int main(void)

double length, force,elasticity,mom_of_inertia,deflection;

char choice,more='y';

do {
printf (*"Give length (ft), force (1lb),\n"):
printf('elasticity (1b/in*2), moment of inertia (in*4): ");
scanf ("%1f %1f %1f %1f",

&length, &force, &elasticity, &mom_of_inertia);
choice=MakeChoice();
deflection=CalculateDeflection(choice, length*12., force,

elasticity,mom_of_inertia);
printf ("\nThe deflection is %.31f inches\n',deflection);
printf("\nMore (y/n)? ");
fflush(stdin) ;
scanf ("%c", &more) ;

} while (more == 'y');
return 0;

}

char MakeChoice (void)

{
char ch;
printf("\n");
printf ("1l - supported at both ends, central load\n');
printf ("2 - supported at both ends, distributed load\n");
printf ("3 - supported at one end, loaded at free end\n');
printf ("4 - supported at one end, distributed load\n");
printf("\n");
printf ("Choose one... ");
fflush(stdin);
scanf ("%c", &ch) ;
return ch;

}

double CalculateDeflection{char ch,double L,double F,
double E,double I)
{

printf('Choice: %c %1f %1f %1f %1f\n",ch,L,F,E,I);
switch(ch) {

case '1':

return -F*L*L*L/48./E/I;
case '2':

return -5.*F*L*L*L/384./E/1;
case '3':

return -F*L*L*L/3./E/I;

148 = 4, Selection and Repetition Constructs

case '4':
return -F*L*L*L/8./E/I;

default:
printf ("Inappropriate support/loading option.\n");
return 0;

5 Verify the operation of the program.

Representative values for the elasticity E and moment of inertia I are
3 x 107 1b/in* and 800 in*, for which the deflection of a beam supported at each
end and subjected to a central load of 50,000 Ib is about 0.6 in. You should check
calculations by hand for each of the four support/loading options.

Problem Discussion

P-4.10 is an excellent example of a program that can benefit from
modularization. The main function guides selection of one or more support/loading
options and a separate function performs the actual deflection calculations.
Separation of the code in this way is much better programming style than putting
all the code required to support the menu options and deflection calculations
inside the main function. The function to calculate the deflection includes a
switch construct to perform the appropriate calculation, as well as a provision
for responding to inappropriate input.

The main program contains a conditional loop. It is optional in this
program, but its purpose is to give the user a chance to perform more than one
calculation without having to reexecute the program. This is a typical structure for
menu-driven programs.

4.5.3 Refraction of Light

1 Define the problem.

Refer to the application in Section 3.6.1 for a discussion of Snell’s Law,
which gives the angle of a refracted ray of light as a function of the angle of the
incident ray at the interface between two materials with different refractive
indices:

n;sin(i) = n,sin(r)

4.5 Applications = 149

Table 3.8 in Section 3.6.1 gives angles of refraction for a ray of light passing from
air into three different materials over a range of incident angles from 0° to 90°.
Write a program that will produce the results given in that table.

2 Outline a solution.

1. Specify the refractive index for each of the three materials in Table 3.8. They
can be hard-coded within the program or read from a data file.

2. Use a count-controlled loop to generate the incident angles. Within the loop,
calculate refracted angles for an air-material interface with each of the three
materials.

3 Design an algorithm.

DEFINE (incident_angle, water_angle, glass_angle, diamond_angle as
real numbers; i and DegToRad (conversion from angles to
radians) as real numbers; water_index, glass_index,
diamond_index, air_index as real numbers)

ASSIGN DegToRad = 77180
water_index = 1.33
glass_index = 1.50
diamond_index = 2.42
air_index = 1.00
WRITE (headings)
LOORP (incident_angle = 0 to 90, steps of 5)
ASSIGN incident_angle = incident_angle « DegToRad
waler_angle =
sin’'[(air_index/water_index)*sin(incident_angle)]
glass_angle =
sin’'[(air_index/glass_index)*sin(incident_angle)]
diamond_angle =
sin”'[(air_index/diamond_index)*sin(incident_angle)]
(Display angles in degrees)
WRITE (incident_angle,water_index/DegToRad,
glass_index/DegToRad, diamond_index/DegToRad)
END LOOP

150 = 4. Selection and Repetition Constructs

1 Convert the algorithm into a program.

P-4.11 [snell.c]

/* Snell's Law */

#include <stdio.h>
#include <math.h>
#define PI 3.14159
#define FILENAME "snell.dat"

int main(void)

{
double n_inc=1.0,a_inc,ref_1,ref_2,ref_3;
double n_1,n_2,n_3;
double deg_to_rad;
int 1i;

char name_1[10],name_2[10] ,name_3[10];
FILE *snell_in;

snell_in=fopen (FILENAME, "r");
fscanf (snell_in, "%s %1f %s %1f %s %1f",name_1,&n_1,name_2,&n_2,
name_3,&n_3);
fclose(snell_in);
printf ("Indices of refraction for: \n");
printf ("%$10s %.21f\n%10s %.21f\n%10s %.21f\n",name_1,n_1,
name_2,n_2,name_3,n_3);
deg_to_rad=PI/180.0;
printf ("\n Incident Refracted angle (deg)\n");
printf (" (air) %9s %9s %9s\n",name_1,name_2,name_3);
printf("—-—--cmmm e e et \n");
for (i=0; i <= 90; i+=10) {
a_inc=(double)i*deg_to_rad;
ref_l=asin(n_inc*sin(a_inc)/n_1)/deg_to_rad;
ref_2=asin(n_inc*sin(a_inc)/n_2)/deg_to_rad;
ref_3=asin(n_inc*sin(a_inc)/n_3)/deg_to_rad;
printf ("%$8.21f %9.21f %9.21f %9.21f\n",
a_inc/deg_to_rad,ref_1,ref_2,ref_3);

}

return O0;

4.5 Applications = 151

Running P-4.11

Verify the operation of the program.

Verify the tabulated values with a hand calculator in addition to comparing
your results with the values in Table 3.8.

Problem Discussion

In P-4.11, the names of the three materials and their refractive indices have
been stored in an external text file. This arrangement makes it easy to change the
materials, but not the total number of materials. The input values are echoed in
the program’s output. Note how the values for the angles are generated from the
integer loop counter.

4.5.4 Oscillating Frequency of an LC Circuit

Define the problem.

An electrical circuit that contains an inductance L (henrys, H) and a
capacitance C (farads, F) in series oscillates at a characteristic frequency

152 = 4. Selection and Repetition Constructs

Write a program that generates a table of oscillating frequencies for a two-
dimensional table of L and C values. Let the L values form the rows of the table
and the C values form the columns. Such a circuit can be used to tune radios or
TVs. The table for this problem should include values for a circuit to be used in
a radio that receives AM-band radio stations—frequencies on the order of 1000
kHz.

2 Outline a solution.

A circuit containing an inductance of 2.5 mH and a capacitance of 10 pF
oscillates at about 1000 kHz. Therefore the range of C values should be 2 to 20
pF in steps of 2 pF, and the range of inductance should be 1 to 4 mH in steps of
0.5 mH.

1. Generate appropriate column headings for the table.

2. Create a nested loop. The outer loop will step through the inductance values
and the inner loop will step through the capacitance values.

3. Just inside the outer loop, but outside the inner loop, display the inductance
value generated by the outer loop. Do not print a new-line character.

4. The calculation for the frequency at a particular set of inductance-capacitance
values goes inside the inner loop. Display the result.

5. Just after termination of the inner loop, print a new-line character.

3 Design an algorithm.

The critical part of the algorithm is the nested loop to generate the table:

LOOP (for C = 2 to 20 pF, in steps of 2 pF)
WRITE (C, no carriage return)

END LOOP

WRITE (carriage return)

LOOP (for L = 1.0 to 4.0 mH, in steps of 0.5 mH)
WRITE (L, no carriage return)
LOOP (for C = 2 to 20 pF, in steps of 2 pF)

Calculate and display oscillating frequency, no carriage return

END (inner) LOOP
WRITE (carriage return)

END (outer) LOOP

4.5 Applications = 153

Convert the algorithm into a program.

P-4.12 [1c.c]

/* LC.C Oscillating frequency of an LC circuit. */
#include <stdio.h>

#include <math.h>

#define CO 0.0

#define nC 10

#define dC 2.0

.0005

#define LO O
#define nL 6
#define 4L 0.0005
#define PI 3.141596
int main(void)

{

int row,col;
double L, C, f;
printf ("OSCILLATING FREQUENCY (kHz) OF AN LC CIRCUIT\n");
printf (" C(pF)=\n");
printf("L(H)= ");
for (col=1; col<=nC; col++) {
C=C0+dC*col;
printf("%5.01£",C);

}
printf ("\n");
for (row=1l; row<=nL; row++) {
L=L0+dL*row;
printf("%6.41£f",L);
for (col=1l; col<=nC; col++) {
C=C0+dC*col;
£f=0.5/PI/sqrt(L*C*le-12);
printf(" %4.01£f",£/1000.0);

}
printf("\n");
}
return 0;

}

Running P-4.12

154 = 4, Selection and Repetition Constructs

5 Verify the operation of the program.

A crucial check is to make sure that a circuit with L = 2.5 mH and
C = 10 pF oscillates at about 1000 kHz. It is easy to get the wrong answers for
this problem if you are not careful about converting quantities into the appropriate
units; for example, picofarads to farads in the case of capacitance. If one set of
values produces the correct answer, you can be reasonably confident that the other
results are also correct.

Problem Discussion

P-4.12 is a typical use of nested loops to generate tabulated values. Note
“ how a single loop is used before the nested loop to generate the capacitance
values across the columns of the table. Make sure you understand how the \n
character is used to control the location of line feeds at the end of lines within the
table. The program uses several #define directives for constant values that are
used to control the operation of the nested loops. It is better programming style
to define these values in this way than to hard-code the needed values in the loops
themselves.

4.5.5 Calculating Radiation Exposures for a Materials Testing Experiment

1 Define the problem.

In a test of the effects of radiation on materials, an experiment protocol
requires that:

(1) a sample be subjected to several bursts of radiation of random intensity, each
of which must not exceed some specified maximum value; and

(2) the sum of all radiation delivered to the sample must not exceed a specified
limit for total exposure.

Write a program to simulate this experiment by generating a sequence of random
exposure levels that satisfy this protocol.

4.5 Applications = 155

2 Outline a solution.

1. Supply the maximum intensity for a single exposure and the limit on total
cumulative exposure; the former must be less than the latter. These values may be
hard coded.

2. Initialize the cumulative exposure to O and select a random exposure
value—call this value the current value.

3. Construct a loop that allows the execution of statements inside the loop only
if the cumulative exposure plus the current value doesn’t exceed the allowed total
cumulative exposure.

4. Inside the loop, add the current value to the cumulative exposure. Print the
current and cumulative exposures. Select a new current exposure value.

5. Outside the loop, after it terminates, print the current exposure value along with
a message indicating that this exposure would have exceeded the allowed
maximum.

3 Design an algorithm.

Here is a design for the critical loop structure.

LOOP (as long as proposed_exposure is less than max_total)
ASSIGN current_exposure = random value, < max_single
ASSIGN proposed_exposure = cum_exposure + current_exposure
IF (proposed_exposure < max_total THEN
ASSIGN cum_exposure = proposed_exposure
ELSE
display appropriate message
END LOOP
WRITE (current exposure, “is too big”)

1 Convert the algorithm into a program.

P-4.13 [dose.]

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define MAX_TOTAL 1000.0
#define MAX_DOSE 200.0

156 = 4. Selection and Repetition Constructs

int main(void)

{ . .
int 1;
double total_dose=0.0, proposed_total, dose;
srand((unsigned) time (NULL)); /* initialize random # generator */
printf ("R ADIATTION SIMULATTION T E S T\n");
printf (" The maximum total dose for this test is %5.01f.\n",
MAX_TOTAL) ;
printf ("The maximum individual dose for this test is %5.01f.\n\n",
MAX_DOSE) ;
printf (" dose total\n");
printf("-—-=-~-~-——————- \n");
do {
dose=MAX_DOSE*rand () /RAND_MAX;
proposed_total=total_dose+dose;
if (proposed_total <= MAX_TOTAL) {
total_dose+=dose;
printf("%$8.01£%8.01f\n",dose, total_dose) ;
else
printf(
"The proposed dose of %.01f will exceed the max. End test.\n",
dose) ;
} while (proposed_total < MAX_TOTAL) ;
return 0;
}

Running P-4.13

4.5 Applications = 157

5 Verify the operation of the program.

This problem is similar to the “elevator” problem described in Section 4.4.
The goal of your program testing must be to ensure that the specified maximum
limit is never exceeded. The only straightforward way to do this is to observe the
operation of P-4.13 many times. However, it is also worth temporarily replacing
the random levels generated in the program with user-supplied levels. That way
you can test specific combinations of levels. What happens if the first proposed
intensity is greater than the maximum allowed intensity? What happens if the
cumulative exposure is exactly equal to the total allowed exposure? These are
questions that are difficult to answer when each exposure is chosen randomly, but
you can test the program’s response if you can select the exposures yourself.

Problem Discussion

There are several features of P-4.13 that are worth studying. First, note that
no physical units have been specified in the problem statement or program. In this
simulation, the units don’t matter as long as the user-supplied values are given in
consistent units.

Second, this program requires a
sequence of random numbers. Programming
languages don’t have access to truly random
numbers, but C and other high-level languages
include a software-based random number generator that can be used to produce
sequences of pseudorandom numbers that appear to be random.

In P-4.13, the statement

dose=MAX_DOSE*rand () /RAND_MAX;

inside the loop generates the random values using the C function rand. This
function generates a random integer uniformly distributed between O and the
largest possible integer for the C implementation being used. This maximum value
is stored in the predefined value RAND_MAX. The calculation in this statement
requires access to the stdlib.h header file. Note that the calculation
rand () /RAND_MAX by itself will return a value of 0 because both the numerator
and denominator are integers! However, because MAX_DOSE has been defined
as a real number, dose will be assigned a value between 0 and MAX_DOSE.
The purpose of the statement

srand ((unsigned) time (NULL)) ;

158 = 4. Selection and Repetition Constructs

before the loop is to reinitialize (“seed”) the random number generator each time
the program is run. To do this, the intrinsic function srand accesses a value in
your computer’s system clock, which essentially starts the sequence of random
numbers from a random position every time the program is executed. Access to
the system clock requires inclusion of the time.h header file.

4.6 Debugging Your Programs

Students often have trouble with selection and repetition statements. It is
important to separate algorithm design problems from implementation problems.
Here are some questions you should ask yourself when your code doesn’t work.

1. Do I understand what a selection construct is supposed to accomplish in the
context of a particular problem? When I choose paths covering a range of values,
have I designed the algorithm so that all possible values are included, without any
overlap? Have I chosen appropriately beween “or” and “and” in designing
relational tests? Have I organized responses to a variety of conditions in a logical
way to minimize unnecessarily long and convoluted selection constructs? Have I
made a conscious choice between IF... and CHOOSE... algorithms and used the
latter whenever possible, to produce more readable code?

2. When I implement an /F... algorithm, have I been careful to group statements
within curly braces for each branch of the selection construct? Once the code is
working, have I tested each branch of the construct?

3. When I implement a CHOOSE... algorithm with a switch construct, have I
provided code for all possible values of the ordinal case expression, including a
default path for out of range responses? Have I included break statements at
the end of the code for each path?

4. Do I understand what a repetition construct is supposed to accomplish in the
context of a particular problem? Have I chosen appropriately among count-
controlled, pre-test, and post-test loops? For count-controlled loops, have I made
appropriate use of integer loop variables?

5. When I implement a count-controlled loop, have I made sure that the initial
value of the loop counter, the repetition condition, and the update expression are
internally consistent? Have I avoided changing the value of the loop counter inside
its loop or using a loop counter outside its loop? Have I reused loop counter
names in order to avoid needless proliferation of variable names?

4.7 Exercises = 159

6. When I implement a conditional loop, have I chosen
appropriately between while... (pre-test) and do...
while (post-test) syntax? When a counter must be updated
inside the loop, have I done this at an appropriate place relative to the code that
uses the counter? (This can be a problem in loops that read and process data from
files.) Am I sure that the terminating condition is appropriate and will always be
satisfied? Inappropriate terminating conditions can result in infinite loops that will
continue to execute forever, or at least until you interrupt your program with some
system-dependent series of commands.

4.7 Exercises

1. Electric utility rates in the Philadelphia area are among the highest in the
country. Monthly charges for residential customers who use electric resistance
heating or an electric heat pump are calculated as follows:

Service Charge: $5.08
Energy Charge:
Winter: $0.1345/kWh for first 600 kWh
$0.0679/kWh for additional kWh
Summer: $0.1345/kWh for first 500 kWh

$0.1530/kWh for additional kWh

The service charge appears on each month’s bill. The energy charge changes from
summer to winter; the summer rate structure applies from June through September
and the winter rate structure applies during all other months.

Write a program that asks the user to specify the month, expressed as an
integer between 1 and 12, and the number of kWh (kilowatt hours) used during
that month and then calls a function to calculate the monthly bill.

Use a switch construct to choose between summer and winter rate
structures and an i f. .. statement to perform the required calculation based on
monthly usage. For this program, even though it’s not a good idea in general, you
may assume that the month passed to the function is never outside the range 1 to
12; this means that you can specify case values of 6, 7, 8, and 9 for the summer
months and use the default: case to process the winter months. [peco. c]

2. A tray is formed from a sheet of metal by cutting equal
squares from each corner and bending the sides up. Given 2 i
the length and width of the original sheet, what size square : !
corner cut gives a tray with maximum volume? Write a i i
program that will provide an approximate answer to this —iL"“‘Ir-
question by starting with a user-specified size for'the sheet . :

160 = 4. Selection and Repetition Constructs

and calculating the volumes based on a series of cut sizes in 0.1-inch increments.
Ignore the fact that bending the sheet will result in a small loss in the height of
the sides. [tray_vol.c]

Extra Credit:

If you have had an introductory
course in differential calculus, you should
be able to determine the exact answer to
this problem. Compare it to the result from
your program.

3. (a) The population of a certain animal is 1,000,000 at the beginning of the year.
During each year, 6% of the animals alive at the beginning of the year die. The
number of animals born during the year that survive to the end of the year is
equal to 1% of the population at the beginning of the year. Write a program that
prints out the births, deaths, and total population at the end of each year and stops
when the population falls to 10% or less of the original population.

Hint: Populations can have only integer values.

(b) Assuming the death rate stays the same as in part (a), what is the birth rate
required for the population to double in 20 years? Starting with the original
population of 1,000,000, print the births, deaths, and total population at the end
of each year for 20 years, using the newly calculated birth rate. The population
after 20 years will be twice the original population when 2 = (1 + r)®, where r
is the overall population growth rate; that is, the birth rate minus the death rate.

You may include both parts of the problem in a single program.
[populatn.c]

4. The average temperature of the earth/atmosphere system as viewed from space
depends on the solar constant S,, which is about 1368 W/m?, and the earth’s
albedo (reflectivity). Assuming the earth acts like a blackbody (a perfect radiator),
the temperature is related to the solar constant by

Sy(1 — 0)/4 = oT*

where © is the Stefan-Boltzmann constant, 5.67x10® W/(m?K?*), and « is the
earth’s albedo, about 0.30. (Albedo is a dimensionless measure of the fraction of
incoming solar energy reflected by the earth/atmosphere system.)

Write a program that calculates the temperature as a function of changes
in the solar constant over the range +10%. Note that the temperature of the
earth/atmosphere system as viewed from space is not the same as the average

4.7 Exercises ® 161

surface temperature of the earth, which is about 15°C, because of the well-known
greenhouse effect of the earth’s atmosphere. [earthatm.c]

5. The wavelengths of the Balmer series of lines in the hydrogen spectrum are
given by

where n is an integer having values greater than 2. Write a program that generates
the first 10 wavelengths in the Balmer series. [balmer.c]

6. The resistivity p of tungsten wire is roughly 100x10® ohm-cm at the operating
temperature of a lightbulb filament. Suppose a lightbulb consumes 100 W of
power on a 110-volt circuit. The power can be expressed in terms of the voltage
V and resistance R of the filament as

Power = V*/R = V*/(pL/A)

where L is the length of the filament in cm and A is the cross-sectional area in
cm?,

Write a program that generates a table of reasonable lengths and diameters
that will give the required resistance. It is up to you to decide what “reasonable”

means. {tungsten.c]

7. Write a program that calculates and displays the square root, cube root, fourth
root, and fifth root of the integers 2 through 20. Your table should look something
like this:

n 2 3 4 5
2 1.4142 1.2589 1.1882 1.1487
3 1.7321 1.4422 1.3161 1.2457

20 4.4721 2,7144 2.1147 1.8206

Be sure to use appropriate format specifiers so the decimal points in the table line
up. [rootable.c]

8. The series

[
Zz" 1 z z z

S = 4 S I e
27 n! 0! ! !

162 = 4. Selection and Repetition Constructs

converges for any value of z. That is, an individual term z"/n! approaches 0 and
the sum of all the terms approaches a definite value as n approaches infinity.
Write a function, and a program to test it, that accepts as input a value of z and
returns as output an estimate of the value of the series for that value of z. Use a
conditional loop that terminates when the absolute value of an individual term is
smaller than some hardcoded small value. Note that you can compute individual
terms in the series without actually calculating n! explicitly. The n™ term is just
the (n-1)™ term times z/n.

Your results can easily be checked once you recognize what this series
represents; you will find it in any tabulation of series expansions for common
mathematical functions. [series.c]

9. An external text file contains real numbers:

ouUTkx o
R WO

and so forth)

~

Write a program that reads this file and calculates the average m and standard
deviation s for all the values in the file, using the formulas

n n 2
n inz B (Exi) /n
_ i=1 i=1

i=1 n-1

10. One of the concerns in connection with global warming is that the average sea
level may rise. Suppose you are a civil engineer who has been asked to estimate
the potential loss of land along a coastline. Write a program that relates a sea
level rise of R cm to loss of land, in units of km%km and acres/mi, along a
coastline with a specified range of grades. A grade of 0.1%-10% with respect to
the sea, in increments of 0.1%, is reasonable.

If the coastline makes an angle 6 with the sea, the distance lost from the
original coastline, measured along the sloping ground, is R/sin(0). The grade is
defined as 100etan(0) percent. Suppose the sea level rises 10 cm (about 4 in). A
1° slope (about 1.75% grade) means that the coastline will recede about 5.7 m,
with a loss of about 0.0057 km? per km of coastline, or about 2.3 acres per mile
of coastline. (There are 1609.3 m/mile and 640 acres/mile’.) [sea_levl.c]

4.7 Exercises = 163

11. Simulation studies in science, mathematics, and engineering often require
random numbers from a so-called normal distribution. Such numbers have a mean
of 0 and a standard deviation of 1. (The standard deviation is a measure of the
spread of values in a distribution.) C’s random number generator produces
uniformly distributed integers that are easily convertible to uniformly distributed
real numbers in the range [0,1), rather than normally distributed numbers. (Recall
the application in Section 4.5.5.)

Fortunately, there is a simple way to generate a pair of normally distributed
numbers X, and x, from a pair of uniformly distributed numbers u, and u, in the
range (0,1]:

X, = /-2€n(u,)cos(2mu,)
X, = -2¢€n(u,)sin(27u,)

Write a program that uses this formula to generate a sample of 200
normally distributed numbers. You can check the numbers to see if they actually
appear to be normally distributed by calculating their mean and standard deviation,
using the equations given in Exercise 9.

Accumulate the sums of x and x* inside the loop and use the sums to
calculate the mean and standard deviation when the loop is complete. The mean
and standard deviation (or the average of the means and standard deviations from
several sets of numbers) will be close to 0 and 1, but they won’t be exactly 0 and
1. There are quantitative statistical tests for a normal distribution, but they are
beyond the scope of this problem.

Hint: Remember that this algorithm generates random numbers in pairs, so a
for. .. loop from 1 to 100 generates 200 random numbers, not 100.

The formulas for generating normally distributed numbers require uniform
numbers in the range (0,1], rather than [0,1], because In(0) is undefined. In the
implementation, the upper limit of the range is of no concern. However, it’s
possible that a value of exactly 0 might be generated. Therefore, your program
should protect itself against this possibility, no matter how unlikely, by testing u,
and replacing it with a very small number if its generated value is exactly 0.
[random. ¢]

12. One way to estimate the square root of a number n is to use Newton’s
algorithm. For this algorithm, the value of the initial guess is relatively
unimportant; guess = n/2 is a reasonable choice. Then calculate a new estimate by
calculating a new guess:

guess = (guess + n/guess)/2

164 = 4 Selection and Repetition Constructs

Continue to make new estimates until the absolute value of the difference between
guess’ and n differs from the original number by less than some specified small
amount. Write and test a function that implements this algorithm. [newton.c]

13. The Internal Revenue Service acknowledges that the value of equipment used
in manufacturing and other businesses declines as that equipment ages. Therefore,
businesses can gain a tax advantage by depreciating the value of new equipment
over an assumed useful lifetime of n years. At the end of n years, the equipment
may have either no value or some small salvage value. Depreciation can be
computed three ways:

1. Straight-line depreciation. The value of an asset minus its salvage value
depreciates by the same amount each year over its useful life of n years.

2. Double-declining depreciation. Each year, the original value of an asset minus
previously declared depreciation (its book value) is diminished by 2/n.

3. Sum-of-digits depreciation. Add the integers from 1 through n. The depreciation
on the original value of an asset minus its salvage value allowed in year i is
(n - i) + 1 divided by the sum of the digits.

Write a program that calculates the depreciation available for years 1 through n.
Assume that the salvage value is some small percentage (perhaps a value in the
range 5 to 10 percent) of the original value. Table 4.3 gives some sample output
for an asset originally valued at $1000 with a lifetime of 7 years and an assumed
salvage value of $100.

Table 4.3. Sample depreciation table

Original value $1000
Salvage value $ 100
Lifetime 7 years
Straight Asset Double Asset Sum of Asset
Year line value declining value digits value
1 128.57 871.43 285.71 714.29 225.00 775.00
2 128.57 742.86 204.08 510.20 192.86 582.14
3 128.57 614.29 145.77 364.43 160.71 421.43
4 128.57 485.71 104.12 260.31 128.57 292.86
5 128.57 357.14 74 .37 185.93 96.43 196.43
6 128.57 228.57 53.12 132.81 64.29 132.14
7 128.57 100.00 37.95 94.86 32.14 100.00

Note that the yearly depreciation for the double-declining method doesn’t depend
at all on the salvage value. This means that not all the depreciation can actually
be taken in the seventh year if the asset really has a salvage value of $100.
[deprecia.c]

4.7 Exercises ®» 165

Extra Credit:

Businesses often like to maximize depreciation when equipment is new in
order to produce the greatest immediate tax advantage. Which method should they
choose? If businesses can change the method by which they calculate depreciation
at any time during the life of an asset, when (if ever) should they change
methods? (The answer to this question depends on the salvage value of the asset.)

14. Consider the following piecewise-continuous function, which is shown in
Figure 4.1:

f(x)= x,0<x <30
30 + (x - 30)¥/100, 30 < x < 80
55 + (x - 80)/2, x > 80

Write a program that calculates values of this function for values of x in the range
0 to 100 in steps of 5 units. [piecewse.c]

70

0 10 20 3 40 5 60 70 8 9 100
Figure 4.1. Graph of a piecewise-continuous function.

15. In orbital mechanics, the angular position of an orbiting object as a function
of time must be calculated. For a circular orbit, the calculation is simple because

166 = 4. Selection and Repetition Constructs

the position is directly proportional to time. For noncircular orbits, the calculation
is more complicated.

First, some definitions. The time required for an orbiting object to
complete one revolution is called its period. The mean anomaly is the angular
position an object would have if it were in a circular orbit with the same period.
Mean anomaly is directly proportional to time.

The eccentric anomaly E, is related to the mean anomaly M through a
transcendental equation:

M =E,_ - eesin(E)

where both angular quantities must be expressed in radians rather than degrees and
the eccentricity e is a measure of the shape of the orbit. The range of e is 0 to 1,
with circular orbits having an eccentricity of 0.

The true anomaly O is related to the eccentric anomaly through the

equation

cos(E) - e

cos(d) - #
1 - ecos(E)

Therefore, true anomaly can be related to mean anomaly, and hence to time,
through the eccentric anomaly. The geometry is illustrated in Figure 4.2.

~ N
,/
/
/
/
1
{
1
Perigee, ~ ‘\ """""
mean anomaly = \
0 degrees \
\\

True anomaly (for e=0.5)

Mean anomaly = 90 degrees

Figure 4.2. Geometry of noncircular orbits.

The equation involving M (Kepler’s equation) can’t be solved directly for
eccentric anomaly, but it can be solved iteratively:

1. As a first guess, assume E, = M.
2. Inside a loop, save the current value of E;: E , = E..
3. Recalculate E;: E=M + eesin(E)).

4.7 Exercises ® 167

4. Repeat steps 2 and 3 until the absolute magnitude of E, minus E , is less than
some specified small value (10° or 10°® are reasonable choices).

Write a program that uses this algorithm to calculate true anomaly as a
function of mean anomaly for values of mean anomaly in the range 0°-360°
degrees, in increments of 5°, for these values of eccentricity: 0.1, 0.25, 0.50, 0.75,
and 0.90.

Hints:

1. All angular calculations must be done in radians. If you wish to display results
in degrees, convert angles to degrees within output statements.

2. It is possible for arithmetic errors to occur when the mean anomaly is 180°
because the argument of the arccosine function must never exceed 1. As the
eccentric anomaly approaches 180°, the calculation for cos(8) might produce a
value slightly greater than 1. Account for this possibility by testing the value of
cos(0) before you take its arccosine. Also, the arccosine function doesn’t produce
values in the range 0 to 27 (0° to 360°). You can use the values of mean anomaly
to make sure your program produces answers in the appropriate range; whenever
the mean anomaly is greater than 180°, the true anomaly must also be greater than
180°. [kepler2.c]

16. A satellite flying over a cloudless desert carries an instrument that measures
the longwave radiance reflected in the direction of the instrument from a particular
spot on the desert’s surface. The instrument records the radiance L as a function
of zenith angle 6 relative to the spot on the surface. An empirical model is used
to interpret the measured radiance as a function of zenith angle and the radiance
L, that would be measured from a satellite passing directly over the site:

L = L sec(6)", 6<60°
L = L sec(6)*-a[sec(8) - sec(60°)], 6>60°

where x and a are empirically determined constants. The secant of the zenith angle
is proportional to the amount of atmosphere between the satellite and the ground
(the atmospheric path length). The model reflects the fact that the radiance
observed by a satellite is limb darkened because the satellite must look through
more atmosphere as the zenith angle increases. At large zenith angles, an
additional term is required to account for the rapidly decreasing transparency of
the atmosphere to longwave radiation.

Table 4.4 gives empirical model parameters for three desert surfaces
derived from measurements taken in January. This is winter in the northern
hemisphere, which explains why the value of L is higher for Australian deserts
than it is for the two northern hemisphere deserts. Because the satellite measures
longwave radiance, a larger radiance means that the surface is warmer. Figure 4.3
shows predicted radiances for these surfaces.

168 ® 4. Selection and Repetition Constructs

110726

; i ; i i Australia i i
L e T

S PP

Radiance, W/m»\2/Ster

50 : : E ! E
0 10 20 30 40 50 60 70 80 90
Zenith angle, degrees

Figure 4.3. Predicted longwave radiances for three desert sites.

Table 4.4. Model parameters for longwave radiance from deserts

Australia 110 -0.2116 | 3.184
Sahara 85 -0.0998 | 1.854
Saudi Arabia 90 -0.0974 | 1.241

Write a program that will calculate predicted values of radiance as a
function of satellite zenith angle for the three sets of model parameters given in
Table 4.4. What happens as the zenith angle approaches 90°? What can you
conclude about the validity of the model as the satellite approaches the horizon?
What might you conclude about the fact that, as the zenith angle increases, the
differences in radiances observed from different surfaces tend to decrease?
[Limbdark.c]

17. A rectangular container with specified length, width (as viewed from the side),
and depth contains a liquid (molten metal, for example). The container is rotated

4.7 Exercises ® 169

about an axis parallel to the depth dimension at a constant angular rate, and the
contents of the container spill into a mold. Write a program that will calculate the
total volume of liquid poured into the mold as a function of container angle. Also,
calculate an approximation to the “instantaneous” rate at which liquid pours from
the container as a function of container angle and rotation rate.

Hints: Rotate the container in equal angular increments and calculate the resulting
volume that has been emptied from the container. Subtract from this the volume
at the previous angular value and divide by the angle increment. If the angle
changes at a constant rate with respect to time, this calculation gives an
approximation of the changing volume rate with respect to time.

Divide the calculations into two parts. First calculate angles from the time
the container starts to rotate to the time the liquid level reaches the bottom corner
of the container. Then calculate angles between this point and 90°, at which time
the container is empty. The angle at which this transition occurs is given by

tan(0)=height/width
[pouring.c]

Extra Credit:

1. Suppose you need to pour liquid at a constant rate. Modify your program to
calculate how the angle must change with respect to some arbitrary time unit. One
way to visualize this problem discretely rather than continuously is to imagine that
the molten metal is used to fill 100 identical molds; that is, each mold uses 1%
of the liquid. How much should the angle increase to fill each mold? Clearly, the
change in angle required to fill each mold is rot constant.

2. Suppose the container is cylindrical rather
than rectangular. The equations for emptying
the first half of the container are easy because
the volume at any angle is simply half a
cylinder whose height is measured at the point where the liquid intersects the side.
However, after the liquid reaches the bottom corner of the container, the shape
becomes a conic section, the volume of which is harder to calculate.

18. A simple model of population growth assumes that a new population p' is
linearly related to the current population p; that is, p' = rp. Such a population will
increase or decrease monotonically, depending on the value of r. Biologists have
long recognized that populations are usually bounded in some way. For example,
as populations grow, limited food resources may constrain further growth.
Conversely, once populations shrink, those same food resources may be able to
support a population that can start to grow again.

170 = 4. Selection and Repetition Constructs

Here is a simple equation that models this bounded behavior:

p'=1m(-p)

where, for simplicity, the population has a value in the range [0,1]. Clearly, this
model has the desired properties of bounding p'. As p grows, 1-p shrinks, and vice
versa. Suppose r = 2. Here are the first few values from iterating this equation
with an initial value of p = 0.2:

cycle p D'
1 0.20 0.32000
2 .32 .43520
3 L4352 .49160
4 .4916 .49986
5 .49986 .50000

One remarkable property of this function is that for r = 2, the population stabilizes
at a value of 0.5 for any value of initial population p in the range (0,1) (that is,
for any value between, but not including, 0 and 1).

For many years, however, some interesting properties of this disarmingly
simple equation went unnoticed. Suppose p = 3.2. Iterate on the equation, starting
with p = 0.9 (an arbitrary choice):

cycle p p'
1 0.90000 0.28800
2 -28800 165618
3 65618 .72195
2 .72195 164237
37 79946 .51305
38 .51305 -79945
39 .79945 .51305
40 .51305 .79945

Now the population no longer stabilizes at a single value. Instead, it cycles back
and forth between two values. Figure 4.4 shows the first 20 population values.

For r = 3.5, the population cycles among four different values. For a
slightly higher value, it cycles among eight values. For r just in excess of 3.57,
the population oscillates randomly. As r continues to increase, other cycles
emerge, only to disappear into randomness as r continues to increase. What is the
upper limit on r in order for the population to remain bounded; that is, to oscillate
between fixed limits? What is the maximum value of r for which the population
is stable rather than bounded?

4.7 Exercises m 171

c
ie)
°
3
Q.
3
3
N
©
3
c r=3.2
po0=08,

02 . ,

0 2 4 6 8 10 12 14 16 18 20
time, arbitrary units

Figure 4.4. Normalized population as a function of time.

The discovery that an apparently simple dynamical system can produce this
odd kind of random behavior gave birth to what is now known as chaos theory.
This theory has found applications in many fields of science and has had a
profound effect on science during the second half of the twentieth century.

Fortunately, it is easy to investigate the behavior of this remarkable
population equation. Write a program that requests values for r and p, where the
value of p must be between O and 1. Calculate future populations in a count-
controlled loop. The lower limit on r is 0, but what is the upper limit? Can you
find the smallest value of r for which the population (a) no longer converges on
a single value; (b) oscillates between two or more values; (c) is still bounded but
appears to be random? [popchaos. c]

19. A heat wave occurs whenever the high temperature is at least 90°F for at least
three consecutive days. Using the file weather.dat, print the date and high
temperature for any day on which the high temperature was at least 90°F. If that
day was part of a heat wave, print an appropriate message after the high
temperature for the third day, which is the first day on which the heat wave can
be recognized. The message should include the number of days in the current heat
wave, starting with day 3. Keep track of the total number of days with highs of
at least 90°F and display this value when you have processed all the days.

172 = 4. Selection and Repetition Constructs

In the file weather.dat, the data are given in sets of three lines. The
daily high temperature always appears right-justified in columns 10 through 12 of
the first line in each set. Here are the data for the first two days of June 1997.

06/01/97 79 3:16p 62 6:56a 97 1895 44 1984 78 58

29.92r 29.90f 29.83f 29.88s

100 63 0.00 0.00 14.09 16.95 g 33 oz 80 5:34a 8:24p
06/02/97 63 1:0la 57 8:00p 98 1925 46 1907 78 58

29.89r 29.95r 29.96s ------

100 92 0.63 0.63 14.72 17.07 g 33 oz 100 5:33a 8:24p

Here is some partial output for temperatures recorded during the summer of 1997.
[heatwave. c]

06/21/97 94

06/22/97 93

06/24/97 91

06/25/97 96

06/26/97 93 OFFICIAL HEAT WAVE, day 3
06/28/97 90

07/03/97 92

07/04/97 91

07/09/97 93

07/13/97 94

07/14/97 94

07/15/97 98 OFFICIAL HEAT WAVE, day
07/16/97 96 OFFICIAL HEAT WAVE, day
07/17/97 97 OFFICIAL HEAT WAVE, day
07/18/97 97 OFFICIAL HEAT WAVE, day
07/27/97 94

07728797 91

Ul W

20. The student body of a university is 60 percent women. Within this student
body, 25 percent of the women and 15 percent of the men are majoring in some
branch of engineering. If a student chosen at random is majoring in engineering,
what is the probability that the student is a woman?

Write a program to solve this problem by simulating a specified large
number of trials, where a trial is defined as selecting a student, randomly
assigning gender with the specified probability, and determining whether the
student is majoring in engineering, with a probability based on gender. Keep count
of the number of simulated male and female students who are studying
engineering. The probability that a student majoring in engineering is a woman is
the ratio of the number of women majoring in engineering to the total number of
students majoring in engineering. If you have had a probability and statistics
course, you should be able to compare the results of this simulation to the
theoretical probability. [students. c]

21. Assume that a simple two-chromosome model of gender determination holds
for humans—XX = female, XY = male—and that the probability of inheriting a
Y chromosome from a male parent is 50 percent.

4.7 Exercises ®» 173

(a) Write a program that you can use to fill in Table 4.5, giving child gender
distributions for four-child families.

(b) Suppose that the probability of inheriting an X chromosome from a male
parent is only 40 percent? How will this affect the values in Table 4.5? What is
the population distribution of males and females after 10 generations? After 100
generations? Write a program that will help you answer these questions.

Table 4.5. Expected child gender distributions for four-child families

4
3 1
2 2
1 3
0 4

Note: See the discussion of simulations in Exercise 20. [chromo. c]

*This is a standard problem from probability and statistics.

174 = 4. Selection and Repetition Constructs

22. A factory assembly line consists of four machines producing the same product.
Production statistics for the machines are given in Table 4.6.

Table 4.6. Statistics for production machinery

A 10 0.1
B 20 0.05
C 30 0.5
D 40 0.2

What is the probability that a product chosen randomly from the total assembly
line production will be defective? If a randomly chosen product from the assembly
line is found to be defective, what is the probability that the item was produced
by machine A? By B? By C? By D?

Write a program to solve this problem by simulating the selection of a
large number of products, assigning each product to a machine, and determining
if it is defective.

Hint: See the discussion of simulations in Exercise 20. [factory.c]

23. A factory manufactures N widgets per year. The storage cost of raw materials
for widgets is D dollars per widget per year. The cost to order raw materials for
widgets is O dollars regardless of the amount of raw material ordered.

(a) Write a program that will determine:

(1) how many units of raw material U the factory should order at one time in
order to minimize the total yearly cost to maintain an inventory of raw materials
for making widgets;

(2) the minimum total yearly inventory cost.

Assume that the total yearly inventory cost to store raw material for widgets is
given by

C= D (U/2) + O (N/U)

4.7 Exercises ® 175

where U/2—half the size of each order—is the average number of raw material
units stored during the year.’ Use N = 10,000 widgets per year, D = $1000 per
raw material unit per year, and O = $100 per order as a test case.

This optimization problem can easily
be solved with calculus: Set the derivative
of C equal to 0 and solve for U. However,
it is also easily solved simply by trying all
values of U from 1 to 10,000 and saving the value of U that gives the minimum
total cost. If you have had a course in differential calculus, you should check your
program’s numerical solution against the analytical solution.

(b) The numerical solution has the advantage that it is easy to modify. Add code
to your program that will determine how many units of raw material to order at
one time when the order cost is O plus a term that depends on the number of units
ordered. Use an additional order charge of $0.50 per unit as a test case. [eoq. c]

24. There is not much justification for writing code to do single-variable
optimizations, as in Exerise 23, other than as a programming exercise. However,
with more variables, the calculus required to find the analytic optimum solution
even for an unconstrained problem becomes more unwieldy. When the variables
are constrained, then different approaches are required. One typical multivariable
problem from economics is maximizing total profit on sales of more than one item
as a function of the cost to advertise each item, when the total advertising budget
is constrained not to exceed a specified amount. Suppose a retailer wishes to
maximize total profit on the sales of two items, A and B. Economic research has
shown that the profit for two products A and B, as a function of advertising
expenditures x for product A and y for product B, can be expressed as

P, =-a,x*+bx+c,
Py = —agy’ + bpy + ¢3

A reasonable initial assumption is that profit is directly proportional to the amount
of money spent on advertising. However, these equations reflect the fact that at
some point, additional advertising is counterproductive and can even result in
losses rather than profits.

Write a program that will determine the optimum amount of money to
spend for advertising products A and B such that the total profit, P, + Py, is
maximized. Your output should include at least this test case:

*This is a standard economic order quantity model from economics.

176 = 4. Selection and Repetition Constructs

aA=2 aB=0.5
b, =40 by = 60
c, = 2000 ¢z = 3000
X+y<25

Can you increase profits for this case by increasing the total amount spent on
advertising? Use your program to determine the total advertising budget that will
produce the maximum total profits for these two profit models. (You can do this
simply by trying different values in place of 25. Your program doesn’t have to
find this optimum value on its own.)

Hints: Assume the advertising expense variables x and y are integers, with units
(thousands or millions of dollars?) such that the value of these variables will not
exceed the range of data type int. Use nested loops to try all appropriate
combinations of X and y. [prof_max.c]

5
More About Modular Programming

5.1 Defining Information Interfaces in C

User-defined functions, as an implementation of the CALL and SUBPROGRAM
pseudocode statements, were first introduced in Chapter 3. In that discussion,
functions, including C’s intrinsic functions, had a simple information interface.
The input consisted of one or more values, and the output consisted of a single
value associated with the name of the function through the use of a return
statement. Thus, assuming that a, b, and ¢ are declared and given appropriate
values, these kinds of statements are possible:

y=user_functionfa,b,c);

and

printf ("%$1f\n",user_function(a,b,c));

With this function interface, information flows into the function from the argument
list specified when the function is called, along a “one-way street” through the
parameter list. The result generated by the function is associated with the name
of the function, which can be used in an assignment statement or by itself.

In general, subprogram implementations need to be more flexible than this.
Consider a programming problem in which a large computational task will be
divided into several smaller tasks under the control of a main program. Each small
task is associated with a subprogram. Some of the subprograms may be called by
the main program and some may be called by other subprograms. Each
subprogram may require multiple inputs to do its job and may return multiple
outputs. Such a model is illustrated in Figure 5.1.

In this program, the controlling program (the main function in a C
implementation) calls subprograms 1, 3, 4, and 5 directly. Subprogram 1 calls
subprogram 2. Subprogram 5 is called by subprogram 4 as well as by the
controlling program.

Input to and output from these subprograms are indicated by the arrows in
Figure 5.1. We already know that we can provide multiple inputs to C functions,
but we would like not to be restricted to a single output. In the algorithm design
sense, the In arrow should provide a symbolic path for whatever information a
subprogram needs to do its job and the Out arrow should provide a path for all
the results of calculations done within that subprogram.

D. R. Brooks, C Programming: The Essentials for Engineers and Scientists
© Springer-Verlag New York, Inc. 1999

178 = 5. More About Modular Programming

Controlling
Program
1) y4
Subprogram 1 Subprogram 4
Y L
Subprogram 2 Subprogram 5

Subprogram 3

Figure 5.1. Function interface model.

Before we explore a more general information interface model for C
functions, we should consider once again the simple function model of Chapter 3.
An important consequence of passing information along a “one-way street”
through a parameter list is that, although the values of parameters can be changed
inside a function, the values of the arguments corresponding to those parameters
will not be affected by any local changes. Consider this proposed change to the
function area_func, which first appeared in program P-3.5:

double area_func(double radius)
/* PI must be available as a global constant. */
{

radius=0.0;

return PI*radius*radius;

}

The value returned by the function is 0 because the local value of radius has
been changed to 0, for no reason other than to make a point. However, the value
of the argument corresponding to radius in the calling function will remain
unchanged. (You should verify this by making the indicated change to P-3.5 and
displaying the value of radius in the main function after the call to
area_func.)

The function interface model described here is called
pass-by-value. C protects the original values of the arguments
by making a copy of those values rather than using the
original values themselves. The process is illustrated schematically in Figure 5.2.
Note that it is only copies of the arguments a, b, and ¢ which are passed to the

5.1 Defining Information Interfacesin C = 179

| | ’

int func(int x,int y,int z) {

return ...;—

}

Figure 5.2. Pass-by-value function interface model.

parameter list. Remember that the names in the argument and parameter list and
parameter lists are independent of each other. In Figure 5.2, the parameter names
X, Y, and z are (but don’t have to be) different from the argument names a, b,
and c.

A consequence of the fact that values of arguments associated with items
in a parameter list cannot be changed by a call to a function is that functions
cannot return “output” values, in the algorithm design sense, through the
parameter list. Consider again the simple problem solved in programs P-3.5 and
P-3.6: given a radius, calculate the area and circumference of a circle. Those
programs defined two functions, each of which returned one quantity. Is it
possible to overcome the single-output restriction on functions and combine both
these calculations in a single function? Yes, and Figure 5.3 presents a model for
implementing multiple return values in C.

In this case, the function contains four parameters. The first two are passed
by value, with copies of arguments a and b being passed to the parameters x and
y. The second two arguments are the addresses of the variables ¢ and d; hence
the use of the & operator. The corresponding parameters r_ptzr and s_ptr are
pointers to the locations of values of type int. Note that the data type of
func_by_ref is void. This is because the function does not contain a return
statement. Instead, calculated values are returned indirectly through the parameter
list. How is this possible if the values of arguments are passed to the parameter
list along a “one-way street?” The answer lies in the use of pointers in the
parameter list.

When func_by_ref is called, the third and
fourth arguments are addresses rather than values.
Within function circle_stuff, the appearance of
the indirection operator * with the names r ptr and s_ptr in the parameter
list indicates that these names are not meant to be given values directly, as
variables. It is not the values of these pointers which will be changed inside the
function, but the contents of the memory locations to which the pointers point.

180 = 5. More About Modular Programming

void func_by_ref(int x,int y,int *r_ptr,int *s_ptr) {

r_ptr=...;
*s_ptr=...;
}

Figure 5.3. Pass-by-reference function interface model.

Hence, the quantities on the left side of the two assignment statements in
func_by_ ref,

*r_ptr=...;
*s_ptr=...;

are references to the memory locations that will hold the results of the calculations
on the right side of the assignment operation. Based on the syntax of the
parameter list in func_by_ref, assignment statements such as r_ptr=...;
make no sense and will generate a syntax error; such a statement would be an
attempt to change not a value, but a memory address. Also, because
func_by_ref does not include a return statement, it makes no sense for this
function to appear on the right side of an assignment statement.

Through the use of pointers to change the
contents of memory locations, C has overcome the
limitations of the pass-by-value subprogram model. The
ability to operate on a memory location passed as a parameter is called
pass-by-reference. (This is why the function in Figure 5.3 is called
func_by_ref.) With pass-by-value and pass-by-reference models, parameters
can be described as “input” or “output” with a specific meaning as defined by the
language syntax: quantities passed by value (which may be expressions or values
as well as variables) are always input, whereas variables passed by reference are
output in the sense that changes to their values inside a subprogram are passed
back to the calling subprogram.

You can conclude that C only simulates pass-by-reference because the
address of a variable must be passed as an argument, rather than just the variable
name, and because the indirection operator must be used when assigning values

5.1 Defining Information Interfaces in C = 181

by changing the contents of memory locations.! However, from the algorithm
design point of view, the availability of pointers and the indirection operator at
least allows C programmers to design algorithms in which parameters have either
an “input” or “output” attribute.

To see how pass-by-reference works in practice, we will now return to the
task of combining the calculations of the area and circumference of a circle into
a single function, as shown in P-5.1.

P-5.1 [circlep3.c]

#include <stdio.h>
#define PI 3.14159265
void circle_stuff (double radiug, double *a_ptr, double *c_ptr):;
int main(void)
{
double radius=3.0;
double area, circumference;

circle_stuff(radius, &area, &circumference)
printf("%$8.3f %8.3f\n",area, circumference)
return 0;

}

void circle_stuff(double radius, double *a_ptr, double *c_ptr)

{

’
7

*a_ptr=PI*radius*radius;
*c_ptr=2.0*PI*radius;
}

In P-5.1, the function circle_stuff has been given the data type
void. As indicated in the discussion of Figure 5.3, the void declaration means
that this function will not return a value in the sense that there is no return
statement in the function. Instead, we will use pointers as an alternate way of
accessing values in memory, following the model shown in Figure 5.3. The goal
of function circle_stuff is to calculate the area and circumference and then
to pass these values back to the calling function. However, in P-5.1, the values of
area and circumference do not appear in the argument list when function
circle_stuff is called; instead, through the use of the & (address of) operator,
the addresses of the memory locations used by area and circumference are
passed in the argument list. In function circle_stuff’s parameter list, the
memory locations specified in the calling argument list are associated with
pointers, using the notation double *a_ptr, double c_ptr.

Within function circle_stuff, the appearance of the indirection
operator * with the names a_ptr and c_ptr in the parameter list indicates that
these names are not meant to be given values directly, as variables. It is not the

Some languages, such as Pascal and C++, offer a more transparent implementation of pass-by-
reference.

182 = 5. More About Modular Programming

values of these pointers which will be changed inside the function, but the
contents of the memory locations to which the pointers point. Hence, the quantities
on the left side of the two assignment statements in circle_stuff,

*a_ptr=PI*radius*radius;
*c_ptr=2.0*PI*radius;

are references to the memory locations that will hold the results of the calculations
on the right side of the assignment operation. In P-5.1, these locations correspond
to the addresses of a_ptr and c_ptr. Because these pointers are associated with
the addresses of area and circumference, the values of these variables have
been changed, even though this change never involved the variable names area
and circumference (or their local names in a function) appearing on the left
side of an assignment statement.

The concept of assigning values indirectly through pointers can be difficult
to understand, and it may help to look at an example unrelated to how pointers are
used in P-5.1. Consider program P-5.2:

P-5.2 [ptr_demo.c]

#include <stdio.h>
int main(void) {
int i=2,3j=3,*i_ptr,*j_ptr;

i_ptr=&i;

jptr=&3j;

printf ("%1 %1 %1 %1 %1 %i\n",1i,3,*i_ptr, *j_ptr,
*1_ptr+*j_ptr, (*i_ptr)*(*j_ptr));

return 0;

In P-5.2, the data declaration statement
includes two pointers associated with values of type
int—*i_ptr and *j_ptr. When pointers are
declared, they are said to be bound to their
declared data type. In the two assignment statements following the declaration
statement, 1_ptr and j_ptr are assigned values equal to the addresses of i and
j. As demonstrated by the printf statement, it is possible to access the values
associated with i and j either directly, in the usual way, or indirectly by
dereferencing the pointer to the memory location in which 1 or j is stored, using
the dereferencing operator (*). 1t is also possible to perform arithmetic operations
using these memory locations, such as *i_ptr+*j_ptr and
(*i_ptr)* (*j_ptr). In the second of these statements, the parentheses are
optional and are used just to make clear the multiple uses of the * character; the
fact that C correctly interprets such a statement without extra parentheses implies

5.1 Defining Information Interfaces in C = 183

that the dereferencing operation has precedence over the multiplication operator
(recall Table 3.4 in Chapter 3, which gave the precedence rules for C operators)
and that C can appropriately interpret the asterisks used in this context.

It is easy to confuse the multiple uses of the asterisk symbol. Depending
on context, it can be interpreted as the multiplication operator (a*b), an operator
that creates a pointer bound to a specified data type (int *a;), or (as in this
case), an indirection operator that accesses the contents of a memory location to
which a pointer points (*a=3.0;).

In a program such as P-5.2, there is no reason to do arithmetic using
pointers other than as a demonstration of what it means to access memory
locations indirectly in this way. However, this approach is required in function
circle_stuff in P-5.1 in order to provide a means of returning multiple
results to a calling function.

In P-5.1, the names of pointer parameters are given the suffix _ptr. This
can be helpful for understanding the code, but it is certainly not necessary. There
is nothing wrong with this function implementation, in which the pointers have
physically meaningful names:

void circle_stuff(double r, double *area, double *circumference);

{
*area=PI*r*r;
*circumference=2.0*PI*r;

}

Removing the _ptr suffix doesn’t alter the fact that it is still necessary to use the
indirection operator to assign values; the name of the parameter has nothing to do
with the syntax of its use.

It may help to consider C’s simulation of pass by reference on two
different levels. At one level you can be aware of how C uses pointers to change
memory locations indirectly. As an implementation aid, you can use _ptr
suffixes on appropriate parameters and you will be aware that when you use the
indirection operator you are accessing the memory locations to which the pointers
point. At another level you can think of the * symbol appearing in the parameter
list to define a pointer, and within the function when assignments are made
through indirection, as a purely notational device for distinguishing between input
to and output from the function. C doesn’t actually make the distinction between
input and output as a part of its syntax, but it can be useful to think in these terms
when you implement algorithm designs.

It is critical to understand how P-5.1 works because it provides a window
onto C’s extensive use of pointers and illustrates an essential piece of the
information flow model for C programs. In C, a programmer can, and sometimes
must, write code that uses pointers to make changes directly in memory locations.
This model, which bypasses the layer of insulation that a variable name provides
between a program and user-accessible computer memory locations, is in some

184 = 5. More About Modular Programming

ways simpler and in other ways conceptually more difficult and dangerous. As a
minimum, it imposes an extra burden on the programmer, for it is relatively easy
in C to crash some computer operating systems by using pointers to manipulate
the contents of memory. The same kind of damage is more difficult to inflict with
languages such as Pascal that are more restrictive about how they let programmers
use pointers.

5.2 Menu-Driven Programs

A typical modular program structure is one in which the main program requests
user input to choose one of several tasks for the program to perform. Using an
if... or switch construct, as discussed in Chapter 4, program control is
transferred to one of several subprograms. Once the overall layout of the program
is established, the subprograms can be written separately, one at a time. By using
pass-by-values and pass-by-reference function interface models, as described in
Section 5.1, C gives programmers a great deal of flexibility to design modular
programs.
Here is a problem that lends itself to a menu-driven approach.

Newton’s Law of Cooling describes the change in temperature as
a function of time of a body that is warmer than the ambient temperature.
Not surprisingly, the temperature decay is exponential, with the
temperature approaching the ambient temperature T, in the limit as t
approaches infinity:

TM) =T, + (T, - T)e ™

Write a program that offers a user two choices:

(1) Given values of T, T,, and k, calculate the temperature at a specified
time.

(2) Given three temperatures observed at three distinct times, calculate T,,
T,, and k.

The first of these calculations is trivial—it involves simple substitution into the
formula—but the second is much harder. In order to obtain a solution for the
second calculation, assume that the time intervals between temperature
measurements are equal; that is, that t; - t, = t, - t, = t, - t, = At. This means that
k will be in units of 1/At rather than per second, for example. The solutions are

5.2 Menu-Driven Programs = 185

tedious to work out by hand, but they are easy to obtain with symbolic algebra
software such as Maple V®. Here are the results from a Maple V® session.

> T:=t->Ta+(T0-Ta) *exp (-k*t);
T := € -> Ta + (T0 - Ta) exp(- k t)

> solve({T(1)=T1,T(2)=T2},{Ta,k});

2
- T2 + T1 T0O T2 - T1
{k = - In(---------), Ta = —=——-—-—--—-—~ }
0 - T1 TO - 2 T1 + T2
> solve({subs(T0=T1,T(1)=T2),subs (T0=T1,T(2)=T3)},{Ta,k});
2
T1 T3 - T2 - T3 + T2
{Ta = -—=--cmoeemce , k= - In(-——------)}
TL - 2 T2 + T3 - T2 + T1

> solve(T(1)=T1,TO0);

First solve for T, and k using the first temperature, T, in place of T,, T, in place
of T,, and T, in place of T,:

T, - T
k = -¢n| 22
Tl 7T2
TT, - T,

T -
* T, - 2T, + T,

Finally, solve for T, using T,. This solution can also be used to find the
temperature at any time previous to t;, with time t measured in units of At. To put
it another way, the initial temperature can be measured at any desired time (in
units of At) along the exponential temperature decay curve:

T, = (T, - Tye X s T

a

186 = 5. More About Modular Programming

Program P-5.3 implements this solution.

P-5.3 [cooling.c]

#include <stdio.h>
#include <math.h>

/* function prototypes */
void get_k(double T1, double T2, double T3,
double *k, double *T_ambient, double *TO0);
double get_t(double TO, double T _ambient, double k, double t);

int main()
{
char flag,again;
double TO,T ambient,T1l,T2,tl,t2,T3,t3,k,t;

do |
again='n";
printf("[k]: Solve for k, initial T, and ambient T,\n");
printf (" given T at three equally spaced times.\n");
printf("[t]: Solve for T at specified time, given intial
ambient T, and k.\n");
fflush(stdin);
scanf ("%c", &flag) ;
switch (flag) {
case 't':
case 'T':
printf("Give initial T, ambient T, k, and time: ");
fflush(stdin) ;
scanf ("%$1f %$1f %1f %1f',&T0,&T_ambient, &k, &t);
printf ("T = %1f\n",get_t(TO0,T_ambient,k,t));
break;
case 'k':
case 'K':
printf("Give T1l, T2, T3: ");
fflush(stdin) ;
scanf ("%1f %1f %$1f",&T1,&T2,&T3);
get_k(T1,T2,T3,&k,&T_ambient, &T0) ;
printf (

"k = %1f, T_ambient = %1f, To = %1f\n",k,T_ambient,TO);

break;
default:
printf ("INPUT ERROR. Try again...\n");
}
printf ("Do again (y or n)?\n");
fflush(stdin);
scanf ("%c",&again) ;
} while (again == 'y');
return 0;

}

double get_t(double TO, double T_ambient, double k, double t)
{

return(T_ambient+ (T0-T_ambient) *exp(-k*t));
}

5.2 Menu-Driven Programs = 187

void get_k(double T1l, double T2, double T3, double *k, double *Ta,
double *T0)
{

*k = -log ((T2-T3)/(T1-T2));
*Ta (T3*T1-T2*T2)/(T1+T3-2.0%T2);
*TO (Tl+exp(-*k)**Ta-*Ta) /exp (-*k);

Running P-5.3

The main program in P-5.3 presents a menu of choices and asks the user
to select one option. Then a swi tch construct is used to obtain the required user
input and access a function that performs the required calculations. The default
case handles inappropriate user input. The subprograms in P-5.3 include a function
(get_t) that returns a single value and a type void function get_k that returns
output by modifying the contents of several locations to which pointers point.

188 = 5. More About Modular Programming

The output displayed for P-5.3 is intended to check the operation of the
program. The user chooses the t option three times and selects an initial
temperature of 500, an ambient temperature of 30, a time constant of 0.5, and
times of 1, 2, and 3. The temperature units are arbitrary, but the ambient
temperature corresponds to a warm room if the temperature units are degrees
centigrade. The time units are also arbitrary, and could represent anything from
seconds to days. The program calculates the temperatures at each of those three
times. Then, the user chooses the k option and specifies the three temperatures
previously found. If the program is working properly, it should return the same
initial temperature, ambient temperature, and time constant as the user originally
specified. This is, in fact, what happens.

5.3 More About Function Interfaces

As discussed in Section 5.1 and illustrated by functions circle_stuff from
P-5.1 and get_k from P-5.3, the argument/parameter list interface in C functions
is complicated by the fact that C allows, and sometimes requires, direct access to
memory locations through pointers. Suppose a function, function_A, is called
from a main program, and the input argument(s) to that function will be variables
local to the main program. That is the model we have used up to the present.
Now, however, suppose function_A is called from some other function,
function_B. In that case, the arguments appearing in calls to a function could
be a combination of variables local to function_B and input parameters
appearing in function_B’s parameter list. In the latter case, the parameters are
passed through as arguments in a call to function_A. A third possibility is that
one or more arguments in the call to function_A also appear as output
parameters in function_B’s parameter list.

Program P-5.4 illustrates the third possibility. It is yet another version of
a program that calculates the area and circumference of a circle. In previous
versions, the radius was determined outside function circle_stuff (in the
main program) and passed as input to this function. In this case, however, the
request for the user to provide a radius appears within circle_stuff, and the
value is passed back to the main program (as output) in addition to being used to
calculate the area and circumference.

P-5.4 [circl_p2.c]

#include <stdio.hs>
#define PI 3.14159265

/* function prototypes */
void circle_stuff (double *radius,
double *area, double *circumference);

5.3 More About Function Interfaces = 189

int main(void)
{

double radius, area, circumference;

circle_stuff (&radius, &area, &circumference);
printf("%8.31f %8.31f %8.31f\n",radius,area,circumference) ;
return(0) ;

}

void circle_stuff (double *radius_ptr,
double *area_ptr, double *circumference_ptr)
{
printf ("Give radius: ");
scanf("%1f", radius ptr);
area_ptr=PI(*radius_ptr)* (*radius_ptr);
*circumference_ptr=2.0*PI* (*radius_ptr);

In P-5.4, all three parameters in circle_stuff have been given names
consistent with their status as pointers. This certainly isn’t necessary, as noted in
the discussion of P-5.1, but it will be helpful for this discussion. The critical line
of code in this function is the call to scanf in circle_stuff, which is
printed in bold italics. Previously, whenever we have used scanf in a program,
we have used the address-of operator to store output values from scanf in the
memory locations associated with particular local variable names. In this case, the
formal parameter radius_ptrincircle_stuff already contains the address
of a memory location—it is a pointer and not a “value.” Because scanf stores
its output values in one or more memory locations specified by the programmer,
the appropriate calling argument is radius_ptr rather than &radius_ptr.

What about the calculations for area and circumference done in
circle_stuff in the two lines following the call to scanf? These calculations
need to access not the value of radius_ptr itself—it contains the address of
a memory location—but the value in the location to which radius_ptr points.
This value is obtained by using the indirection operator *. Note that, again, the
asterisk symbol has two different meanings in the assignment statements. Used as
a unary operator, it is the indirection operator that obtains a value from a location
referenced by a pointer. Used as a binary operator, it is the multiplication operator.
Recall that the parentheses in, for example, * (*radius_ptr) help to clarify
this distinction, but they aren’t actually required because the interpretation of the
asterisk will be clear to a C compiler in context.

Where do the calculations for area and circumference go? Not into local
variables, but into the memory locations pointed to by area_ptr and
circumference_ptr, as accessed through the indirection operator.

At the risk of belaboring the points raised by P-5.4, consider the
modification to circle_stuff shown in P-5.5.

190 = 5. More About Modular Programming

P-5.5 [circl_p3.c] (partial)

void circle_stuff (double *radius_ptr,
double *area_ptr, double *circumference_ptr)
{
double r;

printf ('Give radius: ");
scanf ("%$1f",&r);
*area_ptr=PIl*r*r;
*circumference_ptr=2.0*PI*r;
*radius_ptr=r;

In P-5.5, the local variable r is used for the radius, hence the use of &r
in the scanf function. However, in order to pass this value back to the calling
program, the last statement in the function uses the indirection operator to store
the value of r in the location to which radius_ptr points. There is no good
reason to define a local variable to use in this way—there’s nothing terribly wrong
with the code, either, and it’s a little easier to read—but the code in P-5.5 may
help to clarify the difference between variable names that refer to values and
names that refer directly to memory locations; that is, the difference between
variables and pointers.

5.4 Recursive Functions

There are several functions in science and engineering mathematics that are most
easily defined recursively. A simple example is the factorial function n!, which is
defined for non-negative integer values of n as

ol=1'=1 n!'=ne(n-1!,n>1

The definition of n! in terms of n and (n — 1)! isn’t as circular as it seems because
of the specific definitions for 0! and 1!. (The first of these, 0! = 1, is just a
mathematically convenient definition.) Thus, if 4! is defined in terms of 4 and 3!,
3! can be calculated in terms of 2!, and 2! in terms of 1!, the value of which is
known. Thus any value of n! can be bootstrapped from previous values.

This definition of the factorial function can be
implemented in C, as it can in many other languages,
as a recursive algorithm, that is, in terms of an
algorithm that calls itself. It is sometimes difficult to follow the detailed behavior
of recursive algorithms, so it is usually better simply to try to write the algorithm
in the most natural possible way and trust the programming environment to handle
the details. Recursive algorithms are usually very short. Program P-5.6

5.4 Recursive Functions = 191

demonstrates how easily the recursive definition of the factorial function can be
translated into C.

P-5.6 [factoral.c]

#include <stdio.h>
long factorial (int n);

int main(void)
{

int n;

printf ("Give an integer: ");
scanf ("%1i",&n);
printf("%$1ld\n", factorial(n}));
return 0;

}

long factorial(int n)
/* Assumes n is always >= 0. */
{
if (n <=1)
return (long)l;
else
return (long)n*factorial(n-1);

Function factorial in P-5.6 follows a typical pattern for recursive algorithms.
It has code that generates a recursive call to the function and a terminating
condition that allows a specific calculation to be completed. In general, all
recursive algorithms must have at least one terminating condition and at least one
recursive call that is executed whenever the terminating condition isn’t satisfied.
In this case, the recursive call is simply the recursive definition translated into C
syntax. The code in P-5.6 assumes that factorial will never be called with a
negative argument. If it is, however, the function will still return a value of 1.

The value of n! grows rapidly with n, and the declaration of the
factorial function as long allows much larger values of n to be specified
than would be the case with an int data type. (The limitations on size are
implementation-dependent.)

It is perhaps not obvious that the syntax in P-5.6 should work. Indeed, the
programming environment provides a great deal of behind-the-scenes help to
support recursion. Each call to factorial generates activity that keeps track of
the local values of input parameters, among other things. It is C’s ability to keep
track of these local values on its own that makes recursive functions look so
simple.

In the first call to factorial, from P-5.6’s main function, the local
value of n is whatever the user specifies through the scanf statement. The

192 = 5. More About Modular Programming

multiplication (long)n*factorial (n-1) is delayed by the recursive call, for
which the argument is n-1. As a result, the new local value of n will be the
current value of n — 1. The calculation in the return statement will continue to
be deferred by the recursive calls until, eventually, the local value of n will be 1,
and the return 1; statement will be executed. Next, C will perform all the
deferred calculations that have been created by the recursive calls before control
is returned to the calling program. The value of 2! will be calculated as 21, 3!
as 3¢2 4! as 4¢6, and so forth.

Recursive algorithms aren’t restricted to a single recursive call within a
function. Consider the well-known Fibonacci series: 1 1 2 3 5 8 13 21..,
which can be defined recursively as

This definition is straightforward to implement as a recursive function, as shown
in P-5.7.

P-5.7 [fibonaci.c]

#include <stdio.h>
int fibonacci (int n);

int main(void)
{

int n;

printf ("Which term? ");
scanf ("%1i",&n) ;

printf ("%i\n", fibonacci (n)) ;
return 0;

}

int fibonacci (int n)
{
if (n <= 2) return 1;
else return fibonacci(n-1)+fibonacci (n-2);

}

Recursive algorithms are often inefficient in their use of computer
resources. In the case of the factorial function, it is so easy to calculate n!
iteratively, with a loop, that writing recursive code doesn’t make much sense. A
function to generate Fibonacci numbers is only a little harder to write iteratively.
In fact, any problem that can be solved recursively can also be solved iteratively.
However, there are some kinds of problems for which a recursive algorithm is
much simpler to write than an iterative algorithm. In those cases, it is very helpful

5.5 Using Prewritten Code Modules = 193

to be able to use recursive algorithms to write programs that are as simple as
possible at the source code level. For the kinds of problems addressed in this text,
inefficient use of computing resources is usually not a significant factor in how
a computer program performs. An interesting example of the power of recursive
algorithms will be presented as an application later in this chapter.

5.5 Using Prewritten Code Modules

One of the major advantages of writing modularized programs is that you can
reuse code previously written to perform specific tasks. Obviously, this avoids
“reinventing the wheel” for many kinds of programming tasks. For languages
widely used in scientific and engineering programming, such as C and Fortran,
there are many commercial libraries of subprograms for solving common and
perhaps difficult programming problems. However, you can and should create your
own libraries of reusable code based on your own needs. Special care is required
when you write code for libraries. It is, of course, essential to make sure that the
code works properly under specified conditions. In addition, you should design
and document function interfaces so they are as easy as possible to incorporate
into programs.

To demonstrate how to create reusable code, we will consider a simple
example from the previous section in this chapter—calculating the n® term in the
Fibonacci series. We will modify P-5.7 so that the function to calculate a specified
term in the Fibonacci series is not included explicitly in the program. That is, we
would like to assume that this code has already been written and can simply be
used in any program that needs a Fibonacci number.

The simplest modification we can make to P-5.7 is to create a source code
file containing the function fibonacci and simply #include it in the source
code file containing the main function. This approach is used in P-5.8(a). The
code for function fibonacci, stored in file fib_func.c, is given in P-5.8(b).

P-5.8(a) [fibonac3.c]

#include <stdio.h>
#include "fib_func.c"

int main{void)
{

int n;

printf ("Which term? ");
scanf ("%1i",&n);
printf("%i\n", fibonacci (n));
return 0;

194 = 5. More About Modular Programming

P-5.8(b) [fib_func.c]

/* Fibonacci function source code. */
int fibonacci(int n)
{
if (n <= 2) return(l);
else return(fibonacci(n-1)+fibonacci (n-2));
}

Remember that the angle brackets <. ..> in #include directives tell
your program to look for standard header files in a directory specified by the
programming environment. You don’t have to know or specify the name of this
directory. However, when you #include files of your own, such as
fib_func.c, you must specify both the directory and the file name-—a complete
path through directories and subdirectories in MS-DOS or UNIX terminology, or
folder specification in Windows or Macintosh terminology.

When you #include a source code file, that file is literally copied into
the specified location at compile time. In the case of P-5.8(a), the file given in
P-5.8(b) is copied into P-5.8(a) right before the main function. Thus, at compile
time, P-5.8(a) is completely equivalent to P-5.7.

The second method of incorporating prewritten code
takes advantage of the fact that C source code can be compiled,
assuming it is free of syntax errors, even if the code doesn’t
contain a main function. This means that entire files of functions can be compiled
into object code and then linked to another program that contains a main
function.

In this case, we will compile the function shown in P-5.8(b). On a UNIX
system using the cc compiler, type

cc fib_func.c -c¢

The -c option produces an object file called fib_func.o, but it prevents the
compiler from trying to generate an executable binary file; this isn’t possible
because fib_func.c doesn’t contain a main function.

Program P-5.9(a) shows how to use the object file £ib_func.o.

P-59(a) [fib_main.c]

#include <stdio.h>
extern int fibonacci (int n);

int main(void)
{

int n;

5.5 Using Prewritten Code Modules = 195

printf ("Which term? ");
scanf("%1i",&n) ;
printf("%i\n", fibonacci (n));
return 0;

The main function in P-59(a) contains a reference to function
fibonacci, but the source code for this function does not appear anywhere in
this code, either explicitly or implicitly through an #include directive.
However, the function prototype for fibonacci includes the extern reserved
word, which tells the program that the function will be found externally, in a
precompiled file that will be linked with this code after it is compiled.

By default, functions appearing in a function prototype but not found in the
source code file are assumed to be external. Thus, the extern word appearing
in the function prototype for £ibonacci clarifies the status of this function, but
the word isn’t actually required.

In this case, we will assume that the external function P-5.9(a) is looking
for is fib_func.o, the compiled fib_func.c file. (On MS-DOS systems,
. OBJ is the default file name extension for object files.) To create the executable
file fib_main.exe on UNIX systems using the cc compiler, type

cc fib_main.c fib_func.o -ofib_main.exe

The specific steps required to link a file containing a main function with other
precompiled files vary from environment to environment. For this simple example,
a single command suffices. For large and complex programs, the C programming
environment typically includes some kind of “make” facility that can be used to
direct the linking of several files to create an executable program; consult the
documentation for your system.

Especially for large programs, it is common practice to create a separate
header file that gives the function prototypes for all required user-defined
functions, just as header files are included for standard library functions. To do
this for P-5.9(a), create a text file called £ib_func .h, containing the single line:

extern int fibonacci (int n);

Then modify the source code file to look like this:

P-5.9(b) [fib_main.c (modified)]

#include <stdio.h>
#include "fib_func.h"
int main(void)

196 = 5. More About Modular Programming

The modification in P-5.9(b) now contains a reference to a header file,
fib_func.h, that works just like standard library header files. The only
difference is that you must give an explicit directory (path) reference for the file,
with its path and name in quotation marks, because a header file you create
yourself is probably not in the same directory as the standard header files.

What is the point of creating separate header files? For this simple
program, there isn’t any reason to create a separate header file for a single
function reference. However, suppose you have created a large code library that
contains many different functions. You wish to distribute the library without
distributing the source code. By distributing the object code for the library along
with a header file, you can document the use of functions in the library, through
comments and function prototypes in the header file, without revealing the
contents of the source code.

5.6 Using Functions as Arguments and Parameters

Suppose the purpose of a user-defined function is simply to evaluate a
mathematical function and display the result. This is straightforward for intrinsic
functions. For example, P-5.10(a) prints values of sin(x) for angles at a specified
increment between specified lower and upper limits, where conversion
includes the conversion of angles from degrees to radians.

P-5.10(a) [func_arl.c]

#include <stdio.h>
#include <math.h>
#define PI 3.14159

void print_f(int lower, int upper, int step,double conversion) ;

int main(void)

{
print_f(0,10,1,5.*P1/180.);
return 0O;

}

void print_f(int lower, int upper,int step,double conversion) {
int 1i;
double x;

for(i=lower; i<=upper; i+=step) {
X=1*conversion;
printf("%2i %5.21f %10.31f\n",i,x,sin(x));
}

5.6 Using Functions as Arguments and Parameters = 197

If you wish to perform the same task for a user-defined function, the
obvious way to do it is to define the function and call it, as in P-5.10(b).

P-5.10(b) [func_ar2.c]

#include <stdio.h>

#include <math.h>

void print_f(int lower,int upper, int di,double conversion);
double f_of_x(double x);

int main(void)

{
print_£(0,10,1,.5);
return 0;

}

double f_of_x(double x) {
return sqgrt(x);

}

void print_f(int lower, int upper, int di,double conversion) {
int 1i;
double x;

for(i=lower; i<=upper; i+=di) {
x=1i*conversion;
printf("%$21 %5.21f %10.31f\n",i,x,f_of_x(x));
}
}

A potential problem is that if you wish to change the name of the function
to be evaluated and displayed, you have to recode print_f. This may not seem
like a significant problem for programs you write yourself. However, suppose
function print_f£ is replaced by a function that performs some more significant
and complicated calculation that you wish to distribute to other programmers. Now
those programmers must know the details of that code and they must create a
function such as f_of_x whose name agrees with your code.

Although this still may seem like a minor problem, it can be avoided
altogether by including in the parameter list the name of the function being
evaluated. This is possible in C because the name of a function is actually a
pointer to the code for that function. Program P-5.10(c) modifies P-5.10(b) to
include in print__f’s parameter list the name of the function to be evaluated and
displayed. The function f can be either an intrinsic or a user-defined function. The
only restriction on £ is that, according to the parameter list, it must be called with
a single type double argument and must return a type double result.

198 = 5. More About Modular Programming

P-5.10(c) [func_ar3.c]

#include <stdio.h>
#include <math.h>

void print_f (int lower, int upper, int di,double conversion,
double (*f) (double x));
double f_of_x(double x);

int main{(void)

{
print_f£(0,10,1,.5,f_of_x);
return 0;

}

double f_of_x(double x) {
return sqgrt(x);

}

void print_f (int lower, int upper,int di,double conversion,
double (*f) (double x)) {
int 1i;
double x;

for(i=lower; i<=upper; i+=di) {
x=1*conversion;
printf("%2i %5.21f %10.31f\n",i,x,£(x));
}
}

In the function reference double (*f) (double x), the parentheses
around *f are required in order for C to interpret the asterisk properly. The
dummy parameter list provides information about arguments to be supplied to the
function.

Although the differences among the various versions of P-5.10 may seem
to be minor matters of programming style, they are actually extremely important.
In P-5.10(c), print_f now works with any appropriate function and is therefore
completely portable to other programs without modification. Portability is essential
in large-scale programming projects and should be maximized whenever possible.
In P-5.9(b), the function to be evaluated inside print_f is given an alias name
by which it will be known locally inside print_ f. Thus the users of print_f
don't have to have access to the code inside printf_f. They need be told only
that a proper call to print_f includes the address of a function that requires a
single type double argument and returns a single type double result. This
requirement is obvious from an examination of print_£’s prototype.

It is worth noting that although print_f’s parameter list calls for a type
double function with a single input argument, a function in a parameter list can,
in general, return any desired data type and can have any required number of input
arguments. Again, this information is conveyed by the function prototype.

5.7 Passing Arguments to the main Function = 199

An important application of passing pointers to functions to other functions
is to perform numerical integration on mathematical functions that lack an
analytical integral. In order to increase the portability of such code, the numerical
integration function should be written so that the programmer can simply pass to
the integration function the name of the mathematical function whose integral is
sought. An example of this technique using Trapezoidal Rule integration will be
given in Section 5.8.4.

5.7 Passing Arguments to the main Function

Previously, we have written the main function header like this:
int main(void);

This form is also acceptable:

void main();

The void or empty parameter list informs C that the main function requires no
input values.

However, it is possible to give the main
function a parameter list. In computing
environments that use a command-line interface
to execute programs, such as UNIX and MS-DQOS, it is possible to pass arguments
from the command line when the program is executed. In fact, C provides some
predefined variables for this purpose. Consider this problem:

Write a program that accepts three command-line inputs: two integer
values and a character flag that tells the program to determine and display
the larger or smaller of the two numbers.

P-5.11 solves this problem.

P-5.11 [larger.c]

#include <stdio.h>
#include <stdlib.h>

int main(int argc,char *argv(])
{
int nl,n2,display;
if (argc < 4) {
printf("Please enter two integers on the command line,\n");
printf("then -s or -1 to return smaller or larger value.\n'");
printf ("Separate input by spaces.\n");

200 = 5. More About Modular Programming

return -1;
}
else {
nl=atoi(argv[1l]);
n2=atoi (argv[2]);
printf("%i %i\n",nl,n2);
printf("%c\n",argv(3][1]);
switch (argv([3](1]) {
case 's':
case 'S':
if (nl <= n2) printf("%i\n",nl);
else printf("%i\n",n2);

break;
case '1l':
case 'L':

if (nl >=n2) printf("%i\n",nl);
else printf("%i\n",n2);
break;
default:

printf ("Unknown command line option.\n");
return -2;

}

return 0;

}

To run P-5.11 after it has been compiled, type, for example:
larger.exe 2 3 -s

The program will display the result 2, the smaller of 2 and 3. The -s is
treated as a command-line option. On UNIX systems, for example, options are
typically preceded by a hypen, although there is no reason why this must be so;
that is, you could write the program so that the command line would be
larger.exe 2 3 s.

How does C read this command-line input into the program? First, consider
the main function header:

int main(int argc, char *argvl(]);

The parameter list contains two variables: an integer variable, argc, and an array
of pointers to characters, argv. Both of these names are predefined in C. They
can, in fact, be given other names, but these names are generally accepted by
convention.

To interpret argc and argv, it is first necessary to understand that C
treats values entered on the command line as strings, even if they look like
numbers, as in this example. The integer variable argc contains the number of
command-line strings, including the name of the executable file. In P-5.11, the
program expects that argc will have a value of 4: a string for the executable file
name, two integers, and the -s or -1 option.

5.7 Passing Arguments to the main Function = 201

The variable argv is an array of pointers to the first character in each of
these strings. Thus in P-5.11 argv[1] points to the first integer, argv[2] to
the second integer, and argv [3] to the option flag. Numbers entered in this way
can be interpreted by using standard intrinsic ASCII-to-number conversion
functions, as described in Table 5.1.

Table 5.1. ASCII-to-number conversion functions

atoi(char *string) Converts string to a type integer
value. Include stdlib.h.

atof (char *string) Converts string to a type double
value. Include stdlib.h or math.h.

Both functions require as arguments pointers to the first character in a string. In
P-5.10, atoi is used because the string must be converted to an integer.

In order to interpret the command line flag -s or -1, or its uppercase
equivalent -S or -L, the program looks at the second character of argv[3],
argv[31(1], and uses this value to control a switch construct. If the
command-line input can be intepreted as expected, the program displays the
smaller of the two integer values.

If the user doesn’t enter enough information on the command line, an
explanatory message is displayed and the program terminates. If the user enters
enough information but doesn’t enter an appropriate flag, the program is again
terminated. In principle, the system on which the program is being executed could
make use of the different return values, -1 or -2, but we won’t deal with that
problem here.

The technique of passing arguments from the command line is best applied
when the input requirements are not complicated. This is because there is no user
prompt for input, but only, at most, a message describing what was wrong if the
user did not provide the expected information. A typical use involves passing the
name of a file to a program. For example, data may be collected for each month
of the year and stored in files with names that identify the months. As long as
files for different months are formatted identically, the program can process any
of those monthly files, and the desired file can be specified when the program is
executed.

202 = 5. More About Modular Programming

5.8 Applications

5.8.1 The Quadratic Equation Revisited

1 Define the problem.

Recall from the discussion of the application in Section 4.5.1 of Chapter
4 that the quadratic equation ax’ + bx + ¢ = 0 has two, one, or no real roots,
depending on the value of the discriminant b* — 4ac. In P-4.9, the calculations for
the real root(s) were made and a value of 0 was assigned to one or more roots that
didn’t exist, so as not to leave the variable unassigned. Write a function that
determines how many real roots a quadratic equation has, calculates the real roots
as appropriate, and then returns a “status” flag equal to 0, 1, or 2, depending on
how many real roots were found.

2 Outline a solution.

Refer to the application Section 4.5.1 for a discussion of the quadratic
equation and conditions for finding real roots.

3 Design an algorithm.

It is typical C programming style for a function to return multiple output
values indirectly through pointers. However, instead of giving such a function a
data type of void, it is given type int and an output flag is returned directly so
the calling program can interpret the values produced by the function. For this
problem, the output flag will return a value of 0, 1, or 2.

1 Convert the algorithm into a program.

P-5.12 [quadrat2.c]

#include <stdio.h>
#include <math.h>

int GetRoots (double a,double b,double c,double *rl,double *r2);

int main(void)

5.8 Applications = 203

{
double a,b,c,rootl,root2;
int n_roots;
printf("Enter coefficients for ax*2+bx+c: ");
scanf ("%1f %1f %1f",&a,&b,&c);
n_roots=GetRoots (a,b,c,&rootl, &root2};
printf("%$i\n",n_roots);
switch(n_roots) {
case 2:
printf("The 2 real roots are: %1f %1f\n",rootl,root2);
break;
case 1:
printf("The 1 real root is: %1f %1f\n",rootl);
case 0:
printf('There are no real roots.\n");
}
return 0;
}

int GetRoots(double a,double b,double c,double *rl,double *r2) {
/* Returns single root in rl, assigns non-existent roots
a value of 0. */
double discriminant;
int n_roots;

discriminant=b*b-4.0*a*c;

printf("discriminant = %1f\n",discriminant);

if (discriminant > 0.0) {
*rl=(-b+sqgrt(discriminant))/2.0/a;
*r2=(-b-sqgrt(discriminant))/2.0/a;
n_roots=2;

else if (discriminant == 0.0) {
*rl=-b/2.0/a;
*r2=0.;
n_roots=1;
}
else {
*r1=0.;*r2=0.;
n_roots=0;
}

return n_roots;

204 = 5. More About Modular Programming

5 Verify the operation of the program.

Use a calculator to evaluate the determinant and find the real root(s).

5.8.2 Finding Prime Numbers

1 Define the problem.

Write and test a function that determines whether a specified integer is
prime.

2 Outline a solution.

An integer is prime if it can be divided evenly only by itself and 1. To
design an algorithm for finding prime numbers, we can make use of these facts:

1. The numbers 1, 2, and 3 are prime.

2. Any even number greater than 2 cannot be prime.

3. Every number that is not prime has at least one divisor less than or equal to its
square root. (For example, 49 is divisible only by its square root, 7.)

The third fact is especially useful because it tells us how to limit the range
of possible divisors that must be tested.

3 Design an algorithm.

An algorithm that expresses the facts given in Step 2 looks like this:

IF n < 3, n is prime.

ELSE IF remainder from integer division n/2 equals 0, n is not prime.
ELSE IF remainder from integer division n/divisor equals 0, n is not prime.
ELSE IF divisor > \/n, n is prime.

ELSE try divisor + 2 (a recursive call).

5.8 Applications

205

1 Convert the algorithm into a program.

P-5.13 {prime.c]

#include <stdio.h>
#include <math.h>
#define TRUE 1

int IsPrime(int n, int trial);

int main()
{
int prime,n;
do {
printf("Give an integer, 0 to quit: ");
scanf ("%i",&n);
if (n == 0) break;
prime=IsPrime(n,3);
if (prime == TRUE)
printf("%$1 is prime.\n",n);
else
printf("%$i isn't prime.\n",n});
} while (n !'= 0);

return 0;

}

int IsPrime(int n, int trial)
{
if (n <= 3)
return 1;
else if (n%trial == 0)
return 0;
else if (trial »>= (int)sgrt{{(double)n))
return 1;
else
return IsPrime(n,trial+2);

Running P-5.13

206 = 5. More About Modular Programming

5 Verify the operation of the program.

There is no simple general solution to determine whether an integer is
prime—otherwise this program should use that solution—but this program can be
tested with several numbers that are known to be prime or not prime. If it works
for these, there is no reason to think that it won’t work for other numbers.

Problem Discussion

The function in P-5.13 suffers only from the fact that a test divisor must
be included in the parameter list and hence must be provided when the function
is called. The smallest divisor that must be tried is 3. Therefore, the function call
must be TsPrime (n, 3) rather than the more natural call IsPrime (n). This
can easily be avoided by making IsPrime a “dummy” function whose parameter
list includes only n and which then calls a second function to do the actual work
of determining whether n is prime, including the first test divisor.

5.8.3 The Towers of Hanoi

1 Define the problem.

The Towers of Hanoi problem is a famous programming exercise that
provides a striking demonstration of the power of recursive algorithms. Suppose
ten rings are stacked on a pole and are graduated in size from the largest on the
bottom to the smallest on top. Nearby are two other poles. The object is to move
the stack of ten rings from their original pole to one of the other poles, using the
third pole as a working space during the transfer. There are only two rules
governing how the rings can be moved:

(1) The rings are moved one at a time.
(2) At no time can a larger ring be moved onto a smaller ring.

Write a program that solves the Towers of Hanoi problem by printing a list of all
steps required to move the rings from one pole to another.

5.8 Applications = 207

2 Outline a solution.

It takes some thought and planning to figure out how the transfers should
be made. Consider the problem with only four rings. The original pole is labelled
A, the destination pole is C, and the intermediate pole is B. Table 5.2 shows the
required transfers, which can easily be worked out with a little trial and error. This
transfer requires 15 moves. In general, moving n rings from one pole to another
requires 2" — 1 moves.

3 Design an algorithm.

Although it might not be obvious how to instruct a program to make a
large number of moves in what seems like a complicated pattern, it is actually
easy to write an algorithm for moving n rings in a programming language that
supports recursion. Consider this statement of the problem of moving n rings from
Ato C:

1. Move n ~ 1 rings from A to B.
2. Move the n" ring from A to C.
3. Move n - 1 rings from B to C.

This solution takes a typical recursive approach of defining one level of a
problem’s solution in terms of a previous level. Specifically, the problem of
moving n rings is stated in terms of the problem of moving n — 1 rings in the
same sense that the recursive algorithm for n! defined n! in terms of n and
(n - 1)!. By making successive recursive calls with argument n-1, the problem of
moving n rings can be reduced to the point that eventually the only problem the
algorithm needs to solve directly is the trivial problem of moving one ring. The
algorithm design looks like this:

DEFINE (n as initial number of rings, start, aux, and final as strings)
INITIALIZE start = 1, aux = 2, final = 3
CALL MoveRings(n, 1, 3, 2)

SUBPROGRAM MoveRings(n, start, final, aux)

IF n_rings > 0 THEN
CALL MoveRings(n_rings - 1, start, aux, final)
WRITE (“Transfer ring ”,n_rings,” from ”,start,“ to ”,final)
CALL MoveRings(n_rings — 1,aux,final,start)

(end IF)

208 = 5. More About Modular Programming

Table 5.2. Transfers for the Towers of Hanoi problem when n = 4

Move B C

(Start)

1 from A to B

2 from A to C

1 from B to C

3 from A to B

1 from C to A

i1

2 from C to B

1 from A to B

| FHI PR

11 kRl

B0 N EH

4 from A to C

1 from B to C

2 from B to A

1 from C to A

3 from B to C

1 from A to B

i1 i1

2 from A to C

1 from B to C

5.8 Applications

209

Convert the algorithm into a program.

The algorithm in Step 3 is easy to convert into a very short C program.

P-5.14 [towers.c]

#include <stdio.h>

void MoveRings (int n_rings, int start, int finish, int aux);

main()
{

int n_rings;

printf ("Give number of rings to move: ");
scanf ("%i",&n_rings);

MoveRings (n_rings,1,3,2);

return(0) ;

}

void MoveRings(int n, int start,int finish, int aux)
{
if (n > 0)
{
MoveRings (n-1,start,aux, finish) ;
printf ("Move ring %i from %1 to %i\n",n,start,finish);
MoveRings (n-1,aux, finish, start);

}

Running P-5.14

210 = 5. More About Modular Programming

5 Verify the operation of the program.

If P-5.14 works for four rings and reproduces the steps shown in Table 5.2,
there is no reason to think it will not work for other values of n. If n is too large,
a particular programming environment may not be able to handle the large number
of recursive calls, but this is not a fault of the algorithm. Certainly your
programming environment should handle values of n as large as 10.

Problem Discussion

You may find it hard to believe that such an apparently difficult problem
can be solved with so little code, because the algorithm doesn’t actually contain
a solution in terms of specifying directly how the rings must be moved. However,
the solution implemented in P-5.14 is typical of recursive algorithms, which work
because of the way calls to subprograms keep track of the local values of their
parameters.” The variables start, aux, and final are initially given the values
1, 2, and 3, but their local values change when the recursive calls are made. It is
possible to write an iterative version of the Towers of Hanoi algorithm (because,
as noted previously, this is possible for all recursive algorithms), but it requires
a more specific set of instructions from the programmer, and it is certainly more
trouble than it’s worth!

5.8.4 Trapezoidal Rule Integration

1 Define the problem.

Write a program that uses Trapezoidal Rule numerical integration to
evaluate the normal probability density function.

2 Outline a solution.

As previously noted, the normal probability density function does not have
an analytic integral, so numerical methods are required. In this discussion, we will

>The information is maintained on the run-time stack. To find out more about this, consult a
computer science text on programming or data structures.

5.8 Applications = 211

simply present the formula for Trapezoidal Rule integration; this and other related
techniques will be discussed more fully in Chapter 9. Assuming that the range
[x,.x,] is divided into n equal intervals of size Ax, the integral of f(x) over that
range can be approximated by

%
fx)dx =

Xa

(i [£(x) + f(x, +Ax)])é2’_‘ LY +2f(xb)]AX . Axrif(xi)

i=0
where x; = xa + 1*Ax.

3 Design an algorithm.

The algorithm for the Trapezoidal Rule integration function is trivial—it
involves no more than a direct translation of the formula into C. The main
function should serve as a simple driver program to test the operation of the
Trapezoidal Rule integration.

i Convert the algorithm into a program.

P-5.15 [trapezoi.c]

#include <stdio.h>
#include <math.h>

double pdf (double x);
double Trapezoidal_Rule(double x1,double x2,double (*f) (double));
double t (double x1,double x2,double (*f) (double)) {

int 1,n=100;

double sum=0.,dx;

dx=(x1+x2)/n;

for (i=1; 1<=n; 1++)

sum+=Ff (x1+ (1i-1)*dx) +f(x1+1i*dx);
return sum*dx/2.;

}

int main(void)
{
double z;

printf ("Give value of standard normal variable, >0: ");
scanf("%1f",&z);

printf("%1f\n", Trapezoidal_Rule(0.,z,pdf));
printf("%1f\n",t(0.,z,pdf));

212 = 5. More About Modular Programming

return 0;

}

double pdf (double x) {
return exp(-x*x/2.)/sqgrt(8.*atan(l.));
}

double Trapezoidal_Rule(double x1,double x2,double (*f) (double)) {
int 1i,n=100;
double sum=0.,dx;

dx=(x2-x1)/n;
for (i=1; i<n; i++)
sum+=f (x1+1*dx);
return (f(x1)+£f(x2))*dx/2.+sum*dx;

Running P-5.15

5 Verify the operation of the program.

Tabulated values for the integral of the standard normal probability density
function (pdf) can be found in any book on statistics. These tables often give the
integral from O to z rather than from —eo to z. For z = 0.5, the integral of the pdf
from O to 0.5 is 0.1915. Note that the integral of the pdf from —e to z, which is
the value usually required in statistics applications, is 0.5 plus the integral from
0 to z, so that the integral from —o to 0.5 is 0.5 + 0.1915 = 0.6915.

Problem Discussion

The primary point of this application is to illustrate how to pass a function
through the parameter list of another function. The program defines the normal
probability density function in pdf and the name of this function is given as the
argument corresponding to the parameter double (*f) (double) in the
Trapezoidal_Rule function. In generalizing this application to other
problems, it is important to realize that the driver program can pass any
appropriate function to Trapezoidal_Rule. The only requirement is that the
function must require a single type double argument and must return a type
double result.

5.9 Debugging Your Programs = 213

5.9 Debugging Your Programs
5.9.1 Passing Multiple Outputs Through Parameter Lists

The C syntax for using pointers to pass multiple output values through the
parameter list of a function can be confusing. At the design level, it is important
to be clear about which parameters are Input and which are Output. When you
implement an algorithm design, it is essential to keep track of which names refer
to variables and which to pointers. It may be helpful to develop the habit of using
a _ptr suffix with pointer names. Within functions that have Output values, you
must use the dereferencing operator (*) when you assign a value because you
need to assign values not to the parameter (pointer) name itself but to the memory
location to which the pointer points. Also, when you use scanf, fscanf, or
sscanf to read a value for an Output variable, remember not to use the
address-of operator, again because the name is a pointer and hence is already an
address.

When you call a function with pointers in its parameter list, remember that
the corresponding variable names in the argument list must be preceded by an
address-of operator. Failure to do so will not produce a compile-time error but
may generate a run-time error and in any case will not produce the desired results.

5.9.2 Recursive Functions

C’s implementation of recursive functions is straightforward, but the algorithm
development for such functions is sometimes challenging. The trick for such
algorithms is not to worry about the details of how the programming environment
keeps track of the values of local variables during the recursive calls; such manual
tracking of calculations can be a difficult task for an algorithm that generates
multiple recursive paths. If your algorithm correctly states the recursive
relationship that you wish to implement, the programming environment will do the
rest. Although it is possible in principle to exhaust your programming
environment’s resources for managing multiple recursive calls, this is rarely a
problem in practice.

Remember that every recursive algorithm must have both a terminating
branch and at least one branch that generates the recursive call. These branches
are typically defined with IF...THEN... or CHOOSE pseudocode statements.
Recursive algorithms generally replace count-controlled or conditional loops.
Rather than having a terminating condition coded as part of a loop structure, the
terminating branch of the IF...THEN... or CHOOSE statement is responsible for
terminating the recursive calls. If your recursive algorithm contains a loop

214 = 5. More About Modular Programming

structure, it is probably wrong. A recursive algorithm is typically very short; if
yours is not, it probably needs to be redesigned. If your recursive algorithm isn’t
properly terminated, your program will continue to generate recursive calls until
the programming environment space reserved for such calls is exhausted. Then
your program will crash.

5.9.3 Reusable Code

This chapter has outlined briefly how to incorporate previously written code
modules into your programs. In a course based on this text, you are generally
responsible for all your own code, but this is certainly not true for the professional
application of programming languages in science and engineering. You can
practice creating your own libraries of source code and object code files.

Remember that the #include statement is used only for uncompiled
source code files and not for object code files, which have already been compiled.
Don’t forget to specify a complete path reference for #include files; that
reference usually is not the same as the one in which the standard header files
reside.

5.10 Exercises

For each of these exercises, write one or more functions to perform the required
calculations. Where reasonable, use functions with multiple outputs returned
indirectly through pointers. The purpose of your main function should be to get
user input, call the function(s), and display results.

1. (a) Write a program that asks the user to enter a currency amount and then
calculates how many dollar bills, quarters, dimes, nickels, and pennies are required
to return this amount in change. Assume that the minimum total number of dollar
bills and coins should be returned. This means that your program should return
first the maximum number of bills, then the maximum number of quarters, then
the maximum number of dimes, and so forth. That is, even though you obviously
could return $0.66 in change as, for example, six dimes and six pennies, the
program should tell you to return this change as two quarters, one dime, one
nickel, and one penny. This restriction actually makes the problem easier to solve.
Do the calculations in a function that returns the number of each coin required to
make change. (For comparison, see Exercise 2 in Chapter 3.) [change.c]

(b) Modify the program from part (a) so that the currency amount is entered
directly from the command line. [change2. c]

5.10 Exercises = 215

2. Write a program that asks the user to supply the mass and velocity of an object
and then calculates and prints the kinetic energy and linear momentum of that
object. The kinetic energy is mv?/2, and the momentum is mv. Use metric units
(mass in kilograms, velocity in meters per second, energy in joules). Use a single
function to return both values. (For comparison, see Exercise 5 in Chapter 3.)
[kinetic2.c]

Extra Credit:

Include code for functions that will convert the kinetic energy and
momentum into their British system equivalents. The British unit of energy is
ft-1b, and the unit of momentum is slug-ft/s. 1 ft-1b = 1.356 joule; 1 slug = 14.59
kg; 1 ft/s = 0.3048 m/s.

3. Given the (x,y) coordinates of two points in a plane, write a program that
calculates (a) the shortest distance between the two points, and (b) the (x,y)
coordinates of a point halfway between the two points lying on a straight line
joining the points. (Refer to Figure 3.8.) Use a single function to return all three
values. (For comparison, see Exercise 10 in Chapter 3.) [points.c]

Extra Credit:

Modify your program so it also calculates the slope of the line joining two
points in a plane. What restriction will this calculation impose on the location of
the two points?

4. An incompressible fluid such as water flows at speed v, through a cylindrical
pipe with diameter d,. The pipe then narrows gradually to diameter d,. The mass
flowing through the tube must remain constant, so the velocity v, of the fluid in
the smaller pipe is given by the equation of continuity:

Ay = Ay,

where A, and A, are the cross-sectional areas of pipes with diameters d, and d,.
The mass flux through the pipe is

mass flux = pAv

where p is the fluid density of kg/m® and either A, and v, or A, and v, may be
used.

Write a program that asks the user to supply the two pipe diameters and
speed v, and then calculates v, and the mass flux flowing through the pipe,
assuming the fluid is water with a density of 1000 kg/m’. [f1uid.c]

216 = 5. More About Modular Programming

5. The root-mean-square (rms) speed of gas molecules v, is given by

3kT
Vv = —_—
ms m

where k is Boltzmann's constant, 1.38 x 10-* J/K, T is temperature in Kelvins, and
mass is in kg. Express mass in terms of the atomic weight of the gas times the
mass of one atomic mass unit, 1.660 X 10 kg.

The average speed v,,, for gas molecules is approximately related to rms
speed by

Vims = 1.09 v,
Write a program that calculates v, and v, for a specified gas and
temperature; for example, oxygen molecules at 25°C. An oxygen molecule (O,)
has a mass of 32 atomic mass units. Don’t forget to convert °C to K, where 0°C

=273.15 K. [gas_spd.c]

6. A text file contains real numbers in this format:

oo oy
[Sale e oA RN

and so forth)

—~

Write a program that calculates the average value (mean) and the standard
deviation of all values in the file according to the formulas:

mean = -2 standard deviation =
n n

n n n 2
PR inz - [Xi) /n

where n is the total number of points in the file.

For comparison, see Exercise 9 in Chapter 4. The difference here is that
you should write a separate function to calculate the mean and standard deviation,
given Ix2, (£x,)%, and n as inputs. [stats2.c]

5.10 Exercises = 217

7. Recall Exercise 12 in Chapter 4, in which you were asked to write a function
that estimates the square root of a number using Newton's algorithm. Rewrite that
function as a recursive function.

8. A special set of functions called Legendre polynomials are sometimes required
in science and engineering applications. Table 5.3 gives the Legendre polynomials
Px)for0<n<7.

Table 5.3. The first eight Legendre polynomials

o1

1 X

2 | 3x*=1D12

3 1 (5x¢*-3x)2

4 | (35x* - 30x* + 3)/8

5 (63x°> — 70x* + 15x)/8

6 | (231x° - 315x* + 105x - 5)/16

7 (429x7 — 693x° + 315x* — 35x)/16

By making use of the fact that Ry(x) =1 and R,(x) = x, Legendre
polynomials of order n = 2 can be generated through a recursion relation:
2n-1
n

R,(9 = xR, (0 IR, (9

Write a recursive function to evaluate the Legendre polynomial for any value of
n and x, where n 2 0. [legendre.c]

9. Bessel functions are sometimes encountered in advanced engineering and
science mathematics (for example, to describe electric charge configurations in
cylindrical coordinates). Bessel functions of the first kind, J,(x), for nonnegative
integer values of n and any real number x, can be defined in terms of an infinite
series:

)2

2
Figure 5.4 illustrates these functions forn =0 and n = 1.

|

E GS(H.X)

®©

(=1)
s(n+s)

)n +2s

X

2

|

1y
st(n+s)!

Jn(x) = go

S

G,m%) - G, ,(n,%)

5. More About Modular Programming

218
where
and

Figure 5.4. Bessel functions of order 0 and 1.

1 1 | 1 1) I
i 1 1 1 1 |
| 1 1 1 I
I | | 1 1 1
||||| Lececbiceecbe L A Lol
1 I 1] I 1 [
| 1 1 1) 1
1 1 I | | 1 I
1 1 I 1 1) |
| 1 | ! ! 1 i
IIIII r—="TrTTTTrT T ---r----r----r----1®
| 1 1 I I I
| 1 1 | 1 1 3
| 1 1 I 1 1 1
1 1 1 I [1 1
ittt e e e Gttt sttt STl of A
1 1 1 1 | I 1
| I 1 1 1 |]
' 1 1 | 1 { |
i 1 1 1 1
||||| [EPRVEPEVEN EPRDEPEDED . WY SRR . WY R
1 1 1 i 1 1]
1 1 1 i [I 1
I 1 1 1 i 1
I 1 1 1 | | 1
I 1 1 | | 1 1
||||| [bl il hededadal shelieil Bt Sl 2l H
| 1 I | i 1 1
t 1 | 1 i 1 1
1 1 | 1 1 |
1 1 5| I 1 i
|||||] ST o B R L SEETP L~ o
| 1 = | 1
1 1 |2 1 1
1 1 1 1 1 1
! | | |) 1 '
| [I EUNPRNEN I~y IR I N gy I,
i I [[1
1 1 | 1 I I 1
1 1 i 1 1 1
1 1 1 1 1 1
1 | 1 1 | 1
s fr———of---- r-——>~t---- r——--r----r----
=) 1 1 1 1
(=N | | | 1 1 1
= | 1 1 1 1 !
1 I | 1 i 1 |
e [N e oy TE
1 ' | 1 1
| I 1 I 1 1 |
1 1 1 1 1)
1 1 1) 1 1 1
t 1 “ f t 1
- ©®© © <« & © o <

) ir ‘xor

5.10 Exercises = 219

Write and test a function to evaluate Bessel functions for specified values of n and
x, using the first 10 terms in the infinite series expansion. When you test this
function, you should print out the values of the individual terms in the series to
make sure that evaluating only the first 10 terms is reasonable.

Note that the function G(n,x) is defined recursively. However, you might
wish to consider if using a recursive function is the best way to evaluate Bessel
functions. Do not let your decision be based just on the fact that recursive
functions is a topic covered in this chapter. [bessel.c]

Extra Credit:
Bessel functions of the first kind for n > 1 may be obtained from the
recursive relation

5 = 2 T,)

X

Write a recursive function that calculates higher order Bessel functions in this way
and compare your results with calculating the functions directly from the series
expansion.

10. A standard problem in numerical analysis is to find the roots of the equation
f(x) = 0. One well-known approach is called the bisection method.

How can we tell whether there are any roots over the closed interval
[x,.X,]? Suppose that the sign of f(x,) is different from the sign of f(x,). The
obvious interpretation of this fact is that the function has crossed the x-axis at
least once in the range [x,X,]. It is also possible that the function crossed the
x-axis more than once, in which case the total number of crossings must be odd.
This means that f(x) must have at least one real root in the range [x,,x,].

A second possibility is that the sign of f(x,) is the same as the sign of
f(x,). This means that there may be no roots or that the function has crossed the
x-axis an even number of times, so that f(x) must have either no roots or an even
number of roots in the range [x,,X,].

A third possibility is that f(x) just touches the x-axis without crossing it.
For example, this is true for the function

fx)=x>-6x+9=(x-3)x-3)
This function, which never crosses the x-axis, has two identical real roots, thereby

complicating the search for a generally applicable root-finding algorithm. Figure
5.5 illustrates these three possibilities.

220 = 5. More About Modular Programming

15 T T T
1 I i

‘ Crosses axis twice (two real roots) I

1 1 1 1

_l Doesn't cross axis (two identical real roots) [
T T 1 Il

10 ---------

rCrosses axis three times (three real roots)
Bt-----3&K - . 1 ~— —

1
I
I
I
|

3)
F 0T T
> i | |
1 1 I
1]]
I A A N — F— A
° | | | W

] 1 1

I I
] 1 1
1 1

L e R NG B doommeeee
I 1 1 I 1
1 1 1 1 1
I | I | 1
I I 1 1
1 I] I 1
-15 f t t } t
0 1 2 3 4 5 6
X

Figure 5.5. Polynomials with one or more real roots.

For the purpose of this exercise, we will proceed on the assumption that
roots can be found by identifying the places where a function crosses the x-axis.
(That is, we will ignore the third possibility mentioned above.) Assume that the
interval [x,,x,] is divided into subintervals [x;,xz] sufficiently small that each
subinterval contains either one root or no roots. However, we shouldn't overlook
the possibility that we may select the subintervals so that either f(x;) =0 or
f(xg) = 0, or both may equal zero in the case where f(x) can have more than one
root. In that case, either x; or X, or both x; and xg, are roots.

If neither of the subinterval endpoints is a root, continue the search for the
root in the open interval (x;,xgz). Find the midpoint in the interval [x;,xg]. There
are then three possibilities, which take into account the fact that if the product
f(x;)*f(xy) is less than zero, the function crosses the x-axis somewhere in the
interval (x;,Xg):

(1) f(x,;9) =0
(2) f(xp)*f(xpe) < 0
3) fXe)*f(xg) < O

If (1) is true, then X, is a root. In general, it is unlikely that f(x_;,) will ever be
exactly zero, so this condition needs to be implemented as |f(x,;,)| < €, where €
is some appropriately small user-supplied value.

5.10 Exercises = 221

If (2) is true, then the root must lie in the interval [x;,Xq]. Let Xg = X4
and try again with this new interval. If (3) is true, then the root must lie in the
interval [X,,4,Xg]. Let X, = X4 and try again. As a result of repeatedly halving the
interval in this way, x4 will eventually satisfy the inequality |f(x,.)| < €, based
on the assumption that the original interval (x;,xz) contains one root. It is also
possible to terminate the algorithm when the interval becomes sufficiently small:
Xg — X < €', where €' is some other user-supplied small value. In that case, we can
also assume that f(x,,,) is sufficiently small.

This description of the bisection algorithm is easy to implement
recursively. Divide the search interval in half and look again in the appropriate
half. These repeated searches on a new interval half the size of the current interval
generate the recursive calls. The other possibilities, such as |f(x,,) < €|, provide
multiple terminating conditions for the recursive function.

Using this discussion of the bisection algorithm, write a program that finds
one or more roots of a function over a specified interval. Test your program by
defining a function that contains at least two roots, such as x* -2, and by
specifying an initial interval that includes those roots. Use a count-controlled loop
to divide the initial interval into 10 equal subintervals. Each such subinterval
defines one of the intervals [x,,xz] discussed above. Search recursively for a root
within each of those subintervals and display the results of each search.
[bisect2.c]

11. Recall Exercise 13 in Chapter 3, in which you were asked to write a
polynomial function that approximated the integral of the normal probability
density function (pdf). In this exercise you will write a program to compare that
approximation with a numerical integration of the pdf, as was done in this chapter
in Section 5.8.4. Your ma in function should not do any calculations itself; rather,
it should simply call functions to do the two calculations.

For this exercise, functions to do the calculations should be written in
another source code file that will be compiled separately and then linked to the
main function. Give the main function access to the functions by #includeing
an appropriate header file. The code for numerically integrating a function of one
variable using Simpson’s Rule is given below.

double F(double z)
{ return exp(-z*z/2.0)/sqgrt(8.0*atan(1.0));
éouble Simpson (double x1,double x2,int n_segs,double (*F) ())
! int i;
double dx,sum_odd, sum_even;

dx=(x2-x1)/n_segs;

sum_odd=0.0; sum_even=0.0;

for (i=1; i<=n_segs-1; 1i+=2)
sum_odd+=F (x1+ (double)i*dx) ;

222 = 5. More About Modular Programming

for (i1i=2; i<=n_segs-2; i+=2)
sum_even+=F (x1+ (double) i*dx) ;
return (F(x1l)+F(x2)+4.*sum_odd+2.*sum_even) *dx/3.;
}

Note that the numerical integration function Simpson requires four
parameters: the lower integration limit, which is O for this problem; the upper
limit, which is the standard normal variable z; the number of integration steps,
which could be given a value of 100; and a reference to a function that evaluates
the normal probability density function. Also, Simpson integrates the function
from O to z rather than from —ee to z. Although Simpson could be called directly
to evaluate the integral, a cleaner information interface involves creating another
function that requires only the standard normal variable z as its single argument
and which returns the value returned from Simpson plus 0.5 (because the
integral of the pdf from —e to O is 0.5). With such a function, your main program
code will look something like this:

printf ("Give value of standard normal variable z: ");

scanf ("$1f",&z);

printf ("From Simpson's rule integration: %1f\n",
normal_int(z);

printf (" From polynomial approximation: %$1lf\n",
normal_poly(z));

When you write the header file, it should contain references only to those
functions needed directly by your main function:

extern normal_poly(double z);
extern normal_int (double z);

As they should, these function prototypes hide the details of implementing the
calculations, especially for the numerical integration. [normal3.c]

12. The Julian day system is used in astronomical calculations to overcome the
complexities inherent in the civil calendar system. These problems occur because
the length of a solar year is not an even number of calendar days. (One solar year
is approximately 365.25 days.) Every day is assigned a unique, consecutively
numbered Julian day starting with the January 1, -4712. Julian days begin at
Greenwich noon; that is, noon at the Greenwich Observatory near London. For
example, midnight at the start of Greenwich calendar day January 1, 1998, (or
January 1.0, 1998) is Julian day 2450814.5, and Greenwich noon on January 1,
1998, (or January 1.5, 1998) is Julian day 2450815.0. Note that days are allowed
to include fractional parts. Thus days should be represented as real numbers rather
than integers.

It is possible to write algorithms for converting back and forth between
dates given in the Gregorian calendar (the modern civil calendar) and Julian days,

5.10 Exercises = 223

although they are certainly not obvious.’ For a specified month m, day d, and year
y, the Julian day ID is given by the following algorithm:

1. If m > 2, leave y and m unchanged. If m equals 1 or 2, replace y by y — 1 and
m by m + 12.

2. Calculate A = (y/100) and B = 2 -~ A + (A/4), where (...) indicates that a
division is truncated to a whole number. That is, (7/4) = 1.

3. The Julian Day is then
ID = (365.25(y + 4716)) + (30.6001(m + 1)) + d + B - 1524.5

where JD can include a fractional part, as noted above. The number 30.6001,
rather than 30.6, is required to prevent inappropriate truncations due to
inaccuracies in handling real arithmetic. For example, 5 times 30.6 gives 153
exactly, but this calculation done in real arithmetic might give a result of
152.999999, a value that will then be truncated to 152.

The conversion from the older Julian calendar to the modern Gregorian
calendar took place in many parts of Europe in 1582. The day following October
4 on the Julian calendar became October 15 on the Gregorian calendar. However,
because the change was mandated by the Pope in Catholic countries, some non-
Catholic countries resisted or delayed the change. In Great Britain, the change
wasn’t made uniformly until 1752. Thus, caution is required when converting
historical calendar dates to Julian dates.

The inverse operation, to convert a Julian day to its corresponding
Gregorian calendar day, is:

1. Add 0.5 to the Julian day. Let z be the integer part and f the decimal part of
the result. If z < 2299161, let A = z. If z > 2299161,

o = {(z — 1867216.25)/36524.25)
A=z+ 1+ a-{o/4)

2. Calculate

B=A+ 1524
C = ((B - 122.1)/365.25)
D = (365.25C)

E = ((B - D)/30.6001)

>The algorithms given here are from Jean Meeus, Astronomical Algorithms, Willmann-Bell, Inc.,
Richmond, VA, 1991. (www.willbell.com)

224 = 5, More About Modular Programming

3. Calculate
d=B ~D - (30.6001E) + f (day including decimal part)
m=E-1ifE<14,orE-13ifE=14o0or 15
y=C-4716ifm>20rC-4715if m=1or2

Do not replace 30.6001 with 30.6. Note that d can include a fractional part.

Implement these algorithms in two functions. Test the functions in a
program that asks the user to provide a calendar date, calculates the Julian day,
and converts that Julian day back to its calendar date. [julcal.c]

13. Certain kinds of atmospheric measurements are made with a sun photometer,
an instrument consisting of a detector that views a narrow beam of sunlight and
responds only to a narrow range of frequencies. In order to interpret such
measurements, the position of the sun must be known relative to the observer and
relative to a horizontal plane at the earth’s surface. Although it is possible in
principle to measure directly the solar elevation angle (the angular distance of the
sun above the horizontal plane) or its zenith angle (90° degrees minus the
elevation angle), it is usually more accurate to calculate the solar position from
astronomical equations. Such equations, based on astronomical theory and
observations, are complicated because the geometry of the earth’s rotation around
the sun and about its own axis is complicated.

The terminology in these equations is probably unfamiliar and the
equations are probably obscure. However, your task is to write a program that
implements the equations, not to derive them or even to understand their
derivation. For the most part, you will not be able to determine independently
whether your program produces the correct answer. Consequently, you must be
extremely careful when you translate these algorithms into C.

Julian centuries from 2000:

T = (JD - 2451545.0)/36525.0
(Use the Julian day calculation from the previous exercise to get JD.)

Solar position in ecliptic coordinates:

geometric mean longitude of the sun:
L, = 280.46645 + 36000.76983T + 0.0003032T"

mean anomaly of the sun:
M = 357.52910 + 35999.05030T - 0.0001559T2 — 0.00000048T>

4566, for example, Jean Meeus, Astronomical Algorithms, Willmann-Bell, Inc., Richmond, VA,
1991. (www.willbell.com)

5.10 Exercises = 225

eccentricity of the earth’s orbit:
e = 0.016708617 ~ 0.000042037T — 0.0000001236T>

equation of the sun’s center:
C = (1.914600 — 0.004817T ~ 0.000014T*)sin(M)
+ (0.019993 - 0.000101T)sin(2M) + 0.000290sin(3M);

true longitude of the sun:
L. = (Ly + C) modulus 360. If L, < 0°, add 360°.

true anomaly of the sun:
f=M+C

earth-sun distance:
R = 1.000001018(1 — e?/[1 + eecos(f)]

Angular position of the Greenwich meridian:

sidereal time:
6, = 280.46061837 + 360.98564736629(JD — 2451545) + 0.000387933T>
- T%/38710000
Replace 6, with 6, modulus 360. If 6, < 0°, add 360°.

Obliquity of the ecliptic:

£ =23 + 26/60 + 21.448/3600 — 46.8150/3600T — (0.00059/3600)T>
+ (0.001813/3600)T*

Conversion of solar coordinates to equatorial (earth-centered) and observer
coordinates:

right ascension:
tan(o) = tan(L,,,.)cos(e)

declination:
sin(d) = sin(e)sin(L,,,,)

hour angle of the sun with respect to the observer’s longitude (L,,):
H=0,+L,, -0

azimuth angle of sun at the observer’s longitude and latitude (A,,), relative to
south:
tan({) = sin(H)/[cos(H)sin(L,,,) — tan(8)cos(A,)]

226 = 5. More About Modular Programming

elevation angle of sun above a horizontal plane at the observer’s position:
sin(g) = sin(A,)sin(d) + cos(A,,)cos(d)cos(H)

The equations giving angular quantities as a function of time T—L, and
M, for example—assume angles specified in degrees. When you use these angular
quantities as arguments in trigonometric functions—sin(H), for example—be
careful to convert the angles from degrees to radians. You must also be careful to
use real arithmetic when appropriate. In the equation for the obliquity of the
ecliptic, for example, the quantity 26/60 translated into source code as the integer
division 26 /60 will give a value of 0!

For the right ascension and azimuth, use the atan2 function to obtain an
angle in the proper quadrant. To do this for the right ascension, replace tan(L,,,.)
with sin(L,,.)/cos(L,,.)-

14. Equations of the form
at
¢ —at-b=0

are sometimes encountered in heat transfer problems. This is an equation that
cannot be solved analytically, but it can easily be solved numerically. If the
equation is rewritten as

eat=at+b

then an obvious graphical solution is to plot each side of the equation separately,
as shown in Figure 5.6 for a = 0.5 and b = 10. Any point where the two curves
intersect is a root of the original equation.

A standard numerical approach to solving this kind of equation involves
rewriting the original equation in the form t = g(t). For this equation, there are two
obvious possibilities:

t=(" -b)a
t = £n(at + b)/a

To find t, first make an initial guess; any reasonable value should work. Then
evaluate the right side of the equation to get a new value of t. Substitute this new
value and evaluate the expression again. Repeat the procedure of reevaluating t in
this way until the difference between the new and old values of t becomes less
than some specified small number. Although such an approach is not guaranteed
to work, it is often the case that this iterative algorithm will converge to a value
of t that is a root of the original equation.

5.10 Exercises = 227

25.0
20.0
15.01
o
=
% 10.01
5
©
8 50
$
)
0.0
o]
-10.] ; f 3 -
0 q25 -20 -15 -10 -5 0 5 10

t, arbitrary units
Figure 5.6. Graphical solution to /' — at — b = 0.

For the coefficients used here (a = 0.5, b = 10), Figure 5.6 shows that there
are two real roots—one at about t = -20, and another at about t = 5. If the
independent variable t represents time in a heat transfer problem, for example,
only the positive root has physical significance. Which root will the iterative
solution find? It is interesting that, for this equation, one formulation of t = g(t)
will find the positive root and the other will find the negative root.

Write a program that will solve this equation iteratively. Implement a
function that will iterate on a function passed through its parameter list. Define
two functions, g1 and g2, one for each formulation of t = g(t) given above, and
call the iterating function twice, once with each of these functions as an argument.
What are the roots and which definition of g(t) gives the physically significant
positive root?

Hint: This algorithm can be implemented either iteratively or recursively. It would
be good practice to do it both ways. [heat_xfr.c]

15. In astronomy, the so-called equation of time is used to account for the fact
that standard time (clock time) is based on a fictitious mean sun that rotates
around the earth at a constant rate. The motion of the real sun around the earth is
complicated by two facts: (1) the earth’s equator is tilted with respect to the

228 = 5. More About Modular Programming

ecliptic plane (the plane in which the earth rotates around the sun); (2) the earth’s
orbit around the sun is slightly elliptical rather than circular.

Thus, true solar time is different from clock time. For an observer at the
Greenwich meridian (0° longitude) whose clock reads standard time, the difference
between clock time and true solar time (clock time — solar time) E is given in
minutes by

E = (0.000075 + 0.001868cosI’ — 0.032077 sinI’
— 0.014615 cos2T" — 0.04089 sin2I")(229.18)

where I is the day angle. In radians, and ignoring leap years:
I' = 2r(day - 1)/365

Note that this value may be positive or negative. The maximum time correction

is about 16 minutes, with a maximum error of a little more than 0.5 minute.’
Write a program that asks a user to supply a day number and then

calculates and displays the equation of time correction. [sol_time.c]

Extra Credit:

(1) Write a function that calculates the day number from the calendar date (month,
day, and year). This function should account for leap years. Modify the equation
for T" so that the denominator is 365 or 366 depending on whether the year is a
leap year. Include a function that will convert the day of the year back to the
calendar date, correctly accounting for leap years. Meeus® gives the following
equation for day number n:

n - INT(W%) - k-INT(ml*zgj +d =30

where k is 1 for a leap year and 2 for a common year. The reverse calculation is:

If n < 32, then m = 1 and d = n. Otherwise,

5See Chapter 1 of Muhammad Igbal: An Introduction to Solar Radiation, Academic Press, 1983.

5See Jean Meeus, Astronomical Algorithms, Willmann-Bell, Inc., Richmond, VA, 1991.
(www.willbell.com)

5.10 Exercises = 229

9(k+n)

m = INT[+ 0.98}

d-n- 1NT(27—;“1) . k-INT(ml*;) + 30

(See also Exercise 15 in Chapter 3.)

(2) In the original problem statement, the time correction is calculated relative to
Greenwich Mean Time, at a standard time longitude of 0°. At other longitudes, an
additional correction must be made: 4 minutes per degree of longitude difference
between the observer’s standard time longitude L, and the observer’s actual
longitude L;

true solar time = 4(L, - L) + E

The standard longitudes for time zones in North America and Hawaii are given
in Table 5.4.

Table 5.4. Standard time zones for North America

Atlantic

4
Eastern 5 75°W
Central 6 90°W
Mountain 7 105°W
Pacific 8 120°W
Alaska 9 135°W
Hawaii 10 150°wW

(3) Write a function based on these equations that calculates the time of true solar
noon, i.e., the clock time at which true solar time is 12:00 noon, for a specified
day and longitude.

16. Write and test a recursive function that calculates x", where x is any real
number (positive or negative) and n is any integer (positive or neegative). Define

230 = 5. More About Modular Programming

0" = 0 and x" = x*x™". If n is negative, then X" = 1/x™. Note that for the intrinsic
function pow, the exponent is type double rather than int. As a result the pow
function will produce errors if the base is negative and the exponent is not a
whole number.

17. Write and test a recursive function that finds the greatest common divisor of
two integers m and n, using Euclid’s algorithm:

1. Find the integer remainder of m/n (m mod n).

2. If the remainder is O, then n is the largest integer divisor of both m and n.

3. If the remainder is not 0, replace m with n and n with the integer remainder
from the original division. Repeat the steps until the remainder is 0.

For example, what is the greatest common divisor of 30 and 12?

1. The integer remainder of 30/12 is 6.

2. The remainder is not 0.

3. The integer remainder of 12/6 is 0. Therefore, 6 is the largest integer divisor
of both m and n.

This algorithm implies that m is greater than n, but this is not a requirement, as
you can see by trying 12 and 30 rather than 30 and 12.

18. Write and test a recursive function that returns 1 if an integer is prime and 0
if it is not. You can take advantage of the following facts:

1. The integers 1, 2, and 3 are prime.

2. Any even integer greater than 2 is not prime.

3. If an integer has no divisor less than or equal to its square root, it must be
prime. That is, if an integer has a divisor greater than or equal to its square root,
it must also have a divisor less than or equal to its square root. Odd integers that
are perfect squares, such as 49, have two divisors, each of which is equal to the
square root.

To implement this algorithm, it is helpful the use two separate functions, one of
which has a single parameter associated with the integer to be tested. The
prototypes should look like this:

int Is_Prime(int n);
int Get_Prime(int n,int m);

where n is the integer to be tested and m is a trial divisor. Only the function
Is_Prime is called directly. Then Is_Prime conducts some preliminary tests

5.10 Exercises = 231

on n and calls Get_Prime only if the other tests cannot determine whether n is
prime. Of these two functions, only Get_Prime is called recursively.

6

Arrays

6.1 Arrays in Structured Programming

variable name corresponds to a single value and a single
memory location consisting of one or more bytes, as appropriate
for the data type of the variable. In this chapter, we will
develop a new model for data representation which allows us to manage many
pieces of related information. This important user-defined data object, called an
array, is a collection of related values organized under a single name. Although
arrays can be implemented as purely abstract entities, in science and engineering
they more often serve as implementations for vectors or representations for
tabulated data. In this section, we will develop the basic concepts of arrays by
posing a specific data management problem and describing a way of organizing
the information required to solve that problem.

Suppose you are conducting an experiment to monitor the concentration
of tropospheric ozone, the levels of which are subject to federal regulation. You
have in place equipment that produces one measurement per hour for 24 hours.
You would like to store these measurements and then write a program to analyze
the data. How should your program handle this task? One way would be to
associate a unique variable name with each ozone measurement:

Up to now, we have discussed only data objects for which a I duta ﬂﬁi o

ozonel
ozone?2
ozone3
ozoned

ozone23
ozone24
This already seems a little awkward, and it will quickly become unworkable if you
decide that what you really need is hourly measurements for an entire month.
Suddenly you’re faced with creating up to 744 variable names!

Fortunately, there’s an easier way: define a single name—ozone—and an
indexing system that can be used to access all the ozone measurements under this
single variable name. Symbolically, each measurement could be addressed like
this:
ozone (1)

2

ozone(2)

éééne(24)

D. R. Brooks, C Programming: The Essentials for Engineers and Scientists
© Springer-Verlag New York, Inc. 1999

234 = 6. Arrays

The interpretation of this system is the obvious one: ozone (1) is the
measurement at the first hour, ozone (2) is the measurement at the second hour,
and so forth. If you need more measurements, all you have to do is increase the
value of the largest index from 24 to 744 for an entire month:

ozone(1l)
ozone(2)
ozone (743)
ozone (744)

At the algorithm design level for this problem, the information is awkward to
manage even conceptually without some kind of indexing scheme. Also, as we
will see, it is difficult and impractical to implement solutions to some kinds of
programming problems without an array-based approach. Thus when you
implement this conceptual model for representing data in a programming language,
you will use an array.

One-dimensional arrays are often associated with vectors
in the physical and mathematical sense, or with vector data in
a more generalized sense, as opposed to scalar data. This is a
distinction that should be familiar from an introductory physics
course. To cite some examples, the speed of a moving object is represented by a
single number and is a scalar quantity, but the velocity of a moving object is a
vector quantity that describes both speed and direction with components in each
of three coordinates in physical space. Mass is a scalar quantity, but weight as a
consequence of the gravitational force acting on mass is a vector quantity.

The association of arrays with vectors is especially relevant to problems
in mathematics, science, and engineering, but the use of arrays in programs isn’t
restricted to applications that can be physically associated with vectors. In
programming, arrays are organizational tools for managing large amounts of
related information. You should use array notation any time you need to
manipulate collections of related values, regardless of whether that use is
associated with some kind of physical vector operation. For example, the problem
of managing ozone measurements has no physical vector significance, but it is
nonetheless a natural candidate for an array representation. You can think of the
ozone data as a vector in “data space” rather than in physical space.

It is easy to misinterpret the meaning of dimension when
that word is applied to arrays. In physics, a three-dimensional
vector might refer to the position or velocity of an object in
space because space has three dimensions.! However, such a
vector is represented by a rank one (one-dimensional) array in

'Note to physics students: This statement refers to the properties of space as described by
Newtonian mechanics.

6.2 One-Dimensional Array Implementation in C = 235

programming. To put it another way, the dimension of an array, in the
programming use of that term, does not describe the size or extemt of an
array—the number of values stored in the array—but is related along with the
extent to its shape. A vector describing position or velocity or, more abstractly,
a stream of measurements, has shape one, regardless of how many components it
contains, but a table organized into several rows and columns is most naturally
represented as an array of shape (rank) two, regardless of how many rows and
columns it has.

You could represent monthly ozone data with a one-dimensional array of
size 744. However, in terms of organizing this kind of information, it makes more
sense to define a rank two array—essentially, a table of values. One index—from
an implementation point of view, it won’t matter which one—will represent a day
of the month and the other will represent an hour in the day. The entire array still
requires 31x24 = 744 values, but each dimension has its own extent; 31 for the
first dimension and 24 for the second. Assume the first index represents the day
and the second the hour. Then a two-dimensional (rank two) representation in an
array called ozone will look like this:

On day 1: ozone(1, 1)
ozone(1, 2)
ozone(1,24)
On day 2: ozone(2, 1)
ozone(2, 2)

ozone(2,24)

On day 31: ozone(31, 1)
ozone (31, 2)

ozone (31, 24)

As you can see from this example, the dimensionality of an array is
associated with the number of array indices required to access values in the array.
A rank two array requires two indices. Organizing the rank two ozone array so
that its first dimension represents days and its second dimension represents hours
is an arbitrary but reasonable choice. The next section will describe the
implementation of rank one arrays. We will return later to the problem of
representing ozone in a two-dimensional table with a rank two array.

6.2 One-Dimensional Array Implementation in C
In this section, we will discuss the C implementation of array concepts. Consider

the implementation of a one-dimensional array to hold 24 ozone values. Like any
other data object, an array must be declared before it can be used in a program:

236 m 6. Arrays

float ozone[24];

What can we learn from this single statement? First, as a matter of good
programming style,

1ld be

of

For the ozone example, a name such as ozone makes sense both for algorithm
design and for the implementation. There is no justification for using an
abbreviated or meaningless name for a physical quantity, although we will often
use a short name such as A when we are discussing or using arrays in the abstract.

The number in brackets following the array name defines its size, or
extent.

The extent of an array can be declared with the aid of a #define directive:

#define MAX 24
float ozone[MAX];

In general, this is better programming style than the previous declaration, as it
makes references to the maximum number of values an array can hold, which
often appear in several places in a program, easy to modify.

A value in an array is called an array element. The
array elements are related in the organizational sense. In
addition, as a matter of implementation,

As indicated in the declaration statement, each of the 24 elements of the ozone
array is a type £1loat number. Array elements can have any defined data type,
including any of C’s intrinsic types and, as we will see in Chapter 7, user-defined
data types.

Previously in this text, we have generally associated the values of physical
quantities with type double real numbers. We will sometimes make exceptions
to this choice when we use arrays. Why? Because arrays can occupy a lot of space
in memory, and it is sometimes reasonable to conserve that space by using a data
type that requires no more bytes per element than necessary.

It is important to realize that the declared extent of an array represents the
maximum number of values an array can hold. It is not necessary to use all of the

6.2 One-Dimensional Array Implementation in C = 237

elements. When arrays are used in programs that process data from external
sources, is it often true that the actual number of values that must be processed
is unknown at the time the code is written. Thus, the working size of an array
may be significantly smaller than its declared size.

Elements in an array must be given values one at a time; there are no
operations in C that apply to an array object as a whole.? Usually, it is a good idea
to initialize all the elements in an array because it is a mistake, at least as a matter
of programming style, to use an uninitialized array element on the right side of
an assignment operator, just as this is a mistake for scalar variables. Again, it is
possible to distinguish between the declared extent of an array and its working
size. Unused elements can simply be ignored and need never be given a value; it
is of no consequence that declared space is wasted if the working size of the array
is smaller than its extent.

Later in this chapter, there are several examples showing how to assign
values to array elements. However, we will demonstrate here how to initialize an
array’s elements as part of its declaration:

float al[l={1.1,3.7,4.4};

In this statement, the square brackets that specify the extent of the array are
empty, and its size is inferred from the number of values appearing within curly
brackets. Although this is not a very practical strategy for large arrays, it can be
useful in some circumstances—for example, in programs that process three-
dimensional physical vectors with only three components.

Now let’s see how to access the values in an array. Assume we have
already given a value to each element in a one-dimensional array of extent 10, and
that we now wish to display those values.

int i;

float A[10];

for (1=0; 1<10; i++)
printf("$f\n",A[i]);

The loop counter variable i serves as an array index for
accessing the values in A. Note that i takes values in the range
0-9 rather than 1-10. This is because

*There is no inherent reason why a programming language cannot implement operations that can
be applied to entire arrays. Fortran 90, for example, contains many such operations.

238 = 6. Arrays

In terms of this important rule, C differs from other languages such as Fortran and
Pascal, in which you may select values for both the upper and lower value of an
array index. In the ozone example discussed earlier in this chapter, the natural
mathematical notation for the fourth measurement in the day is ozone(4), or
ozone,. In C, however, the fourth measurement in a one-dimensional array holding
ozone measurements would be accessed as ozone [3] because the array index
values for the first four measurements are 0, 1, 2, and 3, rather than 1, 2, 3, and
4,

Another difference between C’s array notation and a mathematical notation
that might use parentheses or subscripts is that

Thus, the mathematical notation A(i) or A, is implemented in C as A[i], or
A[i-1] if you consider the mathematical index as starting at 1 rather than O (so
i-1=0 when i=1). In a two-dimensional representation of ozone
measurements, the second measurement on the second day is accessed in C by
ozone[1][1] and not ozone[2] [2]. Note that the notation ozone[1, 1]
is meaningless to C and will generate a syntax error because each dimension
needs its own pair of brackets.

The differences between how arrays are usually notated in mathematics,
or how you express positions in a one- or two-dimensional table, and C’s array
notation are easy to forget; consequently, a great deal of care is required when you
write C programs that use arrays. Using parentheses rather than brackets for array
indices and forgetting to enclose a reference to each dimension in its own pair of
brackets are common mistakes that generate syntax errors. These mistakes are
relatively easy to detect and fix.

On the other hand, using an inappropriate array element in a program will
cause problems with your program that can be very difficult to detect because

Attempts to access values in an array which lie
outside the declared limits are called array
boundary violations. An array boundary violation
will go undetected at compile time and may not produce an obvious error at run
time. The results of such violations range from the obvious, such as crashing your
computer system, to the subtle and mostly undetectable. The former is the best
kind of violation with respect to the integrity of your computer program and the
latter is the worst. There is no strategy for avoiding array boundary violations

6.2 One-Dimensional Array Implementation in C = 239

other than being careful when you write code. The inability to detect array
boundary violations is a serious deficiency in the design of C that sets it apart
from other languages such as Fortran and Pascal.’

When you are using arrays, it is important to distinguish between the data
type of the values held in the array and the data type of the array indices used to
access those values. The elements of an array can have any data type—they are
type float real numbers in the ozone array—but

It is important to remember that the data type of an array index and the data type
of its elements need not be, and generally are not, related.

In a more general sense, array indices must be ordinal because the indices
must provide a means of one-to-one labelling for the elements of an array. Hence
it makes no sense to consider a real number index for an array. However, in C,
the restriction to integer indices has one not-so-obvious exception: you can use
characters for array indices because C will perform an implicit type cast. Thus, as
long as x has a declared size of at least 66, the references x ['A'] and x[65]
are equivalent because the uppercase letter A occupies position 65 in the ASCII
collating sequence; that is, its value typecast to int is 65.

Especially in science and engineering, arrays are often used to process data
from an external source. Here is a simple generic data processing problem that
will illustrate the basics of using arrays in C:

Read measurements from a file. Calculate the average of all
measurements. Display all measurements greater than or equal to the
average.

In designing a solution to this problem, it’s important to realize that only
the requirement to display values greater than or equal to the average of all
measurements suggests the use of an array. The average can be calculated on the
fly, as your program reads through the data file. However, the code to display
only some measurements requires that all the measurements be accessed again;
your program can’t decide which measurements to display until all of them have
been processed.

*One could argue that this deficiency in C renders it unsuitable for use in scientific and engineering
programming. Obviously, this is an argument that has fallen on deaf ears.

240 = 6. Arrays

One solution to this problem is to close and reopen the original file, or
rewind the file back to the beginning’ and read through it again. This is an
unappealing solution because file I/O is slow compared to operations that take
place in memory. A better idea is to store the values in an array so they can be
manipulated in memory. In general, this is a much more flexible approach because
it removes some restrictions that apply to sequential access (text) files. When data
are stored in an array, you can access values in any order and alter them simply
by reassigning them. In the text file implementation we have used so far in this
text, values are accessible only in sequence, and you cannot read and write values
in the file at the same time because sequential access text files are opened as
either read-only or write-only.

Program P-6.1 shows how to use an array to implement a solution to the
problem of displaying measurements greater than or equal to the average of all
measurements. It uses data file arrays.dat.

P-6.1 [averages.c]

/* A typical array-based problem. */
#include <stdio.h>

#define FILENAME '"arrays.dat"
#define MAX_SIZE 20

int main(void)

{
float x[MAX_SIZE],avg;
int n=0,status,i;
FILE *infile;

infile=fopen (FILENAME, "r") ;
while (1) {
status=fscanf (infile, "%f",&x[n]);
if (status == EOF) break;
avg+=x[n];
printf("%1i %f\n",n,x[n]);
Nn++;
}
fclose(infile);
printf ("There are %i values.\n",n);
avg/=(double)n;
printf ("The average value is %f\n',avg);
printf ("Values >= average:\n'");
for (1=0; i<n; i++)
if (x[i] »>= avg) printf("%i %f\n",i+1,x[1i]);
return 0;

“We haven’t discussed how to rewind a file, but you can look up the rewind function in a C
reference manual. The word is related to earlier computers in which information was stored on
magnetic tapes that literally had to be rewound to return to the beginning of a file.

6.2 One-Dimensional Array Implementation in C = 241

Running P-6.1

Remember that in C, there is no special keyword to use in a data
declaration for an array. Space for the array is allocated by including it in a
declaration statement with the data type of its elements and specifying the
maximum number of elements in brackets. Because problem specifications can
change, it is often convenient, but not required as a matter of syntax, to define the
maximum number of elements as a constant, as has been done in P-6.1 with
MAX_STIZE. Then, if the maximum size of the array needs to be changed, the
change can be made in just one place in the source code.

A crucial point about C arrays is that they use
static allocation. This means that the maximum number of
elements in an array is set at the time the source code is
compiled. As a consequence,

In P-6.1, this means that the data file averages.dat must contain no
more than 20 values. Actually, the file should contain no more than 19 values.
Why? Consider the operation of the while. .. loop when MAX SIZE equals 20
and averages.dat contains 20 values. Suppose the loop has processed all 20
values. When the fscanf function tries to read another value, it encounters an
end-of-file mark. At that time, the current value of n is 20, so £scanf will be
trying to read a value for x[20]. However, the element x[20] doesn't exist
because the array x has been allocated only 20 locations, for indices 0 through 19.
Even though, in this example, the program encounters an end-of-file mark and

242 = 6. Arrays

never actually tries to write a value into element x[20], it is better programming
style in general to assume that

In P-6.1, the array elements are declared as type float, rather than
double, which we have usually preferred for physical quantities. This isn’t
essential, but it takes into account the fact that the space set aside for arrays in C
implementations is limited, and type float variables may take less space than
type double variables.

It’s important to understand the statement

for (i=0; i<n; 1++)

used to display values at the end of P-6.1. When the while. .. loop terminates
after encountering an end-of-file mark, n has a value equal to the total number of
values found in the file. This value is the working size of the array, and it must
never be larger than the declared array extent. The for. .. loop initializes i to
0, and it executes only as long as 1 is less than n. That is, the value of the array
index takes values in the range 0—(n ~ 1), as is appropriate.

It is very easy to make indexing errors when you’re manipulating arrays.
For example, replacing the for. .. loop statement in P-6.1 with

for (i=1; i <= n; i++);

probably doesn’t look unreasonable, and it certainly won’t generate a compile-time
or run-time error message. However, this loop will start with the second array
element (index 1), and it will attempt to display element x [n]. In P-6.1, element
x[n] has not been assigned a value. If n equals MAX_SIZE, the element x[n]
doesn’t even exist. The former situation is an algorithm design error. The latter
situation is an implementation error that results in an array boundary violation
because the array reference lies outside the allowed range of indices, which must
be in the range 0—(MAX_SIZE — 1).

The code in P-6.1 is important because it serves as a template for how to
avoid logical errors and array boundary violations in this very common data
processing situation. Remember that an array boundary violation does not
automatically or immediately cause your program to crash. It simply forces your
program to access memory locations that lie outside the memory space allocated
for the array. Your program will certainly be willing to read from an unintended
location, with unknown consequences. If you try to write information in such a

6.3 Using Arrays in Function Calls = 243

forbidden location, by assigning a value to a nonexistent array element, the
consequences can include crashing your computer system.

Finally, note that when values are read into the elements of arrays
containing numerical or character (as opposed to string) elements, as in the
statement

fscanf (infile, "%f",&x[1]);

the address-of operator must be used to reference the address of that element, just
as this operator is required when scalar values are read. This makes sense because
each element of an array is, in fact, just a scalar quantity. It is only the array
entity itself that is no longer a scalar quantity.

Of course, there are ways to assign array elements other than by reading
them directly from a data file. Array elements can appear on the left side of an
assignment operator just as scalar variables can. The statements

are all reasonable, assuming appropriate declarations. Variable n is probably an
integer rather than a character. Variable c could be either an integer or a character
that will be type cast to an integer; if ¢ has the value 'A', the statement would
reference element x[0].

As noted earlier in this chapter, one thing you can’t do in C is assign a
value to an entire array with a single statement. It is often required to initialize
all the elements of an array before that array is used in a program. This code,
which appears to be a temptingly simple way to initialize array elements, makes
no sense and will generate a compilation error:

float x[10];
x=0.; /* Makes no sense! */

6.3 Using Arrays in Function Calls

Arrays can appear in function argument and parameter lists, but there are some
important new rules to learn. It is straightforward to use array elements as
arguments in calls to functions, as opposed to an entire array, because array
elements are treated just like scalar variables. Indeed, when an array element is
passed by value as an argument in a function call, the function has no way of
distinguishing between that value and a scalar variable because the value of the
array element is copied into a temporary location. Similarly, when a function
performs calculations on output quantities by modifying their memory locations

244 = 6, Arrays

through pointers, as discussed in Chapter 5, the function has no way of knowing
whether the location it is asked to modify is associated with a scalar variable or
an array element.

The new rules apply to including an entire array in a function’s parameter
list. The syntax for an array parameter is

data_type array_name|]

The empty brackets, which are required, are used to indicate that the parameter
is an entire array and not just a simple variable. The extent of the array is not
given in the parameter list. This is because

This is an important difference between the treatment of arrays and simple
variables when they are passed to functions. When a scalar variable is passed as
an input argument to a function, it is passed by value. That is, the function
allocates new memory space and copies the value of the argument into this newly
allocated space. Thus the function works with its own local copy of the variable
and not with the value in the original memory location.

However, this information flow model does not apply to arrays passed as
arguments. Instead,

This is true regardless of whether, in the algorithm design sense, you think of the
array as input or output. The significant consequence of how C treats arrays
passed to functions is:

This treatment of arrays, as pass-by-reference parameters, isn’t at all obvious at
the source code level, where the symbolic names used to identify arrays make
them look just like scalar variables.

The fact that an array isn’t treated strictly as input to a C function raises
the possibility that unwanted changes can be made to the contents of an array. It
is basically up to the programmer to make sure this doesn’t happen. One way is

6.3 Using Arrays in Function Calls = 245

to include the const keyword prior to the array type declaration in the parameter
list: const int A[] rather than int A[]. Using this keyword doesn’t alter
the fact that arrays are passed by reference (that is, that the function still has
access to the original memory locations in the array), but it does allow the
compiler to produce executable code that will prevent changes to the contents of
the array.

P-6.2 shows how to pass an array to a function. It uses the same data file,
arrays.dat, as P-6.1. The function ArrayModify modifies the array
elements by multiplying each array element by -1.

P-6.2 [arrays2.c]

/* Passing arrays to functions. */
#include <stdio.h>
#define MAX_SIZE 10

void ArrayModify (double all]);

void main ()

{
int i;
double x[MAX_STIZE];
FILE *infile;

infile=fopen("arrays.dat", "r");

for (1=0;1<MAX_SIZE;i+=1)

{
fscanf (infile, "%$1f",&x[1]);
printf("3sd %1lf\n",1i,x[i]);

}

fclose(infile);

ArrayModify (x) ;

for (i=0; 1i<MAX_SIZE; i+=1)

printf('sd %1f\n",i,x[i]);

void ArrayModify (double al])
{

int 1i;

for (i=0; 1 < MAX_SIZE; 1i+=1)
{
alil=-alil;
printf("sd %1f\n",i,af1l);

Because of the way C treats arrays, it is also possible to call ArrayModify like
this:

246 w 6. Arrays

ArrayModify (&x[0]);

This use of the address-of operator is equivalent to passing the entire array
because

To put it another way, what the function gets is a pointer to the first element in
the array, which is equivalent to a pointer to the entire array. We will avoid using
this address-of syntax in order not to confuse passing an entire array with passing
just one element of an array to be treated as output from a function, which we
may also wish to do.

Program P-6.3 gives another example of using arrays. In this case, the
program must read the following external data file (planets.dat) containing

data about the sun and the planets:

Name Dia (km) Distance (1046 km)
Sun 1302000 0

Mercury 4878 57.9

Venus 12102 108

Earth 12760 150

Mars 6786 228

Jupiter 142800 778
Saturn 120660 1427

Uranus 52400 2870
Neptune 50460 4500
Pluto 2200 5900

These data will be stored in three parallel arrays, which
means that a particular index in each array must always be
associated with the same planet. For example, the third
element (index 2 in C) of the name, diameter, and distance arrays must refer to
the planet Venus.

Even though it is easy to determine just by inspection that this file contains
10 data records, the code will treat it as a file of unknown length and must
therefore look for the end-of-file mark. This kind of code is applicable to many
programming problems, and it should be studied carefully. The program first uses
fgets to read the header line in the data file and then, inside the loop, uses
fscanf to read the data records. It uses status, the return value from
fscanf, to look for the end-of-file mark.

P-6.3 [planets2.c]

#include <stdio.h>
#define NAME_LENGTH 8

void main ()

6.3 Using Arrays in Function Calls = 247

{
FILE *InFile;
double distance[1l1l],diameter[11];
char name[NAME_LENGTH] [11], one_line(81];
char *line_ptr;
int index, status;
if((InFile=fopen{"planets.dat","rt")) != NULL)
{
printf ("Opening file...\n");
line_ptr=fgets(one_line,sizeof (one_line),InFile);
index=0;
while (1)
{
status=fscanf (InFile, "%s %1f %1f",name[index],
&distance[index], &diameter [index]) ;
if (status == EOF) break;
printf (" (%21) %-8s %10.01f %10.11f\n", index,name[index],
distance[index],diameter[index]) ;
index+=1;
}
printf("done...\n");
}
else printf("Trouble opening file...\n");
fclose (InFile);
}
Running P-6.3

Here’s another example. Consider the basic statistics required to describe
a set of measurements, the average m and standard deviation s, defined as

n n n 2
pR Yx - | Xx|/m
_ A s i1

m =
n n-1

248 w 6. Arrays

The n — 1 (rather than n) in the denominator of the expression for s indicates that
the statistics are for a sample taken from a presumably normal population whose
true statistics, usually represented by p and o, are unknown. That is, these are
“sample statistics” rather than “population statistics,” and they are normally the
correct ones to use in experimental work. The sample standard deviation is greater
than the population standard deviation and takes into account the fact that, when
taking measurements of a physical quantity, the population statistics for that
quantity are not known because they require an infinite number of measurements.

In P-6.4, C’s random number generator is used to create an array of
uniformly distributed numbers in the range [0,1]. It then calculates the mean and
standard deviation as though the number were normally distributed. (For
comparison, see Exercise 11 in Chapter 4, in which a pair of uniformly distributed
numbers is converted to a pair of normally distributed numbers.)

P-64 [statistc.c]

#include <stdio.h>

#include <stdlib.h> /* for random number generator */
#include <math.h>

#include <time.h> /* for seeding random number generator */
#define N_SAMPLES 100

/* function prototypes */
void get_data(double arrayl(]);

void main()

double data_array[N_SAMPLES] ;
double sum_x=0.0, sum_x2=0.0;
double average, std_dev;

int 1i;

get_data (data_array);
for (i=0; i1 < N_SAMPLES; ++1)
{
printf ("%$1f\n",data_array([i]);
sum_x=sum_x+data_array[i];
sum_x2=sum_x2+data_array([i] *data_array[i];
}
/* printf("%1f %1f %1f\n",sum_x,sum_x2, (double)N_SAMPLES); */
std_dev=sqgrt ((sum_x2-sum_x*sum_x/ (double)N_SAMPLES) /
((double)N_SAMPLES-1.0));
average=sum_x/ (double)N_SAMPLES;
printf (
"average = %$1f, standard deviation = %1f\n",std_dev, average) ;
}

void get_data(double data_arrayl[])
{
int 1i;
/* Reinitialize rand each time, using
seed from system clock.
Use 1 to get the same values every time. */
srand ((unsigned) time (NULL)) ;

6.3 Using Arrays in Function Calls = 249

for (i=0; 1 < N_SAMPLES; ++1)
data_array[i]=(double)rand()/ (double)RAND_MAX;

Running P-6.4

Problem Discussion

Program P-6.4 is a straightforward application of arrays. It is of particular
interest because it shows how to use C’s rand function to generate an array of
pseudorandom real numbers uniformly distributed in the range [0,1]. If you have
forgotten how the random number generator works, refer to the application in
Chapter 4, Section 4.5.5. Don’t forget to use an explicit type cast for either the
numerator or denominator, or both, in this calculation. Otherwise, the integer
division will be truncated to O.

Typically for random number generators implemented as part of a
programming language, the algorithm must be initialized (seeded) with a single
random value that serves as the starting point in order to avoid producing the
same sequence of pseudorandom numbers every time the program runs. In this
code, the time library provides access to the system clock. A “tick” from this
clock, extracted while the program is running, is essentially a random integer that
can be used as the argument for srand, the function that seeds rand. Not all
random number generating algorithms perform adequately in the statistical sense,
so it may be necessary to test the randomness of the resulting sequence for certain
kinds of applications. However, for any program encountered in an introductory
programming course, you may assume that rand produces integers that really are
random.

As noted in the comments in P-6.4, you should include the stdlib.h
header file to use C’s random number generator and the time.h header file to
access the system clock.

250 = 6. Arrays

6.4 Multidimensional Arrays

For the ozone problem discussed in Section 6.1, it was suggested that the natural
way to represent the ozone data was with a rank two array in which one
dimension represented days and the other represented hours. The declaration of
multidimensional arrays is straightforward:

data_type array_namel[first extent] [second extent][...]

The dimension for each rank is enclosed in brackets. The ANSI C standard

requires that a compiler support at least rank six arrays. However, it is unlikely

that you will need to use more than rank three arrays, one reason is that

multidimensional arrays can occupy a lot of memory. For example, the array

A[10]1[10]1[10]1[10] requires 10,000 memory locations. Some C compilers

will not support arrays of this size, even if they seem necessary for the algorithm.
For the ozone problem, the array could be declared like this:

#define MAX_DAYS 31
#define MAX_HOURS 24

int ozone [MAX_DAYS] [MAX_HOURS] ;

It is always acceptable, and usually better programming style, to give the extent
value for each array dimension in a #define directive so that changes in the
extent for each array dimension are easy to modify later. In this case, you might
argue that these particular extents—the maximum number of days in a month and
the number of hours in the day—are unlikely to change. However, it is sometimes
useful to test a program that manipulates a relatively large set of data with a
smaller subset of those data, in which case it might be desirable to limit the extent
of the array dimensions to smaller values during program development.

Remember that each array dimension has its own set of brackets, so that
a reference to row 3, column 4 in array ozone must be written ozone [2] [3].
It is a common mistake to write something like ozone [row, col], especially
if you have written programs in some other language, but at least this mistake will
generate a syntax error.

Once you have learned how to define multidimensional arrays, you need
to know how to enter data into the elements of such arrays. In typical science and
engineering problems, as noted previously, data for the kinds of problems that
require the use of multidimensional arrays are often contained in external text files
that must be accessed by a program for processing. We will examine this problem
and its solution first by writing a simple demonstration program, P-6.5, to read
data into a two-dimensional array, and then by writing a program to process data
for the monthly ozone data problem discussed in Section 6.1.

6.4 Multidimensional Arrays ® 251

P-6.5 expects a data file containing 12 numbers, which will be stored in
a two-dimensional array representing a matrix of data containing three rows and
four columns. What should the data file look like? First of all, we will assume that
the data file contains just numbers. That is, there are no header lines or other text
information in the file.

The obvious way to arrange the data file is in three rows containing four
numbers each. Then the layout of the data will mirror their organization in the
program. This choice, in turn, presumably mirrors the problem the program is
intended to solve. However, it is not obvious that the nested for... loop in
P-6.5 will read such a file successfully. In a Fortran program, for example, the
corresponding loop structure and “read” command would imply that the data file
contained only one value per line. Potential problems arise because each line of
a text file contains an end-of-line mark. In Fortran, the READ statement (only
approximately the equivalent of C’s £scanf function) always reads past an end-
of-line mark, so the Fortran equivalent of the code in P-6.5 would read only one
value on a line regardless of how many values were actually present. In Pascal,
to cite another example, there are different functions (read and readln) that
can be used depending on whether you wish to read all the values on a line or just
one value. However, in C, the code in P-6.5 will work regardless of whether the
values in the data file are arranged on one or more lines. As a practical matter,
the end-of-line mark is treated by C simply as “white space” separating the last
number on one line from the first number on the next line. You can see this for
yourself by trying P-6.5 first with the file readaray.dal, which contains one
value per line, and then replacing readaray .dal with readaray.da2, which
contains the same values arranged in three lines containing four numbers each.

readaray.dal readaray.da?2
1.1 1.1 1.2 1.3 1.4
1.2 2.12.2 2.3 2.4
1.3 3.1 3.2 3.3 3.4
1.4

2.1

2.2

2.3

2.4

3.1

3.2

3.3

3.4

P-6.5 [readaray.c]

/* Demonstrate reading data into 2-D array. */

/* The data can be either one value per line (readaray.dal) or */
/* row-by-row (3 rows of 4 values each, see readaray.da2). */
#include <stdio.h>

#define N_ROWS 3

252 m 6. Arrays

#define N_COLS 4

void main()

{
FILE *infile;
float data_array([3][4];
int row,col;

infile = fopen('"readaray.dal",'r");
for (row=0; row < N_ROWS; row+=1)

for (col=0; col < N_COLS; col+=1)
{
fscanf (infile, "$f",&data_array[row] [col]);
printf ("%$5.1f",data_array[row] [col]);

}
printf("\n");
}

fclose(infile);

Running P-6.5

Program P-6.5 operates identically in either case. Note that the code in
P-6.5 assumes that the total number of values in the file is known ahead of time.
If this weren’t true, it would be necessary to include code to test for the end-of-
file, as was done in P-6.3.

Finally, note how the new-line character (\rn) is printed in a separate
statement outside the inner loop in P-6.5. Thus the data are displayed row-by-row
regardless of how they are arranged in the original data file.

Now we will return to the ozone problem. The data are contained in file
ozone.dat. The file contains two header lines that describe the contents of the
file and a third line that contains the number of days in the month. These three
lines are then followed by hourly measurements for each day in the month. We
will make two important assumptions about the records containing the hourly data:

(1) There are no missing data.
(2) The numerical values are separated by spaces only and not, for example, by
commas.

6.4 Multidimensional Arrays = 253

Program P-6.6(a) shows how to read a file containing ozone measurements
and store the values in a two-dimensional array for processing.

P-6.6(a) [ozone.c]

/* Process ozone data. */
#include <stdio.h>

#define MAX_DAYS 31

#define MAX_HOURS 24

#define FILE_NAME "ozone.dat"

void main()
{
char one_1line[100];
int day, hour, n_days;
static int ozone [MAX_DAYS] [MAX_HOURS];
FILE *infile;

infile=fopen(FILE_NAME, "r");
/* Read and print two header lines. */
(void) fgets (one_line, sizeof (one_line), infile);
printf ("%s\n",one_line);
(void) fgets (one_line,sizeof (one_line), infile);
printf("%$s\n",one_line) ;
/* Get days in month. */
fscanf (infile, "%d",&n_days) ;
printf ("There are %d days in this month.\n"',n_days);
/* Read ozone data. */
for (day=0; day < n_days; ++day)
for (hour=0; hour < MAX_HOURS; ++hour)
fscanf (infile, "%1i", &ozone[day] [hour]) ;
fclose(infile);
/* Display ozone data. */
for (day=0; day < n_days; ++day)
{
printf (" (%21i)",day+1);
for (hour=0; hour < MAX_HOURS; ++hour)
printf('%31i",ozone[day] [hour]) ;
printf("\n");
}
}

254 m 6. Arrays

Running P-6.6(a)

Remember that the indices for a C representation of these data have values
0-30 and 0-23 rather than 1-31 and 1-24. Also, note that each dimension has its
own set of brackets. This is different from the notation that you would probably
use in algorithm design. For example, you might write (30,23) to represent data
for 11pm on the 30" day of the month. However, neither (29,22) nor [29,22]
will work in C; the array indices [29] [22] represent 11pm on the 30™ of the
month.

For the compiler used to write P-6.6(a), an array of size 31 X 24 is too
large to be stored with the usual declaration. The addition of the static
keyword as part of the declaration causes the array to be stored in a different (and
presumably larger) part of memory. You can include this reserved word with any
array declaration.

The two header lines in ozone.dat are treated as strings. However,
because there are spaces in the text of the header lines, fscanf won’t work
properly because, as pointed out in the discussion of P-6.5, fscanf doesn’t read
past the end-of-line mark. Consequently, P-6.6(a) uses fgets to read the header
into the string variable one_11ine. This function will read the end-of-line mark
and will also insert a new-line character (\n) as the last character in one_1line.
(That’s why there is a blank line in the output of this program following the

6.4 Multidimensional Arrays = 255

display of each of the first two header lines.) The (void) type cast in the
fgets statements tells the compiler to ignore the return value from fgets, as
we don’t need it in this program.

The third line, which contains a single numerical value (the number of
days in the month), is read with £scanf. Finally, the nested for. .. loop and
fscanf are used to read and store the ozone data. The success of this approach
depends on the two assumptions we made about the contents of the data file. If
data were missing, or if the program had to check for extraneous characters in the
file, the code to read the file would be much more complicated!

There is an important restriction that applies to using multidimensional
arrays as parameters in functions. Consider P-6.6(b), which illustrates a
modification of P-6.6(a) in which the code required to display the ozone data is
given in a function.

P-6.6(b) [part of ozone_f.c]

void Display(int O[] [24],int n);

/* Display ozone data. */
Display(ozone,n_days) ;

}
void Display(int O[] [24],int n) {
int day, hour;

for (day=0; day < n; ++day)

{
printf (" (%21i)",day+1);
for (hour=0; hour < MAX_HOURS; ++hour)

printf("%31i"',0[day] [hour]);

printf("\n");

}

}

Only the first dimension can be left blank when a multidimensional array
appears in a function’s parameter list. In the ozone problem, this means there is
really no choice about using an array in which days is the first dimension and
hours is the second. If this order is used, the first dimension is “variable” in the
sense that it is possible in principle to rewrite the source code to expand, or even
to shrink, the ozone array to handle as many days as required to process the
available data. However, the extent of the second dimension is fixed because every
day will have 24 hours. In general, this restriction means that arrays have to be
constructed so that the potentially variable dimension comes first. This requires
careful planning when you design your algorithm.

256 = 6. Arrays

6.5 Accessing Arrays With Pointers

Section 6.3 explained that when an array is passed to a function, the function
actually gets the address of the location of the first element of the array. Or, to put
it another way, what is passed is a pointer to the first element of the array.
Although it’s possible to write programs that don’t explicitly acknowledge this
special relationship between arrays and pointers, as the programs presented so far
in this chapter have done, typical C programming style makes heavy use of
pointers. A pointer-based approach to accessing arrays is illustrated in program
P-6.7. This is a version of P-6.2 in which the name of the array (x) doesn’t appear
at all in any of the statements that assign values to the elements of the array or
display those values. Instead, the elements of the array are accessed by
manipulating the value of a pointer to the array. The pointer is declared and
initialized so that it points to the first element:

double x[MAX_SIZE];
double *ptr=x;

The initialization of ptr along with its declaration is optional. The statements

double *ptr;
ptr=x;

would have the same effect. In fact, ptr is reset to x in an assignment statement
twice later in the program. The operation of the assignment statement itself is a
little different. Previously, an assignment meant, “Evaluate the expre<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>