
UNDERGRADUATE TEXTS IN COMPUTER SCIENCE

Editors
David Gries

Fred Schneider

Springer Science+Business Media, LLC

UNDERGRADUATE TEXTS IN COMPUTER SCIENCE

Beidler, Data Structures and Algorithms

Brooks, Problem Solving with Fortran 90

Jalote, An Integrated Approach to Software Engineering,
Second Edition

Kazen, Automata and Computability

Merritt and Stix, Migrating from Pascal to C++

Zeigler, Objects and Systems

David R. 8rooks

PROBLEM SOLVING
WITH FORTRAN 90

FOR SCIENTISTS AND ENGINEERS

Springer

David R. Brooks
Department of Mathematics

and Computer Science
Drexel University
Philadelphia, PA 19104
USA

Series Editors
David Gries
Fred B. Schneider
Department of Computer Science
Cornell University
405 Upson Hall
Ithaca, NY 14853-7501
USA

Ubrary of Congress Cataloging-in-Publication Data
Brooks, David R.

Problem solving witb Fortran 90 : for scientists and engineers /
David Brooks.

p. cm. - (Undergraduate texts in computer science)
ISBN 978-1-4612-7353-0 ISBN 978-1-4612-1952-1 (eBook)
DOI 10.1007/978-1-4612-1952-1
1. FORTRAN 90 (Computer program language) 2. Problem solving

Data processing. 1. Title. II. Series.
QA76.73.F25B754 1997
005.13'3-dc21 97-10929

Printed on acid-free paper.

© 1997 Springer Science+Business Media New York
Origina1ly published by Springer-Verlag New York, loc. in 1997
Softcover reprint of the hardcover 1 st edition 1997

AlI rights reserved. This work may not be translated or copied in whole or in part without
the written permission oftbe publisher (Springer Science+Business Media, LLC), except for
brief excerpts in connection with reviews or scholarly analysis. Use in connection with any
form of information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar metbodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in tbis publication,
even ifthe former are not especialIy identified, is not to be taken as a sign tbat such names,
as understood by tbe Trade Marks and Merchandise Marks Act, may accordingly be used
freely by anyone.

Production managed by Lesley Poliner; manufacturing supervised by]ohanna Tschebull.
Typeset in lEX from fIles supplied by tbe author.

9 8 7 6 5 4 3 2 1

ISBN 978-1-4612-7353-0

Preface

i.l Overview for Instructors

The purpose of this text is to provide an introduction to the problem-solving
capabilities of Fortran 90. The intended audience is undergraduate science and
engineering students who have not previously taken a formal programming course.
The focus is on the process of solving computational problems of interest to
scientists and engineers, rather than on programming per se, which has several
important implications for the contents of the text, as outlined later in the Preface.

Fortran has long been favored as an introductory programming language
for engineering and science students because of its historical roots and continued
prominence in the professional practice of these disciplines. The Fortran 77
standard has been taught, within an essentially mainframe context, to an entire
generation of scientists and engineers. However, many of the science and
engineering calculations that, a generation ago, could be done only on mainframe
computers can now be done on desktop computers, often using applications that
don't require any programming at all.

Students are certainly aware of the power of desktop computing, even
when they are not prepared to use it effectively. They bring increasingly
sophisticated expectations to even an introductory programming course, and they
often have correspondingly less patience with the organizational overhead required
to perform even the most trivial computational tasks. Nonetheless, there is a strong
case to be made for learning how to write programs in a high-level procedural
language, even when a studenfs major does not require that specific skill. Thus
I believe that the continuing popularity of Fortran in science and engineering is
due not to a reluctance to adopt more modem problem-solving tools, but to a deep
understanding of the central role procedural programming plays in developing
problem-solving skills that are independent of a particular language.

No matter how strong the argument for learning procedural programming,
a new Fortran text should still justify itself on the basis of what it can offer to
make an introduction to programming more rewarding for students and instructors
alike. The Fortran 90 standard provides an opportunity for dramatically improving
the content of introductory programming courses for science and engineering
students because it is now possible to take advantage of the traditional strengths
of Fortran and, at the same time, teach a language with features that have always
been a part of other more "modem" languages such as C and Pascal.

vi • Preface

i.l.l The Case for Fortran 90

The basic problem with continuing to teach Fortran 77 is that the standard for this
language has serious deficiencies relative to languages such as C, the other
common choice for a first programming language taught to science and
engineering students, and even Pascal, the use of which is now in decline and
which never attracted a large following in the science and engineering community.
One result of the aging of the Fortran 77 standard is that modem implementations
of the language contain many nonstandard features to address its deficiencies. This
is helpful to professional users of the language, but to the extent that Fortran texts
have adhered to the language standard to ensure their marketability, students have
for many years been taught a language that is far removed from what is actually
used in practice.

Even for instructors who approach programming from a purely practical
as opposed to a "computer science" point of view, the problems with standard
Fortran 77 are clear from even a cursory comparison with other modem
procedural languages. Among these are the lack of a way to enforce explicit
typing of all variables, the restriction of variable names to six characters, limited
syntax for constructing loops, no support for user-defmed data types (other than
arrays), and syntax possibilities that encourage the writing of "spaghetti code" that
is not tolerated in modem procedural programming style.

Of course, many of these shortcomings have been addressed in nonstandard
implementations of Fortran 77, and it is certainly possible to write well-structured
programs by using appropriate syntax. However, this begs the question of whether
to abandon the Fortran 77 standard in favor of a new one.

Fortran 90 has addressed many of Fortran 77' s problems while retaining
backward compatibility with Fortran 77 and older versions. It has incorporated
many of the nonstandard features that are commonly included in Fortran 77
implementations. In addition, the new standard contains many features that make
structured programs easier to write, which in tum makes Fortran much easier to
teach and learn. To cite just a few examples, the new standard includes provisions
for enforcing explicit data typing, DO WHILE ... and SELECT CASE constructs,
and user-defmed data types (equivalent to structures in C or records in Pascal).

Finally, the increasing capabilities of personal computers have made it
possible to put a full-featured Fortran compiler on a desktop, so it is now practical
to consider Fortran not just in its traditional role as a mainframe language, but as
an integral part of a personal computing environment that includes a variety of
problem-solving tools. PC-based Fortran 77 compilers incorporate the same
nonstandard language extensions as their mainframe relatives, but the compiler
used to develop the programs in this text (see Section i.l.5) actually helped to
defme the Fortran 90 standard. Thus the case for Fortran 90 is made even more
compelling by the availability of an implementation for desktop computers that
represents, at least for a while, this new language as it is used in practice.

Preface • vii

i.l.2 Structure of the Text

Introductory Material

Chapter 1 presents a brief historical review of electronic computing in mainframe
and personal computing environments. I understand that this kind of material is
often regarded as "fluff' by instructors and students alike. However, the
pedagogical purpose of this chapter is to give students a chance, at the beginning
of a course, to assess their general computing skills and address any weaknesses.
To take a more proactive view, I would argue that it provides a good (and
probably the only) opportunity for instructors to give their students a general
introduction to the computing facilities they will be using to write Fortran
programs.

Chapter 2 presents a detailed approach to problem solving and algorithm
design. It is now common for introductory programming texts to emphasize the
problem-solving process and to provide some formal or informal techniques.
However, my experience is that the specific process required to develop
algorithms and convert them into programs in any language remains a mystery to
many students. Because at first there do not seem to be any rules to follow, it is
difficult to know how to start-that is, how to develop algorithms without
knowing what kinds of things programs should do.

Chapter 2 addresses this problem in two ways. First, it discusses the
generic kinds of instructions and data used by and in computer programs written
in a procedural language. Second, a syntax-free pseudocode language of "action
commands" is presented. These commands are the means by which algorithms for
a procedural prograIIlming language may be developed. I have tried to convey the
message that despite the fact that this language is not in any way "standardized"
(even though it is applied in a uniform way throughout the text), the actions
implied by the language must be a part of any approach to developing algorithms.
My practice is to discourage students from memorizing the commands; instead I
encourage them to use the material in Chapter 2 to produce their own "language
reference," which they can consult even during exams.

Students should be encouraged to use this pseudocode language (or their
own version of it) to develop algorithms before they write source code because
the process of applying such an informal language helps them separate the process
of developing a logical solution to a problem from the syntax details of writing
a program in a "real" language. In this text, I have encouraged this process by
always presenting algorithms in pseudocode before implementing them in Fortran.

A few components of the pseudocode language deserve comment. Some
instructors may prefer to use the ~ symbol for the assignment operator, rather
than the = sign used in this text. Obviously, this is OK; the symbol isn't as

viii • Preface

important as distinguishing the concept of assignment from that of equality in the
relational or algebraic sense.

Note that the pseudocode language includes three different assignment
commands: ASSIGN, INITIALIZE, and INCREMENT. (All references to the
pseudocode language use this font.) Although each of these commands translates
into an assignment statement, my experience is that students often do not
understand the need for initializing variables or how and when to increment them,
especially inside loop structures. Because of this, I have used separate commands
to try to encourage proper algorithm design.

Another decision made about the pseudocode language concerns the
command for repetition structures. No attempt is made at the algorithm design
level to distinguish among pre-test, post-test, or count-controlled loops (as might
be done when algorithms are developed with flowcharts, for example); the
LOOP ... END LOOP command represents all three, with conditions for loop
termination written informally as part of the LOOP command.

The language used to express the terminating condition in English-"Do
this 10 times," "Do this until you run out of data," "Repeat until this number is
too large"-will determine how the loop is actually implemented in a procedural
language. Being precise about the possibilities in plain English lays the
groundwork for distinguishing among language-specific implementations for
count-controlled, pre-test, and post-test loops. When this kind of pseudocode is
later translated into a program, instructors are free to choose, for example, whether
to encourage or discourage their students from using Fortran's STOP and EXIT
statements to exit loops. (This text assumes that good programming style never
requires multiple exit points from loops.)

A final point about Chapter 2 (and subsequent chapters) concerns the role
of flowcharts. This is a teaching tool that has long been associated with
programming in Fortran. It is certainly useful for visualizing the operation of
certain language constructs such as IF ... THEN statements, and it may be helpful
for the top-level design of large and highly modularized programs. However, it is
often a cumbersome way to design algorithms and has fallen out of favor in the
teaching of other procedural languages. As a result, this text favors pseudocode
as the basic algorithm design tool. Flowcharts are used as a supplement when they
can convey useful information in a visually striking manner. That is, it is fair to
say that flowcharts are treated as one way to convey information, rather than as
an essential part of the programming process.

Because I understand that students are eager to begin the process of
actually writing programs, Chapter 2 includes a simple program that can be copied
and executed in a "rote" manner. This is useful for learning the mechanics of
creatinJ1; source code, compilinJ1; the code, and executing the resulting program.

Preface • ix

Presentation of the Language

In Chapters 3 through 9, the syntax elements of Fortran are introduced, using what
I would describe as a "show and tell" approach. New language features are often
introduced through a problem that can't be solved with the tools available up to
that time. A complete program to solve that problem will then be presented and
examined in detail, moving from the specific to the general, rather than the other
way around. Chapter 3 revolves almost entirely around a single simple program,
which is used as a vehicle for examining many basic features of the Fortran
language.

Each chapter after the second includes at least two complete programming
applications drawn from typical problems found in introductory engineering and
science courses. Whereas programs presented early in a chapter address
conceptually simple problems and attempt to isolate the specific programming skill
being developed in that chapter, the applications involve more challenging
problems and integrate new material into a cumulative framework of developing
programming skills. Some of the applications appear in more than one chapter, so
students can see how increasingly sophisticated programming skills produce
correspondingly more sophisticated solutions.

i.l.3 Decisions About Content

Compared to Fortran 77, Fortran 90 is a huge language, due to its backward
compatibility and its new features. This inevitably leads to making choices about
what parts of the language are appropriate in an introductory text used for a one
or two-semester course. In every case where a conscious decision has been made,
my motivation has been to choose those features of the language that are most
essential for solving the kinds of problems science and engineering students are
likely to encounter.

Some of the decisions are easy. Many syntax features of older versions of
Fortran (arithmetic IFs and computed GO TOs, for example) are simply absent
from this text because there is no justification for using them. It is harder to
decide which new features of the language to include. To cite just two examples,
pointers are not included in the text even though they are of great interest in
computer science, and recursion is included because of the importance of
recursively defined functions in science and engineering mathematics. The
following topics all require decisions about content, and I hope my comments will
help to explain how I have arrived at some of the choices that are evident in the
text.

x • Preface

Program Layout

The text retains the "old-fashioned" Fortran line structure, with statements
restricted to columns 7-72 and columns 1-5 reserved for line labels. Thus even
though all the programs are written for compilation under Fortran 90's free format
style, the program layout will be familiar to those who are used to previous
versions of Fortran. This restriction on line length has the practical advantage of
making source code listing fit more easily on the page of a textbook.

Because of their backward-compatibility with earlier versions, Fortran 90
compilers support Fortran 77 syntax. For example, the Fortran 77 statements

REAL pi
PARAMETER (pi=3.14159)

are still allowed in Fortran 90, even though the (free format) statement

REAL, PARAMETER:: pi=3.14159

is preferred Fortran 90 style. In the latter example, the PARAMETER statement has
been replaced by the PARAMETER attribute appearing as part of a type declaration
statement. I confess to not being rigorous about always insisting on the "correct"
Fortran 90 implementation.

This program layout style should not be interpreted as a desire to make the
programs look like Fortran 77. Although Fortran 90 can be used to write programs
that look just like their Fortran 77 counterparts (and can be compiled under a
"fixed format" option required for Fortran 90 compilers), that is certainly not the
best use of this new language. I hope that instructors who are migrating from
Fortran 77 will revise their teaching material (and their own programming style)
to take advantage of Fortran 90's style and many new features. An excellent
overview of important differences between Fortran 77 and 90 (as well as a
definitive reference manual for the language) can be found in Fortran 90
Handbook, a complete reference for which is given at the end of this Preface.

Data Types

Even earlier versions of Fortran supplemented the basic REAL data type with
DOUBLE PRECISION variables. Fortran 77 compilers typically include
nonstandard variants of the INTEGER data type as well. Fortran 90 supports even
more variants. It is possible, for example, to specify directly the minimum number
of significant digits retained by a REAL variable. However, I believe these add
nothing to an understanding of problem-solving methods or programming style.
Therefore, the text uses only the basic data types and deals with increased
precision only in Chapter 12.

Preface • xi

One obvious place where this choice might have an impact is in numerical
analysis algorithms, where DOUBLE PRECISION variables are typically used to
improve the accuracy of calculations in older Fortran programs. I have chosen not
to use the DOUBLE PRECISION data type at all because it adds nothing to the
understanding of an algorithm and may even convey the dangerous message that
the limitations inherent in numerical methods can be "fixed" just by using
calculations with more significant figures. A brief discussion of enhanced
precision variables is included in Chapter 12.

The COMPLEX data type is also dealt with only briefly in Chapter 12,
based on the assumption that most students taking an introductory programming
course will not yet have the mathematical sophistication to use complex numbers.
Even if this isn't a good assumption, I still believe that bypassing this topic is a
reasonable choice for an introductory programming text.

Derived Data Types

Derived data types are a major and welcome addition to Fortran 90, second in
importance, in my view, only to the IMPLICIT NONE statement for enforcing
explicit data typing. The ability to define multi-field records with the
TYPE ... END TYPE construct avoids the use of parallel arrays, which can make
large programs written in older versions of Fortran quite cumbersome. Derived
types can also be used to reduce the dimensionality of Fortran arrays. This
simplifies programming and allows code to be more self-documenting because
each field can be addressed by name rather than just by its array index. Although
derived types aren't necessarily related to arrays, they are introduced in this text
in the context of arrays of records, as this is the way they will most often be used
in practice.

Pointers and Allocatable Arrays

Fortran 90 supports pointers, but they are not discussed at all in this text. In an
introductory programming course taught in C, for example, pointers are often
introduced early as a way to manipulate arrays and to provide "output" parameters
with functions. Of course, Fortran's syntax makes pointers unnecessary for either
of these purposes.

Pointers are also used to manage dynamically allocated data structures.
These are important in computer science, and indeed some earlier Fortran texts
have used static arrays and indices to simulate "pointer-like" operations on data
structures such as stacks, queues, and other linked lists that are an important part
of lan~ua~es that support dynamic allocation. However, I do not believe these are

xii • Preface

essential topics for an introductory course aimed at science and engineering
students.

Nonetheless, over several years of teaching Pascal, I have introduced
pointers and dynamic memory allocation in the context of managing data
structures without "wasting" memory resources. Even though there is usually no
practical reason to worry about this problem, it is conceptually useful to be able
to determine the size of data storage structures based on need at run time rather
than compile time.

In Fortran, questions about how memory is used to store arrays arise when
variably dimensioned arrays are used in subprograms. The Fortran syntax implies
that such arrays are being dynamically allocated at the time the subprogram is
called, but they are not. Instead, the variable dimension merely provides restricted
access to a subset of the array space (through one or more subprogram
parameters) that was statically allocated in the main program.

This arrangement is conceptually flawed because, whereas it is satisfactory
for one-dimensional arrays, it doesn't work intuitively for multidimensional arrays.
Typically, a subprogram must declare multidimensional arrays with the same
dimensions used in the main program even though access is required only for a
subset of that array. Thus both the maximum and the "working" sizes have to be
passed to a subprogram to insure access to the desired subset of the array space.
A failure to understand this fact leads to programs that look perfectly reasonable,
but don't work properly; this kind of error is very difficult for students to find.

In Fortran 90, this awkward situation can often be eliminated by using
ALLOCATABLE arrays. The Fortran implementation of an allocatable array isn't
completely equivalent to dynamic allocation because it's not possible to use any
element in such a structure until its maximum size has been allocated. That is, it's
not possible to use allocatable arrays to build an expandable data storage structure
"on the fly." Nonetheless, allocatable arrays give some of the flavor of dynamic
memory allocation without the additional programming overhead of pointers and
linked data structures. Therefore, they are included in the text.

Recursion

In contrast with earlier versions of the language, Fortran 90 supports recursive
subprograms as part of the standard. I have included a brief discussion of this
topic because some recursively defined functions, such as the Legendre
polynomials, are important in science and engineering, and I believe that seeing
them evaluated in a natural way is worth the difficulties students have with this
concept. Another justification is that it is then possible to discuss the important
Quicksort algorithm in its usual recursive version; this is impossible with previous
standard versions of Fortran. A nonrecursive Quicksort algorithm is so unwieldy
that it is usually not included at all in Fortran texts, with the result that students

Preface • xiii

see only the inefficient O(N2) algorithms instead of the much more efficient
O(Nlog2N} Quicksort algorithm.

Explicit vs. Implicit Typing

Because explicit data typing is obviously good programming practice, its use is
uniformly stressed in Fortran 77 texts, even though there is no way to enforce
explicit typing under the Fortran 77 standard. However, Fortran 90 supports the
IMPLICIT NONE statement, which is available only as a nonstandard feature in
some Fortran 77 compilers. I believe inclusion in Fortran 90 of a means to enforce
explicit typing is the single greatest improvement over earlier versions of Fortran.
In this text, an IMPLICIT NONE statement is part of every program and
subprogram.

Programs compiled with IMPLICIT NONE will automatically generate
messages for misspelled variables and other variables that are not included in type
statements, and, depending on the compiler, may also generate warnings for
variables that are declared but not used in a program. This information is
invaluable to students when they debug their programs.

COMMON Blocks

In previous versions of Fortran, information not appearing in parameter lists could
be shared among subprograms only by using COMMON blocks. This is a persistent
source of problems because of the burden placed on the programmer to ensure that
references to variables passed through a COMMON block in one program segment
match the references to variables passed through that same block to other
segments. The problem arises because the data types of variables referred to in
COMMON blocks are almost without exception intended to be the same in all
segments using that block, but they don't have to be. This is because information
in COMMON blocks is "storage associated" rather than "name associated." That is,
a COMMON block occupies a certain range of memory locations based on the data
types of items in the original defmition of the block. In another part of the
program, the information in those memory locations can be accessed in a variety
of ways, including ways not originally intended.

This problem can be remedied by using Fortran 90 MODULES, which can
be referenced in the main program and other subprograms through the USE
statement. Information in the modules must be accessed specifically by name.
(Local aliases can be defined.) Modules can consist simply of data type
specifications and PARAMETER statements or attributes, but they have other uses
too, such as making selected subprograms and derived data types available to
other program units. For these reasons, I believe there is no reason for new

xiv • Preface

programmers to use COMMON blocks, and I have not used them in any of the
programming examples in this text. However, because COMMON blocks appear so
frequently in earlier versions of Fortran, I have included a brief introduction to
their use, and potential misuse, in Chapter 12.

Program Modularization

An important decision to be made in any introductory programming course
concerns the appropriate place to introduce program modularization. In C, for
example, the fact that even the "main program" is nothing more than a function
naturally leads to an early discussion of this topic. In this text, I have deferred
introducing functions and subroutines in Fortran-basically until students are
writing programs that are worth modularizing. Programs that implement a single
programming concept-IF., .. THEN ... statements, for example-are generally
restricted to one task and do not really need to be modularized as part of the
top-down process of dividing a large task into several smaller tasks. To give
students some feeling for modularizing tasks, I have included statement functions
along with the discussion of intrinsic functions in Chapter 4, even though some
Fortran 90 programmers believe statement functions should no longer be used.

My decision to delay a discussion of subroutines and functions until
Chapter 7 is also motivated by the fact that Fortran 90 has greatly increased the
level of effort required to write subprograms that take full advantage of the
features provided by the language. The MODULE and INTERFACE constructs, and
the INTENT attribute for parameters, are welcome additions to the language, but
they require more teaching and learning time. Consequently, I have delayed their
introduction past the point that I might feel was appropriate in some other
language.

Obviously, instructors who wish to discuss modularization early in their
course can easily rewrite many of the examples presented in the text to include
functions and subroutines called from a main program. It is even possible to use
subprograms in the "old-fashioned" way, without MODULEs, although this practice
is discouraged.

Arrays

Arrays are introduced in Chapter 8. Again, Fortran 90 presents new opportunities
and challenges. In addition to allocatable arrays, as discussed earlier, the
availability of elemental functions, operations on whole arrays (or subsets of
arrays), and the several array manipulation and reduction functions greatly
increases the teaching and learning load without introducing any concepts and
capabilities that I consider absolutely essential. However, it is certainly convenient

Preface • xv

to be able to reduce the number of loops that must be written for manipulating
arrays, so I have attempted to fmd a workable compromise. Some of Fortran 90's
array manipulation features are used in Chapter 8 and subsequent chapters, and
some are deferred to Chapter 12, which presents a miscellany of Fortran 90
features that I believe are not essential for an introductory programming course.

One result of making the kinds of content decisions discussed here is that
this text is not, and does not try to be, a Fortran 90 reference manual. I believe
the level of detail and sheer volume required to create such a manual is
inappropriate for an introductory text and may not even be compatible with any
text devoted to developing problem-solving skills rather than programming per se.
My own questions about details of the Fortran 90 language standard have been
answered by two excellent references, which are given near the end of· this
Preface.

i.1A Pedagogical Features

Obviously, this text mirrors my own ideas about how an introductory
programming course should be taught, and it draws on my experiences with
teaching C, Pascal, and Fortran to a wide range of students in science,
engineering, and other disciplines.

A Formal Problem-Solving Process Is Followed Throughout the Text

Chapter 2 describes a five-step problem-solving process and a pseudocode
language for algorithm development. What distinguishes this text is that the
process is followed rigorously for all substantive programs throughout the text. I
hope that my own determination to adhere to a specific problem-solving plan will
motivate students to develop the same habit in their own programming.

Some Applications and Problems Appear More Than Once

Some of the applications and exercises in early chapters are revisited in later
chapters, when more sophisticated programming skills can be applied. For
example, both algorithm design applications in Chapter 2 are presented as
programming problems in later chapters, and new versions of both applications in
Chapter 3 are discussed in later chapters. Some of the programming exercises in
Chapter 3 reappear in expanded versions in later chapters. I believe that returning
to the same problems will give students a sense that they are progressing and that

xvi • Preface

programs are dynamic entities that can grow in response to new demands and
developing skills.

Programs and Exercises

The text contains many complete programs in addition to the end-of-chapter
applications. The source code listings have been copied directly from the original
source code files, although in a few cases comments have been added and lines
have been continued to fit the source code onto the textbook page.

Every program has been written "from scratch" for this text. Especially in
the later chapters, some of the source code implements well-known algorithms.
However, the resulting code often differs significantly from similar code appearing
in older (Fortran 77) texts, in order to take advantage of Fortran 90 features.

The exercises are subdivided into three categories. "Self-testing" exercises
are intended to help students test their own understanding of the problem-solving
and programming concepts and Fortran syntax covered in the chapter. "Basic
programming" exercises often include modifications to programs presented in the
text. This provides practice in reading and understanding someone else's code and
should also provide incentives to study programs in the text more thoroughly than
might otherwise be the case.

"Programming applications" involve writing complete programs based on
the material presented in the chapter. Such exercises are cumulative in the sense
that they assume all programming skills learned up to the present can be brought
to bear on the problem. Complete source code listings for the programming
applications are available to instructors (see Section i.1.6), and I hope my
solutions to these. exercises will be useful for your lectures and classroom
discussions.

Nearly all the exercises are related to the kinds of problems students will
encounter in introductory science, engineering, and mathematics courses. Some of
the problems use discipline-specific terminology, and I do not think it is practical
or necessary to try to eliminate all jargon from every problem. In some cases, I
have provided representative output to help students verify the operation of their
programs. Programming in the real world often takes place in an environment
where programmers don't understand all the subtleties of the problems they are
being asked to solve, and it is important for students to develop confidence in
their skills even when faced with this kind of uncertainty.

I have tried to order the programming exercises roughly by increasing
difficulty, although I assume that my ideas about this won't always match yours
or your students'. This progression in difficulty is as often related to mathematical
skills as it is to programming skills. Especially in the later chapters, some of the
exercises will make more sense if a student has some familiarity with calculus or
basic numerical analysis, even thou2h the proJ!;fammin2 itself may not be difficult.

Preface • xvii

I have marked such problems with an appropriate message, but I have still
attempted to provide enough information about the problem so that students can
write the code even if they don't completely understand the underlying
mathematics.

i.1.5 The Compiler Used to Prepare Programs for This Text

At the time the fIrst drafts of this text were written, there was, at least as far as
I knew, only one commercially available Fortran 90 compiler for MS-DOS-based
pes, the platform I chose for convenience in developing the programs. This was
the Numerical Algorithms Group (NAG)/Salford Software FfN90 compiler, which
is also available for other computing platforms. As a result, all the programs were
written for this compiler-initially using the MS-DOS version and later the
Windows 95 version. I Because this compiler actually helped defme
implementation of the Fortran 90 standard, it is practically by defmition a
compiler that embraces that standard, and I have not felt a need to test the
programs on any other compiler.2

To the extent that programs in the text make full use of the Fortran 90
standard, which supports syntax from earlier versions of Fortran, it is certain that
many programs will be incompatible with compilers that, in an effort to simplify
the language, use a restricted subset of the Fortran 90 standard and consciously
avoid supporting certain syntax forms. For example, such compilers may support
PARAMETER used as an attribute in a type declaration statement, but not a
separate PARAMETER statement. Although it would not be difficult to bring the
programs in this text into conformity with such language subsets, I have chosen
not to do so, as that seems to me to place unreasonable restrictions on students'
use of the language.

'It is somewhat misleading to refer to FfN90 as a "Windows 95" compiler because it is
not a Windows application. Rather, it runs comfortably as a DOS application under Windows 95,
without the memory management problems that plagued earlier versions.

21 would like to think that this loyalty to the NAG/Salford Software compiler has not been
inappropriately influenced by the fact that Numerical Algorithms Group, Inc. generously provided
both MS-DOS and Windows versions of its FfN90 compiler while this text was being written.

xviii • Preface

i,2 Overview for Students

i.2.1 The Purpose of This Text

Over the past few years, there has been a growing realization among your
instructors that traditional introductory programming courses have not been
meeting your needs. In response, many introductory programming texts have
shifted their emphasis away from a computer-science-oriented approach to
programming and toward an approach that emphasizes the problem-solving
applications of high-level programming languages.

Fortran texts were the first to make this welcome change, as Fortran has
long been associated with practical computing applications in engineering and
science. However, the Fortran 77 language standard, which has been taught to the
generation of students preceding you, has some deficiencies when compared to
more modem languages such as C and Pascal. Without going into the details (you
can read Section i.l of this Preface, the Overview for Instructors, if you are
curious), the new Fortran 90 standard has revitalized Fortran by providing many
of the features that are expected of a modem high-level procedural programming
language. Thus the purpose of this text is to introduce you to this new language
standard in a way that meets the problem-oriented needs of science and
engineering students.

i.2.2 The Approach Taken by the Text

When I started to write this text, I tried to think carefully about my own learning
strategy. How do I learn a new programming language? For me, the answer to this
question seemed clear: "Show me an example." Once I see a program that works,
I can apply the lessons contained in that example to other situations.

Not surprisingly, then, this text is based on the premise that the best way
to learn how to solve problems on a computer is to follow a step-by-step
procedure and to study good examples. Chapter 2 presents a five-step approach
to problem solving and an "action command" language that you can use to solve
computational problems in any high-level procedural programming language, of
which Fortran is one. This "pseudocode" language doesn't have any grammar
rules, so you can concentrate on the solution to a problem rather than the details
of a new language.

I understand that you are eager to start seeing results from your own
Fortran programs, so Chapter 2 includes a simple program you can copy and
execute. However, my own teaching experience has demonstrated that time spent
thinking about how to organize programs away from a computer will be time very
well spent.

Preface • xix

Starting in Chapter 3, the details of the Fortran language are presented. At
this point, as you can probably guess, grammar rules suddenly become very
important. New programming concepts are often introduced by posing a
computational problem, presenting a solution, and then generalizing from this
specific solution to a broader understanding of programming concepts and their
Fortran implementation. I have chosen the approach of moving from the specific
to the general because it matches my own style of learning by example. I
understand that this may not match your learning style, but I hope it will help at
least to be aware of why this text is written the way it is.

Solutions to problems are always implemented using the five-step approach
presented in Chapter 2. Each chapter starting with the third includes at least two
complete programming applications to help you integrate new material into your
expanding programming skills. These applications are drawn from topics you will
encounter in introductory science, engineering, and mathematics courses. Some of
the applications appear more than once, when new programming skills can provide
a better or more comprehensive solution.

In keeping with my belief that examples are important learning tools, this
text contains many complete programs in addition to the applications. To get the
most out of the text, you should study every program carefully and try to
understand the purpose of every line of code. You can-and should-download
the source code and data files, where applicable, from the World Wide Web site
given in Section i.1.6 of this Preface. However, you should not overlook the fact
that the physical act of entering programs yourself, from a computer keyboard, is
a process that will help you develop the mechanical skills required for efficient
programming.

"Style" is an important part of programming, but it's difficult to explain
and teach except by example. For reasons having to do with its historical
development, Fortran is a language that can easily be abused to produce programs
that do not meet widely accepted standards of modern programming style. I have
tried to make every example in this text a model of good programming style. In
order to attain this goal, many choices have been made about how Fortran should
be used. These choices often will not be obvious to a beginning programmer; for
example, some forms of Fortran syntax simply don't appear in the text because
their use is inconsistent with good programming style.

Not everyone-including your instructor-will agree with every stylistic
choice I have made. Fortran 90 is a much more flexible language than its
predecessors, so there is more room for personal preferences. Thus you should
expect programs from other sources to look somewhat different, and it's certainly
possible that your instructor may have different ideas. However, some of the
choices are so important that I don't believe they should be negotiable as matters
of personal style. (I have tried to be clear about these when they occur.) Until you
are confident in your own ability to write programs that are easy to understand,
debug, and modify, I encourage you to imitate the style used in this text.

xx • Preface

In each chapter you will fmd three kinds of exercises:

1. "Self-testing" exercises that test your basic understanding of the concepts and
syntax presented in the chapter.

2. "Basic programming" exercises that often involve modifications to programs in
the text. The purpose of such exercises is to encourage you to study the programs
in the text more thoroughly than you might otherwise do.

3. "Programming applications" that involve writing complete programs dealing
with the kinds of engineering, science, and mathematics problems you are likely
to encounter in other courses.

I have tried to arrange these programming exercises roughly in order of
increasing difficulty. The mote difficult exercises may require more sophisticated
mathematical skills even though the programs themselves may not be particularly
difficult to write. You should spend as much time as possible with these exercises.

i.2.3 What Does This Textbook Expect from You ...

Every textbook incorporates some assumptions about the students who will use it,
and this one is no exception. It assumes that you are a freshman or a sophomore
in a science or engineering curriculum or that, for whatever other reason, you need
an introduction to the problem-solving and computing skills required for such
disciplines. No previous programming experience is required, but the text assumes
that you already have, or will be able to acquire quickly on your own, a working
knowledge of computers; to use the cliche, it assumes that you are already
"computer literate." The truth of the matter is that if you are not comfortable
working with computers, you will be at a disadvantage in any programming
course.

The examples, applications, and exercises in the text assume that you are
familiar with algebra and trigonometry and are comfortable thinking about
mathematical problems at that level. Many of you will already have been exposed
to some fundamental concepts of calculus or will be taking a frrst course in
calculus at the same time you are taking a course that uses this text; some of the
applications and exercises later in the text will make more sense if this is true.

Because this is a text intended for science and engineering students, the
programs in the text and the programming exercises naturally involve problems
from science and engineering. This means that the terminology required to state
a problem may sometimes be unfamiliar. The reality is that problem solving and
computer programming often have to be done in an environment that includes a
little uncertainty and insecurity, and I must assume that you won't be discouraged.

Preface • xxi

In return, I have tried to give you enough infonnation to understand a problem
without overwhelming you with too much detail. In some cases, I have included
representative output to help you verify your program's operation.

Learning a new programming language requires thought and practice. Some
students seem to believe that they can learn to write programs just by reading
about programming. Obviously, it is a good idea to read and study this text
carefully. However, the only way to become proficient at using any programming
language is to write programs. The bottom line is that you can't learn to program
in Fortran without practice any more than you can learn to speak a foreign
language without practice.

i.2.4 ... and What Does It Offer in Return?

Too often, students approach programming as an activity unrelated to their other
courses. I hope this text will prevent that from happening by providing you with
the problem-solving skills you will need to use a computer effectively throughout
your college and professional career. The skills required to use a language such
as Fortran are essential not just for writing programs, but also for understanding
other computer applications, and even for solving problems without computers. In
summary, unlike the details of a specific programming language, the problem
solving skills you can learn from this text will never be out of date.

On a more general level, I believe that learning how to program really is
good for your character. In my own teaching of freshmen, I often see students
who have excellent mathematics backgrounds and extensive experience with
computers. They should do well in a programming course. However, they often
have poor study habits and lack the self-discipline to manage their time effectively
in a learning environment that offers more personal freedom than they had in high
school. For these students, learning how to succeed in college is as much a
personal challenge as an intellectual one. A programming course is an excellent
(if arguably perverse) environment in which to develop these skills.

Finally, when you learn to write programs with Fortran 90, you get all the
traditional advantages of Fortran, which is still the most widely used language in
science and engineering. At the same time, you will be learning a language that
has much in common with other languages, such as C, that you may want to learn
later.

xxii • Preface

i,3 Useful References for Fortran 90

For reasons discussed earlier in this Preface, this text is not intended to take the
place of a Fortran reference manual. I have found two books useful for fIlling this
need:

Adams, J. C., W. S. Brainerd, J. T. Martin, B. T. Smith, and J. L. Wagener
(1992). Fortran 90 Handbook: Complete ANSI/ISO Reference. Intertext
Publications, McGraw-Hill Book Company, New York.

Metcalf, M., and J. Reid (1996). Fortran 90/95 Explained. Oxford Science
Publications, Oxford University Press, Oxford. (This book is included with
the FfN90 compiler used for the programs in this text.)

i.4 Contacting the Author

I look forward to hearing your comments and constructive criticism about this text
and being informed of any typographical and other errors you might find, as well
as receiving feedback on your classroom experiences as a student or as an
instructor. I can be reached on the Internet at brooksdr@duvm.ocs.drexel.edu.

i.S Obtaining Source Code and Data Files for Programs in this Text

The source code and data fIles for all programs in the text can be downloaded
from the publisher'S World Wide Web site:

http://www.springer-ny.com/supplementsldbrooks

Also available at this site are sample data files for all exercises that require them.
Instructors using the text are invited to contact Customer Service at Springer
Verlag, 175 Fifth Avenue, New York, N. Y. 10010, in writing on department
letterhead, to obtain source code and data files for all programming exercises in
the text. The source code fIle names are given in brackets following each problem
statement in the exercises.

Preface • xxiii

i,6 Acknowledgments

I would like to thank Dr. Martin Gilchrist, Computing Editor at Springer-Verlag,
for his interest in and support of this project, and Numerical Algorithms Group,
Inc. for the use of its MS-DOS and Windows 95 FfN90 compilers since the
earliest versions of this text were being written. Also, I would like to thank my
partner, Susan Caughlan, for her editorial oversight and her many allowances for
the time reQuired to complete this project.

Contents

Preface .. v
i.1 Overview for Instructors .. v

L1.1 The Case for Fortran 90 vi
i.1.2 Structure of the Text .. vii

Introductory Material vii
Presentation of the Language . ix

i.1.3 Decisions About Content . ix
Program Layout .. x
Data Types x
Derived Data Types xi
Pointers and Allocatable Arrays xi
Recursion ~ xii
Explicit vs. Implicit Typing . xiii
COMMON Blocks xiii
Program Modularization xiv
Arrays xiv

i.l.4 Pedagogical Features xv
A Formal Problem-Solving Process Is Followed

Throughout the Text .. xv
Some Applications and Problems Appear More Than Once xv
Programs and Exercises . xvi

i.1.5 The Compiler Used to Prepare Programs for This Text. .. xvii
i.2 Overview for Students. xviii

i.2.1 The Purpose of This Text xviii
i.2.2 The Approach Taken by the Text xviii
i.2.3 What Does This Textbook Expect from You... xx
i.2.4 ... and What Does It Offer in Return? xxi

i.3 Useful References for Fortran 90 .. xxii
i.4 Contacting the Author xxii
i.5 Obtaining Source Code and Data Files for Programs in this Text xxii
i.6 Acknowledgments xxiii

1. Computing Environments for Problem Solving 1
1.1 A Brief History of Electronic Computing 1

1.1.1 The First Generation 1
1.1.2 The Second and Third Generations 2
1.1.3 The Fourth Generation .. 3

xxvi • Contents

1.2 The Academic Computing Environment 6
1.2.1 The Department-Based Computing Environment 8
1.2.2 The Personal Computing Environment 9

1.3 What Do You Need to Know About Your Computing
Environment? 10

1.4 Fortran and the Personal Computing Environment 11
1.5 Is Programming Necessary Anymore? 14
1.6 Exercises .. 16

2. Solving Problems with a High-Level Programming Language •••••• 19
2.1 Structured Programming and Problem Solving 19

2.1.1 A High-Level Programming Language Provides the Tool.. 19
2.1.2 Developing a Formal Approach to Problem Solving 22
2.1.3 Beware of Logical Errors 32

2.2 Designing Algorithms for Procedural Programming Languages . .. 34
2.2.1 Getting Started "............. 34
2.2.2 Executable Instructions .. 35
2.2.3 Data Types and Variables 37

Data types .. 37
Variables .. 39

2.2.4 Designing Algorithms for Solving Problems 40
Deftning a pseudocode language 40
The three basic program control structures 44
Adding to your pseudocode vocabulary 45
Flowcharts: another way to visualize algorithms 46

2.3 Program Modularization .. 47
2.4 Applications 49

2.4.1 Maximum Deflection of a Beam Under Load 49
2.4.2 Oscillating Frequency of an LC Circuit 53

2.5 Debugging Your Algorithms .. 56
2.5.1 Algorithm Style. .. 56
2.5.2 Problems with Your Algorithms 57

2.6 Exercises .. 57
2.6.1 Self-Testing Exercises 57
2.6.2 Basic Algorithm Development Exercises 59
2.6.3 Algorithm Development Applications 60

3. Getting Started with Fortran: Writing Simple Programs. • • • • • • •• 69
3.1 A Simple Problem and a Fortran Program to Solve It 69
3.2 Program Layout 73

3.2.1 What Is "Source Code?" 73
3.2.2 Where Does Source Code Come From? 75
3.2.3 Whv Do the Fortran Statements All Start in Column 7? . .. 77

Contents • xxvii

3.2.4 Inserting Comments in Source Code Files 78
3.2.5 How Much of P-3.1 Is Absolutely Necessary and

How Much Is a Matter of Style? 79
3.2.6 Fortran Keywords 80
3.2.7 What If a Statement Is Too Long to Fit on a Single Line? 81
3.2.8 Executable and Nonexecutable Statements 82

3.3 Declaring Variables and Defining Constants. 83
3.3.1 Variable Names and Data Type Declarations 83
3.3.2 Intrinsic Data Types. .. 85

Type declarations for intrinsic data types 85
Type declarations for numbers 86
Type declarations for logical variables 87
Type declarations for characters and strings of characters 88
The PARAMETER attribute and statement 89
Enforcing explicit typing 90
The implications of type declaration 91
Using nonexecutable statements in programs 24

3.3.3 Constants 92
Integers and real numbers 92
Logical constants 93
Character constants .. 94

3.3.4 Initializing Values with the DATA Statement 95
3.4 List-Directed Input and Output .. 96

3.4.1 Reading and Displaying Numerical Values 96
Displaying a prompt for user input 96
Getting input from the keyboard 97
Displaying output. .. 101

3.4.2 Manipulating Text Information 102
3.5 Arithmetic Operators, Assignment Statements, and Calculations 104

3.5.1 Arithmetic Operators, Expressions, and the Assignment
Operator 104

3.5.2 Assignment Statements That Increment Variables 107
3.5.3 Mixed-Mode Calculations. .. 109
3.5.4 Using Compatible Constants. 113
3.5.5 Operator Precedence 114

3.6 Program Termination .. 118
3.7 Compiling and Executing a Program 119

3.7.1 Source Code Portability 119
3.7.2 Compilation and Execution. .. 120
3.7.3 Savin~ Output from Your Pro~ams 121

xxviii • Contents

3.8 Applications 122
3.8.1 Maximum Deflection of a Beam Under Load 122
3.8.2 Relativistic Mass and Speed of an Electron 125

3.9 Debugging Your Programs. .. 128
3.9.1 Programming Style 128
3.9.2 Your Programs Will Often Contain Errors 129
3.9.3 Some Common Errors 129

Compilation Errors .. 130
Execution Errors 130
Logical Errors 131

3.9.4 Forcing Your Programs to Fail 133
3.10 Exercises 134

3.10.1 Self-Testing Exercises 134
3.10.2 Basic Programming Exercises 136
3.10.3 Programming Applications 137

4. Using Functions to Expand the Power of Fortran • • . . • • . . • 147
4.1 Fortran Intrinsic Functions 147

4.1.1 Intrinsic Functions for Arithmetic Calculations:
Arguments and Ranges 147

4.1.2 Intrinsic Functions for Character and String
Manipulation 153

4.1.3 Examples of Calculations Using Intrinsic Functions. 157
Polar/Cartesian conversions 157
Calculating the absolute value 161
The remainder from integer or real division 161

4.2 Fortran Statement Functions 162
4.3 Applications 166

4.3.1 Refraction of Light 166
4.3.2 Inverse Hyperbolic Functions 170

4.4 Debugging Your Programs .. 175
4.4.1 Programming Style 175
4.4.2 Problems with Programs .. 175

4.5 Exercises 177
4.5 .1 Self-Testing Exercises 177
4.5.2 Basic Programming Exercises 178
4.5.3 Programming Applications 179

5. Gaining Control Over Program Output•.....••••.••.•. 187
5.1 The Formatted PRINT Statement 187

5.1.1 Introduction to Formatted Output. 187

Contents • xxix

5.1.2 Format Descriptors for Numbers and Character Strings .. 190
INTEGER descriptors 190
REAL descriptors 190
CHARACTER descriptors .. 193
LOG I CAL descriptor 193
General descriptor 193
String constant descriptors .. 193

5.1.3 Control Descriptors 193
Carriage control 193
Skipping spaces 194
Sign display .. 194
New lines 195
Tabulation .. 195
Format termination .. 195

5.1.4 Repeating Groups of Descriptors. 196
5.1.5 Producing Formatted Output Without a

FORMAT Statement. .. 196
5.2 The WRITE Statement. .. 198

5.2.1 Syntax of the WRITE Statement and the Standard
Output Unit .. 198

5.2.2 Format Descriptors for the WRITE Statement 199
5.3 Saving Program Output 199
5.4 Applications 203

5.4.1 Stellar Magnitude and Distance 203
5.4.2 Relativistic Mass and Speed of an Electron 205

5.5 Debugging Your Programs. .. 207
5.5.1 Programming Style 207
5.5.2 Problems with Programs .. 207

5.6 Exercises 208
5.6.1 Self-Testing Exercises 208
5.6.2 Basic Programming Exercises 209
5.6.3 Programming Applications 210

6. Program Control: Branching and Repetitive Calculations. • • . • .. 215
6.1 Using Program Control Structures .. 215

6.1.1 The IF ... THEN ... (ELSE ...) Pseudocode Construct 215
6.1.2 The CHOOSE Pseudocode Command 217
6.1.3 The LOOP .•. END LOOP Pseudocode Command. 219

Count-controlled loops 219
Conditional loops 220

6.2 Relational and Logical Operators and
the Fortran IF. .. Construct........................ 222

xxx • Contents

6.2.1 Relational and Logical Operators 222
6.2.2 The IF. . . Construct 224
6.2.3 Using the IF ... Construct in Programs 229

6.3 The SELECT CASE Construct .. 232
6.4 Fortran Loop Constructs .. 234

6.4.1 Count-Controlled (DO ...) Loops 234
6.4.2 Pre- and Post-Test Conditional Loop Constructs 241

Pre-test loops .. 241
Post-test loops 244

6.4.3 Nested Loops 247
6.4.4 Loop Design Considerations 248

6.5 Using Implied DO ... Loops in Output Statements 249
6.6 Applications 251

6.6.1 Refraction of Light 251
6.6.2 Oscillating Frequency of an LC Circuit 253
6.6.3 Calculating Radiation Exposures for a Materials Testing

Experiment 255
6.6.4 Maximum Deflection of a Beam with Various

Support/Loading Systems 260
6.7 Debugging Your Programs 262

6.7.1 Programming Style 262
6.7.2 Logical Problems. .. 263
6.7.3 Syntax and Execution Problems 264

6.8 Exercises 264
6.8.1 Self-Testing Exercises 264
6.8.2 Basic Programming Exercises 265
6.8.3 Programming Applications 266

7. Program Modularization 277
7.1 Designing Modularized Algorithms with the CALL and

SUBPROGRAM Pseudocode Commands 277
7.2 Fortran Subroutines .. 284

7.2.1 Using Subroutines .. 288
7.2.2 Controlling the Flow of Information 289

Expressing intent 289
Enforcing intent .. 293

7.2.3 More About SUBROUTINE Syntax 296
7.3 Fortran Functions 297
7.4 Using Subroutines and Functions 299

7.4.1 Using the MODULE Structure for Passing Information to
Subroutines and Functions .. 299

7.4.2 Initializing Information in Subroutines and Functions 302

Contents • xxxi

7.4.3 Using Subroutines and Functions in Argument and
Parameter Lists 303

7.4.4 Choosing Between Subroutines and Functions 308
7.5 Applications 310

7.5.1 Relativistic Mass and Speed of an Electron 310
7.5.2 A Function Library for Converting Units 312
7.5.3 A Simple Character-Based Function Plotter 317

7.6 Debugging Your Programs. .. 321
7.6.1 Programming Style 321
7.6.2 Problems with Programs. .. 322

7.7 Exercises 322
7.7.1 Self-Testing Exercises 322
7.7.2 Basic Programming Exercises 323
7.7.3 Programming Applications 324

8. Using Arrays to Organize Information . • . • . . . • • • • . . • . •. 333
8.1 Arrays in Structured Programming 333
8.2 Basic Array Implementation 337

8.2.1 Example: Testing a Random Number Generator 337
8.2.2 Declaring Arrays .. 340
8.2.3 Assigning Values to Arrays 342

Assigning a value to an entire array or part of an array .. 343
Assigning array elements with count-controlled loops . .. 344
Assigning values to individual array elements 344
Using a DATA statement to initialize arrays. 345
Using elemental intrinsic functions. 346

8.2.4 Displaying the Contents of Arrays (Implied DO ... Loops) 348
8.2.5 Example: Monthly Ozone Summary 350

8.3 Using Statically Allocated Arrays in Subprograms. 353
8.4 Allocatable Arrays .. 358
8.5 Treating Strings of Characters as Arrays of Characters 368
8.6 The TYPE Statement, Records, and Arrays of Records 369
8.7 Applications 377

8.7.1 Vector Operations 377
8.7.2 Cellular Automata and Sierpinski Triangles 380
8.7.3 Probability Analysis for Quality Control of Manufacturing

Processes .. 385
8.8 Debugging Your Programs .. 390

8.8.1 Programming Style 390
8.8.2 Problems with Programs That Use Arrays 390

8.9 Exercises 391
8.9.1 Self-Testing Exercises 391

xxxii • Contents

8.9.2 Basic Programming Exercises 392
8.9.3 Programming Applications 395

9. Using Formatted Sequential Access and Internal Files 401
9.1 The Text File Concept .. 401
9.2 OPEN, READ, and CLOSE Statements for Sequential File Access 404

9.2.1 Reading a File Containing Student Names and Grades. .. 405
9.2.2 The OPEN and REWIND Statements. 408
9.2.3 The READ and BACKSPACE Statements. 410
9.2.4 The CLOSE Statement .. 413

9.3 Files and Arrays 414
9.4 More About Formatted READ Statements. 420

9.4.1 FORMAT Statements and Standard Field Descriptors 420
9.4.2 Reading Internal Files 426

9.5 Writing Text Files .. 429
9.6 Applications 431

9.6.1 Exponential Smoothing of Data. 431
9.6.2 Billing Program for an Urban Water Utility 437
9.6.3 Merging Sorted Lists 447
9.6.4 Creating a "Quote-and-Comma-Delimited" Input File for

Spreadsheets 454
9.7 Debugging Your Programs. .. 456

9.7.1 Programming Style 456
9.7.2 Problems with Programs That Access External Data Files 456

9.8 Exercises 458
9.8.1 Self-Testing Exercises 458
9.8.2 Basic Programming Exercises 459
9.8.3 Programming Applications 461

10. Some Essential Programming Algorithms ••......... 471
10.1 Introduction 471
10.2 Searching Algorithms .. 473

10.2.1 Linear Searches .. 474
10.2.2 Binary Search 478
10.2.3 Comparing Searching Algorithms 483
10.2.4 A Driver Program for Testing Searching Algorithms ... 483

10.3 Sorting Algorithms 486
10.3.1 Selection Sort 487
10.3.2 Insertion Sort 490
10.3.3 Efficiency of Sorting Algorithms 493
10.3.4 A Driver Program for Testing Sorting Algorithms 494

10.4 Recursive Algorithms .. 496
10.5 The Recursive Ouicksort Algorithm. 501

Contents • xxxiii

10.6 Applications 509
10.6.1 Keeping a List of Words in Alphabetical Order 509
10.6.2 Evaluating Legendre Polynomials 514

10.7 Debugging Your Programs 517
10.7.1 Programming Style 517
10.7.2 Problems with Programs .. 517

10.8 Exercises 518
10.8.1 Self-Testing Exercises 518
10.8.2 Basic Programming Exercises 519
10.8.3 Programming Applications 520

11. Basic Statistics and Numerical Analysis with Fortran ••••••••• 533
11.1 Introduction 533
11.2 Basic Descriptive Statistics .. 534

11.2.1 The Sample Mean and Standard Deviation 534
11.2.2 Linear Regression and the Linear Correlation Coefficient 536

11.3 Numerical Differentiation .. 545
11.3.1 Newton's and Stirling's Formulas 545
11.3.2 Application. Estimating the Speed of a Falling Object .. 546

11.4 Numerical Integration .. 551
11.4.1 Polynomial Approximation Methods 551
11.4.2 Application: Evaluating the Gamma Function 556

11.5 Solving Systems of Linear Equations •. 562
11.5.1 Linear Equations and Gaussian Elimination 562
11.5.2 Application: Current Flow in a DC Circuit with Multiple

Resistive Branches 570
11.6 Finding the Roots of Equations .. 572
11.7 Numerical Solutions to Differential Equations 579

11.7.1 Motion of a Damped Mass and Spring 579
11.7.2 Application. Current Flow in a Series LRC Circuit 582

11.8 Exercises 591
11.8.1 Basic Programming Exercises 591
11.8.2 Programming Applications 592

12. A Closer Wok .. 597
12.1 Introduction 597
12.2 Using More Than One Program Unit. 598

12.2.1 Merging Source Code .. 600
12.2.2 Merging Object Code .. 602

xxxiv • Contents

12.3 The Internal Representation of Numbers and Extended Precision 604
12.3.1 Internal Representation of Numbers 604

Integers .. 604
Real Numbers 606

12.3.2 Specifying Precision for Numerical Variables 608

12.4 Array Operations and Array Inquiry and Reduction 613
12.4.1 Intrinsic Array Operations. .. 613
12.4.2 Array Functions .. 614

Array multiplication functions 616
Array inquiry functions .. 616
Array reduction functions 616

12.5 Direct Access and Unformatted (Binary) Files. 622
12.5.1 Introduction to File Types. .. 622
12.5.2 Using Other File Types 627
12.5.3 Example: Binary Search of a File 631

12.6 The COMPLEX Data Type. .. 633
12.7 Data Sharing With COMMON Blocks 636

Appendices ... 641
Appendix 1. Table of ASCII Characters for IBM-Compatible PCs .. 641
Appendix 2. Summary of Pseudocode Commands and Fortran

Statement Syntax .. 643
Appendix 2.1 Pseudocode Commands 643
Appendix 2.2 Fortran Statement Syntax 644

Appendix 3. Source Code File Name Summary 655
Appendix 4. Accessing the System Time and Date 661

Glossary ... 661

Index .. 117:.1

1

Computing Environments for
Problem Solving

This chapter offers a very brief history of electronic computing and an equally
brief description of some of the features of computing environments you are likely
to encounter during a course based on this text. It also includes a discussion of the
role of Fortran and programming in the problem-solving process.

1.1 A Brief History of Electronic Computing

1.1.1 The First Generation

The electronic computer' has existed for only about I I
half a century. The ENIAC (Electronic Numerical electronic computer
Integrator and Computer), built at the University of
Pennsylvania with funding from the U.S. Army in 1946, is generally considered
to be the ftrst successful programmable electronic computer. It was a one-of-a
kind research tool designed to perform calculations for the military, but by 1951
its descendant, the UNIV AC I, became the ftrst mass-produced electronic
computer. This was the beginning of the ftrst generation of computing. In 1953,
International Business Machines (IBM) began manufacturing computers, and it
soon dominated the scientiftc and business market with its model 650.

The ENIAC could be
programmed only by rewiring its
circuits manually through large "patch
panels," a lengthy process that clearly
limited its general usefulness. Later,

machine language I
portable language
high-level programming language

computers were (and continue to be) programmable with machine language
instructions speciftc to a particular kind of computer. During the ftrst generation
of computing, the concept of a standardized portable language was developed.
This allowed programmers to write programs that would work on more than one
kind of computer. Specialized high-level programming languages such as

JAIl words or phrases printed in bold italics are defined in the Glossary at the end of this
text.

D. R. Brooks, Problem Solving with Fortran 90
© Springer-Verlag New York, Inc. 1997

2 • 1. Computing Environments for Problem Solving

FORTRAN (the original spelling, adopted from FORmula TRANslation) and
COBOL (COmmon Business-Oriented Language) were developed for scientific
and business applications.2

1.1.2 The Second and Third Generations

First-generation computers used vacuum-tube technology. They were large and
heavy and consumed a great deal of power. The ENIAC weighed 30 tons, used
about 18,000 vacuum tubes, and lined the walls of a large room. The limitations
of vacuum-tube technology spurred research into solid-state electronics, which led
to the invention of the transistor in 1948. In 1959, the first transistorized
computers marked the beginning of computing's second generation. Again, IBM
dominated the market and produced several successful series of computers targeted
at users ranging from small . businesses to large scientific research institutions.

The third generation of computing started in I centralized computing I
the mi~ 1960s, as c?mputer manufacturer~ switched mainframe computers
from dIscrete transIstors to even smaller mtegrated
circuits. By this time, computer systems and their
peripheral equipment had become sufficiently complicated that they needed to be
managed by teams of professionals. These computers were amazingly fragile
devices that consumed large amounts of power, generated a lot of waste heat, and
therefore required special environmental controls to function reliably. As a result,
during this period of centralized computing using mainframe computers,
scientists, engineers, and other computer users were physically isolated from the
machines that served their needs. Besides learning a high-level programming
language such as Fortran, computer users also needed to learn how to maneuver
around sometimes daunting institutional barriers; the computer centers at colleges,
universities, large corporations, and research laboratories could be as difficult to
master (in the organizational sense) as programming itself.

Howe~er, a re~olution wa~ ~bout to take I minicomputers I
place. The mtroductlOn of mlnlCOmputers- decentralized computing
simple enough to be maintained by one or two
people, yet powerful enough for all but the largest
and most complex computing tasks-brought a new level of direct involvement
by engineers and scientists in the computing process. By using minicomputers to
decrease their reliance on a central computing facility, computer users could set
their own priorities and accumulate the hardware and software that was best suited

2Much has been made of whether Fortran should be spelled FORTRAN (i.e., with all
uppercase letters). Earlier versions of the language used the latter spelling, but Fortran is now the
preferred spelling.

1.1 A Brief History of Electronic Computing • 3

for their own research tasks. This was the start of serious decentralized
computing. In some organizations, computer managers engaged in bitter infighting
against the proponents of decentralized computing in an attempt to maintain the
prestige and funding that accompanied control over computing equipment and
facilities; eventually, they lost the battles and the war, and the rest, as they say,
is history.

Remote access to large mainframe computers
through electronic terminals also brought computing
closer to people who were interested in solving science

turnaround time I
and engineering problems rather than in the details of the computers themselves.
It was now possible to use computers without ever traveling to the computer
center. This greatly reduced the turnaround time for computational tasks.3

Another significant computing milestone was the development of BASIC
(Beginners All-Purpose Symbolic Instruction Code). Even though it was never
intended to challenge Fortran as a "serious" programming language, BASIC
introduced the problem-solving capabilities of a high-level language to
nonspecialists from many disciplines, including those whose professional interests
could not justify the investment of time required to learn a more complex
language.

1.1.3 The Fourth Generation

In view of BASIC's success as a "personal"
programming language, it was inevitable
that hardware appropriate for personal
computers would also be developed. This
part of the computer revolution began in

personal computer I
central processing unit (CPU)
bit
byte

3 Author's note: when I was working at the National Aeronautics and Space
Administration's Langley Research Center during the 1970s, the presence of a remote access
terminal on a researcher's desk was perceived by coworkers as a status symbol and viewed with
great suspicion by supervisors. Among coworkers, the terminal advertised the fact that its owner
would no longer have to use "punch card machines" to generate programs and would no longer
have to make the long walk to the computer center to submit and retrieve "batch jobs." To
supervisors, the sight of research personnel working at terminals looked too much like "typing,"
an activity they considered unworthy of skilled professionals! However, the advantages of being
able to write, edit, and debug programs in electronic form were so overwhelming that these
terminals soon became a permanent feature in every researcher's office.

Later, when personal and distributed computing appeared to be on its way to diluting the
power accumulated by computing professionals, NASA refused to allow researchers to buy
computing equipment for their own use. At one time, it was possible to circumvent this ban by
referring to computers as "electronic calculators," but this ruse was not successful for long.

4 • 1. Computing Environments for Problem Solving

1971 when Intel released the flrst microprocessor-a complete central processing
unit (CPU), the 4004, on a single chip. Its basic unit of storage was a "word"
consisting of four bits, each bit representing the "on" or "off' state of an
electronic circuit or some other kind of storage device. This CPU was followed
the next year by Intel's 8008 and in 1973 by the 8080. These CPUs used an eight
bit word (a storage unit now universally referred to as one byte). These chips were
the predecessors of Intel's 8086/8088, 80286, 80386, 80486, and Pentium chips
that drove much of the personal computing revolution in the 1980s and into the
1990s.

The first microprocessors were I' Ie I . mlCrocompu r
used for "P?cket" calculators, ,;hIch were random access memory (RAM)
actually a lIttle too bulky to flt m pockets. d I (ROM)
H . J 1975 th f' 'd I rea -on:y memory owever, m anuary ,e rrst WI e y I Ie . . persona compu r
avaIlable mIcrocomputer, the Intel 8080-
based Altair, was the cover story in
Popular Electronics magazine. It consisted basically of a CPU in a box. It had no
keyboard, no monitor, no external storage device, just 256 bytes of random access
memory (RAM) and no read-only memory (ROM). It was hailed as a "real"
computer because it could be programmed, but only by setting switches on its
front panel. The Altair 8080 was offered in kit form for about $400, and 2000 of
them-ten times the original estimate-were quickly sold.

At that time, traditional computer users were interested only in larger and
larger computers, not in what appeared to be no more than an interesting toy. It's
interesting that, far removed from the influence of the military, commercial, and
scientific forces that had always driven the development of computing, the frrst
personal computer was sold to amateur electronics experimenters.

The pivotal event that started the personal computer
revolution is widely recognized as the development in the late
1970s of the Apple II. This computer quickly developed a huge
following among hobbyists and in the educational market, but it

Apple II I
IBM-PC

was virtually ignored by commercial and scientiflc computer users. Signiflcant
inroads into these markets began with IBM's introduction in 1981 of the IBM-PC.
The original PC was quickly replaced by the more powerful IBM-XT and IBM
AT series of machines. The backing of the world's foremost computer
manufacturer guaranteed the rapid integration of this new technology into a wide
range of computing activities, including tasks traditionally reserved for mainframe
computers and new applications designed speciflcally with personal computing in
mind.

IBM's decision to compete against Apple's
proprietary hardware and operating system by
developing an "open architecture" using readily
available components led virtually overnight to the
development of an entire industry devoted to

IBM-clone I
IBM-compatible
graphical interface
text-based interface

1.1 A Brief History of Electronic Computing • 5

producing IBM clones-computers compatible at the hardware and software level
with IBM's personal computers. A highly competitive environment drove down
prices and accelerated development of increasingly powerful systems. It is difficult
to overestimate the influence of these products on the development of computing.
Even though IBM quickly lost its dominant role in the development and marketing
of personal computers, IBM-compatible hardware and software continued to
defme the development of the personal computer industry. Even after the IBM-PC
itself became obsolete in terms of computing power, market forces required
software to be "backward compatible" with the IBM-PC standard until the
development of graphical interfaces (as opposed to text-based interfaces) in the
late 1980s. These new interfaces imposed hardware requirements that were simply
beyond what could be supported by the original IBM-PC. Even then, however, the
concept of IBM compatibility continued to drive the development of software and
hardware for personal computing.

There were only a few other important ventures in the early days of
personal computing. In the late 1970s, Radio Shack (Tandy), Atari, and
Commodore developed relatively inexpensive personal computers. These were
widely accepted as "home" computers and were used mostly for games, although
Commodore (with its famous Commodore 64) developed a modest following in
the educational market. However, these computers lacked the power and flexibility
to make significant inroads in the commercial and scientific workplace.

Of the early contenders, only Apple, with its Macintosh computers,
developed "serious" computers that managed to cut significantly into the near
monopoly enjoyed by IBM-compatible computers for scientific and business uses
during the 1980s. Apple developed a user-friendly graphical interface that was
especially attractive to the educational market. These same IBM and Macintosh
systems also monopolized the home market, as more and more people wanted a
computer at home that worked just like the one they used in the office.

The differences between IBM-compatible and operating system I
Macintosh computers are fundamentally hardware-based, PC-DOS
but they are seen most clearly in their operating MS-DOS
systems-the "invisible" software that manages the basic Windows
functions of a computer. Apple and Macintosh computers
use a proprietary operating system. When IBM needed an
operating system for its new PC, it turned to a then obscure company, Microsoft,
which developed the first version of PC-DOS and its "clone" version, MS-DOS,
perhaps the most famous computer operating systems ever developed. Since then,
almost all IBM-compatible personal computers have used a version of MS-DOS.
More recently, Microsoft developed Windows, a graphical interface that competes
head-on with (and, some might say, flagrantly attempts to imitate) the
Apple/Macintosh operating system.

6 • 1. Computing Environments for Problem Solving

It is defInitely a cliche to marvel at the "exponential growth" in the power
of personal computers. At least the cliche is justifIed. Figure 1.1 shows the growth
in three important specifIcations for typical PCs available during the decade
starting around 1985-86: CPU speed, RAM size, and hard drive size.4 At the
beginning of this period, 8088-based PCs were being replaced by computers using
Intel's 80286 CPU chip. Computers based on this chip could run only a single
application at a time, and the character-based interface placed relatively small
demands on system memory. At the beginning of this period, 1.2-MB floppy
diskette drives (using the 5W' format) were standard on mainstream systems and
hard drives were an expensive lUxury.

As shown in Figure 1.1, each of these three measures of computing power
has undergone exponential growth since 1986. CPU speed has increased by a
factor of about 40 over the decade, driven by the demands of increasingly large
and sophisticated software. Typical RAM specifIcations have also increased by a
factor of approximately 40, from under 500 KB to 16 MB; these increases are due
to operating systems that allow several tasks to run simultaneously as well as
larger and more sophisticated graphically based applications that require a great
deal of memory. Growth in the size of graphically based software-both the
applications themselves and the large fIles they produce-has driven the dramatic
increase in permanent magnetic storage capacity from the "luxury" of 10- and
20-MB hard drives to typical drives in excess of 2 GB.

What has not increased exponentially is the cost of mainstream personal
computing. Complete systems with the specifIcations shown in Figure 1.1 have
been available throughout the entire decade at a remarkably consistent price of
approximately $2500-$3000. This is even more remarkable because, taking into
account the effects of inflation, $3000 represents a signifIcantly smaller investment
in 1996 than it did.in 1986. Thus the real cost of a mainstream personal computer
has actually decreased substantially at the same time that its capabilities have
undergone the meteoric growth shown in Figure 1.1.

1.2 The Academic Computing Environment

There is perhaps no undertaking so certain to make an author look foolish and out
of date as describing the "current" computing environment, since any such
description is sure to be on its way to obsolescence even as it is written.
Nonetheless, it is worthwhile to try to follow up to the present the historical
progression outlined briefly in this chapter.

"These data come from the specifications of typical, not state-of-the-art, systems advertised
and reviewed in PC Magazine, a magazine devoted to Intel-based PC computing.

1.2 The Academic Computing Environment • 7

1 .. .

1 .. .

~ 1

11
&

14

1~ •...............•.........•...................................•.................

~11t · ... ·

i :=~=~~~~:~~~~~~= --

!!1

4 .•..•..............•..•..•.•......•.....•.•.•..•..•.

~ ················=··~--·.·.··I·
86 86 87 86 89 90 91 92 9G 94 95 96

Year,l9xx

~I.---------------------_,r_~

2000 •••••.••••.•••.....................•....•................................••••..••••

Jl500 ... ----

~ 1000

~

Figure 1.1. Growth of Intel-based PC specifications, 1986-1996

8 • 1. Computing Environments for Problem Solving

First of all, the historical division of labor between
mainframes and minicomputers has little current relevance.
Historically, mainframes monopolized scientific and

supercomputer I
engineering applications for the simple reason that only large computers were
adequate for the computational tasks of interest to scientists and engineers. To a
certain extent, this remains true today. Some of the most important scientific and
engineering challenges of our time, such as global climate modeling and
aeronautical design, still tax the capabilities of even the largest supercomputers.
These are characterized by their support of specialized operating systems and
languages (including high-performance versions of Fortran for advanced scientific
and engineering computing). However, the role of the traditional mainframe
computer has been greatly diminished by dramatic increases in the power of
desktop computers.

The traditional minicomputer, which freed an entire
generation of scientists and engineers from centralized
computing, has essentially ceased to exist. Now the needs of
relatively small communities of computer users are met with

workstation I
network

personal computers, workstations, and computers whose capabilities defy easy
categorization as either mainframes or minicomputers. All these computers are
typically interconnected through a network that provides communication between
hardware and multiple users and thereby greatly extends the capabilities of single
machines.

How will you learn programming within this highly decentralized and
rapidly evolving environment? There are basically two possibilities.

1.2.1 The Department-Based Computing Environment

Most academic computing is now done at the department level
with machines that typically use the UNIX operating system,
support remote access and multitasking for many
simultaneous users, have shared peripherals, and are managed
by a department-financed support staff. Basically, such

UNIX I multitasking
peripherals

systems are designed to meet all the computing needs of a specific community of
users; a large university will have many such systems as well as a campus-wide
network that links at least some parts of all these systems together.

Typically, such systems can allocate their resources I throughput
among many users so that no single user is even aware of the
presence of others. Only with large computational tasks, or
when human intervention is required, are individual users aware of limitations to
throughput-the rate at which a computer system completes all the computational
and related tasks associated with a particular job. In fact, you will probably never
experience any significant throughput or turnaround time delays with the kinds of

1.2 The Academic C9mputing Environment • 9

programs you will write in an introductory programming course. Any delay of
more than a few seconds in executing a program is much more likely to be a sign
of problems with that program than a sign of throughput limitations.

If your institution maintains a traditional mainframe computer, it probably
supports Fortran (although perhaps not Fortran 90). However, it is unlikely that
you will use a mainframe for an introductory programming course. Faculty tend
not to use such computers for their own research; these machines are more likely
to be used for administrative purposes than for research and teaching.

account ID and a unique password.5 Typically, you will be accoun d
On a department computer, you will be assigned an I t ID I

able to access the computer from a terminal in a computer passwor,
center or lab, or from your own personal computer via a
modem. If you live in a dormitory, you may be able to connect your personal
computer to a campus-wide network simply by plugging a cable into a wall jack.

You will probably be given an electronic mail (e- . I
mail) account and access to the Internet. You may be e-ma'l
able to partic. ipate in electronic discussion groups that Internet.
deal with course-related matters or allow you to World Wide Web
communicate directly with your instructor. Course notes
and homework assignments may be distributed electronically through a World
Wide Web page.

The sequences of instructions required to logon to a
department computer, create and edit a program, execute that
program, and logoff the computer vary widely among computer
systems and institutions. Even institutions with the same kind of

logon I
logoff

computer hardware may have rules and procedures that apply only at that
institution, so it's pointless to try to give even a typical scenario beyond telling
you that you will need to provide an account ID and a password. Later in the text,
we will describe the general steps required to create and execute a Fortran
program, but the specific procedures applicable to the computing environment you
will be using must be provided by your instructor.

1.2.2 The Personal Computing Environment

One milestone during the personal computer revolution was the point at which the
capabilities of PCs allowed traditional mainframe languages such as Fortran to be

5There is an important distinction between an account ID and a password. An account ID
is public information that identifies you to the computer system and other users. A password is
private information that protects your work from other users. You should never share your
password with anyone!

10 • 1. Computing Environments for Problem Solving

implemented on a desktop computer. This was almost exclusively an IBM
compatible phenomenon. The migration of Fortran from mainframes and
minicomputers to the desktop has been successful, and it is entirely possible that
you will learn to program in Fortran on a Pc.

Unlike many other PC applications, Fortran doesn't depend on a graphical
interface. Although it is certainly possible to "package" a Fortran programming
environment within a graphical interface, the language itself is text-based, contains
no graphics capabilities as part of the language standard, and is therefore perfectly
at home in the text-based MS-DOS environment. Nonetheless, Windows-based
PCs are the current standard, so you will probably develop Fortran programs from
within this environment.

1.3 What Do You Need to Know About Your Computing Environment?

One of the major reasons to learn a language such as Fortran is to isolate the
programmer from the system-level operation of a particular computer. However,
regardless of the kind of computer system you use to learn how to program in
Fortran, there are several things that you need to know about that system.

1. What kind of operating system does the computer have?
Is it UNIX, Windows, or something else? Will you be writing Fortran

programs in an MS-DOS environment even if your PC is running Windows?

2. How do you perform basic file-related tasks?
Do you know how to name, create, search, and maintain directories? Do

you know how to name, create, examine, edit, and delete files?

3. Do you understand how to use storage capabilities on your system?
Do you know how to examine and modify your PC's hard drives and other

electronic storage media, such as backup tapes and CD-ROMs? Do you understand
the directory structure and memory limitations of your department's computer?

4. Do you understand how to use telecommunications?
Can you attach your PC to a campus network? Do you know how to send

and receive e-mail and how to manage your e-mail directory? Do you know how
to communicate electronically with your instructor? Do you know how to access
an electronic class folder or course-related material on a World Wide Web page?

The exercises at the end of this chapter provide more suggestions for
thin~s you should know about the computer systems you will use.

1.4 Fortran and the Personal Computing Environment • 11

1.4 Fortran and the Personal Computing Environment

It is clear that pes are now essential tools for scientists and engineers. This would
be true even if Fortran were not available for pes because of the availability of
a wide range of sophisticated computing tools .. However, the development of
personal computing has been driven by a basically commercial market, and it has
not always been obvious that pes would, or could, play a major role in serious
scientific and engineering computing.

Historically, Fortran has been the essential interface between scientists or
engineers and a computer, and this relationship continues in many areas of
research and applications. However, the availability of fully functional versions
of Fortran for pes requires a re-examination of the role of Fortran relative to other
languages and other kinds of software.

Fortran was invented for doiqg numerical calculations. Its primary
advantages for science and engineering are that it provides powerful and flexible
computational and data-handling capabilities and it represents a stable, well
defined language standard. Its primary shortcoming, which it shares with some
other high-level languages, is that it was developed for use in a text-based
computing environment and it includes no intrinsic graphics capabilities.6 The
previous standard, Fortran 77, was adopted by an international committee in 1978
and remained in place until the adoption of Fortran 90 in 1991. Many
enhancements and changes have been added to versions of Fortran 77 in actual
use, but the standard itself has remained unchanged in the sense that every Fortran
77 implementation includes, or at least should include, the standard as a subset.

The new Fortran 90 language accepts the entire Fortran 77 standard as a
subset. Because Fortran 77 in turn accepts the entire previous Fortran version
(Fortran IV) as a subset, Fortran 90 provides a programming standard that is
backward-compatible with programs written decades ago. Most important,
Fortran 90 contains many new features, including many of the nonstandard
enhancements developed for Fortran 77 programming environments.

Fortran's problem-solving ad h t I . . . 1 d .1.._ . spre S ee
competitIOn mc u es uuee major • 19 b t compu.er a e ra sys em
classes of software: spreadsheets such ~-. I' d t ti' n' .1'

E 1 Lotu 1 2 3 d Q ttr _a ana ',ysrs an s a S cs sOJ .. "are
as xce , s - - ,an ua 0

Pro; computer algebra systems such
as Maple and Mathematica; and data analysis and statistics software such as
SPSS and Statistica. These have all been developed, at least in commercial
versions, within the shadow of the pe revolution, and most didn't even exist when
the previous Fortran standard was adopted in 1978. All provide powerful

~ere are many different "add-in" graphics packages available for Fortran compilers, but
they are not part of the language standard.

12 • 1. Computing Environments for Problem Solving

capabilities for solving particular kinds of problems and include sophisticated
graphical interfaces and display capabilities. Of these three, spreadsheets are
generally recognized as the "killer app(lication)" that turned the personal computer
from an interesting toy into an essential commercial and scientific tool.

A major potential disadvantage of these powerful applications is their lack
of standardization. Indeed, because of the competitive nature of the commercial
software market, there are actually strong disincentives to standardization; from
a marketing perspective, it may be more important to have unique capabilities than
to adhere to a standard. Nowhere is this conflict more evident than with
spreadsheets, the most widely used problem-solving software. Attempts by some
companies to make their products work just like their more successful competitors
have led to legal battles over whether duplicating the "look and feel" of someone
else's software is desirable in the sense that it promotes standardization in an
important class of PC applications or whether it constitutes a theft of intellectual
property.

In contrast with Fortran's development, the pace of change in the
commercial software market has been so rapid that a company's latest version
may not even completely support its own previous versions. It is even less likely
that applications from one company will be compatible with those from another
company. These incompatibilities became especially severe in the PC environment
as software companies switched from MS-DOS to Windows products.

A lack of standardization in problem-solving software can be especially
alarming to scientists and engineers. With Fortran, programs written many years
ago will still work today, often without even minor modification. This is
extremely important for large and complex programs, as it is difficult and time
consuming, and therefore expensive, to reinvent solutions to the kinds of complex
computing problems Fortran is often used to solve. Reworking algorithms for new
computing environments is always a risky undertaking, and it is even more of a
problem to guarantee the performance of algorithms that appear to work in a
software environment that lacks widely accepted performance standards.

There have been some attempts by the dominant software companies in the
commercial PC software market to make at least the files generated by their
products translatable by and for their competitors. As the marketplace has weeded
out the less robust competitors and despite legal challenges, the capabilities and
even the "look and feel" of the remaining spreadsheet products have come closer
together. In spite of the corporate desire to maintain a unique identity,
spreadsheets are so similar that even casual users shouldn't have much trouble
making the transition from one product to another. However, there is still no
equivalent of the international standardization that Fortran enjoys. For algebra and
statistics software, there is even less standardization. Files are generally
incompatible and the commands required to achieve similar objectives differ from
one product to the next. In critical problem-solving applications, it is the details
that count, and it is not sufficient to have merely "similar" products.

1.4 Fortran and the Personal Computing Environment • 13

Scientists and engineers are faced, then, with two completely different
kinds of problem-solving environments. The Fortran environment provides the
standardization and stability required for complex calculations, but it suffers from
its "old-fashioned" mainframe heritage. The other environment makes better use
of PC and workstation capabilities, but presents a bewildering jumble of
incompatible and volatile products. .

The migration of Fortran to PCs provides one obvious way to maximize
the return from both these problem-solving environments. This is surely a better
idea than what would be widely viewed as the backward step of bringing PC
based applications to large computers, including traditional mainframes. (There
has, in fact, been relatively little migration of PC applications to mainframe
computers, but a massive migration in the other direction.) One obvious link
between Fortran and other applications is spreadsheets. We can ask Fortran to
perform the kind of computationally intensive tasks at which it excels and then to
produce output data in a format that can be accepted as input to spreadsheets. This
allows us to do complex calculations in the stable programming environment
provided by Fortran. In particular, we will be able to use the vast libraries of
"canned" Fortran software that is available for solving a wide range of
computational problems.

If we then "import" the output from Fortran programs into a spreadsheet,
graphics display capabilities are immediately available. Although it is possible to
add graphics to Fortran, it is reasonable to ask if this is worth the effort for any
but the most specialized problems. We can use spreadsheets to visualize results
and even perform simple analyses, and we won't have to worry about trying to
ask Fortran to do something that requires a software "add-in" to the language
standard. This is entirely feasible, especially for analyzing and displaying "static"
data, and some typical results are evident in the spreadsheet-generated graphics for
many of the applications and exercises you will fmd throughout this text. If the
required graphics become more sophisticated-for example, if you require
visualizations for dynamic data-then you will have to use more specialized tools.

The danger in building synergistic relationships among computer
applications lies in the volatility of these applications. The rate of change in
computer hardware and software has been driven by commercial forces that far
exceed those acting on scientific computing and formal programming languages.
For commercial applications, success is measured by market share. For scientific
applications, measures such as professional credibility and language stability retain
their importance. Regardless of the driving forces, rapid changes in any part of the
computing environment can pose a significant problem for students, professionals,
and the authors and publishers of texts such as this one.

By the time you purchase this text, it is certain that the kinds of hardware
and problem-solving software available when the text was being written will have
been replaced with new versions. Because of the rapid pace of change in

14 • 1. Computing Environments for Problem Solving

computing technology, students and professionals must constantly upgrade their
skills just to stay even.

Fortunately, rapid change won't be much of a problem for this text.
Because Fortran is the most stable programming environment in history,? and
because the Fortran 90 standard is new, specific details of the material in this text
will not be quickly outdated. You. should be able to use the language you will
learn from this text without modification on any computer that supports the
Fortran 90 standard. Unlike commercial PC applications, there are no version
dependent tricks, no flashy user interfaces, and nothing about learning Fortran that
will be fundamentally altered by having a CPU that's ten times faster and more
powerful than the one your computer is using now. If you're using Fortran on a
department computer, you may never perceive any changes in your operating
environment even though changes may be occurring at the system level.

In addition, this text stresses basic problem-solving principles that will
continue to apply regardless of the computing tools you are using. If the text is
successful, the skills you learn will be easily transferable to any new problem
solving environment.

1.5 Is Programming Necessary Anymore?

As programming developed as an activity that could be undertaken not only by
computer scientists, but also by others who needed computers for their
professional work, the question arose as to who should teach programming to
students outside the computer science curriculum. In many colleges and
universities, such courses have traditionally been taught by computer science
faculty. In the extreme, faculty with a computer science background may approach
this task with the attitude that the problems programs are written to solve are of
negligible interest compared to the art and science of programming per se.

Such an attitude annoys scientists and engineers, for whom programming
serves a fundamentally practical role as a problem-solving tool. From that
perspective, computer programming conducted as an activity for its own sake has
no great intrinsic value, even though it is common to fmd scientists and engineers
who are highly skilled programmers.

The view that computers can and should serve practical, task -oriented ends
has gained respectability due to the availability of problem-specific software for
meeting many needs that used to require custom-written programs. Do you need
to analyze some data? Use a statistics application. Need to plot a graph? Use a
graphics application. Need to summarize a lab experiment? Use a spreadsheet.

7COBOL (Common Business-Oriented Language) might be the other contender for this

1.5 Is Programming Necessary Anymore? • 15

Need to solve an equation? Use a symbolic algebra application. With this much
computing power available, is there any need to learn a traditional computer
programming language that often requires a significant effort to learn and that is
almost certainly not optimized to solve the problem you wish to solve? It is
tempting to answer, no, not anymore.

However, it remains true that the process of learning how to write
logically, and even elegantly, constructed computer programs encompasses a
formal approach to solving problems whose value extends far beyond computer
programming itself. For example, the process required to write a program to solve
a system of linear equations is merely the formalization of the process required
to solve that same problem by hand. A programmed solution even provides some
extra benefits because the demands of writing a computer program that works
correctly under a wide range of input conditions force the programmer to think
carefully and in great detail about the computational demands of the problem.

Many engineers, scientists, and computer scientists continue to maintain
that a complete reliance on "canned" software is a mistake because it discourages
the development of independent problem-solving skills. In fact, they would argue,
easy access to powerful computing tools makes these skills more important than
ever before. The applicability of the old programming axiom "garbage in, garbage
out" increases in proportion to the ease with which "garbage out" can be
produced. The only way to minimize this problem is to be increasingly aware of
the process as well as the answers being produced.

As a result of these considerations, there has been a growing realization on
the part of those who teach programming that more attention should be paid to
helping students apply the skills they learn in introductory programming courses.
Computer science courses that just a few years ago would have dealt only with
learning Pascal (the traditional first computer science language for an entire
generation of computer science students) now place more emphasis on underlying
problem-solving strategies and their application to disciplines other than computer
science. A textbook that might have been titled, tongue-in-cheek, something like
Learning Pascal for Its Own Sake Regardless of Your Major is now more likely
to be titled, seriously, C for Scientists and Engineers. (The C programming
language, or its derivative C++, has now replaced Pascal as a first language in
nearly all computer science departments.)

This text tries always to avoid presenting programming as an end in itself.
At the same time, it reasserts a traditional conviction that programming continues
to be a valuable activity because of the broadly applicable problem-solving skills
that are required to be successful in that endeavor. So you should not be surprised
to fmd that the conclusion of this section is that computer programming is still a
necessary skill for any student who aspires to a career in science or engineering.

16 • 1. Computing Environments for Problem Solving

1.6 Exercises

The purpose of the exercises in this chapter, which admittedly aren't exciting
engineering applications, is to encourage you to assess your general computing
skills and improve them where necessary. Even if an introductory course based on
this text claims, as courses often do, that "no prior programming knowledge is
assumed," you will still fmd yourself at a disadvantage if you are unfamiliar with
computer hardware, standard applications such as word processors and
spreadsheets, and telecommunications. Time spent on this chapter will give you
a short but critical window of opportunity in which to address your shortcomings
in these areas.

Exercise 1. Ask a computer support person for general information about your
institution's or department's computer. What kind of computer is it? What kind
of operating system does it have? Which languages and applications does it
support? What kinds of access modes does it support? .

Exercise 2. Find out if your institution's computer center offers "short courses"
on using its facilities and sign up for one.

Exercise 3. If you don't already have an account on your institution's or
department's computer, you may wish to get one even if you will do your
programming on a Pc. Ask your instructor or a computer support person about
getting an account. Find out whether the account is temporary-for as long as
you're enrolled in a particular course, for example-or "permanent"-for as long
as you're enrolled as a student. If it's temporary, make sure you understand when
it terminates and how you can avoid losing access to files stored under the
account. Make sure you know how to access this computer from your computer
center, home, or dormitory room.

Exercise 4. If you have a computer account and don't already know how to use
e-mail, ask your instructor or computer support person for documentation on
setting up and using e-mail. Together with a classmate, make sure you know how
to send and receive messages and files, how to save messages for future reference,
and how to erase old messages that you don't wish to save.

Exercise 5. Your institution probably provides a great deal of useful online
information through such means as department networks, anonymous ftp, Gopher,
or the World Wide Web. If you don't know what these terms mean, ask a
computer support person and learn how to use them!

Exercise 6. Inventory the software applications that reside on the computers
available to you. For each application, list the kinds of courses in which you could

1.6 Exercises • 17

use that application. For example, a word processor will be useful in all your
courses. A statistics package will be useful in a course that involves the analysis
of laboratory data.

Exercise 7. Data files used for programming examples and exercises discussed
later in the text can be downloaded from the World Wide Web site mentioned in
Section i.5 of the Preface. These files were created on an MS-DOS-based system
and have a . DAT file name extension. "Import" one of these files into a
spreadsheet. Create a graph that helps you visualize the data in the file. You will
have to import the data as a text file and "parse" the file to assign numerical and
character data to columns. Consult your spreadsheet documentation. If you have
never used a spreadsheet before, this will probably be a difficult exercise, but it
will certainly be worthwhile to learn how to do it.

2

Solving Problems with a
High-Level Programming Language

This chapter presents a general approach to using computers to solve certain kinds
of computational problems. It describes instructions and data types common to
structured programming with high-level procedural languages and defines a
specific strategy for developing algorithms that can easily be translated into a
language such as Fortran. It includes a short Fortran program that you can copy
and execute on the computer you will he using for a course based on this text.

2.1 Structured Programming and Problem Solving

2.1.1 A High-Level Programming Language Provides the Tool

Structured programming with a high-level
language is an important technique for solving
certain kinds of computational problems. It
involves the process of writing computer

I structured programming I
control structures

programs that consist of English-like instructions written in the framework of a
few control structures that determine the order in which those instructions are
executed. Languages such as BASIC, C, Fortran, and Pascal are examples of high
level languages in which program instructions consist of words and a symbolic
language of operators that, in many cases, resemble algebraic operators. To cite
just two examples:

(1) Many high-level languages contain the instruction "print" or "write," and the
words mean just what you expect-they display output from a program.

(2) The "+" sign is the addition operator in high-level programming languages,
with the same meaning that it has in mathematics.

The source code of a program written in a
high-level language is a sequence of instructions created
according to a detailed set of rules. These rules define the
language syntax that describes how instructions must be

source code I
language syntax

written in the same sense that the syntactic rules of the English language define

D. R. Brooks, Problem Solving with Fortran 90
© Springer-Verlag New York, Inc. 1997

20 • 2. Solving Problems with a High-Level Programming Language

the components and organizational structures of our written and spoken
communication.

Source code that is free from syntax errors does not necessarily constitute
a well-written or usable program. The instructions in a correctly written program
must describe a logical, unambiguous, step-by-step approach to solving a clearly
defined computational problem. Structured programming reflects a certain
approach to organizing and writing such programs that makes them easy to
understand, maintain, and modify.

Any of the programming languages mentioned above can lb · I
be used to write structured programs, but not all programs :::s.
written in these languages are necessarily "well structured." For uggtng
example, there are many features of BASIC and older versions
of Fortran that encourage a careless style of programming that cannot be called
structured. Carelessly designed programs are more likely to contain bugs
(mistakes). When bugs are found, either when the program can't be executed or
when it produces output that doesn't make sense, the mistakes must be found and
corrected. This process is called debugging. Carelessly written programs are
difficult to debug, and they are also difficult and expensive to maintain and
modify.

Even though languages such as C, Pascal, and Fortran 90 are designed to
encourage well-structured programs, it is certainly possible to write very poor
programs in any of these languages. In summary, it is not the programming
language itself that makes programs "structured," but the way that language is
used.

Criticism of older Fortran programs for their sometimes unstructured style
isn't entirely fair because the concepts of structured programming-and, for that
matter, most of what is now called computer science-were developed only after
Fortran had been invented. Many of the features found in Fortran 90, the new
Fortran standard, have been strongly influenced by other languages, especially
Pascal, which was developed specifically as a result of a more formal approach
to structured programming. As a result, it is much easier to write structured
programs in Fortran 90 than in its predecessors.

All the programming examples in this text strive to demonstrate a
structured style worthy of emulation in your own programs. This emphasis on a
particular style means that some features of the Fortran 90 language left over from
earlier versions won't even be mentioned in this text. As a result, this text isn't
intended as a complete reference for Fortran 90, but rather as an introduction to
those parts of the language that are especially applicable to solving problems in
science and engineering in a way that meets the stylistic standards expected of a
modem programming language. One result of this approach is that you will find
additional high-level languages easier to learn because they all share common
"t<lnrl<lrrl" nf annrl nrnar<ltntnina "h,1p

2.1 Structured Programming and Problem Solving • 21

Once a program has been written in a high-level language,
in the fOlTIl of a source code file, a compiler-a separate program
that is part of the programming environment-is used to start the
process of translating the source code into a language that can be understood
directly by a computer. For example, computers don't know how to interpret a
high-level programming instruction to "print" something without a detailed set of
hardware-specific instructions for sending the contents of certain memory locations
to a particular device or output port on your computer. One job of the compiler
is to provide these instructions.

Starting with the source code file, the compiler produces
a binary file called an object file. This file contains translations
into machine-level instructions of all the source code
instructions; the file is no longer in a "human readable" fOlTIl,
and it is no longer portable to some other kind of computer.

binaryfue
object file
linker

Next, a linker-another program that is part of the programming environment-is
used to connect (link) the object file to other files that are necessary for the
program to run. These include computer-specific translations of commands such
as "print."

The result of the compiling and linking operation is
an executable file that works only on the kind of computer
that was used to generate it. A Fortran source code file can

executable file

be compiled on any computer that has an appropriate Fortran compiler, but an
executable file generated on an IBM-compatible PC won't work on a Macintosh
or a supercomputer, for example. Figure 2.1 illustrates the process of creating an
executable file. Some details of this process will be discussed in Chapter 3.

One of the major advantages of programs written in a high-level language
is their portability at the source code level. For the most part, source code written
on one computer will work equally well on a variety of computers. If we use the
"print" instruction as an example, any computer that has a Fortran compiler will
know how to translate a "print" instruction to display output from your program.
The computer-specific differences occur not at the source code level, but at the
executable code level.

I Source Code I I Object Code I I Executable Code I

(portable) (machine-dependent) (machine-dependent)

Figure 2.1. Compiling and executing a source code file

22 • 2. Solving Problems with a High-Level Programming Language

Minor changes in source code may sometimes be required
when programs are executed on computers other than the one on
which they were written. For example, if a Fortran source code file

dalafile

contains a reference to a data file, the syntax of that file's name must be
recognizable by the computer system on which the program is being executed.
Except for this kind of detail, the language compiler on each computer, not the
programmer, is responsible for translating source code into appropriate
machine-level instructions. Without this arrangement, it would be impractical to
put sophisticated computing power directly in the hands of individuals who are
interested in solving problems rather than in the operating details of computer
systems.

In conclusion, the advantage of using a portable, high-level language for
problem solving should be clear: you are free to concentrate on solving problems,
rather than on the details of how a computer operates. The source code files for
programs in this text have been written on an IBM-compatible Pc. However, they
should be directly transferable (except, in a few cases, for changing the names of
data files, as noted above) to any computer that supports a standard Fortran 90
compiler.

2.1.2 Developing a Formal Approach to Problem Solving

A high-level programming language is of no value without a specific plan for
applying it to solving problems. Such a plan can be stated as a sequence of five
steps:

1
2
3
4

Define the problem.

Outline a solution.

Design an algorithm.

Convert the alfwrithm into a Dropram.

2.1 Structured Programming and Problem Solving • 23

5 Verify the operation of the program.

The process described by these steps is fundamental to quantitative
problem solving in all areas of science and engineering (as well as other
disciplines). The computational tools have changed over the years-slide rules and
pocket calculators have been replaced by computers-but the process itself has
remained essentially unchanged. These steps do not describe a process that is at
all theoretical. Rather, they provide a practical guide to solving problems that is
useful because it works. Learning how to apply the process requires practice.
Consequently, these five steps will be applied to every programming example that
appears in this text, even when one or more of the steps appear trivial.

Note that of the five steps, only the fourth-translation of I I 'th I
an algorithm (a term we will define more formally in our a gon m
discussion of Step 3) into a specific programming
language-necessarily depends on the details of a particular programming
language. In fact, most of the process applies equally, if less formally, to problems
you solve in your head or with a pencil and paper.

When you first start to learn a programming language, it is easy to confuse
the problem-solving process with the syntax and structural requirements of the
language you are learning. This is a natural reaction because learning the details
of a new programming language is a demanding undertaking, and because you
don't yet have the experience to understand that problem-solving strategies can
apply equally to any of several languages as well as other computer-based
problem solving tools. With this in mind, however, you should try as much as
possible to separate the task of learning the details of a particular language-the
fourth step in the problem-solving process-from the other four steps.

Having made the distinction between programming and problem solving,
you must also recognize that, especially when you are first learning to write
programs, it will sometimes be necessary to combine the two. In order to
minimize the potential difficulties, new programming concepts in this text are
usually introduced in the context of a problem that is simple enough to allow you
to concentrate on the programming details.

On the other hand, the focus of the programming applications that appear
in every chapter (as well as the programming exercises at the end of each chapter)
is always on solving realistic problems that will be relevant to your other science
and engineering courses, In this case, the content of the problem becomes more
important, and the Fortran language becomes simply a tool to solve that problem.
The process of solving such problems in Fortran-including thinking about the
capabilities and limitations of this particular problem-solving tool-will help you
solve other kinds of problems even when they don't require a computer program.

24 • 2. Solving Problems with a High-Level Programming Language

Now we will examine each of the five problem-solving steps in more
detail. Along the way, we will solve a simple programming problem.

1 Define the problem.

It is well known that cold weather feels even colder when the wind
is blowing. This effect gives rise to what is commonly described as the
windchill temperature-the temperature of still air that produces the same
feeling of "coldness" as a person experiences when exposed to a
combination of temperature and wind. Assuming that the windchill
temperature depends only on the actual air temperature and the wind
speed, develop an algorithm for calculating the windchill temperature.

A formula commonly used to compute the windchill temperature
Twc in OF, for ambient temperature T in OF and wind speed V in miles per
hour, is

T we = (0.279VV + 0.550 - 0.0203 J1)(T - 91.4) + 91.4

where T < 91.4° F and V ~ 4 mph. Write a program that accepts as input
the temperature and wind speed and then calculates and displays the
windchill temperature.

Especially in an introductory course, the problem defmition may already
have been done for you, as has been done here. The examples in this text and the
end-of-chapter exercises involve problems that have been framed in a way that
illustrates a particular point or tests your understanding of how to achieve a well
defmed goal. After all, this is a text about solving problems with programs written
in Fortran, so it doesn't make sense to ask you to solve a problem that can't
reasonably be solved in this way. Nonetheless, it is always worthwhile to test your
understanding of a problem by restating it in your own words, with additional
elaboration as necessary.

If you have questions about the meaning of a problem, you need to resolve
them before you can proceed to the next step. It may seem obvious that you can't
solve a problem you don't understand, but it is common for beginning
programming students to write programs that work, but that don't address part or
all of the problem they were asked to solve.

In the "real world," it is often very difficult to define a problem and state
it clearly. In order to formulate a problem in a useful way, you must understand
not only the problem itself, but also the means available to solve it. If you don't
understand something about the principles of structured programming and the
capabilities of high-level programming languages, you can neither formulate nor
solve computational problems. Bv the time yOU finish a course based on this text.

2.1 Structured Programming and Problem Solving • 25

you will have the experience you need to fonnulate computational problems so
they can be solved in any of several high-level procedural programming
languages. This experience will be of great value in solving other kinds of
computational problems, no matter what tools you are using.

2 Outline a solution.

This problem has been chosen because the concept of "windchill" is widely
known, but the fonnula for computing the windchill temperature is relatively
obscure. I Also, the calculation is interesting because the fonnula exhibits some
perhaps unexpected behavior. Your thought process for solving this problem,
which is conceptually very simple, might be something like this:

"Even though I don't understand the derivation of this fonnula, I
will simply translate it directly into my algorithm and eventually into my
program. My program will ask the user to provide the temperature and
wind speed (by typing it at the keyboard?). I will be careful to let the user
know what units to use. Then the program will do the calculations and
display the results (on the computer monitor?)."

This outline doesn't have to be anything more than a rough, plain-English
version of how you will solve the problem. You may not even have to write down
this step after you gain more experience in designing algorithms. Your goal at this
point is to organize your thoughts about the problem and its solution, not to worry
about the implementation details.

If you don't understand how to solve a problem, you might need to have
a discussion with your instructor to make sure you understand what is required
and to get a general idea of how to proceed. You might have to look up fonnulas
if they're not given as part of the problem statement, or you might need to rewrite
fonnulas in a more convenient fonn.

It's important at this stage to clarify the nature of the input required and
the output provided by the program you will eventually write. What infonnation
does the program need to do its job? Where does it come from? What should be
included in the output? Where and how will the output be displayed? Will
additional input or output, beyond what is called for in the problem statement,
help to clarify the program's operation or verify its perfonnance?

If you're like most students, you probably underestimate the value of
simply thinking and talking about a difficult problem, especially when you're

I Author's note: It may be interesting to note that I found this formula in less than five
minutes on the World Wide Web by searching for "windchill" at the www.yahoo.com site.

26 • 2. Solving Problems with a High-Level Programming Language

under time pressure to complete an assignment. If your instructor allows or
encourages you to discuss assignments with your peers, you should set aside some
time to "brainstorm" and trade ideas. It's often helpful just to "sleep on" a
problem; if you think this is silly, just ask any good programmer how often
solutions to a problem magically appear after a good night's sleep (or during a
poor night's sleep)!

3 Design an algorithm.

An algorithm appropriate for implementation in a high-level procedural
language consists of a complete set of instructions that can be followed step by
step to achieve a well-defmed computational objective. The instructions must be
written so they can be executed one at a time, starting at the beginning. Here is
an algorithm for solving this problem, using a format that we will follow
throughout this text:

DEFINE (al/ values as real numbers:
INPUT: temperature, wind_speed;
OUTPUT: wind_speed_temperature)

WRITE ("Give the temperature in deg F and the wind speed in milhr:'?
READ (temperature, wind_speed)
ASSIGN wind_chilLtemperature =

O.0817(3.71{fi + 5.81 - O.25V)(temperature - 91.4) + 91.4
WRITE (wind_chilLtemperature)

The intent of this algorithm, which is written in a somewhat formal way, should
be clear; it is nothing more than a straightforward translation of Step 2 of the
problem-solving process. The terms appearing in bold type will be given specific
definitions shortly, but their meaning essentially matches their obvious "plain
English" meaning.

Writing down an algorithm prior to writing a program, especially for a
problem this simple, may seem like a waste of time. However, many difficulties
with computer programs can be traced to algorithms that can't be followed
sequentially or that, when followed in sequence, don't lead to the intended
solution. For example, it's possible, and a common error in computer programs,
to write an instruction using information that's not yet available. A program
containing such instructions can't possibly work because the instructions can't be
followed in sequence. So, one purpose of writing an algorithm is to avoid these
kinds of problems in programs, where they are harder to correct.

2.1 Structured Programming and Problem Solving • 27

Initially, the instructions in your algorithm can be general. "Calculate the
deflection on a beam supported at both ends" is an instruction with a clearly
defined goal, even if the implementation details aren't obvious. Later on, as the
general outline of your algorithm becomes clear, you will return to general
statements and convert them to more specific instructions.

In this algorithm design example, the variables-the
symbolic names by which quantities will be identified in a
program-are given readable, meaningful names. This is an

variables I
important part of making algorithms and programs easy to understand. You could
have named the variables T, V, and T_wc. After all, those are the symbols used
in the formula, and those choices would probably be clear enough. However, as
a matter of style, it is better to choose longer descriptive names.

The rather formal algorithm designs we will use in this
text are sometimes referred to as pseudocode because
algorithms will often look very similar to the source code

pseudocode

instructions you will finally write. For example, generic instructions such as
"read" or "write" will often be required in your algorithms. These instructions,
with similar or identical names, are common to Fortran and other high-level
languages. The similarity between pseudocode and programming languages is not
an accident. By incorporating just a few pseudocode "action commands," you can
write algorithms in a form that can easily be translated into language-specific
source code. Later in this chapter, we will describe a complete set of such action
commands.

As you become more familiar with a particular programming language, the
algorithms you design may start to look more and more like the actual syntax of
that language. However, you should try to retain a language-independent algorithm
design style so that you develop and practice the habit of separating
problem-solving details from language implementation details.

4 Convert the algorithm into a program.

Program P-2.1 gives a translation of the algorithm from Step 3 into
Fortran 90 source code. Even though you are not expected to understand the
details of this source code, the correspondence between the algorithm from Step
3 and the code should nonetheless be clear. This example is given as one possible
translation of the algorithm. As you will see in later chapters, there are many
choices that can be made about the details of Fortran programs so that even very
simple programs won't always look exactly the same.

28 • 2. Solving Problems with a High-Level Programming Language

P-2.1 [WINDCHIL. F90]

PROGRAM WindChill

Program file name WINDCHIL.F90.
Given a temperature (deg F) and wind speed (mi/hr), calculate
the equivalent windchill temperature (deg F).

Variable declarations ...
IMPLICIT NONE
REAL :: temperature, wind_speed, wind_chilI_temperature

Get input ...

WRITE(*,*}&
'Give temperature in deg F and wind speed in mi/hr ... '

READ(*,*}temperature,wind_speed

Do calculation ...

wind_chill_temperature=O.0817*(3.71*SQRT(wind_speed}+ &
5.81 - O.25*wind_speed}*(temperature-91.4}+91.4

Display output ...

WRITE(*,*}wind_chill_temperature

STOP
END PROGRAM WindChill

At this point, your instructor may show you how to enter this source code
into the computer system on which you are learning Fortran. Type the code
exactly as shown. Your instructor will also provide you with instructions on how
to execute the program. In this way, you can start to become familiar with the
purely mechanical process of using Fortran.

In general, the steps required to translate an
algorithm into source code range from trivial to
difficult, depending on your familiarity with the

I stepwise refinement I
programming language you are using. You may fmd that you will have to cycle
through Steps 2 through 4 several times in response to changes in the way you
think about a problem or to the demands of a particular language. This process is
called stepwise refinement.

As you become more comfortable with Fortran syntax, you may often be
tempted to write the program first and the algorithm later (or ignore the algorithm
design altogether). This is a mistake! For all but the most trivial problems, it is
a better use of your time to refine your approach to a problem at the pseudocode
design level, when you don't have to worry about the details of implementing
your solution in a particular language. Here's a test you can apply to your own
wnrlc

2.1 Structured Programming and Problem Solving • 29

If you find yourself making major structural changes in your program as
you write it, you should leave the programming environment and return to
the algorithm design environment.

If you try to bypass the algorithm design and refinement process, you will often
fmd yourself struggling simultaneously with two difficult tasks--developing a
logically correct algorithm and writing an error-free program-that can and should
be kept largely separate.

As an example of a situation in which some stepwise refinement of an
algorithm might be needed, consider the task of finding an item in a list of related
items. In most high-level languages, you must write your own algorithm for
searching a list. When you first start to design the algorithm, you might include
a statement such as "Find item X in this list." Later on, you must be more specific
about the implementation of this instruction.

Preliminary "algorithm"
Find X in list.

Algorithm after some stepwise refinement
Assume X "not found."
Start at beginning of list.
Look at each item in list, in order.
When you find X, set item "found" and stop.

If you have never written a list-searching algorithm before, this may
represent a programming problem that you need to think through in detail. For
example, you should consider the possibility that you won't find what you're
looking for in the list. This possibility isn't accounted for in the algorithm as it
is now stated because it says "When you fmd what you're looking for ... " and not
"If you find what you're looking for ... " Rewrite the algorithm to account for this
possibility:

Algorithm after additional stepwise refinement
Assume X "not found."
Start at beginning of list.
Look at each item in list, in order.
If you find X, set item "found" and stop.
If you get to the end of the list, stop.
Provide output indicating whether X was found.

If you have written a searching algorithm many times, this problem may not
require any thought at all and may not even warrant writing more detailed
instructions; it may even be possible to "borrow" the required code from a
program you have written previously.

30 • 2. Solving Problems with a High-Level Programming Language

5 Verify the operation of the program.

Try to find a published table of windchill temperatures (on the World Wide
Web?) to use as a check against the results produced by this program.

Problem Discussion
Figures 2.2 and 2.3 show two different views of the windchill temperature.

In Figure 2.2, the values are calculated as a function of ambient air temperature
for several values of wind speed. In Figure 2.3, the windchill temperatures are
calculated as a function of wind speed for two temperatures, OaF and 32°F.

These two figures demonstrate that there is ample reason to be suspicious
of the answers provided by the formula. You can see that for small values of the
wind speed the formula produces a windchill temperature that is higher than the
ambient air temperature. There is perhaps a plausible explanation for this result:
when there is no wind, your body warms the layer of air next to your skin so the
air feels warmer than it actually is. However, this is an insufficient reason to
accept the values provided at low wind speed without further investigation.
Actually, as is typically the case with engineering formulas, there are easily
overlooked restrictions on this formula: it applies only to wind speeds of no less
than 4 mph and to temperatures less than 91.4°F. You will be aware of these
restrictions only if you examine the source of the formula.2

When you first start writing programs, you may be so relieved to create a
program that executes successfully that you will be eager to assume that the
answers it produces are correct. This particular problem should warn you against
making that assumption!

First of all, what do we mean by a "correct" program? One definition is
that the algorithm on which the program is based is logically consistent and the
program implements that algorithm without errors~ It is not always possible to
"prove" that a computer program is correct in this sense. Therefore, verification
of a program's correct operation by means other than the program output itself is
extremely important. Implementation errors in programs are sometimes easy to
fmd and sometimes very elusive. If you're lucky, logical programming errors, as

2nte original reference is: Court, A., 1948: Windchill. Bull. Amer. Meteor. Soc., 29, 487-
493. Note that some atmospheric scientists believe that the concept of windchill has little scientific
value.

2.1 Structured Programming and Problem Solving • 31

windspeed = 0 mph

-12'0+---i---i---i---i---i---i---i---i---i---l
-40 -30 -20 -10 0 10 20 30 40 50 60

Temperature, degrees F

Figure 2.2. Windchill temperature as a junction of ambient air
temperature

6,fro--~----~--~--~----~--~--~~--,

u. 4

~
5l' 2
"0

~
::J
1a
~

, , , , , , , .. ·H·~;·~~·;T· r ·T T ·r ... · r· ... ·
~-~;~ !!!!

:···········)···········-;-···········r··········r····· [........... .

E
.l!l ,;"'" :§ -20 j : ·············i············t············i·············j·············t············
"0 :::::::
c ::.;:::

~ 40 ···········I·!···········I········;········· i ······;·······f··········
-60 0 5 10 15 20 25 30 35 40

Windspeed, miles per hour

FiJ!ure 2.3. Windchill temperature as a function of wind speed

32 • 2. Solving Problems with a High-Level Programming Language

opposed to syntax errors detected by the programming environment, will cause
your program to "crash" or produce answers that are wrong. Unfortunately ...

It is not unusual even for apparently simple programs to produce output
that looks perfectly reasonable, but is in fact wrong.

A second definition of "correct" is that you have asked your program to
do something that makes sense. With respect to the windchill temperature
problem, you might argue that, as a programmer, it is your responsibility only to
guarantee that your program correctly implements the formula given in the
problem statement. However, as a scientist or engineer, your responsibility extends
to making sure that what you have asked your program to do is reasonable. This
is often a problem when your program uses engineering formulas, especially when
their derivation is unknown and their range of applicability is uncertain, as in this
case. Do you really think that it feels nearly 60°F on a still day when the ambient
air temperature is 32°F, as indicated by Figure 2.3? In summary, the "garbage in,
garbage out" rule means that you must...

Assume that all programs produce incorrect output until they have been
thoroughly tested. Even when you are convinced that a program is error
free and always does what you intend, don't assume that the output from
that program must therefore be correct.

2.1.3 Beware of Logical Errors

To illustrate the kinds of logical errors that can creep into programs, consider this
typical problem for an introductory programming course.

An income tax is collected according to the following rule: for incomes
less than or equal to $50,000, the tax is 7% of the income. The tax is 3%
on any income in excess of $50,000. Write a program that will calculate
the tax for a user-supplied income.

You might design an algorithm that looks like this:

READ (income)
IF income ~ 50000 THEN

ASSIGN tax = income -0. 07
ELSE

ASSIGN tax = income-0.03
WRITE (tax)

2.1 Structured Programming and Problem Solving • 33

A program that implements this algorithm will produce numbers that look
reasonable and are in fact correct for incomes less than $50,000. However, it
should be obvious that the IF ... statement must read:

IF income ~ 50000 THEN
ASSIGN tax = income-0.07

ELSE
ASSIGN tax = 50000-0.07 + (income - 50000)-0.03

If you used the fIrst IF ... statement in the above example and it occurred to you
to calculate the tax on incomes of $50,000 and $50,001 as part of your program
testing, you might have been alerted to the fact that something was wrong.

Here's another problem that can easily result in logical errors:

The time T required for a satellite in orbit around the earth to travel once
around the earth (its period) is T = 2na(a/G)1/2, where the quantity "a" is
the average distance from the center of the earth to the satellite and G is
the earth's gravitational constant, 398,601.2 km3/S2• The earth's radius is
approximately 6378 km. What is the period of a satellite at an average
altitude of 600 km above the earth's surface?

Your algorithm might perform this calculation:

T = 2rr 600 600 = 146 s
398601.2

instead of adding the satellite~s altitude to the earth's radius and performing the
correct calculation:

T = 2rr 6978
6978 = 5801 s

398601.2
A program based on the first calculation will work perfectly well, and the answer
mayor may not appear "obviously" wrong; not everyone knows that satellites do
not travel around the earth in 2.4 minutes! (This one takes about 97 minutes.) In
this case, by the way, you should be alerted by the fact that the first calculation
doesn't make use of the earth's radius. While it's certainly not true that all
information supplied with a problem is necessarily useful (especially in the "real
world"), you need at least to examine all information for its possible relevance.

It's not possible to give a foolproof set of rules for eliminating logical
errors in algorithms and their associated programs. In the tax problem given
above, testing incomes of $50,000 and $50,001 would have detected the error in
the first algorithm (because the tax on $50,001 would be less than the tax on
$50,000, which is inconsistent with the problem statement). For the orbiting

34 • 2. Solving Problems with a High-Level Programming Language

satellite problem, however, you would have to fmd an answer you knew was
correct and compare that value with the output from your program. Without this
kind of "reality check," you may never detect the error in this program.

Another verification strategy is to try to force your program to fail. Test
it under all possible input conditions, even conditions that should never exist under
"normal" operation. Sometimes, however, it isn't easy to force a calculation
literally to fail. In the satellite problem, there are plenty of "unreasonable" input
values (satellites won't stay in orbit at any altitude less than about 100 km, for
example), but no input values other than negative altitudes greater than 6378 km
will actually force the calculation to fail (because the number under the square
root will be negative).

Obviously, verifying the performance of a program implies that you can
determine in some other way not only what a correct answer looks like, but also
what appropriate input is. This is not always easy. For many kinds of problems,
if you could calculate representative answers by hand, you wouldn't have needed
a program in the first place. However, for many science and engineering problems,
it's possible to test the output from a program with nothing more than common
sense and a hand calculator.

2.2 Designing Algorithms for Procedural Programming Languages

2.2.1 Getting Started

The goal of algorithm design in programming is to produce a step-by-step
problem-solving plan that can be implemented in a programming language.
Making a smooth transition from designing an algorithm to writing a program is
a skill you will need to practice. On the one hand, algorithm development should
be generic and not associated too closely with just one language. On the other
hand, you cannot design algorithms without understanding what kinds of tools are
available.

As an example, think about describing the trajectory of a projectile under
the influence of the earth's gravitational field. You cannot develop a detailed
algorithm to describe this motion without some understanding of the capabilities
of the mathematical tools-algebra, as a minimum, and calculus, in
general-available for solving this kind of problem.

The purposes of this section are to:

1. Outline the generic capabilities of high-level procedural programming
lanJ1;uaJ1;es.

2.2 Designing Algorithms for Procedural Programming Languages • 35

2. Describe a specific language for designing algorithms that can be converted
easily into programs.

We will start by discussing the kinds of instructions available in procedural
languages and the kinds of data they can manipulate.

2.2.2 Executable Instructions

An executable instruction written in source code is
a "plain English" instruction that can be translated
by a compiler into instructions that can then be

executable instruction I
carried out directly by your computer. There are five categories of executable
instructions available for writing programs in a high-level procedural programming
language. These are listed in Table 2.1, and each of them will be discussed briefly
here and in more detail later in the text.

Table 2.1. Instruction categories for high-level programming

Instruction Category Example

1, Input/output "Read (write) a value."

2. Assignments "Set A equal to 3."

3. Calls to subprograms "Determine the
moment of inertia "

4. Comparisons (conditional) "Is A greater than B?"

5. Repetitive calculations (loops) "Perform these
calculations 1 0 times."

1. Input/output

Often programs need external input before they can
perform calculations. On personal computers or
computers accessible from a terminal, input is often
entered directly from the keyboard when the program

external input I
interactive program

is running. This is called an interactive program. The other common source of
input is a data file accessed and processed by the program.

The output from programs is usually sent by default to the monitor screen.
Other possibilities include sendin~ output to a printer or a data file for use by

36 • 2. Solving Problems with a High-Level Programming Language

another program. The actual process of interpreting input and directing output may
be quite complicated at the basic computer hardware level, but high-level
languages use simple goal-oriented instructions to represent these processes.
Fortran 90's specific implementation of input and output will be discussed in
several places throughout the text, starting in Chapter 3.

2. Assignments

Assignment statements allow a program to
manipulate values and evaluate expressions. When
one or more assignment statements are performed
one after the other, in order, they become part of a

assignment statement
sequence structure

control structure called a sequence structure. Often assignment statements look
a lot like algebraic expressions. For example, the algebraic expression x = 3a +
4b + 6c is easily translated into Fortran:

x = 3*a + 4*b + 6*c

where clearly the * implies multiplication. However, there is much more to
assignment statements than this, as we will see when we discuss them in detail in
Chapter 3.

3. Calls to subprograms

A subprogram is a separate set of instructions
that performs a single task as part of a larger
program. Subprograms are not required as part of
a programming language's structure or syntax, but

subprogram
program modularization

the structured programming approach to problem solving encourages program
modularization. Hence subprograms are required as a matter of style in all but the
simplest programs. The Fortran implementation of subprograms will be discussed
in Chapter 7.

4. Comparisons (conditionals)

Computers can't make decisions the same way that
humans do, but high-level languages contain
instructions that allow a program to compare
values and to take action based on the result of the

conditional (statement)
selection stnucture

comparison. This kind of instruction is called a conditional statement, or
conditional. Comparisons are often made in the context of a selection structure
that allows a program to execute some instructions and ignore others. The Fortran
implementation of selection structures will be discussed in Chapter 6.

2.2 Designing Algorithms for Procedural Programming Languages • 37

5. Repetitive calculations (loops)

Problem-solving algorithms often involve repetItIve
calculations. In high-level languages, a repetition
structure can be used to control repetitive calculations.

repetition structure

"Count-controlled" loops repeat a group of instructions a predetermined number
of times. "Conditional" loops repeat a group of instructions until (or as long as)
one or more specified conditions are met. These terms will be described in more
detail when the Fortran implementation of repetition structures is discussed in
Chapter 6.

2.2.3 Data Types and Variables

Data types

There are four basic data types used in languages such as Fortran. These are given
in Table 2.2.

Table 2.2. Data types used in high-level languages

Data Types Examples

1. Numbers (real or integer) 17,3.33, 1.0Ix1O-7, -32768

2. Characters and strings of characters a, Z, $, Fortran, Laura

3. Logical (boolean) values true, false

4. User-defined types (data structures) arrays, records

1. Numbers

Most high-level languages differentiate
between integers and real numbers (also
called floating point numbers). Here are
some examples:

integer I
real (floating point) number

integers: 10, 0, -32768
real numbers: 3.3, 1.555x1O-17, -33.17, 17.0

38 • 2. Solving Problems with a High-Level Programming Language

Integers are whole numbers, expressed without a decimal point or fractional part.
Real numbers always have a fractional part, even if that part is O. That is, 1.0 is
considered a real number in Fortran just because of the way it is written.

The reason for differentiating between . t al ~~# 1 . .. In ern represen_~on
mtegers and real numbers IS that the Internal
representation of integers and real numbers (that
is, the way they are stored in your computer's memory), is different, with
sometimes important consequences. (Some details are given in Chapter 12.)

2. Characters and strings of characters

The set of all individual characters that most computers
can represent constitutes the so-called ASCII (American
Standard Code for Information Interchange, pronounced
ask-ee) collating sequence of characters. The first 128

I . .. I ASCll character
collating sequence

characters represent the uppercase and lowercase letters of the alphabet,
punctuation marks and other symbols, the digits 0-9, and some nonprintable
"control" characters. The remaining 128 characters vary from system to system;
on IBM-compatible PCs, for example, these include graphics characters, foreign
language letters, and other special characters. You can find lists of ASCII
characters in textbooks (including this one-see Appendix 2) and in
documentation for other computer applications and programming environments.

Some computers use a different collating sequence. The so-called EBCDIC
(Extended Binary Coded Decimal Interchange Code, pronounced eb-si-dik)
sequence used by IBM mainframe computers is a notable example.

When several characters are combined, the
result is called a character string, or text string. For
example, C is a character, whereas computer is a

character (text) string

character string. An individual character can always be stored in just one byte of
memory, but character strings can be of variable length. Therefore, high-level
languages sometimes have separate data types for characters and character strings.
However, Fortran supports just one basic data type for characters and strings of
characters; in particular, Fortran treats a single character as a character string of
length 1.

3. Logical (boolean) values

When a high-level language compares two values, the result I· boolean value 1
of that comparison can have one of only two possible
outcomes-true or false. That is. the statement "A is less

2.2 Designing Algorithms for Procedural Programming Languages • 39

than B" is either true or false.3 Some high-level languages, including Fortran,4
support a separate data type to represent these logical or so-called boolean values.

4. User-defined types

In many programming languages, the basic data types can be combined into
user-defmed data structures. The most common of these structures are arrays and
records. Fortran includes strong support for arrays because of their importance in
scientific and engineering computing. Fortran 90 also supports other kinds of
composite data structures that were not available in earlier versions of Fortran. We
will defer definition of arrays and records until Chapter 8, where they will be
discussd in detail. As we will see, user-defined data types are important because
they can greatly simplify the organization and manipulation of data in programs.

Variables

A basic function of high-level languages is to allow programmers to refer
symbolically by name to locations in computer memory. These symbolic names
are called variables or variable names. Recall the algebraic equation x = 3a + 4b
+ 6c mentioned previously in the brief discussion of assignment statements. If this
expression becomes an assignment statement in a program, x, a, b, and c will
become variables in the program. (The numbers 3, 4, and 6 will become constants,
most likely expressed as real numbers.) Variables are always associated with a
particular data type; in this case, these four variables would probably represent
real numbers.

In programming, there is no distinction between "independent" and
"dependent" variables as there is in mathematics. In the equation
x = 3a + 4b + 6c, a, b, and c might be considered independent variables and x a
dependent variable. That is, x might be considered to be a function of a, b, and
c. However, all four of these quantities have the same status as "variables" in
programming.

Throughout the rest of this text, we will refer to variables with the
understanding that they are symbolic names associated with locations in computer
memory that will be assigned values in a program. Sometimes the values will be
assigned directly, perhaps by asking a program user to provide the value. At other
times, the values will be assigned as a result of evaluating an expression. If the
above equation were expressed as a statement in a program, the implication would

3The assertion that "A is less than B" must be true or false implies that A and B actually
have values that can be compared because they are both of the same or compatible data types.

4C is a notable exception.

40 • 2. Solving Problems with a High-Level Programming Language

be that there were already values in the memory locations associated with the
names a, b, and c, and the value of x would be obtained by evaluating the
expression on the right side of the = sign using those known values.

2.2.4 Designing Algorithms for Solving Problems

When we combine what we have learned about instructions and data types with
a step-by-step approach to solving problems, the result is a powerful problem
solving tool. In the five-step approach outlined earlier in this chapter, the critical
step of designing an algorithm that can be translated into a computer program is
usually the hardest to master; in fact, most programming students fmd that
algorithm design is much more difficult than learning the syntax of a language.
It can be frustrating to try to design an algorithm when there don't appear to be
any specific rules about how to proceed. This section will describe an approach
that should help you get started.

Defming a pseudocode language

One way to develop algorithm design skills is to use a generic language consisting
of "action commands" that provide specific expressions for the kinds of executable
instructions discussed in Section 2.2.2. This language needs only a small
vocabulary because the list of instructions that a high-level language can execute
directly is not very long.

An informal action command language offers major advantages over a
"real" programming language for algorithm development. It is easy to be lulled
into believing that programming languages "understand" English, with all its
subtleties and ambiguity, just because their commands sometimes look like
English words. Nothing could be further from the truth, as every struggling
programmer knows! The syntax and structural requirements of procedural
languages are very strict, and especially before you are thoroughly familiar with
their requirements, their rigidity can be an impediment to the problem-solving
process. An intermediate design process can't protect you from sloppy thinking,
but at least it can free you from worrying about syntax errors that your computer
refuses to explain in any helpful way.

The pseudocode language presented in this section isn't a "real" language
with a set of syntax rules. It's possible that you or your instructor will choose
different words for the commands or use an entirely different method of
describing the actions implied by the commands. You may even develop your own
unique algorithm design style. However ...

2.2 Designing Algorithms for Procedural Programming Languages • 41

A pseudocode language must describe all actions that can be taken by a
program written in a high-level procedural language.

In any event, you should be free to apply a pseudocode language without
worrying about making the kinds of syntax mistakes that plague students
attempting to learn a new programming language. It is a mistake to treat this
language as just one more list of things to memorize; it's intended simply as a
tool to help you organize your thoughts and facilitate the design of your
programs.s

The algorithm design language we will use in this text consists of the
following commands, in alphabetical order. In some cases the terms used to
explain the commands will themselves need additional explanation, which will be
provided as needed in the text.

ASSIGN
Set a variable equal to another variable, constant value, or expression. See

also the INCREMENT and INITIALIZE commands.

CALL SUbprogram_name (with a list of parameters)
Invoke another set of commands that, when given a specific set of input

values, executes a list of instructions and produces a set of output values. A
carefully planned list of input parameters (quantities needed for the subprogram
to do its job) and output parameters (the results of operations performed inside the
subprogram) is critical to well-structured program design.

CHOOSE (from a list of possibilities)
From a list of possible courses of action, select just one action based on

the value of a single variable or expression.

CLOSE (data file)
Close an external data file when you're done with it.

DEFINE (a list of variables, constants, and data structures)
Defme the names and kinds of variables, constants, and user-defmed data

structures your program will need. Some of the variables will have values
provided by the user, others will be used internally by the program, and others
will be output from the program.

5 Author's note: I never ask my students to memorize the components of this pseudocode
language, and I try not to impose my own style preferences; there's plenty of time for that when
they're writing real code! I encourage students to make their own list of commands, operators,
and functions and to have it available whenever they write programs--even on exams.

42 • 2. Solving Problems with a High-Level Programming Language

IF (something is true) THEN (take action) ELSE (take a different action)
Take one course of action or another based on the value of a logical

expression. The ELSE part of the command is optional because sometimes no
alternative action may be required if the "something" isn't true.

INCREMENT
This is a command for assignments such as x = x + 1. It is given a

separate name because of its importance in LOOP structures.

INITIALIZE
This is an assignment command used to emphasize the necessity of

initializing the value of a variable before it can be incremented. For example, if
INCREMENT x = x + 1 appears inside a loop, x must fITst be INITIALIZEd
outside the loop.

LOOP (continuation or termination conditions) ... END LOOP
Define a structure inside of which lists of instructions can be executed

repetitively until (or as long as) certain conditions are met.

OPEN (data file)
Open an external data file for use within a program.

READ (list of values)
Provide input for a program.

SUBPROGRAM (list of input and output parameters)
This contains an algorithm to produce one or more output values using one

or more specified input values. It is used in conjunction with CALL.

WRITE (list of values)
Generate and/or display output from a program.

Appendix 3 contains a table of all these pseudocode commands along with
examples of their implementation in Fortran. It should be clear even from a brief
glance at Appendix 3 that despite the many implementation details, Fortran
commands closely resemble their corresponding pseudocode commands.6

6Author's personal note: While I was working on early drafts of this text, my daughter
Laura, who had just turned one, learned her first pseudocode command. She picked up a book and
said "Read!" Even though she had no understanding of the mechanics of reading, she had learned
enough about the function of language to realize that her parents could translate this command into
a complex sequence of events without her having to worry about the implementation details.

2.2 Designing Algorithms for Procedural Programming Languages • 43

In addition to "action commands," an algorithm development language
needs a collection of operators, such as shown in Table 2.3.

Table 2.3. Mathematical and logical operators

Arithmetic Relational
Operator Operation Operator

+ addition =

- subtraction >

* multiplication <

/ division :::;

superscript exponentiation ~

4=

Logical
Operator Meaning

AND logical "and"

OR logical "or"

NOT logical "not"

The arithmetic and relational operators should be
familiar to you from mathematics. Exponentiation
doesn't have a separate symbol; it is indicated by a
superscript: x2 means "x raised to the second power,"
or "x squared." We will return to the logical operators
in Chapter 6.

Meaning

equal

greater than

less than

less than
or equal to

greater than
or equal to

not equal to

I arithmetic operator I
relational operator
logical operator

Finally, every language provides some built-in functions to perform
frequently needed calculations. To cite just two examples, many languages provide
functions to calculate the trigonometric sine of a quantity x or the square root of
x. Computer science-oriented languages such as C provide relatively few of these
functions as part of their language definitions. Because of its science and
engineering origins, Fortran provides many such functions.

The functions provided with a particular language will have a major impact
on your programs, but less on your algorithm design. For example, if a problem

44 • 2. Solving Problems with a High-Level Programming Language

requires a quantity y to be set equal to the arcsine (inverse sine) of x, you should
simply assume that you can write

ASSIGN y = sin-I (x)

Later, when you implement this algorithm, you may fmd that your language
doesn't include this function. Then you will have to provide your own source
code. Depending on your familiarity with trigonometric functions, additional
algorithm design mayor may not be required to guide your construction of
appropriate code. (Don't worry about Fortran, which includes this and many other
trigonometric functions.)

The point is that, at the design level, you should write mathematical and
other operations with the expectation that you will be able to implement them in
a programming language without too much trouble. If this task later proves too
cumbersome, then you need to seek a better match between your problem and an
appropriate problem-solving tool.

The three basic program control structures

The pseudocode language components we have discussed so far are equivalent to
words and sentences in English. In the same sense that you have to develop a plot
framework before you can combine English sentences into a coherent story, you
need to develop a strategy for organizing the pseudocode components into a
complete algorithm. In principle, this isn't difficult because there are only three
basic strategies, or control structures, for combining these components into
structured algorithms: sequence, selection, and repetition. These three, which have
been mentioned briefly in the discussion of pseudocode commands, are illustrated
in Figure 2.4.

In a sequence structure, instructions are executed in order, starting at the
"top." Each instruction is executed once and only once. In a selection structure,
one group of instructions from a group of two or more possibilities is chosen to
be executed and the remaining possibilities are ignored. In a repetition structure,
a group of instructions is executed repeatedly until (or as long as) certain
conditions are satisfied. The relationship between the three control structures and
the pseudocode commands for algorithm design are given in Table 2.4.

Computer science has as one of its basic principles that any algorithm can
be written in terms of these three simple control structures. From the pseudocode
commands listed above, it should be clear that the IF __ . THEN ... [ELSE ...] and
CHOOSE commands will be used to implement the Selection structure and the
LOOP ... END LOOP structure will implement the Repetition structure. The other

2.2 Designing Algorithms for Procedural Programming Languages • 45

15·_1

Sequence Selection Repetition

Figure 2.4. The three basic program control structures

commands (except for DEFINE, which isn't an "executable" statement, as
discussed in Chapter 3) are all used to form statements that will be part of a
sequence structure.

Table 2.4. Program control structures and pseudocode commands

Control Structure Pseudocode Command(s)

Sequence ASSIGN, CALL, CLOSE, INCREMENT,
INITIALIZE, OPEN, READ, WRITE

Selection CHOOSE, IF ... THEN ... [ELSE ...]

Repetition LOOP •.• END LOOP

Adding to your pseudocode vocabulary

From time to time you may wish to add your own commands to the pseudocode
language discussed in this chapter. For example, a programming problem may
require that two values be exchanged. The fIrst time you perform this task, you
could write instructions to implement the exchange:

(exchange variable1 and variable2)
ASSIGN temp = variable 1

variable 1 = variable2
variable2 = temp

46 • 2. Solving Problems with a High-Level Programming Language

Later, you may feel confident enough to replace this pseudocode with a new
action command, such as SWAP (variable1, variable2).

There are other useful "higher level" commands that could be added.
Consider the common tasks of searching for an item in a list or putting a list into
a particular order. At a certain point in your algorithm design, these tasks could
be represented by action commands · that provide a shorthand representation of
what actually may be a complicated set of instructions:

SEARCH (list for a specified item)
SORT (list in specified order)

In most high-level languages, these actions must be implemented through
algorithms written by the programmer. These commands are good examples of the
kinds of interactive relationships that need to exist between algorithm design and
a working program. The stepwise refinement process implies a gradual transition
from the general to the specific, where broadly stated actions become more
specific as the process progresses.

Flowcharts: another way to visualize algorithms

Some programmers prefer to design an algorithm more
visually, using a flowchart. This is a diagram that describes an
algorithm using a standard set of symbols, illustrated in Figure

flowchart I
2.5. (This flowchart doesn't actually accomplish anything other than to
demonstrate the symbols.)

The terminal symbol is used to mark the beginning and end of an
algorithm. The parallelogram-shaped input/output symbol represents input and
output operations, including prompts for user input. The rectangular process
symbol contains calculations that are performed sequentially. The "predefmed"
process symbol indicates code that has already been written for some particular
task or that isn't specifically relevant to the algorithm under discussion. Points at
which decisions are required are represented by the diamond-shaped symbol.
These will be found in, for example, a flowchart representation of the pseudocode
IF ... THEN ... ELSE ... command. There are two possible exits from the decision
symbol: one when a condition is true. and one when the condition is false.

2.3 Program Modularization • 47

Terminal (start)

Input/Output

Process

NO~ Predefined process

Terminal (stop) 0
Figure 2.5. Flowchart design symbols

All the symbols in a flowchart are connected by lines. Arrows at the ends
of lines indicate the direction of "flow" for the algorithm; the direction of a
flowchart is usually from the top down and from left to right.

Some programmers, especially Fortran programmers, believe that all
algorithms should be represented as flowcharts. Others believe that pseudocode is
a better choice for designing algorithms and that flowcharts are better for
describing existing programs, especially to nonprogrammers. This text will
sometimes use flowcharts as a visual aid to help clarify certain program control
structures. However, flowcharts are often a cumbersome way to describe long or
complicated algorithms, so this text generally favors the use of pseudocode
commands as described above. Regardless of your or your instructor's preference,
the important point to remember is that pseudocode and flowchart representations
can be used interchangeably to design and describe algorithms and programs.

2.3 Program Modularization

Top-down design is a concept at the heart of structured
programming. The purpose of top-down design is to
divide large problems into several smaller problems, each

top-down design

of which can be solved separately. Solutions to these smaller problems can often
be developed within self-contained program modules called subprograms. When

48 • 2. Solving Problems with a High-Level Programming Language

you design algorithms, the top-down design philosophy is implemented through
the CALL and SUBPROGRAM pseudocode commands.

Consider a typical computer application-a program to manage a checking
account. Such a program needs to be able to perform at least the following tasks:

.... M.a.k.e . c. h.o.i .ce_ : .. I··T·~ Est ablish new account . I
[~r--:-r-~-:-ed-e-Cpo-he-:-:-:-s-d-ra-wn--o-n-ac-c-o-u-n-t-. -----',

Provide account summary.

Using top-down design, the main program could consist of no more than some
code to present the user with this menu of choices and a way to respond to a
choice from the menu. That is, the program would be "menu-driven."

Each menu choice would then be implemented as a call to a separate
subprogram. Each subprogram would be responsible for handling one menu task.
Within each of the modules, other menus and lower-level subprograms might be
required. For example, consider the second choice-writing checks. Its functions
could be outlined as follows:

SUBPROGRAM - Write checks drawn on account .
1. Determi ne current account balance.
2. Determi ne current check number.
3. Request i nf ormati on for writi ng check.
4. Update balance.
5 . Update check number.

At least some of these tasks-the third one, in particular-could be implemented
in an additional subprogram that would be called from this subprogram.

When you design modularized programs, it's important to think carefully
about how information flows between the main program and various subprograms.
Consider, for example, the information flow between the check-writing
subprogram and an additional subprogram to request information for writing a
r.hp.r.1c

2.4 Applications • 49

SUBPROGRAM WriteCheck(IN: Current balance, Last check number;
OUT: Payee name, Check amount,

Memo (optional),
Check category (optional),
Write check? (yes or no))

Why does this subprogram need the current balance as input? Suppose the check
you are planning to write will overdraw the account. You need to offer the user
the chance of changing her mind or writing the check. (Maybe the account has
overdraft privileges, in which case it would still be OK to write the check.)

Depending on what kind of account summaries you would like to provide,
you may wish to categorize each check so that you can later provide a summary
of your expenses by category. Also, you may need to provide a "flag" to let the
calling subprogram know whether you actually wrote a check. An exercise at the
end of this chapter will give you a chaflce to design an algorithm for this part of
the subprogram.

The justification for top-down design done at the algorithm level is that it
is much easier to organize your programs by tasks at this stage, when you're not
actually writing source code. For many kinds of problems, the programming
details are relatively easy once the tasks and the flow of information between
tasks have been defmed clearly. Conversely, it is often difficult to modify the
structure and information flow of a program once you have started writing it. The
important lesson is that when programs consist of several tasks, it is essential to
design separate subprograms for each task and to plan carefully how information
will be shared among those subprograms.

2.4 Applications

In this section we will design algorithms for two typical engineering problems. We
will return to both these applications later in the text to consider their Fortran
implementation.

2.4.1 Maximum Deflection of a Beam Under Load

1 Define the problem.

A beam L feet long is supported at each end. A downward load of F
pounds is concentrated at the midpoint of the beam. This arrangement is shown
schematically in Figure 2.6. The maximum deflection of a beam under such a load

50 • 2. Solving Problems with a High-Level Programming Language

Force, F

r---- Length, L -----1
Figure 2.6. A supported beam

subject to a central load

(at its midpoint) is -FL3/(48EI), where the negative sign denotes a downward
deflection. The elasticity E is a property of the material from which the beam is
made, and the moment of inertia I is a property of the shape of the beam.

Write a program that accepts as input the elasticity, moment of inertia, and
concentrated midpoint load on a beam and then calculates and displays the
maximum deflection of the beam in inches.

2 Outline a solution.

First of all, do you understand enough about the terminology to solve the
problem? For a "beam ... supported at each end," think of a 2"x6" piece of lumber
lying horizontally and supported by a brick at each end. For a "downward load of
F pounds ... concentrated at the midpoint...," think of a person standing in the
middle of the board. The problem asks how much that board will deflect in the
middle.

The elasticity and moment of inertia are properties of the beam. If you
haven't had an introductory engineering course in materials, you probably won't
know precisely what they mean. All you really need to know to write a program
is some representative values for these quantities.

Here are the steps required to solve the problem:

1. Provide values for the elasticity, moment of inertia, beam length, load, and
deflection, with appropriate units.

2. Convert beam length to inches.

3. Calculate the deflection in inches and display the result.

2.4 Applications • 51

3 Design an algorithm.

Convert your plan for solving this problem into a formal algorithm:

DEFINE (All quantities as real numbers;
IN: elastiCity, Ib/irf; momenLoLinertia, in4; length, ft; load, Ib;
OUT: deflection, in)

READ (elasticity, momenLoLinertia, length, load in specified units)
(Don't forget to convert feet to inches.)
ASSIGN deflection =-Ioad-(Iength -12l/(48 -elasticity-momenL oLinertia)
WRITE (deflection)

4 Convert the algorithm into a program.

Defer this step for now. This problem appears again as an application in
Chapter 3 and in an expanded version in Chapter 6.

5 Verify the operation of the program.

Do you have a sense of what a reasonable beam deflection is for a
specified load? One constraint is that for any acceptable use of a beam in a
structure, the maximum deflection should be much less than the length of the
beam. In any case, you can check results by hand for a specified loading force and
beam length, using tabulated values for the properties of beams. Because this
calculation involves just a series of multiplications and divisions, you can be
confident that if the results are correct for one set of values, there won't be any
computational problems with other values as long as the elasticity and moment of
inertia have nonzero values, expressed in the proper units. Some representative
input values are given in Chapter 3, where the Fortran implementation of this
problem is given as an application.

Problem Discussion
This is an example of a problem whose statement is

longer than its solution, which requires only the evaluation of
a single formula. However, it is necessary to be careful about

hard coded I
the physical units assumed for, and values assigned to, the input variables. The
elasticity and moment of inertia are different for different types of beams, so they

52 • 2. Solving Problems with a High-Level Programming Language

should be represented symbolically in the subprogram's parameter list. That is,
values for a certain beam shouldn't be written as constants (hard coded) in the
program.

The formula applies only to the special case in which the loading force is
concentrated at the center of the beam, as opposed to being distributed along the
entire length of the beam. (Remember the image of someone standing in the
middle of a board supported by a brick at each end; that's a concentrated load.)

The units used in the problem statement aren't consistent. The problem
asks that the deflection be given in inches, and the elasticity and moment of
inertia are specified in units that involve inches. However, the problem also asks
that the length of the beam be supplied in units of feet. Therefore, the length value
used in the formula must be L-12; this step in the calculation is easy to forget.

This calculation could be done in a subprogram that will become part of
a larger program. Also, a program could ask the user to select a beam from a table
of choices. With this information, the program could select appropriate values of
elasticity and moment of inertia from a table of values stored within the program.
(See Exercise 15 in Section 2.6.2 at the end of this chapter.)

If the algorithm is rewritten in a more general Ill" t I . ca mg argumen s
way, you can use the subprogram III any program that
requires this calculation just by providing the
subprogram with an appropriate list of values (the calling arguments) without
having to rethink the details of the calculation. This kind of modularization is an
important part of structured programming and can save you countless hours of
"reinventing the wheel."

However, it is always important to be aware of two potentially serious
problems:

(1) Formulas--especially engineering formulas-are often approximations
that give usable results only over a restricted (and perhaps unknown) range
of values. In this case, for example, a sufficiently large load will cause a
beam to deform or collapse rather than just deflect. Consequently, when
you use such formulas, it is important to understand the conditions under
which they are applicable.

(2) Formulas produce correct answers only when all the required values
are expressed in appropriate units. The requirement might be obvious when
you first design an algorithm, but it might not be obvious to someone else
using your algorithm, or even to you at some time in the future. Be sure
to include a discussion of units in Step 2 of the problem-solving process.
This discussion should also be included in comments in your algorithm as
well as when you write source code that implements the algorithm.

2.4 Applications • 53

Problems associated with the misuse of engineering fonnulas are
notoriously difficult to detect. In many cases, numerical values will continue to
look reasonable even when the conditions under which a fonnula applies have
been exceeded or when inconsistent units are used. It is important to document all
algorithms in order to provide a record of the (hopefully) careful thought that went
into their original creation. Once that has been done, only vigilance and common
sense can prevent their misuse!

2.4.2 Oscillating Frequency of an LC Circuit

1 Define the problem.

An electrical circuit that contains an inductance L (units of henrys, H) and
a capacitance C (units of farads, F) in series (see Figure 2.7) oscillates at a
characteristic frequency:

f= _1~
21Ty'LC

Design an algorithm that generates a table of oscillating frequencies for a
two-dimensional table of L and C values. Let the L values fonn the rows of the
table and the C values fonn the columns. Such a circuit can be used to "tune"
radios or TV s. The table for this problem should include values for a circuit to be
used in a radio that receives AM-band radio stations-on the order of 1000 kHz.
A circuit containing an inductance of 2.5 mH (0.0025 H) and a capacitance of 10
pF (lOxlO-12 F) oscillates at about 1000 kHz.

2 Outline a solution.

Like the previous problem, this one contains some tenninology that may
be unfamiliar unless you have had an introductory physics or engineering course
that covered this topic. However, the unfamiliarity of the jargon shouldn't deter
you from solving the problem. After all, you don't need to manipulate these
quantities in any other than a completely specified way.

54 • 2. Solving Problems with a High-Level Programming Language

c

v"V
L

Figure 2.7 An LC circuit

The table holding the output could be laid out like this:

C (pF)
L (H) 2 4 6 8 10 12 14 16 18 20
0.0010

.0015

.0020

.0025

.0030

.0035

.0040

Each position in the two-dimensional table is identified by its row and column,
and the frequency is calculated from the L and C values for that row and column.
For example, the frequency value in row 2, column 3 is calculated for a circuit
with an inductance of 0.0015 H and a capacitance of 6 pF. These values are
chosen to include 2.5 mH and 10 pF.

To generate the inductance and capacitance values for the table, use
"nested" loops. The outer loop generates the inductance values and the inner loop
generates the capacitance values. Initialize the inductance to 0.0005 H and
increment it in steps of 0.0005 H for each trip through the outer loop. Initialize
the capacitance to 0 pF and increment it in steps of 2 pF in the inner loop.

3 Design an Algorithm.

DEFINE (inductance (henrys), capacitance (farads), frequency (Hz)
as real numbers; IT as a real constant; row and col as integers)

INITIALIZE inductance = 0.0005
WRITE (all table headings, with loop to print capacitance values)

(outer loop for rows .. .)

2.4 Applications • 55

LOOP (for row = 1 to 7)
INCREMENT inductance = inductance + 0.0005 (H)
WRITE (inductance) (no "carriage return',
INITIALIZE capacitance = 0
(inner loop for columns ...)
LOOP (for col = 1 to 10)

INCREMENT capacitance = capacitance + 2 (pF)
ASSIGN frequency = 1I[21l-(inductance-capacitance-1(J12/12j
WRITE (frequency for this row and column)

END (inner) LOOP
("carriage return" to start new row goes here)

END (outer) LOOP

4 Convert the algorithm into a program.

Defer this step for now. The Fortran implementation of this problem is
discussed in Chapter 6.

5 Verify the operation of the program.

Check several calculations with a hand calculator. Make sure that the row
and column labels correspond to the values actually used to calculate the
frequency for that row and column.

Problem Discussion
The potential difficulties with this problem are primarily organizational.

First you must plan a suitable tabular layout, as shown. This will be easier if you
have used a spreadsheet, for which a two-dimensional table is the basic paradigm.
To solve this problem in a programming language, you must design an algorithm
that uses nested LOOP structures to perform the calculations one row at a time.
Each row corresponds to one "trip" through the outer loop. The calculations in the
inner loop fill the columns of that row.

Be sure you understand which commands go inside or outside which loop
structure. For example, the commands to generate the table headings must be
outside the outer loop so they will be printed only once. The initialization for the
inductance goes outside the outer loop because it must be done only once. The
initialization for the capacitance must be done every time the inner loop is
executed, so it goes inside the outer loop, but just before the inner loop. The
initializations use values that will produce the desired value the fIrst time they are

56 • 2. Solving Problems with a High-Level Programming Language

incremented inside their respective loops. Thus the inductance is initialized to a
value of 0.005 so that its first printed value will be 0.010 when it is incremented
by 0.005 inside the outer loop, as required by the problem statement.

Note the comments concerning the location of "carriage returns" inserted
in the algorithm. These are to remind you that later, when you implement this
algorithm, you will have to pay attention to how the output is generated. For now,
don't worry about it.

Finally, don't forget that the problem requires the tabulated values of
capacitance to be expressed as picofarads. However, the formula for frequency
assumes that capacitance is expressed in farads; this is the source of the
multiplication by 10-12 in the ASSIGN statement that calculates frequency. This
problem is certainly much more difficult than the previous application. The design
of the algorithm may require some study, especially because of its use of the
probably unfamiliar nested loop structure. It's easy to assume that examples in a
text have simply appeared "as is" and that you should be able to recreate them in
their finished form in a single step. To avoid endless frustration, you must
understand that this is not true! Many of the examples in this text have been
rewritten several times. Ideally, they should represent the best possible solution
to a particular problem. To the extent that this is true, they are models to be
emulated. Unfortunately, however, the dynamic nature of the process by which
they were created is lost when they appear as finished products on a printed page.

2.5 Debugging Your Algorithms

2.5.1 Algorithm Style

The ideal algorithm should solve a problem in as straightforward a manner as
possible. Without exception, a simple and direct algorithm is preferred over a
clever but more obscure one. Names of variables and constants should always be
descriptive. If there is any possibility for confusion, the nature of each quantity
(whether, for example, it is a real number or integer), and its physical units if
appropriate) should be stated clearly. Calculations should be written in clear
algebraic notation. Usually, algebraic simplifications that result in fewer
mathematical operations (which might provide a computational advantage in some
programs) should be avoided in favor of clarity. If there is any possibility of
confusion about your algorithm design, you should include enough comments so
that anyone who understands the problem you are trying to solve should also be
able to understand your algorithm without additional explanation.

Even though there aren't any syntax rules for the command language
described in this chapter, you should develop and adhere to a consistent physical
layout that makes your alJl;orithms easy to read. For example, all commands inside

2.6 Exercises • 57

a loop should be indented the same amount. Generally, you should avoid putting
multiple commands and assignments on the same line.

For large problems, or for calculations that must be repeated several times
with different input values, algorithms should be modularized so that each
subprogram performs a single well-defined task. The inputs and outputs for each
subprogram should be clearly stated. As a result of this modularization, the "main
program" part of your algorithm can defme the overall structure of the problem
solution, without distracting detours into the details of complicated calculations.

2.5.2 Problems with Your Algorithms

It is important to try to find errors during the algorithm design phase of solving
a computational problem. Of course, it's often difficult to check the correctness
of an algorithm before it is actually implemented in a program that produces
output. Nonetheless, you can follow the steps in your algorithm manually, and you
can sometimes do calculations by hand or with a hand calculator. You should try
to imagine conditions for which your algorithm will fail even if those conditions
are "unreasonable." Another useful means of verification is to let someone else try
to follow the steps in your algorithm.

There are no rules for "perfect" algorithms. As a result, not all acceptable
algorithms will look exactly the same. However, it is easy to write algorithms that
look OK, but are wrong because they contain logical flaws or don't solve all of
a problem. Obviously, such algorithms will lead to programs that won't work
properly (or at all, if you're lucky).

2.6 Exercises

These exercises provide an opportunity to apply to a range of problems the
concepts and techniques of algorithm design discussed in this chapter. For each
of these exercises, carry out Steps 2, 3, and 5 of the problem-solving procedure
described in this chapter. If you find it helpful, use Step 1 to restate the problem
in your own words. Don't worry about Step 4 except in Exercise 13. Be sure you
use Step 5 to indicate specific steps that could be taken to verify the operation of
the algorithm when it is converted to a program. Include a flowchart if requested
by your instructor or if you find it helpful to visualize algorithms in this way.

2.6.1 Self-Testing Exercises

The exercises in this section are intended to test your basic understanding of the
material discussed in this chapter.

58 • 2. Solving Problems with a High-Level Programming Language

Exercise 1. Defme an "algorithm" in your own words.

Exercise 2. Discuss "top-down design" in your own words.

Exercise 3. Make your own list of "action commands" and provide an example
of each. Although these pseudocode commands don't have any syntax
requirements, establish some style guidelines of your own to use when you design
algorithms.

Exercise 4. Make a list of mathematical or other "action commands" you would
like your pseudocode language to have. (For example, see the SWAP command
in the "You can add to your pseudocode vocabulary" subsection of Section 2.2.4.)

Exercise S. Take a problem from one of your other courses and rewrite it and its
solution according to the pattern of Steps 1-3 in the problem-solving process
defined in this chapter. How will you verify the operation of a program based on
your algorithm (Step 5 of the problem-solving process)?

Exercise 6.
(a) Design a loop that counts backwards from 10 to o. When the counter

equals 0, print "FIRE! " instead of O.
(b) Draw a flowchart for this problem.

Exercise 7.
(a) Design a loop that will choose a different action for each day of the

week from Monday through Sunday. (The actions can be anything you like.)
(b) Draw a.flowchart for this problem.

Exercise 8.
(a) Design a loop that will increment a counter in steps of 5, starting at 0

and ending at 100.
(b) Draw a flowchart for this problem.

Exercise 9. A ball bearing is supposed to have a diameter of 5 mm.
(a) Design an IF ••• test that will reject a ball bearing if its diameter differs

from the required diameter by more than ±O.005 mm.
(b) Draw a flowchart for this problem.

Exercise 10.
(a) Design an algorithm that will test the value of b2 - 4ac (recall the

formula for calculating the roots of a quadratic equation). If it is positive, calculate
its square root. If it is zero or negative, print an appropriate message.

(b) Draw a flowchart for this problem.

2.6 Exercises • 59

2.6.2 Basic Algorithm Development Exercises

The exercises in this section involve modifications or extensions to algorithms
developed earlier in the chapter.

Exercise 11. Refer to the income tax problem given in Section 2.1.3 and design
a complete algorithm to carry out the required calculation. The algorithm should
include steps for input and output. Be sure to describe how you would test your
algorithm.

Exercise 12. Refer to the orbiting satellite problem given in Section 2.1.3 and
design a complete algorithm to carry out the required calculation. The algorithm
should include steps for input and output. Be sure to describe how you would test
your algorithm.

Exercise 13. Modify program P-2.1 so that it will calculate the windchill
temperature in degrees centigrade when the ambient temperature is expressed in
degrees centigrade and the wind speed is expressed in kilometers per hour. The
formula is

Twc = (O.417V\' + 0.550 - 0.0454V)(T - 33) + 33

where T < 33°C and V ~ 1.79 mls. Make sure that the answer produced by this
modified program is consistent with the original program. If you are ambitious,
you could incorporate conversions for temperature and wind speed from one set
of units to the other in one or both programs.

Exercise 14. Construct a flowchart for the LC circuit application discussed in
Section 2.4.2.

Exercise 15.
(a) Modify the algorithm discussed in Section 2.4.1 so the calculations are

done in a subprogram that accepts as input the properties of the beam, its length,
and the load, and that provides the deflection as output.

(b) Modify the algorithm discussed in Section 2.4.1 so that it presents the
user with a table of steel I-beam properties. (You don't have to provide values at
this point.) When the user makes a selection from the table, the algorithm should
then select and use the appropriate values without the user having to enter them
manually.

Exercise 16. For the check-writing problem discussed at the end of Section 2.3,
design the part of the algorithm that allows a program user to decide whether to
write a check that results in an overdraft.

60 • 2. Solving Problems with a High-Level Programming Language

2.6.3 Algorithm Development Applications

Exercise 17. Student data are maintained in an external data file. The infonnation
includes first and last name, social security number, the number of credit hours
completed by the student, and the student's grade point average (GPA).

(a) Design an algorithm that prints two separate lists. The flrst list should
print all available infonnation for students whose GPA is 3.5 or above. The
second list should print all available infonnation for students whose GPA is less
than 1.5.

(b) Construct a flowchart for this problem.

Exercise 18. An object falling freely under the influence of gravity attains a speed
gt and travels a distance gr'12 as a function of time, where the gravitational
acceleration g=9.807 mls2• (See Figure 2.8.) Design an algorithm that calculates
and displays the speed and distance travelled by a freely falling object for the frrst
20 seconds after it is released, in one-second increments.

~------~--~~--~------~--~--~~2000

2 4 6 8 10 12 14 16 18
time, S

1800

1600

1400

Figure 2.8. Speed and distance as a junction of time for an object
falling under the influence of gravity

E

2.6 Exercises • 61

···········r·········T············~··-···-···.....,· ··········T··········r··········r··········

::::r-:~J~~~!:::":l::::l:::::
with velocity of 200 mls. "1"". ········r··········

... ·····r···r··T···=~=:·= ·1············
o 500 1000 1500 2000 2500 3000 3500 4000

distance, m

Figure 2.9. Path of a projectile fired upward and under the
influence of gravity

Extra Credit
Assume the object starts at the ground and is projected upward with a

user-specified velocity. Modify the algorithm so that it calculates speed and
distance from the ground in one-second increments until the object hits the
ground. It is OK if the last time increment results in a negative position for the
object. That is, you do not have to solve the equation of motion for the exact
moment at which the object returns to the ground. (See Figure 2.9.)

Exercise 19. The change in length M. when an object of length L is subjected to
a change in temperature AT is M. = aLAT. The coefficient of linear thermal
expansion a is material dependent and is independent of the units used to express
the length. For example, if the length is expressed in meters and temperature
changes are expressed in degrees centigrade, then the coefficient of linear
expansion has units of (mlm)/oC. The value doesn't change if the length units are
different, e.g., inlin, but it does change if temperature changes are expressed in
degrees Fahrenheit. Typical values are 23xlO-6 mlmI°C for aluminum and 8.5xlO-6

mlmI°C for glass.
Design an algorithm for a subprogram that accepts as input a coefficient

of linear thermal expansion, a length measured at some initial temperature, and a
temperature change in degrees Fahrenheit, and that returns as output the new
length as a result of the temperature change.

62 • 2. Solving Problems with a High-Level Programming Language

Notes for Exercise 19

1. It is essential that you be clear about what units the subprogram will expect. In
particular, if you prefer (or are required) to work in metric units, your algorithm
should reflect that fact.

2. The phrase "accepts as input," which will often appear in the context of
designing subprograms, should be taken to mean that variables appear in the
subprogram's parameter list and that you may assume appropriate values are
provided when the subprogram is used. As a result, the subprogram algorithm
itself doesn't need to provide a means of obtaining these values from the user.

The phrase "returns as output" should be taken to mean that the
calculations performed inside the subprogram are passed back to the calling
program, with the assumption that they don't need to be printed inside the
subprogram.

By making these assumptions, you can concentrate on developing
algorithms for the subprogram without worrying about getting input and displaying
output. Subprograms will often work this way, with input and output tasks being
assigned to the calling program or another subprogram.

Exercise 20. In a collision between two objects, linear momentum and the total
energy of the system are conserved. Assume that a bullet of known mass is fIred
horizontally with a known speed into a wood block of known mass and remains
embedded in the block, which is suspended from a long string. As a result of the
collision with the bullet, the block acquires kinetic energy that is then converted
to potential energy as the block swings on its string. How high (relative to its
initial position) will the block swing? (Refer to Figure 2.10.)

Conservation of momentum can be used to determine the speed of the
block and bullet just after the collision:

where ml and m2 are masses in kg and VI and V2 are speeds in mls. Then
conservation of energy can be used to determine how high the block swings:

where g is the gravitational constant 9.807 mls2 and h is the height in meters.
Design an algorithm that asks the user for the mass of the bullet and the

block and the initial speed of the bullet and then calculates the maximum height
reached by the block.

Cl

Figure 2.10. A bullet-and-block
system before and after impact

2.6 Exercises • 63

Exercise 21. Radioactive elements decay at a rate that is characterized by their
"half life," defined as the time required for the original amount of radioactive
material to be diminished by half. For example, radon, a colorless, odorless
radioactive gas that can contribute to the development of lung cancer in humans,
has a half life of 3.8 days. If there are originally 100 mg of radon gas in an
enclosed container, there will be 50 mg after 3.8 days, 25 mg after 7.6 days, and
so forth. (See Figure 2.11.) This is a process of exponential decay that can be
expressed by the formula

where Ao is the initial amount, A is the amount after time t, and to is proportional
to the half life:

Aj2 = Aoe(-half life/to)
to = -half life/ln(112)

For radon, to is about 5.48 days.
Design an algorithm that calculates the amount of radon remaining from

a user-supplied original sample mass after each of 20 consecutive days. Also, let
the user provide the half life so your program won't be restricted just to radon.
(Because half lives vary over a wide range, days won't always be a good choice

64 • 2. Solving Problems with a High-Level Programming Language

1~r---'--'~-'---'---'--,,--'---~--'--.

900 .. ······j··········j·········j·········t·········j·········j·.· j ... ··· ... j ·.·t .. ·
~ 800 ···i··········f·········f·········+·········i·········i··········f·········i·········+·········
§ iii iii iii
~ 700 : l :.. l :.. L l L l.

~ 600 ·········1--- .. --,: hlili-life = 3.~ days; I uu---l.------ul---.m.lmum)---um.

! : ••••••••• r··i····\··lll····[fl·······
j =!:jj)I:iIIF

00 2 4 6 8 10 12 14 16 18 20
Time, days

Figure 2.11. Mass of radon as a function of time

of units.) For now, don't worry about how to take e to a power or calculate the
logarithm. These are implementation details that you can address later.

Exercise 22. Newton's algorithm is a well-known method for estimating the
square root of any positive number. It works as follows:
(a) Make an initial guess for the square root. If the number is A, then an initial
guess of X = Al2 is reasonable.
(b) Calculate a new guess using the formula X = (X + AlX)/2.
(c) Repeat (b) until the absolute value of X - AlX is less than some specified error
limit.

Design a pseudocode algorithm to implement Newton's algorithm. If you
like, you may design the pseudocode as a subprogram that accepts a number as
input and returns the square root of the number as output. What happens to
Newton's algorithm if the original number A equals zero?

Exercise 23. Remote access to computer systems often requires both a user ID
and a password. Usually, a potential user is given only a limited number of
attempts to "log on" correctly.

Design an algorithm that simulates the process whereby a computer system
asks a user for an ID and a password. The user's responses are checked against
a file of users, and access is granted if both the ID and the password are OK. A
user is ~iven three chances to enter an ID and password correctly. If the third

2.6 Exercises • 65

attempt is unsuccessful, the connection with the computer is tenninated and the
program ends. In this problem, you can make up a pseudocode
command-something like SEARCH (list, for what?}-to represent the
operations required to search for an ID in a list of users.

Exercise 24. This exercise will make more An understanding of elementary
sense if you have had or are taking an

calculus will be helpful.
elementary calculus course. However, you
should be able to write the algorithm in any
case. The derivative of a function f(x) at any point x can be approximated by

df(x) = [f(x+dx) - f(x)] + [f(x) -f(x-dx)] = f(x+dx) - f(x-dx)
dx 2dx 2dx

for small values of dx. Design an algorithm in the fonn of a SUBPROGRAM for
approximating the derivative of a specified function f(x) for any user-specified
value of x. You can assume any convenient function. When you consider Step 5
of the problem-solving process, it should be obvious that the best way to verify
the perfonnance of a program is to use a function whose derivative you already
know. For example, if f(x)=sin(x), then the derivative of f(x) is cos(x).

At this point, you do not have to detennine how small dx should be to
produce acceptable accuracy; that's the point of representing its value symbolically
during algorithm development. We will return to this problem in a later chapter
and give some suggestions for detennining the size of dx and verifying the
operation of the algorithm.

Hint: define a second SUBPROGRAM called Value_olFunction that
requires a single input argumeIit. The subprogram returns a numerical value equal
to a specified function evaluated at the value of its input argument. Assume that
you can use this subprogram as you would any other mathematical function. For
example, you can write y = Value_olFunction(z) just as you would write the
expression y = sin(z), where z is any appropriate quantity or expression. For this
algorithm, the function will be called twice, once with argument z = x + dx and
once with z = x - dx.

In Figure 2.12, the plain line represents the polynomial 0.lx3 - x2 + 2x
plotted over the range [0,10]. Its analytic derivative is 0.3x2 - 2x + 2. The symbols
represent the derivative estimated by applying the above fonnula, using steps of
0.25 in x. The line that appears to connect the symbols is the analytic derivative
plotted as a function of x. For this very smooth and "well-behaved" function, the
approximation to the analytic derivative is very good-essentially indistinguishable
from the analytic derivative. Other than for illustrative purposes, there is no need
to use numerical methods to estimate the derivative of this function because the
analytic derivative is simple to calculate.

66 • 2. Solving Problems with a High-Level Programming Language

1 ··········r··········r··········r··········r·········r··········r··········i·········-1-·········i·····

! ! ! ! ! ! ! ! !
: : : : : : : : : ········.·l·····--···i-····.···-:-----------:---·.·-----r-··-------r----------:------···-t----------·- ---

---ll-~I=r~~c~:i]:::
I: i'!!

-50 2 3 4 5
X

6 7 8

Figure 2.12. A function and its derivative

9 10

Exercise 25. Like the previous problem,
An understanding of elementary

this one will make more sense if you have
had or are taking a calculus course. The calculus will be helpful.

integral of a function f(x) can be thought of
graphically as the area under the curve y = f(x). Some functions can't be
integrated analytically, in which case numerical methods are required. One simple
way to approximate the value of an integral is to divide the area under f(x) into
small trapezoidal areas. This is called "trapezoidal rule" integration. Given the
lower and upper limits of X, XI' and X2' over which the integral is to be evaluated,
the integral I can be approximated by

n
1= L[f(x\+i-dx)+f(x\+(i-l)-dx)]dxl2

i=l

where the "step size" dx is (X2 - x\)/n and n is the number of equal intervals into
which the range [x2-xtl is divided.

Design an algorithm in the form of a SUBPROGRAM that uses
trapezoidal rule integration to approximate the integral of a function that will be
hard coded into a program. The user specifies the lower and upper boundaries of
the integration interval and the number of intervals into which to divide that range.

Hint: use a loop to perform the summation indicated in the formula for
the inte2fal I. A loop counter i should count from 1 to n. Inside the loop, calculate

2.6 Exercises • 67

the corresponding value of x and then evaluate the function twice-once for
Xi + i-dx and once for Xi - (i - l)-dx. The multiplication by dX/2 in the formula
can be done just once, after the loop terminates; there is no need to perform these
two operations repeatedly inside the loop.

The function in Figure 2.13 shows sin(x) between 0 and 1t radians (0° and
180°), which has an easily determined analytic integral of 2. This example divides
the range of x into just six equal intervals, simply for illustration, and the
approximation to the integral calculated in this way is 1.954. Normally, many
more than six intervals would be used. However, trapezoidal rule integration will
always underestimate the value of this integral no matter how small the step size.7

When you write a program to perform trapezoidal rule integration (see
Chapter 11), you will need to verify its operation by testing it with a simple
function such as sin(x).

0.9 ; 1

0.8······· ·········· j·············

0.7 ··· ··············1······· .
0.6 + .. .

x .
C 0.5 :
i:Jj

0.4

0.3

0.2

0.1

o 30 60 90

X

. ·!·················t···· ·-----------

........... -.-------

120 150 180

Figure 2.13. A junction and its estimated integral

7This is because sin(x) is convex everywhere.

68 • 2. Solving Problems with a High-Level Programming Language

Exercise 26. There are many ways to encode text messages. One simple scheme
is to replace each letter with another letter in the alphabet according to an
encoding key that is randomly generated ahead of time. Here's an example:

ABCDEFGHIJKLMNOPQRSTUVWXYZ (original alphabet)
WKGLREUSPBTNQIFAMVHXOZYCJD (encoded alphabet)

Here's a message:

Roses are red;
Violets are blue.
I love programming,
And I hope you do too.

Here it is in the above code:

VFHRHWVRVRL
ZPFNRXHWVRKNOR.
PNFZRA VFUVWQQPlU
WlLPSFARJFOLFXFF

All the spaces and punctuation have been removed, and uppercase and lowercase
letters are treated the same. This assumes that someone given the code key should
be able to interpret the reconstructed message even if the original spacing can no
longer be retrieved.

Design an algorithm to create such a coding key and then read and encode
a text file using that key.

Hint: one way to create a code sequence is to store the letters of the
alphabet in a table and then shuffle them around. Construct two tables. (For design
purposes, lay one out right below the other.) Fill the first table with the uppercase
letters of the alphabet in order. Copy this table into the second table. Start with
the first position in the second table, which now contains the letter "A". Select a
location in that table at random. Swap the "A" with the letter in that position.
Proceed to the second position in the table. Select another random location and
swap two letters. Do this for each position in the table. When you're done, the
alphabet in the second table will be shuffled and the two tables will look like the
example shown above (with the characters in the second table in different random
positions, of course). Each character in the shuffled table is used as the coded
character to represent the character directly above it in the original alphabet table.

3

Getting Started with Fortran:
Writing Simple Programs

This chapter describes some basic elements of the Fortran language and lays the
foundation for every Fortran program you will write. It includes Fortran
implementations of the ASSIGN, DEFINE, INCREMENT, INITIALIZE, READ,
and WRITE pseudocode commands from Chapter 2. By the time you fmish this
chapter, you will be able to write simple Fortran programs that accept input from
your computer keyboard, perform some calculations, and display output on your
monitor.

3.1 A Simple Problem and a Fortran Program to Solve It

We will start our discussion of Fortran by stating a very simple computational
problem and applying the five-step problem-solving process presented in
Chapter 2. We will continue to follow each step of this process throughout the
text, even though you may think some problems are too simple to warrant that
much attention. Later, when the problems you are asked to solve are more
complicated, it will be very important to be familiar with a process that will help
you develop solutions in an organized way, one step at a time.

1 Define the problem.

Given a radius, determine the circumference and area of a circle.

2 Outline a solution.

Your "plain English" outline for this problem is very simple:

1. Prompt the program user to supply a radius (from the keyboard?).
2. The circumference and area of a circle are given by:

D. R. Brooks, Problem Solving with Fortran 90
© Springer-Verlag New York, Inc. 1997

70 • 3. Getting Started with Fortran: Writing Simple Programs

circumference = 2m
area = nr

3. Display the results (on the monitor?).

3 Design an algoritlun.

DEFINE (radius, circumference, area, and 1l as real numbers)
WRITE (prompt user to enter radius)
READ (radius)
ASSIGN circumference = 21l·radius

area = ff·radius2
WRITE (circumference and area)

This algorithm defmes a typical and straightforward sequence of steps:
input -7 calculations -7 output.

4 Convert the algoritlun into a program.

Here is a complete Fortran program that implements this algorithm. Files
containing source code for this and all other complete Fortran programs in this
text can be downloaded from the World Wide Web site mentioned in Section i.5
of the Preface. The file name for each program is given in square brackets.

The two italicized lines at the beginning of the program are not part of the
program, which starts with the line containing the words PROGRAM

Circle. These lines are there just to show how the statements in the
program are placed on the line. In subsequent programs, this "ruler" will
not be shown.

For P-3.1 and most other programs in this text, some sample output will
be included to give you a better idea of what the program actually does. Program
P-3.l is an interactive program that requires the user to provide a value for the
radius. In this case, the user has typed the value 3. User input typed on the
keyboard will always be printed in bold type even though this is not a distinction
that will be made on your monitor.

We will discuss the details of P -3.1 (at great length!) in this chapter, so it's
not necessary at this time to understand the significance of every detail. However,
especially if you have successfully executed program P-2.1 from Chapter 2, you
should be able to create or copy P-3.1 and execute it on your computer system.

3.1 A Simple Problem and a Fortran Program To Solve It • 71

If you type the program yourself, it is a good idea to copy it exactly as shown
(except for the ruler line that, as explained above, is not part of the program)
because you do not yet know what is essential and what isn't.

P-3.1 [CIRCLE. F90]

123 4 5 6
123456789012345678901234567890123456789012345678901234567890123456

PROGRAM Circle

Purpose: Calculate the circumference and area of a circle.

variable declarations ...

IMPLICIT NONE !Forces explicit typing of all variables .
REAL radius, circumference, area
REAL, PARAMETER:: pi=3.1415927 !Defines pi as a constant.

get input .. .

PRINT*,' Give radius of a circle : '
READ*,radius

do calculat i ons ...

circumference=2.0*pi*radius
area=pi*radius*radius

display output ...

PRINT*, ' circumference=' ,circumference,' area=' ,area

terminate program . ..

END

Running P-3.1

Give radius of a circle:
3
circumference"" 1B . B495560

Study Tip

area'" 28.2743340

You should be able to associate the parts of P-3.1 with the pseudocode.
commands in Step 4 even if you don't understand all the details.

Programming Tip
Remember that the source code file for CIRCLE. F90, and all other

programs in this text, can be downloaded from the World Wide Web site
mentioned in Section i.5 of the Preface. These files were created on an MS-DOS-

72 • 3. Getting Started with Fortran: Writing Simple Programs

based system. If you are programming in some other environment, your instructor
may need to show you how to transfer source code fIles to that environment.

The MS-DOS source code fIles will be readable on any Macintosh
computer with hardware/software that enables it to recognize the format of IBM
compatible diskettes. There is no basic fIle compatibility problem because source
code fIles are purely "text" fIles that can be interpreted properly by any computer
system. However, there are some minor differences between IBM-compatible and
Macintosh text files that must be resolved when you translate IBM-compatible
fIles into the Macintosh environment. Consult with your instructor if you use a
Macintosh computer.

5 Verify the operation of the program.

The operation of P-3.1 is easy to verify with a hand calculator. Run the
program several times and compare answers for several values of the radius. You
can use almost any radius value to check your program. However, a value of 1 is
clearly a poor choice. Why? Suppose you mistakenly wrote area=pi *radius.
If the radius equals 1, the program will produce the correct numerical answer even
though the code is wrong.

Because this is the ftrst Fortran program in this text, we will examine it in
great detail. By the time you finish this chapter, you should be able to write and
execute programs similar to P-3.1 on your own. In fact, P-3.1 can serve as a
model for many simple programs that involve nothing more complicated than
input, a few calculations, and output. We will divide the discussion of P-3.1 into
six topics, listed in Table 3.1.

Table 3.1. Programming topics in Chapter 3

Programming Topic Section

Program layout 3.2

Variable declarations 3.3

List-directed input and output 3.4

Arithmetic operators, assignment statements, and calculations 3.5

Program termination 3.6

Compiling and executing a program 3.7

3.2 Program Layout • 73

3.2 Program Layout

3.2.1 What Is "Source Code?"

P-3.1 constitutes the source code for a single Fortran 90
program unit. The source code file, in the fonn of a "human
readable" file stored on your computer, contains all the

program unit I
infonnation required for a Fortran compiler to translate your problem-solving
algorithm into a set of instructions your computer can understand. Large programs
typically contain one main program and several subprograms, and they may also
include other subprograms stored in one or more additional program units. For
now, your programs will consist of one main program stored in a single source
code file.

It's important to understand that source code is machine independent
because the Fortran language is standardized. This means that the file
CIRCLE. F90 can be used as the source code on any computer that has a
Fortran 90 compiler. Machine independence is an essential feature of any high
level language.

It is possible for source code to contain I nonstandard extensions ·1
nonstandard extensions-features that are not part
of the language standard-that will work with one
compiler but not with others. Such extensions can compromise the portability of
source code. This is a major problem with Fortran 77 compilers, almost all of
which contain many nonstandard features. l However, all the programs in this text
should execute with any Fortran 90 compiler because they all confonn to the
Fortran 90 standard.2

Even though it is common to refer to source code as a "program," this isn't
completely accurate. A source code file is just an interface between you and the
Fortran environment-a way to transmit instructions-and its creation is only the
first step in creating a program. As you will see later in this chapter, the Fortran
environment generates additional files, including a so-called "executable" file that
contains the translation into computer-specific machine language of all the
instructions from possibly several source code program units.

As previously noted in Chapter 2 (see Figure 2.1), although the source code
file is transferable to any other computer that supports a Fortran 90 compiler, the

lPotential problems with nonportable extensions explain why Fortran 77 texts usually
restrict themselves to the language standard and therefore have, for many years, taught a version
of Fortran that is increasingly irrelevant to the way this language is used in practice.

2Some programs later in the text require input from an external data file. When the names
of such files are included as part of the source code, they may need to be changed to correspond
to the file-naming syntax for your computer.

74 • 3. Getting Started with Fortran: Writing Simple Programs

additional files that your Fortran environment creates are not. The executable file
produced by an IBM-compatible personal computer won't work on a mainframe
or Macintosh computer, for example. To "port" a program to another computer,
you have to transfer the source code file and compile it on the new computer. The
new executable file will be different from the executable file on the original
computer, but the advantage of using a high-level language to write source code
is that you shouldn't have to worry about those differences.

It's no accident that the source code in P-3.1 is so easy to understand in
general terms that its purpose should be clear even to someone who doesn't
understand the Fortran language. That is, after all, one of the main reasons for
using a high-level programming language. Some of the words appearing in
uppercase letters are commands that don't look much different from the
pseudocode commands used to develop the algorithm in Step 3 of the problem
solving process. Throughout the program, there are other lines of text beginning
with a "!" that appear to be explanatory comments; in fact, they are. The
calculations look very similar to algebraic expressions even though, as we will
see, there are some important differences between how Fortran uses the familiar
"=" sign and its meaning in algebra.

However, just because you can interpret this source code doesn't mean that
you are ready to create your own programs. There are many general questions to
be answered about the layout and structure of Fortran programs before you can
write an equivalent one on your own. The elements of the Fortran language are
simple. However, source code must conform to syntax rules that are very specific
and rigid compared to, for example, the flexible and sometimes vague rules for
effective human communication.3

The smallest building blocks of Fortran source code are characters:

(blank, sometimes represented as }6)
" $ % &

+ , /
0-9 (the digits)

< >?
A - Z (all the uppercase letters)
_ (underscore)
a-z (all the lowercase letters)

*

Meaningful characters or combinations of characters,
called tokens, are defined by the Fortran language. Fortran
tokens include line labels, keywords, names, constants,
operators, and separators. We will deal with the meaning of each

tokens
statements

3Rigid syntax rules are a property of all procedural languages, not just Fortran.

3.2 Program Layout • 75

of these tokens as we encounter them in the text. Sequences of tokens form
statements. Statements usually occupy one line. In P-3.1, the ftrst statement,

PROGRAM Circle

consists of two tokens, the keyword PROGRAM and the name Circle. The
statement

X=A*B

consists of ftve tokens, x, =, A, *, and B. (Although the meaning of this statement
appears obvious because of its similarity to an algebraic expression, we will later
discuss the meaning and use of each of these tokens in great detail.)

Tokens may be separated by one or more spaces, but a Fortran 90 compiler
will not accept spaces embedded within tokens.4 For example, x = A * B is
equivalent to X=A*B, but PRO G RAM Circle is not equivalent to
PROGRAM Circle.

Fortran statements may contain extra spaces at the beginning of lines and
between tokens. That is, the statements

PRINT*, I User prompt: I

PRINT

are equivalent.

*, I User prompt: I

A collection of statements forms source code, which is contained in a
program unit that includes a main program and often one or more subprograms.
Figure 3.1 illustrates the components of a source code fIle. An entire program may
include subprograms from one or more additional program units. P-3.1 consists
of one program unit, containing just a main program. In Chapter 7, several
modifications of P-3.1 will be presented to illustrate how to use subprograms.

3.2.2 Where Does Source Code Come From?

Source code for a program written in a high-level language can be created with
a text editor or word processor. Some programming environments, especially those
written for use on desktop computers, include special text editors that are

4rhis restriction actually applies only to Fortran 90 compilers in their default "free format"
mode, as will be described later in this section. Older versions of Fortran and Fortran 90 compilers
used in their "fixed format" mode will accept blanks within keywords, although there is no good
reason to put them there. Even within "free format" Fortran 90, there are a few exceptions. For
example, the keyword ENDIF, which we will discuss in later chapters, can also be written with
an embedded space, as END IF.

76 • 3. Getting Started with Fortran: Writing Simple Programs

characters

~ tokens

~
PRINT - PROGRAM

WRITE IMPLICIT REAL

PROGRAM Circle
IMPLICIT NONE
REAL a,b,c
A- J.O

SI3lements

Figure 3.1. Components of source code

integrated into that environment. A completely integrated programming
environment can provide some shortcuts. For example, when you write source
code, the environment may check each statement for syntax errors as you write
it.

Your Fortran environment may not be as "user-helpful" in this regard. On
most systems, you must ftrst create a separate ftle containing the source code,
using whatever kind of text processing or editing capability you have available.
Then you must ask your Fortran compiler to try to convert that source code ftle
into an executable program. The ftrst step in the compilation process is to check
your source code for syntax errors--combinations of characters, tokens, or
statements that your compiler cannot interpret as part of a valid Fortran program.
If the compiler ftnds errors, you must edit the source code ftle to remove the
errors and repeat the compilation process.

Programming Tip
If you use a word processor to create source code, don't save that ftle as

a word-processing document. Such documents contain not only the text you have
written, but also other information about the document that your Fortran compiler
will not be able to interpret. If you use a word processor, you must save the
source code as a "text only" or "ASCII text" ftle. If your word processor won't
allow you to do this, you need a different word processor!

Regardless of your programming environment, you can create source code
for Fortran using any available text editor. Your instructor will provide speciftc
instructions for doing this, based on the software available at your institution.

Because the source code fIles in this text were written in an MS-DOS
environment, their fIle names consist of no more than eight characters, a period,
and an extension of no more than three characters. Other computing environments
place fewer restrictions on fIle names, and you may wish to take advantage of that
fact.

3.2 Program Layout • 77

Some Fortran compilers assume that, by default, source code files will be
identified by a particular file name extension. Possibilities include. F7 7 or . FOR

for Fortran 77 code and . F 90 for Fortran 90 code. In this text, we will assume
that all source code files have an . F90 extension. Once you determine an
appropriate file name extension for your programming environment, use it
consistently for source code files and for no other purpose. Then it is easy to
locate Fortran source code files by performing a directory search for files with a
particular extension.

3.2.3 Why Do the Fortran Statements All Start in Column 7?

You might not have noticed it, but all the lines in P-3.1
except for those beginning with a ! start in column 7. This
is basically a style choice that you and your instructor may
disagree with. Prior to the Fortran 90 standard, this layout

I fIXed formal
comment line

was a requirement for every Fortran program. Each line in a Fortran program
contained 80 positions, corresponding roughly to the number of characters that can
be typed on one line of a piece of 8Y2l xll" paper. The 80 positions were used
according to a fIXed format. If the first position contained a c, C, or *, the line
was interpreted as a comment line, as described in Section 3.2.4. Otherwise, the
first five positions were reserved for line labels, which were either convenient or
required, depending on the context. The sixth position was reserved for a symbol
to indicate that a previous line was being continued onto the current line, and
positions 7-72 were reserved for Fortran statements.

In the early days of Fortran, programs used to be stored on "punch cards"
rather than electronically. If you were unfortunate enough to drop a large "deck"
of these cards, you would have a difficult time putting them back into the proper
order! Therefore, positions on these cards 73-80 were reserved for a card number.

Even after source code files could be created and stored I free formal I
in a much safer electronic form, the 80-column card format was
retained for Fortran source code. Although the Fortran 90
standard no longer requires this layout and allows free format lines of up to 132
characters starting in any column, we will continue to use the Fortran 77 standard
72-column layout in this text. It makes programs easy to display in a textbook
format, and your source code will be recognizable to anyone who uses either the
new (Fortran 90) or old (Fortran 77) standard. Most monitor screens still display
only 80 characters on a line, so you may find little advantage in being able to
write lines 132 characters long. However ...

It is important to remember that the physical layout of the source code in
this text is a matter of style and not a Fortran 90 language requirement.

78 • 3. Getting Started with Fortran: Writing Simple Programs

3.2.4 Inserting Comments in Source Code Files

Any line that contains a ! as its ftrst nonblank character or contains nothing but
blank characters is treated as a comment line and is ignored by the compiler.
Comment lines are used to separate sections of your program and explain what
you're doing. Comments aren't required for Fortran programs to work, but they
are required as a matter of good programming style. Because they are ignored by
the compiler, they can appear anywhere in a program. In this text, we will always
put the ! in column 1 of any line intended to be blank or to contain nothing but
a comment. This style restriction isn't really necessary, but it makes source code
easy to read.

A comment initiated by a ! character can also follow a statement on the
same line. Earlier versions of Fortran did not allow comments on the same line
as a statement, although some Fortran 77 compilers have a nonstandard
implementation of this feature. In this text, we will use a combination of separate
and in-line comments as required to clarify source code.

In programs written in older versions of Fortran, you will see comment
lines indicated by a c, C, or * in the ftrst column. These characters, which mean
something else when they appear elsewhere on a line, could always be interpreted
correctly because older versions of Fortran required a ftxed format line that
eliminated any possibility of misinterpretation. However, because characters can
appear anywhere on a Fortran 90 line, it's not possible for the compiler to make
assumptions about the meaning of a character just because it appears in the ftrst
column.

To solve this problem, the Fortran 90 standard uses a ! character to
indicate the start of a comment in free format code. This works because this is the
only use allowed for the ! character. (The exception is that the ! character can
be part of a string constant, as deftned later in this chapter.)

Programming Tip
The Fortran 90 standard requires compilers to include options for

interpreting both ftxed format and free format source code, but not within the
same program module. (Free format is the default option.) That is, your entire
source code fIle can use either ftxed format or free format style, but not a mix of
the two. All the source code in this text should be compiled under the free format
option even though it retains, purely as a matter of style, the "old-fashioned"
column allocations of the Fortran 77 standard. Because of the way comment lines
are constructed, the source code in this text cannot be compiled in the fixed
format mode of a Fortran 90 compiler. (However, some Fortran 77 compilers have
nonstandard extensions that allow Fortran 90-style comment lines.)

If you want to use older code that contains pre-Fortran 90-style comment
lines within a program written in free format, it's easy to make them compatible.

3.2 Program Layout • 79

Simply use a text editor to perform a search-and-replace operation to change
comment characters to !, making sure not to alter c, C, or * characters when they
appear in other contexts.

3.2.5 How Much of P-3.1 Is Absolutely Necessary and How Much Is a Matter of
Style?

In order to develop a sense of source code "style," you must first know what is
necessary and what is discretionary. Consider the minimum contents of a file that
can be recognized as Fortran 90 source code:

END

That is, the only absolutely necessary component of such a file is a statement
telling the compiler where the end of the program is. Of course, such a program
doesn't do anything!

Another way to learn about style is to rewrite P-3.1. P-3.1(a) produces the
same results as P-3.1 even though the physical layout of the source code is very
different. Note that the PROGRAM statement is optional, as are all the comment
lines. The significance of the missing statement beginning with REAL will be
discussed in the next section. The descriptive variable names used in P-3.1 have
been replaced with the one-letter names a, c, and r. Some individual statement
lines have been strung together on the same line, and use a semicolon as a
statement separator.

P-3.1(a) [CIRCLEIA. F90]

parameter (pi=3.1415927)
print*,' Give radius of a circle:' ;read*,r;c=2.*pi*r;a=pi*r*r
print*,' circumference=' ,c,' area=' ,a;end

The source code in P-3.1(a) is perfectly acceptable to a standard Fortran 90
compiler, but it is much harder for humans to read than P-3.1. A long program
written in this style would be virtually unreadable and would not be allowed in
any professional programming application. In programming, clarity is almost
always preferred over brevity. As your programs become more complex, a
consistent, readable style for writing source code becomes increasingly important.
Therefore, as a matter of style, P-3.1(a) is unacceptable.

80 • 3. Getting Started with Fortran: Writing Simple Programs

3.2.6 Fortran Keywords

Note that some of the words in P-3.1 are in all caps. These words,
called keywords, all have specific meanings in Fortran. Each

keyword I
keyword is a Fortran token. Some of them are the direct Fortran
implementation of the pseudocode commands defmed in Chapter 2. We will be
consistent about capitalizing keywords even though, as P-3.1(a) demonstrates ...

I Fortran compilers are case-insensitive.

Even though PROGRAM, program, Program, and even pROGRAM are all the
same as far as your Fortran compiler is concerned, we will always use PROGRAM.

Some programmers prefer to use lowercase letters and may consider the use of
uppercase spellings an old-fashioned style choice, but it has been chosen for this
text to make the keywords stand out in the program listings.

The first keyword we encounter in P-3.1 is PROGRAM. Even though it's
optional, it's a good idea to use a PROGRAM statement in your source code. Every
Fortran keyword has to be used within an appropriate syntax framework, and we
will describe the syntax for each keyword as it is first encountered. A summary
of syntax for all keywords discussed in the text is found in Appendix 2. The
general syntax for the PROGRAM keyword is:

PROGRAM program_name

Examples:
PROGRAM Model_l

This program is stored in file MY_PROG.F90

In this and all subsequent syntax descriptions, italicized_text always means
that some information, most often a single word, must be chosen and supplied by
the programmer. The program_name can contain up to 31 characters. It
shouldn't be the same as a Fortran keyword-it's possible to name a program
program, but it's certainly not a very good idea-and it can't be the same as a
variable name (as defined in the next section) you will use elsewhere in your
program. If the PROGRAM keyword appears, it must be followed by a valid name;
that is, PROGRAM can't appear by itself on a line. It makes sense for the program
name to be the same as the file name under which the source code is stored on
your computer system.

3.2 Program Layout • 81

Study Tip
You should start writing your own annotated list of basic Fortran syntax,

with examples. Will it be more helpful to organize this list alphabetically or by
function?

Programming Tip
The fact that computer operating systems place restrictions on file names

may be irritating. If you are using such a system (MS-DOS, for example) and you
would like your program to have a longer descriptive name, include the system
file name in a program comment line. (See the second example in the PROGRAM

syntax box.)

3.2.7 What If a Statement Is Too Long to Fit on a Single Line?

All the statements in P-3.1 fit easily on a single line, but long statements can be
a problem when complicated expressions are translated into Fortran. Consider this
algebraic expression for calculating one root of the quadratic equation ax2 +
bx + c = 0:

-b+Vb 2 -4ac root = -----'----
2a

Its Fortran equivalent, assuming (b2 - 4ac) ~ 0, is: 5

root=(-b+(b*b-4.0*a*c)**O.5)/(2.0*a)

This statement will make more sense after we have discussed arithmetic operators
later in this chapter. Even though the statement still isn't too long for a single line,
we could, just for demonstration purposes, separate it into several lines of code
like this:

root= &

(-b+(b*b-4.0*a*c)**O.5) &
/(2.0*a)

The ampersand (&) is the Fortran 90 line continuation mark. It is appended
to any partial statement that is continued onto the next line. It can go anywhere
on the line after the partial statement to be continued, and, of course, it does not
become part of the statement itself. (To put it another way, the ampersand has no

5This statement also assumes that a, b, c, and root all have appropriate data types, as
discussed later in the chapter.

82 • 3. Getting Started with Fortran: Writing Simple Programs

possible interpretation other than as a line continuation mark.6) A single statement
can occupy as many as 40 lines, using up to 39 line continuations.

Programming Tip
If your programs need to retain as much compatibility with Fortran 77 code

as possible, you can improve compatibility by using an alternative form for line
continuations. In Fortran 90, the continued line normally starts with the fIrst
nonblank character, but, optionally, it starts with the fIrst nonblank character
following a continuation mark on the continued line. In Fortran 77 (and earlier
versions), continuation marks can be any character, but they have to appear in
column 6. This fact can be combined with the fact that Fortran 77 ignores
characters in columns 73-80. This version of the above statement is compatible
with both Fortran 90's free format style and Fortran 77:

1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890123

root-
& (-b+SQRT(b*b-4.0*a*c»
& /(2.0*a)

&

&

The ampersand at the end of a continued line will be ignored by a Fortran 77
compiler because it's in column 73. Fortran 77 requires a continuation character
to appear in column 6 of the continued line. If that character is an ampersand, this
statement will be accepted by both Fortran 77 and 90 compilers.

3.2.8 Executable and Nonexecutable Statements

Fortran source code consists of a combination of
executable and nonexecutable statements. The
layout of a simple program's source code looks
like this:

[PROGRAM name]
[specification statements]
[executable statements]
END [PROGRAM [name]]

executable statements I
nonexecutable statements

In this and all subsequent syntax defmitions, any quantity enclosed in brackets
[...] is optional. (Recall from Section 3.32.5 that END is the only required
statement in a Fortran program.)

&rhe exception is that an ampersand can appear as a character in a string constant.

3.3 Declaring Variables and Defining Constants • 83

The PROGRAM statement and the specification statements are nonexecutable
statements. They are essentially "bookkeeping statements" that tell your Fortran
compiler how to allocate space in your computer's memory. The nonexecutable
statements are followed by the executable statements that do the actual work of
the program. In this text, every program will include a nonexecutable PROGRAM

name line. Remember that the keyword PROGRAM cannot appear on a line by
itself without a name. When the keyword PROGRAM appears in conjunction with
the END statement, a name is optional. This text will not include the optional
PROGRAM [name] as part of the END statement, although you are free to do so
in your own programs.

3.3 Declaring Variables and Defining Constants

3.3.1 Variable Names and Data Type Declarations

Recall that the first task in designing an algorithm-Step 3 of the problem-solving
process-is to assign names to the quantities needed to solve the problem, using
the DEFINE command. You should take this opportunity to think about the nature
of the information needed to solve the problem and the output provided by the
program.

When you write a program in any high-level language, including Fortran,
the names of these quantities become variable names that must be associated with
data of a particular type. Variable names give you a symbolic way to access
values in your computer's memory without having to worry about the details of
where those memory locations actually are. For all practical purposes, the memory
location and the variable name by which you access information in that location
are the same thing.

The association of a variable name with a specific
data type is called type declaration. This is a
nonexecutable specification statement that must appear at

type decimation I
the beginning of your program, before that program can make any calculations.
The general syntax for a type declaration statement is

data_type[, attributes] [::] <list of variables,
separated by commas>

The data_type name is optionally followed by one or more attributes. If
no attributes are present, the double colon is optional. If attributes are present, the
double colon is required. Finally, a list of variables to be associated with this data
type is given. We will show examples of several data type and attribute
clp.r.l:ullfiom: lllfp.r in thi" "p.C'Jion

84 • 3. Getting Started with Fortran: Writing Simple Programs

For P-3.1, the type declarations are

REAL radius, circumference, area
REAL, PARAMETER:: pi=3.1415927 !Defines pi as a constant.

The program requires four numerical quantities, all of which should be declared
as real numbers rather than integers. No distinction is made between "input"
(radius) and "output" (area and circumference) to and from a program;
it is up to you to keep track of the purpose of each variable you declare.
However, there is one important distinction you can ask a program to make. In
P-3.1, the variable pi contains the value of the constant 1t, and it has been defmed
in such a way that its value cannot be changed while the program is running.
(More will be said about this later.)

The Fortran 90 rules for naming variables are:

1. Names may contain up to 31 characters, including uppercase and lowercase
letters, digits, and the underscore character _.
2. The ftrst character must be a letter.
3. Embedded blanks aren't allowed.

Here are some allowed variable names:

TAXES Y1993 i

In older versions of Fortran, variable names could contain no more than six
characters. They had to start with an uppercase letter, and the rest of the name
could consist only of other uppercase letters or digits. This is why you will often
see strange-looking variable names in older programs or texts that use the
Fortran 77 standard. RADIUS looks reasonable, but circumference had to be
abbreviated to something like CIRCUM. Most Fortran 77 compilers have
nonstandard features that allow longer and more descriptive variable names as
well as a mixture of uppercase and lowercase letters.

In this text we will make full use of the variable-naming features of
Fortran 90 to make names as clear and descriptive as possible. For example, we
will usually consider such shortcuts as naming the radius r to be unacceptable
style because such abbreviated variable names make programs harder to read and
understand. Exceptions might be made in cases where a well-known equation is
used in a program. For example, in the ideal gas equation pV=pRT, the variable
names for the pressure p, volume V, and temperature T might be retained because
their interpretation should be clear in context. The symbol p would have to be
given some other name, such as mu.

Although the ability to mix uppercase and lowercase letters is useful to
make variable names easier to read, remember that Fortran compilers don't
distinguish between uppercase and lowercase letters. So R and r are interpreted

3.3 Declaring Variables and Defining Constants • 85

as the same variable name. If a program happened to involve the universal gas
constant, often represented as R in formulas, as in the previous paragraph, as well
as a linear correlation coefficient, often represented as r, then you will have to
choose a different variable name for one of these two quantities.

Programming Tip
As a matter of style, it might be acceptable to use single-letter symbols for

variable names in simple calculations involving well-known scientific or
engineering formulas if the meaning of each symbol is clear in context. However,
if such calculations are embedded in a larger program with many variable names
and/or formulas, it is better programming style to use longer and more descriptive
variable names. Whenever there is any chance of misinterpretation, it is up to you
to make the calculation in question as clear as possible. Calculations that seem
perfectly clear when you're writing a program have a way of becoming obscure
when you look at the program a few weeks later.

3.3.2 Intrinsic Data Types

Type declarations for intrinsic data types

The most common type declarations in Fortran involve I intrinsic data types I
the basic data types supported by the language. There
are five such data types, called intrinsic data types, as
described in Table 3.2.

Table 3.2. Fortran intrinsic data types

Intrinsic Data Type Fortran Type Declaration

integer numbers INTEGER

real numbers REAL

logical values LOGICAL

characters and strings of characters CHARACTER

complex numbers COMPLEX

All variables used in a program must be given a data type. For now, all
variables in the programs you will write will be declared as one or the intrinsic
data types. Your compiler uses the declarations to set aside an appropriate amount

86 • 3. Getting Started with Fortran: Writing Simple Programs

of computer memory to store the values needed by your program while it's
running. Data declaration statements appear at the beginning of your program,
after the PROGRAM statement and before the ftrst executable statement. Executable
statements contain your programming instructions. In P-3.I,

PRINT *, I Give radius of a circle: I

is the ftrst executable statement.
In this section, we will describe type declarations for the first four intrinsic

data types listed in Table 3.2. We will return to the COMPLEX data type later in
the text.

Type declarations for numbers

For the purpose of pragramming, there are two basic kinds of numbers: integers
and real numbers. An integer is a "whole" number-any number that does not
contain a decimal point. The values 1, -1, 0, and 17 are integers. A real number,
whether rational or irrational, contains a decimal part. The values 0.333, -0.5,
14.1, and 1.3xlO-9 are real numbers. Fortran recognizes both real and integer
numbers. In common with other languages, real numbers and integers are stored
differently, with important implications about how arithmetic operations are
performed in programs.

An important distinction must be made between an integer value such as
1 and the apparently equivalent real number 1.0. Although these values may be
equivalent in the numerical or algebraic sense, expressing the value 1.0 with
decimal notation means that it will be stored differently in a Fortran program from
the integer value 1 ~ As a result, these values may not be interchangeable in a
program.

When you use numerical variables associated with I real variable
numbers in a Fortran program, you must distinguish integer variable
between real variables, which hold real numbers, and implicit typing
integer variables, which hold integer values. You do this
by giving the variables a REAL or INTEGER data type.
Traditionally, Fortran programs have made use of implicit typing for numerical
variables. All variables beginning with letters I through N are implicitly typed as
INTEGER. (Because of Fortran's mathematical origins, this convention is related
to the common mathematical use of letters such as i for indices or counters that
can have only integer values.)

Variables beginning with any other letter are implicitly typed as REAL

numbers. Other kinds of variables, such as characters, must always be given an
explicit data declaration. If P-3.1 had been written in an earlier version of Fortran,
the REAL statement would not be required. All four variables would be implicitly

3.3 Declaring Variables and Defming Constants • 87

typed as REAL numbers because none of the names assigned to the four variables
used in that program begins with the letters I through N. (The IMPLICIT NONE

statement in P-3.1 would not appear in programs written in earlier versions of
Fortran. Can you guess its purpose? We will discuss this statement later in this
section.)

Fortran 90 still allows implicit typing. However, as a
matter of good programming style, we will insist on explicit
typing for every variable. Explicit typing means that every

explicit typing I
variable name used in a program (plus names for a few other things, as we will
see later in the text) must appear in a data type declaration statement. Why is this
important? Because explicit typing makes programs less prone to errors and easier
to read, debug, and modify, and also because explicit data typing is consistent
with requirements imposed by other high-level languages, such as C.

A somewhat simplified syntax for REAL and INTEGER data type
declarations is:

REAL [::] variable_name[, variable_name]
INTEGER variable_name[, variable_name]

Examples:
REAL x_value, y_value, radius, angle
INTEGER i,j,k

The double colon is optional for this kind of declaration. (The double colon will
be required in some circumstances that will be discussed later in this chapter.) A
single data declaration statement may contain as many variable names as you
wish.

The REAL and INTEGER data types also define, by implication, the
allowed range of integers and real numbers. It is possible within the Fortran 90
standard to change those ranges, but we will not usually need to do that for the
problems in this text.7

Type declarations for logical variables

The LOG I CAL data type is used for declaring variables that can have one of only
two possible values: . TRUE. or . FALSE .. (The periods preceding and following
the words TRUE and FALSE are required.) We will discuss the use of these
variables later in the text. The syntax is

7For some kinds of calculations, you may wish to know what the size and range
restrictions actually are because if you exceed the allowed ranges, your progam can "crash." These
values are available from Fortran 90 intrinsic functions, which we will discuss in a later chapter.

88 • 3. Getting Started with Fortran: Writing Simple Programs

LOGICAL variable_name[, variable_name]

Type declarations for characters and strings of characters

Historically, Fortran was concerned largely with I h t '_LJ
. h' I I . N h c aracervanuue ant mellc ca cu atlOns. ow, owever, text

manipulation may comprise a significant portion of the
tasks performed by many programs. Modern high-level programming languages
include data types to manipulate character variables, and they may distinguish
between single characters and sequences of more than one character. In Fortran,
no distinction is made between single characters and strings of characters. That is,
a variable that will be assigned a "value" of a single character is treated as a
character string of length 1. The CHARACTER data type is used to define such
variables. (The name is somewhat misleading, because the data type applies
basically to strings of characters.) The maximum number of characters that will
be assigned to a variable must be stated explicitly. There are two syntax forms for
CHARACTER data type declarations:

CHARACTER[([LEN=]n)] variable_name [*n] [, variable_name[*n]]
CHARACTER [*n] variable_name[*n] [, variable_name[*n]] ...

where n is an integer constant.

Examples:
CHARACTER a, b, c, d*3
CHARACTER*lO namel, name2
CHARACTER*20 Name, Street*30, City*25, State*2
CHARACTER(20) Name, Street*30, City*25, State*2

In the first form, the LEN= is optional. The constant n defines the length of the
character string. Its presence after any variable name overrides the value following
the CHARACTER declaration. A CHARACTER declaration without a value for the
length implies that the variables declared in that statement are of length 1 unless
that length is overridden as shown in the syntax examples. Any combination of
these declaration statements can be used interchangeably within a single program.

In the first example, a, b, and c contain just one character, but d contains
three characters. In the second example, namel and name2 each contains 10
characters. In the last two examples, Name contains 20 characters, but this value
is overridden for the other three variable names by their individual length
specifiers.

3.3 Declaring Variables and Defining Constants • 89

The PARAMETER attribute and statement

Sometimes "variables" really need to be constants that shouldn't be changed while
your program is running. Fortran allows you to associate a constant value with a
name either by using a PARAMETER statement or by assigning the PARAMETER
attribute as part of a type declaration statement. In P-3.1, the variable holding the
value of 1t (pi) is given the PARAMETER attribute:

REAL, PARAMETER :: pi=3.l4l5927

In this kind of type declaration statement, which includes
both type and attribute declarations, the double colon is
required. Once a quantity has been given the PARAMETER

attribute, it becomes a named constant that can't be changed anywhere else in
your program; any attempt to do so will generate an error message when you try
to compile the program. An alternative way to achieve the same result is first to
declare a variable and then to include it in a separate PARAMETER statement. For
example:

REAL pi
PARAMETER (pi=3.l4l5927)

The general syntax forms for giving a variable the PARAMETER attribute
are

PARAMETER (variable_name=value[, variable_name=value] 000)
data_type,PARAMETER o. variable_name=value

[, variable_name=value]

Examples:
(using a PARAMETER statement)

INTEGER MaxSize
PARAMETER (MaxSize=lOOO)

(using the PARAMETER attribute)
REAL,PARAMETER :: pi=3.l4l5927, Deg_to_Rad=O.0174532

The first syntax form is retained from Fortran 77. When a PARAMETER statement
is used, as in the first syntax form, it is assumed that each variable name has
previously been included in a type declaration statement. The preference for
Fortran 90 is to use the PARAMETER attribute within a type declaration statement.

When you give a variable PARAMETER status, it might be helpful to think
of the result as being similar to a "search and replace" operation in a word
processor. The effect is the same as if you searched through your program and
replaced every occurrence of that variable name with the characters appearing to
the right of the = sign in the PARAMETER or type declaration statement. That is,

90 • 3. Getting Started with Fortran: Writing Simple Programs

the = sign has the meaning of "replace with" rather than "is equal to" in either the
algebraic sense or the "assignment" sense, as we will discuss later in this chapter.
If you maintain this mental image of what's happening, you will be less likely to
misuse a variable that has been given PARAMETER status. In particular, you won't
be tempted to try to give such a variable a different value.

Enforcing explicit typing

In earlier versions of Fortran, a style requirement of explicit typing imposed a
significant burden on programmers because there was no way to enforce that
requirement. However, Fortran 90 and some Fortran 77 compilers, through a
nonstandard extension, provide a means of forcing explicit typing of all variables.
The syntax is

IIMPLICIT NONE

This is a nonexecutable statement that must appear before the type declaration
statements. It "turns off' implicit typing and forces you to declare explicitly the
data type of every variable you use in your program; if you don't, your compiler
will generate an error message.

The IMPLICIT statement can also be used with other parameters to alter
Fortran's default implicit typing rules. We will not give the general syntax for the
IMPLICIT statement because the programs presented in this text will always use
the IMPLICIT NONE statement to enforce explicit data typing of every variable
name, as in P-3.1.

It may seem that asking you to include the IMPLICIT NONE statement
in every program is an unnecessary imposition. However, this style requirement
prevents program errors that can be very difficult to fmd. As an example, suppose
you are writing a program to calculate taxes. You select a variable name Taxes
to represent the result of a calculation and explictly type it as a REAL variable.
Now suppose that, at some point in your program, you misspell the variable name
Taxes as Texas. This will certainly lead to problems in your program's
operation. However, a Fortran program that allows implicit typing will be
perfectly happy with this variable name. It will create another memory location
for this new, implicitly REAL variable and perform whatever operations you ask
it to perform when you refer to its name. However, if your program contains an
IMPLICIT NONE statement, the Fortran compiler will flag the variable named
Texas as an undeclared variable and will generate an error message.

3.3 Declaring Variables and Defming Constants • 91

Programming Tip
Your compiler may issue a warning message concerning variable names

that are included in data type declaration statements, but not used anywhere in
your program. (This feature isn't required by the Fortran 90 standard.) The
message is given only as a warning because these "extra" variables may not
represent a problem; perhaps you are still developing a program and haven't yet
written the code that uses the variable(s) in question.

The implications of type declaration

When you declare a variable's type by including it in a Fortran declaration
statement, three important things happen:

1. The variable name is "reserved" and can't be used for any other purpose in
the main program or subprogram in which it is declared.

However, the same name can be reused in a different program unit or in
a different subprogram within the same program unit.

2. The kinds of values that can be assigned to the variable name are specified.
Each data type is associated with a certain collection of appropriate values.

Variables declared as having that data type can have anyone of those values, but
the variable cannot be assigned an inappropriate value. For example, you can't
assign a CHARACTER value to an integer.

3. The kinds of operations that can be performed on the variable name are
specified.

Arithmetic operations can be performed on numerical variables, but these
operations make no sense for a CHARACTER variable, for example.

As you can see, type declaration has important implications that extend
beyond simply providing a way to ensure that all variables have been associated
with a particular data type. Explicit type declaration allows your compiler to
perform several different kinds of "error checking" on your source code to prevent
you from assigning values and performing operations that are inappropriate for a
particular variable name.8

8Not all languages are as strict as Fortran about interpreting these kinds of rules. C is a
notable example.

92 • 3. Getting Started with Fortran: Writing Simple Programs

Using nonexecutable statements in programs

So far, we have identified several nonexecutable statements that should, or may,
appear in source code:

1. a PROGRAM statement
2. one or more comment lines, marked with a
3. an IMPLICIT NONE statement
4. one or more data type declaration statements: REAL, INTEGER, CHARACTER,

or LOGICAL

5. one or more PARAMETER statements to identify quantities whose value cannot
be changed while the program is running

6. an END statement that terminates the program

Of these, Fortran requires only the END statement, but as a matter of good
programming style, programs in this text will always include the first four kinds
of nonexecutable statements. The appearance of the PARAMETER statement is
determined by the nature of the program.

All the specification statements-including the IMPLICIT NONE
statement, data type declaration statements, and PARAMETER statements-must
appear in your program after the PROGRAM statement and before the first
executable statement in your program. In P-3.1, remember that

PRINT*, I Give radius of a circle:

is the first executable statement. Comment lines are ignored during compilation
and can appear anywhere.

3.3.3 Constants

Fortran supports several kinds of constants that correspond
to the intrinsic data types. These may be either named
constants, such as result from using a PARAMETER

literal constonts I
statement or attribute, or literal constants (or "literals"). We will discuss four
kinds of literals: integers, real numbers, characters, and logical.

Integers and real numbers

INTEGER constants are signed or unsigned integer values. The allowed range is
determined by your compiler, not by the language standard. Default ranges can be
overridden by using additional data type specifiers, but we will defer a discussion

3.3 Declaring Variables and DefIning Constants • 93

of this topic until Chapter 12. As mentioned previously, you can determine the
default range on your system, and we will return to this point later. Some
INTEGER constants (or literals) are

1 o +17 32767 -333

REAL constants consist of some or all of the following: a signed or
unsigned integer part; a decimal point; a fractional part; an exponent part
consisting of the letter E (or e) followed by a signed or unsigned integer. Some
REAL constants are

1. -0.0037
7e6 7.e6

+.17 1E+20 1.0E+20 -3.777e-7

A plus sign is always optional for a positive number, but a minus sign is required
if you wish to represent a negative number. Note that 1 (without a decimal point)
is an INTEGER constant. Either 1. or 1.0 is a REAL constant. Remember that
1 and 1. or 1.0 are treated differently by your program. Numbers expressed in
scientific notation (with e or E) are always REAL and don't require decimal
points. Thus 1E+20 and 7. e6 are REAL constants, corresponding to lxl<f<' and
7x106• The numbers 1E+20, 1E20, 1. E20, 1.0E20, and 1. E+20 are all
equivalent.

You may sometimes forget that the conventional way of writing numbers
with commas or $ signs in some contexts won't work in Fortran, or other
languages, for that matter. Thus these "values" contain special characters and
won't be recognized as numerical constants:

$1000 3,777.78 1,222,333

You should help the user of your programs avoid entering inappropriate numerical
values by supplying helpful prompt messages prior to READ statements. For
example,

PRINT
PRINT

* , ,
* ' ,

Logical constants

How much is in your account? $'
Enter a large number, without commas or spaces:'

As noted above, there are only two logical values and hence only two possible
logical constants, . TRUE. and . FALSE .• The periods at each end of the word
are required, and you may use either uppercase or lowercase letters, or a mixture
of the two.

94 • 3. Getting Started with Fortran: Writing Simple Programs

Character constants

Character constants (or string literals) consist of strings of zero or more characters
enclosed in a pair of single quotation marks (apostrophes) or double quotation
marks. Any displayable character supported by your computer is allowed. For
example, a "#" can appear in a character constant even though it isn't one of the
Fortran special characters. Here are some examples of character constants:

, , (a space)
'Laura'
"C"
"This is a Fortran string constant!"

Note that it's OK to use the ! character as part of a string constant. Blank spaces
and distinctions between uppercase and lowercase letters are significant in strings.
The strings I David I, I DAVID I, I David I, I David I, and

I D a v i d I are all different. A single quotation mark may be included in
a character string by using double quotation marks to enclose the entire string or
by using two single quotation marks embedded in a string surrounded by single
quotes:

"Here's a string constant"
'Here' 's a string constant.'

These two are equivalent, as are

'Here is a "string constant."'
"Here is a ""string constant."""

Programming Tip
One way to create a source code file is to use a word processor and save

the document as a text file. However, some word processors have a "smart
quotes" option that is turned "on" by default. When you type a double or single
quotation mark, the smart quotes option will try to "help" by inserting
typographical symbols, " ... " or " which are different from the symbols " ... " and
'. Typographical quotation marks and apostrophes will not work in Fortran source
code.

Long string constants may take more than one line to express, in which
case a specific line continuation form is required in order to allow the ampersand
and exclamation point characters to be part of string constants. These characters
might otherwise be interpreted as a line continuation or the initiation of an in-line
comment. Here's an example:

3.3 Declaring Variables and Defming Constants • 95

Poem_string='Roses are red, &
&& Violets are blue. &
&I love Fortran &
&But I don' 't expect you to!'

A line to be continued may not contain a trailing comment, and each continuation
line must have a continuation mark as its firstnonblank character. The trailing
blanks before the continuation mark at the end of a line are part of the string, but
the leading blanks before the continuation marks in the continued lines are not.
The ampersands are not part of the string. The second ampersand in the fIrst
continuation line is not a misprint. If a program printed this string constant, it
would look like this:

Roses are red, & Violets are blue. I love Fortran But I don't
expect you to!

(It won't all fIt on one line here, either.)

3.3.4 Initializing Values with the DATA Statement

Programs often require that variables be "initialized" to a particular value at the
beginning of a program. One way to do this is with the DATA statement. A
simplified version of the syntax is

DATA variable_list/constant for each variable,
separated by commas/

DATA variable_list/n*constant/
DATA variable_name/constant/[,variable_name/constant/]

where n is an integer that specifies the number
of repetitions of the constant

Examples:
DATA x,y,z/1.l,2.2,3.3/
DATA x/l.l/,y/2.2/,z/3.3/
DATA a,b,c/O,O,O/
DATA a,b,c/3*O/

The DATA statement is a nonexecutable statement that should appear after all type
declaration and PARAMETER statements and before the fIrst executable statement
in your program. Any variable initialized in a DATA statement must appear in a
type declaration statement, assuming that the IMPLICIT NONE statement is
included prior to the data declaration statements.

The signifIcant difference between variables initialized in a DATA statement
and quantities given PARAMETER status is that initialized variables retain their
"variable" status and can be reassigned other values while the program is running.

96 • 3. Getting Started with Fortran: Writing Simple Programs

However, because the DATA statement is nonexecutable, it cannot be used to
"reinitialize" variables later in a program.9 Note that the DATA statement is one
implementation of the pseudocode INITIALIZE command.

In the third syntax form, the fIrst variable_name/constant/ can be,
but doesn't have to be, followed by additional variable_name/constant/
specifIcations, separated by commas.

3.4 List-Directed Input and Output

Program P-3.1 has three functions: to accept user input, to perform some
calculations, and to display the results of the calculations. The fIrst and third of
these provide the critical input/output (110) interface between the program and a
user. Fortran includes extensive and sometimes complicated 110 capabilities.
Fortunately, it also includes some provisions for simple 110 operations that are
well suited to simple programs such as P-3.1.

3.4.1 Reading and Displaying Numerical Values

Displaying a prompt for user input

The first task of P-3.1 is to obtain information from the user-specifIcally the
radius required to calculate the circumference and area:

get input, ..

PRINT *, 'Give radius of a circle: I

READ *, radius

This is an example of an interactive program that
requires the user to provide input while the
program is running. Most of the programs in this

standard output device I
text will contain some user-provided input. A user prompt should always precede
a request for input in an interactive program. This isn't necessary from Fortran's
point of view, but it is certainly necessary from the user's point of view. The
PRINT * statement prints the message

Give radius of a circle:

9This fact has important implications in subprograms. as we will discuss later in the text.

3.4 List-Directed Input and Output • 97

on the computer's standard output device. This is almost always a terminal or
computer screen. Recalling the output from P-3.1, consider what would happen if
you executed a version of P-3.1 that did not include the prompt for input. When
the program was executed, it would wait for you to enter a value for the radius,
but you would have no way of knowing what the program expected. The program
would wait, you would stare at the screen, waiting for something to happen.

The presence of an asterisk in P-3.1's PRINT
statements identifies this as list-directed output. This is
a kind of "shorthand" output instruction for displaying
program output on your monitor screen. When you use list-directed output, the
Fortran compiler, rather than the programmer, decides how to display the output,
and the results will vary from compiler to compiler. A simplified syntax for list
directed output using the PRINT statement is

PRINT *[,list of variables, expressions, functions,
or constants, separated by commas]

Examples:
PRINT*, 'This prints a string constant.'
PRINT* ! This prints a blank line.
PRINT*, 'The two sides are ',x,' and' ,y, &

The hypotenuse is ',hypotenuse,'.'
PRINT*, 'The average of x and y is ',(x+y)/2.0

A more complete description of syntax for the PRINT statement is given in
Appendix 2, to which we will refer when we discuss the PRINT statement again
in Chapter 5. The output list is optional. Without such a list, a blank line is
printed, as in the second example. The last example demonstrates that expressions
can be evaluated and printed directly from within the PRINT statement.

Getting input from the keyboard

Following the user prompt provided by the first PRINT statement in P-3.1, the
READ * I radius statement requests input from the keyboard-the default input
device. When a READ statement is encountered, the program's operation is
suspended until the user presses the En ter key at least once. In order for the
program to continue, the user must provide all the information expected by the
READ statement. As noted previously, without a prompt message in a PRINT
statement immediately preceding a READ statement, a program will be suspended
indefinitely while it waits for a user to respond. Without an appropriate prompt
message, the program may still be suspended indefmitely, waiting for the user to
guess the required response.

98 • 3. Getting Started with Fortran: Writing Simple Programs

A simplified syntax for the list-directed READ statement is

READ *[, list of variable names, separated by commas]

Example:
READ *,a,b,c

A list of variables is optional, although almost always present. Even without a list,
a response is required: press the Enter key.

Just as an asterisk in a PRINT statement provides
a convenient way to produce output in simple programs,
an asterisk in a READ statement specifies list-directed

list-directed input I
input. Fortran compilers are relatively forgiving about how you enter numbers in
response to a request for li~t-directed input. For example, you can precede the
number with blank spaces, although there is no reason to do this.

Here's a new problem to demonstrate some features of list-directed I/O.
One difference is that more than one input value is required.

1 Define the problem.

Given the height, width, and length of a box, calculate its surface area and
volume.

2 Outline a solution.

1. Prompt the program user to supply the height, width, and length.
2. The equations for surface area and volume of a rectangular box with height,
width, and length h, w, and I are

3. Displav the results.

surface area = 2(lw + lh + hw)
volume = lwh

3.4 List-Directed Input and Output • 99

3 Design an algorithm.

DEFINE (length, width, height, surface area, and volume as real numbers)
WRITE (prompt user to enter length, width; and height)
READ (length, width, height)
ASSIGN surface area = 2-(length-width + length-height + height-width)

volume = length-width-height
WRITE (surface area and volume)

4 Convert the algorithm into a program.

P-3.2 [BOX. F90]

PROGRAM box

Purpose: Calculate surface area and volume of a rectangular box.

IMPLICIT NONE
REAL height, width, length, SurfaceArea, volume

PRINT *, 'Give the height, width, and length of a box: '
READ *,height,width,length

SurfaceArea=2.0*(height*width+height*length+length*width)
volume=height*width*length

PRINT

END

* ' , surface area = ',SurfaceArea,' volume = ',volume

Running P-3.2

Give the height, width, and length of a box:
2.0 5.0 9.0
surface area = 1.4600000E+02 volume =

5 Verify the operation of the program.

Check values bv hand or with a calculator.

90.0000000

100 • 3. Getting Started with Fortran: Writing Simple Programs

Problem Discussion
Program P-3.2 shows that a single READ statement can process several

values typed on your keyboard. Suppose the box has a height, width, and length
of 3.2,4.2, and 5.2, respectively. The units are unimportant for this discussion. In
general, however, your prompt message should indicate the physical units of all
values a user is expected to supply. After the prompt message appears on your
screen, there are several acceptable ways to provide the three desired values for
list-directed input, including:

3.2 4.2 5.2<Press the Enter key.>

3.2, 4.2, 5.2<Press the Enter key.>
3.2 4.2 5.2<Press the Enter key.>

3.2/4.2/5.2<Press the Enter key.>

3.2<Press the Enter key.>
4.2<Press the Enter key.>
5.2<Press the Enter key.>

Numerical values can be separated by spaces, commas, slashes, end-of-line marks
(put there by pressing the Enter key or, on some computers, the Return key),
or even combinations of these separators. There is usually no good reason to use
slashes to separate numerical values, and their use could be confusing, as though
you were trying to imply a division operation. So as a matter of style and habit,
you should not use slashes as separators. As a practical matter, you should
develop the habit of consistently using either commas or spaces as value
separators.

In all cases, keyboard input must be terminated by pressing the Enter

key; we have indicated that action specifically in these examples only to clarify
the matter. Your program will not do anything else until you enter at least the
required number of values. If you enter more values than are required, your
program will ignore the extra values.

Suppose, for P-3.2, the dimensions of a box are 2.0x3.0x4.0 inches. If you
are diligent about representing REAL numbers correctly, you will type

2.0 3.0 4.0

or

2. 3. 4.

when you enter the values. However, it is OK to type

234

3.4 List-Directed Input and Output • 101

This will result in an INTEGER-to-REAL type conversion, I
which means that the whole numbers 2, 3, and 4 will be type conversion
stored internally as though they were real numbers instead
of integers (because the variables that are receiving the values are REAL). This
won't cause problems in this context, but there are other situations in which type
conversions should be avoided; we will discuss them later in this chapter.

If you enter some characters that can't be interpreted as a number, your
program will crash. Suppose that you intend to type 3.1, but type 3. q instead
(because the q key is just below the 1 key on the keyboard). Your program will
crash and your Fortran implementation will print a message that tries to explain
the problem-perhaps something mysterious like "Invalid List-Directed Input."

It is possible for a program to read a line of keyboard input as a character
string, check it for characters that don't belong there, and then either remove the
unwanted characters or ask the user to try again. As a practical matter, this is
rarely worth the effort for programs you write to use yourself. If your program
crashes because you make a mistake when you're typing input on the keyboard,
just start over again. If the input your program requires is too long or complicated
for keyboard input to be a reasonable option, then you should consider reading
input data from some other source, as we will discuss in Chapter 9.

Programming Tip
If you have programmed in BASIC, you may be accustomed to using

commas as value separators. If you have programmed in C, you may be
accustomed to using spaces. Either style is OK for list-directed input in Fortran,
but you should pick one and stick with it.

Displaying output

As mentioned above, when you use list-directed output, your Fortran environment
decides how the output will appear on your screen. The output of string constants,
as for the user prompts in P-3.1 and P-3.2, is usually perfectly reasonable.
However, the output of numerical values may be confusing or arbitrary. The
Fortran 90 compiler used to develop the programs in this text produces screen
output for P-3.2 that looks like this:

Give the height, width, and length of a box:
3.2 4.2 5.2
surface area = 1.0384000E+02 volume =

For no apparent reason, numbers larger than 100 are
displayed in scientific notation (as a number times a
Dower of 10), Also. the list-directed outout disDlavs

69.8879929

scientific notation
significant figures

102 • 3. Getting Started with Fortran: Writing Simple Programs

many more significant figures than is reasonable for the calculation. (The output
also demonstrates that Fortran arithmetic operations aren't always exact, but that's
another topic.)

Other Fortran compilers will produce list-directed output that looks
different from this example. List-directed output is OK for simple programs
written for your own use, but you will eventually wish to gain more control over
the appearance of your output. We will cover this topic in detail in Chapter 5.

3.4.2 Manipulating Text Information

So far, nothing has been said about providing non-numerical information
to your program. Consider this example:

P-3.3 [NAMES. F90]

PROGRAM names

IMPLICIT NONE
CHARACTER*20 name
INTEGER age

PRINT *,' What is your first name? '
READ *, name
PRINT *,' Howald are you? '
READ *,age
PRINT *,name,age

END

Running P-3.3

What is your name?
David

Howald are you?
34

David 34

With list-directed input of a character string, you can enter a single name, as
shown. However, suppose you wanted to enter a complete name such as Susan
Anthony or Anthony, Susan. If you enter either of these inputs, the READ*,
name statement in P-3.3 will not work as you intended because the space after
Susan or the comma after Anthony will be treated as a separator between two
string variables. The result will be that the "full name" you intended to enter will
be the single name Susan or Anthony, depending on which one you entered
first. The easiest solution to this problem is to read the first name and last name
in different statements:

3.4 List-Directed Input and Output • 103

PRINT *,' What is your first name?'
READ *, first_name
PRINT *,' What is your last name?'
READ *,last_name

Note that if your name is Susan B. Anthony and you enter Susan B. in response
to the request for your fIrst name, this code will ignore the middle initial, so you
may also need to provide a separate prompt for the middle initial.

It is possible to modify P-3.3 so that the complete name and age can be
provided in response to a single READ * statement:

CHARACTER*20 last,first,MI
INTEGER age

PRINT *, &
, Give your first name, middle initial, last name, and age, '
PRINT *,' separated by a space or comma:'
READ *,first,MI,last,age
PRINT*,last,', ',first,MI,age

The problem with this code is that not everyone has a middle initial. If the user
enters just a fIrst name, last name, and age:

David Brooks, 33

then the program will think that the middle initial is Brooks, the last name is the
character string 33, rather than the number 33, and that the age has not yet been
entered. Even worse, if you declare the strings more reasonably as

CHARACTER*20 last,first,MI*2

the program's response to entering David Brooks I 33 will not be useful. (Try
it and see.)

Because of these potential problems with reading text, it is good
programming style, at least for inexperienced programmers, to read numerical and
string information in separate statements, as has been done in P-3.3, and to
specify in the user prompt that strings entered should contain no spaces or
commas.

104 • 3. Getting Started with Fortran: Writing Simple Programs

3.5 Arithmetic Operators, Assignment Statements, and Calculations

3.5.1 Arithmetic Operators, Expressions, and the Assignment Operator

We will now return to the P-3.1, the ftrst program in this text, to examine the part
of the program that calculates the area and circumference of a circle with a
specifted radius. The two statements are

do calculations ...

circurnference=2.0*pi*radius
area=pi*radius*radius

It's easy to understand what these two calculations do because the statements look
very similar to their algebraic equivalents. However, we need to examine
statements like this in the broader context of how Fortran evaluates expressions
and performs calculations.

Fortran supports several arithmetic operators, as shown in Table 3.3. The
ftrst ftve are familiar from algebra, although you may be accustomed to using the
symbol X or - instead of a * for multiplication. The algebraic expressions a-b
or ab must be represented as a*b in Fortran. The characters a-b can't even be
translated into source code because the - symbol doesn't exist as a "keyboard
character" and it wouldn't be recognized by Fortran even if it did. The characters
ab will be interpreted not as "a times b," but as a variable named ab-not at all
what you intended.

The exponentiation operator is used for raising a constant, variable, or
expression to an integer or real power. The power may be a constant, variable, or
expression. The algebraic expression x3 is represented in Fortran by x * * 3; the
square root of x can be represented by x**O. 5 or x** (1. /2.).

The ftrst ftve operators in Table 3.3 are called
binary operators, which means that there must be a
variable, constant, or expression on each side of the
operator. Therefore expressions such as * a or a * /b

bilUlry operators
unary operat6rs

aren't allowed. (They don't make any algebraic sense, either.) The last two
operators are unary operators. This means that they need a variable, constant, or
expression only on the right side of the operator. Therefore, expressions such as
- Z, - 3. 5+x, - (a+b), or + (a *b) are perfectly reasonable. In the last of these,
the + sign is optional and the expression is equivalent to a *b.

3.5 Arithmetic Operators, Assignment Statements, and Calculations • 105

Table 3.3. Fortran arithmetic operators

Operation Symbol

Binary Operators

Addition +

Subtraction -

Multiplication *
Division /

Exponentiation **
Unary Operators

Multiply by + 1 +

Multiply by -1 -

In Fortran, statements can contain expressions consisting of a combination
of constants, variable names, and operators. Algebraic expressions such as

x=a+b
x=y+3

can be translated directly into Fortran. Consider program fragment P-3.4. A and
B are fIrst assigned values of 2 and 4. Then X is assigned the value A+B. The
value of X is now 6. In the next line, Y is assigned the value of X; Y now has the
value 6. In the final line, X is assigned the value Y+3. X now has the value 9.

P-3.4 (fragment)

REAL x, Y , A, B

A 2.0
B 4.0
X A + B
Y X
X Y + 3.0

106 • 3. Getting Started with Fortran: Writing Simple Programs

In the examples in P-3.4, the = sign means
"assign the value of the expression to the right of the
= sign to the variable name to the left of the =

sign." The = sign is called an assignment operator.
A statement containing an assignment operator is

assignment operator
assignment operation
assignment statement

called an assignment operation or an assignment statement. The general syntax
of the assignment statement is

variable_name expression consisting of constants,
variables, functions, and operators

(We haven't discussed "functions" yet, but we will in Chapter 6.) The executable
statements in P-3.4 are all examples of assignment statements. Note that the only
thing that can appear on the left side of an assignment operator is a single variable
name.

"Assigning" a value has an obvious English-language interpretation that is
not too. different from the technical programming-language interpretation.
However, the fact that the Fortran assignment operator is an = sign (it could easily
be something else) does not mean that an assignment operation is the same thing
as an algebraic equality. The specific programming-language interpretation of an
assignment operation is very important.

An assignment statement means: Evaluate the expression on the right side
of the assignment operator and place the result in the computer memory
location associated with the variable name on the left side of the assignment
operator.

Because of this interpretation, you need to be careful about how you think about
and write assignment statements.

First of all, it is a serious mistake to associate the = sign in Fortran with
its meaning of "equality" in the algebraic sense. For one thing, only a single
variable name can appear on the left side of an assignment operator. So, for
example, the algebraic expression x + y = z + 3 is perfectly reasonable because
it expresses the symbolic equality between x + y and z + 3, but the Fortran
statement

x + Y = Z + 3 !makes no sense

makes no sense at all and is not allowed under any circumstances.
There's another important difference between I uninitiolized· variable I

an assignment statement and an algebraic expression.
Note that the variables A and B are assigned

3.5 Arithmetic Operators, Assignment Statements, and Calculations • 107

numerical values in P-3.4 before the statement X=A+B. This is because it is
necessary for A and B to have values in order for the assignment statement to be
executed correctly. To put it another way, the assignment statement X=A+B

doesn't express a symbolic relationship between A and B in the algebraic sense;
rather, it indicates an operation whereby the sum of the memory locations
associated with A and B will be placed in the memory location associated with the
variable X. If A and B don't have values, they are "uninitialized," and the results
can be unpredictable. Sometimes a programming language or a particular compiler
will assume that uninitialized variables have the value 0, but you should never
assume that this will be the case. The programming rule, to which you should
NEVER make exceptions, is

Variables should not appear on the right side of an assignment operator
until they have been given a value as a result of a previous statement.

Variables may be given a value by appearing on the left side of an
assignment operator, by being given the PARAMETER attribute, by appearing in
a DATA statement, or as a result of a READ statement. lO In P-3.4, A and B have
been assigned values by placing them on the left side of an assignment operator.
You could also let the user provide values for A and B in response to a READ

statement.

3.5.2 Assignment Statements That Increment Variables

Because of the way the assignment operation is dermed, the code fragment in P-
3.5 makes perfect sense in Fortran, even though the second assignment statement
doesn't make algebraic sense:

P-3.5 (fragment)

INTEGER x

x = 3
x = x + 1

First x is assigned the integer value 3. In the second statement, the
expression on the right side of the assignment operator is evaluated-it has a
value of 4. Then this result is placed in the memory location represented by x.

lOA and B could also be given a value as output from a subroutine, as we will discuss in
Chapter 7.

108 • 3. Getting Started with Fortran: Writing Simple Programs

(In general ...)

x = expression

Evaluate (temp)
I expression I· ~ I f.. x

& store

(A simple assignment. ..)

x=3
Evaluate (temp) o ~I 3 ~x
& store

(Incrementing a variable ...)

x=x+1
Evaluate (temp)

~ ~13+1=4 ~x
& store

Figure 3.2. How assignment statements are
used to initialize and increment a variable

That is, the original value of x, 3, is replaced (or "overwritten") by the new value.
This process is illustrated in Figure 3.2.

Incrementing a variable (not always just by 1) is a very common
assignment operation in programs, and we will use it often in problems throughout
the text. Recall that we defined two pseudocode commands in Chapter
2-INITlALlZE and INCREMENT-to emphasize the special purpose of these
two kinds of assignment statements. In pseudocode, the statements in P-3.S would
be written

INITIALIZE index = 3
INCREMENT index = index + 1

We will use the INITIALIZE and INCREMENT pseudocode commands again
when we discuss loop structures in Chapter 6. Note that the INCREMENT
command also includes "decrementing" a variable in an assignment statement. The
Fortran statements

index 3
index index - 1

result in index having a value of 2.

3.5 Arithmetic Operators, Assignment Statements, and Calculations • 109

3.5.3 Mixed-Mode Calculations

The observant reader will notice that the numerical constants in P-3.4 are
expressed as real constants; for example,"2 . 0" rather than "2". This is because
you must be careful to distinguish between real numbers and integers in Fortran.
All the variables in P-3.4 are declared as REAL and therefore all the operations
involve real, as opposed to integer, arithmetic.

Assuming X and Y are REAL variables, as they are in P-3.4, the Fortran
statement

x = Y + 3

will produce the same result as

x = Y + 3.0

However, the ftrst of these two statements is a
mixed-mode expression that combines two
different data types, INTEGER (the constant 3)
and REAL (the variable Y), in the same expression. This statement requires your
compiler to convert the integer constant on the right side of the assignment
operator to a real number when it is added to Y.

Consider also the statement

A = 2

from P-3.4. This statement, too, will produce the same result as

A = 2.0

Again, in the ftrst of these two statements, your compiler is required to perform
a type conversion to convert the integer constant on the right side of the
assignment operator to a real number when it is assigned to the REAL variable A
on the left.

In almost all cases, it is preferable to avoid mixed-mode expressions. Why?
Because these operations can cause problems! Consider P-3.6, which contains
several examples of mixed-mode calculations.

110 • 3. Getting Started with Fortran: Writing Simple Programs

P-3.6 [MIXED. F90]

PROGRAM mixed

IMPLICIT NONE
INTEGER i,j
REAL x,y

i=5
j=2
x=i/j

PRINT *, i, j , x
x=3.3
y=1. 5
i=x/y
PRINT *,i
x=2/3*4.
PRINT *,x
x=2*4./3
PRINT *,x

END

Running P-3.6

5 2 2.000"0000
2

O.OOOOOOOE+OO
2.6666667

How do you determine what value will be printed for x in the ftrst PRINT
statement? The variables i and j are integers, but x is real. With i = 5 and j = 2,
the result of the division is 2, not 2.5, because the remainder is lost in integer
division. Therefore, even though x is real, it has a value of 2.0 after the type
conversion, not 2.5! This result is due to the fact that the fIrst step in an
assignment operation is to evaluate the expression on the right side of the
assignment operator. At the time this evaluation is carried out, Fortran doesn't
"know" that you intend to store the result of the evaluation in a location
associated with a REAL variable. Hence it has no way of knowing that you
probably wish the division operation 5/2 to be treated as an operation involving
REAL constants. Similarly, the statement i =x/y results in i being assigned a
value of 2 because i is an integer and can't have a value of 2.2.

What results will be displayed by the third and fourth PRINT statements?
Clearly, the statements x=2/3*4. and x=2*4. 13 are "algebraically" equivalent,
but they do not produce the same value! The integer division 2/3 in the first of
these statements is truncated to 0, so x eventually will be assigned a value of O.
In the second statement, the result of the multiplication operation 2 * 4. is the real

3.5 Arithmetic Operators, Assignment Statements, and Calculations • 111

value 8.0. When this real value is divided by the integer value 3, the result is the
real value 2.666667.

Programming Tip
The interpretation of mixed-mode expression varies from language to

language. In Fortran and C, the data types of the numerator and denominator
determine the result of division; 5/2 equals 2 because 5 and 2 are both
INTEGER constants. In Pascal, for example, the operator and not the operand
determines the data type of the result. Hence, in Pascal, 5/2 yields a value of 2.5
rather than 2 and the assignment of this result to an integer data type isn't
allowed. This kind of language dependency is another good reason to be careful
about using mixed-mode expressions carelessly.

Although this discussion may seem a bit theoretical, the way Fortran
evaluates mixed-mode expressions and performs type conversions can have
important practical consequences. Consider these Fortran statements intended for
converting back and forth between centigrade (C) and Fahrenheit (F) degrees,
assuming both c and F have been declared as type REAL:

C = S/9*(F - 32) !wrong!
F = 9/S*C + 32 !wrong!

These statements look like straightforward translations of algebraic expressions.
However, both statements produce incorrect results. The conversion from
Fahrenheit to centigrade gives a value of 0 for every value of F because the
division operation 5/9 equals O. The second expression is equivalent to F=C+32
because the division operation 9/5 equals 1. These expressions should be
written II

C = S./9.*(F - 32.)
F = 9./S.*C + 32.

Although it is possible to develop a set of rules for determining the results
of mixed-mode calculations, it is not worth the effort for a beginning programmer.
It is easy to make mistakes with these kinds of calculations, and the resulting
errors are very hard to track down in a program because, from Fortran's point of
view, there is nothing wrong with them. To avoid these kinds of errors, it is
usually a much better idea to avoid mixed-mode calculations. This means

II Actually, writing either the 9 or the 5 as a REAL constant will produce the desired
result, but it is better style to write all the values as REAL constants.

112 • 3. Getting Started with Fortran: Writing Simple Programs

Usually, all the variables, functions, and constants appearing in a Fortran
assignment statement should have the same data type.

There are a few reasonable exceptions to this rule. Program P-3.7 illustrates
a typical example in which the average of three real numbers is calculated by
dividing the sum of the three numbers by the integer value 3; this mixed-mode
calculation won't cause any problems.

P-3.7 [AVERAGE. F90]

PROGRAM average

IMPLICIT NONE
REAL x,y,z,avg
INTEGER n

PRINT *,' Give three numbers: '
READ *,x,y,z
n=3

avg=(x+y+z)/n

PRINT *, 'The average of these three numbers is ',avg

END

Running P-3.7

Give three numbers:
3.3 5.2 4.9

The average of these three numbers is 4.4666667

The number of values n is an INTEGER. However, the mixed-mode expression
(x+y+ z) In is evaluated properly because x, y, and z are REAL variables and
the result, avg, is also a real number. That is, the result of dividing a REAL
variable by an INTEGER variable is a real number.'2

'1fie interpretation of mixed-mode expressions through "type coercion" is a topic of
interest in a more theoretical study of programming languages. For our purposes, it is sufficient
to understand the examples given in P-3.6 and P-3.7. When we discuss Fortran intrinsic functions
in Chapter 4, you will see that the mixed-mode expression in P-3.7 could be rewritten as
(x+y+z)/REAL(n), which might be a better choice because the INTEGER-to-REAL conversion
is done explicitly.

3.5 Arithmetic Operators, Assignment Statements, and Calculations • 113

Programming Tip
Remember that the statement

PRINT *, 'The average of these three numbers is ',(x+y+z)/n

in P-3.7 is permissible. In that case, the variable name avg need not be declared
and the assignment statement in which it appears is not required. Whether this
kind of "short cut" is a good idea depends on the program in which it is used.

3.5.4 Using Compatible Constants

As we have indicated in the previous discussion of mixed-mode expressions and
type conversions, some mixing of data types is allowed in Fortran regardless of
whether this is a good idea. However, some incompatible assignments simply
aren't allowed. Consider Fortran program fragment P-3.8:

P-3.8 (fragment)

REAL a
CHARACTER*8 b
a='cornputer' !Syntax error.
b=3.0 !Syntax error.

It should be obvious that the code in P-3.8 doesn't make any sense. If a is a
REAL variable, then it cannot be assigned the value of a character constant.
Similarly, b can't be assigned a numerical value. These assignments will cause
your program to crash because it cannot perform the requested operation. 13

However, some incompatible assignments are acceptable to your Fortran compiler
even when they can cause problems in your program. Consider code fragment
P-3.9:

P-3.9 (fragment)

REAL a
INTEGER b
a=3
b=3.3

13If you study the C programming language, you will find that assignment statements in
that language allow type conversions that don't "make sense" in Fortran.

114 • 3. Getting Started with Fortran: Writing Simple Programs

The assignment a=3 won't cause any problems in a program because the integer
value 3 will be converted to a real value, but b=3 . 3 results in 3.3 being truncated
to 3; this is almost surely not what you wish to happen. This problem was noted
previously in the discussion of keyboard input. Remember:

I In general, constants should be assigned only to identically typed variables. I
In some cases Fortran will object if you try to make incompatible assignments
with constants, but in other cases Fortran will be perfectly happy to return answers
that won't be what you expect. Be careful!

3.5.5 Operator Precedence

Expressions evaluated as part of an assignment statement can sometimes be quite
complicated. When Fortran evaluates an expression, the process follows specific
rules so that there can never be any ambiguity about what the value of the
expression should be. Fortunately, the rules are similar to what you should have
learned in algebra. Consider code fragment P-3.1O:

P-3.1O (fragment)

REAL X,Y,A,B

X=3.0
A=2.0
B=4.0
Y=A+B*X

What is the value of y? The answer depends on the order in which Fortran
performs the indicated arithmetic operations. If all the operations are performed
in order from left to right, then in algebraic notation, y = (2 + 4)3 = 18. However,
this is not the case. In fact, y = 2 + 12 = 14. Why? Because in the same sense
that the algebraic expression y=a+bx implies a specific order of operations in
which the multiplication is done first, Fortran assigns priorities to operators and,
if there are no parentheses present, evaluates operators with the highest priority
frrst. The evaluation priorities for arithmetic operators are given in Table 3.4.

First Fortran reads through an expression from left to right and performs
all the exponentiation operations. Then it reads through the expression again and
performs all the multiplications and divisions. Finally, it reads the expression
again and performs all the additions and subtractions. In P-3.1O, the operation B*X
is performed first. The result of that operation. the value 12.0. is temporarily

3.5 Arithmetic Operators, Assignment Statements, and Calculations • 115

stored, and on the second pass through the expression, the operation A + 12.0 is
performed.

Table 3.4. Priority for Arithmetic Operator Evaluation

Operator Evaluation Priority

** First

*,/ Second

+ -, Third

Here is another Fortran statement that involves all the operators:

Y = A+B*X**2/A-B

Using Table 3.4 and the values in P-3.1O, try to calculate the value of Y yourself
now. After the first pass through the expression, the exponentiation operation has
been completed and the expression is equivalent to the algebraic expression

y = a + (9b/a) - b

During subsequent passes, the expressions are equivalent to

y = a + (36/2) - b = a + 18 - b = 2 + 18 - 4 = 16

Parentheses can be used to alter the order in which Fortran evaluates
expressions. For example, the Fortran assignment statement

Y = (A+B)*X

is not the same as

Y = A+B*X

for the same reason that the algebraic expression y = (a + b)x is different from
y = a + bx. In both algebra and Fortran, the parentheses force the addition
operation inside the parentheses to be performed first. Fortran expressions are
always evaluated from the innermost set of parentheses outward. For y=(a+b)x,
y = (2 + 4)3 = (6)3 = 18, and not 14, for the values used in P-3.10. Similarly, the
Fortran assignment statement

Y = A+(B*X)**2/A-B

116 • 3. Getting Started with Fortran: Writing Simple Programs

is not the same as

Y = A+B*X**2/A-B

because, in the former case, B*X is evaluated first and this product, not just x, is
squared.

Whenever you convert algebraic expressions into their Fortran equivalents,
you must be careful to use pairs of parentheses when they are required to produce
the desired result. Use of parentheses in a statement such as

Y = A+(B*X)

is unnecessary because the multiplication will be performed frrst even if the
parentheses aren't there, but they may make your intentions more clear. However,
if you wish to translate the algebraic expression y = (a + b)x into Fortran, the
parentheses in the statement Y = (A + B) *x are essential because you are asking
Fortran to evaluate this expression in a way that overrides the normal operator
precedence.

Algebraic expressions are often written on more than one line; for example,
a+b x=-
c+d

Remember that the translation of this algebraic expression into a Fortran
expression must occupy just one line. If you rewrite the algebraic expression as
x = (a + b)/(c + d), the Fortran translation is more obvious:

x = (a+b)/(c+d)

All of these Fortran expressions are perfectly legal, but none of them gives the
same result or correctly translates the above algebraic expression:

x = a+b/c+d
x (a+b)/c+d
x a+b/(c+d)

It is easy to misrepresent algebraic expressions in Fortran. Consider this
expression for one real root of a quadratic equation:

-b+'b 2 -4ac r = _----'-V __ _
2a

Which of these Fortran implementations is correct, assuming that the expression
under the square root sign b2 - 4ac is greater than or equal to zero?

3.5 Arithmetic Operators, Assignment Statements, and Calculations • 117

(~ Root=-B+(B*B-4.0*A*C)**0.5/2.0*A

(b) Root=(-B+(B*B-4. O*A*C) **0.5)/2. O*A

(c) Root= (-B+ (B*B-4 . O*A*C) **0.5) / (2. O*A)

(d) Root= (-B+ (B*B- 4. O*A*C) **0.5)/2. O/A

(a) is wrong because the entire numerator needs to be enclosed in parentheses.
This problem is corrected in (b), but both (a) and (b) are wrong because although
the A appears to the right of the /, it is still not part of the denominator of the
expression, as required. Either (c) or (d) will give the correct result.

A common syntax error in Fortran is to leave sets of parentheses
unbalanced in complicated expressions. The rule is that

In any expression, the number of left parentheses must equal the number
of right parentheses.

The Fortran statement

Y=«A+B)*X+3.0*C

cannot be evaluated because a right parenthesis is missing. You might intend

Y=«A+B)*X)+3.0*C

or

Y=«A+B)*X+3.0)*C

or even

Y=«A+B)*X+3.0*C)

even though the outer parentheses serve no purpose in the first and third
possibilities. In any event, you cannot expect your Fortran compiler to guess your
intentions!

Here's one final point about operator precedence. When two or more
exponentiation operations appear consecutively in an expression, the operations are
performed in right-to-left order rather than in left-to-right order. This is
"backward" relative to the usual order in which operators are evaluated and can
cause problems if you're not careful. The expression a**b**c is equivalent to
a * * (b* * c) and, in general, is not equal to (a * *b) * * c. For example,
2 * * (3 * * 3) evaluates as 2 * * 2 7, but (2 * * 3) * * 3 becomes 8 * * 3. In such
cases, it would be a good idea to use parentheses to make clear the order in which
you wish the exponentiations to be performed.

118 • 3. Getting Started with Fortran: Writing Simple Programs

3.6 Program Termination

As noted earlier in this chapter, the END statement, which marks the end of a
source code file, is the only required statement in a Fortran program. The general
syntax is

I END [PROGRAM [program_name]]

The keyword PROGRAM is optional. If the PROGRAM keyword is present, then
program_name may also appear. We will not use the PROGRAM keyword option
in this text.

The STOP statement terminates program execution. It can appear anywhere
in a program before the END statement, and a program can include more than one
STOP statement. The syntax forms for the STOP statement are

STOP
STOP ddddd
STOP 'string constant'

where ddddd is an integer of up to five digits.
If an integer of up to five digits or a string constant is included in the

statement, it is printed after the word STOP. Hence the STOP statement can be
used not just to terminate a program, but also to generate a message that indicates
where termination occurred. For example, the statement

STOP 'Normal program termination.

at the end of a program could be used to indicate that the program executed and
terminated normally.

In the complete programs given in this text, we will rarely use a STOP
statement because good programming style should make it unnecessary to
terminate a program anywhere except at the end. (One example of an appropriate
use appears in Program P-6.13 in Chapter 6. In that case, a STOP statement is
used to terminate a program and print a message when a user enters inappropriate
input.)

However, the STOP statement is extremely useful for developing and
debugging programs. Initially, you can include PRINTs to display intermediate
results at several critical points in your program. Follow each such PRINT or
group of PRINTs by a STOP statement, perhaps including an explanatory message
about where you are in your program. Then, as you verify the operation at each
one of these critical points, you can remove the PRINTs and the STOP. Of course,

3.7 Compiling and Executing a Program • 119

you can approach this the other way around. If your completed program doesn't
work, you can temporarily insert PRINTs and STOPs anywhere you think they
might be useful in locating the problem. For completed programs, however,
multiple STOPs should be avoided as a matter of programming style.

3.7 Compiling and Executing a Program

3.7.1 Source Code Portability

As you now know, Fortran source code must be written according to a very rigid
set of syntax rules. The unforgiving nature of source code syntax often seems
excessively burdensome for beginning programmers. However, the advantage of
these rules in a standardized language is that source code is highly portable from
one computer and compiler to another. As noted earlier in this chapter and
previously in Chapter 2, any Fortran 90 source code you write during a course
based on this text can probably be compiled and used with no (or very minor)
changes on any other computer that has a Fortran 90 compiler.

Why is your source code only "probably" portable to another computer? To
answer this question, consider the Fortran's predecessor, Fortran 77, which has
been around for a long time-as you would guess, since the late 1970s. Since
then, the authors of compilers have added many new features to Fortran 77, some
to meet specific programming needs and others in response to concepts
implemented in newer languages such as Pascal and C. These nonstandard
extensions differ from compiler to compiler, so that a program written to take
advantage of extensions available on one compiler will not work on a compiler
that does not have those same extensions. Some extensions, such as those allowing
variable names to be written in both uppercase and lowercase letters and to be
longer than six characters, are almost universal, but others are not.

With the implementation of a new Fortran standard, compatibility is at least
temporarily less of an issue for programs written in the Fortran 90 language.
Therefore, all the programs in this text should execute on any computer equipped
with a Fortran 90 compiler, although it is not practical to guarantee 100 percent
compatibility. The only likely incompatibility lies in the syntax of file names,
which arises from the fact that the syntax for naming files is system dependent.

However, the "programmer's market" demands that led to extensions to
Fortran 77 will eventually be applied to Fortran 90. Although this new standard
undoubtedly has its own weaknesses, not nearly enough time has elapsed for either
its weaknesses or its strengths to be fully determined or appreciated; even though
it is called Fortran 90, compilers were not commercially available until 1993. It
is inevitable that extensions to the Fortran 90 standard will cause the same kinds
of compatibility problems that are now evident in Fortran 77. Likely areas for
extensions include object-oriented programming and, especially for large science

120 • 3. Getting Started with Fortran: Writing Simple Programs

and engineering applications, language extensions to take advantage of parallel
processing and supercomputers.

There are two additional points of interest about language compatibility.
First it is typical for Fortran texts to adhere to the language standard in order to
ensure their widespread adoption. However, this means that the Fortran 77
language students have been taught for the past several years is only a restrictive
subset of the language as it is used in practice. It will be several years before this
will be a significant problem for Fortran 90 texts.

Finally, Fortran 77 language extensions affect the compatibility between
Fortran 77 programs and Fortran 90 compilers. Although the standard requires that
Fortran 90 compilers accept Fortran 77 programs, this requirement applies only to
programs that adhere to the Fortran 77 standard. As a practical matter, this means
that many programs written with nonstandard pre-Fortran 90 compilers will
require modification before they can be compiled under Fortran 90.

3.7.2 Compilation and Execution

As mentioned briefly earlier in this chapter, a source code file is often referred to
as a "program." This is somewhat misleading because the contents of a source
code file need to be translated into computer-specific machine instructions before
your computer can actually perform any operations. It is this translated file that
might more properly be called a program because this is the set of instructions
that is used directly by your computer.

Regardless of what kind of a computer system you are using, you and your
Fortran environment will need to perform several specific tasks in order to "run"
a program. These are shown schematically in Figure 3.3.

First, the Fortran compiler checks your source code for syntax errors. If it
fmds errors, it prints (sometimes helpful) messages and stops. You must then fix
the errors and recompile the source code. When the compilation is successful, the
Fortran environment creates an object file. It links this object file with any Fortran
libraries needed by your program, as well as with object files from other program
units. (Most of the programs in this text will not need to access other program
units.)

Finally, the Fortran environment creates an executable file and loads it into
computer memory, where the program executes. Your instructor will provide you
with specific instructions for carrying out this process on the computer you are
using for this course. For the purposes of a course based on this text, you do not
need to understand any more than the mechanics of compiling and executing a
program. The details are more appropriate for later courses in computin~.

3.7 Compiling and Executing a Program • 121

Examine error
messages.

Fortran libraries (object files)

IOther libraries (object files)1

Load executable file into memory.

Figure 3.3. Steps to create an executable program

If you have written programs in other languages in PC-based environments,
you may wonder how those environments make compiling and executing a
program look so easy. The answer is that the required steps are still the same, but
they are taken care of automatically. In some environments, for example, your
source code is automatically checked for syntax errors as you write it. Code may
be compiled "on the fly" as you write it, and a link to other program libraries may
have been done ahead of time. This makes compilation and generation of an
executable program file appear virtually instantaneous. With Fortran, you may
have to perform each of these steps manually by typing an appropriate sequence
of commands. In some cases, you may be able to use "batch" files that simplify
the process.

3.7.3 Saving Output from Your Programs

The programs we have discussed up to now produce simple
output, and you can certainly transcribe the results by hand
when you need to save them. However, it is much more useful

parallel port I
to be able to save a permanent record of a program's activities, including your
typed responses to prompts for input. An easy way to do this is to "dump" the

122 • 3. Getting Started with Fortran: Writing Simple Programs

contents of your screen to a printer. On PCs, this is accomplished by pressing the
PrtScr key, usually located near the upper righthand comer of your keyboard.
This action assumes that your computer is connected to a printer at the default
port (usually the parallel port at address LPTl). On a UNIX system, you can use
the script command to copy everything that appears on the screen into a text
file; check the online documentation by typing man script.

The PC method is adequate when the entire output from a program fills no
more than one screen on your computer's monitor, and it is a convenient way to
record your work when you hand in programming assignments. It will be less
satisfactory when your programs get larger and generate more output than will fit
on one screen. In Chapter 5 we will discuss how to save the output from programs
in a permanent file.

3.8 Applications

In this section, and in similar sections in later chapters, we will develop programs
that use and sometimes extend the material discussed in the chapter. Hopefully,
even these relatively simple programs will help you solve the kinds of problems
you will encounter in your other introductory science, engineering, and
mathematics courses. It will always be helpful for you to read the problem
statement and then try to design the algorithm and write the program on your own.
The two applications in this chapter follow the simple input--7calculations--7output
format used in P-3.1 at the beginning of this chapter.

3.B.1 Maximum Deflection of a Beam Under Load

1 Define the problem.

Consider a beam of length L feet supported at each end and subject to a
downward force of F pounds concentrated at the middle of the beam. The
maximum downward deflection of the beam (at its middle) is -FL3/(48EI). Write
a program to calculate the maximum deflection if L, F, E, and I are specified as
input. For a particular steel I-beam (a beam with an I-shaped cross section),
E=30x106 Ib/in2 and 1=797 in4. The deflection of such a beam as a function of
length is illustrated in Figure 3.4. (This problem appeared previously as an
algorithm design application in Chapter 2.)

3.8 Applications • 123

0.6i,----:-----:-----r-----:-----:--.---:---:-----:---.

0.5 ········-r······r·················r········r··········!··········r········r·······r
0.4 ·········t·········t·········j··········j··········j··········f··········f·········t······ .. j

. !: ::::::::: c :::::::::

i 03 ··j·····)·······I··l········t·······t··t······· i ····1····
0.2 ··········i···········i··········(·······-1-·········j··········r········ :··········(·······-1··········

i IDo~ward force =·50,000 Ib I: iii
0.1 ········r······r······T·······T········:···· ···r·······r·······r·······r·········

o 2 4 6 8 10 12 14 16 18 20
Length, ft

Figure 3.4. Deflection of a steel I-beam under a central load

2 Outline a solution.

1. Specify L, P, E, and I as user input. Convert length from feet to inches.
2. Calculate deflection according to the above formula. The sign of the deflection
can be either positive or negative as long as it's understood that the deflection is
in the downward direction.
3. Display the output.

3 Design an algorithm.

DEFINE (L, F, E, I, and deflection as real numbers.)
WRITE (Give length (ft), force (Ib), elasticity (Ib/iff)

and moment of inertia (in4})
READ (L,F,E,/)
ASSIGN L = L-12.0 (convert to inches)

deflection = -F-e/(48EI}
WRITE (deflection)

124 • 3. Getting Started with Fortran: Writing Simple Programs

4 Convert the algorithm into a program.

P-3.11 [BEAM. F90]

PROGRAM beam

Calculate maximum deflection of a beam supported at both ends,
with the load concentrated at the middle of the beam.

IMPLICIT NONE
REAL length, force, elasticity, moment_of_inertia,deflection

PRINT *,' Give length (ft), force (lb): '
READ *,length,force
PRINT*,' Give elasticity (lb/inA2), mom. of inertia (inA4):'
READ *,elasticity,moment_of_inertia

length=length*12.0
deflection=&

-force*length**3/(48.0*elasticity*moment_of_inertia)

PRINT *, 'The deflection (in) is: ',deflection

END

Running P-3.11

Give length (ft), force (lb):
20 50000

Give elasticity (lb/inA2), moment of inertia (inA4):
30e6 797
The deflection (in) is: -0.6022584

5 Verify the operation of the program.

You probably don't have an intuitive feel for what the answer should be
for a beam having the values of elasticity and moment of inertia specified in the
problem statement. As indicated in the sample output, and according to Figure 3.4,
the maximum downward deflection of a 20-foot section of such a beam when it
is subjected to a load of 50,000 pounds concentrated at the middle is about 0.6
inches. What would you think about using this formula if it returned an answer
of 0.001 inches? How about 10 inches? See this application in Chapter 2 for
additional discussion.

3.8 Applications • 125

Problem Discussion
P-3.11 is a straightforward program, but there is one interesting Fortran

related detail. In the expression for calculating the deflection, the expression
length3 is translated as length**3 rather than length**3. or, equivalently,
length**3. o. Is there any difference between these two Fortran expressions?
Both will give the same answer, but the first choice makes it possible for a
Fortran compiler to calculate (length)3 the "easy" way, just by multiplying
length by itself two times, because the power is expressed as an integer. The
other two expressions, in which 3 is expressed as a real number, will force Fortran
to invoke a more sophisticated, and hence more time-consuming, algorithm to
evaluate the expression. Such an algorithm is required when a power can't be
expressed as an integer, but should be avoided when it can. That is, X3.2 can't be
calculated by mUltiplying x by itself an integer number of times, but x3 can. Thus
X3.2 must be represented as x**3. 2, but x**3 is preferable to x**3. 0. 14 Ifx is
negative, then only integer exponents are allowed.

3.8.2 Relativistic Mass and Speed of an Electron

This program requires some minor algebraic manipulation of the equations given
in the problem to solve for the required values. This particular problem has been
chosen specifically because the quantities involved may be unfamiliar. Hopefully,
this unfamiliarity will encourage you to be careful when you translate this and
every other problem statement into a program, and to be especially diligent when
you verify that program's operation.

1 Define the problem.

An electron accelerated by a voltage V in an electron gun acquires an
energy of Ve = mc2 - moc2, where

charge on an electron
rest mass
speed of light

e = 1.602xlO-19 coulomb
mo = 9.109xlO-31 kg
c = 2.9979xl08 mls

The speed v of an electron of relativistic mass m kg is obtained from
mlmo = lib _(V/C)2. Write a program that prompts the user to supply a voltage
and calculates the relativistic mass and speed of an electron. (Sample answer: for
a voltage of 1.5xl06 V, m=3.58xlO-30 kg and v=2.9x108 mls. See Figure 3.5.)

l'The expression xn can be evaluated as e[no1n(x)1. The expressions In(x) and e(z) can

both be evaluated by using a series expansion.

126 • 3. Getting Started with Fortran: Writing Simple Programs

l-i-i---===~======F====:p===r10 . .
o. :... ···········j"···············j················t···············t·············· 9

0.8 ·····(············-1················1················1···············t··············· 8

1: 0.7 + + : + + +............... 7

~ 0.6 ... ··········+···············f················l················l················~ ::..... 6 ~
I 0.5 + + + ·1·············+·············· 5 J
i 0.4 [................ [................ : ··············1················1················ 4 ~
U) :: : : : 3

:~ ::::::::::::::[::::::::1::::1:::::1::::::::::::::1::: ~
0.5 1.5 2 2.5 30

Electron volts
(Millions)

Figure 3.5. Relativistic mass and speed of an electron

2 Outline a solution.

The terminology of this problem may be unfamiliar, but the algebraic
manipulations required are straightforward. The "relativistic mass" is a
consequence of relativity theory, which predicts that mass is not a constant
property of matter, but increases with speed.

1. Specify the voltage of the electron gun.
2. Calculate the mass first, then the speed, using the equations given in Step 1.
Solve the fIrst equation for mass. Then solve the second equation for speed.
3. Display the output.

3 Design an algorithm.

DEFINE (All variables are real numbers. The resLmass,
charge e, and speed of light c are constants)

WRITE (prompt for voltage)
READ (voltaae)

3.8 Applications • 127

ASSIGN mass = (voltage-e + resLmass-d)lci
velocity = c[1- (resLmasslmassfJ1I2

WRITE (mass and velocity)

4 Convert the algorithm into a program.

P-3.12 [REL_MASS. F90]

PROGRAM ReI_Mass

Calculate relativistic mass and speed of an electron.

IMPLICIT NONE
REAL rest_mass,relativistic_mass
REAL voltage

kg
volt
m/s REAL speed

REAL e
REAL c
PARAMETER (e=1.602e-19,

electron charge, Coulomb
! speed of light, m/s

c=2.997geB, rest_mass=9.10ge-31)

PRINT *,' Give electron gun voltage in volts: '
READ *,voltage

relativistic_mass=(voltage*e+rest_mass*c**2)/c**2
speed=c*(1.-(rest_mass/relativistic_mass)**2)**O.5

PRINT *, 'relativistic mass (kg) and speed (m/s): " &
relativistic_mass, speed

END

Running P-3.12

Give electron gun voltage in volts:
le6
relativistic mass and speed: 2.6933944E-30

5 Verify the operation of the program.

2.B212490E+OB

These calculations are easy to implement in Fortran, but it is imperative to
check them by hand, using a calculator to do the arithmetic. Be careful when you
calculate the exponents on powers of 10. It is easy to accept wrong answers when
the numbers are so large, or small, that it is difficult to develop a "feel" for them.
If you have never had an introductory physics course (or even if you have!), the
numbers may be essentially meaningless, so a wrong answer will look as
reasonable, or unreasonable, as the right one.

128 • 3. Getting Started with Fortran: Writing Simple Programs

3.9 Debugging Your Programs

3.9.1 Programming Style

It's important to pay attention to details in even 'the simplest program. Every
Fortran program should have a descriptive name and, when reasonable, that name
should be the same as the file name under which the source code is stored on your
computer. (This is easier on some systems than others.) Explicit typing for every
variable should be enforced through use of the IMPLICIT NONE statement.
Comments should be used to describe and give units for all variable names
corresponding to physical quantities. The PARAMETER attribute should be used
to defme basic physical and mathematical constants, as well as other values that
can be determined ahead of time and shouldn't be changed while the program is
running. Input, calculation, and output sections of the program should be clearly
separated, often by blank comment lines. Comments should be used liberally to
explain what the program does.

Algebraic expressions should be translated into Fortran in a straightforward
manner. Although it is sometimes possible to simplify algebraic expressions, it is
not usually worth sacrificing clarity for brevity just to save a few arithmetic
operations. Parentheses can sometimes help to clarify algebraic expressions even
when they're not required.

Straightforward implementation of an algorithm is always preferred over
"clever" but more obscure solutions. Although it is sometimes possible to improve
the performance of large and computationally intensive programs by optimizing
the source code, this is wasted effort for the kinds of programs you will be writing
in a course based on this text (even if you knew how to do it).

When a program requests input from the user, the prompt for input should
describe specifically what actions are expected, including a description of the
appropriate physical units. Output statements should contain a description of what
the output means, including physical units, where appropriate.

While a program is being developed, it can contain several temporary
PRINT statements that "echo" program input and display the results of
intermediate calculations. As a trivial example, you could add the line

PRINT*, 'New length: ',length

after the statement length=length*12. 0 in P-3.11, just to make sure that the
conversion from feet to inches has been done properly. You won't fmd many
examples of these temporary statements in this or any other text because they are
removed when the program is complete. Nonetheless, they are as essential to good
programming style as the code remaining in the final version of any program you
write.

3.9 Debugging Your Programs • 129

3.9.2 Your Programs Will Often Contain Errors

There is no shortage of problems that can arise in Fortran programs. You can
minimize errors by being careful with algorithm design and following good
programming practice as described in this chapter and summarized in the previous
section. However,

I No amount of planning can prevent errors in programs.

This fact will never change, no matter how proficient a programmer you become.
The kinds of errors beginning programmers worry about the most are those

that prevent their programs from compiling or executing successfully. It is
discouraging to write programs that don't work, and it probably isn't very
comforting to be told that even experienced programmers expect only the simplest
programs to work the first time they try to compile and execute them.

A generation ago, when Fortran programs were written on punch cards and
submitted in "batch" mode to a mainframe computer at a (perhaps remotely
located) computer center, a single misplaced character could mean a delay of
hours or days. With the nearly instantaneous error detection and feedback provided
by modern interactive computing environments, it is no longer worth the extra
effort required to write a program that is correct in every syntax detail before you
try to compile and execute it for the ftrst time. It is usually more efftcient to write
source code using reasonable care and then ftx whatever errors the compiler
detects.

3.9.3 Some Common Errors

After you have discovered that your program doesn't
work, what then? First you need to be aware of the
difference between compile-time errors and run-time
errors. Compilation errors result from using incorrect
syntax when you create your program's source code. Execution (run-time) errors
can occur only after your program is free from syntax errors. They occur once
your program is running and attempts to execute an instruction that doesn't make
sense in context, or that results in an illegal operation.

Here are some common programming errors, grouped as compilation,
execution, or logical errors. It is a mistake to think of this list as a place to look
only after you have a problem. You can save yourself a lot of time and prevent
future problems by reading through this list before you write your next program.

130 • 3. Getting Started with Fortran: Writing Simple Programs

Compilation Errors

1. Using unbalanced parentheses
Whenever you use parentheses to clarify an expression or to force your

compiler to evaluate an expression in a particular way, the number of left
parentheses must equal the number of right parentheses.

2. Undeclared variables
This is a "good" error because it helps you fmd misspelled variable names

and variables that you have not yet associated with an appropriate data type. You
can expect this helpful error message only if you always use the IMPLICIT
NONE statement, as discussed in this chapter.

3. Misspelled keywords
Because your compi,er doesn't know how to interpret statements with

misspelled keywords, it may not have anything helpful to say about how to fix the
statement. If you are using the IMPLICIT NONE statement, your compiler may
interpret the keyword as an undeclared variable. Remember that spaces embedded
in most keywords are not allowed.

4. Nonexecutable statements appearing after executable statements
Even if individual statements you write are free from syntax errors, they

can still generate errors if they are placed inappropriately within your program.
Remember that nonexecutable statements must precede all executable statements.
(Comment lines can appear anywhere.)

Execution Errors

1. Arithmetic errors
By far the most common arithmetic error is dividing by zero. For example,

the statement Y=A/B cannot be evaluated if B equals O. Of course you didn't
mean for B ever to equal zero. Perhaps you haven't yet given B any value at all;
in that case, your compiler may assume that B equals zero. Some compilers may
actually "allow" division by zero, but won't allow the resulting value, which is
meaningless, to be used for anything. In this case, the error may be harder to
isolate.

2. Finding illegal data during a READ
The most common action that produces this error is responding with an

inappropriate numerical value. For example, if you write a program that asks a
user to respond to this prompt.

3.9 Debugging Your Programs • 131

How much money do you have in your account?

and the user responds, $1000, this will generate an error because Fortran doesn't
understand that $1000 is a number. You can minimize this problem by changing
the prompt to read,

How much money do you have in your account? $

so the user will understand that the $ sign shouldn't be typed as part of the
response.

Another potential source of trouble is using punctuation in numbers. For
example, if you have $10,000 in a bank account, you might type 10 ,000 in
response to the above prompt instead of 10000. Usually, your program will
assume that you have entered two numbers instead of one-IO and O-separated
by commas, and it will simply ignore the extra value. As a result, your program
will assume that you have $10 in your account instead of $10,000. Obviously, this
is a potentially serious problem for a program that processes financial transactions!

3. Not fmding enough data.
This occurs when you don't provide as many values as your program

expects. If you're reading data from an external file, as we will discuss later in the
text, your program will crash and produce a message something like "attempt
to read past end of file." When you are providing keyboard input,
your program won't crash. This can be a very puzzling error because your
computer doesn't provide any kind of error message. Instead it simply waits
patiently for you to complete the required response. You can avoid this problem
by remembering that a prompt for information must clearly reflect the program's
demands.

Note, by the way, that it's OK-from Fortran's point of view, at least-to
provide too many values. Your program will simply ignore the extra ones.

Logical Errors

Are your problems over after your programs are free from compilation and
execution errors? Possibly not. The most dangerous kinds of programming errors
are logical (algorithm design) errors. Programs with logical errors often run
smoothly and appear to be working properly. It is up to you to determine, based
on your examination of the program's output, whether the answers are actually
correct.

Even if you assume that your algorithm design is logically correct, there
are still ways for errors to creep into your programs. It's not possible to list them
all, because students have an uncanny ability to devise new logical programming
errors. However, here are some common pitfalls:

132 • 3. Getting Started with Fortran: Writing Simple Programs

1. Giving incorrect infonnation in a prompt for keyboard input
In science and engineering problems, physical units are always important.

Therefore, a prompt for input should always indicate the units of quantities to be
supplied by the user. Fortran doesn't care about these kinds of inconsistencies, but
you should if you want your calculations to be correct!

2. Using improper units in calculations
This is related to the previous logical pitfall. As everyone who has taken

an introductory engineering or science course knows, one of the most frequent
causes of wrong numerical solutions to problems is improper or inappropriately
mixed units. It's bad enough to make these kinds of errors with a pencil and
paper, but the problem is compounded when they are embedded in programs.
Then, instead of making the mistakes just once, you can make them every time
you run the program.

It is this kind of error that makes validating the perfonnance of your
program so important. Whenever you incorporate calculations with physical
quantities into a program, there is absolutely no substitute for comparing that
program's output with sample calculations worked out carefully by hand or with
known results.

3. Using mixed-mode arithmetic and type conversions
Errors can arise from unanticipated results of mixed-mode arithmetic

operations and type conversions. (Recall program P-3.6.) Because of Fortran's
automatic type conversions, mixed-mode arithmetic is allowed even when it
produces unintended results. As noted in the text, the best way to avoid these
problems is to avoid mixed-mode arithmetic and type conversions unless you
make a conscious choice to use them for a specific reason.

4. Using variables that have not been initialized or assigned a value
You should never expect a compiler to assume a value for an uninitialized

or unassigned variable appearing on the right side of an assignment operation. The
most common assumption is that an uninitialized value will be zero, but you
should never assume that this will be true.

5. Providing a real number in response to a prompt for an integer
Consider this code:

INTEGER radius

PRINT *, 'Give radius: '
READ *,radius

3.9 Debugging Your Programs • 133

Clearly, the program expects the radius to be given as an integer (because
radius is of type INTEGER), even though the prompt message doesn't make
this clear. So 3 is an appropriate response, but 3.3 isn't. Your compiler will
truncate 3. 3 to 3; this will keep your program running, but it will produce
answers that are wrong.

One way to avoid this kind of error is to restrict your use of the INTEGER
data type. Many beginning programmers assume that just because numbers are
conveniently expressed as whole numbers without decimal points (in algebraic
expressions, for example), they should be declared as type INTEGER. Usually,
unless a variable is specifically intended to count events or "things," it should be
declared as REAL. For example, suppose your program is intended to calculate the
average of three test grades. Your prompt might look like this:

Enter three test grades in the range 0-100:

and you might respond 83, 91, 77. These look like integers, but variables to
hold these values should be REAL. (Just let your program perform the type
conversion.) Why? Because, in general, the average of a list of whole numbers
won't be a whole number (the average of these three numbers is 83 213, or about
83.66667), so all the calculations involving these numbers involve real arithmetic.

To summarize, it's OK to enter REAL numbers without a decimal point, but

You should never enter INTEGER numbers as values with a decimal point
and digits to the right of the decimal point even if your compiler lets you
get away with it.

3.9.4 Forcing Your Programs to Fail

Part of verifying the proper operation of any program is trying to devise
conditions under which it will fail. Forcing your program to fail is analogous to
performing destructive testing on a physical mechanism; only by going through
this process can you be convinced that the mechanism, or program, will perform
reliably when it is used properly. In the same sense that a bridge is built to
withstand a specified maximum load, calculations in science and engineering
applications can often be made appropriately only within a specific range of input
values.

Once you have encoded a formula, however, a Fortran program is usually
perfectly willing to perform calculations with any set of input values; the only
common exception occurs when input values result in dividing by zero. If you
wish to limit the range of calculations, you may need to instruct your program to
reject certain input values. Later in the text, we will discuss the kind of syntax
that will make this possible. Within the constraints of the programming skills you

134 • 3. Getting Started with Fortran: Writing Simple Programs

have now, the best you can do is include limits for input values when you write
prompts for keyboard input. For example, the prompt

PRINT*," Enter a positive integer >0, NOT=O:"

is certainly more informative, and restrictive, than

PRINT*," Enter an integer:"

and the former statement should certainly motivate a user of your program to be
careful about the value she enters.

In general, you should always consider the maximum and minimum
possible values that your program might encounter, regardless of whether those
values are "reasonable." You should also consider the effects of assigning a
variable a value of 0 even if you never intend that to happen, as well as the
effects of negative values in a program that is expecting positive values (or vice
versa). Only by trying these "unreasonable" values can you gain confidence in the
output produced by your program under "reasonable" conditions.

3.10 Exercises

3.10.1 Self-Testing Exercises

These exercises are intended to make sure you have a. basic understanding of
material-especially the Fortran syntax-presented in this chapter. When the
exercises ask for Fortran statements or code fragments, it is good practice to test
your answers by trying them in a complete program. You should review
appropriate parts of the chapter if you have problems with any of these exercises.

Exercise 1. Referring to the table of ASCII characters in Appendix 1, find some
printable characters that cannot be part of a Fortran token.

Exercise 2. Design some comment lines to appear at the beginning of each of
your programs. These could include a course number and description, your
instructor's name, and your name.

Exercise 3. Which of these are legal variable names? If they aren't legal, why
not?

(a) x/Y (t) Y1995
(b) First Name (g) last;
(c) riqht anqle (h) The first dav of the new calendar vear

(d) 2001_year
(e) _radius_

(i) x_003
(j) print

3.10 Exercises • 135

Exercise 4. For each item, choose an appropriate data type and decide whether the
value could reasonably be given the PARAMETER attribute.

(a) e (the base of natural logarithms)
(b) the period of an orbiting satellite
(c) social security number
(d) weight per foot of a steel I-beam
(e) your grade on an exam

(f) Avogadro's number
(g) daily production of widgets
(h) telephone number
(i) number of hours in a week
(j) number of days in a month

For each item, write an appropriate type declaration statement and, where
appropriate, a PRINT statement to prompt a program user for input. The prompt
message should help the user enter the value correctly.

Exercise 5. Declare appropriate variables for a program that processes transactions
in a bank account. The quantities of interest include the date, the amount of the
transaction, and the type of transaction-"deposit," "withdrawal," or "service
charge."

Hints: use a character "flag" to tell the program what kind of transaction
is to be processed. Write list-directed PRINT and READ statements that will help
the program user enter information correctly.

Exercise 6. Declare appropriate variables for entries on an order form. The
required information includes customer name, telephone number, credit card
number, item number, quantity required, and unit price. Write list-directed PRINT
and READ statements for obtaining this infomation from a customer. The
information about the customer needs to be given only once, but the customer
might wish to order several items.

You haven't learned how to implement loop structures in Fortran, so you
can use a combination of pseudocode commands (LOOP ... END LOOp) and
Fortran statements for this problem.

Exercise 7. Which of these algebraic expressions can be translated directly into
Fortran assignment statements in their present form, assuming that the variables
x, y, and c have previously been given values?

(a) z = (x2 + y2)2

(b) Z3 = x2 + y2

(c) Z = 2x + 3y + c
(d) z - 1 = 4xJ3y

136 • 3. Getting Started with Fortran: Writing Simple Programs

For those expressions that can't be written as Fortran assignment statements, how
could you rewrite them to "solve for z" in the algebraic sense so they can be
written as Fortran assignment statements?

Exercise 8. Translate the following algebraic expressions into Fortran statements.

KA
(a) C = 47rd

(b) A = 3646 N 2

N2 -4

3.10.2 Basic Programming Exercises

Exercise 9. Write a source code "shell" that can serve as the starting point for all
your other programs. What three statements should be included in this shell?

Exercise 10. Modify program P-3.1 so that it also calculates and prints the surface
area and volume of a sphere with the specified radius. The surface area of a
sphere is 4m2 and the volume is 4rcr/3.

Exercise 11. Modify program P-3.2 so that it also calculates and prints the area
of the material required to construct an open rectangular container with the same
dimensions. That is, the container doesn't have a top.

Exercise 12. Modify program P-3.3 so that it also asks the user to supply a birth
date in the format mm dd yyyy, e.g., 01 01 1977. You can print the birth date in
the format mm/dd/yyyy, but there will be extra spaces because of the list-directed
output. (You might wish to modify this program when you have learned to use
formatted output.)

Exercise 13. Using the following code, write a complete program that will assign
values to x, j, b, and c and print the results of the calculations as shown. You
may either "hard code" the values using assignment statements within the program

3.10 Exercises • 137

or ask the program user to supply them. Be sure to use values that make it easy
to check the program's output with a hand calculator. Some of the expressions
involve mixed-mode calculations. Which ones give answers that might not be what
you expect or desire? What happens if b or c equals zero?

REAL x,b
INTEGER j,c

(Assign values here.)

PRINT *,x**O.5,x**(-1./b),x**(-1/b)
PRINT *,j**O.5,j**(-1./b),j**(-1/b)
PRINT *, x**(-l./c),x**(-l/c)
PRINT *, j**(-l./c),j**(-l/c)
PRINT *, x**(l./b),x**(l/b)
PRINT *, j**(l./b),j**(l/b)
PRINT *, x**(l./c),x**(l/c)
PRINT *, j**(l./c),j**(l/c)
END

Exercise 14. Based on material from other courses you are taking, state a
computational problem and write a complete program to solve it.

3.10.3 Programming Applications

These programming applications should include Steps 2-5 of the problem-solving
process described in Chapter 2: a written outline of the solution, including
formulas, an algorithm design using the pseudocode language from Chapter 2, a
working Fortran program, a description of how the program's operation has been
verified, and representative input and output to document your program's
operation. You may also wish to restate the problem for yourself (Step 1 of the
problem-solving process) to make sure you understand what is required.

The name in brackets given at the end of each exercise refers to a source
code file that is available to instructors who are using this text. (See Section i.5
of the preface.) .

Exercise 15. Write a program that calculates and prints the total resistance of
three resistors connected (a) in series and (b) in parallel (as illustrated in Figure
3.6). When n resistors are connected in series, the total resistance of the connected
resistors is rT = r t + r2 + r3 + ... + rD. When they are connected in parallel, the total
resistance is lIrT = lIrt + lIr2 + lIr3 + ... +lIro. Prompt the user to enter values in
ohms, the usual unit of resistance. rRESISTOR. F901

138 • 3. Getting Started with Fortran: Writing Simple Programs

Rl R2 R3

Figure 3.6. Resistors in parallel and in series

Exercise 16. Consider the reliability of a system consisting of three components
connected in series or parallel. If the reliability of the components is given as RI ,

Rz, and R3, where 0 ~ R ~l, then the reliability of a system with the components
wired in series is RIR2R3• If the same components are wired in parallel, and if the
system remains functional as long as anyone of the components is working, then
the system reliability is 1- (1 - RI)(l - R2)(1 - R3). Write a program to calculate
the reliability of such systems for three user-specified values of reliability.

Systems using components in series are vulnerable to failure even if the
individual components are very reliable. On the other hand, "redundant" systems,
with components in parallel, are very reliable even if the components aren't
individually very reliable. For example, if each component has a reliability of
0.900, a system with these components in series has a reliability of only 0.729. If
the same components are in parallel, then the system reliability is 0.999.
[RELIABLE. F90]

Exercise 17. Write a program that calculates and displays the volume and surface
area of a cylinder, given the radius and height in meters. The volume of such a
cylinder is xrh and its surface area is 2xr + 2mh. [CYLINDER. F90]

Extra Credit
1. Assuming that the cylinder is solid and that the density (kglm3) of the

material is specified as input, calculate the mass of the cylinder. Use an
engineering handbook to find densities for one or more materials. Your program
output should indicate what materials you have used.

2. Assuming that the cylinder is an empty container made of thin sheets of
material with a specified thickness, calculate the mass of the cylinder. Is it
appropriate to assume that this value is just the surface area times the mass per
unit area of the material?

Exercise 18. Write a program that asks the user to supply the mass and velocity
of an object and then calculates and displays the kinetic energy and momentum
of that obiect. The kinetic ener~ is mv2/2 and the momentum is mv. Use SI units

3.10 Exercises • 139

(mass in kilograms, velocity in meters per second, energy in Joules).
[KINETIC. F90]

Extra Credit
Include source code that will convert the kinetic energy and momentum

into their British system equivalents. The British unit of energy is foot-pounds and
the unit of momentum is slug-feet per second. 1 foot-pound = 1.356 Joule;
1 slug = 14.59 kilogram; 1 foot/second = 0.3048 meters/second.

Exercise 19. Write a program that requests as input the clock time in hours
(0-24), minutes, and seconds, in the format hh mm ss, and displays the time in
seconds and fractions of a day. One day contains 86,400 seconds. For example,
120000 is 43,200 seconds, or 0.5 days. [TIME. F90]

Exercise 20. Write a program that requests as input an angle expressed in degrees,
minutes, and seconds, in the format dd mm ss, and converts it to whole and
fractional degrees. There are 60 minutes in a degree and 60 seconds in a minute.
For example, 30 1504 equals 30.25111°. [ANGLES. F90]

Exercise 21. Write a program that requests as input the time in seconds required
to cover a distance of one mile and calculates the speed in units of feet per
second, meters per second, and miles per hour. For example, a 4-minute
(240-second) mile is run at an average speed of 22 feet per second, 6.7 meters per
second, or 15 miles per hour. There are 5,280 feet in one mile and 3.2808 feet in
one meter. [SPEED. F90]

Exercise 22. A mass swinging at the end of a massless string (a simple pendulum)
undergoes simple harmonic motion as long as the displacement of the mass from
the vertical is very small compared to the length of the string. The period T of a
simple pendulum is independent of its mass and is given by T = 21t(Ug)ll2, where
the length L is given in meters and g = 9.807 rnIs2• (See Figure 3.7.) Write a
program that will determine (a) the period of a pendulum with a specified length
and (b) the length a pendulum must have to produce a period of 1 second.
[PENDULUM. F90]

140 • 3. Getting Started with Fortran: Writing Simple Programs

7.---,---,---,,--~---,---,---,----,---,---.

.
6 ----------I----------r--------r---------r--------r--------r--------r---------t-------- i ---------
5 ----------r---------r---------i---------l---------r--------t ------l"-------l-------l---------

CI) 4 ----------i----------i----------+-------- : ---------+---------+---------i----------+----------t----------
-g iii iii iii
-fij 1 1 i 1 1 1 1 1 1

D- 3 ---------r-------- l
- ------r-------r--------r-------r--------r--------r-------r--------

2 ----------i --------"1""-------t--------"I"--------t-------t--------"I"---------t--------i----------

1 - ------r--------r--------I---------r-------"["-------l---------I---------")"--------r--------

2 3 4 5 6 7 8 9 10
Length,m

Figure 3.7. Period of a simple pendulum as a function of length

Exercise 23. Write a program that calculates and prints the energy of a photon the
wavelength of which A is given in centimeters. Energy=hf Joule, where
h = 6.626xlO-34 Joule-s (Planck's constant); f = ciA, where c = 2.9979x108 m/s
(the speed of light) and wavelength is given in meters. (See Figure 3.8.)

Hint: declare the speed of light and Planck's constant with a PARAMETER
attribute, using "E" notation, e.g., 2. 997ge8. [PHOTON. F90]

Extra Credit
A 1 eV (electron volt) photon has an energy of 1.602xlO-19 Joule. Modify

your program so it will also calculate the wavelength of a photon with an energy
of 1 eV. (Answer: about 1240xlO-9 m. This is in the infrared part of the
electromagnetic spectrum.)

3.10 Exercises • 141

~~--~--~--~--~--~--~--~--~--~~

4500 · .. ·l r· · .. ·j · .. t .. · j .. · l r ·l .. · ·r ·
4000 + + -+ + -+ + + + +

i 3500 ·+ + 1 + --/-.. · + + ·+ +
~ 3000 .. , + + j · .. ·+ -+· ·i t +· ·+
i :::_-:::[:::::::tlt::::::::I:-::::I::::::1::::t::1:::::
G) :::::::::

~ 1500 !· y ·j ·t .. · j ·i-.... · t -j-.... ···t
': :::::-:r:_::T:---::I:::t:::lll:::I:::::T::::::

00 2 3 4 5 6 7 8 9 10
Energy,eV

Figure 3.8 Wavelength of a photon as a function of energy.

Exercise 24. Write a program that asks for a student's name, ID, and cumulative
grade point average (GPA). Print this information on a single line. NOTE: You
may find that if you enter a GPA as 3.9, for example, your program will print
something different, such as 3.900000, 3.900001 or 3.899999. This isn't your
fault. It is a consequence of how Fortran stores REAL numbers and the limitations
of list-directed output. You can't change the appearance of this number until you
learn how to specify your own output format in a later chapter. [GPA. F90]

Extra Credit
Modify your program so it asks the user to provide the total number of

credit hours she has accumulated through last semester. Calculate the total number
of grade points by multiplying the number of credit hours by the GPA. Now ask
the user to supply information about a new course she has just completed. This
information should include the number of credit hours for the course and the
number of points for each credit hour-4 for an A, 3 for a B, 2 for a C, I for a
D, and 0 for an F. Multiply the credit hours by this number and add the result to
the old number of total grade points. Add the new credit hours to the old credit
hours. Divide the new number of grade points by the new total credit hours to
recalculate the GPA. Display this value.

142 • 3. Getting Started with Fortran: Writing Simple Programs

Exercise 25. Given the (x,y) coordinates of two points in a plane, write a program
that calculates (a) the shortest distance between the two points and (b) the (x,y)
coordinates of a point halfway between the two points, lying on a straight line
joining the points. (See Figure 3.9.)

Hint: you will need to calculate a square root in your program. In Chapter
4 we will discuss how to use a standard Fortran function to do this: y=SQRT (x)
assigns a value to y equal to the square root of x, where x represents any non
negative number, expression, or variable. You can use this function or you can
calculate the square root of any number, variable, or expression by using the
exponentiation operator with a value of 0.5. For example, Xl/2 can be expressed as
x**O.5. [POINTS.F90]

Extra Credit:
If you have had a precalculus course, you should understand the concept

of a line slope. (The derivative of a function that produces a straight line is the
constant slope of that line.) Modify your program so that it also calculates the
slope of the line joining two points in a plane. What restriction will this
calculation impose on the location of the two points?

5.5 ----------------

1.5

1

0.5

I
I
I
I
I
I
I

-----------------~------------
I I
I I
I I
I I
I I
I I
I I

-----------------i------------~------------ (x2,y2)

o 0.5

I
I

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
x

Fi/lure 3.9. Distance between two points in a plane

3.10 Exercises • 143

Exercise 26. The ideal gas law describes the relationships among pressure (P),
volume (V), and temperature (T) of an ideal gas,

pV = pRT

where p is the number of kilomoles of gas and R is the universal gas constant. For
volume in m3, temperature in kelvins, and pressure in Newtonslm2 (pascals),
R = 8314.3 Joulelkilomole-K and 1.0132xlOs Pascals = 1 standard atmosphere
(atm). Write a program that calculates the volume occupied by a specified number
of kilomoles of an ideal gas at temperature T (kelvins) and pressure p (atm).
(Sample answer: under standard conditions ofT = 273.15 K (0° C) and a pressure
of 1 atm, 1 kilomole of an ideal gas occupies a volume of about 22.4 m3.)

[GAS. F90]

Extra Credit
1. If you were trying to determine the validity of the ideal gas law

experimentally, it would make more sense to use the law to calculate pressure for
a specified volume and temperature. Modify the program to do this calculation
instead of the calculation specified in the original problem statement.

2. Because molecules occupy volume and exert intermolecular (bonding)
forces on each other, the ideal gas law becomes less accurate as density increases;
that is, as more molecules occupy the same volume. The van der Waals
modification to the ideal gas law attempts to take this into account with the
following empirical formula,

(P + a/v2)(v - b) = RT

where v is the specific volume (m3/kilomole, for example). The constants a and
b are different for each gas and are experimentally derived. Table 3.5 contains
data for several gases. Figure 3.10 shows some calculations for nitrogen. Over an
appropriate range of specific volumes, for which v > b, the van der Waals
pressure is less than the ideal gas pressure.

144 • 3. Getting Started with Fortran: Writing Simple Programs

28~--~--~--~--~--~--'---'---'---'---~

24 :·········r········r·····r·····r·····r·····r·····r······r·····
2 ···f·· ·····+········f········+········+········+········+··· + +

en :::::::::

~ ~ 16"" J ! ... :.~~~~~~.~.~~~~~.~~~.~~~~~ ... l. J L.~
a.. m iii iii iii

~ E 12 i······.)·······+········i··········:··········:······ ; : : 13t::. ::::::::
0: :: P(ideal) iii iii

8 "'T' ··~·······T·······r······T·······r·······T········r··· ····r·······

4 ·······tl-··t····· :·········!··········I··········I··········I··········I··········!·········
P(van der Waals)

0.2 0.4 0.6 0.8 1 1.2 1.4
Specific volume, m3/kilomole

1.6 1.8 2

1000

750

500
en

250 ~ a..
~

0
:J

~
~
a..

-250

-500

-750

Figure 3.10. Pressure as a function of specific volume for nitrogen at
T=273.15 K

Table 3.5. Molar masses and van der Waals coefficients for selected gases.

van der Waals coefficients
a, b, a, b,

Molar mass, kPa-m6/ m3/kg P-atm/ l/mole
Gas gm/mole kg2 mole2

air 28.97 0.1630 0.001270 1. 350 0.0368
ammonia 17.03 1. 4680 0.002200 4.202 0.0375

carbon dioxide 44.01 0.1883 0.000972 3.600 0.0428
helium 4.00 0.2140 0.005870 0.034 0.0235

hydrogen 2.02 6.0830 0.013200 0.245 0.0267
methane 16.04 0.8880 0.002660 2.255 0.0427

nitrogen 28.02 0.1747 0.001380 1. 354 0.0387
oxygen 32.00 0.1344 0.000993 1. 358 0.0318

propane 44.09 0.4810 0.002040 9.228 0.0899

Source: M. C. Potter and C. W. Somerton (1993). Schaum's Outline Series:
Theory and Problems of Engineering Thermodynamics, Tables B-3, B-8.

3.10 Exercises • 145

Modify your program (the extra credit one, not the original one) to do calculations
for both the ideal gas law and the van der Waals modified law.

Hint: be careful with units. 1 liter/mole is numerically identical to 1
m3lkilomole. If the pressure is calculated in Pascals, then the tabulated value for
a must be multiplied by 101320. Use Figure 3.10 to check your answers.
[GAS2. F90]

4

Using Functions to Expand the
Power of Fortran

Much of the power of Fortran is due to its dozens of predefined functions for
performing mathematical and other calculations. This chapter describes many of
these functions and introduces one way to create your own functions.

4.1 Fortran Intrinsic Functions

4.1.1 Intrinsic Functions for Arithmetic Calculations: Arguments and Ranges

You shouldn't be surprised to find that a programming I intrinsic function I
language designed specifically for solving scientific and
engineering problems includes many of the important
basic mathematical functions used in these disciplines. In this section, we will
discuss mathematical and other functions that are part of the Fortran language.
These "built-in" functions are called intrinsic functions. I

Fortran intrinsic functions are related to what you normally think of as a
"function" in mathematics, as defined generically for functions of one variable by
the algebraic expression y = f(x), but with some specific programming-related
details. In the mathematical interpretation of the expression y = f(x), f is a
symbolic name for the function, the argument x represents a value of the
independent variable at which the function is evaluated, and y is equal to the value
of the function at argument x. For example, the expression y=sin(x) means that
y is equal to the trigonometric sine evaluated at the angle x.

In Fortran, an intrinsic function is a built-in
subprogram that accepts, through an argument list, one or
more input values in the form of constants, variable names,

argument list I
expressions, or other functions and returns a single value as output. In source
code, an intrinsic function is "called" or "invoked" when it appears on the
right-hand side of an assignment operator (either alone or as part of a larger

IPortran intrinsic functions are sometimes referred to as intrinsic procedures. However,
"functions" is a preferable description based on how these terms are used in other programming
languages.

D. R. Brooks, Problem Solving with Fortran 90
© Springer-Verlag New York, Inc. 1997

148 • 4. Using Functions To Expand the Power of Fortran

expression) or in an output statement such as the PRINT statement. That is,
functions are treated just like values.

Code fragment P-4.1 shows how an intrinsic function is used in a Fortran
program.

P-4.1 (fragment)

REAL Z,Y,DegToRad

DegToRad=3.1415927/180.
Z=O.5
Y=SIN(Z)
PRINT *,y,SIN(Z/2.)
PRINT *,SIN(30.*DegToRad)

A Fortran compiler knows what SIN (Z) means because SIN is an intrinsic
function that is supported by all Fortran compilers as part of the language
standard. So, in the same sense that a pocket calculator knows how to evaluate the
sine of an angle, your Fortran program will be able to evaluate SIN (Z). (As
always, Fortran isn't case-sensitive, so SIN, Sin, and sin are all equivalent and
equally acceptable. This text will adopt the convention of spelling the names of
intrinsic functions with uppercase letters.)

Once the variable Z has the value 0.5 assigned to it in P-4.1, the
assignment statement Y=SIN (Z) results in the variable Y having a value of
0.4794255. In order to understand this result, you need to know that the Fortran
SIN function expects as its argument an angle expressed in radians, not degrees.
Thus the value of 0.5 used in P-4.1 is interpreted as 0.5 radians, or about 28.6°.
All the Fortran trigonometric functions that have angles as arguments require that
the angles be expressed in radians. Functions that return an angle as output (the
inverse trigonometric functions) return that value in radians.

The second and third calls to the SIN function in P-4.1 illustrate the fact
that the argument(s) of a function can be expressions as well as variables (or
constants). Pay special attention to the third call to SIN (in the second PRINT
statement). If you forget to convert an angle to radians before using it as an
argument in a trigonometric function, you will get results that often appear
reasonable but will be wrong. For example, SIN (30 .) is not the correct way to
calculate the sine of 30°. The value of this argument will be interpreted as 30
radians (equivalent to about 278.9°), not 30°.2 So (because 180° equals 1t radians),

230 radians is (30x180)l1t = 1718.873387°, which equals 4x360° plus approximately
?.7R QO

4.1 Fortran Intrinsic Functions • 149

When an angle is given in degrees, multiply it by 1TnSO.O to convert it to
radians before using it as the argument in a Fortran intrinsic trigonometric
function.

In P-4.1, this conversion factor is stored in the variable DegToRad.
What happens in P-4.1 if the statement z=O. 5 is not included? That is,

what happens if z is not given a value before it is used as an argument? Your
compiler will probably assume that z equals zero. (Try it and see.) However, no
matter what the result of this experiment,

It is unacceptable programming practice to use an uninitialized variable as
an argument for any intrinsic function.

Why is this so important? Because even though uninitialized variables often don't
prevent your program from executing, the results are compiler-dependent and
unpredictable. In general, regardless of the language you are using, you should
never allow a compiler to make assumptions about values you wish to use!

There are many intrinsic functions in Fortran. In order to use one, it's
necessary to know its name, its purpose, the restrictions on its argument(s), and
the data type and range of the value it returns. For example, you need to know
that when you use the SIN function, the argument must be an angle in radians,
expressed as a type REAL numeric constant, expression, or variable, and that the
function returns a REAL value in the range [-1.0,1.0]. (Following conventional
mathematical usage, a bracket means that the limit includes the value to the right
or left of the bracket and a parenthesis means that the limit excludes the value to
the right or left of the bracket. Thus, for example, a range (-1.0,1.0) means that
the range includes values between -1 and + 1, but excludes the values -1 and + 1
themselves.)

As another example, in order to use the inverse trigonometric function,
ASIN, you need to know that the argument must be a REAL numeric constant,
expression, or variable in the range [-1.0,1.0] and that the function returns a REAL
angle expressed in radians, in the range [-1tI2,1tI2]. In this case, and with many
other intrinsic functions, an argument outside the allowed range will cause your
program to crash, as there is no built-in protection against the effects of providing
inappropriate arguments.

Table 4.1 contains a partial list of Fortran intrinsic functions that return
values of type REAL or INTEGER. We will use only a few of these functions in
this chapter, but Table 4.1 will be important for future reference.

150 • 4. Using Functions To Expand the Power of Fortran

Table 4.1. Selected intrinsic Fortran functions for arithmetic operations

4.1 (a) Mathematical functions

Argument
Fortran Type(s) Result Type

Trigonometric J Usage and Range and Range

sin(x) SIN (X) REAL, any REAL, [-1,1] 2

cos(x) COS (X) REAL, any REAL, [-1,1]

tan(x) TAN(X) REAL, any REAL, (-00,00) 3

sin-1(x) ASIN(X) REAL, [-1,1] REAL, [-rr/2,rr/2]

cos-1(x) ACOS(X) REAL, [-1,1] REAL, [O,1t]

tan-1(x) ATAN(X) REAL, any REAL, [-rr/2,rr/2]

tan-1(y/x) 4 ATAN2(Y,X) REAL, any REAL, (-1t,1t]

Hyperbolic

sinh(x) 5 SINH(X) REAL, any REAL, (-00,00) 3

cosh(x) 6 COSH(X) REAL, any REAL, [1,00) 3

tanh(x) 7 TANH(X) REAL, any REAL, [-1,1]

Transcendental

..(x SQRT(X) REAL, ~ REAL, [0,00) 3

eX EXP(X) REAL, any REAL, (0,00) 3

In(x) LOG (X) REAL, >0 REAL, (-00,00) 3

10g\O(x) LOG1O(X) REAL, >0 REAL, (-00,00) 3

J For all trigonometric and inverse trigonometric functions, angles are expressed as radians.
2 For any values x and y given as limits on a range, "[x" means that the lower limit of the range
includes x, "(x" means that the lower limit excludes x, "y)" means that the upper limit includes
y, and "y)" means that the upper limit excludes y.
3 "Infinite" values are limited by the range of REAL numbers.
4 The ATAN2 function calculates the arctangent of Y/x. By using information about the sign of
both X and Y, it preserves the quadrant associated with the coordinates X and Y. The values of X
and Y may not both be zero.
5 sinh(x) = (ex-e-x)/2_ 6 cosh(x) = (ex+e-x)/2. 7 tanh(x) = sinh(x)/cosh(x).

4.1 Fortran Intrinsic Functions • 151

4.1 (b) Numeric functions

Argument
Fortran Type(s) and

Purpose Usage Range(s)

INTEGER result

Truncate to integer INT(X) REAL, any

Round to integer NINT(X) REAL, any

Least integer ~X CEILING(X) REAL, any

Greatest integer ~X FLOOR(X) REAL, any

REAL result

Truncate toward zero AINT(X) REAL, any

Nearest whole number ANINT(X) REAL, any

Convert to real REAL(X) INTEGER, any

Result type depends on argument(s) J

Absolute value ABS(X) Numeric

Maximum difference 2 DIM(X,Y) Numeric

MAX(Xl,X2
Maximum [, X3, ... 1) Numeric

MIN(Xl,X2
Minimum [, X3, ... 1) Numeric

Remainder of Xl
modulo X2, with INT 3 MOD(Xl,X2) Numeric

Remainder of Xl
modulo X2, with MODULO(Xl,X2) Numeric
FLOOR 4

Sign transfer 5 SIGN(Xl,X2) Numeric

J If there are multiple arguments, they must all be of the same type.
2 Returns the maximum of X - Y or O.

Result Type

INTEGER

INTEGER

INTEGER

INTEGER

REAL

REAL

REAL

REAL or INTEGER

REAL or INTEGER

REAL or INTEGER

REAL or INTEGER

REAL or INTEGER

REAL or INTEGER

REAL or INTEGER

3 Returns Xl-INT(Xl/X2)*X2. Results are undependable (compiler-dependent) ifx2=O.
4Returns Xl- FLOOR (Xl/X2) *X2 if Xl and X2 are REAL,
Xl-FLOOR(REAL(Xl)/REAL(X2))*X2 if Xl and X2 are INTEGER. Results are
undependable (compiler-dependent) if X2=O.
5 Returns absolute value of Xl times the sign of X2. If X2=O, its sign is considered positive.

152 • 4. Using Functions To Expand the Power of Fortran

Programming Tip
Some of the intrinsic function names, for example, INT and AINT, follow

Fortran implicit data typing conventions. Hence INT returns an INTEGER value
and AINT returns a REAL value. However, you may not recognize this convention
because it is part of an old-fashioned Fortran programming style specifically
avoided in this text. Based on impliCit typing, any function name beginning with
a letter I through N returns an INTEGER value, and a name beginning with any
other letter returns a REAL value.

Functions that don't follow implicit type conventions include, for example,
the CEILING and FLOOR functions, which are implicitly of type REAL, but
which return INTEGER results (and didn't exist in older versions of Fortran), and
the last seven functions in Table 4.1(b), which return results of the same type as
their argument(s). Also, the LOG and LOG10 functions return REAL results even
though their names are implicitly INTEGER. In older versions of Fortran, these
functions are named ALOG and ALOG lOin order to conform to implicit typing
rules.

It's important to remember that the name X and other argument names
used in Table 4.1 are just "place holders" used to illustrate how a particular
function should be used. In your programs, function arguments can be constants,
variable names, other functions that return a value of the appropriate data type, or
expressions that evaluate to the appropriate data type.

The difference between the MOD and MODULO functions in Table 4.1 (b) is
subtle. Suppose, for example, X1= -5.55 and X2= 3.1. INT(-5.55/3.1)= -1,
so MOD (Xl ,X2)= -5.55-(-1)(3.1)= -2.45. However, FLOOR (-5.55/3.1) = -2,
so MODULO (Xl, X2) = -5.55-(-2)(3.1)= 0.65. The MOD and MODULO functions
return the same value if both arguments are either positive or negative, but if one
of the arguments is negative, you need to make sure you choose the appropriate
function for your program.

The MIN and MAX functions in Table 4.1(b) are unique because they accept
a variable number of arguments (two or more).

As long as you understand the mathematical purpose of these functions,
their application in Fortran is straightforward. However, you must always be
careful to provide arguments of the proper data type and within the allowed range.
To give just two examples, your program will crash (terminate with a run-time
error) if you try to evaluate ACOS (2.0) (because the cosine of an angle can't
possibly have a value of 2) or if you use the SQRT function with a negative
argument. Whenever you provide a constant value, a variable name, or an
expression to be evaluated as an argument for a function, it is up to you to
guarantee that the value falls within the allowed range. (Fortran syntax discussed
in Chapter 6 will provide you with some programming tools for performing
checks on values before vou use them as function ar2Uments.)

4.1 Fortran Intrinsic Functions • 153

Table 4.1(a) contains the ranges for arguments and for the results returned
by the mathematical functions. As noted in footnote 3 to Table 4.1(a), functions
that become either positively or negatively infmite at an endpoint of the range for
their argument can't actually return an infmite value. The largest value (in
absolute magnitude) they can return depends on the range of REAL numbers. This
restriction can sometimes cause problems when such functions are used in
numerical calculations.

It is worth reiterating the very important and not always obvious restriction
on the use of the mathematical intrinsic functions: the arguments must have the
expected data type. It's tempting to think that, for example, SQRT (2) is an
appropriate use of the SQRT function even though Table 4.1 indicates that the
argument must be REAL. You might make this assumption because, for example,
the assignment X=2 is OK (even though it is not usually good programming
practice) because Fortran will make an appropriate type conversion. In principle,
there is no reason why a compiler shouldn't be able to perform the required type
conversion from the integer value 2 to the real value 2.0, but under the Fortran 90
standard, it is not supposed to do this.3 Therefore, an INTEGER variable, constant,
or expression used in a function that expects a REAL argument should generate
a run-time error. This is important enough to state as a rule:

Never use INTEGER arguments in an intrinsic function that calls for REAL
arguments, or vice versa.

4.1.2 Intrinsic Functions for Character and String Manipulation

In addition to intrinsic functions for arithmetic operations, Fortran 90 also includes
several functions for manipulating individual characters and "strings" of
characters. Table 4.2 lists these functions.

The first four functions in Table 4.2 perform conversions back and forth
between characters and their position in a system-dependent table of characters
called a collating sequence. The most common collating sequence is the ASCII
sequence, given in Appendix 1. The functions ACHAR and IACHAR produce
values based on this sequence, regardless of whether the computer you are
working on uses the ASCII sequence. The functions CHAR and I CHAR assume
that your computer uses the ASCII sequence. On most computers, these functions
are equivalent because such computers do in fact use the ASCII collating
sequence. However, assuming that you wish to perform these conversions based

3This was not true in earlier versions of Fortran. Fortran 77 compilers would allow
SQRT (2), for example.

154 • 4. Using Functions To Expand the Power of Fortran

Table 4.2. Fortran intrinsic functions for manipulating characters and strings.

Fortran
Purpose Usage

Character-Integer Conversions

Character in ASCn
collating sequence ACHAR(I)

Character in processor
collating sequence CHAR(I)

Position in ASCn sequence IACHAR(C)

Position in
processor sequence ICHAR(C)

String Manipulation and Inquiry Functions

Remove leading blanks 1 AOJUSTL(S)

Remove trailing blanks 2 AOJUSTR(S)

Leftmost [rightmost]
starting position of substring INDEX(S,
(SS) in string (s) j SS[,BACK])

Length of string 4 LEN(S)

Length of string, not LEN_TRIM(S)
counting trailing blanks

Concatenate n copies of S 4.5 REPEAT(S,n)

Position of character SCAN(S,
included in string SET j SET [, BACK])

Remove trailing blanks 4 TRIM(S)

Returns 0 if each character VERIFY(S,
in S appears in SET, or SET [, BACK])

position in S of first
character that does not j

1 Inserts the same number of trailing blanks.
2 Inserts the same number of leading blanks.

Argument
Type and Result
Range Type

INTEGER, CHARACTER
[0,127]

INTEGER, CHARACTER
[O,n-l]

CHARACTER INTEGER

'CHARACTER INTEGER

CHARACTER CHARACTER

CHARACTER CHARACTER

CHARACTER INTEGER

CHARACTER INTEGER

CHARACTER INTEGER

CHARACTER, CHARACTER
INTEGER

CHARACTER INTEGER

CHARACTER CHARACTER

CHARACTER INTEGER

j Returns leftmost value if BACK is absent or present with a value of . FALSE.; otherwise returns
the rightmost value. INDEX and SCAN functions return 0 if search string or character isn't found.
4 Accepts only scalar arguments. (See discussion of arrays in Chapter 8.)
5 See discussion of the concatenation operator later in this section.

4.1 Fortran Intrinsic Functions • 155

on the ASCII sequence, use of the ACHAR and IACHAR functions will make your
programs portable even to systems that use another collating sequence (such as
some IBM mainframe computers).

The ACHAR function produces a truly portable result only if the argument
does not exceed 127 because the ASCII collating sequence standardizes only those
characters in the range [0,127]. For values in the range [128,255], the result is
system-dependent. On IBM-compatible PCs, for example, these characters include
the so-called "IBM graphics" characters, mathematical symbols, and characters
from nonEnglish languages (including Greek characters for use in mathematical
expressions) .

. In addi~ion t~ the string manipulation I concatenation operator
functlons descnbed ill Table 4.2, Fortran also
provides an operator for "adding" strings. The
symbol for the concatenation operator is a double slash (/ I), and it is the only
intrinsic operator for data of type CHARACTER. For two CHARACTER variables
A and B, the result of AIIB is a new string that contains all characters of B

appended to the end of the characters of A.

If the result of the concatenation is stored in another CHARACTER variable,
that variable should be long enough to hold all the characters. If it's not, no error
message is generated, but the resulting string is truncated from the right to fit the
declared length of the variable.

Program P-4.2 demonstrates the concatenation operator and the TRIM,

LEN, and LEN_TRIM functions.

P-4.2 [STRING. F90]

PROGRAM string

Demo program for string operations.

IMPLICIT NONE
CHARACTER *10 first_name,last_name,name*15

first_name=' Laura ,
last_name='Brooks'
name=first_name//last_name
PRINT *,name
PRINT *, 'untrimmed length: ',LEN(name)
name=TRIM(first_name)//' '//TRIM(last_name)
PRINT *,name
PRINT *, 'untrimmed length: ',LEN(name)
PRINT *, 'trimmed length: ',LEN_TRIM(name)

END

156 • 4. Using Functions To Expand the Power of Fortran

Running P-4.2

Laura Brook
untrimmed length: 15
Laura Brooks
untrimmed length: 15
trimmed length: 12

When values are assigned to first_name and last_name, they are
"right-padded" with enough blanks to make up the declared length of 10
characters, as demonstrated by the result from the LEN function. When the
concatenated value of name is printed, only the leftmost 15 characters are printed
because the variable name has a declared length of only 15 characters. When the
TRIM function is used twice in a new concatenation operation, three trailing
blanks are still added to Laurat6Brooks to fill name, and the LEN function
still returns a value of 15. However, the LEN_TRIM returns a more useful value
of 12 characters, the length of the string ignoring the trailing blanks.

The fact of the matter is that string manipulation is relatively unimportant
for the kinds of problems Fortran is most often called upon to solve. However, the
functions in Table 4.2 can sometimes be used to solve tricky problems when you
must interpret the contents of a data file. Suppose a file contains information about
monthly snowfall recorded at a weather station. Most of the time, the value for a
month will be 0 or some other numerical value for the recorded snowfall.
Occasionally, a "trace" level will be recorded (perhaps as the character T) when
snow fell, but there was not a measurable accumulation. How can the information
in such a file be interpreted if it is not possible to know ahead of time whether the
data fields will contain numbers or characters?

If the fields containing these values can first be read as character strings,
the presence of certain characters can be detected by using the INDEX function.
If the appropriate characters aren't found, then the (presumed) numerical
information in the string can be processed. We will discuss the details of the kind
of code required to do this in Chapter 9.

As a fmal example, consider the problem of converting lowercase
characters to uppercase characters. This might be required when you want a text
search to be case-insensitive. (Normally such a search will be case-sensitive.)
Here is a statement that performs this operation:

upper_ch = ACHAR(IACHAR(ch)-32)

The statement assumes that the variables upper_ch and ch are declared as type
CHARACTER, and it makes use of the fact that, in the ASCII collating sequence,
the lowercase alphabet starts at position 97 and the uppercase alphabet starts at
position 65, a difference of 32. Assuming only that every uppercase and lowercase

4.1 Fortran Intrinsic Functions • 157

letter is separated by the same numer of positions in the collating sequence, you
can generalize this statement for nonASCII systems:

upper_ch = ACHAR(IACHAR(IAI)+(IACHAR(la")-IACHAR(ch»)

4.1.3 Examples of Calculations Using Intrinsic Functions

Polar/Cartesian conversions

First we will present a complete program that uses Fortran intrinsic functions to
convert between Cartesian and polar coordinates. Figure 4.1 shows the relationship
between these two coordinate systems.

1 Define the problem.

Given a point expressed in polar coordinates (r,e), calculate the corresponding
Cartesian coordinates (x,y), or the other way around.

2 Outline a solution.

For the polar coordinates (r,e), the corresponding Cartesian coordinates are

x = recos(e)
y = resin(e)

For the Cartesian coordinates (x,y), the corresponding polar coordinates are

Y = rsin(e)

r = JX 2+y2
e = tan-1(y/x)

x = rcos(e)

Figure 4.1. Relationship between Cartesian
and polar coordinates

158 • 4. Using Functions To Expand the Power of Fortran

3 Design an algorithm.

This algorithm converts specified Cartesian coordinates to polar coordinates
and back again.

DEFINE (x, y, r, theta (in degrees))
From polar to Cartesian:
WRITE (prompt for input)
READ (r,theta)
ASSIGN x = r-cos(theta)

y = r-sin(theta)
WRITE (x,y)
Back to polar:
ASSIGN r = (x2+'1)'12

theta = tan-1 (ylx) (Be sure to get the quadrant right,
based on the signs of x and y.)

WRITE (r,theta)

In this algorithm, the details of a WRITE command that tells the user what
kinds of input values to provide have been left out. We will often omit this detail
in future algorithms even though it is essential in a program. By now, you should
know that such prompts are always required whenever keyboard input is required.

This algorithm design has also omitted the conversions between degrees
and radians that will be required in the Fortran implementation. It would certainly
be acceptable to include those calculations, but they represent an implementation
detail that need not be part of the algorithm design.

4 Convert the algorithm into a program.

P-4.3 [POLAR. F90]

PROGRAM polar

Convert polar coordinates to Cartesian and check the
results by converting them back to polar coordinates.

IMPLICIT NONE
REAL X,Y,r,theta,pi,DegToRad

pi=4.0*ATAN{l.0)
DeqToRad=pi/180.0

4.1 Fortran Intrinsic Functions • 159

PRINT*, I Give polar coordinates r, theta (deg): I
READ*,r,theta

X=r*COS(theta*DegToRad)
Y=r*SIN(theta*DegToRad)

PRINT*, I X and y: I,X,Y

Recalculate values of r and theta ...

r=SQRT(X*X+Y*Y)
theta=ATAN2(Y,X)/DegToRad

PRINT*, I recalculated r and theta: I,r,theta

END

Running P-4.3

Give polar coordinates r, theta (deg):
5.0 30.0

x and y: 4.3301272 2.5000000
recalculated r and theta: 5.0000000 29.9999981

When you implement the algorithm for this problem in Fortran, you must
include conversions between radians and degrees to use the ATAN, SIN, COS, and
ATAN2 functions appropriately. Remember that the ATAN2 function is required
in order to return the original value of e.

5 Verify the operation of the program.

Program P-4.3 has been designed to check its own calculations. When the
user gives a set of polar coordinates, the program calculates the corresponding
Cartesian coordinates and then converts these Cartesian coordinates back to polar
coordinates. Because of the way Fortran does arithmetic with real numbers,
conversion of the x and y coordinates back to radius and angle may not yield
precisely the original value. This apparent problem, or at least its appearance in
displayed output, can be minimized by exerting more control over the form of
program output, as will be discussed in Chapter 5.

It's especially important to verify the operation of the program at angles
of 90° and 270° because the tangent is undefined at these two angles.4 What will
Fortran produce for r = 10 and e = 90°, for example? The calculated x-coordinate
will be small, but not exactly 0, and the y-coordinate may not be exactly 10.

4Because the tangent is defined as y/x in Cartesian coordinates, the tangent approaches
infinity whenever x approaches O.

160 • 4. Using Functions To Expand the Power of Fortran

Although the defInition of the ATAN2 function implies that a division by zero may
occur if x=O, this will not actually occur within the function, and your program
will not crash. Try some potentially troublesome values on your system and see
what happens. You mayor may not see anything that looks strange, depending on
the number of signifIcant fIgures displayed by your compiler's list-directed output
format.

Problem Discussion
There are several points worth mentioning about P-4.3's solution to this

apparently simple problem. Recall that, in program P-3.1 from Chapter 3, pi was
defmed as a constant (by giving it the PARAMETER attribute) when x was needed
to calculate the area and circumference of a circle. In P-4.3, x is defmed as a
variable and calculated by making use of the fact that 1tI4 radians (45°) is the
arctangent of I. In this way, pi is automatically calculated to as many signifIcant
digits as your compiler supports for REAL numbers. You may use whichever
method you or your instructor prefers.

Another important point concerns the conversion back and forth between
degrees and radians. The program user is asked to provide angles in degrees, and
angular output is expressed in degrees. However, remember that Fortran
trigonometric functions require arguments expressed in radians. Multiply an angle
by 1tI180 to convert from degrees to radians and by 180/x to convert from radians
to degrees. It's easy to forget this conversion, and the error can be difficult to
detect, especially in programs where the results of trigonometric calculations are
used internally and never printed as part of the program's output.

Program P-4.3 uses the ATAN2 function rather than the ATAN function to
calculate e. Suppose, for example, the Cartesian coordinates are (x,y) = (1,2). If
the Fortran argument X for the ATAN function is set equal to y/x, or 2.0, then
ATAN returns a value of 1.107 radians, or 63.43°. For the same arguments used
in the ATAN2 function, the same correct value is returned. Now, however, suppose
the Cartesian coordinates are (-1,-2). For the ATAN function, X still equals 2.0, and
the value returned is still 1.107 radians. However, this isn't the correct answer.
Only the ATAN2 function knows how to interpret the signs of x and y to return
the correct value for e, 4.249 radians, or 243.43°, an angle in the third quadrant.
Also, it is essential to remember the order in which the two arguments for the
ATAN2 function must be given: fIrst y, then x.

Finally, remember that intrinsic functions can be used in PRINT statements
just like other expressions, and they can be used as arguments in other functions.
This means that the code for recalculating r and e could reasonably be rewritten
as:

PRINT*, SQRT(X*X+Y*Y), ATAN2(Y,X)/DegToRad

4.1 Fortran Intrinsic Functions • 161

Just to demonstrate how functions can be used in expressions that are arguments
of other functions, theta could also be recalculated in terms of itself, like this:

theta=ATAN2(r*SIN(theta*DegToRad),r*COS(theta*DegToRad»/DegToRad

However, substituting these expressions for Y and X doesn't make sense except
as a demonstration.

Calculating the absolute value

Programs are often required to compare the absolute magnitude of the difference
between two numbers. Consider the algebraic expression d = 1 y - x I. A Fortran
translation of this expression is

abs_dif = ABS(y-x)

The remainder from integer or real division

As a final example, consider this question: if today is the fourth day of the week
(Wednesday), what day of the week will it be 53 days from now? The answer is
the integer remainder of dividing 53 + 4 by 7, or 1 (Sunday). Use the MOD
function for this calculation:

MOD(53+4,7)

The function MOD (n , m) returns a value between 0 and m - 1. In this example,
it returns a value between 0 and 6. If it returns a value of 0, this must be
interpreted as day 7 (Saturday).

A similar function is available for real numbers. Here's an example. Full
moons occur every 29.53 days. If a full moon occurred 3.7 days ago, how many
days after full will it be 144.7 days from now? Use the AMOD function (the REAL

version of the MOD function) for this calculation:

AMOD(3.7+144.7,29.53)

The answer is the remainder from dividin~ 3.7 + 144.7 bv 29.53. or 0.025 days.

162 • 4. Using Functions To Expand the Power of Fortran

4.2· Fortran Statement Functions

The large number of intrinsic functions supported by
Fortran is an essential reason for its continuing
popularity. However, it is ofteri convenient to be able to

sUltement function I
defme your own functions in programs that require the same calculation to be
performed many times with different arguments. In Fortran, you can define such
functions, called statement functions, at the beginning of your program. Once
defmed, these functions can be used just like the intrinsic functions.5 An important
difference is that, unlike intrinsic functions, statement functions exist only within
the program or subprogram in which they are defined. If you need them in another
program or subprogram, you have to write or copy the code again. The types of
calculations that can be performed with statement functions are restricted by the
fact that they must consist of one and only one Fortran statement, which may be
continued onto more than one line. Chapter 7 will present additional ways to
define more complicated functions as separate subprograms.6

A statement function defmition is not an executable Fortran statement. It
must appear after the specification (data declaration) statements and before the
first executable statement in the program unit. The general syntax for a statement
function is

function_name(one or more "dummy" parameters)

Example :
REAL BoxVolume,l,w,h
BoxVolume(l,w,h)=l*w*h

expression

There is no specific Fortran keyword that identifies a statement function. This
means that your program must be able to interpret a statement as a statement
function based only on its syntax and position prior to executable statements in
your program.

The statement function definition includes a
parameter list of one or more quantities needed as "input"
to the function. The parameter list defines the number and

I parameter list I
data type of the arguments expected by the function. The expression uses
these parameters and can also contain references to constants, PARAMETERs,

5There is an important exception. Intrinsic functions can be used as arguments in a call
to a subprogram, as will be discussed in Chapter 7, but statement functions cannot.

6It is worth noting here that some Fortran programmers believe statement functions, which
have been supported in older versions of Fortran, should no longer be used in Fortran 90 programs.
Alternatives will he discllssed in (,h~nter 7.

4.2 Fortran Statement Functions • 163

Fortran intrinsic functions, and even other statement functions that have already
been defined in the source code. (It cannot contain references to statement
functions that have not yet been defmed in the source code.)

When you defme a calculation in pseudocode that will later become a
statement function, you can put that defmition anywhere you want. However,
when you convert the pseudocode to Fortran, you must follow the syntax rules.
Here they are.

1. The data type of the result produced by a statement function- is determined by
the data type of its name, which must be explicitly declared in a previous type
declaration statement.
2. The dummy parameter(s) used in defining the statement function must appear
in a type declaration statement.?
3. The number and type of the argument(s) used when the function is invoked
should match the number and type of the function's parameter list. The arguments
may be constants, variables, or expressions.
4. The names of variables in an argument list that calls a statement function may
be, but don't have to be and usually aren't, the same as the names of dummy
variables used in the function's parameter list.

As an illustrative example, consider this problem:

1 Define the problem.

Write a program to calculate the area of a circular ring with a user
specified inner and outer radius.

2 Outline a solution.

1. Provide the inner and outer radius.
2. Subtract the area of the circle with the inner radius from the area of the circle
having the outer radius.

?Saying that a statement function and its arguments "must" appear in explicit type
declaration functions assumes that the program in which they appear includes an IMPLICIT
NONE statement.

164 • 4. Using Functions To Expand the Power of Fortran

3 Design an algorithm.

DEFINE (inner radius, outer radius, n; ring area as real numbers;
a function to calculate area)

READ (inner and outer radius)
(Assume that the '~rea" subprogram will be defined.)
ASSIGN ring area = Area(outer radius) - Area(inner radius)
WRITE (ring area)

SUBPROGRAM Area(IN: radius; OUT: area of a circle)
ASSIGN Area = ll·radiu~

(end subprogram)

4 Convert the algorithm into a program.

P-4.4 [RING. F90]

PROGRAM Ring

Calculate the area of a circular ring.

IMPLICIT NONE
REAL Inner_Radius,Outer_Radius,AREA,radius
REAL, PARAMETER:: pi=3.l415927
AREA(radius)=pi*radius*radius

PRINT*,' Give outer radius, then inner radius: '
READ* , Outer_Radius, Inner_Radius

PRINT*,' The area of the ring is: ',&
AREA(Outer_Radius)-AREA(Inner_Radius)

END

Running P-4.4

Give outer radius, then inner radius:
5.3 2.1

The area of the ring is: 74.3929214

4.2 Fortran Statement Functions • 165

5 Verify the operation of the program.

Check the calculations with a hand calculator.

Problem Discussion
In P-4.4, the statement

AREA(radius)=pi*radius*radius

appearing just after the type declaration statements defmes the statement function
the purpose of which is to calculate the area of a circle of specified radius. It
requires a single input parameter, symbolically referred to as radius, and
calculates the area of the circle corresponding to the value of that argument. The
value for 1t doesn't have to appear in the parameter list because pi is defmed as
a constant in a PARAMETER statement.

Note that the data type of AREA must be declared. As long as you include
the IMPLICIT NONE statement in your program, you won't be allowed to use
implicit typing for statement function names and arguments.8 As usual, it wouldn't
be a good idea to rely on implicit typing even if you could get away with it.

It is especially important to understand the relationship between the
parameter used in AREA's definition, radius, and the arguments used when the
function is used, outer_Radius and Inner_Radius. Obviously, the names
of the arguments don't match the name appearing in the parameter list. What is
essential is only that radius, Outer_Radius, and Inner_Radius all have
the same data type.

The Fortran implementation of the algorithm in P-4.4 results in adding
some items associated with the statement function definition to the data
specifications that didn't appear in the DEFINE section of the algorithm. Also,
there is no variable corresponding to "ring area" because the PRINT statement
displays the desired result without assigning its value to a separate variable name.
These discrepancies between the algorithm and the source code are due to the way
the algorithm was implemented in Fortran and are not an inherent part of the
problem solution. There is no reason to try to change the algorithm to match these
details of the Fortran implementation, or vice versa.

8In Section 3.3.2 of Chapter Three, it was mentioned that every variable name plus "a few
other things" must appear in a data type declaration statement. The names and parameters of
statement functions are some of those "other things."

166 • 4. Using Functions To Expand the Power of Fortran

4.3 Applications

4.3.1 Refraction of Light

1 Define the problem.

Snell's law describes the refraction (bending) of light as it passes from one
medium to another. If the refractive index of the incident medium is nj and that
of the refracting medium is 1\, the angles of incidence i and refraction r of a ray
of light, measured from the perpendicular to the boundary between the two
mediums, are related by

D4sin(i) = n..sin(r)

Figure 4.2 illustrates the geometry and Figure 4.3 gives some typical data.
Write a program that asks the user to provide two refractive indices and

the angle of an incident ray and then calculates the angle of a refracted ray.

2 Outline a solution.

1. Prompt the user to supply two indices and an incident angle.
2. Apply Snell's law to determine the angle of the refracted ray:

r = sin-'(:: sin(i) 1
Table 4.3 gives the angles of refraction when a light ray is directed from

air (nj = 1) into some common materials. (They are the data shown in FiJnIre 4.3.)

o 10

incident
beam

refracted

Figure 4.2. Geometry for Snell's
law of refraction

20 30 40 50 60
Incident angle, deg

4.3 Applications • 167

70 80 90

Figure 4.3. Angles of refraction as a function of angle of incidence

168 • 4. Using Functions To Expand the Power of Fortran

Table 4.3. Calculations for Snell's law

Angle of
Incidence
(from air)

o
10
20
30
40
50
60
70
BO
90

3 Design an algorithm.

Refractive Index of air=l
For refractive index of:

1.33 1.50 2.42
(Water) (Glass) (Diamond)

0.00
7.50

14.90
22.0B
2B.90
35.17
40.63
44.95
47.77
4B.75

0.00
6.65

13.1B
19.47
25.37
30.71
35.26
3B.79
41.04
41.B1

0.00
4.11
B.12

11. 92
15.40
1B.45
20.97
22.B5
24.01
24.41

DEFINE (nj, n" incidenLangle, refracted_angle as real numbers,
11' and OegToRad (conversion from angles to radians) as real)

ASSIGN OegToRad = 1TI180
WRITE (" Give index of refraction for incident and refracting medium:")
READ (nj, n,)
WRITE ("Give incident angle, in degrees:'?
READ (incidenLangle)
(Convert to radians before doing trig calculations.)
ASSIGN refracted_angle = sin-1 (nj In,-sin(incidenLangle-OegToRad))
(Display output in degrees.)
WRITE ("Refracted angle is'~ refracted_anglelDegToRad)

This algorithm explicitly includes the conversions back and forth between
degrees and radians. As noted previously, this is optional for the algorithm design,
but essential for a Fortran pro~am.

4.3 Applications • 169

4 Convert the algorithm into a program.

P-4.5 [REFRACT. F90]

PROGRAM Refract

Calculate angle of refraction for an incident ray,
using Snell's Law.

IMPLICIT NONE
REAL ni,nr ! indices of refraction (dimensionless)
REAL incident,refracted ! angles from perpendicular (deg)
REAL DegToRad ! required for trig functions
REAL, PARAMETER:: pi=3.1415927

DegToRad=pi/180.
PRINT*,' Give indices for incident and refracting medium:'
READ *, n i , nr
PRINT*,' What is the angle of incidence?'
READ *,incident

Convert refracted angle to degrees before displaying its value.

refracted=ASIN(ni/nr*SIN(incident*DegToRad»
PRINT *,' refracted angle = ',refracted/DegToRad
END

Running P-4.5

Give indices of refraction for incident and refracting medium:
1.0 1.5

What is the angle of incidence?
30
refracted angle = ~9.47~221

Note how in-line comments in P-4.5 are used to explain the variables, including
their units.

5 Verify the operation of the program.

Check your results with a hand calculator. Compare your values with those
in Table 4.3.

170 • 4. Using Functions To Expand the Power of Fortran

4.3.2 Inverse Hyperbolic Functions

1 Define the problem.

Although Fortran includes the hyperbolic functions among its intrinsic
functions, it doesn't include the inverse hyperbolic functions

sinh-1(x) = In(x + Jx2+1)

cosh-1(x) = In(x + Jx 2-1)

In(~ ::)
tanh-1(x) = ----'--~

2

Write a program that calculates the hyperbolic functions and their inverses, using
statement functions. Based on results from your program, make a table for the
inverse hyperbolic functions that shows the theoretical range for arguments and
the range of values returned for each function. These three functions are illustrated
in Figure 4.4.

2 Outline a solution.

1. Ask the user to provide a real number.
2. Display the intrinsic hyperbolic functions.
3. Use each of the results as the argument in the corresponding inverse hyperbolic
function and display the results.

3 Design an algorithm.

DEFINE (x, hyperbolic_sin, hyperbolic_cos, hyperbOlic_tan as real numbers)
WRITE ("Give any real number."
READ (x)
ASSIGN hyperbolic_sin = sinh(x), hyperbolic_cos = cosh(x)

hyperbolic_tan = hyperbolic_sinlhyperbolic_cosine
WRITE (hyperbolic_sin,hyperbolic_cos,hyperbolic_tan)
WRITE (InvSinh(hyperbolic_sin),lnvCosh(hyperbolic_cos),

InvTanh(hyperbolic_tan))
(Define functions for inverse functions-see problem statement.)

4.3 Applications • 171

g
..c en
8
g
..c
c ·w

1500.-o--'~~~--o-o-o-,,~~~--o-o-o--r

• • , , , • ., ., I • • , ----r-----.. -----,.----- ... ----r-----r-----.. -----~----- ----r---·-.----·.-----.----·,.-----.---
• • I , , • ., """ 0.8 · , , . . . " "',..
, • I , , • ., ".... , . . , , . ., "',.,
• , I I I • ., ".". , . , , , . " """ · , , , , . . , . , , , , , .

,'~trill]:iii!,J:,:
0.6

0.4

0.2

0

::::-~::.::t:::::t:::l::l:::r:::r::_:JI~~~~~~!::e::r::r::r:::
-0.2

-0.4

-0.6

-0.8
Jljn~~tliiI':iJ:!irtl!

-1501O-f---+--i-i--+-4===t---i---+--+---i~+-+--+---i---i---+-1
~ ~ ~ ~ 4 ~ ~ ~ 0 2 3 456 7 8

x

Figure 4.4(a). Hyperbolic functions

4

3

2

1

!-----~ .. \ l ···· .. -7 ~ .. j

.\i .' } ____ ._+ .. k:::: ..-:7
::::: ~~<~t~

~.~~~~~-+--+-~~--+--+~

X -..c c as
+-'

L_

-10 -8 -6 -4 -2 0 2 4 6 8 10
-4

-1 -0.75 -0.5 -0.25 o
X

025 0.5 0.75

x

Figure 4.4(b). Inverse hyperbolic
sine and cosine

Figure 4.4(c). Inverse hyperbolic tangent.

172 • 4. Using Functions To Expand the Power of Fortran

4 Convert the algorithm into a program.

P-4.6 [HYPERBOL. F90]

PROGRAM hyperbol

Calculate inverse hyperbolic functions.

IMPLICIT NONE
REAL x,hyperbolic_sin,hyperbolic_cos,hyperbolic_tan
REAL z,InvSinH,InvCosH,InvTanH !for statement functions
InvSinH(z)=LOG(z+SQRT(z*z+l.O»
InvCosH(z)=LOG(z+SQRT(z*z-l.O»
InvTanH(z)=LOG«l.0+z)/(l.0-z»/2.0

PRINT*,' Give any real number: '
READ*,x
hyperbolic_sin=SINH(x)
hyperbolic_cos=COSH(x)
hyperbolic_tan=hyperbolic_sin/hyperbolic_cos
PRINT*,' Hyperbolic sin,cos,tan:', &

hyperbolic_sin, hyperbolic_cos, hyperbolic_tan
PRINT*,' Inverse hyperbolic sin, cos, tan: " &

InvSinH(hyperbolic_sin), &
SIGN(InvCosH(hyperbolic_cos) ,x) ,InvTanH(hyperbolic_tan)

END

Running P-4.6

Give any real number:
1.5
Hyperbolic sin, cos, tan: 2.1292794 2.3524096 0.9051482
11)v. hyper. sin, cos, tan: 1. 50000QO 1. 5000000 1. 4999998

5 Verify the operation of the program.

You can assume the Fortran hyperbolic functions work correctly. With this
assumption, your program should return the original input if the inverse hyperbolic
calculations are done correctly and the functions are used appropriately.

In response to the second part of the problem, Table 4.4 presents argument
and function ranges for the inverse hyperbolic functions. Make sure you
understand these ranges and that they are consistent with results from your
program.

4.3 Applications • 173

Table 4.4. Argument and value ranges for inverse hyperbolic functions. (See
Table 4.1 for ranges of hyperbolic functions.)

Function Argument Function
Range Range

sinh(x) (-00,00) (-00,00)

cosh(x) (-00,00) [1,00)

tanh (x) (-00,00) (-1,1)

sinh-l (x) (-00,00) (-00,00)

cosh-l (x) [±1,±00) [0,00)

tanh-l (x) [-1,1] (-00,00)

Problem Discussion
This is an excellent example of a problem that appears very simple, but

actually contains several potential programming problems. First of all, cosh-1(x)
requires that its argument be greater than or equal to 1, and it always returns a
non-negative value. Because cosh(x) is always greater than or equal to zero,
regardless of the sign of x, cosh-1(cosh(x» will always return a positive result even
if x is negative. This means that the inverse function won't give back the original
value of x unless the SIGN function is used, as shown in the final PRINT
statement; it makes the sign of the displayed result dependent on the sign of the
original value of x.

A more serious problem concerns the accuracy of the underlying
computations for numbers of type REAL. An obvious trouble spot is the
calculation for the inverse hyperbolic tangent, which contains 1 - z in the
denominator, where z = tanh(x) when the function is used in the program. How
big (in absolute magnitude) does x have to be before tanh(x) is so close to 1 that
the l-z in the denominator results in an apparent division by zero, or before it's
so close to 1 that the calculation is no longer sufficiently accurate? The answer
is "Not very big!" Why? Because tanh(x) is very close to 1 for any value larger
than about 3. Table 4.5 gives some representative values for the hyperbolic
functions.

With the compiler used for the programs in this text, x = 4 produces
tanh-1(tanh(x»=3.99998. For x = 8, the calculation produces 8.11503-a significant
error. For slightly larger values, the calculation is either completely unreliable or
causes the projU"am to crash.

174 • 4. Using Functions To Expand the Power of Fortran

Table 4.5. Values for hyperbolic functions

x sinh(x) cosh(x) tanh(x)

0 0.00000 1.00100 0.00000

1 1.17520 1.54308 0.76159

2 3.62686 3.76220 0.96403

3 10.01787 10.06766 0.99505

4 27.28992 27.30823 0.99933

5 74.~0321 74.20995 0.99991

6 201.71316 201.71564 0.99999

7 548.31612 548.31704 1.00000

Similar computational problems also arise in I·· I
the sinh and cosh calculations because the exponential artthmettc overflow
function eX causes an arithmetic overflow error for
large values of x. With the compiler used for the programs in this text, arithmetic
overflows occur for the sinh and cosh functions when x reaches a value of about
90.

These kinds of computational problems result from the fact that the
accuracy of arithmetic calculations is limited by the accuracy with which real
numbers are represented in Fortran. Their onset can be delayed by using Fortran
data type declarations that allow more accurate calculations, which we will discuss
briefly in Chapter 12, but in general they can't really be solved in Fortran, or any
other procedural language, for that matter. As is so often the case, you are
responsible for appropriate use of a programming language. In many situations,
a loss of accuracy in calculations means that you should reformulate your
problem, rather than worrying about the limitations imposed by the programming
language. This topic, which is covered in courses on numerical analysis, is beyond
the scope of this text.

Programming Tip
If you're curious about the kinds of

computational problems that might occur in
programs similar to P-4.6, you can investigate

numeric inquiry function I
limitations on the REAL and INTEGER data types by using Fortran 90's intrinsic

4.4 Debugging Your Programs • 175

numeric inquiry functions. Program P-4.7, offered without additional comment,
shows how to use some of these functions. For additional details, consult a
Fortran 90 reference manual. With the compiler used for the programs in this text,
the Huge function returns 3.4028235E+38 as the largest REAL number. An
examination of the properties of REAL and INTEGER data types on your
computer system would make an excellent extra-credit project!

P-4.7 [NUMBERS. F90]

PROGRAM Numbers
Performs some tests on default REAL and INTEGER values.

IMPLICIT NONE
REAL x
INTEGER i

x=l. lean be any value of type REAL
i=l lean be any value of type INTEGER
PRINT *,' For real numbers ... '
PRINT *,' Digits(x) ',Digits(x)
PRINT *,' Huge(x) ',Huge(x)
PRINT *,' Tiny(x) ',Tiny(x)
PRINT *,' MaxExponent(x) ',MaxExponent(x)
PRINT *,' MinExponent(x) ',MinExponent(x)
PRINT *,' Preeision(x) ',Preeision(x)
PRINT *,' Epsilon(x) ',Epsilon(x)
PRINT *,' For integers ... '
PRINT *,' Digits(i) ',Digits(i)
PRINT *,' Huge(i) ',Huge(i)
END

4.4 Debugging Your Programs

4.4.1 Programming Style

Your programs should use intrinsic functions whenever possible. There is hardly
ever any justification for writing your own code to duplicate the capabilitites of
these functions. Whenever you need to perform simple calculations several times,
typically with different input values each time, your program can use statement
functions to perform the calculations. These functions should be descriptively
named and given appropriate type declarations. Comments should be included to
describe their output and the nature of the input required to use them.

4.4.2 Problems with Programs

Major sources of errors when using functions include using inappropriate input
arguments and misusing output values. (See the discussion of P-4.6.) If you're

176 • 4. Using Functions To Expand the Power of Fortran

lucky, inappropriate arguments will result in compilation or execution errors. If
you're not, your program will appear to work, but your answers will be wrong.
Here are some problems to watch for whenever you include functions in your
programs.

1. Trigonometric calculations give strange answers. A very common programming
error is forgetting to convert angles expressed in degrees to radians when you use
them as arguments in Fortran trigonometric functions. This sometimes produces
odd-looking answers, but all too often the answers look OK even when they are
wrong. Similarly, inverse trigonometric functions return values in radians. Be sure
to convert from radians to degrees if you wish to see angles displayed in degrees
as part of your program's output. When trigonometric functions are used internally
in your program, it is often easier simply to retain the values in radians.

2. Misuse of the AT AN function. Trigonometric calculations are often a source of
elusive problems. The ATAN function returns values in the range ±90°. Many
practical problems require an arctangent function that returns angles in the proper
quadrant based on the value of the x and y coordinates. (For example, if x and y
are both negative, the angle must be in the third quadrant.) In these cases, you
should use the ATAN2 function. (Review the use of the ATAN2 function iIi P-4.3
earlier in this chapter.)

3. Misuse of the LOG and LOGIO functions. Although there are no "rules" for
knowing whether to use natural (base e) or common (base 10) logarithms,
mathematical formulas usually use natural logarithms. Common logarithms are
often used when the range of numerical results to be plotted on a graph spans
many orders of magnitude. For example, values in the range 10-6 to 10+6 can be
plotted conveniently on a common log scale with values in the range -6 to +6.

4. Statement functions generate compilation errors. Remember that statement
function defmitions are nonexecutable statements and must appear before all
executable statements in your program.

5. Your program crashes when you run it. Run-time errors can often be traced to
inappropriate use of functions. As discussed throughout this chapter, functions
must be used with an understanding of their limitations. Remember that function
arguments that exceed the allowed range will produce run-time errors rather than
compile-time errors. This is because your Fortran compiler has no way to know
during compilation that an input argument eventually will be given an
inappropriate value. When these kinds of errors occur, you may need to re
evaluate the source of the function's arguments or rethink how the function is
bein£ used.

4.5 Exercises • 177

4.5 Exercises

4.5.1 Self-Testing Exercises

Exercise 1. Describe in your own words the two most important concepts you
have learned from this chapter.

Exercise 2. Describe in your own words how you could use in your own
programs a problem-solving skill demonstrated in a program described in this
chapter.

Exercise 3. Use Fortran 90 intrinsic functions to translate these defmitions or
algebraic expressions into Fortran statements.

(a) The hypotenuse of a right triangle is equal to the square root of the sum of the
squares of the two perpendicular sides.

(b) The height as a function of time reached by a projectile fired with speed v at
an elevation angle e is h = vtsin(e) - gel2.

-kit
(c) X = Vcos(e)(1-e)/k

WXlF -WXlF
(d) Y = F/(2W)e(e + e) + Yo - FIW

Exercise 4. Create statement functions for the following:

(a) The definitions or expressions in Exercise 3

(b) Cartesian coordinates x and y as a function of the polar coordinates r and e,
where x = recos(e) and y = resin(e) (see P-4.3)

(c) Trigonometric functions (sine, cosine, and tangent) for angles expressed in
degrees9

(d) Inverse trigonometric functions (arc sine, arc cosine, and arc tangent) that
return angles in degrees

9In earlier versions of Fortran, some compilers included such functions as a nonstandard
extension.

178 • 4. Using Functions To Expand the Power of Fortran

Exercise S. Create statement functions for the following conversions:

(a) Fahrenheit to centigrade

(b) Fahrenheit to kelvins

(c) Newtonslm2 to pound/in2

(d) a lowercase ASCII character to uppercase (see the discussion at the end of
Section 4.1.2)

(e) an uppercase ASCII character to lowercase

4.5.2 Basic Programming Exercises

Exercise 6. Using P-4.4 as a model, write a program that defines a statement
function to calculate the volume and mass of a sphere. Use this statement function
to calculate the volume and mass of the wall of a hollow sphere with a user
specified outer radius, wall thickness, and material density. Use metric units of kg
and kglm3•

Extra Credit
Suppose all the air could be removed from a hollow sphere without it

collapsing. For some reasonable material (aluminum, for example), how thin must
the walls be before a sphere with an outer diameter of SO m will "float" in air at
standard pressure and temperature?

Exercise 7. Modify program P-4.S so the calculation for the refracted angle is
contained in a statement function.

Exercise 8. Suppose a light ray passes from a medium of higher refractive index
to a medium of lower refractive index. For some critical angle 9c' measured from
the local perpendicular to the plane that separates the two mediums, the light ray
will be reflected internally, with no light passing into the medium of lower
refractive index. Modify program P-4.S to calculate the critical angle for the two
mediums defmed by the indices of refraction you provide as input.

Hint: the critical angle occurs when the refracted angle is 90°. If the
medium with the lower refractive index is air, the critical angles are given as the
last refraction an2le in each column of Table 4.3.

4.5 Exercises • 179

Exercise 9. Based on material from other courses you are taking, state a
computational problem and write a complete program to solve it. Make sure the
problem involves the use of one or more Fortran intrinsic functions or a statement
function.

4.5.3 Programming Applications

Exercise 10. Radioactive elements decay at a rate characterized by their "half
life," defmed as the time required for the original amount of radioactive material
to decrease by half. (The decayed material doesn't disappear, of course. The
process produces decay products that may themselves be stable or unstable.) For
example, radon has a half-life of 3.8 days. If there are originally 100 mg of radon
gas in an enclosed container, there will be 50 mg after 3.8 days, 25 mg after 7.6
days, and so forth. The process of radioactive decay can be described by the
formula

where Ao is the initial amount, A(t) is the amount after time t, and to is
proportional to the half-life tha1f• To relate to to tha1f, set A(t)=Aj2 and take the
logarithm of both sides:

For radon, to is about 5.48 days. Figure 4.5 shows a radioactive decay curve for
radon.

Write a program that calculates and prints the amount of radon remaining
from a given original sample mass after a specified number of days. Include the
calculation for to in the program rather than doing it by hand ahead of time.

Note: You may already have done the algorithm design for this problem
when it appeared as Exercise 21 at the end of Chapter 2. [HALFLIFE. F90]

180 • 4. Using Functions To Expand the Power of Fortran

1~~--~--~--~--------~--~--~--~---,

900 -- ------j----------t---------l---------t---------l---------j----------t---------(------t---------
~ 800 ----- --+-------+--------I---------+---------I---------i----------f---------i---------+---------
§ iii iii iii
~ 700 --------- : __________ l _________ : ________ ,L ________ L _______ L ________ L. _______ L _______ l ________ _

~ 600 ---------j--- _...I; haw-Ite = 3·t dayS; 1 ______ + ________ 1 _________ 1 ________ + _______ _ I 500 ---------j-------- l.--------l---------t--------t--------j----------(------j---------t--------
~ 400 ---------j----------t---- ----j---------t--------t--------j----------t---------j---------t---------

i : :::::::::I::::::f:I::r~l=l:JJ:::l::::::
00 2 4 6 8 10 12 14 16 18 20

Time, days
Figure 4.5. Radioactive decay of radon

Extra Credit
(a) Half-lives vary over a wide range, from small fractions of a second to

thousands of years. Modify your program so it will let the user provide both the
half-life, in appropriate time units, and the elapsed time in the same units, so the
program will work for elements other than radon. (This would be a better way to
write the original program, too, because it represents a more general approach to
the problem.)

(b) You may prefer to write A = Ao(l!2)tjthalf to calculate radioactive
decay. Modify your program accordingly.

Exercise 11. Write a program that asks the user to enter a currency amount and
then calculates how many dollar bills, quarters, dimes, nickels, and pennies are
required to return this amount in change. Assume that the minimum total number
of coins should be returned. This means that your program should return fIrst the
maximum number of quarters, then the maximum number of dimes, and so forth.

4.5 Exercises • 181

That is, even though you obviously could return $0.66 in change as, for example,
six dimes and six pennies, the program should tell you to return this change as
two quarters, one dime, one nickel, and one penny. This "restriction" actually
makes the problem easier to solve.

Hint: fIrst convert the currency to cents and then use integer division and
the MOD function, starting with the fact that one dollar equals 100 cents, one
quarter equals 25 cents, and so forth. [CHANGE. F90]

Exercise 12. Write a program that calculates the volume and surface area of a
cylinder, given the radius and height in inches. The volume of such a cylinder is
1t~h and the surface area is 2w + 2mh. Use a statement function for each
calculation. (For comparison, see Exercise 17 in Chapter 3.) [CYLINDR2. F90]

Exercise 13. Write a program that asks the user to supply the mass and velocity
of an object and then calculates and prints the kinetic energy and linear
momentum of that object. The kinetic energy is mv2/2 and the momentum is mv.
Use 51 units (mass in kilograms, velocity in meters per second, energy in joules).
Use a statement function for each calculation. (For comparison, see Exercise 18
in Chapter 3.) [KINETIC2 . F90]

Extra Credit
Include code for statement functions that will convert the kinetic energy

and momentum into their British system equivalents. The British unit of energy
is foot-pounds and the unit of momentum is slug-feet/seconds. 1 foot-pound=1.356
joule; 1 slug=14.59 kilogram; 1 foot/second=0.3048 meters/second. Use statement
functions for the conversion calculations.

Exercise 14. Under natural conditions of ample food supplies, adequate living
space, and a stable environment, animal populations grow exponentially, as
illustrated for the global human population in Figure 4.6. That is, the projected
population at some future time will be proportional to the current population. A
simple single-parameter model for extrapolating an initial population Po n years
into the future is:

where g is the net annual growth rate as determined by the difference between
births and deaths.

182 • 4. Using Functions To Expand the Power of Fortran

8.5 --------------l--------------t--------------l--------------t--------------l-------------'t'-----------

.~ 8 --------------I--------------t-- -- -- ---- ----I- -------------t ------------ --1------ --------: -------------

i 7: ··t::::::::t:·::::t:!:::~t .. ::::
5.. :::::: 8. iii iii 6 5 -- -- -- -- --- ___ L ____________ L_ ---- ----- ---: ____________ l ____________ __ L ____ ________ l ___ -----------

jg . iii I annual growth = 1.4% I i o
~ 6 --------------1------------- i --------------l--------------r------------l------------l---- ---------

5.5 ------ -- ---1--------------r -------------r-----------T------------r-----'-----T-------------

1990 1995 2000 2005 2010 2015 2020
Year

Figure 4.6. Exponential growth of global human population

2025

Write a program that uses this fonnula to calculate the growth rate needed
to achieve a specified population at some time in the future. In 1992, the global
human population was about 5.4x109 people. Some estimates predict that global
population will be about 8.5x109 in the year 2025. It is not at all clear that the
"natural" conditions required to support exponential growth will continue to exist
for the human population. Food shortages, overcrowding, poor economic
conditions, war, and environmental degradation can significantly affect both birth
and death rates. [POPULATN. F90]

Exercise 15. The loudness of a sound is measured in decibels (dB) on an arbitrary
scale that relates perceived loudness to the ratio of the intensity of a sound to the
intensity of the weakest audible sound 10 , which is about 10-12 W/m2:

Intensity is a physically measurable quantity, but loudness is a subjective human
perception. The perception of loudness has approximately the logarithmic relation
indicated by the equation, but it varies among individuals. Write a program that
calculates and displays the intensity and loudness for sounds 10, 100, and 1000
times more intense than the weakest audible sound. fNOISE. F901

4.5 Exercises • 183

Extra Credit
Modify your program to calculate and display the intensity of a sound with

a specified dB value. What is the intensity of a sound of 100 dB, which is loud
enough to cause pennanent hearing damage?

Exercise 16. The efficiency of solar energy systems depends critically on the
ability to track the sun's position. One required value is the solar elevation angle
E, the angle to the sun measured upward from the local horizontal. It depends on
the latitude of the subsolar point (solar declination) a, the observer's latitude A,
and the hour angle 13, where hour angle is the angle from the observer's meridian
to the subsolar meridian. (13 = 0° occurs at local "high noon," which generally
differs from clock noon by a few minutes. One hour of clock time corresponds to
approximately 15° of hour angle. A meridian is a line of constant longitude
running from the north pole to the south pole.) The latitude of the subsolar point
is seasonally dependent, with a range of ±23.4°. The largest positive value occurs
at northern hemisphere midsummer, and the largest negative value occurs at
northern hemisphere midwinter. The solar elevation angle for any solar
declination, latitude, and hour angle is given by:

E = 90° - cos·l(cOSaCosAcosl3 + sinasinA)

0~~--4-~~-+--+--4--~--+--+~4-~~~
-120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120

Hour angle, deg

Figure 4.7. Solar elevation angle in winter and summer at 400N
InrihH/p

184 • 4. Using Functions To Expand the Power of Fortran

Write a program that asks the user to supply an observer's latitude and the
solar declination and then calculates and displays solar elevation angle for hour
angles of 60°, 30°, and 0° (corresponding approximately to 8am, lOam, and noon
in clock time). Use your program to determine the range of high noon (maximum)
elevation angles as a function of season at a specified latitude. What happens in
the polar regions, when the sun may not shine at all during part of the year?
Figure 4.7 shows the elevation angle for 4QoN latitude in the summer and winter.
[ELEVATIN. F90]

Exercise 17. The well-known factorial function n! is defined as

For example, 5! = 5-4-3-2-1 = 120. For large values of n, this is a very
impractical calculation. However, n! can be approximated for large values of n
with Stirling's formula:

Write a program that requests a value of n and calculates n! using
Stirling's approximation. How close is Stirling's approximation for values of n!
you can calculate yourself by hand? This approximation is especially useful when
calculating the ratio of two large factorials, as required for certain problems in
probability theory.

Hint: declare n as REAL. [STIRLING. F90]

Extra Credit
What is the largest value of n for which n! can be calculated from its

definition when n is declared as the default INTEGER data type? Can you
comment on the applicability of Stirling's formula for larger values of n? In order
to answer this question, you could look ahead to the part of Section 3 in
Chapter 12 that deals with declaring numbers with greater precision and range
than the default REAL data type.

Exercise 18. Suppose a single measurement is taken from a standard normal
(Gaussian) distribution. For such a distribution, the mean (arithmetic average) is
o and the standard deviation is 1. The probability that a single measurement will
be no greater than some specified value z is equal to the area under the curve
defined by the standard normal probability density distribution function, integrated
from -00 to z.

The standard normal probability density function cannot be integrated
analytically. One solution is to approximate the integral with a polynomial:

where

r = e _z2f2 / {I7i
~ = -0.1201676

4.5 Exercises • 185

cumulative probability "'" 1 - r(a1t + ~f + ai)

t = (1 + 0.3326zr1 a1 = 0.4361836
~ = 0.9372980

The error resulting from using this approximation is less than 10-5•

Write a program that will calculate cumulative probability for some
specified value z using this approximation. [NORMAL2. F90]

Extra Credit
The standard normal variable z is related to measurements of normally

distributed quantities taken from populations whose sample mean and standard
deviation m and s have values other than 0 and 1 by

Z = x - m
x

Modify your program so that it will calculate the probability that a single
measurement from a normally distributed population with sample mean m and
standard deviation s will not exceed the mean by more than some specified
amonnt"

5

Gaining Control Over Program Output

This chapter discusses techniques for supplementing the list-directed output
formats used in the previous chapters with formats that provide a wide range of
options for controlling the appearance of displayed output from your programs.

5.1 The Formatted PRINT Statement

5.1.1 Introduction to Formatted Output

In the previous two chapters, output from programs in the text and programs you
wrote yourself was generated by using the PRINT *, ... statement. This list
directed output is easy to use because your Fortran compiler decides how the
output will be displayed on your computer's default output device, usually a
monitor. List-directed output is very convenient for "quick and dirty"
programming, or as an intermediate step when you're developing a complicated
programming project.

Eventually, however, you will wish to make use I formatted output I
of Fortran's extensive features for controlling the
appearance of your programs' output. These formatted
output features can be implemented either with the PRINT statement, which has
been used in previous chapters to produce list-directed output, or the WRITE
statement, which will be described in this chapter.

First consider the PRINT statement. The list
directed output from the PRINT *, ... statement syntax
can be modified by including a format specifier that

format specifier I
describes how the programmer wants output to appear. An expanded syntax for
the PRINT statement now looks like this:

PRINT *[, list of variables, expressions, functions,
or constants, separated by commas]

PRINT labell, list ...]
PRINT format string[, list ...]

The first form is the familiar syntax for list-directed output and the other two are
for formatted output. As an introduction to how the PRINT statement is used to

D. R. Brooks, Problem Solving with Fortran 90
© Springer-Verlag New York, Inc. 1997

188 • 5. Gaining Control Over Program Output

produce fonnatted output, consider program P-5.1, which involves a minor
modification of program P-4.3 from Chapter 4.

P-5-1 [POLAR2. F90]

PROGRAM polar2

convert polar coordinates to Cartesian and check the
results by converting them back to polar coordinates.
Demonstrates formatted output.

IMPLICIT NONE
REAL X,Y,r,theta,pi,DegToRad

pi=4 . O*ATAN (1. 0)
DegToRad=pi/180.0
PRINT *, I Give polar coordinates r, theta (deg): I

READ *,r,theta

X=r*COS(theta*DegToRad)
Y=r*SIN(theta*DegToRad)

PRINT 1000,X,Y

Recalculate values of r and theta ...

r=SQRT(X*X+Y*Y)
theta=ATAN2(Y,X)/DegToRad

PRINT 1001,x,theta

FORMAT statements ...

1000 FORMAT(lx,'x and y: ',2£6.2)
1001 FORMAT(lx, 'xecalculated x and theta: ',2£7.3)

END

Running P-5.1

Give polar coordinates r, theta (deg):
5. 30.

x and y: 4.33 2.50
recalculated r and theta: 5.000 30 . 000

Compare this output with that from program P-4.3, which used list-directed
output. The results of the calculations are the same in each case. However, the
output from P-5.1 is easier to read and makes more sense in the context of how
the input values are expressed because the extraneous digits in the output of P-4.3
are no longer present in this output.

Program P-5.1 differs from program P-4.3 in the syntax of its two PRINT
statements and the addition of two FORMAT statements; these four statements are

5.1 The Formatted PRINT Statement • 189

printed in bold italics. In place of the asterisk that specifies list-directed output,
each PRINT statement now contains a reference to a line containing a FORMAT

statement that controls how the output is displayed.
FORMAT statements are identified by line labels in the

form of numbers. This is the first time we have used such labels.
In older versions of Fortran, columns 1-5 were reserved for line

line labels I
labels and we will continue to follow this style even though it's not required in
the free-format environment of Fortran 90. All that is required by Fortran 90 is
that the label appear first on the line containing the statement to which it refers.

The syntax of the format statement is :

label FORMAT(format descriptors)

Example:
1000 FORMAT(lx, IX and y: I,2f6.2)

Here are some rules for using FORMAT statements:

1. A line label can be any positive integer up to five digits. That is, lines can be
labelled from 1 to 99999.

2. You can't use the same label for more than one FORMAT statement in a single
program unit.! However, the labels don't have to be numbered consecutively, and
they don't have to appear in any particular numerical order.

3. FORMAT statements can appear anywhere in a program after the nonexecutable
statements.

4. More than one PRINT statement can reference the same FORMAT statement.

5. It is an error to reference a FORMAT statement label that does not actually
appear in the program.

In this text, FORMAT statements will always appear at the end of a
program and always with their labels in ascending numerical order because that
makes the code easier to read.2 The first FORMAT statement label will usually be
1000, but this is just a style choice and not a Fortran requirement.

! As you will see in later chapters, FORMAT statement labels can be reused in subprograms.

2rhis is a personal preference. Some programmers prefer to put FORMAT statements
directly after the output statements that refer to them.

190 • 5. Gaining Control Over Program Output

Although the differences in the output produced by P-4.3 and P-5.1 may
seem minor, the ability to control the appearance of output is an important feature
of Fortran. We will make extensive use of these capabilities in many of the
programs in this text.

5.1.2 Format Descriptors for Numbers and Character Strings

I format descriptors I
P-5.1 include the string constants that formerly were
The FORMAT statements labeled 1000 and 1001 in

part of the list-directed output statement. They also
include other format descriptors, which may be grouped in three classes:
numerical, character, and control. Table 5.1 (a) includes a listing of several
descriptors. A program including examples of each descriptor, DESCRIPT. F90,
is included in the files available from the World Wide Web Site mentioned in
Section i.5 of the Preface, but it will not be discussed in the text.

For the A, I, E, EN, ES, and F descriptors, the total I
number of characters allocated for the output, the field width, is field width
given by the positive integer constant w. Some general rules for
using descriptors include:

(1) Any descriptor can be repeated by including an optional repeat count specifier
n.
(2) Descriptors in a FORMAT statement are always separated by a comma.
(3) Descriptors must always match the data type of values being printed under that
descriptor.

INTEGER descriptors

The Iw descriptor is used to display INTEGER values. If the field width w isn't
wide enough to display the entire value, asterisks will be displayed. Numbers are
always right-justified in the field specified by w.

REAL descriptors

The basic descriptor for REAL (or "floating point") numbers is Fw. d. The field
width w must be wide enough to include a space for a sign, all required digits to
the left of the decimal point, the decimal point itself, and the specified number of
digits to the right of the decimal point, as specified by d. If w is too narrow,
asterisks will be displayed. If the number is positive, the default action calls for
the "+" sign not to be displayed. It is possible that your compiler will require one
space for a sign re~ardless of whether it is actually displayed. Because of this. and

5.1 The Formatted PRINT Statement • 191

for general readability of your output, it's always a good idea to leave at least one
extra space in the field width. Numbers printed using the F descriptor are always
right-justified in the field specified by w.

Table 5.1. Format descriptors

Table 5.1(a) Numerical and character descriptors

Data Type Descriptor Example2 Output
Syntax1

INTEGER [n]Iw 4i4 ~~17~~~3~~-3~S67

[n]Iw.m
is.4

~OO99

(Inserts leading zeros)

REAL [n]Fw.d 2f6.2 ~~1. 41~ -1. 41

[n]Ew.d 3 e13 .4 ~~O.2998E+09

[n] ENw. d 4 en13.4 ~299.7900E+06

[n]ESw.d 5 es13.4 ~~-2.9979E+08

CHARACTER [n]A a Fortran

[n]Aw alO ~~~Fortran

a4 Fort
(Assuming a character
variable of length 10)

LOGICAL [n]Lw L3 ~~T

General [n]Gw.d 3gS.0 ~1994~199S~1996

String , , 'Fortran' Fortran ...
constant " " "Fortran" (String may contain any ...

printable character.)

J d, m, n, and w are unsigned (positive) integer constants. The repeat count specifier [n] is
optional in all cases. A repeat count of I is allowed but extraneous.
2 Either lowercase or uppercase letters can be used.
3 The absolute magnitude of the significand (digits to the left of the decimal point) is less than 1.
4 The absolute magnitude of the significand is greater than or equal to I and less than 1000. The
exponent is evenly divisible by 3.
5 The absolute magnitude of the significand is greater than or eaual to I and less than 10.

192 • 5. Gaining Control Over Program Output

Table S.l(b) Control descriptors

Control Function Descriptor Example/Comment
Syntax

Carriage control J character embedded J6 start new line
in a string constant + remain on same line

o skip a line
1 skip to new page

Skip spaces nX lOx

Sign display ss suppresses + sign
SP displays + sign
s returns to default 2

New line [,nl/ 3 , 3 I is equivalent to
III

Tabulation Tn tab to column n
TRn tab right n spaces 4

TLn tab left n spaces

Terminate format [,]:[,] stops processing format
when 110 list is empty

I See text for description of carriage control functions.
2 Default condition (suppress or print + sign) is system-dependent.
3 The comma is required only when the slash descriptor is preceded by another edit descriptor.
4 Tn is an "absolute" tab to a specified position in the line. TRn and TLn are "relative" tabs from
the current position; TRn is equivalent to nX.

For a REAL number less than 10, as in the fIrst line of output from P-S.l,
a descriptor of F 4 . 2 might work, but F 5 . 2 might be required. A descriptor of
F 3 . 2 would not work because a minimum of four characters is required.
Assuming that your compiler will accept an F 4 . 2 descriptor for the first line of
output from P-S.l, the repeated descriptor 2F4 .2 would display the confusing
output 8 . 665 . 00, which is another reason to make sure w is wide enough so that
all your output is easily readable. The total field width should be at least three
more than d, including a space for a sign.

The E descriptors display REAL numbers in "exponential" or "scientific"
format, as a value times a power of 10. For Ew . d, w must be at least seven more
than d: one space for a sign, two spaces for the 0 and decimal point, and four
spaces for the exponent.

5.1 The Formatted PRINT Statement • 193

The E, EN, and ES descriptors differ in the number of nonzero digits they
place to the left of the decimal point, as explained in the notes accompanying
Table 5.1(a). For the same value of d, the EN descriptor may require a field width
up to nine more than d, depending on the size of the number being displayed.

CHARACTER descriptors

The A descriptor is used to display character data. It displays the value using the
number of characters in the string. The Aw descriptor will right-justify the
character string in a field of width w if w is greater than the number of characters
in the type declaration and will truncate characters from the right if w is less than
the number of characters in the string.

LOG I CAL descriptor

The Lw descriptor prints a T or an F for the logical value. TRUE. or . FALSE.,
right-justified in a field of width w.

General descriptor

The G descriptor can be used to display any of the data types discussed above. Its
use of w or w . d follows the rules for the data type being displayed.

String constant descriptors

String constants (literals) are displayed by including them in statements enclosed
in single or double quotes. The constants may include any printable character.

5.1.3 Control Descriptors

Carriage control

In the early days of Fortran, the standard output device was a mechanical printer,
so the concepts of "line" and "page" had a very specific physical interpretation.
The carriage control descriptors controlled the position of the printer's printhead
and the motion of paper past the printhead. The first character generated as a
result of a PRINT statement was not actually printed, but was used to control the
motion of the paper and the printhead. As shown in Table 5.1(b), these controls

194 • 5. Gaining Control Over Program Output

included characters to start a new line (]6), to remain on the same line (+), to skip
a line (0), and to advance to the beginning of a new page (1). The "new page"
control was especially insidious, as it could tum a short printed output into
hundreds of mostly empty pages if you happened to be unlucky enough to print
lots of numbers starting with a "1" in the ftrst column.

In modem Fortran implementations, the standard output device is a monitor
screen rather than a printer. The IBM-compatible PC-based compiler used to
develop the programs for this text doesn't even recognize carriage control
characters, and it prints all characters, even the ftrst one, directly on the monitor
screen. You can test the performance of your own version of Fortran by running
the DESCRIPT. F90 program mentioned at the beginning of Section 5.1.2.

Regardless of how your version of Fortran treats control characters, you
can avoid potential problems by developing the habit of including one blank space
as the first printable character in every output statement, unless you are using a
system that interprets these characters and you wish to use them. For example,
when a formatted output statement is used to display a string constant, the first
character should always be blank. When data are displayed using unformatted
(list-directed) output, the compiler-generated default fteld width is always wide
enough so that the first space is blank. The compiler used to develop programs for
this text always starts list-directed output in the second column. That is, the
statement PRINT * I 'message' displays]6message rather than message.
Thus if you run sample programs from this text on a different system, spacing
may sometimes differ by one column.

Skipping spaces

The nX descriptor prints blank spaces. For example, including IX as the ftrst
descriptor in a FORMAT statement generates a space, which avoids unintentional
carriage control problems as described in the previous section. For this descriptor,
a value for n must be included even if it is 1.

Sign display

As mentioned previously, your system mayor may not print a + sign in front of
positive numbers, and your system mayor may not require your format
speciftcation statement to include a space for this sign. In any case, you can use
the S descriptors to force the + sign to be displayed (sp) or suppressed (SS), or
to revert to the default condition for your system (S).

5.1 The Fonnatted PRINT Statement • 195

New lines

The slash (j) descriptor is used to force a line feed and
carriage return. By using this control, you can create
several lines of output within a single PRINT statement.
The slash descriptor does not have to be separated from

linejeed
carriage return

previous descriptors with a comma unless the n/ syntax is used. Multiple slashes
can appear together. As noted in Table 5.1(b), / / / is equivalent to ,3/.

Tabulation

The T descriptors generate "tabs" on a printed line. They may be relative (TRn
and TLn) or absolute (Tn). An absolute .tab counts n spaces from the beginning
of the line. The relative tab counts n spaces from the current position on the line.
Hence TRn is equivalent to nX. The T descriptors are useful for printing output
in columns, although it is hardly ever necessary to use them because uniform
columns can also be generated by adjusting the field width in data format
descriptors. Note that the tabulation descriptors don't actually generate "tab"
characters, as word processors do. Rather, they simply move the "printhead" an
appropriate number of blank spaces. This distinction may be important in some
applications. For example, suppose you used the T descriptors in a Fortran
program that saved its output in a data file. If you tried to use that data file as
input to an application that was expecting "tab-delimited" values (a spreadsheet,
for example), the Fortran-generated file would not meet that requirement.

Programming Tip
You might be tempted to think that you could use the TL descriptor to

create multiple-character overstrikes. This won't work. Instead only the last
character printed in a space is retained.

Format termination

The colon (:) descriptor terminates processing of the contents of a format
statement as soon as there are no more items to be read or written in the
input/output list. A practical application is to prevent output of unwanted string
constants used for annotating output. For example, the statements

a=S
b=1776
PRINT 1000,a,b

1000 FORMAT(' a=',iS,' b=',iS,' c=',iS)

196 • 5. Gaining Control Over Program Output

produce the output

a= S b= 1776 c=

even though no value for c is being displayed. However, replacing the PRINT
statement with

PRINT 1000,a,b
1000 FORMAT(' a=' ,is, :,' b=' ,is,:,' c=' ,is)

produces the output

a= S b= 1776

In some circumstances, use of the colon terminator can significantly reduce the
number of different format statements you must create for a program.

5.1.4 Repeating Groups of Descriptors

It is clear from Table 5.1 that individual descriptors can be repeated n times by
placing n in front of the descriptor. It is also possible to repeat groups of
descriptors by enclosing them in parentheses. For example, the FORMAT

statements

FORMAT(lx,3(f6.2,iS»
FORMAT(lx,2(f4.1,3(a6»,f10.S)

are equivalent to

FORMAT(lx,f6.2,iS,f6.2,iS,f6.2,iS)
FORMAT(lx,f4.1,a6,a6,a6,f4.1,a6,a6,a6,f10.S)

Especially with repeated groups of descriptors, it is important to make sure that
the data types of the values being printed agree with the descriptors; if they don't,
your program will issue an error message.

5.1.5 Producing Formatted Output without a FORMAT Statement

As noted previously in the syntax defmition for formatted output, it is possible to
replace a reference to a labeled FORMAT statement with a string that contains the
format description. Some programmers prefer this approach because they believe
line labels should be avoided whenever possible. The format strinJ:!; may be either

5.1 The Fonnatted PRINT Statement • 197

a string literal or a CHARACTER constant declared with an appropriate length.
Consider the two PRINT statements in program P-5.1:

PRINT 1000,x,y
PRINT 1001,r,theta

1000 FORMAT (lx, 'x and y: ',2f6.2)
1001 FORMAT (lx, 'recalculated r and theta: ',2f7.3)

These can be written as

PRINT "(lx,'x and y: ',2f6.2)",x,y
PRINT "(lx, 'recalculated r and theta: ',2f7.3)",r,theta

and also as

CHARACTER*40 F1,F2

F1="(lx,'x and y: ',2f6.2)"
F2="(lx, 'recalculated r and theta: ',2f7.3)"

PRINT F1,x,y
PRINT F2,r,theta

Note the use of quotation marks to delimit the format strings. These, rather than
single quotation marks, are necessary because the string itself contains single
quotation marks. The format string must include parentheses as shown.

This text favors the use of labeled FORMAT statements over the use of
character strings for defining formats. We will be consistent about placing these
statements in numerical order at the end of a program--or subprogram, when we
get to that later in the text. String literals embedded within output statements often
make those statements more cluttered and harder to read. Also, defining
CHARACTER constants seems like a waste of time when done just for the purpose
of avoiding line labels.3

There is one circumstance in which the use of string constants to describe
formats can be very helpful. Suppose a program needs to read an external data
file-a topic that will be covered in Chapter 9. If the file is originally created with
a Fortran program in mind, the first line in the file can contain a string that gives
the format for the file. Then a program can construct its own format based on the
information provided in the file.

3 Author's note: this style is purely a personal preference and some Fortran programmers
will disagree. However, I find nothing objectionable about using line labels for this purpose, and
I believe the use of appropriately placed FORMAT statements at the end of a program or
subprogram usually makes source code easier to read.

198 • 5. Gaining Control Over Program Output

5.2 The WRITE Statement

5.2.1 Syntax of the WRITE Statement and the Standard Output Unit

The PRINT statement always directs its output to the standard output device for
a particular Fortran implementation. In the early days of Fortran, this standard
device was a mechanical printer. In modern Fortran usage, the standard output
device is almost always a monitor screen. However, it is often necessary to direct
Fortran output to some other destination. Typically, this destination is a data file
that will contain a permanent record of the output generated by a program. In
order to direct output to anywhere other than the standard output device, you must
use a WRITE statement in place of a PRINT statement. A simplified syntax for
the WRITE statement is

WRITE(u,*) [list of variables, expressions, functions,
or constants, separated by commas]

WRITE(*, *) [list . ..]
WRITE(u, [FMT=] label, [ADVANCE='NO'])[list ...]
WRITE(u, [FMT=] format string, [ADVANCE='NO'])[list ..]

where u represents a unit number. A unit number is used to unit number
create an association between a programmed I/O operation and
a physical device. In particular, a unit number can be used to
direct output to a specified output device, including the standard output device.
We will discuss a simple application of this concept in the next section of this
chapter, and we will discuss the use of unit numbers in detail in Chapter 9. For
now, it is sufficient to know that for output to a monitor screen, the unit number
in a WRI TE statement that directs output to the standard output device can be
either an asterisk or, on most systems, a 6. If the 6 has to be replaced with some
other unit number on your system, your instructor will tell you what value to use.

The WRITE statement can be used for either list-directed or formatted
output. An asterisk in place of a format specification indicates list-directed output.
The FMT= text for the format specification is optional as long as the label or
format string occurs immediately after the unit number. The format specification
can be either a label or a string constant. The optional ADVANCE= I NO I specifier,
available only with formatted output, produces "nonadvancing output" that
prevents a carriage return from being added to the end of the output line. With
nonadvancing output, the output from more than one WRITE statement can appear
on the same line. This is often useful when displaying output from inside DO ...

loops, for example.
As a simple example of using nonadvancing output, consider this common

code usin~ PRINT:

PRINT *, 'Type an integer: '
READ *,i

5.3 Saving Program Output • 199

If you enter a value of 10, your screen will look like this:

Type an integer:
10

That is, the message from PRINT appears on one line and the response appears
on the next line. It's a minor point, but it might be convenient to have your screen
look like this:

Type an integer: 10

You can produce this result by using a formatted WRITE statement and the
ADVANCE= , NO' specifier:

WRITE{6, '("Type an integer: ")' ,advance='no')
READ *,i

In addition to providing the option of nonadvancing output, there is at least
one more significant advantage to using WRITE instead of PRINT. The unit
number u can be a constant, an integer variable, or an expression that returns an
appropriate positive value. How could you make use of this fact? Suppose you are
developing a program. During the development process, you can direct all the
output to your monitor screen by assigning u a value of 6 at the beginning of your
program. When the program is complete, you can redirect the output to a data file
just by opening that data file from within your program and associating it with an
appropriate value of u. We will demonstrate this process in the next section of this
chapter.

5.2.2 Format Descriptors for the WRITE Statement

The good news about format descriptors for the WRITE statement is that they are
the same as for the PRINT statement. Therefore, Table 5.1 applies to both PRINT
and WRITE. For formatted output, the only difference in the syntax of PRINT and
WRITE statements is that WRITE provides the option of nonadvancing output.

5.3 Saving Program Output

As noted in the previous section, the default output destination for program output
is probably your monitor screen. On some systems, you can save the output from
a pro.!n'am simply by "dumping" the contents of your computer's monitor screen

200 • 5. Gaining Control Over Program Output

to a printer. However, what you usually wish to do is create a permanent
electronic record of your program's output.

Fortunately, it is easy to direct output from a program to other destinations,
including a data file that captures a permanent electronic record of all the output
from your program. This is an excellent way to record your work on homework
assignments, but the major advantage is that data generated by a Fortran program
can be saved in a file that can then be "imported" into a variety of other computer
applications, including word processors, spreadsheets, and graphing applications.

To demonstrate the process of creating a permanent electronic file, consider
program P-S.2, which is a modification of P-S.l. P-S.2 is identical to P-S.l
(POLAR2 . F90) except for the addition of several statements printed in bold
italics. It even produces the same output on your computer monitor, so its
displayed output isn't duplicated here.

After the data declarations, an OPEN statement is used to create an
association between a data file called POLAR3 . OUT and unit number 1. This unit
number is a label that can be referenced later by the program. Any WRITE
statement that refers to unit number 1 will send output to this file.

The choice of a value of 1 for the unit number is somewhat arbitrary. As
noted in the previous section, unit number 6 is "preconnected" to the default
output device of many Fortran systems. Similarly, on most systems, unit number
S is preconnected to the default input device. There may also be restrictions on
other unit numbers; ask your instructor. However, assuming that S and 6 are the
preconnected unit numbers, the values 1-4 should be available.4

P-S.2 [POLAR3. F90]

PROGRAM polar3

convert polar coordinates to Cartesian and check the
I results by converting them back to polar coordinates.

Demonstrates formatted output and creation of an output
data file.

IMPLICIT NONE
REAL X,Y,r,theta,pi,DegToRad

OPEN(1,file='polar3.ou~'}

pi=4.0*ATAN(1.O)
DegToRad=pi/1BO.O
PRINT *,' Give polar coordinates r, theta (deg): '
READ *,r,theta
WRITE(l,*}' For r and the~a = ',r,the~a

~t may actually be possible to reassign the preconnected unit numbers 5 and 6 to an
external file. but there is no reason to do thk

X=r*COS(theta*DegToRad)
Y=r*SIN(theta*DegToRad)

PRINT 1000,X,Y
WRITE(l,lOOO)X,Y

5.3 Saving Program Output • 201

Recalculate values of r and theta ...

r=SQRT(X*X+Y*Y)
theta=ATAN2(Y,X)/DegToRad

PRINT 1001,r,theta
WRITE(l,lOOl)r,the~a

CLOSE(l)

FORMAT statements ...

1000 FORMAT(lx, 'x and y: ',2f6.2)
1001 FORMAT(lx, 'recalculated r and theta: ',2f7.3)

END

The file that your program will create can have any name that is legal for
your system. Use of the . OUT extension (which is a typical choice for MS-DOS
systems, for example) is an arbitrary but reasonable choice in the context of P-5.2.
If the requested output file name does not already exist on your computer, Fortran
will create such a file. If the file name already exists, program output will be sent
to that file and will overwrite existing information on that file.

Statements that prompt the user of a program to provide input while it is
executing must still be directed to the monitor screen; there is usually no reason
to send copies of such directions to a file. This isn't a problem because output not
specifically sent to a file will continue to be sent to the monitor screen. Also,
responses that a user types at the computer's keyboard won't be recorded in the
output file. For this reason, an extra WRITE statement has been added to P-5.2 to
"echo" the input values to the output file.

Later in P-5.2, each PRINT statement is followed by a corresponding
WRI TE statement that sends duplicate copies of the output to POLAR3 . OUT. Thus
output from this program continues to appear on the monitor screen, but identical
output is also recorded in a permanent file. When the output is complete, a
CLOSE statement closes POLAR3. OUT.

Another approach to saving program output is to use WRITE statements
with a unit number for all output except for that which must appear on the
monitor screen to direct user responses. For output that should always appear on
the screen, use either a PRINT or a WRITE with an asterisk (for the default output
unit) instead of a unit number.

For output that may later be directed to a file, declare the unit number as
a variable and assign it an initial value of 6 so that output from WRITE statements
using that unit number will be directed to the screen. (See, for example, P-5.4 in
Section 5.4.2 below.) Later, the unit number variable can be assigned a different

202 • 5. Gaining Control Over Program Output

value, and statements can be added to open and close a file associated with that
unit number.

Figure 5.1 summarizes the use of PRINT and WRITE statements to send
output to various destinations (including a printer, which will be discussed in the
next part of this section). The characters fffff represent either a label for a
FORMAT statement or a complete format specification given as a string constant.
The solid arrow from the upper box to the monitor icon indicates that these output
options send output only to the default output device. It is only by using the
WRITE statement with a unit number that output can be directed optionally to the
default device, a printer, or an external data file. (The diskette icon represents
storage on any electronic medium-typically a hard drive on your PC or other
computer.) We will discuss unit numbers and the syntax of the OPEN and CLOSE

statements in more detail in Chapter 9. For now, you can use P-5.2 and the other
suggestions in this section as a "cookbook" model for saving program output in
a permanent electronic form.

Programming Tip
On MS-DOS systems, you can use the OPEN statement to send output from

a program directly to a printer by replacing the name of an output file with the
DOS "file name" for a printer, usually LPT1. The most convenient way to do this
is to modify your program so that it asks the user to provide the name of the
output file when the program executes. Then you can provide the name LPTl
instead of a "real" file. For an example, see the program POLAR4 . F9 0 available
from the W orld Web Site mentioned in Section i.5 of the Preface.

Print *
PRINT fffff
WRITE(*,*)
WRITE(*,fffff)

WRITE(u,*)
WRITE(u,fffff)

0 ,--' , ,
(monitor)

, .

,~~~ ,,,,,,mol

Fif(ure 5.1. Summary of options for directinf! f}rOf(ram outout

5.4 Applications • 203

5.4 Applications

5.4.1 Stellar Magnitude and Distance

1 Define the problem.

The absolute magnitude M of a star is related to its relative magnitude m
and the distance to a star r measured in parsecs, where 1 parsec = 3.26 light years,
by the equation

M = m + 5 - 510g JO(r)

According to this equation, a star with relative magnitude of + 1 at a distance of
10 parsecs has an absolute magnitude of + 1. The larger the magnitude, the dimmer
the star. Sirius is a very bright star, with a relative magnitude of -1.58. Stars
visible to the naked eye range mostly from about + 1 to +6 in relative magnitude.
The dimmest star that can be seen with the 200-inch Hale telescope has a
magnitude of about +23. Write a program to calculate and display the absolute
magnitude of a star based on user-supplied values for its distance and relative
magnitude. Display the results using appropriate formatted output.

2 Outline a solution.

The calculations are straightforward, but be sure to use base 10 logarithms.

3 Design an algorithm.

DEFINE absolute and relative magnitudes and distance as real numbers.
WRITE (Give relative magnitude and distance in parsecs.)
READ (m,r)
ASSIGN M = m + 5 - 5-log1ofr)
WRITE (M)

204 • 5. Gaining Control Over Program Output

4 Convert the algorithm into a program.

Remember that Fortran is case-insensitive. Therefore, the symbols m and
M used in the problem statement and algorithm must be given distinct names in
a program.

P-5.3 [STARMAG. F90]

PROGRAM StarMag
Calculates absolute stellar magnitude based on relative magnitude
and distance.

IMPLICIT NONE
REAL abs_mag,rel_mag,parsecs

WRITE(6,"(' To calculate absolute stellar magnitude: 'I")
WRITE(6,"(' Give relative mag. and distance in parsecs: ')"&

,advance='no')
READ *,rel_mag,parsecs

abs_mag=rel_mag+S.0-S.0*LOG10(parsecs)

WRITE(6,1000)rel_mag,parsecs,abs_mag

1000 FORMAT(' A star with relative magnitude ',f6.2/&
, at a distance of ',fS.1,' parsecs'/&
, has an absolute magnitude of ',f6 . 2)

END

Running P-5.3

To calculate absolute stellar magnitude:
Give relative magnitude and distance in parsecs: 10 3
A star with relative magnitude 10.00
at a distance of 3.0 parsecs
has an absolute magnitude of 12.61

5 Verify the operation of the program.

The best way to verify the operation of this program is to look up the
absolute and relative magnitudes of some stars in an astronomy textbook. Other
than that, your only recourse is to check some calculations by hand.

5.4 Applications • 205

Problem Discussion
Note how the / descriptor in P-5.3 is used to divide the output into several

lines. It would also be OK to use formatted PRINT statements instead of WRITEs
in P-5.3. One alternative to the ftrst two WRITE statements is:

WRITE(6,"(' To calculate absolute stellar magnitude: '/&
, Give relative mag. and distance in parsecs: ')"&
,advance='no')

Another alternative is:

PRINT 1001

1001 FORMAT(' To calculate absolute stellar magnitude: '/&
, Give relative magnitude and distance in parsecs: ')

With the second alternative, the only difference is that the values you type in
response to the prompt appear on the third line rather than at the end of the
second line because the nonadvancing input option isn't available with PRINT.

5.4.2 Relativistic Mass and Speed of an Electron

Refer to the application in Chapter 3, Section 3.8.2, and to program P-3.12, a
program that calculates the relativistic mass and speed of an electron. We will
modify that program so that it produces neatly formatted output that looks like
this:

For an electron gun voltage of: 1.0000E+06 v
rest mass of electron: 9.l090E-3l kg

relativistic mass and speed: 2.6934E-30 kg 2.82l2E+08 m/s
ratio of relativistic to rest mass: 2.9568E+00

ratio of speed to speed of light: 9.4l08E-Ol

You will need to include two new calculations for the specifted ratios, but you can
include them as expressions within a PRINT or WRITE statement rather than
assigning the values to two new variables. It is essential to use the E descriptors
whenever numbers are very large or very small, and it is often helpful to use them
when you're not sure what the magnitude of calculated values will be.

We will not bother to follow a formal problem-solving procedure for this
problem, as the algorithm design changes relative to P-3.12 are minor. The major
modifications deal with the implementation details required to replace the list
directed output with formatted output. Here is the modifted program. Compare its
output aj!;ainst the values in Fi~ure 3.5 from Chapter 3.

206 • 5. Gaining Control Over Program Output

In P-5.4, the unit number is declared as a variable and assigned a value of
6, so output is directed to the monitor screen. An end-of-chapter exercise will ask
you to modify this program according to the discussion in Section 5.3 so that its
output will be directed to some other destination.

P-5.4 [RELMASS2. F90]

PROGRAM RelMass2

Calculates relativistic mass and speed of an electron.

IMPLICIT NONE
REAL rest_mass,relativistic_mass
REAL voltage
REAL speed
REAL e
REAL c
INTEGER u

kg
volts
m/s
electron charge, Coulomb
speed of light, m/s
output unit

PARAMETER (e=1.602e-19,
u=6 !output to monitor

c=2.997ge8, rest_mass=9.10ge-31)

PRINT *,' Give electron gun voltage in volts: '
READ *,voltage

relativistic_mass=(voltage*e+rest_mass*c**2)/c**2
speed=c*SQRT(1.-(rest_mass/relativistic_mass)**2)

WRITE(U,1000)voltage
WRITE(u, 1001) rest_mass
WRITE(u, 1002)relativistic_mass, speed, &

relativistic_mass/rest_mass
WRITE(u,1003)speed/c

1000 FORMAT (,
1001 FORMAT (,

For an electron gun voltage of: ',es10.4,' V')
rest mass of electron: ',es10.4,' kg')

1002 FORMAT (, relativistic mass and speed: ',es10.4, &
, kg' ,es12.4,' m/s'/&
, ratio of relativistic to rest mass: ',es10 . 4)

1003 FORMAT(' ratio of speed to speed of light: ',es10.4)
END

Running P-5.4

Give electron gun voltage in volts:
le6

For an electron gun voltage of: 1.0000E+06 V
rest mass of electron: 9.1090E-31

relativistic mass and speed: 2.6934E-30 kg 2.82l2E+08 m/s
ratio of relativistic to rest mass: 2.9568E+OO

ratio of speed to speed of light: 9.4108E-Ol

5.5 Debugging Your Programs • 207

5.5 Debugging Your Programs

5.5.1 Programming Style

Formatted output should be used to produce output that is readable and reflects
the accuracy of the quantities being calculated. Descriptions of the output should
be concise but complete. When appropriate, numerical values should be formatted
so that their decimal points are in the same column. You should resist the
temptation to display output with a large number of significant figures. A quantity
that is calculated from measurements accurate to, for example, only three
significant figures usually is not displayed with more than three significant figures.

A carefully planned program should contain a mixture of PRINT and
WRITE statements organized so that prompts for user input are displayed on the
monitor screen and program output can be saved in a data file or printed.

5.5.2 Problems with Programs

There are two common problems with output formats:

(1) The format descriptor doesn't match the data type of the value being
displayed.

This kind of error will cause your program to crash.

(2) The specified field width is too narrow for the value being displayed.
Your program will run, but it will fill the inappropriately formatted field

with asterisks.

Solutions to these problems are usually self-explanatory. When a field width is too
narrow, it may be not because you have written an inappropriate field descriptor
but because an error in your program is producing a value much larger than you
expected.

Problems with WRITE statements containing unit numbers can arise when
the unit number's value conflicts with a preconnected input or output unit, or
when the unit number isn't preconnected and hasn't been connected with an OPEN
statement. Preconnected unit numbers that work on one system may not work on
all systems.

When you wish, at least initially, to display output on a monitor screen,
there is a tradeoff in convenience between using an asterisk to direct output to the
default output device and using a unit number variable assigned the value
associated with the preconnected output device. In the first instance, the program
will be completely portable to other systems, but you will have to manually
replace all the asterisks if you later wish to direct output to some other device. In
the second instance, redirection to another device can be accomplished simply by

208 • 5. Gaining Control Over Program Output

changing the value of the unit number variable; however, the original program
may not be portable to all systems.

5.6 Exercises

5.6.1 Self-Testing Exercises

Exercise 1. Describe in your own words the two most important concepts you
have learned from this chapter.

Exercise 2. Describe in your own words how you could use in your own
programs a problem-solving skill demonstrated in a program described in this
chapter.

Exercise 3. What format(s) could be used to produce these outputs?

(a) 33. 33E+09
0.3333E+ll
3.333E+10

(b) You have won a grand total of $ 99999.00. Congratulations!

(c) Assume an address consists of four separate character strings containing the
street address, city, state postal abbreviation, and ZIP code.

123 Main St., Any town , PA 19000-1234

(d)
Yearly total sales: 1990 17.7

1991 23.3
1992 22.9
1993 24.1
1994 26.9
1995 28.0
1996 29.3
1997 31.5 (projected)

Exercise 4. Defme these terms in your own words:

(a) default output device
(c) external output device
(e) formatted output
(2) format descriptor

(b) preconnected unit number
(d) list-directed output
(t) format specification

5.6 Exercises • 209

5.6.2 Basic Programming Exercises

Exercise 5. What happens to the output of program P-5.3 if you replace all the
format descriptors with G descriptors?

Exercise 6. Write a short program that prints several numbers, including very
large and very small numbers that require the use of scientific notation, using E,
EN, ES, F, and G formats.

Exercise 7. Modify program P-5.3 to include a conversion of stellar distance from
parsecs to meters or kilometers. A light year is the distance light travels in 1 year.
There are approximately 86,400x365.25 s/year. The speed of light is 2.9979x108

mls. Use an appropriate format for the output.

Exercise 8. A more useful application of the relationship between absolute and
relative stellar magnitude is to compute stellar distances. This is possible because
the absolute magnitude of a star can be inferred from its spectral characterstics
(essentially, from its color). Modify program P-5.3 so that the inferred absolute
magnitude and the observed relative magnitude can be used to determine the
distance of a star from the observer.

Exercise 9. Modify program P-5.4 so that program output is sent to an
appropriately named output file.

Exercise 10. Modify program P-5.4 so that all the output is produced with a
single WRITE statement. The appearance of the output should be unchanged.

Exercise 11. Modify program P-5.4 so that program output can be sent either to
an outpuffile or to the monitor, based on a user-supplied file name.

Exercise 12. Based on material from other courses you are taking, state a
computational problem and write a program to solve it. Use formatted output and
save the output from your program in an external file.

210 • 5. Gaining Control Over Program Output

5.6.3 Programming Applications

Figure 5.2. Layout of a
water tower

Exercise 13. A tower 100 feet high supports a spherical water tank with a
diameter of 30 feet. What is the range of pressures, measured in pounds per
square inch (psi), available from this storage tank at a water line located four feet
below ground level? See Figure 5.2. The density of water is 62.43 pounds per
cubic foot. [TOWER. F90]

Exercise 14. A water company regularly tests its residential meters for accuracy
against laboratory standards. It often finds that the meters slightly underestimate
the actual flow at low rates, are more accurate in the mid range of flow rates, and
slightly overestimate the actual flow at high rates. In order to assess the overall
performance of a particular meter, it calculates a weighted accuracy Aw based on
measured accuracies and estimates of the percentage of total water usage at low,
middle, and high flow rates:

%L .AL + %M·AM + %H·AH
~ = 100

Write a program that asks the user to provide estimated percentages of total water
usage in each range, the actual accuracy of a meter at each range, and the
weighted accuracy for the meter.

Some sample measurements are given in Table 5.2. Use your program to
reproduce the values in this table and to fill in the missing values for weighted
accuracy. rMETERS. F901

5.6 Exercises • 211

Table 5.2. Measured accuracies for residential water meters.

Meter Low Range Mid Range High Range Weighted
Number (30%) (45%) (25%) Accuracy

1 98.7 99.6 100.3

2 99.2 100.1 101.4

Exercise 15. The weight and muzzle velocity of bullets for several fIrearms are
given in Table 5.3. Write a program that will reproduce the values in the table and
fill in the missing muzzle energy values in the table. The muzzle energy is mv2/2
foot-lbf where Ibf indicates pound-force rather than pound-mass. There are 7000
grains in one pound. [BULLETS. F90]

Table 5.3. Bullet weights, muzzle velocities, and muzzle energies for several
fIrearms.

Weight Speed Muzzle Energy
Bullet (grains) (fps) (ft-Ibt)

.38 special 95 1175

.357 Magnum 125 1450

.308 Winchester 150 2533

.223 Remington 55 3240

.22 long rifle 40 1150

Exercise 16. Suppose you are a highway engineer designing an intersection that
will be controlled by a traffic light. When the light turns yellow, a driver
approaching the intersection must have time to decelerate safely to a stop before
the light turns red. If you know the speed limit for cars approaching the
intersection (in miles per hour), how long must the light stay yellow? You must
know the driver's reaction time-the time that elapses between when the light
turns from green to yellow and when brakes are applied-and the average
deceleration (ftls2). See Figure 5.3.

212 • 5. Gaining Control Over Program Output

Car
approaches

Light turns
yellow

. ..
Start
braking

Complete
SlOP

•

I I
Figure 5.3. Events as a car approaches an intersection

Write a program to solve this problem. Your output should appear in a
table that looks something like this:

Approach speed, mph:
Approach speed, fps:

Reaction time, sec:
Distance covered, ft:

Braking time, sec:
Distance covered, ft:

Total stopping time, sec:
Total distance covered, ft:

The equation describing the distance covered by the car is

distance = speed ·t..,action + af brakin/2

where a is a constant acceleration and the time t during which brakes are applied
is tbraking = via. See Figure 5.4 for some representative stopping distances.

You must make several assumptions to solve this problem. First of all,
ignore the possibility that a driver within some critical distance of an intersection
may decide not to stop at all. As a rough estimate, assume that a car can be
decelerated at a constant average rate in the range 10-15 ftls2 and that a driver's
reaction time to start braking is a few tenths of a second. How much of a safety
margin do you want to design into the system to allow, for example, safe stopping
when roads are wet? rSTOPLITE. F901

5.6 Exercises • 213

""""""""T""""""""i""""""""""j""""""""""i"""""""""t""""""""-r"""""""r""""""""("""""""i--" """""

Cl

W loot--+-- ilt---tl---t-------t-

T"""""""r"""""""r""""""T"-"""""T"""""""r"""""""r"""""""r"""""""r"""""""
~ ~ ~ ~ ~ ~ 00 ffi 00 ffi ro

Initial speed, mph

Figure 5.4. Stopping distances jor a car approaching an intersection

Exercise 17. When you were in grade school, you may have made a "shoebox"
solar system with models of the planets, and you may even have kept the size of
the planets to scale. As instructive as this might have been, it badly distorts spatial
scales within the solar system. Write a program that allows you to specify the
diameter of a model earth and then calculates the size of a model sun and all the
other planets, along with the average distance of each model planet from the sun,
all to the same spatial scale. Calculate the diameter of the model sun and planets
in inches and their distance from the model sun in feet. (You can use comparable
metric units if you prefer.)

A pea-sized (114" diameter) model earth is a reasonable value to start with.
Table 5.4 contains the actual diameters and average orbital distances of the planets
from the Sun. Your program should create a table that includes the data in this
table plus the scaled diameters (in inches or centimeters) and distances (in feet or
meters). [PLANETS. F90]

214 • 5. Gaining Control Over Program Output

Table 5.4. Diameters and distances for sun and the planets.

Object Diameter (km) Average Orbital Distance
from Sun (million km)

Sun 1,392,000

Mercury 4,878 57.9

Venus 12,102 108

Earth 12,760 150

Mars 6,786 228

Jupiter 142,800 778

Saturn 120,660 1,427

Uranus 52,400 2,870

Neptune 50,460 4,500

Pluto 2,200 5,900

6

Program Control:
Branching and Repetitive Calculations

The chapter begins with a discussion of Fortran 90ls implementation of program
control constructs, including the IF ... THEN... and CHOOSE... pseudocode
commands and the LOOP ... END LOOP pseudocode command. Fortran
implementation of the relational operators and the LOGICAL data type is
discussed.

6.1 Using Program Control Structures

As noted in Chapter 2, all computer algorithms can be implemented with just three
basic program control structures: sequence, selection, and repetition. The programs
presented so far in Chapters 3 through 5 have required only sequential structures.
That is, each executable statement has been executed once, in order. Many
algorithms require more sophisticated controls. These include selection or
branching structures, which provide the ability to execute certain statements and
not others, and repetition structures, which allow groups of statements to be
executed repetitively.

In the pseudocode language presented in Chapter 2, branching structures
are represented by the IF ... THEN ... and CHOOSE commands and repetition
constructs by the LOOP ... END LOOP command. We will now examine these
two commands in more detail.

6.1.1 The IF ... THEN ... (ELSE ...) Pseudocode Construct

Consider the common computing task of taking the square root of a number. In
Fortran, you would use the SQRT intrinsic function. However, there1s a catch: if
the argument of the SQRT function is negative, your program will crash. In some
situations, this doesn1t represent a serious problem. The worst that can happen is
that the crash is due to a mistake in input and you will simply have to start your
program over again. However, in larger programs that involve many complex and
interrelated calculations, it may be important to keep the program running and,
more important, to prevent inappropriate calculations from being made in the ftrst
place.

D. R. Brooks, Problem Solving with Fortran 90
© Springer-Verlag New York, Inc. 1997

216 • 6. Program Control: Branching and Repetitive Calculations

With respect to using the SQRT function, you might wish your program to
respond like this: "Here is a potential argument for the SQRT function. If it's non
negative, it's OK to take the square root. Otherwise, I won't try to take the square
root, and instead I'll send an appropriate message." This is easy to implement in
pseudocode. Suppose the potential argument is X and Y will contain the square
root of X:

IF X~ 0 THEN

ELSE
ASSIGN Y = SQRT(X)

WRITE ("I can't take this square rootl'?
WRITE ("Instead I will set Y = o. '?
ASSIGN Y= 0

(end IF ...)

In this particular pseudocode example, Y is assigned a value of 0 if the
square root function can't be applied. You can take any action you like; giving Y
a negative value might also be a good choice because the SQRT function always
returns a positive value. However, as a matter of style, it's not a good idea to
leave Y unassigned. Another way to achieve this result in pseudocode, without the
explanatory messages, is:

ASSIGN Y= 0
IF X ~ 0 THEN ASSIGN Y = SQRT(X)

In this case, too, Y always has an assigned value. The important feature shared by
these algorithms is that they test the value of X before attempting to take the
square root. Clearly, this algorithm won't work:

ASSIGN Y = SQRT(X)
IF X < 0 THEN WRITE ("I can't take this square rootl'?

In this case, the test on X is made too late-a program based on this algorithm
will crash before the message is printed.

The pseudocode solutions to this problem are Iogkol expression I
typical examples of a selection construct. A logical
expression (such as X < 0) is evaluated, and the result
controls the subsequent action. Later in this chapter, we will discuss in detail what
it means for Fortran to be asked to answer questions such as "Is x greater than or
equal to O?"

6.1 Using Program Control Structures • 217

Execute code for
condition false

(optional).

Execute code for
condition true.

Figure 6.1. Flowchart for an
IF ... THEN ... ELSE ... construct

The operation of the IF ... THEN ... ELSE ... pseudocode command can be
visualized in terms of a flowchart using the symbols discussed briefly in
Chapter 2, as in Figure 6.1. First one or more values are assigned-for example,
A=O, B= 1. Then a condition involving those values is evaluated-for example, "Is
A equal to B?" The diamond symbol represents a decision point. If the condition
is true, then the "yes" branch is taken. If the expression is false, then the "no"
branch is taken. For the example given, A is not equal to B, so the "no" branch
is taken. Rectangular symbols represent blocks of statements that are executed
sequentially. As noted, statements associated with an ELSE ... branch are optional;
in some cases nothing should happen if the condition is false.

6.1.2 The CHOOSE Pseudocode Command

Another kind of branching structure involves choosing a course of action from a
list of possibilities. In the pseudocode command language described in Chapter 2,
this structure is represented by the CHOOSE command. To investigate the use
of this command, we will reconsider the application originally presented in Section
2.4.1--determining the maximum deflection of a beam under a load.

In that application, a formula was given for the maximum deflection at the
center of a beam when it is supported at each end and a concentrated force is

218 • 6. Program Control: Branching and Repetitive Calculations

applied to the center of the beam. However, there are several other possibilities
for loading a beam. Table 6.1 presents four, including the original, with formulas
for calculating the maximum deflection:

Table 6.1. Maximum deflection of a beam subject to various support and
loading conditions

Support and Loading Schematic

F L

/\ /\ Supported at each end,
concentrated force F J <------- L ------->

Supported at each end,
distributed weight W

Supported at one end,
concentrated force F
at free end

Supported at one end,
distributed weight W

/\ /\

F L

Maximum
Deflection

-FL3/(48EI)
atU2

-5WL3/(384EI)
at U2

-FL3/(3EI)
at free end

-WL3/(8EI)
at free end

J Force F and weight W have units of lb; length L has a unit of in, elasticity E has a unit of Ib/in2,

and moment of inertia has a unit of in4.

Here is one way this table might be incorporated into an algorithm, assuming that
values for F, L, E, and I are already available, as defined in Table 6.1.

WRITE (menu describing four possible support systems, user prompt)
READ (choice of support system 1-4)
CHOOSE (based on support/load /0)

1: ASSIGN deflection = -Fe/(48E1)
2: ASSIGN deflection = -5We/(384EI)
3: ASSIGN deflection = -FL3/(3EI)
4: ASSIGN deflection = -We/(8E/)
anything else: WRITE ("Input error. '7

(end CHOOSE)
WRITE (deflection)

6.1 Using Program Control Structures • 219

Although the CHOOSE command could be represented as a flowchart
with a series of decision symbols, such flowcharts are rather cumbersome.

6.1.3 The LOOP ... END LOOP Pseudocode Command

Repetition is the third program control construct,
represented by the LOOP ... END LOOPpseudocode
command. Repetition constructs are divided into two
basic types: count-controlled loops and conditional

count-controUed loop
conditional loop

loops. In this section, we will discuss these loops, and later in the chapter, we
will discuss their Fortran implementations.

Count-controlled loops

Count-controlled loops are appropriate when you
know ahead of time, or your program can calculate,
how many times the statements inside the loop will
be executed. The execution of the loop is controlled by a loop counter variable
that is initialized to a specified lower limit and incremented by a specified amount
for each "trip" through the loop. When the loop counter reaches a specified upper
limit, the loop terminates. The command

LOOP (for counter = 1 to 10)

is typical pseudocode for a count-controlled loop. It is also possible to construct
loops in which the counter is initialized to an upper limit and decremented; the
loop continues to execute as long as the counter is greater than or equal to a lower
limit.

Figure 6.2(a) shows a basic flowchart for a count-controlled loop. The
boxes shown with dotted outlines and the assignments in parentheses mean that
when these kinds of loops are implemented in a language such as Fortran, the
initial assignment of the counter variable and the incrementing of the counter are
managed automatically by the loop syntax. This fact makes count-controlled loops
very easy to write, and we will often use them in programs throughout the rest of
this text.

Figure 6.2(b) shows another way of drawing a flowchart for count
controlled loops. The loop control conditions are gathered together in one place
and the initialization and incrementing steps are not shown specifically.

220 • 6. Program Control: Branching and Repetitive Calculations

Figure 6.2(a). Basic flowchart for a count-controlled loop

Execute one or more statements.

Figure 6.2(b) Alternate flowchart for a count-controlled loop

Conditional Loops

Conditional loops are appropriate when the number
of times the statements inside a loop will be
executed is unknown or can't be detennined ahead of
time. This kind of loop is often required for iterative
calculations, in which successive estimates of a
desired quantity improve until a specified

iterative calculation I
convergence criterion
pre-test loop
posMest loop

6.1 Using Program Control Structures • 221

convergence criterion is met. Conditional loops may be either pre-test or post-test
loops. The difference is that the conditions under which the statements inside a
loop are executed are determined either before (pre-test) or after (post-test) those
statements have been executed at least once. To put it another way, the
terminating conditions are evaluated at the "top" of the loop for a pre-test loop
and at the "bottom" for a post-test loop.

LOOP (until a condition is true) is a generic pseudocode statement of a
post-test loop. It indicates that statements inside a loop will be executed at least
once before the program determines whether the loop will terminate. LOOP (as
long a condition is true) is generic pseudocode for a pre-test loop. It implies that
the test for continuing, or starting, the loop is done before the statements inside
the loop are executed.

By definition, statements inside a post-test loop are always executed at
least once, whereas statements inside a pre-test loop might not be executed at all.
In principle, conditional loops can be designed as either pre-test or post-test loops.
As a practical matter, the way a problem is stated will often determine the easiest
way to implement the loop.

Figure 6.3 illustrates the operation of the two kinds of conditional loops.
In a pre-test loop, some condition is initialized before the loop begins. Then, if the
condition is "true" (however the particular problem requires that test to be
evaluated), one or more statements are executed and the condition is modified.
Depending on the initial value of the condition, the statements inside the loop may
never be executed. In a post-test loop, statements inside the loop are executed at
least once. Only after they have been executed once is the terminating condition
evaluated. At this point, the statements inside the loop mayor may not be
executed again.

No

Pre-test loop Post-test loop

FiRure 6.3. Flowcharts for pre-test and post-test loops

222 • 6. Program Control: Branching and Repetitive Calculations

A difference between count-controlled loops and conditional loops is that
c01int-controlled loops are controlled, as the name implies, by "counting"
something; this usually means that the counter variable is an integer to be
incremented, or decremented, by some specified integer value during each "trip"
through the loop.) The operation of conditional loops is more flexible. Their
terminating conditions may be set by counting something, but they may also be
controlled by other kinds of terminating conditions.

6.2 Relational and Logical Operators and the Fortran IF ... Construct

Now that we have completed a discussion about using program control structures
in pseudocode, we will examine their implementation in Fortran, starting with the
relational and logical operators.

6.2.1 Relational and Logical Operators

Let's look again at the IF ... THEN ... ELSE ... pseudocode example from Section
6.1.1:

IFX~ 0 THEN

ELSE
ASSIGN Y = SQRT(X)

WRITE ("I can't take this square root!'1
WRITE (" Instead I will set Y = 0.'1
ASSIGNY=O

(end IF •••)

Here's one way to translate this pseudocode into English: "If it is true that X ~ 0,
then assign y a value equal to the square root of x. Otherwise, assign y a value
of 0." In this expression, the ~ sign is one of the relational operators previously
defined in Table 2.3. The result of evaluating the logical expression X ~ 0 is a
logical (or "boolean") value of true or false. If the expression has a value of true,
then the THEN ... branch of the IF ... THEN ... ELSE ... statement is taken. If the
value is false, then the ELSE ... branch is taken; only one branch of the structure
can be taken.

) As you will see when the text discusses the implementation of count-controlled loops in
Fortran, the counter variable doesn't have to be an integer number, although we will require this
as a matter of ~ood pro~ammin~ style.

6.2 Relational and Logical Operators and the Fortran IF ... Construct • 223

It's easy to translate this pseudocode into source code because the Fortran
language includes syntax nearly identical to the IF... pseudocode command.
Table 6.2 contains the Fortran 90 symbols for the relational and logical operators
given previously in Table 2.3.

Table 6.2. Fortran implementation of relational and logical operators

Relational
or Logical Meaning Fortran
Operator Implementation

= equal == or . EQ.

> greater than > or .GT.

< less than < or .LT.

::; less than
or equal to <= or .LE.

:;:: greater than
or equal to >= or .GE.

f= not equal to /= or . NE.

and logical "and" .AND.

or logical or .OR.

not logical not .NOT.

There are no special characters in the Fortran language that allow single-character
representations equivalent to, for example, the ::; symbol from mathematics; in
Fortran 90, this symbol is represented by the two-character symbol <=. Note that
the symbol for equality is == and not just =; this symbol serves as a reminder that
a test for equality is not the same thing as an assignment statement. The
implementations that use these more familiar mathematical symbols are new to
Fortran 90. The implementations using letters, such as . EQ . , were used in older
versions of Fortran and are still supported under the Fortran 90 standard. You may
use whichever representation you like, but the Fortran 90 symbols are probably
a better choice.

Fortran also includes intrinsic functions for comparing strings. A list of
these boolean lexical comparison functions is given in Table 6.3.

224 • 6. Program Control: Branching and Repetitive Calculations

Table 6.3. Lexical string comparison functions

Function Name I Description

LGE(string_a,string_b) Returns . TRUE. if string_a is equal to
or follows string_b in the ASCII
collating sequence, . FALSE. otherwise.

LGT(string_a, string_b) Returns. TRUE. if string_a follows
string_b in the ASCII collating
sequence, . FALSE. otherwise.

LLE(string_a,string_b) Returns . TRUE. if string_a is equal to
or precedes string_b in the ASCII
collating sequence, . FALSE. otherwise.

LLT(string_a, string_b) Returns . TRUE. if string_a precedes
string_b in the ASCII collating
sequence, . FALSE. otherwise.

When strings are compared, "greater than" or "less than" means that one
string follows or precedes another relative to some character collating sequence.
The purpose of these lexical comparison functions is to force all computer
systems, even ones that don't use the ASCII collating sequence, to compare strings
relative to the ASCII sequence. For systems that do use the ASCII sequence, the
two statements

IF (a<b) THEN
IF (LLT(a,b» THEN

are equivalent. Otherwise, the results might be different. When strings are
compared in this way, the comparisons are always case-sensitive, with the result
that, for example, 'David' is "less than" 'david' because the uppercase
alphabet comes before the lowercase alphabet in the ASCII collating sequence.

6.2.2 The IF. . . Construct

As indicated above, the pseudocode IF... command is easy to translate into
Fortran, using the IF ... construct. Program fragment P-6.1(a) gives Fortran code
that checks the value of a variable before taking its square root. Note how close
the syntax of this Fortran code fragment is to the corresponding pseudocode.
However, the parentheses around the logical expression X >= 0 are required as
part of the Fortran syntax. The modification of P-6.1(a) given in P-6. 1 (b) provides
more insight into the implementation of logical expressions.

6.2 Relational and Logical Operators and the Fortran IF ... Construct • 225

P-6.1(a) (fragment)

IF (X >= 0) THEN
Y=SQRT(X)

ELSE
PRINT *, 'I can't take this square rootl'
PRINT *, 'Instead, I will set Y=O.'
Y=O.O

END IF

P-6.1(b) (fragment)

LOGICAL X_test

X_test = (x >= 0)
IF (X_test) THEN

Y=SQRT(X)
ELSE

PRINT *, 'I can't take this square rootl'
PRINT *, 'Instead, I will set Y=O.'
Y=O.O

END IF

In P-6.1(b), the variable x_test is declared as having type LOGICAL. Such
variables can have only two values, true or false, represented in Fortran by
. TRUE. or . FALSE .. The evaluation of the expression (x >= 0) yields one
of these values, depending on the value of x. There isnlt much point in rewriting
the simple example in P-6.1(a) as welve done in P-6. 1 (b), but in more complicated
programs, the value of x_test might be assigned as the result of several
statements, or it might be returned as the output from a function. Itls also possible
to give a logical variable such as x_test a value of . TRUE. or . FALSE.
directly by using an assignment statement such as x=. TRUE., assuming x has
been declared as type LOG I CAL.

Again, the parentheses around the logical expression in the assignment
statement x_test = (x >= 0) are required as part of its syntax. In the
IF ... statement, the logical expression consists solely of the logical variable
x_test, but it must still be enclosed in parentheses. The value of x_test
determines which branch of the IF. .. statement is executed. This example
demonstrates that an IF. .. statement decides which branch to execute by
examining the logical expression and proceeding according to whether the value
of that expression is true or false.

Beginning programmers often write the IF test in P-6.1(b) like this:

IF (X_test==.TRUE.) THEN

226 • 6. Program Control: Branching and Repetitive Calculations

This is OK, but redundant. Remember that the variable X_test contains the
result of detennining whether x is greater than or equal to zero, so if x_test has
a value of . TRUE., then the expression X_test==. TRUE. must also have a
value of . TRUE ..

Compound relational expressions can be formed with the three logical
operators given in Table 6.2. Program fragment P-6.2 gives an example:

P-6.2 (fragment)

LOGICAL raining
REAL temperature
CHARACTER YesNo

PRINT *,' Is it raining (Yin)?'
READ *,YesNo
raining=.false.
IF (YesNo='y') raining=.TRUE.
PRINT *,' How hot is it? '
READ *,temperature
IF «.NOT. raining) .AND. (temperature>85.0» THEN

PRINT *, 'Time to go swimming.'
ELSE

PRINT *, 'Stay inside.'
END IF

The . NOT. operator is a unary operator that operates on the logical value of the
expression that follows it by converting a value of . TRUE. to a value of
· FALSE. and vice versa. The . AND. and . OR. operators are binary operators
that produce a value of . TRUE. or . FALSE. depending on the value of
expressions on either side of the operator. In order for the message "T ime to
go swimming." to be printed by P-6.2, the expressions on both sides of the
· AND. operator must have a value of . TRUE.. The results of applying the
· AND. and . OR. operators to two expressions are shown in the "truth tables"
given in Table 6.4. The expression (A • AND. B) is true only if both A and B

are true. The expression (A . OR . B) is true if either A or B is true.

6.2 Relational and Logical Operators and the Fortran IF ... Construct • 227

Table 6.4. "Truth tables" for logical expressions "A" and "B"

. AND. B is true . I B is false.

A is true.

I
true

I
false

I A is false. false false

• OR. B is true . I B is false.

A is true.

I

true

I

true

I A is false. true false

There are several forms of the Fortran IF ... construct. The general
syntax is:

Syntax
form

(1) IF (logical expression) action_statement

(2) [name:] IF (logical expression) THEN
statement block

END IF [name]

(3) [name:] IF (logical expression) THEN
statement block

ELSE [name]
statement block

END IF [name]

(4) [name:] IF (logical expression) THEN
statement block

[ELSE IF (logical expression) THEN [name]
statement block] ...

[ELSE [name]
statement block]

END IF [name]

In the ftrst and simplest form, the THEN. . . is implied. The action consists of a
single statement following the logical expression, which must be enclosed in
parentheses. As an example, the statement

IF (YesNo=='y') THEN
raining=.true.

RNn TR

228 • 6. Program Control: Branching and Repetitive Calculations

can be written more compactly as

IF (YesNo=='y', raining=.TRUE.

In the other forms, there can be multiple statements, forming a statement block,
in each branch of the construct. The third form is the IF ... THEN ... ELSE ...
form-a two-branch construct. The fourth form shows multiple branches using the
ELSE IF ... syntax.

Note that IF... constructs and their parts can be given names.
(Remember that the brackets around name: are not part of the syntax, but an
indication that using a name label is optional.) In all cases, the name must be the
same. In the third and fourth examples, the ELSE and ELSE IF statements may
be named only if the corresponding I F and END I F statements are named. In this
text, we will not use names as "labels" in IF ... statements. We will rely on in
line comments if needed to clarify the purpose of IF. . . constructs.

Programming Tip
The END I F Fortran keywords can also be spelled as one word, END IF.

Here's one more important point about evaluating logical expressions. What
does it mean to ask Fortran to evaluate the expression (A == B) when A and
B are REAL variables? Suppose A and B have both been assigned the value 10.0.
Clearly, A is equal to B. However, when the values of A and B are produced
through arithmetic operations, problems can arise. For example, what is the value
of A as a result of the Fortran assignment A=10. 0/3 . 0*3. O? In the algebraic
sense, it is obvious that A is equal to 10. However, Fortran doesn't care about
algebra. It just evaluates expressions by performing operations from left to right,
following the precedence rules. The results of arithmetic operations are limited by
the numerical accuracy of your computer system and compiler. In this case, it will
produce 10.0/3.0=3.3333333 ... and then perhaps 9.9999999 ... rather than 10 as the
result of multiplying the intermediate result by 3. If so, the expression (A == B)

will then have a value of . FALSE. because 9.9999999 ... is not exactly equal to
10. In fact, some compilers will produce the "algebraic" result of 10 for this
particular example. (Try it with your compiler.) However, it is inevitable that
similar kinds of operations will eventually cause unexpected results in your
programs.

The solution is never to test REAL variables for eqUality. In this case, it
would be better to compare the values of REAL variables A and B like this, using
the ABS intrinsic function:

IF (ABS(A-B) <= error limit) THEN ...

6.2 Relational and Logical Operators and the Fortran IF ... Construct • 229

For the expression to have a value of "true," the difference between A and B must
be smaller than some number that you select. Its value should bear some
relationship to the internal accuracy of calculations done by your compiler or the
requirements of your problem. Often, for calculations involving physical
quantities, lO-6 or lO-7 is more than sufficiently small. An error limit as small as
lO-9, for example, is unreasonable for calculations involving default REAL

numbers, because such calculations are probably not performed to this degree of
accuracy.

The same problem applies to testing values for equality when they have
different data types. Suppose A is REAL and B is INTEGER. The code

A=10.
B=10
IF (A == B) THEN

will work as expected here, but it may not work if A is the result of arithmetic
operations. One way to fix this would be to modify the IF ... test:

IF (NINT(A) == B) THEN

This forces a type conversion and will give the expected result of . TRUE ..

Because of these potential problems-and for basically the same reasons they
should be avoided in assignment statements-it's a good idea to avoid mixed
mode expressions in logical expressions.

6.2.3 Using the IF ... Construct in Programs

Here's a typical problem that uses an IF. . . construct.

1 Define the problem.

Write a program that asks the user to supply a numerical grade and then
converts it to a letter grade according to this table:

90-100 A
80 - 89 B
70- 79 C
60- 69 D

<fin 1<'

230 • 6. Program Control: Branching and Repetitive Calculations

2 Outline a solution.

Prompt the user to supply the numerical grade and then use an IF
construct to control the translation of the numerical grade into a letter grade

3 Design an algorithm.

DEFINE (numerical grade as a real number)
WRITE ("Give a numerical grade:'?
READ (grade)
IF (grade >= 90) THEN

WRITE (A)
ELSE IF (grade >= 80) .THEN

WRITE (8)
ELSE IF (grade >= 70) THEN

WRITE (C)
ELSE IF (grade >= 60) THEN

WRITE (0)
ELSE

WRITE (F)
(end IF)

Here's a question you might have about this pseudocode. Suppose the
numerical grade is 91. This is greater than 90, so the WRITE (A) command will
be executed. However, 91 is also greater than 80, so will the WRITE (8)
command, and all the other commands, also be executed? As you would hope, the
answer is "No." A selection construct executes only one branch-in particular, the
first branch for which the relational expression is true-and then ignores all the
others; this is true for the pseudocode conception of the IF ... command and also
for its language implementation. Even though you may be tempted to rewrite the
frrst ELSE IF ... command, for example, to be "more restrictive," like this:

ELSE IF ((grade >= 80) and (grade < 90)) THEN

This is not necessary and probably means that you don't really understand the
operation of the IF ... command.

6.2 Relational and Logical Operators and the Fortran IF. . . Construct • 231

4 Translate the algorithm into a program.

P-6.3 [GRADES. F90]

PROGRAM Grades

convert a numerical grade to a letter grade. Demonstrates
compound IF ... statements.

IMPLICIT NONE
REAL grade

PRINT *,' Give a numerical grade 0-100: '
READ *,grade

IF (grade .GE. 90 . 0) THEN
PRINT *,' Letter grade: A'

ELSE IF (grade .GE. 80.0) THEN
PRINT *,' Letter grade: B'

ELSE IF (grade .GE. 70.0) THEN
PRINT *,' Letter grade: C'

ELSE IF (grade .GE. 60.0) THEN
PRINT *,' Letter grade: D'

ELSE
PRINT *,' Letter grade : F'

END IF

END

Running P-6.3

Give a numerical grade 0-100:
87
Letter grade: B

For demonstration purposes, this program uses the older style (. GE.)

representation for the "greater than or equal to" relational operator. It is better
Fortran 90 style to use the >= representation, which is completely equivalent.

5 Verify the operation of the program.

Run the program with numerical grades that will produce all possible
outputs. Itls especially important to think carefully about the structure of IF. . .

constructs at the algorithm design level before you implement them in Fortran
because logical errors in this kind of code are often very difficult to find.

232 • 6. Program Control: Branching and Repetitive Calculations

6.3 The SELECT CASE Construct

Recall that the pseudocode CHOOSE command allows your program to select
from a limited number of specified options. In Fortran, the CHOOSE pseudocode
command is implemented with the SELECT CASE construct. Its general syntax
is

[name:] SELECT CASE (expression)
[CASE (list of nonoverlapping values and ranges

with same data type as expression) [name]
statement block] ...

[CASE DEFAULT
statement block]

END SELECT [name]

Based on the value of expression, the statement block following one of the
CASE selectors is executed. The [] ... notation means that the code
represented inside the brackets may appear one or more times. Therefore, there
may be one or more CASE selectors containing a list of nonoverlapping values
and ranges of values. As noted, the values and ranges must have the same data
type as expression.

The CASE DEFAULT statement allows action to be taken for any possible
value of expression not specifically included in the CASE selectors; it is often
given as the last CASE selector, but it and the other choices can appear in any
order. A name can be given to the individual CASE statements only if the
SELECT CASE statement and the END SELECT statements are named, and all
must have the same name. In this text, we will not use names in this way. The
CASE expression must be type CHARACTER, LOGICAL, or INTEGER. It may not
be REAL. Each value in the list of values and ranges of values in the various
CASE statements must have the same type as expression.

The restrictions on the type of expression and the
CASE selector values basically mean that these values must
be ordinal; that is, enumerable. Integers are ordinal, but real

ordinal value I
numbers are not. The exception is that if expression is of type CHARACTER,

then the lengths of the values given as CASE selectors donlt have to be the same.
That is, strings of differing numbers of characters are allowed even though strings
of characters arenlt ordinal.2

2Single characters are ordinal-B comes after A, for example-but strings of characters
are not because there is no way to enumerate strings in the sense that it's not possible to specify
which string comes "after" some other string. Other languages-Pascal, for example-may enforce
this distinction by allowing their equivalent of the SELECT CASE to use characters but not strings
as a controlling exoression.

6.3 The SELECT CASE Construct • 233

A range of ordinal values may be included in the list of CASE selectors
using the format low: high. The range is [low,high] in the mathematical sense;
that is, the range is inclusive of the end points. Either low or high may be absent,
in which case the remaining value acts as a limit. For example, the range of CASE
(: 0) is all integers less than or equal to 0 and the range of CASE (1:) is all
positive integers. The CASE selectors must not overlap, either within the range of
a single selector or with other selectors in the same SELECT CASE construct.

As an example of how to use the SELECT CASE construct, consider
program P-6.3 from the previous section. It might seem that the problem
addressed in this program-to convert a numerical grade into a letter grade-is
an ideal situation in which to use a SELECT CASE construct because the letter
grade choices are taken from a relatively small list of possibilities. In fact, a
SELECT CASE construct is a good idea, but it can be used only if the grade
value used in the SELECT CASE expression is converted to an integer. This can
be accomplished by rounding the grade, or truncating it, depending how generous
a grader you wish to be. Program P-6.4 offers a solution to the grade assignment
problem using a SELECT CASE construct.

P-6.4 [GRADES2. F90]

PROGRAM Grades2

I Converts a numerical grade to a letter grade. Demonstrates
SELECT CASE statements.

IMPLICIT NONE
REAL grade

PRINT *,' Give a numerical grade 0-100: '
READ *,grade

SELECT CASE (NINT(grade»
CASE (90:100)

PRINT *,' Letter grade: A'
CASE (80:89)

PRINT *,' Letter grade: B'
CASE (70:79)

PRINT *,' Letter grade: C'
CASE (60:69)

PRINT *,' Letter grade: D'
CASE DEFAULT

PRINT *,' Letter grade: F'
END SELECT

END

Just as in the compound IF ... construct used in P-6.3, the SELECT CASE
construct executes only one of the possibilities; that's why the ranges of the CASE

234 • 6. Program Control: Branching and Repetitive Calculations

values must not overlap. (The output is identical with that of P-6.3 for the same
input values, so it is not repeated here.) Note that the ftrst CASE range could be
given as (90:) and the last could be given as (0: 59) or (: 59) rather than
CASE DEFAULT, depending on how you wish to treat grades outside the range
0-100. For example, giving the fust CASE range as (90:) would allow for
grades over 100 as the result of extra credit.

6.4 Fortran Loop Constructs

In this section, we will discuss Fortran implementations for repetition constructs,
and we will use count-controlled and conditional loops to solve some typical
programming problems.

6.4.1 Count-Controlled (DO ...) Loops

Count-controlled loops are often used to generate tables of values. Here is a
typical problem.

1 Define the problem.

Write a program to generate a table of sin(x), cos (x), and tan(x) for 5°
increments of x, in the range 0°-180°.

2 Outline a solution.

Use a count-controlled loop to generate the values. The program will not
require any user input. Be sure to take into account the fact that tan(900) is
undeftned.

3 Design an algorithm.

DEFINE (x as real number)
WRITE (column headinas)

LOOP (for x = 0 to 180 in steps of 5)
IF x /: 9(J' THEN

6.4 Fortran Loop Constructs • 235

WRITE (x, sin(x), cos(x), tan(x))
ELSE

WRITE (x, sin(x), cos(x))
END LOOP

Pay special attention to the way the terminating condition in the LOOP ...
END LOOP command is written. It gives an initial value (0), a final value (180),
and an increment (5) for a value that will be incremented inside the loop. Even
though this text has previously stated (several times!) that pseudocode can and
should be language-independent, you probably wouldn't express the terminating
condition in exactly this way unless you had some idea about how count
controlled loops work. You might think that in order to supply the values of x
implied by the comment about the loop's operation, this pseudocode needs to be
given in more detail, something like this:

INITIALIZE x=o
LOOP (until x > 180)

IF x /: 9(J' THEN
WRITE (x, sin(x), cos(x), tan(x))

ELSE
WRITE (x, sin(x), cos(x))

INCREMENT x = x + 5
END LOOP

This pseudocode is logically correct, but you will see that it's not required in
situations where a count-controlled loop can be used. When the pseudocode for
a count-controlled loop is converted to real code, the corresponding program
statements will automatically initialize and increment the loop variable (x, in this
case).

4 Convert the algorithm into a program.

Count-controlled loops are implemented in Fortran with a DO ... END DO

statement. It has several syntax forms:

236 • 6. Program Control: Branching and Repetitive Calculations

Syntax
form
(1) [name:] DO n = limitl,limit2[,step]

statement block
END DO [name]

(2) DO label n = limitl, limit2[, step]
statement block, except for ...

label last line of statement block

(3) DO label n = limitl,limit2[,step]
statement block

label CONTINUE

The values limi tl, limi t2, and step are INTEGER It 0 nterl
constants, variables, or expressions. The loop counter n is oop C U

automatically initialized to 1 imi tl when the loop begins, is
incremented by the amount step, and ends after statement block is
executed for n equal to limi t2. A specified step size is optional, but it must be
nonzero when it is present. When step isn't present, the default increment is 1.
Usually, step is set so that it evenly divides the interval from limi tl to
limi t2, with the last value of the loop counter being limi t2. For example,
n=O, 100,5 results in n having the values 0, 5, ... ,95, 100. However, step can
also be set so that the last value taken by a loop counter is less than the upper
limit. For example, n=l, 20,3 results in n having the values 1, 4, 7, 10, 13, 16,
19.

The loop can be made to execute "backward" by having limi tl greater
than limi t2 and step less than O. If limi tl is greater than limi t2 and
step is specified as positive, or has its default value of 1, the loop isn't executed
at all. That is, it's not an error to have limi tl greater than limi t2, although
it's not usually what you intend.

In the first syntax form, an END DO statement marks the end of the loop.
That is, the statement block consists of all statements between the DO ...
and END DO statements. The name labels are optional and, as in earlier cases, we
will not use them in this text.

In earlier versions of Fortran, the DO. . . statement required a reference
to a line label in the form of an integer of one to five digits. This line could
reference either the last line of the statement block, as shown in the second syntax
example, or a line containing the CONTINUE keyword. These three DO ... loops
are equivalent:

DO i=l,lO
statement block

END DO

DO 10 i=l,lO

6.4 Fortran Loop Constructs • 237

statement block except for the ...
10 last statement

DO 10 i=l,lO
statement block

10 CONTINUE

In Fortran 90, the DO. . • END DO syntax is preferred, as modem programming
languages tend to avoid line labels whenever possible; in this text, we will always
use the DO •.. END DO syntax.3

Program P-6.5 implements the count-controlled loop algorithm to generate
a table of trigonometric functions defmed in Step 3.

P-6.5 [TRIGTABL. F90]

PROGRAM TrigTabl

Generate a table of trig values. Demonstrates count-controlled
loops.

IMPLICIT NONE
REAL angle,deg_to_rad
INTEGER i !loop counter

deg_to_rad=4.0*ATAN(1.0)/180.0
PRINT *,' x sin(x) cos(x) tan(x) ,
PRINT *,' -----------------------------,

DO i=O,180,5
angle=REAL(i)*deg_to_rad
IF (i .NE. 90) THEN

PRINT 1000,i,SIN(angle),COS(angle),TAN(angle)
ELSE

PRINT 1001,i,SIN(angle),COS(angle)
END IF

END DO

1000 FORMAT(lx,i3,3f9.4)
1001 FORMAT(lx,i3,2f9.4,'

END
undef. ')

3 Author's note: some Fortran 90 programmers will accuse me of seriously understating this
point. They feel so strongly that line labels should be avoided that they consider the labelled
DO. . . loops unacceptable.

238 • 6. Program Control: Branching and Repetitive Calculations

Running P-6.5

x sin(x) cos (x) tan(x)

0 0.0000 1.0000 0.0000
5 0.0872 0.9962 0.0875

10 0.1736 0.9848 0.1763
15 0.2588 0.9659 0.2679
20 0.3420 0.9397 0.3640
25 0.4226 0.9063 0.4663
30 0.5000 0.8660 0.5774
35 0.5736 0.8192 0.7002
40 0.6428 0.7660 0.8391
45 0.7071 0.7071 1.0000
50 0.7660 0.6428 1.1918
55 0.8192 0.5736 1.4281
60 0.8660 0.5000 1. 7321
65 0.9063 0.4226 2.1445
70 0.9397 0.3420 2.7475
75 0.9659 0.2588 3.7321
80 0.9848 0.1736 5.6713
85 0.9962 0.0872 11. 4300
90 1. 0000 0.0000 undef.
95 0.9962 -0.0872 -11 .4300

100 0.9848 -0.1736 -5.6713
105 0.9659 -0.2588 -3.7321
110 0.9397 -0.3420 -2.7475
115 0.9063 -0.4226 - 2.1445
120 0.8660 -0.5000 -1.7321
125 0.8192 -0.5736 -1.4281
130 0.7660 - 0.6428 -1.1918
135 0.7071 -0.7071 -1. 0000
140 0.6428 -0 .7660 -0.8391
145 0.5736 -0.8192 -0.7002
150 0.5000 -0.8660 -0.5774
155 0.4226 -0.9063 -0.4663
160 0.3420 -0 .9397 -0.3640
165 0.2588 -0.9659 -0.2679
170 0.1736 - 0.9848 -0. 1763
175 0.0872 - 0.9962 -0.0875
180 0.0000 - 1. 0000 0.0000

5 Verify the operation of the program.

These calculations are straightforward. However, remember that the tangent
funtion is undefined for an angle of 90°. The IF ... THEN ... ELSE ...
statement prevents this calculation from being done. The expected result of
actually trying to calculate tan(900) is that your program will crash.

It should be noted that the DO ... loop values limi tl, limi t2, and
step do not actually have to be integers. In principle. they can be real numbers.

6.4 Fortran Loop Constructs • 239

In practice, however, this is not a good idea because computed limits are subject
to numerical limitations, including roundoff errors. As a result, you can never be
certain that a DO ... loop with a REAL loop counter will terminate properly. In
P-6.5, the loop counter is used to generate integer values between 0 and 180. Then
the statement angle=REAL (i) *deg_to_rad converts these values to angles
expressed in radians. Even if the values 0.0, 5.0, 10.0, and so forth, could be used
directly in the loop calculations, the loop counter itself should still be an
INTEGER variable and the required values should be obtained by using the REAL
function.

If you study P-6.5 carefully, you will notice that, as discussed above, the
initialization and incrementing of the loop counter i are, in fact, done
"automatically" by the loop structure. That is, it is necessary neither to initialize
i to zero before the loop starts nor to increment i by writing something like
i = i + 5 inside the loop. Beginning programmers often write code that looks like
this:

i=O
DO i= ...

There's nothing wrong with this code, but it indicates that the programmer doesn't
understand how DO. . . loops work. The statement i = 0 has no effect in the
program because i is initialized to the specified lower limit when the loop starts.

Values of the loop counter can be used inside the loop, as they are in
P-6.5, but they don't have to be used for anything except to control the execution
of the loop. You should never reassign loop counters inside the loop. Suppose, for
example, you write code that looks like this, because you've forgotten that loop
counters are automatically incremented in loops:

i=O
DO i=l,lO

i=i+l
other statements

END DO

The statement i = i + 1, or any other similar incrementing or decrementing
assignment, is not allowed, and your compiler should generate an error message.
To put it another way,

The loop counter variable should never appear on the left side of an
assignment operator inside the loop.

What do you suppose the value of a loop counter is after the loop is
completed? This code

240 • 6. Program Control: Branching and Repetitive Calculations

DO i=l,lO
PRINT *,i

END DO
PRINT *,i

will print the values

1
2
3
4
5
6
7
8
9
10
11

The fact that i equals 11 when the loop is tenninated indicates that the loop
counter is incremented before it is tested against the second limit value, that is,
that a DO. . . loop is a fonn of pre-test loop. You may be tempted to rely on the
loop counter value having a value one "step size" greater than the value that
tenninates the loop, but it is very poor programming practice to make this
assumption.

It is proper programming practice to treat the value of a loop counter as
undefined anywhere except inside its loop.

In the above example, if you wished to save the last value of the loop counter in
order to get a value of 11, you should use this code:

last=lO
DO i=l,last

print *,i
END DO
last=last+l

The programs in this text will never use the value of a loop counter anywhere
except inside the loop. However, itls perfectly OK to reuse a loop counter in
another loop, or even to reuse the loop counter variable for an entirely different
purpose, even though the latter practice can be confusing and therefore isnlt very
good programming style. Beginning programmers often defme a different loop
counter for every loop in their program even though this isnlt usually necessary
and results in the declaration of unnecessary variables.

6.4 Fortran Loop Constructs • 241

6.4.2 Pre- and Post-Test Conditional Loop Constructs

Recalling the discussions in Section 6.1, we know that it is not always possible
to determine ahead of time how many times the statements inside a loop must be
executed. This situation occurs, for example, in certain kinds of mathematical
problems requiring iterative solutions in which a calculation is repeated until a
specified accuracy goal is met. In such situations, conditional rather than count
controlled loops must be used. There are two kinds of conditional loops, pre-test
and post-test.

Pre-test loops

Here is a typical problem that can use a pre-test conditional loop.

1 Define the problem.

For x2<1, the arctangent function tan-I(x) may be calculated in terms of the
following infinite series:

tan-1(x) = x - !x 3 + !x 5 - !x 7 + •••
3 5 7

Design an algorithm that will use this series to approximate tan-I(x) for a specified
value of x, using all terms greater than or equal to some specified small value.

2 Outline a solution.

1. Supply the value of x and a lower limit on the size of the last term included in
the series. (The latter value can be specified as a constant within the algorithm
rather than as user input.)
2. Initially, let tan-I(x)=x, term=x, and denominator=l.
3. Inside a loop, increment the denominator by 2, set the power for x equal to the
denominator, and change the sign on "term."
4. Increment the value of tan-I(x).
5. Repeat steps 3 and 4 as long as the current value of "term" is greater than or
equal to the specified lower value.

242 • 6. Program Control: Branching and Repetitive Calculations

3 Design an algorithm.

DEFINE (arctan, term, denominator as real numbers;
sign as + 1 or -1, error_limit as real)

WRITE ("Give value of x,)(2<1.',
ASSIGN erroclimit = ? (choose a reasonable small value)
READ (x)
INITIALIZE arctan = x

term = x
denominator = 1

ASSIGN sign = 1
LOOP (as long as term ~ erroclimit)

INCREMENT denominator = denominator + 2
ASSIGN sign = -sign

term = sign .xnmominato'/denominator
INCREMENT arctan = arctan + term

END LOOP
WRITE (arctan)

4 Convert the algorithm into a program.

In Fortran, a pre-test conditional execution loop is implemented with a
DO WHILE ... loop. This loop evaluates a relationa1llogical expression before
executing statements inside the loop. That is, the statement block is executed if
and only if the relationa1Jlogical expression being evaluated is true. The general
syntax of the DO WHILE ... construct is

[name:] DO WHILE (relational/logical expression)
statement block

END DO [name]

As usual, the name label option will not be used in this text. Program P-6.6
implements the algorithm for ca1culting the arctangent.

6.4 Fortran Loop Constructs • 243

P-6.6 [ARCTAN. F90]

File name ARCTAN.F90.
Uses conditional loop to estimate tan"l(x) from its series
expansion.

IMPLICIT NONE
REAL x,term,arctan,sign
INTEGER denominator
REAL,PARAMETER error_limit=le-7

PRINT *,' Give x, where x"2<1'
READ *,x

arctan=x
term=x
denominator=l
sign=l
PRINT *,' Intermediate values ... '
DO WHILE (ABS(term»error_limit)

sign=-sign
denominator=denominator+2
term=sign*x**denominator/REAL(denominator)
arctan=arctan+term
PRINT *,denominator,term,arctan

END DO
PRINT *,' Estimated = ',arctan,' Intrinsic ',ATAN(x)

END

Running P-6.6

Give x, x"2<1
.35
Intermediate values ...
3 -1.4291666E-02 0.3357083
5 1.0504375E-03 0.3367588
7 -9.1913273E-05 0.3366669
9 8.75729l7E-06 0.3366756
11 -8.7771946E-07 0.3366747
13 9.0978993E-Oa 0.3366748
Estimated = 0.3366748 Intrinsic ~ 0.3366748

Algorithms that require conditional execution loops can, in principle, be
implemented using either pre- or post-test loops even though one or the other
often seems more logical. In an exercise at the end of this chapter, you will be
asked to modify P-6.6 to use a post-test loop instead of a pre-test loop.

244 • 6. Program Control: Branching and Repetitive Calculations

5 Verify the operation of the program.

When this algorithm is implemented in Fortran, the results can be
compared with the intrinsic ATAN function.

Post-test loops

With a post-test loop, the tenninating condition is tested at the end of a loop
rather than at the beginning. This is sometimes the most natural way to implement
a particular algorithm. Here is a typical problem.

1 Define the problem.

An adhesive needs to be cured in an oven by raising its temperature
gradually from room temperature to 150°C. Write a program that will request the
user to specify proposed temperature increases. For each proposed increase, the
program must check to make sure that the oven temperature never exceeds 150°C.
Terminate the program when the temperature has been raised to 150°C.

2 Outline a solution.

I. Assume that room temperature is 20°C. Let the user supply the desired fmal
oven temperature rather than "hard-coding" this value.
2. Design a post-test loop that asks the user for a proposed temperature increase
and checks whether it is allowed. Provide "feedback" to the user after each
temperature increase by displaying the difference between the current temperature
and the fmal temperature.
3. Keep count of the number of increases and print a summary report after the
loop terminates.
4. Assume that temperatures and increases are always given as whole numbers so
inte2er variables can be used.

6.4 Fortran Loop Constructs • 245

3 Design an algorithm.

DEFINE (All integers: room_temperature, finaltemperature,
proposed_increase, current temperature, counter)

ASSIGN room_temperature = 20
currenLtemperature = room_temperature

WRITE (Give final oven temperature.)
READ (finaltemperature)
INITIALIZE counter = 0

LOOP (until final temperature is reached)
INCREMENT counter = counter + 1
WRITE (Give proposed temperature increase.)
READ (proposed_increase)
IF (currenLtemperature + proposed_increase) > final temperature THEN

WRITE (This increase is too large!)
ELSE

INCREMENT currenLtemperature =
currenLtemperature + proposed_increase

WRITE ("This is how far you have to go:'~

(end IF ...)
END LOOP

final temperature - currenLtemperature)

WRITE ("It took'~counter, "increases to reach the final oven temperature.'1

4 Convert the algoritlun into a program.

In Fortran, there is no special syntax for post-test loops, but they can still
be implemented by using a DO WHILE ... loop and the EXIT keyword. The
structure of such a loop looks like this:

DO
<statement block>
IF (terminating condition is true) EXIT

END DO

When the terminating condition is true, the EXIT command transfers program
control to the first executable statement after the END DO. Otherwise, the loop
r.nntinnp.~ tn p.yp.r.ntp._

246 • 6. Program Control: Branching and Repetitive Calculations

Program P-6.7 gives one possible implementation of the algorithm in Step
3, using a post-test loop.

5 Verify the operation of the program.

Because of the printout that displays the current temperature and the
number of degrees remaining between the current and fmal temperatures, you can
check the operation of the program just by trying various combinations of
proposed temperature increases. The sample output includes a proposed
temperature increase that is too large.

P-6.7 [CURE. F90]

PROGRAM Cure

Control temperature increases in a curing oven.

INTEGER final_temperature, proposed_increase
INTEGER current_temperature
INTEGER, PARAMETER :: room_temperature=20
INTEGER counter

PRINT *,' Give final oven temperature ... '
READ *,final_temperature
counter=O
current_temperature=room_temperature
DO

counter=counter+l
PRINT *,' Give proposed temperature increase ... '
READ *,proposed_increase
IF «current_temperature + proposed_increase) > &

final_temperature) THEN
PRINT *,'This increase is too large!'

ELSE
current_temperature = &

current_temperature + proposed_increase
PRINT *, 'This is how far you have to go: " &

final_temperature - current_temperature
END IF
IF (current_temperature >= final_temperature) EXIT

END DO
PRINT *, 'It took ',counter, &

, increases to reach the final oven temperature. '

END

Running P-6.7

Give final oven temperature ...
150

Current temperature is: 20

6.4 Fortran Loop Constructs • 247

Give proposed temperature increase ...
30

75

30

25

Current temperature is: 50
This is how far you have to go: 100
Give proposed temperature increase •..

Current temperature is: 125
This is how far you have to go: 25
Give proposed temperature increase ...

This increase is too large!
Give proposed temperature increase ...

Current temperature is; 150
This is how far you have to go; 0
It took 4 increases to reach the final oven temperature.

Problem Discussion
Note that P-6.7 uses all integer variables even though we have previously

suggested that REAL variables are usually a better choice for physical quantities.
In this case, integers are OK as long as we are willing to restrict temperatures to
whole numbers. Using integers will make it easier to write a simple loop
terminating condition. (Recall that comparisons of REAL numbers for equality can
cause problems.)

6.4.3 Nested Loops

As mentioned in the discussion of the application in Section 2.4.2 (generating
oscillating frequencies for an LC circuit), loop structures can be nested. We will
write a Fortran program to solve that problem as an application in Section 6.6.2
of this chapter. As a preliminary exercise, consider this output:
1
1234
2
1234
3
1234
4
1234
5
1234

248 • 6. Program Control: Branching and Repetitive Calculations

Program P-6.8 gives the Fortran code for generating this output:

P-6.8 [LOOP. F9 0]

PROGRAM loop

IMPLICIT NONE
INTEGER i,j

DO i=l,S
WRITE(*, '(lx,il)')i
WRITE(*, '(lx)',advance='no')
DO j=1,4

WRITE(*, '(il)',advance='no')j
END DO
WRITE(*,*)

END DO
END

Note the use of WRITE statements with the advance= , no' option to control
the placement of the output generated by the inner loop.

6.4.4 Loop Design Considerations

From the point of view of programming style and code readability, it's important
to follow a consistent plan for indenting code inside loops. In P-6.8, each DO ...
statement lines up with its corresponding END DO statement and the statement
block for each loop is indented.

It is more than a matter of style to make sure that loop counter variables
in nested DO. . . loops don't overlap. In P-6.8, for example, it would be a serious
logical error, as well as a syntax error, to try to use the same loop counter variable
for both loops. As a matter of algorithm design, it can't possibly be (or shouldn't
be!) what you really intended. As a matter of syntax, the inner loop would
redefme the outer loop counter inside the loop, which isn't allowed.

In P-6.8, the output demonstrates that the loop on the counter j is executed
completely for each "trip" through the loop on i. This a logical way for nested
loops to work; in fact, it's hard to think of any other way that would make sense.
However, this logic works only if the range of an interior loop is contained
entirely within the. statement block of its exterior loop. Loops can be nested
several layers "deep." Although there may be some implementation-specific
maximum allowed number of layers, it is unlikely that this restriction will ever
cause problems in practice.

Conditional execution loops can be nested just as DO. . . loops can, and
the different kinds of loops can even be intermixed without syntax restrictions.

6.5 Using Implied DO ... Loops in Output Statements • 249

There are two potential pitfalls to avoid. First, make sure that counter variables,
whether as part of a count-controlled loop or incremented inside conditional
execution loops, are distinct. Second, make sure that interior loops are contained
entirely within exterior loops. The presence of overlapping, as opposed to properly
nested, loop structures is certainly a design error, and in most cases will generate
a syntax error. Finally, it should be obvious, as a matter of algorithm design, that
your Fortran source code shouldn't try to enter any kind of loop except at the
beginning. In fact, this is not allowed as a matter of syntax for the DO. . . and DO
WHILE ... loops.

Fortran's support of an EXIT command raises the question whether it's a
good idea to exit a loop anywhere except at the end. As a matter of syntax, an
EXIT command can appear anywhere in a loop. However, as a matter of style, we
will restrict the use of EXIT to situations where it appears only at the end of a
post-test loop construct.

With respect to "infmite loops," note that count-controlled (DO ...) loops
can never execute indefinitely, but that any conditional execution loop is
potentially infmite if its terminating conditions are never met. There are no syntax
prohibitions against writing conditional loops that will never terminate. This is an
algorithm design problem the solution of which is left completely to you when
you write programs!

Although you may be tempted to believe these design considerations are
just irksome Fortran implementation details, they are almost always algorithm
design details that should be worked out before the first line of Fortran code is
written.

6.5 Using Implied DO ... Loops in Output Statements

The DO. .. loop is a comprehensive count-controlled repetition construct.
However, Fortran also provides an extremely useful "shortcut" way of
implementing a count-controlled loop within an output statement. Suppose you are
creating a table and need to provide numerical values as column headers, similar
to this:

value: 2 4 6 8 10 12 14 16 18 20

Consider the code fragment in P-6.9. First this heading is produced with a DO ...
loop, using the advance= , no' option in a WRITE statement. There is certainly
nothing wrong with this approach, but it seems an unwieldy way to produce a
very simple result. An alternative is given in the WRITE and PRINT statements
printed in bold italics, each of which produces with a single statement the same
line of output as the original loop structure. In both cases, printing the values for
value is controlled by an implied DO ... loop matched with an appropriate

250 • 6. Program Control: Branching and Repetitive Calculations

format description. (The FORMAT statement could also be referenced with a line
label instead of being given as a string constant.)

P-6.9 (fragment)

INTEGER label

WRITE (* , " (' value: ')", advance=' no')
DO label=2,20,2

WRITE(*,"(i4)",advance='no')label
END DO
WRITE(*,*)

Using implied DO ... loops ...
WRITE(*, "(' va~ue: ' ,lOi4) ") (~abe~,~abe~=2,20,2)
PRINT "(' va~ue: ' ,lOi4) ", (~abe~,~abe~=2,20,2)

The general syntax possibilities for implied DO. . . loops include

PRINT *,loop
PRINT fffff,loop
WRITE(*,*)loop
WRITE(*,fffff)loop

where loop is
(variable_name,variable_name=lower,upper,step)

or
(array_name(index),index=lower,upper,step)

and fffff is
format label or format description in the form of
a string constant

In P-6.9, the value printed in the implied DO. . . loop is the value of the implied
loop counter itself. However, any appropriate value or expression can be printed
here. For example, implied DO. . . loops are especially useful for displaying the
contents of arrays, which we will discuss in Chapter 8. Implied DO. . . loops can
also be used in input statements, as we will discuss in Chapter 9.

6.6 Applications • 251

6.6 Applications

6.6.1 Refraction of Light

1 Define the problem.

Refer to Section 4.3.1 for a discussion of Snell's Law, which gives the
angle of a refracted ray of light as a function of the angle of the incident ray with
respect to a perpendicular to the plane that forms the interface between two
materials with different refractive indices:

Table 4.3 in that section gives angles of refraction for a ray of light passing from
air into three different materials over a range of incident angles ranging from 0°
to 90°. Write a program that duplicates the calculations in that table.

2 Outline a solution.

1. Specify the refractive index for each of the three materials in Table 4.2; they
can be "hard-coded" within the program.
2. Use a count-controlled loop to generate the incident angles. Within the loop,
calculate refracted angles for an air-material interface with the three materials.

3 Design an algorithm.

DEFINE (incidenLangle, water_angle, glass_angle, diamond_angle, as
real numbers; pi and DegToRad (conversion from angles to
radians) as real numbers; water_index, glass_index,
diamond_index, air_index as real numbers)

ASSIGN DegToRad = pi/180
water_index = 1.33
glass_index = 1.50
diamond_index = 2.42
aicindex = 1.00

WRITE (headinas)

252 • 6. Program Control: Branching and Repetitive Calculations

LOOP (incidenLangle = 0 to 90, steps of 10)
ASSIGN incidenLangle = incidenLangle·OegToRad

water_angle =
sin-1 [(ai,-indexlwate,-index) ·sin(incidenLangle)]

glass_angle = .
sin-1 [(air_indexlglass_index) .sin(incidenLangle)]

diamond_angle =
sin-' [(air_indexldiamond_index) -sin(incidenLangle)]

(Display angles in degrees.)
WRITE (incidenLangle, water_indexlOegToRad,

glass_indexlOegToRad, diamond_indexlOegToRad)
END LOOP

4 Convert the algorithm into a program.

P-6.10 [REFRACT3. F90]

PROGRAM refract3

creates table of refracted angles for light ray in air incident
on water, glass, and diamond.

IMPLICIT NONE
REAL air_index, water_index, glass_index, diamond_index
REAL water_angle, glass_angle, diamond_angle
REAL angle,DegToRad
REAL ni,nr,incident,Refract ! for statement function
INTEGER i
PARAMETER (air_index=l. OO,water_index=l. 33,glass_index=2. 50)
PARAMETER (diamond_index=2.42)

Function to calculate refracted angle ...
Refract(ni,nr,incident)=ASIN(ni/nr*SIN(incident»

DegToRad=4.0*ATAN(1.0)/lBO.0
WRITE(*,*), Refracted angle '
WRITE(*,*)' inc. water glass diamond'
WRITE(*,lOOl)water_index,glass_index,diarnond_index
WRITE(*,*)'--------------------------------'
DO i=0,90,10

angle=REAL(i)*DegToRad
water_angle=Refract(air_index,water_index,angle)/DegToRad
glass_angle=Refract(air_index,glass_index,angle)/DegToRad
diamond_angle= &

Refract (air_index, diamond_index, angle)/DegToRad
WRITE(*, 1000) i,water_angle, glass_angle, diamond_angle

END DO

1000 FORMAT(lx,i5,3f9.2)
1001 FORMAT(lx, 'angle' ,3(3x,' (' ,f4.2,')'»

END

Running P-6.10

Refracted angle
incident water glass diamond
angle (1.33) (2.50) (2.42)

0 0.00 0.00 0.00
10 7.50 3.98 4.11
20 14.90 7.86 8.12
30 22.08 11.54 11.92
40 28.90 14.90 15.40
50 35.17 17.84 18.45
60 40.63 20.27 20.97
70 44.95 22.08 22.85
80 47.77 23.20 24.01
90 48.75 23.58 24.41

Problem Discussion

6.6 Applications • 253

In P-6.1O, separate PARAMETER statements have been used to specify the
several values of refractive index. They could also be given in assignment
statements or, with minor modification of the program, obtained as user input
from the keyboard. In this program, 1t isn't needed except to calculate the variable
DegToRad, so it's never declared or defined separately. Be sure you understand
how and why the INTEGER loop counter is used inside the loop to generate the
angle needed for the calculations. It would be OK to use the mixed-mode
expression angle=i *DegToRad instead of angle=REAL (i) *DegToRad, but
the latter code makes the required type conversion perfectly clear.

5 Verify the operation of the program.

Verify the tabulated values with a hand calculator in addition to comparing
your results with Table 4.2. Textbooks can make mistakes, too!

6.6.2 Oscillating Frequency of an LC Circuit

This problem statement and its solution developed in pseudocode have been given
in Section 2.4.2 and will not be repeated here. P-6.11 uses nested DO. . . loops
to generate resonant oscillating frequencies for seven values of inductance (L) and
10 values of capacitance (C) in an LC circuit.

254 • 6. Program Control: Branching and Repetitive Calculations

P-6.11 [OSCILLAT. F90]

PROGRAM Oscillat

Generates resonant frequency table for LC circuit.

IMPLICIT NONE
REAL inductance
INTEGER capacitance
REAL f
INTEGER row
INTEGER u
REAL, PARAMETER ..

u=6

Henrys
pi co Farads
frequency, kHz
loop index

pi=3.l4l5927

OPEN(u,file='oscillat . out ')
WRITE (u,"('Frequency, kHz')")
WRITE (u,"(' C (pF)')")
WRITE (u,"(' L (H) ',10i5)") (capacitance, capacitance=2, 20, 2)
WRITE (u,"('----------- - --------- - --------------------&

&---------------')")

DO row=1,7
inductance=(row+1)*.0005
WRITE (u,' (f7.4)' ,ADVANCE='NO') inductance
DO capacitance=2,20,2

NOTE: Express frequency in kHz by dividing by 1000 .
Convert pico Farads to Farads by multiplying by 10A-12.

f=1./(2.*pi*SQRT(inductance*REAL(capacitance)* l e-12»/1000 .
WRITE (u, '(is)' ,ADVANCE='NO') NINT(f)

END DO
WRITE (u,' () ') ! line feed

END DO
CLOSE(u)

END

Running P-6.11

Frequency, kHz
C (pF)

L (H) 2 4 6 8 10 12 14 16 18 20
----- -- --
0.0010 3559 2516 2055 1779 1592 1453 1345 1258 186 1125
0.0015 2906 2055 1678 1453 1299 1186 1098 1027 969 919
0.0020 2516 1779 1453 1258 1125 1027 951 890 839 796
0.0025 2251 1592 1299 1125 1007 919 851 796 750 712
0.0030 2055 1453 1186 1027 919 839 777 726 685 650
0.0035 1902 1345 1098 951 851 777 719 673 634 602
0.0040 1779 1258 1027 890 796 726 673 629 593 563

Problem Discussion
The output from P-6.11 is sent to the default output device. This is why

the OPEN and CLOSE statements have been changed to comment lines. To send

6.6 Applications • 255

the output to the data file OSCILLAT. OUT, "uncomment" the OPEN and CLOSE

statements by removing the ! character. It would be a good idea to change the
unit number assignment to a value other than the preconnected value of 6, but it's
not required.

The advance=' no' option (either uppercase or lowercase is OK) is
required to control the position of "carriage returns" when you're writing the
results. Remember that PRINT and WRITE statements automatically move to the
start of a new line and only WRITE offers the possibility of preventing this action.

P-6.11 contains a typical use of an implied DO. .. loop to generate
column headings. (See the line printed in bold italics.)

6.6.3 Calculating Radiation Exposures for a Materials Testing Experiment

1 Define the problem.

This problem is similar to the heat curing problem discussed in Section
6.4. The new feature is the use of a random number generator to select radiation
doses instead of having these values provided by user input.

In a test of the effects of radiation on materials, an experiment protocol
requires that:

(1) a sample be subjected to several bursts of radiation of random intensity, each
of which must not exceed some specified maximum value;
(2) the sum of the intensities must never exceed a specified limit for total
exposure.

Write a program to simulate this experiment by generating a sequence of random
exposure levels that satisfy this protocol.

2 Outline a solution.

1. Ask the user to supply the maximum intensity for a single exposure and the
limit on total cumulative exposure; the former must be less than the latter.
2. Initialize the cumulative exposure to 0 and generate a random exposure value;
call this value the "current value."
3. Construct a loop that allows the execution of statements inside the loop only
if the cumulative exposure plus the current value doesn't exceed the allowed total
cumulative exposure.

256 • 6. Program Control: Branching and Repetitive Calculations

4. Inside the loop, add the current value to the cumulative exposure. Print the
current and cumulative exposures. Generate a new current exposure value.
5. Outside the loop, after it terminates, print the current exposure value along with
a message indicating that this exposure would have exceeded the allowed
maximum.

3 Design an algorithm.

It would be a good idea to try to design your own algorithm before
studying this one. Think carefully about how to satisfy the demands of the
problem statement. For this problem, the flowchart shown in Figure 6.4 might be
helpful.

n=O
cumulative=O

current=(random)

Is

"is too large,terminate test"

(NOTE: (random) no more than max_single)

WRITE n, current, cumulative

cumulative=cumulative+current
n=n+l

Figure 6.4. Flowchart for radiation exposure problem

6.6 Applications • 257

DEFINE (max_single, max_total, currenLexposure,
cum_exposure as real numbers;
number of exposures (n) as integer)

WRITE ("What are the maximum single intensity and maximum
total exposure?'?

READ (max_single, max_total)
INITIALIZE n = 0

cum_exposure = 0
(Select an initial exposure.)
ASSIGN currenLexposure = random value, no more than max_single
LOOP (while cum_exposure + currenLexposure doesn't exceed max_total)

INCREMENT cum_exposure = cum_exposure + currenLexposure
n=n+1

WRITE (n, currenLexposure, cum_exposure)
(Get a new exposure to try.)
ASSIGN currenLexposure = random value, ~ max_single

END LOOP
WRITE (current exposure, "is too big'?

4 Convert the algorithm into a program.

P-6.12 [EXPOSE. F90]

PROGRAM Expose

Generate a random radiation exposure history for a sample
so that the total exposure doesn't exceed a specified maximum.

IMPLICIT NONE
REAL current_exposure
REAL max_single
REAL cum_exposure
REAL max_total
INTEGER n_exposures
REAL x
INTEGER Count(l)

!the proposed current exposure
!maximum single exposure
!cumulative exposure
!maximum allowed total exposure
!number of exposures
!O<=x<l
!current va~ue of system c~ock

PRINT *,' What is the total allowed exposure?'
READ *,max_total
PRINT *, &

, What is the largest allowed single exposure « total)?'
READ *,max_single

CALL System_C~ock(Count(l))
CALL Random_Seed(Put=Count)
CALL Random_Number(x)
current_exposure=max_single*x
cum_exposure=O.O
n exposures=O

258 • 6. Program Control: Branching and Repetitive Calculations

DO WHILE «cum_exposure+current_exposure)<=max_total)
n_exposures=n_exposures+1
cum_exposure=cum_exposure+current_exposure
PRINT 1000,x,n_exposures,current_exposure,cum_exposure

Get a new exposure value to try ...
CALL Random_Numbex(z)
current_exposure=Max_single*x

END DO
PRINT 1001,current_exposure

1000 FORMAT(f10.5,i3,2f8.1)
1001 FORMAT(' The next proposed exposure of ',f5.1, &

, is too large. 'I' Terminate the experiment. ')

END

Running P-6.12

What is the total allowed exposure (0-1000)?
1000

What is the largest allowed single exposure (0-500)?
500

max single
0.27609 1
0.31017 2
0.98066 3
0.01780 4
0.22745 5

and max
138.0
155.1
490.3

8.9
113.7

total are
138.0
293.1
783.5
792.4
906.1

5.0000000E+02 1.0000000E+03

The next proposed exposure of 411.6 is too large.
Terminate the experiment.

5 Verify the operation of the program.

The goal of your program testing must be to ensure that the specified
maximum limit is never exceeded. The simplest way to do this is to observe the
operation of the program several times. However, it is also worth temporarily
replacing the random levels generated in the program with user-supplied levels.
That way you can test specific combinations of levels. What happens if the first
proposed intensity is greater than the maximum allowed intensity? What happens
if the cumulative exposure exactly equals the total allowed exposure? These are
questions that are difficult to answer when each exposure is chosen randomly, but
easy if you can select the exposures yourself.

6.6 Applications • 259

Problem Discussion
There are several features of P-6.12 that are worth studying. First, each

variable is declared on a separate line, with a comment about its purpose. This is
good programming style whenever there could be confusion about the purpose of
some variables. No physical units have been specified in the problem statement
or program. From the point of view of writing the code for this simulation, the
units don't matter as long as they are consistent.

Second, this program requires a
sequence of random numbers. Computers can't
generate truly random numbers, but Fortran,
and other high-level languages, include a

random number generator I
pseudorandom numbers

software-based random number generator that can be used to produce sequences
of pseudorandom numbers that appear to be random. The statements required to
generate random numbers are printed in bold italics in P-6.12.

For now, don't worry about the syntax of the CALL statements; they access
built-in subprograms that you can use whenever a program needs a sequence of
random numbers. (We will discuss the CALL statement in Chapter 7.) Briefly, the
CALL System_Clock (Count (1)) statement obtains an integer value from
your computer's internal (system) clock. The INTEGER Count (1) declaration
is required for this CALL statement. The statement

CALL Random_Seed(Put=Count)

uses the integer retrieved from the system clock to "seed" a random number
generator. Because the value obtained from the system clock is essentially a
random number, this "seed" generates a different sequence of random numbers
every time the program runs.

The CALL Random_Number (x) generates a random REAL value x
uniformly distributed on the range [0,1). (Remember that this notation means that
x may be exactly 0, but it will never be exactly 1.4) The value of x is then used
to calculate an exposure that will always be less than the maximum single
exposure; this is OK because the problem definition states only that the maximum
value of a single exposure is limited by a specified maximum intensity, without
stating specifically how the limit should be imposed. In this case, the code will
generate values arbitrarily close to a specified limit.

'The reason for this is obscure; however, it is sometimes helpful to know that a value of
exactly 1 will never be generated.

260 • 6. Program Control: Branching and Repetitive Calculations

6.6.4 Maximum Deflection of a Beam with Various Support/Loading Systems

The pseudocode for this problem, using the CHOOSE command, has been
discussed in Section 6.1.2, so only Steps 4 and 5 of the problem-solving process
will be discussed here. Recall that the CHOOSE pseudocode command is
implemented in Fortran with the SELECT CASE ... construct.

4 Convert the algorithm into a program.

P-6.13 [BEAM2. F90]

PROGRAM Beam2

Calculates beam deflection for four different
support/loading systems.

IMPLICIT NONE
REAL elasticity
REAL moment_of_inertia
REAL length
REAL load
REAL deflection

!lb/inA2
!inA4
!ft
!lb
lin

INTEGER systemID
!2

!1 - supported at each end, concentrated load
- supported at each end, distributed load

!3 - supported one end, concentrated at free end
!4 - supported one end, distributed

CHARACTER YesNo

(begin post-test loop)
10 PRINT *, &

, Give elasticity (lb/inA2) and moment of inertia (inA4). '
READ *,elasticity, moment_of_inertia
PRINT *,' Give the beam length in,ft.'
READ *,length
PRINT *,' Choose one of these support/loading systems: '
PRINT *,' 1 - supported at each end, concentrated load'
PRINT *, &

, 2 - supported at each end, uniformly distributed load'
PRINT *, &

, 3 - supported at one end, concentrated load at free end'
PRINT *,' 4 - supported at one end, distributed load'
READ *, systemID
SELECT CASE (systemID)

CASE (1,3)
PRINT *,' Give the concentrated force.'

CASE (2,4)
PRINT *,' Give the distributed weight.'

CASE DEFAULT
STOP 'Program termination due to input error.'

END SELECT
READ *,load

lenQth=lenQth*12.0

6.6 Applications • 261

SELECT CASE (systemID)
CASE (1)

deflection= &
-load*length**3/(48.0*elasticity*moment_of_inertia)

CASE (2)
deflection=&

-5.0*load*length**3/(384 . 0*elasticity*moment_of_inertia)
CASE (3)
deflection= &

-load*length**3/(3.0*elasticity*moment_of_inertia)
CASE(4)

deflection= &
-load*length**3/(8 . 0*el asticity*moment_of_inertia)

END SELECT

PRINT 1000,deflection
PRINT * , 'More? (y/n) ,
READ *,YesNo

IF (YesNo=='y') GO TO 10
(end post-test loop)

1000 FORMAT(lx , eslO . 3)
END

Running P-6.13

Give elasticity (lb/inA2) and moment of inertia (inA4).
30e6 797 ~

Give the beam length in ft.
20

3

Choose one of these support/loading systems:
1 - supported at each end, concentrated load
2 - supported at each end, uniformly distributed load
3 - supported at one end, concentrated load at free end
4 - supported at one end, distributed load

Gi ve the concentrated force.
10000
-1. 927E+OO
More? (y/n)

n

5 Verify the operation of the program.

Refer to Figure 3.4 in Chapter 3, which shows the maximum deflection of
a beam supported at both ends as a function of load when the load is concentrated
in the center. For additional verification, you will have to look elsewhere!

262 • 6. Program Control: Branching and Repetitive Calculations

Problem Discussion
P-6.13 contains several interesting features. The input section, which

consisted of one WRITE and one PRINT command in the pseudocode, has been
expanded to provide better control over input. It includes a SELECT CASE
construct that prompts the user to supply either a concentrated force or a
distributed weight, depending on which support and loading system is chosen. All
the program's executable statements are included in a post-test loop so you can
calculate the deflection for many different conditions without having to re-execute
the program; the loop continuation test (IF (YesNo== 'y') GO TO 10)
looks at the value of a character entered by the user in response to a prompt. You
might wish to make this test a little more foolproof by modifying the IF. . .
statement to read

IF «YesNo=='y') .OR. (YesNo=='Y'» GO TO 10

to allow for either an uppercase or a lowercase y.s
Finally, note the use of the STOP statement in the fIrst SELECT CASE

construct. This is the fIrst time this statement has been used in a program in this
text. It terminates the program and prints an appropriate message if the user enters
an inappropriate value for systemID. This prevents the program from trying to
execute the next SELECT CASE construct with an inappropriate value of
systemID. It is possible to rewrite the program so that the prompt for
systemID is repeated, using another post-test loop, until the user provides an
appropriate value in the range 1-4, but it doesn't seem worth the trouble in this
case.

6.7 Debugging Your Programs

6.7.1 Programming Style

In well-written programs, control structures need to be carefully planned to make
sure that all problem requirements are considered. In selection constructs, it is
important to make sure that all possible branches, even "abnormal" ones, are
accounted for. If you know which branch of an IF ... statement is most likely,
it is a good idea for this branch to appear fIrst. IF. . . statements should never
test REAL variables directly for eqUality. Choices in a SELECT CASE statement
should be arranged in a logical order.

Your choice of loop constructs should reflect what you know about the
calculations that must be done. If you know, or your program can calculate, how

SRemember that even though Fortran is case-insensitive in its interpretation of source code,
the character constant 'y' is not the same as 'Y'.

6.7 Debugging Your Programs • 263

many times the statements inside a loop will be executed, always use a count
controlled loop to reflect that knowledge. Conditional loops should always be
written in a way that makes the terminating condition(s) as clear and simple as
possible.

In DO. .. loops, you should not use REAL loop control variables.
Calculations that need to be done only once should never be done repetitively
inside a loop even if the answers are unaffected.

6.7.2 Logical Problems

Potential problems with selection and repetition structures often are related to
algorithm design rather than language syntax. These problems can be difficult to
isolate because it is not easy to guarantee that you have tested all possible
conditions under which IF ... and SELECT CASE statements may fail to
operate, or under which DO ... , DO WHILE... loops may not terminate
properly (or at all). Nonetheless, here are some suggestions.

1. For the kinds of programs discussed in this chapter, a reasonable execution time
is no more than a few seconds. If a program doesn't terminate within a few
seconds, it is almost certainly due to the program being trapped inside a
conditional loop for which the terminating condition is never met. Check your
algorithm, and if you're convinced that the logic is OK, make sure that your
program actually implements this logic. If a loop doesn't include a PRINT or
WRITE statement, put one there temporarily so you will see some output displayed
for each "trip" through the loop.

2. When you test a program containing an IF ... or SELECT CASE statement,
make sure that you try it with input that will force it to execute the code
associated with every possible branch or CASE selector. It may be helpful to
include temporary PRINT statements inside each branch to let you know when
statements in that branch are being executed.

3. A common logical error is to use a conditional loop when a count-controlled
loop would have sufficed. Count-controlled loops are easier to write and less
prone to logical errors, so you should use them whenever you can.

4. Make sure that IF ... statements don't have overlapping conditions. Here's an
example:

IF (A>=O) THEN

ELSE IF (A=O) THEN

264 • 6. Program Control: Branching and Repetitive Calculations

ELSE

END IF

The condition A=O overlaps the condition A>=O. Fortran won't detect this as a
syntax error, but it can't possibly be logically correct.

6.7.3 Syntax and Execution Problems

1. Syntax problems with IF. . . statements sometimes lead to error messages that
aren't very helpful because your Fortran compiler is trying unsuccessfully to
understand what you are asking it to do. One common error is to forget to include
the END I F statement at the end of an IF. . . statement. It may be helpful to
"label" each END IF statement with an inline comment to indicate which IF ...

statement it is terminating. Consistent use of indented statements will make
debugging easier. Each END IF statement should begin in the same column as
its corresponding IF ... statement.

2. A common error with the SELECT CASE statement is to forget the
END SELECT statement. Again, consistent use of indenting will make these
statements easier to understand and debug.

3. Remember that you're not allowed to reassign loop counter variables inside a
DO loop. This means that nested loops must each use a different name for their
counter variables.

4. If a program containing a SELECT CASE statement sometimes works and
sometimes "crashes," it may mean that the CASE expression has a value not
included in the list of CASE selectors. You should determine which value is
causing the problem and either include it in the list of CASE selectors or include
a CASE DEFAULT statement.

6.8 Exercises

6.8.1 Self-Testing Exercises

Exercise 1. Describe in your own words the two most important concepts you
have learned from this chapter.

Exercise 2. Describe in your own words how you could use in your own
programs a problem-solving skill demonstrated in a program described in this
chapter.

6.8 Exercises • 265

Exercise 3. How does the statement

IF «.NOT. raining) .AND. (temperature>85.0» THEN ...

differ from the statement

IF «.NOT. raining) .OR. (temperature>85.0» THEN ...

6.8.2 Basic Programming Exercises

Exercise 4. Create a flowchart for the beam deflection example in Section 6.1.2.

Exercise S. Create a flowchart for P-6.7.

Exercise 6. Include code fragment P-6.1(a) in a complete program that asks the
user to supply a number and then calculates and displays the square root of that
number if it's non-negative and prints an appropriate message if it's not.

Exercise 7. Modify program P-6.13 so that it tests the deflection against some
specified maximum and prints an informative message if the maximum deflection
appears to be unreasonably large. You will have to decide what "unreasonably
large" means; is a 12-inch deflection unreasonably large for a 20-foot beam?

Hint: you could express the maximum reasonable deflection as a
percentage of the length of the beam.

Exercise 8. Modify Program P-6.6 so that it uses a post-test loop syntax as
described in Section 6.4.2.

Exercise 9. Write pseudocode for a loop to print the values 1-20 in steps of 0.5.
That is, the loop should print

1.0
1.5
2.0
(and so forth)

Implement the pseudocode first as a DO ... loop, then as a DO WHILE ... loop,
and finally as a post-test loop using a GO TO statement at the end. Do not use a
REAL variable for the counter in the DO. . . loop.

Exercise 10. A wage tax is collected according to the following rule: the tax is
7 percent on income less than or equal to $50,000 and 3 percent on income in

266 • 6. Program Control: Branching and Repetitive Calculations

excess of $50,000. Write a program that will calculate the tax for a user-supplied
income. (See Section 2.1.3 for a brief discussion of this problem.)

Exercise 11. Refer to Exercise 19 in Chapter 3. Modify that program so that it
will display seconds and fractions of a day when the input time is given in am and
pm time. Take into account the fact that 12:00 am should be interpreted as
OhOmOs and 12:00 pm as 12hOmOs.

Exercise 12. Based on material from other courses you are taking, state a
computational problem and write a complete program to solve it. Make sure the
problem requires the use of either a conditional or a count-controlled loop or a
SELECT CASE construct.

6.8.3 Programming Applications

b + Jb 2 - 4ac Exercise 13. The quadratic equation ax2 + bx + c = 0 has roots --------''-----
2a

The expression b2 - 4ac is called the discriminant. If it is positive, there are two
real roots-one calculated using the + sign and the other using the - sign. If the
discriminant is zero, there is one real root. If the discriminant is negative, there
are no real roots. Write a program to fmd the real roots, if any, for specified
values of a, b, and c. Your program's output should include an informative
message concerning the number of real roots it found. [QUADRATI. F90]

Exercise 14. Electric utility rates in the Philadelphia area are among the highest
in the country. In 1994, charges for residential customers who use electric
resistance heating or an electric heat pump were calculated as follows:

Service Charge:
Energy Charge

Winter:

Summer:

$5.08

$0.1345/kWh for first 600 kWh
$0.0679/kWh for additional kWh
$0.1345/kWh for first 500 kWh
$0.1530/kWh for additional kWh

The service charge is always added to each month's bill. The energy charge is
different in the summer and the winter. Summer months are defmed as June
through September. The rest are winter months. Write a program that asks the user
for the month and number of kWh (kilowatt hours) used during that month and
then calculates her monthly basic charl2:es.

6.8 Exercises • 267

Hints: use a SELECT CASE construct to control calculation of charges for
winter and summer months. Use a CHARACTER*9 specification for a variable to
hold the month because September, the longest month name, contains nine letters.)
[PECO. F90]

Exercise 15. A tray is formed from a sheet of metal by cutting the same size
square from each comer and bending up the sides. Given the length and width of
the original sheet, what is the size of the square cut that gives a tray with
maximum volume? Write a program that will provide an approximate answer to
this question by assuming a user-specified size for the sheet and then calculating
the volume based on a series of cut sizes in increments of 0.1". Ignore the fact
that because the sheet has a finite thickness, bending it results in a small loss in
the height of the sides. [TRAY_VOL. F9 0]

Extra Credit
An understanding of elementary

If you have had an introductory
calculus is required.

course in differential calculus, you should
be able to determine the exact answer for
this problem. Compare it with the result from your program.

Exercise 16. (a) The population of a certain animal is 1,000,000 at the beginning
of the year. During each year, 6 percent of the animals alive at the beginning of
the year die. The number of animals born during the year that survive to the end
of the year is equal to 1 percent of the population at the beginning of the year.
Write a program that prints out the births, deaths, and total population at the end
of each year and stops when the population falls to 10 percent or less of the
original population.

Hint: populations can have only integer values.
(b) Assuming that the death rate stays the same as in part (a), what birth

rate is required for the population to double in 20 years? Starting with the original
population of 1,000,000, print the births, deaths, and total population at the end
of each year for 20 years, using the newly calculated birth rate. The population
after 20 years will be twice the original population when 2=(1 +r)20, where r is the
overall population growth rate-birth rate minus death rate.

You may include both parts of the problem in a single program.
[POPULATN. F90]

Exercise 17. The average temperature of the earth/atmosphere system as viewed
from space depends on the solar constant So, which is about 1368 W/m2, and the
earth's albedo (reflectivity). Assuming the earth acts like a "blackbody" (i.e., it
radiates 100 percent of the radiation that strikes it), the temperature is related to
the solar constant by

268 • 6. Program Control: Branching and Repetitive Calculations

where a is the Stefan-Boltzmann constant, 5.67x1O-8 W/(m2 oK4), and a is the
earth's albedo, about 0.30. (Albedo is a dimensionless measure of the fraction of
incoming solar energy reflected by the earth/atmosphere system.)

Write a program that calculates the temperature as a function of changes
in the solar constant over the range ±10 percent. Note that the temperature of the
earth/atmosphere system as viewed from space is not the same as the average
surface temperature of the earth, which is about 33°C warmer because of the well
known "greenhouse" effect of the Earth's atmosphere. [EARTHATM. F9 0]

Exercise 18. The resistivity p of tungsten wire is roughly 100x1O-6 ohm-cm at the
operating temperature of a lightbulb filament. Suppose a lightbulb consumes
100 W of power on a 11 O-volt circuit. The power can be expressed in terms of the
voltage V and resistance R of the filament as

Power = yl/R = yl/(pUA)

where L is the length of the filament in cm and A is the cross-sectional area in
cm2•

Write a program that generates a table of reasonable lengths and diameters
that will give the required resistance. It is up to you to decide what "reasonable"
means. [TUNGSTEN. F90]

Exercise 19. The wavelengths of the Balmer series of lines in the hydrogen
spectrum are given by

where n is an integer having values greater than 2. Write a program that generates
the fIrst 10 wavelengths in the Balmer series. [BALMER. F9 0]

Exercise 20. One of the concerns about global warming is that the average sea
level may rise. Suppose you are a civil engineer who has been asked to estimate
the loss of land along a coastline. Write a program that relates a sealevel rise of
R cm to loss of land, given in units of km2/km and acres/mile along a coastline
with a specifIed range of grades. A grade of 0.1 percent-1O percent with respect
to the sea, in increments of 0.1 0, is reasonable.

If the coastline makes an angle 9 with the sea, the distance lost from the
original coastline, measured along the sloping ground, is Rlsin(9). The grade is
defmed as lOOetan(9) percent. Suppose the sea level rises 10 cm (about 4 inches).
A 1 ° slope (about 1.75 percent 21"ade) means that the coastline will recede about

6.8 Exercises • 269

5.7 m, with a loss of about 0.0057 km2 per kilometer of coastline, or about 2.3
acres per mile of coastline. (There are 1609.3 mlrnile and 640 acres/rnile2.)

[SEA_LEVL. F90]

Exercise 21. Simulation studies in science, mathematics, and engineering often
require random numbers from a so-called "normal distribution." Such numbers
have a mean of 0 and a standard deviation of 1. (The standard deviation is a
measure of the "spread" of values in a distribution.) Fortran includes a random
number generator (recall the application from Section 6.6.3), but it generates
uniformly distributed numbers in the range [0,1) rather than normally distributed
numbers.

Fortunately, there is a simple way to generate a pair of normally distributed
numbers Xl and X2 from a pair of uniformly distributed numbers Ul and u2:

Xl = j-2ln(ul)cos(27TU2)

~ = j-2ln(ul)sin(27Tu2)

Write a program that uses this formula to generate a sample of 200
normally distributed numbers. You can check the numbers to see if they actually
appear to be normally distributed by calculating their mean and standard deviation:

m = :Ex/n
s 2 = :Ex 2 - (:Ex)2/n

n-l

Accumulate the sums of X and x2 inside the loop and use the sums to calculate the
mean and standard deviation when the loop is complete. The mean and standard
deviation, or the average of the means and standard deviations from several sets
of numbers, will be "close" to 0 and 1, but they won't be exactly 0 and 1. There
are quantitative statistical tests for a normal distribution, but they are beyond the
scope of this problem. Hint: remember that a DO. .. loop from 1 to 100
generates 200 random numbers, not 100.

The formulas given above for generating normally distributed numbers
require uniform numbers in the range (0,1] because 1n(0) is undefined. Fortran's
random number generator produces numbers in the range [0,1). The upper limit
can be arbitrarily close to 1, so that end of the range is of no concern. However,
it's possible that a value of exactly 0 might be generated. Your program should
protect against this possibility, even though it is unlikely, by testing Ul and
replacing it with a very small number if its generated value is exactly O.
[NORMAL. F90]

Exercise 22. One way to estimate the square root of a number is to use Newton's
algorithm. Given a number n, guess its square root. For the purposes of the
algorithm, the value of the initial guess is relatively unimportant; guess=nl2 is a
reasonable choice. Then calculate a new estimate by calculating a new guess:

270 • 6. Program Control: Branching and Repetitive Calculations

guess = (guess + nI guess)/2

Continue to make new estimates until the absolute value of the difference between
n and the guess multiplied by itself differs from the original number by less than
some specified small amount. [NEWTON. F90]

Exercise 23. The Internal Revenue Service acknowledges that the value of
equipment used in manufacturing and other businesses declines as that equipment
ages. Therefore, businesses can gain a tax advantage by depreciating the value of
new equipment over an assumed useful lifetime of n years. At the end of n years,
the equipment may have either no value or some small "salvage" value.
Depreciation can be computed in three ways:

1. Straight-line depreciation. The value of an asset minus its salvage value
depreciates by the same amount over its useful life of n years.
2. Double-declining depreciation. Each year, the original value of an asset minus
previously declared depreciation (its "book value") is diminished by 2/n.
3. Sum-of-digits depreciation. Add the integers from 1 through n. The
depreciation on the original value of an asset minus its salvage value allowed in
year i is (n - i) + 1 divided by the sum of the digits.

Write a program that calculates the depreciation available for years 1 through n.
Assume that the salvage value is some small percentage (perhaps a value in the
range 5 percent-lO percent) of the original value. Here is a depreciation table for
an asset originally valued at $1000 with a useful lifetime of 7 years and an
assumed salvage value of $100.

Original value $1000
Salvage value $ 100
Lifetime 7 years

Straight Asset Double- Asset Sum-of- Asset
Year line value declining value digits value

1 128.57 871. 43 285.71 714.29 225.00 775.00
2 128.57 742.86 204.08 510.20 192.86 582.14
3 128.57 614.29 145.77 364.43 160.71 421.43
4 128.57 485.71 104.12 260.31 128.57 292.86
5 128.57 357.14 74.37 185.93 96.43 196.43
6 128.57 228.57 53.12 132.81 64.29 132.14
7 128.57 100.00 37.95 94.86 32.14 100.00

Note that the double-declining method doesn't depend at all on the salvage value.
This means that not all the depreciation in the seventh year could actually be
taken if the asset really has a salvage value of $100 at the end of seven years.
[DEPRECIA. F90]

6.8 Exercises • 271

Extra Credit
Businesses often like to maximize depreciation when equipment is new in

order to maximize their tax advantage. Which method should they choose? If
businesses can change the method by which they calculate depreciation at any
time during the life of an asset, when, if ever, should they change methods? (The
answer to this questions depends on the salvage value of the asset.)

Exercise 24. In orbital mechanics, the angular position of an orbiting object is
calculated as a function of time. For a circular orbit, the calculation is simple
because the position is directly proportional to time. For noncircular orbits, the
calculation is more complicated.

First, some definitions. The time required for an orbiting object to
complete one revolution is called its period. The mean anomaly is the angular
position that an object would have in its orbit if it were in a circular orbit with the
same period. Mean anomaly is directly proportional to time.

The eccentric anomaly Ec is related to the mean anomaly M through the
transcendental equation

M = Ee - esin(EJ

where both angular quantities must be expressed in radians rather than degrees and
the eccentricity e is a measure of the shape of the orbit. The range of e is 0 -1,
with circular orbits having an eccentricity of o. The true anomaly e is related to
the eccentric anomaly through the algebraic equation

cos(EJ - e
oos(O) = ---

I + ecos(Ec)

Therefore, true anomaly can be related to mean anomaly, and hence to time,
through the eccentric anomaly. The geometry is illustrated in Figure 6.5 .

Perigee,
mean anomaly =

o degrees

."... -----

/' ------',,-/' ,
I \

(\

I \

{ \

\

\

I
I
I

I

True anomaly (for e=0.5)

Mean anomaly = 90 degrees

Figure 6.5. Geometry of noncircular orbits

272 • 6. Program Control: Branching and Repetitive Calculations

The equation involving M (Kepler's equation) can't be solved directly for
eccentric anomaly, but it can be solved iteratively:

1. As a first guess, assume Ec = M.
2. Replace Ec with a new value: Ec:Ec=M + eesin(Ec).
3. Calculate a new M using the new value of Ec: M.u.w = Ec - eesin(Ec).
4. Repeat steps 2 and 3 until the absolute magnitude of M minus Mnew is less than
some specified small value (10-5 is a reasonable choice).

Write a program that calculates true anomaly as a function of mean
anomaly for values of mean anomaly in the range 0°-360°, in steps of 5°, for
these values of eccentricity: 0.1,0.25,0.50,0.75, and 0.90.

Hints
1. Remember that all angular calculations must be done in radians and converted
to degrees if you like only when the values are displayed as output.
2. Arithmetic errors can occur when the mean anomaly is 180° because the
argument of the arccosine function must never exceed 1. As the eccentric anomaly
approaches 180°, the calculation for cos(O) might produce a value slightly greater
than 1. Account for this possibility by testing the value of cos(O) before you take
its arccosine. Also, the arccosine function doesn't produce values in the range
0-21t or 0°-360°. Use the values of mean anomaly to make sure your program
produces answers in the appropriate range. [KEPLER2. F90]

Exercise 25. A satellite flies over a cloudless desert. The satellite contains an
instrument that measures the longwave radiance emitted in the direction of the
instrument from a particular spot on the desert's surface. The instrument records
the radiance L as a function of zenith angle 0 relative to the spot on the surface.
A series of such measurements leads to an empirical model of the radiance as a
function of zenith angle and the radiance Lo that would be measured from a
satellite passing directly over the site:

L = Losec(OY, 0~60°
L = Losec(OY-a[sec(O) - sec(600)], 0>60°

The secant of the zenith angle is proportional to the amount of atmosphere
between the satellite and the ground (the atmospheric "path length"). The model
reflects the fact that a satellite view of a site on the surface undergoes "limb
darkening" because the satellite must look through more atmosphere as the zenith
angle increases. At large zenith angles, an additional term is required to account
for the rapidly decreasing transparency of the atmosphere to longwave radiation.

6.8 Exercises • 273

Table 6.5 gives empirical model parameters for three desert surfaces
derived from measurements taken in January. This is winter in the northern
hemisphere, which explains why the value of Lo is higher for Australian deserts
than it is for the two northern hemisphere deserts; because the satellite measures
longwave radiance, a larger radiance means that the surface is warmer. Figure 6.6
shows predicted radiances for these surfaces ..

Table 6.5. Model parameters for longwave radiance from deserts

Desert Overhead Radiance,
Location Wlm2/ster x a

Australia 110 -0.2116 3.184

Sahara 85 -0.0998 1.854

Saudi Arabia 90 -0.0974 1.241

. .
80 Sahara Desert ······!··········l··········r·····

10 20 30 40 50 60 70 80 90
Zenith angle, degrees

Figure 6.6. Predicted longwave radiances for three desert sites.

274 • 6. Program Control: Branching and Repetitive Calculations

Write a program that will calculate predicted values of radiance as a
function of satellite zenith angle for the three sets of model parameters given in
Table 6.5. What happens as the zenith angle approaches 90°? What can you
conclude about the validity of the model as the satellite approaches the horizon?
What might you conclude about the fact that as the zenith angle increases, the
differences in radiances observed from different surfaces tend to decrease?
[LIMBDARK. F90]

Exercise 26. A rectangular container with specified length, width (as viewed from
the side), and depth contains a liquid (molten metal, for example). The container
is rotated about an axis parallel to the depth dimension at a constant angular rate,
and the contents of the container spill into a mold. Write a program that will
calculate the total volume of liquid that pours into the mold as a function of
container angle. Also, calculate an approximation to the "instantaneous" rate at
which liquid pours from the container.

Hints: rotate the container in equal angular increments and calculate the
resulting volume that has been emptied from the container. Subtract the volume
at the previous angular value and divide by the angle increment. If the angle
changes at a constant rate with respect to time, this calculation gives an
approximation of the changing volume rate with respect to time.

Divide the calculations into two parts. The frrst part calculates the angles
from the beginning of the rotation to the time when the liquid level reaches the
bottom comer of the container. The second calculates the angles for this point to
90°, at wlPch time the container is empty. The angle at which this transition
occurs is given by

tan(8) = height/width

[POURING. F90]

Extra credit
1. Suppose you need to pour liquid at a constant rate. Modify your

program to calculate how the angle must change with respect to some arbitrary
time unit. One way to visualize this problem "discretely" rather than continuously
is to imagine that the molten metal is used to fill 100 identical molds; that is, each
mold uses 1 percent of the liquid. How much should the angle increase to fill each
mold? Clearly, the change in angle required to fill each mold is not constant.

2. Suppose the container is cylindrically shaped
A good understanding of

rather than rectangular. The equations for
integral calculus is required. emptying the first half of the container are easy

because the volume at any angle is just half a
cylinder with height equal to the intersection of the liquid with the side. However,

6.8 Exercises • 275

after the liquid reaches the upper bottom comer of the container, the volume
becomes a conic section, and this volume is harder to calculate.

Exercise 27. A simple model of population growth assumes that a new population
p' is linearly related to the current population p; that is, p' = rp. Such a population
will increase or decrease monotonically, depending on the value of r. Biologists
have long recognized that populations are usually bounded in some way. For
example, as an animal population reproduces and grows, limited food resources
may constrain its growth. Conversely, when a population shrinks, those same
limited food resources may be able to support a population that starts to grow
again.

Here is a simple equation that models this "bounded" behavior:

p' = rp(l - p)

where, for simplicity, the population has a normalized value in the range [0,1].
Clearly, this model has the desired properties of bounding p'. As p grows, 1 - P
shrinks, and vice versa. Suppose r = 2. Here are the ftrst few values derived from
iterating this equation from an initial value of p = 0.2:

cycle p

1
2
3
4
5

0.20
.32
.4352
.4916
.49986

p'

0.32000
.43520
.49160
.49986
.50000

One remarkable property of this function is that for r = 2, the population stabilizes
at a value of 0.5 for any value of initial population p in the range (0,1)-that is,
for any value between, but not including, 0 and 1.

For many years, however, some interesting properties of this disarmingly
simple equation went unnoticed. Suppose r = 3.2. Iterate on the equation, starting
with p = 0.5:

cycle p p'

1 0.50000 0.80000
2 .80000 .51200
3 .51200 .79954

12 .79946 .51304
13 .51304 .79946
14 .79946 .51304
15 .51304 .79946

Now the population no longer stabilizes at a single value. Instead it cycles back
and forth between two values.

276 • 6. Program Control: Branching and Repetitive Calculations

For r = 3.5, the population cycles among four different values. For a
slightly higher value, it cycles among eight values. For r just in excess of 3.57,
the population oscillates randomly. At even larger values of r, other cycles
emerge, only to disappear into randomness as r continues to increase. The
discovery that an apparently simple dynamic system could produce this odd kind
of "random" behavior gave birth to what is now known as chaos theory and, some
would say, has had as profound an effect on our view of the natural world in the
second half of the 20th century as relativity theory had in the frrst half.

Fortunately, it is easy to investigate the behavior of this remarkable
equation. Write a program that requests a value for r between 0 and 4 and for p
between 0 and 1 and then performs multiple iterations. What happens if r is
greater than 41

Hint: there is no simple way to terminate the iteration if it is implemented
as a conditional loop because there is, in general, no way to predict future values
of the population. rpOPCHAOS. F901

7

Program Modularization

This chapter describes how to design modularized Fortran programs. It begins with
a discussion of algorithms that use the CALL and SUBPROGRAM commands
from the pseudocode language of Chapter 2. It then shows how to implement
these algorithms using Fortran subroutine and function subprograms.

7.1 Designing Modularized Algorithms with the CALL and
SUBPROGRAM Pseudocode Cdmmands

Modularized programs are an integral part of structured programming and problem
solving. The basic idea is simple: it is easier to solve difficult problems when they
are divided into smaller and potentially more manageable parts. As a valuable
byproduct, solutions you develop for one problem can often be reused in similar
problems. This is especially important for programming in science and
engineering, where algorithms designed to solve complex computational problems
often represent enormous investments of tilne and expertise; it would be very
wasteful to have to "reinvent" such solutions for each new application.

Some authors and instructors would have preferred a discussion of program
modularization earlier in this text. In a computer science course based on C or
Pascal, for example, program modularization is often introduced even before
discussing some basic language syntax. However, this text has taken the approach
that program modularization can be postponed until your programs are worth
modularizing. There is little practical reason to modularize programs that perform
only one task, and the programming overhead required isn't worth the effort. The
programs you have written so far fall into this category. On the other hand, many
of the calculations those programs perform could later become part of more
complex programming tasks. We will illustrate this point by rewriting some
previous programs with subprograms that can be incorporated into larger
programs.

The CALL and SUBPROGRAM pseudcode commands introduced in
Chapter 2 defme, in a generic way, a framework within which to design
modularized programs. They imply that procedural programming languages will
encourage the division of a large problem into several smaller parts. The purpose
of using CALL and SUBPROGRAM in your algorithms is to encourage you to
think carefully about how to defme the tasks your program must perform and how
information will flow amon£ those tasks.

D. R. Brooks, Problem Solving with Fortran 90
© Springer-Verlag New York, Inc. 1997

278 • 7. Program Modularization

When you design a subprogram, you can think of it as a "black box."l One
or more inputs go in one end of the box, and one or more outputs come out the
other end. The box processes the input in a prescribed way, and it is not necessary
for you to understand the details of the box's contents. This model is illustrated
in Figure 7.1. When you write an entire program yourself, including the
subprograms, presumably you understand everything that happens inside the
subprograms. However, it's not always necessary for the user of a subprogram to
understand the details of what happens inside. It's only necessary for the user to
understand the requirements for the input and how to interpret the output. That is,
the user must understand the information interfaces.

Beginning programmers often concentrate fIrst on the contents of
subprograms. However, your fIrst task should always be to concentrate on the
"ends" of the subprogram; that is, to design an information interface for the
subprogram. Begin by asking yourself these questions:

1. Do I understand what the subprogram is supposed to do?
2. What information is required for the subprogram to complete its assigned task?
3. What information will be returned as output from the subprogram?

You cannot answer the second and third questions until you know the answer to
the fIrst question. Even if you do not know precisely how the calculations in the
subprogram will be done, you must at least understand the nature of the task.
Once you have answered the fIrst question, you can decide how information
should flow into and out of the subprogram. Only when you have answered all
these questions should you concern yourself with details of the calculations that
are performed inside each subprogram.

The place to ask these questions is in Step 2 of the problem-solving
process. You can start to answer them when you write DEFINE commands into

}nput(s) Output(s)

- Subprogram -("black box'') -
Figure 7.1. "Black box" model of a

subprogram

lThe "black box" analogy comes from electronics, where a device to process a signal may
literally be constructed inside a black box.

7.1 Designing Modularized Algorithms • 279

demonstrate this process, consider again P-3.1 from Chapter 3. The very simple
problem was: given a radius, calculate the area and circumference of a circle.
The user is prompted to provide a radius, and the program calculates and displays
the circumference and area of a circle with this radius. In pseudocode, an
algorithm to modularize this calculation could be written like this:

(main program)
DEFINE (radius, area, and circumference as real numbers)
WRITE (prompt user to provide radius of a circle)
READ (radius)
CALL CircleStuff(IN: radius; OUT: area, circumference)
WRITE (area and circumference)

The CALL CircleStuff command implies that there is a subprogram that, given
a value for the radius as its input, will calculate the area and circumference as its
output. The CALL command defines an information interface between your
algorithm and the subprogram. It specifies which values are input to the
subprogram and which are output. The list of values in the CALL command is
called the argument list or sometimes the actual parameter list. (The argument list
was introduced in Chapter 4's discussion of intrinsic functions.)

When you write a program based on this algorithm, you will provide
specific values in the CALL to the subprogram. Some of the input information
may be in the form of variables, and some may be in the form of constants. When
you design the SUBPROGRAM, you should further defme the information
interface by

(1) selecting an appropriate data type for each piece of information entering or
leaving the subprogram, and
(2) designating each piece of information as input to or output from the
subprogram.

The resulting list is called the formal parameter list, or just the parameter list (as
opposed to the argument list).2 This parameter list and its description should
contain all the information a potential user needs to know to use the subprogram.
For the circle problem, the subprogram's parameter list could look like this:

SUBPROGRAM CircleStuff(lN: radius, a real number;
OUT: area and circumference, real numbers)

2This text will always use the terminology "argument list" and "parameter list."

280 • 7. Program Modularization

In this example, the parameter list tells the user of this subprogram that three
arguments are required and that they must all be either real numbers or variables
associated with real numbers. The fIrst argument should be the radius of a
circle-the input. The second and third arguments will contain the output from the
subprogram-the area and circumference.

As a matter of style, it often makes sense to describe the input first and
then the output. However, the order doesn't make any difference, especially at this
initial design state. In fact, parameters can appear in any convenient order in
algorithms and, as you will see later in this chapter, in programs.

The names in this parameter list-radius, area, and circumference-are
the same as those used in the CALL statement, but it's important to understand
that they don't have to be. For example, this version of the SUBPROGRAM
parameter list defInition is perfectly OK even though the variable names are less
descriptive:

SUBPROGRAM CircleStuff(lN: r, a real number;
OUT: a and c, real numbers)

Essentially, the names in a subprogram's parameter list are "place holders" for the
actual values or variables that will be associated with them in an argument list
when a program uses the subprogram.

In some cases, information in a subprogram's parameter list needs to be
treated as both input and output. That is, a parameter associated with a variable
having a certain value when the subprogram is CALLed may be modified in the
subprogram so that, when the subprogram is complete, the value of the argument
associated with that parameter will be changed. You may indicate such a
parameter by specifying it as IN/OUT, or some similar terminology, in the
subprogram's parameter list.

This text will be consistent about writing pseudocode CALL commands
and SUBPROGRAM defmitions in the format shown here (with varying degrees
of detail), but don't worry about trying to duplicate every nuance in your own
algorithms. Unlike a real programming language, pseudocode imposes no rigid
syntax rules and restrictions! The important point to remember is that the CALL
command and the SUBPROGRAM definition are organizational aids that should
clearly defme the data type and intended use of each quantity needed as input or
produced as output. As you gain more programming experience, you may not need
to define this list at the algorithm design stage in as much detail as you should
now.

Now that the information interface has been established in pseudocode for
the new version of P-3.1, you can think about the contents of the subprogram. In
this case, the required definitions and calculations are simple:

7.1 Designing Modularized Algorithms • 281

DEFINE (IT, a real constant)
ASSIGN area = 1T-radiu~

circumference = 21T-radius
(end of subprogram)

Within the code of the subprogram, the names must match the names in the
parameter list. In this case, the names radius, area, and circumference indicate
that these names, and not r, a, and c , for example, are used in the parameter list.
Although there isn't any pseudocode "syntax rule" that requires the names to be
the same, this is just a common sense rule that you would be foolish to ignore.
When you translate the algorithm into Fortran, this name association will be
enforced through use of the IMPLICIT NONE statement.

Not surprisingly, all the pieces from the design of P-3.1 are still present
in its redesign, but they are rearranged. The significant difference is that the
calculations of area and circumference are performed inside a subprogram rather
than in the main program. Information required for this calculation, the radius,
flows into the subprogram and the answers, area and circumference, flow back
out, as indicated by the IN: and OUT: specifiers in the subprogram's parameter
list.

You might have noticed that the value of 1t isn't included in the parameter
list. This is because 1t is needed only for the calculations performed in the
subprogram. In that sense, it's neither "input" nor "output," but a constant value
that is needed only locally within the subprogram. In some other situation, you
might choose to define 1t in the main program and make its value available to one
or more subprograms. In general, subprograms will contain a mixture of values
passed through the parameter list and locally defmed variables and constants.

Because of the simplicity of the pseudocode CALL command, it's easy to
underestimate both the power of subprograms and the problems that can arise
when you are careless about their design and use. For example, consider these two
uses of the CircleStuff subprogram:

CALL CircleStuff(3,area,circumference)
CALL CircleStuff(radius, 1 0, circumference)

The fIrst use of CircleStuff is OK because the fIrst item in the SUBPROGRAM
CircleStuff parameter list is specified as input in the algorithm design. In this
case, the calling program is providing a number, rather than a variable name, that
the subprogram will then use in its calculations.

The second use of CircleStuff is inappropriate. Why? Because the second
item in SUBPROGRAM CircleStuffs parameter list is designated as output. This
means that the subprogram will calculate a value and then expect to associate this
value with a variable name from the calling program that will hold the calculated
value. Instead the 10 in the second use of CircleStuff looks like input to the

282 • 7. Program Modularization

subprogram; this does not make sense for this algorithm. Even after we describe
details of how subprograms are implemented in Fortran and the problems that can
arise when argument lists contain inappropriate quantities, it will be important to
remember that using appropriate choices for values and variables in argument lists
is fundamentally a matter of proper algorithm design, not just a language
implementation detail.

Before converting this modified algorithm into a new version ofP-3.1, let's
take a more general look at how information flows to and from subprograms.
Figure 7.2 illustrates two examples of how programming languages might treat
variables within a single source code file consisting of a main program and one
or more subprograms.

In Figure 7.2(a), all variables are global variables.
As indicated by the "leaky" boxes surrounding the main
program and subprograms, this means that all variables

global variables I
defmed anywhere in the soutce code file, whether in the main program or in one
of the subprograms, are available to the main program and any of the other
subprograms contained in the source code file. There is no need for a subprogram
to have a parameter list because, since all calculations are "global," there is no
need to think about "input" and "output." This is the model used in early versions
of BASIC, for example.

In Figure 7 .2(b), the other extreme, local variables 110 I . bl I
'I bl 1 th' b' ca VaTlil es are aval a e on y to e mam program or su program m

which they are defmed. Information is exchanged between
the main program and the subprograms, and among subprograms only along
specific "paths." These paths can operate in one direction, as "input" or "output,"
or in both directions. This is close to the model used by Fortran.

At first, you might think that the arrangement of Figure 7.2(a) is simple
and efficient because you can simply define variables anywhere you like and have
them available everywhere else in your program. However, this defeats the
purpose of program modularization. At the algorithm design level, each
subprogram should be a self-contained solution to a particular part of a larger
problem, with well-defined lines of communication with other parts of the
program. This separation of tasks is nullified when the names of variables and the
results of calculations in a subprogram are available globally to the rest of the
program.

At the programming level, a lack of local variables means that you have
to be careful never to duplicate variable names in the various parts of your
program. This might not seem like much of a problem when your programs are
small, but eventually you will make a mistake. When you do, the results can range
from catastrophic to unnoticeable; the latter result is by far the more dangerous,
as your program may appear to work properly even though it may sometimes, or
always, produce incorrect answers.

7.1 Designing Modularized Algorithms • 283

(source code file)

variables for jOint use by
main program and all
subprograms

(a) All variables are global

(source code file)

main program, (input) subprogram 1,
with local > with parameter
variables (output) list and local

< variables
(in/out)

< >

(input) subprogram 2,
> with parameter

(output) list and local
< variables

subprogram 3, (input)
with parameter >
list and local (output)
variables <

(b) All variables are local

Figure 7.2. Two models for controlling information flow between a program
and one or more subprograms

Because of these potential problems, modem programming languages favor
isolated subprograms with local variables and calculations and restricted
communications with other parts of the program. Fortran has always provided
strong support for this concept, and as we shall see, Fortran 90 provides new ways
to defme very specific interfaces between a program and its subprograms. In
Fortran, subprograms can be implemented in two basic ways. We will discuss both
implementations in considerable detail in this chapter.

If you still need to convince yourself of the importance of isolated program
modules, imagine you are writing a program to solve a problem that requires a
very lengthy and difficult calculation involving mathematical skills you don't yet
have. Your instructor has already written a subprogram to perform this calculation

284 • 7. Program Modularization

and distributes a copy to each student. What is required for you to take advantage
of this generous offer? Should you have to worry about the details of the
calculations? Should you have to worry about what variable names your instructor
used in the subprogram? Should you have to worry about whether variable names
in your program will conflict with variable names in the subprogram? "No" is the
answer to each of these questions. You should have to know only the number, data
type, and purpose of each quantity in the parameter list of the subprogram.

A strictly controlled information interface is absolutely essential to the way
Fortran is used in practice. Many of the professional uses of Fortran depend on
subprogram libraries written by others, and there are many commercially available
libraries of Fortran code for solving specific computational problems. Even in
applications where programs are written entirely from "scratch," large programs
often require the efforts of many individuals. In such circumstances, it should be
clear that the potential for confusion in the situation depicted in Figure
7.2(a)-where every variable name is available globally-is unacceptable.
Fortunately, Fortran supports the strict separation between program and
subprogram units depicted in Figure 7.2(b). In fact, the model of completely
global variables in Figure 7.2(a) doesn't even exist in Fortran.3

Assuming that this discussion has convinced you of the need for strictly
controlled information interfaces between parts of a program, you should be aware
that when subprograms are implemented in Fortran, there are ways to share
information other than through the parameter list. However, this is an
implementation issue and not an algorithm design issue. At the algorithm design
level, all information flowing to and from a subprogram can be included in the
parameter list.

7.2 Fortran Subroutines

Once the concepts of designing information interfaces with
subprograms are clear, it is then possible to discuss the specifics
of their implementation. The most important Fortran

subro~tine I
implementation of a subprogram is the subroutine. The keyword SUBROUTINE

marks the beginning of a subroutine in the same way that the keyword PROGRAM

begins a main program. An important difference is that although the PROGRAM

keyword that begins the source code for a main program is optional, the
SUBROUTINE keyword is required at the beginning of a block of source code
intended to be a subroutine.

3It's possible to approximate such a model in Fortran, but it's such a bad idea that we
won't even discuss it!

7.2 Fortran Subroutines • 285

The general syntax for a SUBROUTINE header
statement is

SUBROUTINE name [(parameter list)]

Example:
SUBROUTINE Polar_to_Cartesian(r,theta,x,y)

header statement

Names for subroutines follow the same rules as Fortran variable names. As
a matter of style, names should describe the purpose of the subroutine. Even
though the brackets in the syntax definition imply that the parameter list is
optional, it is almost always required. Subroutines used in this text will always
require a parameter list.

Don't be confused by the similarity between the pseudocode command
SUBPROGRAM and the Fortran reserved word SUBROUTINE. The former is
just a generic way to define modularized calculations. The latter is one specific
implementation of the subprogram concept in Fortran.

The general structure of a subroutine is similar to that of a main program:

SUBROUTINE name [(parameter list)]
[specification statements]
[executable statements]

[RETURN] [label or string constant]
END [SUBROUTINE [name]]

When subroutines are used by themselves in programs, only the END statement
by itself is needed to terminate the subroutine. In some other circumstances, as we
shall see later in this chapter, the last statement must contain END SUBROUTINE

rather than just END, although the name is still optional.
When a subroutine is completed, it returns control to the (sub)program

from which it was called. One or more RETURN statements are optional in a
subroutine. Just as the STOP statement can be used to terminate a main program
prior to the END statement, the RETURN statement provides an optional means of
terminating a subroutine and returning control to the main program. Like the
STOP statement, a RETURN statement may appear anywhere after the
nonexecutable statements and may include a line label or a string constant that
will be printed when the RETURN statement is executed. A RETURN statement
may not appear anywhere in a main program.

To access a Fortran subroutine, use a CALL statement. This is a direct
implementation of the pseudocode CALL command. Its syntax is

286 • 7. Program Modularization

CALL name [(argument list)]

Example:
CALL Polar_to_cartesian(r,theta,x,y)

When you use the CALL statement, there must be a SUBROUTINE with the same
name somewhere in your source code file.4 Usually, subroutines follow the main
program in the source code, but this isn't a requirement.

It is often the case that subroutines are CALLed in a program only from
a main program. However, Fortran doesn't impose this as a restriction; subroutines
can CALL other subroutines. That is the reason for the phrase "the calling
(sub)program," used often in this chapter to indicate that a subprogram (including
a subroutine) can be accessed from any other part of a program.

The number of items in a call to a subroutine must agree in number and
data type with the items in the subroutine's parameter list. The quantities in the
argument list may be (depending on the circumstances, as discussed below)
variable names, constants, or functions. The requirement for matching data types
in argument and parameter lists is extremely important and deserves closer
examination. Consider code fragment P-7.1.

P-7.1 (fragment)

REAL x,y
INTEGER z
x=1.5
y=3.5
CALL Add(x,y,z) !Not allowed!
PRINT *,z

SUBROUTINE Add(x,y,z)
REAL x,y,z
z=x+y
END

This code is not allowed in Fortran 90 because the data type of the variable z is
different in the main program (INTEGER) and subroutine (REAL), no doubt due
to a programming oversight (in either the main program or the subroutine).5

~ogram units can also be "linked" to subroutines in other program units, but we will not
address that topic now.

5However, this code is allowed in earlier versions of Fortran. Fortran 90's ability to trap
this kind of programmin~ error is another si~nificant improvement over previous versions.

7.2 Fortran Subroutines • 287

Suppose you "fix" this code by declaring z as REAL in the main program.
The following code, with a different assignment to x, will work because of the
integer-to-real type conversion performed in the fIrst assignment statement:

x=3
y=3.5
CALL Add(x,y,z)

Now consider this "reasonable" call to Add, in which you ask the subroutine to
perform a type conversion between the integer value in the argument list and the
REAL variable in the parameter list:

y=3.5
CALL Add(3,y,z) !Won't work!

This won't work, again because of the disagreement between data types.
We can now complete the conversion of P-3.1, using the pseudocode

modiftcations presented so far in this chapter. Program P-7.2 produces the same
output as P-3.1, but it uses a subroutine to calculate the area and circumference
of the circle.

P-7.2 [CIRCLSUB. F90]

PROGRAM CircleSub

File name CIRCLSUB.F90.
Calculate area and circumference of a circle, using
a subroutine.

IMPLICIT NONE
REAL radius,area,circumference

PRINT *,' What is the radius of the circle?'
READ *,radius
CALL Circlestuff(radius,area,circumference)
PRINT 1000,area,circumference

1000 FORMAT(lx,2flO.3)
END

SUBROUTINE Circlestuff(radius,area,circumference)

Do area and circumference calculations.

IMPLICIT NONE
REAL radius,area,circumference,pi
INTENT(IN) radius
INTENT (OUT) area,circumference
PARAMETER (pi=3.14159)

area=pi*radius*radius
circumference=2.0*pi*radius
END

288 • 7. Program Modularization

radius "-~ SUBROOTI NE circleS tuff PROGRAM clrcleSub I
--V pi (local)

area

< I
'\Ielrcumference

Figure 7.3. Flow of information between main
PROGRAM CircleSub and SUBROUTINE

CircleStuff

The flow of information between the main program CircleSub and the
subprogram SUBROUTINE CircleStuff is shown in Figure 7.3. The details
of SUBROUTINE CircleStuff are important and we will discuss them in
detail.

7.2.1 Using Subroutines

The parameter list in SUBROUTINE CircleStuff defmes how information
flows between the main program and the subroutine. As indicated in Figure 7.3,
the radius of a circle is the input to the subroutine, and the area and circumference
of the circle are the output. Except for the fact that the programmer needs to be
aware of the purpose of the three variables, area, circumference, and
radius (the purposes are made clear by the choice of meaningful variable
names), the main program is unaware of what happens in the subroutine, and vice
versa.

As one consequence of the independence of a subroutine, the data types
of parameters-radius, area, and circumference in this case- must be
redeclared in the subroutine. This is how Fortran makes sure that there are no
inconsistencies between the parameter list and the argument list in the calling
(sub)program. You should include the IMPLICIT NONE statement in every
subroutine for the same reasons you include it in every main program. The
IMPLICIT NONE affects not just locally defined variables, but also all variables
in the parameter list. Any variable name appearing in the parameter list, but not
in a data declaration statement, will generate a compile-time error.

The names used in the parameter list of a subroutine don't have to
be-and, in general, aren't-the same as the names used in the argument list when
that subroutine is called. Only the number and data type of parameters and calling
arguments must agree. The names in the formal parameter list define the local
names by which the variables will be known and used inside the subroutine. In

7.2 Fortran Subroutines • 289

P-7.2, the same names are used in the argument and parameter lists, but only
because those names are reasonable and convenient. We could also start the
subroutine like this:

SUBROUTINE CircleStuff(r,a,c)

This is OK, even if the variable names aren't very good choices as a matter of
style, as long as we use those names appropriately for calculations within the
subroutine.

The important point of this discussion about names is that the programmer
doesn't have to worry about matching names between a CALL to a subroutine and
the subroutine itself. All the programmer should need to know to use a subroutine
is the data types and purposes of the items in the parameter list.

Even though Fortran will not allow you to become confused about the data
types of variables, it's certainly possible to be confused about the meaning of
parameters and arguments. Suppose a programmer accessed Circlestuff like
this:

CALL Circlestuff(radius,circurnference,area)

This is perfectly OK from Fortran's point of view, assuming all three variables are
declared as REAL numbers, but in the context of P-7.2, this represents a fatal
design error because the references to area and circumference are switched. These
kinds of errors can be very difficult to find in programs, so be careful!

7.2.2 Controlling the Flow of Information

Expressing intent

In the general discussion of subprograms earlier in the
chapter, we emphasized the importance of understanding
how information flows between a subprogram and a calling

intent attribute

(sub)program. When you design subprograms, you need to know what constitutes
"input" and "output," or to put it another way, which way the information flows.
In Fortran 90, in contrast with earlier versions of Fortran and some other high
level languages, it's possible to make and enforce distinctions between input to
and output from subprograms. This is done by giving variables an intent attribute
usinlr the INTENT kevword. The lreneral svntax of an TN'T'F.N'T' statement is

290 • 7. Program Modularization

data_ type, INTENT(status) :: list of names from parameter list
or

INTENT(status) list of names from parameter list

where status may be IN, OUT, or INOUT

Examples:

REAL, INTENT(IN) :: x,y
REAL, INTENT(OUT) :: r,theta

REAL x,y,r,theta
INTENT(IN) x,y
INTENT(OUT) r,theta

In the ftrst syntax fonn and the ftrst example, data declarations are given in the
same statement as the INTENT attribute. In the second fonn and the second
example, the data declatations and INTENT attributes appear in separate
statements. Some Fortran programmers have a strong preference for the frrst fonn,
but either is OK. In the examples, the frrst group of two statements is equivalent
to the second group of three statements.

Program P-7.2 contains two examples of INTENT statements. In
SUBROUTINE CircleStuff, the statements

INTENT(IN) radius
INTENT(OUT) area,circumference

identify radius as "input" to CircleStuff and area and circumference
as "output."

What are the implications of assigning the I NTENT attribute? In P-7.2, the
specifIcation of area and circumference as INTENT (OUT) means that this
statement should be unacceptable:

CALL CircleStuff(3.0,4.0,5.0)

The frrst argument is OK because it's associated with the input quantity radius.
However, constant values for the second and third arguments, associated with area
and circumference, don't make sense. Why not? Because the corresponding
quantities in SUBROUTINE CircleStuff's parameter list have been given the
INTENT (OUT) attribute, which implies that the corresponding items in this
argument list must be variables to "receive" the output.

Returning to the frrst value in the argument list, what is the implication of
assigning radius the INTENT (IN) attribute in SUBROUTINE CircleStuff?
There are two reasonable possibilities. The frrst is that changes can be made to
radius inside CircleStuff, and those changes will be "invisible" to the
calling (sub)program. For this interpretation to work. SUBROUTINE

7.2 Fortran Subroutines • 291

CircleStuff will make a copy of radius and will make changes only to that
copy. Regardless of what changes are made locally (inside the subroutine), the
INTENT (IN) attribute protects the value originally assigned to radius in the
calling (sub)program, whether it's a constant or a value held in a variable, because
the information flow is a "one way street" into CircleStuff.

Another possibility is that a subroutine will have access to the original
value passed through a parameter list, but the INTENT (IN) will prevent the
value from being changed inside the subroutine. Thus in the case of
SUBROUTINE CircleStuff, giving radius the INTENT (IN) attribute will
prevent the value of radius from being changed inside CircleStuff. This
implies that even though the information flow between a subprogram and its
calling (sub)program is a "two way street," you may still wish, in some cases, to
prevent changed values from flowing back to a calling (sub)program.

Which of these interpretations does Fortran 90 apply to an INTENT (IN)
attribute? Even though the meaning of INTENT attributes seems clear from the
algorithm design point of view-variables designed as "input" should not be
changed in a subprogram and variables designed as "output" are, by definition,
subject to change, it is worth thinking about the possibilities. With respect to the
INTENT (IN) attribute, consider the code fragment in P-7.3(a):

P-7.3(a) (fragment, see INTENT. F90)

(main program)

x=3.0
CALL InTest(x)
PRINT *,x
END

SUBROUTINE InTest(x)
IMPLICIT NONE
REAL x
INTENT(IN) x
x=2.0
END

If Fortran subprograms make a copy of INTENT (IN) parameters, the code in
P-7.3(a) should be allowed and x will still have a value of 3 when it is printed in
the main program. However, Fortran does not apply this interpretation to treating
INTENT (IN) parameters.

The alternative, which implies that Fortran subprograms have access to the
original memory locations of parameters, is that the code in P-7.3(a) should not
be allowed because, by specifying the INTENT (IN) attribute, you have asked
your program to protect the original value of x. The compiler used to develop the
programs in this text does, in fact, prevent reassignment of the value of an
INTENT (IN) variable inside SUBROUTINE InTest; it generates a compilation

292 • 7. Program Modularization

error message. However, an earlier version of this same compiler printed only a
warning that the INTENT (IN) attribute was being violated; it did not actually
prevent the reassignment of x.

This behavior demonstrates that communication between a subprogram and
its calling (sub)program may be a "two way street" even when the INTENT (IN)
attribute is used. Such an interpretation can be confusing if you consider the
possibility that violation of an INTENT (IN) attribute might force a compiler to
try to "redefine" the value of a constant appearing in an argument; it can't do that,
of course.6

What about violations of the INTENT (OUT) attribute? Consider the code
in P-7.3(b).

P-7.3(b) (fragment, see INTENT. F90)

(main program)

CALL OutTest(3.0)
END

SUBROUTINE OutTest(x)
IMPLICIT NONE
REAL, INTENT(OUT) :: x
x=2.0
END

This code shouldn't be allowed because it apparently tries to "redefme" the value
of the constant 3.0. However, even though the Fortran 90 standard is clear that
arguments associated with INTENT (OUT) parameters must be variable names and
not constants, it is not required that compilers check for such violations. The
compiler used to develop the programs in this text executes without errors even
though the code asks it to do something-assign an output value to a
constant-that makes no sense.

Consequently, referring back to P-7.2, adding the statement
CALL CircleStuff (3.0 14.0 15.0) mayor may not generate an error. If
no error message is generated, your program will continue to run, but you may not
have the access to output quantities that you thought you would. This is yet
another reason, not that more are needed, to be careful with the design of
algorithms before they are incorporated into programs. It is always your
responsibility to ensure that the tasks you ask a program to perform make sense
independent of the implementation details of the programming language.

It's also possible to give quantities in a subroutine's parameter list an
INTENT attribute of INOUT. In this case, values associated with variable names

Drhis possibility isn't as ridiculous as it seems. In some early versions of Fortran, it was
actually possible to change the value of a constant, such as the integer value 3, in this way!

7.2 Fortran Subroutines • 293

can flow in either direction between a subprogram and a calling (sub)program.
Constants or function values should not be allowed as arguments in the CALL
statement. However, the same compiler-dependent ambiguities exist with respect
to enforcing these restrictions.

It's not always required to assign INTENT attributes to subroutine
parameters. Any name in a parameter list that's not given an INTENT attribute
will have INOUT status by default. The programs in this text will generally be
consistent about explicitly assigning INTENT attributes. A fmal restriction is that
only variable names appearing in the parameter list can be given an INTENT
attribute; it doesn't make sense, and isn't allowed, to ascribe INTENT to a
quantity defmed and used only locally within a subprogram. Table 7.1 summarizes
the restrictions on arguments appearing in calls to functions and subroutines.

Table 7.1 Restrictions on arguments based on their INTENT attribute

INTENT Attribute Allowed Argument

IN variable, constant, expression,
function

OUT variable

INOUT variable

Enforcing intent

Considering the importance we have attached to specifying INTENT attributes in
your program, you may be surprised to fmd that responses to intent violations may
vary from compiler to compiler. You can protect yourself by following these two
program design rules.

Intent Rule 1. Never change the value of an INTENT (IN) variable inside
a subprogram.

Intent Rule 2. Never use a constant value or a variable with the PARAMETER
attribute as an argument to a subprogram in which that variable has
INTENT (OUT).

In addition to following these rules, there are some important modifications
you can make to programs containing subprograms that will improve the chances
that intent violations will generate appropriate responses. P-7.4 gives another
version of P-7.2.

294 • 7. Program Modularization

P-7.4 [CIRCLSB2. F90]

MODULE CircleSubs

CONTAINS

SUBROUTINE CircleStuff(radius,area,circumference)

Do area and circumference calculations.

IMPLICIT NONE
REAL radius, area, circumference, pi
INTENT(IN) radius
INTENT (OUT) area, circumference
PARAMETER (pi=3.l4l59)

area=pi*radius*radius
circumference=2.0*pi*radius

END SUBROUTINE CircleStuff

END MODULE
1--

1

PROGRAM CirclSub2

File name CIRCLSB2.F90.
Calculate area and circumference of a circle, using
a subroutine. Uses MODULE to enforce intent.

USE Circ~eSubs
IMPLICIT NONE
REAL radius, area, circumference

PRINT *,' What is the radius of the circle?'
READ *,radius
CALL CircleStuff(radius,area,circumference)

PRINT 1000,area,circumference

1000 FORMAT(lx,2flO.3)
END

The code in P-7.4 is nearly identical to the code in P-7.2. There are only
two differences:

(1) SUBROUTINE CircleStuff is contained in a MODULE structure named
CircleSubs that appears before the main program.

(2) The USE statement (printed in bold italics) gives the main program access to
MODULE CircleSubs and. within this module. SUBROUTINE Circlestuff.

7.2 Fortran Subroutines • 295

MODULES are a new kind of program structure. A simplified syntax for
MODULEs as they are used in P-7.4 is:

MODULE module name
CONTAINS

<one or more SUBROUTINEs or FUNCTIONs>
END [MODULE [module name]]

Example:
MODULE SeveralSubs

CONTAINS
SUBROUTINE Subl

END SUBROUTINE Subl
SUBROUTINE Sub2

END SUBROUTINE Sub2
(more subroutines)

END MODULE SeveralSubs

The CONTAINS keyword appears whenever subprograms are included within a
MODULE. The only difference in how subprograms are written when they appear
within a MODULE is that the END statement must also contain the word
SUBROUTINE or FUNCTION, as discussed in the next section. When
subprograms appear by themselves, the word SUBROUTINE is optional. The name
of the subprogram is still optional.

Because each MODULE has a name, your program can contain more than
one MODULE. Unlike subroutines and functions, which can be included in any
order along with a main program in a source code file, the source code for
MODULE structures must appear before the main program. One simple explanation
for this difference is that MODULEs can contain data declarations that are needed
before the main program can be compiled.7

The contents of a MODULE are accessed with the USE statement. A
simplified form of its syntax is:

USE module_name

Example:
USE SeveralSubs

71t is unclear whether this restriction is part of the Fortran 90 standard. Therefore, it is
possible that some Fortran 90 compilers will not enforce this requirement. It is also possible to
access subroutines, functions, and MODULEs stored in other files. This topic will be discussed in
Chapter Twelve.

296 • 7. Program Modularization

In P-7.4, the subroutine has been "encased" in a module structure and the
END statement has been replaced by END SUBROUTINE CircleStuff. The
subroutine in the MODULE is accessed by inserting the USE CircleSubs
statement before the type declarations statements in P-7.4. (That is, the USE
statement must appear directly after the PROGRAM statement.)

The changes in P-7.4 might seem to serve no purpose other than adding
yet another layer of programming overhead; after all, the main program had access
to SUBROUTINE CircleStuff even before it was included in a MODULE.
MODULEs might be pointless in this context except for the fact that the use of this
structure should force your Fortran compiler to detect and respond appropriately
to intent violations. The same compiler that allowed the INTENT (OUT) violation
in P-7.3(b) to go unnoticed doesn't allow that same violation when a subprogram
is defmed in a MODULE and accessed through a USE statement. This additional
protection is sufficient reason to use MODULE structures, but they will make even
more sense when you leam some of their other uses later in this chapter.

Programming Tip
The source code files available for downloading from the World Wide Web

site mentioned in Section i.5 of the Preface include program INTENT. F90, which
contains the code fragments in P-7.3(a) and P-7.3(b), and some similar small
subroutines contained within a MODULE structure. You should study the code and
observe how your compiler responds to intent violations before you try to use
INTENT attributes in your programs.

7.2.3 More About SUBROUTINE Syntax

Except for some differences in the data declaration statements, the structure of
subroutines is similar to the structure of a main program. Remember that, except
for information passed back and forth through the parameter list, what happens
inside a subroutine is local to that subroutine. This means that you may reuse
variable names and line labels even if they have been used elsewhere, either in the
main program or in other subprograms. This is especially useful when you write
large programs with many variable names and FORMAT statements. If you are in
the habit of numbering FORMAT statements starting at 1000 (as is done in this
text), you may restart this sequence in each subroutine. As another example, if
you're in the habit of using i, j, k, and so forth, for loop control variables, you
may reuse these variables in any subroutine without worrying about causing
interference with loop calculations in other subroutines.

7.3 Fortran Functions • 297

7.3 Fortran Functions

The other important Fortran subprogram is the function. Two kinds of Fortran
functions have already been discussed in Chapter 4. One is the statement function,
a one-line, user-defined calculation that can be referenced elsewhere in a program.
(See P-4.4, for example.) The other kind is the Fortran intrinsic function. This
section will extend the concept of the function to include user-defmed
subprograms that work like intrinsic functions.

The idea of treating program modules like "black boxes," as discussed
earlier in this chapter, is especially evident in the use of intrinsic functions. In
order to use an intrinsic function, you need to know the number and data type(s)
of the required argument(s) and the data type of the value returned in the name
of the function. What you don't need to know, and in the case of intrinsic
functions, can't easily fmd out, is what happens inside the function; its
calculations are completely isolated from the rest of your source code and,
assuming you're confident that the intrinsic function works properly, of no interest
to your program. In Fortran, you can write your own external functions that work
just like intrinsic (internal) functions. The difference is that presumably you will
understand how the function works.

As an example, P-7.5 provides yet another rewrite of P-3.1 so that the area
and circumference of a circle are each calculated in separate user-defmed Fortran
functions.

P-7.5 [CIRCLFUN. F90]

MODULE CircleFunctions

CONTAINS
1---------------------------------

REAL FUNCTION Area(radius)

Do area calculation.

IMPLICIT NONE
REAL, PARAMETER:: pi=3.l4159
REAL, INTENT(IN) :: radius

Area=pi*radius*radius

END FUNCTION Area
1--

REAL FUNCTION Circumference(radius)
1 Do circumference calculation.

IMPLICIT NONE
REAL, PARAMETER:: pi=3.14159
REAL, INTENT(IN) :: radius

Circumference=2.0*pi*radius
END FUNCTION Circumference

1---------------------------------

298 • 7. Program Modularization

END MODULE
!=====================

PROGRAM CirclFun

Calculate area and circumference of a circle, using
two functions.

USE CircleFunctions, ONLY Area, Circumference
IMPLICIT NONE
REAL radius

PRINT *,' What is the radius of the circle?'
READ *,radius

PRINT 1000,Area(radius),Circumference(radius)

1000 FORMAT(lx,2flO.3)
END

It is obvious that P-7.5 is a much longer solution to the problem of
calculating the area and circumference of a circle than the original P-3.1. What
has been gained? In fact, there isn't much justification for modularizing this
simple program to this extent. However, it is the concepts illustrated in P-7.5 that
are important, and we will discuss the code in detail.

The general syntax of the FUNCTION subprogram is

[data_type] FUNCTION name[(parameter list)]
[specification statements]
[executable statements]
[RETURN]
END [FUNCTION [name]]

Example of FUNCTION header:
REAL FUNCTION DotProduct(xl,yl,zl,x2,y2,z2)

The data type specification is optional only if implicit data typing is used. That
is, the data type of a function must be declared, either implicitly based on the first
letter in its name or explicitly, just as though it were a variable. (Remember that
implicit data typing is never used in this text.)

The structure of the code inside functions is the same as for subroutines;
specification and other nonexecutable statements are followed by executable
statements. The name of the function must appear at least once on the left side of
an assignment statement in order to provide the value returned by the function to
the calling (sub)program. The function ends with an END statement and may
include one or more RETURN statements prior to the END statement.

P-7.5 contains a great deal of information about how to define and use
functions, and it deserves careful study. It includes the functions Area and
Circumference. Thev are called with the sin~le anmment ran; llR and their

7.4 Using Subroutines and Functions • 299

values are printed at the end of the program. In P-7.5, the functions are contained
in a MODULE, but this isn't necessary as a matter of Fortran syntax; they could
simply follow the main program in the same way that SUBROUTINE
CircleStuff follows the main program in P-7.2 earlier in this chapter.
However, there are good reasons for including subroutines and functions in one
or more MODULEs. A sufficient reason is to enforce intent attributes, as discussed
in Section 7.2; other reasons will become clear later in this chapter.

Once a function has been defmed, it can be used just like an intrinsic
function within the program unit that contains its defmition. It can appear on the
right side of an assignment operator either alone or as part of an expression, or as
a value to be printed. In P-7.5, the functions appear in a PRINT statement, but
you could also assign them to other variable names:

areal=Area(radius)
circumferencel=Circumference(radius)

assuming areal and circumferencel are declared as REAL variables.
However, you can't use functions like this:

CALL Area(radius) ! NOT ALLOWED
Circumference(radius)=x ! NOT ALLOWED

The fust statement isn't allowed because a function can't be "CALLed" like a
subroutine; functions return single values. The second statement isn't allowed
because only variable names, not function names, can appear on the left side of
assignment operators; a function is equivalent to a value, not a variable name.

As you can ~ee from P-7.5, FUNCTION parameters can and should be
given INTENT attributes for the same reasons that subroutine parameters should
be given INTENT attributes. In fact, the rules are identical to those for expressing
intent in subroutines.

7.4 Using Subroutines and Functions

7.4.1 Using the MODULE Structure for Passing Information to Subroutines and
Functions

This chapter has introduced MODULE structures as a way to provide access to
subroutines and functions in a way that allows Fortran to enforce intent attributes.
The other important use of MODULEs is to make data defmitions and values
available to Fortran subprograms without having to include them in the formal
parameter list. This has been done in P-7.5 to make the value of1t available to the
two functions and to assure that the same value of 1t is used in both; information
can be passed to subroutines in the same way.

300 • 7. Program Modularization

A simplified syntax of the MODULE structure for passing information,
including data type definitions and declarations and values from PARAMETER
statements, is

MODULE module_name
[specification statements]

END [MODULE [module_name]]

Example:
MODULE Constants

REAL, PARAMETER .. pi=3.l4l5927,dr=O.Ol74532
END MODULE Constants

As indicated in P-7.5, the same MODULE can also include subroutines following
a CONTAINS statement.

Once again, access to the information in a MODULE structure is provided
through the USE statement. The default condition is for all information in the
MODULE to be available to the (sub)program containing a reference to the
MODULE. However, it is possible to give access to only some of the information
in the MODULE referred to in the USE statement. An expanded syntax for the USE
statement is

USE module_name[, ONLY: list of included names,
separated by commas]

where each item in the ONLY list has the form
[local_name =>] module_name

Examples:
USE Constants

USE Constants, ONLY pi, deg_to_rad => dr

The local_name => module_name option allows you to assign a different
name locally within a (sub)program that uses data defmitions and other
information from a module. This makes it easier to reuse modules in several
programs because you can write a new program, with its own variable names,
without initially having to refer to the names in the module.

When variables or other names, such as function names, are USEd in a
(sub)program, they shouldn't and can't be redec1ared within that (sub)program;
that defeats the purpose of defming them in a MODULE in the fIrst place and will
generate a compile-time error. This applies even when a quantity accessed from
a MODULE has been given a local name.

You might reasonably ask why MODULEs should be used to pass
information to subprograms, especially when those values then no 10nJ!;er appear

7.4 Using Subroutines and Functions • 301

in a subroutine's or function's argument list. Doesn't this violate the algorithm
design principle that a subprogram's parameter list should completely defme the
information interface between the subprogram and its calling (sub)program?

In Fortran 90, MODULEs are essentially an implementation detail, albeit a
relatively large and complicated detail. They are important because they provide
new kinds of information interfaces among programs and their subprograms which
were not available in earlier versions of Fortran. They should be used whenever
they can make programs less prone to error or easier to modify and maintain. In
fact, we will use MODULEs in this text whenever a program requires a
subprogram. However, these capabilities don't have to affect the way your
algorithms are designed. That, after all, is the point of having a "syntax free" way
to design algorithms. You can still think of all information flowing through a
subprogram's parameter list.

In small programs, the practical advantages of using MODULEs are
marginal, but in large programs where many subprograms share common
information, the use of MODULEs greatly reduces the possibility of errors. For
example, remember that every variable appearing in a parameter list must be
explicitly typed within the subprogram in which it appears. However, variables
made available through a MODULE have to be declared only once, in the MODULE.
When variables and other entities are made available in this way, it is good
programming style to use the ONLY option to provide a list of the names of the
entities even when all these entities are being USEd.

Programming Tip
In programs written with older versions of Fortran, you will often see the

keyword COMMON. This keyword is used to define "common blocks" of values
that can be shared among a main program and its subprograms by making them
available "in common." Common blocks are still supported by Fortran 90, but we
will not use them in this text. Why not? Because the information contained in
common blocks is "storage associated" rather than "name associated." Without
going into the details, suffice it to say that programs that use MODULEs to share
information by name association are much less prone to errors than programs that
use COMMON blocks to share information by storage association. This fact, coupled
with the other advantages of MODULEs in Fortran 90, is sufficient reason for
anyone learning Fortran for the frrst time to avoid using COMMON blocks.
Nonetheless, because you will see COMMON blocks in older Fortran programs, a
brief description of the syntax is ~iven in Chapter 12.

302 • 7. Program Modularization

7.4.2 Initializing Information in Subroutines and Functions

As discussed in this chapter, there are two basic mechanisms for making
externally generated information available to a subprogram: its parameter list,
through which a calling (sub)program can transmit values, and a MODULE, which
can transmit information about data types and subprograms as well as values.
What about information that is generated inside a subprogram? Consider this code
fragment from a subroutine:

P-7.6 (fragment)

SUBROUTINE X(...)

INTEGER i
REAL z
DATA z/O./
DO i=l,lO

z=z+l.
END DO
RETURN
END

The first time this subroutine is called, z initially has a value of 0 because it
appears in a DATA statement. When control is returned to the calling program, Z

has a value of 10. What is the value of z when the subroutine is called again
during the same program? Because of the DATA statement, it is tempting to
conclude that z will be reinitialized to 0 every time the subroutine is called.
However, this is NOT TRUE!

A DATA statement is not an executable statement, which means that values
are assigned to variables in a DATA statement before the program starts to
execute. As a result, the initialization performed in a DATA statement is
performed only once.

In the above example, the "initial" value of z when the subroutine is called a
second time is 10. If it is called yet again, its value is 20, and so forth. Note that
this problem doesn't apply to variable names initialized as constants in
PARAMETER statements because such values can't be changed while the program
is running.

Subroutines and functions are often called more than once within the same
program, which is one reason the subprogram was written in the ftrst place. Also,
subprograms often contain many internal variables that, if they appeared in a main
program, could appropriately be initialized in a DATA statement to avoid writing
many assignment statements. This situation represents a tempting but potentially
fatal desi£Il traD that is verY difftcult to fmd after a nrOirram hM heen written.

7.4 Using Subroutines and Functions • 303

Fortran issues no warning message because it might be reasonable to ask a
subprogram to do what the code in P-7.6 does, but it is almost never what you
intended!

The solution is to use an assignment statement to initialize z to O.
Assignment statements are executable, so the assignments will be made every time
the subprogram is called. In P-7.6, the code should probably look like this:

INTEGER i
REAL z
z=o.
DO i=l, 10

z=z+l.
END DO

7.4.3 Using Subroutines and Functions in Argument and Parameter Lists

Suppose you have written a subroutine to print a table of values of sin(x). The
intrinsic SIN function could be used in code something like that in P-7.7,
assuming appropriate data declarations and assignments for all variables:

P-7.7 (fragment)

SUBROUTINE Printer(lo,hi,step)

x=first
DO i=lo,hi

PRINT *,x,SIN(x)
x=x+step

END DO

In order to "reuse" this subroutine to print values of a different function,
you would have to rewrite the subroutine by replacing the SIN (x) in the PRI NT
statement with some other function; this other function could be a different
intrinsic function or some function you defined yourself, such as x * * 3.

Especially if you consider this example in a broader context of using
functions for more involved calculations in subprograms, you might wish to find
a way to give a subprogram access to a function without having to defme the
function inside the subprogram. If you could do this, it would mean that the code
in such subprograms could be written independently of the function itself.

In fact, it is possible for either a function or a subroutine to appear in the
parameter list of a subprogram and therefore in its corresponding argument list.
This means that you could use something similar to SUBROUTINE Printer in
P-7.7 to print values of any function of one variable simply by representing the
name of the function symbolically in SUBROUTINE Printer's parameter list

304 • 7. Program Modularization

and including the name of the actual function in the argument list when Printer
is called. However, quite a bit of extra code is required to do this properly.
Program P-7.8 shows how. This is an important code example and it is important
to study it thoroughly.

P-7.8 [EXT_FUNC. F90]

MODULE ExternalFunctions
CONTAINS

!-----------------------------
REAL FUNCTION f_of_x(x)
IMPLICIT NONE
REAL, INTENT(IN) :: x
f_of_x=x**2
END FUNCTION f_of_x

!-------------------------------------
SUBROUTINE Print_f(lo,hi,step,f)
IMPLICIT NONE
INTEGER, INTENT(IN) :: lo,hi
REAL, INTENT(IN) :: step
REAL f,x
INTEGER i

Explicit function interface definition ...
INTERFACE

REAL FUNCTION f(x)
REAL, INTENT (IN) .. x

END FUNCTION f
END INTERFACE
x=O.-step
PRINT *, I X f (x) I

DO i=lo,hi
x=x+step
PRINT 1000,x,f(x)

END DO
1000 FORMAT(lx,2flO.5)

END SUBROUTINE Print_f
!---------------------------------

SUBROUTINE f_of_x_sub(x,s)
IMPLICIT NONE
REAL, INTENT(IN) :: x
REAL, INTENT(OUT) :: s
s=SQRT(x)
END SUBROUTINE f_of_x_sub

!-------------------------------------
SUBROUTINE Print_s(lo,hi,step,s)
IMPLICIT NONE
INTEGER, INTENT(IN) :: lo,hi
REAL, INTENT(IN) :: step
REAL x,y
INTEGER i

Explicit subroutine interface definition ...
INTERFACE

SUBROUTINE s(x,y)
REAL, INTENT(IN) :: x
REAL, INTENT(OUT) :: y

END SUBROUTINE

7.4 Using Subroutines and Functions • 305

x=O.-step
PRINT *, I x f(x) I

DO i=lo,hi
x=x+step
CALL s(x,y)
PRINT 1000,x,y

END DO
1000 FORMAT(lx,2flO.5)

END SUBROUTINE Print_s
!---------------------------------

END MODULE ExternalFunctions
!=================================

PROGRAM Ext_Func

Demonstrate how to pass a function or subroutine
to a subprogram.

USE ExternalFunctions, ONLY

IMPLICIT NONE

f_of_x,f_of_x_sub, &
print_f,print_s

INTRINSIC SIN !for an intrinsic function

CALL Print_f(l,ll, .1,SIN) ruses an intrinsic function
CALL Print_f(l,ll, .l,f_of_x) ruses a user-defined function
CALL Print_s(l,ll, .l,f_of_x_sub) ruses a subroutine

END

306 • 7. Program Modularization

Running P-7.8

x
0.00000
0,10000
0.20000
0.30000
0.40000
0.50000
0.60000
0.70000
0.80000
0.90000
1.00000
x
0.00000
0.10000
0.20000
0.30000
0.40000
0.50000
0.60000
0.70000
0.80000
0.90000
1.00000
x
0.00000
0.10000
0.20000
0.30000
0.40000
0.50000
0.60000
0.70000
0.80000
0.90000
1.00000

f(x)
0.00000
0 . 09983
0.19867
0.29552
0.38942
0.47943
0.56464
0.64422
0.71736
0.78333
0.84147
f(x)
0.00000
0.01000
0.04000
0.09000
0.16000
0.25000
0.36000
0.49000
0.64000
0.81000
1. 00000
f(x)
0.00000
0.3+623
0.44721
0.54772
0.63246
0.70711
0.77460
0.83666
0.89443
0.94868
1.00000

In P-7.8, the main program does nothing more than call subprograms to
illustrate some Fortran implementation details. Consider the first CALL statement
in the main program:

CALL Print_f(l,ll, .1,SIN) !uses an intrinsic function

Clearly, the purpose of this call is to give SUBROUTINE Print_f access to the
intrinsic SIN function by including the name of this function in the argument list
when Print_f is called. In the parameter list of Print_f, the function is
represented symbolically by the parameter f. As a result, Print_f prints a table
of values of sin(x).

In the first call to Print_f in P-7.8, the critical question is this: "How
does Fortran know to interpret the argument SIN as the intrinsic SIN function
being passed to Print_f rather than as a variable named SIN?" The answer is

7.4 Using Subroutines and Functions • 307

that the name of the function is included in an INTRINSIC statement, which
allows Fortran to make the association between the name SIN and the intrinsic
funcion of this name. In P-7.8, the INTRINSIC statement is printed in bold
italics. The general form of the INTRINSIC statement is

INTRINSIC list of external names, separated by commas

Now consider the second and third CALL statements in P-7.8.

CALL Print_f(l,ll, .1,f_of_x) fuses a user-defined function
CALL Print_s(l,ll, .l,f_of_x_sub) fuses a subroutine

The first of these statements includes as an argument the name of the user-defmed
function f_of_x in the call to SUBROUTINE Print_f. The code in Print_f
doesn't change, but as you can see by examining the code in REAL FUNCTION
f_of_x, Print_f now evaluates and prints values of x2• The critical question
for this call is the same as before: "How does Fortran know to interpret the name
f_of_x as a user-defmed function being passed to Print_f rather than as a
variable name?"

The answer to this question is somewhat more I explicit interface
complicated than it is for intrinsic functions. The basic .
answer is that you must should provide Print_f with
an explicit interface definition for the parameter that will be interpreted as a
function, using an INTERFACE code block. This code is printed in bold italics in
Print_f. The general syntax defmition is:

INTERFACE
<function or subroutine header>

<data declaration statements>
END <FUNCTION or SUBROUTINE> [name]

END INTERFACE

This code structure includes the first line (the "header") of a function or
subroutine and the data declaration statements for all quantities appearing in its
parameter list, but not the local declarations. The name of the function or
subroutine must be the same as its name in the parameter list of the subprogram
unit in which the INTERFACE block appears, but the names of the quantities in
the header don't have to be the same as in the subprogram unit or in the function
or subroutine that the INTERFACE block is describing. More than one function
and subroutine can be included in an INTERFACE block.

The third CALL statement in P-7.8's main program references a different
subroutine, Print_s, and the argument list now includes a subroutine that

308 • 7. Program Modularization

calculates the square root of x. A subroutine different from print_f is necessary
because the code required to access values returned from a subroutine is slightly
different from the code required to use a value returned as the result of evaluating
a function. The output from SUBROUTINE Print_s is similar to that from
Print_f-it still performs the simple task of printing a table of calculated
values. This time, however, the value comes as output from SUBROUTINE
f_of_x_sub. Because there is only one value returned from f_of_x_sub,
there is actually no compelling reason to use a subroutine to provide the square
root of x; it could also have been defmed as a function. It has been defined as a
subroutine in this example only to illustrate how to include a subroutine in a
parameter list.

For the same reason that a function name used in Print_f's parameter
list was described in an INTERFACE block, a subroutine name appearing in
Print_s's parameter list must also appear in an INTERFACE block. This code
is also printed in bold italics in P-7.8.

Inside the subroutines Print_f and Print_s, the parameters are given
INTENT attributes as usual, except for the parameter associated with the function
or subroutine. Such a parameter can't have an INTENT attribute because it isn't
a variable; it represents a different kind of entity that is accessible to the
subprogram.

Even though the examples in P-7.8 involve only one function or subroutine
used in a parameter list, it is certainly possible to have more than one such
parameter in a list of several parameters. Several intrinsic functions can appear in
the parameter lists of subprograms as long as the names of the intrinsic functions
appear in INTRINSIC statements in the calling (sub)program. Several user
defmed functions and subroutines can appear in the parameter lists of subprograms
as long as the functions and subroutines are described in an INTERFACE block.

7.4.4 Choosing Between Subroutines and Functions

This chapter has described, among other things, several modifications of program
P-3.1, all of which resulted in programs that are longer and more complex than
the original. Were these attempts to modularize P-3.1 worth the effort? Perhaps
not for the simple task involved. However, in general, any source code that
occupies more than a page or so is a candidate for some kind of modularization.
Beginning programmers often react inappropriately to the concept of
modularization, either by creating subprograms for every calculation, even when
it makes little sense to do so, or by refusing to break even large programs into
more easily manageable pieces.

Between these extremes there are choices to be made. If two people
independently solve the same reasonably complex programming problem, their
pro2fams often will not look the same. either in their details or in the overall

7.4 Using Subroutines and Functions • 309

structure as expressed through their choices of subroutines and functions. The
programs in the rest of this text, hopefully, reflect reasonable approaches to the
use of subroutines and functions. However, other equally reasonable approaches
may also be possible.

Some decisions about using subroutines and functions can be based on the
two important differences between these two kinds of subprograms:

(1) A subroutine can return multiple values, each associated with its own variable
name. It is accessed through the CALL statement.
(2) A function returns a single value. It is accessed by name, just as any other
variable name.

Obviously, if your subprogram needs to produce several output values, you must
use a subroutine. If you need only a single value, then you have the option of
using a function. However, if a single value that results from the same function
call is needed more than once in a program, repeated use of a function with the
same arguments to obtain this value represents redundant calculations that should
be eliminated. A better approach in this case is either to use a subroutine or to use
the function just once and assign the result to a variable name. If the same
calculation needs to be done many times for different input arguments, then it
makes sense to use a function.

Based on the material presented in this chapter, it may seem that a great
deal of programming overhead is required to use Fortran subprograms. It's true,
and these details can make small programs seem more trouble than they're worth.
However, the ability to write completely isolated subprograms, assign INTENT
attributes to control the flow of information, and make selected information
available to different parts of a program, through the MODULE structure, makes
Fortran an ideal language for developing large and complex programs that use
combinations of commercial and custom subprograms. Because this is how Fortran
is often used in practice, it is necessary to present many of these details even in
an introductory course.

Program P-7.8, in particular, will require careful study before you can write
similar programs on your own. It may seem like a lot of code to achieve relatively
simple ends. However, it is worth the time required to understand this program
because it shows how to write code that separates the task of manipulating
functions from the functions themselves. This is important for science and
engineering applications and is an essential part of Fortran program
modularization.

310 • 7. Program Modularization

7.5 Applications

7.5.1 Relativistic Mass and Speed of an Electron

This problem was discussed previously as an application in
Chapters 3 and 5, so the preliminary problem-solving steps
won't be dupicated here. Briefly, the problem requires a

driver program I
program that prompts a user to provide a voltage and then calculates the
relativistic speed and mass of an electron accelerated by that voltage in an electron
gun. Program P-7.9 will perform all the calculations inside a subroutine and will
add some extra calculations in the main program. It will use a MODULE to provide
access to the subroutine and to make available some physical constants, such as
the speed of light, necessary for the calculations. After these constants are defmed
once in the MODULE, they can be used throughout the program. This minimizes
the chance for errors. With this arrangement, the main program serves just as a
driver program to test the operation of the subroutine. Once you're confident that
the subroutine works properly, you shouldn't ever have to worry about writing
code to do these particular calculations again.8

P-7.9 [RELMASS3 . F90]

MODULE ElectronConstants
IMPLICIT NONE
REAL, PARAMETER . . rest_mass=9.l0ge-3l !kg
REAL, PARAMETER:: e=l.602e-l9 ! electronic charge,

Coulomb
REAL, PARAMETER:: c=2.997ge8

END MODULE ElectronConstants
!---------------------------------

MODULE ElectronSubs

CONTAINS

SUBROUTINE Rel_E(voltage,rel_mass,speed)

! speed of light, mls

Calculates relativistic mass and speed of an electron.
See Schaum's Outline of Theory and Problems of College Physics.

USE ElectronConstants , Only : rest_mass,e,c
IMPLICIT NONE

REAL rel_mass ! kg
REAL voltage ! volts
REAL speed ! m/s
INTENT(IN) voltage
INTENT(OUT) rel_mass,speed

8y ou may also be pleased to hear that we will not return again to this problem.

rel_mass=(voltage*e+rest_mass*c**2)/c**2
speed=c*SQRT(1.-(rest_mass/re1_mass)**2)

END SUBROUTINE Re1_E

END MODULE E1ectronSubs

PROGRAM Re1Mass3

7.5 Applications • 311

Driver for subroutine to calculate relativistic mass and speed
of electron.

USE E1ectronSubs, Only : Rel_E
USE ElectronConstants, Only: rest_mass,speed_of_light => c
IMPLICIT NONE
REAL voltage, relativistic_mass, speed

PRINT *,' Give electron gun voltage in volts: '
READ *,vo1tage
CALL Rel_E(voltage,re1ativistic_mass,speed)

WRITE(6,1000)voltage
WRITE(6,1001)rest_mass

WRITE(6, 1002)relativistic_mass, speed, relativistic_mass /rest_mass
WRITE(6,1003)speed/speed_of_light

1000 FORMAT(' For an electron gun voltage of: ',es10.4,' V')
1001 FORMAT(' rest mass of electron: ',es10.4,' kg')
1002 FORMAT(' relativistic mass and speed: ',es10.4,' kg',&

es12.4,' m/s'/&
, ratio of relativistic to rest mass: ',es10.4)

1003 FORMAT(' ratio of speed to speed of light: ',es10.4)
END

It is worth taking the time to study how the MODULE structure is used in
P-7.9, as writing this kind of code requires a great deal of practice. Constants
needed for the calculations are stored in MODULE ElectronConstants. Then
SUBROUTINE Rel_E is defined in MODULE ElectronSubs. The USE
statement in Rel_E provides access to the needed constants. In the main program,
both MODULEs are needed. The ONLY option is used to clarify which values or
subroutines are needed:

USE ElectronSubs, Only : Rel_E
USE ElectronConstants, Only: rest_mass,speed_of_light => c

Note how the variable name c used for the speed of light in the MODULE-that's
the standard symbol used for this quantity in physics-is given the more
descriptive name speed_of_light for its local use in the main program.

312 • 7. Program Modularization

7.5.2 A Function Library for Converting Units

In science and engineering, it is always important to express quantities in
appropriate units. In science, almost all calculations are units based on the metric
system. In engineering, calculations are still done in a variety of units.

. . nctton , ra You can make your life as a science or engineering . /'b I
student a lot eaSIer If you start now to accumulate a set of fu ry
unit conversion functions that you can incorporate into
your programs. Such a collection of functions is referred to as a/unction library.
The application in this section will show you how to develop your own function
libraries.

1 Define the problem.

Write two functions, one of which converts inches to several other units
of length and another that converts pressure, expressed in pounds per square inch,
to several other units such as atmospheres and millibars.

2 Outline a solution.

This problem is conceptually simple. The function name itself should
indicate the "source unit" and the input to the function should include the name
of the "target unit" and the value of the quantity in the source unit. You can
include both abbreviations and the full names of the target units. For example, · a
function for converting inches to some other unit of length could be called
Inches_to. A call to such a function for the purpose of converting 12 inches
to meters should allow either Inches_to (I meters I ,12) or
Inches_to (I m I ,12) and should return a value of 0.3048, the number of
meters in 12 inches.

Find the appropriate conversion factors in a table and check them carefully
against at least one other source.

3 Design an algorithm.

SUBPROGRAM Inches_to(IN: name of target unit as string;
value as real)

CHOOSE (based on name of target unit)
(m or meters)

ASSIGN Inches_to = value-o.0254
(ft or feet)

ASSIGN Inches_to = value/12.0
(etc.)

(end CHOOSE)
(end SUBPROGRAM)

7.5 Applications • 313

SUBPROGRAM PSLto(IN: name of target unit as string; value as real)
CHOOSE (based on name of target unit)

(mb or millibars): ASSIGN PSLto = value-68.95
(atm or atmospheres) : ASSIGN

(end CHOOSE)
(end SUBPROGRAM)

(to Pascals, then to atm)
PSLto = value-6895/101330

This subprogram algorithm will become part of a complete program that
can be used to test each of these conversions. It shouldn't be necessary to write
pseudocode for the driver program.

4 Convert the algorithm into a program.

P-7.1O [UNITS. F90]

MODULE UnitSubs
CONTAINS

!--
REAL FUNCTION Inches_to(what,value)

IMPLICIT NONE
CHARACTER*(*), INTENT(IN) :: what
REAL, INTENT(IN) value

SELECT CASE (what)
CASE ('ft', 'feet')

Inches_to=value/12.0
CASE ('cm', 'centimeters')

Inches_to=value*2.S4 !definition
CASE ('m', 'meters')

Inches_to=value*.02S4 !definition
CASE ('yd', 'yards')

Inches_to=value/36.0
CASE DEFAULT

STOP &
'ERROR in InchesTo: Requested conversion does not exist. '

END SELECT
END FUNCTION Inches_to

!-------------------------------------

314 • 7. Program Modularization

REAL FUNCTION PSI_to (what, value)

IMPLICIT NONE
CHARACTER*(*), INTENT(IN) :: what
REAL, INTENT(IN) :: value
REAL, PARAMETER:: c=6894.75736l IPSI to newtons/sq-meter

SELECT CASE (what)
CASE ('Pa', 'Pascal')

PSI_to=value*c
CASE (' mb' , 'millibars')

PSI_to=value*c/lOO.
CASE ('atm', 'atmospheres')

PSI_to=value*c/l.01325e5
CASE (' cm-Hg')

PSI_to=value*c/1333.223874
CASE (' in-Hg')

PSI_to=value*c/1333.223874/2.54
CASE DEFAULT

STOP &
'ERROR in PSI_to: Requested conversion does not exist.'

END SELECT
END FUNCTION PSI_to

1---------------------------------------
REAL FUNCTION Watts_to(what,value)
IMPLICIT NONE
CHARACTER*(*), INTENT(IN) :: what
REAL, INTENT(IN) :: value

SELECT CASE (what)
CASE (' Btu-per_s ')

Watts_to=value/1055.055863
CASE ('cal_per_s')

Watts_to=value/4.1868
CASE ('ft-lb-per_s')

Watts_to=value/1.355817948
CASE ('hp', 'horsepower')

Watts_to=value/746.0 Idefinition
CASE DEFAULT

STOP &
'ERROR in Watts_to: Requested conversion does not exist. '

END SELECT
END FUNCTION watts_to

1--------------------------
END MODULE UnitSubs

1========================
PROGRAM Units

Conversion functions.
See James L. Cook, _Conversion Factors_, OUP 1990.

USE UnitSubs, ONLY : Inches_to,PSI_to,Watts_to
IMPLICIT NONE

PRINT* " Test Inches_to for 6" ... '
PRINT*,Inches_to('feet' ,6.0),Inches_to('ft' ,6.0),' feet'
PRINT*, Inches_to ('cm',6.0),Inches_to('centimeters' ,6.0),' cm'
PRINT*,Inches_to('m' ,6.0),Inches_to('meters',6.0), , m'
PRINT*,Inches_to('yd' ,6.0),Inches_to('yards' ,6.0),' yd'
PRINT*,' Test PSI_to for 14.7 PSI ... '
PRINT*,PSI_to('Pa' ,14.7),PSI_to('Pascal',14.7),' Pa'
PRINT*,PSI_to('mb' ,14.7),PSI to('millibars' ,14.7), , mb'

7.5 Applications • 315

PRINT*,PSI_to('atm' ,14.7),PSI_to('atmospheres' ,14.7),' atm'
PRINT*,PSI_to('cm-Hg' ,14.7),' cm-Hg'
PRINT*,PSI_to('in-Hg' ,14.7),' in-Hg'
PRINT*,' Test Watts_to for 1 kW ... '
PRINT*,Watts_to('Btu_per_s' ,1000.0),' Btu/s'
PRINT*,Watts_to('ca1_per_s' ,1000.0),' calls'
PRINT*,Watts_to('ft-lb_per_s' ,1000.0), 'ft-lb/s'
PRINT*,Watts_to('hp' ,1000.0), &

Watts_to('horsepower' ,1000.0),' hp'
END

Running P-7.10

Test Inches_to for 6" ...
0.5000000 0.5000000 feet

15.2399998 15.2399998 em
0.1524000 0.1524000 m
0.1666667 0.1666667 yd

Test PSI_to for 14.7 PSI ...
1.01352938+05 1.0135293E+05 Pa
1 .0135293E+ 03 1.0135293E+03 rob
1.0002756 1.0002756 atrn

76.0209427 em-Hg
29.9295044 in-Hg
Test watts_to for 1 kW ...

0.9476171 Btu/s
2.3884590E+02 calls
7.37562198+02 ft-Ib/s
1.3404626 1 .3404826 hp

5 Verify the operation of the program.

It's important to be very careful with code like this because once you write
functions for something as boring as converting units, you will probably never
look at the code again. Use the driver program to test each function and make sure
you perform every available conversion at least once. Check the results of each
conversion with a calculator and against other printed sources! As a last resort, ask
yourself, "Does this answer make sense?"

Problem Discussion
A few more conversions have been added to P-7.1O in addition to the ones

given in Step 3. This is a simple matter in the context of the SELECT CASE

construct. The values for the conversions have been taken from the book
referenced in the main program. In some cases, the number of significant figures
given for the conversion constants in this reference exceeds the accuracy of
default Fortran REAL numbers. It is not always clear where the physically
significant digits in conversion factors stop and the "artifacts" of mathematical

316 • 7. Program Modularization

operations begin. In any case, the presence of too many significant digits is not
a problem from either the programming or the physical point of view. Fortran will
simply ignore "extra" digits in constants and the accuracy of REAL numbers is
more than adequate for these kinds of unit conversions.

One interesting point about the code in P-7.10 has to do with the use of
a STOP statement in the CASE DEFAULT clause of each SELECT CASE
construct. This is an attempt to respond to the possibility that an error in a calling
argument might request a conversion that doesn't exist. However, simply stopping
the program doesn't seem like a particularly graceful response. You might wonder
why the choice has been made to terminate the program rather than print an
appropriate message and keep the program running:

CASE DEFAULT
PRINT *,' ERROR. The requested conversion does not exist.'

The reason has to do with a subtle restriction on the code allowed in FUNCTION
subprograms. Recall that functions can be used just like constants or variables.
This is why the function itself can appear in the PRINT statements in P-7.1O, for
example:

PRINT*,Inches_to('feet' ,6.0),Inches_to('ft',6.0),' feet'

However, because of the way PRINT statements are implemented in Fortran,

A PRINT or WRITE statement cannot be used in any FUNCTION
subprogram that is called from a PRINT or WRITE statement.

The mere presence of a PRINT or WRITE statement won't cause a problem inside
a function, but the program will crash if such a statement is actually executed.
Rather than restrict the use of the functions in PRINT or WRITE statements, it is
better never to include PRINTs or WRITEs inside the final version of a function.
(It is often helpful to include some output statements inside a function while it is
being debugged. However, the presence of these statements precludes the use of
the function in an output statement in the calling (sub)program while the function
is being tested.) Including a message as part of a STOP statement is a way to
provide an informative message without using a PRINT or WRITE.

Because of this restriction, you might wish to consider other ways of
"trapping" inappropriate input. One obvious way is to use a subroutine instead of
a function. Then both the converted value and an "error flag" can be included in
the parameter list. The error flag could be an integer assigned a value of 0 or 1,
for example, or it could be a LOGICAL variable. Then, of course, you will have
to modify the code in the driver program. This approach is left as an end-of
chapter exercise.

7.5 Applications • 317

Another interesting feature of P-7.1O is the use of variably sized character
strings. The statement CHARACTER* (*) in the conversion functions allows a
string of any allowed length to be passed as input. Its operation is analogous to
using variably sized arrays. In this case, the variable-length string is the name of
the desired output unit, used to select the appropriate conversion in the SELECT

CAS E construct.

7.5.3 A Simple Character-Based Function Plotter

1 Define the problem.

Even though there are many computer applications that can provide
sophisticated plotting capabilities, it is sometimes convenient to be able to provide
a "quick and dirty" representation of a function directly from a Fortran program.
Write a subprogram that accepts as input a function f(x) , the lower and upper
limits at which it should be evaluated, and the step size by which to increment the
independent variable x. The subroutine should produce a text-based "graphical"
representation of the function. Test this subprogram with a driver program.

2 Outline a solution.

1. Pass all information to a subprogram, including the name of the function.
2. Determine the largest and smallest values of f(x) within the specified range.
3. Determine a scaling factor to apply such that the value of the function can be
"plotted" by printing an appropriate character, such as an asterisk, along the
x-axis. A reasonable choice is to restrict the "plot" to no more than 50 spaces:

scaling factor = 50/(largest-smallest)

4. Generate values of f(x). Convert each value to an integer position from 1-50.
If, for example, this position is 25, print 24 blank spaces followed by an asterisk.

3 Design an algorithm.

This algorithm is more dependent on the specific capabilities of Fortran
than is usually the case. In particular, it depends on the availability of the
advance= I no I option in the WRITE statement.

318 • 7. Program Modularization

SUBPROGRAM Plot(IN: lo,hi,step; f(x))
DEFINE/DECLARE (smallest, largest, scale, value as REAL,n as # of steps,

maxyoints as max # of spaces along x-axis,
i as loop counter, "where" as integer position)

Determine the number of intervals and initialize some variables.

ASSIGN n = (hi - lo)/step
INITIALIZE smallest = 0

largest = 0

Find the largest and smallest values of f(x).

LOOP (for i = 0 to n)
IF (f(x) > smallest) THEN smallest = f(x)
IF (f(x) < largest) THEN largest = f(x)

END LOOP

Set the scaling factor and assign maximum number of pOints.

ASSIGN scale = maxyointsl(largest-smallest)
maxyoints = 50

Generate values of f(x) and "plof' them.

LOOP (for i = 0 to n)
ASSIGN value = f(lo + i-step)

where = (value - smallest) -scale
(Round to nearest integer.)

WRITE (i, no line feed) (Could print x instead.)
WRITE (where - 1 spaces, no line feed)
WRITE ('''', with line feed)

ENOLDDP

4 Convert the algorithm into a program.

P-7.11 [PLOTTER.F90]

MODULE PlotSubs
CONTAINS

!------------------------------------
SUBROUTINE Plot(lo,hi,step,f,u)

Create a crude plot of a function.
IMPLICIT NONE
REAL, INTENT(IN) :: lo,hi,step
INTEGER, INTENT(IN) :: u !output unit
REAL f,largest,smallest,value,scale
REAL max_x
INTEGER i,j,n,where

7.5 Applications • 319

PARAMETER (max_x=SO.) !# of spaces for plot along x-axis
n=NINT«hi-lo)/step) !# of points to plot
smallest=lelO
largest=-lelO

Find smallest and largest values.
DO i=O,n

value=f(lo+REAL(i)*step) !evaluate
IF (value<smallest) smallest=value
IF (value>largest) largest=value

END DO

the function
!find smallest ...
land largest values

scale=max_x/(largest-smallest) !calculate scaling factor
IF (u/=6) OPEN(u,file='c:\ftn90.dir\plot.out')
DO i=O,n

Where does the plotting symbol go?
where=NINT«f(lo+REAL(i)*step)-smallest)*scale)

Print the step.
WRITE(u,lOOO,advance='no')i

Print where-l blank characters.
WRITE(u,lOlO,advance='no') (' ',j=l,where-l)

Finally, print the plotting character.
WRI TE (u, *) , * '

END DO
IF (u/=6) CLOSE(u)

1000 FORMAT(i3)
1010 FORMAT(SOal)

RETURN
END SUBROUTINE Plot

!------------------------
END MODULE PlotSubs

!========================
PROGRAM Plot_it

Create crude plot of a user-specified function.
USE PlotSubs, ONLY : Plot
IMPLICIT NONE
INTEGER u
CHARACTER*l where
INTERFACE

REAL FUNCTION F_of_x(x)
REAL, INTENT(in) :: x

END
END

320 • 7. Program Modularization

PRINT *,' Output to (s)creen or (f)ile? '
READ *,where
IF (where=='f') THEN

u=l
ELSE

u=6
END IF
CALL Plot(O.,10., .S,F_of_x,u)
END

REAL FUNCTION F_of_x (x)
REAL, INTENT(IN) : : X
F_of_x=x**2-S0.
RETURN
END

Running P-7.11

Output to (s)creen or (f)ile?
s

0 *
1 *
2 *
3 1<

4 *
5 *
6 *
7 *
8 *
9 *

10 *
11 *
12 1<

13 1<

14 1<

15 1<

16
17
18
19
20

*
1<

5 Verify the operation of the program.

1<

*
*

The output from SUBROUTINE Plot can be verified by testing it with
a simple function whose appearance you already understand. As you can see from
examining the code, the output from P-7.11 is for the function f(x) = x2-50.

7.6 Debugging Your Programs • 321

Problem Discussion
Program P-7.11 contains a great deal of useful information about how to

use functions and subroutines. The MODULE PlotSubs and SUBROUTINE
Plot are written so that they can be used easily in other programs. In particular,
the function being plotted appears in Plot's parameter list rather than being
"hard coded" into the subroutine so that different functions can be plotted without
changing any of Plot's code. The only restriction is that f(x) must return a REAL
value. This kind of reusability is very important in Fortran programming. In this
case, the somewhat limited usefulness of the "graph" produced by Plot would
hardly justify writing the code more than once.

The loop to generate blank spaces before printing the asterisk is contained
in an implied DO ... loop in a WRITE statement. This step has been defined only
as WRITE (where - 1 spaces, with no line feed) in the algorithm design. Note
how the advance=' no' option has been used to produce the desired result; a
new line is started only after the asterisk is printed at the end of the line. When
this kind of implied loop appears inside another loop, it's important to remember
to defme a different loop counter, in this case, something other than i.

The code in P-7.11 has been expanded a little beyond the problem
statement. The main program asks the user to indicate whether the output should
go to a monitor screen, the default output device, or be saved in a file. If the latter
selection is made, then an output file called PLOT. OUT is created in
SUBROUTINE Plot. If default output is desired, unit 6 is used and no file is
opened.

7.6 Debugging Your Programs

7.6.1 Programming Style

Any source code that is more than a page or so long should be modularized so
that each subroutine or function performs one clearly defmed task. MODULEs are
always used when subprograms are required. In some cases, the parameter list of
each subprogram will contain all the input values required by the subprogram. In
other cases, some of the input values may be obtained by USEing definitions from
a MODULE. Quantities that can be defmed locally within a subprogram should
never appear in a parameter list.

An INTENT attribute should be given explicitly for every quantity
appearing in a subprogram's parameter list.

Comments in each subprogram should clearly state its purpose and define
the quantities in the parameter list. When a USE statement appears in a main
program or subprogram, the ONLY option should be used to defme the information
being obtained from a referenced MODULE.

322 • 7. Program Modularization

7.6.2 Problems with Programs

1. There are two basic reasons to modularize your programs. The frrst is to
simplify and clarify the design and implementation of a large program. The second
is to avoid having to reinvent important and perhaps complicated algorithms every
time you need them. (We will deal with several such algorithms in Chapter 10.)
In either case, the approach often taken by students-and professionals who
should know better-when they create subprograms is this: (1) write the code; (2)
debug it with one or two sets of input values; (3) use it and forget it.

If you follow this approach, eventually you will be sorry! Especially when
you write code for reuse in other programs under different conditions, it is
imperative to attempt to check the output of subprograms under all possible input
conditions! Even if you don't know what "all" conditions might be, you should
at least verify the operation of subprograms under conditions that you don't
actually expect to encounter in practice.

2. Problems with variable defmitions and declarations can arise when you use
MODULEs. Let's review the possible sources of information used by a subprogram.

(a) The parameter list. This list includes input to and output from the subprogram.
(b) Locally defmed variables. These include values that are needed within the
subprogram, but are of no interest to the calling (sub)program. Beginning
programmers often put variables in the parameter list that should be defmed only
locally.
(c) Information from one or more MODULEs. This includes information that would
otherwise be defmed locally as well as functions and subroutines needed for the
subprogram to do its job. This method of sharing information is useful when
several subprograms need the same values or when a subprogram uses code that
has previously been written for some other purpose.

Remember that variables and function names made available through a
USE statement in a (sub)program cannot be redeclared within that (sub)program.

7.7 Exercises

7.7.1 Self-Testing Exercises

Exercise 1. Describe in your own words the two most important concepts you
have learned from this chapter.

7.7 Exercises • 323

Exercise 2. Describe in your own words how you could use in your own
programs a problem-solving skill demonstrated in a program discussed in this
chapter.

Exercise 3. Explain in your own words the difference between a subroutine and
a function.

Exercise 4. Explain in your own words how Fortran subroutines and functions
control the flow of information between various parts of a program.

Exercise 5. Explain in your own words some reasons for using MODULEs.

Exercise 6. Consider the following lines from a subroutine and a CALL statement
to access the subroutine from a main program:

SUBROUTINE X(d,e,f,a,b,c)
IMPLICIT NONE
REAL, INTENT (OUT) :: a,b,c
INTEGER, INTENT(IN) :: d,e,f

PROGRAM XX

CALL X(a,b,c,d,e,f)

(a) What data types must a, b, c, d, e, and f have in the main program that
CALLs SUBROUTINE x?

(b) Which of these CALLs to SUBROUTINE X are allowed, assuming that x, y,
and z are declared as REAL and i, j, and k are declared as INTEGER?

CALL X(lO,20,30,x,y,z)
CALL X(a,b,c,3.3,4.4,5.5)
CALL X(ROUND(SIN(x»,ROUND(SIN(y»,ROUND(SIN(z»,x,y,z)
CALL X(x,y,z,x,y,z)
CALL X(i,j,k,i,j,k)

7.7.2 Basic Programming Exercises

Where appropriate, functions and subroutines written for these exercises should
be tested by including them in appropriate driver programs.

Exercise 7. The area of a triangle for which the length of two sides a and b and
the angle a between the sides are known is

area = a-b-sin(a)

324 • 7. Program Modularization

Write a FUNCTION to perfonn this calculation.

Exercise 8. The total cost for a production run of items equals the startup cost S
plus the number of items n times the materials cost M and labor cost L per item:

total cost = S + ne(M + L)

Write a FUNCTION to perfonn this calculation.

Exercise 9. Suppose a car travelling v m/s requires d meters to stop. Write a
SUBROUTINE to calculate the time t and deceleration a required to stop within
that distance, assuming that the deceleration is constant. The fonnulas are

t = 2d/v a = vlt

Exercise 10. (a) Add at least one additional conversion function to P-7.1O.
(b) Modify program P-7.1O so that the conversion functions are replaced with
subroutines. Each subroutine should have an "error flag" in its parameter list that
will tell the calling program whether the requested conversion was perfonned
successfully. (See the Problem Discussion of P-7.1O.)

Exercise 11. Modify program P-7.11 so that
(a) a description of the function is printed at the top of the "graph";
(b) the value of x is printed in the left margin instead of the loop counter;
(c) a different symbol is printed for positive and negative values of f(x);
(d) the program user can specify the name of the output file.

Exercise 12. Based on material from other courses you are taking, state a
computational problem and write a complete program to solve it. Your program
should take the fonn of one or more functions and subroutines, with a driver
program to test them.

7.7.3 Programming Applications

Each of the programs in these exercises should be written with the goal of
building a library of "portable" subprograms. Even if the problem statement is not
specific about this point, the source code for each exercise should include a driver
program that tests the subprogram(s). In some cases, such as the exercises that
deal with calendar and date calculations, you may be able to write one driver
program that tests subprograms for several exercises.

7.7 Exercises • 325

Exercise 13. Write a program that calls a subroutine that accepts as input the
month (as a character string), year (in the range 1899-2099), number of days in
the month, and the day of the week (integer values 1-7 for Sunday through
Saturday) on which the month starts. The output from the subroutine should be a
printed calendar that looks something like this:

April 1995

Sun Mon Tue Wed Thu Fri Sat

1
2 3 4 5 6 7 8
9 10 11 12 13 14 15

16 17 18 19 20 21 22
23 24 25 26 27 28 29
30

Depending on the length of the month and the day of the week on which it starts,
no less than four lines (for a nonleap-year February starting on Sunday) and up
to six lines may be required to print all the days. Be sure your program will work
for all combinations of month lengths and starting days.

Hint: the major problem in this program is formatting the output. You may
fmd an implied DO. . . loop used with the advance= , no' option and a colon
(:) control character in the FORMAT statement helpful for filling in blank spaces
on the first line of the calendar, before day 1 is printed. You may have to think
carefully about how to avoid an extra blank line between the last line of days and
the row of dashes printed as the last row of the calendar in the example.

Extra Credit
Modify this program so that the only user input required is the year and

the month. This means that your program must be able to provide the number of
days in a month (these values could be contained in a DATA statement) and
determine on what day of the week a specified month starts. Use these two facts:

(1) If a year is evenly divisible by 4 and not divisible by 100, or if a year is
evenly divisible by 400, then it's a leap year. In leap years, February has 29 days
instead of 28.
(2) January 1, 1899, was a Sunday.

This part of the problem will involve adding more subprograms to your program.
If you haven't included the subroutine for the basic part of this exercise in a
MODULE, you should certainly do so for all the subprograms required to complete
this version of the problem. [CALENDAR. F 9 0]

326 • 7. Program Modularization

Exercise 14. The modem civil calendar system (the Gregorian calendar) is
inconvenient for scientific purposes because, historically, different civil calendars
have been used in different places at different times, and even when events are
consistently recorded on the modem calendar it is not easy to count the number
of days between two events.

The complexity of calendars-.:.the fact that not all months have the same
number of days and that extra days, such as leap years, are required to keep
seasons in sync with the calendar-is basically due to the fact that the mean solar
year-the time required for the earth to make one complete revolution around the
sun-is not an integer number of mean solar days, where a mean solar day is
defmed as the time required for the earth to complete one revolution around its
own axis relative to a fictitious sun that moves along the equinoctial (the
projection of the equator on the celestial sphere) at a constant rate equal to the
average apparent rate of motion of the actual sun. (If you think you understood
this paragraph without reading it several times, you're just not paying attention.
The celestial sphere is an imaginary sphere surrounding the earth on which the
stars appear to be embedded and on the surface of which the sun, moon, and
planets appear to move.)

A simpler time-tracking alternative is a system that assigns a unique
identifier to every mean solar day of recorded history. The Julian date system,
which starts with a value of 1 at noon on Gregorian date November 25, 4714
B.C., provides a simple and unambiguous way to record events. Without such a
system, errors in the timing of events can result because not all countries
converted to the Gregorian calendar at the same time. The English-speaking world
didn't convert to the Gregorian calendar until 1752, for example. The Julian date
system was invented by English astronomers at the Greenwich Observatory on the
Thames River near London.9 It was convenient to assign the same Julian date to
an entire night of observations, which is why a Julian day starts at noon
Greenwich time.

The following formula can be used to convert a date expressed in the
Gregorian calendar to its corresponding Julian date:

temp = «month-14)/12>
Julian Date = day - 32075 + <1461.(year+4800+temp)/4> +

<367· (month-2-temp·12)/12> - <3·«year+4900+temp)/100>/4>

where <. . . > means to truncate the enclosed expression.
Use this formula to write a function that accepts as input the Gregorian

month, day, and year and returns the corresponding Julian date. Test the function
with a driver program. The Julian date for Greenwich noon on January 1, 1995,

~ese astronomers also defined the longitude system, which is why 0° longitude, the
Greenwich meridian, passes throul!:h the Greenwich Observatorv.

7.7 Exercises • 327

is 2449719.0. Be careful with historical dates before the mid-eighteenth century,
as they may not be expressed in the Gregorian calendar.

Hint: the Julian date can be stored as either a real or an integer number.
Although it is generally a good idea to avoid mixed-mode expressions, it would
be OK in this case to assign the integer result of evaluating the above formula as
a REAL number.

Also, because of the way Fortran handles arithmetic operations with
integers, note that these two statements are equivalent, assuming that month is
an integer variable:

temp = INT«month-14.)/12.)
temp = (month-14)/12

That is, the result of dividing two integer values or expressions, as in the second
expression, is an integer equal to the truncated quotient. This is equivalent to
performing a real arithmetic division and truncating the result, as in the ftrst
expression. You can force a Fortran expression to perform real division by using
a real number or variable for at . least one of the values in the expression. This
expression is legal but redundant because the argument itself already has the
desired truncated integer value:

temp = INT«month-14)/12)

When you write this program, you could try translating the formula in two
different ways. The ftrst way should express the numbers in the formula as real
values (14. rather than 14, for example) and should use the INT function to
truncate the expression. The other way should express all numbers as integers and
will not require use of the INT function. The second way is a more "clever"
solution that makes use of specific implementation details in Fortran that wouldn't
apply to the same calculation done in another language. [CALENDAR. F 90]

Extra Credit
Write a subroutine that converts a Julian date to its corresponding calendar

date. Use these calculations:

TempA = JD + 68569.
TempB = <4 oTempA/146097>
TempA = TempA - «146097 oTempB + 3)/4>
year = <4000 o(TempA + 1)/1461001>
TempA = TempA - <1461oyear/4> + 31
month = <80 oTempA/2447>
day = <TempA - <2447 omonth/80»
TempA = <month/11>
month = <month + 2 - 12 oTempA>
year = <100 o(TempB - 49) + Year + TempA>

328 • 7. Program Modularization

Exercise 15. Another way of expressing dates is as 1000e(year - 1900) plus the
number of the day in the year. Thus March 7, 1992, is day 31+29+7 of 1992 (a
leap year), so the date can be represented as 92067. January 1, 2000, is 100001.

This system has the advantage of requiring only five or six characters to
specify a date, and it simplifies calculations that involve knowing the number of
days between two dates in the same way as the use of Julian dates. The values in
this system are sometimes referred to as Julian days, but they are not the same as
the Julian dates defmed in the previous exercise.

Write a function that accepts as input a calendar date and returns the value
defmed here. If you did the extra credit part of the previous exercise, you may be
able to reuse some of that code. Test the function in a driver program.
[CALENDAR. F90]

Exercise 16. It is often necessary to estimate values based on engineering tables.
If the tabulated values are not too far apart, a decision that depends on your
application, linear interpolation may provide a sufficiently accurate approximation
of a desired value. If a table contains two values, Xl and x2, of an independent
variable x and two corresponding values, Yl and Y2' of a dependent variable y,
then a linearly interpolated estimate for y for a value x in the range [X I,X2] is
given by

Write a function or subroutine that accepts as input values for x, Xl' x2' Yl' and Y2

and returns as output the linearly interpolated value of the dependent variable y
corresponding to x.

Here are some sample values you can use to test your subprogram. (Refer
to the file INTERPOL. DAT, which is included in the data files available for
downloading from the World Wide Web site mentioned in Section i.5 of the
Preface.)

x y
5.0 5.9

10.0 6.6
15.0 7.1
20.0 8.3
25.0 10.0
30.0 12.2

As an example, if the value of the independent variable is 7.5, then the linearly
interpolated value y is

y = 5.9 + [(7.5 - 5.0)/(10.0 - 5.0)](6.6 - 5.9) = 6.25

7.7 Exercises • 329

Should you use an interpolation formula for extrapolating past the ends of
a table? Should your program include some protection against "unreasonable" use
of an interpolation formula? [INTERPOL. F90]

Extra Credit
Here are formulas for higher order interpolations, in the form of Lagrange

polynomials. The requirement on x is that it must lie within the range [Xo,x2] for
quadratic interpolation and [Xo,x3] for cubic interpolation. Modify your program
so the user can specify linear, quadratic, or cubic interpolation.

Quadratic interpolation:

(X-Xl)(X-~) (x-XO)(x-~) (x-XO)(x-xl)
y - y, + Y 1 + Y2 -----"---=--

- 0 (XO-~)(XO-~ (Xl-XO)(Xl-~ (~-XO)(~-~)

Cubic interpolation:

Y = y, (X-Xl)(X-~(x-":3) (x-XO)(x-~)(x-":3)
o + y 1 --=-------'=-------'=--

("0 -Xl) ("0 -~)(XO -":3) (~ -XO)(~ -~(~ -":3)

(X-XO) (X-Xl) (X-":3) (X-XO)(X-Xl)(X-~)

+ Y2 -(~-----'XO'--)(~---=~-)(-~--":3-) + Y3 (":3-"0)(":3 -Xl) (":3 -~

Exercise 17. Even scientists and engineers sometimes need to take out loans.
Typically, a loan is made at a specified annual interest rate and must be repaid in
a specified number of equal monthly payments. The formula for calculating the
monthly payment is

payment = amount.(rI12)
1 - (1 + r/12rn

where r is the interest rate expressed as a decimal fraction, not as a percent.
When a payment is made at the end of any month, the interest accrued on

the loan balance during that month is added to the balance at the beginning of the
month (interest = balanceer/12). Then the payment is subtracted from the sum of
the balance plus the interest to yield a new balance. For example, the interest due
after one month on a $1000 loan at 8 percent is $1000·.08/12=$6.67. If the
monthly payment were $90, then the new balance would be $916.67.

Write a subroutine that accepts as input the amount of a loan, the annual
interest rate. and the number of payments. Calculate the monthly payment and

330 • 7. Program Modularization

print a loan repayment table that gives the interest accrued each month, the new
balance after making a payment, and the total amount paid on the loan to date.
Test the subroutine with several sets of user-supplied values. [F I NAN CAL . F9 0]

Extra credit
Because of roundoff errors in real arithmetic calculations, the balance at

the end of the loan repayment period may not be exactly $0.00. Modify your
program so that it recalculates the fmal payment to give a balance of $0.00, to the
nearest cent.

Exercise 18. "Congratulations! You have just won the Megabucks Lottery Grand
Prize of $1,000,000!" Naturally, this would be good news no matter how cynical
you are. However, you have read the fme print, which states that the prize has an
"annuity value" (not a cash value) of $1,000,000 and will be paid in equal
installments of $50,000 per year, starting immediately and continuing for a total
of 20 annual payments.

This method of paying a prize is equivalent to an "annuity due." In order
to guarantee that money for the payments will be available, enough money must
be set aside now to cover the fIrst and all subsequent payments. However,
assuming that the account will earn interest at an annual rate r, expressed as a
decimal fraction, the "present value" of the annuity is not equal to the total of the
payments, but some smaller amount, given by

paymente [1 - (1 + rfn] (1 + r) present value =
r

where n is the number of annual payments, including the payment made
immediately. A prize with an "annuity value" rather than a "cash value" is a good
deal for the prize-giver because the present value is substantially less than the
annuity value; the present value of a $1,000,000 annuity to be paid in 20 yearly
installments of $50,000, assuming that the annuity account earns 8 percent
annually, is about $530,000. It is a bad deal for the recipient because the effects
of inflation erode the value of future payments.

Write a subroutine that will calculate the present value of an "annuity due"
for an assumed annual interest rate and will print a table showing the value of the
account each year until the fInal payment is made. Test the subroutine with several
sets of user-supplied values. [FINANCAL. F90]

Exercise 19. You work for a progressive company that appreciates the value of
investing in future research. Management has decided that it wants to invest
money now for a major research program that will start 10 years from now and
will cost $1,000,000. You have been asked to determine the amount of 10 equal

7.7 Exercises • 331

annual payments your company should make into an interest-bearing account
every year for the next 10 years, starting now, in order to have the required
$1,000,000 at the end of 10 years.

This is a variation of the previous exercise and is equivalent to calculating
the future value of an annuity. The formula is

(1 +r)R - 1
future value = payment- (1 +r)

r

Write a subroutine that will accept as input the desired future amount and
an interest rate, and will calculate the annual payment required to produce the
specified future amount at the end of n years. Print a table showing the value of
the account at the end of each year. Test the subroutine with several different
interest rates. [FINANCAL. F90]

8

Using Arrays to Organize Information

This chapter begins with a typical data collection problem to illustrate the utility
of and Fortran syntax for defming and using arrays. Topics covered include one
dimensional and multidimensional arrays, arrays as parameters in functions and
subroutines, allocatable arrays, strings as "arrays" of characters, user-defmed
record types, and arrays of records.

8.1 Arrays in Structured Programming

Up to now, this text has discussed only data types for
which a variable name corresponds to a single value and a
single location in memory. 1 It is possible, and very
desirable in structured programming, to define other kinds

data structures I
array

of data structures that lead to more convenient and compact ways of organizing
information in a program. The most important user-defined data structure is the
array. Basically, an array is a collection of related values organized under a single
name. In this section, we will develop the basic concepts of arrays by posing a
specific data management problem and examining how best to organize the
information required to solve that problem.

t Suppose you are conducting an experiment to monitor the concentration
of. tropospheric ozone, a federally regulated air pollutant. You have in place
equipment that produces one measurement per hour for 24 hours. You would like
to store these measurements and then write a program to process the data. How
should your program handle this task? One way would be to associate each ozone
measurement with its own variable name:

Ozonel
Ozone2
Ozone3
Ozone4

Ozone23
Ozone24

IThis simple concept is adequate as long as we recognize that a single memory "location"
will contain as many bytes as reQuired to hold the variable, based on its data type declaration.

D. R. Brooks, Problem Solving with Fortran 90
© Springer-Verlag New York, Inc. 1997

334 • 8. Using Arrays to Organize Information

This seems a little awkward, but it will become much worse if you decide that
what you really need is hourly measurements for 10 days. Suddenly you're faced
with creating another 216 variable names!

Fortunately, there's an easier way: defme a single variable
name-Ozone-and an indexing system that can be used to address all the ozone
measurements under this single variable name. Symbolically, each measurement
could be addressed like this:

Ozone(l)
Ozone(2)
Ozone(3)
Ozone(4)

Ozone(23)
Ozone(24)

The interpretation of this system is the obvious one: Ozone (1) is the
measurement at the fIrst hour, Ozone (2) is the measurement at the second hour,
and so forth. If you need more measurements, all you have to do is increase the
value of the largest index, from 24 to 240, for example:

Ozone(l)
Ozone(2)
Ozone(3)
Ozone(4)

Ozone(239)
Ozone(240)

When it's translated into a programming language, this kind
of data representation is called an array. The name of the
array will be something obvious and descriptive, like
Ozone. The number in parentheses is the array index. The
value associated with each index is called an array element.

array index I
array element
extent

The number of elements is called the extent (or size) of the array. For an array
holding 24 ozone measurements per day for 10 days, the extent would be 240. For
the above example, the notation Ozone (26) will refer to the 26th element-the
second measurement on the second day-in the array named Ozone. This
notation seems perfectly straightforward, and as we will see, it is just the notation
that Fortran uses.

One-dimensional arrays are often associated with
vectors, in the physical sense, or with vector data in a
somewhat more generalized sense, as opposed to scalar data.
This is a distinction that should be familiar from an

I vector data I
scalar data

introductory physics course. To cite some examples, the speed of a moving object
is represented by a single number and is a scalar quantity. The velocity of a
moving object is a vector quantity that describes both speed and direction with

8.1 Arrays in Structured Programming • 335

components in each of three coordinates in physical space. Mass is a scalar
quantity, but weight, or force, is a vector quantity.

The association of arrays with vectors is especially relevant in problems
in mathematics, science, and engineering, but the use of arrays in programs isn't
restricted to applications that can be physically or mathematically associated with
vectors. In programming, arrays are organizational tools for managing large
amounts of related information. Basically, you should use an array any time you
need to manipulate collections of related values, regardless of whether that use is
associated with some kind of "vector" operation. Clearly, the problem of
managing ozone measurements has no "vector" significance, but it is nonetheless
a natural candidate for an array representation. Perhaps you could think of the
ozone data as a vector in "data space" rather than in physical space.

It's worth pointing out here that it is easy to confuse the meaning of
"dimension" when that word is applied to arrays. In physics, a "three
dimensional" vector might refer to the position or velocity of an object in space
because space has three dimensions.2 However, such a vector is represented by a
rank one (one-dimensional) array in Fortran. To put it another way, the
dimensionality of arrays, in the programming use of that term, describes not their
"size" (for example, in terms of the number of vector components), but their
"shape." A physical vector has a "shape" of one regardless of how many
components it has, but a table with several rows and columns, for example, has
a "shape" of two regardless of how many rows and columns it has . ..-----'11 Arrays can represent data in more than one dimension. dimension
Suppose your experiment expands to include hourly
measurements every day for a month. This could require up to
31x24 = 744 values. In the same way that an array with 240 elements can hold
24 hourly measurements for up to 10 days, you could represent monthly data with
an array the indices of which can take values from 1 to 744. However, in terms
of organizing this information, it makes more sense to defme a two-dimensional
array~ssentially, a table of values. One index-from a programming point of
view, it doesn't matter which one-will represent a day of the month, and the
other will represent an hour in the day. Assume that the first index represents the
day and the second the hour:

On day 1: Ozone(1, 1) On day 31: Ozone(31, 1)
Ozone(1, 2) Ozone(31, 2)

Ozone(1,24) Ozone(31,24)
On day 2: Ozone(2, 1)

Ozone(2, 2)

2Note to physics students: this statement refers to the properties of space as described by
Newtonian mechanics.

336 • 8. Using Arrays to Organize Infonnation

Ozone(2,24)

This two-dimensional array of size (31,24) contains the same number of elements
as a one-dimensional array of size 31x24=744, but the two-dimensional
arrangement is a more natural way of storing and accessing information for this
problem.

As you can see from this example, the dimensionality of an
array is associated with the number of array indices required to access rank I
values in the array. A two-dimensional array requires two indices. The
dimensionality of an array is called its rank. A two-dimensional array is a rank
two array. The ozone array has extent 31 in its ftrst dimension and extent 24 in
its second dimension.

Fortran supports arrays of up to seven dimensions (rank seven). Figure 8.1
should help you visualize the structure of arrays up to rank three. Starting with the
simplest case, you can think of a rank one array as a "line" of boxes. For
example, you could imagine a single row of mailboxes in a post office named,
unimaginatively, "A." Each mailbox corresponds to an element of a rank one array
(array A in Figure 8.1). The number on each mailbox at post office "A"
corresponds to its array index. In Figure 8.1, the arrow from array A points to the
seventh "box." Although you wouldn't be likely to confuse the contents of a
mailbox with the address of that mailbox, it is nonetheless easy to confuse an
array and its elements with the indices to that array. Just remember that an index
corresponds to the "address" of a mailbox and an element corresponds to the
"contents" of a mailbox.

You can easily expand this "post offtce" image to visualize rank two (two
dimensional) arrays as several rows of mailboxes (array B in Figure 8.1). One
array dimension represents rows and the other represents columns. However, in
a real post offtce, boxes are likely to be numbered consecutively. In array
notation, the addresses of the mailboxes are identiftedby a row and column. In
Figure 8.1, the arrow from array B points to the "box" in column seven of the
fourth row.

(rank one)

I I I I I I Am
(rank two)

.,
, , ,

, ,
, ,

8(4,8)

8.2 Basic Array Implementation • 337

(rank three)

, ,
I ,

I ,

" C(4,3,1)

/

~

/ / /

I
I

I
I

I

C(l,7,4)

/ / / / /

I

I /

I /
I

I

I
I

/

/

V-

Figure 8.1. Structure of arrays with rank one (array A), rank two
(array B), and rank three (array C)

You may have to abandon the post office image to visualize a rank three
array (array C in Figure 8.1); you might identify the three dimensions as row,
column, and "layer." Arrows in Figure 8.1 point to array elements in row four,
column three, layer one, and row one, column seven, layer four. Arrays with more
than three dimensions are harder to visualize, but their treatment in Fortran
remains fundamentally the same. There are many applications of arrays in
mathematics, science, and engineering, so it is not surprising that Fortran has
always provided strong support for arrays. Fortran 90 has added some important
new features in support of arrays, which we will discuss in this chapter.

8.2 Basic Array Implementation

This section presents the basics of using arrays in Fortran by developing a
program for a simple problem. We will return to the ozone data problem later in
this chapter.

8.2.1 Example: Testing a Random Number Generator

1 Define the problem.

Recall that the radiation testing application in Chapter 6 made use of
Fortran's built-in random number f;!;enerator to simulate a radiation exposure

338 • 8. Using Arrays to Organize Infonnation

experiment. During the development of that application, we simply assumed that
the random number generator works as advertised-that is, that it produces
uniformly distributed real numbers over the range [0.0,1.0).

How can you be sure it works? Basically, the random number generators
found in programming languages are no more than algorithms that produce values
that appear to be random; an algorithm-based random number generator cannot
produce an infinite series of truly random numbers. A convincing statistical proof
of randomness is beyond the scope of this text. However, as an intuitively simple
test, you might devise this experiment. Convert 1000 uniformly distributed real
numbers in the range [0.0,1.0) to 1000 integers in the range [1,10]. Let the real
numbers in the range [0,0.1) correspond to an index of 1, those in the range
[0.1,0.2) to an index of 2, and so forth. If the real numbers are uniformly
distributed over the range [0.0,1.0), then each integer in the range [1,10] is equally
probable. Thus there should be, on the average, 100 ones, 100 twos, and so forth.

Write a program that implements this experiment and displays the results.

2 Outline a solution.

1. Create an array of size 10. Initialize all its elements to O.
2. Inside a loop, generate 1000 random integers in the range 1-10.
3. If the integer is a 1, increment the contents of array element 1 by 1. If the
integer is a 2, increment the contents of array element 2 by 1, and so forth.
4. When you're done, the array will contain the total number of ones, twos, and
so forth. The sum of the values in each element of the array will be 1000, and
there should be approximately 100 ones, 100 twos, and so forth. This array is
called a "count histogram." One such histogram is shown in Figure 8.2.

3 Design an algorithm.

This problem sounds more complicated than it actually is. The pseudocode
is very simple.

DEFINE (integer array (histogram) of size 10, loop counter, array_index)
INITIALIZE all array elements to 0
LOOP (counter = 1 to 1000)

ASSIGN array_index = random integer in range [1,10]
INCREMENT histogram(array_index) = histogram(array_index) + 1

END LOOP
WRITE (histoaram)

4

8.1 Arrays in Structured Programming • 339

Figure 8.2. Count histogram for checking random number
generator

Convert the algorithm into a program.

P-S.l [RANDTEST. F90]

PROGRAM RandTest

Generate count histogram from random number generator.
(Demonstrate 1-D arrays.)

IMPLICIT NONE
INTEGER A(0:9),i,index
INTEGER Count(l) ! for random number generator
REAL x

Initialize array.

A = 0

Generate count histogram.

CALL System_Clock(Count(l»
CALL Random_Seed(Put=Count)
DO 10 i=1,1000

CALL Random_Number(X)
index = INT(x*lO.)
A(index) = A(index) + 1

10 CONTINUE

340 • 8. Using Arrays to Organize Information

PRINT*,A
END

Running P-S.1

117 99 103 93 103 107 80 96 109 93

WWe will discuss P-S.1 in detail in the next section.

5 Verify the operation of the program.

You can verify that the sum of the values produced by the program is
1000-if it isn't, you made an error in the programming-but it isn't otherwise
easy to verify the operation of Fortran's random number generator except by
asking yourself if the results appear reasonable. This count histogram program
simply reports results without providing any indication of what they mean.

Even if you run P-S.1 many times, you will probably never find a case for
which the value of every element of A is equal to 100. If the contents of one or
more elements in your histogram array are consistently considerably greater or less
than 100, you might suspect a problem. However, such a problem would almost
certainly be within your source code rather than within the generator itself
because even a statistically poor random number generator can easily pass the
"test" we've devised here. A standard statistical test that can be applied to the
results from P-S.1 is presented in Exercise 17 at the end of this chapter.

8.2.2 Declaring Arrays

P-S.1 contains a great deal of information about using arrays in Fortran, and we
will discuss it in detail. First consider the declaration of an array data structure.
When variables associated with scalar values are declared, the only information
required is the data type. When an array is declared, both the data type of the
array elements-the contents of the array-and the number of elements-the size
and shape of the array-must be specified. There are several ways this can be
done in Fortran 90, but we will use only syntax forms in which the size and data
type of an array are specified in a sinJ:!:le statement:

8.1 Arrays in Structured Programming • 341

data_type name(spec) [,name(spec)] . ..
data_type, DIMENSION(spec) [,name(spec)] . .. :: name[,name] .. .
where (spec) is (low:high[,low:high] ...) or (size[,size] .. .)]

Examples:
REAL A(O:9) .
INTEGER B(lO,3,2),C(-2:2,3,O:99)
REAL, DIMENSION(lO,20) :: x,y

INTEGER, PARAMETER :: nl=-5,n2=5,n3=lO
REAL C(nl:n2),D(n3)

Names for arrays are subject to the same rules as other Fortran variables. A size
specifier (spec) gives the lower and upper bounds for each array index or
simply the size of a one-dimensional array, in which case the lower index is 1 by
default. These index boundaries must be of type INTEGER; they can be either
integer constants or named values declared as INTEGER and given the
PARAMETER attribute. (This is another way of saying that only integers can serve
as array indices.) A statement assigning the PARAMETER attribute must appear
before the statement requiring the values.

The data_type specifier refers to the contents of the array, not its
indices; arrays can contain values of any data type, including INTEGER and REAL
numbers, CHARACTERs, and LOGICALs.

A simple specification for a one-dimensional array is REAL A (50). This
means that the array named A contains 50 elements of type REAL and that these
50 elements are accessedtbrough the INTEGER array indices 1-50. In P-S.1, the
size specifier is given as 0: 9. This is an array with 10 elements (that is, with
extent 10), accessed with indices 0-9 rather than 1-10. Why? Because the
statement in P-S.l that generates the index (printed in bold italics) produces
integer values in the range [0,9] rather than [1,10]. This is a programming detail
that need not affect your algorithm design.

Negative array indices are also allowed. An array with the specifier
(- 5 : 5) has size (extent) 11, and not 10, because the element with an index of
o is included. As noted above, arrays may contain up to seven dimensions. Each
dimension requires its own size specifier.

Programming Tip
In programs written in earlier versions of Fortran, you will see the rank

and size of an array declared in a separate statement using the DIMENSION
keyword. If the array is explicitly typed, that declaration will be in a previous
statement. Hence the array specification REAL A (0 : 9) could also be given as

342 • 8. Using Arrays to Organize Information

REAL A
DIMENSION A(O:9)

However, there is no reason to use this syntax form in Fortran 90.

The arrays we have described are
statically allocated arrays. This means that once
their size is set as part of their declaration, that

statically allocated arrays I
size cannot be changed while the program is running. Consequently, you must
know ahead of time-while you're writing your source code-the maximum
number of array elements your program will need. If you allocate more space than
you need, the extra space is, in some sense, "wasted." The total amount of array
space available to a program is limited by your Fortran compiler and, ultimately,
by your computer's resources. However, this is rarely a problem in practice and
will never be a problem for the programs discussed in this text.

If you try to access array elements beyond the declared boundaries, your
program should crash.3 It might also print an informative message, although
Fortran compilers may not be as helpful in this situation as some other
programming environments are.

Here is another important point about arrays. It should be clear from the
syntax of array definitions that

I Every element in an array must contain the same kind of value.

If an array is declared as type INTEGER, then all its elements must contain
integers. If the array has more than one dimension, the elements in all dimensions
must have the same data type. In Section 8.6, we will discuss a way to circumvent
this restriction by defining a new kind of data type that can be used as an element
in an array. It will then be possible to define an array the elements of which all
have this user-defined data type. This will meet the restriction that each element
of an array must hold the same data type, while allowing the user-defined data
type to hold several different kinds of values.

8.2.3 Assigning Values to Arrays

After arrays have been declared, they need to be given values in your program.
There are several ways to accomplish this important task.

3 Author's note: I use the word "should" rather than "will" because of a general wariness
that results from observing significant differences in the way compilers and other languages
respond to array references beyond the defined boundaries. Tests for array boundary violations
aren't made in C, for example.

8.1 Arrays in Structured Programming • 343

Assigning a value to an entire array or part of an array

Here is an executable statement that assigns a single value to every element in an
array:

X=l7.7

This statement sets every element of the apparently REAL array X to a value of
17.7, regardless of the size or dimension of X. Although this statement looks like
a simple assignment of a number to a scalar variable, your compiler "knows" that
X is an array because of its data declaration. Consequently, you can think of this
statement as a kind of implied DO. . . statement that initializes all the elements
of X. This is a very useful way of manipulating the contents of arrays, which did
not exist in older versions of Fortran.

It's also possible to assign the same value to just some of the elements in
an array. The statements

REAL x(-lO,lO)

X(-4:4)=O.

result in a value of 0 being assigned to the nine elements from X (- 4) through
X (4). This can be tricky with multidimensional arrays. The statements

REAL Z(lO,lO)

Z(l,l:3)=1.
Z(:,l)=1.
Z(2,l:lO:2)=O.

are all possible. Assume that the fIrst dimension represents rows and the second
represents columns. In the fIrst assignment, columns 1-3 of row 1 are assigned a
value of 1. In the second, the entire fIrst column is assigned a value of 1. In the
third example, the : 2 in the specifIcation means that every second column of row
2, starting with the fIrst, that is, columns 1, 3, 5, 7, and 9, is assigned a value of
O. These "shorthand" means of assigning array elements may sometimes be
convenient, but they are never required. When you use this kind of syntax in your
own programs, be sure to test the code thoroughly!4

"There are, in fact, even more "shorthand" ways to assign values to subsections of arrays.
If you're interested, consult a Fortran 90 language reference manual such as the one referenced in
the Preface to this text.

344 • 8. Using Arrays to Organize Infonnation

Assigning array elements with count-controlled loops

Consider a one-dimensional array A (- 5 : 5), all of whose elements need to be
assigned a value of zero. Based on the previous subsection, all that is required is
the statement A=O. However, it is also possible to construct an explicit DO ...

loop:

DO i=-S,S
A(i)=O.

END DO

If the array is multidimensional, use nested loops. For B (:2 , 3 , 4) ,

DO i=1,2
DO j=1,3

DO k=1,4
B(i,j,k)=O.

END DO
END DO

END DO

Array elements are referenced by following the array name with the array index
or indices enclosed in parentheses. The index references may be integer constants
or variables, or expressions or functions that return integer values.

For the purpose of simply assigning values to all or some of an array's
elements, there is little justification for writing explicit loops. However, you will
often see such loops in programs written in older versions of Fortran, which
provided no alternatives.

Assigning values to individual array elements

You can assign values to individual array elements. Assuming appropriate type
declarations, these are typical assignments:

B(l,l,l)=B(l,l,l)+B(O,l,l)
A(3)=B(1,1,1)

Remember that individual array elements are treated just like scalar variables.
That's why it's OK to assign an element of one array to an element of another
regardless of whether the two arrays have the same rank and extent(s). However,
the same caveats about mixed-mode expressions and type conversions that apply
to assignments involving scalar variables (for example, assigning a REAL value
to an INTEGER variable) also apply to assignments involving array elements.
Therefore, you should avoid mixed-mode expressions involving: array elements.

8.1 Arrays in Structured Programming • 345

Using a DATA statement to initialize arrays

If an array must be initialized at the beginning of a program, the DATA statement
provides a convenient method. Syntax forms of the DATA statement suitable for
initializing arrays are

DATA (name(i),i=nl,n2)/constant[,constant] ... /
DATA (name(i),i=nl,n2)/n*constant/
DATA name/n*constant/
DATA name(element) [,name(element)]/constant[,constant] . .. /
DATA name(element) [,name(element)]/n*constant/

Examples:
INTEGER i,j
REAL A(10),B(11:20),C(0:9,0:19)
INTEGER D(10)
DATA A/10*1./,(B(i),i=11,15)/5*0./,(B(i),i=16,20)/5*-1./
DATA «C(i,j),i=0,9),j=0,9)/-1./
DATA D(1),D(3),D(5),D(7),D(9)/1,2,3*3/

The integers nl and n2 refer to the ftrst and last elements to be initialized in
name, and n is a repetition value no greater than the total number of elements in
the array to which it refers. The values n, nl, and n2 can be either integer
constants or values given the PARAMETER attribute prior to their use. As the
examples imply, it's not necessary to initialize the entire array to the same value,
or even at all, although that is usually what you would wish to do. These forms
of the DATA statement can be intermixed with forms used to assign constant
values to scalar variables.

The frrst two DATA statement syntax forms use an implied DO •.. loop,
as discussed in Chapter 6. The DATA statement for a REAL array A,

DATA (A(i),i=1,5)/0./

may appear equivalent to the statement A=Q or the explicit DO •.. statement,

DO i=1,5
A(i)=O.

END DO

However, the difference-and it's a very important one-is that the DATA

statement is nonexecutable and can appear only at the beginning of your program.
That is, the DATA statement can't be used to reinitialize an array later in your
program.5

5This is an especially important point to remember if you use a DATA statement in a
function or procedure, as discussed in Chapter Seven.

346 • 8. Using Arrays to Organize Information

Implied DO... loops in DATA statements can be nested. For an
appropriately declared two-dimensional array with a size specifier of at least
(1 : 10 I 1 : 5) , this is a perfectly reasonable statement by which to initialize the
INTEGER array A:

DATA «A(i,j),j=1,10),i~1,5)/50*10/

The third syntax form of the DATA statement indicates that it is possible
to initialize an entire array without using an implied DO. . . loop and without
specifically referring to each array element. This applies to multidimensional
arrays as well as one-dimensional arrays. Here's an example:

REAL A(O:4:0:9)
DATA A/50*O./

The REAL array A has 50 elements altogether, and it's not necessary to know the
order in which these elements are stored to initialize them all to zero.

Using elemental intrinsic functions

Another important Fortran 90 innovation allows many
Fortran intrinsic functions to be called with arrays as
arguments. In fact, all the mathematical functions

elemental functions I
listed in Table 4.1 are elemental junctions that will accept either scalar or array
arguments of the appropriate data type and will return identically typed and sized
arrays as output. For example, the statement

B=SIN(A)

is valid regardless of whether A and B are scalar variables or arrays. If A and B

are arrays, they must have the same size. Program P-8.2 uses elemental functions
to calculate "vectors" of sines and cosines.

8.1 Arrays in Structured Programming • 347

P-S.2 [SINCOS. F90]

PROGRAM SinCos

Illustrate the use of elemental functions for array assignments.

IMPLICIT NONE
REAL X(0:18),Y(0:18),Z(0:18),pi
INTEGER i

pi=4.*ATAN(1.)

Create array of angles ...
DO i=O,18

X(i)=5.*REAL(i)*pi/180.
END DO

Calculate trig functions for entire array ...
Y=SIN(X)
Z=COS(X)

PRINT 1000,(i*5,Y(i),Z(i),i=O,18)
1000 FORMAT(lx,i3,2f6.3)

END

Running P-S.2

0 0.000 1. 000
5 0.087 0.996

10 0.174 0.985
15 0.259 0.966
20 0.342 0.940
2S 0.423 0.906
30 0.500 0.866
35 0.574 0.819
40 0.643 0.766
45 0.107 0.101
50 0.766 0.643
55 0.819 0.514
60 0.866 0.500
65 0.906 0.423
70 0.940 0.342
15 0.966 0.259
80 0.985 0.174
85 0.996 0.081
90 1. 000 0.000

Remember that angles must be converted to radians before you can use Fortran
trigonometric functions. The code

DO i=O,18
X(i)=5.*REAL(i)*pi/180.

END DO
Y=SIN(X)
Z=COS(X)

348 • 8. Using Arrays to Organize Infonnation

is equivalent to

DO i=0,18
X(i)=5.*REAL(i)*pi/180.
Y(i)=SIN(X(i»
Z(i)=COS(X(i»

END DO

The statement that assigns values to X could be written as

X(i)=5*i*pi/180.

but using a specific type conversion is better programming style.

8.2.4 Displaying the Contents of Arrays (Implied DO ... Loops)

There are several ways to display the contents of arrays. The simplest and least
flexible is simply to PRINT or WRITE the array. If A and B are arrays,

PRINT *,A
WRITE(*,*)B

will display the entire contents of the A and B arrays, one element at a time. This
is perfectly straightforward if A and B are one-dimensional arrays. However, the
results are not so obvious when A and B are multidimensional arrays because the
order in which elements of multidimensional arrays are stored isn't obvious.
Consider P-8.3, the only purpose of which is to demonstrate how array elements
are stored.

P-8.3 [ROWCOL. F90]

PROGRAM row col

IMPLICIT NONE
INTEGER B(3,4),row,co1

DO row=1,3
DO col=1,4

B(row,co1)=row*10+co1
END DO

END DO
PRINT 1000, «B(rOw,co1),co1=1,4),row=1,3)
PRINT *
PRINT *,B

1000 FORMAT(lx,4i4)
END

Running P-8.3

11 12 13 14
21 22 23 24
31 32 33 34

8.1 Arrays in Structured Programming • 349

11 21 31 12 22 32 13 23 33 14 24 34

The two dimensions of B are associated with rows and columns in a table. The
assignments in the nested DO. . . loop produce the values shown in the first three
lines of output. The value 34, for example, is in column four of the third row. In
the PRINT 1000 statement, B is printed row by row by using a nested implied
DO. . . loop. This implied DO. . . loop displays the contents of B in the same
order in which the contents were created, with columns in the inner loop and rows
in the outer loop. Because an array can have a maximum dimension of seven,
implied DO. . . loops can be nested seven levels deep.

What happens when the B array is printed in the statement PRINT *, B?
In this case, the programmer no longer exerts control over how the array elements
are printed. Instead the values are printed in the order in which they are stored in
memory, which is column by column and not row by row.

What you can learn by generalizing the output from P-8.3 is that in a two
dimensional array where the first index is thought of as specifying a row and the
second index as specifying a column, the array is stored not row by row, but
column by column; that is, row 1, column 1 is stored first, row 2, column 1 is
stored second, etc. The association of dimensions in a two-dimensional array with
"rows" and "columns" is artificial, of course. It could just as well be the other
way around, but in either case Fortran doesn't care. When you declare indices for
arrays, it's up to you to assign meaningful names and use them properly in a
program.

To generalize to arrays of higher rank, values associated with cycling the
leftmost dimension of multidimensional arrays are contiguous in memory. A three
dimensional array A declared as A (i , j , k) is stored like this:

A(1,1,1)S>A(1,2,1)S> o °S>A(1,j , 1)S>A(1,1,2)S> o °S>A(l,j,k)
A(2,1, 1) A(2 , 2 , 1) A(2,j,1) A(2 , 1,2) A(2 , j , k)
.
A(i,l,l) A(i,2,1) A(i,j,l) A(i,1, 2) A(i , j,k)

One way to remember how elements are stored is to think of an automobile
odometer. The way array elements cycle when they're displayed in their stored
order is the opposite order from the way the ones, tens, and hundreds mileage
indicators cycle; that is, the elements cycle from left to right rather than from right
to left.

Because of the frequency with which two-dimensional arrays are used in
programs to represent tables in a row-and-column format, it is often inconvenient
to display them in their "natural" column-wise order. With arrays of more than

350 • 8. Using Arrays to Organize Infonnation

two dimensions, you will almost always want to exert direct program control over
the order in which the elements are displayed. (Alternatively, you can defme the
array indices so they will naturally print in the desired order.) In any case, your
code will usualiy be easier to understand if you use DO ... loops (either explicit
or implied) to control the display of arrays.

A fmal point of interest in P-S.3 is the FORMAT statement. The 4i4
fonnat specifier always displays four numbers per row of output. The PRINT
statement keeps "reusing" this fonnat as long as there are values left to print. This
fonnat was chosen to display this particular table of values because the array was
considered as representing three rows of four columns each. Whether the row and
column values are actually displayed in their proper positions depends on how the
array elements are accessed, not on the fonnat specifier itself.

Study Tip
Create a program whose only purpose is to declare, define, and display

several arrays using the syntax presented so far in this chapter. Later on, if you're
having trouble with array syntax or are unsure whether a particular syntax will
work, try it in this test program.

8.2.5 Example: Monthly Ozone Summary

At the beginning of this chapter, we discussed the problem of managing a series
of ozone measurements. In this section, we will develop a program for storing and
manipulating one month of ozone data in a two-dimensional array.

1 Define the problem.

An ozone monitoring station stores a measurement every hour for one
month. Write a program that stores these data and calculates averages for each day
and for the monthly hourly average.

2 Outline a solution.

1. Read the data and store them in a two-dimensional array. Let the first index
represent up to 31 days and the second index hours 1 through 24.
2. For each day, calculate the daily average ozone value.
3. For each hour, calculate the monthly average ozone value at that hour.

8.1 Arrays in Structured Programming • 351

4. Display the ozone measurements with the daily average in the rightmost column
and the monthly hourly averages as an additional row at the bottom of the table.

The major difficulty for this problem is gaining access to the ozone
measurements. Such data would usually be read from an external data file, a
process we will discuss in detail in Chapter 9. For the present, we will simply
hardcode a subset of the data-five hours for each of three days-into a DATA
statement. This is an unacceptable way to provide data in general, but it will
suffice for the purpose of this program, which is to illustrate some interesting
Fortran 90 capabilities for processing arrays. We will return to a "full-size"
version of this problem in Chapter 9.

3 Design an algorithm.

Here is a loop-intensive algorithm design for this problem.

DEFINE (ozone array of real numbers, dimensioned 31x24;
daily and monthly hourly averages as real numbers;
number of hours in a day and days in a month as integers;
loop counters as integers)

READ (data into array)
(get daily averages ...)
LOOP (for days = 1 to number of days)

INITIALIZE daily_avg = 0
LOOP (for hours = 1 to number of hours)

INCREMENT daily_avg = daily_avg + ozone(day,hour)
END LOOP
ASSIGN daily_avg = daily_avglnumber of hours

END LOOP
(get monthly hourly averages ...)
LOOP (for hours = 1 to number of hours)

INITIALIZE hourly_avg = 0
LOOP (for days = 1 to number of days)

INCREMENT hourly_avg = hourly_avg + ozone(days,hours)
END LOOP
ASSIGN hourly_avg = hourly_avg/number of days

END LOOP

352 • 8. Using Arrays to Organize Information

4 Convert the algorithm into a program.

In earlier versions of Fortran, you would have to translate this algorithm
directly, with its explicit loop structures. However, because of Fortran 90's
advanced array management capabilities, the algorithm is trivial to implement!

P-8.4 [OZONE. F90]

PROGRAM OzoneData

File name OZONE.F90
Process monthly ozone data
(short version for 3 days with S hours in each day)

IMPLICIT NONE
REAL ozone(3l,24)
INTEGER n_hours,n_days,hours,days
DATA ozone(l,l:S)/3.2,3.3,3.1,2.9,3.4/, &

ozone(2,l:S)/2.9,2.8,2.7,3.0,4.0/, &
ozone(3,l:S)/2.8,2.6,2.S,2.9,3.1/, &
n_hours,n_days/S,3/

Get daily averages ...
PRINT 1010, «ozone(days,hours),hours=l,n_hours), &

SUM(ozone(days,l:n_hours»/n_hours,days=l,n_days)
Get hourly averages ...

PRINT 1020,
(SUM(ozone(l:n_days,hours»/n_days,hours=l,n_hours)

1010 FORMAT(lx,SfS.1,fS.2)
1020 FORMAT(lx,SfS . 2)

END

Running P-8.4

3.2 3.3 3.1 2.9 3.4
2.9 2.8 2.7 3.0 4.0
2.8 2.6 2.S 2.9 3.1

2.97 2.90 2.77 2.93 3.50

3.18
3.08
2.78

In P-8.4, it is apparent that the Fortran 90
function SUM has taken over the work of setting
up loops to accumulate components of the data

I array reduction function I
vector ozone. SUM is an example of an array reduction function that requires
an array as its input argument and returns a scalar value. The general syntax is:

SUM(array_name[(spec[,spec] .. .)]) I

8.3 Using Statically Allocated Arrays in Subprograms • 353

where spec has the same interpretation as it does for array declarations. That is,
it specifies the low and high limits on a range of array elements. When the name
of an array appears by itself, SUM returns the sum of all elements in the array.
When a range specifier is i...'1cluded, just the elements within the range are
summed. In P-8.4, the function call SUM (ozone (days 11: n_hours))
calculates the sum of elements 1 through n_hours for the current value of days
in the implied DO. . . loop. This and several other array reduction functions are
described in more detail in Chapter 12.

5 Verify the operation of the program.

The advantage of working with a small subset of an entire month's worth
of data is that you can check the calculations by hand with a calculator.

Problem Discussion
The availability of "high-level" array functions such as SUM in Fortran 90

suggests that detailed pseudocode can be abandoned for these kinds of operations.
It isn't necessary to do so, but it is certainly reasonable and often allows both the
pseudocode and the resulting source code to be significantly shorter than they
would otherwise be.

In P-8.4, no separate variables are set aside for the daily and monthly
hourly averages. Instead the averages are calculated and printed "on the fly" with
the aid of implied DO ... loops in the PRINT statements. In some other context,
it might be desirable to save these values. One way to do this would be to expand
the array declaration to 32x25. Then the 25th column could hold the daily averages
and the 32nd row could hold the monthly hourly averages.

8.3 Using Statically Allocated Arrays in Subprograms

As you should recall from the discussion earlier in this chapter,
arrays are statically allocated. That is, the amount of space reserved
for an array is set when it is defined in the block of nonexecutable

matrix I
statements at the beginning of a (sub)program. It is often the case that although
the data type and rank of an array are known when a program is being written, the
required number of elements is not. For example, you might know that a one
dimensional array will hold measurements of a physical quantity, so the elements
of the array should be REAL numbers, but you don't know how many
measurements there will be. To put this situation in programming jargon, you
know the rank and data type of the array at "compile time," but you would like

354 • 8. Using Arrays to Organize Infonnation

to be able to defer the sizing of the array until "run time." With statically declared
arrays, you can't do this. Instead you have to declare the array in your main
program with the maximum number of elements your program will need.

Another typical example might be a program that includes a subroutine to
perform an operation on two vectors. At the time the program is written, you
know that the vectors will be represented by one-dimensional arrays of real
numbers. However, you won't know ahead of time how many components the
vectors will have.

A static array solution to this kind of problem is to declare one
dimensional arrays in your main program so that they will accommodate the
largest number of components you will ever need to use with the program.
However, what happens in subprograms? How do they "know" when the actual
number of elements used in an array is less than the declared size? Must
subprograms be rewritten if the maximum array size changes? No, because Fortran
allows you to declare arrays.in subprograms with variable dimensions, using a
symbolic representation for the actual number of array elements to be used by the
subprogram. The values containing this information will be calculated by the
calling (sub}program and passed to the subprogram through its parameter list.

Here is a problem that illustrates this approach.

1 Define the problem.

In mathematics, a "set" describes a nonordered collection of "things" on
which certain operations can be performed. The "union" of two sets A and B is
a new set that contains every element that appears in either A or B. The
"intersection" of two sets A and B is a new set that contains every element that
appears in both A and B. We can represent sets as arrays for the purpose of
forming the union and intersection. We will further specify that the sets
represented by the arrays are "proper sets" (to use the mathematical terminology),
which means that no duplicate values are allowed in either the initial or the result
sets.

Consider these sets:

A = {1,5,9,3}
B = {5,3,8}

(Note that the values do not have to be in any particular order, and there is no
requirement that the sets must contain the same number of values.) The union of
A and B, AuB, is {1,3,5,8,9}. The intersection of A and B, AnB, is {3,5}.

Clearly, this is a calculation for which the size of the resulting array
cannot, in general, be determined ahead of time (that is, at "code writing" time).

8.1 Arrays in Structured Programming • 355

The maximum number of elements required for AuB is the sum of the number
of elements in A and B. The maximum number for AnB is the number of
elements in the smaller of the two sets.

Write a subroutine th~! returns as output the union of two sets A and B
and the number of elements in the union. (Writing a subroutine that returns the
intersection is left as an end-of-chapter exercise.)

2 Outline a solution.

1. Specify the maximum size for each of the "input" arrays: that is, the maximum
number of members in each set. Specify the maximum size of the "output" array
as the sum of the sizes of the two input arrays.
2. Define a subprogram that includes in its parameter list the names of the arrays
and the actual number of members in the set each array represents; these values
must be no greater than the maximum declared sizes. Provide the total number of
members in the intersection set as output from the subprogram.
3. Initialize the array representing the intersection set to some value that will
never be found in either of the input sets. For this program, assume that the
members of the set will be non-negative integers, so the intersection array can be
initalized to any negative number.
4. Suppose the first n_A elements of the array A contains values representing
members of one of the input sets. Set the first n_A elements of the output array
C to these values because the intersection set will contain at least these values.
5. For each element of the array representing members of the second input set,
check to see if that value is also present in the first input set. If it is, don't add it
to the intersection set (because the intersection can't contain duplicate values). If
it isn't present, add it to the intersection set.

3 Design an algorithm.

This algorithm requires a great deal of care to assign elements properly in
the array holding the intersection of the two input sets.

DEFINE (Arrays A, B, and C as arrays of integers with sizes n_A, n_B,
and n_C = n_A + n_B. n_set as an integer holding the numer of
elements in the intersection set represented by C.)

ASSIGN (values to n_A and n_B)
ASSIGN (values to A(1 :n_A) and B(1 :n_B))
CALL Union(IN: A and B; OUT C and n_set)
WRITE (n set and al/ values of C)

356 • 8. Using Arrays to Organize Infonnation

SUBPROGRAM Union(lN: Arrays A, B, n_A, n_B, n_C; OUT: C, n_set}
DEFINE (local variables: i, j as loop counters; "add" as boolean)
INITIALIZE C = -1 (a value that won't be found in either set)
ASSIGN C(1 :;;_A} = A (The intersection will contain at least these values.)
LOOP (for i = 1 to n_B) (Search through B ...)

ASSIGN add = true
INITIALIZE j = 1
LOOP (while j <= n_A) and (add is true)

IF B(i) = A(j} THEN ASSIGN add = false (Looking for
duplicates ...)

INCREMENT j = j + 1
END LOOP

IF (add is true) THEN (add new values if not duplicates ...
INCREMENT n_set = TLset + 1 (Increment union counter.)
ASSIGN CCn_set} = B(i)

(end IF ...)
END LOOP

END LOOP
(end subprogram)

4 Convert the algorithm into a program.

P-8.5 [UNION1. F9 0]

MODULE SetStuff

CONTAINS
!--

SUBROUTINE Union(A,B,C,n_A,n_B,n_C,n_set)
IMPLICIT NONE
INTEGER, INTENT(IN) :: n_A,n_B,n_C
INTEGER, INTENT (OUT) :: n_set
INTEGER, INTENT(IN) :: A (D.-A) ,B(n_B)
INTEGER, INTENT(OUT) :: C(n_C)
INTEGER i,j
LOGICAL add

C=-l !Initialize union "set" to negative value.
C(l:n_A)=A !Now set union to A ...
n_set=n_A land initialize union counter to # values in A.
DO i=l,n_B !Search through B ...

add=.TRUE.
j=l
DO WHILE «j <= n_A) .AND. (add»

IF (B(i) == A(j» add=.FALSE. !looking for duplicates ...
j=j+1

RlITn nn

8.1 Arrays in Structured Programming • 357

IF (add) THEN !add new values if not duplicates ...
n_set=n_set+l !increment union counter.
C(j)=B(i)

END IF
END DO
END SUBROUTINE Union

!-------------------------
END MODULE SetStuff

!========================

PROGRAM UnionDemo

Calculate union of two proper sets stored in arrays.

USE SetStuff, ONLY: Union
IMPLICIT NONE
INTEGER A(IO),B(IO),C(20)
INTEGER n_A,n_B,n_C,n_set,i

n_A=4
n_B=3
n C=n_A+n_B

A=(/1,S,9,3,O,O,O,O,O,O/)
B=(/S,3,8,O,O,O,O,O,O,O/)
CALL Union(A,B,C,n_A,n_B,n_C,n_set)
PRINT *,' Elements in A: ',A
PRINT *,' Elements in B: ',B
PRINT *,' Elements in union: ',n_set
PRINT *, (C(i),i=l,n_C)

END

Running P-8.5

Elements in A: 1 5 9 3 0 ° 0 0 0 0
Elements in B: 5 3 8 0 0 0 0 0 0 0
Elements in union: 5

1 5 9 3 8 -1 -1

5 Verify the operation of the program.

You can verify the results with these small sets by inspection. However,
you should also test the program with other sets of values, including sets that have
no members in common and identical sets. Will you allow empty sets? If not, how
will you exclude them?

358 • 8. Using Arrays to Organize Information

Problem Discussion
The statements involving the array declarations in the main program and

subroutine are printed in bold italics. In the main program, arrays A and B are
declared with 10 elements accessed by indices 1 through 10. Because it is possible
that array C will need to contain all the elements of A and B, it is declared with
20 elements. However, within the program, the actual numbers of values used are
assigned values of 4 and 3 for the A and B arrays. This information is passed
through the argument list when SUBROUTINE Union is called from the main
program. The array holding the union is initialized to a value of -1.

How does SUBROUTINE Union make use of the automatic array I
information passed to it from the main program? In the
subroutine's declaration statements, the sizes of the arrays
appearing in the parameter list are represented symbolically by the parameters
n_A, n_B, and n_C, which appear in the parameter list and have already been
declared as integers. Thus, the subroutine does not need to know at "code writing"
time (or, more officially, at compile time) what the size of the arrays eventually
will be. This fact is critical for making efficient use of modularized code. Arrays
defined this way, with variable dimensions, are sometimes called automatic
arrays.

It's important to realize that arrays associated with names in a subroutine's
parameter list don't require a new allocation of space by the compiler. Rather, the
fact that the array names appear in the parameter list means that the subroutine
can use some or all of the space originally allocated in the calling program. Thus,
it is not allowed to pass as an argument a value for a parameter appearing in an
array declaration statement that is larger than the originally allocated size. In
P-8.5, this means that values corresponding to n_A, n_B, and n_C can have
values no larger than 10, 10, and 20.

8.4 Allocatable Arrays

In Fortran 90, there is another solution to the problem of I allocatable arrays I
writing programs that include arrays whose size is
unknown until run time; that is, until the program is
executing. That solution is to use allocatable arrays instead of statically allocated
arrays. To illustrate their use, we will rewrite the main program of P-8.5 with
minor modifications. The MODULE in P-8.6 is the same as in P-8.5, so the code
isn't reprinted. (The fact that the MODULE doesn't have to be rewritten is, in itself,
significant.) The program output is the same, too, so that won't be reprinted
p:ithp:r

8.4 Allocatable Arrays • 359

P-8.6 [UNION2. F90]

Put MODULE SetStuff here ...
PROGRAM UnionDemo !allocatable array version

Calculate union of two proper sets stored in arrays.

USE SetStuff, ONLY: Union
IMPLICIT NONE
INTEGER, ALLOCATABLE :: A(:),B(:),C(:)
INTEGER n_A,n_B,n_C,n_set

n_A=4
n_B=3
n_C=n_A+n B
ALLOCATE(A(n_A),B(n_B),C(n_C))

A=(/l,5,9,3/)
B=(/5,3,B/)

CALL Union(A,B,C,n_A,n_B,n_C,n_set)
PRINT *,' Elements in A: ',A
PRINT *,' Elements in B: ',B
PRINT *,' Elements in union: ',n_set
PRINT *,C

END

The difference between P-8.5 and P-8.6 is in the array declarations. The
relevant statements are printed in bold italics. In P-8.6, the statement

INTEGER, DIMENSION(:), ALLOCATABLE:: A,B,C

defmes the arrays A I B I and C as allocatable arrays. The general syntax
(assuming use of the IMPLICIT NONE statement) is

data_type, ALLOCATABLE .. name(: [, :])[,name(: [, :])] ...

Once an array has been given the ALLOCATABLE attribute, it can't be
used until its size has been specified in an ALLOCATE statement. The general
syntax of the ALLOCATE statement is

ALLOCATE(name(spec) [,name(spec)] . .. [,STAT=status])

where (spec) has the syntax ([lo:]hi) and
status is an integer variable

360 • 8. Using Arrays to Organize Information

When the STAT= option is present, the variable status is given a value of 0
if the allocation is successful or a positive value if it isn't. The common reason
for an unsuccessful allocation is insufficient memory space for the array. If
STAT= isn't present and an allocation can't be executed successfully, your
program will crash. Only the size (extent) of an array can be defmed with an
ALLOCATE statement. The rank (dimension) of the array is set (permanently) in
the ALLOCATABLE statement. That is, the rank of an array is set at "compile
time," but its size is set at "run time."

The specifiers A (:), B (:), and C (:) in the array declaration statement
in P-S.6 defme arrays A, B, and C as one-dimensional arrays of undetermined size.
A few lines later, the statement

(also printed in bold italics) defines the size of the arrays. The allocation could
also be done in separate statements:

ALLOCATE(A(n_A»
ALLOCATE(B(n~»
ALLOCATE(C(n_C»

In P-S.6, the values of n_A, n_B, and n_C come from an assignment statement,
but they could also come from a DATA statement, a PARAMETER, a constant, or
an integer-valued expression. The point, though, is that in a "real" problem, the
array sizes are provided by the program user at the time the program is executing.
So it doesn't make much sense to get this value from a PARAMETER statement
because, by defmition, such a value can't be changed while the program is
running.

The purpose of these discussions has been to show how to pass variably
sized arrays to subprograms. What has been gained by using allocatable arrays?
For the problem solved in P-S.5 and P-S.6, the answer is, "Not much." However,
this is only because the arrays are one-dimensional. To understand this conclusion,
which certainly isn't obvious, here is another problem that involves rank two (two
dimensional) arrays.

1 Define the problem.

Given a matrix A, write a subroutine that replaces each element of A with
the square of that element. For example, if the oriJl;inal matrix is

8.4 Allocatable Arrays • 361

I 3.3
A =

2.9

4.7 5.4

1.7 0.6

then the new matrix would be

A = I 10.89 22.09 29.16 I
8.41 2.89 0.36

The subroutine shouldn't be restricted just to 2x3 matrices.

2 Outline a solution.

This is a conceptually simple problem that requires only two steps to solve.
1. Define a two-dimensional array for the matrix.
2. Multiply each element of the matrix by itself and replace the original value with
this new value.

3 Design an algorithm.

The algorithm design seems straightforward. First, write a driver program
to test the subroutine. Because the subroutine can't be restricted to 2x3 matrices,
we will declare the two-dimensional array as 5x5.

DEFINE (5x5 array A of real numbers;
row and col counters for printing row-by-row)

INITIALIZE all elements of A to 0
ASSIGN values to first three columns in the first two rows
WRITE (original values in A)
CALL GetSquare(A, n_rows, n_cols)
WRITE (new values in A)

SUBPROGRAM GetSquare(lNIOUT: A; IN: n_rows, n_cols)
DEFINE (A locally as n_rows x n_cols; rand c as counters for printing A)
WRITE (A, row-by-row)
ASSIGN each element of A equal to original element squared
(end GetSauare)

362 • 8. Using Arrays to Organize Infonnation

4 Convert the algorithm into a program.

The code to implement this algorithm, given in P-S.7, is even easier than
you think. Because operators can be applied to arrays as "whole objects," the code
to square all the elements in an array A can be written simply as

A=A*A

Clearly, this means that you don't really need a subroutine for this array operation.
However, we will still write a subroutine to demonstrate an important point about
passing multidimensional arrays through the parameter list of a subprogram.

P-S.7 [MAT_SQ1. F90]

MODULE MatrixStuff
!-----------------------

CONTAINS
!------------------------------------

SUBROUTINE GetSquare(A,row,col)
IMPLICIT NONE
INTEGER row,col,r,c
REAL A(row,col)

PRINT *, 'from GetSquare ... '
DO r=l,row

PRINT *,(A(r,c),c=l,col)
END DO
A=A*A
END SUBROUTINE GetSquare

!-----------------------------
END MODULE MatrixStuff

!===========================
PROGRAM Mat_sql

USE MatrixStuff, ONLY: GetSquare
IMPLICIT NONE
REAL, ALLOCATABLE :: A(:,:)
INTEGER row, col

ALLOCATE(A(2,3))
A=RESHAPE((/3.3,2.9,4.7,1.7,5.4,0.6/), (/2,3/))
DO row=l,2

PRINT *,(A(row,col),col=l,3)
END DO
CALL GetSquare(A,2,3)
PRINT *
DO row=l,2

PRINT *,(A(row,col),col=l,3)
END DO

RNn

Running P-S.7

3.300000
2.900000

4.700000
1.700000

from GetSquare ...
3.300000 4.700000
2.900000 1.700000

10.889999
8.410001

22.089998
2.890000

5.400000
0.600000

5.400000
0.600000

29.160002
0.360000

5 Verify the operation of the program.

8.4 Allocatable Arrays • 363

The results should be checked by hand using the values coded in the main
program.

P-S.7 uses an allocatable array so that the size of A can be set at run time
rather than compile time. The two statements required to do this (printed in bold
italics) are

REAL, ALLOCATABLE A (: , :)

ALLOCATE(A(2,3»

Why are allocatable arrays preferred over statically allocated arrays for the
problem addressed in P-S.7? In general, what can we learn from P-S.7 about the
kinds of programming problems that lend themselves to the use of allocatable
rather than statically declared arrays?

Suppose P-S.7 is modified to use static arrays. This involves changes only
in the main program, as shown in P-S.7(a).

P-S.7(a) [MAT_SQ2. F90]

MODULE MatrixStuff
!-----------------------

CONTAINS
!--------------------------------

SUBROUTINE GetSquare(A,row,col)
IMPLICIT NONE
INTEGER row,col,r,c
REAL A(row,col)

PRINT*, 'from GetSquare ...
DO r=l,row

PRINT *, (A(r,c),c=l,col)
END DO
A=A*A

END SUBROUTINE GetSouare

364 • 8. Using Arrays to Organize Information

!-----------------------------
END MODULE MatrixStuff

!===========================
PROGRAM Mat_Sq2

THIS PROGRAM WILL NOT WORK PROPERLY!!

USE MatrixStuff, ONLY : GetSquare
IMPLICIT NONE
REAL A(5,5)
INTEGER row, col
DATA A/25*0/

A(l,l)=3.3
A(l,2)=4.7
A(l,3)=5.4
A(2,l)=2.9
A(2,2)=1. 7
A(2,3)=0 . 6
DO row=1,2

PRINT *,(A(row,col),col=1,3)
END DO
CALL GetSquare(A,2,3)
PRINT *
DO row=1,2

PRINT *,(A(row,col),col=1,3)
END DO

END

Running P-S.7(a) (NOTE: These values are wrong!)

3.3000000 4.6999998 5.4000001
2.9000001 1.7000000 0.6000000

from GetSq ...
3.3000000 O.OOOOOOOE+OO O.OOOOOOOE+OO
2.9000001 O.OOOOOOOE+OO 4.6999998

10.8899994 22.0899982
8.4100008 1.7000000

5.4000001
0.6000000

The ALLOCATABLE and ALLOCATE statements have been removed, and the array
is statically defined as 5x5; that is, with a maximum of five rows and five
columns.

You may be surprised to see that P-S.7(a) runs without error, but as is
clear from the program output, it does not produce the correct answers! This code
represents a common and very serious programming error, and it is important to
understand it. The problem lies in the way statically declared arrays are interpreted
when they are passed to subprograms as variably dimensioned arrays.

In the main program of P-S.7(a), a statically declared array of five rows
and five columns has set aside 5x5=25 locations. The entire array is initialized to

8.4 Allocatable Arrays • 365

zero in the DATA statement. Later, when values are assigned to the fIrst three
columns in the fIrst two rows, the array looks like this when it is printed row by
row:

3.3 4.7 5.4 0.0 0.0
2.9 1.7 0.6 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0

When the subroutine in P-S.7(a) is passed the values 2 and 3 for the
number of rows and columns, it accesses the space originally set aside for the 5x5
array defmed in the main program. However, it doesn't use the "upper lefthand
comer" of the array, as printed above in a row-by-row format. Instead, it uses the
fIrst six elements in the 25 locations that have been defIned in the main program
in the order in which those locations are stored internally. What is that order?
Two-dimensional arrays are stored column-wise rather than row-wise, so the
values for array A in the main program are stored in memory in this order:

Column 1 Column 2 Column 3 Column 4 Column 5

3.3 I~4.7 I~5.4 I~O.O I~O.O 2.9 1.7 0.6 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0

When the program asks the subroutine to use six values (2-3=6), it uses the first
six values, in the order in which they are stored in the original array. Based
on these values, the local array contains the following values, as PRINTed row
by-row inside GetSquare:

3.3 0.0 0.0
2.9 0.0 4.7

Obviously, these are not the intended values, so a subroutine that performs
operations on these values can't possibly work correctly.

What, in this case, is the result of the statement A=A*A? This statement
causes the fIrst six values in the original array to be multiplied by themselves.
Thus, the values 3.3, 2.9, 0.0, 0.0, 0.0, and 4.7 are squared, but the rest are
unchanged. The results are PRINTed from the main program, after the call to
GetSquare; the values 1.7 and 0.6 remain unchanged.

A different approach is required to produce the correct answer to this
programming problem in earlier versions of Fortran, which did not support
allocatable arrays. Variably dimensioned arrays with more than one dimension had
to be 2iven the maximum sizes for each dimension of the array as defIned in the

366 • 8. Using Arrays to Organize Information

main program. This required that both the maximum and "actual" array sizes be
passed to the subroutine. The required modifications are shown in P-S.7(b):

P-S.7(b) (fragment - see MAT_SQ3. F90)

SUBROUTINE GetSquare(A,row,col,maxrow,maxcol)
IMPLICIT NONE
INTEGER r,c
INTEGER, INTENT(IN) I: row,co~,mazrow,mazco~
REAL, INTENT(INOUT) :: A(mazrow,mazco~)

CALL GetSquare(A,2,3,5,5)

Note that the parameter list of GetSquare has been enlarged to include maxrow
and maxcol. This is a "pre-Fortran 90" solution only in the conceptual sense of
how it treats arrays in subroutines because it still uses Fortran 90 features such as
MODULEs and INTENTs. Similar modifications are required in MatrixPrint
as well.

The solution in P-S.7(b) still makes these kinds of general-purpose
subroutines portable from one program to another, but it is conceptually awkward
because it requires that both the maximum and actual array sizes appear in the
parameter list. Consequently (and this is the point of this entire protracted
discussion),

Allocatable arrays are the best choice whenever array sizes need to be
determined at run time rather than at compile time, prior to any statement
that needs to access the array elements.

It is not always possible to use allocatable arrays because it is sometimes
necessary to perform operations on arrays before their fmal size can be
determined. In that case, the approach used in P-S.7(b) can still be used.

Allocatable arrays provide an additional benefit that make them useful even
when they are not used to solve problems of passing variably sized arrays to
subprograms. It is possible to "re-use" allocated array names while a program is
running by deallocating the arrays and then reallocating them with different sizes.
The syntax of the DEALLOCATE statement is

IOEALLOCATE(name[,name] ...)

8.5 Treating Strings of Characters as Arrays of Characters • 367

Allocatable arrays are especially useful in programs that use large arrays.
Every Fortran implementation imposes a limit on the amount of memory available
for arrays, even though you may only rarely be aware of those limits. If the total
array space needed by a program exceeds this limit, it may be possible to arrange
the program so that the large arrays are needed sequentially, rather than all at
once. Then you can ALLOCATE and DEALLOCATE array space as needed. P-8.8
demonstrates how to allocate and deallocate arrays.

P-8.8 [ALLOCAT. F90]

PROGRAM Allocat

Demonstrate syntax for allocatable arrays.

IMPLICIT NONE
REAL, ALLOCATABLE
INTEGER i,j,n

n=2
ALLOCATE(A(n,2*n))
DO i=I,n

DO j=I,2*n
A(i,j)=i*j

END DO
END DO

A(: , :)

PRINT *,«A(i,j),j=I,2*n),i=I,n)
DEALLOCATE (A)
ALLOCATE(A(n,3*n))
DO i =I,n

DO j=I,3*n
A(i,j)=i*j

END DO
END DO
PRINT *,«A(i,j),j=I,3*n),i=I,n)

END

Running P-8.8

1.0000000
4.0000000

1.0000000
6.0000000
10.0000000

2 . 0000000
6.0000000

2.0000000
2.0000000
12.0000000

3.0000000
8.0000000

3.0000000
4.0000000

4.0000000

4.0000000
6.0000000

2.0000000

5.0000000
8.0000000

The statements that allocate, deallocate, and then reallocate the array A are printed
in hnln it::lli{'~ .

368 • 8. Using Arrays to Organize Infonnation

8.5 Treating Strings of Characters as Arrays of Characters

In Fortran, every character variable, regardless of whether it is a single character
or a "string" of characters, is given the CHARACTER data type. Table 4.2 in
Chapter 4 presented some functions for manipulating character strings. This
section will examine strings again in light of what you have learned about arrays.

You already know that for an array A containing numbers, n elements of
A can be accessed in sequence like this:

DO i=l,n
PRINT *,A{i)

END DO

Now suppose B is declared as a character variable. It is possible to access the
individual characters of B in this "array-like" fashion:

DO i=l,LEN_TRIM{B)
PRINT *,B{i:i)

END DO

The LEN_TRIM function (see Table 4.2 in Chapter 4) sets the upper limit on the
DO ... loop at what is usually the desired position in the B "array," the position
(numbered from the left) of the fIrst nonblank character, counting from the right.
That is, the DO. . . loop accesses the characters of B from left to right and ignores
the trailing blanks. (The LEN function provides access to the entire string, as
specifIed in its CHARACTER declaration, and specifIcally includes trailing blanks.)
For example, for the string I DAVID)'lS)'lS)'lS)'lS I, LEN returns a value of 9, but
LEN_TRIM returns a value of 5. Counting in from the right, the fIrst nonblank
character is D, which is in the fIfth position of the string.

In fact, it is possible to access any subset of a CHARACTER variable
(assuming that it contains more than one character) by using a (10: hi) notation
to specify the boundaries of the substring. The specifIers may be constants,
variables, or expressions.

Another "array-like" property of character strings becomes evident when
they are passed as parameters to subprograms. In the same way that arrays
appearing in parameter lists can have variable dimensions when they are declared
in a subroutine or function, so can character strings have variable length. Consider
the following code fragment:

CHARACTER*20 s

CALL Sub{s)

END !main program

SUBROUTINE Sub{s)
CHARACTER*(*) s

8.6 The TYPE Statement, Records, and Arrays of Records • 369

The declared length of the variable s in SUBROUTINE Sub is 20, its declared
length in the main program. The length doesn't have to appear as a variable in the
parameter list, as it would for an array, because the length of the string used in
the subprogram is obtained directly from the actual length of the string s that is
passed to the subprogram. This is true regardless of whether the corresponding
argument is a variable or a string constant. The CHARACTER* (*) syntax has
been used previously in Chapter 7's program P-7.10.

The CHARACTER* (*) can also be written CHARACTER ([LEN=] *), and
it can also appear in a main program in this context:

CHARACTER(*), PARAMETER:: 'This is a string constant.'

Here, also, the defined length of the string is determined by the actual length of
the string constant (26 characters).

8.6 The TYPE Statement, Records, and Arrays of Records

In the previous sections of this chapter, array elements have consisted of
Fortran implicit data types such as REAL or INTEGER numbers. However, the full
power of arrays is realized only when the definition of an array is expanded to
include elements that consist of user-defmed data structures.

In arrays as defmed previously, the elements of the arrays
can be thought of as entries in a table. Each position in the
table-an array element---contains one entry. All entries have the
same data type. Now consider a box of file cards. Suppose the file

I record I
field

contains information about suppliers of materials to your manufacturing facility.
Each card in the file contains the supplier's name, address, contact person,
telephone number, and up to three products that you obtain from that supplier.
Each card constitutes one record, and each record consists of seven fields. It
would be convenient to be able to define a data structure whose elements were
records, each of which could contain several values, rather than a single value.
These two kinds of data structures are illustrated in Figure 8.3.

This "file card" structure could be represented by five arrays of simple
variables:

CHARACTER narne(lOO)*20,address(lOO)*40,contact(lOO)*30
CHARACTER phone(lOO)*lS,product(lOO,3)*20

370 • 8. Using Arrays to Organize Information

An array containing
simple data types

An array containing
user-defined records

Record 1 ------------------,
value 1

value 2

value n

Supplier Name
Address
Contact
Product 1

Supplier Name
Address
Contact
Product 1

Phone
2 3

Record 2

Phone
2 3

Record n ----------------~
Supplier Name
Address
Contact
Product 1 2

Phone
3

Figure 8.3. Array structures containing simple data types and user-defined
records.

Because the data declaration for each product name is the
same, the product names can be stored in a two-dimensional
array rather than three separate one-dimensional arrays. The

paraUel arrays

representation for all of these data uses parallel arrays. In general, parallel arrays
all have the same length, and an element in any of the arrays is associated with
those elements having the same index in the other arrays. For example, record 6
in the file card box is represented by name (6), address (6), contact (6),

phone (6), product (6 , 1), product (6 , 2), and product (6 , 3) .

It's certainly possible to manipulate information de . ed data type I
this way (and there was no alternative in earlier versions nv
of Fortran), but it's not very convenient. It would be
better to be able to create a single array, each of whose elements contains an
entire data record. This is an example of a derived data type, which you can
create in Fortran 90 with a TYPE defmition. Its g;eneral syntax is

8.6 The TYPE Statement, Records, and Arrays of Records • 371

TYPE type_name
field_type name
[field_type name] ...

END TYPE type_name

Example:
TYPE Student_Info

CHARACTER*20 name
CHARACTER*11 student ID
INTEGER credit_hours
REAL GPA

END TYPE Student_Info

The example describes a record that contains information about a student.
With this syntax, it's possible to bypass the restriction that array elements in
multidimensional arrays must all contain the same kind of values. For the supplier
file problem, and in general, an array whose elements are a derived data type is
still one-dimensional, with a single data type for its elements. However, each
element can contain several different kinds of information.

In order to associate a name with a user-defmed type, use a TYPE

declaration. Its general syntax is

TYPE (type_name) variable_name[,variable_name] ...

Example:
TYPE (Student_Info) freshmen, all_students

Let's return now to the materials supplier problem as an illustration of how
to incorporate an appropriate record structure into a program. Instead of declaring
five parallel arrays to hold the seven fields from the materials suppliers records,
combine all the fields into a single record and then declare an array to hold these
records. P-8.9 shows how this can be done.

P-8.9 (fragment)

PROGRAM ...
IMPLICIT NONE
TYPE supplier_fields

CHARACTER*20 name
CHARACTER*40 address
CHARACTER*30 contact
CHARACTER*15 phone
CHARACTER*15 productl,product2,product3

END TYPE supplier_fields
TYPE (supplier_fields) supplier_data(lOO)

372 • 8. Using Arrays to Organize Information

The TYPE construct is used to defme
a record to hold all the information about a
particular supplier. Individual fields within

component selector character

each record are accessed by giving the name of the record, followed by the
component selector character %, followed by the name of the field. For example,
the contact field in the sixth element of the temp_data array is referred to
as supplier_data (6) %contact.

As another example, recall the ozone measurement problem discussed at
the beginning of this chapter. Suppose you wish to augment your data collection
to include other data, such as temperature, wind speed, cloudiness, etc., such that
now there is a total of 10 measurements taken every hour, during every day of the
month. One way to represent these data is with a three-dimensional array:

REAL Measurements (31, 24, 10)

With this representation, it can be confusing to keep track of the meaning
of each array index. Also, it is difficult to change the structure of the data
representation, and it is impossible to include additional data that might need to
be represented by something other than real numbers. (For example, the cloudiness
might be better represented with an integer value.) However, you can make use
of the fact that the fields in records created with a TYPE structure don't have to
be scalar; a field can also be an array. For this problem, better alternatives might
be to define a record including a 10-element array as its data field:

REAL MeasurementArray(lO)
TYPE Measurements

MeasurementArray
END TYPE Measurements
TYPE (Measurements) MonthlyData(31,24)

or a record with 10 separately named fields:

TYPE Measurements
REAL ozone, temperature
INTEGER wind_speed, wind_direction
INTEGER ozone
... (etc.)

END TYPE Measurements
TYPE (Measurements) MonthlyData(31,24)

The advantage of creating a record structure with TYPE is its flexibility. With this
approach, it is easy to add additional fields to the Measurements record (and
hence to the elements of the MonthlyData array), no matter what data type is
required.

The advantage of easy expandability also applies to the materials supplier
problem discussed earlier in this section. Suppose the supplier has more than three
products. In that case, it might be desirable to replace the fields productl,

8.6 The TYPE Statement, Records, and Arrays of Records • 373

product2, and product3 with an array of product descriptions. Such a change
is easily accomplished by modifying the fields defined in the TYPE structure; this
is left for an exercise at the end of the chapter.

Although this text has described records in the context of arrays of records,
it's not necessary to associate records with arrays. It's sometimes convenient to
defme records of related information even when you don't need an array.
However, it's certainly true that the most common use of records is as elements
in arrays of records. As an example of using an array of records, consider this
problem.

1 Define the problem.

Predicting power demand is important for electric utilities. In a cold winter,
this demand may be driven by space heating requirements. Widely used measures
of heating demand are heating degrees and heating degree days. These quantities
can be predicted based on forecasted high and low temperatures and compared to
values calculated from past temperature histories. The number of heating degrees
is equal to the number of degrees the average temperature is below 65°P. It is
approximately equal to 65 minus the average of the high and low temperatures for
the day, 65-(high+low)/2, or 0, whichever is larger. Heating degrees can't be
negative. (Average daily temperatures above 65°P generate cooling degrees, but
we won't consider them in this problem.) The sum of all heating degrees over
several days gives the number of heating degree days for that time period. The
average heating degrees is the total heating degree days, including zeros, divided
by the number of days.

Write a program that prompts the user to supply the high and low
temperature predictions for the next week and then calculates the heating degrees
for each day, the daily average heating degrees, and the total heating degree days
for the week. Display all results for the week. Print an asterisk after each day with
heating degrees above the average for the period.

2 Outline a solution.

1. Prompt the user to provide the input in a count-controlled loop.
2. Store the data in an array of records. Inside the loop, calculate the daily heating
degrees and store the value as a calculated field in the array of records. Be sure
to assign a value of 0 to days with negative heating degrees. Increment the total
number of heating degree days, including the 0 values.
3. When the loop is complete, calculate the average heating degrees. Be sure to
count all days, even those with 0 heating degrees.

374 • 8. Using Arrays to Organize Information

4. In another loop, print all fields in the array, with an asterisk to mark days with
heating degrees above the average.
5. At the end, print the total heating degree days for the week.

It's the requirement to print an asterisk after data for some of the days that
provides the motivation to store data in an array. This is because you don't know
which days will have asterisks until all the data have been processed. As long as
the data are available in an array, you can access all the values as many times as
you need them without re-entering any of the data.

3 Design an algorithm.

DEFINE (array of records to hold high and low temperatures and
heating_degrees; totaLheating_degree_ days;
day (loop control variable); n_days=7)

INITIALIZE totaLheating_degree_days = 0
ASSIGN n_days = 7
LOOP (day = 1 to n_days)

WRITE ("Enter daily high and low, deg F:',
READ (high(day) and low(day))
ASSIGN heating_degrees(day) = 65 - (high(day) + low(day))/2
IF heating_degrees(day) < 0 THEN

END LOOP

ASSIGN heating_ degrees(day)=O
INCREMENT totaLheating_degree_days =

totaLheating_degree_days + heating_degrees(day)

ASSIGN average = totaLheating_degree_days / n_days
LOOP (day = 1 to n_days)

WRITE (all fields of array) (no line feed)
IF heating_degrees(day) > average THEN

WRITE ("*"
ELSE

WRITE (new line)
END IF

END LOOP
WRITE (avera_oe, total heatino dearee days)

8.6 The TYPE Statement, Records, and Arrays of Records • 375

4 Convert the algorithm into a program.

P-8.1O [DEGDAYS. F90]

PROGRAM DegDays

Calculate heating degree days for a week.
Demonstrate arrays of records.

IMPLICIT NONE
Declare a record ...

TYPE temp_data_type
REAL high,low,heating_deg

END TYPE temp_data_type
INTEGER days,n_days
PARAMETER (n_days=7)

and declare an array of these records.
TYPE (temp_data_type) temp_data (n_days)
REAL heating_deg_days,average

Gather and process data.
heating_deg_days=O.
DO days=l,n_days

PRINT 1000,days
READ *,temp_data(days)%high,temp_data(days)%low
temp_data(days)%heating_deg=65.-(temp_data(days)%high &

+temp_data(days)%low)/2.
IF (temp_data(days)%heating_deg < 0.) &!set neg. value to 0

temp_data(days)%heating_deg=O.
heating_deg_days= &

heating_deg_days+temp_data(days)%heating_deg
END DO
average=heating_deg_days/n_days

Display results

1000
1010
1020

PRINT *,' Day high low heating degrees'
PRINT *, ,-------------------------------,
DO days=l,n_days

WRITE(*,1010,advance='no') &
days,temp_data(days)%high,temp_data(days)%low,&
temp_data(days)%heating_deg

IF (temp_data(days)%heating_deg > average) THEN
WRITE(*,*)' *'

ELSE
WRITE(*,*)

END IF
END DO
PRINT 1020,average,heating_deg_days

FORMAT(' Enter high and low temperature
FORMAT(lx,i4,2f5.1,f6.1)
FORMAT(' Average heating degree days

Total heating degree days
END

(F) for day' ,i1)

',f5.1/&
, ,f5.1)

376 • 8 . Using Arrays to Organize Infonnation

Running P-S.lO

Enter high and ~ow temperature (P) for day 1
62 49
Enter high and low temperature (P) for day 2

63 51
Enter high, and low temperature (F) for day 3

65 50
Enter high and low temperature (F) for day 4

10 61
Enter high and low temperature (F) for day 5

60 58
Enter high and low temperature (F) for day 6

66 54
Enter high and low temperature (F) for day 7

70 62
Day high low heating degrees
-----~-.--~---~----~-----~-~---

1 62.0 49.0 9.5 *
2 63.0 51. 0 8.0 *
3 66.0 50.0 7.0 *
4 70.0 61.0 0.0
5 60.0 58.0 6.0 *
6 66.0 54.0 5.0
7 70.0 62.0 0.0

Average heating degree days = 5.1
Total heating degree days 35.5

It's important to study P-S.lO carefully to make sure you understand how
arrays of records and their fields are used; the syntax can be confusing. The field
name comes after the array element reference. Writing
temp_data%high (days) instead of temp_data (days) %high is a
common mistake that will generate a syntax error message. The pseudocode in
Step 3 might add to the confusion. Remember that an "array of records" is a
Fortran implementation detail, and it's not necessary to try to include this kind of
structure in your pseudocode. You might wish to include comments in your
pseudocode solutions that indicate how you will handle the implementation.

Also, note the use of the WRITE statement with the advance= I no I

option to allow the printing of an asterisk at the end of some of the lines. This
task could also have been accomplished by having two separate FORMAT

statements, one of which would include the asterisk as a string constant. The latter
approach would have been required in earlier versions of Fortran, which did not
support the advance option.

Problem Discussion
In this problem, an array of records provides significant organizational

advantages. Although a two-dimensional array could have been used to hold the
values, the one-dimensional array allows us to assign meaningful field names to

8.7 Applications • 377

the two temperatures and the calculated value for heating degrees. Despite the fact
that this solution involves more typing, the resulting code is more self
documenting and less prone to errors.

5 Verify the operation of the program.

Check the program's calculations by hand. This program requires some
care to make sure you've treated days with no heating degrees properly. It's easy
to forget that you can't have negative heating degrees.

8.7 Applications

8.7.1 Vector Operations

1 Define the problem.

Arrays are an obvious way to represent vectors in three-dimensional space.
Many problems in physics and mathematics involve calculating the scalar (or
"dot") product and vector (or "cross") product of two vectors. The scalar and
vector products of two vectors A and B are:

where Cx=AyBz - ByAz
Cy=AzBx - BzAx
Cz=AxBy - BxAy

Note that AxB = -BxA.

A-B = AxBx+AyBy+i\)Jz
AxB=C

The dot product is related to the cosine of the angle 9 between A and B:

A-B/(IA I I B I) = cos(9)

As their names imply, A-B is a scalar value and AxB is a vector with x, y, and
z components as shown.

Write subroutines that will calculate the dot product and angle between two
three-dimensional vectors, and the cross product of two vectors. Assume that the
calculations apply only to three-dimensional vectors (rank-one arrays with three

378 • 8. Using Arrays to Organize Infonnation

components), so there is no need to use variably dimensioned arrays in the
subroutines.

2 Outline a solution.

I. Defme three three-component vectors A, B, and C.
2. Assign components to A and B.
2. Calculate the scalar product and angle between A and B and the components
of the cross product vector according to the formulas given.

The magnitude of IAI (for example) is VA~ + A~ + A!.

3 Design an algorithm.

SUBPROGRAM Dof(IN: Ax. AY' Az• Bx. By. Bz;
OUT: dotproduct. angle (rad))

ASSIGN dotproduct = Afix + AyBy + AzBz
angle = cos-,[(dotproduct)I(A/ + A/ + A/il2 -(B/ + B/ + B/il2]

(end)
SUBPROGRAM Cross (IN: Ax. AY' Az• Bx. BY' Bz;

OUT: CX' CY' C)
ASSIGN Cx= (See Step 1 of the problem definition.)

Cy=
Cz=

(end)

4 Convert the algorithm into a program.

P-S.II [VECTOROP. F90]

1---
MODULE vectorSubs

CONTAINS

SUBROUTINE Dot(a,b,DotProduct,angle)

1 Calculate the scalar (dot) product of two 3-D vectors and the
angle between them.

IMPLICIT NONE
INTEGER i
REAL, INTENT(IN) :: a(3),b(3)
REAL, INTENT(OUT) :: DotProduct,anqle

8.7 Applications • 379

DotProduct=DOT_PRODUCT(a, b) Ian intrinsic function
angle=ACOS(DotProduct/SQRT(a(1)**2+a(2)**2+a(3)**2)/ &

SQRT(b(1)**2+b(2)**2+b(3)**2»
END SUBROUTINE Dot

SUBROUTINE Cross(a,b,c)

Calculate the cross product of two vectors .

IMPLICIT NONE
REAL, INTENT(IN) :: a(3),b(3)
REAL, INTENT(OUT) :: c(3)

c(1)=a(2)*b(3)-b(2)*a(3)
c(2)=a(3)*b(1)-b(3)*a(1)
c(3)=a(1)*b(2)-b(1)*a(2)

END SUBROUTINE Cross

END MODULE
!----------------------------- - - ~ -- - - - -- - ----- -- --

PROGRAM VectorOperations

File name: VECTOROP.F90
Calculate and display vector dot and cross products.

USE VectorSubs
IMPLICIT NONE
REAL DotProd,angl e,pi
INTEGER i
REAL a(3),b(3),c(3)

pi=4 . *ATAN (1.)
PRINT *,' Give 3 components for a, 3 for b: '
READ *, (a (i) , i = 1, 3) , (b (i) , i = 1, 3)
CALL Dot(a,b,DotProd,angle)
PRINT 1000,DotProd,angle*180.0/pi
CALL Cross(a,b,c)
PRINT 1010,c

1000 FORMAT(lx, 'dot product and angle (deg): ',2f8.3)
1010 FORMAT(lx, 'cross product : ',3f8 . 3)

END

Running P-8.1l

Give 3 components for a, 3 for b:
3.3 4.4 1.1 5.2 4.2 7.9

44.330 40.205
30 . 140 -20.350 -9.020

Programming Tip
P-8.11 highlights once again some vector terminology that is easy to

confuse with array terminology. The vectors used in the application are called

380 • 8. Using Arrays to Organize Information

"three-dimensional" vectors because they have three components. In physics, for
example, they could represent a position in three-dimensional space. However,
these three-dimensional vectors are represented in Fortran by rank-one (one
dimensional) arrays; each element represents one component of the vector.

To clarify this point further, suppose the three-dimensional vector
represents the position of an object in three-dimensional space. You would add
additional vector dimensions to represent values in a higher-order space of more
than three dimensions. You could add additional array dimensions to hold
additional three-dimensional vectors. For example, by adding a second dimension
to an array, you could represent both the three-dimensional position and velocity
of the object. By adding yet another dimension, you could represent position,
velocity, and acceleration.

Another interesting feature of P-8.11 is its use of the intrinsic
DOT_PRODUCT function, which requires as arguments two rank-one arrays of the
same size. Thus, a specific implementation of the LOOP structure defined in the
algorithm design isn't required in Fortran.

5 Verify the operation of the program.

Check all calculations with a hand calculator. Try to find values of A and
B that constitute "special cases." When is the dot product O? What happens to the
cross product vector when the vectors A and B are parallel? If A and B lie
entirely in the x-y plane (that is, if their z-components are 0), in which direction
does the cross product vector point? Make sure that A·B=B·A and AxB=-BxA?

8.7.2 Cellular Automata and Sierpinski Triangles

1 Define the problem.

A computer science topic that is also of interest in biology and engineering
is the study of artificial "organisms" called automata. These are essentially
artificial life forms that, with the aid of a set of rules for "dying" and
"reproducing" themselves, appear to be self-organizing. When these rules are
incorporated into a computer program, they can lead to surprising patterns, some
of which can also be derived from fractal theory. One interesting pattern is the
"Sierpinski triangle," illustrated in Figure 8.4.

When a single "cell"-represented by an asterisk in a CHARACTER*l
array initialized to blank spaces-is given an appropriate set of organizing rules,

8.7 Applications • 381

it will propagate into multiple cells in a pattern that resembles a Sierpinski
triangle. The rules are:

For cell i, if cell i-I is occupied and cells i and i+ 1 are not, or if cell i-I
is empty and cell i+ 1 is occupied, then an organism will appear in cell i
in the next generation. Otherwise, the cell will be empty.

Write a program that will use these rules to produce a pattern that looks
like a Sierpinski triangle.

2 Outline a solution.

1. Consider an array of cells. The content of each cell is represented by a single
character. When a cell is "alive," it will contain an asterisk; when it's not, it will
contain a blank space. Start with an initial "population" that consists of a single
"live" cell somewhere near the middle of the array. Display this state by printing
the contents of the array as a single line of output.
2. Now apply the organizing rules, encoded as boolean expressions, to get from
the initial state to the next state.
3. Display this new state.
4. Repeat Steps 2 and 3 for a specified number of generations.

Figure 8.4. A Sierpinski triangle

382 • 8. Using Arrays to Organize Infonnation

3 Design an algorithm.

There is one tricky part to implementing this algorithm: The tests to
determine the contents of a cell in the next generation must be applied to a copy
of the current generation. Otherwise, a cell that will not be occupied until the next
generation may be modified so that it will already appear to be populated in the
current generation, or a cell that will be empty in the next generation will no
longer be occupied in the current generation, thereby affecting the evaluation of
adjacent cells.

DEFINE (logical arrays cell(41), 0Id_cell(41); character array ch(41);
of generations; i and j as loop counters)

INITIALIZE arrays cell = false
ch = "

ASSIGN cell(21) = true (Put an organism in the middle.)
ch(21) = '*'

WRITE (0 and ch) (Display generation 0.)
ASSIGN n = 15 (number of generations)

LOOP (for j = 1 to n)
(Apply the propagation rules.)

ASSIGN old_cell = cell (Make temp copy.)
LOOP (for i = 2 to 40) (Avoid range violations.)

(Apply rules ...)
IF (0Id_cell(i-1) & not(old_cell(i)) & not(0Id_cell(i+1)))
OR (not(0Id_cell(i-1)) & old_cell{i+ 1))
THEN

cell(i) = true
ELSE

cell(i) = false
END LOOP
(Display new generation.)
LOOP (for i = 1 to 41)

IF (cell(i) = true) THEN ch(i) = '*'
ELSE ch(i) = ' ,

END LOOP
WRITE (j and ch)

ENDLDDP

8.7 Applications • 383

4 Convert the algorithm into a program.

P-S.12 [SIERPINS. F90]

PROGRAM Sierpinski

Program name SIERPINS.F90
One-dimensional cellular automata with rule that generates a
Sierpinski triangle.

IMPLICIT NONE
INTEGER size
PARAMETER (size=60)
LOGICAL a(60),old_a(60),a_1,aO,a1
CHARACTER*l,b(60)
INTEGER i,j,cyc1e,n_cycles
DATA n_cycles,a,b/15,size*.FALSE.,size*' 'I

cyc1e=0
a(size/2)=.TRUE. !start with a single live cell ...
b(size/2)='*'
WRITE(*,1000)cycle,b

Generate more cycles ...

DO i=l,n_cyc1es
old_a=a
DO j=2,size-1

a_1=old_a(j-1)
aO=old_a(j)
a1=old_a(j+1)
a(j)=(a_1.AND.(.NOT. aO).AND.(.NOT. a1» &

.OR. «.NOT. a_1).AND.a1)
END DO
DO j=l,size

IF (a(j» THEN
b(j)='*'

ELSE
b(j)=' ,

END IF
END DO
WRITE(*,1000)i,b

END DO

1000 FORMAT(lx,'(',i2, ')',60a1)
END

384 • 8. Using Arrays to Organize Information

Running P-S.12

Generation 0 *
Generation ~ * *
Generation 2 * *
Generation 3 * *

..,.
*

Generation 4 * *
Generation 5 * * * *
Generation 6 * * * *
Generation 7 * * * * * * * *
Generation B * *
Generation 9 * * * *
Generation 10 * * * *
Generation 11 * * * * * * * *
Generation 12 * * * *
Generation 13 * * * * * * * *
Generation 14 * * * * * * * *
Generation 15 * * * #I * * * * * * * * * #I * *

5 Verify the operation of the program.

The printed output of P-S.12 will either look like a Sierpinski triangle or
it won't. An incorrect implementation of the propagation rules will yield some
other (perhaps equally interesting) pattern.

Problem Discussion
This problem presents an ideal opportunity to use boolean data types.

There are only two possible states for a cell-occupied or empty. By representing
the "organism array" as LOGICAL, these states are represented by the values true
or false. This makes applying the propagation rules easier. Instead of using an
IF. . . THEN. . . statement, as was done in the algorithm design, it is easier to
use a statement that simply assigns the result of evaluating the expression
incorporating the propagation rules.

It may seem amazing that such a well-organized pattern can be created just
by following two simple rules. It would be interesting to apply these rules to
different starting configurations containing more than one organism, or to change
the propagation rules.

8.7 Applications • 385

8.7.3 Probability Analysis for Quality Control of Manufacturing Processes

This application makes use of Fortran's ability to treat strings of characters as
"arrays" of characters, as described in Section 8.5.

1 Define the problem.

A manufacturer's experience has shown that 10 percent of all integrated
circuits (ICs) will be defective. Because of this high failure rate, a quality control
engineer monitors the manufacturing process by testing random samples every
day. What is the probability that:
(a) Exactly two ICs in a sample of 10 will be defective?
(b) At least two will be defective?
(c) No more than two will be defective?

2 Outline a solution.

You are not expected to know how to solve this problem, even in principle,
unless you have had a probability and statistics course. However, you should be
able to write the source code once you know what the solution is.
(a) The probability that a particular sample of 10 will contain exactly two
defective ICs is (0.1)2(0.9)8==0.004305. However, there are JOC2=45 possible
combinations of two defective and eight good ICs. From probability theory, the
number of combinations of n things taken k at a time is

nCk = n!l[k!(n-k)!]

where ! indicates the well-known factorial function. Therefore, the probability that
a sample of 10 will contain exactly two defects is

P(=2) = JOCiO.l)2(0.9)8 = (45)(0.004305) = 0.1937

(b) The probability of fmding at least two defective ICs is equal to 1 minus the
probability of fmding 0 defective ICs minus the probability of finding 1 defective
IC:

(Remember that 0!=1 by defmition.)

386 • 8. Using Arrays to Organize Information

(c) The probability of finding no more than two defective ICs is

There are several approaches that could be taken to writing a program to solve
this problem. One solution would be simply to "hard code" the required
calculations. This program would need to include, as a minimum, a user-defmed
function to calculate the factorial function.

However, in the context of Fortran's string manipulation capabilities
discussed in this chapter, there is a more elegant solution. The program described
here will include user-defmed functions for calculating combinations and a
function for calculating factorials. Then the user will type a character string that
can be "parsed" to yield values to use as arguments for function calls and for the
other calculations that are required. For example, for part (b) of the problem, the
user could type

1-c(10,O, .1)-c(10,1, .1)

This character string would result in the evaluation of the expression P(~2) as
given above. The fIrst two values inside the parentheses will be used as arguments
for a function to calculate the combinations of n things taken k at a time. The
third value is the probability of a defective IC. The probability of a good IC (0.9)
is just 1 minus this value.

The key to the program is to enclose the desired numerical values inside
parentheses. If your program then searches for a left parenthesis and its matching
right parenthesis, the characters inside that set of parentheses can be "read" and
converted to numerical values. This probably sounds more difficult than it actually
is. (As you will see, the Fortran code needed to do this isn't really very hard.)

Note that such a program doesn't "know" how to solve probability
problems. It just performs the required calculations based on user input. Also,
because the magnitude of n! grows rapidly with n, there are some rather restrictive
limits on the size of the sample if default INTEGER data types are used for nand
k; a sample of size 10 can be handled comfortably. (See Exercise 17 in Chapter 4
for a way to estimate n! for large values of n.)

3 Design an algorithm.

DEFINE (character string (a); integers: length of string, loop counter (i),
nand k, sign (+ 1 or -1), location of a left parenthesis;
probability. prob a (real numbers)

8.7 Applications • 387

(NOTE: prob_a is probability that a single unit will be defective.
"probability" is the probability that the event defined by the string will
occur.)
WRITE (Prompt user for string. Give "syntax" example.)
READ (a)
ASSIGN length = length of a, no trailing blanks
INITIALIZE probability = 0

sign = 1
(Values in parentheses after string variable refer to character position,
using Fortran notation.)
IF a(1:1) = '1' THEN ASSIGN probability = 1
LOOP (through the string, one character at a time)

IF a(i:1) = '+' THEN sign = 1
IF a(i:1) = '-' THEN sign =-1
IF a(i: 1) = '(' THEN left = i
IF a(i: 1) = " THEN (process substring)

READ (from substring a(left+1:i-1), n,k,prob_a)
INCREMENT probability = probability+sign -G(n,k) -prob_d.

(1 - prob_aYn-k)
WRITE (n,k,C(n,k) (optional)

(end IF ...)
END LOOP
WRITE (probability)

When it refers to a range of characters within the string a, this algorithm appears
to violate the usual style rule that algorithms shouldn't require the use of syntax
from a particular programming language. However, it's necessary to use some
kind of notation, and it seems better to use Fortran's notation than to invent
something arbitrarily different.

4 Convert the algorithm into a program.

P-8.13 [PROB. F90]

MODULE ProbFunctions

CONTAINS
1-----------------------------

INTEGER FUNCTION Fact(x)

Calculate xl as long as xl not too large for default integer type.

IMPLICIT NONE
INTEGER, INTENT(IN) :: x
INTEGER prod,i

388 • 8. Using Arrays to Organize Information

prod=l
DO i=2,x

prod=prod*i
END DO
Fact=prod
RETURN
END FUNCTION Fact

!----------------------------
INTEGER FUNCTION C(n,k)

Calculate combinations of n things taken k at a time.

IMPLICIT NONE
INTEGER, INTENT(IN) :: n,k

C=Fact(n)/Fact(k)/Fact(n-k)
RETURN
END FUNCTION C

!-----------------------------
END MODULE ProbFunctions

!=============================
PROGRAM prob

Evaluate probabilities by parsing a string expression and
performing the implied calculations.

USE ProbFunctions, ONLY: C
IMPLICIT NONE
CHARACTER*80 a
INTEGER i,n,k,length,sign,left
REAL probability,prob_a

PRINT*, 'Type expression to be evaluated (no syntax checking) . '
PRINT*, 'Example: l-c(lO,O, .2)-c(10,1, .2)'
READ(*,1020)a

length=LEN_TRIM(a)
probability=O.
IF (a(l:l)=='l') probability=l.
sign=l !a leading + sign is optional
DO i=l,length

IF (a(i:i)=='+') sign=l
IF (a(i:i)=='-') sign=-l
IF (a(i:i)=='(') left=i
IF (a(i:i)==') ') THEN

READ(a(left+l:i-l),*)n,k,prob_a
probability=probability+ &

sign*C(n,k)*prob_a**k*(l.-prob_a)**(n-k)
PRINT 1030,n,k,C(n,k)

END IF
END DO
PRINT 1010,probability

1000 FORMAT(al)
1010 FORMAT(lx, 'probability = ',flO.4)
1020 FORMAT(a80)
1030 FORMAT(lx, 'C(' ,i2,',' ,i2,') = ',is)

RNn

8.7 Applications • 389

Running P-S.13 (three times, for three different input strings)

Type expression to be evaluated (no syntax checking).
Example: 1-c(10,O, .2}-c(10,l, .2)

c(10,2,.1)
Ce10, 2) ~ 45
probability ~ 0.1937

Type expression to be evaluated (no syntax checking).
Example: 1-c(10,O, .2}-c(10,l, .2}

1-c(10,0,.1)-c(10,1,.1)
C(10, O} = 1
C(10, 1) = 10
probability = 0.2639

Type expression to be evaluated (no syntax checking).
Example: l-c(10,O, .2)-c(10,1, .2)

0(10,0,.1)+0(10,1,.1)+0(10,2,.1)
C(lO, 0) = 1
Cel0, 1) = 10
C(lO, 2).. 45
probability - 0.9298

5 Verify the operation of the program.

P-S.13 needs to be checked carefully by hand to ensure both that the user
defined functions work properly and that the character string is interpreted
correctly. It's easy to be confused by probability calculations, so it is difficult to
achieve a high level of confidence in the answers produced by this program except
by comparing them against other sources in which you already have a high level
of confidence.

Problem Discussion
The key to P-S.13 is the READ statement printed in bold italics:

READ(a(left+1:i-l),*)n,k,prob_a

This statement demonstrates that even though it certainly isn't obvious, it's
possible to treat a string as an "input device" from which values can be read.
Essentially, the contents of the indicated subrange of the string a are treated just
as though they had been typed at a keyboard. This is called an "internal file." We
will discuss this feature again in the broader context of Chapter 9.

This program allows you to do each of the probability calculations
specified in the problem statement, as well as others. Both the required values and
the algebraic form of the calculations are given as user input, which makes the
pro~am very versatile. By forcing the user to specify how the user-defined

390 • 8. Using Arrays to Organize Infonnation

combination function (C) is to be used, the program is actually simplified. Instead
of having to "know" a lot about probability calculations, all the program has to
do is use the general-purpose functions in a user-specified way. Note that although
the cs in the suggested user-response string (as in c (10,1, .1» make the input
look more "algebraic," they are optional. Only the balanced left and right
parentheses are required for the program to work.

The program doesn't perform any "syntax checking" on the user's input.
In particular, it assumes that every left parenthesis is matched by a right
parenthesis and that the characters inside a set of parentheses can be read as three
numerical values using only list-directed input.

8.8 Debugging Your Programs

8.8.1 Programming Style

Programs that use arrays should do so either because there is no reasonable
alternative or because the use of arrays simplifies the organization of a problem
that doesn't actually require arrays.6 Especially when multidimensional arrays are
used, the names of the indices should be descriptive, such as "row" or "column"
rather than "i" or "j."

In many cases, information that might otherwise require a multidimensional
array should be organized instead into a one-dimensional array of records, using
the TYPE structure. The fields in such a structure should always have meaningful
names that make the source code more self-documenting.

8.8.2 Problems with Programs That Use Arrays

There are several common problems that you may encounter when working with
arrays:

1. Attempting to reference an array element that lies outside the defmed limits
No programming environment should allow this!

2. Confusing index references in multidimensional arrays
An especially important case is a two-dimensional array that represents a

table. Using meaningful names such as "row" and "column" for the array indices
will minimize potential problems.

6Author's note: as hard as it is to believe, my experience is that students sometimes go
to the trouble of using arrays even when they're not needed or even when they make a program
mol'P! (Hffir" It to writp.'

8.9 Exercises • 391

3. Inappropriate use of multidimensional arrays passed to a subprogram as variably
dimensioned arrays

Recall the lengthy discussion of this topic in Section 8.4. One way to
minimize this problem is to use allocatable arrays whenever possible. Then the
"working" size of an array can be the same as its declared size.

4. Inappropriate placement of an array index in an array of records.
The required syntax is typically A(i) %field, not A%field(i).

However, the latter syntax might be OK if one field in a record is an array. The
reference B% field (j) implies that B is a record rather than an array of records.
Also, the syntax X (i) % field (j) would be OK if X is an array of records and
field is also an array.

8.9 Exercises

8.9.1 Self-Testing Exercises

Exercise 1. Describe in your own words the two most important concepts you
have learned from this chapter.

Exercise 2. Describe in your own words how you could use in your own
programs a problem-solving skill demonstrated in a program described in this
chapter.

Exercise 3. What is the total number of elements in each of these arrays? What
are the allowed ranges of indices for accessing the contents of these arrays?

(a) A (2 , 3, 4)
(b) A(SO,-lO:lO)
(c) A (2 , 3, 4, 5, 0 : 4 , 0 : 3, 0 : 2)

Exercise 4. Defme arrays and, where appropriate, data types to hold the specified
information:

(a) A two-dimensional array with these specifications: Its first dimension has a
lower index value of 0 and holds 20 elements. Its second dimension has a lower
index value of -10 and holds 15 elements.

(b) The temperatures at which a sample of 100 resistors failed when they were
subjected to destructive testing and their resistances at 90 percent of their failure
temperature

392 • 8. Using Arrays to Organize Information

(c) A database of the elements including the name, symbol, and atomic weight of
each element

(d) The x-y coordinates and depths of a lOO-km2 seabed surface surveyed on a 1-
km square grid

Exercise 5. What are the values returned by LEN and LEN_TRIM for these
strings?

(a) I }'l5Fortran}'l5 I

(b) I Fortran 90 is fun! I

8.9.2 Basic Programming Exercises

Exercise 6. (a) Write a DO ... loop that prints every other element of a one
dimensional array of integers.

(b) Write a DO. .. loop that prints all positive elements of a one
dimensional array of integers.

Exercise 7. (a) Write a DO ... loop that prints every other row of a two
dimensional array of real numbers.

(b) Write a DO. .. loop that prints every other column of a two
dimensional array of real numbers.

(c) Write a DO ... loop that prints the top-right-to-bottom-Ieft diagonal of
a two-dimensional array that has the same number of rows as columns. That is,
the array represents a square matrix.

Exercise 8. Write a DO. .. loop that sums the rows and columns of a two
dimensional array of real numbers and prints the results after the last column and
row.

Exercise 9. Assign the values shown to a 2x4x3 array of real numbers. Consider
the fIrst two dimensions as representing rows and columns and the third dimension
as representing "layers." Print the layers in the following formats:

(a) l.1 l.9 2.3 4.1
2.2 3.3 4.4 5.5

0.9 0.8 0.7 0.6
l.1 l.2 l.3 l.4

2.9 2.9 2.6 2.5
7 1 7 ? 7 LI. <; <;

8.9 Exercises • 393

(b) 1.1 1.9 2.3 4.1 0.9 0.8 0.7 0.6 2.9 2.9 2.6 2.5
2.2 3.3 4.4 5.5 1.1 1.2 1.3 1.4 7.1 7.2 7.4 5.5

Exercise 10. Write a DO ... loop that prints every second character in a character
string, starting with (a) the first character; (b) the second character.

Exercise 11. Write a DO. . . loop that prints only the letters in a character string.
That is, it ignores spaces, punctuation, and other characters, such as digits.

Exercise 12. Modify P-S.lO so that it calculates both heating degree days and
cooling degree days. Cooling degrees are equal to the number of degrees the
average temperature is above 65°P. Use the same approximation as for heating
degrees, as shown in the original problem statement for P-S.lO. Instead of an
asterisk after days for which heating degrees exceed the average, print an H. Print
a C after days for which cooling degrees exceed the average.

Exercise 13. Suppose you wish to represent the position, velocity, and acceleration
of an object. Write a program that defmes a three-dimensional array for this
purpose. In the same program, define a one-dimensional array that will store the
same information, using a record containing three fields. The purpose of this
program is simply to practice the syntax of defming, declaring, and using array
structures. Therefore, your program doesn't have to do anything more than assign
and display values for all vector components. Usually, fields in a record don't all
have the same data type. They can, however, and in this problem all the fields are
REAL numbers. Be sure to compile your program to check it for syntax errors.

Exercise 14. Modify the code fragment in P-S.9 so that the three fields
productl, product2, and product3 are replaced with an array that will hold
the names of up to 10 products. Include your new defmition in a program "shell"
and let your compiler check it for syntax errors.

Exercise 15. An interesting mathematical recreation is designing magic squares.
A magic square of size n contains the integers from 1 to n2• Each value appears
only once. The sum of the integers in each row and column and along both
diagonals must be the same. Here's a 3><3 magic square, for which the values in
each row, column, and diagonal must add up to 15:

6 1 8

7 5 3

2 9 4

394 • 8. Using Arrays to Organize Information

Write a program that will prompt a user to enter values for an nXll square
one row at a time and determine if it's a magic square. The program does not
have to design magic squares. (That's a lot harder!)

Exercise 16. For a two-dimensional array declared as REAL A (5 , 5), initialize
the elements so that they form an identity matrix; that is, all the elements are 0
except for the elements along the top-left to bottom-right diagonal, which are 1.
Use assignment statements, not a DATA statement.

1 0 000
o 100 0
o 0 100
o 0 010
o 0 001

Exercise 17. Modify P-8.1 so that you can easily change both the total number
of random numbers generated and the number of bins to which the numbers are
assigned. For example, 10,000 random numbers could be assigned to 20 bins
numbered 0-19. Hint: use PARAMETERs, or let the user provide the values when
the program runs.

Extra Credit
How can you tell whether a random number generator is working? One

way is to compare the actual contents of the bins in P-8.1 or your modification of
it to the expected contents. For example, if 10,000 numbers are randomly assigned
to 20 bins, on average there should be 500 numbers in each bin; this is the
expected content of each bin.

This comparison can be quantified by using the well-known X2 distribution
from nonparametric statistics:

where OJ and E j are the observed and expected contents of each of the n bins.
Add a calculation of the X2 statistic to your program and compare the

resulting value to values in a table of X2 values. For n bins, you should use values
in the (n-I)S! row of such a table. Consult a statistics text for an interpretation of
the values. You will probably find that according to this test, the random number
generator is not very convincingly random. It is beyond the scope of this text to
discuss whether this means that the X2 test is inappropriate or the random number
2enerator is actually not very 200d.

8.9 Exercises • 395

Exercise 18. Using P-S.5 as a guide, add a subroutine that calculates the
intersection of two sets.

Exercise 19. Modify P-S.ll so that the two (three-component) vectors A and D,
their dot product, the angle between them, and their cross product (C) are all
defined as part of a TYPE structure. Modify the subroutines to use this structure.

Exercise 20. Based on material from another course you are taking, state a
computational problem and write a complete program to solve it. Your program
must include an appropriate use of arrays to store and manipulate information.

8.9.3 Programming Applications

Exercise 21. A bored postal employee is playing with a row of mailboxes.
Initially, all the boxes are closed. Then, starting with the 2nd box, the employee
opens every 2nd box. Then, starting with the 3rd box, she opens every 3rd box if
it's closed and closes it if it's open. Then, starting with the 4th box, etc. When the
employee gets to the end of the line of mailboxes, which ones are still closed?

Hint: use an array of LOG I CALs to represent the boxes; 40 or so elements
are sufficient to see the pattern. Initialize the array to . TRUE. in a DATA
statement and assume that . TRUE. corresponds to a closed box. Use a logical
operator that will "toggle" the state of each box. Print the results with an L
format. [MAILBOX. F90]

Exercise 22. Refer to Exercise 16 in Chapter 7. In that problem, you were asked
to create a function that performs linear interpolation between two values in a
table. Often, you can hold an entire table of values in an array of records (or in
two parallel arrays). Suppose an array X holds n values of an independent variable
and an array Y holds n values of the tabulated dependent variable. Write a
program that will accept a value of an independent variable x, where
X(I) :5; x :5; X(n), and then calculates a linearly interpolated value of y for that
value of x.

You should put the necessary subprograms in a MODULE and access them
with a driver program. You may assume that when the program user provides a
value of x, it is within the limits of the values of the independent variable in the
table. You can use either two parallel arrays or a single array that has elements
defmed in a TYPE structure. Use these x and y values to test your program:

396 • 8. Using Arrays to Organize Infonnation

x y
5.0 5.9

10.0 6.6
15.0 7.1
20.0 8.3
25.0 10.0
30.0 12.2

Hint: separate this problem into two parts. First, determine the two
positions in the table between which the interpolation will be done. Then do the
interpolation.
Make sure to test your program for values of x at each end of the table. For the
data shown here, test the program when x=5 and when x=30, as well as at
intermediate values of x. [INTERPOL. F90]

Extra Credit
If you would like to look ahead to Chapter 9, you could try reading the

data for this problem from the file INTERPOL. DAT, which is among the files
available for downloading from the World Wide Web site mentioned in Section
i.5 of the Preface.

Exercise 23. When a time sequence of measurements is made on a "noisy"
system, it is often desired to "smooth" the data so that trends are easier to spot.
One simple smoothing technique is a so-called unweighted moving average.
Suppose a data set consists of n values. These data can be smoothed by taking a
moving average of m points, where m is some number significantly less than n.
The average is "unweighted" because "old" values count just as much as newer
values. The formula for calculating the ith smoothed value Sj is

i

Si = (L xj)/m, i~m
j=i-m+l

Figure 8.5 shows an unweighted moving average with m=1O for a data set of 100
random numbers in the range [0,200). A moving average does "smooth" these
data, but because the data are random, by defmition there shouldn't be any "trend"
to spot.

The algorithm for calculating a moving average over m values for a data
set containing n values is:
1. Calculate the sum of the first m points. The first average is sum/m.
2. For i=m+ 1 to n, add the ith value to the sum and subtract the (i-m)th value. Then
calculate the average for this new sum.
3. Repeat Step 2 until i=n.

If the data set contains n points, there will be n-m+ 1 movinJZ; averaJZ;e calculations.

8.9 Exercises • 397

2°O~--~i--~i--~i--~I----i----i~~~i~--~iM--'I--~
• ~. • I!C • * . . ~ ~ 180 --------+---------'----lfC+--------+--------+--------l---------+)l-----t-------+---------

~ 1 1 1 ~ 1 1 1 1 1"" 1
1 1 1 1 1 ~ 1 ~ 1 1 1

160 --------1:C->C------i ... ----t------Mi----------~--------t---------r-----:t---------i----------
~ i i ~ i i ~ '!- i· ~ i~ 1 i ~~

~ 140 ---------1----------!----------r---------!----------t---------r-.-------t-------.".--------"j"--------
:::l ~ ~~ i ~ 1 Mi ~ i ~ i i
~ 120 ---------j----------f-:----- . ---------~--------t---------j-~-------t----------· -- ---!----------
~ i 1 . i ~i i' i

! ': ~:~::~-:--:::i:M--~r:-~::i-~i:J:~--:l=~!: -
..2 ~ i i >1 i ~ 1 i i 1M
~ 60 --)(--:+--------+--------+--M----I----~---+--------l---------+--------+----M"-+---------

~ 1 * 1 1 ~ Iii 1 i : ~: lie : : : : : :
40 ---------i------M-j-------~---------j----------r)(------i----------r----------r---------j-lI4----

1 i I~ ~ 1 1 1 K1. 1 1 ~ 20 ---------j----------!---------t---------!------iC--t---______ j-------:-,.-1(-----I----)(---!--------
~i iii i ~i ~ i i ~i

00 10 20 30 40 50 60 70 80 90 100
Time, arbitrary units

Figure 8.5. Unweighted moving average with m=10 for 100 random
values

Write a subroutine that calculates and displays a moving average over a
specified number of points for a one-dimensional array of specified size. Store the
results in a second array of the same size. For a moving average over m points,
the first m-l elements of the second array should be set to O. Test the subroutine
in a program that generates an array of random numbers and smoothes that array
with the moving average subroutine. [MOVE_AVG. F90]

Exercise 24. It is often of interest in simulation problems to be able to select
values randomly from a predefmed set of values. This is a trivial problem if the
same value can be used more than once. More care is required if each value in a
set of n values can be used only once, or to put it another way, if it is required
that after n values have been used, every value in the set has been used once. The
latter problem is analogous to dealing cards randomly from a deck.

Suppose a deck of cards is represented by the integer values 1-52. Create
an array holding the values 1-52. One way to "shuffle" this deck is to construct
a loop for i = 1 to 52 and swap the ith card with a randomly chosen card. It is of
no concern that occasionally the card will be swapped with itself. The swapping
algorithm looks like this:

398 • 8. Using Arrays to Organize Information

ASSIGN temp = card(i)
index = random #, 1-52
card(i) = card(index)
card(index) = temp

Incorporate this algorithm into a· complete program that will deal four random
"hands" of 13 cards each. [CARDDECK. F90]

Exercise 25. The game of Life provides a simple model of how organisms are
born, survive, and die. It is played on a two-dimensional board with m rows and
n columns. The game is started by establishing an initial distribution of organisms
in a small region of the board. The distribution of the next generation of the
population is calculated according to three rules:
(1) A new organism will appear in the next generation in any empty square with
exactly three living neighbors.
(2) An organism in a square surrounded by less than two neighbors will die from
loneliness in the next generation, and an organism in a square surrounded by more
than three neighbors will die from overcrowding in the next generation.
(3) An organism with two or three neighbors will survive into the next generation.

Write a program that plays this game. A 20x20 board is certainly large
enough. You should produce output for several generations using at least the
following initial population distributions, where an X indicates that an organism
occupies that square:

(1) ---x--
- -xxx-- ----x-
---x--- --xxx-

Some initial configurations die out, some form patterns that grow, oscillate, or
become stable, and others form patterns that reproduce themselves and move
across the board. The second of the two initial configurations shown above is
called the "glider," for reasons that are apparent from following it through four
generations:

(2) - -x-
---x -x-x ---x --x-- ---x-
-xxx - -> - -xx --> -x-x --> ---xx --> ----x

--x- --xx --xx- --xxx

Question: What happens to two gliders that start from opposite sides of the board
and "collide" in the middle?

Hint: you can simplify the code by assuming that any organism occupying
a row or column at the "edge" of the game board simply disappears in the next
!!eneration. This means that the rules for the Q'ame ann1v on1v to (m-l)x(n-l)

8.9 Exercises • 399

squares on the board. One way to apply the rules is to create an intermediate
board configuration that marks births and deaths for the next generation. This is
necessary because organisms don't die immediately when you detect that they
have less than two or more than three neighbors. They stay there until all the rules
have been applied to all squares on the board for the current generation. Similarly,
new organisms aren't born until the start of the next generation, so they can't
count as neighbors during the current generation. [LIFE. F90]

Exercise 26. A terrain map is stored in digital form as integers in a two
dimensional array. Write a program to examine the array and fmd high and low
spots in the terrain. The criterion for a high or low spot will be a user-specified
amount above or below the average of the eight surrounding values.

For the purposes of this program, you can assume that the values are in the
range 0-9 . Print the original array and, next to it, an array that has high and low
spots marked with the letter H or L. A20x20 array is large enough. You can use
a random number generator to create the original array. Some sample output is
shown in Figure 8.6.

Look for differences> 4.0000000
80049726420096732609 +------------------+
98993765555866751665 I H I
92963649758076007267 IL L H I
42656156372985104461 IL L I
69703872560985655139 IH L LH I
06873874745619060247 L L L I
56372675111978597581 L LH H I
82801839947613638148 L L L L I
37453949894019191082 L H H LHI
05868892687760244491 L HI
32891669863529244108 L H LLI
87356395794731439382 H HI
54575719084038623368 L L H I
74996174932405620873 H L L I
77624904068377508883 HL L I
22254284728657164754 H H L I
90601530345986559496 L L H HI
89647213209988943141 L H L I
66029884073921148437 L L I
42958575844660457699 +------------------+

Figure 8.6. Sample output from the terrain map program

Hint: you can't look for high and low spots in the rows and columns at
the edges of the map because you must look at all eight surrounding values.
[TERRAIN. F90]

Exercise 27. An engineer designing a new computer chip is concerned about
operating temperatures within the chip. Tests show it is possible to design heat
sinks that, when attached to the sides of the rectangular chip, will maintain each

400 • 8. Using Arrays to Organize Information

edge of the chip at a suitable temperature. Write a program to determine the
temperature distribution within the chip.

One way to solve this problem is to divide the rectangular area into a two
dimensional grid. (See Figure 8.7.) Initialize the grid nodes at each edge of the
chip to specified temperatures; in general, each edge can have a different
temperature. Initialize the "interior" nodes to some other value; a good choice
would be the average of all the edge temperatures. Then, using an iterative loop,
recalculate the temperature of each interior node as the average of the
temperatures of the four surrounding nodes. Terminate the iteration when the
difference between the current temperature and the next iteration is less than some
specified small amount for every node.

Hint: the conditional loop to conduct the iteration could be in the main
program. It should call a subroutine whose purpose is to recalculate the node
temperatures and return a "flag" value that indicates whether the terminating
conditions for the iteration have been met.

One obvious verification for your program is to set each edge temperature
to the same value. Then a successful iteration should result in all the interior
nodes reaching this temperature. In this case, it would not be helpful to initialize
the interior temperatures to the average of the edge temperatures because then no
iteration would be necessary. Try a different initial value, such as half the edge
temperature. [CIRCT_BD. F9 0]

T1

~...IIIjv

T4

.......

T3

~
interior
node (3,9)

T2

P
Vn

erimeter
ode (10,10)

Figure 8.7. Nodes on a circuit board, as defined for
determiniml interior temDerature distribution

9

Using Formatted Sequential Access
and Internal Files

This chapter discusses the concept of a formatted text file and presents the syntax
of the OPEN, READ, WRITE, and CLOSE statements required to access and create
such files. The important scenario in which a READ statement appears in a
conditional loop structure to control the reading of a data file of unknown length
is discussed in detail. The syntax for writing formatted files is described. Internal
files are presented as a way to store records in a temporary buffer for processing.

9.1 The Text File Concept

Up to now, you have made external input available
to your programs by typing values on your keyboard
or hardcoding them within a program. Obviously,
this will be inadequate for many problems involving
large amounts of data. Fortran provides extensive
support for reading data from external data files in a

text file I
sequential access file
end-oj-line mark
end-oj-file mark

variety of formats. In this chapter, the only kind of file considered is a text file.
A text file is a line-oriented file consisting of printable characters, including digits.
Each line, which can be interpreted as one or more data fields, is terminated by
a system-dependent end-oj-line mark. A file is always terminated by a system
dependent end-oj-file mark. Typically, a text file is treated as a sequential access
file that is accessed one record at a time, starting at the beginning.

Suppose you create a file of student names and grades. . I
It might look like the data in Table 9.1. These data can be header lme
found in the file GRADES. DAT, which can
be downloaded from the World Wide Web
site mentioned in Section i.5 of the Preface.
Table 9.1 obviously represents a "text" file in
the sense that the header lines (the first two
lines in this particular file) and names consist
of "text" in the form of letters and dashes. It
is less obvious that the apparent numbers in
the file, corresponding to the grades, are also

Table 9.1. A sample text file

Name Grade

Adams
Brown
Carter
Jones
Smith

99.3
100.0

77.9
81.1
66.6

D. R. Brooks, Problem Solving with Fortran 90
© Springer-Verlag New York, Inc. 1997

402 • 9. Using Formatted Sequential Access and Internal Files

just "text." That is, numbers are represented in the file by a sequence of digits
plus a decimal point.

. This might se~m like a trivial point becau~e I external representation I
It'.S easy for you to mterpret the data ~ecords. m internal representation
thIS file as a name and a number. In particular, It'S
easy to interpret a series of digits such as 99.3 as
a number. However, computers don't store numbers this way. In order for a
Fortran program to interpret the characters 99. 3 as the number 99.3, it must
convert this external representation of a number to its internal representation.

How can you force your program to interpret the characters 99.3 as a
number or, more generally, to make an appropriate interpretation of any set of
characters? The basic answer is that Fortran will interpret characters in a text file
any way you like as long as you tell it what to do. To put it another way, there
is no inherent interpretation for the characters in any record of a text file.
Consider the third line of the file:

1
123456789012345
Adams 99.3

The column "ruler" isn't part of the file. It's there just to help keep track of where
the data are located. It appears reasonable to conclude that the names in this file
are right-justified in columns 1-6. The nine columns 7-15 contain what appears
to be a number right-justified in those columns.

By creating a format specification, using the same syntax developed in
Chapter 5 for creating formatted output, you can force your Fortran program to
interpret this line of text in an appropriate way-as one character field and one
numerical field. The required statements are

CHARACTER*6 name
REAL grade

READ(l,1000) name, grade

1000 FORMAT(a6,f9 . 1)

Note that it's not necessary for you to understand what the internal representation
of a REAL number is. All you need to understand is that formatted input allows
you to impose your own interpretation on the data in the file.

There are critical pieces missing from this brief code fragment. Before you
can READ from the file, you must include the statements required to make the file
containing these records available. An explanation of the READ statement syntax
is also needed. The next section will discuss the details of reading sequential
access text files and show how to incorporate this code fragment into a complete
program.

9.1 The Text File Concept • 403

First, however, consider some alternate ways of interpreting the data in the
file. It's possible to interpret every line in the file shown in Table 9.1 as
consisting entirely of characters:

CHARACTER*15 one_line

READ(l,1000) one_line

1000 FORMAT(a15)

In this case, all 15 characters become part of the CHARACTER variable
one_line. This is OK for the header lines, but if the third and subsequent lines
are read with this format, the numerical information contained in the file is at least
temporarily lost because Fortran hasn't been told to interpret the digits as the
external representation of a number.

Here's another possible, although not very likely, interpretation of the data
in the file:

CHARACTER*3 n1,n2
INTEGER a
REAL b

READ(l,1000) n1,n2,a,b

1000 FORMAT(a3,a3,i7,f2.1)

This format divides the six columns occupied by the name in half. It then
interprets the blanks and characters to the left of the decimal point as an integer
and the remaining two characters as a REAL number. For the first line of data, a
and b will have values of 99 and 0.3.

Neither of these possibilities seems to be a reasonable interpretation of the
contents of the file shown in Table 9.1. The point of showing them is to
demonstrate that even though humans may assign certain "obvious" interpretations
to text files, Fortran must be told specifically how to interpret the contents of such
files.

As a result of this discussion, you should now understand FORMAT

statements in a more general way: they tell Fortran how to translate quantities
back and forth between their internal and external representations. When formats
are used with a READ statement, they tell your program how to interpret
characters in a text file in the same sense that formatted output tells your program
how to display output. Throughout the rest of this chapter, we will make extensive
use of formats for reading information in text files. Fortunately, there isn't much
new to learn if you have a thorough understanding of how to use FORMAT

statements to create formatted output.
P-9.1 gives a more complete code fragment for providing a reasonable

interpretation of the first three records in the file shown in Table 9.1.

404 • 9. Using Formatted Sequential Access and Internal Files

P-9.1 (fragment)

CHARACTER*6 name,heading*15
REAL grade

(statements to make the file available for reading ...)

READ(l,1000) heading
PRINT *,heading
READ(1,1000) heading
PRINT *,heading
READ(1,1010) name, grade
PRINT *,name,grade

1000 FORMAT(a15)
1010 FORMAT(a6,f9.1)

If access to the records shown in Table 9.1 is to be restricted to "sequential
access," the implication is that the contents of the file must be read in order,
starting at the beginning. Your program can stop anywhere before the end of the
file, but it can't skip ahead or backward. This means that before P-9.1 can read
the data in the frrst data record of the file shown in Table 9.1, which is the frrst
line containing data, it must frrst read past the frrst two header lines. In this
example, the header lines have been assigned a variable name and printed; this is
entirely optional, and it is also acceptable to use two PRINT* statements simply
to read past these header lines.

For some kinds of problems involving file operations, sequential access
imposes a severe restriction, but for now, sequential files will be adequate. The
next section shows how to implement sequential access text files in Fortran.

9.2 OPEN, READ, and CLOSE Statements for Sequential File Access

In Chapter 2, the OPEN, READ, and CLOSE pseudocode commands were
briefly introduced as symbolic tools to access data files. These same words are
keywords in Fortran, and this section will explore their syntax in the context of
a complete program to read the name and grade data file from Table 9.1.

9.2 OPEN, READ, and CLOSE Statements for Sequential File Access • 405

9.2.1 Reading a File Containing Student Names and Grades

1 Define the problem.

A data file contains a list of student names and grades. (See Table 9.1.)
Write a program that reads the file and calculates the average of all grades in the
file.

2 Outline a solution.

1. Examine the file to make sure you understand its contents. In this case, the file
includes two header lines lines that describe what is in the file.
2. Read the two header lines.
3. Read the data in the file one line at a time, in a loop that will stop at the end
of the file. Increment a sum and a line counter inside the loop.
4. When the loop terminates, close the file.
5. The average is the sum divided by the line counter.

3 Design an algorithm.

DEFINE (name, header as string; grade, sum, average as real;
counter as integer)

OPEN (file containing the data)
INITIALIZE sum = 0

counter = 0
READ (first header line)
WRITE (first header line)
READ (second header line)
WRITE (second header line)
LOOP (as long as there are data in the file)

READ (name,grade)
WRITE (name,grade)
INCREMENT sum = sum + grade

END LOOP
CLOSE (file)

counter = counter + 1

ASSIGN average = sum/counter
WRITE (averaae)

406 • 9. Using Fonnatted Sequential Access and Internal Files

4 Convert the algorithm into a program.

P-9.2 [GRADES_F. F90]

PROGRAM Grades_f

Calculate average grade from a file of names and grades.
Demonstrates use of sequential access text files.

IMPLICIT NONE
CHARACTER*6 name,heading*l5
REAL grade,avg
INTEGER n_grades
DATA avg,n_grades/O.O,O/

OPEN(l,file='c:\ftn90.dir\grades.dat',action='read')

READ(l,1000)heading
PRINT *,heading
READ(l,1000)heading
PRINT *,heading

start READ loop

10 READ(l,1010,END=999)name,grade
WRITE(*, 1020)name, grade
a vg=avg+grade
~grades=n_grades+1

GO TO 10

End READ loop
1
999 CLOSE(l)

1000
1010
1020
1030

IF (n_grades > 0) THEN
avg=avg/n_grades

ELSE
avg=O.

END IF
WRITE(*,1030)avg

FORMAT(a15)
FORMAT(a6,f9.1)
FORMAT(lx,a6,f9.1)
FORMAT (lx, 'Average grade
END

',f6.1)

9.2 OPEN, READ, and CLOSE Statements for Sequential File Access • 407

Running P-9.2

Name Grade

Adams
Brooks
Carter

Nixon
Mason
Smith

Turner
Average

80.0
100.0

77.3
33.3
66.6
55.9
92.1

grade = 72.2

This program will be discussed in detail below, particularly the loop formed by
the READ statement in the line labelled 10 and the statement GO TO 10. (The
statements in this loop are printed in bold italics.)

5 Verify the operation of the program.

Verify the program by calculating the average by hand. This might not be
practical with a long data file. In that case, read just a few records in the file,
using a DO. . . loop instead of a conditional loop.

Problem Discussion
As demonstrated by P-9.2, the process of reading data from an external file

consists of three steps. These steps and their associated Fortran keywords are
given in Table 9.2. As usual, the names of the keywords are closely associated
with their functions.

Table 9.2. Three steps required to read a data file.

Required Step Fortran Statement

Open the file. OPEN

Read the file one record at a time, starting READ
at the beginning.

Close the file. CLOSE

Program P-9.2 is based on the assumption that the data file containing
names and grades actually exists and contains information in the format illustrated
in Table 9.1. As we will see later in this chapter, it is possible to provide some

408 • 9. Using Fonnatted Sequential Access and Internal Files

protection against files that do not meet a program's expectations, but P-9.2
contains no such protections. What will happen if, for example, the two header
lines are missing? In that case, P-9.2 won't crash, but it will treat the fIrst two
data lines as header lines, so these data won't be included in the calculation of the
grade average. Also, P-9.2 won't crash if the file contains the two header lines,
but no name and grade data. This is because the IF ... THEN ... ELSE ...
statement near the end of P-9.2 tests the value of n_grades before calculating
the average. If n_grades is zero, then the average is assigned a value of zero;
you might choose some other value instead, such as a negative number.

9.2.2 The OPEN and REWIND Statements

A partial syntax for the OPEN statement is

OPEN([UNIT=]u,optional specifiers)

where u is a unit number and the optional specifiers include:
ACCESS=

The possible values are 'SEQUENTIAL' and 'DIRECT'
ACTION=

The suggested values for sequential access files are
'READ' or 'WRITE'

BLANK=
The possible values are 'NULL' or 'ZERO'.

ERR=statement label
Program control will be transferred to statement label if

the OPEN statement generates an error.
FILE=path and file name

The full path and file name for the file to be opened.
If the file name appears directly after the unit number,
the specifier is optional.

FORM=
The possible values are 'FORMATTED' and 'UNFORMATTED'.

IOSTAT=integer variable
OPEN returns a zero if there are no errors and a positive

value otherwise.
POSITION=

The suggested values for writing to a sequential access
file are 'REWIND' and 'APPEND'. 'REWIND' positions an
existing file at the beginning, causing exising data to
be overwritten. 'APPEND' positions the file at the end,
allowing new data to be appended to existing data.

STATUS=
The possible values are 'OLD', 'NEW', 'REPLACE',
'SCRATCH', and 'UNKNOWN'.

Example:
OPEN(!, 'a:grades.dat',err=99,action='read')

9.2 OPEN, READ, and CLOSE Statements for Sequential File Access • 409

In Fortran, files must be associated with a unit number-the symbolic
"name" by which the file is referenced in the program. If the unit number is given
first, the UNIT= specifier is optional. The association between a unit number and
a physical file on your computer's hard drive or a diskette is made in the OPEN
statement, either directly after the unit number or elsewhere in the statement
following the FILE= specifier. The allowed range of possible unit numbers is
system dependent. Unit numbers 5 and 6 are usually reserved for standard input
and output devices, but the other values between 1 and 10 are probably good
choices.

There are many optional specifiers available in the OPEN statement, only
a few of which will be of interest now. The programs in this chapter require only
the unit number, the file name, and a value for the ACTION= specifier. In some
cases, you may also wish to includeERR= specifier. For text files,
FORM= , FORMATTED' and ACCESS= , SEQUENTIAL' are the default values, so
these specifiers are unnecessary.

As usual in Fortran, the names of the options and the character string
values assigned to them are case-insensitive. Thus action= , read' is equivalent
to ACTION=' READ' and action=' READ'. The actions 'read' and
'write' mean "read only" and "write only." That is, you can either read from
or write to a sequential access text file, but you can't do both at the same time.
For now, programs will read from data files. Options for writing to a file will be
discussed later in the chapter.

OPEN statements can appear anywhere in a program after the
nonexecutable statements and before the referenced unit number is required in a
READ or WRITE statement. However, it is good programming practice to group
all OPEN statements together near the beginning of your program if this is
otherwise appropriate because file name information provided in OPEN statements
may not be compatible from one system to another. If these statements are all in
one place, the required changes are easier to make. However, it might not be
appropriate to group all OPEN statements together if the opening of a file
depended on some other part of your program being executed first.

It is sometimes the case that you would like to read part or all of a file
more than once. One option is to CLOSE the file (see Section 9.2.4) and OPEN it
again. However, this isn't necessary. Using the syntax

REWIND unit
or

REWIND([unit=]unit)

positions the open file associated with uni t back at the beginning.
It is poor programming practice to use the REWIND statement unless it's

absolutely necessary. It is usually better to store data in an array when you need

410 • 9. Using Formatted Sequential Access and Internal Files

repeated access to the values, because operations taking place in memory are more
efficient than read/write operations on files. 1

9.2.3 The READ and BACKSPACE Statements

The READ statement, previously used to access input from the keyboard, has a
more complicated syntax when it is used to access the contents of a text file. Its
general syntax is

READ([UNIT=]u, [FMT=] format specifier[,IOSTAT=integer variable]
[,ERR=line_label] [,END=line_label]) list of variables

where:
u is a unit number, format specifier is a label for a

line containing a FORMAT statement
IOSTAT returns implementation-dependent integer values for

various abnormal conditions
ERR= directs program control to a labelled line if an error

occurs while reading the file
END= directs program control to a labelled line when the end

of the file is encountered.
The list of variables to be read can take several forms,

similar to the possibilities with formatted WRITE and
PRINT statements.

Examples:
READ(S,*)a,b,c !reads from standard input device
READ(3,*)a,b,c
READ(1,lOOO,END=999,ERR=99B) (A(i),B(i),i=l,lO)

The fIrst example is a simple statement that reads three values using list
directed input. However, it doesn't read a text file, even though it appears to do
so, because of the presence of a unit number. By default on most systems, unit 5
is permanently associated with your computer's keyboard. Because unit 5 isn't an
external file, even though it appears to be, it doesn't have to be opened or closed.

The second and third examples are intended to read data from an external
file. They assume that their units (1 and 3) have previously been OPENed. The
third example refers to a format and includes directions, through the END= and

lAuthor's note: the REWIND statement has its roots in Fortran at a time when large data
files were stored on magnetic tape. In that case, REWIND caused the physical rewinding of the
tape reel, which could be very time-consuming. On modern systems, the REWIND statement
simply reinitializes an electronic "pointer" to the beginning of a file stored, typically, on your
computer's hard drive. This does not take long. However, my own personal style is still to avoid
using REWIND.

9.2 OPEN, READ, and CLOSE Statements for Sequential File Access • 411

ERR= options, about where to transfer program control when the end of the file
is reached or an error is detected.

Now return to P-9.2. The data file GRADES. DAT has a typical structure.
It contains header lines that describe the contents of the file; these are not
necessary, but they are useful for clarifying the structure of the file and making
its contents more easily accessible to a human reader. Then the file contains a
typically unknown number of lines of data, all of which use the same format. In
this situation, the header lines must be read frrst in order to get to the data, even
if the information in the header lines isn't needed for anything. Then all the
identically formatted data records can be read inside a conditional loop.

In P-9.2, the loop to read the file begins with the labelled line containing
the READ statement (line 10) and ends at the line containing the GO TO 10

statement, which transfers program control back to the READ statement. The
syntax of the GO TO statement is

I GO TO line_label I
Modern programming style generally disparages the use of "go to" statements and
labelled lines, no matter what the language.2 Indeed, we will use it for no other
purpose in this text. What are the alternatives for a program such as P-9.2? One
alternative is to determine ahead of time how many grade listings are in the file.
Then the file can be read in a DO. . . loop. This "record count" could be "hard
coded" into the source code or it could be given as a separate record at the
beginning of the file. The second alternative is to add a "sentinel value" to the end
of the file and use this value to terminate a conditional loop. For example, the line

nomore 0.0

could be added to the end of the data in Table 9.1.
In this text, we will generally not use the first of these alternatives, and we

will never use the second. Why not? The frrst alternative imposes an unnecessary
burden on a programmer, if the record count is hard coded into the program, or
on the creator of the file if the record count is given as a value at the beginning
of the file. However, the tactic of including the record count in the file itself can
sometimes be useful, and it at least has the advantage that the source code itself
does not need to be changed if records are added or deleted from the file.

2Author's note: this is somewhat of an understatement according to some Fortran 90
programmers, who will, in my purely personal opinion, go to unreasonable lengths to avoid the use
of GO TO statements.

412 • 9. Using Formatted Sequential Access and Internal Files

The second alternative imposes an unnecessary burden on the creator of
a file; there is no good reason to require the addition of an extra record that might
be useful for a Fortran program, but a nuisance for some other use of the file. It
seems a bad idea, in principle, to require that the creator of a data file have
detailed knowledge of how the fIle will be used in the future by a program written
in a particular programming language.

There are no good reasons to accept either of these alternatives. We will
instead use the "implied" conditional loop structure made possible by the END=
specifier in the READ syntax, even at the risk of using the much-maligned GO TO

statement.
As you know, every conditional loop requires a terminating condition. In

this case, the terminating condition is found inside the READ statement. Every text
fIle includes an end-of-fIle mark at the end of the fIle, which is automatically put
there when the fIle is created. The END= specifier enables the READ statement to
"look ahead" for this mark before the read operation actually takes place. When
the end-of-fIle mark is found, the loop terminates and transfers program control
to the line with the specified label (999 in P-9.2). It is not allowed actually to
read the end-of-file mark. Without the END= specifier, a program will crash when
it tries to read data past the end of the fIle. As shown in P-9.2, the usual action
to take when the loop terminates is to close the fIle and continue with the rest of
the program.

The presence of the terminating condition inside the READ statement
implies that the conditional loop in P-9.2 is a pre-test loop. As a result, your
program won't crash if you ask it, presumably not on purpose, to read an empty
file. If the input file doesn't even exist, you won't get this far because your
program will crash when it tries to OPEN a nonexistent fIle, unless you have used
the IOSTAT= specifier in the OPEN statement (see the syntax summary for the
OPEN statement) to recover from such errors more gracefully.

P-9.2 implicitly assumes that there will be no data errors in the fIle, or if
they do exist, that you will simply fix them and run the program again. If you
need a more sophisticated way of recovering from fIle errors, you can include the
ERR= option in the READ statement. As a general rule,

It is easier to edit data files so that their contents are predictable than to
write a program that will keep running no matter what it finds, or doesn't
find, in a file.

There are many opportunities for errors when you're writing programs that
involve reading external data fIles. It's important to provide an appropriate format
for the data records in the fIle and to be aware of how many lines, if any, must
be read as header lines. It is also important that the fIle being read meet the
program's expectations. Once an input format is specified within your program,
all the data in the fIle must adhere to that format. If any does not, your program

9.2 OPEN, READ, and CLOSE Statements for Sequential File Access • 413

will crash, or even worse, your program will continue to run, but will produce
answers that are wrong. If your program uses list-directed input, then the
fonnatting conditions imposed on the file are not so strict (for example, numbers
don't need to line up in columns), but that may place limitations on how
infonnation in the file can be interpreted.

Note that it's not required for every line in a file, other than the header
lines, to have the same fonnat. However, it is necessary to know the structure and
arrangement of every line. One common situation involves a data record that
requires more than one line in a file. Then each data record in the file must be
extracted by reading a group of lines, with each line in the group having having
its own fonnat.

It may sometimes seem necessary to reread a record. For example, you
may wish to reinterpret a value in a record based on a value found elsewhere in
that same record. The statement

BACKSPACE unit
or

BACKSPACE([unit=]unit)

skips back one record in the file associated with unit number uni t. As a matter
of style, you should not make a habit of using this statement. If you really can't
process a file sequentially, then you shouldn't be using a sequential access file.
(Alternative file structures are discussed in Chapter 12.) Anything you wish to
accomplish with a BACKSPACE can more reasonably be achieved by reading a
record into an internal file, as discussed below in Section 9.4.2. The BACKSPACE
statement is mentioned here only because you may sometimes encounter it in
programs.3

9.2.4 The CLOSE Statement

A CLOSE statement is required to close each file that you have OPENed in your
program. The results of not closing a file depend on how the file is being used
and may be system-dependent. In any event, you should always be careful to
include a CLOSE statement for every open file even if a program seems to work

3 Author's note: the BACKSPACE statement has its roots in Fortran at a time when data
files were stored on magnetic tape, in which case a BACKSPACE could require physical movement
of the tape on its reel. On modem systems, data being read from a file are typically held in an
input buffer that may be large enough to hold many data records at once. In that case, a
BACKSPACE may actually be quite efficient. Nonetheless, my personal style is still to avoid its
use.

414 • 9. Using Fonnatted Sequential Access and Internal Files

without it (for example, if you forget to put a CLOSE statement in a program and
nothing bad happens). The syntax of the CLOSE statement is

CLOSE(unit)

9.3 Files and Arrays

This is an extremely important section because it brings together two of the most
important features of any programming language, file processing and arrays. Once
you understand this material, you will be able to write a large percentage of the
programs you will ever need.

In Chapter 8, the need for arrays was discussed in the context of managing
collections of related values. However, what was missing from that discussion was

Table 9.3. High and
low temperatures
during January 1994

01/01/94 43 24
01/02/94 51 31
01/03/94 37 33
01/04/94 35 30
01/05/94 38 24
01/06/94 32 24
01/07/94 33 30
01/08/94 37 18
01/09/94 28 17
01/10/94 29 17
01/11/94 40 21
01/12/94 39 36
01/13/94 41 36
01/14/94 39 31
01/15/94 17 6
01/16/94 15 4
01/17/94 34 14
01/18/94 33 8
01/19/94 6 -5
01/20/94 15 0
01/21/94 34 5
01/22/94 33 15
01/23/94 33 24
01/24/94 51 31
01/25/94 48 32
01/26/94 34 21
01/27/94 33 11
01/28/94 58 33
01/29/94 42 34
01/30/94 36 29
01/31/94 37 22

a clear idea of how those values could be transmitted
to your program when they couldn't be generated
within the program itself. The obvious solution is to
store the required input values in a data file that can be
accessed by your program. Depending on the
application, you might also wish to store the data in an
array defined within your program. Remember that
information in an external file represents "permanent"
data storage-as long as your hard drive keeps
working- whereas an array in your program is
temporary in the sense that it is a data structure that
lasts only as long as your program is running. The
techniques will be presented in the context of specific
examples.

1 Define the problem.

Given a data file containing the date and high
and low temperatures for every day in a month, write
a program that will calculate the average temperature
for the month and will then print the high and low
temperatures for each day on which the average
temperature was below the average temperature for the
month. The average temperature for the month is
defined as the average of the daily averages. The daily
average temperature is defined as half the sum of the

9.3 Files and Arrays • 415

low and high temperatures for that day. The sample data given in Table 9.3 can
be found in file JANUARY. DAT, which may be downloaded from the World Wide
Web site mentioned in Section i.5 of the Preface.

2 Outline a solution.

1. Read the data file and store the dates and measurements in an array. The array
is necessary because all the measurements will be needed again, after the monthly
average has been calculated.

2. While reading the data file, calculate the average temperature for each day and
sum up those average temperatures. (Assume the daily average is, in fact, equal
to the average of the high and low temperatures.)

3. Calculate the average temperature for the month by dividing the sum of the
daily average temperatures by the number of days in the month.

4. Loop through the contents of the array and print out all data for a day when the
average temperature is below the average temperature for the month.

3 Design an algorithm.

DEFINE (array containing the date, high and low temperatures, and daily
average temperature for each day of the month;
a loop counter (i); number of days (n_days); monthly_average)

OPEN (data file)
READ (header lines, if any)
WRITE (header lines - optional or for testing)
(Read the data.)
INITIALIZE n_days = 0

monthly_average = 0
LOOP (through all the data)

INCREMENT n_days = n_days + 1
READ (from the file: date(n_days), high(n_days), low(n_days)
WRITE (all data - optional or for testing)
ASSIGN daily_average(n_days) = (high(n_days) + low(n_days))/2
INCREMENT monthly_average = monthly_average

END LOOP
CLOSE (data file)

+ daily_average(n_days)

416 • 9. Using Formatted Sequential Access and Internal Files

(Decrement loop counter.)
INCREMENT n_days = n_days - 1
(Calculate monthly average.)
ASSIGN monthly_average = monthly_average/n_days
(Print desired data.)
LOOP (for i = 1 to n_days)

IF (daily_average(i) < monthly_average} THEN
WRITE (all data for that day)

END LOOP

You should study this algorithm carefully because it illustrates an essential
model for reading a data file and storing its contents in an array. The fIrst question
to ask yourself is, "Do I understand precisely why an array is needed to store the
data within this program?" For this problem, the reason is that you must fIrst
calculate the monthly average and then read back through all the data again to
print the desired values (those days for which the average temperature is less than
the monthly average temperature).

In principle, you could achieve this goal without storing the measurements
in the array, but that would involve REWINDing the file and reading it again from
the beginning (or closing and re-opening the file). However, there is no reason to
take this approach. In general, you should always favor storing the contents of a
data file in an array instead of reading the file more than once because operations
on data in a file are much slower than operations taking place in memory.

Note that the variable n_days is initialized to 0 outside the loop and
incremented inside the loop before the READ statement. This is done because the
fIrst array index is needed in the READ statement so that values in the data file
can be associated directly with elements in an array as they are read from the file.
When the loop terminates, n_days must be decremented by 1 because it was
incremented before the end of the file was detected.

Here's an alternative way to read and store the data. Its only disadvantage
is that it requires additional variables; you can assume that each of the~ three
temporary variables in this algorithm is associated with an appropriate data type.
This is a useful, and perhaps essential, algorithm if you have any reason to test
values in a data file before you store them in an array.

INITIALIZE n_days = 0
monthly_average = 0

LOOP (until the end-of-file)
READ (from the file: temp1,temp2,temp3)
WRITE (all data - optional or for testing)
INCREMENT n days = n days + 1

9.3 Files and Arrays • 417

ASSIGN date(n_days) = temp1
high(n_days) = temp2
low(n_days) = tempS
daily_average(n_days) = (temp2 + temp3)/2

INCREMENT monthly_average = monthly_average +
daily_average(n_days)

END LOOP
CLOSE (data tile)

In this code, n_days is incremented only after the READ has been completed
and the values have been examined. In other circumstances, you could make
incrementing of an index dependent on the values read from the file.

For the data file shown in Table 9.3, there is yet another way to read and
store the data that takes advantage of the fact that the array index is available in
the file itself as part of the date string. For example, in the string 01/01/94, the
numerical value for the day (1) is contained in the characters 01 in columns 4 and
5. Similarly, numerical values for the month and year are also available, and all
these values may be accessed in Fortran:

INITIALIZE monthly_average = 0
LOOP (until the end-ot-tile)

READ (trom tile: mon,d,year(d),high(d),low(d))
ASSIGN month(d) = mon

day(d) = d
WRITE (all data - optional or tor testing)
ASSIGN daily_average(d) = (high(d) + low(d))/2
INCREMENT monthly_average = monthly_average +

END LOOP
CLOSE (data file)

daily_average(d)

In this version of the algorithm, the date is defmed not as a string, but as three
numerical values for the month, day, and year. This implementation imposes some
special conditions on the contents of the data file. It requires that all the days of
the month be present so that the array index d, starting at one, is available in the
file itself. Using the READ command in this way implies that it's possible to read
a value and use it immediately in the same READ command. As we will see, this
is, in fact, allowed in Fortran. Because it's obviously not possible to use the value
before it's read, the month and day array elements must be assigned after the
READ command.

418 • 9. Using Fonnatted Sequential Access and Internal Files

We will use the original version of the algorithm because it is more typical
code than the others. A modification of the program that uses the "clever"
approach for getting the array index from the date will be left for an end-of
chapter exercise.

4 Convert the algorithm into a program.

There are some choices to be made about how to implement the arrays
required by this algorithm. One way is to defme separate arrays for each daily
quantity. Another is to define one array for the date and a second
multidimensional array for the numerical values, all of which can, and should, be
real numbers. The third and best choice in this and many similar problems is to
defme a one-dimensional array of records using a TYPE construct. Each record
will contain the date (stored as three numerical values for the month, day, and
year), the high and low temperatures, and the daily average temperature. The last
of these fields will be calculated, and all the rest will be obtained directly from
the file. This approach is an example of good programming style that uses
Fortran 90's capabilities to manage several related variables.

P-9.3 [AVG_TEMP. F90]

PROGRAM avg_temp

I Process high and low temperatures for one month.

IMPLICIT NONE
TYPE hi_la_type

CHARACTER*8 date
REAL hi,lo,daily_average

END TYPE hi_la_type

TYPE (hi_la_type) hi_lo(3l)
INTEGER n_days,d
REAL monthly_average

OPEN(l,file='c:\ftn90.dir\january.dat')
Initialize ...

monthly_average=O.O
n_days=O

Read data file ...
10 n_days=n_days+l

READ(l,lOOO,end=20)hi_lo(n_days)%date,hi_lo(n_days)%hi, &
hi_lo(n_days) %10

hi_lo(n_days)%daily_average= &
(hi_lo(n_days)%hi+hi_lo(n_days)%10)/2.

monthly_average= &
monthly_average+hi_lo(n_days)%daily_average

PRINT *, &
hi_lo(n_days) %date, hi_lo(n_days) %hi, hi_lo(n_days) %10

r.o TO 10

! End of READ loop . . .
20 CONTINUE

CLOSE(l)
Decrement loop counter by 1 ...

n_days =n_days-l

9.3 Files and Arrays • 419

Calculate average ...
monthly_average=monthly_average/rt_days

Print contents days for avg. T < monthly avg. T
WRITE(*,1002)monthly_average
WRITE(*,1003)
WRITE(*,1005)
DO d=l,n_days

IF (hi_lo(d)%daily_average < monthly_average) &
WRITE(*,lOlO)hi_lo(d)%date, &

NINT(hi_lo(d)%hi),NINT(hi_lo(d)%lo), &
hi_lo(d)%daily_average

END DO

1000 FORMAT(a8,2f4.0)
1002 FORMAT(' Monthly average temperature = ',f6 . 2)
1003 FORMAT(' These days have below-average temperature: ')
1005 FORMAT(lx, ' Date hi low avg' &

/lx, '----------------------')
1010 FORMAT(lx,a8,2i4,f6 . l)

END

Running P-9.3

Monthly average temperature ~ 28.02
These days have below-average temperature:

Date hi low avg

1/ 6/94
1/ 8/94
1/ 9/94
1/10/94
1/15/94
1/16/94
1/17/94
1/18/94
1/19/94
1/20/94
1/21/94
1/22/94
1/26/94
1/27/94

32 24
37 18
28 17
29 17
17 6
15 4
34 14
33 8

6 -5
15 0
34 5
33 15
34 21
33 11

28.0
27.5
22.5
23.0
11.5

9.5
24.0
20.5
0.5
7.5

19.5
24.0
27.5
22.0

420 • 9. Using Fonnatted Sequential Access and Internal Files

5 Verify the operation of the program.

Check some daily averages by hand. It might seem unreasonable to ask
you to check the entire monthly average by hand, but you can at least ask yourself
if the value makes sense. Does your program's output look reasonable?

Problem Discussion
You should examine carefully how the READ loop is implemented. As

mentioned during the algorithm design, it is necessary to decrement n_days after
the loop terminates because this value is incremented before the READ statement
detects the end-of-file.

Even though the temwrature values have been read as REAL numbers, they
are printed as integer values by using the NINT function in the WRITE statement.
This is because a REAL number can't be printed without a decimal point. For
example, an F4 . 0 fonnat would print a value of 24 as "24 ." and not "24". Why
bother to read the temperatures as REAL numbers in the first place? Because
calculating the average daily temwrature is a real, as opposed to an integer,
arithmetic calculation, and it's better programming style to consider the high and
low temperatures as REAL values even though a mixed-mode calculation would
work in this case.

Even if you quite reasonably conclude that the average temperature should
be expressed only to the nearest degree, reflecting the precision of the original
data, it would still be better style to treat the data as REAL numbers and convert
the final output to an integer value with NINT.

9.4 More About Formatted READ Statements

9.4.1 FORMAT Statements and Standard Field Descriptors

Ideally, when you create data files for use in your own programs, you will design
them so they are easy to read, perhaps requiring no more than list-directed input.
However, you will often have to use files that haven't been created specifically
to make them easy to use in Fortran programs. In that case, it's necessary to have
a thorough understanding of how to use fonnatted input to decipher the contents
of files. Here is an example.

9.4 More About Formatted READ Statements • 421

1 Define the problem.

The file BAROM. DAT, which can be downloaded from the World Wide
Web site mentioned in Section i.5 of the Preface, contains the date and four
barometric pressure readings at 6:00 am, 12:00 noon, 6:00 pm, and midnight for
an entire month. The reading consists of the numerical value followed directly by
the letter f, s, or r, depending on whether the value is lower (falling), the same as
(steady), or higher (rising) than the reading at the previous hour. There are no
header records. The fIrst two data records look like this:

01/01/94 29.97f 29.97s 30. ODs 30.01r
01/02/94 30.00s 30.00f 29.99f 29.98s

Write a program that will read and print the information in this file. In particular,
your program must separate the numerical value of the barometric pressure from
the character following the numerical value.

2 Outline a solution.

1. Open the data file for reading.
2. Read each record in the file, separating the f, s, or r from the numerical value
for barometric pressure.
3. Print the results.

3 Design an algorithm.

DEFINE (date (as string); four sets of pressure and flag values)
OPEN (barometric pressure data file)
LOOP (until end of file)

READ (date and four sets of pressure/flag values)
WRITE (date and pressure/flag values)

END LOOP
CLOSE (data file)

422 • 9. Using Fonnatted Sequential Access and Internal Files

4 Convert the algorithm into a program.

In this case, the algorithm is $imple because the objective of the program
is very simple. However, this is an example of a problem for which the
implementation details in a particular language are very important.

P-9.4 [BAROM. F90]

PROGRAM barometer

File name BAROM.F90
Interpret file of daily barometric pressure readings.

IMPLICIT NONE
CHARACTER*8 date
REAL at_6am,at_noon,at_6pm,at_midnight
CHARACTER*l f1ag_6am,flag_noon,f1ag_6pm,flag_midnight

OPEN(1,file='c:\ftn90.dir\humidity.dat')

10 READ(1,1000,end=20)date,at_6am,flag_6am,at_noon,flag_noon, &
at_6pm, flag_6pm,at_midnight, flag_midnight

WRITE(*,1010)date,at_6am,flag_6am,at_noon,flag_noon, &
at_6pm, flag_6pm,at_midnight, flag_midnight

GO TO 10

20 CLOSE(l)
I
1000 FORMAT(a8,4(f6.0,a1»
1010 FORMAT(lx,a8,4(f8.2,lx,a1»

F.Nn

9.4 More About Formatted READ Statements • 423

Running P-9.4

01/01/95 29.92 f 29.89 f 29.90 r 29.85 f
01/02/95 29.S1 r 29.95 r 30.09 r 30.23 r
01/03/95 30.33 r 30.30 f 30.25 f 30.15 f
01/04/95 30.11 f 30.09 f 30.11 f 30.27 r
01/05/95 30.35 r 30.39 f 30.36 s 30.31 f
01/06/95 30.30 f 30.20 f 30.06 f 30.00 f
01./07/95 29.48 r 29.61 r 29.77 r 29.93 r
01/08/95 30.07 r 30.13 f 30.13 r 30.17 s
01/09/95 30.17 r 30.18 f 30.19 r 30.32 r
01/10/95 30.40 r 30.43 f 30.42 r 30.42 f
01/11/95 30.43 r 30.40 f 30.35 r 30.29 f
01/12/95 30.22 s 30.15 f 30.09 5 30.11 s
01/13/95 30.13 r 30.19 f 30.20 r 30.10 f
01/14/95 30.22 s 30.21 f 30.14 f 30.14 s
01/15/95 30.01 f 29.92 f 29.84 s 29.84 5

01/16/95 29.82 r 29.82 f 29.S7 r 29.91 s
01/17/95 29.94 r 30.01 f 30.08 r 30.16 r
01/18/95 30.21 r 30.28 s 30.27 r 30.25 f
01/19/95 30.19 f 30.10 f 30.00 s 29.45 f
01/20/95 29.45 f 29.24 f 29.21 f 29.31 r
01/21/95 29.41 r 29.49 s 29.57 r 29.35 r
01/22/95 29.71 r 29.77 f 29.83 r 29 .35 r
01/23/95 29.91 r 29.90 f 29.88 s 29.83 f
01/24/95 29.84 r 29.85 f 29.92 r 29.99 s
01/25/95 30.05 r 30.07 f 30.03 s 30.04 s
01/26/95 30.05 r 30.05 f 30.05 r 30.05 5

01/27/95 30.07 s 30.08 f 30.05 s 30.05 s
01/28/95 30.09 f 30.11 f 30.01 f 30.10 r
01/29/95 30.13 r . .30.21 f 30.20 s 30.17 f
01/30/95 30.09 s 29.97 f 29.83 s 29.82 r
01/31/95 29.85 r 29.85 f 29.75 r 29.75 s

In this case, the desired information cannot be retrieved with list-directed
input because the character "flag" appears directly after a numerical value. To
separate these values, you must tell your program which columns contain which
kind of information. That is, you must use a FORMAT statement to impose a field
structure on each record.

5 Verify the operation of the program.

It is easy to verify the operation of P-9.4 by comparing the printed output
with the original file. Note that when programs rely on formatted input, they must
assume that data will always be in the desired format. So part of the program
verification in this case is to make sure your data file is properly formatted.

424 • 9. Using Fonnatted Sequential Access and Internal Files

Program P-9.4 is a straightforward application using fonnatted input. In
many ways, input is much easier than output because you will probably be able
to do everything you need to do with just four fonnat specifiers: A, F, I, and x.
There is not much new to learn. When you use these specifiers for output, they
create a column-by-column image of how you want your output to look. When
you use them for input, they impose a column-by-column "overlay" on the
characters in your data file that tells your program how to translate what it fmds
there. Consider this statement from P-9.4:

1000 FORMAT(aB,4(f6.0,a1»

This tells your program that the first eight characters on a line are to be treated
as a string. Next there are four groups of seven characters. In each group, the first
six are to be treated as a REAL number and the seventh is a single character. Note
that the number actually contains only five characters, but it is right-justified in
a field six characters wide; there is nothing wrong with having blanks to either the
left or the right of a numerical value.4

The f 6 . 0 specifier in this statement may be puzzling. As you can see
from the data file itself, this seems an inappropriate input fonnat for a number
such as 29.97, which has two digits to the right of the decimal point. The
applicable rule for using fonnatted input is this:

Rule 1. When a value to be read and associated with a REAL variable
includes a decimal point, the position of that decimal point overrides the
position implied by the d field in an fw. d specifier.

That is, as long as the number contains a decimal point, the only part of the fw. d
specifier that matters is the w field. In the above case, an f 6 . 2 specifier would
work, but so would any other fw. d specifier with w=6.

Here are a few more rules for using fonnatted input:

Rule 2. When a value to be read and associated with a REAL variable does
not include a decimal point, the position of that decimal point can be
implied by the d field in an fw. d specifier.

Rule 3. When a value to be read is not right-justified in the field implied by
an i or f specifier, the trailing blanks (to the right of the digits) are
interpreted by default as blanks and not zeros.

"However. see the Proe:rammine: TiD followine: the discussion of P-9.S.

9.4 More About Fonnatted READ Statements • 425

Rule 4. When a value to be read and associated with a REAL variable is
written in scientific notation, an f specifier will correctly interpret that
value.

P-9.5 is a simple program that demonstrates these rules. The file
READTEST. DAT, which can be downloaded from the World Wide Web site
mentioned in Section i.5 of the Preface, looks like this:

1 22222
1.3e21
99999

P-9.5 [READTEST. F90]

PROGRAM ReadTest

Test program for formatted READ.

IMPLICIT NONE
INTEGER a,b
REAL x,y

OPEN(l,file='c:\ftn90.dir\readtest.dat')
READ(l,1000)a,b
READ(l,1010)x
READ(l,1020)y
PRINT*, a,b
PRINT*,x,y
CLOSE(l)

1000 FORMAT(2i5)
1010 FORMAT(f6.0)
1020 FORMAT(f5.3)

END

Running P-9.5

(
1 22222

L 3000001E21 99.9990005)
Ignoring the small inaccuracies that creep into these values simply because they're
stored as REAL variables, you can see that the 1 is translated as 1 and not as
10000, the scientific notation is interpreted correctly, and the 99999 is translated
as 99.999 because of the f5. 3 format in line 1020.

In the case of the 99999, the result is completely equivalent to writing
99 . 999 in the data file and reading the value with an f 6 . 0 format. This may
seem a rather odd feature of Fortran. Why not just store the number as 99. 999

426 • 9. Using Formatted Sequential Access and Internal Files

in the fIrst place and avoid possible confusion? The explanation is that in the early
days of Fortran, everything, including data files too short to justify creating a
magnetic tape, had to be stored on 80-column punch cards, and space was at a
premium. If it was possible to store the value 99.999 as the characters 99999 and
fmd a way to interpret those characters appropriately, then the column saved on
the punch card could be used for· something else. If you actually wanted to
interpret the characters 99999 as the number 99999, you could use an integer
format or an f 5 . 0 specifier if you still wanted it to be treated as a real number.

Programming Tip
It is possible to use formatted, but not list-directed, input to change the

way Fortran interprets trailing blanks in a numerical field. Refer to the OPEN
syntax in Section 9.2.2 and the BLANK= option. The default condition is to treat
trailing blanks in a field as nulls (equivalent to including BLANK=' null').
(However, a completely blank field will be interpreted as a zero.) If you include
the BLANK=' zero' option in an OPEN statement, trailing blanks will be
interpreted as zeros. In the above example, 116161616 could be interpreted as a value
of 10000 rather than 1. You should avoid using this option, as it may result in an
unexpected interpretation of the contents of text files. The option exists mainly to
allow compatibility with older programs.

9.4.2 Reading Internal Files

Returning now to P-9.4, this program is based not only on the assumption that the
data are consistently formatted, but also on the assumption that there are no
missing data. This is not always a good assumption, and an appropriate response
depends greatly on the circumstances. Here is one possible circumstance and an
approach for dealing with it. Assume that the fIrst few records of the data file
used in P-9.4100k like this:

01/01/95 29.92f 29.89f 29.90r
01/02/95 29.81r 29.95r 30.09r 30.23r
01/03/95 30.33r 30.30f 30.25f 30.15f

This is just like the original file except that the fIrst line is missing barometric
pressure data for midnight and the field is filled with dashes. The problem this
situation poses is that your program can no longer count on being able to read the
fields as a numerical value followed by a character. Instead it's necessary to read
the six characters in each entry and then decide what to do based on whether
those six characters include dashes. Although the idea behind a solution is
generally applicable, a solution for this particular data file will be just an ad hoc
approach to dealin~ with the contents of this particular file.

9.4 More About Formatted READ Statements • 427

There is no need to redesign the algorithm to solve this problem, as it's a
Fortran implementation problem that must be solved rather than an algorithm
design problem. Therefore, we will proceed directly to the program, P-9.6.

P-9.6 [BAROM2. F90]

PROGRAM barom2

Interpret file of barometric pressure readings when data
are missing.

IMPLICIT NONE
CHARACTER*8 date
CHARACTER * 6 temp
REAL barom_value
CHARACTER*l flag
CHARACTER*80 buffer !temporary string storage
INTEGER i

OPEN(l,file='c:\ftn90.dir\barom2.dat')

10 READ(l,1000,end=20)buffer
Read and write date ...

date=buffer(1:8)
WRITE(*,1010,advance='no')date

Check and interpret the four barometer fields ...
DO i=l,4

temp=buffer(3+7*i:9+7*i)
IF (temp == '------') THEN

WRITE(*,1020,advance='no')
ELSE !do internal read on substring
READ(~emp,1025)barom_va~ue,f~ag

WRITE(*,1030,advance='no')barom_value,flag
END IF

END DO
WRITE(*,1040) !Write a "line feed"

GO TO 10

20 CLOSE(l)

1000 FORMAT(a80) Ito hold the temporary string
1010 FORMAT(lx,a8) Ito read the date
1020 FORMAT(lx,'-------') !output for missing barometer field
1025 FORMAT(f5.0,a1) !for internal read on substring
1030 FORMAT(f6.2,lx,al) !output for data
1040 FORMAT() !line feed after advance='no'

END

428 • 9. Using Formatted Sequential Access and Internal Files

Running P-9.6

01/01/95 29.92 f 29.89 f 29.90 r -------
01/02/95 29.B1 r 29.95 r 30.09 r 30.23 r
01/03/95 30.33 r 30.30 f 30.25 f 30.15 f
01/04/95 30.11 f 30.09 f 30.11 f 30.27 r
01/05/95 30.35 r 30.39 f 30.36 s 30.31 f
01/06/95 30.30 f 30.20 f 30.06 f -------
01/07/95 29.4B r 29.61 r 29.77 r 29.93 r
01/0B/95 30.07 r 30.13 f 30.13 r 30.17 s
01/09/95 30.17 r 30.18 f 30.19 r 30.32 r
01/10/95 30.40 r 30.43 f 30.42 r 30.42 f
01/11/95 30.43 r 30.40 f 30.35 r 30.29 f
01/12/95 30.22 s 30.15 f 30.09 s 30.11 s
01/13/95 30.13 r 30.19 f 30.20 r -------
01/14/95 30.22 s 30.21 f 30.14 f -- ... ----
01/15/95 30.01 f 29.92 f 29.84 s 29.84 s
01/16/95 29.82 r 29.82 f 29.87 r 29.9l s
01/17/95 29.94 r 30.01 f 30.0B r 30.16 r
01/18/95 30.21 r 30.28 s 30.27 r 30.25 f
01/19/95 30.19 f 30.10 f 30.00 s -------
01/20/95 29.45 f 29.24 f 29.21 f -------
01/21/95 29.41 r 29.49 s 29.57 r -------
01/22/95 29.71 r 29.77 f 29.83 r -------
01/23/95 29.91 r 29.90 f 29.88 s 29.83 f
01/24/95 29.84 r 29.85 f 29.92 r 29.99 s
01/25/95 30.05 r 30.07 f 30.03 s 30.04 s
01/26/95 30.05 r 30.05 f 30.05 r 30.05 s
01/27/95 30.07 s 30.08 f 30.05 s -------
01/28/95 30.09 f 30.11 f 30.01 f -------
01/29/95 30.13 r " 30.21 f 30.20 s 30.17 f
01/30/95 30.09 s 29.97 f 29.83 s 29.B2 r
01/31/95 29.85 r 29.85 f 29.75 r -------

The most notable feature of P-9.6 is that it is a lot more complicated than
P-9.4 because the programming burden of responding to missing data is
substantial. In fact, you could argue that it might be worth modifying the data file
rather than writing this code. For example, missing barometric pressure values
could be given a value of 0 and the single character field could be left as a dash.
Then the code in P-9.4 would work without modification. However, large data
files aren't always easy to modify, and in any event, it may still be necessary to
respond differently to certain kinds of entries in the file.

The solution in P-9.6 is first to read each line of the I · I internal file
data file as a string of characters (named buffer). The
contents of the four sets of six columns that may contain
barometric pressure values are then extracted from buffer, by reading each of
them into a substring, and examined one at a time, using the variable name temp

9.5 Writing Text Files • 429

inside the DO i = 1 , 4 . . . loop. If they contain dashes, they are simply printed
as part of the output. Otherwise, those columns are processed as an internalfile.5

Internal files are used just like unit numbers in a READ statement, as you
can see by referring to the READ (temp, 1025) ... statement in P-9.6 (printed
in bold italics). This has the effect of treating the CHARACTER variable temp
as a temporary "buffer" holding data to be read. You can perform a formatted
READ on the contents of the internal file just as you would for data being read
directly from a file or typed at the keyboard. In general, you can also perform a
list-directed READ on an internal file, but that won't work in this case because
list-directed input won't allow you to separate the "flag" character from the
numerical value.

In summary, P-9.6 has performed some "error checking" to look for
missing data and has used an internal file to extract fields from a record. Internal
files are also useful when the interpretation of part of a record depends on the
contents of some other part. Data stored in an internal file can be read as many
times as you like, and you can even apply more than one interpretation to the
same record. Although it's possible to read a record in a text file more than once
using BACKSPACE, it is usually better style to store a record in a temporary
CHARACTER variable and then perform one or more internal READs on that
variable.

9.5 Writing Text Files

It shouldn't surprise you to fmd that Fortran can be used to create text files as
well as to read them. In fact, the same WRITE statements that display output on
a monitor screen or printer will also send output to a file. The only difference is
the choice of unit numbers. On most systems, 6 is the default unit for a monitor
screen. This represents a "file" that, essentially, is "open" all the time and doesn't
have to be opened in your program.

Only WRITEs (and not PRINTS) can be used to direct output to a text file.
Therefore, if there is any chance that you will want a program to write its output
to an external file, you should use only WRITEs in that program even when the
output is sent initially to your computer monitor. On the other hand, you can use
PRINTs for the parts of a program's output that you don't want to appear in an
external file. For example, you could use PRINTs for prompts to provide
keyboard information in a program that sends calculated output to a text file.

5The use of the variable name bu f fer for these series of characters implies that they are
not really stored in a "file," but are instead held in a temporary location, or buffer, in computer
memory. However, the term makes sense because the syntax for extracting information from this
"internal file" buffer is identical to the syntax for reading information from an external file.

430 • 9. Using Formatted Sequential Access and Internal Files

If your program uses WRI TE statements, all you have to do to direct output
to a file instead of to your monitor is to OPEN an appropriate unit number,
provide an appropriate file name, and specify that the file is to be "write only"
(ACTION= 'WRITE'). If the unit number is specified as a variable, nothing in the
WRITE statements themselves needs to be changed. Depending on the application,
you may need to include other information in the OPEN statement, using the
STATUS= and POSITION= options. (See Section 9.2.2.) Some possible values
of these options are given in Table 9.4.

Table 9.4. Some options in the OPEN statement applicable to writing text files

Option Specifier Description

ACTION='write' File is "write only."

POSITION='rewind' For "write only" file, positions file to the
beginning (default value).

POSITION=' append' For "write only" file, positions. file to the end,
just before the end-of-file mark. New data
are written on the end of an existing file.

STATUS='new' File must not exist when the OPEN statement is
executed. A new file with the specified name
is created.

STATUS='old' File must already exist when OPEN statement is
executed.

STATUS= , replace' If file does not exist, it is created. If it already
exists, the old file is deleted and a new one
with the same name is created.

STATUS=' scratch' File is created, but cannot be kept as a
permanent file when the program terminates.

STATUS='unknown' Status of file is system-dependent, based on
how file is used in program. This is the default
status.

STATUS=' scratch' and STATUS=' new' files are rarely needed during
program development. In fact, you will only rarely need to supply any values
other than the default values for any of these options.

9.6 Applications • 431

9.6 Applications

9.6.1 Exponential Smoothing of Data

1 Define the problem.

When noisy data are collected as a result of an experiment, some kind of
data smoothing algorithm is sometimes applied as a way to spot trends and predict
future values. A common technique is "exponential smoothing." Suppose a set of
data X are collected as a function of time; it isn't necessary that time be the
independent variable, but this is often the case. For time interval i = 1, let the
"forecasted" value equal the actual value. For i > 1, the forecasted value Fi is
estimated by

where A is some arbitrarily chosen "smoothing parameter" between 0 and 1. This
calculation requires only one historical value. However, it is a subjective
calculation because there is no "rule" for selecting the value for A. As A
approaches 1, the forecasted value approaches the previous data value. As A
approaches 0, the forecasted value approaches the previous forecasted value, which
means that all the forecasted values will equal Xi' In general, you should try
different values of A and then apply some statistical criterion to determine the
value of A that best forecasts historical trends in a data set. (See the Problem
Discussion below and Exercise 12 in Section 9.8.2.)

Write a subroutine that calculates and displays exponential smoothing of
data in a one-dimensional array X of specified size. Store the results in a second
array of the same size. Set the first element in the second array to the first
element in X.

Note that exponential smoothing is supposed to be a "forecasting"
technique and not just a "smoothing" technique. It will not work well with random
data because it assumes that there is a relationship between a previous value and
the current value, an assumption that, by defmition, is not true for random values.
(To put it another way, a past history of random numbers is of no value for
predicting the next random number.) To provide a more realistic test of
exponential smoothing, you could write a subroutine to provide a data set that has
random noise imposed on a trend. For example, a "noisy" linear relationship
would look like this:

Xi = A + Bti + random component

432 • 9. Using Formatted Sequential Access and Internal Files

You could also use the data file SPSOO. DAT, which can be downloaded from the
World Wide Web site mentioned in Section i.5 of the Preface, to test your
program. That file contains a historical record of the Standard & Poor's 500 stock
index. (See Problem Discussion below.)

2 Outline a solution.

The exponential smoothing equation is contained in the problem statement,
so all that is required here are the steps for implementing this defmition.

1. Open the data file for reading and store the data in an array. Alternatively, let
the program create a set of data as described in Step 1. Although an array isn't
actually required to implement the exponential smoothing algorithm, the problem
statement requests that both the original data and the smoothed values be stored
in an array.
2. Call a subroutine to apply the exponential smoothing algorithm to the data for
a user-specified value of A.
3. Display the original array and the smoothed array.

3 Design an algoritlun.

The design of the algorithm to read and store the original data is
straightforward. Therefore, only the subroutine design will be presented here.

SUBPROGRAM ExpSmooth(X - the data array; size - the # of pOints;
weight - value of the smoothing parameter;
F - the forecast array)

DEFINE/DECLARE i-local counter variable
ASSIGN F(1) = X(1)
LOOP (for i = 2 to size)

F(i) = F(i-1) + weight-[X(i-1) - F(i-1)]
t:A1n I nnD

4 Convert the algorithm into a program.

P-9.7 [SMOOTH. F90]

MODULE Forecasting

IMPLICIT NONE
REAL a(lOO),b(lOO)
REAL bl,b2,b3,rand
DATA bl,b2,b3/5.,15.,50./
INTEGER size
CONTAINS

! -------------------------
SUBROUTINE ExpSmooth(weight)

9.6 Applications • 433

Apply exponential smoothing with specified weight.
IMPLICIT NONE
REAL, INTENT(IN) :: weight
INTEGER i

b(l)=a(l)
DO i=2,size

b(i)=b(i-l)+weight*(a(i-l)-b(i-l»
END DO
END SUBROUTINE ExpSmooth

!-----------------------------
SUBROUTINE MakeData

Create array = bl+b2*x+b3*random

INTEGER Count(l),i

CALL System_Clock(Count(l»
CALL Random_Seed(Put=Count)

size=20
DO i=l,size

CALL Random_Nurnber(rand)
a(i)=bl+b2*REAL(i)+b3*(rand-.5)

PRINT 1000,a(i)
END DO

1000 FORMAT(f8.3)
END SUBROUTINE MakeData

!----------------------------
END MODULE Forecasting

1----------------------------

434 • 9. Using Fonnatted Sequential Access and Internal Files

PROGRAM Smooth

Demonstrate exponential smoothing.

USE Forecasting, ONLY: ExpSmooth,MakeData,a,b,size,b1,b2
IMPLICIT NONE
INTEGER i,u
REAL weight,sum,diff_sq
CHARACTER*20 filename,date*9

PRINT *,' Give input file name or "none":'
READ *,filename
PRINT *,' Give output destination 6 (monitor) or 1 (file):'
READ *,u
PRINT *,' Give smoothing factor 0-1:'
READ *,weight
IF (filename /= 'none') THEN

OPEN(l,file=filename,action='read')
READ(l,*) !read past two header lines
READ(l,*)
size=l

10 READ(1,*,end=20)date,a(size)
PRINT *,size,a(size)
size=size+l

GO TO 10
20 CLOSE(l)

size=size-1
ELSE

CALL MakeData !get array a
END IF
CALL ExpSmooth(weight)
IF (u==l) OPEN(l,file='smooth.out',action='write')
sum=O.
DO i=l,size

diff_sq=(a(i)-b(i»**2
sum=sum+diff_sq
WRITE(u,1000)i,a(i),b(i),diff_sq

END DO
WRITE(u,1010)sum
IF (u==l) CLOSE(l)

1000 FORMAT(i3,3f10.3)
1010 FORMAT(' Sum of squares ',f10.3)

END

9.6 Applications • 435

Running P-9.7

Give input file name or "none" :
none

Give output destination 6 (monitor) or 1 (file) :
6

Give Smoothing factor 0-1:
.3

1 9.824 9.824 0.000
2 54.172 9.824 1966.740
3 69.944 23.128 2191.680
4 57.119 37.173 397.848
5 73.238 43.157 904.899
6 99.575 52.181 2246.171
7 100.705 66.399 1176.883
8 104.008 76.691 746.239
9 133.562 84.886 2369.379

10 159.407 99.489 3590.191
11 193.214 117.465 5738.043
12 199.738 140.190 3546.041
13 204.254 158.054 2134.416
14 209.510 171. 914 1413.448
15 207.576 183.193 594.551
16 268.348 190.508 6059.065
17 266.530 213.860 2774.151
18 275.097 229.661 2064.414
19 265.264 243.292 482.782
20 316.217 249.883 4400.153
Sum of squares = 44797.098

This output is for a case in which the program generates its own test data rather
than reading data from an external data file.

P-9.7 adds one additional feature that is not required by the problem
statement: it calculates and displays the sum of the squares of the differences
between the predicted and actual values. (See the problem discussion below.)

5 Verify the operation of the program.

It is easy to check a few of P-9.Ts calculations by hand.

Problem Discussion
Some analysts believe that exponential smoothing and related techniques

can be used to predict the future course of the stock market. This optimism is
based on the observation that although the stock market contains a large random
component, that "noise" is superimposed on a long-term upward trend. However,
because short-term price fluctuations tend to be random, you should not expect
this technique to be successful at predicting the short-term behavior of individual

436 • 9. Using Fonnatted Sequential Access and Internal Files

stocks or of the stock market as a whole. Even if long-term stock prices show a
trend, short-term fluctuations tend to be random, in which case exponential
smoothing does little more than "chase" the previous stock price. Indeed it is hard
to believe that this technique, which at each step relies on just a single historical
value, actually has much reliability as a forecasting technique.

When stock analysts use exponential smoothing, they try to select a value
of A that works best for forecasting historical trends in the price of particular
stocks or in overall market performance. Figure 9.1 shows some stock prices (the
heavy line) and exponential smoothing with four values of the parameter A.

One measure of the quality of forecasts is to calculate the sum of the
squares of the differences between all the forecasted and actual values. For the
prices shown in Figure 9.1, A = 0 (a value not shown on the figure) provides the
smallest sum of squares value, which means that none of the forecasts is better
than assuming that the price at every future time will be equal to the price at the
first time interval. Clearly, this is not a very useful forecast! You should try the
same calculation for yourself on long-term stock price or market index trends (see
Exercise 12 in Section 9.8.2.)

· . . ~------------------.------------------.

o 2 4 6
Time, weeks

· . · . · .

8 10

Figure 9.1. Exponential smoothing applied to short-term stock price
fluctuations

12

9.6 Applications • 437

9.6.2 Billing Program for an Urban Water Utility

In this application, an external data file is used to provide test data for a
calculation with many different branches. All the possible branches must be tested
systematically, and it would be very time-consuming to enter the required data by
hand.

1 Define the problem.

You have been hired by a large urban water utility to develop a billing
program based on its published rate structure. The customers' quarterly bills
depend on the size of their incoming water line, as described by a meter code, and
the type of customer, ranging from resiElential to industrial. Table 9.5 gives the
rate structure.

Table 9.5. Rate structure for an urban water utility

Meter
Code

1
2
3
4
5
6
7
8
9
o

Minimum
Quarterly
Charge

$ 16.80
25.50
43.50
88.50

124.98
253.38
411.54
850.26

1488.03
2199.00

Quarterly
Allowance, Gallons

1500
1500
1500
1500
1500

o
o
o
o
o

Customer Class Consumption Quarterly Consumption Rate Rate per
Code from to 1000 Gal

Residential and Public R1 allowance 100,000 $3.787
R2 100,001 more 2.710

Other Utilities U1 allowance 100,000 3.787
U2 100,001 1,000,000 2.710
U3 1,000,001 more 2.247

Commercial C1 allowance 30,000 3.787
C2 30,001 100,000 3.350
C3 100,001 1,000,000 2.710
C4 1,000,001 more 2.247

Industrial I1 allowance 30.000 3.787
12 30,001 100,000 3.350
I3 100,001 1,000,000 2.710
14 1,000,001 10,000,000 2.247
15 10,000,001 more 2.088

438 • 9. Using Formatted Sequential Access and Internal Files

2 Outline a solution.

1. Create a version of the rate structure table that can be read more easily by a
Fortran program. This might mean, for example, eliminating the $ sign in the
Minimum Quarterly Charge column of the table and removing the commas from
the Quarterly Consumption columns. The file H20_RATE. DAT, which can be
downloaded from the World Wide Web site mentioned in Section i.5 of the
Preface, includes these changes.

2. Define appropriate data structures for holding the rate data. Create one record
structure to hold the information related to the meter code and another record
structure to hold the information related to customer consumption. This is an
implementation-related step.

3. Read file H20_RATE. DAT and store meter- and customer-related information
in two separate arrays. The four customer classes (r, u, c, and i) can be combined
with quarterly consumption levels to provide a total of 14 different rate structures,
i.e., r1, r2, u1, u2, u3, and so forth, as shown in Table 9.5. For example, a "U3"
customer is a utility that consumes more than 1 ,000,000 gallons in a quarter.

4. Read a file of input data consisting of the customer class (residential, utility,
commercial, or industrial), meter code, and actual consumption. For each set of
values, calculate and print the bill. The data in Table 9.6 provide a partial test for
a complete program. These data are available in file WATER.DAT, which can be
downloaded from the World Wide Web site mentioned in Section i.5 of the
Preface. The first column is a consumer code: r for residential, u for other utilities,
c for commercial, and i for industrial. Columns 2-3 contain the meter code.
Columns 4-13 contain the quarterly consumption. Information to the right of
column 13 is iust for documentation and should be ignored by your program.

9.6 Applications • 439

Table 9.6. Test file for water utility program (P-9.8)

r 1 50 Check minimum charges according to meter code.
r 2 50
r 3 50
r 4 50
r 5 50
r 6 0
r 7 0
r 8 0
r 9 0
rIO 0
r 1 2000 Residential
r 1 200000
u 5 1000 Utility
u 5 20000
u 5 200000
u 5 1000005
c 6 15000 Commercial
c 6 40000
c 6 200000
c 6 2000000
i 9 15000 Industrial
i 9 40000
i 9 200000
i 9 2000000
i 9 11000000

3 Design an algorithm.

This is a relatively large program, and it demands careful thought before
you start to write code. The main program controls interpretation of the rate file
and customer data contained in a test file.

(main program)
OPEN (rate file)
CALL MeterCodeData(IN: rate file; OUT: meter data)
WRITE (data for 10 meter classes)
CALL CustomerClassData(IN: rate file;

WRITE (rate data)
CLOSE (rate file)
OPEN (test data file)

OUT: rate data for 14 customer classes - e.g., r1, c3)

LOOP (until no more records)
READ (customer class code (r, u, c, or iJ, meter type,

aal/ons consumed)

440 • 9. Using Fonnatted Sequential Access and Internal Files

CALL CalculateBiII(lN: customer class code, meter type,
gallons consumed;
meter and rate data;

OUT: quarterly bill, rate index (1-14))
WRITE ("echo" input, quarterly bill, class code corresponding to rate

index)
END LOOP
CLOSE (test data file)
(end main program)

This subprogram calculates a quarterly bill based on customer class (r, u,
c, or i), meter code, and gallons consumed. Representative pseudocode is shown
only for the "u" classification, which returns a rate index in the range 3-5. The
ASSIGN statement for the quarterly bill will have to be expanded in Fortran to
calculate how much should be charged at each consumption level.

SUBPROGRAM CalculateBiII(lN: customer class code,meter,
gallons consumed;

meter and rate data;
OUT: quarterly bill, rate index (1-14))

(sample billing calculation)
CHOOSE (based on customer class code)

'u'
ASSIGN index = 3
IF (gallons consumed> max U11evel) THEN ASSIGN index=4
IF (gallons consumed> max U2 level) THEN ASSIGN index=5
IF (gallons consumed> quarterly min for this meter code) THEN

ASSIGN quarterly bill = minimum charge +

(and so forth)

excess amount at U1 rate +
amount at U2 rate +
amount at U3 rate

9.6 Applications • 441

4 Convert the algorithm into a program.

P-9.8 does the basic calculations required by the problem statement, but
it doesn't print output in an acceptable "Invoice"format. This is left as an end-of
chapter exercise.

P-9.8 [WATER. F90]

MODULE WaterBillDefinitions

TYPE MeterCode
REAL MinCharge
INTEGER allowance

END TYPE
TYPE CustomerClass

CHARACTER*2 ClassCode
INTEGER min,max
REAL Per1000Ga1lons

END TYPE

CONTAINS
!---

SUBROUTINE MeterCodeData(MeterData)

Read H20_RATE.DAT and extract billing information that
depends on meter code.

USE WaterBillDefinitions, ONLY : MeterCode
IMPLICIT NONE
TYPE (MeterCode), INTENT(OUT) MeterData(10)
INTEGER i,code

Read 4 header lines ...
DO i=1,4

READ(l,*)
END DO

Read meter code data ...
DO i=l, 10

READ(l,*)code,MeterData(code)%MinCharge, &
MeterData(code)%allowance

END DO
END SUBROUTINE MeterCodeData

!--
SUBROUTINE CustomerClassData(ClassData)

Read H20_RATE.DAT and extract rate information that depends
on customer class.

USE WaterBillDefinitions, ONLY: CustomerClass
IMPLICIT NONE
TYPE (CustomerClass) ClassData(14)
INTEGER i
CHARACTER a*78,b*10

442 • 9. Using Formatted Sequential Access and Internal Files

1

Read 4 header lines ...
DO i=1,4

READ(l,*)
END DO

Read class data ...
DO i=1,14

READ(1,1000)a
PRINT *,a

C1assData(i)%ClassCode=a(26:27)
READ(a(33:40),*)ClassData(i)%min
b=a(45:52)
IF (b(5:8)=='over') THEN

ClassData(i)%max=HUGE(l)
ELSE

READ(a(45:52),*)ClassData(i)%max
END IF
READ(a(57:61),*)C1assData(I)%Per1000Gallons

END DO

1000 FORMAT(a78)
END SUBROUTINE CustomerC1assData

1---
SUBROUTINE CalculateBill(code,meter,gallons,MeterData, &

RateData,QuarterlyBill,index)

USE WaterBillDefinitions, ONLY : MeterCode,CustomerClass
IMPLICIT NONE
CHARACTER, INTENT(IN) :: code
INTEGER, INTENT(IN) :: gallons,meter
TYPE (MeterCode), INTENT(IN) :: MeterData(10)
TYPE (CustomerClass), INTENT(IN) :: RateData(14)
REAL, INTENT(OUT) :: QuarterlyBill
INTEGER, INTENT(OUT) :: index
INTEGER MinimumGallons

Based on meter code ...
QuarterlyBill=MeterData(meter)%MinCharge
MinimumGallons=MeterData(meter)%allowance

Based on customer class and consumption ...
SELECT CASE (code)

CASE (' r')
index=l
IF (gallons>RateData(l)%max) index=2
IF (gallons>MinimumGallons) &

QuarterlyBill=QuarterlyBill+ &
MIN(RateData(l)%max-MinimumGallons,gallons-MinimumGallons)/le3* &

RateData(1)%Per1000Gallons+ &
MAX(gallons-RateData(1)%max,0)/le3* &
RateData(2)%Per1000Gallons

CASE (' u')
index=3
IF (gallons>RateData(3)%max) index=4
IF (gallons>RateData(4)%max) index=5
IF (gallons>MinimumGallons) &

QuarterlyBill=QuarterlyBill+ &
MIN(RateData(3) %max-MinimumGallons, gallons-MinimumGall ons)/le3* &

RateData(3)%Per1000Gallons+ &
MIN(RateData(4)%max-RateData(3)%max, &

9.6 Applications • 443

MAX(gallons-RateData(3)%max,O»/le3* &
RateData(4)%PerlOOOGallons+ &
MAX(gallons-RateData(4)%max,O)/le3* &
RateData(5)%PerlOOOGallons

CASE (' c ')
index=6
IF (gallons>RateData(6)%max) index=7
IF (gallons>RateData(7)%max) index=8
IF (gallons>RateData(8)%max) index=9
IF (gallons>MinimumGallons) &

QuarterlyBill=QuarterlyBill+ &
MIN(RateData(6) %max-MinimumGallons , gallons-MinimumGall ons)/le3* &

RateData(6)%PerlOOOGallons+ &
MIN(RateData(7)%max-RateData(6)%max, &

MAX(gallons-RateData(6)%max,O»/le3* &
RateData(7)%PerlOOOGallons+ &
MIN(RateData(8)%max-RateData(7)%max, &

MAX(gallons-RateData(7)%max,O»/le3* &
RateData(8)%PerlOOOGallons+ &
MAX(gallons-RateData(8)%max,O)/le3* &
RateData(9)%PerlOOOGallons

CASE (' i ')
index=lO
IF (gallons>RateData(lO)%max) index=ll
IF (gallons>RateData(ll)%max) index=12
IF (gallons>RateData(12)%max) index=13
IF (gallons>RateData(13)%max) index=14
IF (gallons>MinimumGallons) &

QuarterlyBill=QuarterlyBill+ &
MIN(RateData(lO) %max-MinimumGallons, gallons-MinimumGal lons)/le3* &

RateData(lO)%PerlOOOGallons+ &
MIN(RateData(ll)%max-RateData(lO)%max, &

MAX(gallons-RateData(lO)%max,O»/le3* &
RateData(ll)%PerlOOOGallons+ &
MIN(RateData(12) %max-RateData(ll) %max, &

MAX(gallons-RateData(11)%max,O»/le3* &
RateData(12)%PerlOOOGallons+ &
MIN(RateData(13) %max-RateData(12) %max, &

MAX(gallons-RateData(12)%max,O»/le3* &
RateData(13)%PerlOOOGallons+ &
MAX(gallons-RateData(13)%max,O)/le3* &
RateData(14)%PerlOOOGallons

END SELECT
END SUBROUTINE CalculateBill

END MODULE WaterBillDefinitions
1====================================

444 • 9. Using Formatted Sequential Access and Internal Files

PROGRAM WaterBi11

File name WATER.F90.
Billing program for water service.

USE WaterBi11Definitions, ONLY : MeterCode,CustomerC1ass, &
MeterCodeData,CustomerC1assData,Ca1cu1ateBi11

IMPLICIT NONE .
TYPE (MeterCode) MeterData(10)
TYPE (CustomerC1ass) RateData(14)
INTEGER i,meter,ga11ons,RateIndex
REAL Quarter1yBi11
CHARACTER code

OPEN(1,fi1e='c:\ftn90.dir\h2o_rate.dat',action='read')
Get meter code data.

CALL MeterCodeData(MeterData)
DO i=1,10

PRINT 1000,i,MeterData(i)%MinCharge,MeterData(i)%a11owance
END DO

Get customer class data.
CALL CustomerC1assData(RateData)
DO i=1,14

PRINT 1010,RateData(i)%C1assCode,RateData(i)%min, &
RateData(i) %max, RateData(i) %Per1000Ga11ons

END DO
CLOSE(l)

Read test data file.
OPEN(1,fi1e='c:\ftn90.dir\water.dat',action='read')

10 READ(l, 1050, end=900) code, meter, gallons

900

1000
1010
1050
1060

CALLCa1cu1ateBi11(code,meter,ga11ons,MeterData,RateData, &
Quarter1yBi11,RateIndex)

PRINT 1060,code,meter,ga11ons,Quarter1yBi11, &
RateData(RateIndex)%C1assCode

GO TO 10
CLOSE(l)

FORMAT(i3,f10.2,i6)
FORMAT(a3,2i12,f8.3)
FORMAT(a1,i2,i10)
FORMAT(a2,i3,i10,f10.2,a3)
END

9.6 Applications • 445

Running P-9.8 (This output is for the data given in Table 9.6)

1 16.80 1500
2 25.50 1500
3 43.50 1500
4 88.50 1500
5 l24.98 1500
6 253.38 0
7 411. 54 0
8 850.26 0
9 1488.03 0

10 2199.00 0
R1 0 100000 3.787
R2 100001 2147483647 2.710
U1 0 100000 3.787
U2 100001 1000000 2.710
03 1000001 2147483647 2.247
C1 0 30000 3.787
C2 30001 100000 3.350
C3 100001 1000000 2.710
C4 1000001 2147483647 2.247
I1 0 30000 3.787
12 30001 100000 3.350
I3 100001 1000000 2.710
14 1000001 10000000 2.247
IS 10000001 2147483647 2.088
r 1 50 16.80 Rl
r 2 50 25.50 R1
r 3 SO 43.50 R1
r 4 50 88.50 R1
r 5 SO 124.98 ~Rl
r 6 0 253.38 R1
r 7 0 411.54 R1
r 8 0 850.26 R1
r 9 0 1488.03 R1
r 10 0 2199 . 00 R1
r 1 2000 18.69 R1
r 1 200000 660.82 R2
u 5 1000 124.98 U1
u 5 20000 195,04 U1
u 5 200000 769.00 U2
u 5 1000005 2937.01 U3
c 6 15000 310.18 C1
c 6 40000 400.49 C2
c 6 200000 872.49 C3
c 6 2000000 5287.49 C4
i 9 15000 1544.84 I1
i 9 40000 1635.14 12
i 9 200000 2107.14 I3
i 9 2000000 6522.14 14
i 9 11000000 26586.14 15

446 • 9. Using Fonnatted Sequential Access and Internal Files

5 Verify the operation of the program.

Suppose a water utility has actually contracted with you to write this
program. The contracting officer will demand that your code be tested rigorously
and that the results of those tests· be presented in writing as a condition for
payment. If errors are found, especially if they aren't found until after the utility
discovers billing problems with its customers, you could be in serious fmancial
trouble because the utility will attempt to hold you liable for its losses.

The best way to protect against errors is to compare the calculations in
every possible program branch against calculations done with a calculator. As
indicated above, the only practical way to perform such large-scale testing is to
create one or more data files containing many sets of meter code, customer class,
and consumption data. Table 9.6 shows part of such a test file, but it does not
provide a complete test for the program.

Problem Discussion
P-9.8 is a relatively long program, and there is no way to avoid writing a

lot of code. Note the use of the MAX and MIN functions in SUBROUTINE
CalculateBill. These have been used to eliminate the longer, but more
obvious code required to implement the calculations using IF ... THEN ...
statements, such as, "If the consumption is greater than 100,000 gallons and less
than or equal to 1,000,000 gallons, then " In this application, the MAX and MIN
functions require significantly less code than Fortran IF ... THEN ... statements.
If you feel less comfortable with the resulting calculations, it becomes even more
important to test all the code.

Another interesting feature of this program concerns the contents of the test
file, as shown in Table 9.6. The comments included in the file, following the three
columns of data, are ignored by the code that reads the file because a READ
statement reads past the end-of-line mark even if there is more information on the
line than the READ statement is asked to process.

Finally, note the use of the HUGE intrinsic function in SUBROUTINE

CustornerClassData to assign a numerical upper limit on water consumption.
This facilitates later calculations and is much better than having an unspecified
upper limit.

9.6 Applications • 447

9.6.3 Merging Sorted Lists

1 Define the problem.

A common data management problem involves merging two lists of data.
Write a program that will merge two lists of numbers.

In a practical science or engineering problem, this problem might involve
two sets of measurements made with two different instruments over the same
period. If the data include the time of each measurement, it might be desirable to
merge the two sets into a single set of measurements in chronological order.

It's certainly possible simply to append one set of measurements to the
other and sort the resulting combined set of measurements by time. In fact,
algorithms for doing this will be discussed in the next chapter. However, assuming
that each set of measurements is already arranged in time sequence, it is more
efficient to merge the two sets rather than sort the combined set. This is especially
true if the combined set of measurements is very large; for example, too large to
be stored in memory in an array.

The programming applications in this text have generally presented
practical science and engineering problems. In this case, however, the abstract
process of merging two lists must be considered carefully, and it will be easier to
develop the algorithm without being distracted by the details of a particular
practical problem. Therefore, we will consider the simple problem of merging two
lists of integers, assuming that each list is sorted in ascending order. In order to
make this problem more easily applicable to a practical situation, we will store the
lists of integers in two files, and we will operate directly on the contents of the
files rather than storing their contents in arrays within the program. This will
allow us to apply the solution to lists that are too large to be stored in arrays.

This is an excellent example of a programming problem that needs careful
thought and a modular approach. It will also provide additional practice in
operating on external data files. The program will use the two lists of integers
shown in Table 9.7. These lists can be found in files LISTA. DAT and
LISTB. DAT, which can be downloaded from the World Wide Web site
m~ntionE~iI in ~~r.tion i'i of th~ Pr~f~r.~.

448 • 9. Using Formatted Sequential Access and Internal Files

Table 9.7. Data for a
list-merging algorithm

lista listb
1 3
3 5
5 5
7 6
7 6
9 7

11 7
17 8
21 9
21 11
22 12
22 13

14
15
16
17
18
22
24
25
26
27

These two lists have several characteristics that
are important for developing and testing a merge
algorithm: they are of different lengths, each list
contains some duplicate values, and the lists have
some values in common.

2 Outline a solution.

It's easy to see how to start the process of
merging the two lists, but you will have to be
especially careful toward the end of each list. You can
assume that each list contains at least one value; the
algorithm will be implemented in a Fortran
subroutine, and there is no point in even calling such
a subroutine if one of the lists is empty.

Also, you can assume that an instruction to
"print" a value will initially mean nothing more than
displaying that value on your monitor screen. Once
you're convinced that the algorithm is working
properly, you can replace this instruction with an
instruction that writes a value into a new file.

1. Read one value from each list.
2. Compare the values. If one value is smaller than the other, print the smaller
value and read another number from the same list. If both values are the same,
print both values and read another number from each list.
3. Eventually, you will come to the end of one of the lists. Be sure the last value
from that list is printed. If there are still numbers in the other list, they will be
larger than all the numbers printed so far. Read the remaining numbers and print
them all. Note that you will not necessarily reach the end of the shorter list fITst;
when you reach the end of a list is determined not by its length, but by its
contents.

This solution outline doesn't include the details of what to do when you
reach the end of a list. The best way to develop a complete algorithm is to work
throu!lh the samole lists !liven above:

Operation Value:
a b

read a 1
read b 3
(now we are inside a loop)

print a
read a

print a and b

3

read a and b 5

print a and b

read a and b 7

print b
read b

print b
read b

print b
read b

print a and b

read a and b 7

print a and b

read a and b 9

print b

22

print a and b

read a and b 22

print a
(end of "a" list and

5

5

6

6

7

7

8

22

24

end of

9.6 Applications • 449

Compare Output

a<b (1<3)
1

a=b (3=3)
3
3

a=b (5=5)
5
5

a>b (7)5)
5

a>b (7)6)
6

a>b (7)6)
6

a=b (7=7)
7
7

a=b (7=7)
7
7

a>b (9)8)
8

a=b (22=22)
22
22

a<b (22<24)
22

loop)

Now that the algorithm has reached the end of the "a list," what remains
to be done? The current value of b (24) hasn't yet been printed. Therefore, the
algorithm must print that value and then read and print the rest of the b list.

As you know from previous discussions, you have to be careful not to read
past the end of a file. You will have to incorporate a test for the end-of-file when
you design the merging algorithm.

450 • 9. Using Formatted Sequential Access and Internal Files

Study Tip
To make sure you understand these operations, fill in the missing steps in

the list of merge operations above.

3 Design an algoritlun.

DEFINE ("a" and lib" lists; a and b values;
end_a and end_b as logical variables)

OPEN ("a" and lib" lists)
READ (a and b from "a" and lib" lists)
LOOP (as long as there are data in both lists)

IF (a < b) THEN
WRITE (a)
IF (NOT end_a) CALL ReadOne(from "a",a,end_a)
IF (end_b) WRITE (b)

ELSE IF (a = b) THEN
WRITE (a,b)

ELSE

IF (NOT end_a) CALL ReadOne(from "a",a,end_a)
IF (NOT end_b) CALL ReadOne(from "b",b,end_b)

WRITE (b)
IF (NOT end_b) CALL ReadOne(from "b",b,end_b)
IF (end_a) WRITE (a)

(end IF ...)
END LOOP
IF (NOT end_a) THEN

LOOP (to end of "a',
READ (from "a",a)
WRITE (a)

END LOOP
(end IF ...)
IF (NOT end_b) THEN

LOOP (to end of lib"
READ (from "b",b)
WRITE (b)

END LOOP
(end IF .. J

9.6 Applications • 451

Study Tip
Write pseudocode for subprogram ReadOne and for a subprogram to read

to the end of a file, as required at the end of the algorithm (after the main loop).
Try to do this before you study the actual code in Step 4.

4 Convert the algorithm into a program.

P-9.9 [MERGE. F90]

MODULE MergeData

IMPLICIT NONE
TYPE fields

INTEGER x
END TYPE fields

CONTAINS
1--

SUBROUTINE ReadOne(unit,value,end_file)

Read one value and return to program; set an e-o-f flag.

USE MergeData, ONLY : fields
IMPLICIT NONE
INTEGER, INTENT(IN) :: unit
TYPE (fields), INTENT(OUT) :: value
LOGICAL, INTENT(OUT) :: end_file

end_file=.false.
READ(unit,*,END=20)value%x
RETURN

20 end_file=.true.
END SUBROUTINE ReadOne

1-----------------------------
SUBROUTINE ReadAll(unit)

Read to end of file.

IMPLICIT NONE
INTEGER, INTENT(IN) :: unit
TYPE (fields) value

10 READ(unit,*,END=20)value%x
PRINT*,value%x

GO TO 10
20 CONTINUE

END SUBROUTINE ReadAll
1---

452 • 9. Using Formatted Sequential Access and Internal Files

SUBROUTINE MergeLists(unit_a,unit_b)

USE MergeData, ONLY : fields
IMPLICIT NONE
INTEGER, INTENT(IN) :: unit_a,unit_b
TYPE (fields) list_a,list_b
LOGICAL end_a,end_b
DATA end_a,end_b/2*.fa1se./

CALL ReadOne(unit_a,list_a,end_a)
CALL ReadOne(unit_b,list_b,end_b)

10 CONTINUE
IF (list_a%x .LT. list_b%x) THEN

PRINT*,list_a%x
IF (.NOT. end_a) CALL ReadOne(unit_a,list_a,end_a)
IF (end_b) PRINT*,list_b%x

ELSE IF (list_a%x .EQ. list_b%x) THEN
PRINT*,list_a%x
PRINT*,list_b%x
IF (.NOT. end_a) CALL ReadOne(unit_a,list_a,end_a)
IF (.NOT. end_b) CALL ReadOne(unit_b,list_b,end_b)

ELSE
PRINT*,list_b%x
IF (.NOT. end_b) CALL ReadOne(unit_b,list_b,end_b)
IF (end_a) PRINT*,list_a%x

END IF
IF «.NOT. end_a) .AND. (.NOT. end_b» GO TO 10
IF (.NOT. end_a) THEN

PRINT*,list_a%x
CALL ReadAll(unit_a)

END IF
IF (.NOT. end_b) THEN

PRINT*,list_b%x
CALL ReadAll(unit_b)

END IF
END SUBROUTINE MergeLists

!------------------------------
END MODULE MergeData

!=========================
PROGRAM merge

Merge two sorted lists of integers.

USE MergeData, ONLY : MergeLists
IMPLICIT NONE
INTEGER unit_a,unit_b
DATA unit_a,unit_b/1,2/

PRINT *,' opening list a ... '
OPEN(unit_a,file='c:\ftn90.dir\lista.dat')
PRINT *,' opening list b ... '
OPEN(unit_b,file='c:\ftn90.dir\listb.dat')

CALL MergeLists(unit_a,unit_b)

CLOSE(unit_a)
CLOSE (unit_b)

RNn

9.6 Applications • 453

Running P-9.9

opening list a .. .
opening list b .. .

1 3 3 5 5 5 6 6 7 7 7 7 8 9 9 11 11 12 13 14 15 16 17 17 18
21 21 22 22 22 24 25 26 27

(To save space, the output values are listed horizontally across the output box. In
the actual program output, the values are listed one per row.)

5 Verify the operation of the program.

It is not a trivial matter to verify the operation of this program under all
possible input conditions! As a minimum, you need to test situations where the
"a" or "b" list has only one value, where the values in one or both lists are all the
same, and where all the values in one list are larger (or smaller) than all the
values in the other list. If you use the program on real data of your own, be sure
to test it with a subset of the data that is small enough to verify by hand.

Problem Discussion
Program P-9.9 associates the "a" and "b" lists with units 1 and 2; this is

an arbitrary but reasonable choice. The major difficulty in writing the code is
keeping track of the end-of-file status of each file. Recall that the READ command
includes the END= option, which transfers control of the program to a labelled
statement when an end-of-file is detected. In order to make use of this option
conveniently, the program includes SUBROUTINE ReadOne, which reads a
value from a file if one is available and returns a LOGICAL value of . true. if
the end of the file is detected.

Note the use of the RETURN statement in SUBROUTINE ReadOne to
control the exit from the subroutine when a value is read. This statement hasn't
previously been used in this way in this text. The file unit number, which can be
passed as a variable as well as a constant, is used to tell the subroutine which file
to read.

The other required subroutine, ReadALL, is used to read any remaining
values in a file that haven't been read inside the loop.

Remember that this is just a demonstration program. In a real application,
an output file will be opened and the unit number will be replaced with some
value other than 6, so the merged file will be saved to a new permanent file.

454 • 9. Using Formatted Sequential Access and Internal Files

9.6.4 Creating a "Quote-and-Comma-Delimited" Input File for Spreadsheets

Fortran is an ideal language for doing many kinds of complex calculations, but
graphical displays and simple data analysis can often be performed more
efficiently with other computing applications. The most versatile PC application
is the spreadsheet. Many of the figures in this text were produced by
implementing programming algorithms in a spreadsheet.

It is very useful to be able to quote-and-comma-delimited text file I
share output from Fortran programs
by generating output files that can be
read by a spreadsheet and other applications. Although Fortran can't produce
output in a spreadsheet's "native" format, all spreadsheets have the ability to
"import" text files. When output files contain mixtures of character strings
"labels" in spreadsheet terminology-and numbers, the most reliable way to
import data is to create a quote-and-comma-delimited textfile. In this kind of file,
all character strings are enclosed in quotation marks and all values are separated
by commas. The presence of quotation marks around character strings removes
ambiguity about where the character string ends. For example, the string
Brooks, David will be interpreted by a spreadsheet as two separate character
strings, separated by a comma. However, assuming that you want the entire string
to be treated as a single label, "Brooks, David" would be interpreted
correctly.

1 Define the problem.

The purpose of this application is to write a program that will create a
quote-and-comma-delimited text file that can be imported directly into a
spreadsheet.

2 Outline a solution.

As a simple example, use the JANUARY. DAT file shown in Table 9.3.
Read this file one record at a time and copy the values into a quote-and-comma
np.limitp.n tp.xt file that trp.at~ each date a~ a character ~trinQ:.

9.6 Applications • 455

3 Design an algorithm.

The algorithm solution to this problem is trivial and interesting only in its
Fortran implementation.

4 Convert the algorithm into a program.

P-9.1O [JAN-QeD. F90]

PROGRAM January_QCD

Create a quote-and-conuna-delimited ASCII text file for
use by a spreadsheet.

IMPLICIT NONE
CHARACTER*B date
REAL hi,lo

OPEN(1,file='c:\ftn90.dir\january.dat' ,action='read')
OPEN(2,file='c:\ftn90.dir\january.qcd',action='write')

10 READ(1,1000,end=900)date,hi,lo
PRINT 1010, "" ,date, "", " , ,bi, " , ,10
WRITE(2,1010)"" ,date, "", " , ,bi, " , ,10

GO TO 10
900 CLOSE(l)

CLOSE(2)
1000 FORMAT(aB,2f4.0)
1010 FORMAT(lx,a1,aB,a1,a1,f4.0,a1,f4.0)

END

Running P-9.1O (partial output)

"01/01/94" I 43., 24.
"01/02/94", 51., 31.
"01/03/94",37.,33.

5 Verify the operation of the program.

Trv imnortinl! the file into a snreadsheet.

456 • 9. Using Fonnatted Sequential Access and Internal Files

Problem Discussion
P-9.1O sends identical output to the screen and the output file; the output

statements of interest are printed in bold italics. The optional PRINT statement
displays the output on the screen and the WRITE statement creates the
JANUARY. QCD file with the same format. Single-quote character-string delimiters
are used to print the double quotes in the output file.

9.7 Debugging Your Programs

9.7.1 Programming Style

When programs use or create external data files, the OPEN command should
specify the allowed use (action= I read I or action= I wri te I) for each file.
When otherwise appropriate, OPEN commands are grouped together near the
beginning of the source code file so that the names of files are easy to fmd. Unit
numbers for output files typically should be declared as variables. While a
program is being developed, the unit number can be assigned to the default output
device so that WRITE statements direct output to the screen for testing.

Internal READs should be used whenever repeated access to a particular
record is required; this approach is always favored over using REWIND and
BACKSPACE statements.

List-directed READs should be used on input files whenever practical.
However, formatted WRITEs should usually be used to improve the appearance
and readability of output files.

When file records contain large numbers of fields, and especially if the
information must be stored in an array, the TYPE structure, as discussed in
Chapter 8, should be used to defme record types that help organize the data.

Finally, files should always be CLOSEd when a program no longer needs
them.

9.7.2 Problems with Programs That Access External Data Files

When your program reads an external data file, problems can arise either from
mistakes in programming or from problems with the file itself. One common
problem involves extra blank lines at the beginning or end of text files. These
empty lines are "invisible" when you examine the file with a text editor or word
processor, but they can still cause crashes when your program tries to read such
a file.

The problem with blank lines at the beginning of a file is that unless you
are aware of their presence and skip past them with READ statements, your
program won't find what it is looking for. Blank lines at the end of a file are a
particular hazard. Suppose a READ statement contains an END= option to search

9.7 Debugging Your Programs • 457

for the end-of-file mark. If a data file contains a blank line at the end, the end-of
file mark won't be detected and your program will try to read the blank line. It
won't fmd what it was looking for, and instead it will try to read the end-of-file
mark, which will cause it to crash.

Another obvious source of problems is a misunderstanding about the
contents of the file. Your program can't work properly if you ask it to read
information that doesn't actually exist in a file. Especially when formatted input
is needed, it is essential to be sure you have a complete understanding of the
contents and format of the file. In some cases, it may be worth the effort to
rewrite a file in a more suitable format. (See Exercise 19 at the end of this
chapter.)

It is certainly possible to destroy the contents of data files under Fortran
control. If you do not specify action=' read' in the OPEN statement, it is
possible to WRITE to a file rather than READ from it. If you open a file with write
access and your program crashes before it has completed its task, that file may be
empty and unusable. This might not be too serious if the file in question was
intended to be an output file; the worst that can happen is that you will have to
fix the errors in your program and run it again. But what if the file in question is
an input file that was inadvertently opened with write access? That file may now
be corrupted beyond recovery.

This potential for disaster explains why you should always include the
action=' read' option for any file to be used as input. Also, just to be on the
safe side,

It is always good practice to make copies of critical data files before you
access them from a Fortran program.

There are many options available for the OPEN statement, including several
not discussed in this chapter. The values assigned to some of these options depend
on having other values set appropriately. Inappropriate combinations of OPEN

options can cause program crashes. You can experiment with various combinations
of options and values, but not all of them are intended to work with the formatted
sequential access files described in this chapter; some other possibilities are
discussed in Chapter 12.

One way to avoid problems with files is to set a simple initial goal for any
program that reads a file:

If your program needs to process data from an external fIle, make sure it
can read the file in its entirety without producing any errors before writing
any other part of the program.

458 • 9. Using Fonnatted Sequential Access and Internal Files

This is an easy rule to forget, especially because the completed programs shown
in this text are, by defmition, past this stage in their development.

You may also wish your program to display part or all of the file contents
as it reads through the file. If the structure of the data is complicated, it may be
worthwhile initially to treat each record as a string; this may even be required in
your fmal program if you need to do an internal READ to interpret any of the data
in a record. In any event, until your program can achieve this simple goal, there
is no point in writing more source code. Failure to complete this simple task may
indicate that there are problems with the file itself, rather than with your program.

Another way to avoid problems with files is to use the conditional loop
structure described in this chapter, which uses the END= option in a READ
statement. It may seem easier to determine ahead of time how many records a file
contains and read it with a DO ... loop. However, in "real world" problems, the
size of a data file is always subject to change. Your program should reflect this
fact by using code that can respond to files of varying length. An exception to this
rule could occur when you are developing a program that uses a very long file.
Then, to speed up the code development process, you could temporarily replace
the conditional loop with a DO. . . loop that reads just the first few records in the
file.

9.8 Exercises

9.8.1 Self-Testing Exercises

Exercise 1. Describe in your own words the two most important concepts you
have learned from this chapter.

Exercise 2. Describe in your own words how you could use in your own
programs a problem-solving skill demonstrated in a program described in this
chapter.

Exercuse 3. In your own words, describe the characteristics that are required for
a file to be treated as a "text file" in a Fortran program.

Exercise 4. Using an appropriate file name syntax for your computer, such as
"c : \myda ta \practice . da t" for MS-DOS systems, write OPEN statements
for

(a) A file to be opened for reading on unit 3

(b) A file to be opened for writing on unit 2

9.8 Exercises • 459

(c) An existing file to be opened for writing on unit 1, to which new records will
be appended

(d) A file to be opened for writing on unit 1, but only if that file does not already
exist

Exercise 5. Give appropriate READ statements to interpret these records in a
reasonable way, including type declaration and FORMAT statements as appropriate:

(a) January 31 (b) 1991a $1000000
February 28 1991b $ 873000
March 31 1991c $1002000
April 30 1991d $ 777000
May 31
June 30
July 31 (c) 1e6 -0.17e-9 14 19.3
August 31
September 30
October 31 (d) 1,999,017
November 30 15,765,333
December 31 43,000,000

Exercise 6. For parts (a)-(c), make some reasonable assumptions about the
contents of each record in the file.

(a) Write the code required to read the first 10 records in a file on unit 1.

(b) Write the code required to read all the records in a file of unknown length,
with program control transferring to statement 999 when the end-of-file mark is
detected.

(c) The same as (b), except include an option to transfer program control to
statement 888 if an error is found in the file

Exercise 7. Assume that a file contains a large amount of data stored in groups
of three records. Make some reasonable assumptions about the contents of the
records and write the code required to read all the records.

9.8.2 Basic Programming Exercises

Exercise 8. Create a data file consisting of several records of three real numbers
each. Write a program to read this file and print its contents:

(a) assuming that the values don't need to be stored in an array

460 • 9. Using Formatted Sequential Access and Internal Files

(b) assuming that the values can be read immediately into an array, using either
a two-dimensional array or a one-dimensional array with an appropriate TYPE

structure

(c) assuming that the values must fIrst be tested before they are stored in an array,
using either a two-dimensional array or a one-dimensional array with an
appropriate TYPE structure

You may include all these options in a single program, or you may write three
separate programs.

Exercise 9. Modify P-9.2 so that it does these three things:

(a) prints an asterisk in front of a student's name if his or her GP A is greater than
or equal to 3.0

(b) prints names left-justifIed in a fIeld of width 10

(c) prints a letter grade assigned according to these rules: 90-100 = A
80-89 = B
70-79 = C
60-69 = D
<60 = F

Exercise 10. (a) Modify P-9.3 so that it uses the "clever" solution discussed in the
algorithm design that reads the day of the month directly from the me and then
uses this value as the index for the rest of the values in each line of the me. That
is, instead of considering the date as a string of eight characters, think of it as
three integers separated by two "j" separators.

(b) Modify P-9.3 so that it will also calculate and print the number of
heating degrees for each day and, at the end of the daily output, the total number
of heating degree days for the month. "Heating degrees" for a particular day are
defIned as 65° minus the daily average temperature. Instead of printing data just
for days whose daily average temperature is below the average, print data and the
results from calculations for all days. Print an asterisk after the heating degrees
if they are higher than the average, and print an asterisk after the daily average
temperature if it is below the monthly average. (See P-8.1O in Chapter 8 for a
similar problem involving heating degree days.)

Exercise 11. Modify P-9.4 so that it calculates the monthly average barometric
pressure at each of the four reported times.

9.8 Exercises • 461

Extra Credit
Include calculations of standard deviation and monthly minimum and

maximum barometric pressure for each measurement time.

Exercise 12. Refer to program P-9.7 and apply this program to the Standard &
Poor's 500 stock index, using the file SP500 .DAT, which can be downloaded
from the World Wide Web site mentioned in Section i.5 of the Preface. (The
section of code in P-9.7 that reads a specified file is compatible with the format
of S P 500 . DAT.) Is there a better value for A than the suggested value of 0.5?
Calculate the sum of the squares of the differences between forecasted and actual
S&P 500 values. Then try different values of A to see if the sum of the squares
goes up or down. You do not have to write code that seeks to optimize the value
of A in some formal way. This would be a much more difficult problem!

Extra Credit
Write code that optimizes the value of A for the S&P 500 index based on

finding the minimum sum of squares value.

Exercise 13. Add a subroutine to program P-9.8 that prints a customer invoice in
an attractive and easily readable format. Include the customer's code (R1, U2, and
so forth), the water consumed in each applicable category, and the cost associated
with each category.

Exercise 14. The two files, BIRDSl. DAT and BIRDS2. DAT, which can be
downloaded from the World Wide Web site mentioned in Section i.5 of the
Preface, contain bird sightings on two different days. Modify P-9.9 so that it
merges these files to produce a list of sightings that doesn't contain any duplicate
bird names.

Exercise 15. Based on material from other courses you are taking, state a
computational problem that involves the use of one or more external data files,
and write a complete program to solve it.

9.8.3 Programming Applications

Exercise 16. The R100 is a light rail line that runs for 13.4 miles from the
western edge of Philadelphia through the northwest suburbs. Distance markers are
placed along the track at intervals of usually 0.1 miles. The time at which these
markers were passed on a typical outbound afternoon trip has been recorded,
estimated to the nearest second. Stops along the way are indicated by the presence
of the words "stop," "go," and "end" in the distance column. Table 9.8 contains
a sample of the measurements. The complete file, RlO 0 . DAT, can be downloaded
from th~ Worlcl Wicl~ W~h ~it~ m~ntion~cl in S~c.tion i_'i of th~ Pr~f~c.~

462 • 9. Using Fonnatted Sequential Access and Internal Files

Table 9.S. Partial listing
of RIOO fIle

miles time

0.0
0.3
0.4
0.5

3.4
stop
go
3.5
3.6

16:55:04
16:55:34
16:56:05
16:56:26

17:00:11
17:00:23
17:01:05
17:01:09
17:01:20

13.3 17:21:47
13.4 17:22:01
end 17:22:02

Write a program that uses these data to
calculate the average speed between each pair of
markers and the cumulative average speed along
the R I 00 line. What is the speed resolution when
the times between O.l-mile markers are recorded
only to the nearest second? [RIOO. F90]

Exercise 17. A large engineering project consists
of many separate tasks. Some can be done
simultaneously, but others depend on the
completion of previous tasks. When a collection of
tasks that can be done simultaneously has been
completed, a "milestone" has been reached. All the
tasks required to reach a particular milestone must
be completed before work toward reaching the
next milestone can begin. The time needed to
reach a particular milestone is equal to the time

required to complete the longest task associated with that milestone. The total time
to complete the project is the sum of the times required to reach all milestones.
This is illustrated symbolically in Figure 9.2.

milestone: 1 2 3

task: 1 ______________________ _

2
3
4
5

4

Figure 9.2. Symbolic illustration of a project with tasks and milestones

As project engineer, one of your jobs is to examine time estimates for all
tasks on a project and try to find the most likely places to save time and hence
money. Identify the longest task and the average time required to complete all
tasks within a milestone. Whenever the longest task requires a specified
percentage more than the average time for all tasks within a milestone, mark that
task as one that needs to be examined in detail. (The goal is to determine whether
the task can be subdivided into two or more tasks that can be done simultaneously
rather than sequentially.) In Figure 9.2, task I for milestone 3 is an obvious
candidate for close examination.

Assume that data about the project's tasks have been entered in a data file
in no particular order. The sample data fIle shown in Table 9.9, PROJECT. DAT,
can be downloaded from the World Wide Web site mentioned in Section i.5 of the
Preface. These tasks are ordered by milestone, but they don't have to be.

The number on the second line of the file (1.25) is
a multiplying factor. If a particular task takes more
than this value times the average task time for a
milestone, that task should be flagged.

Write a program to read this or a similar
file and produce a task report for the project that
includes identification of the longest and average
task times for each milestone and "flags" tasks
that take too long. When you write your program,
make some reasonable assumptions about the total
number of milestones in a project and the
maximum number of tasks per milestone and
defme your array(s) accordingly. (This problem is
not a good candidate for allocatable arrays. Why
not?)

Although you can simply look at this
sample file and determine the total number of
project milestones (4) and the maximum number
of tasks for any single milestone (5), you should

9.8 Exercises • 463

Table 9.9. Task and
milestone data

task milestone time
1.25
1 1 10
2 1 6
3 1 10
1 2 8
2 2 6
3 2 4
4 2 4
5 2 7
1 3 12
2 3 3
3 3 2
4 3 1
1 4 6
2 4 5
3 4 7
4 4 4

write your program so that it can determine these values when it reads the data
file.

Save all program output in a data file, in addition to displaying it on your
monitor screen. [PROJECT. F90]

Exercise 18. A highway contractor is bidding on a project to prepare a roadbed
by leveling the ground where the road will be built. This involves cutting dirt
from high spots along the roadway and filling low spots. To prepare the bid, the
contractor uses data from surveys conducted by the state highway department.
These data consist of estimated cross-sectional areas for cut and fill measured at
approximately 50-foot intervals along the roadway. Some sample data are given
in Table 9.10; these values can be found, without the headings, in file
GRADING. OAT, which can be downloaded from the World Wide Web site
mentionecl in Sec.fion i_,,\ of the Pref~c.e

464 • 9. Using Fonnatted Sequential Access and Internal Files

Table 9.10. Cross-sectional cut and
fIll data for a highway right-of-way

station+Feet Cut Fill

107
108
108
109
109
109
110
111
111
112
112
112
113
113

50
o

50
o

50
98.33
52.33

6.33
50
o

50
77 .33
25
75

(feet2)

o
62.3

188.4
192.7
121. 9

36.7
12.0
27.0
77 .8

262.1
408.5
447.4
486.5
422.4

o
1.8
o

11.8
34.6
89.2

187.3
267.6
402.5
487.6
554.3
617.7
799.0
936.3

Cross section estimates are given
relative to numbered surveying stations
that are 100 feet apart; these are given
in the fIrst column of Table 9.10. The
second column gives the number of
feet from the station at which the cross
section was estimated. Obstructions
sometimes prevent the estimates from
being made at the desired intervals of
exactly 50 feet.

To estimate the total cut volume
between any two cross sections i and j,
the contractor adds the ilb and t cut
cross-sectional areas, divides by 2, and
multiplies by the distance between the
ilb and jib station. This same calculation
is performed with the fIll cross
sections. The total cut and fIll volumes
are the sums of these volumes.

Write a program that uses the data in Table 9.10 to calculate the total
estimated cut and fIll volumes in cubic feet and cubic yards. The ftle
GRADING. OAT, which can be downloaded from the World Wide Web site
mentioned in Section i.5 of the Preface, contains a copy of the data in the table.
(It does not include the table headings.)

Note: if you have had a calculus or numerical analysis course, you may
recognize this calculation as similar to Trapezoidal Rule numerical integration.
The only difference is that the intervals in this problem are not all the same, as
is required to apply the Trapezoidal Rule. [GRADING. F90]

Exercise 19. Often data are not arranged conveniently for reading in a Fortran
program. The ftle of stock indices and stock prices shown in Table 9.11 are
available as ftle STOCK. OAT, which can be downloaded from the World Wide
Web site mentioned in Section i.5 of the Preface.

9.8 Exercises • 465

Table 9.11. Stock and market index prices (original fonn)

Date,DJIA,S & P 500,Nike,Reebok,S & P 100,Boston Chicken
3/22/95,4083.000 ,495.656 ,74.125 ,34.000 ,465.031 ,17.000
3/21/95,4072.500 ,495.063 ,73.750 ,34.375 ,464.250 ,16.875
3/20/95,4083.750 ,496.156 ,75.750 ,34.875 ,465.406 ,17.125
3/19/95,4073.750 ,495.531 ,76.250 ,35.000 ,464.844 ,16.688
3/18/95,4069.125 ,495.406 ,78.000 ,34.875 ,465.313 ,16.375
3/17/95,4038.375 ,491.875 ,76.375 ,34.625 ,461.250 ,15.625
3/16/95,4048.750 ,492.875 ,75.875 ,35.000 ,462.344 ,16.000
3/15/95,4025.250 ,490.063 ,77.375 ,35.125 ,459.719 ,16.313
3/14/95,4035.625 ,489.563 ,76.500 ,35.250 ,459.375 ,16.625
3/13/95,3983.375 ,483.156 ,75.000 ,34.875 ,452.281 ,16.750
3/12/95,3979.250 ,483.125 ,74.875 ,35.500 ,451.781 ,16.875
3/11/95,3962.625 ,482.125 ,73.250 ,35.375 ,451.313 ,17.000
3/10/95~3997.500 ,485.625 ,73.875 ,36.125 ,453.938 ,17.063
3/9/95,3989.625 ,485.406 ,74.375 ,36.125 ,453.313 ,17.375
3/8/95,3979.875 ,485.125 ,74.125 ,36.000 ,453.281 ,17.500
3/7/95,3994.750 ,485.656 ,72.875 ,36.500 ,453.844 ,18.000

The date string sometimes has seven characters and sometimes six. If the month
were 10, 11, or 12 and the day were 10 or greater, then the date string would have
eight characters. Because of this, the numerical values do not always appear in the
same columns. Also, the commas after the numerical fields don't appear directly
after the number. These irregularities mean that the file in its present fonn can't
be read conveniently with either fonnatted or list-directed READs.

Write a program to create a new file that contains this infonnation in a
consistent fonnat that is easier for a Fortran program to read. It should look
something like this:

Date,DJIA,S & P 500,Nike,Reebok,S &
03/22/95 4083.000 495.656 74.125
03/21/95 4072.500 495.063 73.750
03/20/95 4083.750 496.156 75.750
03/19/95 4073.750 495.531 76.250
03/18/95 4069.125 495.406 78.000
03/17/95 4038.375 491.875 76.375
03/16/95 4048.750 492.875 75.875
03/15/95 4025.250 490.063 77.375
03/14/95 4035.625 489.563 76.500
03/13/95 3983.375 483.156 75.000
03/12/95 3979.250 483.125 74.875
03/11/95 3962.625 482.125 73.250
03/10/95 3997.500 485.625 73.875
03/09/95 3989.625 485.406 74.375
03/08/95 3979.875 485.125 74.125
03/07/95 3994.750 485.656 72.875

P 100,Boston Chicken
34.000 465.031 17.000
34.375 464.250 16.875
34.875 465.406 17.125
35.000 464.844 16.688
34.875 465.313 16.375
34.625 461.250 15.625
35.000 462.344 16.000
35.125 459.719 16.313
35.250 459.375 16.625
34.875 452.281 16.750
35.500 451.781 16.875
35.375 451.313 17.000
36.125 453.938 17.063
36.125 453.313 17.375
36.000 453.281 17.500
36.500 453.844 18.000

Now the date string always contains exactly eight characters and the numerical
values are neatly tabulated so that they always line up.

Hint: to solve this programming problem, you will need to make use of
the INDEX function, Fortran's ability to access any subset of a strin~ variable. and

466 • 9. Using Formatted Sequential Access and Internal Files

the concatenation operator. Read the entire line into a string so you can treat it as
an internal file. Extract the date string by looking for the fIrst comma in the line.
Then "fIx" this date string so that it always contains exactly eight characters. Then
extract the characters to the right of the fIrSt comma. Build a new string that
doesn't contain any commas. This string will contain values for the six prices and
can be read with list-directed input. [STOCKFIX. F90]

Exercise 20. It is widely believed by climatologists that signifIcant global
warming will occur sometime during the next century, largely as a result of
humankind's dependence on fossil fuels as a source of energy. When fossil fuels
are burned, they release CO2 into the atmosphere. As a result, CO2 levels in the
atmosphere are increasing at a very rapid rate compared to historical fluctuations
inferred from ice core and other climate records.

Ice core records give reliable CO2 levels back to roughly the mid
eighteenth century, and the modem record of direct atmospheric observations
begins in 1958 at the Mauna Loa Observatory in Hawaii. The data file C02. DAT,
which can be downloaded from the World Wide Web site mentioned in Section
1.5 of the Preface, contains both ice core and Mauna Loa measurements. Taken
together, these data sets provide continuous coverage from well before the start
of the Industrial Revolution, near the end of the nineteenth century, up to the
present.

In the few centuries prior to the start of the Industrial Revolution, CO2

levels increased slowly-perhaps as a result of natural fluctuations and perhaps
partly due to the presence of a relatively slowly growing, pre-industrial human
population. Population growth is usually modeled as exponential growth even
when the increases are small. Following the Industrial Revolution, not only did
population continue to grow exponentially, but per capita energy consumption also
started to grow exponentially. That is, the rate at which growth in CO2 levels
occurred also started to increase exponentially. This situation has led to the current
compound exponential growth in atmospheric CO2•

In a discrete implementation of this model, the CO2 concentration for year
i, prior to the Industrial Revolution, is given in terms of the concentration in the
previous year:

Mter the Industrial Revolution, starting in approximately 1880, the annual growth
rate is no longer constant:

r(i) = r(i - l)e(1 + gr)' year> 1880
CO2(i) = CO?(i - 1)e[1 + r(i)l. vear> 1880

9.8 Exercises • 467

where ro is the initial yearly growth rate and gr is the constant yearly increase in
the growth rate.

Write a program that allows the user to provide values for the constant
initial growth rate ro, the year at which compound exponential growth is assumed
to start, and the rate gr at which the growth increases after that year. Then use the
model to predict values for CO2 through the year 2050. Use the sum of the
squares of the differences between the measured and modeled values to detennine
how well your model fits the existing data. Try several different values until you
believe a satisfactory fit has been obtained. A value often used to compare CO2

prediction models is the year in which the level will increase to twice its pre
industrial level of about 275 ppm. In what year does your model predict that this
will happen?

Figure 9.3 shows one forecast based on the kind of model suggested in this
exercise. These modeled values slightly underestimate CO2 levels in the early part
of the twentieth century, but they match the measured levels very well after the
1950s. According to this model, the 550-ppm level will be reached in 2035, a
prediction that is widely regarded as reasonable. [C02MODEL. F90]

750.-----~---,-----,----,-----o-----~---.

• I , , • •

700 --------------i--------------i--------------1--------------1--------------t--------------i--------------

650 --------------\--------------\--------------j--------------j--------------t-------------t------------ -

_ 600 --------------!--------------!------R~~Ch~~-550:'pp~~-i~-~o35------!------------ --
> 550 ______________ 1 ______________ 1---' : - 1---:------ ----
E ::::::
a.. ::::::
S 500 --------------l--------------l--------------i-------------+-------------+-------------+------- ------
N :::::: o ::::::
() 450 --------------i--------------i--------------i-------------+-'------------j--------------l----- --------

400 - :~~~:~~~~yg~~;)~;:!~ ~~~;~~~~ --T------------t -------------

350 - , " -:::~:::-::::::::---J:::,::::::::::::::: 300 --------------i--------------i--------------~------------ ,

1750 1800 1850 1900 1950 2000 2050
Year

Fi~ure 9.3. CO? forecasting model based on historical data

468 • 9. Using Fonnatted Sequential Access and Internal Files

Exercise 21. Consider the file JANUARY. DAT. (See Table 9.3.) Copy this file to
a new file called YEARLY. DAT. Create a similar file called FEBRUARY. DAT.
(You can simply make up the data.) Write a program that opens YEARLY. DAT
and appends the data in FEBRUARY. DAT to this file. That is, when you're done,
the file YEARLY. DAT should contain all the information in both JANUARY. DAT
and FEBRUARY. DAT.

Extra Credit
(1) Modify your program so that it prompts the user to provide the name

of the monthly data file to be appended to YEARLY. DAT and then checks to make
sure that file exists before it opens YEARLY. DAT. If it doesn't, the program
should print an informative message and stop. Test your program by temporarily
moving or renaming FEBRUARY. DAT so that your program won't be able to find
it.

(2) Create a text file that contains a record of all updates to a file. When
your program runs, it should open this "history" file and print the contents before
prompting for the name of a new file to be appended. This file would look like
this after the files FEBRUARY. DAT and MARCH. DAT were appended to
YEARLY. DAT:

On 19950320 FEBRUARY.OAT was appended to YEARLY. OAT.
On 19950411 MARCH.OAT was appended to YEARLY. OAT.

The date strings (e.g., 19950320) are available from the intrinsic subroutine
DATE_AND_TIME (date). (See Appendix 4 for additional information about
this and related subroutines.) [UPDATE. F90]

Exercise 22. It is always to a manufacturer's advantage to minimize the size of
its raw materials inventory, consistent with being able to satisfy customer demand
for its product. In your role as a production management engineer, you have
implemented a cost-cutting approach that involves setting minimum allowed
material stock levels and automatically reordering a predetermined amount of that
item whenever stocks fall below this level. Your goal is to set minimum and
reorder levels that will minimize current inventories without encountering "out of
stock" situations.

You have created a "master materials inventory" file containing a material
ID code, the current amount in stock, the amount below which additional material
should be reordered, and the amount that will be reordered. One or more
transaction files contain information about materials use. Each of these files is
processed by updating the master materials inventory file and generating a reorder
report. If any transaction asks for more material than is available, include an "out
of-stock" report and request an emergency reorder. (Based on the out-of-stock
reports, you will want to make recommendations to your production manager for
adjusting the minimum and reorder amounts in order to avoid future problems.

9.8 Exercises • 469

"Emergency reorders" cost more than regular reorders. If too many out-of-stock
reports result from miscalculations on your part, you should start looking for a
new job.)

Write a program to implement and test this inventory management system.
There are several worthwhile simplifications you can make. First of all, consider
the material ID codes to be integers just because they are less trouble to process
than character strings. In the master materials inventory file, store the information
in order by ID code. The transaction data file should contain an ID code and the
amount used. Not all ID codes have to be present in a transaction file, but those
that are should be ordered by ID code. Assume that every ID code in the
transaction file corresponds to an ID code in the master inventory file; that is, the
transaction file will never contain any mistakes in its ID code references.

Being able to assume these characteristics for the files will greatly simplify
the code you need to write. For example, for each ID code in the transaction file,
you will have to find the corresponding)D code in the master inventory file. This
is easy if you know that the ID codes in both files are in order. Finally, you can
assume that all reorder requests are filled immediately, so the processing of each
transaction file includes the addition of reordered material to the inventory.

Table 9.12 gives two sample files, INSTOCK. DAT and USE_STK1. DAT,
which can be downloaded from the World Wide Web site mentioned in Section
i.5 of the Preface. The header line is included in each file. The physical units for
the quantities are unimportant from the point of view of writing the program, as
long as they are consistent.

Table 9.12. Data files for an inventory management program

(INSTOCK.DAT) (USE_STK1.DAT)

ID stock min. reorder ID used
1000 10000 750 15000 1000 8000
1001 5000 1000 6500 1001 4500
1002 8000 500 8500 1003 2700
1003 9050 600 12000 1005 140
1004 11500 1000 14000 1006 100
1005 80 50 750 1007 10000
1006 275 200 1000 1009 500
1007 15000 3000 20000 1010 1700
1008 850 750 1000
1009 900 75 1000
1010 8730 450 10000

Note that the data shown in Table 9.12 will result in routine reorders of items
1001 and 1006 and an "emergency reorder" of item 1005 because the amount used
(140) is ~eater than the amount in stock (80).

470 • 9. Using Formatted Sequential Access and Internal Files

Your program should create as output a third file, INSTOCK. OUT, that
contains the updated inventory file. To process the inventory again with another
file, the original and output files should be renamed. INSTOCK. DAT should be
renamed INSTOCK. OLD, and INSTOCK. OUT (which will be the input file for
the next set of transactions) should be renamed INSTOCK. DAT. [INSTOCK. F901

10

Some Essential Programming Algorithms

This chapter deals with the Fortran implementation of some common algorithms
from computer science that have many applications in science and engineering.
These include algorithms for searching and sorting lists of data and algorithms for
recursively defined functions. These algorithms are implemented as subroutines
and functions in MODULEs so that they can be incorporated into your own
programs even if you don't spend much time understanding the details of their
operation.

10.1 Introduction

There are many algorithms basic to computing in any discipline, including science
and engineering. Some of these are routinely included as part of an introductory
computer science course. Some are of interest to particular areas of science and
engineering. Others fall under the general category of numerical analysis
algorithms; these will be covered separately in Chapter 11.

lt is important for any programmer to have
some sense of these general-purpose algorithms to
avoid "reinventing the wheel" whenever certain
programming problems arise. In this chapter we will
discuss searching algorithms, sorting algorithms,
and recursive algorithms.

searching algorithms I
sorting algorithms
recursive algorithms

Searching and sorting algorithms are important because in many computer
applications, a great deal of time is spent "looking for things." As we will see, the
efficiency of searching algorithms can be improved dramatically by performing
the search on a list of things that are in order. For a list of numbers, for example,
"in order" means that the numbers appear in the list in either ascending or
descending order. For a list of words, "in order" means that the words are
alphabetized as they would be in a dictionary.

Sorting algorithms are therefore of great practical interest because it's so
often necessary to reorganize lists of things into a more useful order. We will
discuss three different sorting algorithms in this text. I They vary greatly in their

I A fourth algorithm, which applies in special cases, appears as an exercise at the end of
this chapter.

D. R. Brooks, Problem Solving with Fortran 90
© Springer-Verlag New York, Inc. 1997

472 • 10. Some Essential Programming Algorithms

efficiency when they're applied to lists originally in random order, but each of
them is a reasonable choice in certain circumstances.

Recursive algorithms provide an efficient approach to solving certain kinds
of problems. This chapter will show how to evalute some mathematical functions
that are important in science and engineering and whose defmitions lend
themselves to recursive evaluation. Discussions of recursive algorithms have not
previously appeared in Fortran programming texts for the simple reason that
Fortran 90 is the frrst version of Fortran to support recursion as part of the
standard language.2

Except for the Fortran-specific implementation details of recursive
algorithms, the material in this chapter isn't about Fortran per se, but about its
application to important computing problems. You should be able to use the
algorithms presented in this chapter in your own programs even if you don't spend
a great deal of time understanding the details of their operation. Consider, for
example, an algorithm to search for all occurrences of a specified value in an
array. That algorithni has been written as a Fortran subroutine, which has then
been incorporated into a driver program that tests and demonstrates its operation.
In order to use that subroutine in your own programs, you need only understand
how it is used in the driver program. Then you can simply copy the source code
for the subroutine into your own program; in some cases, you may need to make
minor modifications to meet specific needs.

The driver programs for testing the searching and sorting algorithms have
made certain assumptions about the contents of the list being searched or sorted.
This is necessary not because the algorithm demands data of a certain type, but
because every Fortran variable requires a specific data type. How can you
customize these algorithms so they will work with data types other than the ones
for which they were originally written?

There is no entirely general answer to this question. However, it is possible
to minimize the effort required to modify the data types used in the subprograms
presented in this chapter. Information about data used by subprograms is included
in a MODULE that is USEd in the main program and all subprograms associated
with the algorithm. This means that much of the information about data types can
conveniently be found in one place.

Consider this example. With a searching algorithm, the quantities of
interest are an array to hold the items being searched, an integer specifying the
size of the list, the value being searched for, and possibly another integer
specifying the position of an item in the list. The array elements and the value
being searched for can have any intrinsic or derived data type. If these quantities
are defmed in a MODULE, then the data type of the array and of any value in the
list can easily be redefmed in the MODULE when that source code is used in a

2Some Fortran 77 comnilers !lunnort recur!!ion_ hilt onlv II!! lin p.dp.n!!ion of th .. dllnrlllrrl

10.2 Searching Algorithms • 473

program. A complete program example is given in Section 10.6, the Applications
section of this chapter.

There are some potential disadvantages to using MODULEs in this way.
First of all, when a variable from a MODULE is used in a subprogram, that
variable can't be passed to a subprogram in its parameter list. In other words, a
variable can appear either in the parameter list or in a USE statement, but not in
both places. This makes the information flow between the subprogram and its
calling (sub)program less clear. It's possible to compensate somewhat for this loss
of information by using the ONLY option in the USE statement specifically to
name the variable (and subprogram) names being used in that particular
(sub)program, even though this isn't required.

Second, subprograms that would otherwise be able to make use of variably
dimensioned arrays can no longer do so because variable array dimensions aren't
allowed in MODULE data declarations. Third, variables shared among several
subprograms can't have different intent (for example, IN in one subprogram and
OUT in another) because the INTENT attribute is part of the data declaration that
is made in the MODULE. A variable's data declaration can't be split between the
MODULE, where a data type would be given, and a subroutine that USEs that
module, where you might otherwise wish to declare its intent. Therefore, any
variable declared in a MODULE that you wish to use as input to one subprogram
and output from another will need to have INOUT intent.

Even with these potential problems, it's still a good idea to use MODULEs
whenever possible to share data declarations when subprograms need access to
data types that can change from application to application.

10.2 Searching Algorithms

Suppose you need to write a program for finding chemical names in a list of
chemicals. Assume the chemicals are in alphabetical order. The program will
contain a menu of options that might include these choices:

1. Find a chemical whose name starts with "methyl."
2. Find a chemical whose name includes "oxide."
3. Find all occurrences of chemicals whose names start with "methyl."
4. Find all occurrences of chemicals whose names include "oxide."

Each of these requests forces the program to search through the directory,
but not in the same way. The first two options aren't even completely clear.
Suppose there is more than one chemical starting with "methyl." Do you wish
your program to find the first occurrence of "methyl," or will you be happy with
any chemical starting with "methyl?" It appears that the last two options will force
von to s~llrch thromth th~ ~ntir~ clir~ctorv h~CllIIS~ thp.v snp.cificllllv llSle for nil

474 • 10. Some Essential Programming Algorithms

occurrences of a specified value. (At least, if the list is in alphabetical order, all
the chemicals beginning with "methyl" will be together.)

For now, suppose either that there are no duplicate names in the list or that
it is sufficient to fmd the first occurrence of a specified name. Assume that the list
is held in an array. The simplest algorithm for searching an array uses a loop
structure:

LOOP (until we find what we're looking for or we get to the end of the list)
(compare an element of the array to what we're looking for and store
result as 'yes" or "no. '?

END LOOP

The details of this algorithm, even at the pseudocode level, depend on what you're
looking for and on how you will ask the algorithm to fmd it. Note, however, that
the terminating condition should, in general, account for the possibility that the list
doesn't contain the. sought-after value.

10.2.1 Linear Searches

Let's solve a specific problem that involves looking for something in a list.

1 Define the problem.

Find the first occurrence of a specified chemical name in a list of names
or determine that the name doesn't appear in the list.

2 Outline a solution.

1. Start at the beginning of the list and compare each item in the list against the
specified name. Store the result of the comparison as "yes" or "no."
2. Stop when you fmd what you're looking for-when the comparison yields a
"yes"--or when you get to the end of the list.

Incorporate this solution in a subprogram. The output from the subprogram should
be the position of the item in the list. or a zero if the item isn't found in the list.

10.2 Searching Algorithms • 475

3 Design an algorithm.

The algorithm can be simplified because the comparison against an array
element and the specified name can be used to control the execution of the loop.
The only action that must be taken inside the loop is incrementing the array index.

SUBPROGRAM FindOne(IN: array, size, search_value;
OUT: where (position of item found))

INITIALIZE where = 1
LOOP (while array(where) ¢ search_value and counter < size)

INCREMENT where = where + 1
END LOOP
IF array(where) ¢ search_ value THEN ASSIGN where = 0

If you fmd the name you're looking for, the variable where contains its position
in the array. If you don't fmd it, where has a value of o.

This algorithm will require, on the average, nJ2 tries to fmd an item in a
randomly ordered list, assuming that the item actually exists in the list. This
means that the time required to fmd something in a list is linearly proportional to
the length of the list. A list containing 1,000,000 items in random order will
require, on the average, 500,000 tries.

4 Convert the algorithm into a program.

P-lO.l contains the source code for a subroutine that implements this
algorithm.

P-lO.l (see SEARCH. F90)

SUBROUTINE FindFirst(size,where)
Linear search of list for first occurrence of target value.

USE Setup, ONLY : a,target
IMPLICIT NONE
INTEGER, INTENT(IN) :: size
INTEGER, INTENT (OUT) :: where
where=l
DO WHILE «a(where) /= target) .AND. (where < size»

where=where+l
END DO
IF (a(where) /= target) where=Q

Rliln "lTHIR()TT'I'TliIR F; nilF; r

476 • 10. Some Essential Programming Algorithms

The code given here.is a subroutine that will become part of a MODULE
that will be incorporated into a driver program for testing this and other searching
algorithms. The data array and "target" value will be defmed in another MODULE
(MODULE setup). Unless you look at this second MODULE (you can fmd it in
the program SEARCH. F90, which can be downloaded from the World Wide Web
site mentioned in Section i,5 of the Preface, or listed later in the chapter in
P-lO.4), you have no way of knowing what kinds of data are being searched; it's
important to understand that the code within SUBROUTINE FindFirst is the
same regardless of the data type of the array a.

5 Verify the operation of the program.

As just noted, subroutine P-I0.l needs to be incorporated into a driver
program that should be used to test the subroutine on a list whose contents you
know. It will be helpful to search for several items, including one at the beginning
and one at the end of the list, as well as one that doesn't exist in the list. If your
list contains some duplicate names, you will be able to reuse it to test the
subroutine discussed in the next section.

Problem Discussion
Proper termination of the search loop is a potential trouble spot in P-lO.1.

Consider this code from SUBROUTINE FindFirst:

where=l
DO WHILE «a(where) i target) .AND. (where < size»

where=where+l
END DO

An easily overlooked mistake would be to initialize where to 0 instead of
I-because 0 is a typical initial value for a variable that will be incremented
inside a loop. This is a problem because when the DO WHILE ... loop tests the
terminating condition, it will attempt to examine the contents of a (0) even
though this array element doesn't exist. Your Fortran environment should issue at
least a warning message when it encounters this kind of "ran2e violation" error.

10.2 Searching Algorithms • 477

Here's a slightly different problem.

1 Define the problem.

Find all occurrences of a specified name in a list of names. Keep count of
how many occurrences are found.

2 Outline a solution.

The main difference between this problem and the previous one is that now
the loop will be count-controlled rather than conditional because it is always
necessary to search through the entire list.

3 Design an algorithm.

Here is the critical part:

INITIALIZE how_many = 0
LOOP (for counter = 1 to array size)

IF search_name = array(counter) THEN
WRITE (array(counter))
INCREMENT how_many = how_many + 1

(end IF ...)
END LOOP

4 Convert the algorithm into a program.

P-1O.2 contains source code for a subroutine that implements this
algorithm. A driver program containing this subroutine will be discussed later in
this chapter. (See P-lO.4.)

478 • 10. Some Essential Programming Algorithms

P-IO.2 (see SEARCH. F90)

SUBROUTINE FindAll(size,how_many)

Linear search of a list for all occurrences of
specified target value.

5

USE Setup, ONLY : a,target
IMPLICIT NONE
INTEGER i
INTEGER, INTENT(IN) :: size
INTEGER, INTENT(OUT) :: how_many

how_many=O
DO i=l,size

IF (a(i) .EQ. target) THEN
PRINT *,target, I at position I,i
how_many=how_many+l

END IF
END DO

END SUBROUTINE FindAll

Verify the operation of the program.

SUBROUTINE FindAll should be included in a driver program that tests
its performance on a list whose contents you know.

10.2.2 Binary Search

Recalling the options discussed earlier in the chapter for a program that searches
for a chemical name, suppose that chemicals beginning with the word "methyl"
are of interest. If the names are sorted in alphabetical order, then all the chemicals
starting with "methyl" will be together in the list. Otherwise, they will appear in
random locations throughout the list. In the latter case, the only way to find the
word "methyl" is to start at the beginning of the list and continue until you find
what you're looking for or get to the end of the list. This is OK for short lists, but
seems inefficient for large lists. Is there any way to take advantage of a list in
alphabetical order to develop a more efficient searching algorithm?

If a list is sorted in order-alphabetically, as in this example-then, in fact,
a much more efficient algorithm exists. Let's investigate the possibilities by
plavin.e; a simple .e;ame:

10.2 Searching Algorithms • 479

1. You will pick an integer between 1 and 100.
2. I will guess the number.
3. You will tell me whether the number I have guessed is too big or too small
relative to the number you've picked.

How many tries will I need to guess your number?

Here's one way to play the game. You pick 33.

My Guess
50
25
37
31
34
32
33

Your Response
too big
too small
too big
too small
too big
too small
you guessed it!

Obviously, another way to play the game is to use a linear search of the numbers
from 1 to 100. On the average, if you pick a number randomly from this range,
it will take 50 tries to guess the number. For the above example, it will take 33
tries. However, the solution here requires only seven guesses! In fact, it should
never require more than seven guesses to find a number in the range 1-100.

This solution requires that guesses be chosen in a particular way. My fIrst
guess of 50 is in the middle of the range of possible numbers. When you tell me
that 50 is too big, then I know that the number must be in the range 1-49.
Therefore, my next guess is 25, the number in the middle of the range 1-49.
When you tell me that 25 is too small, I select 37, a number in the middle of the
range 26-49. By continuing in this way I must eventually arrive at the number you
have selected. .

This algorithm is called a binary search. By selecting a value that is at the
midpoint of the remaining range at each step, this algorithm guarantees that you
can fmd any value in an ordered list-or determine that the value doesn't exist
in the list-in no more than login) guesses. This is a signifIcant improvement
over a linear search. Suppose you have to fmd a value in a list containing
1,000,000 values. Recall that a linear search will require an average of 500,000
comparisons. However, a binary search on such a list will require no more than
20 comparisons because 220.".1,000,000.

The number guessing game is a simplifIed version of the general search
problem because if everybody follows the rules of the game, the number to be
guessed is guaranteed to exist within the numbers 1-100. In general, a binary
searching algorithm must also account for the possibility that the requested value

480 • 10. Some Essential Programming Algorithms

doesn't exist in the list of available values. Here's an appropriate problem
statement and a complete solution.

1 Define the problem.

Given a list of values in order, fmd one occurrence of a specified value in
the list or determine that the value doesn't exist in the list.

2 Outline a solution.

The outline of a solution should implement the steps used in the number
guessing game.

1. Select a value in the middle of the possible range.
2. If that value is the desired value, stop.
3. If the value is smaller than the desired value, reset the lower boundary of the
possible range to the middle position plus 1.
4. If the value is larger than the desired value, reset the upper boundary of the
possible range to the middle position minus 1.
5. Repeat steps 1-4 until the desired value is found or until the lower boundary
is larger than the upper boundary.

In order to use a binary search, the exact statement of the problem is
important. First of all, the list must be in order; it makes no conceptual sense to
do a binary search on a randomly ordered list! A binary search will fmd only one
occurrence of a specified value. If that value appears more than once in the list,
you have no way of knowing which occurrence the binary search will locate.
However, because the list must be in order, you could use a binary search to find
one occurrence and then look forward and backward in the list to fmd additional
occurrences.

3 Design an algorithm.

SUBPROGRAM BinarySearch(lN: array (A),
10 and hi as array boundaries, desired value;
OUT: found, as boolean value, or
position in array)

DEFINE (midpoint. as inteaer array index)

10.2 Searching Algorithms • 481

ASSIGN found = false (alternate: position = 0)
LOOP (while (10 ~ hi) and (not found))

(alternate: while (10 ~ hi) and (position = 0))
ASSIGN midpoint = (10 + hi)/2
IF A(mid) = desired value THEN

ASSIGN found = true (alternate: position = mid)
ELSE IF A(mid) < desired value THEN

ASSIGN hi = midpoint - 1
ELSE ASSIGN 10 = midpoint + 1

END LOOP

By specifying the low and high boundaries of an array in the parameter list
rather than just its size (with an implied lower boundary of I), this algorithm can
be used to search just part of a list, if desired. For example, you could search an
electronic dictionary just for words beginning with the letter b if you know where
the fIrst and last word beginning with b are located in the dictionary.

4 Convert the algorithm into a program.

P-IO.3 contains source code for a subroutine that implements this
algorithm. A driver program for subroutine will be discussed in the next section.
(See P-lOA.)

P-lO.3 (see SEARCH. F90)

SUBROUTINE Binary(low,high,where)

Binary search of an ordered list for one occurrence of
specified target value. Assumes low < high, i.e., there is
something in the list to look for.

USE Setup, ONLY : a,target
IMPLICIT NONE
INTEGER mid,lo,hi
INTEGER, INTENT (OUT) :: where
INTEGER, INTENT(IN) :: low,high

lo=low !Assign these values locally so ...
hi=high !INTENT(IN) on low and high won't be violated.
where=O
DO WHILE «10 .LE. hi) .AND. (where .EQ. 0»

mid=(10+hi)/2
IF (a(mid) .EQ. target) THEN

where=mid
ELSE IF (a(mid) .GT. target) THEN

hi=mid-l
ELSE

1 n=m; n+l

482 • 10. Some Essential Programming Algorithms

END IF
END DO

END SUBROUTINE Binary

5 Verify the operation of the program.

Test this algorithm in a driver program that searches for values in a list
whose contents you know. Be sure to search for values at the beginning and end
of the list, as well as for values that don't exist in the list.

Problem Discussion

Table 10.1. Data file for
use with searching
algorithms

Alice
Allen
Bob
Carla
David
Evelyn
Frank
Frank
Grace
Grace
Grace
Hal
Laura
Susan
Ted
Wanda

Algorithms such as these are deceptively
simple. It's easy to write code that looks OK and
works most of the time. Clearly, this is
unacceptable. For example, suppose you use
P-lO.3 to search a list of names in alphabetical
order, as shown in Table 10.1. Now ask your
program to fmd the name David in the list in
Table 10.1. For the purposes of observing the
operation of the algorithm, insert the statement
PRINT*, 10, mid, hi, a (mid) just after the
statement mid=(10+hi)/2 in the
DO WH I LE. .. loop in the subroutine. Your
program should now produce the following output:

1 8
1 4
5 6
5 5

16 Frank
7 Carla
7 Evelyn
5 David

It correctly locates David in the fifth position in the list. However, if the . LE.
relational operator in the statement

DO WHILE «10 .LE. hi) .AND. (where .EQ. 0»

is changed to . LT . , the loop will terminate prematurely and the subroutine will
incorrectly report that David can't be found in the list. With this change, the
algorithm will work correctly only part of the time. When you're thinking about
the design of an al~orithm. it's easy to assume that a small detail such as the

10.2 Searching Algorithms • 483

difference between "less than" and "less than or equal to" won't be very
important. In this case, you would be wrong!3

10.2.3 Comparing Searching Algorithms

As indicated earlier in the chapter, linear searching algorithms are required under
some circumstances. In particular, if a list isn't sorted in any useful order, then a
linear search is required. Linear searching algorithms are referred to as "order N"
algorithms, represented in what is known as "big 0" notation as O(N) algorithms.
For any O(N) algorithm, the number of operations required to complete the
algorithm is directly proportional to N. Because "operations" on your computer
translate directly into time, doubling the size of the list means that the search will
take twice as long for an O(N) algorithm.

On the other hand, the binary search algorithm is an 0(lOg2N) algorithm,
which means that the number of operations grows only as the log to the base 2
of N. As noted above, this represents a tremendous increase in efficiency for large
lists, with a binary search taking only about 20 comparisons to find a value in a
list of 1,000,000 items, rather than the average of 500,000 comparisons required
by a linear search.

The savings represented by a binary search are so significant that it is often
worth the extra effort to devise algorithms that combine binary and linear
searching techniques. For example, you know that a binary search fmds only one
occurrence of a specified value even if that value occurs several times in a list.
In the list of names appearing in the Problem Discussion following P-10.3, the
name Grace appears three times. You can use a binary search to locate one
occurrence of Grace, but you won't know whether it's the first, second, or third.
Therefore, once you have found one occurrence of Grace, you can do a linear
search forward and backward to fmd additional occurrences. Since the list is in
order, you can stop the search in either direction when you find a name other than
Grace.

This hybrid algorithm might seem like a waste of time for a short list, but
it makes sense as an efficient way to search a large list. (See Exercise 15 at the
end of this chapter.)

10.2.4 A Driver Program for Testing Searching Algorithms

The three algorithms discussed above and implemented as subroutines in P-lO.1,
P-1O.2, and P-10.3 all need to be tested. As noted in Section 10.1, the subroutines

3 An incorrect version of this algorithm has, in fact, been published in at least one Fortran

484 • 10. Some Essential Programming Algorithms

have been designed to make it easy to change the type of data being searched.
Progam P-lO.4 shows how the subroutines have been incorporated into a driver
program. The data type is CHARACTER, and the data file SEARCH. DAT, which
can be downloaded from the World Wide Web site mentioned in Section i.5 of the
Preface, contains the names shown in Table 10.1. You can learn a lot from this
program about how to use MODULEs to make your programs easy to maintain and
modify. The type of the data being searched is defmed in MODULE Setup; a
subroutine to create the list is also included in Setup. The searching subroutines
are included in MODULE SearchSubs. The subroutines themselves haven't been
duplicated here because they are identical to those already listed in P-lO.l, P-1O.2,
and P-IO.3. However, the program SEARCH. F90, which can be downloaded from
the World Wide Web site mentioned in Section i.5 of the Preface, contains all the
code and is "ready to run."

P-lO.4 [SEARCH. F90]

MODULE setup
IMPLICIT NONE
CHARACTER(20) a(100),target

CONTAINS

SUBROUTINE GetList(size)

IMPLICIT NONE
INTEGER, INTENT(INOUT) :: size

OPEN(l,fi1e=" c :\ftn90.dir\search.dat")
size=l

10 READ(l,*,END=900)a(size)
size=size+1

GO TO 10
900 size=size-1

CLOSE(l)

PRINT *, '# of items in list
END SUBROUTINE GetList

END MODULE Setup
!======================

MODULE SearchSubs
CONTAINS

(Insert code for FindFirst here.)

(Insert code for FindAl1 here.)

(Insert code for Binary here.)

END MODULE SearchSubs
1==========================

, ,size

10.2 Searching Algorithms • 485

PROGRAM Search

Driver program to test linear and binary search algorithms.

USE Setup ! array and target specifications
USE SearchSubs ! various searching subroutines
IMPLICIT NONE
CHARACTER YesNo,choice
INTEGER size, where, how_many

CALL GetList(size) !Build list to search.

10 CONTINUE !START LOOP
PRINT *,' What name would you like to look for?'
READ *,target
PRINT *, 'Linear search for (f)irst, (a)ll, or (b)inary?'
READ *,choice
SELECT CASE (choice)

CASE ('a') !linear search for all occurrences
CALL FindAII(size,how_many)
IF (how~any .GT. 0) THEN

PRINT *,how_many,' occurrences found'
ELSE

PRINT *,target,' not found'
END IF

CASE ('b') !binary search for one occurrence
CALL Binary(l,size,where)
IF (where .GT. 0) THEN

PRINT *,target,' found at position' ,where
ELSE

PRINT *,target,' not found'
END IF

CASE ('f') !linear search for first occurrence
CALL FindFirst(size,where)
IF (where .GT. 0) THEN

PRINT *,target,' found at position' ,where
ELSE

PRINT *,target,' not found'
END IF

END SELECT
PRINT *,' Try again (Yin)?'
READ *,YesNo

IF (YesNo .EQ. 'y') GO TO 10

486 • 10. Some Essential Programming Algorithms

Running P-IO.4

of items in list = 16
What name would you like to look for?

David
Linear search for (f)irst, (a)ll, or (b)inary?

f
David found at position 5
Try again (y/n)?

y
What name would you like to look for?

Grace

a
Linear search for (f)irst, (a)ll, or (b)inary?

Grace
Grace
Grace
3 occurrences found
Try again (y/n)?

at position
at position
at position

9
10
U

y
What name would you like to look for?

Grace
Linear search for (f) i rst, (a)ll, or (b)inary?

b
Grace found at position 10
Try again (y/n)?

n

Problem Discussion
The output from this program is just a demonstration and isn't sufficient

to test the code thoroughly. Note that the binary search happened to fmd the
second of Grace's three occurrences in the list.

10.3 Sorting Algorithms

The discussion of binary and linear searching in Section 10.2 makes clear the
importance of putting lists in sorted order for efficient searching. In this section,
we will develop algorithms for two different "intuitive" methods of sorting lists
of data contained in arrays.

10.3 Sorting Algorithms • 487

10.3.1 Selection Sort

1 Define the problem.

Start with an array of integers in random order and sort it in ascending
order. (The extension of the problem statement to sort the array in descending
order or to sort arrays of other data types is straightforward.)

2 Outline a solution.

It will help to use a specific example for describing the solution. Suppose
this list of seven integers is stored in an array A:

17 4 11 9 13 3 5

1. Assume that the value in the fIrst element of the array is the smallest value in
the entire list.

Assume that the smallest value = A(I) = 17.

2. Starting at the second element, compare all the remaining elements with the
fIrst element. If you find a smaller one, mark it as the smallest element.

Assign new smallest = A(6) = 3.

3. When you have found the position of the smallest remaining element, exchange
this element with the first element. Now the smallest element is where it belongs.

This operation looks like this:

~~J411 913[!]S

I

3 4 11 9 13 17 5

In this and following steps, the integers in bold type indicate values that have been
put in their proper position in the array.

4. Repeat steps 1-3 starting at the second, third, and so on, positions, up to the
(n - 1)st position.

This is what the array looks like after each of the five repetitions of steps
1-3:

(2nd repetition) 3 4 11 9 13 17 5 (no exchange required)

488 • 10. Some Essential Programming Algorithms

(3rd repetition) 3 4 ~ 9 13 17 Isl
L ... J L ... J

I I

3 4 5 9 13 17 11

(4th repetition) 3 4 5 913 17 11 (no exchange required)

(5th repetition) 3 4 5 9 r;:;l 17 ~
L ... J L ... J

I I

3 4 5 9 11 17 13

(6th repetition) 3 4 5 9 11 r;:;l r;:;l
L ... J L ... J

L-.J
3 4 5 9 11 13 17

Note that in some cases, the element initially chosen as the smallest remains the
smallest. Then it's not necessary to exchange a pair of elements.

3 Design an algorithm.

SUBPROGRAM Selection(INIOUT: array (A); IN: size)
DEFINE (current, test, smallest, as integers)
LOOP (current = 1 to size-1)

ASSIGN smallest = current
LOOP (test = current + 1 to size)

IF (A(test) < A (smallest)) THEN
ASSIGN smallest = test

END LOOP
IF (A(current) I: A(smallest)) THEN

CALL Swap(A(current),A(smallest))
END LOOP
(end of subprogram)
SUBPROGRAM Swap(lNIOUT: a, b as integers)
DEFINE (temp as integer)
ASSIGN temp = a

a=b
b = temp

(end of subprogram)

We will reuse the Swap subpro~am in subsequent alj!;orithms.

10.3 Sorting Algorithms • 489

4 Convert the algorithm into a program.

P-IO.5 contains source code for a subroutine that implements the Selection
Sort algorithm.

P-1O.5 (see SORT. F90)

5

SUBROUTINE Selection(size)

USE SortSetup, ONLY : a => array,Swap
IMPLICIT NONE
INTEGER, INTENT(IN) :: size
INTEGER current_cell,i,smallest

DO current_cell=l,size-l
smallest=current_cell
DO i=current_cell+l,size

IF (a(i) .LT. a(smallest» smallest=i
END DO

IF (a (current_cell) .NE. a(smallest» &
CALL Swap(a(current_cell),a(smallest»

END DO
END SUBROUTINE Selection

Verify the operation of the program.

It is easy to verify the operation of such an algorithm for any list, but it's
not so easy to be confident that it will work correctly for every list. A driver
program to test this subroutine should allow you to produce random lists, lists
already in order, lists that are backwards, and lists the contents of which are all
the same value. Note that the DO .•. loop won't execute at all for a list of length
1.

Problem Discussion
Selection Sort has the advantage that elements are exchanged only when

the fmal location of an element is known. It performs the same number of
comparisons regardless of the initial order of values in the array. This isn't
necessarily a disadvantage in most circumstances. However, if the list is initially
almost in order, Selection Sort performs a lot of unnecessary comparisons. In the
next section, we will describe an algorithm that performs substantially better than
Selection Sort if an array is already almost in order.

490 • 10. Some Essential Programming Algorithms

10.3.2 Insertion Sort

Insertion Sort is another "intuitive" sorting algorithm. Suppose you're being dealt
a hand in a card game such as bridge. Every time you're given a new card, you
automatically insert it into its proper place. The same kind of process can apply
to sorting an array.

1 Define the problem.

Start with an array of integers in random order and sort it into ascending
order.

2 Outline a solution.

Again, it will help to use a specific example. Suppose the array contains
these values:

17 4 11 9 13 3 5

1. Find the smallest element and exchange it with the value in the frrst position.

~~J 4 11 9 13 G 5
I

3 4 11 9 13 17 5

Now we know that we won't find any value smaller than the frrst element, and we
also know that the second element is at least as large as the first element. The
values in bold type represent a subset of the array that is sorted.

2. Determine whether the third element is in its proper place relative to the
preceding elements.

3 4 11 9 13 17 5 (3rd element is in place)

3. Repeat step 2 until you get to the end of the list.

3 4 n 11 ~ 13 17 5
L ... J L ... J

I I

(4th element is out of place)

10.3 Sorting Algorithms • 491

349 11 13 17 5 (insert 4th element in its place)

3 4 9 11 13 17 5 (5th element is in place)

3 4 9 11 13 17 5 (6th element is in place)

3 4 n 9 11 13 17 ~ (7th element is out of place)
L.J L.J

I I

345 9 11 13 17 (insert 7th element in its place)

The instruction in step 2 is vague and must be translated into more specific
pseudocode. Consider the last step in the sorting of the list illustrated above, in
which the seventh element of the array was put in its proper place. We will take
these specific steps:

1. Save the seventh element in a temporary variable.
2. Compare the temporary variable with the sixth element. If the temporary
variable is less than the sixth element, move the sixth element up one position.
3. Repeat step 2 with successive elements until an element is less than or equal
to the temporary variable.
4. Insert the temporary variable just after this position.

3 Design an algorithm.

SUBPROGRAM Insertion(INIOUT: array A; IN: size)
DEFINE (counter, count2, min, as integers;

temp, same type as element of array)

(Find the smallest element and put it where it belongs.)

ASSIGN min = 1
LOOP (for counter = 2 to size)

IF A(counter) < A (min) THEN
ASSIGN min = A(counter)

t=A1n I nnD

492 • 10. Some Essential Programming Algorithms

(Check additional elements starting with third.)

LOOP (for counter = 3 to size)
ASSIGN temp = A(counter)
INITIALIZE count2 = counter
LOOP (while temp < A (counter - 1))

ASSIGN A(count2) = A(counter2 - 1)
INCREMENT count2 = count2 -1

END LOOP
ASSIGN A(count2) = temp

END LOOP

It's easy to design an insertion algorithm that doesn't work under all
conditions! Note particularly the inner loop that operates as long as temp is less
than A (counter - 1). This loop will terminate properly only if temp is never less
than the ftrst element in the array. Otherwise, the loop will eventually try to
access A(O). This is why the algorithm ftrst selects the smallest value in the array
and places it in the beginning of the list.

4 Convert the algorithm into a program.

P-IO.6 contains source code for a subroutine that implements the Insertion
Sort algorithm.

P-1O.6 (see SORT. F90)

SUBROUTINE Insertion(size)
I Assumes size>=3

USE SortSetup, ONLY: a => array,save_value,Swap
IMPLICIT NONE
INTEGER, INTENT(IN) :: size
INTEGER current, smallest, test

Find smallest element ...
smallest=l
DO current=2,size

IF (a(current)<a(smallest» smallest=current
END DO

and swap it if necessary to get it into 1st position.
IF (a(l) .NE. a(smallest» CALL Swap(a(l),a(smallest»

Check remaining elements, starting a position 3.
DO current=3,size

save_value=a(current)
1-~!I::+=""l1rr~nT

10.3 Sorting Algorithms • 493

(DO WHILE ... will always terminate because smallest element
is in position 1.)

DO WHILE (save_value .LT. a(test-1»
a(test)=a(test-1)
test=test-1

END DO
a (test)=save_value

END DO

END SUBROUTINE Insertion

Problem Discussion
Don't be misled by the fact that the Insertion Sort code is longer than the

Selection Sort code. These algorithms are both O(N2) algorithms, and the Insertion
Sort code really is more efficient in some circumstances. The efficiency of an
algorithm is not necessarily related to the length of the code required for its
implementation.

5 Verify the operation of the program.

See Step 5 of the Selection Sort problem. The same verification procedures
apply.

10.3.3 Efficiency of Sorting Algorithms

Recall that in Section 10.2.3, we identified linear and binary search algorithms as
O(N) and O(lOg2N) algorithms. We can characterize sorting algorithms in the same
way, to determine the relationship between the number of operations required to
perform a sort and the size of the list being sorted.

Note that the Selection Sort algorithm contains nested DO. . . loops. For
an array of size N, the statements inside the outer loop are executed approximately
N times and the statements inside the inner loop are executed, on average,
approximately N/2 times each time the inner loop is executed. Altogether, then,
each operation inside the inner loop is executed approximately N*N/2 times. If
n = 100, the IF statement is executed roughly 10,000/2 = 5,000 times. IfN = 200,
the IF statement is executed roughly 20,000 times, a factor of four increase. In
general, if the size of the array increases, the number of operations required to sort
the array with a Selection Sort algorithm increases as the square of the factor by
which the array size increases.

This relationship between array size and performance characterizes an
O(N2) al~orithm. An N2 dependence on array size represents a severe performance

494 • 10. Some Essential Programming Algorithms

penalty for large values of N, with the result that neither the Selection Sort nor the
Insertion Sort algorithm is very efficient for large arrays. Although computer
scientists and programmers may not be happy with a theoretically inefficient
algorithm, acceptable performance is largely a matter of perception, depending on
your own defInition of a "severe performance penalty."

The Selection Sort algorithm requires the same number of comparison
operations regardless of the original state of the list being sorted. On the other
hand, the performance of the Insertion Sort depends strongly on the original state
of the list. If the list is backwards, for example, the Insertion Sort is very
inefficient. However, if the list is originally almost in order, the Insertion Sort is
very efficient-because it makes only about N comparisons and no exchanges if
the list is already in order. If the list is in random order, the Insertion Sort is still
an O(N2) algorithm. In this case, a conditional loop is nested inside a DO. . .
loop.

In summary, the Selection Sort is a reasonable choice for small lists that
are originally in random order, but the Insertion Sort is better if the list is
originally almost in sorted order. Later in the chapter, we will use a version of the
Insertion Sort algorithm as part of a program to add new items to a list that is
already in order.

10.3.4 A Driver Program for Testing Sorting Algorithms

P-l 0.7 is a driver program for testing the Selection Sort and Insertion Sort
subroutines. The program fIle SORT. F90, which can be downloaded from the
World Wide Web site mentioned in Section i.5 of the Preface, also includes the
Quicksort algorithm discussed later in this chapter.

P-1O.7 [SORT. F90]

MODULE SortSetup
IMPLICIT NONE
INTEGER array(lOO),save_value

(see also declarations for a, b, and temp in Swap)

CONTAINS
!---------------------------

SUBROUTINE Swap(a,b)

IMPLICIT NONE
INTEGER, INTENT(INOUT) .. a,b
INTEGER temp

temp=a
a=b
b=temp

END SUBROUTINE Swap
1-------------------------------

SUBROUTINE GetList(size)
IMPLICIT NONE
INTEGER, INTENT(OUT) :: size
INTEGER i

10.3 Sorting Algorithms • 495

INTEGER Count(l) ! for random number generator
REAL x

CALL System_C1ock(Count(1»
CALL Random_Seed(Put=count)
DO i=l,size

CALL Random_Number(x)
array(i)=x*100+1

END DO
END SUBROUTINE GetList

1---------------------------------
SUBROUTINE PrintList(size)
IMPLICIT NONE
INTEGER, INTENT(IN) :: size
INTEGER i

PRINT *,(array(i),i=l,size)

END SUBROUTINE PrintList
1-------------------------------

END MODULE SortSetup
1=========================

MODULE SortSubs
CONTAINS

(Insert SUBROUTINE Selection code here.)

(Insert SUBROUTINE Insertion code here.)

END MODULE SortSubs
1========================

PROGRAM Sort

Test and demonstrate several sorting algorithms.

USE SortSetup, ONLY: a => array,GetList,PrintList
USE SortSubs
IMPLICIT NONE
INTEGER size
CHARACTER choose,YesNo

size=15

10 PRINT *,' Choose sorting algorithm: '
PRINT *,' Insertion (i), Quicksort (q), Selection (s)'
READ *,choose
CALL GetList(size)
SELECT CASE (choose)

CASE (' i')
CALL Insertion(size)

CASE (' q')
CALL QuickSort(l,size)

CASE (' s')
CALL Selection(size)

END SELECT
CALL PrintList(size)

496 • 10. Some Essential Programming Algorithms

PRINT *,' Again (Yin)?'
READ *,YesNo

IF (YesNo == 'y') GO TO 10

END

Running P-1O.7

Choose sorting algorithm:
Insertion (i), Quicksort (q), Selection (8)

s
6 7 15 21 28 29 30 38 48 61 70 88 88 93 99
Again (yin)?

n

10.4 Recursive Algorithms

The word "recursive" comes from the Latin word for "run back." In languages
that support recursive algorithms, subprograms can "run back" on themselves by
calling themselves repeatedly. Fortran 90 is the ftrst version of Fortran to support
recursion as part of the standard.

As an introduction to the motivation behind deftning recursive algorithms,
consider n!, the well-known factorial function.

1 Define the problem.

The factorial function n! can be defmed like this (for non-negative values
of n):

n! = 1, 0 ~ n ~ 1
n! = n·(n - 1)·(n - 2)·····(2), n ~ 2

For example, 5! = 5·4·3·2 = 120. An alternative defmition of n! is:

n! = 1, 0 ~ n ~ 1
n! = n·(n - I)!, n ~ 2

In the second definition, which is completely equivalent to the ftrst, n! is deftned
in terms of nand (n-l)1. When a function is deftned in terms of itself in this way,
it is called a recursively defined function.

Write a Fortran function that will use a recursive algorithm to calculate nL

10.4 Recursive Algorithms • 497

2 Outline a solution.

In this case, the problem definition itself defines the solution.

3 Design an algorithm.

The first definition of n! can easily be implemented as a count-controlled
loop:

SUBPROGRAM Fact 1 (IN: n; OUT: n!)
ASSIGN n! = 1
IF (n > 1) THEN

LOOP (for i = 2 to n)
ASSIGN n! = n!*n

END LOOP
(end subprogram)

The second definition can be implemented as a conditional loop:

SUBPROGRAM Fact2(IN: n; OUT: n!)
ASSIGN n! = 1
LOOP (while n > 1)

ASSIGN n! = n!*n
n=n - 1

END LOOP
(end subprogram)

Both of these algorithms are iterative algorithms because of their loop
structures. They aren't recursive because neither of the subprograms references
itself. However, the second algorithm can easily be converted into a recursive
algorithm.

SUBPROGRAM Factorial(IN: n)
IF (n ~ 1) THEN

ASSIGN Factorial = 1
ELSE

ASSIGN Factorial=n*Factorial(n - 1)
END
(end subDroaram)

498 • 10. Some Essential Programming Algorithms

Note that this algorithm is a direct implementation of the recursive defmition of
n!. Because the subprogram doesn't have any separate output value in the
parameter list, the implication is that it will be implemented as a Fortran function
in which the name of the function contains the output value.

4 Convert the algorithm into a program.

Just for comparison purposes, P-IO.8 contains Fortran implementations of
each of the pseudocode implementations. Of these, RECURSIVE INTEGER
FUNCTION Factorial is the one of most interest because it is the
implementation of the recursive algorithm.

P-IO.8 [FACTORAL. F90]

MODULE FactorialSubs
1-------------------------

CONTAINS
!------------------------------

INTEGER FUNCTION Factl{n)
IMPLICIT NONE
INTEGER, INTENT{IN) :: n
INTEGER i,factorial

factorial=l
IF (n .GT. 1) THEN

DO i=2,n
factorial=factorial*i

END DO
END IF
Factl=factorial
END FUNCTION FactI

1------------------------------
INTEGER FUNCTION Fact2{n)
IMPLICIT NONE
INTEGER, INTENT{IN) :: n
INTEGER factorial,temp

temp=n ! use temp to avoid violating INTENT{IN) on n
factorial=l
IF (temp> 1) THEN

DO WHILE (temp > 1)
factorial=factorial*temp
temp=temp-l

END DO
END IF
Fact2=factorial
END FUNCTION Fact2

1---

10.4 Recursive Algorithms • 499

RECURSIVE INTEGER FUNCTION Factorial(n) RESULT (n_Fact)
IMPLICIT NONE
INTEGER, INTENT(IN) :: n

IF (n <= 1) THEN
n_Fact=l

ELSE
n_Fact=n*Factorial(n-1)

END IF
END FUNCTION Factorial

!-----------------------------
END MODULE FactorialSubs

!=============================
PROGRAM n_Factorial

File name FACTORAL.F90
Use factorial function to demonstrate recursive algorithms.

USE FactorialSubs
IMPLICIT NONE
INTEGER n

PRINT *,' Give an integer: '
READ *,n
PRINT *,' Using a DO ... loop, , ,n,'! = ' ,Fact1(n)
PRINT *,' Using a WHILE ... loop, , ,n,'! = , ,Fact2(n)
PRINT *,' Using a recursive function, , ,n,'! = ' ,Factorial(n)
END

Running P-IO.8

Give an integer:
8
Using a DO ... loop, 8! = 40320
using a DO WHILE ... loop, 8 I 40320
Using a recursive function, 8 I ~ 40320

5 Verify the operation of the program.

Check the results with a calculator.

Problem Discussion
The recursive function Factorial differs from a direct translation of the

pseudocode because of some Fortran requirements. The RECURS lVE qualifier
kevword is reauired for recursive functions and suhroutines. Tn the CH~e of H

500 • 10. Some Essential Programming Algorithms

recursive function that calls itself directly, an additional variable name is required
to hold the result of the function evaluation. That is, this code is NOT allowed: 4

IF (n <= 1) THEN
Factoria1=1

ELSE
Factorial=n*Factorial(n-1)

The required extra variable name, which can be any convenient name, is defmed
in the RESULT clause in the heading of the function.

The recursive implementation works in the following way. Suppose n = 5.
When the function is flrst called from another program, the ELSE branch of the
IF. .. statement is executed. However, the code Factorial (n -1) is
interpreted as another call to the same function. As a result of that call, the local
value of n in the function becomes 4. This process continues until, fmally, n = 1.
Then the assignment n_Fact=1 can be carried out. However, the Fortran
environment "remembers" all the previous calls to Factorial in which the
requested calculations couldn't be carried out. First it is able to complete the
calculation n*Factorial (n -1)=2*1 when n = 2. Then it is able to complete
n*Factorial(n-1) = 3*2whenn = 3,4*6 = 24whenn = 2,and5*24when
n = 5. Only when the fmal calculation is complete is control returned to the
program that originally called the function.

There isn't really any compelling reason to use a recursive deflnition for
the factorial function. We have done so in this section only because the recursive
defmition of n! is so easy to understand and translate into Fortran. In fact,
recursive algorithms often require more computing resources and execute more
slowly than their iterative counterparts. It is also a fact that any algorithm that can
be written recursively can be written iteratively, and vice versa. However,
recursive algorithms are sometimes very simple to write relative to their iterative
equivalents. Consequently, speed and computing resources usually are not a
problem, and recursive algorithms are often preferred over iterative ones. In the
next section, we will discuss a sorting algorithm that is so easy to deflne
recursively that an interative version is rarely seen.

4rhis code is shown only because in some other languages that support recursion, it would
h l1nwp.t!

10.5 The Recursive Quicksort Algorithm • 501

10.5 The Recursive Quicksort Algorithm

1 Define the problem.

Recall that the sorting algorithms discussed earlier in this chapter were
both O(N2) algorithms. This means that sorting operations performed on large lists
can take a very long time. Find a sorting algorithm that is more efficient and write
a program that implements this algorithm.

2 Outline a solution.

This is not a problem you are expected to solve on your own. First
consider Table 10.2, which shows the "effort" required to sort a list containing
128 items and then to sort that list if it can be subdivided into two or more
sublists. The initial size of 128 is significant only because it can be evenly
subdivided down to size 1. The effort required to sort the original and subdivided
lists is an arbitrary measure of computer operations or elapsed time. If an O(N2)
algorithm is used to sort the various sub lists, this effort is proportional to ~ and,
for the purposes of this discussion, this value will simply be set equal to ~. On
modem pes, the actual time required to sort lists of a few hundred items is no
more than a second or so, even with O(N2) algorithms, but lists containing
thousands of items can take many seconds to sort. Whether this is of any practical
concern depends on the application.

Table 10.2. "Effort" to sort lists with an O(N2) algorithm, relative units

Number "Effort" Required
of Lists to Sort List(s)

1 1 0128 = 16,384

2 2 064 2 = 8,192

4 4 0322 = 4,096

8 8016 2 = 2,048

16 16082 = 1,024

32 32 042 = 512

64 64 022 = 256

128 128 012 = 128

502 • 10. Some Essential Programming Algorithms

Listing the time required to sort 128 lists of size 1, as given in Table 10.2,
might appear to be pointless because no sorting actually has to be done. However,
as we shall soon see, this limiting case isn't as irrelevant as it seems.

The message of Table 10.2 is that it should take only half as long to sort
two lists of size N/2 as it does to sort a list of length N, one quarter as long to
sort four lists of size N/4, and so forth. Is there some way to take advantage of
these savings? Suppose we arbitrarily divide a list of length N into two lists of
length N/2; this is an operation that can be done for "free." Can we save time---or
operations-simply by sorting these two lists? No, because then the two
individually sorted lists have to be merged again and that operation carries its own
computational cost that offsets the savings achieved by sorting two shorter lists.

However, suppose we could subdivide a list into two
parts so that one sublist, or partition, contains "little" values
and the other contains "big" values. To do this, select one value
in the original list, called the pivot value, and use this value to

partition
pivot value

subdivide the list into two partitions, one that contains values less than or equal
to the pivot value and the other that contains values greater than or equal to the
pivot value:

<= pivot value I I >= pivot value

Although the "less than or equal to" and "greater than or equal to" phrases appear
to create overlapping lists, this definition is required to account for the special
situation where all values in the list are the same.

If we now sort these two partitions, the result is equivalent to sorting the
entire list. The algorithm can be stated in three steps.

(1) Divide a list into two partitions, one containing "little" values and the other
containing "big" values.
(2) Sort the lefthand partition if it contains more than one value.
(3) Sort the righthand partition if it contains more than one value.

If we can construct the partitions with no computational cost, it's obvious that
even if we use an O(N2) sorting algorithm, we have devised a more efficient
approach to sorting a list. Of course, the partitioning can't be done "for free."
However, we don't actually have to worry about selecting a sorting algorithm. All
we have to do is continue to subdivide these partitions. Eventually, every partition
will contain no more than one value. When this occurs, the entire list will be
sorted. In effect, the apparently trivial final entry in Table 10.2, sorting 128 lists
of size 1, will become a reality. Essentially, we have traded "partitioning effort"
for "sorting effort." As it turns out, this will be an excellent trade!

10.5 The Recursive Quicksort Algorithm • 503

3 Design an algorithm.

An approach that involves repetitively performing the same operations until
a terminating condition is reached is most naturally expressed as a recursive
algorithm:

SUBPROGRAM Quicksort(INIOUT: array; IN: lower,upper)
DEFINE left,right
CALL Partition(array, lower, upper,left,right)
IF first < right THEN CALL Quicksort(array,lower,right)
IF left < last THEN CALL Quicksort(array,left,upper)

This is called a Quicksort algorithm. The values lower and upper are the
boundaries of the original list, or during recursive calls, the subset of the list
currently being sorted. In the original call to the subprogram, lower and upper
would typically be 1 and n for a list containing n values. The values left and right
are the lower and upper boundaries of the "righthand" and "lefthand" partitions
returned from the Partition subprogram:

(original list)

lower upper

(partitioned list)

lower right left upper

~--~I ~I ______ ~
Of course the Quicksort algorithm doesn't sort a list "for free" because, as

noted above, the partitioning itself requires computational resources. The fIrst step
is to select the pivot value. Table 10.2 implies that the best results will be
achieved if each partitioning operation divides a list into equal halves (plus or
minus one, depending on whether the list contains an odd or even number of
values). Ideally, then, the pivot value should be the median value in the list.
However, the median can't be calculated without sorting the list fIrst!

If the list is originally "almost" in order, or in reverse order, a good
approximation to the median is the element in the middle of the list. If the list is
originally in random order, then there is no "free" way to find the median and, in
fact, no way to pick a pivot value that is better than any other value without

504 • 10. Some Essential Programming Algorithms

perfonning time-consuming operations on the list. Thus, an element in the middle
of the list is still as reasonable a choice as any other. The middle element between
two specified limits lower and upper is simply the element (lower + uppet')/2
(assuming integer division).

To illustrate the partitioning process, consider this list of seven random
integers:

110 -1 14 9 3 11 131

The pivot value 9, element (1 + 7)/2 = 4, is printed in bold type. Our task is to
create two partitions, one that contains elements less than or equal to 9 and the
other that contains values no less than 9. How can we produce these two partitions
"in place," using the memory locations occupied by the original list?

The answer to this question may not be immediately obvious. Start at the
left end of the list and move a "list pointer," which will become an array index
in the Fortran implementation, to the right as long as the element is less than 9.
Save its location. Now start at the right end of the list and move to the left as long
as 9 is less than the element. Save its location. For this example, the left pointer
doesn't move at all because the fIrst element (10) doesn't belong in the lower
partition. Moving down from the right, the fIrst element that is out of place is 3.

L R
J, J,

110 -1 14 9 3 11 131

Now exchange these two elements. Increment the left pointer by one position and
decrement the right pointer by one position.

L R
J, J,

13 -1 14 9 10 11 131

Move the left pointer to the right as long as the element is less than 9 and move
the right pointer to the left as long as 9 is less than the element. Save the
locations. For this example, the right pointer doesn't move at all.

L R
J, J,

13 -1 14 9 10 11 131

10.5 The Recursive Quicksort Algorithm • 505

Exchange the elements and advance the pointers:

R L
J, J,

13 -1 9 14 10 11 131

At this point, the right pointer is less than the left pointer, and this is a terminating
condition that defmes the fIrst two partitions:

Note that the two partitions haven't been sorted because that's not the purpose of
creating the partitions. All that has happ,ened is that they are divided into "little"
and "big" partitions. Continue to apply this algorithm on the partitions. In each
case, the pivot value is printed in bold type.

t 3 -1 91 I 10 14 11 13 1

B B 110 13 111 B
B~~B§]B
B~~BB§]B

The translation of this process into a complete algorithm requires a great
deal of care to ensure that it will produce the appropriate partitions regardless of
the size or contents of the sublist being partitioned. There are several problems
that can occur when the left and right pointers meet "in the middle" of the list,
and it is very easy to come up with an algorithm that looks reasonable, but won't
work under all conditions. Here is the complete pseudocode for a partitioning
algorithm:

SUBPROGRAM Partition (IN: array, lower, upper; OUT: left, right)
DEFINE (pivot)
ASSIGN left = lower

right = upper
pivot = a[(lower + upper)/2] (use integer division)

LOOP (until right ~ left)
(Move up from the left as long as the element is less than pivot.)

506 • 10. Some Essential Programming Algorithms

LOOP (while a(left) < pivot)
INCREMENT left = left + 1

END LOOP
(Move down from the right as long as pivot is less than the element.)

LOOP (while pivot < a(right))
INCREMENT right = right - 1

END LOOP
(Swap if required and increment/decrement pOinters.)

IF (left <= right) THEN
IF (left :I: right) THEN CALL Swap(a(left),a(right))
INCREMENT left = left + 1

(end IF ...)
END LOOP

right = right - 1

The partitioning part of the Quicksort algorithm is a binary process because
it repeatedly divides the list into two parts, and therefore is an O(lOg2N) algorithm
for the same reason that the binary search algorithm is an O(lOg2N) algorithm. The
operations required to form each partition are O(N) because they involve a single
rather than a nested loop. Therefore, the Quicksort algorithm is an O(Nlog2N)
algorithm. This is a major improvement over O(N2) algorithms. Consequently,
Quicksort is the favored algorithm for general-purpose sorting tasks.

4 Convert the algorithm into a program.

The partitioning and Quicksort subprograms can now be combined in a
complete program. P-1O.9 includes MODULEs plus a driver program that allows
testing with small arrays typed at the keyboard. Because Quicksort is the best
general-purpose sorting algorithm, it is important that it be as portable as possible.
Consequently, the data type of the list to be sorted is defined in a MODULE so
multiple code changes won't be required to sort different kinds of lists. The
QuickSort and Partition subroutines are also included in the SORT. F90
driver program discussed earlier in the chapter.

10.5 The Recursive Quicksort Algorithm • 507

P-IO.9 [QUIKSORT. F90]

MODULE Quick_Sort

INTEGER a(100) ,pivot, temp
CONTAINS

I-------------------------------------~-----------
SUBROUTINE Partition(lower,upper,left,right)

IMPLICIT NONE
INTEGER,INTENT(IN) :: lower,upper
INTEGER, INTENT (INOUT) :: left,right

left=lower \ Start at bottom and top of list.
right=upper
pivot=a«lower+upper)/2)

1 Begin post-test loop.
10 CONTINUE

DO WHILE (a(left)<pivot)
left=left+1

END DO
DO WHILE (pivot<a(right»

right=right-1
END DO
IF (left<=right) THEN

IF (left/=right) THEN lexchange elements
temp=a (left)
a (left)=a (right)
a (right) =temp

END IF
left=left+1
right=right-1

END IF
IF (right>left) GO TO 10

1 End post-test loop.
END SUBROUTINE Partition

1--
RECURSIVE SUBROUTINE QuickSort(lower,upper)

IMPLICIT NONE
INTEGER left,right
INTEGER, INTENT(IN) :: lower,upper

CALL Partition(lower,upper,left,right)
IF (lower<right) CALL QuickSort(lower,right)
IF (left<upper) CALL QuickSort(left,upper)

END SUBROUTINE QuickSort
\-----------------------------

END MODULE Quick_Sort
1=============================

508 • 10. Some Essential Programming Algorithms

PROGRAM QuikSort

Demonstrate the recursive QuickSort algorithm.

USE Quick_Sort, ONLY : x => a, QuickSort
IMPLICIT NONE
INTEGER i,n

PRINT *,' How many values to sort «=100)? '
READ *,n
PRINT*, 'Type ',n,' integers ... '
READ*,(x(i),i=l,n)
PRINT*,(x(i),i=l,n)

CALL QuickSort(l,n)
PRINT*,(x(i),i=l,n)
END

5 Verify the operation of the program.

It is necessary to test this program rigorously under several different
conditions. The recursive sorting subroutine is straightforward. However, the
partitioning subroutine must be tested to make sure it creates proper partitions for

a. lists already in ascending order
b. lists originally in descending order
c. lists for which all the values are the same
d. small lists containing two or three values

It's easy to observe the results of using the Quicksort program as
implemented in P-1O.9; either the resulting list is sorted or it's not. However, it
is difficult to guarantee that the program will work under all circumstances.

Problem Discussion
If a list is consistently subdivided into partitions that aren't of roughly

equal size, Quicksort can deteriorate into an O(~) algorithm as a result of the
work required to partition long lists. As noted above, the optimum dividing point
for any list is the median .value in the list. However, the median isn't available
until the list is sorted, and as a practical matter, the middle value in the list is
usually a good compromise.

As a programming detail, note that the Swap subprogram in the algorithm
design, for exchanging two array elements, is implemented in the code directly
within SUBROUTINE Partition. (See the three lines printed in bold italics.)

10.6 Applications • 509

This is done to minimize the number of variables that have to be redefmed if the
data type of the array being sorted changes.

Even though Quicksort could be implemented as an iterative algorithm (as
all recursive algorithms can), this would be a lot more trouble than it's worth.
Consequently, even though Quicksort is generally regarded as the best all-purpose
sorting algorithm, you will rarely fmd it discussed in texts devoted to earlier
versions of Fortran. Why? Because, as noted earlier, earlier versions of Fortran
didn't support recursive functions and subroutines as part of the language standard.

10.6 Applications

10.6.1 Keeping a List o/Words in Alphabetical Order

1 Define the problem.

Consider a file containing a list of words sorted in alphabetical order.
Assuming that the list is short enough to be stored in an array, write a program
that will allow you to add and delete words from the list. Whenever you add a
word, the list should be maintained in alphabetical order.

2 Outline a solution.

Deleting an element from an array is straightforward. The problem of
maintaining an array in alphabetical order when a new item is added can be
solved with a version of the Insertion Sort discussed earlier in this chapter.
Basically, all that's required is to add the new word to the end of the list and then
determine where it belongs in the list. Be sure to take into account the trivial
situation where the new word stays at the end of the list.

The program should be organized as a menu-driven main program that
calls subprograms to add and delete words from the list.

3 Design an algorithm.

We include here the design for subprograms to determine the position of
a new value in an existin2 array. to add a new value, and to delete a value.

510 • 10. Some Essential Programming Algorithms

SUBPROGRAM GetPosition(lN: A size; OUT: where)
IF (A(size) ~ A(1)) THEN

where = 1
ELSE

ASSIGN where = size - 1
LOOP (while A(where) > A(size))

INCREMENT where = where - 1
END LOOP
INCREMENT where = where + 1

(end IF ...)
(end GetPosition)

SUBPROGRAM Add(lNIOUT: A, size; IN: new_value)
INCREMENT size = size + 1
ASSIGN A(size) = new_value
IF (A(size) < A(size-1)) THEN

CALL GetPosition(A,size, where)
LOOP (for i = size down to where+ 1)

ASSIGN A(i) = A(i-1)
END LOOP
ASSIGN A(where) = new_value

(end IF ...)
(end Add)

SUBPROGRAM Oelete(lNIOUT: A, size; IN: where)
LOOP (for i = where to size-1)

ASSIGN A(i) = A(i+1)
END LOOP
INCREMENT size = size - 1
(end Delete)

4 Convert the algorithm into a program.

In contrast to the usual practice in this text, this program doesn't
completely solve the stated problem because it is only a demonstration program
that operates on numbers typed at the keyboard. Its purpose is to test the required
subroutines for solving the original problem. Conversion of this program into the
intended application is left as an end-of-chapter exercise.

P-lO.lO [INSERT2. F90]

MODULE DataDef
IMPLICIT NONE
INTEGER size,where,max_size
REAL a(22) ,value
PARAMETER (max_size=22)

END MODULE DataDef

MODULE InsertSubs
CONTAINS

SUBROUTINE GetPosition
USE DataDef, ONLY: a,size,where
IMPLICIT NONE

IF (a(size) .LE. a(l» THEN
where=l

ELSE
where=size-l
DO WHILE (a(where) .GT. a(size»

where=where-l
END DO
where=where+l

END IF

10.6 Applications • 511

PRINT*,' Put', a(size),' in position' ,where
END SUBROUTINE GetPosition

1----------------------------------
SUBROUTINE Add

Inserts a value in an array at a specified location.

USE DataDef, ONLY: a,size,value,where
IMPLICIT NONE

size=size+l
a(size)=value
IF (a(size) .LT. a(size-l» THEN

CALL GetPosition
a(where+l:size)=a(where:size-l)
a (where)=value

ENDIF

END SUBROUTINE Add
1--------------------------

SUBROUTINE Remove

Removes an element at specified location.

USE DataDef, ONLY: a,size,where
IMPLICIT NONE

a (where:size-l)=a(where+l:size)
size=size-l

END SUBROUTINE Remove

END MODULE InsertSubs
1===========================

512 • 10. Some Essential Programming Algorithms

PROGRAM Insert

MS-DOS file name INSERT2.F90.
Demonstrate an insertion algorithm that keeps a list sorted.

USE DataDef
USE InsertSubs
IMPLICIT NONE
INTEGER i
CHARACTER choice

Create an array of integers in ascending order.
size=20
DO i=l,size

a(i)=2*i
END DO
CALL PrintList
choice=' ,

DO WHILE (choice .NE. 'q')
PRINT*, '(a)dd or (r)emove value, or (q)uit?'
READ*,choice
SELECT CASE (choice)
CASE ('a')

IF (size .LT. max_size) THEN
PRINT*,' Give a number to add to this list:'
READ*,value
CALL Add
CALL PrintList

ELSE
PRINT*, "Can't add a number to this list."

END IF
CASE (' r')

PRINT*,' Give position of a number to remove from list'&
" between 1 and ',size

READ * ,where
IF «where .GE. 1) .and. (where .LE. size» THEN

CALL Remove
CALL PrintList

ELSE
PRINT*, 'Position is out of range.'

END IF
CASE ('q')
CASE DEFAULT

PRINT*,'INPUT ERROR - THIS CHOICE NOT AVAILABLE'
END SELECT

END DO

CONTAINS internal subroutine
SUBROUTINE PrintList

IMPLICIT NONE
INTEGER j
DO j=l,size

WRITE(*,1000,advance='no')a(j)
END DO
PRINT *

1000 FORMAT(f5.1)
END SUBROUTINE PrintList

10.6 Applications • 513

Running P-lO.lO

2.0 4.0 6.0 8.0 10.0 12.0 14 . 0 16.0 18.0 20.0 22.0 24.0 26 . 0
28.0 30.0 32.0 34.0 36.0 38.0 40.0

(a)dd or (r)emove value, or (q)uit?
a

Give a number to add to this list:
13

Put 13.000000 in position 7
2.0 4.0 6.0 8.0 10.0 12.0 13.0 14.0 16.0 18.0 20 . 0 22.0 24 .0

26.0 28.0 30.0 32.0 34.0 36.0 38.0 40.0
(a)dd or (r)emove value, or (q)uit?

r
Give position of a number to remove from this list between

1 and 21
5

2.0 4.0 6.0 8.0 12.0 13.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0
28.0 30.0 32.0 34.0 36.0 38.0 40.0

(a)dd or (r)emove value, or (q)uit?
a

Give a number to add to this list:
41

2.0 4.0 6.0 8.0 12.0 13.0 14.0 16.0 18.0 20.0 22.0 24.0 26. 0
28.0 30.0 32.0 34.0 36.0 38.0 40.0 41.0

(a)dd or (r)emove value, or (q)uit?
q

5 Verify the operation of the program.

Test P-l 0.1 0 by adding and deleting elements at each end and at the
middle of the list.

Problem Discussion
Subroutines Add and Remove in P-l 0.1 0 use some "shorthand" Fortran 90

array manipulation techniques to reassign elements of the array. The relevant
statements, which allow assignments to be made to all or part of an array without
writing explicit loops, are printed in bold italics. Array manipulation functions will
be discussed in more detail in Chapter 12.

514 • 10. Some Essential Programming Algorithms

10.6.2 Evaluating Legendre Polynomials

1 Define the problem.

A special set of functions called Legendre polynomials are sometimes
required in science and engineering applications. Table 10.3 gives the Legendre
polynomials Pn(x) for 0 ~ n ~ 7.

Table 10.3. The fIrst eight Legendre polynomials

n Pn(x)

0 1

1 x

2 (3x2 - 1)12

3 (5x3 - 3x)/2

4 (35x4 - 30x2 + 3)/8

5 (63x5 - 70x3 + 15x)/8

6 (231x6 - 315x4 + 105x2 - 5)/16

7 (429x7 - 693x5 + 315x3 - 35x)/16

Legendre polynomials of any order n>2 can be generated with a recursion
relation:

Write a recursive function to evaluate the Legendre polynomial for any value of
n ~mcl y WhP.TP. n > 0

10.6 Applications • 515

2 Outline a solution.

The solution involves implementing the recursive relationship and testing
it with a driver program.

3 Design an algorithm.

SUBPROGRAM Legendre(IN: n and x)
IF n = 0 THEN ASSIGN Legendre(O,x) = 1
ELSE IF n = 1 THEN ASSIGN Legendre(1,x) = x
ELSE ASSIGN Legendre(n,x) = ... (see problem statement for

recursive definition)

4 Convert the algorithm into a program.

P-lO.ll includes hard-coded evaluations for the ftrst eight Legendre
polynomials, to help verify correct operation of the function.

P-lO.ll [LEGENDRE. F90]

MODULE Poly

CONTAINS

RECURSIVE REAL FUNCTION Legendre(n,x) RESULT(LegendrePoly)
IMPLICIT NONE
INTEGER, INTENT(IN) n
REAL, INTENT(IN) :: x

IF (n==O) THEN
LegendrePoly=l.

ELSE IF (n==l) THEN
LegendrePoly=x

ELSE
LegendrePoly=(2.*REAL(n)-1.)/REAL(n)*x*Legendre(n-l,x)- &

(REAL(n)-1.)/REAL(n)*Legendre(n-2,x)
END IF
END FUNCTION Legendre

1------------------------------
END MODULE Poly

1================================

516 • 10. Some Essential Programming Algorithms

PROGRAM LegendreTest

MS-DOS file LEGENDRE.F90
Calculate Legendre polynomials using a recursive relationship.

USE Poly, ONLY : Legendre
IMPLICIT NONE
INTEGER i
REAL x
x=.S
PRINT *, 'n=0-7 from recursive function, x=O.S'
DO i=0,7

PRINT * , Legendre(i,x)
END DO

Check against the first 8 functions (from tables)
PRINT *, 'n=0-7 from tabulated polynomials, x=O . S'
PRINT *,0.
PRINT *,1.
PRINT *, (3 . *x**2-1 .)/2.
PRINT *,(S . *x**3-3 . *x)/2 .
PRINT *, (3S . *x**4: 30*x**2+3.)/8.
PRINT *, (63.*x**S-70.*x**3+1S.*x)/8.
PRINT *, (231 . *x**6-31S . *x**4+10S . *x**2-S .)/16.
PRINT *,(429.*x**7-693.*x**S+31S.*x**3-3S . *x)/16.

END

Running P-IO.11

0=0-7 from ~cursive algorithm, x =O.S
1.0000000
O. SOOOOOO

-0.12S0000
-0.4375000
-0.2890625
8.9843750E-02
0.3232422
0.2231445

n-0.7 from tabulated polynomials, x=0.5
1.0000000
0.5000000

-0.1250000
-0.4375000
-0.2890625
8.9843750E-02
0.3232422
0.2231445

10.7 Debugging Your Programs • 517

5 Verify the operation of the program.

Compare program output with polynomials evaluated using tabulated
values. This comparison has been included in P-lO.ll, but the code still should
be checked against tabulated listings of the functions.

10.7 Debugging Your Programs

10.7.1 Programming Style

The ideal program always takes advantage of previously written code whenever
possible. Even if existing code sometimes needs minor revisions, it is usually
preferable to make these revisions than to start "from scratch." This policy helps
to minimize errors in algorithms that originally may have required a great deal of
thought and careful coding. Whenever possible, existing algorithms should be
incorporated into your program through MODULE structures.

10.7.2 Problems With Programs

As indicated at the beginning of this chapter, it's possible to use the
subroutines and functions discussed in this chapter even if you don't completely
understand them. However, you do need to test each of them thoroughly in the
context of your own application. The MODULE and USE statements make it
relatively easy to incorporate these subprograms into your own programs.
Especially with the searching and sorting subroutines, changes in the types of data
you are using may cause problems. However, these are easy to spot because data
type inconsistencies will cause syntax errors. Make sure you understand the data
type and purpose of any parameter in a call to a subroutine or function.

As always, it's a good idea to apply any program you write to familiar
data. If your program needs to search for something in a list, ask it to search for
a value you know is there. Does it find it? Ask your program to search for a value
you know isn't there. Does it respond in a useful way? If you're sorting a list, try
your program initially on several short lists in various orders and check the results
carefully.

If you've written a FUNCTION, recursive or otherwise, to evaluate a
mathematical function, be sure to test your program by calculating values that can
be checked against at least one other source, such as a published tabulation of
values for the function.

By the time you reach this chapter, you should be reasonably proficient at
finding syntax and obvious logical errors in programs. Do not be lulled into

518 • 10. Some Essential Programming Algorithms

complacency by the ease with which you can now write programs that don't
crash! No matter how proficient a programmer you become, you will always need
to be concerned about the performance of your programs. This attitude is
especially important when you write subprograms that will be reused in other
programs, often without additional thought about their performance. Your best
safeguard is a permanently suspicious attitude toward any answer provided by a
computer program.

10.8 Exercises

10.8.1 Self-Testing Exercises

Exercise 1. Describe in your own words the two most important concepts you
have learned from this chapter.

Exercise 2. Describe in your own words how you could use in your own
programs a problem-solving skill demonstrated in a program described in this
chapter.

Exercise 3. Show a "worst case" binary search scenario for guessing an integer
value between 1 and 130.

Exercise 4. Here are two examples of an array of integers followed by the
modifications performed on the contents after several "trips" through the outer
loop of a sorting algorithm. Which algorithm has been used in each case?
Complete the implied steps until the array is sorted.
(a) (b)
13.3 7.9 2.2 33.0 0.9 4.5 18.6 13.3 7.9 2.2 33.0 0.9 4.5 18.6
0.9 7.9 2.2 33.0 13.3 4.5 18.6 0.9 7.9 2.2 33.0 13.3 4.5 18.6
0.9 2.2 7.9 33.0 13.3 4.5 18.6 0.9 2.2 7.9 33.0 13.3 4.5 18.6
0.9 2.2 4.5 33.0 13.3 7.9 18.6 0.9 2.2 7.9 33.0 13.3 4.5 18.6
(and so on) 0.9 2.2 7.9 13.3 33.0 4.5 18.6

(and so on)

Exercise S. Using the original array from the previous exercise, show how a
Quicksort algorithm would partition the array to produce an array that is sorted
in descendinR order.

10.8 Exercises • 519

10.8.2 Basic Programming Exercises

Exercise 6. Modify P-IO.l so that it returns a LOGICAL value of . true. or
. false. depending on whether the target value is found.

Exercise 7. The searching algorithms implemented in this chapter are case
sensitive when they look for words. That is, if the word "Zebra" is in the list, the
algorithm will not find the word "zebra." Modify the linear and binary searching
algorithms so they will perform a case-insensitive search for words in a list.

Exercise 8. Here is some pseudocode for the "Bubble Sort" algorithm, a very
inefficient O(N2) algorithm. Write a subroutine that applies this algorithm to n
elements of an array a. This is just a programming exercise. The Bubble Sort
algorithm is inferior to the others described in this chapter, and there is no reason
actually to use it.

LOOP (j = n down to 2)
LOOP (i = 2 to j)

IF a(i) < a(i-1) THEN CALL Swap(a(i),a(i-1))
END LOOP

END LOOP

Exercise 9. Write a driver program to test the Selection Sort and Insertion Sort
subroutines in P-1O.5 and P-IO.6.

Exercise 10. Rewrite the three sorting algorithms and their corresponding
subroutines in this chapter so that they sort a list in descending rather than
ascending order.

Extra Credit
Modify one or more of the sorting subprograms so that a "flag" in the

parameter list allows the user to indicate whether she wants the list sorted in
ascending or descending order.

Exercise 11. Generate a list of words and apply the three sorting algorithms in
this chapter to the list. As the sorting subroutines are currently written, the result
of sorting words will be case-sensitive. That is, the word "Zebra" will come
before the word "aardvark" because uppercase "Z" comes before lowercase "a"
in the ASCII collating sequence. When you sort your list of words, do you want
the result to be case-insensitive or case-sensitive? Make sure your program
implements your choice correctly.

520 • 10. Some Essential Programming Algorithms

Extra Credit
Modify one or more of the sorting subroutines so you can pass a "flag" in

the parameter list to tell the subprogram when you're sorting a list of words and
whether you want the result to be case-sensitive or case-insensitive.

Exercise 12. Referring to the application in Section 10.6.1, keeping a list of words
in sorted order, modify P-1O.I0 so that it completes this application. Create your
own list of a dozen or so words in alphabetical order and then add and delete
several words from that list. Remember that the algorithm is case-sensitive unless
you write code to convert words to all uppercase or all lowercase before you
compare them. .

Exercise 13. Based on material from other courses you are taking, state a
computational problem that requires one or more of the subprograms described in
this chapter. Write a complete program to solve the problem, using one or more
of the subroutines or functions given in this chapter. Describe any modifications
you make to whatever subprograms you use.

10.8.3 Programming Applications

Exercise 14. A database of drugs contains the name of the drug, the recommended
maximum daily dose, and the recommended maximum cumulative dose. In some
cases, both the daily and cumulative maximums are assumed to be proportional
to body weight and are given in the database for a 150-pound individual of either
gender. In some cases, drugs may be approved for only men or only women. The
maximum dose for a drug that is not approved is given as O.

Proposed treatments for patients are also available in a database. The
information includes the proposed drug, the gender and weight of the patient, the
proposed daily dose, and the number of days the treatment will last.

Write a program that will read and store drug information in an array and
will then read and process a file containing information about proposed treatments.
Search through the drug file for the drug name given in a proposed treatment. If
the proposed treatment exceeds either the maximum daily or the cumulative dose,
print an appropriate message. Assume that the daily dose remains constant
throughout the treatment. Account for the possibility that one or more proposed
treatments will include drugs that are not yet entered into the drug database.5

Sample data files, which can be downloaded from the World Wide Web
site mentioned in Section i.5 of the Preface, include DRUGBASE. DAT (the drug

5This problem was inspired by a widely reported incident in 1995 in which a breast cancer
patient at a major cancer treatment center died because chemotherapy drugs were administered at
several times the approved dose. I hoDe the dru~ names I have made up don't actually exist!

10.8 Exercises • 521

database) and DRUGBASE. IN (the treatment database). You should add records
to DRUGBASE. IN to ensure that all program branches are tested. (That is not
currently the case.) [DRUGBASE. F9 0]

DRUGBASE.DAT

Maximum dose: P = weight-dependent, with value for 150 lb
Drug Name Daily (M) Cum (M) Daily (F) Cum (F)

abracap P2.3 100 3.0
betalit 0.5 10 0.5
deproved PO.01 0.05 0
ethicoo PO 0 500
gonagain 1.5 15 1.5
heptez 0.001 0.05 0.0005

DRUGBASE.IN

drug wt. daily, mg days

abracap
gonagain
newdrug

M 300
F 120
F 135

900
.1

100

10
200

20

100
100

0
5000

10
0.025

Exercise 15. In Section 10.2.3, it was suggested that a binary search could be
combined with a linear search to fmd all the occurrences of a specified value in
the list. Using a sorted list that contains some duplicate values (the data type of
items in the list can be whatever you like), write a subroutine that uses a binary
search to fmd one occurrence of a value and then searches backward and forward
in the list to fmd all occurrences of that value. [BIN_SRCH. F90]

Exercise 16. Especially if a large sorted list contains many duplicate values, it
may make sense to construct an index to values in the array. An index array will
hold this kind of information in a TYPE structure:

value first location number of values
17 1 10
19 11 41
22 52 13
33 65 17
(and so on)

For the value 19, for example, the index array indicates that the frrst 19 is in
element 11 and that there are 41 values of 19 altogether.

Create a data file based on these and a few additional values. Then write
a program that generates an index array and uses the array to search for and
display all occurrences of a specified value. When you test your program, be sure
to include a test for a value that doesn't exist in the array. The assumption is that

522 • 10. Some Essential Programming Algorithms

the index array is small compared to the array being searched. If so, you could
justify using a linear search of the index array. However, as long as the indexed
values (the left-hand column in the example) are sorted, you can also apply a
binary search to this array. [INDEX_TO. F90]

Exercise 17. Under special conditions, it's possible to devise an O(N) sorting
algorithm. Suppose you wish to sort a large list of lowercase letters initially in
random order and stored in an array A. There are only 26 possible values, a
number that is assumed to be much smaller than the number of letters to be
sorted. A Counting Sort takes advantage of this situation. Here is an outline of the
algorithm.

1. Defme an index array with 26 elements, one for each letter of the alphabet.

2. Read through the array of letters A. Convert each letter to an integer in the
range 1-26 and increment the corresponding element of the index array by one.
When you're done, the index array will contain the number of a's, b's, and so on.

3. Read through the index array from positions 2-26 and set each element equal
to itself plus the previous element. When you're done, the index array will contain
the last position occupied by each letter in a new sorted array. For example, if the
original list contains 23 a's, 33 b's, and 41 c's, the fIrst three elements of the
index array will be 23, 56, and 97.

4. Read through the original array of letters. Convert each letter to an integer in
the range 1-26 and use this value to access the corresponding element in the index
array. Put the letter into its indicated position in the B array, which will hold the
sorted data. Then decrement the value in the index array by 1. Consider the
example in step 3. Here's what will happen in this loop:

Letter in A Letter in B 1st 3 Components of Index Array
23 56 97 (original contents)

a B(23)=a 22 56 97
a B(22)=a 21 56 97
b B(56)=b 21 55 97
b B(55)=b 21 54 97
b B(54)=b 21 53 97
c B(97)=c 21 53 96

The fIrst letter in the A array is an "a." It goes in element 23 of the B array. The
fIrst element in the index array is decremented by 1, from 23 to 22. The next
letter in A is also an "a." It goes in element 22 of the B array, and the fIrst
element in the index array is decremented again. The third letter in the A array is
a "b." It 20es in element 56 of the B array, and the second element of the index

10.8 Exercises • 523

array is decremented by 1. This continues until all the letters have been placed in
the B array.

5. Print the list of sorted letters.

Hint: use this statement function to convert a lowercase letter to an integer in the
range 1-26:

Letterlndex(letter)=IACHAR(letter)-IACHAR('a')+l

Note that this algorithm doesn't contain any nested loops; that's why it's
an O(N) algorithm. Also, it should be clear that the second array B isn't actually
required to sort letters because a sorted array of letters can easily be created just
by overwriting the original A array with the appropriate number of a's, b's, and
so on. However, the algorithm has been written this way, with two arrays, in order
to make possible the Extra Credit part of this problem, in which all the original
values in the A array must be saved.

Extra Credit
Create an array of words in random order. (The "words" could just be

random combinations of letters.) Use a Counting Sort to put all words starting
with "a" together, all words starting with "b" together, and so forth. You can use
the index array to determine the first and last positions for words beginning with
"a," "b," and so on. Then use Quicksort to sort words beginning with the same
letter. This is an efficient way to sort a large list of words. [KNT_SORT. F90]

Exercise 18. Write a complete program that uses a recursive function to calculate
the nth value in the Fibonacci series. The Fibonacci numbers are defined like this
for positive values of n:

F(n)= 1, n=l or n=2
F(n)=F(n-1)+F(n-2), n>2

This gives values 1, 1, 2, 3, 5, 8, 13, Some botanists have suggested that the
growth pattern of leaves around the stem of a plant or the pattern of seeds in a
sunflower head can be described by the Fibonacci series. Also, the growth in
rabbit populations, for example, has been modeled using the Fibonacci series.

Extra Credit
The irrational number (IS -1)/2::=::: 0.6180339 is the so-called "golden

ratio" that plays a role in attempts to ascribe a mathematical defmition to the
concept of "beauty" in nature and architecture. The sides of a standard 31 x5"
index card have annroximatelv this ratio (0.6), The !!olden ratio annears often in

524 • 10. Some Essential Programming Algorithms

the proportions of classical Greek architecture, and speculation about the role of
this ratio in nature and its relationship to the Fibonacci series was popular in the
nineteenth century.

1. Verify that the golden ratio is the result of dividing a straight line into
two segments such that the ratio of the longer segment to the total length of the
line is identical to the ratio of the shorter segment to the longer segment:
BCI AB = ABI AC. (This is an algebra program, not a programming problem!)

A B c
____ 0 __ 0

2. Use the function you have written to verify that the sequence formed by
the ratio of successive Fibonacci numbers, 111, 112, 2/3, 3/5, 5/8, 8/13,
approaches the golden ratio for large n. [FIBONACI . F90]

Exercise 19. The binary search algorithm lends itself to a recursive
implementation. Create a modification of P-1O.3 that performs a recursive binary
search. From the point of view of the calling (sub)program, this function should
perform identically to P-I0.3. [BIN_RCUR.F90]

Exercise 20. Bessel functions are sometimes encountered in advanced engineering
and science mathematics (for example, to describe electric charge configurations
in cylindrical coordinates). Write a function to calculate what are referred to as
"ordinary Bessel functions of the first kind" for orders 0 and 1. A definition for
these functions is

(U2(u 2(u 2(J (x) "'" 1 -- 1 -- 1 -- 1 -
o I-I 2-2 3-3 - nU_: ll)···)

J1(x) "'" U(l - ~(1 -~(1 -~(1 -... - u 2
))) .••)

1-2 2-3 3-4 n-(n+l)

where u = xl2. Figure 10.1 illustrates these functions.

:g
o -,

-0.60 2 3 4 5

X

10.8 Exercises • 525

6 7 8 9 10

Figure 10.1. Bessel functions of order 0 and 1

The most straightforward way to evaluate the nested multiplications in the
definition of the Bessel functions is to use a recursive algorithm. Use these two
functions:

REAL FUNCTION BesselFunction(order,x)

RECURSIVE REAL FUNCTION BesselCalc(order,u,k,n)

The fIrst of these functions is called from the (sub)program that needs the Bessel
function. The parameter list includes only the order (0 or 1) and the value of x at
which the function is to be evaluated. The fIrst function calls the second, which
recursively evaluates n terms inside the large brackets in the definition and then
multiplies the result by 1 or u (Uonle'). The larger the value of n, the more terms
are evaluated.

The second of these two functions, the recursive one, does the
"bookkeeping" for the recursive calls, which is of no interest to the calling
(sub)program. The argument needed directly for the calculation is u rather than x,
and the parameter k keeps track of which of the n terms is currently being
evaluated. The fIrst call to BesselCalc from inside BesselFunction is with
k = 1. The terminating branch of the recursive function evaluates the innermost
term when k = n; for example, 1 - u2/(nen) for Jo(x).

526 • 10. Some Essential Programming Algorithms

Note: it is important to verify the limitations on the numerical accuracy of
this method of evaluating Bessel functions. It should be clear from examining the
definitions for these functions that, for fixed n, they will become more inaccurate
as x increases. With increased precision for REAL numbers (in excess of 12
significant digits) and 100 terms in the series expansion, it is possible to obtain
values accurate to about six significant digits for values of x up to no more than
10. For a discussion of how to increase the precision of REAL numbers, see
Chapter 12. [BESSEL. F90]

Extra credit
Higher-order Bessel functions of the first kind may be obtained with the

recursive relation

Write another recursive function to return the value of Bessel functions of the first
kind for a specified order. Be sure to investigate the computational limitations on
this method.

Exercise 21. Maze traversal is a common recursive algorithm discussed in
programming courses. Although this is "just a game," it is a very useful problem
because it requires a different way of thinking about algorithms and problem
solving, and it illustrates the power of recursive algorithms to solve certain kinds
of computing problems.

Suppose a maze is represented as a two-dimensional array of "walls" and
"corridors." Enter the maze at the upper-left ("northwest") comer. The only exit
from the maze is in the lower-right ("southeast") comer.

An algorithm that will find its way out from any point in the maze
M(row,col), assuming that such a path exists, can be expressed like this: 6

IF (M(row,col) is the southeast corner) THEN
done

ELSE
Mark M(row,col) as trial step along the path out of the maze.
Now try all four directions.
IF M(row,col) is not on right boundary THEN

travel to the right
IF (not done) and (M(row,col) not on lower boundary) THEN

travel down

&rhis algorithm follows the one described in W. Findlay and D. A. Watt's 1978 text,
PASCAL: An Introduction to Methodical ProJ!ramminJ! (Computer Science Press).

10.8 Exercises • 527

IF (not done) and (M(row,col) not on left boundary) THEN
travel left

IF (not done) and (M(row,col) not on top boundary) THEN
travel up

(end IF ...)
IF done THEN

Mark M(row,col) as a final step on the path out of the maze.

The phrases "travel to the right," "travel down," and so forth., mean "If the next
square in the indicated direction is not a wall, then move to that square and find
a path out of the maze from that square."

However, "find a path out of the maze from that square" is identical to the
original problem, starting from the new square. Therefore, all these calculations
should be done in a procedure that calls itself at the appropriate points.
[MAZE. F90]

Exercise 22. The Towers of Hanoi problem is another famous programming
exercise that is often presented as a striking example of the power of recursive
algorithms. In theory, an algorithm that is written iteratively can also be written
recursively, and vice versa. However, one implementation is often conceptually
simpler than the other.

The Towers of Hanoi problem can be stated as follows. Suppose ten rings,
graduated in size from largest on the bottom to smallest on top, are stacked on a
pole. Nearby are two other poles. The object is to move the stack of ten rings
from their original pole to one of the other poles, using the third pole as a
"working space" during the transfer. There are only two rules governing how the
rings can be moved.

(1) Only one ring at a time may be moved.
(2) At no time can a larger ring be moved onto a smaller ring.

It takes some thought and planning to figure out how the transfers should be
made. Consider a simpler problem involving only four rings. If the original pole
is numbered A, the destination pole is C, and the intermediate pole is B, the
reQuired transfers are shown in Table 10.4.

528 • 10. Some Essential Programming Algorithms

Table 10.4. Transfers for the Towers of Hanoi problem when n=4

Move
(start)

1 from A to B

2 from A to C

1 from B to C

3 from A to B

1 from C to A

2 from C to B

1 from A to B

4 from A to C

1 from B to C

2 from B to A

1 from C to A

3 from B to C

1 from A to B

2 from A to C

1 from B to C

B c

•
• •

.I.

- .I. ... - • ... • • • • ... • - ...
.I. -.I.

• •
•

10.8 Exercises • 529

This transfer requires 15 moves. In general, moving n rings from one pole to
another requires 2D - 1 moves.

Although it might not be obvious how to instruct a program to make a
large number of moves in what seems like a complicated pattern, it is actually
easy to write an algorithm for moving n rings in a programming language that
supports recursion. Consider this statement of the problem of moving n rings from
A to C.

1. Move n-l rings from A to B.
2. Move the nth ring from A to C.
3. Move n-l rings from B to C.

This solution takes a typical recursive approach of defining one level of a
problem's solution in terms of a previous level. Specifically, the problem of
moving n rings is stated in terms of the' problem of moving n-l rings. If the
algorithm makes successive recursive calls with argument n-l, the problem of
moving n rings can be reduced to the point that, eventually, the only problem the
algorithm needs to "solve" directly is the trivial problem of moving one ring! The
algorithm design looks like this:

DEFINE (n as initial number of rings, start, aux, and final as strings)
INITIALIZE start = 'start'

aux = 'aux'
final = 'fina/'

CALL MoveRings(n, start, aux, final)
(end of program)

SUBPROGRAM MoveRings(n, start, aux, final)
IF n_rings > 0 THEN

ELSE

CALL MoveRings(n_rings-1, start, final, aux)
WRITE ("Transfer ring ': n_rings, "from"',start, "to ': final)
CALL MoveRings(n_rings-1,aux,start,final)

WRITE ("Transfer ring ': n_rings, "from': start, "to': final)
(end IF)
(end SUBPROGRAM)

The Fortran subroutine header could look like this:

RECURSIVE SUBROUTINE MoveRings(n, start, aux, final)

Using this algorithm as a guide, write a complete program to solve the Towers of
Hanoi problem. The printed output from the program should consist of a series of

530 • to. Some Essential Programming Algorithms

messages, similar to those in Table 10.4, that indicate which ring will be moved
from which initial position to which fmal position.

You may find it hard to believe that such an apparently difficult problem
can be solved with so little code, but this is typical of recursive algorithms. Such
algorithms work because of the way recursive calls to subroutines keep track of
the local values of their parameters.1 The variables start, aux, and final are
initially given the values 'start', 'aux', and 'final', but these values
change when the recursive calls are made. Remember that start, aux, and
final are CHARACTER variables. Don't confuse their names with values
assigned to these variables. [TOWERS. F90]

Exercise 23. As director of a wildlife tracking project, one of your jobs is to
collect field reports of radio tracking data and enter them in a database. Each
report consists of a tracking number for each animal, the date, and two
coordinates. For the purposes of this problem, the coordinates are arbitrary real
numbers. A small sample set of reports might look like this:

101 05/05/95 55.3 44.8
101 05/06/95 57.1 43.4
102 05/05/95 66.0 13 .3
102 06/01/95 66.8 22.1
102 06/05/95 69.0 25.7
101 06/01/95 50.0 50.9

Note that the tracking reports for a particular animal aren't necessarily
consecutive, but all reports for each animal are in chronological order. Assume
that the tracking reports file will eventually be too large to be held in an array.

Write a program that will perform these three functions.

1. Add reports to the database.
2. Print out all the tracking reports for a specified animal.
3. Print all reports for a specified date.

One way to do this is to maintain the file as a so-called "linked list" for both
dates and animals. In the Fortran implementation of this problem, define a TYPE
structure like this:

7This information is maintained on the "runtime stack." To find out more about this,
consult a text that would be used to teach programming or data structures (usually in C or C++)
in an introductory computer science course.

TYPE TrackType
INTEGER ID
CHARACTER*8 date
REAL x,y
INTEGER SameAnimal,SameDate

END TYPE TrackType

10.8 Exercises • 531

The variables SameAnimal and SameDate are "pointers"S that point to the next
report on the same animal and the next report on the same date. If the reports are
maintained in a binary date file, then the pointers are file indices. For example,
in the above example, the ftrst mention of animal 101 is in the ftrst record of the
file. Additional references are found in records 2 and 6. Animal 102 is found in
records 3, 4, and 5. The date 05/05/95 appears in record 1 and again in record 3.

To construct this linked database, create two additional files: an index file
for animals and an index file for dates. In each file, the ftrst index is for the first
occurrence of that animal or date and the second index is for the last occurrence.
These files, which can be text files, could look like this for the above example,
which has reports for two animals and four different dates:

(animal index file)
000 0 0
101 1 6
102 3 5

(date index file)
00/00/00 0
05/05/95 1
05/06/95 2
06/01/95 4
06/05/95 5

o
3
2
6
5

The "dummy record" at the head of each file allows us to create these index files
even before the frrst tracking reports are processed. This will simplify
programming because the index files can always be assumed to exist. Your
program can also assume that these index files will always be small relative to the
tracking reports file, and that their contents can be held in two arrays in memory;
use an appropriate TYPE defmition for each array.

To add a new report to the database, add the report to a new record at the
end of the file and look for the animal code in the animal index file. If it doesn't
exist, add the new code and set both index values to the record where the new
report will be stored. If the animal code already exists, go to the record holding
the last previous entry and update the pointer to point to the new record. Then
update the "last pointer" value in the animal index file to point to the new record.
Follow the same procedure for updating the date index file.

To print all reports for a specifted animal, ftrst look for its code in the
animal index file. Then use the ftrst index (the value in the second column of the
file) to locate the frrst report. Use the pointer from the SameAnimal fteld in the

S Although the concept is similar, this use of the word "pointers" is not the same as the
programming implementation of this term in languages such as Fortran 90, C, and Pascal. . The
implementation of pointers as part of a programming language is not discussed in this text.

532 • 10. Some Essential Programming Algorithms

record to locate the next record. To find all records for the specified animal,
follow the pointers through the file. When the pointer to the next record is 0, then
you are at the end of the list of reports for that animal. Follow the same procedure
to print all reports for a specified date. rWILDLIFE. F901

11

Basic Statistics and Numerical Analysis
With Fortran

Statistical and numerical analysis are among the most important applications of
Fortran. In this chapter, algorithms are presented for calculating basic descriptive
statistics and some typical problems in numerical analysis, including
differentiation and integration, solving systems of linear equations, rmding roots
of equations, and numerical solutions to differential equations. The code for many
of the algorithms is incorporated into a MODULE that you can use in your own
programs. Each of the sections includes a typical application and is independent
of the other sections.

11.1 Introduction

This chapter will describe algorithms for basic descriptive statistics and for some
standard problems in numerical analysis. These include

~ mean, standard deviation, and linear regression

~ numerical differentiation and integration

~ rmding the roots of a function

~ solving systems of linear equations

~ numerical solutions to differential equations

The topics in this chapter require a greater degree of mathematical
sophistication than earlier material. Although the text does not presume to provide
all the necessary background, the discussion of each topic includes at least a
sketchy mathematical introduction.

It is an extreme understatement to point out that there are several possible
approaches to the numerical analysis problems discussed in this chapter, which are
quite properly the subject of entire texts and courses. For each of these problems,
this text will discuss just one simple approach and will present a complete solution
in the form of an algorithm and a complete MODULE that you can include in your
own programs.

In this chapter, applications are included with each section of the chapter
rather than at the end. In this way, each section is independent of the others. For
example, if you understand algebraic equations, you should be able to understand

D. R. Brooks, Problem Solving with Fortran 90
© Springer-Verlag New York, Inc. 1997

534 • 11. Basic Statistics and Numerical Analysis with Fortran

the section that deals with solving systems of linear equations, which does not rely
on calculus, even if you bypass the sections on numerical differentiation and
integration, which do require some understanding of calculus. To further
underscore the independence of each section, equations are numbered starting with
(1) within each section.

Although the algorithms discussed in this chapter will work satisfactorily
for a wide range of problems, it is a mistake to apply them blindly. For many
kinds of realistic problems, more robust algorithms will be needed to minimize
computational problems. I It is extremely important to remember that all numerical
methods have inherent limitations. Quantification of those limitations is largely
absent from the discussions in this chapter not because it is unimportant, but
because an appropriate treatment lies well beyond the scope of this text. In spite
of this caveat, it is equally true that it never hurts to try the relatively simple
algorithms presented here, as long as you are willing to retain a healthy skepticism
about the results.

11.2 Basic Descriptive Statistics

Statistical characterization of data is essential in all areas of science and
engineering. Hence some basic algorithms for this task are essential tools for any
programmer. This section is restricted to the statistics of normal distributions and
linear regression. The results will not be derived, but will simply be stated in a
way that facilitates their computation.

11.2.1 The Sample Mean and Standard Deviation

Consider a collection of measurements x that are
assumed to be drawn from a normally distributed
population. These measurements can be characterized
by two quantities: their arithmetic mean and their
standard deviation. The arithmetic mean, what is

arithmetic mean I
standard deviation
variance

commonly called the average, m of n such measurements is defmed as

m= (1)

n

IThere is an entire software industry built around the development of Fortran subroutines
to solve difficult problems in numerical analysis. In fact, the continued popularity of Fortran as
a language for scientists and engineers is due in large part to these subroutine libraries.

11.2 Basic Descriptive Statistics • 535

The standard deviation s is a measure of the variability in the data. It is defmed
as the square root of the variance S2:

L(X j - m)

n - 1
(2)

This defmition can be put into a form that is easier to calculate and doesn't
require that the mean be calculated ahead of time:

LXj2_(LXiln

n - 1 (3)

The standard deviation has the property that approximately 68 percent of all
normally distributed measurements of a quantity will be within ±s, 95 percent
within ±2s, and 98 percent within ±3s. The "plus or minus three standard
deviations" rule is sometimes used as a basis for discarding measurements lying
outside these limits; this mayor may not be a good idea, depending on the
application and the nature of the quantity being measured.2

. Because tables of cumulative probabilities are based on the standardized
normal variable z, having a mean of 0 and a standard deviation of 1, it is often
desirable to transform the mean and standard deviation of a set of measurements
into the corresponding standardized normal variable. For any measurement x,

z = x - m
s

(4)

Figure 11.1 illustrates the standard normal distribution, which for obvious reasons,
is referred to as the "bell curve."

~e existence of the now-famous Antarctic "ozone hole" was confIrmed in the 1980s only
after scientists rewrote satellite data analysis algorithms to accept measurements that had previously
been rejected by such a statistical test.

536 • 11. Basic Statistics and Numerical Analysis with Fortran

OA·-.------------""'c--------------,

Standard normal distribution:
0.35 mean=O

0.3

~0.25

~ c. 0.2
(ij
E g 0.15

0.1

0.05

-5

standard deviation= 1

-4 -3 -2 -1 o
x

2 3

Figure 11.1. The standard normal distribution

4 5

Especially for small sets of data, it is important to distinguish between the
sample mean and standard deviation m and s and the population mean and
standard deviation, usually denoted by p and cr. The former are available from
direct observation, but the latter are usually unknown; it is often assumed that
sample statistics are the same as population statistics. The n - 1 in the
denominator of the formula for standard deviation is there specifically because s
is the sample standard deviation and not the population standard deviation. For
small data sets, this has the effect of increasing the sample standard deviation
compared to the population standard deviation. To put it another way, the smaller
the sample, the greater the uncertainty about the properties of the entire population
from which the sample is drawn.

11.2.2 Linear Regression and the Linear Correlation Coefficient

Assume that a collection of measurements has been taken of a quantity y that is
a function of an independent variable x. Assume that these data can be represented
by an equation of form

vex) = a + bx (5)

11.2 Basic Descriptive Statistics • 537

where a and b are the intercept and slope of a straight line I regression line I
called the regression line. In general, this linear relationship
will be an imperfect representation of both the observed and
the actual relationship between x and y, either because there is noise in the system
or because the relationship is not really linear. Linear regression attempts to
determine the values of a and b that best represent the data, assuming that a linear
relationship is a reasonable choice for the data being examined.

sum 0 s UlJres
The usual definition of the "best" representation I

uses the sum of squares, defined as the sum of the squares if q
of the differences between measured and modeled values
of y:

sum of squares = ~(Yi - Ymodeli (6)

The method of least squares assumes that the best values of a and b are those that
minimize the sum of squares for a particular set of measurements. These
parameters are given by

a =

b

(LY)(LXj2) - (Lxj)(LXS j)

nLxj2 - (Lxi

nLxjYj - (LXj)(LYj)

DLx j
2 - (Lxi

(7)

. . .. s 'lJnual1 error oJ estimate The standard error of estimate of Y on It" d .~. I
x IS a measure of the vanablhty about the
regression line. It is obtained from

Lyj2 - aLYj - bLxjYj

n - 2
(8)

The value n - 2 in the denominator once again reflects the fact that this statistic
is calculated from a sample of measurements rather than an entire population. The
standard error of estimate of Y on x has properties similar to the standard
deviation. If lines are drawn parallel to and at vertical distances Sy,x, 2sy,x' and 3sy,x

above and below the best-fit regression line, 68 percent, 95 percent, and 99.7
percent of the measurements will fall within these lines.

One quantitative measure of the applicability correlation coeffu:ient
of a linear regression model is given by the

538 • 11. Basic Statistics and Numerical Analysis with Fortran

correlation coefficient. This is a dimensionless quantity in the range [-1,+ 1] that
is equal to the ratio of the explained variation in a set of data to the total
variation, with respect to the best-fit regression line:

+ explained variation _ +/1 _ 2 I 2 r = - - _ Sy,x/Sy
total variation

(9)

The explained variation is equal to the total variance Sy 2 of all the measurements
calculated using equation (2) or (3) from Section 11.2.1, minus the square of the
standard error of estimate Sy,x' When r is +1, all the data lie exactly along the
regression line, with positive slope. A negative value of r denotes a regression line
with negative slope. When r equals 0, y and x are totally unrelated to each other;
that is, a value of x provides no information about what the corresponding value
of y might be. Intermediate values of r indicate that a linear relationship is only
partially successful as a model to explain the behavior of y as a function of x.
Note that a linear model for data with a strong random component, as opposed to
an inherently nonlinear relationship, can still be reasonable even if the correlation
coefficient isn't close to 1.

When, as is often the case, a regression line is forced to pass through the
coordinates (0,0) (i.e., it is required that y=O when x=O), the slope is the only
coefficient required for the model

and the standard error of estimate of y on x is given by

LYi2 - 2bLxYi + b2L~2
n - 2

We can now develop algorithms and a program.

1 Define the problem.

(10)

(11)

Create one or more subprograms for calculating the basic descriptive
~tllti~ti('~ tip~('rihpti lIhovp

11.2 Basic Descriptive Statistics • 539

2 Outline a solution.

The solution should include one subprogram for calculating mean and
standard deviation and another for performing linear regression on a set of data.
In each case, the data will be held in one or more appropriate arrays.

3 Design an algorithm.

We will create two algorithms, one for the mean and standard deviation
and the other for linear regression. In the fIrst algorithm, we will include a test on
the variance as a precaution to make sure it is non-negative before taking the
square root to calculate the standard deviation. However, the variance should
never be less than O. If the data have a standard deviation of 0, which requires all
the measurements to be the same, then it is possible for arithmetic roundoff errors
to produce a very small negative value for the variance.

We will also include in the fIrst algorithm a provision for calculating either
the population or the sample standard deviation, as specifIed by a user-supplied
character "flag." For experimental data, as noted above, the sample statistic is
generally accepted as the appropriate choice.

SUBPROGRAM NormalStats(lN: A (array of real numbers),
n (# of elements), flag (character);

OUT: avg, std_dev)
DEFINE sum, sum.....;sq, variance, i (loop counter)
ASSIGN sum = (sum elements of A)

sum_sq = (sum elements of A2)
CHOOSE (between flag= 'p' for population stats and 's' for sample stats)

'p': ASSIGN variance = (sum_sq + surrfln)ln
's': ASSIGN variance = (sum_sq + surrfln)I(n-1)

IF variance ~ 0 THEN
ASSIGN std_dev = variance'12

ELSE
WRITE (appropriate message?)
ASSIGN std_dev = some "error" value (optiona!?)

(end IF ...)
ASSIGN avg = sumln

For the linear regression analysis, there are two choices to be made: one
for population or sample statistics and the other for a regression line that either
is or isn't forced through (0,0). This subprogram requires NormalStats as part of

540 • 11. Basic Statistics and Numerical Analysis with Fortran

the calculations for the correlation coefficient. Note that the intercept parameter
a is declared as an IN/OUT variable. This is because its value on input is used to
determine whether the regression should be forced through (0,0); if that value is
other than 0, a "full" regression is assumed. Note that the standard error of
estimate is also included in the output.

SUBPROGRAM LinearRegression(IN: x, y (arrays), n, flag (character);
IN/OUT: a; OUT: b, s_yx, r)

DEFINE sum_x, sumy, sum_xy, sum_xx, sumyy, temp, avg, std_dev
i (loop counter)

ASSIGN sum_x = (sum elements of x)
sumy = (sum elements of y)
sum_xy = (sum elements of x-y)
sumJ'Y = (sum elements of y-y)

(Get regression parameters.)
IF (a :/: 0) THEN (calculate full regression)

ASSIGN temp = n-sum_xx - sum_r
a = (sumy-sum_xx-sum_x-sum_xy)/temp
b = (n-sum_xy - sum_x-sumy)/temp
syx = ((sumyy-a-sumy-b-sum_xy)/n/12

ELSE (just calculate slope)
ASSIGN b = sumy/sum_x

syx = ((sumyy - 2-b-sum_xy + If -sum_xx)/n/12
IF (flag = IS? THEN ASSIGN syx = syx-(n/(n-2)/12 (for sample stats)
(Get correlation coefficient.)
CALL NormaIStats(y,n, flag,avg,std _ dey)
ASSIGN r = [1 - (syx/std_devfl12 (assume std_dev is OK)

Several sums over the components of data vectors, as defined in equations (7), (8),
(10), and (11), are required in this algorithm. For reasons that will become clear
when the code is written, these sums are represented with "shorthand" ASSIGN
statements in the algorithm.

4 Convert the algorithm into a program.

P-l1.1 packages these algorithms in a MODULE that also includes a
subroutine to generate data from a linear relationship with a superimposed "noise
signal." To save space, this code isn't included in the program listing, but it can
be found in the STATS. F90 source code file, which can be downloaded from the
Wodd Wide Web site mentioned in Section i.5 of the Preface.

11.2 Basic Descriptive Statistics • 541

P-l1.1 [STATS. F90]

MODULE DescriptiveStats

CONTAINS
!--

SUBROUTINE NormalStats(a,n,flag,avg,std_dev)

Basic descriptive statistics for normally distributed data.
Calculates either sample or population statistics.
Sets std_dev = -1 if error condition is detected.

IMPLICIT NONE
INTEGER, INTENT(IN) :: n
REAL, INTENT(IN) :: a(n)
CHARACTER, INTENT(IN) :: flag! 'P' or'S' statistics
REAL, INTENT (OUT) :: avg,std_dev
REAL sum_,sum_sq,variance

sum_=SUM(a)
sum_sq=DOT_PRODUCT(a, a)
SELECT CASE (flag)

CASE ('p','P')
variance=(sum_sq-sum_**2/n)/n

CASE (' s ' , 'S')
variance=(sum_sq-sum_**2/n)/(n-1)

CASE DEFAULT
PRINT *," FROM NormalStats: FLAG ERROR, 'P' assumed"
variance=(sum_sq-sum_**2/n)/n

END SELECT
IF (variance < 0.) THEN Ian error condition exists

PRINT *,' FROM NormalStats: NEGATIVE VARIANCE', variance
std_dev=-1

ELSE
std_dev=SQRT(variance)

END IF
avg=sumJn

END SUBROUTINE Norma1Stats
!---

SUBROUTINE LinearRegression(x,y,n,flag,a,b,s_yx,r)

For data to be represented by y=a+bx, calculates linear
regression coefficients, sample standard error of y on x, and
sample correlation coefficient. Sets r=O if error condition
exists. If the intercept coefficient a is set to ° on input,
the regression is forced through (0,0).

IMPLICIT NONE
INTEGER, INTENT(IN) :: n
REAL, INTENT(IN) :: x(n),y(n)
CHARACTER, INTENT(IN) :: flag! 'P' or'S' statistics
REAL, INTENT (OUT) :: b,s_yx,r
REAL, INTENT(INOUT) :: a
REAL avg,std_dev
REAL sum_x,sum_y,sum_xy,sum_xx,sum_yy,temp

542 • 11. Basic Statistics and Numerical Analysis with Fortran

sum_x=SUM(x)
sum_y=SUM(y)
sum_xy=DOT_PRODUCT(x,y)
sum_xx=DOT_PRODUCT(x,x)
sum_yy=DOT_PRODUCT(y,y)
IF (a /= 0.) THEN !calculate full regression

temp=n*sUffi_xx-sum_x**2
a=(sum_y*sum_xx-sum~x*sum_xy)/temp

b=(n*sum_xy-sum_x*sum_y)/temp
s_yx=SQRT«sum_yy-a*sUffi_y-b*sum_xy)/n)

ELSE !just calculate slope
b=sum_y/sum_x
s_yx=SQRT«sum_yy-2.*b*sum_xy+b*b*sum_xx)/n)

END IF
SELECT CASE (flag)

CASE (' p' , ' P')
CASE (' s' , 'S')

s_yx=s_yx*SQRT(REAL(n)/REAL(n-2»
CASE DEFAULT

PRINT *," FROM LinearRegression: FLAG ERROR, 'P' assumed"
END SELECT

Use NormalStats to get standard deviation of y.
CALL NormalStats(y,n,flag,avg,std_dev)
IF (std_dev > 0.) THEN

temp=1.-(s_yx/std_dev)**2
IF (temp >= 0.) THEN

r=SQRT(temp)
ELSE ! an error condition exists

r=O.
PRINT *, 'FROM LinearRegression: ERROR CONDITION' ,temp

END IF
ELSE ! an error condition exists

r=O.
END IF
END SUBROUTINE LinearRegression

1------------------------------------
SUBROUTINE NormalArray(a,n)

Generates an array of normal random numbers from
pairs of uniform random numbers in range O<=x<l.

IMPLICIT NONE
INTEGER, INTENT(IN) :: n
REAL, INTENT(OUT) :: a(n)
INTEGER i
INTEGER Count(l) ! for random number generator
REAL pi,ul,u2
PARAMETER (pi=3.14l5927)

CALL System_Clock(Count(l»
CALL Random_Seed(Put=Count)
CALL Random_Number(a) !fills array with uniform random
DO i=l,n,2

ul=a(i)
u2=a(i+l)
IF (ul == 0.) ul=le-15 ! u must not be 0
IF (u2 == 0.) u2=le-15
a(i) =SQRT(-2.0*LOG(ul»*COS(2.0*pi*u2)
a(i+l)=SQRT(-2.0*LOG(u2»*SIN(2.0*pi*u2)

'C'Il\TT"\ T"\f""\

11.2 Basic Descriptive Statistics • 543

IF (MOD(n,2) /= 0) THEN !there's one extra element
IF (a(n) == 0.) a(n)=le-15
a(n)=SQRT(-2.0*LOG(a(n»)*SIN(2.0*pi*a(n»

END IF

END SUBROUTINE NormalArray
!-------------------------------

END MODULE
!======================

PROGRAM Stats

USE DescriptiveStats
IMPLICIT NONE
REAL x(500),y(500),avg,std_dev
REAL a,b intercept and slope for linear regression
REAL s_yx standard error of estimate of y on x
REAL corr correlation coefficient
INTEGER n # of points in array
INTEGER i
DATA n/100/

Test basic statistics ...
CALL NormalArray(x,n)
CALL NormalStats(x,n, 'p' ,avg,std_dev)
PRINT *,' population mean and std dev: ',avg,std_dev
CALL NormalStats(x,n, 's',avg,std_dev)
PRINT *,' sample mean and std dev: ',avg,std_dev

Test linear regression ...
CALL NormalArray(y,n)

Create a linear relationship with "noise" ...
DO i=l,n

x(i)=i
y(i)=2.*i+10.*y(i)

END DO
Set a /= 0 for full regression analysis.

a=1.
CALL LinearRegression(x,y,n,'s' ,a,b,s_yx,corr)
PRINT *,' FOR FULL REGRESSION ... '
PRINT *,' regression coefficients: ',a,b
PRINT *,' standard error of estimate of y on x : ',s-yx
PRINT *,' correlation coefficient: ',corr

Set a=O for regression forced through (0,0)
a=O.
CALL LinearRegression(x,y,n, 's' ,a,b,s_yx,corr)
PRINT *,' FOR REGRESSION FORCED THROUGH (0,0) ... '
PRINT *,' regression coefficients: ',a,b
PRINT *,' standard error of estimate of y on x : ',s_yx
PRINT *,' correlation coefficient: ',corr

END

544 • 11. Basic Statistics and Numerical Analysis with Fortran

Running P-ll.1

population mean and std dev: 0.2155715 0.9041344
sample mean and std dev: 0.2155715 0.9086893
FOR FULL REGRESSION ...

regression coefficients: 4.1518574 1.9581977
standard error of estimate of y on x : 9.2461329
correlation coefficient: 0.9870095

FOR REGRESSION FORCED THROUGH (0,0) ...

5

regression coefficients: O.OOOOOOOE+OO .0404127
standard error of estimate of y on x: 9.5518789
correlation coefficient: 0.9861301

Verify the operation of the program.

The code in P-ll.l contains some safeguards against potential problems
with the calculations-primarily taking the square root of a negative number.
However, these safeguards don't test the code itself. The only way to verify the
accuracy of all the code is to check it carefully and compare results against an
example worked through by hand. Even though normal statistics aren't intended
to be applied to very small samples, the calculations themselves can be checked
adequately with a data set of only three or four "measurements.,,3

Programming Tip
An important feature of this program is its use of the implicit function

DOT_PRODUCT, used previously in the vector operations application in Section
8.7.1, and the SUM function, which returns a scalar value equal to the sum of the
elements of its array arguments. The availability of these functions greatly reduces
the amount of code and pseudocode that would otherwise be required to initialize
sums and increment them inside loops.

Use of the SUM function explains the otherwise rather odd variable name
s urn_. If you didn't use the SUM function in P-ll.1, then it would be OK to call
a variable s urn. That is, a local definition will override the association of the word
"sum" with a Fortran intrinsic function of the same name. This holds true in
general, so you can redefine the name of any Fortran intrinsic function in a
program. This doesn't seem like a very good idea!

3If you have access to a spreadsheet, it should include built-in functions for performing
these calculations. Make sure you understand whether your spreadsheet calculates population or
sample statistics; some spreadsheets have separate functions for each.

11.3 Numerical Differentiation • 545

11.3 Numerical Differentiation

11.3.1 Newton's and Stirling's Formulas

Consider the function f(x). The derivative f(x) is the rate of change of f(x) with
respect to x. Although the derivatives of analytic functions are usually available
without much difficulty,4 rates of change are often required for experimental data.
For example, you might collect data as a function of time and then require an
estimate of rates of change with respect to time based on those data. In either
case, an estimate of a function's rate of change can be obtained by calculating the
slope between two evaluations of the function at two closely spaced values of x.
Here are three intuitive formulas based on a simple graphical interpretation of the
derivative as the slope of a function:

f'(x) "'" [f(x+iU.) - f(x)]liU. (Newton's forward formula) (1)

f(x) "'" [f(x+iU.) - f(x-Ax)/]/(2Ax) (Stirling's formula) (2)

f'(x) "'" [f(x) - f(x-Ax)]/iU. (Newton's backward formula) (3)

where iU. is a small interval. The second of these formulas averages the
calculation in the forward and backward directions and seems generally the best
choice. Note that it does not matter whether a function has been evaluated
analytically at x ± Ax or whether the Ax's correspond to some interval between
experimental data.

These formulas are trivial to implement in Fortran. However, there are
reasons to be cautious in their application. They and similar higher order versions
are basically polynomial approximations. Even if the difference between f(x) and
its polynomial approximation is small, there is no guarantee that the same is true
of the difference between an analytic derivative and the polynomial approximation
to that derivative. Additionally, for functions whose derivatives can become large
(in absolute magnitude), it is important to select appropriately small values of Ax;
the criteria may not always be obvious.

If the formulas are used to approximate rates of change for experimental
data, the dominant error source is most likely the data themselves, through the
independent or dependent variable or some combination of the two. Suppose
measurements are taken as a function of time so that the interval Ax becomes At.
In general, you would expect that the best approximation to the derivative would
be obtained when At is small. However, because At appears in the denominator,

"The availability of symbolic algebra systems such as Maple V means that even "difficult"
anaIvtic derivatives can be obtained with little effort.

546 • 11. Basic Statistics and Numerical Analysis with Fortran

small errors in measuring time intervals can produce approximations to the
derivative that are wildly in error. (For an example of the problems that can arise
with time measurements, recall Exercise 16 in Chapter 9. In that problem,
estimates of the speed of a commuter train were in error because time intervals
between O.I-mile distance markers were measured only to the nearest second.)

In some experimental situations, therefore, it might be preferable to
approximate the data with a well-behaved analytic function whose derivative can
be calculated analytically; this is a tradeoff between representing accurately all
measurements of a dependent variable and "smoothing" the numerically generated
rates of change of that variable. (An end-of-chapter exercise explores this process.)
In other situations, a numerical derivative is actually the desired result. Suppose
production cost data are available monthly for a manufacturing facility. A
backward formula using this month's and last month's costs gives the true rate of
change in sales from last month to this month; there is no reason to
think of this value as an approximation.

Table 11.1 Distance and speed
as a function of time

time distance speed
0 0.00 0
1 4.90 9.80
2 19.60 19.60
3 44.10 29.40
4 78.40 39.20
5 122.50 49.00
6 176.40 58.80
7 240.10 68.60
8 313.60 78.4(}
9 396.90 88.20

10 490.00 98.00
11 592.90 107.80
12 705.60 117.60
13 828.10 127.40
14 960.40 137.20
15 1102.50 147.00
16 1254.40 156.80
17 1416.10 166.60
18 1587.60 176.40
19 1768.90 186.20
20 1960.00 196.00

2 Outline a solution.

11.3.2 Application. Estimating the Speed of
a Falling. Object

1 Define the problem.

Table 11.1 gives time, distance, and
speed for an object accelerating under the
influence of gravity (9.8 mls2), ignoring air
resistance. (See the file FALLING. DAT,
which can be downloaded from the World
Wide Web site mentioned in Section i.5 of
the Preface.) Suppose time and distance are
measured. Distance is measured accurately,
but time is measured with an error in the
range ±O.2 s. Write a program that simulates
such measurements and uses them to
estimate the speed as a function of time
using an appropriate approximation formula.

When an object is accelerating, a backward approximation formula will
underestimate the true speed. For example, usillj~ the values for distance at t = 0

11.3 Numerical Differentiation • 547

and t = 1, the estimated speed is 4.9/ = 4.9 mis-half the true value. For the same
reason, a forward formula will overestimate the speed. Therefore, Stirling's
formula is the best choice from the three possibilities previously discussed. If the
acceleration is constant and there are no errors in any of the measurements, this
formula will yield the actual speed.

The solution to this problem should include a general-purpose subprogram
that approximates the derivative using Stirling's formula. (See Equation (2)
above.) Its implementation is straightforward. However, note that the original
defmition of Stirling's formula assumes that the interval Ax between f(x) and its
forward and backward values is the same. This is an unnecessary assumption and
one that may not be true when experimental data are being used. (In this problem,
the true time intervals are equal, but because of the random component, the
measured time intervals will not be equal, in general.) Therefore, replace the
definition of Stirling's formula with:

f' (~) = _[f{_~_) -_f{_Xl_)]_/{~_-_X_l) _+_[£_{":3_)_-f_{~_)]_/{_":3_-~_)
2

(4)

The main program should read the data file and use the subprogram to
calculate the speed, assuming that there is a random error in the time
measurement. It will be adequate for this problem to assume that time errors are
linearly distributed over the range ±O.2 s.

3 Design an algorithm.

The design of a subprogram to implement this version of Stirling's formula
is trivial.

SUBPROGRAM Stirling(IN: xt,X2,X3,Yt'Y2'Y3; OUT: derivative)
ASSIGN derivative=[(Y2 - Yt)l(x2 - Xt)+(Y3 - Y2)I(x3 - x2)]12

The design of the driver program is straightforward, and no algorithm design
should be required.

548 • 11. Basic Statistics and Numerical Analysis with Fortran

4 Convert the algorithm into a program.

P-l1.2 [FALLING. F90]

MODULE Numerical_Differentiation

CONTAINS
!--

REAL FUNCTION Stirling(xl,x2,x3,yl,y2,y3)

IMPLICIT NONE
REAL, INTENT(IN) :: x1,x2,x3,y1,y2,y3

Stirling=«y2-y1)/(x2-x1)+(y3-y2)/(x3-x2»/2.
END FUNCTION Stirling

!---
END MODULE Numerical_DIfferentiation

!===
PROGRAM Falling

Driver for numerical differentiation routines.

USE Numerical_Differentiation, ONLY : Stirling
IMPLICIT NONE
TYPE fall_data

REAL true time
REAL true_distance
REAL measured_time

END TYPE fall_data
TYPE (fall_data) fal1(0:20)
REAL g,x,true_speed,speed
INTEGER i,n,Count(l)
PARAMETER (g=9.8) !m/s**2 (gravitational acceleration)

OPEN(l,file='c:\ftn90\source\falling.dat')

Get data ...
(Read past 1 header line.)
READ(l,*)
CALL System_Clock(Count(l»
CALL Random_Seed (Put=Count)
n=-l

10 n=n+1
READ(l,*,end=900)fall(n)%true_time,fall(n)%true_distance
CALL Random_Number(x)
fall(n)%measured_time=fall(n)%true_time+x*.4-.2
PRINT 1000, fall(n)%true_time, fall(n)%true_distance, &

fall(n)%measured_time
GO TO 10

900 CLOSE(l)
n=n-1

Calculate numerical derivative ...
PRINT *,' true meas. true
PRINT *, &

time time distance speed

true'

speed speed/(true speed)'

11.3 Numerical Differentiation • 549

DO i=l,n-l
speed=Stirling(fall(i-l)%measured_time, &

fall(i)%measured_time, &
fall(i+l)%measured_time, &
fall(i-l)%true_distance, &
fall(i)%true_distance,&
fall(i+l)%true_distance)

true_speed=Stirling(fall(i-l)%true_time, &
fall(i)%true_time, &
fall(i+l)%true_time, &
fall(i-l)%true_distance, &
fall(i) %true_distance, &
fall(i+l)%true_distance)

PRINT 1010,fall(i)%true_time,fall(i)%measured_time, &
fall(i) %true_distance, true_speed, speed, &
speed/true_speed

END DO

1000 FORMAT(lx,f6.2,2flO.3)
1010 FORMAT(lx,2f6.2,3flO.3,flO,2)

END

550 • 11. Basic Statistics and Numerical Analysis with Fortran

Running P-l1.2

0.00
1. 00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00
11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00
19.00
20.00

0.000
4.900

19.600
44.100
78.400

122.500
176.400
240.100
313.600
396.900
490.000
592.900
705.600
828.100
960.400

1102.500
1254.400
1416.100
1587.600
1768.900
1960.000

- 0.025
1. 028
1.989
2.891
3.836
5.049
6.075
6.859
7.951
9.153

10.026
11.015
12.015
12.879
13.977
14 . 863
15.800
],7.095
17.817
18.919
20.163

true meas. true true
time time distance speed
1. 00 1. 03 4.900 9.800
2.00 1. 99 19.600 19.600
3.00 2.89 44.100 29.400
4.00 3.84 78.400 39.200
5.00 5.05 1-22.500 49.000
6.00 6.07 176.400 58.800
7.00 6.86 240.100 68.600
8.00 7.95 313.600 78.400
9.00 9.15 396.900 88.200

10.00 10.03 490.000 98.000
11.00 11.02 592.900 107.800
12.00 12.02 705.600 117.600
13.00 12.88 828.100 127.400
14.00 13.98 960.400 137.200
15.00 14.86 1102.500 147.000
16.00 15.80 1254.400 156.800
17.00 17.10 1416.100 166.600
18.00 17.82 1587.600 176.400
19.00 18.92 1768.900 186.200

speed
9.977

21.224
31. 726
36.330
44.449
66.873
74.250
68.316
88.001

105.319
108.320
127.282
131.184
140.462
161. 244
143.435
181.278
201.073
159.018

5 Verify the operation of the program.

speed/(true
1. 02
1. 08
1. 08
0.93
0.91
1.14
1. 08
0.87
1. 00
1. 07
1. 00
1. 08
1. 03
1. 02
1.10
0.91
1. 09
1.14
0.85 ·

These calculations are easy to verify with a calculator.

speed)

11.4 Numerical Integration • 551

Problem Discussion
The array in P-11.2 has been dimensioned 0 : 20 because t = 0 is the ftrst

value. Because Stirling's formula requires values from one step backward and one
step forward, the loop to calculate and display speed starts at i = 1 and ends at
n - 1. There is no loss of information at t = 0 because the speed is zero. However,
the speed at the fmal time step cannot be calculated using this method.

The code in P-11.2 applies to experimental data taken at discrete values of
an independent variable, even though the data for this particular problem have
been generated with an analytic function so that results from the numerical
procedure can be evaluated. In general, experimental data may not correspond to
an analytic function, so there may not even be an analytic derivative for
comparison.

However, suppose you wish to estimate the derivative of an analytic
function--one whose value exists and ca,n be calculated everywhere over a range
of interest. (You may also wish to require that the analytic derivative of the
function exists as well, and that it can be calculated everywhere over the range,
even though you don't know what it is.) Then a function that calculates Stirling's
formula can take a slightly different form,

REAL FUNCTION Stirling_f(F,dx)

where F is the name of a function passed from the calling program and dx is the
interval over which the backward and forward values are to be calculated. The
implementation of stirling_f is left as an end-of-chapter exercise.

11.4 Numerical Integration

11.4.1 Polynomial Approximation Methods

It is often the case that functions cannot be integrated analytically. Such functions
don't even have to be very complicated. (See the next Application in this Section.)
In such a situation, numerical integration techniques must be used. There are
several widely used methods, including those that use polynomials to "piece
together" an approximation of a function y = f(x). We will develop algorithms for
three closely related polynomial approximation methods: the Rectangular Rule, the
Trapezoidal Rule, and Simpson's Rule. These all have in common the fact that the
integration range of the independent variable is divided into many intervals of
equal size.

The Rectangular Rule is the easiest algorithm to understand because it has
a simple graphical interpretation. Assume the value of y = f(x) is known for any
value of x in the range [X1,X2]. The integral of f(x) over the range Xi to Xf can be

552 • 11. Basic Statistics and Numerical Analysis with Fortran

approximated by dividing the range into n equal segments of length Ax and taking
the sums of the function evaluated at the midpoints of each segment,

[f(X) <Ix = (t. f(x, - L\x,I2) lAx
1

(1)

where Xi = Xl + i-Ax. This process is illustrated in Figure 11.2, although in
practice many more than eight subdivisions of the integration interval would be
used.

o

I
I

r=i··"""··~···j:···:'::'···::;'··=···'::;···f···;;;···;-1-· ·····r·····

2 3 4

X

5 6 7

Figure 11.2 Rectangular Rule integration

I
I
I

8

Trapezoidal Rule integration also has a simple graphical interpretation. The
integral of a function y = f(x) between two closely spaced points X and X + ~x
can be approximated by the area of the trapezoid formed by the points (x,O),
(x,f(x», (x + Ax,f(x + ~x», and (x + ~x,O). To put it another way, the integral can
be approximated by the average of f(x) evaluated at x and x + Ax, multiplied by
~x:

x+/U f f(x)dx ~ [f(x) +f(;+Lh)]Lh (2)

x

11.4 Numerical Integration • 553

Hence, assuming that the range [XI,X2] is divided into n equal intervals of size Ax,
the integral of f(x) over that range can be approximated by

where Xi = XI + i-Ax. (See Exercise 25 and Figure 2.13 in Chapter 2.)
Simpson's Rule integration is similar in principle to the other two; it

approximates the integral of f(x) over the range from x-Ax to x+Ax by a second
order polynomial. For the range XI to x2 divided into n equal intervals of size Ax,
where n must be an even number, it can be shown that

1 Define the problem.

Write a subprogram that integrates functions that can't be integrated
analytically.

2 Outline a solution.

Write a driver program for testing Simpson's Rule integration using a
function whose analytic integral is known or whose numerically integrated values
are tabulated.

3 Design an algorithm.

Algorithms for Rectangular Rule and Trapezoidal Rule integration are left
as end-of-chapter exercises. The algorithm for Simpson's Rule is this:

554 • 11. Basic Statistics and Numerical Analysis with Fortran

SUBPROGRAM (IN: F, x t' x2' n_steps; OUT: integra/)
DEFINE (odd sum, even sum, i)
ASSIGN L1x = (x2 - xt)ln_steps
INITIALIZE odd sum = 0

even sum = 0
LOOP (for i = 1 to n_steps-1, steps of 2)

INCREMENT odd sum = odd sum + F(xt + j.L1x)
END LOOP
LOOP (for i = 2 to n_steps-2, steps of 2)

INCREMENT even sum = even sum + F(xt + i.L1x)
END LOOP
ASSIGN integral = [F(x,) + F(x;J + 4 .. (odd sum) + 2"(even sum)},.L1x/3

4 Convert the algoritlun into a program.

P-ll.3 contains code for a function that implements this algorithm. The function
can be found in the MODULE that is part of program NUM_INT . F9 0, which can
be downloaded from the W orId Wide Web site mentioned in Section i.5 of the
Preface.

P-l1.3 (see NUM_INT. F90)

MODULE NumericalIntegration

CONTAINS
!--

REAL FUNCTION SimpsonSRUle(F,xl,x2,n_steps)

Does numerical integration using Simpson's Rule.

IMPLICIT NONE
REAL, INTENT(IN) :: xl,x2
REAL sum_odd, sum_even
INTEGER, INTENT(IN) :: n_steps
REAL dx
INTEGER i

/------------------------------
INTERFACE

REAL FUNCTION F(x)
REAL, INTENT (IN) :: x

END FUNCTION F
END INTERFACE

/------------------------------
dx=(x2-xl)/n_steps
sum_odd=O.
DO i=l,n_steps-l,2

sum_odd=sum_odd+F(xl+REAL(i)*dx)
END DO
sum even=O.

11.4 Numerical Integration • 555

DO i=2,n_steps-2,2
sum_even=sum_even+F(x1+REAL(i)*dx)

END DO
SimpsonsRu1e=(F(x1)+F(x2)+4.*sum_odd+2.*sUffi_even)*dx/3.

END FUNCTION SimpsonsRule
1------------------------------

END MODULE NumericalIntegration
1====================================

MODULE FunctionDefinition

CONTAINS
1--------------------------

REAL FUNCTION FofX(x)

This is the cumulative probability function for the
normal function. Its integral doesn't have an analytic form.

IMPLICIT NONE
REAL, INTENT(IN) :: x
REAL pi
pi=4.*ATAN(1.)
FofX=EXP(-x*x/2.0)/SQRT(2.0*pi)
RETURN
END FUNCTION FofX

1----------------------------------
END MODULE FunctionDefinition

1==================================
PROGRAM Num_Int

Performs numerical integration on specified function.

USE NumericalIntegration, ONLY : SimpsonsRule
USE FunctionDefinition, ONLY : FofX
IMPLICIT NONE
REAL z
PRINT *,' Integrate normal function to z =
PRINT *,' (Appropriate values in range -10 to +10.)'
READ *,z
IF (z /= 0.0) THEN

PRINT *," with Simpson's Rule ... "
PRINT 1000,SimpsonsRule(FofX,0.,z,100)+.5

ELSE
PRINT 1000,0.5

END IF

1000 FORMAT(lx,f8.5)
END

In program NUM_INT. F90, which can be downloaded from the World Wide Web
site mentioned in Section i.5 of the Preface, the example used to test the
subroutine is the integral under the normal distribution curve. This example has
been chosen because it is easy to find tabulated values against which to check the
results; look in any statistics text. A sample output from the pro~am is

556 • 11. Basic Statistics and Numerical Analysis with Fortran

Integrate normal function to z =
(Appropriate values in range -10 to +10.)

1.6
With Simpson's Rule ...

0.94520

5 Verify the operation of the program.

It is often the case that numerical integration is used to replace tabulated
values, as has been done in the driver program for P-II.3. If so, then the output
can be tested by selecting several known tabulated values. If the results are
correct, it is then reasonable to assume that results for other values will also be
correct, assuming that they are within the range of the table.

Problem Discussion
This is a typical use of an externally defined function passed as an

argument to a subprogram. In P-I1.3, the function FofX is defined in a module
separate from the module containing numerical integration routine. Note how the
INTERFACE block, printed in bold italics. is used in FUNCTION

SimpsonsRule. It isn't necessary for the function used in a subprogram to have
the same name as the function in which it is defined. In FUNCTION
SimpsonsRule, the function is named just F, rather than FofX.

11.4.2 Application: Evaluating the Gamma Function

Once you have developed a computer algorithm and satisfied yourself that it
works for several cases of interest, you are likely to trust it in the future. That
trust is easily misplaced, as this application will demonstrate.s The mathematical
details of this application won't make much sense if you haven't had a course in
integral calculus, but the code itself isn't very difficult to follow.

5 Author's note: In fact, I should be ashamed of myself for including this example, which
is full of traps for the mathematically unsophisticated programmer.

11.4 Numerical Integration • 557

1 Define the problem.

The gamma function appears in physics problems involving wave functions
and probabilities; it is defined for positive values of n in terms of an integral:

When n is an integer,

00

r(n) = Je-xxn-1cJx
o

r(n) = (n - I)!

(5)

(6)

That is, the gamma function is just a generalization of the factorial function to
noninteger numbers. Gamma functions for noninteger values of n are defmed
through a recursion relationship:

r(n + 1) = nr(n) (7)

The integral that defines the gamma function can't be evaluated
analytically except in special cases, so numerical integration is required to
calculate the gamma function for noninteger values of n. Write a program that will
evaluate the gamma function for any positive value of n.

2 Outline a solution.

At first, this problem might appear hopeless because one of the limits on
the integral is infmity. Fortunately, the integrand-the function being
integrated-decreases rapidly toward zero as x increases. Figure 11.3 shows the
integrand as a function of x for n = 0.5, 1.5, and 2.5, for x from 0 to 5. At x = 20,
the value of the integrand for n = 2.5 is about 1.8xlO-7• This suggests that it
should be possible to obtain a useful approximation to r(n) by limiting the range
over which a numerical intejUation is done.

558 • 11. Basic Statistics and Numerical Analysis with Fortran

5~-------o--------,,--------,-------~--------,

, • • I 4.5 -----------.. ---.----:---------.--.--------.:-----------------------j-----------------------[----------------------

i 3: ·.·····.....1........1....· ••••••••••• , •••••••••••••••••• [•••••.••..••••••••••
~ 3 - --------------------t----------------------]---------------··------1---···---·--··········-[----------------------
E ' , , ,
ro 2 5 . .-------.-.--------~-.------------------)-----------------------;---·-----------·-------f--------·-·-···------.
~ . il n = 1/2 1 iii o '.. ' , , i 1 EZL .• ··.I·· •.••••• · ••• ·1 •••••••••••••••• [••••••.••••••••.••••
to /'··1 n=312Z n= 512 1 ' ,

- o~···.[····..,.· ••• · •• ··•· •• ···, •• ·•·•··· ••••••• 1 •..•••••••••••••••••••

o 2 3 4 5
x

Figure 11.3. Integrand of the Gamma function

Furthermore, once the integral has been evaluated for 0::; n ::; 1, the
recursion relationship can be used to evaluate the gamma function for all other
values of n. It will be helpful to know that, as a special case, the integral for
r(l/2) can be evaluated analytically; it yields a value of 1t1l2.

3 Design an algorithm.

The algorithm is straightforward: incorporate Simpson's Rule into a
subprogram and include it in a driver program that evaluates the integrand e-xxn- 1•

In this case, the gamma function is defined as a statement function inside
FUNCTION Gamma and Simpson's Rule integration is carried out specifically for
this function, rather than making use of the general-purpose Simpson's Rule
function descrihed nreviouslv in this section.

11.4 Numerical Integration • 559

4 Convert the algorithm into a program.

P-l1.4 [GAMMA.F90]

MODULE Gamma_Calc

CONTAINS

REAL FUNCTION Gamma(n)
IMPLICIT NONE
REAL x,n,z,f,dx,x_max,sum
INTEGER i,n_terms
f(x,z)=EXP(-x)*x**(z-l.O)
DATA dx,x_maxjO.OOl,lO.Oj

n_terms=NINT(x_maxjdx)
PRINT*,n_terms
sum=O.O
DO i=2,n_terms-2,2

sum=sum+2.0*f(i*dx,n)
END DO
DO i=1,n_terms-l,2

sum=sum+4.0*f(i*dx,n)
END DO
sum=(sum+f(x_max,n»*dxj3.0
Gamma=sum

END FUNCTION Gamma
!- - ---------------------

END MODULE
!===========================

PROGRAM Gamma_Function

Evaluate the Gamma function.

USE Gamma_Calc, ONLY : Gamma
IMPLICIT NONE
REAL n,x

PRINT*, 'Give O<n<l: '
READ*,n
x=Gamma(n)
PRINT 1000,x

1000 FORMAT(lx,f15.8)
END

Running P-l1.2

Give O<n<l:
.s
10000

1.73261499

560 • 11. Basic Statistics and Numerical Analysis with Fortran

5 Verify the operation of the program.

If you test this program for n = 112, you can compare the results to the
known value of 1t1l2 = 1.772454. The program returns ren) = 1.732615. Even
though the intervals used in the Simpson's Rule calculation seem very small, the
numerical result is not very close to the right answer. Why not? Can the accuracy
be improved by increasing the number of steps? In fact, the accuracy will improve
somewhat for a step size of 0.0001. However, examine Figure 11.3 again and note
that for n = 1/2, the integrand approaches infmity as x approaches 0; to put it in
mathematical terminology, the integrand has a singularity at x = 0 for any n in the
range 0 $; n < 1.

The significance of this application should now be clear. Even though the
numerical integration algorithm appears to work, and even produces an answer
that isn't too far from the correct one, the entire process is fatally flawed because
of the nature of the function we have tried to evaluate.

Fortunately, because of the recursion relationship that applies to the gamma
function, we can salvage the situation. Whereas X 112-1 = X-1I2 = 1/x1l2 has a
singularity at x = 0, X3/2-1 = Xll2 does not. This means that we can evaluate r(1/2)
by first evaluating r(3/2) and then applying the recursion relationship. This
strategy will work for any value of n in the range 0 $; n < 1. However, it is still
prudent to be concerned about the behavior of the function. For reasons that are
beyond the scope of this text, some functions are better candidates for Simpson's
Rule integration than others, and we will need to develop some confidence from
independent sources before we start using FUNCTION Gamma without worrying
about the results! Table 11.2 shows some results of applying FUNCTION Gamma
and the recursion relationship to evaluate r(O.l), reO.5), and r(0.9).

Of the three cases examined, the only value that can be obtained directly
is re0.5)=1t1l2; this value is given in bold type. (Additional values for r(3/2),
r(5/2) , and so on, can be obtained to arbitrarily high accuracy using forward
recursion.) As an example of how to interpret the values in the table, the frrst
"backward" recursive evaluation of n = 0.1 comes from using the numerical
evaluation n = 4.1 to calculate the value for n = 3.1 (by dividing 6.812444 by 3.1)
and using that value to calculate the value for n = 2.1, and so on. Other values for
n = 0.1 come from starting at numerically integrated values for 3.1,2.1, and 1.1.
Each of these calculations yields a slightly different result, and it is clear that
there is no reason to assume that the gamma function can be evaluated accurately
beyond about four or five significant figures, which is considerably less than the
potential seven-digit accuracy available for REAL numbers.6 For many purposes,
this will be sufficient, but it is important not to lose sight of the fact that

6This number of available significant figures may differ from compiler to compiler.

11.4 Numerical Integration • 561

numerical integration is not a substitute for an analytic solution; it is, at best,
never more than just an approximation that will be better in some circumstances
than in others.?

Table 11.2. Gamma functions evaluated directly and by using a recursion
relationship

Direct
n Evaluation Recursive Evaluation

0.1 I I 9.513257 I 9.513303 9.513300 9.512023

1.1 I 0.9512023 0.9513257 0.9513303 0.9513303

2.1 I 1.046463 1. 046458 1.0464633

3.1 I 2.197573 2.197563 I
4.1 I 6.812444

0.5 1. 7724539 1 1.772402 1.772415 1. 772423 1. 772412

1.5 0.8862059 0.8862011 0.8862074 0.8862113

2.5 I 1.329317 1.329302 I 1.3293112

3.5 I 3.323278 I 3.323254 I
4.5 I 11. 63139 I
0.9 I I 1. 068607 I 1.068606 I 1.068606 I 1.068608

1.9 I 0.9617471 0.9617464 0.9617457 0.9617457

2.9 1.827317 1. 827318 1.8273169

3.9 5.299219 5.299223

4.9 I 20.66697 I

I This integral has a value of n1l2.

7For additional infonnation about evaluating the gamma function, see, for example,
William. H. Press, et ai., Numerical Recipes: The Art of Scientific Computing. Cambridge
University Press. New York. 1986.

562 • 11. Basic Statistics and Numerical Analysis with Fortran

Problem Discussion
In P-l1.4, the step size used in the Simpson's Rule algorithm (0.001) has

heen hard coded within the function. If you wish, you can require this value to be
provided as input by the user or by the calling program. It might be a good idea
to do this while you're testing the function. However, in the same sense that a
programmer shouldn't have to worry about the details of how Fortran evaluates
the SIN function, you shouldn't have to ask the user of this function to provide
values that are relevant only to the internal details of how the gamma function
will be evaluated.

You should make sure you understand the recursion relationship for gamma
functions by comparing the values of r(3/2) , r(5/2) , and so on, with their
calculated values.

11.5 Solving Systems of Linear Equations

11.5.1 Linear Equations and Gaussian Elimination

The behavior of many physical systems can be represented, or at least
approximated, by a system of linear equations. In this section, we will present one
technique for solving such a system.

1 Define the problem.

Consider the following system of three equations, linear in x:

x1all + x 2 a 12 + x 3a 13 C 1

x 1a 21 + x 2 a 22 + x 3a 23 C 2 (1)
x 1 a 31 + x 2a 32 + x 3a 33 C 3

In vector notation, this system is expressed as AX = C. Develop a subprogram
that will solve this system of equations for XI' x2, and x3• The method should be
easy to generalize to larger systems.

2 Outline a solution.

One widely used tehnique for solving a system of linear equations is
Gaussian elimination. Suppose system (1) could be replaced with the following
system:

11.5 Solving Systems of Linear Equations • 563

Xl + x 2a ' 1 2 + x3a' 13 = C' 1

X 2 + x 3a' 23 = C' 2 (2)
X3 = C I 3

The matrix fonned by the tenns to the left of the upper triangultu matrix
= sign in system (2) is called an upper triangular
matrix, in which all the coefficients below the
left-to-right, top-to-bottom diagonal are O. (We will henceforth refer to this
particular diagonal simply as the diagonal.) The coefficients along the diagonal are
1. We now claim, without proof or additional discussion, that a solution for
system (2) is equivalent to a solution for system (1). We further claim that for
many systems of equations related to properly fonnulated problems of physical
interest, it is possible to convert a set of system (1) equations into'a set of system
(2) equations. This process is called "triangularizing the matrix.,,8

It should be clear that if such a system can be I backsubstitutio I
found, it is then possible to solve for the all the x's, using n
a process called backsubstitution:

(3)

We will now work through the calculations required to convert system (1)
into the upper triangular fonn (2). It will be easier to follow the calculations if we
use a numerical example with coefficients that can be expressed as rational
numbers. (Rational coefficients are used only for demonstration purposes and do
not affect the general applicability of the method.) Consider this system of
equations:

x l "(1/3) + x 2 "(1/2) + x 3 "(1/4)
x 1 "(2) + x 2 "P/3) - x 3 "(1/4)
x l "(1/4) - x 2 "(1/8) + x 3 "(1)

6
6

8

The coefficients along the diagonal are called pivots. The first
step in the solution is to find the row with the largest coefficient (in
absolute magnitude) in the first column and interchange that row with

(4)

pivots I
the top row in system (4). In this example, the largest coefficient in the first
column occurs in the second row. Therefore, you should interchange the first and
second rows:

Xl " (2) + X 2 " (1/3) - X 3 " (114)
x l "(1/3) + x 2 "(1/2) + x 3 "(1/4)
X l " (1/4) - X 2 " (1/8) + X 3 " (1)

8For further discussion, see any text on numerical analysis.

6
6

8

(5)

564 • 11. Basic Statistics and Numerical Analysis with Fortran

The next step is to divide row one by the coefficient in the fITst column.
The result is that the fITst pivot will have a coefficient of 1:

Xl • (1) + x 2 ' (1/6) + x3' (-1/8) 3
Xl • (1/3) + x 2 ' (1/2) + x3' (1/4) 6 (6)
x I '(1/4) + x 2 '(-1/8) + x3'(1) 8

The next step is to multiply the fITst row by the coefficient in column one
of the second row and subtract row one from row two. Then multiply the original
fITst row by the coefficient in column one of the third row and subtract row one
from row three. This produces a reduced system of equations:

xI '(l) + x 2 '(1/6) + x3'(-1/8) 3
x 2 '(1/2-1/18) + x3'(1/4+1/24) 5 (7)
x 2 '(-1/8-1/24) + x3'(1+1/32) = 29/4

xI'(l) + x 2 '(1/6) + x3'(-1/8) = 3
x 2 '(8/18) + x3'(7/24) = 5
x 2 '(-4/24) + x3'(33/32) = 29/4

Of the remaining coefficients in column two ofrows two and three, 8/18
is larger in magnitude than -4124, so these rows don't need to be interchanged.
Divide row two by the coefficient of the second pivot:

Xl • (1) + x 2 ' (1/6) + x3' (-1/8) 3
x 2 ' (1) + x3' (21/32) 45/4
x 2 '(-4/24) + x3'(33/32) = 29/4

(8)

Now multiply row two by -4124 and subtract row two from row three:

x I '(l) + x 2 ·(1/6) + x3'(-1/8) = 3
x 2 '(1) + x3'(21/32) = 45/4 (9)

+ x 3 '(73/64) = 219/24

Finally, divide row three by the coefficient of X3:

xl ·(l) + x2 '(1/6) + x3 '(-1/8) = 3
x 2 ·(1) + x3'(21/32) = 45/4 (10)

+ x3'(1) = (219/24)'(64/73) = 8

This immediately gives X3 = 8 for one of the solutions. Now substitute X3 into row
two,

X 2 = 45/4 - (21/32)'8 6 (11)

and X1 and x? into row one.

11.5 Solving Systems of Linear Equations .. 565

Xl 3 - 6/6 + B/B 3 (12)

3 Design an algorithm.

Using the example from Step 2, we can outline an algorithm. The sequence
of operations is sufficiently involved that it is worth designing the algorithm first
in outline form and then in more detail. Here is an outline.

1. Define an array to hold the coefficients (a) and the constants (c).
2. Read a data file containing a value for n and the (n)-(n+1) elements of A.
3. Triangularize the matrix.

LOOP (through each row)
a. For each row below current row, look for a coefficient

A(row,currenLrow) that is larger in absolute magnitude than the
coefficient A(currenLrow, currenLrow).

b. If a larger coefficient exists, exchange that row with currenLrow.
c. Divide all columns in the current row of A by

A (currenLrow,currenLrow)
d. For all rows below currenLrow, multiply the coefficients in

(original) currenLrow by the first coefficient in the row and
subtract from the corresponding coefficient in row.

END LOOP

4. Backsubstitute to find solutions.

a. Solve directly for last root.
b. Substitute in previous row, continuing to frrst row.

Here is the algorithm in more detail.

DEFINE (array of real numbers A with n rows and n+ 1
columns and array of size n to hold roots)

OPEN (data file)
READ (n)
READ (n,,(n+ 1) elements of A)
(Triangularize the matrix.)
LOOP (for row = 1 to n_rows)

(Search for row with larger pivot.)
IF (row < n rows) THEN ASSIGN PivotRow=row

566 • 11. Basic Statistics and Numerical Analysis with Fortran

LOOP (for i = row+ 1 to n_rows)
IF /A(i,row) />/A (PivotRow, PivotRow) /
THEN ASSIGN PivotRow = i

END LOOP
{Swap rows if required.)

IF (PivotRow :/: row) THEN·
LOOP (for col = row to n_cols)

ASSIGN temp = A(PivotRow,col)
A(PivotRow,col) = A(row,col)
A)row,col) = temp

END LOOP
(end IF ...)

(end IF ...)
(Divide all coefficients in row by pivot.)
ASSIGN Divide8y = A(row,row)
LOOP (for col = row to n_cols)
ASSIGN A(row,col) = A(row,col)lDivide8y
END LOOP
(Reduce the (row)th column to 0.)
IF (row < n_rows) THEN

LOOP (for i = row+ 1 to n_rows)
LOOP (for col = row+ 1 to n_cols)

ASSIGN A(i,col) = A(i,col - A (row, col) .. A (i,row)
END LOOP
ASSIGN A(i,row) = 0

END LOOP
(end IF ...)
(optional for testing: print reduced matrix)

END LOOP
(8acksolve for roots.)
ASSIGN roots(n_rows) = A(n_rows,n_cols)
LOOP (for row = n_rows-1 (down) to 1)

ASSIGN roots(row) = A(row,n_cols)
LOOP (for i = row+ 1 to n_rows)

ASSIGN roots(row) = roots(row) - A(row,i) .. roots(i)
END LOOP

END LOOP

11.5 Solving Systems of Linear Equations • 567

4 Convert the algorithm into a program.

Program P-I1.5 uses the data file GAUSS. DAT, which can be downloaded from
the World Wide Web site mentioned in Section i.5 of the Preface.

P-I1.5 [GAUSS. F90]

!--
MODULE LinearSystemSubs

CONTAINS

SUBROUTINE GaussianElimination(a,n_rows,n_cols,solutions)

Solves system of linear equations using Gaussian
elimination with partial (row) pivoting.

IMPLICIT NONE
INTEGER, INTENT(IN) :: n_rows,n_cols
REAL, INTENT(INOUT) :: a(n_rows,n_cols)
REAL, INTENT(OUT) :: solutions (n_rows)
INTEGER row,col,PivotRow,i
REAL DivideBy,temp

DO row=l,n_rows

Search for pivot row.
IF (row < n_rows) THEN

PivotRow=row
DO i=row+l,n_rows

IF (ABS(a(i,row» > ABS(a(PivotRow,row») PivotRow=i
END DO

Swap pivot row if required.
IF (PivotRow /= row) THEN

PRINT*, 'swapping pivot row ... '
DO col=row,n_cols

temp=a(PivotRow, col)
a(PivotRow,col)=a(row, col)
a(row,col)=temp

END DO
PRINT*,'swap done ... '
CALL PrintMatrix(a,n_rows,n_cols)
END IF

END IF !IF (row < n_rows)

Divide by pivot.
DivideBy=a(rOw,row)
a(row,row:n_cols)=a(row,row:n_cols)/DivideBy

568 • 11. Basic Statistics and Numerical Analysis with Fortran

Reduce the (row)th column to 0
IF (row < n_rows) THEN

DO i=row+l,n_rows
a(i,row+l:n_cols) &

= a(i,row+l:n_cols)-a(row,row+l:n_cols)*a(i,row)
a(i,row)=O.

END DO
END IF

Print reduced matrix.
CALL PrintMatrix(a,n_rows,n_cols)

END DO

Backsolve for solutions.

1000
1010

solutions(n_rows)=a(n_rows,n_cols)
DO row=n_rows-l,l,-l

solutions(row)=a(row,n_cols)
DO i=row+l,n_rows

solutions(row)=solutions(row)-a(row,i)*solutions(i)
END DO

END DO

RETURN
END SUBROUTINE GaussianElimination

SUBROUTINE PrintMatrix(a,n_rows,n_cols)

IMPLICIT NONE
INTEGER, INTENT(IN) .. n_rows,n_cols
REAL, INTENT(IN) .. a(n_rows,n_cols)
INTEGER rows,cols

PRINT*, 'from PrintMatrix ... '
DO rows=l,n_rows

DO cols=l,n_cols
WRITE(*,1000,advance='no')a(rows,cols)

END DO
WRITE(*,1010)

END DO

FORMAT (f7 .2)
FORMAT ()

RETURN
END SUBROUTINE PrintMatrix

END MODULE
!--

PROGRAM Gauss

Driver program for LinearSystemSubs,
including Gaussian elimination with partial pivoting.

USE LinearSystemSubs
IMPLICIT NONE
REAL, DIMENSION(:, :), ALLOCATABLE .. a
REAL, DIMENSION(:), ALLOCATABLE .. solutions
INTEGER n_rows,n_cols,rows,cols

11.5 Solving Systems of Linear Equations • 569

OPEN(l,file='c:\ftn90\source\gauss.dat')

READ(l,*)n_rows ! number of equations
n_cols=n_rows+1
ALLOCATE(a(n_rows,n_cols),solutions(n_rows»

DO rows=l,n_rows
READ(l,*) (a(rows,cols),cols=l,n_cols)
PRINT*,(a(rows,cols),cols=l,n_cols)

END DO

Print original matrix.
CALL PrintMatrix(a,n_rows,n_cols)

Solve system.
CALL GaussianElimination(a,n_rows,n_cols,solutions)
WRITE(*,1020) (solutions(rows),rows=l,n_rows)

1000 FORMAT(f7.2)
1010 FORMAT ()
1020 FORMAT(e15.5)

END

Running P-I1.5

3.0000000E+02 O.OOOOOOOE+OO
O.OOOOOOOE+OO 5.5000000E+02

-2.0000000E+02 -2.5000000E+02
300.00 0.00-200~00 0.00

0.00 550.00-250.00 6.00
-200.00-250.00 600.00 0.00
300.00 0.00-200.00 0.00

0.00 550.00-250.00 6.00
-200.00-250.00 600.00 0.00

1.00 0.00 -0.67 0.00
0.00 550.00-250.00 6.00
0.00-250.00 466.67 0.00
1.00 0.00 -0.67 0.00
0.00 1.00 -0.45 0.01
0.00 0.00 353.03 2.73
1.00 0.00 -0.67 0.00
0.00 1.00 -0.45 0.01
0.00 0.00 1.00 0.01

0.51502E-02
o . 14421E-0l
0.77253E-02

-2.0000000E+02
-2.5000000E+02
6.0000000E+02

5 Verify the operation of the program.

O.OOOOOOOE+OO
6.0000000
O.OOOOOOOE+OO

For the example used to develop the algorithm, the intermediate
calculations with fractions all cancel out to give exact solutions in terms of integer
values. However, in general, the potential loss of accuracy as a result of

570 • 11. Basic Statistics and Numerical Analysis with Fortran

cumulative errors involving real arithmetic on computers is always a concern in
any algorithm that involves many calculations. For reasons that aren't obvious, the
algorithm we have used seeks to minimize arithmetic errors by searching for the
row with the largest coefficient in the pivot column and interchanging it with the
current row.9 However, there is still no guarantee that unacceptable errors won't
accumulate. If the physical problem represented by the equations is poorly
defmed, it is possible that the algorithm will give answers that look OK, but in
fact are wrong. (This can happen with so-called "ill-conditioned matrices." A
famous example is presented in Exercise 11 at the end of this chapter.) In extreme
cases, divisions by zero can occur, and the program will crash. This might be
distressing, but it is a better result than obtaining wrong answers wiLl a program
that doesn't crash.

In any algorithm involving many calculations with real numbers, you
should NEVER assume that the results are correct until you have checked them
thoroughly. This is not always easy to do! One test you can perform is to
substitute the x values into the original equations. In Exercise 7 at the end of this
chapter, you are asked to modify P-l1.5 to include calculation of a "residual"
vector. Each component of the residual vector should be very close to zero for a
"good" solution. However, this is what mathematicians call a "necessary but
insufficient condition" to guarantee a "good" solution. Ill-conditioned matrices can
result in solutions for which the residuals are small even though the solution is not
correct. Such matrices may not even have a "good" solution.

11.5.2 Application: Current Flow in a DC Circuit with Multiple Resistive
Branches

1 Define the problem.

Consider the DC circuit shown in Figure 11.4. It consists of a voltage
source connected to several resistive branches. Kirchoff's Laws state that the
voltage drop around any closed branch of such a network of resistances must be
zero. This fact leads directly to a series of linear equations that describe the
current flow in the three branches of this circuit:

9It is also possible to interchange both columns and rows to move the absolutely largest
coefficient in the reduced system to the pivot position. However, it can be shown that this results
in relatively small improvements in the overall accuracy of the method. Such a solution is called
"Gaussian elimination with full pivoting." The solution described here is called "Gaussian
elimination with oartial oivoting."

11.5 Solving Systems of Linear Equations • 571

R1

--..
R2

R3

Figure 11.4. Current flow in a
DC circuit with resistive

branches

(R1 + R2)I1 - ~I3 = 0
(R3 + R4)I2 - R4I3 = E

-R2Il - R4I2 + (R2 + R4 + Rs)I3 = 0

Solve this equation for these values:

Rl = 100 Q R4 = 250 Q
R2 = 200 Q R5 = 150 Q
R3=300Q E=6V

2 Outline a solution.

In a physics course, you would probably be asked to derive the equations
yourself, which is the only difficult part of this problem. Note that the direction
of current flow is normally considered positive in the direction from the "+"
terminal of a battery (or other voltage source) to the "-" terminal. If you guess
wrong about the direction of flow in a particular branch of the circuit, the current
will have a negative value in the solution.

3 Design an algorithm.

There is no need to design an algorithm for this problem, as it is a
straightforward application of subroutines already written.

572 • 11. Basic Statistics and Numerical Analysis with Fortran

4 Convert the algorithm into a program.

There is also no need to write any new code to solve this problem. Simply
create an appropriate data file in the same format as GAUSS. DAT, as used by
P-l1.5, and run GAUSS. F90.

5 Verify the operation of the program.

This is a problem that should not cause significant numerical difficulties.
It is relatively easy to check the value for 12 by noting that R\ and R2 are in
parallel. Then the resistance of this parallel combination plus Rs is in parallel with
R4• Finally, this parallel combination is in series with R3• If you do these
calculations by hand, you should find that 12 is approximately 14.4 rnA.

11.6 Finding the Roots of Equations

Consider a function y = f(x). A common problem in mathematics is finding the
value(s) of x for which the equation f(x) = O. As a simple example, consider the
polynomial

f(x) = x2 - 8x + 15

It is easy to determine the values of x for which this function equals zero because
the polynomial can be factored by inspection:

f(x) = (x - 5)(x - 3)

The values x=5 and x=3 are called the roots of the function.
In general, it is not this easy to find the roots of a function. For example,

although there are standard methods for finding the roots of a quadratic equation,
there are no comparable methods for high-order polynomials. Consequently,
numerical methods are often needed. In this section we will develop one
intuitively simple numerical method. Often it is of interest to find all real roots
over a specified ran.e;e. so that is how we will formulate the problem.

11.6 Finding the Roots of Equations • 573

1 Define the problem.

Write a subprogram that will estimate the real roots for the equation
f(x) = 0 over the range [xa,xb].

2 Outline a solution.

The approach we will discuss is called the bisection method. How can we
tell whether there are any roots in the range [xa,xb]? Suppose that the sign of f(xa)
is different from the sign of f(xb)' The obvious interpretation of this fact is that the
function has crossed the x-axis at least once in the range [xa,xb]. It is also possible
that the function crossed the x-axis more than once, in which case the total
number of crossings must be odd. This means that f(x) must have at least one real
root in the range [xa,xb].

A second possibility is that the sign of f(xa) is the same as the sign of
f(xb). This means that there may be no roots or that the function has crossed the
x-axis an even number of times, so that f(x) must have either no roots or an even
number of roots in the range [xa,xb].

A third possibility, which is applicable in either of the above two
situations, is that f(x) just touches the x-axis without crossing it. This is true for
the function

f(x) = x2 - 6x + 9 = (x - 3)(x - 3)

This function, which never crosses the x-axis, has two identical real roots. Such
possibilities complicate the search for a generally applicable root-finding
algorithm. Figure 11.5 illustrates these three possibilities.

574 • 11. Basic Statistics and Numerical Analysis with Fortran

15r-----~------_r------~----~r_----_r----~

10

I
I
I
I

Crosses axis twice (two real roots)

I I
I I

-5 ---------:----------:---
I I
I I
I I
I I
I I

-10 ---------~---------~--------~ I I I
I I I
I I I
I I I
I I I
I I I

I
I _..a ________ _
I
I
I
I
I
I

-15+-----~-------r------+-----~-------r----~
o 2 3 4 5 6

x

Figure 11.5. Polynomials with one or more real roots

In any case, we will proceed on the assumption that roots can be found by
identifying the places where a function crosses the x-axis. (That is, we will ignore
the third possibility mentioned above.) Assume that the range [xa,xJ is subdivided
into intervals sufficiently small that each interval contains either one root or no
roots. If f(x) at the left boundary XL of the interval is different from the sign at the
right boundary of the subinterval XR, we will assume that the interval contains one
real root. Otherwise, we will assume that the interval contains no roots. It is
important to realize that this is just an assumption, and there is no way to
guarantee whether the assumption is justified.

Now divide the interval [XL,XR] in half. There are three possibilities, which
take into account the fact that if f(xJef(xR) < 0, then the function crosses the x
axis somewhere in the interval [XL,XR]:

(1) f(Xmid) = 0
(2) f(xL)ef(xmid) < 0
(3) f(Xmid)ef(xR) < 0

If (1) is true, then xmid will be accepted as a root. It isn't quite accurate to say that
Xmid is a root because of the limitations on real arithmetic. However, as a practical
matter, we can usually assume that x",iA is sufficiently close to the "real" root.

11.6 Finding the Roots of Equations • 575

Also as a practical matter, it is unlikely that the value f(y will ever equal
exactly zero (recalling the discussion of real-number arithmetic and IF ... tests
in Chapter 6).

If (2) is true, then the root must lie in the interval [XL,Xood]' Let XR=Xood and
repeat the test. If (3) is true, then the root must lie in the interval [Xood'XR], Let
XL =Xmid and repeat the test. As a result of repeatedly halving the interval in this
way, [XL,XR] will eventually become smaller than some specified small value. At
that point, we can assume that the algorithm has converged and that the root is
located at Xmid' It is also possible to terminate the algorithm based on the absolute
magnitude of f(Xmid)'

3 Design an algorithm.

As usual, it is important to specify the input to and output from the
algorithm and to isolate the algorithm in a subprogram that can be applied in a
variety of circumstances.

SUBPROGRAM Bisect(lN: Xu xR, F; OUT: root, finaLlnterval)
DEFINE (xm1dJ hit (logical), epsilon_f, epsilon_x (values to test for

convergence))
ASSIGN epsilon_f = ?

epsilon_x = ?
Xmid = (xR + xJI2
hit = false

LOOP (while jXR - xd> epsilon_x and jF(xm;d j > epsilon_f and not hit)
IF F(xmi,) = 0 THEN hit = true (found "exacf'root)
ELSE IF F(xJ .F(xmi,) < 0 THEN xR = Xm1d (root in left half)
ELSE F(xJJ.F(xmi,) < 0 THEN XL = xmid (root in right half)
ASSIGN Xmid = (XL + xJJI2

END LOOP
ASSIGN root = f(xmi,)

finaLinterval = jXR - xd

This algorithm assumes that the values against which convergence will be tested
can be hard-coded into the subprogram. You might instead wish to supply them
as parameters. (See Exercise 5 in Basic Programming Exercises at the end of this
chapter.) Note that Bisect returns the length of the fmal subinterval as well as the
estimated root. This gives the calling (sub)program an additional chance to decide
whether to accept the root.

Bisect will typically be called from another subprogram that divides the
original range [xa,xJ into a specified number of intervals and calls Bisect once

576 • 11. Basic Statistics and Numerical Analysis with Fortran

for each such interval. The design of this subprogram is straightforward. The
expectation is that some of these intervals will contain a root and some won't.
One way to store the results is to create an array to hold a value for each of the
specified intervals. When control is returned to the calling program, each element
of this array will hold either a root or an initial value chosen such that it can't be
mistaken for a root.

4 Convert the algorithm into a program.

P-l1.6 [ROOTS. F90]

MODULE RootSubs

TYPE RootType
REAL root,f_root,interval

END TYPE RootType

CONTAINS
1--

SUBROUTINE Bisection(F,XL,XR,n_intervals,roots)

Set up intervals for finding roots with bisection method.

IMPLICIT NONE
REAL, INTENT(IN) :: XL,XR
INTEGER, INTENT(IN) :: n_intervals
TYPE (RootType), INTENT(OUT) :: roots (n_intervals)
REAL dx,xa,xb
INTEGER i

1-------------------------------
INTERFACE

REAL FUNCTION F(x)
REAL, INTENT(IN) :: x

END FUNCTION F
END INTERFACE

1------------------------------
dx=(XR-XL)/n_intervals
DO i=l,n_intervals

xa=XL+REAL(i-l)*dx
xb=XL+REAL(i)*dx
IF (F(xa)*F(xb) < 0.) THEN

CALL Bisect(F,xa,xb,roots(i)%root,roots(i)%f_root, &
roots(i)%interval)

ELSE
roots(i)%root=O.; roots(i)%f_root=O.; roots(i)%interval=O.

END IF
END DO

END SUBROUTINE Bisection
1--

11.6 Finding the Roots of Equations • 577

SUBROUTINE Bisect(F,xa,xb,x_mid,f_mid,final_interval)

IMPLICIT NONE
REAL, INTENT (INOUT) :: xa,xb
REAL, INTENT(OUT) :: x_mid,f_mid,final_interval
LOGICAL hit
REAL, PARAMETER:: epsilon_x=le-S,epsilon_f=le-S

!------------------------------- .
INTERFACE

REAL FUNCTION F(x)
REAL, INTENT(IN) .. x

END FUNCTION F
END INTERFACE

!------------------------------
x_mid={xb+xa)/2.
hit=.false.
f_mid=F(x_mid)
DO WHILE ({{xb-xa) > epsilon_x).AND. &

(ABS(f_mid) > epsilon_f).AND.(.NOT. hit»
IF (f_mid == 0.) THEN

hit=.true.
ELSE IF (F{xa)*f_mid < 0) THEN

xb=x_mid
ELSE IF (F{xb)*f_mid < 0) THEN

xa=x_mid
ELSE

PRINT *, I Unexplained error! I

END IF
x_mid={xb+xa)/2.
f_mid=F{x_mid)
final_interval=xb-xa

END DO

END SUBROUTINE Bisect
!--------------------------

END MODULE RootSubs
!==============================

MODULE FunctionDefinition

CONTAINS
!-----------------------

REAL FUNCTION F(x)

IMPLICIT NONE
REAL x

F=S.*x**3-2.*x**2+3.
END FUNCTION F

!----------------------------------
END MODULE FunctionDefinition

!==================================

578 • 11. Basic Statistics and Numerical Analysis with Fortran

PROGRAM GetRoots

MS-DOS file name ROOTS.F90

USE RootSubs, ONLY : RootType,Bisection
USE FunctionDefinition, ONLY : F
IMPLICIT NONE
INTEGER, PARAMETER :: n_intervals=lO
TYPE (RootType) roots (n_intervals)
INTEGER i

CALL Bisection(F,-lO.,O. ,n_intervals,roots)
DO i=l,n_intervals

PRINT *,i,roots(i)%root,routs(i)%f_root,roots(i)%interval
END DO

END PROGRAM

Running P-l1.6

O.OOOOOOOE+ 00 O.OOOOOOOE+OO O.OOOOOOOE+OO
O.OOOOOOOE+OO O.OOOOOOOE+OO O.OOOOOOOE+OO
O.OOOOOOOE+OO O.OOOOOOOE+OO O.OOOOOOOE+OO
O.OOOOOOOE+OO O.OOOOOOOE+OO O.OOOOOOOE+OO
O. OOOOOOOE+OO O.OOOOOOOE+OO O.OOOOOOOE+OO
O.OOOOOOOE+OO O.OOOOOOOE+OO O.OOOOOOOE+OO
O.OOOOOOOE+OO O.OOOOOOOE+OO O.OOOOOOOE+OO
O.OOOOOOOE+OO O.OOOOOOOE+OO O.OOOOOOOE+OO
O.OOOOOOOE+OO O.OOOOOOOE+OO O.OOOOOOOE+OO

- 0.7290001 1.4424324E-OS 7.629394SE-06

5 Verify the operation of the program.

The results from any root-finding algorithm can always be tested directly
by substituting the estimated root back into the original function. The result should
differ from zero by no more than some specified tolerance. It is assumed that this
subroutine Bisect will be called only when the function changes sign over the
original interval supplied in the parameter list. As long as this is true, the
algorithm is guaranteed to converge as long as the specified tolerance is
reasonable relative to the accuracy with which real arithmetic is performed; a
tolerance of 10.15 is unreasonable when real arithmetic is performed only to seven
or eight significant figures!

Once the bisection algorithm has converged, you should check values of
the function in the vicinity of the root to examine its slope-essentially, its
numerical derivative. If the derivative is very small, it means that the root returned
by the algorithm will be very sensitive to the criteria you have chosen for
terminating the bisection algorithm.

11.7 Numerical Solutions to Differential Equations • 579

Although it is possible to test the roots returned by the bisection method,
it is not so easy to guarantee that all the roots in the original range have been
found. For any interval supplied to the parameter list, the bisection method will
fmd one root, because, by design, the function changes sign in that interval. In the
previous discussion of this method, we have assumed that when the original range
of x values is divided into intervals, each interval will contain either one root or
no roots. However, it may be true that more than one root lies within an interval.
As implemented, the algorithm searches fIrst for a sign change in the left half of
the original interval. If it finds one, it thereafter ignores the right half of the
original interval. An additional root that lies within t~e right half will remain
undetected.

11.7 Numerical Solutions to Differential Equations

There are several numerical techniques for solving differential equations of various
kinds. In general, the technique must be matched carefully with the problem. In
this section, we will focus on a particular class of second-order differential
equations that demonstrate clearly how mathematics can tie together apparently
unrelated physical concepts. The equations we will discuss here all have analytic
solutions, and we will give those solutions for the purpose of comparing them
with the numerical calculations. However, you are not expected to be able to
derive the solutions yourself unless you have had a course in differential
equations. In general, the mathematical sophistication required to understand these
results goes beyond that required in any other part of this text.

We will begin by presenting a particular problem. It may seem that this
problem is more like an "application" than a general approach to solving a class
of differential equations, but associating the results with a simple physical system
will make the mathematics easier to follow. In addition, the solutions to this
conceptually simple physical problem are broadly and directly applicable to other
important problems in science and engineering.

11.7.1 Motion of a Damped Mass and Spring

Consider a mass hanging from the end of a massless spring. If this system is in
static equilibrium-that is, if nothing is moving-the spring is stretched and the
force due to gravity acting on the mass is counterbalanced by a restoring upward
force provided by the spring. If the displacement in the spring is small, then
according to Hooke's Law, the restoring force provided by the spring is
proportional to the displacement:

mg - kL = 0 (1)

580 • 11. Basic Statistics and Numerical Analysis with Fortran

where k is a spring constant that can be detennined experimentally by measuring
the displacement resulting from hanging a known weight on the spring (mg =
mass times the gravitational acceleration).

Now suppose that the mass is displaced from its equilibrium position in the
downward (assumed positive) direction by an amount f. As long as the total
displacement L+f is still small (Le., as long as Hooke's Law still applies) the
restoring force is still proportional to the displacement. If the mass is now
released, it will vibrate around its equilibrium position. If damping forces are
ignored, the equation of motion for the mass is

md2f1df = mg - k[L + f(t)] (2)

Because mg = kL, this equation reduces to

(3)

The solution to this solution is a cosine-shaped curve with period T,

(4)

where T = 2rrJroo = 21t(mlk)ll2, A = Rcos(o), B = Rsin(o), R = (A2 + B2)112, and the
phase angle 0 = tan-1(BI A). The quadrant of 0 must be detennined from the signs
of cos(o) and sin(o). The initial conditions for the system detennine values for the
constants. In a typical situation where the mass is initially displaced downward (in
the positive direction) by an amount L and released, A=L, the initial velocity
equals 0, and B and 0 are both equal to O.

Because this motion is undamped, the amplitude of the oscillation does not
decrease as a function of time. This is a physically unrealistic situation. Therefore,
suppose that the motion is damped by having the spring move in a resisting
medium. The resistance could be provided incidentally just by air or it could be
an intentional part of the system, through the addition of a mechanical damping
device, sometimes called a "dashpot," for example. Such situations can be
modeled by adding another tenn to the equation of motion, proportional to
velocity,

md2f1df + Ddf/dt + kf = 0 (5)

where D is a damping coefficient. For the interesting case of "small" damping, it
can be shown that D2 - 4km must be less than O. Then the general solution is

-Dt/2m .
f(t) = e fAcos(pt) + Bsm(pt)l (6)

11.7 Numerical Solutions to Differential Equations • 581

where p = J 4km - D 212m. It is at least qualitatively clear that this solution has
the desired properties. The sine and cosine terms provide the oscillating
component and the exponential term guarantees that the amplitude of the
oscillation will approach zero as time approaches infmity, no matter what its
initial amplitude.

The presence of damping changes the period previously derived for
undamped motion. This new "quasiperiod" TI still gives the time between
successive maxima or minima of the function,

(7)

which approaches the period for undamped motion as D approaches O. This value
is important when applying numerical methods because in order to characterize
the behavior of the motion, it is of course necessary to use step sizes that are
small compared to the period for undamped motion or to this "quasiperiod" for
damped motion.

A standard technique for solving a second-order differential equation in the
form of (5) is to rewrite it as a system of two first-order equations. For the mass
and-spring problem, the result is especially easy to understand because of the
simple physical nature of the problem. Because velocity v is the time derivative
of position (v=dxldt) and acceleration is the time derivative of velocity
(d2f1df=dv/dt) ,

M/dt = vet)
dv/dt = aCt) = -[Dv(t) + kf(t)]/m (8)

There are several numerical methods applicable to equations such as these,
having the general form dy/dx = f(x,y). They all involve, in some fashion,
selecting a small interval Ax and estimating the value of y for this "future" value
of x. (Again, this concept is easy to grasp when the independent variable is time,
as is the case for the equations of motion we are discussing.) We will use the
well-known Runge-Kutta method, which has the advantage that no higher order
derivatives are required. In general,

1<1 = At·f(x,y)
~ = At·f(x+Axl2,y+k/2)
1<3 = At·f(x+Axl2,y+ki2)
1<4 = At·f(x+Ax,y+k3)
y(x+Ax) "'" y(x) + (1<1 + 21(" + 21<~ + 1< ..)/6

(9)

582 • 11. Basic Statistics and Numerical Analysis with Fortran

For the equations of motion in (8),

K1,e= At-v(t)
~,e= At-[v(HAtl2)] = At-[v(t) + a(t)Atl2] (10)
~,e= At-[v(t) + a(t)Atl2]
K4,e= At-[v(t) + a(t)At]
K1,v = -At-[Dv(t) + kf(t)]/m
~,v = -At-{D[v(t) + KI./2] + kf(HAtl2)}/M

= -At-{D[v(t) + K1./2] + k[f(t)+v(t)Atl2]}/M (11)
K3,v = -At-{D[v(t) + ~./2] + k[f(t)+v(t)Atl2]}/M
K4,v = -At-{D[v(t) + ~,yl + k[f(t)+v(t)At]}/M

from which

f(HAt) = f(t) + K1,t + 2~,e + 2~,e + K4,t)/6
v(HAt) = v(t) + K1,v + 2~,v + 2~,v + K4,vV6 (12)

These kinds of numerical solutions suffer from
several sources of error. Even if it can be assumed
(which it can't) that there is no error due to the

discretization e"orl
limitations of real arithmetic on computers, there remains an inherent
discretization e"or. This is due to the fact that estimated values one step "into the
future" are used as the initial conditions for the next step. However, these
conditions are, by definition, estimates and not the true values. For each step,
therefore, there is a local discretization error that propagates over the rest of the
solution as accumulated discretization error. These errors can be analyzed (a topic
that is beyond the scope of this text), but they are unavoidable whenever methods
such as these are used. As always, therefore, it is necessary to be extremely
cautious when applying numerical methods to real problems.

11.7.2 Application. Current Flow in a Series LRC Circuit

As mentioned earlier in this section, the equations of motion used to describe the
motion of a mass attached to a spring can also be used to describe other physical
systems.

1 Define the problem.

An electrical circuit contains a resistor R (ohms) and an inductor L
(henrys) in series with a source of constant (DC) volta~e V (volts). A switch is

11.7 Numerical Solutions to Differential Equations • 583

initially opened and is then closed at time t = O. What is the current flow in the
circuit after the switch is closed? How does the addition of a capacitor C (farads)
in series with the resistor and inductor change the current flow? See Figure 11.6.

2 Outline a solution.

The generally applicable equation for this problem is

Ld2q/de + Rdq/dt + q/C = V (13)

where the current i is the time derivative of the charge q. This equation has the
same form as the equation of motion for a damped mass-and-spring problem. The
correspondence between the variables is

m-7L
D-7R
k -7 l/C
e -7 q
V -7 dq/dt = i
f(t)-7 V(t)

The first part of the problem, with lIC=O and V a constant, is a special
case of the general problem. The second-order equation reduces immediately to
a single fIrst -order equation:

dildt = (V - Ri)/L (14)

The solution is
-RtiL

i(t) = V/R(1 - e) (15)

j~
~

L

C

FiJ!ure 11.6 LR and LRC circuits

584 • 11. Basic Statistics and Numerical Analysis with Fortran

There is no oscillating component because there is no "spring constant" term. The
solution satisfies the condition that i = 0 and di/dt = V/L at t = 0 and that i~ VIR
(from Ohm's Law) as t~CXl.

For the second part of the problem, which adds capacitance to the circuit,
assume that 4L1C - R2 > O. Then the solution for charge q is

(16)

This solution is a damped oscillation that exhibits the desired properties. At t = 0,
q = O. As t~CXl, q~CV. It is also true that the current (i = dq/dt) approaches 0 as
t~CXl, as required by the fact that the voltage V is constant.

3 Design an algorithm.

One property of these calculations is that it is easier to calculate the
Runge-Kutta coefficients in the context of a specific problem. It may not be worth
the trouble required to write a "general purpose" Runge-Kutta integration routine.
We will first design an algorithm that can be used to solve "mass-and-spring-like"
problems such as the one in this application.

SUBPROGRAM MassAndSpring(IN: 0, K, M, F, dt; OUT x, v)
DEFINE kCx, k2_x, k3_x, k4_x, kCv, k2_v, k3_v, k4_v
(Calculate Runge-Kutta coefficients.)

ASSIGN kCx = v
k2_x = v + AofT(x, v, 0, K, M, F) ·dt/2 (see SUB. AofT)
k3_x = v + AofT(x, v, 0, K, M, F)-dt/2
k4_x = v + AofT(x, v, 0, K, M, F)-dt
kC v = AofT(x, v, 0, K, M, F)
k2_v = AofT(x + v-dt/2, v + kCv-dt/2, 0, K, M, F)
k3_v = AofT(x + v-dt/2, v + k2_v"dt/2, 0, K, M, F)
k4_ v = AofT(x + v-dt, v + k3_ v-dt, 0, K, M, F)

(Propagate solution.)
ASSIGN x = x + (kCx + 2.k2_x + 2"k3_x + k4_x)-dt/6

v = v + (kCv + 2-k2_v + 2·k3_v + k4_v)-dt/6

Because of the way AofT is used, make a note in the algorithm that it should be
implemented as a Fortran function.

11.7 Numerical Solutions to Differential Equations • 585

SUBPROGRAM (Fortran function) AofT(IN: x, v, 0, K, M, F)
ASSIGN AofT = -(-F + O-v + K.x)IM

Now design the algorithm for solving the fIrst part of the problem:
LdiJdt + Ri = V.

WRITE (prompt for input)
READ (V, L, R, Lfinal,n)
INITIALIZE i = 0

t = 0
ASSIGN dt = Lfinalln
LOOP (for j = 1 to n)
(Calculate Runge-Kutta coefficients.)

ASSIGN kCi = (V - R·i)IL
k2_i = [V -R-(i + kCi-dt/2)]IL
k3_i = [V - R·(i + k2_i-dt/2)}IL
k4_i = [V - R·(i + k3_i-dt)]/L

(Propagate solution.)
INCREMENT i = i + (kCi + 2·k2_i + 2·k3_i + k4_i) -dt/6

t=t+dt

WRITE (t, i, (VIR).(1 - iRtlL) (Include analytic solution.)
END LOOP

Finally, solve the second part of the problem: Ld2q/de + Rdq/dt + q/C = V.
Include the analytic solution for q.

WRITE (prompt for input)
READ (V, L, R, C, Lfinal, n)
INITIALIZE q = 0

i = CVRI(2L)
(=0

ASSIGN dt=Lfina/ln
LOOP (for j = 1 to n)

CALL MassAndSpring(q, i, R, 11C, L, V, dt)
INCREMENT t = t + dt
WRITE (t, q, i, CV[1 _ i RtI(2L) cos(J 4 LI ~ ~ R2 t})

END LOOP

586 • 11. Basic Statistics and Numerical Analysis with Fortran

4 Convert the algorithm into a program.

P-ll.7 [CIRCUIT. F90]

MODULE RungeKutta

CONTAINS
!------------------------------------

REAL FUNCTION AofT(x,v,D,K,M,F)
Calculate acceleration for "mass and spring" problem.

IMPLICIT NONE
REAL, INTENT(IN) :: x,v,D,K,M,F
AofT=-(-F+D*v+K*x)/M
END FUNCTION AofT

!--------------------------
SUBROUTINE MassAndSpring(x,v,D,K,M,F,dt)

! Calculate motion for mass and spring problem with constant force
term.

IMPLICIT NONE
REAL,INTENT(INOUT) :: x,v
REAL, INTENT(IN) :: D,K,M,F,dt
REAL kl_x,k2_x,k3_x,k4_x,kl_v,k2_v,k3_v,k4_v

Runge-Kutta coefficients ...
kl_x=v
k2_x=v+AofT(x,v,D,K,M,F)*dt/2.
k3_x=v+AofT(x,v,D,K,M,F)*dt/2.
k4_x=v+AofT(x,v,D,K,M,F)*dt
kl_v=AofT(x,v,D,K,M,F)
k2_v=AofT(x+v*dt/2.,v+kl_v*dt/2.,D,K,M,F)
k3_v=AofT(x+v*dt/2.,v+k2_v*dt/2.,D,K,M,F)
k4_v=AofT(x+v*dt,v+k3_v*dt,D,K,M,F)

Propagate solution ...
x=x+(kl_x+2.*k2_x+2.*k3_x+k4_x)*dt/6.
v=v+(kl_v+2.*k2_v+2.*k3_v+k4_v)*dt/6.
END SUBROUTINE MassAndSpring

!---------------------------------
END MODULE RungeKutta

!==========================
PROGRAM Circuit

Use Runge-Kutta method to solve LRC circuit problems.
Variable equivalences with mass-and-spring problem:
V => force F
q => displacement x
i => velocity v
L => mass m
R => damping constant D
l/C => spring constant K

USE RungeKutta, ONLY : MassAndSpring
IMPLICIT NONE
REAL i,q,L,C,R,V,t,dt,t_final
REAL kl_i,k2_i,k3_i,k4_i
INTEGER j,n
CHARACTER*l choice

11.7 Numerical Solutions to Differential Equations • 587

Choose circuit type ...

PRINT *,' Specify [o]scillating or [n]o oscillating term ... '
READ *,choice
SELECT CASE (choice)
CASE ('0', '0')

I Ld A 2q/dtA 2+Rdq/dt+q/C=V
10 PRINT *,' Give V, L, R, C (4L/C-RA 2) > 0:'

READ *,V,L,R,C
PRINT *, &

, one period at t=' ,4*3.14159*L/SQRT(4.*L/C-R*R),' s'
PRINT *,' Give t_final and number of points:'
READ *,t_final,n

IF «4.*L/C-R*R) <= 0.) GO TO 10
q=O.; i=C*V*R/2./L; t=O. !Initial values
dt=t_final/REAL(n)
PRINT *,' time q i analytic q'
DO j=l,n

CALL MassAndSpring(q,i,R,l./C,L,V,dt)
t=t+dt
PRINT 1000, &
t,q,i,C*V*(1.-EXP(-R*t/2.jL)*COS(SQRT(4.*L/C-R*R)*t/2./L»

END DO
1000 FORMAT(lx,es12.6,3es12.4)

CASE (' n ' , 'N')
Ldi/dt+Ri=V (no oscillating term) ...

PRINT *,' Give V, L, R:'
READ *,V,L,R
PRINT *,' time constant at t=',L/R,' s'
PRINT *,' Give t_final and number of points:'
READ *,t_final,n
i=O.; t=O. !Initial values
dt=t_fina1/REAL(n)
PRINT *,' time i analytic l'
DO j=l,n

Runge-Kutta coefficients ...
k1_i=(V-R*i)/L
k2_i=(V-R*(i+k1_i*dt/2.»/L
k3_i=(V-R*(i+k2_i*dt/2.»/L
k4_i=(V-R*(i+k3_i*dt))/L

Propagate solution ...
i=i+(k1_i+2.*k2_i+2.*k3_i+k4_i)*dt/6.
t=t+dt
PRINT 1000,t,i,V/R*(1.-EXP(-R*t/L»

END DO

CASE DEFAULT
PRINT *,' No such choice. Try again ... '

END SELECT

END

588 • 11. Basic Statistics and Numerical Analysis with Fortran

Running P-l1.7 (LR circuit)

Specify [o)sci1lating or [n)o oscillating term ...
n

Give V, L, R:
100 .02 25

time constant at t= 7.9999998E-04 s
Give t_fina1 and number of points:

.001 20
time

5.0000008-05
1.000000E-04
1. 500000E-04
2 . 000000E - 04
2.5000008-04
3.0000008-04
3.5000008-04
4.000000E-04
4.500000E-04
5.000000E-04
5.5000008-04
6.0000008-04
6.500001E - 04
7.000001E-04
7.500001E-04
8.0000028-04
8.500002E-04
9.000002E-04
9.500002E-04
1.000000E-03

i
2.4235E- 01
4 . 70018-01
6.8388E-01
8.8480E-Ol
1. 0735E+00
1 .2508E+00
1.4l74E+00
1. 5739E+00
1.7209E+00
1.8590E+00
1.9887E+00
2.1105E+00
2.22508+00
2.3326E+00
2.4336E+00
2.52858+00
2.6176E+00
2.7014E+00
2.7801E+00
2.8540E+00

analytic 1
2.42358-01
4.7001E-01
6.83888-01
8.84808-01
1. 07358+00
1.25088+00
1. 4174E+00
1.5739E+00
1.72098+00
1.85908+00
1. 9887E+00
2.1105E+00
2.2250E+00
2.3326E+00
2.4336E+00
2.5285E+00
2.6176E+00
2.7014E+00
2.7801E+00
2.8540E+00

Figure 11.7 shows more of the solution.

4.r--:--~~ __ ~--~~--~~

3.5 -.. --- -- -- -i----- -:-- -: · .. 1"--· 1" · .. r-- -- .. :-- --- ··
: : : : : :

3 ········j··· .. ·· -- --l----------- j--------- --j--- -- -- ----r··········t·····------
(J) 2.5 - -i---- -- ----- i ·L j ; ~ -----+

I 2 ···j···········I···········[···········:·········j···· l··········f···········

-:: •• •.••••••• I •• ••• •••• ·I· •• • ••••• I •• ···~:i~~~~···I •••••••• r
00 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

time,s

Figure 11.7. Current in an LR circuit

\

11.7 Numerical Solutions to Differential Equations • 589

Running 11.7 (LRC circuit)

Specify [o) scillat i ng o r [n) o oscillat i ng t e r m . . .
o

Gi ve VI LI R, C (4LjC-RA 2) > 0:
100 .02 25 1e-6

one period at t = 8.9206733E-04 s
Give t _final and number of points:

.001 20
time

5 . 000000E- 05
1. 000000E - 04
1 .500000E- 04
2 .000000E - 04
2.500000E-04
3.000000E- 04
3.500000E- 04
4 . 000000E - 04
4 .500000E-04
5 .000000E - 04
5.500000E - 04
6.000000E-04
6.500001E - 04
7 . 000001E- 04
7.500001E-04
8.000002E - 04
8.5000021:: - 04
9.000002E - 04
9.500002E-04
1.000000E-03

q
9 . 2773 E- 06
2 . 9345E-05
5 . 7054E-05
8.8488E- 05
1 .1950E-04
1. 4623E-04
1. 6560E-04
1. 7562E-04
1. 7559E - 04
1. 6612E-04
1. 4894E-04
1. 2667E-04
1. 0238E - 04
7 . 9233E-05
6 . 0056E-05
4.7010E - 05
4.1362E-05
4.3378E-05
5.2352E-05
6.6750E - 0S.

i
2.9723E - Ol
4.8089E-Ol
5.9355E- 01
6.2533E-01
5.7706E-01
4 . 5952E-01
2.9151E - 01
9.7026E - 02

-9.8052E-02
-2.6931E-01
- 3.9674E- 01
-4.6702E-01
- 4 . 7476£-01
- 4.2269E-01
-3.2088E-01
-1.8499E-01
-3.4040E-02
1.1222E - 01
2.3577E-01
3.2253E-01

Figure 11.8 shows more of this solution.

analytic q
9.0252E-06
2 . 8413£-05
5.5211E-05
8.5756E-05
1. 16l6£-04
1.4278E-04
1.6266E-04
1. 7382£-04
1. 7545E-04
1. 6794E-04
1. 5273E- 04
1.3212E-04
1. 0891E- 04
8.6037E-05
6.6222E-05
5.1659E-05
4.3775E-05
4.3111E-05
4.9309£-05
6.1210E-05

0.00018.-=--,---,-----,--,,----,------,-------,----,

0.00016 ·····!···········j···· .. ·· .. ·l······· .. ··j···· .. ··· .. j .. ····· .. ··t··· ··· t···········
0.00014 I.. ..· .. 1 ···1 · .. 1 ·1 · 1 1

0.00012 ,. '" · i -+ j· .. · .. · j·· .. · · .. r +
~ 1 . i ; ~
~ 0.0001 · ~ (.... l' . .! .
~ 8E-DS ' ·1· 1" · .. 1"" · .. · .. : · (........ .

6E-D5 : : + + + :
. . .

4E-DS ! -!- !

2E-DS I l .. · r .. ·
E = 100 Volts
L = 0.02 Henrys
R =25 Ohms
C = 0.000001 Farads

. _--- -.....

................

o 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
time,s

Fi~ure 11.8. Char~e in an LRC circuit

590 • 11. Basic Statistics and Numerical Analysis with Fortran

5 VerifY the operation of the program.

The code in P-ll.7 includes the analytic solution, which can be compared
side-by-side with the numerical solution. Even though this problem is identical to
the mass-and-spring problem discussed earlier, it is important to test the program
with physically reasonable values. It is easy to imagine a mass on the order of a
few hundred grams or so bouncing up and down at the end of a spring, with a
period on the order of a second. For LRC circuits in radio circuits, for example,
the magnitudes of the quantities are much different. Millihenrys, microfarads or
picofarads, kilo- or mega-ohms, and megahertz frequencies are typical working
units for quantities in such circuits. When you select values for testing, make sure
that the time step is appropriately chosen so that it is much less than one
oscillating period; at=VIOO would be reasonable. 10

For this problem, we can "cheat" in the sense that we know the analytic
solution. In the code, the user is asked to input V, L, and R for the non-oscillating
circuit, or V, L, R, and C for the oscillating circuit. In the former case, the
program displays the time constant UR to give an idea of the decay time. In the
latter case, the program displays the oscillating period t = 47rUJ4UC - R 2 •

Problem Discussion
Of the numerical analysis problems presented in this chapter, solutions to

differential equations pose the greatest difficulties. The Runge-Kutta algorithm has
been chosen because it is a "classic" and is relatively simple to implement.
However, it is in no sense a generally applicable technique or one that can always
be depended upon to produce reliable results. Additional examination of this topic
lies beyond the scope of this text. In contrast, Simpson's Rule integration, as
discussed earlier in this chapter, will generally produce predictable and reliable
results for functions without singularities and is therefore a reasonable working
tool for evaluating many kinds of nonanalytic integrals.

For the LRC circuit treated in P-ll.7 (and other oscillating systems), it is
easy to pick values that don't work. If you don't have some idea of the oscillating
period of the system, it is hard to pick time units and step sizes that will give a
reasonable depiction of the motion. It is possible, for example, to pick a time step
that produces what looks like the periodic motion of your system, but which in

IOAuthor's note: I confess to working out this problem on a spreadsheet before writing the
Fortran program because it is easier to try different values for the circuit and, of course, a
spreadsheet has graphics capabilities built in, making it easier to examine the results of
r~ lr:nl~tinnQ

11.8 Exercises • 591

fact is sampling from periodic motion taking place on a much smaller time scale.
In other cases, your program will simply crash.

11.8 Exercises

(Because this chapter doesn't describe any new Fortran syntax, there are no self
testing exercises.)

11.B.1 Basic Programming Exercises

Exercise 1. The "plus or minus three standard deviations" rule mentioned in
Section 11.2.1 can also be applied to linear regression models.

(a) Modify P-l1.1 so that it print~ a report of all data values that fall more
than three standard deviations above or below the regression line.

(b) Include an additional modification that replaces all such "outlying" data
values with the modeled value.

Exercise 2. Referring to the Problem Discussion following P-l1.2 in Section
11.3.2, write a function stirling_f that implements Stirling's formula for an
analytic function whose derivative you know. Test this function with a driver
program.

Exercise 3. Refer to the Application discussed in Section 11.3.2 and the measured
distances and "measured" times (the ones generated with random errors) in Table
11.1. Assume a functional relationship between time t and distance D: D = at:12
for constant acceleration a. Calculate the acceleration value that best fits the data
by determining which value produces the smallest sum of squares of the
differences between true and "measured" distances; a trial-and-error approach is
OK. Determine the speed v at each measured time by taking the analytic
derivative of your model: v = dD/dt = at. Are these values closer to the true
values than the values obtained using Stirling's formula to estimate the speed?

Exercise 4. Write subprograms for Rectangular Rule and Trapezoidal Rule
integration. For a function whose integral is known, compare the results from
these two subprograms with the results from Simpson's Rule integration as
implemented in P-ll.3.

Exercise 5. Modify P-ll.6 so that the convergence criteria are specified by the
user and supplied to the subroutine. One possibility might be to specify the
criterion for the size of the interval as a fraction of the original interval.

592 • 11. Basic Statistics and Numerical Analysis with Fortran

Exercise 6. The Regula-Falsi method is a simple modification of the bisection
method for finding roots that attempts to speed convergence to a root by making
an informed guess about where the "midpoint" Xmid that subdivides an interval
should be. The bisection method puts this point in the middle of the current
subinterval. The Regula-Falsi method puts this point at the place where a straight
line joining f(xJ and f(xR) crosses the x-axis. Modify P-11.6 to implement this
modification.

Exercise 7. Modify P-11.5 so that it calculates a residual vector R = AX - C. It
is necessary, but not necessarily sufficient, that the residual vector be small before
the vector X can be considered a "good" solution for the system.

11.8.2 Programming Applications

Exercise 8. The bisection method of finding
roots was discussed in Section 11.6. Its
advantage is that it doesn't require calculus
to understand and implement this method.

A basic understanding of
differential calculus is required.

Its disadvantage is that it is relatively inefficient and may be unreliable. Newton's
method is an alternative that may work better in some cases. Its potential
disadvantage is that both f(x) and its derivative f'(x) are required.

To implement Newton's method, guess a root and recalculate Xroot using the
two-step algorithm

xold = x..,ot
Xroot = Xmot - f(x..,oJ/f'(xrooJ

Continue to recalculate x..,ot until If(xrooJ I or IXo1d - xrootl is less than some
specified value.

There are some situations in which this algorithm fails; for example,
whenever f'(x) equals zero for an initial guess or any subsequent estimate of a
root. Therefore, it is a good idea to limit the maximum number of iterations. Note
that in contrast with the bisection method, a root found by Newton's algorithm
may lie far from an initial guess and not necessarily within an initially specified
range of x values. [NEWTON. F90]

Exercise 9. A manufacturer of laminated panels
A basic understanding of

wishes to mold some ripple-shaped panels. The
integral calculus is required.

fmished size of the sheet is 4'x8', with the
ripples running along the 8' side. Assume that
the ripples are in the shape of a sine curve, with a specified amplitude ±b and
length L; for example, ±OS' and 3". (See Figure 11.9.) How long must the
original sheet of material be to produce a fmished panel with a length of 8'?

11.8 Exercises • 593

Figure 11.9. Parameters for a rippled panel

The length of a segment ds along a curve fonned by a 5mction y(x) is

For a sine curve of amplitude b and length L,

The length of the material required to make L inches of panel is the integral of
ds from 0 to L. This integral cannot be evaluated analytically. Use Simpson's Rule
to evaluate the integral for user-specified values of band L. [RIPPLE. F90]

Extra Credit
If b « L, ds can be approximated by a series expansion, the tenns of

which can be integrated analytically. Use the first two tenns in the binomial series
for (1 + X)1I2 to verify the results of Simpson's Rule integration as b approaches
O.

Exercise 10. This chapter has discussed the Gaussian elimination method for
solving systems of linear equations. Another method, one of a class of so-called
relaxation methods, is Gauss-Seidel iteration. To illustrate, let's consider a system
of three equations:

xlal1 + x2al2 + x3al3 = cI

XI~I + X2~2 + X3~3 = c2

xla31 + X2~2 + X3~3 = c3

Make an initial estimate for the unknowns (XI' x2' x3); (1, 1, 1) is a reasonable
choice. Then solve the first equation for XI in tenns of X2 and X3' the second for
x? in tenns of x, and x~, and the third for X~ in tenns of x, and X?:

594 • 11. Basic Statistics and Numerical Analysis with Fortran

Repeat this process iteratively until convergence criteria are met. Note that the
newest estimated value is always used in subsequent calculations. That is, the fIrst
iteration on X2 uses the new estimate of XI and the original estimate of X3 because
a new estimate of X3 isn't yet available.

Convergence can be either relative or absolute. If absolute convergence is
required, for all values of Xi on the kth iteration:

I
k k-l

l Xi - Xk < E

If relative convergence is acceptable, for all values of Xi on the kth iteration,

I
k k-l

l Xi -Xi
---- < E

IXikl

where E is some user-specifIed small number.
This method is trivial to generalize to larger systems, and it is relatively

easy to program. However, for a variety of reasons that are beyond the scope of
this text, the iteration will not converge for all systems of equations. One obvious
requirement is that all the diagonal coeffIcients must be nonzero. Chances for
convergence are good for "diagonally dominant" matrices of coeffIcients.
Therefore, it is a good idea to arrange the equations so that, if possible, the
diagonal terms are larger than all the others. It may also be helpful to normalize
all the equations by dividing each equation by the diagonal coefficient so that the
diagonal coeffIcients are all equal to 1. If the off-diagonal terms are all small
compared to 1, then chances for convergence are good.

Because of possible convergence problems, your program should set a
maximum number of iterations as one of the terminating conditions in the loop
that controls the iterations.

Here is a system of equations for which Gauss-Seidel iteration will
converge:

56x, + 22x2 + 11x3 - 18x4 34
17x, + 66x2 - 12x3 + 7X4 82

3x, - 5x2 + 47x3 + 20x4 18
11x, + 16xo + 17x, + lOx, 26

11.8 Exercises • 595

Note that the diagonal tenns are largest in all but the last equation.
[GAUS_SEl. F90]

Exercise 11. In Section 11.5.1, it has been stated that some matrices are "ill
conditioned" and resist attempts at solution with Gaussian elimination. One well
known example is the Hilbert matrix. Here is a 5><5 Hilbert matrix for AX = C.

1 1/2 1/3 1/4 1/5 1

1/2 1/3 1/4 1/5 1/6 0

A= 1/3 1/4 1/5 1/6 In c= 0

1/4 1/5 1/6 In 1/8 0

1/5 1/6 In 1/8 1/9 0

Express the decimal fractions with seven significant digits (e.g., .3333333). What
is the solution when you apply Gaussian elimination to this matrix? What is the
solution if you express the decimal fractions with only four significant digits (e.g.,
.1667)?

Extra Credit
Refer to Section 12.3 in Chapter 12 and modify your Gaussian elimination

subroutine so that it uses extended precision arithmetic. Express the coefficients
of the A matrix with an appropriate number of digits, based on your data
declarations for extended precision variables. What happens to the solution to the
Hilbert matrix?

Exercise 12. Consider a radioactive particle inside a cube-shaped block. What is
the probability, as a function of its original location, that the particle will exit the
block on a particular side? Assuming that travel in all directions is equally
probable, an answer to a simplified version of this question can be obtained by
modeling the problem in two dimensions. Set up a grid of possible locations.
Three rows of three locations are sufficient to set up the problem:

1-2-3
4-5-6
7-8-9

What is the probability that a particle will escape through a specified face of the
grid? Suppose the bottom is chosen. The probability can be expressed as a system
of equations in which P n is the probability that a particle at position n will escape

596 • 11. Basic Statistics and Numerical Analysis with Fortran

through the bottom of the grid. This probability is one-fourth the sum of the
probabilities that a particle in the four locations surrounding n will escape through
the bottom:

PI = (0 + P2 + P4 + 0)/4
P4 = (PI + Ps + P7 + 0)/4
P7 = (P4 + Pg + 1 + 0)/4

P2 = (0 +P3 + Ps + PI)/4
Ps = (P2 + P6 + Pg + P4)14
Pg = Ps + P9 + 1 + P7)/4

P3 = (0 + 0 + P6 + P2)/4
P6 = (P3 + 0 + P9 +Ps)l4
P9=(P6 +O+ 1 +Pg)/4

Rewrite these equations in the form AP = C and solve for P. Try both Gaussian
elimination as described earlier in this chapter and Gauss-Seidel iteration as
described in Exercise 10. For Gauss-Seidel iteration, are the results sensitive to the
initial reasonable guesses for P?

One test of your program's output is the fact that the probability of a
particle initially in the center of the grid escaping through any specified side of
the 2rid should be exactly 0.25. rES CAPE . F901

12

A Closer Look

The purpose of this chapter is to provide some additional insight into various
Fortran 90 features. Each section is self-contained. There are several complete
programs, but in contrast to previous chapters, there are no applications or
exercises.

12.1 Introduction

The topics presented in this chapter have in common only the fact that they may
be considered optional. It is, in fact, possible to do a great deal of programming
without studying any of the topics in this chapter.

Each section in this chapter is completely self-contained and is intended
as a guide to a topic you may wish to explore in more depth on your own. For
more complete information, you will need to refer to a Fortran 90 reference
manual (see Section i.3 in the Preface to this text) or the documentation for
whatever version of Fortran you are using. Also, there are no exercises at the end
of this chapter. This is based on the assumption that, if your instructor has asked
you to study one or more of the topics in this chapter, she or he already has a
very specific goal in mind.

The first topic, incorporating multiple source code and precompiled files
into a program, contains material that your instructor may believe is very
important even in an introductory course because of the way Fortran is used in
practice. For example, your instructor may wish to provide you with certain
problem-solving capabilities in the form of source code or precompiled files to use
in your own programs, even though the writing of that code might be beyond your
current capabilities.

The second topic deals with the internal representation of numbers and how
the properties of INTEGER and REAL numbers can be controlled. This may be
of interest in programming applications that require very small or very large
numbers, or that require a more thorough understanding of the process of real
arithmetic as it is performed by Fortran. A more advanced course in numerical
analysis is one place where these questions are important because, for example,
arithmetic roundoff errors arising from limited accuracy in individual calculations
with REAL numbers are often cumulative.

There is a tendency for students to believe that all problems with
arithmetic calculations in numerical analysis can be fixed simply by usinj?;

D. R. Brooks, Problem Solving with Fortran 90
© Springer-Verlag New York, Inc. 1997

598 • 12. A Closer Look

numbers with more significant digits. In fact, this is typically not the case.
Problems traceable to a loss of accuracy in numerical calculations are inherent in
the methods themselves. Although the accumulation of unacceptable errors can be
postponed, such errors cannot actually be eliminated just by carrying extra
significant digits in calculations. If accumulated roundoff errors are causing
difficulties with a particular calculation, it may be more useful to examine
alternate means of posing and solving the problem at hand.

The third topic in this chapter addresses the many array-handling
capabilities provided by Fortran 90. In previous chapters, we have occasionally
used these capabilities to eliminate source code that would have been required in
earlier versions of Fortran (and in other procedural languages, for that matter). The
most important capabilities allow us to write simple statements that perform
operations on arrays that would previously have required loop structures, with
their accompanying variable initializations and assignment statements.

The fourth topic introduces alternate ways to construct and use files. Most
importantly, this discussion includes random access binary files, which provide a
much more flexible means of storing and manipulating information in files. With
random access to files, we can extend to files some of the algorithms originally
applied in this text to arrays. Thus we can contemplate dealing with collections
of data that are too large to be held in arrays in memory.

The fifth topic is a very brief introduction to the COMPLEX data type.
Although support for complex numbers is an important part of Fortran because of
its mathematical heritage, this text assumes that you will not develop the
mathematical sophistication required to make good use of complex numbers until
well after taking an introductory programming course. For now, it is sufficient
simply to know that this data type exists. You can give it more attention later
when a real need arises.

For the final topic, we will return to the COMMON block, discussed briefly
in Chapter 7. Even though Fortran 90 provides much better ways of sharing
information among programs and subprograms, the COMMON block deserves some
additional attention because it is a familiar feature in older Fortran programs.

12.2 Using More Than One Program Unit

Throughout most of this text, we have emphasized the importance of modularized
program design. In Fortran, there are several ways to write modularized programs.
Early in the text, we used simple statement functions. Later, we used functions
and subroutines to accomplish the goal of writing structured "top-down" code that
divides a large program's multiple tasks into several smaller and, hopefully, more
manageable tasks. We included functions and subroutines in MODULEs, and we
often USEd those subprowams in driver pro~rams whose only purpose was to test

12.2 Using More Than One Program Unit • 599

the subprograms. Once they have been thoroughly tested, the MODULEs are
available for use in other programs.

The programs presented previously in this text share one common feature:
all the source code for a program is contained in a single file. Each such file is
a single program unit. However, many Fortran applications require that
subprograms be assembled from several program units. There are two basic ways
to accomplish this. At the source code level, a compiler can be directed to use
source code from other files--essentially to copy source code from an existing file
into the new source code. The contents of these other source code files then
become part of the executable program when it is compiled.

The second way to add code to a program is by linking together program
units after they have been compiled. In this case, you can use compiled program
units even though you may have no access to, or understanding of, the source
code itself.

The first option works essentially like a "text merge" operation in a word
processor. If the program unit into which another source code file is being merged
contains a main program, the only restriction is that the merged source code can
contain only subprograms; a Fortran program can have only one main program.
Of course the merged source code must make sense, just as it would if it had
originally been written in a single source code file. Typically, merged source code
contains one or more subroutines in one or more MODULEs.

The second option-linking two or more previously compiled source code
files-is possible because Fortran source code can be compiled even if it doesn't
contain a main program. That is, it is possible to compile a source code file
containing just subprograms, even though the resulting compiled (binary) code
can't be executed because it doesn't include a main program.

The ability to link a main program (with or without "local" subprograms)
with one or more previously compiled program units is critical to the professional
use of Fortran. With this capability, subprogram "packages" to perform highly
specialized tasks can be added to your own programs even though you don't
understand (or have never even seen) the source code in those specialized
subprograms. All you need to know is what the information interface looks like
for each subprogram so you can provide appropriate input to obtain a clearly
defined output. This is a familiar algorithm and program design requirement that
has been stressed throughout the text. Remember that in Fortran 90, the
information interface is implemented by assigning IN, OUT, or INOUT attributes
to subroutine and function parameters.

To demonstrate how to create a program from several units, we will return
to the subprograms and driver program for numerical differentiation developed in
Chapter 11. The code is simple and numerical differentiation is an appropriate
choice because it is in the area of numerical analysis that you will most likely
need to use snecialized suhnrmrrams from other sources in vour own DfOlrrams.

600 • 12. A Closer Look

12.2.1 Merging Source Code

First recall program P-l1.2, FALLING. F90, the purpose of which was to test a
function that uses Stirling's approximation to a function's derivative-in this case
to approximate the speed of a falling object. In that program, the main program
and the MODULE containing the fuilction were included in a single program unit.
However, it is not necessary to do this.

Program P-12.1 is similar to P-l1.2, but renamed DERIVATV.F90 to
avoid confusion with the program in Chapter 11.

P-12.1 [DERIVATV. F90]

MODULE Numerical_Differentiation

CONTAINS
1--

REAL FUNCTION derivative_2(xl,x2,x3,yl,y2,y3)

IMPLICIT NONE
REAL, INTENT(IN) :: xl,x2,x3,yl,y2,y3

derivative_2=«y2-yl)/(x2-xl)+(y3-y2)/(x3-x2»/2.
RETURN
END FUNCTION derivative_2

1---
END MODULE Numerical_DIfferentiation

PROGRAM Derivative

Driver for numerical differentiation routines.
File name DERIVATV.F90.

USE Numerical_Differentiation
IMPLICIT NONE
TYPE distance_data

REAL true_time
REAL true_distance
REAL true_speed
REAL measured_time

END TYPE distance_data
TYPE (distance_data) distance(O:20)
REAL g
INTEGER i
PARAMETER (g=9.8) !m/s**2 (gravitational acceleration)

OPEN(l,file='derivatv.dat')
Get data ...

(Read past 2 header lines.)
READ(l,*)
READ(l,*)
DO i=O,20

READ(l,*)distance(i)%true_time,distance(i)%true_distance,&
distance(i)%true_speed,distance(i)%measured_time

PRINT *,distance(i)%true_time,distance(i)%true_distance
RlI1n no

12.2 Using More Than One Program Unit • 601

CLOSE(l)
Calculate numerical derivative ...

DO i=O,20
IF «i==O) .OR. (i==20» THEN

PRINT 1000, &
distance(i) %true_time, distance(i) %true_distance, &
distance(i) %true_speed,distance(i) %measured_time

ELSE
PRINT1000, &

distance(i) %true_time, distance(i) %true_distance, &
distance(i)%true_speed,distance(i)%measured_time,&

END IF
END DO

derivative_2(distance(i-1)%true_time, &
distance(i) %true_time, &
distance(i+J)%true_time, &
distance(i-1)%true_distance, &
distance(i) %true_distance, &
distance(i+1)%true_distance)

1000 FORMAT(lx,f4.1,5flO.3)
END

It is left for the diligent reader to run this program with its accompanying
data file, DERIVATV. DAT, because the point of this discussion is not the source
code, but to look at alternative ways to produce the executable code for this
program. One possibility is shown in program P-12.1(a).

P-12.1(a) [DERIVAT2. F90]

INCLUDE 'c:\ftn90.dir\deri_mod.f90'
PROGRAM Derivative

! Driver for numerical differentiation routines.
! File name DERIVAT2.F90.
(and so forth)

P-12.1(a) is functionally identical to P-12.1. It differs only in its assumption that
MODULE Numerical_Differentiation has been saved as a separate file.
The main program source code is identical and is not reproduced here. The line

INCLUDE 'c:\ftn90.dir\deri_mod.f90'

appearing at the top of the source code results in the MODUL~ code in the
MS-DOS file c: \ftn90. dir\deri_mod. f90 being physically copied into the
source code file at compile time.

The general syntax of the INCLUDE statement, which instructs the
compiler to insert the referenced file into the source code. is

602 • 12. A Closer Look

INCLUDE string constant containing file name, including path

The INCLUDE line is not a Fortran statement. It
is properly referred to as a compiler directive. The
INCLUDE directive is similar to a "merge" function in

compiler directive I
a word processor except that you don't actually see the complete merged source
code file. (If you want or need to see it, you should simply physically copy all the
source code rather than use an INCLUDE directive.) You can have more than one
INCLUDE directive, so your program can 'lccess code from many different source
code files.

The file DERI_MOD. F90 referred to in the above INCLUDE directive is,
as you should expect, a source code file containing just the MODULE for numerical
differentiation. This file can be downloaded from the World Wide Web site
mentioned in Section i.5 of the Preface.

What has been accomplished by using an INCLUDE statement? Remember
that P-12.1 is just a test program for the numerical differentiation subprograms.
Once the testing is complete, ' the MODULE can be saved separately-in this case
as DERI_MOD. F90; this file can now be INCLUDEd in any program that needs
the capabilities provided by the subprogram.

Although it is common in Fortran 90 to use INCLUDE lines to access
existing MODULEs, the included code doesn't have to be a MODULE. INCLUDE
directives can appear anywhere in your program. So you can also include
subprograms that aren't part of a MODULE, typically after the main program, or
even sections of code in the main program. The only restriction is that you must
be aware of the contents of the code so that it will make sense wherever it is
INCLUDEd.

12.2.2 Merging Object Code

As indicated above, it is not even necessary to have the source code for the
numerical differentiation subprograms in order to use them. An alternative is to
compile separately the main program from P-12.1 and the MODULE
DERI_MOD. F90 and then link the two resulting binary (object) files together. In
this case, the main program's source code still USEs the
Numerical_Integration module, but it doesn't need to contain any
reference to the source code file that contains this module. Source code for the
main program of P-12.1 is stored as DERIVAT 3 . F 90; it can be downloaded from
the World Wide Web site mentioned in Section i.5 of the Preface. The point of
doing this is the same as for using an INCLUDE directive for source code: the
capabilities included in the numerical differentiation subprograms are now
available to any program that needs them.

12.2 Using More Than One Program Unit • 603

Where do the two object files come from? Depending on what kind of
computer system and Fortran compiler you are using, you may be more or less
aware of the creation of separate object files as an intermediate step to producing
an executable file. There is not really any motivation to keep track of these
intermediate files when you are creating an executable file from a single source
code file.

Although systems differ in details, the general principle is always the same.
After compiling your source code file to create an object file, a linker program
combines this object file with required Fortran library files and, if you request it,
other pre-existing object files; this process has been sho'¥Il symbolically in Figure
3.4 in Chapter 3.

Here are the steps necessary to compile the main program
DERIVAT3 . F90 and the MODULE contained in DERI_MOD. F90 and link these
two object files together to produce a single executable file, using the compiler
employed to develop the programs in this text (the NAG/Salford FfN90 compiler
for MS-DOS and Windows systems). Other systems will differ in detail, but the
principle will be the same.

ftn90 derivat3.f90
ftn90 deri_ffiod.f90
link77
$ load derivat3
$ load deri_ffiod
$ file derivat3
derivat3

The first two lines separately compile the main program DERIVAT3 and the
MODULE subprogram DERI_MOD. F90. The third line executes a linker program,
called LINK77 in this case; this program (apparently left over from earlier
versions of Fortran) is part of the Fortran environment provided with the FfN90
compiler. The LINK 77 commands following the $ prompt, which is provided by
LINK 77 and is not typed, assume that source code files have an . F 90 extension,
compiled binary files have an . OBJ extension, and the resulting executable file
has an . EXE extension; these are the usual extensions and there is no reason to
change them. However, you might wish to give the executable file a name
different from any of its components. You may link together several . OBJ files,
in any order. The file ... statement, which creates an executable file containing
all the linked object files, terminates the LINK7 7 program. The optional fmalline
deri vat3 executes the newly created program.

Although the two source code files in this example have been compiled
and linked together in a single sequence of steps, this isn't necessary. You can
link any object files created with the compiler, no matter when they were created.
However, you can't mix object files created on different computer systems or,
possibly, even on the same system with different Fortran compilers. That is why

604 • 12. A Closer Look

no .OBJ fIles can be downloaded from the World Wide Web site mentioned in
Section i.5 of the Preface.

When binary fIles are linked together to form an executable (. EX E) fIle,
the importance of understanding the information interface between subprograms
and a calling (sub)program becomes abundantly clear. Suppose you wished to let
someone use subprograms you had· created, but you did not wish them to have
access to the source code. As we have just demonstrated, you can give them one
or more . OBJ fIles containing the compiled subprograms, which they can then
link to their own programs. However, because they can't determine the nature of
the information interface by looking at your source code, you must provide them
with details of how to use the subprograms. Suitable documentation for
DERI_MOD . OBJ might look like this:

The object file DERI_MOD. OBJ contains function deri va ti ve 2 for
approximating numerical derivatives. Function derivative_2 is a type REAL function
that calculates rates of change for tabulated data by averaging the "forward" and
"backward" differences relative to the second of three data pairs. Its parameters are all
REAL with INTENT (IN). Use of this function implies that an analytic description of
tabulated data is either not known or doesn't exist and therefore that its derivative cannot
be calculated analytically. The function is called like this,

derivative_2(xl,x2,x3,yl,y2,y3)

where all arguments are type REAL. The intervals xz-x, and X3-XZ need not be equal.

12.3 The Internal Representation of Numbers and Extended Precision

12.3.1 Internal Representation of Numbers

As noted in previous discussions about INTEGER and REAL variables, integers
and real numbers are stored differently in Fortran. We have also noted that,
because computers are basically binary devices, integers can be stored exactly, but
real numbers cannot, in general. In this section, we will briefly describe the
internal format of numbers. You can pursue this topic in more detail on your own
computer system by writing numbers into unformatted (binary) fIles (see Section
12.5) and then using a byte-level editing program to examine the contents of these
fIles.

Integers

The familiar way of expressing integers is in a base 10 system, where each digit
represents multiplication by a power of 10, startin.e; on the ri.e;ht with 10°. Thus the

12.3 The Internal Representation of Numbers and Extended Precision • 605

integer number 125 is a representation of 1_102 + 2_101 + 5-10°. Such a system
requires 10 distinct characters (the digits 0-9) to represent all possible values.

Integers can be represented in this way using any base. For computers,
base 2 is convenient because only two characters, 0 and 1, which can be
associated with "off' and "on" states in a computer, are required. The integer
number 125 can be represented in base-2 (binary) notation as 1_26 + 1_25 + 1_24

+ 1-23 + 1-22 + 0-21 +1-2° = 64 + 32 + 16 + 8 + 4 + 1.
Another common representation uses a hexadecimal (base 16) system, with

the integers 0-9 and the letters A-F representing the sixteen base-IO values 0-15.
In hexadecimal notation, the decimal value 15 is reprt'~ented as 0 F and 125 is
represented as 7D (7-16 + 13-1)

To see how this representation is used for the internal storage of integers,
consider the statement

WRITE(l) 32767,-32767,1,-1

that writes integers to a file opened as unformatted (binary). A byte-level disk
editor reveals that these values are stored in the following sequence of bytes, using
their hexadecimal representation:

FF 7F 00 00 01 80 FF FF 01 00 00 00 FF FF FF FF

First of all, note that there are 16 bytes in all, from which you can conclude that
each integer occupies four bytes. You might be tempted to think that the amount
of storage is related to the size of the integer value-that is, that a value of 1
should take more storage than a value of 32767. However, this is not true. Every
INTEGER value requires the same amount of space because the space allocated
to store an integer is determined only by its data type.

The easiest place to start interpreting the byte pattern for the four digits is
with the value 1. This is the third of the four values to be written to the file, so
it must be stored in bytes 9-12: 01 00 00 00.

Positive integers are stored internally as their binary equivalent, which
means that 1 should be stored as 00 00 00 01. The fact that the bytes seem to
be stored "backwards" in the file is due to the fact that bytes are often stored in
"low byte to high byte" order, rather than the natural "high byte to low byte"
order that you might expect. If the four bytes used to store the value 1 are
numbered,

1 2 3 4
00 00 00 01

the order in which they are stored internally is probably

4 3 2 1
nl on nn nn

606 • 12. A Closer Look

Next consider the value 32767. Its four-byte binary equivalent is

00000000 00000000 01111111 11111111

In hexadecimal notation, this is 00 00 7F FF. However, Fortran stores these
"backwards," as FF 7F 00 00, as shown in bytes 1-4 in the above file.

What about negative integers? A typical approach is to use a "twos
complement" algorithm.

1. Convert the absolute value of a number to its binary equivalent.
2. Take the complement, which means to replace every 0 with ai, and vice versa.
3. Add 1.

Thus -1 is stored as

00000000 00000000 00000000 00000001 (binary equivalent)
11111111 11111111 11111111 11111110 (complement)
11111111 11111111 11111111 11111111 (add 1)

Thus -1 would be stored as FF FF FF FF.
Similarly, -32767 would be represented as

00000000 00000000 01111111 11111111 (binary equivalent of 32767)
11111111 11111111 10000000 00000000 (complement)
11111111 11111111 10000000 00000001 (add 1)

Thus, -32767 would be stored as FF FF 80 01, or in low-high format, as
01 80 FF FF.

Although these conventions for storing integers might not seem to make
much sense to humans, their purpose is to facilitate integer arithmetic, and the fact
that they are efficient from a computer's point of view is all that matters. (You
can fmd more information about twos complement arithmetic in any text on
computer mathematics.)

Real Numbers

Storage of real numbers, including irrational numbers, is complicated by the fact
that all values must somehow be stored in a binary format. There are several
possibilities. One common format is the IEEE standard for floating-point numbers.
Suppose a real number is stored in four bytes. The 32 bits, labeled right to left as
bits 0 through 31, are divided into three fields, startine; at the left.

12.3 The Internal Representation of Numbers and Extended Precision • 607

Bit 31:
Bits 23-30:
Bits ~22:

a sign bit, with 1 = negative and 0 = positive
an exponent of 2 increased by 127
the magnitude of the mantissa or fractional part related to the
number

Values are encoded in this "normalized floating-point" form according to the
expression

(_1)8 2(E-127) (1.0 + F)

Consider the real number 20.0, as opposed to the integer 20. Although it's perhaps
not obvious how to arrive at this representation in general, 20.0 can be expressed
as 16-1.25 or 24-1.25. Thus the quantity F in the above expression is 0.25.
Fractions can be represented in binary form as a series having the general form

where the b's are binary digits (0 or 1). For the fractional value 0.25, the exact
representation is 0/2 + 1/4 + 0/8 +

Thus the real number 20.0 can be represented as

o (sign bit)
10000011 (131 = 127 + 4)
01000000000000000000000 (representation for 0.25)

or, arranged in a four-byte pattern,

01000001 10100000 00000000 00000000

In low-high hexadecimal notation, this is

00 00 AO 41

The number 20 has the advantage that it can be represented exactly in this
format. In general, this is not true. Consider the number 33 1/3, or
33.3333333333 The sign bit for this positive number will be O. Since 25 is the
largest number represented as a power of 2 that is less than 33 1/3, the exponent
5 must be represented as 5 + 127 = 132. Dividing by 32, 33.33333333/32 =

1.0416666666 The 1 is implied and the fractional part is represented by the ftrst
23 terms in an inftnite series:

608 • 12. A Closer Look

Thus the representation of 33 113 is

o (sign bit)
10000100 (exponent)
00001010101010101010101 (representation for .0416666666 ...)

or in bytes,

01000010 00000101 01010101 01010101

In low-high hexadecimal notation,

55 55 05 42

12.3.2 Specifying Precision for Numerical Variables

It's not necessary for most Fortran programmers to understand the details of how
numbers are stored; these matters are more appropriate to computer science
courses. However, Fortran 90's support for a user-specified precision number of
significant digits in number representations is an important addition to the
language that gives users more control over the accuracy of arithmetic
calculations.

In Fortran 90, certain attributes of data types can be specified at the time
they are declared by using the KIND parameter. We will discuss here the KIND
parameters that are applicable to REAL and INTEGER data types.

Suppose you need an integer that will contain at least a specified number
of digits. The intrinsic function Selected_Int_Kind returns an integer that
can be used with a KIND parameter to declare an integer that meets the specified
requirements. To declare an integer with at least 15 digits,

INTEGER, PARAMETER :: long_int=Selected_Int_Kind(15)
INTEGER (KIND=long_int) big_integer

In the type declaration, KIND= is optional, so you could also write
INTEGER{long_int) big_integer.

Similarly, the function Selected_Real_Kind returns a parameter that
can be used to declare a real number with at least a specified number of
significant digits and a specified exponent range, as a power of 10. (The default
exponent range is often ±38.) The general syntax is

12.3 The Internal Representation of Numbers and Extended Precision • 609

where r is the number of significant digits and k is the exponent. Both parameters
are optional. To specify a real number with at least 15 digits of precision and an
exponent range of 10m,

INTEGER, PARAMETER:: long_real=selected_Real_Kind(15,99)
REAL(KIND=long_real) x

As before, the K I ND= is optional.
It's not difficult to fmd calculations that require more than the seven or

eight significant digits supported by the default REAL data type. One example is
the Julian date, which is typically used for astronomical calculations and
calculations involving orbiting satellites. At least 13 significant digits are required
to specify the Julian date to the nearest second on any calendar day.

How did earlier versions of Fortran provide additional precision for
numerical variables? The Fortran 77 standard supports a data type for real
numbers called DOUBLE PRECISION~ which doubles the number of bytes used
to store a real number-from four to eight, for example. Fortran 90 still supports
this data type, which often appears in older Fortran source code, but its use is
discouraged. (Why? Basically, because the actual precision available with DOUBLE
PRECISION variables is system-dependent.) For integers, many Fortran 77
compilers support at least two additional data types. If the standard INTEGER data
type occupies four bytes, then the compiler may support "regular" integers
(INTEGER*4) as well as "short" and "long" integers (INTEGER*2 and
INTEGER*8). However, this notation is nonstandard, so it can't be used in
Fortran 90 programs even if it were otherwise a good idea.

Here is a problem statement that uses Julian date calculations and therefore
requires extended precision variables.

1 Define the problem.

Time must be specified accurately and unambiguously in calculations used
in astronomy or for describing the motion of orbiting satellites. The system
commonly used is Julian time. The Julian day, which starts at noon, Greenwich
Mean Time (GMT), assigns a unique integer value for every day, with an origin
dating back to several thousand years Be. The Julian date for noon, January 1,
1995, is 2449719. Time, in fractions of a day, is measured from Greenwich noon.
(This is because the system was originated by British astronomers who wished all
observations during a single night to have the same Julian date.) Thus 6:00 p.m.
GMT on 01101195 is Julian time 2449719 + 6/24 = 2449719.25.

Suppose you need to specify Julian time to the nearest second. There are
86,400 seconds in a day, so at least six digits are required to express Julian time
to the nearest second. Thus at least 13 significant dijtits-seven for the day and

610 • 12. A Closer Look

six for the fractional day-are required to represent Julian time with full precision.
Although it is sufficient for some purposes to store the day separately, as an
integer, from the fractional part, it would be simpler just to store the entire Julian
time value, including the day, as a single real number.

The formula for converting a specified calendar date to its corresponding
Julian date is not obvious because of the complexities of the calendar system,
including months of different lengths and leap years. Here it is for a specified day,
month, and year,

temp=«mon-14)/12>
Julian day = day - 32075 + <1461 *(year + 4800 + temp)/4> +

<367*(mon - 2 - temp*12)/12> - <3*«year + 4900 + temp)1100>/4>

where < ... > indicates that the value of the enclosed expression should be truncated
(not rounded).

2 Outline a solution.

1. Convert a specified day, month, and year to Julian day as indicated in the
problem statement. (Use a function for this calculation.)
2. Convert a specified time, expressed as hours, minutes, and seconds (including
fractional seconds if needed), to fraction of a day from GMT noon according to
this formula:

fraction of day = (hour - 12)/24 + minll440 + sec/86400

3. Add the Julian day to the day fraction. The variable that holds this sum must
have a precision of at least 13 decimal digits.

3 Design an algorithm.

The pseudocode is a straightforward implementation of Step 2.

(Get calendar date)
CALL Calendar_to_Julian(day, month, year, Julian day)
(Get time relative to GMT noon)
CALL DayFraction(hr, min, sec, fraction)

12.3 The Internal Representation of Numbers and Extended Precision • 611

SUBPROGRAM Calendacto_JuJian(IN: day, month, year; OUT: Julian day
(integer))
ASSIGN temp = «mon - 14)/12>

Julian day = day - 32075 + <1461-(year + 4800 + temp)/4> +
<367-(mon - 2 - temp-12)/12>-
<3«year + 4900 + temp)/100>/4>

(end Calendar_to_Julian)

SUBPROGRAM DayFraction(lN: hr, min, sec;
OUT: fraction of a day (real))

ASSIGN fraction of a day = (hr - 12)/24 + min/1440 + sec/86400
(end DayFraction)

4 Convert the algorithm into a program.

P-12.2 [JULIAN_T. F90]

PROGRAM Julian_t

Tests a function to calculate Julian time to the nearest
second for a specified GMT on a specified calendar day.

IMPLICIT NONE
INTEGER mon,day,year,hh,mm,ss
INTEGER Calendar_to_Julian !function to get Julian date
REAL DayFraction
INTEGER, PARAMETER:: long=Selected_Real_Kind(14)
REAL(kind=long) JulianTime

PRINT *,' Give a calendar date in the format mm dd yyyy:'
READ *,mon,day,year
JulianTime=REAL(Calendar_to_Julian(mon,day,year»
PRINT 1000,JulianTime
PRINT *,' Give clock time as hh mm ss, GMT:'
READ *,hh,mm,ss
JulianTime= JulianTime + DayFraction(hh-12,mm,ss)
PRINT 1010,JulianTime

1000 FORMAT(' The Julian date at 12hOOmOOs GMT is ',f10.1)
1010 FORMAT(' The Julian time is ',f16.7)

END

INTEGER FUNCTION Calendar_to_Julian(mon,day,year)

Converts Gregorian calendar date to a Julian date.
Test value: 01/01/1995 = 2449719 (Greenwich noon).

IMPLICIT NONE
INTEGER, INTENT(IN) :: mon,day,year
INTEGER temp

612 • 12. A Closer Look

temp=(mon-14)/12
Calendar_to_Julian=day-32075+l461*(year+4800+temp)/4+ &

367*(mon-2-temp*12)/12 - &
3*«year+4900+temp)/100)/4

RETURN
END FUNCTION Calendar_to_Julian

REAL FUNCTION DayFractibn(hh,mm,ss)

Converts hours, minutes, and seconds into a fraction of a day.

IMPLICIT NONE
INTEGER, INTENT(IN) :: hh,mm,ss

DayFraction=REAL(hh)/24.+REAL(mm)/1440.+REAL(ss)/86400.
RETURN
END FUNCTION DayFraction

Running P-12.2

Give a calendar date in the format mm dd yyyy:
07 10 1996

The Julian date at 12hOOmOOs GMT is 2450275.0
Give clock time as hh mm ss, GMT:

1,4 30 00
The Julian time is 2450275.1041667

5 Verify the operation of the program.

The Julian date can be verified by consulting a table of Julian dates, which
can be found in texts and reference books on astronomy. (One test date is given
in the internal documentation for Calendar_to_Julian.) Note that such tables
often give the Julian date corresponding to the calendar date at 0.5 GMT; this
means noon on the previous calendar day. Thus a tabulated value of 2449718 will
be given for January 0.5, 1995. This is a convenience for calculating the Julian
date corresponding to noon on any day of the month; just add the day number to
the tabulated value.

The fractional part of the day can be checked by hand. Remember that the
time is relative to noon, not midnight. This is why the argument in the call to
DayFraction is hh-12 rather than hh.

Problem Discussion
The critical step in this program is using a KIND parameter to ensure that

the variable holding the Julian time has enough significant digits. The argument
14 in the call to the Fortran 90 function Selected_Real_Kind returns a
KIND parameter that can be used to derme a REAL number with at least 14

12.4 Array Operations and Array Inquiry and Reduction Functions • 613

significant digits. In this example, the second parameter can be omitted because
the default exponent range (typically 10-38 to 10+38) is usually much larger than
required. The Fortran compiler responds to KIND parameters by increasing or
decreasing the number of bytes associated with a REAL variable. Since only whole
bytes can be allocated, the actual number of digits may be even more than you
requested. A call to the Fortran 90 function Precision will verify the actual
number of significant digits that are available; when this program is executed on
the compiler used to develop the programs in this text, Precis ion returns a
value of 15.

Note that the INT function is not required to truncate the expressions. This
is because each constant value or variable in the truncated expressions, all of
which involve a division, is an integer. When both numerator and denominator of
a division expression are integers, the quotient is a truncated integer.

12.4 Array Operations and Array Inquiry and Reduction Functions

Fortran 90's major development in array processing is its ability to treat arrays as
objects that can be manipulated in their entirety rather than as a collection of
elements that must be manipulated one at a time. One consequence that has
already been discussed in Chapter 4 is that the arguments of the intrinsic
functions, listed in Table 4.1, are so-called elemental functions that can accept, in
addition to scalar arguments, array arguments whose elements are of an
appropriate data type. It is never required to use the intrinsic functions in this way,
but doing so can often save significant amounts of code; element-by-element array
operations always require explicit or implicit loop structures.

Although it is less obvious, and less important to beginning programmers,
the ability to treat arrays as objects can be important when Fortran programs are
written for high-performance parallel processing computers. Using a syntax that
deals with arrays in their entirety rather than one element at a time means that
access to parallel processing capabilities, in which operations on the elements of
an array are carried out in parallel (all at once) rather than in series (one at a
time), is incorporated into the Fortran 90 language standard. The following
subsections will explore some of the syntax possibilities.

12.4.1 Intrinsic Array Operations

The treatment of arrays as objects rather than as a
collection of elements extends all the intrinsic operators
as well. Thus" for example, it is possible to write

conformable array I

614 • 12. A Closer Look

A = B*C

where A, B, and C are conformable a"ays rather than scalar variables.
Confonnable arrays must have the same shape; that is, the ranks and extents of
each dimension must be the same.

Intrinsic operations on arrays apply to each element of the array. If you
keep this in mind, you don't need to worry about the deftnition of confonnable
arrays. The statement A = B*C is allowed only if the arithmetic operation(s)
make sense in an algorithm design context; that is, if there are corresponding
elements in all of the arrays A, B, and C.

One additional fact that might not be obvious is that, by deftnition, a scalar
variable is confonnable with any array whose elements have the same (or a
compatible) data type as that scalar variable. That is, in the statement A = B*C,
either B or C may be a scalar variable. (It should be clear that A must be an array
if either B or C is an array.)

In considering the statement A = B * C, it is important to remember that
A is not the dot product of the vectors B and C even though the notation looks
similar to the vector notation A = BeC; the dot product is a scalar value, not an
array. (In the next subsection, you will see that Fortran 90 includes a function for
calculating the dot product of two vectors.)

12.4.2 Array Functions

In addition to intrinsic operations on confonnable arrays, Fortran 90 includes
several intrinsic functions that deal speciftcally with arrays. Table 12.1 lists some
of these functions.

Array manipulation functions have in common the fact that they each
require at least one array-typed argument. Most of them allow one or more
optional arguments. The names of the three possible arguments, ARRAY, DIM, and
MASK, can appear in calls to these functions, followed by an = sign. These names
must be used as given, although they are case-insensitive; they are not "variable
names" that are user-selectable. If the names do not appear, the optional
arguments must be given in the order shown, with an extra comma separating the
fIrst and third arguments if all three arguments are not given.

12.4 Array Operations and Array Inquiry and Reduction Functions • 615

Table 12.1. Array multiplication, inquiry, and reduction functions

Function Name Function

Multiplication Functions

DOT_PRODUCT (VECTOR_A, VECTOR_B) Calculates the dot product of two vectors.

MATMUL (MATRIX_A, MATRIX_B) Calculates the product of two matrices.

Inquiry Functions

LBOUND(ARRAY[,DIM]) Returns an integer containing the lower bound of
the indices for ARRAY, optionally for the specified
dimension of a multidimensional array.

SHAPE (ARRAY) Returns a rank one integer array holding the shape
of ARRAY. If ARRAY is a scalar, the result is zero.

SIZE(ARRAY[,DIM]) Returns an integer that is the size of ARRAY,
optionally for the specified dimension of a
multidimensional array.

UBOUND(ARRAY[,DIM]) As for LBOUND, except for the upper bound

Reduction Functions

ALL (MASK [, DIM]) Returns . TRUE. if all elements of MASK are true,
. FALSE. otherwise optionally for the specified
dimension of a multidimensional array.

ANY (MASK [, DIM]) Returns . TRUE. if any elements of MASK are true,
. FALSE. otherwise, optionally for the specified
dimension of a multi-dimensional array.

COUNT(MASK[,DIM]) Returns number of elements for which MASK
equals . TRUE. , optionally for the specified
dimension of a multidimensional array.

MAXVAL(ARRAY[,DIM] [,MASK]) Returns maximum value in specified dimension of
ARRAY.

MINVAL(ARRAY[,DIM] [,MASK]) Returns minimum value in specified dimension of
ARRAY.

PRODUCT (ARRAY [, DIM] [, MASK]) Returns product of all elements of a specified
dimension of ARRAY.

SUM(ARRAY[,DIM] [,MASK]) Returns sum of all elements of a specified
dimension of ARRAY.

616 • 12. A Closer Look

Array multiplication functions

The functions DOT_PRODUCT and MATMUL are array multiplication functions.
DOT_PRODUCT calculates the (scalar) dot product of two rank-one arrays, both
of which must have the same number of elements. MA TMUL calculates the product
of two matrices, where the number of columns of MATRIX_A must equal the
number of rows of MATRIX_B and the number of rows of MATRIX_A must equal
the number of columns of MATRIX_B.

Array inquiry functions

The functions LBOUND and UBOUND return a rank-one integer array holding the
lower or upper bounds on the indices of ARRAY, not on the values of the elements
of ARRAY. Function SHAPE returns a rank-one integer array holding the number
of elements (the array shape) of each dimension in ARRAY. Function S I Z E returns
a default integer that equals the total number of elements in ARRAY. Functions
LBOUND, SIZE, and UBOUND may include an optional second dimension, DIM.

In that case, the functions return a scalar integer result along the specified
dimension of ARRAY. For the array A(2, 0: 5,10), LBOUND returns the vector
(1,0,1) and UBOUND returns (2,5,10). SHAPE returns (2,6,10) and SIZE returns
120.

Array reduction functions

These are called "reduction functions" because they return a result that "collapses"
an array of rank n to an array of rank n-l. This includes reducing a rank-one array
to a scalar that, in this context, is considered to be a "rank-zero" array.

To see how much code array reduction functions can eliminate, consider
the simple problem of summing all the elements in a rank-one array A of
dimension n. Code using a DO. . . loop would look like this:

sum_array=O.
DO i=l,n

sum_array=sum_arraY+A(i)
END DO

However, this same result can be achieved with a single call to the function SUM:

sum_array=SUM(A)

Here is another example that performs a more sophisticated task. Count the
number of elements in an array that are larger than some specified value:

12.4 Array Operations and Array Inquiry and Reduction Functions • 617

GT_zero=O.
DO i=l,n

IF (A(i»O.) GT_zero=GT_zero+1
END DO

This result can also be achieved with a single function call:

GT_zero=COUNT(mask=A>O.)

Program P-12.3 demonstrates functions described in Table 12.1. This is a
program to study just for tile syntax, as it doesn't do anything meaningful.

P-12.3 [ARAYFUNC. F90]

PROGRAM ArrayFunctions

MS-DOS file name ARAYFUNC.F90.
Demonstrate array manipulation functions.

IMPLICIT NONE
REAL a(3),b(3)
REAL x(3,4),y(4,3),z(3,3)
INTEGER row, col

Here's one way to initialize an array.
DATA x/1.1,2.1,3.1,l.2,2.2,3.2,l.3,2.3,3.3,l.4,2.4,3.4/
DATA y/10.1,20.1,30.1,40.1,10.2,20.2,30.2,40.2, &

10.3,20.3,30.3,40.3/

a=(/1.,2.,3./)
b= (/2 . , 3 . , 4 . /)
PRINT *,' a=' , a
PRINT *,' b=' , b
PRINT *. 'DOT PRODUCTCa,bl=',DOT_PRODUCT(a,b)

618 • 12. A Closer Look

Here's an alternate way to assign values to an array.
Don't use both!

x=RESHAPE«/1.l,2.1,3.1,l.2,2.2,3.2,l.3,2.3,3.3, &
1.4,2.4,3.4/),(/3,4/»

PRINT *, 'LBOUND(x)=',LBOUND(x), 'UBOUND(x)=',UBOUND(x), &
'SHAPE(x)=',SHAPE(x), 'SIZE(x)=',SIZE(x)

y=RESHAPE((/10.1,20.1,30.1,40.1,10.2,20.2,30.2,40.2, &
10.3,20.3,30.3,40.3/), (/4,3/))

PRINT *, 'LBOUND(y,l)=',LBOUND(y,l), 'LBOUND(y,2)=', &
LBOUND(y,2), 'SHAPE(y)=', &
SHAPE(y), 'SIZE(y,l)=',SIZE(y,l), &

'SIZE(y,2)=',SIZE(y,2)
using the "mask" parameter.

PRINT,'ALL(mask=(x>30.0»',ALL(mask=(x>30.0»
PRINT *,'ANY(mask=(x> 3.0»',ANY(mask=(x> 3.0»
PRINT *, 'COUNT(mask=(x>3.0»',COUNT(mask=(x>3.0»

Finding max and min values.
PRINT *,'MAXVAL(x)=' ,MAXVAL(x),' MINVAL(x)=',MINVAL(x)

Finding product and sum of array elements.
PRINT *, 'Product across columns of x for each row.'
PRINT *, 'PRODUCT(x,2)',PRODUCT(x,2)
PRINT *, &

'Product across columns of x for each row for which an element'
PRINT *, 'is greater than 3.'
PRINT *, 'PRODUCT(x,2,mask=(x>3.0»',PRODUCT(x,2,mask=(x>3.0»
PRINT *, 'Sum of all elements in y.'
PRINT *, 'SUM(y)=',SUM(y)
z=MATMUL(x,y)
PRINT *,'x'
PRINT 1000, «x(row,col),col=l,4),row=l,3)
PRINT *, 'y'
PRINT 1010, «y(row,col),col=l,3),row=l,4)
PRINT *,' z'
PRINT 1010, «z(row,col),col=l,3),row=l,3)

You can apply DOT_PRODUCT to one dimension of a vector.
PRINT *,DOT_PRODUCT(x(l,l:4),y(1:4,l»

1000 FORMAT(lx,4f8.2)
1010 FORMAT(lx,3f8.2)

END

12.4 Array Operations and Array Inquiry and Reduction Functions • 619

Running P-12.3

a = 1.000000 2.000000 3.000000
b= 2.000000 3.000000 4.000000
DOT_PRODUCT{a, b) = 20.000000
LBOUND(x} = 1 1 UBOUND(X)= 3 4 SHAPE(x) ~ 3 4 SIZE(x)= 12
LBOUND(y,l)= 1 LBOUND(y,2) = 1 SHAPE(y) = 4 3 SIZE(y,l) = 4

SIZE{y,2) = 3
ALL(mask=(x>30.0» F
ANY(mask= (x> 3 . 0» T
COUNT(mask* (x>3.0» 4
MAXVAL(X) = 3.400000 MINVAL(x) = 1.100000
Product across columns of x for each row.
PRODUCT(x,2) 2.402400 25.502399 1.1130241E+02
Product across columns of x for each row for which an element
is greater than 3.
PRODUCT(x,2,mask= (x>3 . 0» 1.000000 1.000000

1. 1130241E+02
Sum of all elements in y.
SUM(y) = 3.0239999E+02
x

1.10 1. 20 1. 30
2.10 2.20 2.30
3 . 10 3.20 3.30

Y
1 0.10 10.20 10.30
20.10 20.20 20.30
30.10 30.20 30.30
40.10 40.20 40.30

~ ..
130.50 131.00 131.50
230.90 231.80 232.70
331. 30 332.60 333 . 90
1.3050000E+02

1. 40
2 . 40
3.40

Here is a more practical problem that makes use of some of Fortran 90's array
reduction functions.

1 Define the problem.

Given a table containing monthly average temperatures for n years, write
a program that calculates the yearly average temperature for each of the n years
and the 12 monthly average temperatures over the years 196(}-1990. A table of
temperatures from Philadelphia for 1960 to 1990 is contained in file
TEM_PHIL. DAT, which can be downloaded from the World Wide Web site
mentioned in Section i.5 of the Preface. The first few records look like this:

620 • 12. A Closer Look

Average Temperature for Philadelphia (deg F)
60 34.2 35.4 32.7 56.7 61.2 70.6 73.3 74.5 67.3 54.S 45.5 27.6
61 25.0 34.0 43.1 49.8 58.6 69.9 75.6 73.5 71.5 55.7 45.2 31.0
62 30.0 30.4 40.5 52.0 64.1 71.7 72.0 72.0 63.1 56.3 42.1 31.0
(and so on)

2 Outline a solution.

1. Store the temperature values in a two-dimensional array.
2. Average the temperatures over twelve months for each year.
3. Average the temperatures over all years for each month.

3 Design an algorithm.

Here is an algorithm that appears to be short on details. However, it can
be implemented quite directly in Fortran 90.

DEFINE (2-D array to hold temperatures, two 1-0 arrays to hold averages)
OPEN (data file containing temperatures)
READ (temperature values and store in 2-D array)
AVERAGE (across all months to get yearly_average)
AVERAGE (across all years to get monthly_average)

This algorithm appears to violate our usual rule of making pseudocode sufficiently
detailed to translate it directly into any procedural programming language--even
one that doesn't include Fortran's array manipulation features. However, this
might be a reasonable simplification of the algorithm design for an experienced
programmer, regardless of the language, because it shouldn't be necessary to spell
out in detail the loop structures necessary to achieve the desired results.

4 Convert the algorithm into a program.

Although a loop structure is still required to read and store the temperature
values in a two-dimensional array, Fortran 90's array reduction functions can be
used to implement this algorithm without using any programmed loop structures
to calculate the averaj1;es. Proj1;ram P-12.4 shows how to do it.

12.4 Array Operations and Array Inquiry and Reduction Functions • 621

P-12.4 [TEM_PHIL. F90]

PROGRAM temp-phil

file name TEM_PHIL.F90
Determine average annual and monthly temperatures, using
array reduction functions.

IMPLICIT NONE
INTEGER year,month
REAL temp(60;90,12),monthly_avg(12),yearly_avg(60;90)

OPEN(1,file='c;\ftn90.dir\tem_phil.dat' ,action='read')

READ(1,*)
10 READ(1,*,end=900)year, (temp(year,month),month=1,12)

GO TO 10
900

! Get

1000

CLOSE(1)

monthly and yearly averages.
monthly_avg=Su.M(array=~emp,dim=l)/31.
yearly_avg=Su.M(array=~emp,dim=2)/12.
PRINT *,' Monthly averages'
PRINT 1000,monthly_avg
PRINT *,' Yearly averages'
PRINT 1000,yearly_avg

FORMAT(lx,6flO.l)
END

Running P-12.4

Monthly averages
30.5 33.0 42.1 52.5
76.6 75.5 68.2 56.3

Yearly averages
52.8 52.7 52.1 51. 9
53.0 53.3 54.1 53.8
54.1 56.4 55.3 56.1
53.5 54.5 54.5 53.7
53.8 54.9 55.3 55.4
57.5

5 Verify the operation of the program.

62.8
46.4

54.1
54.5
54.2
54.2
54.5

71. 7
35.5

53.0
55.6
54.3
54.8
54.4

It is easy to get confused about the interpretation of array dimensions in
problems such as this. Because the required calculations are carried out
"transparently" by the array reduction functions without any pro~amminj,!; on your

622 • 12. A Closer Look

part, it is especially important to check the results by doing some of the
calculations by hand.

Problem Discussion
In P-12.4, the array reduction functions (see the two statements printed in

bold italics) have eliminated several lines of code. In the context of the Fortran 90
language, it is perfectly reasonable to take advantage of the existence of these
functions by inventing a pseudocode command such as AVERAGE (array over
specified dim~nsion). Because the loop structure code required to average array
elements is essentially the same in all procedural languages, and because you
should now be able to write such code without difficulty, you could use this "high
level" command regardless of whether the language in which you will implement
the algorithm supports array reduction functions.

Note how the lower and upper limits of the two-dimensional array have
been set to the values of the 31 years in the table (60: 90). This is an ad hoc
approach to this specific problem, based on an examination of the contents of the
data file TEM_PHIL. DAT.

12.5 Direct Access and Unformatted (Binary) Files

12.5.1 Introduction to File Types

In Chapter 9 and briefly in Chapter 5, the concept of using external files for
storing information needed by or produced by a program was introduced, and the
syntax of using a sequential access formatted file was covered in detail. This
section will discuss other kinds of files and other modes of file access.

First let's review briefly some important properties of the sequential access
formatted ("text") files used in Chapters 5 and 9.

1. Formatted files contain characters that can be interpreted either as "text" or as
numbers.

The interpretation of characters as "text" or numbers is based on a
description of the file contents contained in a FORMAT statement. For example,
an A format is used to interpret text as characters. List-directed access can also be
used when information in text files can be interpreted unambiguously without
user-supplied format information. (This means that list-directed input is often
unsuitable for reading text files containing character strings either by themselves
or in combination with numbers.)

The fact that formatted files represent numbers as a string of characters
means that your program must translate back and forth between internal and
external representations of information. This process is transparent at the

12.5 Direct Access and Unformatted (Binary) Files • 623

programming level except for the need to provide a FORMAT (either explicitly or
implicitly with list-directed I/O) to impose the desired translation on each record
in the me.

2. When sequential access mes are read, they are accessed in order, starting at the
beginning. When they are written, they are written from the beginning.

This restriction can be relaxed through the BACKSPACE and REWIND

statements, although their use has been discouraged.

3. Sequential access text fibs are "line oriented," which means that every record
in the me is terminated by a system-dependent end-of-line mark.

The end-of-line mark is written into a me or output device whenever a
WRITE statement is executed without an advance= I no I option, in which case.
the writing of an end-of-line mark is suppressed.

4. Sequential access text mes are opened with either read or write access, with
action= I read I or action= I wri te I specifiers.

In the applications discussed so far, sequential access mes have been used
for either reading or writing, but not for both within the same program.

Although these limitations pose no problems in a large number of
programming situations, they can sometimes be restrictive in significant ways. To
cite just one example, to which we will return later in this chapter, it is impossible
to conduct a binary search on a me that is restricted to sequential access. This
means that the binary search algorithm discussed in Chapter lOis restricted to
files that are small enough to be held in an array in memory. This may not appear
to be a restriction of any practical consequence; after all, it is more efficient to
perform operations on arrays held in memory than on the same information held
in an external file. However, it is on the largest files that a binary search
algorithm confers the greatest potential advantage, and it is, in fact, not uncommon
to have data files that are too large to be stored in arrays.

Fortunately, Fortran provides ways to create and use mes that overcome
many of the restrictions on sequential access formatted files as used so far in this
text. For these purposes, there are three kinds of file properties that can be
specified by choosing options in the OPEN statement: file format, means of access,
and read/write permission. Each of these properties can be specified
independently, so there are several different possibilities. Table 12.2 shows the
options in the OPEN statement available for establishing these properties.

As always, Fortran is case-insensitive, so the specifiers and their values
given in Table 12.2 may be entered with any combination of lowercase or
uppercase letters.

624 • 12. A Closer Look

Table 12.2. Options for the OPEN statement.

OPEN Specifier Values Default Value

FORM= , FORMATTED' , ' FORMATTED' for sequential access,
'UNFORMATTED' , UNFORMATTED' for direct access

ACCESS= , SEQUENTIAL' , ' SEQUENTIAL' for formatted files,
'DIRECT' 'DIRECT' for unfonnatted files

ACTION= 'READ', 'WRITE', System dependent
'READWRITE'

POSITION= 'ASIS', 'REWIND', 'AS IS , (applicable only to sequential
'APPEND' access files)

RECL= record_length none (see text - applicable only to direct
access files)

We will now discuss each of the specifiers in detail.

1. FORM=

Previously, the files created and used in Chapters 5 and 9 were formatted
sequential access files opened with I READ I or I WRITE I status. The
I FORMATTED I property is the default condition when both the FORM= and the
ACCESS= options are absent from an OPEN statement.

The other possibility for the FORM= option is the I UNFORMATTED I

property. To understand its importance, recall that formatted files contain external
representations of values. For example, the real number 33.3 is stored in a
formatted file as the characters 33.3 rather than in its internal format, as
previously discussed in Section 12.3. As a result, a program must translate back
and forth between internal and external representations of information when it
reads from or writes to a text file. There is a price-file processing time
associated with this translation.

An unformatted file, also called a binary file, contains information that has
simply been copied from its internal storage locations, without translation of any
kind. The implication of this difference is that unformatted files should allow
faster file processing and, in some cases, should produce smaller data files. These
differences are important in some applications, although there are no programs in
the previous chapters of this text for which file processing time or file size should
have any impact on program design.

When unformatted files are accessed with a READ or WRITE statement, no
format specifier of any kind is allowed, including an asterisk for list-directed input
or output. This makes sense because, by defmition, unformatted files require no
translation to or from an external representation.

12.5 Direct Access and Unformatted (Binary) Files • 625

One important advantage of doing away with formats is that entire records
defined with a TYPE structure may be read and written as a whole, rather than
being broken down into component fields. In fact, individual records can't be
extracted during a READ operation because this would require a format.

Some Fortran programmers prefer to use unformatted files unless there are
specific requirements that a file be easily transportable to some other computing
environment. Clearly, such a requirement exists if a program needs to access input
information generated outside the program. This text has used formatted files
because it's important for beginning programmers to be able to view and print the
contents of files easily.

There are some other possible disadvantages to using unformatted files.
They can be generated only under program control, and for all practical purposes,
they can be read only under program control. A program that reads an unformatted
file created by another program must know the record structure of the information
written by that other program. Whereas it is usually possible to interpret a text file
just by looking at it, equivalent information about an unformatted file can be
obtained only with great effort and a thorough understanding of how information
is stored internally in your computer. Also, binary files created on one computer
system will not be portable to a different kind of computer system. Formatted
files, on the other hand, are easily transportable with no or only minor
modifications even among different kinds of computer systems.

Another possible impact on program design is that the ADVANCE=
specifier isn't allowed for writing unformatted files. This could have a design
impact on programs that use this feature.

Finally, binary files are required to have a fixed record length, for reasons
that are discussed under the ACCESS= option. This is not a restriction for
formatted files, in which each record, or line, of a file may have a different length
and may contain different kinds of information. Because binary files are record
oriented, there is no equivalent of a line-by-line structure. When a problem
requires that the records of a file contain different kinds of information, it may not
be at all convenient to create fixed-length binary files to hold that information.

2. ACCESS=

All the files used so far in this text have been ACCESS= I SEQUENTIAL I
files. This is Fortran's default for formatted files unless overridden by option
specifiers. As you should recall, sequential access means that, when files are
opened for reading, a pointer is positioned at the beginning· of the file and the file
can be read one record at a time, in order, with the exceptions provided by
REWIND and BACKSPACE. When they are opened for writing, the records must
be created in sequence, starting at the beginning.

With the ACCESS= I DIRECT I option, any record in a file may be
accessed at any time. However, keepin~ track of the location of all records in a

626 • 12. A Closer Look

file could impose a substantial burden on the programming environment. To
minimize this burden, direct access files are required to have fixed record lengths.
In this way, it is easy to "index" the file for the purposes of locating a particular
record. The required record length information is included in the
RECL=record_length option, which is required for direct access files and is
described below.

One typical use of a direct access file is to open a file with read/write
access (see the ACTION= option below), read a record, decide that some values
need to be changed, and then overwrite this record. Hence whenever a program
needs to eXaIn.ine and possibly modify records in a file, direct access files are the
appropriate choice.

Direct access is the default condition for unformatted files. It is also
possible, but not recommended for beginning programmers, to specify direct
access for formatted files.

3. ACTION=

For sequential access files, the allowed action should be either 'READ'
or 'WRITE'. 'READWRITE' access should not be specified for a sequential
access file, even though it is allowed in principle. There are good reasons for this
restriction. Consider this code fragment that appears to read a record and then
change the values in the record:

... !won't work!
10 READ{l,*,END=900)a,b,c

PRINT *,a,b,c
BACKSPACE{l)
WRITE{l,*)a+2,b+2,c+2

GO TO 10

This might look like a reasonable way to use BACKSPACE, but (without
belaboring the details) it will not work. In general, only direct access files should
be opened as 'READWRITE'.

4. POSITION=

When sequential access files are opened, the file pointer
can be either at the beginning or at the end. In the default
(, AS IS') condition, the file pointer is always at the beginning

file pointer I
when a file is first opened for either reading or writing. The purpose of the
, APPEND' property is to position the file pointer at the end of an existing file so
that new records can be added to the end. Usually, the 'REWIND' option is not
needed. This option can be used only with sequential access files.

12.5 Direct Access and Unfonnatted (Binary) Files • 627

5.RECL=record_length

For a sequential access file, RECL= specifies the maximum length of a
record; it is system-dependent and optional. For a direct access file, this specifier
is mandatory. If the file is fonnatted, record_length contains the number of
characters in the record, including the end-of line mark. If the file is unfonnatted,
record_length contains the number of bytes required to represent the
infonnation in the record; this is a system-dependent value.

12.5.2 Using Other File Types

Program P-12.5 illustrates how to use the OPEN statement to create fonnatted and
unfonnatted files with direct access. It perfonns the following tasks.

1. Read an existing text file (FILETEST . DAT) and create a random access
binary file (FILETEST . BIN).
2. Read FILETEST. BIN file backwards and print the contents.
3. Read FILETEST . DAT again and create a new fonnatted file
(FILETEST . FIX) with a specified fixed record length.
4. Read FILETEST. FIX backwards and print the contents.

P-12.5 [FILETEST. F90]

PROGRAM FileTest

Test syntax of various file options.

IMPLICIT NONE
INTEGER i,n,a,b,c,n_bytes

OPEN(1,fi1e='c:\ftn90\source\filetest.dat',action='read')
INOUIRE(iolengtb=n_bytes)a,b,c
OPEN(2,fi1e='c:\ftn90\source\filetest.bin', &

form='unformatted',action='readwrite', &
access='direct',recl=n_bytes)

I Read text file and use it to create direct access binary file.
n=O
PRINT *, 'Read original file and create new binary file.'

10 READ(1,*,end=900)a,b,c
PRINT *,a,b,c
n=n+1
WRITE(2,rec=n)a,b,c

GO TO 10
900 CLOSEn)

628 • 12. A Closer Look

Read binary file backwards.
PRINT *, 'Read binary file backwards.'
DO i=n,l,-l

READ(2,rec=i)a,b,c
PRINT *,a,b,c

END DO
CLOSE(2)

Now create a formatted file for direct access.
OPEN(1,file='c:\ftn90\source\filetest.dat',action='read')
OPEN(2,file='c:\ftn90\source\filetest.fix',action='write', &

form='formatted',status='replace')
n=O
PRINT *, 'Create formatted (fixed-length records) file.'

20 READ(1,*,end=910)a,b,c
PRINT 1000,a,b,c
n=n+1
WRITE(2,1000)a,b,c !Do NOT use list-directed output.

GO TO 20
910 CLOSE(l)

CLOSE(2)
Open this formatted file for random access.

PRINT *, 'Open for random access and read every other record. '
Open file with n_bytes+2 to allow for CR/LF characters.

OPEN(1,file='c:\ftn90\source\filetest.fix',action='read', &
recl=n_bytes+2,access='direct',form='formatted')

DO i=1,n,2
READ(1,1000,rec=i)a,b,c !List-directed input not allowed.
PRINT *,a,b,c

END DO
CLOSE(l)

1000 FORMAT(3i4)
END

12.5 Direct Access and Unformatted (Binary) Files • 629

Running P-12.5

Read original file and create new binary file.
346
o -1 4
17 16 15
11 20 -3
421
33 14 9
-5 -1 0
-5 -4 -3
123
678
Read binary file backwards.
678
123
-5 -4 -3
-5 -1 0
33 14 9
421
11 20 - 3
17 16 15
o -1 4
346
Create formatted (fixed-length records) file.
346
o -1 4

17 16 15
11 20 -3
421

33 14 9
-5 -1 0
-5 -4 -3
123
678

..

Open for random access and read every other record.
34.6
17 16 15
4. 2 1
-5 -1 0
123

P-12.5 is a deceptively simple program that bears close examination. The
first part of the program, reading an existing formatted file, is straightforward.
However, the creation of the unformatted file raises a question. The RECL= option
is required for the direct access file. But what value should you use? How many
bytes does it take to store three integers? If you know that the default integer data
type takes four bytes, you might guess correctly that the answer is 12 bytes.
However, for other data types, including derived data types, the answer might be
less obvious.

630 • 12. A Closer Look

The solution is to use the Fortran 90 INQUIRE statement, which is printed
in bold italics in P-12.S. This statement examines the proposed output list (a, b, c
in this case) and returns the required number of bytes in the variable n_bytes. A
partial syntax is

I INQUIRE(iolength=n)I/O_list

where n is a user-supplied variable name and I/O list is a list of variables to
be written in the record. Note that it's not necessary for a, b, and c to have
values yet because it is only their data type that is of interest for this purpose.

Once the record length has been established with the INQUIRE statement
in P-12.5, the file can be created. When it's time to read the contents of this new
binary file, that fact that it has been opened as a direct access file means that it's
not necessary to close it and open it again, or to "rewind'; it in order to read the
contents. All that is required is to specify the record number with the REC= option
in the READ statement. Because this is an unformatted file, every READ or WRITE
statement that accesses the file must include a record index:

READ(unit,REC=n, ...)
WRITE(unit,REC=n, ...)

Remember that 110 statements cannot include a format specifier when they are
accessing a binary file.

The third step in P-12.S reads FILETEST . DAT again and creates a new
formatted file, FILETEST. FIX. This file contains the same information as
FILETEST. DAT, but it is written with a FORMAT statement so that all the
records will have the same length; the values in FILETEST. DAT aren't lined up
in columns so the records don't all have the same length. This is done in
anticipation of reopening this file for direct access. In that case, a record length
must be specified and all the records should have the same record length. Because
the format specifier is 314, the three values occupy 12 bytes in each record.

Finally, step four opens FILETEST. FIX as a formatted direct access file
and reads it backwards. Because it is a direct access file, the OPEN statement once
again requires that the record length be specified. What is the appropriate value
this time? Every record in FILETEST. FIX includes an end-of-line mark. In DOS
text files, the end-of-line mark requires two characters-a carriage return and a
line feed. Thus the value that must appear in the OPEN statement is 12+2, or 14
bytes. Note that this value is system-dependent because the end-of-line mark on
some computer systems (Macintosh, for example) requires only one byte.

If you are motivated to examine other uses of the INQUIRE statement in
a Fortran reference manual, you might try to use it to determine the number of
bytes in the fixed-length records of an existing formatted file before the file is

12.5 Direct Access and Unformatted (Binary) Files • 631

opened. However, this is not possible; INQUIRE will return only the maximum
allowed record length for a file of this type, and obtaining even that information
requires that the file already be open. In general, it would also be useful if an
INQUIRE could determine the number of records in a formatted file. Why?
Because the END= option in the READ statement is not allowed when a file is
opened for direct access. This is inconvenient when reading through direct access
files of unknown length. (In P-12.5, the number of records was already known
from operations earlier in the program.) However, it isn't possible to use
INQUIRE for this purpose, either.

Although Fortran has extensive capabilities to create files that meet many
different needs, the details of P-12.5 should convince you to stick to the basics
unless you have a very unusual requirement. In particular, it is a good idea to
restrict your use of formatted files to sequential access and to use unformatted
files for direct access. This should serve your needs in nearly all the programs you
will write yourself.

12.5.3 Example: Binary Search of a File

A binary search algorithm applied to an array of sorted values was discussed in
Chapter 10 and that algorithm was implemented in P-10.3. In this section, we will
discuss a program, P-12.6, that modifies P-1O.3 so that it can be used to perform
a binary search on a file. This has obvious advantages for files that are too large
to be stored in an array. It should be clear that in order for a binary search to
work, such a file must be treated as a direct access file. Because a file-based
searching algorithm makes sense only for large files, it also makes sense to
assume that the data are stored in an unformatted file because of the reduced
processing time associated with such files.

P-126~RCHFILE.F90]

MODULE FileSearch
IMPLICIT NONE
TYPE filefields

INTEGER x
END TYPE filefields
INTEGER search_key

CONTAINS
!--

SUBROUTINE Bin_Search_F(u,n_rec,where)

Binary search of an ordered list for one occurrence of
specified target value.

USE FileSearch, ONLY: FileFields,target => search_key
IMPLICIT NONE
INTEGER mid.In.hi

632 • 12. A Closer Look

INTEGER where
INTEGER, INTENT(IN) .. u,n_rec
TYPE (FileFields) file

10=1
hi=n_rec
where=O
DO WHILE ((10 .LE. hi) .AND. (where .EQ. 0»

mid=(10+hi)j2
READ(u, rec=mid) file
IF (file%x .EQ. target) THEN

where=mid
ELSE IF (file%x .GT. target) THEN

ri=mid-1
ELSE

lo=mid+l
END IF

END DO

END SUBROUTINE Bin_Search_F
!------------------------------

END MODULE FileSearch
!===========================

PROGRAM SearchFile

MS-DOS file name SRCHFILE.F90
Binary search on unformatted direct-access file.

USE FileSearch, ONLY: Bin_Search_F,FileFields, &
what => search_key

IMPLICIT NONE
INTEGER i,u,n_rec,n_bytes,where
TYPE (FileFields) file
DATA u,n_rec,file%xj1,10,Oj

INQUIRE(iolength=n_bytes) file
OPEN(u,file='c:\ftn90.dir\srchfile.bin',access='direct', &

form='unformatted' ,recl=n_bytes,action='readwrite')

Fill file with even integers.
DO i=l,n_rec

file%x=2*i
WRITE(l,rec=i)file
PRINT *,file%x

END DO

10 PRINT *,' Search for what, 999 to quit?'
READ *,what
CALL Bin_Search_F(l,n_rec,where)
IF (whatj=999) PRINT *,where

IF (whatj=999) GO TO 10

CLOSE(l)
END

Running P-12.6

2
4
6
8
10
12
14
H
18
20
Search for what, 999 to quit?

6
3
Search for what, 999 to quit?

5
o
Search for what, 999 to guit?

999

Problem Discussion

12.6 The COMPLEX Data Type • 633

P-12.6 has been implemented using a MODULE so that both the subroutine
to do the binary search and the data type definition associated with file records,
which in this example contain only one field, are as portable as possible and easy
to modify. The basic difference between Bin_Search_F and Bin_Search
from Chapter lOis that array references are replaced by READs of specified
records in the file.

It should be clear that Bin_Search_F can be applied to any binary file
for which the record structure is known. It is necessary only to include an
appropriate TYPE definition and refer to the field on which the search is being
conducted.

12.6 The COMPLEX Data Type

Because of the importance of complex numbers in scientific and engineering
computing, Fortran supports a separate data type for manipulating complex
numbers and variables. The general syntax is

COMPLEX variable list

Example:
COMPLEX root_1,root_2

634 • 12. A Closer Look

The complex number a + bi is specified as (a,b); that is, with the real and
imaginary components enclosed in parentheses and separated by a comma. Both
components must always be present even if one value is zero. The components
can be either REAL or INTEGER, and they don't both have to have the same data
type.

Complex values can be read and written with either list-directed or
formatted I/O. Assume Cl and C2 are declared as COMPLEX. To respond to the
statement

READ *,C1,C2

type, for example,

(1.,-.5) (-1.,-2.)

The statement

PRINT *,Cl,C2

produces compiler-dependent output that will look something like this:

(1.000000, -0.500000) (-1.000000, -2.000000)

Formatted I/O requires a separate format specifier for each component of
the complex number. Here's an example:

READ 1000,C1,C2
PRINT 1010,Cl,C2

1000 FORMAT(4fs.1)
1010 FORMAT (2 ('(' ,fS.1,',' ,fs.1,')'»

The format specifiers for the real and imaginary components don't have to be the
same. Assignments of constants to a COMPLEX variable can be made like this:

Cl=(1.,2.)

However, assignments involving one or more variables must use the intrinsic
CMPLX function:

x=1.
y=2.
C1=(x,y)
C2=(0.s,y)

The syntax of the CMPLX function is

CMPLX(x[,vl [,KIND1)

12.6 The COMPLEX Data Type • 635

If y is not present, x must be of type COMPLEX.
Fortran supports arithmetic operations on complex numbers. Table 12.3

shows the results of these operations.

Table 12.3. Operations on complex numbers

Real Imaginary
Fortran Operation Component Component

CMPLX (a, b) +CMPL:: (c, d) a+c b+d

CMPLX(a,b)-CMPLX(c,d) a-c b-d

CMPLX(a,b)*CMPLX(c,d) ac-bd ad+bc

CMPLX(a,b)/CMPLX(c,d) (ae+bd)/(c2+d2) (bc-ad)/c2+d2)

P-12.7 is a short program that illustrates some of the syntax associated with
using COMPLEX variables.

P-12.7 [COMPLEX. F90]

PROGRAM Complex

Demonstrate operations with COMPLEX data.

IMPLICIT NONE
REAL x,y,a,b
COMPLEX cl,c2

x=l.
y=2.
a=0.5
b=3.
cl=CMPLX(x,y)
c2=CMPLX(a,b)
PRINT *,cl,c2,cl+c2,cl*c2,cl/c2
PRINT *,REAL(cl),AIMAG(cl)
END

Running P-12.7

1.0000000, 2.0000000}
1.5000000, 5.0000000)
0.7027027, -0.2162162)

1.0000000 2.0000000

0.5000000, 3.0000000)
-5.5000000, 4.0000000)

As another example, P-12.8 calculates the roots of the quadratic equation
ax2 + bx + c = 0 with real or imaJ;?;inarv roots. Previouslv, it would have been

636 • 12. A Closer Look

required that the discriminant be positive to guarantee real roots. However, if the
discriminant is less than zero, -b plus and minus the square root of the negative
of the discriminant are the numerators of the imaginary components of two
complex roots.

P-12.8 [QUADRAT2. F90]

PROGRAM Quadrat2

Calculates solutions to the quadratic equation.

IMPLICIT NONE
REAL a,b,c ! coefficients ofaxA2+bx+c=0
COMPLEX rootl,root2 ! two roots
REAL discriminant

PRINT*,' Give coefficients ofaxA2+bx+c: '
READ*,a,b,c

Test for existence of one or more roots.

discriminant=b*b-4.0*a*c
SELECT CASE (discriminant>O .)

CASE (.TRUE.)
rootl=CMPLX«-b+SQRT(discriminant»/2./a,O.)
root2=CMPLX«-b-SQRT(discriminant»/2./a,O.)
PRINT*,' The two real roots are' ,rootl,root2

CASE (. FALSE.)
IF (ABS(discriminant)<le-7) THEN !assume discriminant=O

rootl=-b/2./a
PRINT*,' The single real root is ',rootl

ELSE
rootl=CMPLX(-b/2./a,SQRT(-discriminant)/2/a)
root2=CMPLX(-b/2 . /a,-SQRT(-discriminant)/2./a)
PRINT*,' The two complex roots are ',rootl,root2

ENDIF
END SELECT
END

Running P-12.8

Give coefficients ofaxA2+bx+c:
123

The two complex roots are (-1.0000000, 1.4142135)
(-1 . 0000000, -1.4142135)

12.7 Data Sharing with COMMON Blocks

In Chapter 7, the MODULE was introduced as a way of sharing information among
a main program and its subprograms. At the same time, it was noted that in older

12.7 Data Sharing With COMMON Blocks • 637

versions of Fortran, COMMON blocks were used for this purpose. There is no
reason to use COMMON blocks in new programs written in Fortran 90. However,
because COMMON blocks are often found in older programs, a brief discussion may
be helpful.

The need for COMMON blocks, or some other information-sharing
mechanism, arises because variables defined within any Fortran program or
subprogram are local just to that program or subprogram. To put it another way,
there is no concept in Fortran of "global variables" that are automatically
accessible to all units within a program.

The basic way to shrre information among parts of a Fortran program is
to pass variables through an argument list, a principle that has been followed
throughout this text. However, recall program P-7.4, in which a MODULE was used
to define the value of 1t and make it available to FUNCTION Area. Program
P-12.9 is a version of P-7.4 that uses a COMMON block instead of a MODULE to
make the value of 1t available to the function. (The MODULE is still used to
contain the subprograms, thereby making this a "hybrid" program that, just for
demonstration purposes, uses a "pre-Fortran-90" method of sharing the value of
1t.)

P-12.9 [CIRCLCOM. F90]

MODULE CircleFunctions

CONTAINS

REAL FUNCTION Area(radius)

Do area calculation.

IMPLICIT NONE
REAL radius/pi
INTENT(IN) radius
COMMON pi

Area=pi*radius*radius

END FUNCTION Area

REAL FUNCTION Circumference(radius)

Do circumference calculation.

IMPLICIT NONE
REAL radius/pi
INTENT(IN) :: radius
COMMON pi

Circumference=2.0*pi*radius

END FUNCTION Circumference
END MODULE

1---------------

638 • 12. A Closer Look

PROGRAM CirclCom

Calculate area and circumference of a circle, using
two functions.

USE CircleFunctions, ONLY : Area,Circumference
IMPLICIT NONE
REAL radius,pi
COMMON pi

pi=4. *ATAN(l.)
PRINT *,' What is the radius of the circle?'
READ *,radius

PRINT 1000,Area(radius),Circumference(radius)

1000 FORMAT(lx,2flO.3)
END \

In P-12.9, the variable pi is defined in the main program. Its value is then
made available to the Area and Circumference functions through a COMMON
statement. This use of COMMON is also called "unnamed" or "blank" COMMON.

It's also possible to give names to one or more COMMON blocks. In this
way, variables can be grouped together depending on how they are used in other
program units. This is called "named" COMMON. The general syntax for defming
COMMON blocks is

COMMON [/name/J list of variables

Program P -12.10 illustrates some interesting properties and potential pitfalls
of using COMMON blocks and storage rather than name association. In the main
program, an array of 20 REAL numbers is stored in a blank COMMON block. As
a result, an area of memory is set aside that is large enough to hold 20 REAL
numbers.

In SUBROUTINE com_test, the information in this memory area is
associated with two arrays of 10 REAL numbers each, rather than a single array
of 20 REAL numbers. This works, as is clear from the first set of output values
from P-12.1O, because information in COMMON blocks is "storage associated"
rather than "name associated."

In SUBROUTINE com_test_2, values in the COMMON block are
associated with an array of 20 INTEGERs rather than 20 REAL numbers. The
second set of output values from P-12.1O shows the result of this association.
Fortran is perfectly willing to interpret the information in the COMMON block (the
bytes required to store six REAL numbers) in a different way. Again, this is
possible because information in COMMON blocks is storage associated.

P-12.1O [COM_TEST. F90]

MODULE com_blk_subs
CONTAINS

!------------------------
SUBROUTINE com_test
IMPLICIT NONE
REAL A(lO),B(lO)
INTEGER i
COMMON A,B

DO i=l,lO
PRINT 1000,A(i),B(i)

END DO
1000 FORMAT(2flO.2)

12.7 Data Sharing With COMMON Blocks • 639

END SUBROUTINE com_test
!--------------------------

SUBROUTINE com_test_2
IMPLICIT NONE
INTEGER A(20)
INTEGER i
COMMON A

DO i=l,20
PRINT 1000,A(i)

END DO
1000 FORMAT(i20)

END SUBROUTINE com_test 2
!----------------------------

END MODULE com_blk_subs
!============================

PROGRAM com_blk

Demonstrates use (and possible misuse) of COMMON blocks.

USE com_blk_subs, ONLY: com_test,com_test_2
IMPLICIT NONE
REAL A(20)
INTEGER i
COMMON A

DO i=l,20
A(i)=i*lO.

END DO
CALL com_test
CALL com_test_2
RNn

640 • 12. A Closer Look

Running P-12.1O

10.00 110.00
20,00 120.00
30.00 130.00
40.00 140.00
50.00 150.00
60.00 160.00
70.00 170.00
80.00 180.00
90.00 190.00

100.00 200.00
1092616192
1101004800
1106247680
1109393408
1112014848
1114636288
1116471296
11177820H
1119092736
1120403456
1121714176
1123024896
1124204544
1124859904
1125515264
1126170624
1126825984
1127481344
1128136704
1128792064

Both uses of COMMON blocks in P-12.1O are potential sources of major
programming problems. The fIrst use, in SUBROUTINE corn_test, might seem
like a "neat" Fortran feature that can be used to advantage in some circumstances.
The second, in SUBROUTINE corn_test_2, is much more likely to result from
a mistake (declaring the array as INTEGER rather than REAL) on the part of the
programmer.

In fact, the implications of storage association are often exploited by
"clever" Fortran programmers. However, the fact that Fortran doesn't care how
information in a COMMON block is interpreted when it is used in a subprogram is
a programming disaster just waiting to happen, especially in large programs that
are written by more than one programmer. Without exception, programs written
in Fortran 90 should avoid the use of COMMON blocks and should take advantage
of the security provided by the name association of MODULEs.

Appendices

Appendix 1. Table of ASCII Characters for IBM-Compatible PCs

Dec Hex Dec Hex Dec Hex Dec Hex
0 0 32 20 64 40 @ 96 60

© 33 21 65 41 A 97 61 a

2 2 • 34 22 II 66 42 8 98 62 b

3 3 ., 35 23 # 67 43 C 99 63 c
4 4 • 36 24 $ 68 44 D 100 64 d

5 5 .. 37 25 % 69 45 E 101 65 e
6 6 • 38 26 & 70 46 F 102 66 f
7 7 39 27 71 47 G 103 67 g

8 8 a 40 28 72 48 H 104 68 h
9 9 0 41 29 73 49 I 105 69

10 A Il 42 2A * 74 4A J 106 6A

11 8 0 43 28 + 75 48 K 107 68 k

12 C <? 44 2C 76 4C L 108 6C
13 D » 45 2D 77 4D M 109 6D m

14 E -b 46 2E 78 4E N 110 6E n

15 F ¢- 47 2F 79 4F 0 III 6F 0

16 10 ~ 48 30 0 80 50 P 112 70 P
17 11 ... 49 31 81 51 Q 113 71 q
18 12 t 50 32 2 82 52 R 114 72 r

19 13 !! 51 33 3 83 53 S 115 73 s
20 14 en 52 34 4 84 54 T 116 74 t
21 15 § 53 35 5 85 55 U 117 75 u
22 16 54 36 6 86 56 V 118 76 v
23 17 t 55 37 7 87 57 W 119 77 w
24 18 i 56 38 8 88 58 X 120 78 x
25 19 .L 57 39 9 89 59 Y 121 79 Y
26 lA ~ 58 3A 90 5A Z 122 7A z
27 18 f- 59 38 91 58 [123 78 {

28 lC 60 3C < 92 5C \ 124 7C I
29 1D H 61 3D 93 5D] 125 7D }
30 IE .. 62 3E > 94 5E A 126 7E
31 IF \' 63 3F ? 95 5F 127 7F L:l

642 • Appendices

Dec Hex Dec Hex Dec Hex
128 80 <; 160 AO Ii 192 CO L 224 EO a
129 81 ii 161 Al i 193 Cl .1. 225 El 8
130 82 6 162 A2 6 194 C2

~
226 E2 r

131 83 1 163 A3 ti 195 C3 227 E3 7t
132 84 i 164 A4 ii 196 C4 - 228 E4 :t
133 85 1 165 AS N 197 C5

t
229 E5 a

134 86 A 166 A6 • 198 C6 230 E6 P
135 87 ~ 167 A7 0 199 C7 231 E7 't

136 88 a 168 A8 l 200 C8 232 E8 4»
137 89 i! 169 A9 201 C9 K 233 E9 9
138 8A ~ 170 AA ..., 202 CA 234 EA a
139 8B i 171 AB ~ 203 CB I 235 EB a
140 8C i 172 AC ~ 204 CC 236 EC 00

141 80 i 173 AD 205 CD = 237 ED ,
142 8E A 174 AE « 206 CE JL 238 BE £
143 8F A 175 AF » 207 CF I 239 EF n
144 90 E 176 BO I 208 DO .II. 240 FO ==
145 91 Ie 177 Bl • 209 Dl ;= 241 Fl ±
146 92 ..£ 178 B2 • 210 D2 I 242 F2 ~

147 93 a 179 B3

~
211 03 243 F3 S

148 94 6 180 B4 212 D4 b 244 F4 r
149 95 c) 181 B5 213 05 f 245 F5 J
150 96 ft 182 B6 214 D6

J
246 F6 +

151 97 U 183 B7 11 215 D7 247 F7 ..
152 98 ij 184 B8

~
216 08 248 F8 0

153 99 () 185 B9 217 D9 249 F9
154 9A iJ 186 BA 218 OA

•
250 FA

155 9B ¢ 187 BB] 219 OB 251 FB ..J
156 9C £ 188 BC 220 DC

~
252 PC D

157 90 ¥ 189 BO JJ 221 00 253 PO
158 9E Pt 190 BE .J 222 OE 254 FE •
159 9F f 191 BF 1 223 OF 255 FF

Note: 0 is a null character, 32 is a space, obtained by pressing the space bar, and 255
is a blank.

A2. Summary of Pseudocode Commands and Fortran Statement Syntax • 643

Appendix 2. Summary of Pseudocode Commands and Fortran Statement
Syntax

Appendix 2.1 Pseudocode Commands

For a detailed discussion of these pseudocode commands, see Chapter Two.

ASSIGN
Set a variable equal to another variable, constant value, or expression. See

also the INCREMENT and INITIALIZE commands.

CALL subprogram_name (list of parameters)
Invoke another set of commands that, given a particular set of input values,

executes a list of instructions and produces a particular set of output values.

CHOOSE (from a list of possibilities)
From a list of possible courses of action, select just one action based on

the value of a single variable or expression.

CLOSE (data file)
Close an external data file when you're done with it.

DEFINE (list of variables and/or data structures)
Defme the names and kinds of variables your program will need.

IF (something is true) THEN (action) ELSE (a different action)
Take one course of action or another based on the value of a boolean

(logical) expression.

INCREMENT
This special case of an assignment command is for assignments such as

x = x + 1.

INITIALIZE
This special case of an assignment command is used to emphasize the

necessity of initializing the value of variables before they can be incremented.

LOOP (terminating conditions) ... END LOOP
Defme a structure inside of which lists of instructions can be executed

repetitively until (or as long as) certain conditions are met.

OPEN (data file)
Open an external data file for use within a program.

644 • Appendices

READ (list of values)
Provide input for a program from a keyboard or some other input device.

SUBPROGRAM (list of input and output parameters)
Contains an algorithm to produce one or more output values using one or

more specified input values.

WRITE (list of values)
Display output from a program, typically on a monitor screen, or save

output to some other device.

Appendix 2.2 Fortran Statement Syntax

For a detailed discussion of the syntax and use of these Fortran statements, see the
referenced chapter.

Chapter 8

ALLOCATE(name(spec) [,name(spec)] .. . [,STAT=status])

where (spec) has the syntax ([lo:]hi) and
status is an integer variable

Chapter 3 (assignment statement)

variable_name = expression consisting of constants,
variables, functions, and operators

Chapter 9

BACKSPACE unit
or

BACKSPACE([unit=]unit)

Chapter 7

CALL name [(argument list)]

Example:
CALL Polar_to_Cartesian(r,theta,x,y)

A2. Summary of Pseudocode Commands and Fortran Statement Syntax • 645

Chapter 3

CHARACTER[([LEN=]n)] variable_name[*n][, variable_name[*n]] ...
CHARACTER [*n] variable_name[*n][, variable_name[*n]] ...

where n is an integer constant.

Examples:

Chapter 9

CHARACTER a, b, c, d*3
CHARACTER*lO namel, name2
CHARACTER*20 Name, Street*30, City*25, State*2
CHARACTER(20) Name, Street*30, City*25, State*2

I CLOSE(unit)

Chapter 12

I COMMON [/name/] list of variables

Chapter 12

COMPLEX variable list

Example:
COMPLEX root_l,root_2

Chapter 3

DATA variable_list/constant for each variable,
separated by commas/

DATA variable_list/n*constant/
DATA variable_name/constant/[,variable_name/constant/]

where n is an integer that specifies the number
of repetitions of the constant

Examples:
DATA x,y,z/l.l,2.2,3.3/
DATA x/l.l/,y/2.2/,z/3.3/
DATA a,b,c/O,O,O/
DATA a,b,c/3*O/

646 • Appendices

Chapter 8

OATA (name(i),i=nl,n2)/constant[,constant] ... /
OATA (name(i),i=nl,n2)/n*constant/
OATA name/n*constant/
OATA name(element) [,name(element)]/constant[,constant] ... /
OATA name(element) [,name(element)]/n*constant/

Examples:
INTEGER i,j
REAL A(10),B(11:20),C(0:9,O:19)
INTEGER 0(10)
OATA A/10*1./,(B(i),i=11,15)/5*0./,(B(i),i=16,20)/5*-1./
OATh «C(i,j),i=O,9),j=O,9)/-1./
OATA 0(1),0(3),0(5),0(7),0(9)/1,2,3*3/

Chapter 3 (data declarations)

data_type[, attributes] [::] <list of variables,
separated by commas>

REAL [::] variable_name[, variable_name]
INTEGER variable_name[, variable_name]

Examples:

Chapter 8

REAL x_value, y_value, radius, angle
INTEGER i,j,k

data_type name(spec) [,name(spec)] .. .
data_type, OIMENSION(spec)[,name(spec)] ... :: name[,name] .. .
where (spec) is (low:high[,low:high] ...) or (size[,size] .. .)]

Examples:

Chapter 8

REAL A(0:9)
INTEGER B(10,3,2),C(-2:2,3,O:99)
REAL, OIMENSION(10,20) :: x,y

INTEGER, PARAMETER :: n1=-5,n2=5,n3=10
REAL C(n1:n2),O(n3)

data_type, ALLOCATABLE .. name(:[, :])[,name(: [,:])] ...

Chapter 8

10EALLOCATE(name[,name] ...)

A2. Summary of Pseudocode Commands and Fortran Statement Syntax • 647

Chapter 6

Syntax
form
(1) [name:] DO n = limitl,limit2[,step]

statement block
END DO [name]

(2) DO label n = limitl,limit2[,step]
statement block, except for ...

label last line of statement block

(3) DO label n = limitl,limit2[,step]
statement block

label CONTINUE

[name:] DO WHILE (relational/logical expression)
statement block

END DO [name]

Chapter 3

I END [PROGRAM [program_name]]

Chapter 5

label FORMAT(format descriptors)

Example:
1000 FORMAT (lx, IX and y: I,2f6.2)

Chapter 4

function_name(one or more "dummy" parameters)

Example:

Chapter 7

REAL BoxVo1ume,1,w,h
BoxVo1ume(1,w,h)=l*w*h

[data_type] FUNCTION name[(parameter list)]
[specification statements]
[executable statements]
[RETURN]
END [FUNCTION [name]]

Example of FUNCTION header:

expression

REAL FUNCTION DotProduct(xl,yl,zl,x2,y2,z2)

648 • Appendices

Chapter 9

I GO TO line_label

Chapter 6

Syntax
form

(1) IF (logical expression) action_statement

(2) [name:] IF (logical expression) THEN
statement block

END IF [name]

(3) [name:] IF (logical expression) THEN
statement block

ELSE [name]
statement block

END IF [name]

(4) [name:] IF (logical expression) THEN
statement block

Chapter 3

IIMPLICIT NONE

Chapter 12

[ELSE IF (logical expression) THEN [name]
statement block] ...

[ELSE [name]
statement block]

END IF [name]

INCLUDE string constant containing file name, including path

Chapter 12

INQUIRE(iolength=n) I/O_list

A2. Summary of Pseudocode Commands and Fortran Statement Syntax • 649

Chapter 7

data_ type, INTENT(status) :: list of names from parameter list
or

INTENT(status) list of names from parameter list

where status may be IN, OUT, or INOUT

Examples:

Chapter 7

REAL, INTENT(IN) :: x,y
REAL, INTENT (OUT) :: r,theta

REAL x,y,r,the~a
INTENT(IN) x,y
INTENT(OUT) r,theta

INTERFACE
<function or subroutine header>

<data declaration statements>
END <FUNCTION or SUBROUTINE> [name]

END INTERFACE

Chapter 7

INTRINSIC list of external names, separated by commas

Chapter 3

LOGICAL variable_name[, variable_name]

Chapter 7

MODULE module name
CONTAINS

<one or more SUBROUTINEs or FUNCTIONs>
END [MODULE [module name]]

Example:
MODULE SeveralSubs

CONTAINS
SUBROUTINE Subl

END SUBROUTINE Subl
SUBROUTINE Sub2

END SUBROUTINE Sub2
(more subroutines)

END MODULE SeveralSubs

650 • Appendices

Chapter 7

MODULE module_name
[specification statements]

END [MODULE [module_name]]

Example:

Chapter 9

MODULE Constants
REAL, PARAMETER .. pi=3.l4l5927,dr=O.Ol74532

END MODULE Constants

OPEN([UNIT=]u,optional specifiers)

where u is a unit number and the optional specifiers include:
ACCESS=

The possible values are 'SEQUENTIAL' and 'DIRECT'
ACTION=

The suggested values for sequential access files are
'READ' or 'WRITE'

BLANK=
The possible values are 'NULL' or 'ZERO'.

ERR=statement label
Program control will be transferred to statement label if

the OPEN statement generates an error.
FILE=path and file name

The full path and file name for the file to be opened.
If the file name appears directly after the unit number,
the specifier is optional.

FORM=
The possible values are 'FORMATTED' and 'UNFORMATTED'.

IOSTAT=integer variable
OPEN returns a zero if there are no errors and a positive

value otherwise.
POSITION=

The suggested values for writing to a sequential access
file are 'REWIND' and 'APPEND'. 'REWIND' positions an
existing file at the beginning, causing exising data to
be overwritten. 'APPEND' positions the file at the end,
allowing new data to be appended to existing data.

STATUS=
The possible values are 'OLD', 'NEW', 'REPLACE',
'SCRATCH', and 'UNKNOWN'.

Example:
OPEN(l, 'a:grades.dat',err=99,action='read')

A2. Summary of Pseudocode Commands and Fortran Statement Syntax • 651

Chapter 3

PARAMETER (variable_name=value[, variable_name=value] ...)
data_type,PARAMETER :: variable_name=value

[, variable_name=value] ...

Examples:
(using a PARAMETER statement)

INTEGER MaxSize
PARAMETER (MaxSize=1000)

(using the PARAMETER attribute)
REAL,PARAMETER :: pi=3.1415927, Deg_to_Rad=O.0174532

Chapter 3

PRINT *[,list of variables, expressions, functions,
or constants, separated by commas]

Examples:
PRINT*, 'This prints a string constant.'
PRINT* ! This prints a blank line.
PRINT*, 'The two sides are' ,x,' and ',y, &

The hypotenuse is ',hypotenuse,'.'
PRINT*, 'The average of x and y is ',(x+y)/2.0

Chapters 5 and 6

PRINT *[, list of variables, expressions, functions,
or constants, separated by commas]

PRINT labell, list ...]
PRINT format string[, list ...]

PRINT *,loop
PRINT fffff,loop
WRITE(*,*)loop
WRITE(*,fffff)loop

where loop is
(variable_name,variable_name=lower, upper, step)

or
(array_name(index) ,index=lower, upper, step)

and fffff is
format label or format description in the form of
a string constant

Chapter 3

PROGRAM program_name

Examples:
PROGRAM Model 1

This program is stored in file MY_PROG.F90

652 • Appendices

Chapter 3

[PROGRAM name]
[specification statements]
[executable statements]
END [PROGRAM [name]]

Chapter 3

READ *[, list of variable names, separated by commas]

Example:
READ *,a,b,c

Chapter 9

READ([UNIT=]u, [FMT=] format specifier[,IOSTAT=integer variable]
[,ERR=line_label] [,END=line_label]) list of variables

where:
u is a unit number, format specifier is a label for a

line containing a FORMAT statement
IOSTAT returns implementation-dependent integer values for

various abnormal conditions
ERR= directs program control to a labeled line if an error

occurs while reading the file
END= directs program control to a labeled line when the end

of the file is encountered.
The list of variables to be read can take several forms,

similar to the possibilities with formatted WRITE and
PRINT statements.

Examples:

Chapter 6

READ(5,*)a,b,c treads from standard input device
READ(3,*)a,b,c
READ(l,lOOO,END=999,ERR=998)(A(i),B(i),i=1,lO)

[name:] SELECT CASE (expression)

Chapter 9

[CASE (list of nonoverlapping values and ranges
with same data type as expression) [name]

statement block] ...
[CASE DEFAULT

statement block]
END SELECT [name]

REWIND unit
or

REWIND([unit=]unit)

A2. Summary of Pseudocode Commands and Fortran Statement Syntax • 653

Chapter 3

STOP
STOP ddddd
STOP 'string constant'

Chapter 7

SUBROUTINE name [(parameter list)]

Example:
SUBROUTINE Polar_to_Cartesian(r,theta,x,y)

Chapter 7

SUBROUTINE name [(parameter list)]
[specification statements]
[executable statements]

[RETURN] [label or string constant]
END [SUBROUTINE [name]]

Chapter 8

I SUM(array_name[(spec[,spec] .. .)])

Chapter 8

TYPE type_name
field_type name
[field_type name] ...

END TYPE type_name

Example:

Chapter 8

TYPE Student_Info
CHARACTER*20 name
CHARACTER*ll student ID
INTEGER credit_hours
REAL GPA

END TYPE Student_Info

TYPE (type_name) variable_name[,variable_name] ...

Example:
TYPE (Student_Info) freshmen, all_students

654 • Appendices

Chapter 7

Example:
USE SeveralSubs

Chapter 7

USE module_name[, ONLY: list of included names,
separated by commas]

where each item in the ONLY list has the form
[local_name a>] module_name

Examples:
USE Constants

USE Constants, ONLY

Chapter 5

WRITE(u,*) [list of variables, expressions, functions,
or constants, separated by commas]

WRITE(*,*)[list ...]
WRITE(u, [FMT=] label, [ADVANCE='NO']) [list ...]
WRITE(u,[FMT=]format string, [ADVANCE='NO']) [list ..]

A3. Source Code File Name Summary • 655

Appendix 3. Source Code File Name Summary

This appendix contains the source code file name and a brief description
of each complete program in the text, listed by chapter starting with Chapter 2.
Source code files, which have been created in an MS-DOS environment, have a
. F9 0 file name extension. Some numbered programs in the text contain code
fragments rather than complete programs and they are so noted. Program numbers
marked with an asterisk appear in the Applications section of their chapter. In
those cases where data files are required by a program, including programming
problems found in the end-')f-chapter exercises, the names of those files are also
given. Source code and data files can be downloaded from Springer-Verlag IS

World Wide Web site:

http://www.springer-ny.com/supplements/ dbrooks

Chapter 2

WINDCHIL 1 Calculate wind chill temperature.

Chapter 3

CIRCLE 1 Calculate area and circumference of a circle.
CIRCLEIA 1 (a)
BOX 2 Calculate surface area and volume of a rectangular box.
NAMES 3 Display name and age.
(fragment) 4
(fragment) 5
MIXED 6 Demonstrate results of mixed-mode calculations.
AVERAGE 7 Calculate average of three numbers.
(fragment) 8
(fragment) 9
(fragment) 10
BEAM 11* Calculate deflection of a beam under a central load.
REL_MASS 12* Calculate relativistic mass and speed of an electron.

Chapter 4

(fragment) 1
STRING 2 Demonstrate string concatenation.
POLAR 3 Polar to Cartesian coordinate transformations.
RING 4 Calculate area of a circular ring.
REFRACT 5* Calculate refraction of lijl;ht.

656 • Appendices

HYPERBOL 6*
NUMBERS 7

Chapter 5

POLAR2 1
DESCRIPT
POLAR3 2
POLAR4
STARMAG 3
RELMASS2 4

Chapter 6

(fragment) 1
(fragment) 2
GRADES 3
GRADES 2 4
TRIGTABL 5
ARCTAN 6
CURE 7
LOOP 8
(fragment) 9
REFRACT 3 10*
OSCILLAT 11 *
EXPOSE 12*
BEAM2 13*

Chapter 7

(fragment) 1
CIRCLSUB 2

(fragment) 3
CIRCLSB2 4
CIRCLFUN 5
(fragment) 6
(fragment) 7
EXT_FUNC 8
RELMASS3 9
UNITS 10*

Calculate inverse hyperbolic functions.
Provide infonnation about default REAL and INTEGER

data types.

Polar to Cartesian coordinate conversions, fonnatted.
See reference to Table 5.1.
Polar to Cartesian coordinate conversions, to output file.
Send program output to LPTI on MS-DOS systems.
Calculate absolute stellar magnitude.
Relativistic mass and speed of an electron, fonnatted.

Convert numerical grade to letter grade, with IF
Convert numerical grade to letter grade, with CASE.
Generate table of trigonometric values.
Calculate arctangent using series expansion.
Control temperature increases in a curing oven.
Demonstrate nested loop structure.

Generate table of angle of refraction vs. angle of incidence.
Calculate oscillating frequencies of an LC circuit.
Generate radiation exposure history.
Deflection of a beam with various support and loading

options.

Calculate area and circumference of a circle, with
subroutines.

Calculate area and circumference of a circle, with MODULE.
Calculate area and circumference of a circle, with functions.

Demonstrate using a function as a calling argument.
Relativistic mass and speed of an electron, with a MODULE.
Unit conver~ion fllnr.tiomL

PLOTTER 11*
INTENT

Chapter 8

RANDTEST 1
SINCOS 2
ROWCOL 3
OZONE 4
UNIONl 5
UNION2 6
MAT_SQl 7
MAT_SQ2 7(a)
MAT_SQ3 7(b)
ALLOCAT 8
(fragment) 9
DEGDAYS 10
VECTOROP 11*
SIERPINS 12*
PROB 13*

INTERPOL.DAT

Chapter 9

(fragment) 1
GRADES_F 2
AVG_TEMP 3
BAROM 4
READTEST 5
BAROM2 6

SMOOTH 7*
WATER 8*
MERGE 9*
JAN_QCD 10*

A3. Source Code File Name Summary • 657

Generate character-based function "plotter."
(No number-to check compiler's handling of INTENT

attributes.)

Generate count histogram for random integers.
Use elemental functions for array assignments.
Demonstrate order in which 2-D array elements are stored.
Calct:1ate vector scalar product with variably sized arrays.
Calculate union of two proper sets (static arrays).
Calculate union of two proper sets (allocatable arrays).
Calculate square of a matrix (allocatable arrays).
Calculate square of a matrix (improper use of static arrays).
Calculate square of a matrix (proper use of static arrays).
Demonstrate ALLOCATE and DEALLOCATE.

Calculate heating degree days.
Calculate vector dot (scalar) and cross products.
Generate Sierpinski triangle.
Probability calculations for manufacturing quality control.

Data file for extra credit part of Exercise 22

Calculate average grade from file. (GRADES. DAT)
Calculate average temperatures from file. (JANUARY. DAT)
Extract barometric pressure values from file. (BAROM. DAT)
Demonstrate formatted READ from file. (READTEST . DAT)
Extract barometric pressure values from file when data are

missing (using internal READ). (BAROM2 . DAT)
Exponential smoothing of data from file. (SP500. DAT)
Water utility billing. (H20_RATE,DAT, WATER.DAT)
Merge two sorted data files. (LISTA. DAT, LISTB. DAT)
Generate quote-and-comma-delimited text file.

Additional data files for exercises:

BIRDSl.DAT, BIRDS2.DAT, RlOO.DAT, PROJECT.DAT, GRADING.DAT,
STOCKS.DAT.C02.DAT. INSTOCK.DAT.USE STKl.DAT

658 • Appendices

Chapter 10

SEARCH I

SEARCH 2

SEARCH 3
SEARCH 4
SORT 5
SORT 6
SORT 7
FACTORAL 8
QUIKSORT 9
INSERT2 10*
LEGENDRE 11*

(SUBROUTINE FindFirst) fmd fIrst occurrence of
specified value. (SEARCH. DAT)

(SUBROUTINE F indAll) find all occurrences of specifIed
value.

(SUBROUTINE Binary) binary search on ordered list.
Driver program for searching subroutines P-IO.I-P-IO.3.
(SUBROUTINE Selection) Selection Sort
(SUBROUTINE Insertion) Insertion Sort.
Driver program for sorting subroutines P-IO.5 and P-IO.6.
Calculate factorial function, with recursion.
Recursive Quicksort.
Keep a list in order.
Recursive evaluation of Legendre polynomials.

Additional data ftles for exercises:

DRUGBASE.DAT,DRUGBASE.IN

Chapter 11

STATS I
FALLING 2*
NUM_INT 3
GAMMA 4*

GAUSS 5

ROOTS 6
CIRCUIT 7*

Chapter 12

DERIVATV I
DERIVAT2 I (a)
DERIVAT3
JULIAN_T 2
ARAYFUNC 3
TEM_PHIL 4

FILETEST 5
SRCHFILE 6

Basic descriptive statistics.
Estimate speed of a falling object.
Simpson's rule integration.
Evaluate the gamma function (a failed application of

Simpson's rule.)
Gauss-Jordan elimination for solving linear systems.

(GAUSS. DAT)
Bisection algorithm for finding roots.
Calculate charge in a series LRC circuit.

Demonstrate numerical differentiation. (DERIVATV. DAT)
Use INCLUDE for subroutines. (Uses DERI_MOD. F90)
Link object ftles.
Convert calendar date to Julian date.
Demonstrate array manipulation syntax.
Demonstrate use of array reduction functions.

(TEM_PHIL . DAT)
Demonstrate various ftle options. (FILETEST. DAT)
Binary search of direct access ftle.

A4. Accessing the System Time and Date • 659

COMPLEX 7
QUADRAT 2 8
CIRCLCOM 9

Demonstrate COMPLEX syntax and arithmetic.
Find real and imaginary roots of quadratic equation.
Demonstrate use of COMMON blocks.

COM_TEST 10 Demonstrate "misuse" of COMMON blocks.

Appendices

DATETIME 1 Demonstrate access to system date and clock.

Appendix 4. Accessing the System Time and Date

Fortran 90 assumes that your computer can provide infonnation about the
time and date, and it provides two intrinsic subroutines for accessing this
infonnation from a program. Their use is illustrated in the following program.

P-A.l [DATETIME. F90]

PROGRAM DateTime

Demonstrate use of intrinsic date and time procedures.

IMPLICIT NONE
CHARACTER date*8,time*10,zone*5
INTEGER values(8),count,count_rate,count_max

CALL DATE_AND_TIME(date,time,zone,values)
PRINT 1000,date,time,zone,values

CALL SYSTEM_CLOCK(count,count_rate,count_max)
PRINT 1010,count,count_rate,count_max

1000 FORMAT(a9,all,a6,8ilO)
1010 FORMAT (3ilO)

END

The variables have the following interpretation:

date

time

zone

values

count

CHARACTER * 8 variable holding calendar date in yyyyrnmdd
fonnat
CHARACTER*10 variable holding time in hhrnmss. sss fonnat
CHARACTER*5 variable holding difference between local time
and Greenwich Mean Time (GMT) in fonnat Shhrnm, where S is
a + or - sign
INTEGER array of size 8 holding year, month, day, time
difference relative to GMT, hour, minutes, seconds, milliseconds
INTEGER holding current value of system clock

660 • Appendices

count_rate INTEGER holding number of system clock counts per second
countJllax INTEGER holding maximum value of count (before it recycles

to zero)

The output from PROGRAM DateTime might look like this for an MS-DOS
system:

19950512
1995

14
53891246

145802.000
5 12**********

58 2 0
1000 86399999

The interpretation of the output is that this computer system doesn't know about
time zones relative to GMT and that it returns clock time only to the nearest
second (although milliseconds are available from count). The system clock
''recycles'' after 86,400 seconds, the number of seconds in a day.

The information returned by these subroutines is only as good as the
infonnation in a computer's system clock. For example, DOS system clocks don't
always keep accurate time and they may not automatically convert back and forth
between standard and daylight savings time. I IT it is important for a program to
return an accurate time, it is easy to reset the date or time on a DOS system by
typing date or time at a DOS prompt.

I Author's note: when I purchased a new Windows 95 PC in the summer of 1996, I was
surprised to find that it automatically reset its clock to Eastern Standard Time on the appropriate
day in October.

Glossary

Ch. Term Defmition

1 account 10 A unique and public identifier for the user of a
computer system.

2 algorithm A step-by-step solution to a computing problem.
8 allocatable array An array whose rank is specified when it is

declared, but whose index bounds are specified
while the program in which the array is declared
is executing.

1 Apple II The first widely distributed and commercially
successful personal computer.

4 argument list A list of one or more values, variables, or
expressions passed to a subprogram when it is
called.

11 arithmetic mean The sum of a collection of values divided by the
number of values.

2 arithmetic operator A symbol in source code that represents operations
such as addition, subtraction, multiplication, and
division.

4 arithmetic overflow A condition in which a calculation a program is
asked to perform involves numbers larger than the
program can support.

8 array A data structure that provides access to a number
of related values through one or more indices. In
scientific and mathematical programming applica-
tions, arrays are often associated with vectors and
matrices.

8 array dimension The storage space represented by one of the one or
more pairs of lower and upper indices in an array.
Arrays are accessed by one subscript per dimension.

8 array element One value in an array, accessed through an array
index.

8 array extent The number of elements along a particular array
dimension.

8 array index The integer value that identifies a particular array
element.

8 array rank The number of dimensions (subscripts) of an array.
(See array dimension.) Vectors and matrices are
represented as rank-one and rank-two arrays,
respectively.

662 • Glossary

8 array reduction function

2 ASCII collating
sequence

3 assignment operation
3 assignment operator

2 assignment statement
8 automatic array

11 backsubstitution

2 binary file

3 binary operator

10 binary search

I bit

2 boolean value
2 bug
1 byte

2 calling argument

5 carriage return

1 central processing unit
(CPU)

1 centralized computing

3 character variable

2 character (text) string

A function that returns as output an array of lower
rank than an array appearing as an input argument.
A code for representing characters, as defmed by
the American Standard Code for Information
Exchange.
See assignment statement.
The operator that is used to define an assignment
operation.
A statement that alters the value of a variable.
An array appearing in a subprogram with dummy
values used to declare the extent of its indices.
A process of calculating roots starting from the last
row in an upper triangular matrix.
Any file whose contents are not representations of
characters.
An operator that requires two operands, typically
one to the left of the operator and one to the right.
An algorithm that searches for an item in an
ordered list by continuously dividing the list into
partitions of, ideally, approximately equal size,
one of which may contain the desired value and the
other of which cannot contain that value.
Binary digit. The smallest unit of information in a
computer, represented electronically, magnetically,
or optically by an "on-off' state and numerically
by the values 0 and 1.
A logical value of true or false.
A mistake in a computer program. (See debugging.)
A group of eight bits, forming a single computer
"word."
Values, variables, or expressions passed to a
subprogram when it is called.
A character that causes the return of a printer or file
pointer to the beginning of a line.
The electronic component that controls all the
calculating functions of a computer.
A computing system characterized by mainframe
computers managed by a professional staff.
A variable representing one or more characters. In
the latter case, it may be called a string variable.
A sequence of characters that are interpreted as
"text" rather than a~ one or more nnmher~_

4 collating sequence

3 comment line

2 compiler

12 compiler directive

3 compile-time error

8 component selector

1 computer algebra
software

4 concatenation operator

6 conditional loop

2 conditional (statement)

12 conformable arrays
2 control structure

6 convergence criterion

11 correlation coefficient

6 count-controlled loop

1 data analysis and
statistics software

2 data file

Glossary • 663

The order in which coded characters are stored
within a programming environment. (See ASCII
collating sequence.)
Text within a program unit that documents and
explains source code, and that is ignored by the
compiler.
A program that converts source code into
machine-level instructions.
An instruction that conveys information to a source
code compiler, but is not part of the source code
itself. In Fortran, INCLUDE is a compiler directive.
An error, usually a syntax error, that is detected
during the compilation process.
The character used to specify a particular field in
a character record. In Fortran, the component
selector is the character %.

Software that is able to perform symbolic
manipulation in areas of mathematics such as
algebra and calculus.
A binary operator that appends one character or
character string to the end of another.
A repetition (loop) structure in which the number
of repetitions is determined while the loop is
executirig.
A statement that evaluates the "truth" of a specified
relational/logical expression.
Two arrays having the same shape.
A program statement or statements defming or
modifying the order in which other program
statements are executed.
A programmer- or user-specified condition for
terminating an iterative calculation in a conditional
loop.
A dimensionless value between 0 and 1 that is a
measure of how well a regression line represents
data.
A repetition (loop) structure in which the number
of repetitions is specified prior to the start of the
loop.
Software designed specifically for the statistical
analysis of data.
A file containing information that can be used by,
or has been produced by, a computer pro~ram.

664

8

2

1

8

11

7

1

8

9

9

2

2

3

7

• Glossary

data structure

debugging

decentralized computing

derived data type

discretization error

driver program

electronic computer

elemental function

end-of-file mark

end-of-line mark

executable file

executable instruction

executable statement

explicit interface

A user-defmed data representation that is built from
the intrinsic data types, such as an array.

The act of looking for and correcting errors in a
computer program. (See bug.)
A coinputing system consisting of many widely
distributed computers and peripherals, controlled
by individuals and small groups of users.
Any user-defmed data structure consisting of
intrinsic data types and other user-defined data
structures.
The typically cumulative error that results from the
fact that real number arithmetic in a program is
only an approximation.
A program whose sole purpose is to verify the
operation of one or more subprograms. .
A programmable calculating device that uses
electronic rather than mechanical components.
A function that can accept either a scalar or array
variable as an input argument.
One or more characters that mark the end of a file,
and that can be detected by a program.
One or more characters that mark the end of a line
in a text file, and that can be detected by a
program.
A binary file containing instructions that can be
interpreted and executed directly by a computer.
An instruction that can be interpreted and executed
directly by a computer.
A statement that directs a computer to take some
action while a program is executing.
A code construct that permits a compiler to check
for consistency between a subprogram parameter
list and the argument list when that subprogram is
called.

3 explicit typing A process by which every variable name is given
a specific data type.

2 external input Information provided to a program while it is
executing, typically by the user from a keyboard
or from an external data file.

9 external representation Typically, a character-based representation for
numerical and other data, as opposed to its internal
(binary) representation.

1 e-mail

8 field
5 field width

12 fIle pointer

3 fixed fonnat

2 flowchart

5 fonnat descriptor

5 fonnat specifier

5 fonnatted output

3 free fonnat

7 function library

7 global variable

1 graphical interface

2 hard coded

9 header line

7 header statement

Glossary • 665

Electronic messages that can be sent and received
via computer networks.
One piece of infonnation in a data record.
The number of characters allocated for a particular
output or input fonnat.
A value maintained by a programming environment
that keeps track of a location within a fIle. Reading
or writing values in a file typically increments or
decrements the file pointer.
Referring to a language that requires that parts of
a statement appear only in specified locations on
a line. Older versions of Fortran are fIXed-fonnat
languages.
A visual means of representing an algorithm using
a set of standard symbols.
Programmer-supplied infonnation about how to
interpret or display infonnation.
Programmer-supplied infonnation for detennining
the appearance of output or the interpretation of
input.
Output whose appearance is specified by
programmer-supplied instructions.
Referring to a language that accepts statements
without regard to their specific location in a line of
source code. Fortran 90 is a free-fonnat language.
A collection of functions that can be included in
other programs at either the source code or object
code level.
A variable that is available to a main program and
all its subprograms.
A computer operating system that is based on
images rather than text, especially an operating
system that relies on a mouse or other pointing
device rather than typed commands.
Numerical or text values written directly into code
rather than being expressed as variables.
A line at the beginning of a text fIle that, typically,
describes the contents of data appearing after the
header line(s) in the manner of a column heading.
The statement that contains the name and parameter
list for a subproJU"am.

666 • Glossary

1

1

1

1

3

6

6

2

3
7

2

9

2

9

1

3

4

high-level programming
language

IBM clone

IBM-coID?atible

IBM-PC

implicit typing

implied DO ... loop

infinite loop

integer

integer variable
intent attribute

interactive program

internal file

internal representation

internal representation

Internet

intrinsic data type

intrinsic function

A programming language that uses symbols and
English-like words to implement algorithms and
solve computing problems. It must be converted
into machine language before it can be understood
by a computer (see compiler).
Any personal computer not manufactured by IBM
that adheres to the hardware and software standards
of the IBM-PC computer and its descendants such
as the XT and AT.
Any personal computer that is compatible with the
IBM-PC and its descendents. (See IBM clone.)
The personal computer introduced by IBM in 1981
in response to the Apple II personal computer.
A process by which a language assumes a data type
for a variable based on the variable's name.
A count-controlled loop that is initiated by one or
more forms of syntax "shorthand."
A conditional loop that executes indefmitely
because its terminating conditions are never met.
A whole number, and a data type for representing
such numbers.
A variable representing an integer number.
A designation of a subprogram parameter as
"input," "output," or "input/output."
A program that requires user input at the time the
program executes.
An internal buffer for temporary storage of
information that can be accessed with file-like
statements.
The form in which information is stored in a
computer, as opposed to a character-based external
representation.
The manner in which information is stored in
computer memory, as opposed to its external
representation.
A worldwide computer network for the electronic
exchange of information.
A data type that is part of the standard that
defmes a programming language.
A built-in function that is supported by a language
!:t~nchlrcf

6 iterative calculation

3 keyword

2 language syntax

5 line feed

5 line label

10 linear search

2 linker

3 list-directed input

3 list-directed output

3 literal constant

7 local variable

6 logical expression

2 logical operator

1 logoff

1 logon

6 loop counter variable

1 machine language

1 mainframe computer

8 matrix

Glossary • 667

A calculation that must be repeated indefmitely
inside a conditional loop until a specified
terminating condition is met.
Combinations of characters ("words") that have a
specific meaning to a language compiler.
The rules governing the writing of source code.

A character that advances a printer or file pointer
by one line.
A label for identifying a line in Fortran source
code, in the format of an integer from 1 to 99999.
A searching algorithm that examines each item in
a list, starting typically at the beginning of the list.
Software that joins ("links") several machine
language (binary) files together to produce a
complete program.
A form of input in which a programming language
determines how to interpret input.
A form of output in which the programming
language determines the appearance of the output.
A value hard coded (as a constant) into source
code.
A variable that is available only to the main
program or subprogram in which it is declared.
An expression containing one or more logical
operators.
A symbol in source code that represents the logical
operations and, or, and not, for example, on one
or more quantities.
The process of terminating a connection with a
remote computer.
The process of establishing a connection with a
remote computer.
A variable that controls the execution of a
count-controlled loop. The counter is automatically
incremented by a specified amount every time
statements inside the loop are executed.
A low-level programming language that uses
instructions understood directly by computers.
A powerful multiuser computer around which a
centralized computing system is organized.
A mathematical entity represented by a rank-two
array.

668 • Glossary

1 microcomputer

1 minicomputer

3 mixed-mode expression

1 MS-DOS

1 multitasking

3 named constant

1 network

3 nonexecutable statement

3 nonstandard extension

4 numeric inquiry
function

2 object file

1 operating system

6 ordinal value

8 parallel array

3 parallel port

4 parameter list

A computer containing a CPU and associated
electronics on a single circuit board.
A multiuser computer powerful enough for many
kinds of computing tasks, but small enough to be
managed by its users as part of a decentralized
computing environment.
An expression that contains more than one data
type.
Microsoft's text-based operating system for IBM
compatible personal computers, and the de facto
standard operating system for such computers.
An operating environment in which a single
computer can perform more than one task nearly
simultaneously, or in parallel.
A value associated with a name. Unlike a variable,
its value cannot be changed while a program is
executing.
A collection of computers interconnected
electronically to allow them to share tasks and data.
A statement that defines some aspect of a
programming environment before the program
executes.
Language features that are not part of the applicable
standard for that language
An intrinsic function that returns information about
the allowed range for a specified numerical data
type.
The binary file produced by a compiler, and the
first step toward producing an executable file.
The software that controls the basic functions and
user interface of a computer.
A variable that keeps track of the number of
repetitions in a count-controlled loop.
An array whose elements are related to identically
indexed elements in another array.
An I/O path along which information flows in
"packets" of one or more bytes, rather than one bit
at a time.
A list of the "local names" of one or more variables
used as input or produced as output by a
subproln"am.

10 partition

1 password

1 peripherals

1 personal computer

11 pivot

10 pivot value
1 portable language

6 post-test loop

6 pre-test loop

2 program modularization

3 program unit

2 pseudocode

6 pseudorandom numbers

9 quote-and-comma-
delimited text file

1 random access memory
(RAM)

6 random number
generator

1 read-only memory
(ROM)

3 real variable

Glossary • 669

A subdivision of a list formed by applying a
user-defined algorithm.
A unique and private identification for the user of
a computer system.
Equipment in addition to basic computer hardware,
e.g., printers and CD-ROM drives.
A single-user computer and its peripherals,
controlled by an individual.
A value that determines how rows or columns in
a system of linear equations are interchanged.
The value used to separate a list into two partitions.
A standardized high-level language that will run on
any computer that contains a compiler for that
language.
A conditional loop in which the test for termination
is made at the end of the loop.
A conditional loop in which the test for termination
is made at the beginning of the loop.
The act of writing a program that solves a large
task by breaking it into several smaller tasks, each
with a well-defmed information interface.
A main program or subprogram; in Fortran, any
separately compilable main program, subroutine,
function, or MODULE.
A shorthand means of expressing an algorithm that
does not depend on the syntax of a formal
progr.wrrunWnglanguage
A sequence of numbers that appear to be random
even though they are generated by an algorithm.
A text file in which character information is
enclosed in quotation marks and all fields are
separated by commas. Such a file can be imported
into the rows and columns of a spreadsheet.
Memory locations in a computer that can be read
from or written to under program control.
An algorithm that generates pseudorandom
numbers.
Memory locations in a computer system that may
be read from, but not written to, by a program or
operating system.
A variable representing a real (floating point)
number.

670

2

8

10
11

2

2

3

8

3
10

2

2

9

3

10

2

I

11

11

3

3

• Glossary

real (floating point)
number
record

recursive algorithm
regression line

relational operator

repetition structure

run-time error

scalar data

scientific notation
searching algorithm

selection structure

sequence structure

sequential access file

significant figures

sorting algorithm

source code

spreadsheet

standard deviation

standard error of
estimate
standard output device

statement

A number with a fractional part.

A collection of related information, consisting of
one or more data fields.
An algorithm that calls itself.
A statistically derived "best fit" line through a
collection of data.
A symbol in source code that represents a
comparison of two quantities.
A means of repetitively executing a group of
statements.
An error that occurs when a compiled program is
executing.
Data that are represented with scalar (non-array)
variables.
A way of expressing numbers using powers of 10.
An algorithm designed to find a specified value in
a list of values.
A means of executing some statements and not
others based on the evaluation of a relational/logical
expression.
A series of program instructions carried out in
sequence.
A file, typically a text file, that can be accessed
only one record at a time, starting at the beginning.
The number of digits that are actually maintained
by the internal representation of a number.
An algorithm designed to reorder a list of items into
descending or ascending order in the numerical or
alphabetic sense.
A text file containing instructions written in a
high-level programming language.
A computer application for performing certain kinds
of "two-dimensional" calculations in tabular form.
A statistical measure of the variability of values in
a collection of values; the square root of the
variance.
A statistical measure of the extent to which a model
represents values in a collection of data.
The destination to which program output is sent by
default, usually a monitor screen.
An instruction written in a high-level language.

Glossary • 671

4 statement function A user-defmed function that exists only within the
program unit in which it is defmed.

8 statically allocated array An array defined in a nonexecutable data
declaration statement.

2 stepwise refmement The iterative process of improving an algorithm by
testing parts of a program and refming the
algorithm based on these intermediate results.

2 structured programming An approach to programming that stresses simple
execution paths between program modules and
clearly specified information interfaces for each
module.

2 subprogram A separate program module that accepts input,
solves a specific problem, and returns output.

7 subroutine A Fortran subprogram that accepts one or more
values as input and returns one or more values as
output.

11 sum of squares Typically, the sum of the squares of the differences
between all individual values in a data sample
minus the mean of all values in the sample.

1 supercomputer A large mainframe computer characterized by
multiple processors, very high execution speeds,
large amounts of memory, and specialized
languages for highly specialized applications.

9 text file A file containing information encoded in character
("external") format, as opposed to binary
("internal") format.

1 text-based interface A user interface that relies entirely on
character-based information, especially one that
requires typed commands.

1 throughput A measure of the ability of a computer or computer
system to process information.

3 token One or more characters that are interpreted as a
single unit by a compiler.

2 top-down design The process of solving a computing problem by
subdividing a large problem into several smaller
problems. (See structured programming.)

1 turnaround time The time required to complete a computing task and
return results to the user.

3 type conversion A process that converts one data type to another.

3 type declaration The process by which variable names are associated
with a specific data type.

672

3

3

5

1

11

2

11

8

1

1

1

• Glossary

unary operator

uninitialized variable

unit number

UNIX

upper tri?ngular matrix

variable

variance

vector data

Windows

workstation

World Wide Web

An operator that requires one operand, typically to
the right of the operator.
A variable that has not been assigned a value before
it is used.
An integer identifier that specifies the association
of an I/O statement with a physical device or file.
A popular operating system for workstations and
minicomputers.

A matrix that has been manipulated so that all
values below the left-to-right, top-to-bottom
diagonal are zero.
A quantity that can be represented symbolically in
a high-level language and manipulated by a
computer program.
A statistical measure of the variability of values in
a collection of values; the square of the standard
deviation.
Data that are represented in a program by using
array notation.
Microsoft's graphical operating environment for
personal computers based on Intel and Intel
compatible CPUs.
A computer designed to operate in a graphics
intensive environment, intermediate in its
capabilities between PCs and minicomputers.
An information resource on the Internet for
publishin1!: and exchan1!:in1!: information.

Index

Command keywords, such as PRINT, and important specifiers, such as ACCESS,

are individually indexed. Summaries of pseudocode commands and Fortran
command syntax are organized alphabetically in Appendix 2 and are not indexed.
All referenced intrinsic functions are indexed under "functions" and do not have
separate entries. Fonnat control and edit descriptors are indexed under "edit
descriptors." Page references to glossary definitions are not indexed.

% 372
& 81
* for list-directed 110 97,98

in comment line 77
II 155
:: 71,83

300
=> 300

A
absolute value 161
ACCESS specifier 408, 624, 625
account ID 9
ACTION specifier 408,430,624,626
ADVANCE specifier 198
algorithms 23

design xv, 26, 34, 40, 277
efficiency xiii, 483, 493, 501, 506
itemtive 220, 497
partitioning 503
recursive 471, 496
search 471,473

binary 478
binary file 631
comparison of 483
driver progmm 483
linear 474

sorting 471, 486
comparison of 494
driver program 494
efficiency of algorithms 493
Insertion Sort 490
Quicksort xi, 501
Selection Sort 487

style 56

allocatable arrays (see armys)
ALLOCATABLE attribute 359
ALLOCATE statement 359
alphabetical order, keeping a list in 509
Altair 4
APPEND specifier value 408, 430, 624
Apple 5
Apple IT 4
arguments (see also list)

calling 52
function 297
subprogmm 52, 279
subroutine 286

arithmetic opemtors (see opemtors)
arithmetic overflow 174
army functions (see functions)
armys xiv, 333

allocatable xi, 358, 366
and chamcter strings 368
and files 414
as function or

subroutine arguments 356, 362
assigning values

to entire or part 343
to individual elements 344
using count-controlled loops 344
using DATA statements 345

automatic 358
conformable 613
deallocating 366
declaring 340
dimension 335
displaying 348
elements 334, 342
extent 334

674 • Index

implementation 337
in subprograms 353
indices 334
inquiry functions 616
multidimensional 335, 349
multiplication functions 616
one-dimensional 334
operations on 362, 613
parallel 370
rank 336
reduction fur.ctions 352, 616
shape 335
statically allocated 342
storage 349, 365
two-dimensional 336
variably dimensioned 354, 364

ASCII codes 38,641
ASIS specifier value 624
assignment

B

operation 106
operator 104, 106
statement 36, 104, 106

BACKSPACE statement 410,413,623
backsubstitution 563
billing for water utility 437
bisection method 572
bit 4
"black box" subprogram model 278
BLANK specifier 408
boolean 37, 43, 87, 216, 222
bug 20
byte 4,605

C
calculation, mixed mode 109
CALL pseudocode command 41, 48,

277
CALL statement 285
carriage control 192
carriage return 195
CASE DEFAULT statement vi, 232
CASE statement (see SELECT CASE)

cellular automata 380
central processing unit (CPU) 4

character
string 37, 38, 102
variable 37

CHARACTER statement 88, 313, 369
character-based function plotter 317
CHOOSE pseudocode command 41,

217
CLOSE pseudocode command 41
CLOSE statement 201, 404, 413
code

binary 21, 622
merging object 602
merging source 600
object 21, 602
portability 119
source 19, 73
summaries 655

collating sequence 38, 153, 641
comment

lines 77
required in source code 78

COMMON
block xiii, 636
potential pitfalls, 638
statement 638

compilation 120
compiler 21, 119

directive 602
COMPLEX

numbers 633
roots 634
statement 633
type xi,633

component selector 372
computer

algebra systems 11
electronic 1
mainframe 2
micro 4
mini 2
personal 3, 11
super 8

computing
centralized 2
decentralized 3
personal 3
power, 2rowth in 6, 7

concatenation 155
conditional

loop 219, 220
statement 36

constants
character 94
compatible 113
literals 92
logical 93
named 89

CONTAINS statement 294
CONTINUE statement 236
convergence criterion 221
conversion 101, 109
correlation coefficient 536, 537
count-controlled loop 219, 234
CPU 4
current flow in a DC circuit 570

D
damped mass and spring 579
data

analysis software 11
declarations (see type)
initializing 95
scalar·334
sharing 636
structures (see structures)
types, derived (user-dermed) 37, 39,

370
types, intrinsic 37, 85
vector 334

DATA statement 95, 302, 345
DEALLOCATE statement 366
debugging 20,56, 128, 175,207,

262,321,390,458,517
DEFINE pseudocode command 41,

83,278
deflection of a beam 49, 122,218,260
degree to radian conversion 160
descriptors (see edit descriptor)
design, top-down 47
differential equations

numerical solutions 533
Runge-Kutta method 581

differentiation, numerical 533, 545

Index • 675

DIMENSION attribute 341
DIRECT specifier value 624
directive, compiler 602
distribution, standard normal 536
division, remainder from 161
DO (see also loops) 232,236
DOUBLE PRECISION data x, 609
driver program 361,472,476,481,

483,494,506,547,553,598

E
edit descriptors

: (termination) 195
/195
A 190
character 191, 193
control 192, 193
E, EN, ES 190
F 190
for files 420
G 190
general 193
I 191
integer numbers 190
L 191
logical 191, 193
real numbers 190
repeating groups (n) 196
sign (S, SP, SS) 194
string 191, 193
(tab) T, TL, TR 195
X 194

ELSE statement 225, 227
ELSE IF statement 227
e-mail 9
END specifier 410
END statements

DO 236
FUNCTION 298
IF 225, 227, 228
INTERFACE 304
MODULE 294
PROGRAM 118
SELECT 232

SUBROUTINE 285

676 • Index

TYPE 371
end-of-file mark 401, 412
end-of-line mark 401
ENIAC 1
ERR specifier 408, 410
errors

compile-time 129
discretization 582
execution 130
logical 32, 131
run-time 1"',9

execution 120
EXIT statement viii
explicit typing (see typing)
exponential smoothing 431
expressions

arithmetic 104
logical 216
mixed-mode 109

extension, nonstandard 73
external representation 402

F
factorial function 496
.FALSE. 87
field 369
field width 190, 424
figures, significant 101
FILE specifier 408
files

and arrays 414
ASCll (text) 401, 622
binary (unformatted) 21, 622
closing (see CLOSE)

data 22
direct (random) access 622, 627
executable 21
external 21,22,401,622
internal 426, 428
object 21, 602
opening 200, 404, 408, 430
pointer 626
"quote-and-comma" delimited text

454
random access, 21, 622
reading 403
seQuential access 401, 404, 623

source code 19, 73
text (ASCll) 401,622
writing text 429

floating point value 37
flowchart viii, 46, 217, 221
FMT specifier 410
FORM specifier 408, 624
FORMAT statement 189, 196
format

descriptors 189, 190, 420
fixed 77
free 77
list-directed 96
specification 402
specifier 187

FORMATTED specifier value 408,624
formatted READ statements 420
Fortran

77 vs 90 v, x, xviii, 84, 86, 119
and personal computers 11
compilers vi, xvii
history 2, 9, 11
references xxi

FUNCTION statement 298
functions

array reduction 352
character and string 153
elemental 346, 613
inquiry 154, 174
intrinsic 147, 150
library of 312
mathematical 150
statement 162
trigonometric 148
using 297, 308

functions, intrinsic array
ALL 615
ANY 615
COUNT 615
DOT_PRODUCT 544, 615
LBOUND 615
MATMUL 615
MAXVAL 615
MINVAL 615
PRODUCT 615
SHAPE 615
SIZE 615

SUM 352, 544, 615
UBOUND 615

functions, intrinsic character and string
ACHAR 154
ADJUSTL 154
ADJUSTR 154
CHAR 154
IACHAR 154
ICHAR 154
INDEX 154
LEN 154,368
LEN_TRIM 154, 368
REPEAT 154
SCAN 154
TRIM 154
VERIFY 154

functions, intrinsic math and other
ABS 151
ACOS 150
AINT 151
ANINT 151
ASIN 150
ATAN 150, 160
ATAN2 150, 160
CEILING 151
COMPLX 635
COS 150
COSH 150
DATE_AND_TIME 659
DIM 151
EXP 150
FLOOR 151
INT 151
LOG 150
LOGIO 150
MAX 151
MIN 151
MOD 151
MODULO 151
NINT 151
RANDOM_NUMBER 259
RANDOM_SEED 259
REAL 151
Selected_Int_Kind 608
Selected_Real_Kind 612
SIGN 151
SIN 148. 150

Index • 677

SINH 150
SQRT 150
SYSTEM_CLOCK 259, 659
TAN 150
TANH 150

functions, lexical
LGE 224
LGT 224
LLE 224
LLT 224

functions, numeric inquiry 175

G
gamma function 556
Gaussian elimination 562
glossary 665
GO TO statement 411

H
hard coded 51
header

lines 401
statement, subroutine 285

Hooke's Law 579

I
IBM

clone 5
compatible 5
dominance 1, 2, 5
PC 4
standard 5

I F statement 224, 227, 229
IF ... THEN ... (ELSE)

pseudocode command viii, 42,215
IMPLICIT NONE statement xi, 90,

288
implicit tying xiii, 86
implied DO 249, 250, 348
IN intent value 290
INCLUDE directive 601
INCREMENT pseudocode command

viii, 42, 108
information

flow 289
initializing 302

678 • Index

INITIALIZE pseudocode command viii,
42,108

INOUT intent value 290
input

external 35
file 403
keyboard 96,97,100
list-directed 96, 98

INQUIRE statement 627,630
instruction

executable 35, 82
nonexecutable 82, 90, 92, 95

INTEGER statement x,87
integer 37
integration

numerical 533
polynomial approximations 551
Rectangular Rule 551
Simpson's Rule 553
Trapezoidal Rule 552

Intel (CPUs) 4, 6, 7
INTENT attribute xiv, 289
I NTENT statement 289
intent

enforcing 293
expressing 289
interpreting 290

INTERFACE statement xiv, 304, 554,
556

interface
character-based 5
explicit 307
graphical 5

Internet 9
intrinsic functions (see functions)
INTRINSIC statement 305, 307
inverse hyperbolic functions 170
IOSTAT specifier 408, 410
iterative

J

algorithms 220, 497
calculations 220

Julian date (Julian time) 609

K
keywords 80, 644
KIND parameter 608,612

L
label 189, 411
language

high-levell, 19
machine 1
portable 1
procedural
pseudocode (see pseudocode)
syntax 19

LC circuit 53, 253
Legendre polynomials 514
LEN specifier 369
lexical comparison functions 224
line

continuation symbol 81
feed 195
label 189, 411

linear equations, solving 533
link 21, 603
linker 21, 603
list

argument 147
parameter 162, 288

list-directed
input 96,98
output 96, 97

literal
constant 92
numerical 93
string 94

local name, defming 300
LOGICAL statement 88, 384
logical

error 32, 131
expression 216
operators 43,222
variables 37, 87

logoff 9
logon 9
LOOP ... END LOOP

pseudocode command viii, 42

loops
conditional 219, 220
count-controlled 219,234
counter variable 219,236,239
design considerations 248
DO 232,236
DO WHILE vi, 241, 242
implied (with output) 249, 250, 348
inimite 249
nested 247
post-test 220,244
pre-test 220,241

LPTl 202
LRC circuit 582

M
Macintosh 5,630
matrix 353

operations 360
upper triangular 563

mean
arithmetic 533
sample 534

memory
random access (RAM) 4
read-only (ROM) 4

merging sorted lists 447
modularization xiv, 36, 52
MODULE statement xiii, xiv, 294, 295
modules, for passing information 299

MS-DOS (see opemting systems)
multitasking 8

N
named constant (see constants)
network 8
NEW specifier value 408, 430
Newton's formulas 545
NULL specifier value 408
numbers (data type) 37, 86

complex 633

o
OLD specifier value 408, 430
ONLY qualifier 300

Index • 679

OPEN pseudocode command 42
OPEN statement 200, 404, 408, 430,

624,627
opemting systems 5

MS-DOS 5
PC~DOS 5
UNIX 8
Windows 5

opemtors
addition 105
arithmetic 43, 105
assignment 106
binary 104,226
concatenation 155
division 105
exponentiation 105, 125
logical (. AND., . NOT., . OR .) 43,

222
multiplication 105
precedence 114
relational 43, 222, 223

.EQ., .GE., .GT., .LE., .LT.,

. NE ., ==, >=, >, <=, <, /= 223
subtmction 105
unary 104, 226

ordinal value 232
OUT intent value 290
output

device, standard 96, 198
formatted 187, 196
list-directed 96, 97
monitor 198
nonadvancing 198
saving to file 200
saving to LPn 202

ozone data summary 350

P
PARAMETER

attribute x, xiii, 84, 89
statement x, xiii, 89

parameters
arrays as 356, 362
list 162, 288

parentheses, balancing 117
partition 502
password 9

680 • Index

path name 408
peripherals 8
pivot

partial 563
value 502

pointers xi
polar to Cartesian conversion 157
port

parallel 122
serial

POSITION sp-.;cifier 408, 430, 624,
626

precedence 114
precision

detennining 175
extended 608
double (see DOUBLE PRECISION)
specifying 608

PRINT statement, 97, 187,250, 316
probability analysis 385
problem solving vii, xv, 19

five-step process 22
program

batch 129
compilation 120
execution 120
interactive 35
modularization xiv, 36, 52
saving output from 121
style xix, 79
summaries 655
termination 118

PROGRAM statement 80
programming, structured 19
pseudocode

commands vii, 45, 643
in algorithm development vii, 27,40

pseudorandom numbers 259

Q
quality control 385
Quicksort xi, 501
"quote-and-comma" file 454

R
radian to degree conversion 160
radiation exposure 255

random number generator 259,337
range of numbers 87, 92, 608
READ pseudocode command 42
READ specifier value 408, 624
READ statement 98, 404, 410
READWRITE specifier value 624
real numbers 37
REAL statement x, 87
RECL specifier 624, 627
record 369
recursion xi
RECURS IVE qualifier 499
refraction of light 166,251
regression

line 537
linear 533, 536

relational operator (see operators)
relativistic mass and speed

of an electron 125,205, 310
REPLACE specifier value 408, 430
representation of numbers

external 402
internal 38, 402, 604

RESULT clause 499, 500
RETURN statement 285, 298
REWIND specifier value 408,409,623
REWIND statement 409
roots, rmding 533

bisection method 572
Runge-Kutta method 581

S
scalar data 334
scientific notation 101
SCRATCH specifier value 408, 430
searching algorithms (see algorithms)
SELECT CASE statement vi,232
SEQUENTIAL specifier value 408
sets 354
Sierpinski triangles 380
significant figures 101
slope (of linear model) 538
Snell's law 166, 251
sorting algorithms (see algorithms)
source code 19, 73
speed of a falling object 546

spreadsheet 11
standard deviation 533, 534
standard error of estimate 537, 538
standard output device 96, 198
STAT specifier 359
statements 75

executable 82
nonexecutable 82
summaries 644

statistics software 11
STATUS specifier 408, 430
stellar magnitude 203
stepwise refmement 28
Stirling's formulas 545
STOP statement viii, 118
strings

as arrays of characters 368
concatenating 155
declaring (see CHARACTER)

structured programming 19
structures

control 19, 44. 215
data (user-defined) 333
repetition 37, 45
selection 36, 45
sequence 36, 45

SUBPROGRAAfpseudocode command
42, 48, 277

subprogram 36, 277
SUBROUTINE statement 284
subroutine syntax 296
subroutines

as arguments 303
as parameters 303
using 288, 308

sum of squares 537
syntax 19

T
text

file 401,622
input 102
string 38

throughput 8
time and date, accessing 661
tokens 74

top-down design 47
.TRUE. 87
truth tables 227
turnaround time 3

Index • 681

TYPE statement 369,371
type

conversion 101, 109
declaration 83

typing

U

enforcing explicit 90
explicit xiii, 87
implications 91
implicit xiii, 86

UNFORMATTED specifier value 624
unit

YO number 198, 408
program 73, 599

UNIT specifier 408,410
UNIVAC 1
UNIX 8
UNKNOWN specifier value 408, 430
USE statement 295

V
variables

character 88
defming 27, 39
global 282
incrementing 107
integer 86
local 282
logical 88
naming (Fortran) 84
real 86
scalar 344
standard normal 535
uninitialized 106, 149

variance 534
vector data 334
vector operations (application) 377

W
WHILE statement 220,241
Windows 5
wnrlC!1ltlltinn R

682 • Index

World Wide Web xxii, 9
WRITE pseudocode command 42
WRITE specifier value 408, 430
WRITE statement 198.250.429

Z
ZERO specifier value 408

