UNDERGRADUATE TEXTS IN COMPUTER SCIENCE

Editors
David Gries
Fred B. Schneider

Springer Science+Business Media, LLC

UNDERGRADUATE TEXTS IN COMPUTER SCIENCE

Beidler, Data Structures and Algorithms

Bergin, Data Structure Programming

Brooks, Problem Solving with Fortran 90

Brooks, C Programming: The Essentials for Engineers and Scientists
Dandamudi, Introduction to Assembly Language Programming
Grillmeyer, Exploring Computer Science with Scheme

Jalote, An Integrated Approach to Software Engineering, Second Edition
Kizza, Ethical and Social Issues in the Information Age

Kozen, Automata and Computability

Merritt and Stix, Migrating from Pascal to C++

Pearce, Programming and Meta-Programming in Scheme

Zeigler, Objects and System

David R. Brooks

C Programming:
The Essentials for
Engineers and Scientists

With 39 lllustrations

€Y Springer

David R. Brooks
Department of Mathematics
and Computer Science

Drexel University
Philadelphia, PA 19104
USA

Series Editors

David Gries

Fred B. Schneider

Department of Computer Science
Cornell University

Upson Hall

Ithaca, NY 14853-7501

USA

Library of Congress Cataloging-in-Publication Data
Brooks, David R., 1941-
C programming : the essentials for engineers and scientists /
David R. Brooks.
p. cm.— (Undergraduate texts in computer science)
Includes bibliographical references and index.
ISBN 978-1-4612-7161-1 ISBN 978-1-4612-1484-7 (eBook)
DOI 10.1007/978-1-4612-1484-7
1. C (Computer program language). 1. Title. Il Series.
QA76.73.C15B755 1998
500°.285'5133—dc21 98-31041

Printed on acid-free paper.
© 1999 Springer Science+Business Media New York

Originally published by Springer-Verlag New York, Inc. in 1999
Softcover reprint of the hardcover 1st edition 1999

All rights reserved. This work may not be translated or copied in whole or in part without the written per-

mission of the publisher (Springer Science+Business Media, LLC),

except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form
of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar

methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former
are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks

and Merchandise Marks Act, may accordingly be used freely by anyone.

Production coordinated by Robert Wexler and managed by Steven Pisano; manufacturing supervised by

Jacqui Ashri.
Photocomposed copy prepared from the author’s Word Perfect files.

987654321

ISBN 978-1-4612-7161-1

Preface

1 The Purpose of This Text

This text has been written in response to two trends that have gained considerable
momentum over the past few years. The first is the decision by many
undergraduate engineering and science departments to abandon the traditional
programming course based on the aging Fortran 77 standard. This decision is not
surprising, considering the more modern features found in languages such as
Pascal and C. However, Pascal never developed a strong following in scientific
computing, and its use is in decline. The new Fortran 90 standard defines a
powerful, modern language, but this long-overdue redesign of Fortran has come
too late to prevent many colleges and universities from switching to C. The
acceptance of C by scientists and engineers is based perhaps as. much on their
perceptions of C as an important language, which it certainly is, and on C
programming experience as a highly marketable skill, as it is on the suitability of
C for scientific computation. For whatever reason, C or its derivative C++ is now
widely taught as the first and often only programming language for undergraduates
in science and engineering.

The second trend is the evolving nature of the undergraduate engineering
curriculum. At a growing number of institutions, the traditional approach of
stressing theory and mathematics fundamentals in the early undergraduate years,
and postponing real engineering applications until later in the curriculum, has been
turned upside down. The result is a lab-intensive, tightly structured curriculum
with little time for elective courses such as programming in the early years. The
advantage of this approach is that, from the very beginning of their undergraduate
studies, engineering students spend a great deal of time participating in the
hands-on experiences that define the essential nature of engineering.

Nonetheless, many faculty and potential employers continue to believe that
learning a programming language is an important part of an engineering or science
education. Even if students never need to rely solely on their own programming
skills for solving computational problems, learning to program effectively provides
a unique opportunity to learn essential problem-solving strategies that are easily
transferable to other endeavors.

As a result of the restructuring of some engineering curricula, formal
programming courses may be delayed until after the freshman or sophomore years.
For example, students taking a course based on this text at Drexel University are
typically pre-juniors, as they are designated in Drexel’s five-year curriculum. They
have had work experiences through Drexel’s mandatory co-op program, and they
are expected to have had some significant exposure to computers, including
experience with specialized applications such as spreadsheets, statistical packages,
virtual laboratory software, or symbolic algebra software. Thus even though this
text does not assume a formal programming background, it moves quickly through

vi = Preface

introductory material by taking advantage of the fact that the intended audience
is no longer intimidated by the mechanics of using computers.

2 Decisions About Content

Even as the value of a formal programming course continues to be recognized, it
is widely conceded that, due to the pervasive availability of specialized computing
tools, such a course will no longer occupy the central position it once did in
undergraduate science and engineering curriculums. In recognition of this reality,
this text presents a problem-driven and somewhat abridged introduction to the C
programming language which will be useful to engineering and science students,
and which can be presented in a one-quarter or one-semester course.

C is a complex and sometimes obscure language that can be used for a
variety of purposes. Hence a short course aimed at a specific audience must have
limited and well-defined objectives. Within a problem-driven context, how should
these objectives be defined? I believe there are two essential considerations:

1. Engineering and science problems should be used to introduce programming
concepts based on the requirements of those problems, rather than the other way
around. As a result, even though C plays a major role as the fundamental language
underlying some operating systems and graphical interface applications, for
example, such uses of C are ignored in this text.

2. C’s interface with external sources of data should be emphasized. It is my
experience that students generally are reluctant to use a programming language
outside a course in which they are required to learn that language. If a short
course in C is to have a lasting impact as one of several tools science and
engineering students can and will use to meet their computational needs, a great
deal of practice with processing external data is necessary in order to develop the
skills required to write useful programs. Early exposure to using data in the form
of ASCII text files is especially important because C is less convenient for
manipulating text data than languages such as Fortran. Thus, more practice is
required to reach what I consider to be a useful level of proficiency.

During the one-quarter course I teach at Drexel University, I cover
Chapters 1 through 7 so that students learn these basic skills:

1. How to solve problems using top-down design and modularized code

2. How to implement the basic sequential, selection, and repetition control
structures of a procedural programming language

3. How to use C’s basic I/O functions

4. How to represent and manipulate data using arrays and structures

Preface ® wvii

This coverage leaves a little time at the end of the quarter for a brief look at one
or two applications from later chapters. A one-semester or longer course could,
of course, spend more time examining discipline-specific applications and general-
purpose numerical analysis algorithms taken from this text or elsewhere. It would
also be worthwhile to spend more time discussing pointers and their application
to dynamic memory allocation and linked structures.

3 Pedagogical Issues

In the interest of presenting an abridged course in C for science and engineering
students, I have minimized detailed discussions of programming concepts that
would be appropriate for a more intensive course taught to computer science
majors, for example. Therefore, this text attempts to teach largely through
example, by providing many complete programs. To put it another way, the text
emphasizes the how over the why of programming. At the same time, it strives
to present a general approach to solving problems and a programming style that
can be applied to other languages and also to other computing applications.

In order to gain maximum benefit from this text and its learning-by-doing
approach, students should spend as much time as possible studying the
programming examples. It is insufficient simply to read the code. Instead, students
should enter the code into their own computers (my own preference is for students
to manually type code rather than downloading it), run the programs, and try
various modifications. This is simply the only way I know to become comfortable
with the mechanical process of creating and debugging source code.

I have tried to present many of the code examples in the text as templates
for solving a particular kind of problem. It is especially important for students to
focus on recycling code from such examples into other programs. This is a skill
that requires practice because it is not always obvious which parts of a program
are specific to a particular problem and which parts can easily be transferred to
a different problem. Weekly computing labs, if offered as part of a course, are the
ideal place to practice working with code in this way.

With the advent of C++ and other object-oriented languages, it is certainly
possible to argue that a process-oriented approach to programming is old-
fashioned and needs to be replaced with a more modern object-oriented, problem-
solving model. However, I continue to believe that engineering and scientific
problem solving is inherently procedural; that is, it remains centered around
processes rather than properties. Hence, the procedural programming language
model will never be irrelevant for solving these kinds of problems.

In view of the fact that C and its derivatives are widely used for
commercial applications, it is worth commenting on the nature of the
programming examples given in this text and, by implication, the programs
students are expected to write. Commercial software applications should be

viii ® Preface

exceedingly robust in the sense that they should keep running no matter what, and
they should be as “idiot proof” as possible with respect to user input. It should be
obvious that no software developer can afford to market programs that crash,
although any user of commercial applications knows that this is apparently not as
obvious as it should be. Commercial programs should provide extensive testing
of the input supplied by the program user, and just this component of a program
can take a great deal of code. Consequently, a large percentage of the code for
commercial programs is devoted to the user interface, which is almost always
graphics-based.

In contrast, the programs in this text will be written exclusively in text
mode, mostly by the single user of that program. If such a program expects as
input a number in a specific range, it is reasonable in this context to assume that
the user will do that. If not, the program will crash or produce meaningless results.
If that happens, nothing is lost and the user simply starts over. To put it another
way, even though the design of an appropriate and robust user interface for
computer applications is an important topic in its own right, it is relatively
unimportant for a course based on this text. What is important is for students to
develop a working understanding of basic programming concepts, their
implementation in C, and their relationship to a particular class of computational
problems. In terms of user interface issues, it is sufficient for engineering and
science students in a first programming course to become proficient at choosing
appropriate representations for data and at prompting a program user to provide
just the information required to solve a problem—no more and no less—while
maintaining consistent physical units across the user-program interface.

4 The Programming Environment Used for This Text

I have used two different compilers to develop the programs in this text: an
ancient MS-DOS compiler—Microsoft QuickC—and Sun Microsystem’s cc
compiler for UNIX systems. The cc compiler resides on the computer that
provides e-mail accounts for all Drexel University students, so it has the advantage
of being widely available to students from every discipline. There are always some
students who prefer to use a different compiler, but because this text uses ANSI-
standard C and stresses straightforward rather than clever programming style, there
should be no compatibility problems. For an introductory programming course, I
can find no justification for asking students to overcome the additional learning
curve required to become proficient in the use of visual programming
environments for graphics-based operating systems such as Windows. The
extensive capabilities such environments provide for professional programmers
who develop large and complex applications is inconsistent with the goals of an
introductory course that requires writing many small standalone programs.

Preface = ix

Nonetheless, it is certainly possible for students to use such programming
environments if they wish.'

5 Succeeding at Learning a Programming Language

Finally, here is some advice to students about how to succeed in a programming
course. The first thing you need to know is what this text assumes about your
background. As noted above, you are expected to be computer literate in the sense
that you know how to use computers for word processing, e-mail, surfing the
Web, and perhaps solving some kinds of problems using applications such as
spreadsheets and database programs. Consequently, this text does not offer the
hand-holding introduction to computing that would be appropriate for neophytes;
this is an audience that has essentially disappeared from the colleges and
universities where this text is likely to be used.

If you have had some programming experience in another language, you
may find the material at the beginning of the text very simple. However, C is
sufficiently different from other languages that you will likely have a few
questions about implementation even with the early material. If you have never
done any computer programming, you may find the early material too terse and
insufficiently detailed. If so, you should ask your instructor for additional help as
soon as possible so you do not fall behind. You may also wish to study other
introductory programming texts that present material in a different way; my
experience is that good students rarely depend only on the assigned text.

My students often tell me that programming courses take more hours per
week, per credit hour, than any other course. This may simply be because it is
more obvious how to determine whether you have mastered the material; either
your program works properly or it doesn't! One way to minimize the work load
is to learn how to manage your time effectively. The basic rule is never to get
behind on programming assignments. Nothing is more frustrating than getting
stuck on a minor programming detail in the middle of the night before an
assignment is due. You can avoid this situation by starting early, finding out
where the difficulties are, and getting help as soon as possible. If your instructor
allows it, you should discuss programming problems with your peers; my opinion
is that it is unfair to ask students to learn a programming language on their own
without extensive interaction with their peers.

The first and best place to look for help on programming assignments
should be in your instructor’s office. Many students, especially those who have

'One programming environment used in my department at Drexel requires nearly a minute
to recompile and execute even a very short program. As beginning programmers need to write
many short programs and tend to make many mistakes, this environment is not an efficient
teaching or learning tool.

X ® Preface

been very successful in high school, apparently believe that asking for help is a
sign of weakness, to be done only as a last resort. However, in my courses, I
expect some, if not most, students to need help to complete at least some of the
programming assignments. The sooner you accept this fact and learn to view it as
a part of the learning process, as essential as going to class and taking tests, the
more successful you will be.

Finally, you must understand that it is as impossible to learn how to write
programs just by reading about programming as it is to learn to speak Russian by
reading about Russia. Although careful study of this or any other text is obviously
a good idea, the only way to succeed at programming is to write code—lots of
code. Only in this way can you develop your skills, determine what parts of the
language you don’t yet understand, and become proficient at finding and
correcting the inevitable errors that creep into your programs.

For most of you, it will not be enough just to write the programs that are
required for homework. In this text, I have tried to make homework exercises
interesting by dealing with real computational problems. As a result, the problems
themselves may require at least as much thought as the source code. In order to
solve such problems as efficiently as possible, you need to devote some time to
writing many short programs just to make sure you understand details of
implementation and syntax. If you don’t do that during the regular study hours
you devote to a course based on this text, writing homework programs may be a
very difficult and discouraging task, and you will never develop the proficiency
you need to concentrate on solving problems rather than on language
implementation details.

6 Contacting the Author

I look forward to hearing about your experiences with this text. You can contact
me at dbrooks @mcs.drexel.edu. You can find source code and data files for all
complete programs included in the text, and data files required for the exercises,
at http://www.springer-ny.com/supplements/dbrooks. Instructors can contact me
directly to obtain source code for my solutions to the programming exercises. The
names of the source code files are given in brackets at the end of each exercise.

7 Suggested Supplementary Material

I have presented in this text only what I consider to be the most relevant elements
of the C language for students of science and engineering. However, it is
inevitable that students and instructors will have questions about C that are not
addressed in this text; neither I nor any other textbook author can possibly

Preface ®» xi

anticipate all those questions. At least part of the solution is to supplement this
text with a language reference manual. The one I require for my courses is:

Herbert Schildt, C/C++ Programmer’s Reference, Osborne McGraw-Hill, 1997,
ISBN 0-07-882367-6.

8 Acknowledgments

I would like to thank my students, who collectively have lived through several
preliminary versions of this manuscript, and especially my partner, Susan
Caughlan, for her editorial oversight and for her many allowances for the time
required to complete this project.

David R. Brooks
Drexel University

Contents

Prefacec.iiiiiiiiiiiiiiiiiiiiiinersnenenresnnnes v
1 The Purpose of This Text v
2 Decisions About Content, vi
3 Pedagogical Issues vii
4 The Programming Environment Used for This Text viii
5 Succeeding at Learning a Programming Language ix
6 Contacting the Author X
7 Suggested Supplementary Material X
8 Acknowledgments xi

1 Programming Preliminaries i, 1
1.1 A Five-Step Problem-Solving Process 1

1.1.1 Step 1: Define the Problem 1
1.1.2 Step 2: Outline a Solution 2
1.1.3 Step 3: Design an Algorithm 2
1.1.4 Step 4: Convert the Algorithm Into a Program 3
1.1.5 Step 5: Verify the Operation of the Program 3
1.2 Defining a Pseudocode Language for Algorithm Development . . . 3
1.3 Organizing Pseudocode Into a Program 9
14 Examples 10
1.5 What Is the Point of Programming? 19
1.6 Your First CProgram 20

2 The Basicsof CProgrammingcc0ieieveraneeanns 23
2.1 CProgram Layoutcuiivininnunno.. 23
22 BasicInputand Output 26

2.2.1 Keyboard Input and Monitor Output 26
Reading and Displaying Numbers 26

Reading and Displaying Characters and Strings
of Characters 31

Reading Values With Leading Zeros and

Nonblank Separators 33
222File VO .. e 35
2231/0ORedirection, 37
2.3 Reading External Text Files of Unknown Length 38
2.4 Reading a File One Character ata Time 46
25 Applications 48
2.5.1 Maximum Deflection of a Beam Under Load 48
2.5.2 Relativistic Mass and Speed of an Electron 51
2.6 Debugging Your Programs 55
2.6.1 Compile-Time Errors 55
262Run-Time Errors 57

27 EXEICISES . . o v it e e e e 58

xiv = Contents

3 Data Types, Operators, and Functions00 71
3.1 Specifying and Using Data Types 71
32 0Pperators 75
33Type Casting 79
34 Intrinsic Functions 82
3.5 Simple User-Defined Functions 87
3.6 Applications 96

3.6.1 Refractionof Light 96
3.6.2 Inverse Hyperbolic Functions 100
3.7 Debugging Your Programs 105
3.7.1 Problems With Data Types and Casting 105
3.7.2 Problems With Intrinsic Functions 106
3.7.3 Problems With User-Defined Functions 107
BB EXErciseso 107

4 Selection and Repetition Constructscc00viveeenns 121
4.1 Relational and Logical Operators 121
4.2 Selection (IF...THEN...ELSE...) Constructs 123
4.3 Choosing Alternatives From a List of Possibilities 128
4.4 Repetition (LOOP...) Constructs 131

4.4.1 Count-Controlled Loops 131
4.4.2 Conditional Loops 136
Pre-TestLoops 137
Post-Test Loops 138
Loops for Input Validation 142
4.5 Applications 143
4.5.1 Solving the Quadratic Equation 143
4.5.2 Maximum Deflection of a Beam With
Various Support/Loading Systems 145
4.53 Refraction of Light 148
4.5.4 Oscillating Frequency of an LC Circuit 151
4.5.5 Calculating Radiation Exposures for a Materials
Testing Experiment 154
4.6 Debugging Your Programs 158
4T EXEICISES « v v v v et et e e e e 159

5 More About Modular Programmingcccoveeeeeens 177
5.1 Defining Information Interfacesin C 177
5.2 Menu-Driven Programs 184
5.3 More About Function Interfaces 188
54 Recursive Functions 190
5.5 Using Prewritten Code Modules 193

5.6 Using Functions as Arguments and Parameters 196

Contents XV
5.7 Passing Arguments to the main Function 199
5.8 Applications 202
5.8.1 The Quadratic Equation Revisited 202
5.8.2 Finding Prime Numbers 204
5.83 The Towersof Hanoi 206
5.8.4 Trapezoidal Rule Integration 210
5.9 Debugging Your Programs 213
5.9.1 Passing Multiple Outputs Through Parameter Lists .. 213
5.9.2 Recursive Functions 213
593 Reusable Code 214
STOEXEICISES . . o vt v vttt et 214
6 ATTAYS ..t iiieveennoronronerseasssassosesassnsoaenons 233
6.1 Arrays in Structured Programming 233
6.2 One-Dimensional Array ImplementationinC 235
6.3 Using Arrays in Function Calls 243
6.4 Multidimensional Arrayst 250
6.5 Accessing Arrays With Pointers 256
6.6 More About Strings 259
6.6.1 Strings as Arrays i 259
6.6.2 String Functions 261
6.7 Applications e 262
6.7.1 Cellular Automata and Sierpinski Triangles 262
6.7.2 Probability Analysis for Quality Control of
Manufacturing Processes 267
6.7.3 Parsing a String Containing an Unknown
Number of Numerical Values 272
6.8 Debugging Your Programs 274
6.9 EXEICISES oo v i 275
7 User-Defined DataObjectscc0iiveirenennenennss 287
7.1 Creating User-Defined Data Objects 287
7.2 Arrays of Structures e 290
7.3 Functions With Structures as Parameters and Data Types 293
7.4 Applications 295
7.4.1 Finding the Perimeter and Area of a Plot of Land ... 295
7.4.2 A Set of Functions to Perform Operations on
Complex Numbers 298
7.4.3 Analyzing Data From a Datalogger 302
7.5 Debugging Your Programs 307
TOEXEICISES oot 308

xvi m Contents

8 Searching and Sorting Algorithms 313
8.1 Introduction i 313
8.2 Searching Algorithms 314

8.2.1 Linear Searches 315
822 Binary Search 321
8.2.3 Choosing a Searching Algorithm 327
8.3 Sorting Algorithms 328
8.3.1 Selection Sort 328
832 Imsertion Sort 332
8.3.3 The Recursive Quicksort Algorithm 334
8.3.4 Efficiency of Sorting Algorithms 341
8.5 Application: Merging Sorted Lists 342
8.6 Debugging Your Programs 348
8.7 EXCICISES . o v v v vttt et e e 348

9 Basic Statistics and Numerical Analysisc.cu... 355
9.0 Introductiont 355
9.2 Basic Descriptive Statistics 356

9.2.1 The Sample Mean and Standard Deviation 356
9.2.2 Linear Regression and the Linear Correlation
Coefficient 358
9.2.3 Application: Analyzing Wind Speed Data 366
9.3 Numerical Differentiation 371
9.3.1 Newton’s and Stirling’s Formulas 371
9.3.2 Application: Estimating the Speed of a Falling
Object ...t 372
9.4 Numerical Integration 376
9.4.1 Polynomial Approximation Methods 376
9.4.2 Application: Evaluating the Gamma Function 380
9.5 Solving Systems of Linear Equations 384
9.5.1 Linear Equations and Gaussian Elimination 384
9.5.2 Application: Current Flow in a DC Circuit With
Multiple Resistive Branches 392
9.6 Finding the Roots of Equations 393
9.7 Numerical Solutions to Differential Equations 400
9.7.1 Motion of a Damped Mass and Spring 400
9.7.2 Application: Current Flow in a Series LRC Circuit .. 403
0.8 EXCICISES . . o v vt et ettt e e 411

10 Binary Files, Random Access, and Dynamic Allocation 421

10.1 Binary and Random Access Files 421

10.1.1 Random Access File Concepts 421

Contents = xvii

10.1.2 Implementing Binary Files 422

File Access Modes 424

I/O for Binary Files 426

Random Access to Binary Files 428

10.2 Dynamic Allocation and Linked Lists 430

10.2.1 The Concept of Dynamic Allocation 430

10.2.2 Dynamically Allocated Arrays 430

10.2.3 Dynamically Allocated Linked Lists 433

Data Declarations 440

Function Prototypes 440

Functionmainc.iiinnnn.n 441

Creating the List 441

Accessing Nodes in the List 442

Adding and Deleting Nodes 442

10.3 Queues and Stacks i, 444

10.3.1 Implementing Queues 444

10.3.2 Implementing Stacks 446

10.4 Application: Managing Data From Remote Instruments 447

105 Exercises oo v 454

ApPendiCesttt ittt ettt it 457
Appendix 1: Table of ASCII Characters for

Windows/DOS-Based PCs 457

Appendix 2: Program Listings by Chapter 459

Appendix 3: Glossary e 463

1

Programming Preliminaries

1.1 A Five-Step Problem-Solving Process

There are two basic skills you must develop while learning to write programs in
C. Obviously, you must learn details of the C programming language. However,
it is equally important to develop a consistent strategy for solving computational
problems that is independent of the language in which the solutions are
implemented. Thus a course based on this text is as much about learning how to
solve typical science and engineering problems with computers as it is about C per
se. The skills you develop will be applicable when you learn other languages, or
even when you use other kinds of problem-solving applications such as
spreadsheets and symbolic algebra software.

For the purpose of developing a consistent problem-solving strategy, this
text will follow this five-step procedure:

Define the problem.

Outline a solution.

Convert the algorithm into a program.

3 Design an algorithm.

Verify the operation of the program.

1.1.1 Step 1: Define the Problem

In the real world, it is often difficult to formulate problems in a useful way in the
context of the range of available problem-solving tools. In fact, defining a problem
appropriately is often a large part of the solution to that problem.

D. R. Brooks, C Programming: The Essentials for Engineers and Scientists
© Springer-Verlag New York, Inc. 1999

2 = 1. Programming Preliminaries

In an introductory course, you can assume that problems have been
formulated correctly. However, instructors can explain problems poorly or make
mistakes! Thus the first step is to make sure you understand the problem and can
restate it in your own words. It’s not possible to solve a problem you don’t
understand. Common mistakes that students make include solving only part of a
problem or providing a solution that doesn’t address the problem as stated. These
kinds of mistakes have nothing to do with programming per se.

1.1.2 Step 2: Outline a Solution

The second step is very informal, but important. You should focus on obtaining
information needed to solve the problem and especially on the nature of the
required input and output. Assignments in this course should provide you with
most of this information. This is so you can concentrate more on the programming
parts of the solution. However, you should be aware that many students have
difficulty thinking about solving problems in programming terms; that is, in terms
of specifying input to a procedure that processes information and returns output.

1.1.3 Step 3: Design an Algorithm

The third step is critical to writing successful programs. In a
programming context, an algorithm’ consists of specific steps to
be followed in sequence to attain a clearly defined goal. This
may seem obvious, but a common problem students encounter when they begin
to write programs is that the algorithm on which the program is based, either as
explicitly written or implicitly assumed, makes no sens

To the extent possible, algorithms should :
be language independent. In some cases, the
problem may be simpler to solve in one language
than another, so the algorithm may depend
somewhat on the capabilities of the language that will eventually be used to write
the program. More typically, however, problems in this course can be solved with
equal ease using any procedural language—C just happens to be the language of
choice. The purpose of learning to write algorithms is not only to help you
organize your thoughts about a particular problem, but also to introduce you to the
concepts of procedural programming, with the understanding that these concepts
apply to all procedural languages, not just to C.

'Words appearing in the text in bold italics are defined in the glossary (Appendix 3).

1.2 Defining a Pseudocode Language for Algorithm Development = 3

1.1.4 Step 4: Convert the Algorithm Into a Program

The fourth step in the process is the only language-specific step, in which you will
translate your algorithm into a C program. We will discuss this step in great detail
in subsequent chapters.

1.1.5 Step 5: Verify the Operation of the Program

The fifth step—verifying your program’s operation—is often overlooked.
Beginning programmers can be so overjoyed at writing a program without syntax
errors that they assume the answers the program produces must be right. This is
a dangerous assumption! It is wiser to assume that programs produce incorrect
answers unless proven otherwise. If you are lucky, incorrect errors will look
obviously wrong. However, it is common for incorrect answers to look as
reasonable as correct answers.

You can often verify a program’s operation by checking representative
calculations by hand, and you should do this whenever possible. However, if it
were easy to check answers by hand, you probably wouldn’t have needed to write
a computer program in the first place. In any case, devising a strategy for
verifying your solutions is an essential part of solving computational problems.

In the earlier days of computer science, computer programming was
considered a worthwhile skill on its own. In the extreme, the science and art of
writing elegantly constructed computer programs overshadowed the nature of the
problems being solved. Now, however, students from many disciplines must learn
to write computer programs, and correct answers presumably matter in all those
disciplines. If you overlook this fact, you will eventually be sorry, if not in one
of your courses, then in your first on-the-job programming assignment!

1.2 Defining a Pseudocode Language for Algorithm Development

The algorithm development step, Step 3 in the
problem-solving process, can best be undertaken
using what is often called pseudocode because the
resulting step-by-step instructions look something
like the instructions you write in a high-level programming language.” However,
the instructions in the pseudocode don’t have to, and generally won’t, look exactly
like commands in a specific language. Pseudocode commands should specify an

ZAn alternate approach, traditionally favored by Fortran programmers but largely abandoned in
modern programming style, is to use flowcharts consisting of standardized symbols, lines, and
arrows to illustrate the steps in a program.

4 = 1. Programming Preliminaries

action to be taken without being restricted by the syntax details of a particular
language. Basically, your algorithm will consist of a series of action commands
which, when translated into a real programming language, will tell your computer
what to do. With this in mind, an informal language is useful to express these
commands. There aren’t any syntax rules for this language. However, it is
important to define a set of actions that are common to all procedural
programming languages. C is one such language, but certainly not the only one
to which this pseudocode language could apply.

The list of such action commands is short because the list of basic actions
that can be taken within a program written in a high-level procedural language is
short. If you keep a description of this command language nearby when you start
to solve problems and write programs, you should be able to focus on the logical
design of the program without worrying about the syntax details.

Carefully written pseudocode should be relatively simple to convert to a
working program. This process emphasizes the fact that C, even with its
seemingly endless implementation details, is not an arbitrary or inherently
complicated language. In fact, it provides a simple and efficient mechanism for
transforming an algorithm—a problem solution—into a working program.
Remember that the problem solution comes first, then the program. Here is a list
of pseudocode action commands, in alphabetical order. Some of the terminology
may be unfamiliar now, but new terms will be explained as we need them later
in the text.

ASSIGN
Set a variable equal to a value, another variable, or an expression. See also
the INCREMENT and INITIALIZE commands.

CALL

Invoke a subprogram. (See SUBPROGRAM.) Your use of this command
should describe information flow between a subprogram and the point in your
pseudocode from which the CALL is invoked. It is especially important to
differentiate between input to and output from the subprogram. The ability to
modularize a program by creating subprograms is an essential element of modern
programming languages.

CHOOSE

This implies that a choice of actions can be taken based on a restricted list
of possibilities—responses to a menu of choices, for example. Often, each
response may be no more than a CALL to a SUBPROGRAM that takes action
appropriate to a particular choice.

1.2 Defining a Pseudocode Language for Algorithm Development = 5

CLOSE

Close an open file.

DEFINE

Define variables and user-defined data types. In this section of your
pseudocode, you should think about the kinds of variables and data objects, such
as arrays, your program will need. It is especially important in scientific and
engineering work to give physical definitions and units when you define variables.

IF...THEN...ELSE...

If something is true, then take a specified action. If it is false, then take
some other action. The ELSE... branch is optional, as there may not be an “else”
when the “if” isn’t true. In many languages, the sequence of actions can be
extended:

IF...THEN...ELSE IF...ELSE IF...ELSE...

In any case, implementation is based on the existence of relational operators, as
discussed later in this chapter.

INCREMENT

This is a special type of assignment command used to indicate operations
such as X = x + 1. (We’ll discuss later the significance of this expression, which
has a clearly defined meaning in programming even though it makes no sense as
an algebraic expression.) It is often used inside loops to count the number of times
actions inside the loop have been taken.

INITIALIZE

This is a special kind of assignment command used to indicate that a
variable must be given an initial value before it can be INCREMENTed. This is
often required before a loop is started.

LOOP (conditions)...END LOOP

Execute instructions inside the loop repeatedly until (or as long as) certain
conditions are met. Loops may be pre-test, post-test, or count-controlled. With pre-
test loops, a condition is tested before the instructions inside the loop are
executed. Depending on conditions in the program, the instructions inside the loop
may never be executed. With post-test loops, a condition is tested after
instructions inside the loop are executed. As a result, instructions inside the loop
will always be executed at least once. Count-controlled loops are appropriate when
your program knows prior to starting a loop how many times to repeat the
instructions inside that loop. Under some conditions, the instructions inside a
count-controlled loop may never be executed.

6 = 1. Programming Preliminaries

OPEN
Open an external file for reading or writing.

READ
This is the basic command for passing information to a program. The
source of information is typically either the keyboard or an external data file.

SUBPROGRAM
This command marks the start of a subprogram module. Use it to specify
the flow of information between parts of a program. (See CALL.)

WRITE
This is the basic command for displaying or saving output from a program.
The destination is typically either the monitor screen or an external data file.

To what do these action commands apply?
Often, they define actions performed on values
stored in your program. At the machine level,
many of these commands result in changes to the
contents of specific memory locations. At the
programming level, these memory locations are
referred to symbolically by names. These names are called variable names or
variables. In strongly typed languages such as C, variables are always associated
with specific data types. High-level languages typically support several different
kinds of data, as shown in Table 1.1.

Table 1.1. Data types supported by high-level languages

integer numbers -30000, 17

real numbers 6.5x10°, -0.002

characters a, A, _&, -

strings of characters This is a character string.
L logical (boolean) variables | true, false

When you design algorithms to solve problems, you must think carefully
about the kinds of information your program will require, and you should choose
appropriate names and data types for this information. Beginning programmers
often overuse the integer data type when real numbers would be more appropriate;

1.2 Defining a Pseudocode Language for Algorithm Development = 7

this is an easy mistake to make when physical values are expressed as whole
numbers. For example, temperature is often expressed as a whole number, such
as 70° Fahrenheit, even though it is more appropriate to represent temperatures as
real numbers rather than integers. On the other hand, integers typically require less
memory space and allow faster and more accurate arithmetic operations than real
numbers, so their appropriate use can result in faster program execution times and
more efficient use of your computer’s resources.

In addition to action commands, various operators need to
be part of a pseudocode language; without them you couldn’t
perform the mathematical operations that are at the heart of many
calculations. Table 1.2 shows some basic mathematical operators that are
supported by high-level programming languages.

Table 1.2. Mathematical operators supported by high-level languages

addition +

subtraction -

multiplication e, X, or implied

division /or +

The operations +, —, ¢, or X, and / or + are familiar. Multiplication is often
implied; in the algebraic expression y = ax + b, ax implies “a times x.” As we
will see, C supports all these mathematics operators as well as several others.
Note, however, that C does not support an exponentiation operator. That is, the
operation x’ cannot be implemented directly with operator notation.?

Finally, relational and logical operators are needed to construct IF...
THEN...ELSE... statements. These are given in Table 1.3. We will discuss the C
implementation of all these operators later.

In contrast, x’ can be represented in Fortran by the expression x *y.

8 = 1. Programming Preliminaries

Table 1.3. Relational and logical operators

= equal to

not equal to

< less than or equal to

2 greater than or equal to
< less than

> greater than

“and” logical “and”

“not” logical “not”

“or” logical “or”

Finally, keep in mind that any high-level language
will include some built-in functions, called intrinsic
Junctions, that allow you to perform common
calculations without having to reinvent the code every time you write a program.
Some functions—for example, trigonometric functions such as sin(x)—are
common to many procedural languages. Computers don’t have any inherent ability
to evaluate these functions. When a programming language supports a function
such as sin(x), it means that the language can call upon a predefined algorithm to
evaluate the function in terms of basic mathematical operations. This is done
automatically and the programmer usually doesn’t even have to be aware of how
the calculations are performed.

The advantage of intrinsic functions as part of a programming language
standard is that you can depend on the availability of these functions no matter
which version of the language you use. When you convert an algorithm into a
working program, it’s important to be aware of the functions a language supports
as part of its standard. C has a relatively limited set of intrinsic mathematical
functions compared to Fortran, for example, but more than Pascal. A list of C
intrinsic functions will be given in Chapter 3.

Specific implementations of C and other
languages usually include many nonstandard
language extensions, including nonstandard
Junctions. For example, implementations of C and
its derivatives, such as C++ for Macintosh or
Windows-based computers, may include extensions that deal with the graphical

1.3 Organizing Pseudocde Into a Program = 9

user interface presented by the operating system. These can be important for some
programming applications, but this course will concentrate on ANSI-standard C,
a language with a text-based interface.

1.3 Organizing Pseudocode Into a Program

Once you understand the elements of a pseudocode
language for developing algorithms, you must organize
these elements in an appropriate way. Specifically, you
have to think about how to get from the beginning of
your algorithm to the end; this may seem obvious, but it is often a problem for
beginning programmers. Steps in an algorithm are executed one at a time. When
you transform your algorithm into a program, the steps in that program are also
executed one at a time. For all practical purposes, the compiler that converts your
program into machine language is restricted in the sense that it can never look
ahead. When you tell it to do something, it must have all the information it needs
to execute that instruction.

Does this mean that every statement in a program must necessarily be
executed one step at a time in sequence? To put it another way, is it impossible
to write code that deals with the programming equivalent of coming to a fork in
the road? No. However, the alternatives are limited and very specific. There are
only three basic ways to control the order in which steps in an algorithm or
program are executed:

1. Sequence

Steps are performed one after the other in sequence. Each step is
performed once and only once. See the ASSIGN, INITIALIZE, and INCREMENT
pseudocode commands.

2. Selection

One of several alternative sequences of actions is selected and executed,
bypassing the other alternatives. See the IF...THEN...ELSE and CHOOSE
pseudocode commands.

3. Repetition
One or more steps are performed repeatedly until a terminating condition
is met. See the LOOP...END LOOP pseudocode command.

It is a basic programming principle that any algorithm can
be implemented using a combination of these three
control structures. Sequence structures are implemented

10 = 1. Programming Preliminaries

simply by writing consecutive statements. As we will see, languages such as C
have specific syntax for implementing selection and repetition structures.

1.4 Examples

Once you understand pseudocode commands, operators, functions, and control
structures, you are ready to combine these pieces into an algorithm. In this section,
we will develop algorithms for some simple problems, using the formal five-step
problem-solving procedure outlined above. For now, we will skip the fourth
step—the writing of an actual program—since it will be the topic of the rest of
the text. These problems, except for the last one, may appear to be very simple,
but it’s important to practice applying a formal step-by-step approach that will
work even when the problems aren’t so easy.

Pseudocode Problem #1

1 Define the problem.

Find the largest and smallest score in a list of scores. Calculate the range
of the scores.

2 Outline a solution.

1. Assume that the first number in the list is both the largest and the smallest
score.

2. As you read each subsequent score in the list, reassign the largest and smallest
score as required.

3. The range is the largest score minus the smallest.

This approach for finding the largest and smallest scores may not be
intuitive. Consider this list of five numbers:

15 11 8 21 17

You can easily find the largest and smallest numbers in this list just by inspection.
An amazing characteristic of the human brain is that it can formulate and
implement an algorithm for solving this problem at an unconscious level.
However, computers can’t do that. Instead, you must provide a specific algorithm.

1.4 Examples = 11

What would you do if the above list contained 5,000 numbers instead of five?
You would probably have to be more precise in your thinking. You might, for
example, write down the largest and smallest values in as much of the list as your
eyes could scan at once. Then you could scan another section of the list and
replace the largest and smallest values if required. The algorithm suggested here
is a simplified and formalized interpretation of this approach which can easily be
implemented in a step-by-step fashion.

3 Design an algorithm.

DEFINE largest, smallest, range, and score as real numbers
ASSIGN largest score = smallest score = first score in list
LOOP (until no more scores)

READ (score)

IF score > largest THEN ASSIGN largest = score

IF score < smallest THEN ASSIGN smallest = score
END LOOP
ASSIGN range = largest - smallest
WRITE (largest, smallest, range)

1 Convert the algorithm into a program.

Defer this step for now.

5 Verify the operation of the program.

Be sure to check the calculations with a set of scores for which the
smallest and largest values are known. Never assume that calculations done within
a computer program are correct until you have checked them by hand or verified
the operation of the program in some other way. (This isn’t always easy!)

12 = 1. Programming Preliminaries

Pseudocode Problem #2

1 Define the problem.

Air quality is given as a numerical index value. If the index is less than
35, the air quality is rated as “pleasant.” If it is between 35 and 60, the quality
is “unpleasant.” If the index is greater than 60, the quality is “hazardous.”

2 Outline a solution.

1. Read each index value.
2. Decide which message to print, based on the value of the index.

3 Design an algorithm.

DEFINE index as real number
LOORP (until no more input)

READ (index)

IF index<35 THEN WRITE (‘pleasant’)

IF index 2 35 and < 60 THEN

WRITE (“unpleasant’)

IF index > 60 THEN WRITE (“hazardous”)

END LOOP

Here’s an alternate way to implement the IF... command:

IF index < 35 THEN WRITE (‘pleasant’)
ELSE IF index < 60 THEN WRITE (“unpleasant”)
ELSE WRITE (“hazardous”)

The second implementation is a little less obvious than the first because you have
to be convinced that, within the JF... command structure, only one branch will be
taken. Suppose the index is 20. This value is less than 35, so the WRITE
(‘pleasant”) branch will be executed. This value is also less than 60, but the
second branch won’t be executed because another branch has already been
executed. As you will see in Chapter 4, programming language implementations
of IF... structures really do work this way.

1.4 Examples = 13

1 Convert the algorithm into a program.

Defer this step for now.

5 Verify the operation of the program.

For this problem, it’s important to implement the relational operators
correctly. The phrase “between 35 and 60” must be interpreted properly; you need
to check values at the break points to be certain your algorithm reflects the
problem statement. Exactly where the break points lie may be vague in the
problem statement, but you must be specific about them in your algorithm
definition.

Pseudocode Problem #3

1 Define the problem.

Your supervisor hands you a diskette with a file containing student names,
IDs, and GPAs and says, “Please create two new files. One should be the dean’s
list file of students whose GPA is at least 3.0. The other should be a probation file
of students whose GPA is below 2.0.”

2 Outline a solution.

1. Open the file containing student records.

2. Create two new files, one for the dean’s list and the other for the probation list.
3. Read each record and compare the GPA with the criteria for the dean’s and
probation lists. If it doesn’t belong in one of the files, go on to the next record.
Otherwise, write the data into the appropriate file.

4. Close all the files when you’re done with them.

The file opening and closing parts of the solution, steps 1 and 4, may not
be part of your initial thinking because these steps are not really part of the
solution. However, as noted previously, it is important in this step to consider the
sources of information required to solve the problem. The file-related steps remind

14 = 1. Programming Preliminaries

you to make sure that you understand the structure of the file containing the input
data and that you give some thought to the form of the output file.

3 Design an algorithm.

DEFINE student name and ID as character strings
GPA as a real number
OPEN (original file)
OPEN (dean'’s list file)
OPEN (probation file)
LOOP (until there aren’t any more names in original file)
READ (from original file, name, ID, GPA)
IF (GPA > 3) THEN WRITE (to dean’s list file: name, ID, GPA)
IF (GPA < 2) THEN WRITE (to probation file: name, ID, GPA)
END LOOP
CLOSE (all files)

1 Convert the algorithm into a program.

Defer this step for now.

5 Verify the operation of the program.

You can verify the operation of this program by inspection, perhaps with
only a subset of the student data.

Pseudocode Problem # 4

1 Define the problem.

A data file contains many two-line records. Each pair of lines contains a
date and 24 hourly temperatures:

01/01/94
20,22,21,19,18,..., 17,18

1.4 Examples = 15

Read the data for each day. Display the date and the maximum and minimum
temperature for the day, plus the hour, from 1 to 24, at which each of these values
occurred.

2 Outline a solution.

In this case, the problem itself contains an explanation of what you must
do. For a simple solution, you would like to be able to assume that there are no
missing data in the file. In the real world, this will not always be a good
assumption!

3 Design an algorithm.

DEFINE max, min, max_hour, min_hour, current_hour
(all integer variables); date (character string)
OPEN (data file)
LOOP (until you get to the end of the file)
READ (from data file, date)
READ (from data file, 1st temperature)
ASSIGN max = 1st temperature
min = 1st temperature
min_hour = 1, max_hour = 1
INITIALIZE current_hour = 1
LOORP (for current hour from 2 to 24)
READ (from data file: temperature)
IF temperature > max THEN
ASSIGN max = temperature
max_hour = current_hour
(end IF...)
IF temperature < min THEN
ASSIGN min = temperature
min_hour = current_hour

(end IF...)
END LOOP
WRITE (date, max, max_hour, min, min_hour)

END LOOP
CLOSE (dala file)

Note that this algorithm uses an approach identical to the one discussed in
Pseudocode Problem #1 to find the maximum and minimum values.

16 = 1. Programming Preliminaries

4 Convert the algorithm into a program.

Defer this step for now.

5 Verify the operation of the program.

You can verify the operation of this program by inspection. If your
program works for one day, there is no reason to think it won’t work for all days.
However, because of the way this algorithm is written, you should check examples
where the minimum or maximum temperature actually occurs at hour 1 to be sure
these initial values are not changed.

Pseudocode Problem #5

1 Define the problem.

Write a program that reads and stores a list of student names and grades.
The program should then be able to perform the following user-selected tasks:

1. Search for any student name.

2. Sort the list by name or grade.

3. Add a new name.

4. Delete an existing name.

5. Print a list of all students whose grades are above or below a specified value.

2 Outline a solution.

The structure of this problem lends itself to a modularized solution. The
main program will contain a menu of the indicated choices. Each choice will
invoke a subprogram that will perform one of the specific tasks listed. Assume
that the list is contained in a data file and that the data file can be entirely
contained in the amount of memory available to your computer program. (In
programming terms, this means that the data will be stored in a data structure
called an array, which we will discuss in Chapter 6.)

This is a more complex problem than the ones we have discussed so far.
You should solve it in steps, one menu choice at a time. The first task is to write
a subprogram to read the list and store it in your computer’s memory. This needs

1.4 Examples = 17

to be done before you present the user of your program with the menu options.
It will be helpful to display the contents of the list, too. Until you can read the list
correctly and display its contents, there is no point worrying about the rest of the
program. Within the menu of choices, probably the easiest subprogram to write
is the one that looks for a specified name or grade; we will develop pseudocode
for this subprogram, but not the rest.

3 Design an algorithm.

Pseudocode for main program:
DEFINE (variables to hold the names and grades,
number of students, response to menu selection)
CALL Read_List (store list of names and grades in memory)
LOOP (until user wants to stop)
WRITE (display menu)
WRITE (What do you want to do?)
READ (response)
CHOOSE (based on response)
SEARCH: CALL Search (by name or grade)
SORT: CALL Sort (by name or grade)
ADD: CALL Add (a new name)
DELETE: CALL Delete (an existing name)
OUTPUT: CALL Output (list of students who meet specified
criterion)
QUIT: (end program)
OTHER: (print input error message)
(end CHOOSE)
END LOOP

Note how the CHOOSE statement attempts to trap an inappropriate response by
giving an “other” option.

Now, develop subprograms one at a time. The first step is to read the list
of names and grades:

SUBPROGRAM Read _List (IN: name of data file;
OUT: name_array, grade_array, number
of names and grades (n))
OPEN (data file)
INITIALIZE n = 0

18 = 1. Programming Preliminaries

LOORP (as long as there are more records)
INCREMENT n=n + 1
READ (name_array(n), grade_array(n))
WRITE (name_array(n), grade_array(n))
END LOOP
CLOSE (data file)
(end Read_List)

Note how the index value n is used to notate parallel lists of names and
grades. That is, the n™ name will always correspond to the n™ grade. When the
loop is terminated, the value of n will be equal to the total number of students.
The WRITE statement can be removed when you’re sure you can read the list
correctly.

Here’s an algorithm to control a search of the lists.

SUBPROGRAM Search (IN: name_list,grade_list,n_students)
READ (search choice: name or grade?)
CHOOSE (based on search choice)
for name:
READ (which_name)
CALL SearchByName (IN:-name_list grade_list,
n_students,which_name)
for grade:
READ (which_grade)
CALL SearchByGrade (IN:name_list,grade_list,
n_students,which_grade)
(end Search)

Note that this algorithm uses the CHOOSE pseudocode command rather
than an IF... THEN...ELSE... approach. Either will work, but the former is easier
to extend to other choices. Here’s an algorithm to search for a name. Because
more than one student may have the same name, the algorithm searches through
the entire list.

SUBPROGRAM SearchByName (IN:name_list,grade_list,
n_students,which_name)
DEFINE counter
LOOP (for counter = 1 to n_students)
IF name_list(counter)=which_name THEN
WRITE (name_list(counter), grade_list(counter))
END LOOP

1.5 What Is the Point of Programming? = 19

A subprogram to search for a specified grade will be nearly identical to
SUBPROGRAM SearchByName. Although you could combine these functions
into a single subprogram at the pseudocode level, the actual code will need to be
different because names and grades are represented by different data types.

Suppose you decide to maintain a list of student IDs rather than names.
Presumably, IDs are unique. Therefore, the search should stop when the specified
ID is found, rather than searching through the entire list. Can you modify the
algorithm so that the loop terminates when it either gets to the end of the list or
finds the specified name?

Note that the names list and grades list must both be made available as
input to these subprograms. They are parallel lists in which, for example, the third
name in the names list is associated with the third grade in the grades list. This
has some important implications for writing the rest of this program. Suppose the
names list is originally sorted by name. If you decide to sort the lists by grade,
you must sort both lists at the same time to make sure that the relationship
between each name and grade is maintained. In C, as we will see later in the text,
it is possible to overcome this inconvenience by defining a new kind of data
structure that combines the names and grades into a single list.

‘ 1 Convert the algorithm into a program.

Defer this step for now.

5 Verify the operation of the program.

As noted, a large program such as this needs to developed one subprogram
at a time. You should check the operation of the program each time you add a
new subprogram.

1.5 What Is the Point of Programming?

Here’s a reasonable question: Does the world really need more computer
programmers? After all, there are lots of software applications for solving a wide
range of computational problems. And it’s a little discouraging to realize that even
the most straightforward application (such as Pseudocode Problem #5, above)
requires the accumulation of considerable programming skills.

Of course, there are many reasons to write your own programs. Some
people do it for fun (yes, that’s really true), others need programming skills to do
research, and others need a thorough understanding of programming to continue
their studies in computer or information science. Almost any research organization

20 = 1. Programming Preliminaries

in any field will require programming skills for solving specialized research
problems. Graduate programs in any technical discipline you can name will expect
their students to have some programming skills.

However, the best reason for learning how to program a computer is to
teach yourself how to think logically. Even if you never have to write programs
for a living, as a necessary evil in the course of your work, or just for your own
use and amusement, the programming process is a good way to teach yourself
how to solve problems. A language like C is especially useful because it
encourages you to approach difficult problems in a step-by-step, top-down fashion
that separates each problem into a series of smaller and hopefully more
manageable tasks.

Even though this kind of thinking may not always be the best way to solve
problems, we will treat programming as an inherently linear process, so the kinds
of problems we will solve in this course will lend themselves to this kind of
solution.*

By the way, since we have decided that learning how to
program is a good idea, you are allowed to ask this follow-up
question: Why learn to program in C? A good answer is that C is the
basic language of choice for many commercial computer applications, and it is
fundamental to understanding the widely used UNIX computer operating system.
As I will point out from time to time in this text, C has some characteristics that
pose implementation problems in scientific and engineering programming.
However, this has not prevented C from gaining a prominent role in these
disciplines. Once you have become proficient in C, it is relatively easy to learn
languages such as Fortran, which is still widely used in science and engineering,
as well as more modern languages such as C++ and Java.

1.6 Your First C Program

You are now ready to create your first C program. This will be a “cookbook”
exercise that emphasizes the mechanics of writing and executing a program. You
are not yet expected to understand all the details of the code. The exercise
assumes you will be writing programs on a UNIX computer that supports Sun
Microsystem’s cc compiler or its equivalent.

If you are a complete UNIX novice, you will need some help learning how
to use a UNIX-based system. Your institution or department probably provides
training courses on using UNIX systems. If such training isn’t part of a
programming course, you will need to learn the fundamentals on your own.

Assuming you are successfully logged on to your UNIX account:

“Author’s note: This problem-solving approach generally does not work with people.

1.6 Your First C Program = 21

1. Create a new source code file by typing pico
test.c. This invokes a simple text editor and
creates a new and currently empty file called
test.c. The source code file will contain
instructions for solving a particular problem.
These instructions must be written according to
the syntax rules of C. To create the source code
file, which you will then compile and link to create an executable program file,
enter the following lines exactly as shown:

/* My first C Program. */
#include <stdio.h>
int main(void)
{
printf("Hello, world.\n");
return 0;

When you’re done typing, you need to make sure your work is saved.
Enter ~x by holding down the control (or Ctrl) key on your keyboard while
pressing the (unshifted) x key. This two-key combination is sometimes notated as
control-xor Ctrl-x. In this context, the » symbol has nothing to do with the
carat symbol in the uppercase position over the 6 key on your keyboard. Do not
press Shift-6 followed by x or Ctr1l-Shift-X. Pressing ~x exits the pico
editor. You will be asked if you want to “save modified buffer.” Press vy (for
“yes”) and then the Return key. You can also save your work at any time from
within the pico editor by pressing the o key combination

IMPORTANT NOTE: Whenever you type a command on a UNIX
system, you must use the specified combination of lowercase and uppercase letters
because UNIX commands are case-sensitive. This is different from computers
using a Windows/DOS-based operating system, for example, which is case-
insensitive. Also, the C language itself is case-sensitive. This means that when you
create the above code file above, you must preserve the use of uppercase and
lowercase letters. For example, printf is not the same thing as PRINTF or
PrintF, or any other combination.

You can also create source code with the more flexible but more
complicated UNIX v1i text editor instead of pico. Refer to the documentation for
your system.

2. Once you have created a source code file, you must compile and link it to
create an executable file. The compiler/linker we will use is cc (for “C
compiler”). Type

cc test.c -otest.exe

22 = 1. Programming Preliminaries

This invokes the cc compiler, which tries to compile the source code file named
test.c. If the compilation is successful, cc translates your source code into
machine language instructions and creates an executable file named test.exe.
(If you do not include the -o option, cc creates a file named a . out by default.)
If you get error messages, edit the file so that it looks exactly like the one above.
Then try again. When you no longer get any error messages,

3. Type
test.exe

to execute your C program. If you have done everything correctly, the text

Hello, world.

should appear on your screen. You have now created and executed your first C
program.

Note that although we will often speak of source code as
a program, it is actually the executable binary file that contains
machine-level instructions that the computer understands and
follows. In this example, we have given the binary file a .exe extension (for
“executable”).’ The cc compiler generates, by default, a file with a .out
extension. In common with other high-level languages, the source code file you
create with a text editor generally is portable to any computer that supports a C
compiler, as long as the source code does not include implementation-specific
features that are not part of the C language standard. However, the executable
program file is not portable to a different kind of computer. (Commercial
programs generally are not portable among various kinds of computers even at the
source code level, specifically because they take advantage of features of a
particular operating system and computer hardware architecture.)

4. Depending on how heavily you use your UNIX account, and for what, you may
wish to create a separate directory just for C programs. For example, typing

mkdir c_stuff

will create a new directory called c_stuff. You can move to this directory by
typing

cd c_stuff

From this directory, you can return to your “home” directory by typing cd.

The convention of using a . exe extension will be familiar to MS-DOS users.

2

The Basics of C Programming

2.1 C Program Layout
The source code for a C program contains at least the following elements:

1. Preprocessor directives, including:
(a) standard header files
(b) constant definitions
2. Main function header and body
3. Reserved words and identifiers
4. Comments (optional, but required as a matter of style)

Program P-2.1 illustrates each of these elements. The program prints the message
Hello, world! and the numbers 3.14159 and 6.28318 on your monitor
screen.

P-2.1 [hello.c]

/* "Hello, world." */

/* preprocessor directives */

#include <stdio.h> /* standard I/0 header file */
#define PI 3.14159 /* defines PI as a "constant" */

int main(void) /* main function header */
{ /* start of main body */

/* variable declaration */
double two_pi;
/* printf is the usual way to produce output on a monitor. */
printf('Hello, world!\n");
/* assign value to two_pi */
two_pi=2.0*PI;
/* "%1f" is a format specifier for displaying real numbers */
/* Note that "1" is a lowercase letter L, and not the numeral 1 */
printf("%1lf %$1f\n",PI, two_pi);
/* return value from main function */
return 0;

} /* end of main body */

Running P-2.1

D. R. Brooks, C Programming: The Essentials for Engineers and Scientists
© Springer-Verlag New York, Inc. 1999

24 = 2. The Basics of C Programming

Every C program must have one and only one function
named main, the body of which is included inside braces
{...}. (In other programming languages, this would be
called the main program.)

For our purposes, every C source code file must include the preprocessor
directive

#include <stdio.h>

so it can access the standard
input/output (1/0) functions
through the stdio.h header file.
You can think of a header file as a
source of information your program
needs in order to interpret certain kinds of instructions. There are many header
files that are part of the C standard that you can #include only as required, but
because every program needs to execute some I/O instructions in order to process
input and produce usable output, the stdio.h header file is needed for every
program. The angle brackets around stdio.h tell C to look in a particular
system-dependent directory for the header file. As a programmer, you usually
don’t have to worry about where these files are stored.'

Although it might seem unnecessary for the main function in P-2.1 to
return a value when it’s done, it’s a good idea to give the main function a data
type of int and have it return a value of O when it executes successfully. This
is because some operating systems can use this value to determine whether the
program has executed successfully. The alternative is to define the main function
as having data type void, which means that it doesn’t return a value.

void main (void)

{
}

The void word inside parentheses following main means that this
program does not require any user input from the keyboard in order to execute.
The void is optional, and either int main() or void main() is also
acceptable syntax.

In this text, we will usually assume that the main function will return a
0 when it executes, so the shell of a main function will usually look like this:

'Because stdio.h is required for every program, it might seem reasonable for C to “include”
this file automatically. However, C simply doesn’t work this way. It is even possible to
conceive of programs that don’t use C’s standard I/O library, in which case stdio.h would
not be needed.

2.1 C Program Layout = 25

int main(void)

{

/* Program statements go here. */
return 0;

}

The #define preprocessor directive in P-2.1 performs a word-processor-
like search-and-replace operation when your program is compiled. In P-2.1, the
directive

#define PI 3.14159

causes a C compiler to replace every occurrence of the
name PI with the characters 3.14159. (There is only one
such occurrence in P-2.1). Then the programming
environment will interpret the characters 3.14159 as a number, just as if you
had typed that number directly into the source code. It is common C programming
practice to use uppercase letters for the names of global constants defined in this
way, to distinguish them from variable names. Although you don’t have to follow
this convention, it is so widely accepted that it is almost a style requirement.

The statement printf ("Hello, world!\n") ; displays the message
Hello, world! on your monitor screen.

Finally, P-2.1 calculates the value of the
variable two_pi and displays both PI and
two_pi. Before the program can use the
variable name two_pi, it must first be given an appropriate data type. The data
declaration statement

double two_pi;

associates two_pi with a real number. The significance of the data type
description double will be discussed in Chapter 3, along with other data types.
The assignment statement

two_pi=2.0*PI;

results in the variable two_pi having the value of 2w, or approximately
6.2831852. In an assignment statement, the value of an expression on the right
side of the = sign is assigned to a variable name on the left side of the = sign. It
looks like an algebraic equation, but it is not, as we will discuss further in Chapter
3.

With these brief explanations, you should be able to make sense of the
source code in P-2.1, even though you may not understand the details. We will,
of course, discuss at length the details of performing calculations and displaying
results in programs.

26 = 2. The Basics of C Programming

2.2 Basic Input and Output

Especially for scientific and engineering calculations, it is necessary to develop a
working knowledge of how a programming language interfaces with external data.
We will consider two situations:

1. The input required for a program to do its job is
supplied by a user typing values at the keyboard while
the program is running. This is known as an
interactive program, or interactive mode.

2. The input required for a program to do its job comes
from an external data file that is accessed while the
program is running. This is known as a batch program,
or batch mode. A user’s intervention is not needed while
the program is running.

2.2.1 Keyboard Input and Monitor Output

In this section we will discuss how a C program communicates with two basic
devices: a keyboard for input and a monitor for output.

Reading and Displaying Numbers

Consider the following simple problem, which we will solve in accordance with
the five-step process outlined in Chapter 1.

1 Define the problem.

For a user-supplied value of the radius, calculate the area and
circumference of a circle.

2 Outline a solution.

The calculations are straightforward:

area = T’

circumference = 2nr

2.2 Basic Input and Output = 27

If the radius must be given in some particular physical units, let the program user
know that. Be sure to label the output.

3 Design an algorithm.

This algorithm contains all the elements of simple programming problems:
defining variables, prompting the user for input from the keyboard, doing the
required calculations, and displaying the output on the monitor screen.

DEFINE radius, area, circumference as real numbers; i as a real constant
WRITE (“Give the radius of a circle (units?)”)
READ (radius)
ASSIGN area = rreradius’
circumference = 2rreradius
WRITE (area and circumference, with identifying labels)

1 Convert the algorithm into a program.

Program P-2.2 implements this algorithm.

P-2.2 [circle.c]

/* Calculate area and circumference of a circle. */
#include <stdio.h>
#define PI 3.14159

int main(void)
{
/* Declare data types. */
double radius, /* input - radius of a circle, cm */
area, /* output - area of a circle, cm?2 */
circumference; /* output - circumference of a circle, cm */
/* Get the radius. */
printf ("Enter the radius in cm: ");
scanf("%1f", &radius);
/* Calculate the area and circumference. */
area = PI*radius*radius;
circumference = 2.0*PI*radius;
/* Display the output. */

printf ("The area is %1f cm*2.\n",area);
printf ("The circumference is %1f cm.\n",circumference);
return 0;

28 = 2. The Basics of C Programming

Running P-2.2

5 Verify the operation of the program.

Check your results with a hand calculator. Note that r = 1 is not a good
value with which to test the program. (Why not?)

In terms of the user interface for P-2.2, the essential code is contained in
the statements

printf ("Enter the radius in cm: ");
scanf ("%$1f", &radius) ;

The basic output-processing function for C is print £ (“print formatted”).
In this context, a function provides predefined code that enables a program to
perform certain common tasks, such as displaying output. We will return to the
topic of functions in Chapter 4. The general syntax of the printf function is

type int variable =
printf (character string describing output format
and/or other characters
(,one or more variables or constants))

(void)printf (...

The large angle brackets (. . .) indicate an optional parameter. In this case, the
brackets indicate that the printf function doesn’t have to display the values of
variables or constants. An example is the first printf statement in P-2.2, which
simply displays the text enclosed in quotation marks.

When variables or constants are displayed, each
must be matched with an appropriate format specifier in
the output string. These specifiers, which tell C how to
convert a number into its exernal representation and display that value, always
begin with the $ symbol. Some examples are $1 £ for type double variables and
%i for integers. A detailed list of format specifiers for a variety of data types is
given in Table 3.2 in Chapter 3.

As an example of how to use format specifiers, return to the final task in
P-2.2, which is to display the results of the calculations. The statements

2.2 Basic Input and Output = 29

printf('The area is %1f cm*2.\n",area);
printf ("The circumference is %1f cm.\n",circumference);

display the values of the variables area and circumference along with an
explanatory message. The text messages, if there are any, and the format specifiers
for the values to be displayed are given as a character string surrounded by
quotation marks. Because area and circumference are type double
variables, a $1f format specifier is used. The control character \n causes C to
print a new-line character at the end of the line. Otherwise, the output from the
second printf statement would start on the same line as the end of the first
printf statement.

It is possible to display multiple values with a single printf statement:

printf ("The area and circumference are %1f cm?2 and %1f cm.\n",
area,circumference) ;

Each variable must have its own format specifier.

Most C functions return a value. The printf function returns an integer
value equal to the number of characters printed. In nearly all cases, this return
value can be ignored. Strictly speaking, the printf function should be preceded
by (void), as shown in the syntax box. This tells the compiler, “I know that
printf returns a value, but I'm choosing to ignore that value.” However, as a
practical matter, it is also okay simply to use printf without assigning its output
to a variable and without the (void), as has been done in P-2.2. Some C
compilers may flag this use of a function with a warning message.

In P-2.2, the first printf statement provides a user prompt in the form
of a message displayed on the user’s monitor screen. This prompt describes what
the program expects the user to do. Depending on the circumstances, this message
can be brief or very detailed. In scientific and engineering problems, the prompt
message will often specify the units for the physical quantities the user is expected
to provide. In P-2.2, the prompt message tells the user that the radius should be
provided in centimeters.

The basic C function for getting input from the keyboard is scanf. Its
general syntax is

type int variable =
scanf (character string describing input format,
one or more variable addresses)
or
(void)scanf (...

The input format string contains conversion specifiers,
which tell C how to interpret values entered at the

30 = 2. The Basics of C Programming

keyboard. These specifiers must match the data types of the variables whose
addresses are supplied in the list.

When a scanf function is encountered, the
program suspends further execution and waits for
the user to enter an appropriate response. When the
user presses the Enter (or Return) key, program execution resumes. Then the
scanf function reads (scans) the keyboard buffer and attempts to interpret what
it finds according to the conversion specifiers provided. In P-2.2, scanf is
instructed by the specifier "$1£f " to look for a single real number (floating-point
number) of type double. (The character preceding the f in the format specifier,
which stands for “long” in “long float,” is a lowercase L, not the numeral 1.)
Conversion specifiers use the same vocabulary of symbols as format specifiers.
Inside a scanf function, they tell C how to interpret characters typed on the
keyboard rather than how to display values.

The & in front of the variable name radius in the scanf statement is

the “address-of” operator. It means, “Place the value found by scanf into the
memory location (address) associated with the variable named radius.” In many
other high-level programming languages, the association of a variable name with
a memory location is implemented transparently, without extra syntax
requirements. So, especially if you have done any programming in other
languages, it is easy to forget the & in the scanf argument list. If you do forget
it, your program may crash. As a minimum, your program will not have access
to the value you provided at the keyboard.

The calculations in P-2.2 are straightforward.

Remember to spell the symbol for & as PI because that’s I
how it is spelled in the #define directive, and C is

always case-sensitive in its interpretation of words and characters. In the printf
statements, text is intermixed with output format specifications. The characters \n
add new-line characters to the output. If you neglect to include them, all the
output will appear on the same line. The new-line symbol is one of several control
characters used for formatting output. These characters are always preceded by
a backslash. A list of control characters is given in Table 3.2 in Chapter 3.

In P-2.2, radius, area, and circumference are the variable names
used by the program. These are the symbolic names that the C programming
environment uses to assign and access memory locations. Indeed, a major
advantage of high-level programming languages is the ability to provide this kind
of symbolic access. The ANSI-standard C rules for assigning identifiers, of which
variable names are one type, are:

2.2 Basic Input and Output = 31

There are, in addition, two restrictions that should be followed even though they
are not syntax rules:

Finally, remember that C implementations always consider case to be
significant. Thus radius and Radius are interpreted as two different variable
names. A widely accepted programming style is that variable names use lowercase
letters and, as previously noted, constants appearing in a define directive use
uppercase letters. In general, you should avoid using variable names that differ
only in their use of uppercase and lowercase letters; ignoring this style convention
makes your programs hard to interpret and prone to errors.

Reading and Displaying Characters and Strings of Characters

Up to now, I/O has been restricted to string constants (as prompts to the program
user) and numerical values. However, it is also important to be able to read and
display text values. At a basic level, this is easy to do in C, but the nature of the
language imposes some significant restrictions that can be troublesome to
overcome. This section presents just the basics.

First, consider the problem of reading and displaying a single character.
This is simple, and it works just like numerical I/O:

char grade;

printf ("What grade do you expect in this course? ");
scanf ("%c", &grade) ;
printf ("Well, I hope you get a %c.\n",grade);

The data type char is used to declare a character variable. Use the %c specifier
for I/O. The & operator is required just as it is for numerical values.

Now suppose you wish a program to request a student ID in the form of
a social security number. This isn’t actually a number because it is usually given
in the format nnn-nn-nnnn. The presence of the dashes means that this ID value
must be treated as a string of characters.

There is no separate data type for strings of characters in C. Instead, use
the char data type with additional information about how many characters you
wish to represent. Here is the code to read a social security number:

32 = 2. The Basics of C Programming

char ID{12];

printf ("Give your student ID in the format nnn-nn-nnnn: ");
scanf ("%s",ID);
printf("You told me that your student ID is %s.\n",ID);

First, the data declaration statement defines the variable ID as a character string
that can hold up to 12 characters. You might notice that a social security number
contains 11 characters rather than 12. In C, strings include a special terminating
character, so it is usual practice to declare strings that hold at least one more than
the maximum number of characters you wish to store.

In the scanf statement, the conversion specifier %s tells C to interpret
what you type as a string of characters. To display a string, use %$s as a format
specifier. Note that the variable ID is not preceded by the address-of operator &
in the scanf statement. The reason for this won’t become clear until we study
arrays in Chapter 6. (Basically, C treats a string of characters as an array of
characters.) The variable name associated with a character string is actually the
address of the first character in the string. Because it is already an address, the
address of operator & is not required.

A problem occurs with C’s handling of character strings when these strings
include embedded blanks. For example, suppose a program asks you to enter your
name:

printf ("Enter your full name: ");
scanf ("%s",name) ;

You might reply by typing Laura Brooks. This will not work. The reason is
that C’s “scan” of what you type starts at the first nonblank character and stops
at the first blank character. Thus, the variable name will contain just Laura and
not Laura Brooks. Even worse, the characters YBrooks remain in the
keyboard buffer. (The I represents a blank space.) This will cause problems if
your program contains another scanf statement.

The simple way around this difficulty is to store the first and last names
in separate variables:

printf ("Enter your first and last name: ");

"o

scanf ("%s %s",first_name, last_name);
However, suppose you use this code:

printf ("Enter your name in the format last, first: ");
scanf ("%s %s",last_name, first_name) ;

This won’t work. If you enter your name as Brooks, Laura, first_name
will have the value Laura, but last_name will have the value Brooks,
(including the comma as part of the name), rather than just Brooks. As you can

2.2 Basic Input and Output = 33

see, reading strings in C can be tricky. The text will discuss solutions to specific
problems as they occur.

Reading Values With Leading Zeros and Nonblank Separators

Up to now, we have assumed that numerical values entered at the keyboard will
be separated by one or more blanks. This is not always a good assumption. A
good example involves reading a date in the American format mm/dd/yyyy, with
slashes separating the values. Another potential problem with the date format
arises when leading zeros are used with single-digit months and days; for example,
01/09/1998 instead of 1/9/1998.

Special care is required to read such values correctly. First of all, we will
assume that the / in a date always follows directly after the number with no
intervening blank space. In that case, we can include the / character as part of the
conversion string. Second, we will treat the date values as integers. There are two
conversion specifiers that are available for reading integers, %i and %d. If there
is a possibility that an integer value might include a leading zero, we must use a
%d specifier to read the values. Here is some sample code:

printf("Give date in mm/dd/yyyy format: ");
scanf ("%d/%d/%d", &m, &4, &Y) ;

Why is the %d specifier required? Generally, we will consider 1 and %d
to be equivalent. (See Table 3.2 in Chapter 3.) However, this is not always true.
Consider program P-2.3.

P-2.3 [oct.c]

#include <stdio.h>

int main(void)
{

int 1;

printf("Give integer: ");
scanf ("%1",&1);
printf("%i %d\n",1i,1);
printf("Give integer: ");
scanf ("%d",&1);

printf ("%i %d\n",i,i);

return 0;

34 = 2. The Basics of C Programming

Running P-2.3 (three times)

The first execution of the program is straightforward, as either conversion
specifier interprets the digits 12 correctly. In the second execution, the 12 is
preceded by a leading 0. If you expect C to ignore the leading 0, you will be in
for a surprise! When a $1i specifier is used, the resulting value is 10, whereas a
%d specifier returns the expected value of 12. In the third execution, reading the
digits 09 with a %1i specifier gives a value of 0, and the %d specifier returns the
expected value. You might encounter a similar situation if your program tries to
interpret a date in mm/dd/yyyy format as three integers. If the date
09/08/2001 is encountered, for example, the conversion string "%1/%1/%1"
will not work properly, but the conversion string "%$d/%d/%d" will.

How can we explain this behavior? The answer lies in the fact that C
inteprets leading Os as indicating that the following digits are to be interpreted as
an octal (base 8) number rather than a decimal (base 10) number. We won’t
provide a complete explanation of non-base-10 number systems, but it is sufficient
for this discussion to note that the octal number 12 (or 012 in C notation) is
equivalent to 1x8' + 2x8°, or decimal 10. The digits 09 make no sense as an octal
number because the digit 9 doesn’t exist in the base 8 number system.

P-2.3 demonstrates that the $1 conversion specifier can be used to interpret
numbers expressed in base 10 (decimal) or octal notation. Thus the digits 012 are
processed on input as the octal number 12, equivalent to decimal 10. In the third
execution, the digit 9 is treated as a terminating character when the program tries
to interpret the characters 09 as an octal number, producing a result of 0. In
contrast, the $d conversion specifier always tries to interpret digits as base-10
integers, which is why it produces the expected result in P-2.3. Note that because
integers are always output as decimal (base 10) integers, $d and %i specifiers
work equivalently as format specifiers for output.

2.2 Basic Input and Output = 35

Exercises 10 and 11 at the end of this chapter involve problems in which
it is important to use a $d conversion specifier for input, for the reasons discussed
here.

2.2.2 File I/O

In order for a programming language to be useful for solving practical problems,
it must support interfaces with external sources. The simplest such source is
information typed on your computer’s keyboard, as in P-2.2. However, keyboard
input is impractical for large amounts of data.

We will now consider a different version of P-2.2. The purpose of P-2.4
is the same as that of P-2.2, but the value for the radius will come from an
external data file rather than from the keyboard. Also, the output from P-2.4 will
be written to an external data file in addition to being displayed on the monitor
screen.

P-24 [circle_f.c]

/* Calculate the area and circumference of a circle
of specified radius, using an external data file. */

#include <stdio.h>
#define PI 3.14159

int main(void)

{

double radius, /* input - radius of a circle */
area, /* output - area of a circle */
circumference; /* output - circumference of a circle */
FILE *inp, *outp; /* pointers to input and output files */

/* Open the input and output files. */

inp
outp

fopen("circle.dat","'r");
fopen("circle.out", "w");

/* Read the radius. */

fscanf (inp, "%$1f",&radius) ;

fprintf (outp, "The radius is %.2f\n"',radius);
printf ("The radius is %.2f\n",radius);
fclose(inp); /* Close the input file. */

/* Calculate the area and circumference. */

area = PI*radius*radius;
circumference = 2*PI*radius;

/* Store the output. */

fprintf (outp, "The area is %.2f\n",area);
fprintf (outp, "The circumference is %.2f\n",circumference) :

36 ® 2. The Basics of C Programming

printf ("The area 1is %.2f\n",area);

)

printf ("The circumference is %.2f\n",circumference);
fclose(outp); /* Close the output file. */

return 0;

P-2.4 requires two files—one for input and one for output.
The identifier FILE is used to declare two pointers to the files,
*inp, and *outp:

FILE *inp, *outp: /* pointers to input and output files */

(The asterisk in front of the variable names inp and outp is what identifies them
as pointers rather than variables. We will have more to say about pointers in
Chapter 5.) In order to access the files, they must first be opened. The general
syntax for the fopen function is

type FILE * variable = fopen(file name, "status")

For now, we will specify either read-only (" r ") or write-only ("w") status
for a file. We will always need the return value from fopen, so we will not
include the (void) fopen(...) option in the syntax description.

In P-2.4, the statements

inp = fopen('"circle.dat',"r");
outp = fopen("circle.out", "w");

open the two files needed for the program. The pointers inp and outp, which
have previously been declared as type FILE * variables, are assigned by the calls
to fopen. (These pointers can be given any convenient name.) In the first
statement, inp is associated with the data file circle.dat, and because this
is the input file, it is specified as an "r" (read-only) file. Similarly, the second
statement associates outp with a "w" (write-only) file, circle.out, to hold
the output from the program. The name of the input file to be read by the program
is specified by the character string "circle.dat". The lack of any other
directory or folder reference in the file name implies that the file resides in the
same directory or folder in which the program is being created and is going to be
executed. If this is not true, then more information about the location of the file
must be given. In a Windows/MS-DOS environment, for example, a full path
name could be specified as "c:\\c_stuff\\data\\circle.dat". The
double backslashes are necessary because C uses a single backslash character to

2.2 Basic Input and Output = 37

indicate that a control character follows, as in \n for the “new line” character in
a printf function.

In order to read one or more values from a file, use the £scanf function.
Its general syntax is

type int variable = fscanf(type FILE * variable,
format string, one or more variable addresses)
or

(void) fscanf (...

The syntax for fscanf is identical to that for scanf except that the input
device—the name of a file in this case—must be specified.

It’s important to close a file when your program is finished with it. The
general syntax for fclose is

type int variable = fclose(type FILE * variable)
or

(void) fclose(...

You should not normally need the value returned from fclose; this value is
equal to 0 if the file is closed successfully and to the predefined value EOF if it’s
not.

2.2.3 I/0 Redirection

There is another way to get input from a data file that may not be so obvious.
Recall program P-2.2, which is designed for keyboard input and monitor output.
Assuming an executable version of circle.c exists, it is possible to replace
keyboard input with input from an external file by using input redirection. On MS-
DOS or UNIX systems, the redirection statement

circle.exe < circle.dat

will produce the same results as the original program, except that the data will
come from the file circle.dat. As a practical matter, it would be better to
modify P-2.2 so that the radius value is echoed in the output, just as it was in
P-2.4.

Likewise, output redirection can be used to send the output from a program
to an external file. The statement

circle > circle.out

38 = 2. The Basics of C Programming

sends the output from circle (P-2.2) to the file circle.out. However, the
prompt for the user to supply an input radius is also sent to the output file and
will not appear on the monitor screen. You can type the value even though you
don’t see the prompt, and the program will then execute and send output to the
file, but this isn’t very practical! Output redirection makes sense only for a batch
mode program that doesn’t require user input or that gets its input from an
external data file.

2.3 Reading External Text Files of Unknown Length

The contents of files required as input to programs are usually more complicated
than those discussed in Section 2.2.2. Typically, these are text files prepared by
the programmer or obtained from some other source. Assuming you understand
the contents and structure of a file, how do you read it in C?

The fact is that C is a relatively inconvenient language for this task,
compared to Fortran or Pascal. Our approach will be to find some workable
solutions and stick with them. The purpose of presenting this kind of “cookbook”
approach early in the text is to help you develop a basic working knowledge of
how to access data for use in a program. We will return to some of the details
later in the text.

Consider the file structur.dat:

1 2 3 66.6

4 3 16 17.7
11 12 56 3.3
12 0 1 4.4
12 15 33 5.5
12 59 58 13.3
14 2 13 12.2

This short file contains three integers (they could be interpreted as hours, minutes,
and seconds, for example) and one real number in each record, or line, of the file.
We will assume that the program does not know ahead of time how many records
there will be in the file. This is a typical situation with external files and has
important implications for how a file is processed.

In order to develop a strategy for reading
text files, you need to know that every text file has
two important characteristics: it includes an end-of-
line mark at the end of every line and an end-of-
file mark at the end of the file. When you create a text file with a text editor, the
end-of-line (eol) mark is put in the file whenever you press the Enter or
Return key. When a program creates a text file, the eol mark is put in the file
whenever you include the \n control character as part of an fprintf format
string. The end-of-file (eof) mark is put in the file without any additional action

2.3 Reading External Text Files of Unknown Length = 39

on your part whenever you save a file from within a text editor or fclose it in
one record at a time inside a loop structure that terminates
the context of the LOOP... END LOOP pseudocode command. For now, we will

a program.
The goal in writing code to read a text file is to read I

when the end of the file is detected. We haven’t discussed

C’s implementation of loop structures yet, but we described them in Chapter 1 in

provide code for some loop structures to perform the specific task of reading a file

of unknown length. P-2.5 shows one way to read structur.dat.

P-2.5 [filetest.c]

#include <stdio.h>
#define FILE_NAME "structur.dat"

int main()

{
FILE *Infile;
int count=0;
int hr,min, sec;
float x;
int status;

Infile=fopen(FILE_NAME, "r");

while (1)

{
status=fscanf(Infile, "%1 %1 %1 %f',&hr,&min, &sec, &X) ;
if (status == EOF) break;
printf ("%21 %21 %21 %6.2f\n",hr,min, sec,x);
count=count+1;

}

fclose(Infile);

printf("Lines in file = %i"',count);

return 0;

Running P-2.5

=

The £scanf function is used to read the file in the same way that scanf
reads input from the keyboard. This function returns an integer value, and the
basic strategy of P-2.5 is to use this value to control the execution and termination

40 = 2. The Basics of C Programming

of the loop. Loop syntax will be discussed in more detail in Chapter 4, but the
intent of this code should be clear in context. The loop

while (1) {
;..

causes statements inside the loop to execute indefinitely until something happens
inside the loop to terminate it. The C language includes a predefined value called
EOF, which is returned by fscanf through variable status, whenever fscanf
is unable to find any of the values whose addresses are given in the list following
the format string. As long as status isn’t equal to EOF, the loop continues to
execute. In this example, as long as the file contains valid data that can be read
by the fscanf statement, the program displays the data and increments the
counter. The 1 f. .. statement is also an element of C we haven’t discussed yet,
but its intent should be clear if you recall the IF... THEN... pseudocode command
from Chapter 1. (In C, the THEN part of the pseudocode command is implied.)
This statement examines the current value of variable status and terminates the
loop with a break; when status has a value of EOF.

The data declarations in P-2.5 illustrate another feature of C: variables can
be initialized at the same time they are declared. The initialization for count is
required in P-2.5 because count will later be incremented inside the while. . .
loop; it is very poor programming practice to assume that any variable will
automatically be initialized to 0. In P-2.5, count is initialized to 0 because of
how it is used, but any appropriate value is allowed. It is also always okay to
initialize a variable with an assignment statement rather than as part of its
declaration.

A different approach to reading files is shown in P-2.6.

P-2.6 [filetes2.c]

#include <stdio.h>
#include <string.h>
#define FILE_NAME 'structur.dat"'

int main()
{
FILE *Infile;
char one_line[100];
int count=0;
int hr,min, sec;
float x;
char *line_ptr;
Infile=fopen (FILE_NAME, "r");

2.3 Reading External Text Files of Unknown Length = 41

while (1){
/* First read the line into a string. */
line_ptr=fgets(one_line,sizeof (one_line),Infile);

/* Quit if at end-of-file. */

if (line_ptr == NULL) break;

/* Replace '"new line" with null character (optional).*/
one_line[strlen(one_line)-1]1='\0";

/* Print the string just as a test (optional). */

printf("%s\n",one_line);

/* Then scan the line to get numerical data. */
(void) sscanf(one_line, "%d %d %4 %f", &hr, &min, &sec, &x) ;
printf ("%2i %2i %21 %6.2f\n",hr,min, sec,x);

/* Keep track of number of lines (optional). */
count++;

}

fclose(Infile);

printf("Lines in file = %i",count);

return 0;

Instead of reading values directly from the file, P-2.6
reads each line into string one_11ine using the fgets (“get
string”) function and then performs an infernal read on that
string to extract the numerical information. The general syntax for the fgets
function is

type char * variable = fgets{character string,
integer equal to size of character string,
type FILE * variable)
or
(void) fgets (...

The file-handling loop in P-2.6 shows another way to detect the end of a
file and exit the loop:
char *line_ptr;
while (1) {

line_ptr=fgets(one_line,sizeof (one_line),Infile);
if (line_ptr == NULL) break;

As was the case in P-2.5, this is an infinite loop that will continue until a
break; statement is executed, because the value 1 is interpreted by C as “true.”

42 = 2. The Basics of C Programming

The fgets function reports the presence of an end-of-file mark in its return
value, which is a pointer to the first character in the character string one_line.
When an end-of-file is encountered, the pointer returned by fgets has a value
of NULL. We can test for this:

if (line_ptr == NULL) break;

and exit the loop using a break;.

When fgets reads a string, it adds a new-line character to the end of the
string. This is the same control character, \n, that is used in a printf statement
to start a new line. If we want to use the string itself for anything (we don’t in
this program), we can get rid of the new-line character by replacing it with a null
character. If we are curious about the contents of one_line, we can print it.

one_line[strlen(one_line)-1]='\0";
printf("%s\n",one_line);

In C, characters are always enclosed in single quote marks. The '\ 0" is treated
like a single character because of the backslash. The strlen function returns the
length of its string argument, including the new line character. According to the
ANSI C standard, programs that use strlen require access to the string.h
header file, even though not all compilers (including the cc compiler) require that
this header file be #included.

All that remains is to scan the line to extract the numerical data. Use the
sscanf (“string scan”) function. This works just like scanf except that it gets
its input from a character string rather than from the keyboard buffer. Its general
syntax is

type int variable = sscanf (input string, conversion specifier,
list of variable addresses)
or
(void) sscanf (...

In P-2.6, the sscanf function is used to read the four numerical values
on each line:

(void) sscanf (one_line, "%i %1 %i %$f",&hr,&min, &sec, &x) ;
printf ("%21i %21 %21 %6.2f\n",hr,min,sec,x);

In many cases, your program will want to know how many lines the file
contained, so increment a counter with the statement count++;. After the
termination of the while. .. loop, close the file and print the results:

fclose(Infile);
printf("Lines in file = %i",count);

2.3 Reading External Text Files of Unknown Length = 43

An important difference between fscanf and fgets
is that fgets always reads an entire line from a text file; the
end of the line is detected by looking for an end-of-line mark.
On the other hand, fscanf reads one or more values as specified by a format
string. It treats the text file as an input stream of characters, and it treats end-of-
line marks simply as “white space” separating the requested values. (That is, it
basically ignores the end-of-line marks.) This works well for reading numerical
values, but it can sometimes cause problems when characters, character strings,
and numerical values are mixed in the same file.

Here is a modified data file that contains some text information, in the
form of one character string at the beginning of each line of the file, in addition
to numerical values:

Jan 1 2 3 66.6
Apr 4 3 16 17.7
Nov 11 12 96 3.3

Program P-2.7 illustrates the minor modification of P-2.5 required to read this file
and display its contents. In this case, it is still possible to use scanf, rather than
fgets.

P-2.7 [filetes3.c]

#include <stdio.h>
#define FILE_NAME '"structr2.dat"

int main{()
{
FILE *Infile;
char month[107];
int count=0;
int hr,min, sec;
float x;
int status;
Infile=fopen (FILE_NAME, "r");
while (1)
{
status=fscanf (Infile, "%s %i %i %i %f",
month, &hr, &min, &sec, &x) ;

if (status == EOF) break;
printf ("%3s %21 %21 %21 %6.2f\n",month,hr,min, sec,x);
count++;

}

fclose(Infile);

printf("Lines in file = %i",count);
return 0;

An important point about P-2.7 is that the & operator is not used in front
of a variable name associated with a character string. Such a variable name is

44 = 2 The Basics of C Programming

actually a memory location; specifically, it is the address in memory of the first
character in that string.

Although programs P-2.5, P-2.6, and P-2.7 may seem somewhat repetitious,
each provides an example of code that solves a specific programming problem.
The choice of which approach to use depends on the task at hand. Some
programmers prefer fgets for accessing files, as they believe that fscanf is
sometimes unreliable. However, when you know ahead of time how many values
a line will hold, you should be able to use £scanf without problems. The code
in P-2.6, using fgets and sscanf, may be appropriate when you are not sure
ahead of time how many values are included in a specific record, or when you
have some other reason to hold a line from a file temporarily in a string variable.

In any event, it is important not to stray far from the code models in P-2.5,
P-2.6, and P-2.7 when you write your own programs to read external text files. In
all programs that use input files, it is important to concentrate on reading and
displaying the contents before tackling the rest of the program. By the time you
have finished Chapter 4, which presents a general discussion of loop structures,
you will have developed a much better understanding of the code presented in this
section. Then if you need to develop different file processing strategies, you will
be in a better position to do so.

As a final example, consider this typical problem:

A data collection system consists of several measurement stations, each
with its own ID, which is expressed as an integer. When a station reports
measurements, it sends its ID along with one or more measurements in the
form of real numbers, but it never sends more than eight measurements in
a single report. These station reports have been collected and compiled into
a text file for processing. Write a program that reads this file and
calculates the total number of reports and the total number of
measurements reported by all stations.

The data file used for this program, stations.dat, can be found on the Web
site mentioned in Section 6 of the Preface.” It looks like this:

1001 14 17.7 13.3 12.9 19.9 11 9 20
1002 17.7

1003 14 15 16 17 18 19 20

1001 4.4 5.5 6.6

1004 14 15 17.1 18.1

1004 11.1 12.1 13.3 4.4 8.8

1005 39 38 37 36 35 34 33 32

?All data files required for programs in the text as well as for the exercises can be found on
this Web site.

2.3 Reading External Text Files of Unknown Length = 45

The required calculations are remarkably easy to do in C if you take proper
advantage of the return values from the appropriate I/O functions, as demonstrated
in P-2.8.

P-2.8 [stations.c]

#include <stdio.h>

int main(void)
{
FILE *in;
int ID,status,n_reports=0,n_measurements=0;
char *line_ptr;
char one_line[80];
float x;

in=fopen('stations.dat","r");

while (1) {
line_ptr=fgets(one_line, sizeof (one_line),in);
if (line_ptr == NULL) break;
status=sscanf (one_line, "%1 %f %f %f %f %f %f %f %f",

&ID, &X, &X, &X, &X, &X, &X, &X, &X) ;

n_reports=n_reports+1;
n_measurements=n_measurements+ (status-1);

}

fclose(in) ;

printf ('There are %i records and %i measurements.\n",

n_reports,n_measurements) ;
return 0;

Running P-2.8

For this problem, the data cannot be read directly with fscanf, as it is
not clear ahead of time how many measurements (the floating-point numbers)
follow each station ID (the integer). Asking your program to read an ID and eight
data values will work for the first line but not for the second line. When your
program tries to read the second line, fscanf will try to find the requested
values by looking ahead to the third line. This will soon cause problems!
However, if each line of the file is first read separately into a string, sscanf can
then be used to read the ID and up to eight data values. It won’t matter if
sscanf runs out of values in that string; it will simply “give up” and return the
total number of values successfully read. The total number of reports is obtained
by incrementing a counter after each successful fgets. The total number of
measurements reported by all stations is obtained by incrementing a counter by
status-1 after each sscanf. (The number of measurements is one less than
the value returned in status because the ID isn’t counted as a measurement.)

46 = 2. The Basics of C Programming

Note that in the sscanf statement, all the measurements are read into the same
variable address, &x. This isn’t a very useful approach in general, but it is okay
for this simple problem.

2.4 Reading a File One Character at a Time

Occasionally, it is useful to read a
file one character at a time and this
section describes how to do that. One
application of this technique might be to deal with the transfer of text files created
on an MS-DOS system to some other system. In order to understand what is
required, we must mention briefly the ASCII character collating sequence. This
is a widely used standard for encoding characters. The sequence contains 256
characters, the first 128 of which are identical for all computer systems using this
standard.’ The second 128 characters are system-dependent. Appendix 1 gives a
table of ASCII characters for Windows/MS-DOS-based computers.

When text files are created on a Windows/DOS computer, they have an
end-of-line mark that actually consists of two characters—a new-line character
(decimal value 10 in the ASCII character collating sequence) and a carriage return
character (decimal value 13). On Macintosh or UNIX systems, the end-of-line
character consists just of the new-line character. The default strategy of utilities
that convert MS-DOS text files to Macintosh is to remove the carriage return
character from the end of every line. However, it is certainly possible that an
MS-DOS file could be downloaded or copied onto a Macintosh or UNIX platform,
or vice versa, without this translation having been made. Depending on how the
file will be read by a program, it might be necessary to remove or add the carriage
return character.

Program P-2.9 examines a text file and displays the integer equivalent of
every character in the file except ASCII character 13, the carriage return character.
When the program encounters ASCII character 10, it prints a new-line character.

P-29 [fileview.c]

/* Displays contents of a text file character by character. */
#include <stdio.h>

int main(void)
FILE *in;

char name[20];
int ch;

3Some IBM mainframe computers use EBCDIC encoding, which is significantly different from
ASCII encoding. IBM and IBM-compatible personal computers use ASCII encoding.

2.4 Reading a File One Character at a Time = 47

printf("Give file to fix: ");
scanf ("%s",name) ;

in=fopen(name, "r");

if (in == NULL) {
printf("Can't find file. Abort program.");
exit();
}
while (!feof(in)) {
ch=fgetc(in) ;
if (ch != 13) printf('%3i",ch);
if (ch == 10) printf('\n");

}

fclose(in);

return 0;

P-2.9 contains some new syntax and three new functions. The syntax
involves the use of an 1f ... statement. You can interpret its meaning based on
the IF... THEN... ELSE pseudocode command. (The THEN... is implied in C.)
We will discuss this syntax in Chapter 4. The new functions are feof, fgetc,
and exit. The first of these returns a nonzero value when the file pointer is at
the eof mark and O otherwise. The second reads a single character from the file
and returns its integer value in the ASCII collating sequence—not its character
value, as you might expect. (That is why the variable ch is declared as type int
rather than as type char.) Actually, characters and integers are interchangeable
in the sense that you can easily switch back and forth between the two
representations. All that is required to display characters rather than integers is to
change the format specifier in the printf statement from %31 to

printf("%c",ch);
or
printf("c", (char)ch);

In the latter case, the (char) makes clear that you wish the variable ch to be
treated as a character rather than as an integer.*

The exit function terminates the program immediately. By convention,
exit (0) indicates normal program termination and a nonzero value indicates a
problem. Using the function without a value inside the parentheses is also okay.
In this text, we will not bother to write code that specifies exit values.

“This kind of operation is called type casting, and we will have more to say about it later in the
text.

48 = 2. The Basics of C Programming

2.5 Applications

In this section, and in similar sections in later chapters, we will develop programs
that use and sometimes extend the material discussed in the chapter. The purpose
of presenting detailed solutions even when the problems seem simple is to help
you develop a consistent problem-solving approach that you can use in
programming as well as in your other science, engineering, and mathematics
courses. It will always be helpful for you to read the problem statement and then
try to design the algorithm and write the program on your own.

2.5.1 Maximum Deflection of a Beam Under Load

1 Define the problem.

Consider a beam of length L supported at each end and subject to a
downward force of F pounds concentrated at the middle of the beam. The
maximum downward deflection of the beam (at its middle) is -FL*/(48EI), where
F is the downward force in pounds, L is the beam length in inches, E is the
elasticity in units of Ib/in? and I is the moment of inertia in units of in®. Write a
program to calculate the maximum deflection for specified values of L, F, E, and
I. For a particular steel I-beam (a beam with an I-shaped cross-section),
E = 30x10° Ib/in® and I = 797 in*. The deflection of such a beam as a function of
length (in feet) is shown in Figure 2.1.

2 Outline a solution.

1. Create a data file containing the desired values of L, F, E, and I. Let your
program convert length from feet to inches, if required.

2. Calculate deflection according to the above formula. The sign of the deflection
can be either positive or negative as long as it’s understood that the deflection is
in the downward direction.

3. Display the output.

2.5 Applications

49

Deflection, in
o
w

[2 B it s
Downward force = 50,000 1b
OJ-““""“"“"""? """"""" D Sl e
o e : ;
0 2 4 6 8 10 12 14 16 18 20

Length, ft

Figure 2.1. Deflection of a steel 1-beam under a central load.

3 Design an algorithm.

DEFINE (L = length, ft; F = central force, Ib; E = elasticity, Ib/ir’;
| = moment of inertia, in*; deflection, in)

OPEN (file containing input data)

READ (L,F,E,)

CLOSE (file containing input data)

ASSIGN L = L+12.0 (convert to inches)
deflection = -F«%/(48El)

WRITE (deflection)

1 Convert the algorithm into a program.

P-2.10 [beam. c]

#include <stdio.h>
#define FILENAME "beam.dat"

int main(void)

{

50 = 2. The Basics of C Programming

double length, force,elasticity,mom_of_inertia;
FILE *infile;

infile=fopen(FILENAME, "r");

fscanf (infile, "%$1f %1f",&length, &force);
fscanf (infile, "%$1f %1f",&elasticity, &mom_of_inertia);
fclose(infile);
printf (
"Length of beam (feet) and central force (lb): %.11f %.11f\n",
length, force) ;
length=length*12.0;
printf(
"Elasticity (1lb/in”*2) and moment of inertia (in*4): %e %.11f\n",
elasticity,mom_of_inertia);
printf ("deflection = %1f in\n",
-force*length*length*length/48.0/elasticity/mom_of_inertia);

return 0;

Running P-2.10

5 Verify the operation of the program.

You probably don’t have an intuitive feel for what the answer should be
for a beam having the values of elasticity and moment of inertia specified in the
problem statement. According to Figure 2.1, the maximum deflection of a 20-foot
beam with the indicated properties is about 0.6 inches when subjected to a load
of 50,000 pounds concentrated in the middle of the beam. What would you think
about using this formula if it returned an answer of 0.001 inches? How about 10
inches?

Problem Discussion

P-2.10 is a straightforward program using a simple external text file for
input, but there are some important details. First, it is important that the creator
of the data file (beam.dat) be aware of which units to use for input. In
particular, the elasticity and moment of inertia are given in units that use inches,
but the problem statement indicates that the beam length should be given in feet.
It is probably best to retain this unit for input and let your program do the

2.5 Applications = 51

conversion to inches. Regardless of the solution you choose, it is essential that
your program account for the fact that, for example, an input of 20 for the length
means 20 feet and not 20 inches! The value for elasticity of 30 x 10° can be
written in scientific notation as 30e6.

Second, note that L* is coded as length*length*1length, as there is
no exponentiation operator in C. In Chapter 3, we will see that there is another
way to do this calculation using an intrinsic function.

Up to now, the $1£ conversion/format specifier has been used for I/O of
type double variables. However, the C language has several different specifiers
that control the appearance of displayed output. In P-2.10, one of those
alternatives, %e, is used to display the elasticity and moment of inertia. This
specifier is useful for displaying very large or very small real numbers in scientific
notation. (See Table 3.2 in Chapter 3 for a list of conversion/format specifiers.)

Finally, it may be helpful to know that for a simple file such as the one
needed by P-2.10, C doesn’t care about the line-by-line arrangement of the values
in the file. The order in which the input values are given in the data file is
important, of course, but these values can be given either on the same line or on
two or more lines. For example:

20 50000 30e6 800
and

20
50000
30e6
800

are equivalent and equally acceptable ways to provide one set of input values.

2.5.2 Relativistic Mass and Speed of an Electron

This particular problem has been chosen specifically because the quantities
involved may be unfamiliar. Hopefully, this unfamiliarity will encourage you to
be careful when you translate this and every other problem statement into a
program, and also to be diligent when you verify that program’s operation.

1 Define the problem.

An electron accelerated by a voltage V in an electron gun acquires an
energy of Ve = mc’ — m¢%, where e = 1.602 x 10"° coulomb is the charge on an
electron, m, = 9.109 x 10" kg is the rest mass, m is the relativistic mass in kg,

52 = 2. The Basics of C Programming

and ¢ = 2.9979 x 10°® m/s is the speed of light. The speed v of an electron of
relativistic mass m is obtained from m/m, = [1 — (v/c)*]"”%. Write a program that
reads several voltages from an external file and calculates the relativistic mass and
speed of an electron accelerated by that voltage. (Sample answer: For a voltage
of 1.5x 10° V, m = 3.58 x 10 kg and v = 2.9 X 10® m/s. See Figure 2.2 for
more information.)

mass/rest mas

0 05 1 15 2 25 3
Electron volts
(Millions)

Figure 2.2. Relativistic mass and speed of an electron.

2 Outline a solution.

The terminology of this problem may be unfamiliar, but the required
algebraic manipulations are not difficult. The relativistic mass is a consequence
of relativity theory, which predicts that mass is not a constant property of matter,
but increases with speed with respect to a stationary observer. The solution is
straightforward:

1. Read the voltage of the electron gun.
2. Calculate the mass first, then the speed, using the equations given in Step 1.
3. Display the output.

2.5 Applications

53

3 Design an algorithm.

DEFINE (All variables are real numbers. The rest_mass,
charge e, and speed of light ¢ are constanis.)
OPEN (file containing voltages)
LOORP (as long as there are voltages to read)
READ (voltage)
WRITE (echo voltage from file)
ASSIGN mass = (voltage+e + rest_mass*c’)/c?
velocity = ce[1 — (rest_mass/mass)’]'"”?
WRITE (mass and velocity)
END LOOP
CLOSE (file containing voltages)

1 Convert the algorithm into a program.

P-2.11 {rel_mass.c]

#include <stdio.h>
#include <math.h>

#define E 1.602e-19 /* Coulomb */
#define C 2.9979%e8 /* m/s */
#define REST_MASS 9.10%e-31 /* kg */
#define FILENAME 'rel_mass.dat"’

int main(void)

{
double voltage, speed,rel_mass;
FILE *infile;
int status;

infile=fopen (FILENAME, "r");

while (1) {
status=fscanf (infile, "$1f",&voltage);
if (status == EOF) break;

printf("for voltage of : %e V\n',voltage);
rel_mass={voltage*E+REST_MASS*C*C) / (C*C);

speed=C*sqgrt(1.0- (REST_MASS/rel_mass) * (REST_MASS/rel mass));

printf('relativistic mass and speed: %g %g\n",rel_mass, speed);

}
fclose(infile);

return 0;

54 = 2. The Basics of C Programming

Running P-2.11

Verify the operation of the program.

These calculations are easy to implement in C, but you must check them
by hand, using a calculator to do the math. Be careful when you calculate the
exponents on powers of 10. It is easy to make mistakes and accept wrong answers
when the numbers are so large or small that it is difficult to develop a feel for
them. If you have never had an introductory physics course, or even if you have,
the numbers may be essentially meaningless, so a wrong answer will look as
reasonable or unreasonable as the right one. As another test of the reasonableness
of your answers, you could add to your code the calculations for the ratio of the
electron’s speed to the speed of light—it must be less than 1—and the ratio of its
relativistic mass to its rest mass—it must be greater than 1; these are the values
shown in Figure 2.2.

Problem Discussion

As implied in the problem statement, the code should treat the data file as
a file of unknown length. Therefore, the voltages in the file are read with fscanf
inside a conditional loop that terminates when the end-of-file is detected.

Program P-2.11 gets a little ahead of our discussion of C in one respect:
it makes use of C’s sqrt function to calculate the square root required to obtain
the electron’s speed. In Chapter 3, we will give more details about using such
functions, which are essential for any language used to do scientific and
engineering calculations. For now, the intent of this function should certainly be
clear in the context of the program. It is necessary to include the <math.h>
header file in order to use the sgrt function. If you are using the UNIX cc
compiler, you will also have to include the option -1m (to link the math library)
in the command line when you compile this program:

cc rel_mass.c -orel_mass.exe -1lm.

Note the use of scientific notation to express the physical constants in the
program. The voltage input can also be given in scientific notation, and it can still
be read with a $1f specifier. In P-2.11, an alternative specifier, %g, is used for

2.6 Debugging Your Programs ® 535

output. It displays real numbers in floating point or scientific notation, whichever
is shorter. This is useful when you’re not sure of the magnitude of the answers
your program will produce.

2.6 Debugging Your Programs

There is no shortage of potential problems in even the
simplest C programs. The first errors you will encounter
are compile-time errors, or syntax errors, that your
programming environment will detect when it tries to
compile your program. Unfortunately, the messages that C compilers give about
these errors are not always very helpful. One result of the free-format nature of
C is that sometimes an error message will be reported far from its actual location,
as your compiler defers reporting the error until it is forced to give up on
determining how you wish your source code to be interpreted. The C language is
this way by design; the penalty to be paid for having a very flexible language is
that programmers must assume a great deal of responsibility for writing
syntactically correct code. All syntax errors must be removed from a source code
file before an executable program can be generated.

Even after your program is free of syntax errors,
there is another class of errors that.your programming
environment can detect only after a program has begun
executing. These run-time errors must be corrected by modifications to your
source code to allow your program to execute properly or to produce correct
answers.

The only way to become proficient at finding bugs and
debugging your programs is to make errors (not a problem!),
note the messages resulting from those errors, and learn how to
respond to those messages. Each programming environment is
a little different because the messages displayed in response to syntax or run-time
errors are generated by the compiler you are using; the content of these messages
isn’t regulated by the C language standard. In the next sections, some common
compile-time and run-time errors are described.

2.6.1 Compile-Time Errors

1. Misspelled keywords and function names

This includes using inappropriate combinations of uppercase and lowercase
letters, such as Printf instead of print£. It is difficult for a C compiler to
give a useful message about such errors because it has no way of determining
what you actually meant. Your defense against this kind of error is to be careful
when you type your source code in the first place.

56 = 2. The Basics of C Programming

2. Undefined variable names

This is a “good” error because it forces you to declare every variable
appearing in your program. It is easy to make spelling errors when you type in
source code, and the messages resulting from this error will show you where
variable names have been misspelled.

3. Inappropriate use of semicolons on lines containing compiler directives
Compiler directives are not C statements, so they do not end with a
semicolon. For example, #include <stdio.h>; will produce an error, but
the message may not be very helpful and may appear to relate to an entirely
different part of your source code. Again, your only defense is to be careful.

4. Missing semicolons

Because of the free-format nature of C, this error is usually reported on the
line after the one on which the missing semicolon was expected. Remember that
every C statement must end with a semicolon.

5. Unbalanced curly braces ({ . .. }) around statement blocks

This is another error that is difficult for a compiler to interpret because it
“keeps hoping” that the missing brace will be found. Thus the error message often
references a source code line, perhaps even the last line of the program, that is far
from where the missing brace should have been. Your defense against this kind
of error is to be consistent about indenting statement blocks so that it is easy to
see the correspondence between the start of a code block and its closing brace;
this has the added advantage of making your code much easier to read and
understand.

6. Unbalanced parentheses

Every left parenthesis must be balanced by a right parenthesis in an
assignment statement or a call to a function. You are encouraged to use extra
parentheses whenever their presence makes calculations more clear, but many
beginning programmers overuse parentheses in simple assignment statements.
Code such as

X = a + (b/c);

is okay, but these parentheses are not needed because multiplication and division
take precedence over addition and subtraction. The use of too many parentheses
in more complicated arithmetic expressions makes mistakes more likely and
should be avoided. A more detailed discussion of the precedence of operations
will be found in Chapter 3.

2.6 Debugging Your Programs = 57

7. Missing quote marks around conversion specifier strings in I/O statements

Quote marks around string constants (string literals) must always occur in
pairs—an opening quote and a closing quote. Your compiler will try to find a
missing quote mark and may report the error far from the line in which the error
actually occurred.

2.6.2 Run-Time Errors

1. Inappropriate I/O conversion specifiers

This error can result in “garbage” values or program crashes. Such errors
won’t be detected as compile-time errors, but they can cause incorrect answers or
odd errors when you try to run your program. If values print as O even though you
know they have nonzero values, or if variables appear to have wildly inappropriate
values, the most likely cause is an inappropriate conversion specifier.

Your defense against this kind of error is to check compatibility between
variables and conversion specifiers in printf and scanf functions (and their
corresponding file I/O functions). Although some inconsistencies are of little
consequence—it is okay to use a $f format, rather than %1f, to display a type
double variable, for example—it is better practice to be consistent about using
an I/O conversion specifier that is properly associated with the data type of the
quantity being read or written.

2. Omitting the address-of operator (&) for nonstring variables used as arguments
in input functions

Variable names associated with characters, integers, and real numbers must
always be preceded by the & character when your program reads their values using
scanf or some other input function. Failure to do so asks C to consider the
variable name as an address rather than as a symbolic name. When you read
strings, the names of string variables are considered by C to be addresses—a detail
which certainly isn’t obvious, and which will be discussed later in more detail—so
the & operator isn’t used. This kind of error will be detected only when your
program executes. The results range from variables having values of O to obscure
messages such as segmentation fault.

3. Not finding a requested input file

Because nearly all C functions, including I/O functions, return values, the
C language depends on these values to detect certain kinds of error conditions.
You might want a program to crash if it can’t find a file you asked it to read
from, but it won’t do that. Instead, the fopen function will return a value that
can be interpreted as, “I couldn’t find this file.”

It is certainly possible, and even desirable, to write code that will respond
appropriately to such a message, but we have avoided it in the examples presented

58 = 2. The Basics of C Programming

in this chapter. Such code uses syntax we haven’t discussed yet, and it makes
programs longer, harder to read, and less clear in their basic purpose. For
programs you write for your own use, it is not hard to keep track of where data
files are stored, so you aren’t likely to ask your program to open a file that
doesn’t exist.

4. Using inappropriate mixed-mode calculations
Consider this code fragment:

int min, sec;
float decimal_minutes;

decimal_minutes = min + sec/60;

Even though decimal_minutes is declared as type float, the result is an
integer always equal to the value of min. Why? Because sec/60 is an integer
calculation and always produces a value of 0 unless sec equals exactly 60. The
meaning imposed by C on the division operator depends on the data type of both
its operands. If both operands are integers, as in this case, the division operator
returns the integer quotient of dividing sec by 60. This is sometimes a desirable
result, but not in this code fragment.

To avoid this kind of error, always be aware of whether you are doing
integer or real arithmetic, regardless of the appearance of the values involved.
Physical quantities should almost always be associated with floating-point
variables even when the quantities are expressed as whole numbers. In this
example, you could get the correct answer by typing sec/60.0. The fact that
one of the operands is now a real number forces C to perform real arithmetic and
to generate a real number result. A better idea would be to declare all three
quantities as real variables and use 60 .0 rather than 60, even though 60 is a
whole number.

2.7 Exercises

In these exercises, the input may come either from values typed at the keyboard
or from an external data file, as specified by your instructor. When you use a data
file, be sure to echo the contents of the file as part of your program’s output. Your
instructor also may ask you to write output to a file instead of or in addition to
your computer monitor. Also, if you use a data file for input, you can try using
your system’s redirection operator to direct your program’s output to another file
rather than to your computer monitor.

In this and subsequent chapters, data files mentioned in the exercises can
be downloaded from the Web site mentioned in Section 6 of the Preface.
Instructors can obtain source code for the exercise problems directly from the

2.7 Exercises ® 59

author, as noted in Section 6 of the Preface. The names of the source code files
are given in brackets at the end of each exercise.

1. Write a program that calculates and displays the volume and surface area of a
cylinder, given the radius and height in meters. The volume of such a cylinder is
nrth, and its surface area is 2nr? + 2nth. [cylinder.c]

Extra Credit:

1. Assuming that the cylinder is solid and the density (g/cm’) of the
material is specified as input, calculate the mass of the cylinder. (Use an
engineering handbook to find densities for one or more materials and be sure to
specify in your program output what those materials are.)

2. Assuming that the cylinder is an empty container made of thin sheets
of material with a known mass per unit area (g/cm®), calculate the mass of the
cylinder for a specified wall thickness. Is it appropriate to assume that this value
is just the surface area times the mass per unit area of the material?

3. Create a data file with several sets of material densities and dimensions
and modify your program so that it will read input values from this file rather than
from the keyboard. [cylindr2.c]

2. “Block and pulley”

problems are a staple

of introductory physics (@) (b)
courses.
(a) Consider a block of Mb
mass m, hanging from
a massless string that
passes over a
frictionless pulley and
is connected to another Mal
block of mass m,
resting upon a
horizontal surface as
shown in Figure 2.3(a). Figure 2.3. Block-and-pulley configurations.
The coefficient of

friction between the second block and the horizontal surface is p. Under the
influence of gravity, the system of blocks undergoes an acceleration a, where the
balance of forces is

Ma |Mb

F = (m, - pmy)g = (m, + m,)a

60 = 2. The Basics of C Programming

Write a program that calculates the acceleration of the block system for specified
values of m,, m,, and p. What is the maximum value of p such that the hanging
block will fall?

(b) Consider the masses from part (a) hanging from either side of a frictionless
pulley, as shown in Figure 2.3(b). Now the balance of forces is

F = (ma - mb)g = (ma + mb)a
Add to your program the calculation for the acceleration of this block system.

3. The Carnot cycle describes a theoretical heat engine that absorbs heat at
temperature T,, converts some of the heat to work, and exhausts the rest at a
lower temperature T,. The efficiency of a Carnot engine, which is always less than
1, is determined by the ratio of output to input temperatures:

efficiency = 1 - T,/T,

where temperatures are expressed in Kelvins and 0° C equals 273 K. Write a
program that accepts as input values of T, and T, and calculates the efficiency.
Express the temperatures in units of degrees Centigrade and let your program do
the conversion to Kelvins. [carnot. c]

4. Young’s modulus of elasticity Y, the ratio of stress to strain, characterizes the
response of materials to tension or compression forces. Assuming the elastic limit
is not exceeded, the change in length AL of a rod of initial length L and cross-
sectional area A subjected to a tension or compression force F is related to
Young’s modulus by

stress F/A

y - S8
strain AL/L

Table 2.1 lists Young’s modulus and the elastic limit for several materials.

Write a program that determines, for each of the tabulated materials, the
change in length AL for a 1-mm-diameter, 2-meter rod subjected to a specified
force F that will not cause the elastic limit to be exceeded for any of the
materials. For each material, calculate the minimum diameter a rod can have
without its elastic limit being exceeded for a user-specified force. Use an external
file to store all your input data. [young. c]

2.7 Exercises = 61

Table 2.1. Young’s modulus and elastic limit for selected materials

aluminﬁm 7.0 1.3
brass 9.1 3.8
copper 11.0 1.5
wrought iron 9.1 1.6
spring steel 10.0 4.1

5. Write a program that asks the user to supply the mass and velocity of an object
and then calculates and displays the kinetic energy and momentum of that object.
The kinetic energy is mv?/2 and the momentum is mv. Use metric units (mass in
kilograms, velocity in meters per second, energy in joules).

Extra Credit:

Include source code that will convert the kinetic energy and momentum to
their British system equivalents. The British unit of energy is ft-1b and the unit of
momentum is slug-ft/s. 1 ft-Ib = 1.356 joule; 1 slug = 14.59 kg; 1 ft/s = 0.3048
m/s. [kinetic.c]

6. Write a program that asks the user to supply the mass m, radius r , linear speed
v, and rotational speed m of a rolling solid spherical ball. The total kinetic energy
of an object is the sum of its translational and rotational kinetic energies:

KE,,, = [0’/2 + mv¥/2
where I is the moment of inertia. For a solid sphere of radius r, the moment of
inertia is 2mr%/5. Use metric units to calculate and display the linear, rotational,
and total kinetic energy in joules. Rotational speed is measured in units of rad/s.
[rolling.c]

7. The drag force F, on a moving object is given by

F, = (p/2)v’AC,

62 = 2. The Basics of C Programming

where p is the density of the gas or fluid through which an object of projected
(cross-sectional) area A m* moves at a speed v m/s. (For air, p = 1.23 kg/m®.) The
dimensionless drag coefficient C; has a value in the range 0.2 to 0.5 for
automobiles. The power required to overcome the drag is

P=Fyv

For force and speed in mks units, power is measured in watts. One horsepower
is equivalent to 746 watts.

Write a program that asks the user to supply the speed in units of mph,
cross-sectional area in units of square feet, and drag coefficient of a moving
automobile and then calculates the drag force in newtons and the power in
horsepower required to overcome this drag force. [dragforc.c]

8. Write a program that calculates and prints the total resistance of three resistors
connected (a) in parallel and (b) in series, as illustrated in Figure 2.4. When they
are connected in parallel, the total resistance of n resistors is 1/r; = 1/r; + l/r, +
1/r; +... +1/r,. When they are connected in series, the total resistance of n resistors
iSIr =1, + I, + 1; +... + 1,. Prompt the user to enter values in ohms, the usual unit
of resistance. [resistor.c]

R1 R2 R3

NVWW VNVVVN-AN VN~

Figure 2.4. Resistors in parallel and in series.

9. Consider the reliability of a system consisting of three components connected
in series or in parallel. If the reliability of the components is given as R, R,, and
R,, where 0 < R <1, then the reliability of a system with the components wired
in series is

R... =RRR,

series
If the same components are wired in parallel, and if the system remains functional
as long as any one of the components is working, then the system reliability is

R

paralle

=1-(1-R)A -RY(1 -Ry

2.7 Exercises ® 63

Write a program to calculate the reliability of such systems for three user-specified
values of reliability.

Systems using components in series are vulnerable to failure even if the
individual components are very reliable. On the other hand, redundant systems,
with components in parallel, are very reliable even if the components aren’t very
reliable individually. For example, if each component has a reliability of 0.900,
a system with these components in series has a reliability of only 0.729. If the
same components are in parallel, then the system reliability is 0.999.
[reliable.c]

10. Write a program that requests as input the clock time in hours (0 to 24),
minutes, and seconds in the format hh:mm:ss and displays the time in both
seconds and fractions of a day. One day contains 86,400 seconds. For example,
12:00:00 is 43,200 seconds, or 0.5 days.

Hint: Be sure to read the discussion at the end of Section 2.2.1 before writing the
code for this problem. [time. c]

11. Write a program that requests as input an angle expressed in degrees, minutes,
and seconds in the format dd:mm:ss and converts it to whole and fractional
degrees. There are 60 minutes in a degree and 60 seconds in a minute. For
example, 30:15:04 equals 30.25111 degrees.

Hint: Be sure to read the discussion at the end of Section 2.2.1 before writing the
code for this problem. [angles.c]

12. Write a program that requests as input the time in seconds required to run a
distance of one mile and calculates the speed in units of feet per second, meters
per second, and miles per hour. For example, a 4-minute (240-second) mile is run
at an average speed of 22 feet per second, 6.71 meters per second, or 15 miles per
hour. There are 5280 feet in one mile and 3.2808 feet in one meter. [speed. c]

13. Write a program that calculates and prints the energy of a photon whose
wavelength A is given in centimeters. The energy = hf joule, where
h = 6.626 x 10 joule-s (Planck’s constant), f = c/A, where ¢ = 2.9979 x 10° m/s
(the speed of light) and wavelength is given in meters. (See Figure 2.5.)

Hint: Use a def ined constant and scientific notation to define the speed of light
and Planck’s constant. As an example of using scientific notation in C, the number
6.626x10™* can be represented as 6.626e-34.

Extra Credit: A 1 eV (electron volt) photon has an energy of 1.602x10™" joule.
Modify your program so it will also calculate the wavelength of a photon with an
energy of 1 eV. (Answer: about 1240x10° m. This is in the infrared part of the
electromagnetic spectrum.) [photon. c]

64 = 2. The Basics of C Programming

Wavelength, nanometers

0 ; ; ; ; i i

Energy, eV
Figure 2.5. Wavelength of a photon as a function of energy.

14. Recalling programs P-2.2 and P-2.4, which calculated the area and
circumference of a circle for a specified radius, write a version that performs these
calculations for several radius values stored in an external data file. Your program
should not assume ahead of time how many radius values there will be.
[circl _f2.c]

15. (a) Write a program that asks for a student’s name, ID (in the form of a social
security number), cumulative grade point average (GPA), and total number of
credit hours accumulated through the most recent grading period. Calculate the
total number of grade points by multiplying the number of credit hours by the
GPA. Now ask the user to supply information about a newly completed course.
This information should include the number of credit hours for the course and the
number of points for each credit hour—4 for an A, 3 for a B, 2 for a C, 1 for a
D, and O for an F. Multiply the credit hours by the number of points
corresponding to the grade earned in the new course and add it to the old number
of total grade points. Add the new credit hours to the old credit hours. Divide the
new grade point total by the new total credit hours to recalculate the GPA.
Display this value. {[gpa. c]

(b) Rewrite the program in part (a) so that data about several students are
contained in a single data file. Create the file yourself, with whatever format you
think will simplify your programming. The file should contain, for each student,
the same information entered at the keyboard for the program in part (a). This new

2.7 Exercises ® 65

program should require no keyboard input to run and should display the data in
the file as well as the new total credit hours and GPA. Do not assume that your
program knows ahead of time how many students will be represented in the file.
If you like, you can send output both to your monitor and to a new data file.

[opa2.c]

16. The ideal gas law describes the relationships among pressure (p), volume (V),
and temperature (T) of an ideal gas:

pV = UuRT

where p is the number of kilomoles of gas and R is the universal gas constant. For
volume in m’, temperature in kelvins, and pressure in newton/m’ (pascal),
R = 8314.3 joule/kilomole-K, and 1.0132x10° pascal = 1 standard atmosphere
(atm). Write a program that calculates the volume occupied by a specified number
of kilomoles of an ideal gas at temperature T (°C) and pressure p (atm). (Sample
answer: under standard conditions of T = 273.15 K (0°C) and a pressure of 1 atm,
1 kilomole of an ideal gas occupies a volume of about 22.4 m*.) [gas_law.c]

Extra Credit:

1. If you were trying to determine the validity of the ideal gas law experimentally,
it would make more sense to use the law to calculate pressure for a specified
volume and temperature. Modify the program to do this calculation instead of the
calculation specified in the original problem statement.

2. Because molecules occupy volume and exert intermolecular forces on each
other, the ideal gas law becomes less accurate as density increases—that is, as
more molecules occupy the same volume. The van der Waals modification to the
ideal gas law attempts to take this into account with the following empirical
formula:

(p + aV)(v - b) = RT

where v is the specific volume (m’/kilomole, for example). The constants a and
b are different for each gas and are experimentally derived. Table 2.2 contains
data for several gases and Figure 2.6 shows pressure as a function of specific
volume for nitrogen.

66 = 2. The Basics of C Programming

28 : : : ' ; ; H 1 T 1000

750
@ | “
§§15..... ? -250 g
©§ £
g3 § "
2 I =]
127 A . 0 2
ie <¥ A Pdeal) g
o ideal &

81 \\\ : N B

st A SR . ———

<@ P(van der Waals) | |
' e ——— -750

0 t t + + t t t t
0 02 04 06 08 1 12 14 16 18 2
Specific volume, m3/kilomole

Figure 2.6. Pressure as a function of specific volume for nitrogen at
T=27315K

Table 2.2. Molar masses and van der Waals coefficients for selected gases

van der Waals coefficients

a, b, a, b,
Molar mass, kPa-m®/ m*/kg 1l*-atm/ 1l/mole

Gas gm/mole kg? mole?
air 28.97 0.1630 0.001270 1.350 0.0368
ammonia 17.03 1.4680 0.002200 4.202 0.0375
carbon dioxide 44.01 0.1883 0.000972 3.600 0.0428
helium 4.00 0.2140 0.005870 0.034 0.0235
hydrogen 2.02 6.0830 0.013200 0.245 0.0267
methane 16.04 0.8880 0.002660 2.255 0.0427
nitrogen 28.02 0.1747 0.001380 1.354 0.0387
oxygen 32.00 0.1344 0.000993 1.358 0.0318
propane 44 .09 0.4810 0.002040 9.228 0.0899

Source: M. C. Potter and C. W. Somerton (1993), Schaum’s Outline
Series: Theory and Problems of Engineering Thermodynamics,
Tables B-3, B-8.

2.7 Exercises ® 67

Modify your program (the extra credit one, not the original one) to do calculations
for both the ideal gas law and the van der Waals modified law.

Hint: Be careful with units! 1 liter/mole is numerically identical to 1 m*/kilomole.
If the pressure is calculated in pascals, then the tabulated value for a must be
multiplied by 101320. [gas2.c]

17. In braking tests on automobiles, the initial speed v and stopping distance d are
recorded. Write a program that reads several pairs of v and d values from an
external file. Assume that the automobile decelerates at a constant rate while the
brakes are applied. Calculate the time to stop t and the deceleration a for each pair
of values. The relevant formulas are

d=at’/2
v = at

The initial speed should be given in units of miles per hour and the stopping
distance should be given in feet. Note that these units are inconsistent, so speed
should be converted to units of feet per second before you do the calculations.
[car_stop.c]

18. The Body Mass Index (BMI) provides a way to characterize normal weights
for human adult bodies as a function of height. It is defined by

BMI = w/h®

where w is mass in kilograms (2.2 kilograms mass per pound weight) and h is
height in meters. A BMI in the range 20-25 is considered normal and a BMI over
30 is considered obese.

One problem with the BMI is that it doesn’t distinguish between fat and
muscle. Thus a professional football player might be considered obese because he
has an abnormal amount of muscle weight relative to his height.

An alternative formula that takes into account the source of body weight
is
BMI' = (a;F + aL)/h’
where F and L are fat and lean weights (F + L = w) and a; and a; are constants
that give different weights (in the statistical sense) to muscle weight and fat

weight. The constants are chosen to satisfy these constraints:

1. BMI = BMI' for average adults with a body fat content of 20 percent.
2. ap=2a,

68 = 2. The Basics of C Programming

The second somewhat arbitrary constraint means that fat weight counts twice as
much as lean weight in the calculation of BMI'. To look at it another way, an
exercise program that replaced one pound of fat with two pounds of muscle would
leave BMI' unchanged. Let p equal the fraction of total body weight associated
with fat. Then

F = pw

L=(1-pw

apw + a (1l -ppw=w
ap = 2a;

0.2(2a;) + 0.8a; =1
a, = 0.833

ap = 1.667

Write a program that calculates both BMI and BMI'. Ask the user to enter her or
his total weight in pounds, height in inches, and percent body fat.

19. An external data file (weather . 96) contains weather data for Philadelphia,
Pennsylvania, in the following format:

Date hi time lo time rec. hi rec. lo norm.
bar.6a noon 6p mid.
hum. hi lo prec. mon. year. norm. AQ cl sun rise/set

01/01/96 43 12:45p 34 5:28a 62 1973 4 1881 39 24
29.92r 29.96f 29.93r 29.90f
85 64 TRACE TRACE TRACE 0.11 ---- -- 100 7:22a 4:46p
01/02/96 37 12:01la 32 9:50p 67 1876 7 1968 39 24
29.85f 29.83f 29.73s 29.57f
100 75 0.56 0.56 0.56 0.22 g 43 pa 100 7:23a 4:47p

(and so forth)

Using this file, find and print the maximum temperature and date of all days
during 1996 on which the maximum temperature was at least 90° F. You can
assume that:

1. The three header lines appear only once, at the beginning of the file.

2. There are no missing days.

3. Every day in the year is represented by three lines in the file, consistently
formatted as shown.

4. The maximum temperature, in contrast with some of the other parameters, is
always present and is right-justified in columns 10-12. [weather.c]

2.7 Exercises ®» 69

20. Consider the file track.dat, which contains winning times for the 1500
meter and marathon races in the modern Olympics.

Men Women
year 1500 m marathon
1896 4:33.20 2:58:50.00
1900 4:06.20 2:59:45.00
1904 4:05.40 3:28:53.00
1908 4:03.40 2:55:18.40
1912 3:56.80 2:36:54.80
1916
1920 4:01.80 2:32:35.80
1924 3:53.60 2:41:22.60
1928 3:53.20 2:32:57.00
1932 3:51.20 2:31:36.00
1936 3:47.80 2:29:19.20
1940
1944
1948 3:49.80 2:34:51.60
1952 3:45.20 2:23:03.20
1956 3:41.20 2:25:00.00
1960 3:35.60 2:15:16.20
1964 3:38.10 2:12:11.20
1968 3:34.90 2:20:26.40
1972 3:36.30 2:12:19.70 4:01.40
1976 3:39.17 2:09:55.00 4:05.48
1980 3:38.40 2:11:03.00 3:56.60
1984 3:32.53 2:09:21.00 4:03.25 2:24:52.00
1988 3:35.96 2:10:32.00 3:53.96 2:25:40.00
1992 3:40.12 2:12:23.00 3:55.30 2:32:41.00
1996 3:35.78 2:12:36.00 4:00.83 2:26:05.00

In some years since 1896, there haven’t been any Olympic games at all because
of World Wars I and II. Also, the women’s events were phased in at different
years starting in 1972.

Write a program that will read this file and report the years for which there
were no Olympic games. This programming problem can easily be solved in C by
using fgets to read each line of the file and then acting on the value returned
when the resulting string is interpreted with sscanf. You will need one
statement that requires syntax we have not discussed yet. Suppose the value
returned by sscanf is stored in int variable status. Then

if (status == 1) printf(...

will print an appropriate message for a year in which no Olympics were held.

3

Data Types, Operators, and Functions

3.1 Specifying and Using Data Types

C is a strongly typed language that demands a specific programmer-supplied data
type for every variable name used in a program. We have already used several
different data types in the programs presented in Chapter 2. In this section, we
will give a more detailed description of data types. C supports basic data types for
integers, real (“floating-point™) numbers, and characters. For each of the numerical
data types, there are choices that define the number of digits that can be
represented as integers as well as the number of significant digits and the range
of real numbers. Some data types have one or more alias names that can be used
in a program. Table 3.1 lists these data types and gives ranges for one particular
C implementation, Microsoft’s MS-DOS-based Quick C. It is important to realize
that these ranges are not fixed by the ANSI C standard and can differ among
various C implementations.

The nature of C requires that I/O operations be associated with specific
data types. This association is made with format and conversion specifiers. When
used with input statements, conversion specifiers tell C what kind of variable is
being read. To put it another way, specifiers tell C how to translate characters
typed at the keyboard or read from a file. For example, the statement

scanf ("%1f", &x);

tells C to interpret characters typed at the keyboard as a real number of type
double. Each data type has its own conversion or format specifiers for reading
values with scanf or displaying values with printf, as shown in Table 3.2.
Within the format specifiers used with output statements such as printf,
it is possible to further control the appearance of the output by specifying the total
number of characters allocated for the output and, for floating-point numbers, the
number of digits appearing to the right of the decimal point. The general form is
w for character, string, and integer output and w.d for floating-point number
output, inserted between the % symbol and the format specifier. The hard-coded
value w is the total number of characters allocated for the output field. In the case
of real numbers, d is the number of digits appearing to the right of the decimal
point. Numbers are right-justified in their fields. For example, the value 17.7
displayed with format specifier "$10.31£f" will be displayed as p17.700.
If the number of characters is insufficient to display the output, the field will be
expanded to allow the display. Thus the conversion specifier "%3.31f" will
display any numerical value, no matter how large, with three digits to the right of

D. R. Brooks, C Programming: The Essentials for Engineers and Scientists
© Springer-Verlag New York, Inc. 1999

72 = 3. Data Types, Operators, and Functions

the decimal point. For example, 17.7 will be displayed as 17.700. Numbers are
properly rounded when using the w. d option to specify the number of digits to
the right of the decimal point. Thus 17.766 will print as 17.77 with a
"%5.21f" specifier and as 18 witha "%$2.01f" specifier.

Characters and character strings are also right-justified when their field
lengths are specified, and C will expand the field to display an entire character
string, if necessary.

Table 3.1. Some C data types

i

short int, signed short -32767 to 32767

short
signed short int

int signed int -32767 to 32767
signed

long long int, signed long -2147483647 to 2147483647
signed long int

unsigned short unsigned short int 0 to 65535

unsigned unsigned int 0 to 65535

unsigned long

unsigned long int

0 to 4294967295

float (none) 1.175494¢-038 to 3.402823e+038
double (none) 2.225074e-308 to 1.797693e+308
long double (none) 3.362103e-4932 to
1.189731e+4932
char (none) 'A" (example)
(character string) (none) char a([80]; (example)

a="This is a string.";

The %f and %1f specifiers will read numbers in either decimal or
scientific notation, but they display numbers in decimal notation, which can lead
to a loss of information. For example, a %1 specifier will read the value 3e-9
correctly, but it will display this value as 0.000000. Use a $e or %g specifier to
display very small values correctly.

Especially for scientific and engineering applications, you need to be aware
of the limits on ranges for the various data types. These ranges are implementation
dependent. The only requirement of the ANSI C standard is that when progressing
from “smaller” to “larger” data types, the number of integers, the range, and the

3.1 Specifying and Using Data Types = 73

precision must be at least as large or precise as for the previous “smaller” data
type.

Table 3.2. Conversion/format specifiers and control characters for I/O

% Begin conversion specification.
%% Display the character %.
c Read/display character.

d (1), 14 (11) Read/display signed integer.

e (E), 1le (1E), Display type float, double, or long double floating
Le (LE) point number in scientific notation. Read such data types
expressed in either decimal or scientific notation.

£,1f, Lf Display type float, double, or long double floating
point number in decimal notation. Read such data types
expressed in either decimal or scientific notation.

g (G), 1g (1G), Display type float, double, or long double floating
Lg (LG) point number in scientific or decimal notation, depending on
which is shorter. Read such data types expressed in either
decimal or scientific notation.

S Read/display string.

u, 1u Read/display unsigned short, unsigned,
or unsigned long.

\ escape character:

\b move cursor one character to the left

\f “form feed” to top of next page

\n go to beginning of next line

\r go to beginning of current line

\'t go to next tab stop (eight character tabs)
\" print the character "

\\ print the character \

Program P-3.1 shows how to determine the ranges and, for floating-point
numbers, the number of significant digits for your C implementation. This
program requires the standard header files 1imits.h and float.h to access
the built-in constants INT_MAX, INT_MIN, FLT MAX, FLT_MIN, DBL_MAX, and
DBL_MIN.

74 = 3. Data Types, Operators, and Functions

P-3.1 [ranges.]

/* Find ranges for numeric data. */
#include <stdio.h>

#include <limits.h>

#include <float.h>

#include <stdlib.h>

#include <math.h>

int main(void)

{
printf ("Range of short integer: %d %d\n"', SHRT_MAX, SHRT_MIN) ;
printf ("Range of integer: %d %d\n', INT_MAX, INT_MIN) ;
printf ("Range of long integer: %$1d %1d\n", LONG_MAX, LONG_MIN) ;
printf ("Max unsigned short integer: %u\n'",USHRT_MAX) ;

printf ("Max unsigned integer: %ul\n",UINT_MAX) ;
printf ("Max unsigned long integer: %lu\n",ULONG_MAX) ;
printf ("Range of float: %e %e\n",FLT_MAX,FLT_MIN) ;

(
(
(
printf ("Precision of float: %i\n"',FLT_DIG);
(
(
(

printf ("Range of double: %e %e\n",DBL_MAX, DBL_MIN) ;
printf ("Precision of double: %i\n"',DBL_DIG) ;
printf ("Range of long double: %Le %Le\n',LDBL_MAX,LDBL_MIN) ;

printf ("Precision of long double: %i\n",LDBL_DIG) ;
printf ("%$e\n",HUGE_VAL) ;
return 0;

Running P-3.1

Some programmers prefer to use type double variables for all numerical
calculations, even though this data type requires more memory than £loat and
may slow the performance of calculation-intensive programs. The justification for
this choice is that the so-called intrinsic functions for mathematical calculations,
which will be discussed later in this chapter, expect type double arguments and
return type double results. Thus the use of type double variables eliminates
the need for “downward” type casting, a topic we will deal with later. In ANSI-
standard C, the minimum range for positive values of type double is from 10*
to 10%’. However, you will likely find that even the float data type in your

3.2 Operators = 75

implementation supports numbers in this range, with seven or eight significant
digits. This is enough range and precision for many calculations, so it will
sometimes be acceptable to use type £1oat rather than type double numerical
variables.

3.2 Operators

C supports a great many operators. Some of these are
straightforward, such as the +, -, *, and / operators for
the basic mathematical operations of addition, subtraction,

multiplication, and division. The * and / arithmetic

operators work only as binary operators. These require two operands, one to the
left of the operator and the other to the right, as in a*b. The + and — operators
work either as binary operators or as unary operators, in which a single operand
appears to the right of the operator, as in -x. Other operators are unique to C and
provide shortcuts for specifying certain common programming operations, such as
incrementing and decrementing values. Table 3.3 lists these operators.

Of the math operators, only the / and % deserve '
special mention, as the operation of the others is l
straightforward. The % is the modulus operator that
returns the remainder from integer division. For example, 7%4 returns a value of
3. For two integer operands, or integer-valued expressions, the / operator returns
the integer quotient. For example, 7/4 returns a value of 1. This perhaps
unexpected result, briefly mentioned in Section 2.6 of Chapter 2, is due to the fact
that, in C, the data type of the operands determines the data type of the result.

The real challenge in mastering C’s
operators lies in learning the rules that
determine the order in which operations in an
expression are evaluated. These operator precedence rules are given in Table 3.4.
For now, we are interested in just the arithmetic operators. In an algebraic
expression, for example, multiplications and divisions are performed before
additions and subtractions, so, as expected, multiplication and division operators
have higher precedence than addition and subtraction operators. Just as in algebra,
the use of parentheses can alter the precedence of operations. As a matter of style,
parentheses should be used for any but the most straightforward expressions in
which there is no possibility of misinterpreting the precedence rules. We will
assume in this text that our definition of straightforward expressions is limited to
those for which the algebraic precedence rules for addition, subtraction,
multiplication, and division apply.

76 = 3. Data Types, Operators, and Functions

Table 3.3. C operators

add (binary) or multiply by +1 (unary)

+ a+b, +a
- subtract (binary) or multiply by -1 (unary) a-b, -a
* multiply a*b
/ divide a/b
% remainder (modulus) in integer arithmetic i%7

++

add one to operand

= simple assignment X=y
<operators= compound assignment used with arithmetic X+=y (X=x+Yy)
operators -=y (x=%x-Y)
x*=y (x=x*y)
x/=y (x=x/y)
1%=7 (1=1%3)

++1,

subtract one from operand

--x,

== equal a==b

1= not equal al=b

< less than a greater than a>b

<= less than or equal a<=b

>= greater than or equal a>=b

! logical NOT (unary operator) la

&& logical AND (a==b) && (c<d)
Il logical OR (a<b) 11 (c>d)

! See the text for a discussion of the implications of applying these operators before and after the

variable.

3.2 Operators = 77

Table 3.4. Precedence of C operations

function calls 1
!, unary +, unary -, unary & ’, unary * 2 | 2
type casts 3
* /% 4
binary +, binary - 5
<, >, <=, >= 6
==, = 7
&& 8
Il 9
= 10

! & is the address-of operator as used in scanf, for example.

2 » js the dereferencing operator for pointers, a topic that will be discussed in Chapter 5.

P-3.2 demonstrates the use of some of the shorthand assignment and
incrementing/decrementing operators given in Table 3.3. It is never required to use
these operators, but their use is consistent with C’s generally terse syntax.

P-3.2 [operator.c]

#include <stdio.h>
int main(void)
{

int x,v;

x=7; y=4;

printf("%$i %i\n",x%y,x/vy); /* (1) */
X+=y;

printf("%i\n",x); /* (2) */
X=y--;

printf ('x= %i, y= %i\n",x,y); /* (3) */
X=--Y;

printf('x= %1i, y=%i\n",x,v); /* (4) */
printf("%$i\n",x*=y); /* (5) */
return 0;

78 = 3. Data Types, Operators, and Functions

Running P-3.2

From the printf function in the line labelled (1)
in P-3.2, the modulus and division operators applied to 7
and 4 yield 3 and 1. For line (2), the result is the same as
writing x=x+y, which equals 11. For the decrementing
and incrementing operators, the results depend on whether the operator appears
before (prefix operator) or after (postfix operator) a variable name. For line (3),
the postfix operation assigns the current value of v (4) to x and then decrements
v to 3. In line (4), the prefix operation first decrements y from 3 to 2 and then
assigns x this new value. The behavior of the incrementing/decrementing operators
can be confusing, so they should be used with care.

The relational operators described in Table 3.3 are used to compare values
and expressions. For example, the expression A < B has a value of True if A is
less than B and a value of False if it’s not. Such comparisons are used in the
implementation of the IF... THEN... ELSE... pseudocode command: for example,
“If A is less than B, then take some action....” The C implementation of this
pseudocode will be discussed in Chapter 4.

Some languages support a logical or boolean
data type that has True or False as its two possible
values. One of these values is assigned as a result of a
comparison, such as A < B, being either True or False.
However, as noted in the discussion of selection structures in Chapter 4, C does
not support a logical data type. Therefore, it is sometimes useful to define
constants that make relational operations more clear:

#define TRUE 1
#define FALSE O

Finally, C supports the logical operators NOT, AND, and
OR. These are used to form compound relational statements,
such as, “If A equals B and C is greater than 0, then....” In view
of the precedence rules, it is advisable to write such statements with parentheses
even at the algorithm design stage: “If (A =B) and (C > 0), then...” This
indicates that the expressions A = B and C > 0 are to be evaluated first, and the
relationship between those two results will then be tested. At that point, the truth
of an entire compound expression depends on truth tables, as shown in Table 3.5.
Again, the details of implementing relational and logical operators will be deferred
to Chapter 4.

3.3 Type Casting = 79

Table 3.5. Truth tables for logical expressions A and B

B is True B is False
A is True True False
A is False False False

B is True B is False
A is True True True

A i1s False True False

=]

The expression (A && B) is True only if both A and B are True. The expression
(A 11 B) is True if either A or B is True.

3.3 Type Casting

C supports the ability to convert one kind of value into
another, an operation called type casting. When
programs work with numerical data, common type
casting operations include converting integer values
into floating-point values before performing arithmetic
operations (an upward type cast) and converting type
double return values from math functions into type
float values (a downward type cast). Type casts can be either implicit or
explicit. With an explicit type cast, the target data type is given in parentheses
directly to the left of the value, variable, or expression that will be cast. With an
implicit type cast, the variable on the left side of an assignment operator has a
different data type than the value, variable, or expression on the right side of the
assignment operator. C performs a type cast for the value, variable, or expression
so it conforms to the data type of the variable on the left side of the assignment
operator. This implicit type cast is performed regardless of whether it is a good
idea in the context of what you are asking your program to do.

With either kind of type cast, it is possible to lose information. For
example, a type float or double value, variable, or expression can be cast to
an int variable, although this is usually not a good idea. For example, consider
this code fragment:

int i;
double x=17.7;
i=x;

80 = 3. Data Types, Operators, and Functions

The third statement in this code assigns the type double variable x, with a value
of 17.7, to the type int variable i. Because of the implicit downward type cast,
the value of i is 17; this represents a loss of information, specifically the
fractional part of the value 17.7.

Because of the potential for loss of information, it is important to be aware
of the results of implicit (automatic) type casting, especially when multiplications
and divisions are being performed. P-3.3 illustrates a typical scenario in which an
upward type cast can be used to advantage.

P-3.3 [test_avg.c]

/* Demonstrate effect of explicit type casting. */
#include <stdio.h>

int main()

{
int total_score,num_students;
float average;

printf ("Enter sum of scores: ");
scanf ("%d", &total_score) ;

printf ("Enter number of students: ");
scanf ("%d", &num_students) ;

average=total_score/num_students;
printf ("Average score (no type casting) is %.2f\n"',average);

average=(float) total_score/ (float)num_students;
printf ("Average score (with type casting) is %.2f\n",average);
return 0;

Running P-3.3

In P-3.3, the sum of several integer values is divided by the number of
values to give the average as a floating-point result. There is no loss of
information when integers are type cast to floating-point values. In this case, the
total score has been stored as an integer, presumably because the individual scores
from which the total score has been calculated are whole numbers. However, when
the scores are averaged, the result will not be a whole number, in general. In the
statements

average=total_score/num_students;

3.3 Type Casting = 81

the result of dividing the two type int variables is the truncated quotient, which
is not the desired result in this case; even if you want an integer result, you would
probably prefer the rounded result from the division. That is, the division
operation on two integers retains the integer quotient and throws away the
remainder.

The solution in this program is to use an explicit type cast:

average={(float)total_score/ (float)num_students;
printf ("Average score (with type casting) is %.2f\n",average);

In this case, both the numerator and the denominator have been converted to
floating-point numbers because the name of the desired data type appears in
parentheses directly in front of a variable. The type cast operation has higher
precedence than division, so it converts the values to the target data type before
the division is performed. In this case, either

float (total_score) /num_students

or

total_score/ (float)num_students

will achieve the desired result, but

(float) (total_score/num_students) /* won't work */

won’t work because the division is performed before the type cast operation.

This example should convince you that it is important to think carefully
about the data type of operands, especially when division operations are being
performed. In P-3.3 it would have been a better idea to declare total_score
as type float or double rather than int. Then the type cast wouldn’t have
been necessary.

The preceding discussion should also convince you to be especially careful
when you use implicit type casts. They are not usually necessary in scientific and
engineering calculations, and they can sometimes produce unexpected and
unwanted results. For now, you should restrict your casts to the implicit or explicit
integer-to-floating-point (type float or double) casts illustrated in P-3.2 and
P-3.3.

82 w 3, Data Types, Operators, and Functions

3.4 Intrinsic Functions

C supports many built-in (intrinsic) functions. Table 3.6 lists functions that enable
common mathematical calculations to be performed in C. Most of the functions
expect one or more type double arguments and return a type double result.
Unless otherwise noted, each function requires the inclusion of the math.h
standard header file. In your program design, you must ensure that a function is
called with an appropriate argument.

Although most intrinsic math functions expect type double arguments,
they will also accept arguments for which an upward type cast prevents loss of
information. Thus the function calls sgrt (3) and pow (4, 3) produce answers
identical to the more proper calls sqrt (3.) and pow(4.,3.).

Some mathematical functions can produce values that approach 0 or Zeo,
For example, tan(8) approaches +c- as 6 approaches 90°, and ¢™ approaches 0 as
x approaches +eo or —oo. In such cases, C returns THUGE_VAL or O where
HUGE_VAL is a constant defined in the math.h library; the actual value of
HUGE_VAL varies from compiler to compiler. Note that C programs won’t crash
when you enter an inappropriate argument. For example, the sgrt function will
return a value of 0 if you call it with a negative argument. This has both
advantages and disadvantages. The advantage is that your program will continue
to execute. The disadvantage is that your program may no longer be producing
answers that make sense. Be careful!

For future reference, Table 3.7 includes some intrinsic functions for file
and I/O operations. As noted, these functions require that the standard header file
stdio.h be included in your program.

One of the functions in Table 3.7, £ £ 1ush, hasn’t been mentioned before.
Its purpose is to empty (flush) an input buffer. Its typical use is to clear the
keyboard buffer before more input is read: £f1lush (stdin) ;, where stdin is
the name of the keyboard, the default input buffer. This is sometimes needed
when a program contains multiple scanf statements. It is a good habit to precede
a scanf statement with fflush (stdin) ; for any call to scanft after the first
in a program.

The const char * parameter type appearing in several of the functions
refers to a string constant; for example, a string containing I/O format specifiers.

3.4 Intrinsic Functions = 83

Table 3.6. Standard math functions (The math.h standard header file is
required except where noted. See P-3.4 [math.c].)

acos (x)

3.6(a) Trigonometric and hyperbolic functions

double

arc cosine of x, in
radians, range O-7 for
|x| <1, otherwise 0

acos (0.5)

asin(x)

double

arc sine of x, in radians,
range n/2 for |x <1,
otherwise 0

asin(0.5)

atan(x)

double

arc tangent of x, in
radians, range tn/2

atan(0.5)

atan2 (v, x)

double

arc tangent of y/x, in
radians, range 7+, O if
both x and y are 0

atan2(-2.0,1.0)

cos (x)

double

cosine of x radians, 0 if
not successful

cos(3.0)

cosh (x)

double

hyperbolic cosine of x,
HUGE_VAL if result is
too large

cosh(0.5)

sin({x)

double

sine of x radians,
0 if not successful

sin(0.5)

sinh(x)

double

hyperbolic sine of x,
+HUGE_VAL if result is
too large

sinh(0.5)

tan (x)

double

tangent of x radians, O if
not successful

tan(0.5)

tanh (x)

double

hyperbolic tangent of x

tanh(0.5)

84 =

3. Data Types, Operators, and Functions

Table 3.6(b) Other math functions

random number generator, any other
value sets random starting point for
generating series of pseudorandom
integers using rand()

abs (x) int integer absolute value of x abs (-7)
(requires stdlib.h)
ceil (x) double smallest whole number not less than x ceil (-3.3)
exp (x) double ¢*, HUGE_VAL on overflow, exp (0.5)
0 on underflow
fabs (x) double absolute value of x fabs(-3.3)
floor (x) double largest whole number not greater than x floor (-3.3)
fmod (x,v) double remainder of x/y fmod (1., .3)
log (x) double natural logarithm of x for x > 0, log(0.5)
-HUGE_VAL if not successful
logl0(x) double base-10 logarithm of x for x > 0, 1logl0(0.5)
-HUGE_VAL if not successful
pow (X,Y) double xY, 0 or +HUGE_VAL if not successful;
if x < 0, y must be a whole number pow(2.0,3.5
)
rand () int pseudorandom number in the range rand ()
[0,RAND_MAX] where RAND_MAX is a
constant defined in stdlib.h
sgrt (x) double square root of x for x = 0, sqgrt (0.5)
0 if not successful
srand (x) unsigned int none—argument of 1 reinitializes srand(3)

3.4 Intrinsic Functions = 85

Table 3.7. Some functions for file and I/O operations
(All functions require stdio.h standard header file.)

fclose 1; FILE * int Close a file. Returns
0 if successful, EOF
if not.
fflush 1; FILE * int Flush an input stream.
Returns O if success-
ful, EQOF if not.
fgets 3; const char *, int, char * Get string input from
FILE * file. Returns pointer to
string if successful,
NULL if not.
fopen 2; const char *, FILE * Open a file. Returns
const char * pointer to file if suc-
cessful, NULL if not.
forintf variable; FILE *, const int Write formatted output
char *, types matching to text file. Returns
conversion specifications number of characters
printed.
fscanf variable; FILE *, int Get text file input.
const char *, types Returns number of
matching conversion values read or EOF if
specifications no values (at end of
file).
printf variable; const char *, int Write formatted output
types matching conversion to screen. Returns
specifications number of characters
printed.
scanf variable; const char *, int Read formatted input
types matching conversion from keyboard buffer.
specifications Returns number of
values read.
sscanf variable; const char *, int Read formatted input
types matching conversion from character string.
specifications Returns number of
values read, EOF if
at end of string.

86 = 3. Data Types, Operators, and Functions

Program P-3.4 shows how to use some of the math functions described in
Table 3.6. You should run this program yourself and examine the output carefully
to make sure you understand the results.

P-3.4 [math.c]

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
void main()

{
double pi,x,y;
pi=atan(1.0)*4.0;
printf("acos(0.5) %1lf\n",acos(0.5));
printf("asin(0.5) %1f\n",asin(0.5));
printf("atan2(-2.0,1.0) %1f\n",atan2(-2.0,1.0));
printf("cos(3.0) %21f\n",cos(3.0));
printf("cosh(0.5) %1f\n",cosh(0.5));
printf("sin(0.5) %1f\n",sin(0.5));
printf("sinh(0.5) %1f\n",sinh(0.5));
printf("tan(0.5) %1f\n"',tan(0.5));
printf ("tanh(0.5) %1lf\n",tanh(0.5));
printf("abs(-7) %d\n",abs(-7));
printf('ceil(-3.3) %1lf\n",ceil(-3.3));
printf('"exp(0.5) %1lf\n",exp(0.5));
printf("fabs(-3.3) %lf\n",fabs(-3.3));
printf("floor(-3.3) %1lf\n",floor(-3.3));
printf("log(0.5) %1lf\n",log(0.5));
printf("logl0(0.5) %1f\n",logl0(0.5));
printf("pow(2.0,3.5) %1lf\n",pow(2.0,3.5));
printf("%d %d\n",RAND_MAX,rand());
printf("sgrt(0.5) %1f\n",sqgrt(0.5));
printf ("%e\n",HUGE_VAL) ;

}

Running P-3.4

3.5 Simple User-Defined Functions = 87

3.5 Simple User-Defined Functions

The C language relies heavily on program modularization, as do other high-level
languages. Considering the growing importance of object-oriented languages such
as C++ and Java, it is even more important to learn to think about programs as
being built from pieces of code that are bound together in some kind of overall
structure.

The basic subprogram structure in C is a
user-defined function. (Indeed, as we have noted
previously, even the main program in a C program
is actually just a function.) Program P-3.5, which is a modification of earlier
programs for calculating the area and circumference of a circle, demonstrates the
use of some simple user-defined functions.

P-3.5 [circlepl.c]

/* Create simple functions. */
#include <stdio.h>
#define PI 3.14159265

/* function prototypes */
double area_func(double radius);
double circumference_func (double radius);

int main{()
{
double radius=3.0;
printf("From area_func: %8.31f\n",area_func(radius));
printf (
"From circumference_func: %8.31f\n",circumference_func (radius));
return 0;

}

double area_func(double radius)
/* PI must be available as a global constant. */
{

return PI*radius*radius;

}

double circumference_func(double r)
/* PI must be available as a global constant. */
{

return 2.0*PI*r;

}

88 = 3. Data Types, Operators, and Functions

In P-3.5, the calculations for area and
circumference are performed inside the user-defined
functions that follow the main function. A program can
contain as many user-defined functions as needed. Prior
to the main function, function prototypes for each function are given. Each
prototype consists of a single statement giving the data type of the function, the
name of the function, and the parameter list—a list of data types with optional
variable names. It is good programming style, and one we will follow in this text,
to include both data types and variable names in a function prototype’s parameter
list, even though only data types are actually required. It is possible to write a
function with no parameters—the main function usuvally doesn’t have any
parameters, for example. The general syntax for a function prototype is

data_type function_name(empty, void, or list of data types,
with or without variable names);

The general syntax for implementing functions as they are used in P-3.5 is

data_type function_name(empty, void, or list of data types with
variable names) {

body of function

return return_value or expression;

)

The parameter list in the function
implementation must include variable names
corresponding to the names by which the
parameters will be known locally within the function. In addition,

Because the parameter list of a function prototype doesn’t even have to include
variable names, it is clear that the list acts essentially as a placeholder for the
actual values that will be used by the function.

Remember that every user-defined function must have a data type
associated with it. Both functions in P-3.5 are type double. It is possible to give
a function the void data type, and we will return to this possibility in Chapter 5.
It is also possible as a matter of syntax to write a function without a specific data

3.5 Simple User-Defined Functions = 89

type; by default, such a function is given type int. It is generally considered
poor programming practice to use default data types in function definitions, and
we will never do it in this text.

When a function is called, the calling arguments,
values corresponding to each item in the parameter list,
are passed to the function through an argument list. The
general syntax for calling a function is

(variable name =)Yfunction_name(list of variables, constants,
expressions, or functions);

Two additional important rules about using functions are:

Why does the rule for the data type of arguments passed to a function state
only that the data type “should” agree with the function parameters? Because
certain kinds of implicit or explicit type casts are allowed even though it is usually
not a good idea to use them. It was noted earlier in this chapter that, for example,
the statement x=sqgrt (2) ; is allowed even though the argument is an integer
rather than a real number. However, the statement i=abs (-3 .3) ; will generate
a compiler warning because the abs function expects type int arguments. If you
allow the compilation to proceed in spite of the warning, the downward type cast
of -3.3 to -3 will produce a result of 3 rather than 3.3. The same interpretations
apply to user-defined functions. Consider this code:

double X(double x,int vy);
int main(void) {

printf ("%1f\n",X(2,3.3));
}

double X(double x,int y) {
return x*vy;
}

90 = 3. Data Types, Operators, and Functions

The argument 2 passed to the x parameter is allowed and will be type cast to the
real number 2.0. However, the argument 3 . 3 requires a downward type cast to
an int value and will result in at least a warning at compile time. If the
downward type cast is allowed, function X will return a value of 6, not 6.6. The
general rule is:

In P-3.5, the name of the parameter in area_func is radius, but the
name of the parameter in circumference_func is r. In the first case, the
parameter name agrees with the name of the calling argument. In the second case,
it does not. There is no justification for using different names other than to make
the point of this discussion, but the disagreement is of no consequence in the
program. All that matters from a syntax point of view is that the calling argument
is of type double. From an algorithm design point of view, all that matters is
that the calling argument contains the value of a radius, no matter what it is
called. As noted in the syntax description, an argument doesn’t even have to be
a variable. It can also be a constant or an expression that returns a value of the
appropriate data type.

Each function can return only a single value to the calling program,
through a statement using the reserved word return. You shouldn’t be surprised
to find that

Thus the values returned by the two functions in P-3.5 should be of type
double. However, type casts are allowed in return statements. An upward
type cast will proceed unnoticed. Some compilers will not even flag a downward
type cast in this situation. In general, it is much better programming style to match
the data type of a returned expression to the declared data type of the function.
If you want to use a type cast, include an explicit type cast as part of the return
statement.

When a function is called, its returned value is associated with the name
of the function itself. Hence, function calls can be treated just like other values.
In P-3.5, the values returned by the two functions are displayed directly in
printf statements just by calling the functions inside a printf statement. It
is also possible to assign the value returned from a function to another variable.
Thus in the general syntax description, variable_name should have the same

3.5 Simple User-Defined Functions = 91

data type as the function itself, with the understanding that the kinds of implicit
type casts discussed above are allowed even though they represent poor
programming style. Consider this version of P-3.5’s main function:

int main()

{
double radius=3.0,area,circumference;
area=area_func(radius) ;
printf ("From area_func: %8.31f\n",area);
circumference=circumference_func (radius) ;
printf ("From circumference_func: %8.31f\n",circumference);
return 0;

}

In this case, the values returned from the two functions are stored in the locally
declared type double variables area and circumference. Either way of
using the value returned by a function is acceptable and the choice you make
depends, for example, on whether you need to do anything more with the value
returned from a function than display it.

Note that in both functions in P-3.5, a comment is included to make clear
the source of the value PI. The source of all the variables and values used in a
function should always be clear, so someone looking at the source code in a
function should not be required to look back at other parts of the program. In the
algorithm design sense, this means that every user-defined function should have
a clearly defined information interface.

In general, user-defined functions as they are used in P-3.5 are equivalent
to the intrinsic math functions in the sense that they accept one or more arguments
as input and provide a single output value associated with the name of the
function itself. Suppose that the variables x and y are declared as type double
in P-3.5. The statement y=area_func (x) ; is then equivalent in its syntax and
use to the statement y=sin (x) ;. In the latter case, the function prototypes for
math functions are included in the math.h header file and the implementation
is provided by your C programming environment. In the former case, the
prototypes and implementations are given explicitly within the source code.

It is not always necessary to use function prototypes. An alternative is to
let all function implementations appear before the main program, as shown in
Program P-3.6.

92 = 3. Data Types, Operators, and Functions

P-3.6 [circlep2.c]

/* Create simple functions. */
#include <stdio.h>
#define PI 3.14159265

/* function definitions */

double area_func (double radius)
/* PI must be available as a global constant. */
{

return PI*radius*radius;

}

double circumference_func (double radius)
/* PI must be available as a global constant. */
{

return 2.0*PI*radius;

}

int main()
{
double radius=3.0;
printf ("From area_func: %8.31f\n",area_func(radius));
printf(
"from circumference_func: $8.31f\n",circumference_func(radius));
return 0;

The requirement for functions is that:

To put it another way, whenever a function is called (“invoked”), the compiler
must know where to find it. You can think of C as using a “one pass” compiler,
which means that it remembers everything it has read in a source code file—that
is, it can look backward in the source code—but it can’t look ahead. Thus
whenever a function is called, either the function prototype or the function
implementation must already have appeared in the source code file. If a function
prototype appears before the main function, the corresponding code
implementation normally appears after the main function. Typical C programming
style is to use function prototypes, and that is the style we will usually use for
programs appearing in this text.

It’s important to understand the relationship between the calling arguments
provided when a function is used and the function parameters that are part of the
function prototype and function header statement. We have already seen that in
program P-3.5 the single parameter is given a different name in each function. In
P-3.6, the parameter has the name radius in both functions. When these

3.5 Simple User-Defined Functions = 93

functions are used in the main program, the calling argument always has the name
radius. This is a design convenience because radius is a reasonable name for
this quantity. To help clarify these relationships, consider the following code,
which is a version of P-3.5 that works just like the original version.

/* Create simple functions. */
#include <stdio.h>
#define PI 3.14159265

/* function prototypes */
double area_func(double);
double circumference_func(double r);

main ()

double radius=3.0;
printf ("From area_func: %8.31f\n",area_func(3.0));
printf
("from circumference_func: $8.31f\n",circumference_func(radius));

}

double area_func(double rad)
/* PI must be available as a global constant. */

{
}

return(PI*rad*rad) ;

double circumference_func(double R)
/* PI must be available as a global constant. */

{
return(2.0*PI*R);

}

The prototype for area_func has a parameter list with just a data type and no
variable name. However, a variable name is required when that function is
implemented. It is better style to use variable names in function prototypes, as it
makes the purpose of the function clearer, assuming that meaningful names are
used. In circumference_func, the variable name r in the prototype is
different than the name in that function’s implementation. (Remember that r is a
different name than R.) When these functions are called from the main function,
a constant argument is used in one case but a different variable name is used in
the other case. Although it may be confusing from an algorithm design standpoint
to use several different names for the same thing, C will not be confused.

The utility of having function parameters serve simply as placeholders for
the actual values passed to the function is clear if you think about how the
intrinsic math functions are used. The internal workings of intrinsic functions are
hidden. You would have to see the actual source code for the intrinsic functions
to know what their parameter lists look like—including the names by which their
parameters are known internally to the function. However, not having this level
of access doesn’t prevent you from using the intrinsic functions. All you need to

94 = 3. Data Types, Operators, and Functions

know to use sin (x), for example, is that the single argument x must be a type
double variable, expression, or value.

Remember that not only can argument names and parameter names be
different, but the arguments don’t even have to be single variable names. For the
user-defined functions in programs P-3.5 and P-3.6, the following statements are
all perfectly acceptable uses of area_func and circumference_func,
assuming that all the variables have been appropriately declared and that x, v, r,
and z have been assigned values:

area=area_func(r);
circumference=circumference_func(3.0);

area=area_func (x+3.*y);
circumference=circumference_func (sqrt (x*x+y*y)+log(z));

Here’s another problem whose solution will provide more information on
how to create and use simple functions.

An approximate empirical formula that relates atmospheric pressure to
altitude is

P(h) = 1013¢ 120

where pressure P is in units of millibars (gm/cm?®), and height h is in
kilometers. The formula applies to heights less than about 80 km.

Write a program that prints a table of pressures from sea level to 80 km in 10-km
steps. The values are shown in Figure 3.1.

1200

- . - — ——
1 1 1]]] 1
| ' 1 I]] I
I 1 ! 1]] 1
.' : | | : : |
10004~~~ A=memes R S M bomoodooooe
] 1 1l 1]]]
1 i] I 1 t 1
1] t] 1 1 1
| | | | : | :
% L e [e
| | | '. | | |
g I IO . I B
g 6007y~ H— I A A Pty
2 | | : : | | :
2 | : : : : : |
o 400 q------ Fo---- 1m----- Fo---- q--==-- Fo---- q---=--
1 | ' 1 1 1 I
!]] 1 ! b
1) 1 1 1 1
i 1 1 1 I 1 !
N S e e e
)] i 1 1 1 1
1 ! ' 1) ! 1
: . | : : | |
0 : : . : : : :
0 10 20 30 40 50 60 70 80
Height, km

Figure 3.1. Atmospheric pressure as a function of height.

3.5 Simple User-Defined Functions = 95

Program P-3.7 produces the required table. The code uses a simple loop
structure, which we will discuss in detail in Chapter 4. For now, however, the
intent should be clear even if the details are not.

P-3.7 [atm_pres.c]

/* Calculate table of atmospheric pressure. */
#include <stdio.h>

#include <math.h>

double Pressure(double h);

int main{()

{

int height;

printf ("height pressure\n") ;
printf (" km gm/cmr2\n") ;
printf("-------como - \n");

for (height=0; height<=80; height+=10)
printf ("%61i $10.3f\n",height, Pressure({double)height));
return 0;
}
double Pressure(double height)
{

}

return 1035.0*%exp(-0.12*height) ;

Running P-3.7

Problem Discussion

Program P-3.7 contains several features of interest. Recall that in programs
P-3.5 and P-3.6, the parameters in the function prototypes, the actual function
headers, and the arguments used when the functions were called from the main
program all had the same data types, even if their names were different. In P-3.7
this is no longer true. The function prototype uses a double parameter named
h. It would actually be better programming style to give this ‘“placeholder”
parameter a more meaningful name, but this choice has been made to emphasize

96 = 3. Data Types, Operators, and Functions

the fact that parameter names in a function prototype need not be the same as the
parameter names in the actual function header or the argument names used when
the function is invoked in the program. Remember that it is not the names of the
parameters in a function prototype that are important, only their data types.

In the function header for Pressure in P-3.7, the parameter has, as it
must, the same data type (double) as in the function prototype, but a different
name (height) that will be used locally. The variable name height is also
used in the main program, but there it is type int, which (as will be discussed
in Chapter 4) is appropriate for its use as the loop control variable for generating
the table. In the call to function Pressure, height is explicitly cast to
double so it will agree with the data type in Pressure’s parameter list.

The explicit type cast (double)height in the parameter list of
Pressure is good programming style but not actually required. That is, an
implicit cast from int to double is allowed.

P-3.7 also shows how variable definitions are localized within functions.
The type double variable height in the parameter list and the implementation
of function Pressure is local to—that is, known to—only that function, which
does not know or care about the definition of height as an integer in the main
function.

3.6 Applications

3.6.1 Refraction of Light

1 Define the problem.

Snell’s Law describes the refraction (bending) of light as it passes from
one medium to another. If the refractive index of the incident medium is n, and
that of the refracting medium is n,, the angle of incidence i and angle of refraction
r of a ray of light, measured from the perpendicular to the boundary between the
two mediums, are related by

nsini = nsinr
Figure 3.2 illustrates the geometry and Figure 3.3 gives some typical data.

Write a program that asks the user to provide two refractive indices and
the angle of an incident ray and then calculates the angle of a refracted ray.

3.6 Applications = 97

incident
beam i

refracted
beam

Figure 3.2. Geometry for Snell’s
Law of refraction.

e i

407 S A & Water(1 33) -------------
35+ ------------ - = . Glass (1 50) -----

W
<

e e e e e

N
Q

..

Refracted angle, deg

e

..

..

0 f f f : : ;
0 10 20 30 40 50 60 70 80 90
Incident angle, deg

Figure 3.3. Angle of refraction as a function of angle of incidence.

98 = 3. Data Types, Operators, and Functions

2 Outline a solution.

1. Prompt the user to supply two indices and an incident angle.
2. Apply Snell’s Law to determine the angle of the refracted ray:

_| mysin(i)

I = sin

nl’

3. Display the output.
Table 3.8 gives the angles of refraction fo