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Preface

i.1 Overview for Instructors

The purpose of this text is to provide an introduction to the problem-solving
capabilities of Fortran 90. The intended audience is undergraduate science and
engineering students who have not previously taken a formal programming course.
The focus is on the process of solving computational problems of interest to
scientists and engineers, rather than on programming per se, which has several
important implications for the contents of the text, as outlined later in the Preface.

Fortran has long been favored as an introductory programming language
for engineering and science students because of its historical roots and continued
prominence in the professional practice of these disciplines. The Fortran 77
standard has been taught, within an essentially mainframe context, to an entire
generation of scientists and engineers. However, many of the science and
engineering calculations that, a generation ago, could be done only on mainframe
computers can now be done on desktop computers, often using applications that
don’t require any programming at all.

Students are certainly aware of the power of desktop computing, even
when they are not prepared to use it effectively. They bring increasingly
sophisticated expectations to even an introductory programming course, and they
often have correspondingly less patience with the organizational overhead required
to perform even the most trivial computational tasks. Nonetheless, there is a strong
case to be made for learning how to write programs in a high-level procedural
language, even when a student’s major does not require that specific skill. Thus
I believe that the continuing popularity of Fortran in science and engineering is
due not to a reluctance to adopt more modern problem-solving tools, but to a deep
understanding of the central role procedural programming plays in developing
problem-solving skills that are independent of a particular language.

No matter how strong the argument for learning procedural programming,
a new Fortran text should still justify itself on the basis of what it can offer to
make an introduction to programming more rewarding for students and instructors
alike. The Fortran 90 standard provides an opportunity for dramatically improving
the content of introductory programming courses for science and engineering
students because it is now possible to take advantage of the traditional strengths
of Fortran and, at the same time, teach a language with features that have always
been a part of other more “modern” languages such as C and Pascal.
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i.1.1 The Case for Fortran 90

The basic problem with continuing to teach Fortran 77 is that the standard for this
language has serious deficiencies relative to languages such as C, the other
common choice for a first programming language taught to science and
engineering students, and even Pascal, the use of which is now in decline and
which never attracted a large following in the science and engineering community.
One result of the aging of the Fortran 77 standard is that modern implementations
of the language contain many nonstandard features to address its deficiencies. This
is helpful to professional users of the language, but to the extent that Fortran texts
have adhered to the language standard to ensure their marketability, students have
for many years been taught a language that is far removed from what is actually
used in practice.

Even for instructors who approach programming from a purely practical
as opposed to a “computer science” point of view, the problems with standard
Fortran 77 are clear from even a cursory comparison with other modern
procedural languages. Among these are the lack of a way to enforce explicit
typing of all variables, the restriction of variable names to six characters, limited
syntax for constructing loops, no support for user-defined data types (other than
arrays), and syntax possibilities that encourage the writing of “spaghetti code” that
is not tolerated in modern procedural programming style.

Of course, many of these shortcomings have been addressed in nonstandard
implementations of Fortran 77, and it is certainly possible to write well-structured
programs by using appropriate syntax. However, this begs the question of whether
to abandon the Fortran 77 standard in favor of a new one.

Fortran 90 has addressed many of Fortran 77’s problems while retaining
backward compatibility with Fortran 77 and older versions. It has incorporated
many of the nonstandard features that are commonly included in Fortran 77
implementations. In addition, the new standard contains many features that make
structured programs easier to write, which in turn makes Fortran much easier to
teach and learn. To cite just a few examples, the new standard includes provisions
for enforcing explicit data typing, DO WHILE. . . and SELECT CASE constructs,
and user-defined data types (equivalent to structures in C or records in Pascal).

Finally, the increasing capabilities of personal computers have made it
possible to put a full-featured Fortran compiler on a desktop, so it is now practical
to consider Fortran not just in its traditional role as a mainframe language, but as
an integral part of a personal computing environment that includes a variety of
problem-solving tools. PC-based Fortran 77 compilers incorporate the same
nonstandard language extensions as their mainframe relatives, but the compiler
used to develop the programs in this text (see Section i.1.5) actually helped to
define the Fortran 90 standard. Thus the case for Fortran 90 is made even more
compelling by the availability of an implementation for desktop computers that
represents, at least for a while, this new language as it is used in practice.
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i.1.2 Structure of the Text
Introductory Material

Chapter 1 presents a brief historical review of electronic computing in mainframe
and personal computing environments. I understand that this kind of material is
often regarded as “fluff’ by instructors and students alike. However, the
pedagogical purpose of this chapter is to give students a chance, at the beginning
of a course, to assess their general computing skills and address any weaknesses.
To take a more proactive view, I would argue that it provides a good (and
probably the only) opportunity for instructors to give their students a general
introduction to the computing facilities they will be using to write Fortran
programs.

Chapter 2 presents a detailed approach to problem solving and algorithm
design. It is now common for introductory programming texts to emphasize the
problem-solving process and to provide some formal or informal techniques.
However, my experience is that the specific process required to develop
algorithms and convert them into programs in any language remains a mystery to
many students. Because at first there do not seem to be any rules to follow, it is
difficult to know how to start—that is, how to develop algorithms without
knowing what kinds of things programs should do.

Chapter 2 addresses this problem in two ways. First, it discusses the
generic kinds of instructions and data used by and in computer programs written
in a procedural language. Second, a syntax-free pseudocode language of “action
commands” is presented. These commands are the means by which algorithms for
a procedural programming language may be developed. I have tried to convey the
message that despite the fact that this language is not in any way “standardized”
(even though it is applied in a uniform way throughout the text), the actions
implied by the language must be a part of any approach to developing algorithms.
My practice is to discourage students from memorizing the commands; instead I
encourage them to use the material in Chapter 2 to produce their own “language
reference,” which they can consult even during exams.

Students should be encouraged to use this pseudocode language (or their
own version of it) to develop algorithms before they write source code because
the process of applying such an informal language helps them separate the process
of developing a logical solution to a problem from the syntax details of writing
a program in a “real” language. In this text, I have encouraged this process by
always presenting algorithms in pseudocode before implementing them in Fortran.

A few components of the pseudocode language deserve comment. Some
instructors may prefer to use the <— symbol for the assignment operator, rather
than the = sign used in this text. Obviously, this is OK; the symbol isn’t as
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important as distinguishing the concept of assignment from that of equality in the
relational or algebraic sense.

Note that the pseudocode language includes three different assignment
commands: ASSIGN, INITIALIZE, and INCREMENT. (All references to the
pseudocode language use this font.) Although each of these commands translates
into an assignment statement, my experience is that students often do not
understand the need for initializing variables or how and when to increment them,
especially inside loop structures. Because of this, I have used separate commands
to try to encourage proper algorithm design.

Another decision made about the pseudocode language concerns the
command for repetition structures. No attempt is made at the algorithm design
level to distinguish among pre-test, post-test, or count-controlled loops (as might
be done when algorithms are developed with flowcharts, for example); the
LOOP...END LOOP command represents all three, with conditions for loop
termination written informally as part of the LOOP command.

The language used to express the terminating condition in English—“Do
this 10 times,” “Do this until you run out of data,” “Repeat until this number is
too large”—will determine how the loop is actually implemented in a procedural
language. Being precise about the possibilities in plain English lays the
groundwork for distinguishing among language-specific implementations for
count-controlled, pre-test, and post-test loops. When this kind of pseudocode is
later translated into a program, instructors are free to choose, for example, whether
to encourage or discourage their students from using Fortran’s STOP and EXIT
statements to exit loops. (This text assumes that good programming style never
requires multiple exit points from loops.)

A final point about Chapter 2 (and subsequent chapters) concerns the role
of flowcharts. This is a teaching tool that has long been associated with
programming in Fortran. It is certainly useful for visualizing the operation of
certain language constructs such as IF... THEN statements, and it may be helpful
for the top-level design of large and highly modularized programs. However, it is
often a cumbersome way to design algorithms and has fallen out of favor in the
teaching of other procedural languages. As a result, this text favors pseudocode
as the basic algorithm design tool. Flowcharts are used as a supplement when they
can convey useful information in a visually striking manner. That is, it is fair to
say that flowcharts are treated as one way to convey information, rather than as
an essential part of the programming process.

Because I understand that students are eager to begin the process of
actually writing programs, Chapter 2 includes a simple program that can be copied
and executed in a “rote” manner. This is useful for learning the mechanics of
creating source code, compiling the code, and executing the resulting program.
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Presentation of the Language

In Chapters 3 through 9, the syntax elements of Fortran are introduced, using what
I would describe as a “show and tell” approach. New language features are often
introduced through a problem that can’t be solved with the tools available up to
that time. A complete program to solve that problem will then be presented and
examined in detail, moving from the specific to the general, rather than the other
way around. Chapter 3 revolves almost entirely around a single simple program,
which is used as a vehicle for examining many basic features of the Fortran
language.

Each chapter after the second includes at least two complete programming
applications drawn from typical problems found in introductory engineering and
science courses. Whereas programs presented early in a chapter address
conceptually simple problems and attempt to isolate the specific programming skill
being developed in that chapter, the applications involve more challenging
problems and integrate new material into a cumulative framework of developing
programming skills. Some of the applications appear in more than one chapter, so
students can see how increasingly sophisticated programming skills produce
correspondingly more sophisticated solutions.

i.1.3 Decisions About Content

Compared to Fortran 77, Fortran 90 is a huge language, due to its backward-
compatibility and its new features. This inevitably leads to making choices about
what parts of the language are appropriate in an introductory text used for a one-
or two-semester course. In every case where a conscious decision has been made,
my motivation has been to choose those features of the language that are most
essential for solving the kinds of problems science and engineering students are
likely to encounter.

Some of the decisions are easy. Many syntax features of older versions of
Fortran (arithmetic IFs and computed GO TOs, for example) are simply absent
from this text because there is no justification for using them. It is harder to
decide which new features of the language to include. To cite just two examples,
pointers are not included in the text even though they are of great interest in
computer science, and recursion is included because of the importance of
recursively defined functions in science and engineering mathematics. The
following topics all require decisions about content, and I hope my comments will
help to explain how I have arrived at some of the choices that are evident in the
text.
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Program Layout

The text retains the “old-fashioned” Fortran line structure, with statements
restricted to columns 7-72 and columns 1-5 reserved for line labels. Thus even
though all the programs are written for compilation under Fortran 90’s free format
style, the program layout will be familiar to those who are used to previous
versions of Fortran. This restriction on line length has the practical advantage of
making source code listing fit more easily on the page of a textbook.

Because of their backward-compatibility with earlier versions, Fortran 90
compilers support Fortran 77 syntax. For example, the Fortran 77 statements

REAL pi
PARAMETER (pi=3.14159)

are still allowed in Fortran 90, even though the (free format) statement
REAL, PARAMETER :: pi=3.14159

is preferred Fortran 90 style. In the latter example, the PARAMETER statement has
been replaced by the PARAMETER attribute appearing as part of a type declaration
statement. I confess to not being rigorous about always insisting on the “correct”
Fortran 90 implementation.

This program layout style should not be interpreted as a desire to make the
programs look like Fortran 77. Although Fortran 90 can be used to write programs
that look just like their Fortran 77 counterparts (and can be compiled under a
“fixed format” option required for Fortran 90 compilers), that is certainly not the
best use of this new language. I hope that instructors who are migrating from
Fortran 77 will revise their teaching material (and their own programming style)
to take advantage of Fortran 90’s style and many new features. An excellent
overview of important differences between Fortran 77 and 90 (as well as a
definitive reference manual for the language) can be found in Fortran 90
Handbook, a complete reference for which is given at the end of this Preface.

Data Types

Even earlier versions of Fortran supplemented the basic REAL data type with
DOUBLE PRECISION variables. Fortran 77 compilers typically include
nonstandard variants of the INTEGER data type as well. Fortran 90 supports even
more variants. It is possible, for example, to specify directly the minimum number
of significant digits retained by a REAL variable. However, I believe these add
nothing to an understanding of problem-solving methods or programming style.
Therefore, the text uses only the basic data types and deals with increased
precision only in Chapter 12.
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One obvious place where this choice might have an impact is in numerical
analysis algorithms, where DOUBLE PRECISION variables are typically used to
improve the accuracy of calculations in older Fortran programs. I have chosen not
to use the DOUBLE PRECISION data type at all because it adds nothing to the
understanding of an algorithm and may even convey the dangerous message that
the limitations inherent in numerical methods can be “fixed” just by using
calculations with more significant figures. A brief discussion of enhanced
precision variables is included in Chapter 12.

The COMPLEX data type is also dealt with only briefly in Chapter 12,
based on the assumption that most students taking an introductory programming
course will not yet have the mathematical sophistication to use complex numbers.
Even if this isn’t a good assumption, I still believe that bypassing this topic is a
reasonable choice for an introductory programming text.

Derived Data Types

Derived data types are a major and welcome addition to Fortran 90, second in
importance, in my view, only to the IMPLICIT NONE statement for enforcing
explicit data typing. The ability to define multi-field records with the
TYPE. . . END TYPE construct avoids the use of parallel arrays, which can make
large programs written in older versions of Fortran quite cumbersome. Derived
types can also be used to reduce the dimensionality of Fortran arrays. This
simplifies programming and allows code to be more self-documenting because
each field can be addressed by name rather than just by its array index. Although
derived types aren’t necessarily related to arrays, they are introduced in this text
in the context of arrays of records, as this is the way they will most often be used
in practice.

Pointers and Allocatable Arrays

Fortran 90 supports pointers, but they are not discussed at all in this text. In an
introductory programming course taught in C, for example, pointers are often
introduced early as a way to manipulate arrays and to provide “output” parameters
with functions. Of course, Fortran’s syntax makes pointers unnecessary for either
of these purposes.

Pointers are also used to manage dynamically allocated data structures.
These are important in computer science, and indeed some earlier Fortran texts
have used static arrays and indices to simulate “pointer-like” operations on data
structures such as stacks, queues, and other linked lists that are an important part
of languages that support dynamic allocation. However, I do not believe these are



xii = Preface

essential topics for an introductory course aimed at science and engineering
students.

Nonetheless, over several years of teaching Pascal, I have introduced
pointers and dynamic memory allocation in the context of managing data
structures without “wasting” memory resources. Even though there is usually no
practical reason to worry about this problem, it is conceptually useful to be able
to determine the size of data storage structures based on need at run time rather
than compile time.

In Fortran, questions about how memory is used to store arrays arise when
variably dimensioned arrays are used in subprograms. The Fortran syntax implies
that such arrays are being dynamically allocated at the time the subprogram is
called, but they are not. Instead, the variable dimension merely provides restricted
access to a subset of the array space (through one or more subprogram
parameters) that was statically allocated in the main program.

This arrangement is conceptually flawed because, whereas it is satisfactory
for one-dimensional arrays, it doesn’t work intuitively for multidimensional arrays.
Typically, a subprogram must declare multidimensional arrays with the same
dimensions used in the main program even though access is required only for a
subset of that array. Thus both the maximum and the “working” sizes have to be
passed to a subprogram to insure access to the desired subset of the array space.
A failure to understand this fact leads to programs that look perfectly reasonable,
but don’t work properly; this kind of error is very difficult for students to find.

In Fortran 90, this awkward situation can often be eliminated by using
ALLOCATABLE arrays. The Fortran implementation of an allocatable array isn’t
completely equivalent to dynamic allocation because it’s not possible to use any
element in such a structure until its maximum size has been allocated. That is, it’s
not possible to use allocatable arrays to build an expandable data storage structure
“on the fly.” Nonetheless, allocatable arrays give some of the flavor of dynamic
memory allocation without the additional programming overhead of pointers and
linked data structures. Therefore, they are included in the text.

Recursion

In contrast with earlier versions of the language, Fortran 90 supports recursive
subprograms as part of the standard. I have included a brief discussion of this
topic because some recursively defined functions, such as the Legendre
polynomials, are important in science and engineering, and I believe that seeing
them evaluated in a natural way is worth the difficulties students have with this
concept. Another justification is that it is then possible to discuss the important
Quicksort algorithm in its usual recursive version; this is impossible with previous
standard versions of Fortran. A nonrecursive Quicksort algorithm is so unwieldy
that it is usually not included at all in Fortran texts, with the result that students
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see only the inefficient O(N?) algorithms instead of the much more efficient
O(Nlog,N) Quicksort algorithm.

Explicit vs. Implicit Typing

Because explicit data typing is obviously good programming practice, its use is
uniformly stressed in Fortran 77 texts, even though there is no way to enforce
explicit typing under the Fortran 77 standard. However, Fortran 90 supports the
IMPLICIT NONE statement, which is available only as a nonstandard feature in
some Fortran 77 compilers. I believe inclusion in Fortran 90 of a means to enforce
explicit typing is the single greatest improvement over earlier versions of Fortran.
In this text, an IMPLICIT NONE statement is part of every program and
subprogram.

Programs compiled with IMPLICIT NONE will automatically generate
messages for misspelled variables and other variables that are not included in type
statements, and, depending on the compiler, may also generate warnings for
variables that are declared but not used in a program. This information is
invaluable to students when they debug their programs.

COMMON Blocks

In previous versions of Fortran, information not appearing in parameter lists could
be shared among subprograms only by using COMMON blocks. This is a persistent
source of problems because of the burden placed on the programmer to ensure that
references to variables passed through a COMMON block in one program segment
match the references to variables passed through that same block to other
segments. The problem arises because the data types of variables referred to in
COMMON blocks are almost without exception intended to be the same in all
segments using that block, but they don’t have to be. This is because information
in COMMON blocks is “storage associated” rather than “name associated.” That is,
a COMMON block occupies a certain range of memory locations based on the data
types of items in the original definition of the block. In another part of the
program, the information in those memory locations can be accessed in a variety
of ways, including ways not originally intended.

This problem can be remedied by using Fortran 90 MODULEs, which can
be referenced in the main program and other subprograms through the USE
statement. Information in the modules must be accessed specifically by name.
(Local aliases can be defined.) Modules can consist simply of data type
specifications and PARAMETER statements or attributes, but they have other uses
too, such as making selected subprograms and derived data types available to
other program units. For these reasons, I believe there is no reason for new
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programmers to use COMMON blocks, and I have not used them in any of the
programming examples in this text. However, because COMMON blocks appear so
frequently in earlier versions of Fortran, I have included a brief introduction to
their use, and potential misuse, in Chapter 12.

Program Modularization

An important decision to be made in any introductory programming course
concerns the appropriate place to introduce program modularization. In C, for
example, the fact that even the “main program” is nothing more than a function
naturally leads to an early discussion of this topic. In this text, I have deferred
introducing functions and subroutines in Fortran—basically until students are
writing programs that are worth modularizing. Programs that implement a single
programming concept—IF . . . THEN. . . statements, for example—are generally
restricted to one task and do not really need to be modularized as part of the
top-down process of dividing a large task into several smaller tasks. To give
students some feeling for modularizing tasks, I have included statement functions
along with the discussion of intrinsic functions in Chapter 4, even though some
Fortran 90 programmers believe statement functions should no longer be used.

My decision to delay a discussion of subroutines and functions until
Chapter 7 is also motivated by the fact that Fortran 90 has greatly increased the
level of effort required to write subprograms that take full advantage of the
features provided by the language. The MODULE and INTERFACE constructs, and
the INTENT attribute for parameters, are welcome additions to the language, but
they require more teaching and learning time. Consequently, I have delayed their
introduction past the point that I might feel was appropriate in some other
language.

Obviously, instructors who wish to discuss modularization early in their
course can easily rewrite many of the examples presented in the text to include
functions and subroutines called from a main program. It is even possible to use
subprograms in the “old-fashioned” way, without MODULES, although this practice
is discouraged.

Arrays

Arrays are introduced in Chapter 8. Again, Fortran 90 presents new opportunities
and challenges. In addition to allocatable arrays, as discussed earlier, the
availability of elemental functions, operations on whole arrays (or subsets of
arrays), and the several array manipulation and reduction functions greatly
increases the teaching and learning load without introducing any concepts and
capabilities that I consider absolutely essential. However, it is certainly convenient
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to be able to reduce the number of loops that must be written for manipulating
arrays, so I have attempted to find a workable compromise. Some of Fortran 90’s
array manipulation features are used in Chapter 8 and subsequent chapters, and
some are deferred to Chapter 12, which presents a miscellany of Fortran 90
features that I believe are not essential for an introductory programming course.

One result of making the kinds of content decisions discussed here is that
this text is not, and does not try to be, a Fortran 90 reference manual. I believe
the level of detail and sheer volume required to create such a manual is
inappropriate for an introductory text and may not even be compatible with any
text devoted to developing problem-solving skills rather than programming per se.
My own questions about details of the Fortran 90 language standard have been
answered by two excellent references, which are given near the end of this
Preface.

i.1.4 Pedagogical Features

Obviously, this text mirrors my own ideas about how an introductory
programming course should be taught, and it draws on my experiences with
teaching C, Pascal, and Fortran to a wide range of students in science,
engineering, and other disciplines.

A Formal Problem-Solving Process Is Followed Throughout the Text

Chapter 2 describes a five-step problem-solving process and a pseudocode
language for algorithm development. What distinguishes this text is that the
process is followed rigorously for all substantive programs throughout the text. I
hope that my own determination to adhere to a specific problem-solving plan will
motivate students to develop the same habit in their own programming.

Some Applications and Problems Appear More Than Once

Some of the applications and exercises in early chapters are revisited in later
chapters, when more sophisticated programming skills can be applied. For
example, both algorithm design applications in Chapter 2 are presented as
programming problems in later chapters, and new versions of both applications in
Chapter 3 are discussed in later chapters. Some of the programming exercises in
Chapter 3 reappear in expanded versions in later chapters. I believe that returning
to the same problems will give students a sense that they are progressing and that



xvi = Preface

programs are dynamic entities that can grow in response to new demands and
developing skills.

Programs and Exercises

The text contains many complete programs in addition to the end-of-chapter
applications. The source code listings have been copied directly from the original
source code files, although in a few cases comments have been added and lines
have been continued to fit the source code onto the textbook page.

Every program has been written “from scratch” for this text. Especially in
the later chapters, some of the source code implements well-known algorithms.
However, the resulting code often differs significantly from similar code appearing
in older (Fortran 77) texts, in order to take advantage of Fortran 90 features.

The exercises are subdivided into three categories. “Self-testing” exercises
are intended to help students test their own understanding of the problem-solving
and programming concepts and Fortran syntax covered in the chapter. “Basic
programming” exercises often include modifications to programs presented in the
text. This provides practice in reading and understanding someone else’s code and
should also provide incentives to study programs in the text more thoroughly than
might otherwise be the case.

“Programming applications” involve writing complete programs based on
the material presented in the chapter. Such exercises are cumulative in the sense
that they assume all programming skills learned up to the present can be brought
to bear on the problem. Complete source code listings for the programming
applications are available to instructors (see Section i./.6), and I hope my
solutions to these . exercises will be useful for your lectures and classroom
discussions.

Nearly all the exercises are related to the kinds of problems students will
encounter in introductory science, engineering, and mathematics courses. Some of
the problems use discipline-specific terminology, and I do not think it is practical
or necessary to try to eliminate all jargon from every problem. In some cases, I
have provided representative output to help students verify the operation of their
programs. Programming in the real world often takes place in an environment
where programmers don’t understand all the subtleties of the problems they are
being asked to solve, and it is important for students to develop confidence in
their skills even when faced with this kind of uncertainty.

I have tried to order the programming exercises roughly by increasing
difficulty, although I assume that my ideas about this won’t always match yours
or your students’. This progression in difficulty is as often related to mathematical
skills as it is to programming skills. Especially in the later chapters, some of the
exercises will make more sense if a student has some familiarity with calculus or
basic numerical analysis, even though the programming itself may not be difficult.



Preface ®= xvii

I have marked such problems with an appropriate message, but I have still
attempted to provide enough information about the problem so that students can
write the code even if they don’t completely understand the underlying
mathematics.

i.1.5 The Compiler Used to Prepare Programs for This Text

At the time the first drafts of this text were written, there was, at least as far as
I knew, only one commercially available Fortran 90 compiler for MS-DOS-based
PCs, the platform I chose for convenience in developing the programs. This was
the Numerical Algorithms Group (NAG)/Salford Software FTN90 compiler, which
is also available for other computing platforms. As a result, all the programs were
written for this compiler—initially using the MS-DOS version and later the
Windows 95 version.! Because this compiler actually helped define
implementation of the Fortran 90 standard, it is practically by definition a
compiler that embraces that standard, and I have not felt a need to test the
programs on any other compiler.”

To the extent that programs in the text make full use of the Fortran 90
standard, which supports syntax from earlier versions of Fortran, it is certain that
many programs will be incompatible with compilers that, in an effort to simplify
the language, use a restricted subset of the Fortran 90 standard and consciously
avoid supporting certain syntax forms. For example, such compilers may support
PARAMETER used as an attribute in a type declaration statement, but not a
separate PARAMETER statement. Although it would not be difficult to bring the
programs in this text into conformity with such language subsets, I have chosen
not to do so, as that seems to me to place unreasonable restrictions on students’
use of the language.

'It is somewhat misleading to refer to FTN90 as a “Windows 95" compiler because it is
not a Windows application. Rather, it runs comfortably as a DOS application under Windows 95,
without the memory management problems that plagued earlier versions.

’I would like to think that this loyalty to the NAG/Salford Software compiler has not been
inappropriately influenced by the fact that Numerical Algorithms Group, Inc. generously provided
both MS-DOS and Windows versions of its FTN90 compiler while this text was being written.
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1.2 Overview for Students
i.2.1 The Purpose of This Text

Over the past few years, there has been a growing realization among your
instructors that traditional introductory programming courses have not been
meeting your needs. In response, many introductory programming texts have
shifted their emphasis away from a computer-science-oriented approach to
programming and toward an approach that emphasizes the problem-solving
applications of high-level programming languages.

Fortran texts were the first to make this welcome change, as Fortran has
long been associated with practical computing applications in engineering and
science. However, the Fortran 77 language standard, which has been taught to the
generation of students preceding you, has some deficiencies when compared to
more modern languages such as C and Pascal. Without going into the details (you
can read Section i.1 of this Preface, the Overview for Instructors, if you are
curious), the new Fortran 90 standard has revitalized Fortran by providing many
of the features that are expected of a modern high-level procedural programming
language. Thus the purpose of this text is to introduce you to this new language
standard in a way that meets the problem-oriented needs of science and
engineering students.

i.2.2 The Approach Taken by the Text

When I started to write this text, I tried to think carefully about my own learning
strategy. How do I learn a new programming language? For me, the answer to this
question seemed clear: “Show me an example.” Once I see a program that works,
I can apply the lessons contained in that example to other situations.

Not surprisingly, then, this text is based on the premise that the best way
to learn how to solve problems on a computer is to follow a step-by-step
procedure and to study good examples. Chapter 2 presents a five-step approach
to problem solving and an “action command” language that you can use to solve
computational problems in any high-level procedural programming language, of
which Fortran is one. This “pseudocode” language doesn’t have any grammar
rules, so you can concentrate on the solution to a problem rather than the details
of a new language.

I understand that you are eager to start seeing results from your own
Fortran programs, so Chapter 2 includes a simple program you can copy and
execute. However, my own teaching experience has demonstrated that time spent
thinking about how to organize programs away from a computer will be time very
well spent.
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Starting in Chapter 3, the details of the Fortran language are presented. At
this point, as you can probably guess, grammar rules suddenly become very
important. New programming concepts are often introduced by posing a
computational problem, presenting a solution, and then generalizing from this
specific solution to a broader understanding of programming concepts and their
Fortran implementation. I have chosen the approach of moving from the specific
to the general because it matches my own style of learning by example. I
understand that this may not match your learning style, but I hope it will help at
least to be aware of why this text is written the way it is.

Solutions to problems are always implemented using the five-step approach
presented in Chapter 2. Each chapter starting with the third includes at least two
complete programming applications to help you integrate new material into your
expanding programming skills. These applications are drawn from topics you will
encounter in introductory science, engineering, and mathematics courses. Some of
the applications appear more than once, when new programming skills can provide
a better or more comprehensive solution. '

In keeping with my belief that examples are important learning tools, this
text contains many complete programs in addition to the applications. To get the
most out of the text, you should study every program carefully and try to
understand the purpose of every line of code. You can—and should—download
the source code and data files, where applicable, from the World Wide Web site
given in Section i.1.6 of this Preface. However, you should not overlook the fact
that the physical act of entering programs yourself, from a computer keyboard, is
a process that will help you develop the mechanical skills required for efficient
programming.

“Style” is an important part of programming, but it’s difficult to explain
and teach except by example. For reasons having to do with its historical
development, Fortran is a language that can easily be abused to produce programs
that do not meet widely accepted standards of modern programming style. I have
tried to make every example in this text a model of good programming style. In
order to attain this goal, many choices have been made about how Fortran should
be used. These choices often will not be obvious to a beginning programmer; for
example, some forms of Fortran syntax simply don’t appear in the text because
their use is inconsistent with good programming style.

Not everyone—including your instructor—will agree with every stylistic
choice I have made. Fortran 90 is a much more flexible language than its
predecessors, so there is more room for personal preferences. Thus you should
expect programs from other sources to look somewhat different, and it’s certainly
possible that your instructor may have different ideas. However, some of the
choices are so important that I don’t believe they should be negotiable as matters
of personal style. (I have tried to be clear about these when they occur.) Until you
are confident in your own ability to write programs that are easy to understand,
debug, and modify, I encourage you to imitate the style used in this text.
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In each chapter you will find three kinds of exercises:

1. “Self-testing” exercises that test your basic understanding of the concepts and
syntax presented in the chapter.

2. “Basic programming” exercises that often involve modifications to programs in
the text. The purpose of such exercises is to encourage you to study the programs
in the text more thoroughly than you might otherwise do.

3. “Programming applications” that involve writing complete programs dealing
with the kinds of engineering, science, and mathematics problems you are likely
to encounter in other courses.

I have tried to arrange these programming exercises roughly in order of
increasing difficulty. The more difficult exercises may require more sophisticated
mathematical skills even though the programs themselves may not be particularly
difficult to write. You should spend as much time as possible with these exercises.

i.2.3 What Does This Textbook Expect from You...

Every textbook incorporates some assumptions about the students who will use it,
and this one is no exception. It assumes that you are a freshman or a sophomore
in a science or engineering curriculum or that, for whatever other reason, you need
an introduction to the problem-solving and computing skills required for such
disciplines. No previous programming experience is required, but the text assumes
that you already have, or will be able to acquire quickly on your own, a working
knowledge of computers; to use the cliché, it assumes that you are already
“computer literate.” The truth of the matter is that if you are not comfortable
working with computers, you will be at a disadvantage in any programming
course.

The examples, applications, and exercises in the text assume that you are
familiar with algebra and trigonometry and are comfortable thinking about
mathematical problems at that level. Many of you will already have been exposed
to some fundamental concepts of calculus or will be taking a first course in
calculus at the same time you are taking a course that uses this text; some of the
applications and exercises later in the text will make more sense if this is true.

Because this is a text intended for science and engineering students, the
programs in the text and the programming exercises naturally involve problems
from science and engineering. This means that the terminology required to state
a problem may sometimes be unfamiliar. The reality is that problem solving and
computer programming often have to be done in an environment that includes a
little uncertainty and insecurity, and I must assume that you won’t be discouraged.
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In return, I have tried to give you enough information to understand a problem
without overwhelming you with too much detail. In some cases, I have included
representative output to help you verify your program’s operation.

Learning a new programming language requires thought and practice. Some
students seem to believe that they can learn to write programs just by reading
about programming. Obviously, it is a good idea to read and study this text
carefully. However, the only way to become proficient at using any programming
language is to write programs. The bottom line is that you can’t learn to program
in Fortran without practice any more than you can learn to speak a foreign
language without practice.

i.2.4 ...and What Does It Offer in Return?

Too often, students approach programming as an activity unrelated to their other
courses. I hope this text will prevent that from happening by providing you with
the problem-solving skills you will need to use a computer effectively throughout
your college and professional career. The skills required to use a language such
as Fortran are essential not just for writing programs, but also for understanding
other computer applications, and even for solving problems without computers. In
summary, unlike the details of a specific programming language, the problem-
solving skills you can learn from this text will never be out of date.

On a more general level, I believe that learning how to program really is
good for your character. In my own teaching of freshmen, I often see students
who have excellent mathematics backgrounds and extensive experience with
computers. They should do well in a programming course. However, they often
have poor study habits and lack the self-discipline to manage their time effectively
in a learning environment that offers more personal freedom than they had in high
school. For these students, learning how to succeed in college is as much a
personal challenge as an intellectual one. A programming course is an excellent
(if arguably perverse) environment in which to develop these skills.

Finally, when you learn to write programs with Fortran 90, you get all the
traditional advantages of Fortran, which is still the most widely used language in
science and engineering. At the same time, you will be learning a language that
has much in common with other languages, such as C, that you may want to learn
later.
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1.3 Useful References for Fortran 90

For reasons discussed earlier in this Preface, this text is not intended to take the
place of a Fortran reference manual. I have found two books useful for filling this
need:

Adams, J. C., W. S. Brainerd, J. T. Martin, B. T. Smith, and J. L. Wagener
(1992). Fortran 90 Handbook: Complete ANSI/ISO Reference. Intertext
Publications, McGraw-Hill Book Company, New York.

Metcalf, M., and J. Reid (1996). Fortran 90/95 Explained. Oxford Science
Publications, Oxford University Press, Oxford. (This book is included with
the FTN90 compiler used for the programs in this text.)

i.4 Contacting the Author

I'look forward to hearing your comments and constructive criticism about this text
and being informed of any typographical and other errors you might find, as well
as receiving feedback on your classroom experiences as a student or as an
instructor. I can be reached on the Internet at brooksdr@duvm.ocs.drexel.edu.

i.5 Obtaining Source Code and Data Files for Programs in this Text

The source code and data files for all programs in the text can be downloaded
from the publisher's World Wide Web site:

http://www.springer-ny.com/supplements/dbrooks

Also available at this site are sample data files for all exercises that require them.
Instructors using the text are invited to contact Customer Service at Springer-
Verlag, 175 Fifth Avenue, New York, N. Y. 10010, in writing on department
letterhead, to obtain source code and data files for all programming exercises in
the text. The source code file names are given in brackets following each problem
statement in the exercises.
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Computing Environments for
Problem Solving

This chapter offers a very brief history of electronic computing and an equally
brief description of some of the features of computing environments you are likely
to encounter during a course based on this text. It also includes a discussion of the
role of Fortran and programming in the problem-solving process.

1.1 A Brief History of Electronic Computing
1.1.1 The First Generation

The electronic computer' has existed for only about
half a century. The ENIAC (Electronic Numerical
Integrator and Computer), built at the University of
Pennsylvania with funding from the U.S. Army in 1946, is generally considered
to be the first successful programmable electronic computer. It was a one-of-a-
kind research tool designed to perform calculations for the military, but by 1951
its descendant, the UNIVAC I, became the first mass-produced electronic
computer. This was the beginning of the first generation of computing. In 1953,
International Business Machines (IBM) began manufacturing computers, and it
soon dominated the scientific and business market with its model 650.

The ENIAC could be
programmed only by rewiring its
circuits manually through large “patch
panels,” a lengthy process that clearly
limited its general usefulness. Later,
computers were (and continue to be) programmable with machine language
instructions specific to a particular kind of computer. During the first generation
of computing, the concept of a standardized portable language was developed.
This allowed programmers to write programs that would work on more than one
kind of computer. Specialized high-level programming languages such as

electronic computer I

machine language
portable language
high-level programming language

'All words or phrases printed in bold italics are defined in the Glossary at the end of this
text.

D. R. Brooks, Problem Solving with Fortran 90
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FORTRAN (the original spelling, adopted from FORmula TRANslation) and
COBOL (COmmon Business-Oriented Language) were developed for scientific
and business applications.

1.1.2 The Second and Third Generations

First-generation computers used vacuum-tube technology. They were large and
heavy and consumed a great deal of power. The ENIAC weighed 30 tons, used
about 18,000 vacuum tubes, and lined the walls of a large room. The limitations
of vacuum-tube technology spurred research into solid-state electronics, which led
to the invention of the transistor in 1948. In 1959, the first transistorized
computers marked the beginning of computing’s second generation. Again, IBM
dominated the market and produced several successful series of computers targeted
at users ranging from small businesses to large scientific research institutions.

The third generation of computing started in
the mid 1960s, as computer manufacturers switched
from discrete transistors to even smaller integrated
circuits. By this time, computer systems and their
peripheral equipment had become sufficiently complicated that they needed to be
managed by teams of professionals. These computers were amazingly fragile
devices that consumed large amounts of power, generated a lot of waste heat, and
therefore required special environmental controls to function reliably. As a result,
during this period of centralized computing using mainframe computers,
scientists, engineers, and other computer users were physically isolated from the
machines that served their needs. Besides learning a high-level programming
language such as Fortran, computer users also needed to learn how to maneuver
around sometimes daunting institutional barriers; the computer centers at colleges,
universities, large corporations, and research laboratories could be as difficult to
master (in the organizational sense) as programming itself.

However, a revolution was about to take minicomputers
place. The introduction of minicomputers— decentralized computing
simple enough to be maintained by one or two
people, yet powerful enough for all but the largest
and most complex computing tasks—brought a new level of direct involvement
by engineers and scientists in the computing process. By using minicomputers to
decrease their reliance on a central computing facility, computer users could set
their own priorities and accumulate the hardware and software that was best suited

centralized computing
mainframe computers

*Much has been made of whether Fortran should be spelled FORTRAN (i.e., with all
uppercase letters). Earlier versions of the language used the latter spelling, but Fortran is now the
preferred spelling.
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for their own research tasks. This was the start of serious decentralized
computing. In some organizations, computer managers engaged in bitter infighting
against the proponents of decentralized computing in an attempt to maintain the
prestige and funding that accompanied control over computing equipment and
facilities; eventually, they lost the battles and the war, and the rest, as they say,
is history.

Remote access to large mainframe computers
through electronic terminals also brought computing
closer to people who were interested in solving science
and engineering problems rather than in the details of the computers themselves.
It was now possible to use computers without ever traveling to the computer
center. This greatly reduced the turnaround time for computational tasks.’

Another significant computing milestone was the development of BASIC
(Beginners All-Purpose Symbolic Instruction Code). Even though it was never
intended to challenge Fortran as a “serious” programming language, BASIC
introduced the problem-solving capabilities of a high-level language to
nonspecialists from many disciplines, including those whose professional interests
could not justify the investment of time required to learn a more complex
language.

I turnaround time I

1.1.3 The Fourth Generation

In view of .BASIC’s success as a “Pers_onal” personal computer |
programming language, it was inevitable central processing unit (CPU)
that hardware appropriate for personal § ;.
computers would also be developed. This byte
part of the computer revolution began in

*Author’s note: when I was working at the National Aeronautics and Space
Administration’s Langley Research Center during the 1970s, the presence of a remote access
terminal on a researcher’s desk was perceived by coworkers as a status symbol and viewed with
great suspicion by supervisors. Among coworkers, the terminal advertised the fact that its owner
would no longer have to use “punch card machines” to generate programs and would no longer
have to make the long walk to the computer center to submit and retrieve “batch jobs.” To
supervisors, the sight of research personnel working at terminals looked too much like “typing,”
an activity they considered unworthy of skilled professionals! However, the advantages of being
able to write, edit, and debug programs in electronic form were so overwhelming that these
terminals soon became a permanent feature in every researcher’s office.

Later, when personal and distributed computing appeared to be on its way to diluting the
power accumulated by computing professionals, NASA refused to allow researchers to buy
computing equipment for their own use. At one time, it was possible to circumvent this ban by
referring to computers as “electronic calculators,” but this ruse was not successful for long.
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1971 when Intel released the first microprocessor—a complete central processing
unit (CPU), the 4004, on a single chip. Its basic unit of storage was a “word”
consisting of four bifs, each bit representing the “on” or “off” state of an
electronic circuit or some other kind of storage device. This CPU was followed
the next year by Intel’s 8008 and in 1973 by the 8080. These CPUs used an eight-
bit word (a storage unit now universally referred to as one byte). These chips were
the predecessors of Intel’s 8086/8088, 80286, 80386, 80486, and Pentium chips
that drove much of the personal computing revolution in the 1980s and into the
1990s.

The first microprocessors were
used for “pocket” calculators, which were
actually a little too bulky to fit in pockets.
However, in January 1975, the first widely
available microcomputer, the Intel 8080-
based Altair, was the cover story in
Popular Electronics magazine. It consisted basically of a CPU in a box. It had no
keyboard, no monitor, no external storage device, just 256 bytes of random access
memory (RAM) and no read-only memory (ROM). It was hailed as a “real”
computer because it could be programmed, but only by setting switches on its
front panel. The Altair 8080 was offered in kit form for about $400, and 2000 of
them—ten times the original estimate—were quickly sold.

At that time, traditional computer users were interested only in larger and
larger computers, not in what appeared to be no more than an interesting toy. It’s
interesting that, far removed from the influence of the military, commercial, and
scientific forces that had always driven the development of computing, the first
personal computer was sold to amateur electronics experimenters.

The pivotal event that started the personal computer I

microcompuler

random access memory (RAM)
read-only memory (ROM)
personal computer

revolution is widely recognized as the development in the late
1970s of the Apple II. This computer quickly developed a huge
following among hobbyists and in the educational market, but it
was virtually ignored by commercial and scientific computer users. Significant
inroads into these markets began with IBM’s introduction in 1981 of the IBM-PC.
The original PC was quickly replaced by the more powerful IBM-XT and IBM-
AT series of machines. The backing of the world’s foremost computer
manufacturer guaranteed the rapid integration of this new technology into a wide
range of computing activities, including tasks traditionally reserved for mainframe
computers and new applications designed specifically with personal computing in
mind.

Apple I
IBM-PC

IBM’s decision to compete against Apple’s IBM-clone
proprietary hardware and operating system by IBM-compatible
devglopmg an “open arclptecture” using readily graphical interface
available components led virtually overnight to the text-based interface
development of an entire industry devoted to
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producing IBM clones—computers compatible at the hardware and software level
with IBM’s personal computers. A highly competitive environment drove down
prices and accelerated development of increasingly powerful systems. It is difficult
to overestimate the influence of these products on the development of computing.
Even though IBM quickly lost its dominant role in the development and marketing
of personal computers, IBM-compatible hardware and software continued to
define the development of the personal computer industry. Even after the IBM-PC
itself became obsolete in terms of computing power, market forces required
software to be “backward compatible” with the IBM-PC standard until the
development of graphical interfaces (as opposed to text-based interfaces) in the
late 1980s. These new interfaces imposed hardware requirements that were simply
beyond what could be supported by the original IBM-PC. Even then, however, the
concept of IBM compatibility continued to drive the development of software and
hardware for personal computing.

There were only a few other important ventures in the early days of
personal computing. In the late 1970s, Radio Shack (Tandy), Atari, and
Commodore developed relatively inexpensive personal computers. These were
widely accepted as “home” computers and were used mostly for games, although
Commodore (with its famous Commodore 64) developed a modest following in
the educational market. However, these computers lacked the power and flexibility
to make significant inroads in the commercial and scientific workplace.

Of the early contenders, only Apple, with its Macintosh computers,
developed “serious” computers that managed to cut significantly into the near-
monopoly enjoyed by IBM-compatible computers for scientific and business uses
during the 1980s. Apple developed a user-friendly graphical interface that was
especially attractive to the educational market. These same IBM and Macintosh
systems also monopolized the home market, as more and more people wanted a
computer at home that worked just like the one they used in the office.

. The differences between IBM-compatible and op emting system
Macintosh computers are fundamentally hardware-based, § pe. pos
but they are seen most clearly in their operating MS-DOS
systems—the “invisible” software that manages the basic Windows
functions of a computer. Apple and Macintosh computers
use a proprietary operating system. When IBM needed an
operating system for its new PC, it turned to a then obscure company, Microsoft,
which developed the first version of PC-DOS and its “clone” version, MS-DOS,
perhaps the most famous computer operating systems ever developed. Since then,
almost all IBM-compatible personal computers have used a version of MS-DOS.
More recently, Microsoft developed Windows, a graphical interface that competes
head-on with (and, some might say, flagrantly attempts to imitate) the
Apple/Macintosh operating system.
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It is definitely a cliché to marvel at the “exponential growth” in the power
of personal computers. At least the cliché is justified. Figure 1.1 shows the growth
in three important specifications for typical PCs available during the decade
starting around 1985-86: CPU speed, RAM size, and hard drive size.* At the
beginning of this period, 8088-based PCs were being replaced by computers using
Intel’s 80286 CPU chip. Computers based on this chip could run only a single
application at a time, and the character-based interface placed relatively small
demands on system memory. At the beginning of this period, 1.2-MB floppy
diskette drives (using the 5%" format) were standard on mainstream systems and
hard drives were an expensive luxury.

As shown in Figure 1.1, each of these three measures of computing power
has undergone exponential growth since 1986. CPU speed has increased by a
factor of about 40 over the decade, driven by the demands of increasingly large
and sophisticated software. Typical RAM specifications have also increased by a
factor of approximately 40, from under 500 KB to 16 MB; these increases are due
to operating systems that allow several tasks to run simultaneously as well as
larger and more sophisticated graphically based applications that require a great
deal of memory. Growth in the size of graphically based software—both the
applications themselves and the large files they produce—has driven the dramatic
increase in permanent magnetic storage capacity from the “luxury” of 10- and
20-MB hard drives to typical drives in excess of 2 GB.

What has not increased exponentially is the cost of mainstream personal
computing. Complete systems with the specifications shown in Figure 1.1 have
been available throughout the entire decade at a remarkably consistent price of
approximately $2500-$3000. This is even more remarkable because, taking into
account the effects of inflation, $3000 represents a significantly smaller investment
in 1996 than it did in 1986. Thus the real cost of a mainstream personal computer
has actually decreased substantially at the same time that its capabilities have
undergone the meteoric growth shown in Figure 1.1.

1.2 The Academic Computing Environment

There is perhaps no undertaking so certain to make an author look foolish and out
of date as describing the “current” computing environment, since any such
description is sure to be on its way to obsolescence even as it is written.
Nonetheless, it is worthwhile to try to follow up to the present the historical
progression outlined briefly in this chapter.

“These data come from the specifications of typical, not state-of-the-art, systems advertised
and reviewed in PC Magazine, a magazine devoted to Intel-based PC computing.
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First of all, the historical division of labor between
mainframes and minicomputers has little current relevance.
Historically, mainframes monopolized scientific and
engineering applications for the simple reason that only large computers were
adequate for the computational tasks of interest to scientists and engineers. To a
certain extent, this remains true today. Some of the most important scientific and
engineering challenges of our time, such as global climate modeling and
aeronautical design, still tax the capabilities of even the largest supercomputers.
These are characterized by their support of specialized operating systems and
languages (including high-performance versions of Fortran for advanced scientific
and engineering computing). However, the role of the traditional mainframe
computer has been greatly diminished by dramatic increases in the power of
desktop computers.

The traditional minicomputer, which freed an entire
generation of scientists and engineers from centralized
computing, has essentially ceased to exist. Now the needs of
relatively small communities of computer users are met with
personal computers, workstations, and computers whose capabilities defy easy
categorization as either mainframes or minicomputers. All these computers are
typically interconnected through a network that provides communication between
hardware and multiple users and thereby greatly extends the capabilities of single
machines.

How will you learn programming within this highly decentralized and
rapidly evolving environment? There are basically two possibilities.

I supercomputer l

workstation
network

1.2.1 The Department-Based Computing Environment

Most academic computing is now done at the department level UNIX
with machines that typically use the UNIX operating system, multitasking
support remote access and multitasking for many peripherals
simultaneous users, have shared peripherals, and are managed
by a department-financed support staff. Basically, such
systems are designed to meet all the computing needs of a specific community of
users; a large university will have many such systems as well as a campus-wide
network that links at least some parts of all these systems together.

Typically, such system§ can allo?ate their resources l throughput I
among many users so that no single user is even aware of the
presence of others. Only with large computational tasks, or
when human intervention is required, are individual users aware of limitations to
throughput—the rate at which a computer system completes all the computational
and related tasks associated with a particular job. In fact, you will probably never
experience any significant throughput or turnaround time delays with the kinds of
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programs you will write in an introductory programming course. Any delay of
more than a few seconds in executing a program is much more likely to be a sign
of problems with that program than a sign of throughput limitations.

If your institution maintains a traditional mainframe computer, it probably
supports Fortran (although perhaps not Fortran 90). However, it is unlikely that
you will use a mainframe for an introductory programming course. Faculty tend
not to use such computers for their own research; these machines are more likely
to be used for administrative purposes than for research and teaching.

On a department computer, you will be assigned an
account ID and a unique password.’ Typically, you will be
able to access the computer from a terminal in a computer
center or lab, or from your own personal computer via a
modem. If you live in a dormitory, you may be able to connect your personal
computer to a campus-wide network simply by plugging a cable into a wall jack.

You will probably be given an electronic mail (e-
mail) account and access to the Infernet. You may be
able to participate in electronic discussion groups that
deal with course-related matters or allow you to
communicate directly with your instructor. Course notes
and homework assignments may be distributed electronically through a World
Wide Web page.

The sequences of instructions required to logon to a
department computer, create and edit a program, execute that
program, and logoff the computer vary widely among computer
systems and institutions. Even institutions with the same kind of
computer hardware may have rules and procedures that apply only at that
institution, so it’s pointless to try to give even a typical scenario beyond telling
you that you will need to provide an account ID and a password. Later in the text,
we will describe the general steps required to create and execute a Fortran
program, but the specific procedures applicable to the computing environment you
will be using must be provided by your instructor.

account ID
password

e-mail
Internet
World Wide Web

logon
logoff

1.2.2 The Personal Computing Environment

One milestone during the personal computer revolution was the point at which the
capabilities of PCs allowed traditional mainframe languages such as Fortran to be

>There is an important distinction between an account ID and a password. An account ID
is public information that identifies you to the computer system and other users. A password is
private information that protects your work from other users. You should never share your
password with anyone!
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implemented on a desktop computer. This was almost exclusively an IBM-
compatible phenomenon. The migration of Fortran from mainframes and
minicomputers to the desktop has been successful, and it is entirely possible that
you will learn to program in Fortran on a PC.

Unlike many other PC applications, Fortran doesn’t depend on a graphical
interface. Although it is certainly possible to “package” a Fortran programming
environment within a graphical interface, the language itself is text-based, contains
no graphics capabilities as part of the language standard, and is therefore perfectly
at home in the text-based MS-DOS environment. Nonetheless, Windows-based
PCs are the current standard, so you will probably develop Fortran programs from
within this environment.

1.3 What Do You Need to Know About Your Computing Environment?

One of the major reasons to learn a language such as Fortran is to isolate the
programmer from the system-level operation of a particular computer. However,
regardless of the kind of computer system you use to learn how to program in
Fortran, there are several things that you need to know about that system.

1. What kind of operating system does the computer have?
Is it UNIX, Windows, or something else? Will you be writing Fortran
programs in an MS-DOS environment even if your PC is running Windows?

2. How do you perform basic file-related tasks?
Do you know how to name, create, search, and maintain directories? Do
you know how to name, create, examine, edit, and delete files?

3. Do you understand how to use storage capabilities on your system?

Do you know how to examine and modify your PC’s hard drives and other
electronic storage media, such as backup tapes and CD-ROMs? Do you understand
the directory structure and memory limitations of your department’s computer?

4. Do you understand how to use telecommunications?

Can you attach your PC to a campus network? Do you know how to send
and receive e-mail and how to manage your e-mail directory? Do you know how
to communicate electronically with your instructor? Do you know how to access
an electronic class folder or course-related material on a World Wide Web page?

The exercises at the end of this chapter provide more suggestions for
things you should know about the computer systems you will use.
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1.4 Fortran and the Personal Computing Environment

It is clear that PCs are now essential tools for scientists and engineers. This would
be true even if Fortran were not available for PCs because of the availability of
a wide range of sophisticated computing tools. However, the development of
personal computing has been driven by a basically commercial market, and it has
not always been obvious that PCs would, or could, play a major role in serious
scientific and engineering computing.

Historically, Fortran has been the essential interface between scientists or
engineers and a computer, and this relationship continues in many areas of
research and applications. However, the availability of fully functional versions
of Fortran for PCs requires a re-examination of the role of Fortran relative to other
languages and other kinds of software.

Fortran was invented for doing numerical calculations. Its primary
advantages for science and engineering are that it provides powerful and flexible
computational and data-handling capabilities and it represents a stable, well-
defined language standard. Its primary shortcoming, which it shares with some
other high-level languages, is that it was developed for use in a text-based
computing environment and it includes no intrinsic graphics capabilities.® The
previous standard, Fortran 77, was adopted by an international committee in 1978
and remained in place until the adoption of Fortran 90 in 1991. Many
enhancements and changes have been added to versions of Fortran 77 in actual
use, but the standard itself has remained unchanged in the sense that every Fortran
77 implementation includes, or at least should include, the standard as a subset.

The new Fortran 90 language accepts the entire Fortran 77 standard as a
subset. Because Fortran 77 in turn accepts the entire previous Fortran version
(Fortran IV) as a subset, Fortran 90 provides a programming standard that is
backward-compatible with programs written decades ago. Most important,
Fortran 90 contains many new features, including many of the nonstandard
enhancements developed for Fortran 77 programming environments.

Fortran’s problem-solving
competition includes three major
classes of software: spreadsheets such
as Excel, Lotus 1-2-3, and Quattro
Pro; computer algebra systems such
as Maple and Mathematica; and data analysis and statistics software such as
SPSS and Statistica. These have all been developed, at least in commercial
versions, within the shadow of the PC revolution, and most didn’t even exist when
the previous Fortran standard was adopted in 1978. All provide powerful

spreadsheet
computer algebra system _
data analysis and statistics software

There are many different “add-in” graphics packages available for Fortran compilers, but
they are not part of the language standard.
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capabilities for solving particular kinds of problems and include sophisticated
graphical interfaces and display capabilities. Of these three, spreadsheets are
generally recognized as the “killer app(lication)” that turned the personal computer
from an interesting toy into an essential commercial and scientific tool.

A major potential disadvantage of these powerful applications is their lack
of standardization. Indeed, because of the competitive nature of the commercial
software market, there are actually strong disincentives to standardization; from
a marketing perspective, it may be more important to have unique capabilities than
to adhere to a standard. Nowhere is this conflict more evident than with
spreadsheets, the most widely used problem-solving software. Attempts by some
companies to make their products work just like their more successful competitors
have led to legal battles over whether duplicating the “look and feel” of someone
else’s software is desirable in the sense that it promotes standardization in an
important class of PC applications or whether it constitutes a theft of intellectual
property.

In contrast with Fortran’s development, the pace of change in the
commercial software market has been so rapid that a company’s latest version
may not even completely support its own previous versions. It is even less likely
that applications from one company will be compatible with those from another
company. These incompatibilities became especially severe in the PC environment
as software companies switched from MS-DOS to Windows products.

A lack of standardization in problem-solving software can be especially
alarming to scientists and engineers. With Fortran, programs written many years
ago will still work today, often without even minor modification. This is
extremely important for large and complex programs, as it is difficult and time-
consuming, and therefore expensive, to reinvent solutions to the kinds of complex
computing problems Fortran is often used to solve. Reworking algorithms for new
computing environments is always a risky undertaking, and it is even more of a
problem to guarantee the performance of algorithms that appear to work in a
software environment that lacks widely accepted performance standards.

There have been some attempts by the dominant software companies in the
commercial PC software market to make at least the files generated by their
products translatable by and for their competitors. As the marketplace has weeded
out the less robust competitors and despite legal challenges, the capabilities and
even the “look and feel” of the remaining spreadsheet products have come closer
together. In spite of the corporate desire to maintain a unique identity,
spreadsheets are so similar that even casual users shouldn’t have much trouble
making the transition from one product to another. However, there is still no
equivalent of the international standardization that Fortran enjoys. For algebra and
statistics software, there is even less standardization. Files are generally
incompatible and the commands required to achieve similar objectives differ from
one product to the next. In critical problem-solving applications, it is the details
that count, and it is not sufficient to have merely “similar” products.
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Scientists and engineers are faced, then, with two completely different
kinds of problem-solving environments. The Fortran environment provides the
standardization and stability required for complex calculations, but it suffers from
its “old-fashioned” mainframe heritage. The other environment makes better use
of PC and workstation capabilities, but presents a bewildering jumble of
incompatible and volatile products.

The migration of Fortran to PCs provides one obvious way to maximize
the return from both these problem-solving environments. This is surely a better
idea than what would be widely viewed as the backward step of bringing PC-
based applications to large computers, including traditional mainframes. (There
has, in fact, been relatively little migration of PC applications to mainframe
computers, but a massive migration in the other direction.) One obvious link
between Fortran and other applications is spreadsheets. We can ask Fortran to
perform the kind of computationally intensive tasks at which it excels and then to
produce output data in a format that can be accepted as input to spreadsheets. This
allows us to do complex calculations in the stable programming environment
provided by Fortran. In particular, we will be able to use the vast libraries of
“canned” Fortran software that is available for solving a wide range of
computational problems.

If we then “import” the output from Fortran programs into a spreadsheet,
graphics display capabilities are immediately available. Although it is possible to
add graphics to Fortran, it is reasonable to ask if this is worth the effort for any
but the most specialized problems. We can use spreadsheets to visualize results
and even perform simple analyses, and we won’t have to worry about trying to
ask Fortran to do something that requires a software “add-in” to the language
standard. This is entirely feasible, especially for analyzing and displaying “static”
data, and some typical results are evident in the spreadsheet-generated graphics for
many of the applications and exercises you will find throughout this text. If the
required graphics become more sophisticated—for example, if you require
visualizations for dynamic data—then you will have to use more specialized tools.

The danger in building synergistic relationships among computer
applications lies in the volatility of these applications. The rate of change in
computer hardware and software has been driven by commercial forces that far
exceed those acting on scientific computing and formal programming languages.
For commercial applications, success is measured by market share. For scientific
applications, measures such as professional credibility and language stability retain
their importance. Regardless of the driving forces, rapid changes in any part of the
computing environment can pose a significant problem for students, professionals,
and the authors and publishers of texts such as this one.

By the time you purchase this text, it is certain that the kinds of hardware
and problem-solving software available when the text was being written will have
been replaced with new versions. Because of the rapid pace of change in
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computing technology, students and professionals must constantly upgrade their
skills just to stay even.

Fortunately, rapid change won’t be much of a problem for this text.
Because Fortran is the most stable programming environment in history,” and
because the Fortran 90 standard is new, specific details of the material in this text
will not be quickly outdated. You should be able to use the language you will
learn from this text without modification on any computer that supports the
Fortran 90 standard. Unlike commercial PC applications, there are no version-
dependent tricks, no flashy user interfaces, and nothing about learning Fortran that
will be fundamentally altered by having a CPU that’s ten times faster and more
powerful than the one your computer is using now. If you’re using Fortran on a
department computer, you may never perceive any changes in your operating
environment even though changes may be occurring at the system level.

In addition, this text stresses basic problem-solving principles that will
continue to apply regardless of the computing tools you are using. If the text is
successful, the skills you learn will be easily transferable to any new problem-
solving environment.

1.5 Is Programming Necessary Anymore?

As programming developed as an activity that could be undertaken not only by
computer scientists, but also by others who needed computers for their
professional work, the question arose as to who should teach programming to
students outside the computer science curriculum. In many colleges and
universities, such courses have traditionally been taught by computer science
faculty. In the extreme, faculty with a computer science background may approach
this task with the attitude that the problems programs are written to solve are of
negligible interest compared to the art and science of programming per se.

Such an attitude annoys scientists and engineers, for whom programming
serves a fundamentally practical role as a problem-solving tool. From that
perspective, computer programming conducted as an activity for its own sake has
no great intrinsic value, even though it is common to find scientists and engineers
who are highly skilled programmers.

The view that computers can and should serve practical, task-oriented ends
has gained respectability due to the availability of problem-specific software for
meeting many needs that used to require custom-written programs. Do you need
to analyze some data? Use a statistics application. Need to plot a graph? Use a
graphics application. Need to summarize a lab experiment? Use a spreadsheet.

"COBOL (Common Business-Oriented Language) might be the other contender for this

titla
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Need to solve an equation? Use a symbolic algebra application. With this much
computing power available, is there any need to learn a traditional computer
programming language that often requires a significant effort to learn and that is
almost certainly not optimized to solve the problem you wish to solve? It is
tempting to answer, no, not anymore.

However, it remains true that the process of learning how to write
logically, and even elegantly, constructed computer programs encompasses a
formal approach to solving problems whose value extends far beyond computer
programming itself. For example, the process required to write a program to solve
a system of linear equations is merely the formalization of the process required
to solve that same problem by hand. A programmed solution even provides some
extra benefits because the demands of writing a computer program that works
correctly under a wide range of input conditions force the programmer to think
carefully and in great detail about the computational demands of the problem.

Many engineers, scientists, and computer scientists continue to maintain
that a complete reliance on “canned” software is a mistake because it discourages
the development of independent problem-solving skills. In fact, they would argue,
easy access to powerful computing tools makes these skills more important than
ever before. The applicability of the old programming axiom “garbage in, garbage
out” increases in proportion to the ease with which “garbage out” can be
produced. The only way to minimize this problem is to be increasingly aware of
the process as well as the answers being produced.

As a result of these considerations, there has been a growing realization on
the part of those who teach programming that more attention should be paid to
helping students apply the skills they learn in introductory programming courses.
Computer science courses that just a few years ago would have dealt only with
learning Pascal (the traditional first computer science language for an entire
generation of computer science students) now place more emphasis on underlying
problem-solving strategies and their application to disciplines other than computer
science. A textbook that might have been titled, tongue-in-cheek, something like
Learning Pascal for Its Own Sake Regardless of Your Major is now more likely
to be titled, seriously, C for Scientists and Engineers. (The C programming
language, or its derivative C++, has now replaced Pascal as a first language in
nearly all computer science departments.)

This text tries always to avoid presenting programming as an end in itself.
At the same time, it reasserts a traditional conviction that programming continues
to be a valuable activity because of the broadly applicable problem-solving skills
that are required to be successful in that endeavor. So you should not be surprised
to find that the conclusion of this section is that computer programming is still a
necessary skill for any student who aspires to a career in science or engineering.
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1.6 Exercises

The purpose of the exercises in this chapter, which admittedly aren’t exciting
engineering applications, is to encourage you to assess your general computing
skills and improve them where necessary. Even if an introductory course based on
this text claims, as courses often do, that “no prior programming knowledge is
assumed,” you will still find yourself at a disadvantage if you are unfamiliar with
computer hardware, standard applications such as word processors and
spreadsheets, and telecommunications. Time spent on this chapter will give you
a short but critical window of opportunity in which to address your shortcomings
in these areas.

Exercise 1. Ask a computer support person for general information about your
institution’s or department’s computer. What kind of computer is it? What kind
of operating system does it have? Which languages and applications does it
support? What kinds of access modes does it support?

Exercise 2. Find out if your institution’s computer center offers “short courses”
on using its facilities and sign up for one.

Exercise 3. If you don’t already have an account on your institution’s or
department’s computer, you may wish to get one even if you will do your
programming on a PC. Ask your instructor or a computer support person about
getting an account. Find out whether the account is temporary—for as long as
you’re enrolled in a particular course, for example—or “permanent”—for as long
as you're enrolled as a student. If it’s temporary, make sure you understand when
it terminates and- how you can avoid losing access to files stored under the
account. Make sure you know how to access this computer from your computer

center, home, or dormitory room.

Exercise 4. If you have a computer account and don’t already know how to use
e-mail, ask your instructor or computer support person for documentation on
setting up and using e-mail. Together with a classmate, make sure you know how
to send and receive messages and files, how to save messages for future reference,
and how to erase old messages that you don’t wish to save.

Exercise 5. Your institution probably provides a great deal of useful online
information through such means as department networks, anonymous ftp, Gopher,
or the World Wide Web. If you don’t know what these terms mean, ask a
computer support person and learn how to use them!

Exercise 6. Inventory the software applications that reside on the computers
available to you. For each application, list the kinds of courses in which you could
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use that application. For example, a word processor will be useful in all your
courses. A statistics package will be useful in a course that involves the analysis
of laboratory data.

Exercise 7. Data files used for programming examples and exercises discussed
later in the text can be downloaded from the World Wide Web site mentioned in
Section i.5 of the Preface. These files were created on an MS-DOS-based system
and have a .DAT file name extension. “Import” one of these files into a
spreadsheet. Create a graph that helps you visualize the data in the file. You will
have to import the data as a text file and “parse” the file to assign numerical and
character data to columns. Consult your spreadsheet documentation. If you have
never used a spreadsheet before, this will probably be a difficult exercise, but it
will certainly be worthwhile to learn how to do it.



2

Solving Problems with a
High-Level Programming Language

This chapter presents a general approach to using computers to solve certain kinds
of computational problems. It describes instructions and data types common to
structured programming with high-level procedural languages and defines a
specific strategy for developing algorithms that can easily be translated into a
language such as Fortran. It includes a short Fortran program that you can copy
and execute on the computer you will be using for a course based on this text.

2.1 Structured Programming and Problem Solving

2.1.1 A High-Level Programming Language Provides the Tool

language is an important technique for solving control strictires

certain kinds of computational problems. It

involves the process of writing computer

programs that consist of English-like instructions written in the framework of a
few control structures that determine the order in which those instructions are
executed. Languages such as BASIC, C, Fortran, and Pascal are examples of high-
level languages in which program instructions consist of words and a symbolic
language of operators that, in many cases, resemble algebraic operators. To cite
just two examples:

Structured programming with a high-level structured pmgmmmmgl

(1) Many high-level languages contain the instruction “print” or “write,” and the
words mean just what you expect—they display output from a program.

(2) The “+” sign is the addition operator in high-level programming languages,
with the same meaning that it has in mathematics.

high-level language is a sequence of instructions created
according to a detailed set of rules. These rules define the
language syntax that describes how instructions must be
written in the same sense that the syntactic rules of the English language define

The source code of a program writien in a coliree cole
language syntax

D. R. Brooks, Problem Solving with Fortran 90
© Springer-Verlag New York, Inc. 1997
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the components and organizational structures of our written and spoken
communication.

Source code that is free from syntax errors does not necessarily constitute
a well-written or usable program. The instructions in a correctly written program
must describe a logical, unambiguous, step-by-step approach to solving a clearly
defined computational problem. Structured programming reflects a certain
approach to organizing and writing such programs that makes them easy to
understand, maintain, and modify.

Any of the programming languages mentioned above can s
be used to write structured programs, but not all programs &
written in these languages are necessarily “well structured.” For I I
example, there are many features of BASIC and older versions
of Fortran that encourage a careless style of programming that cannot be called
structured. Carelessly designed programs are more likely to contain bugs
(mistakes). When bugs are found, either when the program can’t be executed or
when it produces output that doesn’t make sense, the mistakes must be found and
corrected. This process is called debugging. Carelessly written programs are
difficult to debug, and they are also difficult and expensive to maintain and
modify.

Even though languages such as C, Pascal, and Fortran 90 are designed to
encourage well-structured programs, it is certainly possible to write very poor
programs in any of these languages. In summary, it is not the programming
language itself that makes programs “structured,” but the way that language is
used.

Criticism of older Fortran programs for their sometimes unstructured style
isn’t entirely fair because the concepts of structured programming—and, for that
matter, most of what is now called computer science—were developed only after
Fortran had been invented. Many of the features found in Fortran 90, the new
Fortran standard, have been strongly influenced by other languages, especially
Pascal, which was developed specifically as a result of a more formal approach
to structured programming. As a result, it is much easier to write structured
programs in Fortran 90 than in its predecessors.

All the programming examples in this text strive to demonstrate a
structured style worthy of emulation in your own programs. This emphasis on a
particular style means that some features of the Fortran 90 language left over from
earlier versions won’t even be mentioned in this text. As a result, this text isn’t
intended as a complete reference for Fortran 90, but rather as an introduction to
those parts of the language that are especially applicable to solving problems in
science and engineering in a way that meets the stylistic standards expected of a
modern programming language. One result of this approach is that you will find
additional high-level languages easier to learn because they all share common

ctandarde nf onnd nraorammino ctvle

debugging
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Once a program has been written in a high-level language,
in the form of a source code file, a compiler—a separate program
that is part of the programming environment—is used to start the
process of translating the source code into a language that can be understood
directly by a computer. For example, computers don’t know how to interpret a
high-level programming instruction to “print” something without a detailed set of
hardware-specific instructions for sending the contents of certain memory locations
to a particular device or output port on your computer. One job of the compiler
is to provide these instructions.

Starting with the source code file, the compiler produces

compiler I

a binary file called an object file. This file contains translations bm. Y Jile
. . . g object file
into machine-level instructions of all the source code linker

instructions; the file is no longer in a “human readable” form,
and it is no longer portable to some other kind of computer.
Next, a linker—another program that is part of the programming environment—is
used to connect (link) the object file to other files that are necessary for the
program to run. These include computer-specific translations of commands such
as “print.”
The resu.lt of the compiling and link.ing operation is I executable file I
an executable file that works only on the kind of computer
that was used to generate it. A Fortran source code file can
be compiled on any computer that has an appropriate Fortran compiler, but an
executable file generated on an IBM-compatible PC won’t work on a Macintosh
or a supercomputer, for example. Figure 2.1 illustrates the process of creating an
executable file. Some details of this process will be discussed in Chapter 3.
One of the major advantages of programs written in a high-level language
is their portability at the source code level. For the most part, source code written
on one computer will work equally well on a variety of computers. If we use the
“print” instruction as an example, any computer that has a Fortran compiler will
know how to translate a “print” instruction to display output from your program.
The computer-specific differences occur not at the source code level, but at the
executable code level.

(portable) (machine-dependent) (machine-dependent)

Figure 2.1. Compiling and executing a source code file
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Minor changes in source code may sometimes be required I data file I
when programs are executed on computers other than the one on

which they were written. For example, if a Fortran source code file

contains a reference to a data file, the syntax of that file’s name must be
recognizable by the computer system on which the program is being executed.
Except for this kind of detail, the language compiler on each computer, not the
programmer, is responsible for translating source code into appropriate
machine-level instructions. Without this arrangement, it would be impractical to
put sophisticated computing power directly in the hands of individuals who are
interested in solving problems rather than in the operating details of computer
systems.

In conclusion, the advantage of using a portable, high-level language for
problem solving should be clear: you are free to concentrate on solving problems,
rather than on the details of how a computer operates. The source code files for
programs in this text have been written on an IBM-compatible PC. However, they
should be directly transferable (except, in a few cases, for changing the names of
data files, as noted above) to any computer that supports a standard Fortran 90
compiler.

2.1.2 Developing a Formal Approach to Problem Solving

A high-level programming language is of no value without a specific plan for
applying it to solving problems. Such a plan can be stated as a sequence of five
steps:

1 Define the problem.
Outline a solution.

3 Design an algorithm.

Convert the algorithm into a brogram.
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5 Verify the operation of the program.

The process described by these steps is fundamental to quantitative
problem solving in all areas of science and engineering (as well as other
disciplines). The computational tools have changed over the years—slide rules and
pocket calculators have been replaced by computers—but the process itself has
remained essentially unchanged. These steps do not describe a process that is at
all theoretical. Rather, they provide a practical guide to solving problems that is
useful because it works. Learning how to apply the process requires practice.
Consequently, these five steps will be applied to every programming example that
appears in this text, even when one or more of the steps appear trivial.

Note that of the five steps, only the fourth—translation of I algorithm I
an algorithm (a term we will define more formally in our
discussion of Step 3) into a specific programming
language—necessarily depends on the details of a particular programming
language. In fact, most of the process applies equally, if less formally, to problems
you solve in your head or with a pencil and paper.

When you first start to learn a programming language, it is easy to confuse
the problem-solving process with the syntax and structural requirements of the
language you are learning. This is a natural reaction because learning the details
of a new programming language is a demanding undertaking, and because you
don’t yet have the experience to understand that problem-solving strategies can
apply equally to any of several languages as well as other computer-based
problem solving tools. With this in mind, however, you should try as much as
possible to separate the task of learning the details of a particular language—the
fourth step in the problem-solving process—from the other four steps.

Having made the distinction between programming and problem solving,
you must also recognize that, especially when you are first learning to write
programs, it will sometimes be necessary to combine the two. In order to
minimize the potential difficulties, new programming concepts in this text are
usually introduced in the context of a problem that is simple enough to allow you
to concentrate on the programming details.

On the other hand, the focus of the programming applications that appear
in every chapter (as well as the programming exercises at the end of each chapter)
is always on solving realistic problems that will be relevant to your other science
and engineering courses. In this case, the content of the problem becomes more
important, and the Fortran language becomes simply a tool to solve that problem.
The process of solving such problems in Fortran—including thinking about the
capabilities and limitations of this particular problem-solving tool—will help you
solve other kinds of problems even when they don’t require a computer program.
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Now we will examine each of the five problem-solving steps in more
detail. Along the way, we will solve a simple programming problem.

1 Define the problem.

It is well known that cold weather feels even colder when the wind
is blowing. This effect gives rise to what is commonly described as the
windchill temperature—the temperature of still air that produces the same
feeling of “coldness” as a person experiences when exposed to a
combination of temperature and wind. Assuming that the windchill
temperature depends only on the actual air temperature and the wind
speed, develop an algorithm for calculating the windchill temperature.

A formula commonly used to compute the windchill temperature
T, in °F, for ambient temperature T in °F and wind speed V in miles per
hour, is

T, = (0.279)7 + 0.550 - 0.0203V)(T - 91.4) + 91.4

where T < 91.4° F and V > 4 mph. Write a program that accepts as input
the temperature and wind speed and then calculates and displays the
windchill temperature.

Especially in an introductory course, the problem definition may already
have been done for you, as has been done here. The examples in this text and the
end-of-chapter exercises involve problems that have been framed in a way that
illustrates a particular point or tests your understanding of how to achieve a well-
defined goal. After all, this is a text about solving problems with programs written
in Fortran, so it doesn’t make sense to ask you to solve a problem that can’t
reasonably be solved in this way. Nonetheless, it is always worthwhile to test your
understanding of a problem by restating it in your own words, with additional
elaboration as necessary.

If you have questions about the meaning of a problem, you need to resolve
them before you can proceed to the next step. It may seem obvious that you can’t
solve a problem you don’t understand, but it is common for beginning
programming students to write programs that work, but that don’t address part or
all of the problem they were asked to solve.

In the “real world,” it is often very difficult to define a problem and state
it clearly. In order to formulate a problem in a useful way, you must understand
not only the problem itself, but also the means available to solve it. If you don’t
understand something about the principles of structured programming and the
capabilities of high-level programming languages, you can neither formulate nor
solve computational problems. By the time vyou finish a course based on this text.
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you will have the experience you need to formulate computational problems so
they can be solved in any of several high-level procedural programming
languages. This experience will be of great value in solving other kinds of
computational problems, no matter what tools you are using.

2 Outline a solution.

This problem has been chosen because the concept of “windchill” is widely
known, but the formula for computing the windchill temperature is relatively
obscure.! Also, the calculation is interesting because the formula exhibits some
perhaps unexpected behavior. Your thought process for solving this problem,
which is conceptually very simple, might be something like this:

“Even though I don’t understand the derivation of this formula, I
will simply translate it directly into my algorithm and eventually into my
program. My program will ask the user to provide the temperature and
wind speed (by typing it at the keyboard?). I will be careful to let the user
know what units to use. Then the program will do the calculations and
display the results (on the computer monitor?).”

This outline doesn’t have to be anything more than a rough, plain-English
version of how you will solve the problem. You may not even have to write down
this step after you gain more experience in designing algorithms. Your goal at this
point is to organize your thoughts about the problem and its solution, not to worry
about the implementation details.

If you don’t understand how to solve a problem, you might need to have
a discussion with your instructor to make sure you understand what is required
and to get a general idea of how to proceed. You might have to look up formulas
if they’re not given as part of the problem statement, or you might need to rewrite
formulas in a more convenient form.

It’s important at this stage to clarify the nature of the input required and
the output provided by the program you will eventually write. What information
does the program need to do its job? Where does it come from? What should be
included in the output? Where and how will the output be displayed? Will
additional input or output, beyond what is called for in the problem statement,
help to clarify the program’s operation or verify its performance?

If you’re like most students, you probably underestimate the value of
simply thinking and talking about a difficult problem, especially when you’re

!Author’s note: It may be interesting to note that I found this formula in less than five
minutes on the World Wide Web by searching for “windchill” at the www.yahoo.com site.
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under time pressure to complete an assignment. If your instructor allows or
encourages you to discuss assignments with your peers, you should set aside some
time to “brainstorm” and trade ideas. It’s often helpful just to “sleep on” a
problem; if you think this is silly, just ask any good programmer how often
solutions to a problem magically appear after a good night’s sleep (or during a
poor night’s sleep)!

3 Design an algorithm.

An algorithm appropriate for implementation in a high-level procedural
language consists of a complete set of instructions that can be followed step by
step to achieve a well-defined computational objective. The instructions must be
written so they can be executed one at a time, starting at the beginning. Here is
an algorithm for solving this problem, using a format that we will follow
throughout this text:

DEFINE (all values as real numbers:

INPUT: temperature, wind_speed;

OUTPUT: wind_speed_temperature)
WRITE (“Give the temperature in deg F and the wind speed in mi/hr:”)
READ (temperature, wind_speeq)
ASSIGN wind_chill_temperature =

0.0817(3.71,/V + 5.81 - 0.25V)(temperature - 91.4) + 91.4

WRITE (wind_chill_temperature)

The intent of this algorithm, which is written in a somewhat formal way, should
be clear; it is nothing more than a straightforward translation of Step 2 of the
problem-solving process. The terms appearing in bold type will be given specific
definitions shortly, but their meaning essentially matches their obvious “plain
English” meaning.

Writing down an algorithm prior to writing a program, especially for a
problem this simple, may seem like a waste of time. However, many difficulties
with computer programs can be traced to algorithms that can’t be followed
sequentially or that, when followed in sequence, don’t lead to the intended
solution. For example, it’s possible, and a common error in computer programs,
to write an instruction using information that’s not yet available. A program
containing such instructions can’t possibly work because the instructions can’t be
followed in sequence. So, one purpose of writing an algorithm is to avoid these
kinds of problems in programs, where they are harder to correct.
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Initially, the instructions in your algorithm can be general. “Calculate the
deflection on a beam supported at both ends” is an instruction with a clearly
defined goal, even if the implementation details aren’t obvious. Later on, as the
general outline of your algorithm becomes clear, you will return to general
statements and convert them to more specific instructions.

In this algorithm design example, the variables—the I wiriables I
symbolic names by which quantities will be identified in a
program—are given readable, meaningful names. This is an
important part of making algorithms and programs easy to understand. You could
have named the variables T, V, and T_wc. After all, those are the symbols used
in the formula, and those choices would probably be clear enough. However, as
a matter of style, it is better to choose longer descriptive names.

The rathe.r formal algorithm designs we will use in this I pseudocode I
text are sometimes referred to as pseudocode because
algorithms will often look very similar to the source code
instructions you will finally write. For example, generic instructions such as
“read” or “write” will often be required in your algorithms. These instructions,
with similar or identical names, are common to Fortran and other high-level
languages. The similarity between pseudocode and programming languages is not
an accident. By incorporating just a few pseudocode “action commands,” you can
write algorithms in a form that can easily be translated into language-specific
source code. Later in this chapter, we will describe a complete set of such action
commands.

As you become more familiar with a particular programming language, the
algorithms you design may start to look more and more like the actual syntax of
that language. However, you should try to retain a language-independent algorithm
design style so that you develop and practice the habit of separating
problem-solving details from language implementation details.

4 Convert the algorithm into a program.

Program P-2.1 gives a translation of the algorithm from Step 3 into
Fortran 90 source code. Even though you are not expected to understand the
details of this source code, the correspondence between the algorithm from Step
3 and the code should nonetheless be clear. This example is given as one possible
translation of the algorithm. As you will see in later chapters, there are many
choices that can be made about the details of Fortran programs so that even very
simple programs won’t always look exactly the same.
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P-2.1 [WINDCHIL.F90]

PROGRAM WindChill

Program file name WINDCHIL.F90.
Given a temperature (deg F) and wind speed (mi/hr), calculate
the equivalent windchill temperature (deg F).

Variable declarations...
IMPLICIT NONE
REAL :: temperature,wind_speed,wind_chill_temperature
! Get input...
WRITE(*, *)&
'Give temperature in deg F and wind speed in mi/hr...'
READ(*, *)temperature,wind_speed
! Do calculation...

wind_chill_temperature=0.0817*(3.71*SQRT(wind_speed)+ &
5.81 - 0.25*wind_speed)* (temperature-91.4)+91.4

! Display output...
WRITE(*,*)wind_chill_temperature

STOP
END PROGRAM WindChill

At this point, your instructor may show you how to enter this source code
into the computer system on which you are learning Fortran. Type the code
exactly as shown. Your instructor will also provide you with instructions on how
to execute the program. In this way, you can start to become familiar with the
purely mechanical process of using Fortran.

In general, the steps required to translate an
algorithm into source code range from trivial to
difficult, depending on your familiarity with the
programming language you are using. You may find that you will have to cycle
through Steps 2 through 4 several times in response to changes in the way you
think about a problem or to the demands of a particular language. This process is
called stepwise refinement.

As you become more comfortable with Fortran syntax, you may often be
tempted to write the program first and the algorithm later (or ignore the algorithm
design altogether). This is a mistake! For all but the most trivial problems, it is
a better use of your time to refine your approach to a problem at the pseudocode
design level, when you don’t have to worry about the details of implementing

your solution in a particular language. Here’s a test you can apply to your own
work*

stepwise refinement I
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If you find yourself making major structural changes in your program as
you write it, you should leave the programming environment and return to
the algorithm design environment.

If you try to bypass the algorithm design and refinement process, you will often
find yourself struggling simultaneously with two difficult tasks—developing a
logically correct algorithm and writing an error-free program—that can and should
be kept largely separate.

As an example of a situation in which some stepwise refinement of an
algorithm might be needed, consider the task of finding an item in a list of related
items. In most high-level languages, you must write your own algorithm for
searching a list. When you first start to design the algorithm, you might include
a statement such as “Find item X in this list.” Later on, you must be more specific
about the implementation of this instruction.

Preliminary “algorithm” Algorithm after some stepwise refinement
Find X in list. Assume X “not found.”
Start at beginning of list.
Look at each item in list, in order.
When you find X, set item “found” and stop.

If you have never written a list-searching algorithm before, this may
represent a programming problem that you need to think through in detail. For
example, you should consider the possibility that you won’t find what you’re
looking for in the list. This possibility isn’t accounted for in the algorithm as it
is now stated because it says “When you find what you’re looking for...” and not
“If you find what you’re looking for...” Rewrite the algorithm to account for this
possibility:

Algorithm after additional stepwise refinement
Assume X “not found.”

Start at beginning of list.

Look at each item in list, in order.

If you find X, set item “found” and stop.

If you get to the end of the list, stop.

Provide output indicating whether X was found.

If you have written a searching algorithm many times, this problem may not
require any thought at all and may not even warrant writing more detailed
instructions; it may even be possible to “borrow” the required code from a
program you have written previously.
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5 Verify the operation of the program.

Try to find a published table of windchill temperatures (on the World Wide
Web?) to use as a check against the results produced by this program.

Problem Discussion

Figures 2.2 and 2.3 show two different views of the windchill temperature.
In Figure 2.2, the values are calculated as a function of ambient air temperature
for several values of wind speed. In Figure 2.3, the windchill temperatures are
calculated as a function of wind speed for two temperatures, 0°F and 32°F.

These two figures demonstrate that there is ample reason to be suspicious
of the answers provided by the formula. You can see that for small values of the
wind speed the formula produces a windchill temperature that is higher than the
ambient air temperature. There is perhaps a plausible explanation for this result:
when there is no wind, your body warms the layer of air next to your skin so the
air feels warmer than it actually is. However, this is an insufficient reason to
accept the values provided at low wind speed without further investigation.
Actually, as is typically the case with engineering formulas, there are easily
overlooked restrictions on this formula: it applies only to wind speeds of no less
than 4 mph and to temperatures less than 91.4°F. You will be aware of these
restrictions only if you examine the source of the formula.?

When you first start writing programs, you may be so relieved to create a
program that executes successfully that you will be eager to assume that the
answers it produces are correct. This particular problem should warn you against
making that assumption!

First of all, what do we mean by a “correct” program? One definition is
that the algorithm on which the program is based is logically consistent and the
program implements that algorithm without errors. It is not always possible to
“prove” that a computer program is correct in this sense. Therefore, verification
of a program’s correct operation by means other than the program output itself is
extremely important. Implementation errors in programs are sometimes easy to
find and sometimes very elusive. If you’re lucky, logical programming errors, as

2The original reference is: Court, A., 1948: Windchill. Bull. Amer. Meteor. Soc., 29, 487-
493. Note that some atmospheric scientists believe that the concept of windchill has little scientific
value.
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opposed to syntax errors detected by the programming environment, will cause
your program to “crash” or produce answers that are wrong. Unfortunately...

It is not unusual even for apparently simple programs to produce output
that looks perfectly reasonable, but is in fact wrong.

A second definition of “correct” is that you have asked your program to
do something that makes sense. With respect to the windchill temperature
problem, you might argue that, as a programmer, it is your responsibility only to
guarantee that your program correctly implements the formula given in the
problem statement. However, as a scientist or engineer, your responsibility extends
to making sure that what you have asked your program to do is reasonable. This
is often a problem when your program uses engineering formulas, especially when
their derivation is unknown and their range of applicability is uncertain, as in this
case. Do you really think that it feels nearly 60°F on a still day when the ambient
air temperature is 32°F, as indicated by Figure 2.3? In summary, the “garbage in,
garbage out” rule means that you must...

Assume that all programs produce incorrect output until they have been
thoroughly tested. Even when you are convinced that a program is error-
free and always does what you intend, don’t assume that the output from
that program must therefore be correct.

2.1.3 Beware of Logical Errors

To illustrate the kinds of logical errors that can creep into programs, consider this
typical problem for an introductory programming course.

An income tax is collected according to the following rule: for incomes
less than or equal to $50,000, the tax is 7% of the income. The tax is 3%
on any income in excess of $50,000. Write a program that will calculate
the tax for a user-supplied income.

You might design an algorithm that looks like this:

READ (income)
IF income < 50000 THEN
ASSIGN tax = income<0.07
ELSE
ASSIGN tax = income«0.03
WRITE (tax)
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A program that implements this algorithm will produce numbers that look
reasonable and are in fact correct for incomes less than $50,000. However, it
should be obvious that the IF... statement must read:

IF income < 50000 THEN
ASSIGN tax = income«0.07
ELSE
ASSIGN tax = 500000.07 + (income - 50000)+0.03

If you used the first JF... statement in the above example and it occurred to you
to calculate the tax on incomes of $50,000 and $50,001 as part of your program
testing, you might have been alerted to the fact that something was wrong.

Here’s another problem that can easily result in logical errors:

The time T required for a satellite in orbit around the earth to travel once
around the earth (its period) is T = 2ma(a/G)"?, where the quantity “a” is
the average distance from the center of the earth to the satellite and G is
the earth’s gravitational constant, 398,601.2 km*/s*. The earth’s radius is
approximately 6378 km. What is the period of a satellite at an average
altitude of 600 km above the earth’s surface?

Your algorithm might perform this calculation:

600 _,
\ 398601.2

instead of adding the satellite’s altitude to the earth’s radius and performing the
correct calculation:

T = 27 600 46 s

T - 26978, | — 9978 _ 5801 s

\ 398601.2

A program based on the first calculation will work perfectly well, and the answer
may or may not appear “obviously” wrong; not everyone knows that satellites do
not travel around the earth in 2.4 minutes! (This one takes about 97 minutes.) In
this case, by the way, you should be alerted by the fact that the first calculation
doesn’t make use of the earth’s radius. While it’s certainly not true that all
information supplied with a problem is necessarily useful (especially in the “real
world”), you need at least to examine all information for its possible relevance.
It’s not possible to give a foolproof set of rules for eliminating logical
errors in algorithms and their associated programs. In the tax problem given
above, testing incomes of $50,000 and $50,001 would have detected the error in
the first algorithm (because the tax on $50,001 would be less than the tax on
$50,000, which is inconsistent with the problem statement). For the orbiting
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satellite problem, however, you would have to find an answer you knew was
correct and compare that value with the output from your program. Without this
kind of “reality check,” you may never detect the error in this program.

Another verification strategy is to try to force your program to fail. Test
it under all possible input conditions, even conditions that should never exist under
“normal” operation. Sometimes, however, it isn’t easy to force a calculation
literally to fail. In the satellite problem, there are plenty of “unreasonable” input
values (satellites won’t stay in orbit at any altitude less than about 100 km, for
example), but no input values other than negative altitudes greater than 6378 km
will actually force the calculation to fail (because the number under the square
root will be negative).

Obviously, verifying the performance of a program implies that you can
determine in some other way not only what a correct answer looks like, but also
what appropriate input is. This is not always easy. For many kinds of problems,
if you could calculate representative answers by hand, you wouldn’t have needed
a program in the first place. However, for many science and engineering problems,
it’s possible to test the output from a program with nothing more than common
sense and a hand calculator.

2.2 Designing Algorithms for Procedural Programming Languages
2.2.1 Getting Started

The goal of algorithm design in programming is to produce a step-by-step
problem-solving plan that can be implemented in a programming language.
Making a smooth transition from designing an algorithm to writing a program is
a skill you will need to practice. On the one hand, algorithm development should
be generic and not associated too closely with just one language. On the other
hand, you cannot design algorithms without understanding what kinds of tools are
available.

As an example, think about describing the trajectory of a projectile under
the influence of the earth’s gravitational field. You cannot develop a detailed
algorithm to describe this motion without some understanding of the capabilities
of the mathematical tools—algebra, as a minimum, and calculus, in
general—available for solving this kind of problem.

The purposes of this section are to:

1. Outline the generic capabilities of high-level procedural programming
languages.
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2. Describe a specific language for designing algorithms that can be converted
easily into programs.

We will start by discussing the kinds of instructions available in procedural
languages and the kinds of data they can manipulate.

2.2.2 Executable Instructions

An executable instruction written in source code is
a “plain English” instruction that can be translated
by a compiler into instructions that can then be
carried out directly by your computer. There are five categories of executable
instructions available for writing programs in a high-level procedural programming
language. These are listed in Table 2.1, and each of them will be discussed briefly
here and in more detail later in the text.

executable instruction I

Table 2.1. Instruction categories for high-level programming

Instruction Category Example

1, Input/output “Read (write) a value.”

2. Assignments “Set A equal to 3.”

3. Calls to subprograms “Determine the
moment of inertia....”

4. Comparisons (conditional) “Is A greater than B?”

5. Repetitive calculations (loops) | “Perform these

calculations 10 times.”

1. Input/output

perform calculations. On personal computers or
computers accessible from a terminal, input is often
entered directly from the keyboard when the program
is running. This is called an interactive program. The other common source of
input is a data file accessed and processed by the program.

The output from programs is usually sent by default to the monitor screen.
Other possibilities include sending output to a printer or a data file for use by

Often programs need external input before they can
interactive program

external input |
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another program. The actual process of interpreting input and directing output may
be quite complicated at the basic computer hardware level, but high-level
languages use simple goal-oriented instructions to represent these processes.
Fortran 90’s specific implementation of input and output will be discussed in
several places throughout the text, starting in Chapter 3.

2. Assignments

Assignment statements allow a program to
manipulate values and evaluate expressions. When
one or more assignment statements are performed
one after the other, in order, they become part of a
control structure called a sequence structure. Often assignment statements look
a lot like algebraic expressions. For example, the algebraic expression x = 3a +
4b + 6¢ is easily translated into Fortran:

assignment statement
sequence structure

X = 3*%a + 4*b + 6*cC

where clearly the * implies multiplication. However, there is much more to
assignment statements than this, as we will see when we discuss them in detail in
Chapter 3.

3. Calls to subprograms

A subprogram is a separate set of instructions subprogmm

that performs a single task as part of a larger ¥ pro0ram modularization
program. Subprograms are not required as part of

a programming language’s structure or syntax, but

the structured programming approach to problem solving encourages program
modularization. Hence subprograms are required as a matter of style in all but the
simplest programs. The Fortran implementation of subprograms will be discussed
in Chapter 7.

4. Comparisons (conditionals)

Computers can’t make decisions the same way that
humans do, but high-level languages contain
instructions that allow a program to compare
values and to take action based on the result of the
comparison. This kind of instruction is called a conditional statement, or
conditional. Comparisons are often made in the context of a selection structure
that allows a program to execute some instructions and ignore others. The Fortran
implementation of selection structures will be discussed in Chapter 6.

conditional (statement)
selection structure
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5. Repetitive calculations (loops)

Problem-solving algorithms often involve repetitive
calculations. In high-level languages, a repetition
structure can be used to control repetitive calculations.
“Count-controlled” loops repeat a group of instructions a predetermined number
of times. “Conditional” loops repeat a group of instructions until (or as long as)
one or more specified conditions are met. These terms will be described in more
detail when the Fortran implementation of repetition structures is discussed in
Chapter 6.

I repetition structure I

2.2.3 Data Types and Variables
Data types

There are four basic data types used in languages such as Fortran. These are given
in Table 2.2.

Table 2.2. Data types used in high-level languages

Data Types Examples

1. Numbers (real or integer) 17, 3.33, 1.01x107, -32768

2. Characters and strings of characters | a, Z, $, Fortran, Laura

3. Logical (boolean) values true, false

4. User-defined types (data structures) | arrays, records

1. Numbers

Most high-level languages differentiate
between integers and real numbers (also
called floating point numbers). Here are
some examples:

integer
real (floating point) number

integers: 10, 0, -32768
real numbers: 3.3, 1.555x10"7, -33.17, 17.0
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Integers are whole numbers, expressed without a decimal point or fractional part.
Real numbers always have a fractional part, even if that part is 0. That is, 1.0 is
considered a real number in Fortran just because of the way it is written.

The reason for differentiating between
integers and real numbers is that the internal
representation of integers and real numbers (that
is, the way they are stored in your computer’s memory), is different, with
sometimes important consequences. (Some details are given in Chapter 12.)

internal representation I

2. Characters and strings of characters

can represent constitutes the so-called ASCII (American
Standard Code for Information Interchange, pronounced
ask-ee) collating sequence of characters. The first 128
characters represent the uppercase and lowercase letters of the alphabet,
punctuation marks and other symbols, the digits 0-9, and some nonprintable
“control” characters. The remaining 128 characters vary from system to system;
on IBM-compatible PCs, for example, these include graphics characters, foreign
language letters, and other special characters. You can find lists of ASCII
characters in textbooks (including this one—see Appendix 2) and in
documentation for other computer applications and programming environments.

Some computers use a different collating sequence. The so-called EBCDIC
(Extended Binary Coded Decimal Interchange Code, pronounced eb-si-dik)
sequence used by IBM mainframe computers is a notable example.

When several characters are combined, the ;
result is called a character string, or text string. For I eharocter (fexy) string I
example, C is a character, whereas computer is a
character string. An individual character can always be stored in just one byte of
memory, but character strings can be of variable length. Therefore, high-level
languages sometimes have separate data types for characters and character strings.
However, Fortran supports just one basic data type for characters and strings of
characters; in particular, Fortran treats a single character as a character string of
length 1.

The set of all individual characters that most computers § 4 SCIH charveter
collating sequence

3. Logical (boolean) values

When a high-level language compares two values, the result I baolian valits I
of that comparison can have one of only two possible
outcomes—true or false. That is. the statement “A is less
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than B” is either true or false.> Some high-level languages, including Fortran,*
support a separate data type to represent these logical or so-called boolean values.

4. User-defined types

In many programming languages, the basic data types can be combined into
user-defined data structures. The most common of these structures are arrays and
records. Fortran includes strong support for arrays because of their importance in
scientific and engineering computing. Fortran 90 also supports other kinds of
composite data structures that were not available in earlier versions of Fortran. We
will defer definition of arrays and records until Chapter 8, where they will be
discussd in detail. As we will see, user-defined data types are important because
they can greatly simplify the organization and manipulation of data in programs.

Variables

A basic function of high-level languages is to allow programmers to refer
symbolically by name to locations in computer memory. These symbolic names
are called variables or variable names. Recall the algebraic equation x = 3a + 4b
+ 6¢ mentioned previously in the brief discussion of assignment statements. If this
expression becomes an assignment statement in a program, X, a, b, and ¢ will
become variables in the program. (The numbers 3, 4, and 6 will become constants,
most likely expressed as real numbers.) Variables are always associated with a
particular data type; in this case, these four variables would probably represent
real numbers.

In programming, there is no distinction between “independent” and
“dependent” variables as there is in mathematics. In the equation
X = 3a + 4b + 6c, a, b, and ¢ might be considered independent variables and x a
dependent variable. That is, x might be considered to be a function of a, b, and
c. However, all four of these quantities have the same status as “variables” in
programming.

Throughout the rest of this text, we will refer to variables with the
understanding that they are symbolic names associated with locations in computer
memory that will be assigned values in a program. Sometimes the values will be
assigned directly, perhaps by asking a program user to provide the value. At other
times, the values will be assigned as a result of evaluating an expression. If the
above equation were expressed as a statement in a program, the implication would

3The assertion that “A is less than B” must be true or false implies that A and B actually
have values that can be compared because they are both of the same or compatible data types.

%C is a notable exception.
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be that there were already values in the memory locations associated with the
names a, b, and c, and the value of x would be obtained by evaluating the
expression on the right side of the = sign using those known values.

2.2.4 Designing Algorithms for Solving Problems

When we combine what we have learned about instructions and data types with
a step-by-step approach to solving problems, the result is a powerful problem-
solving tool. In the five-step approach outlined earlier in this chapter, the critical
step of designing an algorithm that can be translated into a computer program is
usually the hardest to master; in fact, most programming students find that
algorithm design is much more difficult than learning the syntax of a language.
It can be frustrating to try to design an algorithm when there don’t appear to be
any specific rules about how to proceed. This section will describe an approach
that should help you get started. :

Defining a pseudocode language

One way to develop algorithm design skills is to use a generic language consisting
of “action commands” that provide specific expressions for the kinds of executable
instructions discussed in Section 2.2.2. This language needs only a small
vocabulary because the list of instructions that a high-level language can execute
directly is not very long.

An informal action command language offers major advantages over a
“real” programming language for algorithm development. It is easy to be lulled
into believing that programming languages “understand” English, with all its
subtleties and ambiguity, just because their commands sometimes look like
English words. Nothing could be further from the truth, as every struggling
programmer knows! The syntax and structural requirements of procedural
languages are very strict, and especially before you are thoroughly familiar with
their requirements, their rigidity can be an impediment to the problem-solving
process. An intermediate design process can’t protect you from sloppy thinking,
but at least it can free you from worrying about syntax errors that your computer
refuses to explain in any helpful way.

The pseudocode language presented in this section isn’t a “real” language
with a set of syntax rules. It’s possible that you or your instructor will choose
different words for the commands or use an entirely different method of
describing the actions implied by the commands. You may even develop your own
unique algorithm design style. However...
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A pseudocode language must describe all actions that can be taken by a
program written in a high-level procedural language.

In any event, you should be free to apply a pseudocode language without
worrying about making the kinds of syntax mistakes that plague students
attempting to learn a new programming language. It is a mistake to treat this
language as just one more list of things to memorize; it’s intended simply as a
tool to help you organize your thoughts and facilitate the design of your
programs.’

The algorithm design language we will use in this text consists of the
following commands, in alphabetical order. In some cases the terms used to
explain the commands will themselves need additional explanation, which will be
provided as needed in the text.

ASSIGN ,
Set a variable equal to another variable, constant value, or expression. See
also the INCREMENT and INITIALIZE commands.

CALL subprogram_name (with a list of parameters)

Invoke another set of commands that, when given a specific set of input
values, executes a list of instructions and produces a set of output values. A
carefully planned list of input parameters (quantities needed for the subprogram
to do its job) and output parameters (the results of operations performed inside the
subprogram) is critical to well-structured program design.

CHOOSE (from a list of possibilities)
From a list of possible courses of action, select just one action based on
the value of a single variable or expression.

CLOSE (data file)
Close an external data file when you’re done with it.

DEFINE (a list of variables, constants, and data structures)

Define the names and kinds of variables, constants, and user-defined data
structures your program will need. Some of the variables will have values
provided by the user, others will be used internally by the program, and others
will be output from the program.

5 Author’s note: I never ask my students to memorize the components of this pseudocode
language, and I try not to impose my own style preferences; there’s plenty of time for that when
they’re writing real code! I encourage students to make their own list of commands, operators,
and functions and to have it available whenever they write programs—even on exams.
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IF (something is true) THEN (take action) ELSE (take a different action)

Take one course of action or another based on the value of a logical
expression. The ELSE part of the command is optional because sometimes no
alternative action may be required if the “something” isn’t true.

INCREMENT
This is a command for assignments such as X = x + 1. It is given a
separate name because of its importance in LOOP structures.

INITIALIZE

This is an assignment command used to emphasize the necessity of
initializing the value of a variable before it can be incremented. For example, if
INCREMENT x = x + 1 appears inside a loop, x must first be INITIALIZEd
outside the loop.

LOOP (continuation or termination conditions)...END LOOP
Define a structure inside of which lists of instructions can be executed
repetitively until (or as long as) certain conditions are met.

OPEN (data file)
Open an external data file for use within a program.

READ (list of values)
Provide input for a program.

SUBPROGRAM (list of input and output parameters)
This contains an algorithm to produce one or more output values using one
or more specified input values. It is used in conjunction with CALL.

WRITE (list of values)
Generate and/or display output from a program.

Appendix 3 contains a table of all these pseudocode commands along with
examples of their implementation in Fortran. It should be clear even from a brief
glance at Appendix 3 that despite the many implementation details, Fortran
commands closely resemble their corresponding pseudocode commands.®

SAuthor’s personal note: While I was working on early drafts of this text, my daughter
Laura, who had just turned one, learned her first pseudocode command. She picked up a book and
said “Read!” Even though she had no understanding of the mechanics of reading, she had learned
enough about the function of language to realize that her parents could translate this command into
a complex sequence of events without her having to worry about the implementation details.
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In addition to “action commands,

an algorithm development language

needs a collection of operators, such as shown in Table 2.3.

Table 2.3. Mathematical and logical operators

Arithmetic Relational
Operator Operation Operator Meaning
+ addition = equal
- subtraction > greater than
* multiplication < less than
/ division < less than
or equal to
superscript exponentiation > greater than
or equal to
# not equal to
Logical
Operator Meaning
AND logical “and”
OR logical “or”
NOT logical “not”

The arithmetic and relational operators should be
familiar to you from mathematics. Exponentiation
doesn’t have a separate symbol; it is indicated by a
superscript: x> means “x raised to the second power,”
or “x squared.” We will return to the logical operators

in Chapter 6.

arithmetic operator
relational operator
logical operator

Finally, every language provides some built-in functions to perform
frequently needed calculations. To cite just two examples, many languages provide
functions to calculate the trigonometric sine of a quantity x or the square root of
x. Computer science-oriented languages such as C provide relatively few of these
functions as part of their language definitions. Because of its science and
engineering origins, Fortran provides many such functions.

The functions provided with a particular language will have a major impact
on your programs, but less on your algorithm design. For example, if a problem
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requires a quantity y to be set equal to the arcsine (inverse sine) of x, you should
simply assume that you can write

ASSIGN y = sin”(x)

Later, when you implement this algorithm, you may find that your language
doesn’t include this function. Then you will have to provide your own source
code. Depending on your familiarity with trigonometric functions, additional
algorithm design may or may not be required to guide your construction of
appropriate code. (Don’t worry about Fortran, which includes this and many other
trigonometric functions.)

The point is that, at the design level, you should write mathematical and
other operations with the expectation that you will be able to implement them in
a programming language without too much trouble. If this task later proves too
cumbersome, then you need to seek a better match between your problem and an
appropriate problem-solving tool.

The three basic program control structures

The pseudocode language components we have discussed so far are equivalent to
words and sentences in English. In the same sense that you have to develop a plot
framework before you can combine English sentences into a coherent story, you
need to develop a strategy for organizing the pseudocode components into a
complete algorithm. In principle, this isn’t difficult because there are only three
basic strategies, or control structures, for combining these components into
structured algorithms: sequence, selection, and repetition. These three, which have
been mentioned briefly in the discussion of pseudocode commands, are illustrated
in Figure 2.4.

In a sequence structure, instructions are executed in order, starting at the
“top.” Each instruction is executed once and only once. In a selection structure,
one group of instructions from a group of two or more possibilities is chosen to
be executed and the remaining possibilities are ignored. In a repetition structure,
a group of instructions is executed repeatedly until (or as long as) certain
conditions are satisfied. The relationship between the three control structures and
the pseudocode commands for algorithm design are given in Table 2.4.

Computer science has as one of its basic principles that any algorithm can
be written in terms of these three simple control structures. From the pseudocode
commands listed above, it should be clear that the IF...THEN...[ELSE...] and
CHOOSE commands will be used to implement the Selection structure and the
LOOP...END LOOP structure will implement the Repetition structure. The other
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Sequence

v

Make 3. l
choice... a
Yes
Selection Repetition

Figure 2.4. The three basic program control structures

commands (except for DEFINE, which isn’t an “executable” statement, as
discussed in Chapter 3) are all used to form statements that will be part of a

sequence structure.

Table 2.4. Program control structures and pseudocode commands

Control Structure | Pseudocode Command(s)

Sequence ASSIGN, CALL, CLOSE, INCREMENT,
INITIALIZE, OPEN, READ, WRITE

Selection CHOOSE, IF...THEN...[ELSE...]

Repetition LOOP...END LOOP

Adding to your pseudocode vocabulary

From time to time you may wish to add your own commands to the pseudocode
language discussed in this chapter. For example, a programming problem may
require that two values be exchanged. The first time you perform this task, you
could write instructions to implement the exchange:

(exchange variable1 and variable2)

ASSIGN temp = variable1
variable1 = variable2
variable2 = temp
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Later, you may feel confident enough to replace this pseudocode with a new
action command, such as SWAP (variable1, variable2).

There are other useful “higher level” commands that could be added.
Consider the common tasks of searching for an item in a list or putting a list into
a particular order. At a certain point in your algorithm design, these tasks could
be represented by action commands that provide a shorthand representation of
what actually may be a complicated set of instructions:

SEARCH (list for a specified item)
SORT (list in specified order)

In most high-level languages, these actions must be implemented through
algorithms written by the programmer. These commands are good examples of the
kinds of interactive relationships that need to exist between algorithm design and
a working program. The stepwise refinement process implies a gradual transition
from the general to the specific, where broadly stated actions become more
specific as the process progresses.

Flowcharts: another way to visualize algorithms

Some programmers prefer to design an algorithm more I flowchart I
visually, using a flowchart. This is a diagram that describes an

algorithm using a standard set of symbols, illustrated in Figure

2.5. (This flowchart doesn’t actually accomplish anything other than to
demonstrate the symbols.)

The terminal symbol is used to mark the beginning and end of an
algorithm. The parallelogram-shaped input/output symbol represents input and
output operations, including prompts for user input. The rectangular process
symbol contains calculations that are performed sequentially. The “predefined”
process symbol indicates code that has already been written for some particular
task or that isn’t specifically relevant to the algorithm under discussion. Points at
which decisions are required are represented by the diamond-shaped symbol.
These will be found in, for example, a flowchart representation of the pseudocode
IF...THEN... ELSE... command. There are two possible exits from the decision
symbol: one when a condition is true, and one when the condition is false.
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Terminal (start)
Input/Output
Process
.. Yes
Decision -
No Predefined process

Terminal (stop)

Figure 2.5. Flowchart design symbols

All the symbols in a flowchart are connected by lines. Arrows at the ends
of lines indicate the direction of “flow” for the algorithm; the direction of a
flowchart is usually from the top down and from left to right.

Some programmers, especially Fortran programmers, believe that all
algorithms should be represented as flowcharts. Others believe that pseudocode is
a better choice for designing algorithms and that flowcharts are better for
describing existing programs, especially to nonprogrammers. This text will
sometimes use flowcharts as a visual aid to help clarify certain program control
structures. However, flowcharts are often a cumbersome way to describe long or
complicated algorithms, so this text generally favors the use of pseudocode
commands as described above. Regardless of your or your instructor’s preference,
the important point to remember is that pseudocode and flowchart representations
can be used interchangeably to design and describe algorithms and programs.

2.3 Program Modularization

Top-down design is a concept at the heart of structured
programming. The purpose of top-down design is to
divide large problems into several smaller problems, each
of which can be solved separately. Solutions to these smaller problems can often
be developed within self-contained program modules called subprograms. When

top-down design I
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you design algorithms, the top-down design philosophy is implemented through
the CALL and SUBPROGRAM pseudocode commands.

Consider a typical computer application—a program to manage a checking
account. Such a program needs to be able to perform at least the following tasks:

Using top-down design, the main program could consist of no more than some
code to present the user with this menu of choices and a way to respond to a
choice from the menu. That is, the program would be “menu-driven.”

Each menu choice would then be implemented as a call to a separate
subprogram. Each subprogram would be responsible for handling one menu task.
Within each of the modules, other menus and lower-level subprograms might be
required. For example, consider the second choice—writing checks. Its functions
could be outlined as follows:

At least some of these tasks—the third one, in particular—could be implemented
in an additional subprogram that would be called from this subprogram.

When you design modularized programs, it’s important to think carefully
about how information flows between the main program and various subprograms.
Consider, for example, the information flow between the check-writing

subprogram and an additional subprogram to request information for writing a
check:
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SUBPROGRAM WriteCheck(IN: Current balance, Last check number;
OUT: Payee name, Check amount,
Memo (optional),
Check category (optional),
Write check? (yes or no) )

Why does this subprogram need the current balance as input? Suppose the check
you are planning to write will overdraw the account. You need to offer the user
the chance of changing her mind or writing the check. (Maybe the account has
overdraft privileges, in which case it would still be OK to write the check.)

Depending on what kind of account summaries you would like to provide,
you may wish to categorize each check so that you can later provide a summary
of your expenses by category. Also, you may need to provide a “flag” to let the
calling subprogram know whether you actually wrote a check. An exercise at the
end of this chapter will give you a chance to design an algorithm for this part of
the subprogram. '

The justification for top-down design done at the algorithm level is that it
is much easier to organize your programs by tasks at this stage, when you’re not
actually writing source code. For many kinds of problems, the programming
details are relatively easy once the tasks and the flow of information between
tasks have been defined clearly. Conversely, it is often difficult to modify the
structure and information flow of a program once you have started writing it. The
important lesson is that when programs consist of several tasks, it is essential to
design separate subprograms for each task and to plan carefully how information
will be shared among those subprograms.

2.4 Applications
In this section we will design algorithms for two typical engineering problems. We

will return to both these applications later in the text to consider their Fortran
implementation.

2.4.1 Maximum Deflection of a Beam Under Load

1 Define the problem.

A beam L feet long is supported at each end. A downward load of F
pounds is concentrated at the midpoint of the beam. This arrangement is shown
schematically in Figure 2.6. The maximum deflection of a beam under such a load
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Figure 2.6. A supported beam
subject to a central load

(at its midpoint) is -FL*(48EI), where the negative sign denotes a downward
deflection. The elasticity E is a property of the material from which the beam is
made, and the moment of inertia I is a property of the shape of the beam.

Write a program that accepts as input the elasticity, moment of inertia, and
concentrated midpoint load on a beam and then calculates and displays the
maximum deflection of the beam in inches.

2 Outline a solution.

First of all, do you understand enough about the terminology to solve the
problem? For a “beam...supported at each end,” think of a 2'"'x6" piece of lumber
lying horizontally and supported by a brick at each end. For a “downward load of
F pounds...concentrated at the midpoint...,” think of a person standing in the
middle of the board. The problem asks how much that board will deflect in the
middle.

The elasticity and moment of inertia are properties of the beam. If you
haven’t had an introductory engineering course in materials, you probably won’t
know precisely what they mean. All you really need to know to write a program
is some representative values for these quantities.

Here are the steps required to solve the problem:

1. Provide values for the elasticity, moment of inertia, beam length, load, and
deflection, with appropriate units.

2. Convert beam length to inches.

3. Calculate the deflection in inches and display the result.
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3 Design an algorithm.

Convert your plan for solving this problem into a formal algorithm:

DEFINE (All quantities as real numbers;
IN: elasticity, Ib/i’; moment_of _inertia, in*; length, ft; load, Ib;
OUT: deflection, in)
READ (elasticity, moment_of inertia, length, load in specified units)
(Don’t forget to convert feet to inches.)
ASSIGN deflection =-loade(length+12)°/(48<elasticitysmoment_of inertia)
WRITE (deflection)

'4! Convert the algorithm into a program.

Defer this step for now. This problem appears again as an application in
Chapter 3 and in an expanded version in Chapter 6.

5 Verify the operation of the program.

Do you have a sense of what a reasonable beam deflection is for a
specified load? One constraint is that for any acceptable use of a beam in a
structure, the maximum deflection should be much less than the length of the
beam. In any case, you can check results by hand for a specified loading force and
beam length, using tabulated values for the properties of beams. Because this
calculation involves just a series of multiplications and divisions, you can be
confident that if the results are correct for one set of values, there won’t be any
computational problems with other values as long as the elasticity and moment of
inertia have nonzero values, expressed in the proper units. Some representative
input values are given in Chapter 3, where the Fortran implementation of this
problem is given as an application.

Problem Discussion

This .is an e)'(ample .of a prleem whose statement is I hard coded I
longer than its solution, which requires only the evaluation of
a single formula. However, it is necessary to be careful about
the physical units assumed for, and values assigned to, the input variables. The
elasticity and moment of inertia are different for different types of beams, so they



52 = 2. Solving Problems with a High-Level Programming Language

should be represented symbolically in the subprogram’s parameter list. That is,
values for a certain beam shouldn’t be written as constants (hard coded) in the
program.

The formula applies only to the special case in which the loading force is
concentrated at the center of the beam, as opposed to being distributed along the
entire length of the beam. (Remember the image of someone standing in the
middle of a board supported by a brick at each end; that’s a concentrated load.)

The units used in the problem statement aren’t consistent. The problem
asks that the deflection be given in inches, and the elasticity and moment of
inertia are specified in units that involve inches. However, the problem also asks
that the length of the beam be supplied in units of feet. Therefore, the length value
used in the formula must be L¢72; this step in the calculation is easy to forget.

This calculation could be done in a subprogram that will become part of
a larger program. Also, a program could ask the user to select a beam from a table
of choices. With this information, the program could select appropriate values of
elasticity and moment of inertia from a table of values stored within the program.
(See Exercise 15 in Section 2.6.2 at the end of this chapter.)

If the algorithm is rewritten in a more general
way, you can use the subprogram in any program that
requires this calculation just by providing the
subprogram with an appropriate list of values (the calling arguments) without
having to rethink the details of the calculation. This kind of modularization is an
important part of structured programming and can save you countless hours of
“reinventing the wheel.”

However, it is always important to be aware of two potentially serious
problems:

I calling arguments I

(1) Formulas—especially engineering formulas—are often approximations
that give usable results only over a restricted (and perhaps unknown) range
of values. In this case, for example, a sufficiently large load will cause a
beam to deform or collapse rather than just deflect. Consequently, when
you use such formulas, it is important to understand the conditions under
which they are applicable.

(2) Formulas produce correct answers only when all the required values
are expressed in appropriate units. The requirement might be obvious when
you first design an algorithm, but it might not be obvious to someone else
using your algorithm, or even to you at some time in the future. Be sure
to include a discussion of units in Step 2 of the problem-solving process.
This discussion should also be included in comments in your algorithm as
well as when you write source code that implements the algorithm.
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Problems associated with the misuse of engineering formulas are
notoriously difficult to detect. In many cases, numerical values will continue to
look reasonable even when the conditions under which a formula applies have
been exceeded or when inconsistent units are used. It is important to document all
algorithms in order to provide a record of the (hopefully) careful thought that went
into their original creation. Once that has been done, only vigilance and common
sense can prevent their misuse!

2.4.2 Oscillating Frequency of an LC Circuit

1 Define the problem.

An electrical circuit that contains an inductance L (units of henrys, H) and
a capacitance C (units of farads, F) in series (see Figure 2.7) oscillates at a
characteristic frequency:

1
2m/LC

Design an algorithm that generates a table of oscillating frequencies for a
two-dimensional table of L and C values. Let the L values form the rows of the
table and the C values form the columns. Such a circuit can be used to “tune”
radios or TVs. The table for this problem should include values for a circuit to be
used in a radio that receives AM-band radio stations—on the order of 1000 kHz.
A circuit containing an inductance of 2.5 mH (0.0025 H) and a capacitance of 10
pF (10x10™"? F) oscillates at about 1000 kHz.

Z Outline a solution.

Like the previous problem, this one contains some terminology that may
be unfamiliar unless you have had an introductory physics or engineering course
that covered this topic. However, the unfamiliarity of the jargon shouldn’t deter
you from solving the problem. After all, you don’t need to manipulate these
quantities in any other than a completely specified way.

f:
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v 3 L

Figure 2.7 An LC circuit
The table holding the output could be laid out like this:

C (pF)

L (H) 2 4 6 8 10 12 14 16 18 20
0.0010

.0015

.0020

.0025

.0030

.0035

.0040

Each position in the two-dimensional table is identified by its row and column,
and the frequency is calculated from the L and C values for that row and column.
For example, the frequency value in row 2, column 3 is calculated for a circuit
with an inductance of 0.0015 H and a capacitance of 6 pF. These values are
chosen to include 2.5 mH and 10 pF.

To generate the inductance and capacitance values for the table, use
“nested” loops. The outer loop generates the inductance values and the inner loop
generates the capacitance values. Initialize the inductance to 0.0005 H and
increment it in steps of 0.0005 H for each trip through the outer loop. Initialize
the capacitance to O pF and increment it in steps of 2 pF in the inner loop.

3 Design an Algorithm.

DEFINE (inductance (henrys), capacitance (farads), frequency (Hz)

as real numbers; r as a real constant; row and col as integers)
INITIALIZE inductance = 0.0005
WRITE (all table headings, with loop to print capacitance values)

(outer loop for rows...)
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LOOP (for row = 1 to 7)
INCREMENT inductance = inductance + 0.0005 (H)
WRITE (inductance) (no “carriage return”)
INITIALIZE capacitance = 0
(inner loop for columns...)
LOORP (for col = 1 to 10)
INCREMENT capacitance = capacitance + 2 (pF)
ASSIGN frequency = 1/[2rr<(inductancescapacitance«10"%)"?]
WRITE (frequency for this row and column)
END (inner) LOOP
(“carriage return” to start new row goes here)
END (outer) LOOP

1 Convert the algorithm into a program.

Defer this step for now. The Fortran implementation of this problem is
discussed in Chapter 6.

5 Verify the operation of the program.

Check several calculations with a hand calculator. Make sure that the row
and column labels correspond to the values actually used to calculate the
frequency for that row and column.

Problem Discussion

The potential difficulties with this problem are primarily organizational.
First you must plan a suitable tabular layout, as shown. This will be easier if you
have used a spreadsheet, for which a two-dimensional table is the basic paradigm.
To solve this problem in a programming language, you must design an algorithm
that uses nested LOOP structures to perform the calculations one row at a time.
Each row corresponds to one “trip” through the outer loop. The calculations in the
inner loop fill the columns of that row.

Be sure you understand which commands go inside or outside which loop
structure. For example, the commands to generate the table headings must be
outside the outer loop so they will be printed only once. The initialization for the
inductance goes outside the outer loop because it must be done only once. The
initialization for the capacitance must be done every time the inner loop is
executed, so it goes inside the outer loop, but just before the inner loop. The
initializations use values that will produce the desired value the first time they are
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incremented inside their respective loops. Thus the inductance is initialized to a
value of 0.005 so that its first printed value will be 0.010 when it is incremented
by 0.005 inside the outer loop, as required by the problem statement.

Note the comments concerning the location of “carriage returns” inserted
in the algorithm. These are to remind you that later, when you implement this
algorithm, you will have to pay attention to how the output is generated. For now,
don’t worry about it.

Finally, don’t forget that the problem requires the tabulated values of
capacitance to be expressed as picofarads. However, the formula for frequency
assumes that capacitance is expressed in farads; this is the source of the
multiplication by 10" in the ASSIGN statement that calculates frequency. This
problem is certainly much more difficult than the previous application. The design
of the algorithm may require some study, especially because of its use of the
probably unfamiliar nested loop structure. It’s easy to assume that examples in a
text have simply appeared “as is” and that you should be able to recreate them in
their finished form in a single step. To avoid endless frustration, you must
understand that this is not true! Many of the examples in this text have been
rewritten several times. Ideally, they should represent the best possible solution
to a particular problem. To the extent that this is true, they are models to be
emulated. Unfortunately, however, the dynamic nature of the process by which
they were created is lost when they appear as finished products on a printed page.

2.5 Debugging Your Algorithms
2.5.1 Algorithm Style

The ideal algorithm should solve a problem in as straightforward a manner as
possible. Without exception, a simple and direct algorithm is preferred over a
clever but more obscure one. Names of variables and constants should always be
descriptive. If there is any possibility for confusion, the nature of each quantity
(whether, for example, it is a real number or integer), and its physical units if
appropriate) should be stated clearly. Calculations should be written in clear
algebraic notation. Usually, algebraic simplifications that result in fewer
mathematical operations (which might provide a computational advantage in some
programs) should be avoided in favor of clarity. If there is any possibility of
confusion about your algorithm design, you should include enough comments so
that anyone who understands the problem you are trying to solve should also be
able to understand your algorithm without additional explanation.

Even though there aren’t any syntax rules for the command language
described in this chapter, you should develop and adhere to a consistent physical
layout that makes your algorithms easy to read. For example, all commands inside
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a loop should be indented the same amount. Generally, you should avoid putting
multiple commands and assignments on the same line.

For large problems, or for calculations that must be repeated several times
with different input values, algorithms should be modularized so that each
subprogram performs a single well-defined task. The inputs and outputs for each
subprogram should be clearly stated. As a result of this modularization, the “main
program” part of your algorithm can define the overall structure of the problem
solution, without distracting detours into the details of complicated calculations.

2.5.2 Problems with Your Algorithms

It is important to try to find errors during the algorithm design phase of solving
a computational problem. Of course, it’s often difficult to check the correctness
of an algorithm before it is actually implemented in a program that produces
output. Nonetheless, you can follow the steps in your algorithm manually, and you
can sometimes do calculations by hand or with a hand calculator. You should try
to imagine conditions for which your algorithm will fail even if those conditions
are “unreasonable.” Another useful means of verification is to let someone else try
to follow the steps in your algorithm.

There are no rules for “perfect” algorithms. As a result, not all acceptable
algorithms will look exactly the same. However, it is easy to write algorithms that
look OK, but are wrong because they contain logical flaws or don’t solve all of
a problem. Obviously, such algorithms will lead to programs that won’t work
properly (or at all, if you’re lucky).

2.6 Exercises

These exercises provide an opportunity to apply to a range of problems the
concepts and techniques of algorithm design discussed in this chapter. For each
of these exercises, carry out Steps 2, 3, and 5 of the problem-solving procedure
described in this chapter. If you find it helpful, use Step 1 to restate the problem
in your own words. Don’t worry about Step 4 except in Exercise 13. Be sure you
use Step 5 to indicate specific steps that could be taken to verify the operation of
the algorithm when it is converted to a program. Include a flowchart if requested
by your instructor or if you find it helpful to visualize algorithms in this way.

2.6.1 Self-Testing Exercises

The exercises in this section are intended to test your basic understanding of the
material discussed in this chapter.
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Exercise 1. Define an “algorithm” in your own words.
Exercise 2. Discuss “top-down design” in your own words.

Exercise 3. Make your own list of “action commands” and provide an example
of each. Although these pseudocode commands don’t have any syntax
requirements, establish some style guidelines of your own to use when you design
algorithms.

Exercise 4. Make a list of mathematical or other “action commands” you would
like your pseudocode language to have. (For example, see the SWAP command
in the “You can add to your pseudocode vocabulary” subsection of Section 2.2.4.)

Exercise 5. Take a problem from one of your other courses and rewrite it and its
solution according to the pattern of Steps 1-3 in the problem-solving process
defined in this chapter. How will you verify the operation of a program based on
your algorithm (Step 5 of the problem-solving process)?

Exercise 6.

(a) Design a loop that counts backwards from 10 to 0. When the counter
equals O, print “FIRE!” instead of 0.

(b) Draw a flowchart for this problem.

Exercise 7.
(a) Design a loop that will choose a different action for each day of the
week from Monday through Sunday. (The actions can be anything you like.)
(b) Draw a.flowchart for this problem.

Exercise 8.

(a) Design a loop that will increment a counter in steps of 5, starting at 0
and ending at 100.

(b) Draw a flowchart for this problem.

Exercise 9. A ball bearing is supposed to have a diameter of 5 mm.

(a) Design an JF... test that will reject a ball bearing if its diameter differs
from the required diameter by more than +0.005 mm.

(b) Draw a flowchart for this problem.

Exercise 10.

(a) Design an algorithm that will test the value of b*> — 4ac (recall the
formula for calculating the roots of a quadratic equation). If it is positive, calculate
its square root. If it is zero or negative, print an appropriate message.

(b) Draw a flowchart for this problem.
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2.6.2 Basic Algorithm Development Exercises

The exercises in this section involve modifications or extensions to algorithms
developed earlier in the chapter.

Exercise 11. Refer to the income tax problem given in Section 2.1.3 and design
a complete algorithm to carry out the required calculation. The algorithm should
include steps for input and output. Be sure to describe how you would test your
algorithm.

Exercise 12. Refer to the orbiting satellite problem given in Section 2.1.3 and
design a complete algorithm to carry out the required calculation. The algorithm
should include steps for input and output. Be sure to describe how you would test
your algorithm.

Exercise 13. Modify program P-2.1 so that it will calculate the windchill
temperature in degrees centigrade when the ambient temperature is expressed in
degrees centigrade and the wind speed is expressed in kilometers per hour. The
formula is

T, = (0.417/V + 0.550 - 0.0454 V)(T - 33) + 33

where T < 33°C and V > 1.79 m/s. Make sure that the answer produced by this
modified program is consistent with the original program. If you are ambitious,
you could incorporate conversions for temperature and wind speed from one set
of units to the other in one or both programs.

Exercise 14. Construct a flowchart for the LC circuit application discussed in
Section 2.4.2.

Exercise 15.

(a) Modify the algorithm discussed in Section 2.4.1 so the calculations are
done in a subprogram that accepts as input the properties of the beam, its length,
and the load, and that provides the deflection as output.

(b) Modify the algorithm discussed in Section 2.4.1 so that it presents the
user with a table of steel I-beam properties. (You don’t have to provide values at
this point.) When the user makes a selection from the table, the algorithm should
then select and use the appropriate values without the user having to enter them
manually.

Exercise 16. For the check-writing problem discussed at the end of Section 2.3,
design the part of the algorithm that allows a program user to decide whether to
write a check that results in an overdraft.
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2.6.3 Algorithm Development Applications

Exercise 17. Student data are maintained in an external data file. The information
includes first and last name, social security number, the number of credit hours
completed by the student, and the student’s grade point average (GPA).

(a) Design an algorithm that prints two separate lists. The first list should
print all available information for students whose GPA is 3.5 or above. The
second list should print all available information for students whose GPA is less
than 1.5.

(b) Construct a flowchart for this problem.

Exercise 18. An object falling freely under the influence of gravity attains a speed
gt and travels a distance gt*/2 as a function of time, where the gravitational
acceleration g=9.807 m/s. (See Figure 2.8.) Design an algorithm that calculates
and displays the speed and distance travelled by a freely falling object for the first
20 seconds after it is released, in one-second increments.
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Figure 2.8. Speed and distance as a function of time for an object
falling under the influence of gravity
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Figure 2.9. Path of a projectile fired upward and under the
influence of gravity

Extra Credit

Assume the object starts at the ground and is projected upward with a
user-specified velocity. Modify the algorithm so that it calculates speed and
distance from the ground in one-second increments until the object hits the
ground. It is OK if the last time increment results in a negative position for the
object. That is, you do not have to solve the equation of motion for the exact
moment at which the object returns to the ground. (See Figure 2.9.)

Exercise 19. The change in length AL when an object of length L is subjected to
a change in temperature AT is AL = OGLAT. The coefficient of linear thermal
expansion o is material dependent and is independent of the units used to express
the length. For example, if the length is expressed in meters and temperature
changes are expressed in degrees centigrade, then the coefficient of linear
expansion has units of (m/m)/°C. The value doesn’t change if the length units are
different, e.g., in/in, but it does change if temperature changes are expressed in
degrees Fahrenheit. Typical values are 23x10® m/m/°C for aluminum and 8.5x10°
m/m/°C for glass.

Design an algorithm for a subprogram that accepts as input a coefficient
of linear thermal expansion, a length measured at some initial temperature, and a
temperature change in degrees Fahrenheit, and that returns as output the new
length as a result of the temperature change.
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Notes for Exercise 19

1. It is essential that you be clear about what units the subprogram will expect. In
particular, if you prefer (or are required) to work in metric units, your algorithm
should reflect that fact.

2. The phrase “accepts as input,” which will often appear in the context of
designing subprograms, should be taken to mean that variables appear in the
subprogram’s parameter list and that you may assume appropriate values are
provided when the subprogram is used. As a result, the subprogram algorithm
itself doesn’t need to provide a means of obtaining these values from the user.

The phrase “returns as output” should be taken to mean that the
calculations performed inside the subprogram are passed back to the calling
program, with the assumption that they don’t need to be printed inside the
subprogram.

By making these assumptions, you can concentrate on developing
algorithms for the subprogram without worrying about getting input and displaying
output. Subprograms will often work this way, with input and output tasks being
assigned to the calling program or another subprogram.

Exercise 20. In a collision between two objects, linear momentum and the total
energy of the system are conserved. Assume that a bullet of known mass is fired
horizontally with a known speed into a wood block of known mass and remains
embedded in the block, which is suspended from a long string. As a result of the
collision with the bullet, the block acquires kinetic energy that is then converted
to potential energy as the block swings on its string. How high (relative to its
initial position) will the block swing? (Refer to Figure 2.10.)

Conservation of momentum can be used to determine the speed of the
block and bullet just after the collision:

m;v; = (m,; + m,)v,

where m; and m, are masses in kg and v, and v, are speeds in m/s. Then
conservation of energy can be used to determine how high the block swings:

(m; + my)gh = (m, + my)v,%/2

where g is the gravitational constant 9.807 m/s*> and h is the height in meters.

Design an algorithm that asks the user for the mass of the bullet and the
block and the initial speed of the bullet and then calculates the maximum height
reached by the block.
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Figure 2.10. A bullet-and-block
system before and after impact

Exercise 21. Radioactive elements decay at a rate that is characterized by their
“half life,” defined as the time required for the original amount of radioactive
material to be diminished by half. For example, radon, a colorless, odorless
radioactive gas that can contribute to the development of lung cancer in humans,
has a half life of 3.8 days. If there are originally 100 mg of radon gas in an
enclosed container, there will be 50 mg after 3.8 days, 25 mg after 7.6 days, and
so forth. (See Figure 2.11.) This is a process of exponential decay that can be
expressed by the formula

A = Ae(-t/t)

where A is the initial amount, A is the amount after time t, and t, is proportional
to the half life:

Ay2 = A e(-half life/t)
t, = -half life/In(1/2)

For radon, t, is about 5.48 days.

Design an algorithm that calculates the amount of radon remaining from
a user-supplied original sample mass after each of 20 consecutive days. Also, let
the user provide the half life so your program won’t be restricted just to radon.
(Because half lives vary over a wide range, days won’t always be a good choice



64 = 2. Solving Problems with a High-Level Programming Language

1000
900 \
£ 800
3
E‘ 700
£ \ [ hairife - 3.8 days
£ 600 \
é 500 \
2 400
&€ 200 SN
100 B
———
0
0 2 4 6 B8 10 12 14 16 18 20
Time, days

Figure 2.11. Mass of radon as a function of time

of units.) For now, don’t worry about how to take ¢ to a power or calculate the
logarithm. These are implementation details that you can address later.

Exercise 22. Newton’s algorithm is a well-known method for estimating the
square root of any positive number. It works as follows:

(a) Make an initial guess for the square root. If the number is A, then an initial
guess of X = A/2 is reasonable.

(b) Calculate a new guess using the formula X = (X + A/X)/2.

(c) Repeat (b) until the absolute value of X - A/X is less than some specified error
limit.

Design a pseudocode algorithm to implement Newton’s algorithm. If you
like, you may design the pseudocode as a subprogram that accepts a number as
input and returns the square root of the number as output. What happens to
Newton’s algorithm if the original number A equals zero?

Exercise 23. Remote access to computer systems often requires both a user ID
and a password. Usually, a potential user is given only a limited number of
attempts to “log on” correctly.

Design an algorithm that simulates the process whereby a computer system
asks a user for an ID and a password. The user’s responses are checked against
a file of users, and access is granted if both the ID and the password are OK. A
user is given three chances to enter an ID and password correctly. If the third
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attempt is unsuccessful, the connection with the computer is terminated and the
program ends. In this problem, you can make up a pseudocode
command—something like SEARCH (list, for what?)—to represent the
operations required to search for an ID in a list of users.

Exercise 24. This exercise will make more v .
. . An understanding of elementary
sense if you have had or are taking an .
calculus will be helpful.
elementary calculus course. However, you
should be able to write the algorithm in any
case. The derivative of a function f(x) at any point x can be approximated by

df(x) _ [f(x+dx) - f(x)] + [f(x)-f(x-dx)] _ f(x+dx) - f(x-dx)
dx 2dx 2dx

for small values of dx. Design an algorithm in the form of a SUBPROGRAM for
approximating the derivative of a specified function f(x) for any user-specified
value of x. You can assume any convenient function. When you consider Step 5
of the problem-solving process, it should be obvious that the best way to verify
the performance of a program is to use a function whose derivative you already
know. For example, if f(x)=sin(x), then the derivative of f(x) is cos(x).

At this point, you do not have to determine how small dx should be to
produce acceptable accuracy; that’s the point of representing its value symbolically
during algorithm development. We will return to this problem in a later chapter
and give some suggestions for determining the size of dx and verifying the
operation of the algorithm.

Hint: define a second SUBPROGRAM called Value _of Function that
requires a single input argument. The subprogram returns a numerical value equal
to a specified function evaluated at the value of its input argument. Assume that
you can use this subprogram as you would any other mathematical function. For
example, you can write y = Value_of Function(z) just as you would write the
expression y = sin(z), where z is any appropriate quantity or expression. For this
algorithm, the function will be called twice, once with argument z = x + dx and
once with z = x - dx.

In Figure 2.12, the plain line represents the polynomial 0.1x* — x* + 2x
plotted over the range [0,10]. Its analytic derivative is 0.3x*> — 2x + 2. The symbols
represent the derivative estimated by applying the above formula, using steps of
0.25 in x. The line that appears to connect the symbols is the analytic derivative
plotted as a function of x. For this very smooth and “well-behaved” function, the
approximation to the analytic derivative is very good—essentially indistinguishable
from the analytic derivative. Other than for illustrative purposes, there is no need
to use numerical methods to estimate the derivative of this function because the
analytic derivative is simple to calculate.
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Figure 2.12. A function and its derivative
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An understanding of elementary

this one will make more sense if you have calculus will be helpful.

had or are taking a calculus course. The
integral of a function f(x) can be thought of
graphically as the area under the curve y = f(x). Some functions can’t be
integrated analytically, in which case numerical methods are required. One simple
way to approximate the value of an integral is to divide the area under f(x) into
small trapezoidal areas. This is called “trapezoidal rule” integration. Given the
lower and upper limits of x, x,, and x,, over which the integral is to be evaluated,
the integral I can be approximated by

Exercise 25. Like the previous problem, (

n
I = S[f(x,+iedx)+f(x,+(i-1)*dx)]1dx/2
i=1

where the “step size” dx is (X, - X,)/n and n is the number of equal intervals into
which the range [x,-x,] is divided.

Design an algorithm in the form of a SUBPROGRAM that uses
trapezoidal rule integration to approximate the integral of a function that will be
hard coded into a program. The user specifies the lower and upper boundaries of
the integration interval and the number of intervals into which to divide that range.

Hint: use a loop to perform the summation indicated in the formula for
the integral I. A loop counter i should count from 1 to n. Inside the loop, calculate
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the corresponding value of x and then evaluate the function twice—once for
X; + i*dx and once for x; — (i — 1)edx. The multiplication by dx/2 in the formula
can be done just once, after the loop terminates; there is no need to perform these
two operations repeatedly inside the loop.

The function in Figure 2.13 shows sin(x) between 0 and 7t radians (0° and
180°), which has an easily determined analytic integral of 2. This example divides
the range of x into just six equal intervals, simply for illustration, and the
approximation to the integral calculated in this way is 1.954. Normally, many
more than six intervals would be used. However, trapezoidal rule integration will
always underestimate the value of this integral no matter how small the step size.’

When you write a program to perform trapezoidal rule integration (see
Chapter 11), you will need to verify its operation by testing it with a simple
function such as sin(x).

Figure 2.13. A function and its estimated integral

"This is because sin(x) is convex everywhere.
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Exercise 26. There are many ways to encode text messages. One simple scheme
is to replace each letter with another letter in the alphabet according to an
encoding key that is randomly generated ahead of time. Here’s an example:

ABCDEFGHIJKLMNOPQRSTUVWXYZ (original alphabet)
WKGLREUSPBTNQIFAMVHX0ZYCJD (encoded alphabet)

Here’s a message:

Roses are red;

Violets are blue.

I love programming,
And I hope you do too.

Here it is in the above code:

VFHRHWVRVRL
ZPFNRXHWVRKNOR .
PNFZRAVFUVWQQPIU
WILPSFARJFOLFXFF

All the spaces and punctuation have been removed, and uppercase and lowercase
letters are treated the same. This assumes that someone given the code key should
be able to interpret the reconstructed message even if the original spacing can no
longer be retrieved.

Design an algorithm to create such a coding key and then read and encode
a text file using that key.

Hint: one way to create a code sequence is to store the letters of the
alphabet in a table and then shuffle them around. Construct two tables. (For design
purposes, lay one out right below the other.) Fill the first table with the uppercase
letters of the alphabet in order. Copy this table into the second table. Start with
the first position in the second table, which now contains the letter “A”. Select a
location in that table at random. Swap the “A” with the letter in that position.
Proceed to the second position in the table. Select another random location and
swap two letters. Do this for each position in the table. When you’re done, the
alphabet in the second table will be shuffled and the two tables will look like the
example shown above (with the characters in the second table in different random
positions, of course). Each character in the shuffled table is used as the coded
character to represent the character directly above it in the original alphabet table.
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Getting Started with Fortran:
Writing Simple Programs

This chapter describes some basic elements of the Fortran language and lays the
foundation for every Fortran program you will write. It includes Fortran
implementations of the ASSIGN, DEFINE, INCREMENT, INITIALIZE, READ,
and WRITE pseudocode commands from Chapter 2. By the time you finish this
chapter, you will be able to write simple Fortran programs that accept input from
your computer keyboard, perform some calculations, and display output on your
monitor.

3.1 A Simple Problem and a Fortran Program to Solve It

We will start our discussion of Fortran by stating a very simple computational
problem and applying the five-step problem-solving process presented in
Chapter 2. We will continue to follow each step of this process throughout the
text, even though you may think some problems are too simple to warrant that
much attention. Later, when the problems you are asked to solve are more
complicated, it will be very important to be familiar with a process that will help
you develop solutions in an organized way, one step at a time.

1 Define the problem.

Given a radius, determine the circumference and area of a circle.

2 Outline a solution.

Your “plain English” outline for this problem is very simple:

1. Prompt the program user to supply a radius (from the keyboard?).
2. The circumference and area of a circle are given by:

D. R. Brooks, Problem Solving with Fortran 90
© Springer-Verlag New York, Inc. 1997
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circumference = 27r
area = mr’

3. Display the results (on the monitor?).

3 Design an algorithm.

DEFINE (radius, circumference, area, and r as real numbers)
WRITE (prompt user to enter radius)
READ (radius)
ASSIGN circumference = 2mreradius
area = rreradius’
WRITE (circumference and area)

This algorithm defines a typical and straightforward sequence of steps:
input — calculations — output.

; Convert the algorithm into a program.

Here is a complete Fortran program that implements this algorithm. Files
containing source code for this and all other complete Fortran programs in this
text can be downloaded from the World Wide Web site mentioned in Section i.5
of the Preface. The file name for each program is given in square brackets.

The two italicized lines at the beginning of the program are not part of the
program, which starts with the line containing the words PROGRAM
Circle. These lines are there just to show how the statements in the
program are placed on the line. In subsequent programs, this “ruler” will
not be shown.

For P-3.1 and most other programs in this text, some sample output will
be included to give you a better idea of what the program actually does. Program
P-3.1 is an interactive program that requires the user to provide a value for the
radius. In this case, the user has typed the value 3. User input typed on the
keyboard will always be printed in bold type even though this is not a distinction
that will be made on your monitor.

We will discuss the details of P-3.1 (at great length!) in this chapter, so it’s
not necessary at this time to understand the significance of every detail. However,
especially if you have successfully executed program P-2.1 from Chapter 2, you
should be able to create or copy P-3.1 and execute it on your computer system.



3.1 A Simple Problem and a Fortran Program To Solve It = 71

If you type the program yourself, it is a good idea to copy it exactly as shown
(except for the ruler line that, as explained above, is not part of the program)
because you do not yet know what is essential and what isn’t.

P-3.1 [CIRCLE.F90]

1 2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890123456
PROGRAM Circle

!
! Purpose: Calculate the circumference and area of a circle.
!

! variable declarations...

!

IMPLICIT NONE !Forces explicit typing of all variables.

REAL radius, circumference, area

REAL, PARAMETER :: pi=3.1415927 !Defines pi as a constant.
! get input...

PRINT*,' Give radius of a circle: '
READ*, radius

! do calculations...

circumference=2.0*pi*radius
area=pi*radius*radius

! display output...
PRINT*,' circumference=',6circumference,' area=',area
! terminate program...

END

Running P-3.1

Give radius of a circle:
3

circumference= 18.8495560 area= 28.2743340

Study Tip
You should be able to associate the parts of P-3.1 with the pseudocode .
commands in Step 4 even if you don’t understand all the details.

Programming Tip

Remember that the source code file for CIRCLE.F90, and all other
programs in this text, can be downloaded from the World Wide Web site
mentioned in Section i.5 of the Preface. These files were created on an MS-DOS-
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based system. If you are programming in some other environment, your instructor
may need to show you how to transfer source code files to that environment.

The MS-DOS source code files will be readable on any Macintosh
computer with hardware/software that enables it to recognize the format of IBM-
compatible diskettes. There is no basic file compatibility problem because source
code files are purely “text” files that can be interpreted properly by any computer
system. However, there are some minor differences between IBM-compatible and
Macintosh text files that must be resolved when you translate IBM-compatible
files into the Macintosh environment. Consult with your instructor if you use a
Macintosh computer.

5 Verify the operation of the program.

The operation of P-3.1 is easy to verify with a hand calculator. Run the
program several times and compare answers for several values of the radius. You
can use almost any radius value to check your program. However, a value of 1 is
clearly a poor choice. Why? Suppose you mistakenly wrote area=pi*radius.
If the radius equals 1, the program will produce the correct numerical answer even
though the code is wrong.

Because this is the first Fortran program in this text, we will examine it in
great detail. By the time you finish this chapter, you should be able to write and
execute programs similar to P-3.1 on your own. In fact, P-3.1 can serve as a
model for many simple programs that involve nothing more complicated than
input, a few calculations, and output. We will divide the discussion of P-3.1 into
six topics, listed in Table 3.1.

Table 3.1. Programming topics in Chapter 3

Programming Topic Section
Program layout 32
Variable declarations 33
List-directed input and output 3.4
Arithmetic operators, assignment statements, and calculations 35
Program termination 3.6
Compiling and executing a program 3.7
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3.2 Program Layout
3.2.1 What Is “Source Code?”

P-3.1 constitutes the source code for a single Fortran 90
program unit. The source code file, in the form of a “human-
readable” file stored on your computer, contains all the
information required for a Fortran compiler to translate your problem-solving
algorithm into a set of instructions your computer can understand. Large programs
typically contain one main program and several subprograms, and they may also
include other subprograms stored in one or more additional program units. For
now, your programs will consist of one main program stored in a single source
code file.

It’s important to understand that source code is machine independent
because the Fortran language is standardized. This means that the file
CIRCLE.F90 can be used as the source code on any computer that has a
Fortran 90 compiler. Machine independence is an essential feature of any high-
level language.

It is possible for source code to contain
nonstandard extensions—features that are not part
of the language standard—that will work with one
compiler but not with others. Such extensions can compromise the portability of
source code. This is a major problem with Fortran 77 compilers, almost all of
which contain many nonstandard features." However, all the programs in this text
should execute with any Fortran 90 compiler because they all conform to the
Fortran 90 standard.”

Even though it is common to refer to source code as a “program,” this isn’t
completely accurate. A source code file is just an interface between you and the
Fortran environment—a way to transmit instructions—and its creation is only the
first step in creating a program. As you will see later in this chapter, the Fortran
environment generates additional files, including a so-called “executable” file that
contains the translation into computer-specific machine language of all the
instructions from possibly several source code program units.

As previously noted in Chapter 2 (see Figure 2.1), although the source code
file is transferable to any other computer that supports a Fortran 90 compiler, the

I program unit I

nonstandard extensions I

'Potential problems with nonportable extensions explain why Fortran 77 texts usually
restrict themselves to the language standard and therefore have, for many years, taught a version
of Fortran that is increasingly irrelevant to the way this language is used in practice.

2Some programs later in the text require input from an external data file. When the names
of such files are included as part of the source code, they may need to be changed to correspond
to the file-naming syntax for your computer.
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additional files that your Fortran environment creates are not. The executable file
produced by an IBM-compatible personal computer won’t work on a mainframe
or Macintosh computer, for example. To “port” a program to another computer,
you have to transfer the source code file and compile it on the new computer. The
new executable file will be different from the executable file on the original
computer, but the advantage of using a high-level language to write source code
is that you shouldn’t have to worry about those differences.

It’s no accident that the source code in P-3.1 is so easy to understand in
general terms that its purpose should be clear even to someone who doesn’t
understand the Fortran language. That is, after all, one of the main reasons for
using a high-level programming language. Some of the words appearing in
uppercase letters are commands that don’t look much different from the
pseudocode commands used to develop the algorithm in Step 3 of the problem-
solving process. Throughout the program, there are other lines of text beginning
with a “!” that appear to be explanatory comments; in fact, they are. The
calculations look very similar to algebraic expressions even though, as we will
see, there are some important differences between how Fortran uses the familiar
“=" sign and its meaning in algebra.

However, just because you can interpret this source code doesn’t mean that
you are ready to create your own programs. There are many general questions to
be answered about the layout and structure of Fortran programs before you can
write an equivalent one on your own. The elements of the Fortran language are
simple. However, source code must conform to syntax rules that are very specific
and rigid compared to, for example, the flexible and sometimes vague rules for
effective human communication.?

The smallest building blocks of Fortran source code are characters:

(blank, sometimes represented as 8

! n $ % & ' ( ) *
+ , - = . /

0-9 (the digits)

: ; < = > ?

A-Z (all the uppercase letters)

_ (underscore)

a-z (all the lowercase letters)

Meaningful characters or combinations of characters,
called tokens, are defined by the Fortran language. Fortran
tokens include line labels, keywords, names, constants,
operators, and separators. We will deal with the meaning of each

tokens
statements

3Rigid syntax rules are a property of all procedural languages, not just Fortran.
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of these tokens as we encounter them in the text. Sequences of tokens form
statements. Statements usually occupy one line. In P-3.1, the first statement,

PROGRAM Circle

consists of two tokens, the keyword PROGRAM and the name Circle. The
statement

X=A*B

consists of five tokens, X, =, A, *, and B. (Although the meaning of this statement
appears obvious because of its similarity to an algebraic expression, we will later
discuss the meaning and use of each of these tokens in great detail.)

Tokens may be separated by one or more spaces, but a Fortran 90 compiler
will not accept spaces embedded within tokens.* For example, X = A * B is
equivalent to X=A*B, but P R O G R A M Circle is not equivalent to
PROGRAM Circle.

Fortran statements may contain extra spaces at the beginning of lines and
between tokens. That is, the statements

PRINT*,' User prompt: '
PRINT *, ' User prompt: '

are equivalent.

A collection of statements forms source code, which is contained in a
program unit that includes a main program and often one or more subprograms.
Figure 3.1 illustrates the components of a source code file. An entire program may
include subprograms from one or more additional program units. P-3.1 consists
of one program unit, containing just a main program. In Chapter 7, several
modifications of P-3.1 will be presented to illustrate how to use subprograms.

3.2.2 Where Does Source Code Come From?

Source code for a program written in a high-level language can be created with
a text editor or word processor. Some programming environments, especially those
written for use on desktop computers, include special text editors that are

“This restriction actually applies only to Fortran 90 compilers in their default “free format”
mode, as will be described later in this section. Older versions of Fortran and Fortran 90 compilers
used in their “fixed format” mode will accept blanks within keywords, although there is no good
reason to put them there. Even within “free format” Fortran 90, there are a few exceptions. For
example, the keyword ENDIF, which we will discuss in later chapters, can also be written with
an embedded space, as END IF.
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Figure 3.1. Components of source code

integrated into that environment. A completely integrated programming
environment can provide some shortcuts. For example, when you write source
code, the environment may check each statement for syntax errors as you write
it.

Your Fortran environment may not be as “user-helpful” in this regard. On
most systems, you must first create a separate file containing the source code,
using whatever kind of text processing or editing capability you have available.
Then you must ask your Fortran compiler to try to convert that source code file
into an executable program. The first step in the compilation process is to check
your source code for syntax errors—combinations of characters, tokens, or
statements that your compiler cannot interpret as part of a valid Fortran program.
If the compiler finds errors, you must edit the source code file to remove the
errors and repeat the compilation process.

Programming Tip

If you use a word processor to create source code, don’t save that file as
a word-processing document. Such documents contain not only the text you have
written, but also other information about the document that your Fortran compiler
will not be able to interpret. If you use a word processor, you must save the
source code as a “text only” or “ASCII text” file. If your word processor won’t
allow you to do this, you need a different word processor!

Regardless of your programming environment, you can create source code
for Fortran using any available text editor. Your instructor will provide specific
instructions for doing this, based on the software available at your institution.

Because the source code files in this text were written in an MS-DOS
environment, their file names consist of no more than eight characters, a period,
and an extension of no more than three characters. Other computing environments
place fewer restrictions on file names, and you may wish to take advantage of that
fact.
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Some Fortran compilers assume that, by default, source code files will be
identified by a particular file name extension. Possibilities include . F77 or . FOR
for Fortran 77 code and .F90 for Fortran 90 code. In this text, we will assume
that all source code files have an .F90 extension. Once you determine an
appropriate file name extension for your programming environment, use it
consistently for source code files and for no other purpose. Then it is easy to
locate Fortran source code files by performing a directory search for files with a
particular extension.

3.2.3 Why Do the Fortran Statements All Start in Column 7?

except for those beginning with a ! start in column 7. This
is basically a style choice that you and your instructor may
disagree with. Prior to the Fortran 90 standard, this layout
was a requirement for every Fortran program. Each line in a Fortran program
contained 80 positions, corresponding roughly to the number of characters that can
be typed on one line of a piece of 8'%''x11" paper. The 80 positions were used
according to a fixed format. If the first position contained a c, C, or *, the line
was interpreted as a comment line, as described in Section 3.2.4. Otherwise, the
first five positions were reserved for line labels, which were either convenient or
required, depending on the context. The sixth position was reserved for a symbol
to indicate that a previous line was being continued onto the current line, and
positions 7-72 were reserved for Fortran statements.

In the early days of Fortran, programs used to be stored on “punch cards”
rather than electronically. If you were unfortunate enough to drop a large “deck”
of these cards, you would have a difficult time putting them back into the proper
order! Therefore, positions on these cards 73-80 were reserved for a card number.
‘ Even after source code files could be created and stored I free format I
in a much safer electronic form, the 80-column card format was
retained for Fortran source code. Although the Fortran 90
standard no longer requires this layout and allows free format lines of up to 132
characters starting in any column, we will continue to use the Fortran 77 standard
72-column layout in this text. It makes programs easy to display in a textbook
format, and your source code will be recognizable to anyone who uses either the
new (Fortran 90) or old (Fortran 77) standard. Most monitor screens still display
only 80 characters on a line, so you may find little advantage in being able to
write lines 132 characters long. However...

You might not have noticed it, but all the lines in P-3.1 fixed format
comment line

It is important to remember that the physical layout of the source code in
this text is a matter of style and not a Fortran 90 language requirement.
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3.2.4 Inserting Comments in Source Code Files

Any line that contains a ! as its first nonblank character or contains nothing but
blank characters is treated as a comment line and is ignored by the compiler.
Comment lines are used to separate sections of your program and explain what
you’re doing. Comments aren’t required for Fortran programs to work, but they
are required as a matter of good programming style. Because they are ignored by
the compiler, they can appear anywhere in a program. In this text, we will always
put the ! in column 1 of any line intended to be blank or to contain nothing but
a comment. This style restriction isn’t really necessary, but it makes source code
easy to read.

A comment initiated by a ! character can also follow a statement on the
same line. Earlier versions of Fortran did not allow comments on the same line
as a statement, although some Fortran 77 compilers have a nonstandard
implementation of this feature. In this text, we will use a combination of separate
and in-line comments as required to clarify source code.

In programs written in older versions of Fortran, you will see comment
lines indicated by a c, C, or * in the first column. These characters, which mean
something else when they appear elsewhere on a line, could always be interpreted
correctly because older versions of Fortran required a fixed format line that
eliminated any possibility of misinterpretation. However, because characters can
appear anywhere on a Fortran 90 line, it’s not possible for the compiler to make
assumptions about the meaning of a character just because it appears in the first
column.

To solve this problem, the Fortran 90 standard uses a ! character to
indicate the start of a comment in free format code. This works because this is the
only use allowed for the ! character. (The exception is that the ! character can
be part of a string constant, as defined later in this chapter.)

Programming Tip

The Fortran 90 standard requires compilers to include options for
interpreting both fixed format and free format source code, but not within the
same program module. (Free format is the default option.) That is, your entire
source code file can use either fixed format or free format style, but not a mix of
the two. All the source code in this text should be compiled under the free format
option even though it retains, purely as a matter of style, the “old-fashioned”
column allocations of the Fortran 77 standard. Because of the way comment lines
are constructed, the source code in this text cannot be compiled in the fixed
format mode of a Fortran 90 compiler. (However, some Fortran 77 compilers have
nonstandard extensions that allow Fortran 90-style comment lines.)

If you want to use older code that contains pre-Fortran 90-style comment
lines within a program written in free format, it’s easy to make them compatible.
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Simply use a text editor to perform a search-and-replace operation to change
comment characters to !, making sure not to alter c, C, or * characters when they
appear in other contexts.

3.2.5 How Much of P-3.1 Is Absolutely Necessary and How Much Is a Matter of
Style?

In order to develop a sense of source code “style,” you must first know what is
necessary and what is discretionary. Consider the minimum contents of a file that
can be recognized as Fortran 90 source code:

END

That is, the only absolutely necessary component of such a file is a statement
telling the compiler where the end of the program is. Of course, such a program
doesn’t do anything!

Another way to learn about style is to rewrite P-3.1. P-3.1(a) produces the
same results as P-3.1 even though the physical layout of the source code is very
different. Note that the PROGRAM statement is optional, as are all the comment
lines. The significance of the missing statement beginning with REAL will be
discussed in the next section. The descriptive variable names used in P-3.1 have
been replaced with the one-letter names a, c, and r. Some individual statement
lines have been strung together on the same line, and use a semicolon as a
statement separator.

P-3.1(a) [CIRCLE1A.F90] .

parameter (pi=3.1415927)
print*,' Give radius of a circle:';read*,r;c=2.*pi*r;a=pi*r*r
print*,' circumference=',c,' area=',a;end

The source code in P-3.1(a) is perfectly acceptable to a standard Fortran 90
compiler, but it is much harder for humans to read than P-3.1. A long program
written in this style would be virtually unreadable and would not be allowed in
any professional programming application. In programming, clarity is almost
always preferred over brevity. As your programs become more complex, a
consistent, readable style for writing source code becomes increasingly important.
Therefore, as a matter of style, P-3.1(a) is unacceptable.
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3.2.6 Fortran Keywords

Note that some of the words in P-3.1 are in all caps. These words, I keyword I
called keywords, all have specific meanings in Fortran. Each

keyword is a Fortran token. Some of them are the direct Fortran
implementation of the pseudocode commands defined in Chapter 2. We will be
consistent about capitalizing keywords even though, as P-3.1(a) demonstrates...

Fortran compilers are case-insensitive.

Even though PROGRAM, program, Program, and even pROGRAM are all the
same as far as your Fortran compiler is concerned, we will always use PROGRAM.
Some programmers prefer to use lowercase letters and may consider the use of
uppercase spellings an old-fashioned style choice, but it has been chosen for this
text to make the keywords stand out in the program listings.

The first keyword we encounter in P-3.1 is PROGRAM. Even though it’s
optional, it’s a good idea to use a PROGRAM statement in your source code. Every
Fortran keyword has to be used within an appropriate syntax framework, and we
will describe the syntax for each keyword as it is first encountered. A summary
of syntax for all keywords discussed in the text is found in Appendix 2. The
general syntax for the PROGRAM keyword is:

PROGRAM program_name

Examples:
PROGRAM Model_1

PROGRAM My_Program

! This program is stored in file MY_PROG.F90

In this and all subsequent syntax descriptions, i talicized_text always means
that some information, most often a single word, must be chosen and supplied by
the programmer. The program_name can contain up to 31 characters. It
shouldn’t be the same as a Fortran keyword—it’s possible to name a program
program, but it’s certainly not a very good idea—and it can’t be the same as a
variable name (as defined in the next section) you will use elsewhere in your
program. If the PROGRAM keyword appears, it must be followed by a valid name;
that is, PROGRAM can’t appear by itself on a line. It makes sense for the program
name to be the same as the file name under which the source code is stored on
your computer system.
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Study Tip

You should start writing your own annotated list of basic Fortran syntax,
with examples. Will it be more helpful to organize this list alphabetically or by
function?

Programming Tip

The fact that computer operating systems place restrictions on file names
may be irritating. If you are using such a system (MS-DOS, for example) and you
would like your program to have a longer descriptive name, include the system
file name in a program comment line. (See the second example in the PROGRAM
syntax box.)

3.2.7 What If a Statement Is Too Long to Fit on a Single Line?

All the statements in P-3.1 fit easily on a single line, but long statements can be
a problem when complicated expressions are translated into Fortran. Consider this
algebraic expression for calculating one root of the quadratic equation ax® +

bx + ¢ =0:
-b+y/b?-4ac

2a
Its Fortran equivalent, assuming (b* - 4ac) > 0, is: °

root =

root=(-b+(b*b-4.0*a*c)**0.5)/(2.0%a)

This statement will make more sense after we have discussed arithmetic operators
later in this chapter. Even though the statement still isn’t too long for a single line,
we could, just for demonstration purposes, separate it into several lines of code
like this:

root= &
(-b+(b*b-4.0*a*c)**0.5) &
/(2.0%*a)

The ampersand (&) is the Fortran 90 line continuation mark. It is appended
to any partial statement that is continued onto the next line. It can go anywhere
on the line after the partial statement to be continued, and, of course, it does not
become part of the statement itself. (To put it another way, the ampersand has no

5This statement also assumes that a, b, c, and root all have appropriate data types, as
discussed later in the chapter.
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possible interpretation other than as a line continuation mark.%) A single statement
can occupy as many as 40 lines, using up to 39 line continuations.

Programming Tip

If your programs need to retain as much compatibility with Fortran 77 code
as possible, you can improve compatibility by using an alternative form for line
continuations. In Fortran 90, the continued line normally starts with the first
nonblank character, but, optionally, it starts with the first nonblank character
following a continuation mark on the continued line. In Fortran 77 (and earlier
versions), continuation marks can be any character, but they have to appear in
column 6. This fact can be combined with the fact that Fortran 77 ignores
characters in columns 73-80. This version of the above statement is compatible
with both Fortran 90’s free format style and Fortran 77:

1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890123
root= &
& (-b+SQRT (b*b-4.0*a*c)) &
& /(2.0%*a)

The ampersand at the end of a continued line will be ignored by a Fortran 77
compiler because it’s in column 73. Fortran 77 requires a continuation character
to appear in column 6 of the continued line. If that character is an ampersand, this
statement will be accepted by both Fortran 77 and 90 compilers.

3.2.8 Executable and Nonexecutable Statements

Fortran source code consists of a combination of -' exé cutable statements
executable and nonexecutable statements. The
layout of a simple program’s source code looks
like this:

nonexecutable statements

[PROGRAM name]
[specification statements]
[executable statements]
END [PROGRAM [name]]

In this and all subsequent syntax definitions, any quantity enclosed in brackets
[...] is optional. (Recall from Section 3.32.5 that END is the only required
statement in a Fortran program.)

®The exception is that an ampersand can appear as a character in a string constant.
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The PROGRAM statement and the specification statements are nonexecutable
statements. They are essentially “bookkeeping statements” that tell your Fortran
compiler how to allocate space in your computer’s memory. The nonexecutable
statements are followed by the executable statements that do the actual work of
the program. In this text, every program will include a nonexecutable PROGRAM
name line. Remember that the keyword PROGRAM cannot appear on a line by
itself without a name. When the keyword PROGRAM appears in conjunction with
the END statement, a name is optional. This text will not include the optional
PROGRAM [name] as part of the END statement, although you are free to do so
in your own programs.

3.3 Declaring Variables and Defining Constants
3.3.1 Variable Names and Data Type Declarations

Recall that the first task in designing an algorithm—Step 3 of the problem-solving
process—is to assign names to the quantities needed to solve the problem, using
the DEFINE command. You should take this opportunity to think about the nature
of the information needed to solve the problem and the output provided by the
program.

When you write a program in any high-level language, including Fortran,
the names of these quantities become variable names that must be associated with
data of a particular type. Variable names give you a symbolic way to access
values in your computer’s memory without having to worry about the details of
where those memory locations actually are. For all practical purposes, the memory
location and the variable name by which you access information in that location
are the same thing.

The association of a variable name with a spe?cific I type declaration I
data type is called type declaration. This is a
nonexecutable specification statement that must appear at
the beginning of your program, before that program can make any calculations.
The general syntax for a type declaration statement is

data_type|, attributes] [::] <list of variables,
separated by commas>

The data_type name is optionally followed by one or more attributes. If
no attributes are present, the double colon is optional. If attributes are present, the
double colon is required. Finally, a list of variables to be associated with this data

type is given. We will show examples of several data type and attribute
declarationg later in thic cection
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For P-3.1, the type declarations are

REAL radius, circumference, area
REAL, PARAMETER :: pi=3.1415927 !Defines pi as a constant.

The program requires four numerical quantities, all of which should be declared
as real numbers rather than integers. No distinction is made between “input”
(radius) and “output” (area and circumference) to and from a program;
it is up to you to keep track of the purpose of each variable you declare.
However, there is one important distinction you can ask a program to make. In
P-3.1, the variable pi contains the value of the constant 7, and it has been defined
in such a way that its value cannot be changed while the program is running.
(More will be said about this later.)
The Fortran 90 rules for naming variables are:

1. Names may contain up to 31 characters, including uppercase and lowercase
letters, digits, and the underscore character _.

2. The first character must be a letter.

3. Embedded blanks aren’t allowed.

Here are some allowed variable names:
TAXES Final_Grade Y1993 i

In older versions of Fortran, variable names could contain no more than six
characters. They had to start with an uppercase letter, and the rest of the name
could consist only of other uppercase letters or digits. This is why you will often
see strange-looking variable names in older programs or texts that use the
Fortran 77 standard. RADIUS looks reasonable, but circumference had to be
abbreviated to something like CIRCUM. Most Fortran 77 compilers have
nonstandard features that allow longer and more descriptive variable names as
well as a mixture of uppercase and lowercase letters.

In this text we will make full use of the variable-naming features of
Fortran 90 to make names as clear and descriptive as possible. For example, we
will usually consider such shortcuts as naming the radius r to be unacceptable
style because such abbreviated variable names make programs harder to read and
understand. Exceptions might be made in cases where a well-known equation is
used in a program. For example, in the ideal gas equation pV=pRT, the variable
names for the pressure p, volume V, and temperature T might be retained because
their interpretation should be clear in context. The symbol p would have to be
given some other name, such as mu.

Although the ability to mix uppercase and lowercase letters is useful to
make variable names easier to read, remember that Fortran compilers don’t
distinguish between uppercase and lowercase letters. So R and r are interpreted
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as the same variable name. If a program happened to involve the universal gas
constant, often represented as R in formulas, as in the previous paragraph, as well
as a linear correlation coefficient, often represented as r, then you will have to
choose a different variable name for one of these two quantities.

Programming Tip

As a matter of style, it might be acceptable to use single-letter symbols for
variable names in simple calculations involving well-known scientific or
engineering formulas if the meaning of each symbol is clear in context. However,
if such calculations are embedded in a larger program with many variable names
and/or formulas, it is better programming style to use longer and more descriptive
variable names. Whenever there is any chance of misinterpretation, it is up to you
to make the calculation in question as clear as possible. Calculations that seem
perfectly clear when you’re writing a program have a way of becoming obscure
when you look at the program a few weeks later.

3.3.2 Intrinsic Data Types

Type declarations for intrinsic data types

The most common type declarations in Fortran involve I intrinsic data types I
the basic data types supported by the language. There

are five such data types, called intrinsic data types, as

described in Table 3.2.

Table 3.2. Fortran intrinsic data types

Intrinsic Data Type Fortran Type Declaration
integer numbers INTEGER

real numbers REAL

logical values LOGICAL

characters and strings of characters | CHARACTER

complex numbers COMPLEX

All variables used in a program must be given a data type. For now, all
variables in the programs you will write will be declared as one or the intrinsic
data types. Your compiler uses the declarations to set aside an appropriate amount
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of. computer memory to store the values needed by your program while it’s
running. Data declaration statements appear at the beginning of your program,
after the PROGRAM statement and before the first executable statement. Executable
statements contain your programming instructions. In P-3.1,

PRINT *,' Give radius of a circle: '

is the first executable statement.

In this section, we will describe type declarations for the first four intrinsic
data types listed in Table 3.2. We will return to the COMPLEX data type later in
the text.

Type declarations for numbers

For the purpose of programming, there are two basic kinds of numbers: integers
and real numbers. An integer is a “whole” number—any number that does not
contain a decimal point. The values 1, -1, 0, and 17 are integers. A real number,
whether rational or irrational, contains a decimal part. The values 0.333, -0.5,
14.1, and 1.3x10” are real numbers. Fortran recognizes both real and integer
numbers. In common with other languages, real numbers and integers are stored
differently, with important implications about how arithmetic operations are
performed in programs.

An important distinction must be made between an integer value such as
1 and the apparently equivalent real number 1.0. Although these values may be
equivalent in the numerical or algebraic sense, expressing the value 1.0 with
decimal notation means that it will be stored differently in a Fortran program from
the integer value 1. As a result, these values may not be interchangeable in a
program.

When you use numerical variables associated with real vafiable

numbers in a Fortran program, you must distinguish integer variable
between real variables, which hold real numbers, and implicit typing
integer variables, which hold integer values. You do this
by giving the variables a REAL or INTEGER data type.
Traditionally, Fortran programs have made use of implicit typing for numerical
variables. All variables beginning with letters I through N are implicitly typed as
INTEGER. (Because of Fortran’s mathematical origins, this convention is related
to the common mathematical use of letters such as i for indices or counters that
can have only integer values.)

Variables beginning with any other letter are implicitly typed as REAL
numbers. Other kinds of variables, such as characters, must always be given an
explicit data declaration. If P-3.1 had been written in an earlier version of Fortran,
the REAL statement would not be required. All four variables would be implicitly
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typed as REAL numbers because none of the names assigned to the four variables
used in that program begins with the letters I through N. (The IMPLICIT NONE
statement in P-3.1 would not appear in programs written in earlier versions of
Fortran. Can you guess its purpose? We will discuss this statement later in this
section.)

Fortran 90 still allows implicit typing. However, as a
matter of good programming style, we will insist on explicit
typing for every variable. Explicit typing means that every
variable name used in a program (plus names for a few other things, as we will
see later in the text) must appear in a data type declaration statement. Why is this
important? Because explicit typing makes programs less prone to errors and easier
to read, debug, and modify, and also because explicit data typing is consistent
with requirements imposed by other high-level languages, such as C.

A somewhat simplified syntax for REAL and INTEGER data type
declarations is:

I' explicit typing I

REAL [::] variable name[, variable_name]
INTEGER variable_ name[, variable_name]

Examples:
REAL x_value, y_value, radius, angle
INTEGER i,7,k

The double colon is optional for this kind of declaration. (The double colon will
be required in some circumstances that will be discussed later in this chapter.) A
single data declaration statement may contain as many variable names as you
wish.

The REAL and INTEGER data types also define, by implication, the
allowed range of integers and real numbers. It is possible within the Fortran 90
standard to change those ranges, but we will not usually need to do that for the
problems in this text.’

Type declarations for logical variables

The LOGICAL data type is used for declaring variables that can have one of only
two possible values: . TRUE. or . FALSE. . (The periods preceding and following
the words TRUE and FALSE are required.) We will discuss the use of these
variables later in the text. The syntax is

"For some kinds of calculations, you may wish to know what the size and range
restrictions actually are because if you exceed the allowed ranges, your progam can "crash." These
values are available from Fortran 90 intrinsic functions, which we will discuss in a later chapter.
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LOGICAL variable_name[, variable_name]

Type declarations for characters and strings of characters

Historically, Fortran was concerned largely with
arithmetic  calculations. Now, however, text
manipulation may comprise a significant portion of the
tasks performed by many programs. Modern high-level programming languages
include data types to manipulate character variables, and they may distinguish
between single characters and sequences of more than one character. In Fortran,
no distinction is made between single characters and strings of characters. That is,
a variable that will be assigned a “value” of a single character is treated as a
character string of length 1. The CHARACTER data type is used to define such
variables. (The name is somewhat misleading, because the data type applies
basically to strings of characters.) The maximum number of characters that will
be assigned to a variable must be stated explicitly. There are two syntax forms for
CHARACTER data type declarations:

character variable I

CHARACTER|[ ([LEN=]n)] variable_name[*n][, variable_name[*n]]
CHARACTER[*n] variable name[*n]|[, variable_name[*n]]
where n is an integer constant.

Examples:
CHARACTER a, b, c, d*3
CHARACTER*10 namel, name2
CHARACTER*20 Name, Street*30, City*25, State*2
CHARACTER(20) Name, Street*30, City*25, State*2

In the first form, the LEN= is optional. The constant n defines the length of the
character string. Its presence after any variable name overrides the value following
the CHARACTER declaration. A CHARACTER declaration without a value for the
length implies that the variables declared in that statement are of length 1 unless
that length is overridden as shown in the syntax examples. Any combination of
these declaration statements can be used interchangeably within a single program.

In the first example, a, b, and c contain just one character, but d contains
three characters. In the second example, namel and name2 each contains 10
characters. In the last two examples, Name contains 20 characters, but this value
is overridden for the other three variable names by their individual length
specifiers.
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The PARAMETER attribute and statement

Sometimes “variables” really need to be constants that shouldn’t be changed while
your program is running. Fortran allows you to associate a constant value with a
name either by using a PARAMETER statement or by assigning the PARAMETER
attribute as part of a type declaration statement. In P-3.1, the variable holding the
value of © (pi) is given the PARAMETER attribute:

REAL, PARAMETER :: pi=3.1415927

In this kind of type declaration statement, which includes
both type and attribute declarations, the double colon is
required. Once a quantity has been given the PARAMETER
attribute, it becomes a named constant that can’t be changed anywhere else in
your program; any attempt to do so will generate an error message when you try
to compile the program. An alternative way to achieve the same result is first to
declare a variable and then to include it in a separate PARAMETER statement. For
example:

I Mmed" consfcmt I

REAL pi
PARAMETER (pi=3.1415927)

The general syntax forms for giving a variable the PARAMETER attribute

are
PARAMETER (variable name=value[, variable_name=value] ...)
data_type, PARAMETER :: variable_name=value
" [, variable_name=value]
Examples:

(using a PARAMETER statement)
INTEGER MaxSize
PARAMETER (MaxSize=1000)
(using the PARAMETER attribute)
REAL, PARAMETER :: pi=3.1415927, Deg_to_Rad=0.0174532

The first syntax form is retained from Fortran 77. When a PARAMETER statement
is used, as in the first syntax form, it is assumed that each variable name has
previously been included in a type declaration statement. The preference for
Fortran 90 is to use the PARAMETER attribute within a type declaration statement.

When you give a variable PARAMETER status, it might be helpful to think
of the result as being similar to a “search and replace” operation in a word
processor. The effect is the same as if you searched through your program and
replaced every occurrence of that variable name with the characters appearing to
the right of the = sign in the PARAMETER or type declaration statement. That is,
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the = sign has the meaning of “replace with” rather than “is equal to” in either the
algebraic sense or the “assignment” sense, as we will discuss later in this chapter.
If you maintain this mental image of what’s happening, you will be less likely to
misuse a variable that has been given PARAMETER status. In particular, you won'’t
be tempted to try to give such a variable a different value.

Enforcing explicit typing

In earlier versions of Fortran, a style requirement of explicit typing imposed a
significant burden on programmers because there was no way to enforce that
requirement. However, Fortran 90 and some Fortran 77 compilers, through a
nonstandard extension, provide a means of forcing explicit typing of all variables.
The syntax is

IMPLICIT NONE

This is a nonexecutable statement that must appear before the type declaration
statements. It “turns off” implicit typing and forces you to declare explicitly the
data type of every variable you use in your program; if you don’t, your compiler
will generate an error message.

The IMPLICIT statement can also be used with other parameters to alter
Fortran’s default implicit typing rules. We will not give the general syntax for the
IMPLICIT statement because the programs presented in this text will always use
the IMPLICIT NONE statement to enforce explicit data typing of every variable
name, as in P-3.1. -

It may seem that asking you to include the IMPLICIT NONE statement
in every program is an unnecessary imposition. However, this style requirement
prevents program errors that can be very difficult to find. As an example, suppose
you are writing a program to calculate taxes. You select a variable name Taxes
to represent the result of a calculation and explictly type it as a REAL variable.
Now suppose that, at some point in your program, you misspell the variable name
Taxes as Texas. This will certainly lead to problems in your program’s
operation. However, a Fortran program that allows implicit typing will be
perfectly happy with this variable name. It will create another memory location
for this new, implicitly REAL variable and perform whatever operations you ask
it to perform when you refer to its name. However, if your program contains an
IMPLICIT NONE statement, the Fortran compiler will flag the variable named
Texas as an undeclared variable and will generate an error message.
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Programming Tip

Your compiler may issue a warning message concerning variable names
that are included in data type declaration statements, but not used anywhere in
your program. (This feature isn’t required by the Fortran 90 standard.) The
message is given only as a warning because these “extra” variables may not
represent a problem; perhaps you are still developing a program and haven’t yet
written the code that uses the variable(s) in question.

The implications of type declaration

When you declare a variable’s type by including it in a Fortran declaration
statement, three important things happen:

1. The variable name is “reserved” and can’t be used for any other purpose in
the main program or subprogram in which it is declared.

However, the same name can be reused in a different program unit or in
a different subprogram within the same program unit.

2. The kinds of values that can be assigned to the variable name are specified.

Each data type is associated with a certain collection of appropriate values.
Variables declared as having that data type can have any one of those values, but
the variable cannot be assigned an inappropriate value. For example, you can’t
assign a CHARACTER value to an integer.

3. The kinds of operations that can be performed on the variable name are
specified. :

Arithmetic operations can be performed on numerical variables, but these
operations make no sense for a CHARACTER variable, for example.

As you can see, type declaration has important implications that extend
beyond simply providing a way to ensure that all variables have been associated
with a particular data type. Explicit type declaration allows your compiler to
perform several different kinds of “error checking” on your source code to prevent
you from assigning values and performing operations that are inappropriate for a
particular variable name.®

8Not all languages are as strict as Fortran about interpreting these kinds of rules. Cis a
notable example.
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Using nonexecutable statements in programs

So far, we have identified several nonexecutable statements that should, or may,
appear in source code:

1. a PROGRAM statement

2. one or more comment lines, marked with a !

3. an IMPLICIT NONE statement

4. one or more data type declaration statements: REAL, INTEGER, CHARACTER,
or LOGICAL

5. one or more PARAMETER statements to identify quantities whose value cannot
be changed while the program is running

6. an END statement that terminates the program

Of these, Fortran requires only the END statement, but as a matter of good
programming style, programs in this text will always include the first four kinds
of nonexecutable statements. The appearance of the PARAMETER statement is
determined by the nature of the program.

All the specification statements—including the IMPLICIT NONE
statement, data type declaration statements, and PARAMETER statements—must
appear in your program affer the PROGRAM statement and before the first
executable statement in your program. In P-3.1, remember that

PRINT*,' Give radius of a circle:

is the first executable statement. Comment lines are ignored during compilation
and can appear anywhere.

3.3.3 Constants

Fortran supports several kinds of constants that correspond | literal constants I
to the intrinsic data types. These may be either named

constants, such as result from using a PARAMETER

statement or attribute, or literal constants (or “literals”). We will discuss four
kinds of literals: integers, real numbers, characters, and logical.

Integers and real numbers
INTEGER constants are signed or unsigned integer values. The allowed range is

determined by your compiler, not by the language standard. Default ranges can be
overridden by using additional data type specifiers, but we will defer a discussion
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of this topic until Chapter 12. As mentioned previously, you can determine the
default range on your system, and we will return to this point later. Some
INTEGER constants (or literals) are

1 0 +17 32767 -333

REAL constants consist of some or all of the following: a signed or
unsigned integer part; a decimal point; a fractional part; an exponent part
consisting of the letter E (or e) followed by a signed or unsigned integer. Some
REAL constants are

1. -0.0037 +.17 1E+20 1.0E+20 -3.777e-7
7e6 7.e6

A plus sign is always optional for a positive number, but a minus sign is required
if you wish to represent a negative number. Note that 1 (without a decimal point)
is an INTEGER constant. Either 1. or 1.0 is a REAL constant. Remember that
1 and 1. or 1.0 are treated differently by your program. Numbers expressed in
scientific notation (with e or E) are always REAL and don’t require decimal
points. Thus 1E+20 and 7 . e6 are REAL constants, corresponding to 1x10? and
7x10°. The numbers 1E+20, 1E20, 1.E20, 1.0E20, and 1.E+20 are all
equivalent.

You may sometimes forget that the conventional way of writing numbers
with commas or $ signs in some contexts won’t work in Fortran, or other
languages, for that matter. Thus these “values” contain special characters and
won’t be recognized as numerical constants:

$1000 3,777.78 1,222,333

You should help the user of your programs avoid entering inappropriate numerical
values by supplying helpful prompt messages prior to READ statements. For
example,

PRINT *,' How much is in your account? §'
PRINT *,' Enter a large number, without commas or spaces:'

Logical constants

As noted above, there are only two logical values and hence only two possible
logical constants, . TRUE. and . FALSE.. The periods at each end of the word
are required, and you may use either uppercase or lowercase letters, or a mixture
of the two.
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Character constants

Character constants (or string literals) consist of strings of zero or more characters
enclosed in a pair of single quotation marks (apostrophes) or double quotation
marks. Any displayable character supported by your computer is allowed. For
example, a “#” can appear in a character constant even though it isn’t one of the
Fortran special characters. Here are some examples of character constants:

' ' (a space)

'Laura'’

IIC"

"This is a Fortran string constant!"

Note that it’s OK to use the ! character as part of a string constant. Blank spaces
and distinctions between uppercase and lowercase letters are significant in strings.
The strings 'David', 'DAVID', ' David', 'David ', and
"D a v i d 'are alldifferent. A single quotation mark may be included in
a character string by using double quotation marks to enclose the entire string or
by using two single quotation marks embedded in a string surrounded by single
quotes:

"Here's a string constant”
'Here''s a string constant.'

These two are equivalent, as are

'Here is a "string constant."'
"Here is a ""string constant."""

Programming Tip

One way to create a source code file is to use a word processor and save
the document as a text file. However, some word processors have a “smart
quotes” option that is turned “on” by default. When you type a double or single
quotation mark, the smart quotes option will try to “help” by inserting
typographical symbols, “...” or ’, which are different from the symbols "..." and
'. Typographical quotation marks and apostrophes will not work in Fortran source
code.

Long string constants may take more than one line to express, in which
case a specific line continuation form is required in order to allow the ampersand
and exclamation point characters to be part of string constants. These characters
might otherwise be interpreted as a line continuation or the initiation of an in-line
comment. Here’s an example:
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Poem_String='Roses are red, &
&& Violets are blue. &
&I love Fortran &
&But I don''t expect you to!'’

A line to be continued may not contain a trailing comment, and each continuation
line must have a continuation mark as its first nonblank character. The trailing
blanks before the continuation mark at the end of a line are part of the string, but
the leading blanks before the continuation marks in the continued lines are not.
The ampersands are not part of the string. The second ampersand in the first
continuation line is not a misprint. If a program printed this string constant, it
would look like this:

Roses are red, & Violets are blue. I love Fortran But I don't
expect you to!

(It won’t all fit on one line here, either.)

3.3.4 Initializing Values with the DATA Statement

Programs often require that variables be “initialized” to a particular value at the
beginning of a program. One way to do this is with the DATA statement. A
simplified version of the syntax is

DATA variable_list/constant for each variable,
separated by commas/

DATA variable_list/n*constant/

DATA variable_name/constant/[,variable_name/constant/]

where n is an integer that specifies the number
of repetitions of the constant

Examples:
DATA x,y,z2/1.1,2.2,3.3/
DATA x/1.1/,v/2.2/,2/3.3/
DATA a,b,c/0,0,0/
DATA a,b,c/3*0/

The DATA statement is a nonexecutable statement that should appear after all type
declaration and PARAMETER statements and before the first executable statement
in your program. Any variable initialized in a DATA statement must appear in a
type declaration statement, assuming that the IMPLICIT NONE statement is
included prior to the data declaration statements.

The significant difference between variables initialized in a DATA statement
and quantities given PARAMETER status is that initialized variables retain their
“variable” status and can be reassigned other values while the program is running.
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However, because the DATA statement is nonexecutable, it cannot be used to
“reinitialize” variables later in a program.’ Note that the DATA statement is one
implementation of the pseudocode INITIALIZE command.

In the third syntax form, the first variable_name/constant/ can be,
but doesn’t have to be, followed by additional variable_name/constant/
specifications, separated by commas.

3.4 List-Directed Input and Output

Program P-3.1 has three functions: to accept user input, to perform some
calculations, and to display the results of the calculations. The first and third of
these provide the critical input/output (I/O) interface between the program and a
user. Fortran includes extensive and sometimes complicated I/O capabilities.
Fortunately, it also includes some provisions for simple I/O operations that are
well suited to simple programs such as P-3.1.

3.4.1 Reading and Displaying Numerical Values
Displaying a prompt for user input

The first task of P-3.1 is to obtain information from the user—specifically the
radius required to calculate the circumference and area:

! get input...
!

PRINT *, " Give radius of a circle: '
READ *, radius

This_is an example of an int.eract.ive program that I standard output device I
requires the user to provide input while the

program is running. Most of the programs in this

text will contain some user-provided input. A user prompt should always precede
a request for input in an interactive program. This isn’t necessary from Fortran’s
point of view, but it is certainly necessary from the user’s point of view. The
PRINT * statement prints the message

Give radius of a circle:

9This fact has important implications in subprograms, as we will discuss later in the text.
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on the computer’s standard output device. This is almost always a terminal or
computer screen. Recalling the output from P-3.1, consider what would happen if
you executed a version of P-3.1 that did not include the prompt for input. When
the program was executed, it would wait for you to enter a value for the radius,
but you would have no way of knowing what the program expected. The program
would wait, you would stare at the screen, waiting for something to happen.
The presence of an asterisk in P-3.1’s PRINT S
statements identifies this as list-directed output. This is I i dbvreainun I
a kind of “shorthand” output instruction for displaying
program output on your monitor screen. When you use list-directed output, the
Fortran compiler, rather than the programmer, decides how to display the output,
and the results will vary from compiler to compiler. A simplified syntax for list-
directed output using the PRINT statement is

PRINT *[,list of variables, expressions, functions,
or constants, separated by commas]
Examples:
PRINT#*, 'This prints a string constant.'
PRINT* ! This prints a blank line.
PRINT#*, 'The two sides are ',x,' and ',y, &
'. The hypotenuse is ', hypotenuse,'.'
PRINT*, 'The average of x and y is ', (x+y)/2.0

A more complete description of syntax for the PRINT statement is given in
Appendix 2, to which we will refer when we discuss the PRINT statement again
in Chapter 5. The output list is optional. Without such a list, a blank line is
printed, as in the second example. The last example demonstrates that expressions
can be evaluated and printed directly from within the PRINT statement.

Getting input from the keyboard

Following the user prompt provided by the first PRINT statement in P-3.1, the
READ *,radius statement requests input from the keyboard—the default input
device. When a READ statement is encountered, the program’s operation is
suspended until the user presses the Enter key at least once. In order for the
program to continue, the user must provide all the information expected by the
READ statement. As noted previously, without a prompt message in a PRINT
statement immediately preceding a READ statement, a program will be suspended
indefinitely while it waits for a user to respond. Without an appropriate prompt
message, the program may still be suspended indefinitely, waiting for the user to
guess the required response.
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A simplified syntax for the list-directed READ statement is

READ *[, list of variable names, separated by commas]

Example:
READ *,a,b,c

A list of variables is optional, although almost always present. Even without a list,
a response is required: press the Enter key.

Just as an asterisk in a PRINT statement provides
a convenient way to produce output in simple programs,
an asterisk in a READ statement specifies list-directed
input. Fortran compilers are relatively forgiving about how you enter numbers in
response to a request for list-directed input. For example, you can precede the
number with blank spaces, although there is no reason to do this.

Here’s a new problem to demonstrate some features of list-directed I/O.
One difference is that more than one input value is required.

I list-directed input I

1 Define the problem.

Given the height, width, and length of a box, calculate its surface area and
volume.

2 Outline a solution.

1. Prompt the program user to supply the height, width, and length.
2. The equations for surface area and volume of a rectangular box with height,
width, and length h, w, and 1 are

surface area = 2(1w + lh + hw)
volume = Iwh

3. Display the results.
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3 Design an algorithm.

DEFINE (length, width, height, surface area, and volume as real numbers)

WRITE (prompt user to enter length, width, and height)

READ (length, width, height)

ASSIGN surface area = 2+(lengthewidth + length<height + heightewidth)
volume = lengthewidth<height

WRITE (surface area and volume)

4 Convert the algorithm into a program.

P-3.2 [BOX.F90]

PROGRAM box

! Purpose: Calculate surface area and volume of a rectangular box.

IMPLICIT NONE
REAL height, width, length, SurfaceArea, volume

PRINT *,'Give the height, width, and length of a box: '
READ *,height,width,length

SurfaceArea=2.0* (height*width+height*length+length*width)
volume=height*width*length

PRINT *,' surface area = ',SurfaceArea,' volume = ',volume

END

Running P-3.2

Give the height, width, and length of a box:
2,0 5.0 9.0

surface area = 1.4600000E+02 volume = 50.0000000

5 Verify the operation of the program.

Check values by hand or with a calculator.
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Problem Discussion

Program P-3.2 shows that a single READ statement can process several
values typed on your keyboard. Suppose the box has a height, width, and length
of 3.2, 4.2, and 5.2, respectively. The units are unimportant for this discussion. In
general, however, your prompt message should indicate the physical units of all
values a user is expected to supply. After the prompt message appears on your
screen, there are several acceptable ways to provide the three desired values for
list-directed input, including:

3.2 4.2 5.2<Press the Enter key.>

3.2, 4.2, 5.2<Press the Enter key.>
3.2, 4.2 5.2<Press the Enter key.>

3.2/4.2/5.2<Press the Enter key.>

3.2<Press the Enter key.>
4 .2<Press the Enter key.>
5.2<Press the Enter key.>

Numerical values can be separated by spaces, commas, slashes, end-of-line marks
(put there by pressing the Enter key or, on some computers, the Return key),
or even combinations of these separators. There is usually no good reason to use
slashes to separate numerical values, and their use could be confusing, as though
you were trying to imply a division operation. So as a matter of style and habit,
you should not use slashes as separators. As a practical matter, you should
develop the habit of consistently using either commas or spaces as value
separators.

In all cases, keyboard input must be terminated by pressing the Enter
key; we have indicated that action specifically in these examples only to clarify
the matter. Your program will not do anything else until you enter at least the
required number of values. If you enter more values than are required, your
program will ignore the extra values.

Suppose, for P-3.2, the dimensions of a box are 2.0x3.0x4.0 inches. If you
are diligent about representing REAL numbers correctly, you will type

2.0 3.0 4.0
or
2. 3. 4.

when you enter the values. However, it is OK to type

234
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This will result in an INTEGER-to-REAL type conversion, j ) 5
which means that the whole numbers 2, 3, and 4 will be || 2P¢ conversion I
stored internally as though they were real numbers instead '

of integers (because the variables that are receiving the values are REAL). This
won’t cause problems in this context, but there are other situations in which type
conversions should be avoided; we will discuss them later in this chapter.

If you enter some characters that can’t be interpreted as a number, your
program will crash. Suppose that you intend to type 3.1, but type 3.q instead
(because the g key is just below the 1 key on the keyboard). Your program will
crash and your Fortran implementation will print a message that tries to explain
the problem—perhaps something mysterious like “Invalid List-Directed Input.”

It is possible for a program to read a line of keyboard input as a character
string, check it for characters that don’t belong there, and then either remove the
unwanted characters or ask the user to try again. As a practical matter, this is
rarely worth the effort for programs you write to use yourself. If your program
crashes because you make a mistake when you’re typing input on the keyboard,
just start over again. If the input your program requires is too long or complicated
for keyboard input to be a reasonable option, then you should consider reading
input data from some other source, as we will discuss in Chapter 9.

Programming Tip

If you have programmed in BASIC, you may be accustomed to using
commas as value separators. If you have programmed in C, you may be
accustomed to using spaces. Either style is OK for list-directed input in Fortran,
but you should pick one and stick with it.

Displaying output

As mentioned above, when you use list-directed output, your Fortran environment
decides how the output will appear on your screen. The output of string constants,
as for the user prompts in P-3.1 and P-3.2, is usually perfectly reasonable.
However, the output of numerical values may be confusing or arbitrary. The
Fortran 90 compiler used to develop the programs in this text produces screen
output for P-3.2 that looks like this:

Give the height, width, and length of a box:
3.2 4.2 5.2
surface area = 1.0384000E+02 volume = 69.8879929

displayed in scientific notation (as a number times a

For no apparent reason, numbers larger than 100 are scientific notation |
power of 10). Also. the list-directed output displavs

significant figures
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many more significant figures than is reasonable for the calculation. (The output
also demonstrates that Fortran arithmetic operations aren’t always exact, but that’s
another topic.)

Other Fortran compilers will produce list-directed output that looks
different from this example. List-directed output is OK for simple programs
written for your own use, but you will eventually wish to gain more control over
the appearance of your output. We will cover this topic in detail in Chapter 5.

3.4.2 Manipulating Text Information

So far, nothing has been said about providing non-numerical information
to your program. Consider this example:

P-3.3 [NAMES.F90]

PROGRAM names

IMPLICIT NONE
CHARACTER*20 name
INTEGER age

PRINT *,' What is your first name? '
READ *, name

PRINT *,' How old are you? '

READ *,age

PRINT *,name,agde

END

Running P-3.3

What is your name?
David
How old are you?

With list-directed input of a character string, you can enter a single name, as
shown. However, suppose you wanted to enter a complete name such as Susan
Anthony or Anthony, Susan. If you enter either of these inputs, the READ*,
name statement in P-3.3 will not work as you intended because the space after
Susan or the comma after Anthony will be treated as a separator between two
string variables. The result will be that the “full name” you intended to enter will
be the single name Susan or Anthony, depending on which one you entered
first. The easiest solution to this problem is to read the first name and last name
in different statements:
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PRINT *,' What is your first name?'
READ *, first_name

PRINT *,' What is your last name?'’
READ *,last_name

Note that if your name is Susan B. Anthony and you enter Susan B. in response
to the request for your first name, this code will ignore the middle initial, so you
may also need to provide a separate prompt for the middle initial.

It is possible to modify P-3.3 so that the complete name and age can be
provided in response to a single READ * statement:

CHARACTER*20 last,first,MI
INTEGER age

PRINT *, &

' Give your first name, middle initial, last name, and age,'’
PRINT *,' separated by a space or comma:'

READ *,first,MI,last,age

PRINT*,last,', ',6 first,MI,age

The problem with this code is that not everyone has a middle initial. If the user
enters just a first name, last name, and age:

David Brooks, 33

then the program will think that the middle initial is Brooks, the last name is the
character string 33, rather than the number 33, and that the age has not yet been
entered. Even worse, if you declare the strings more reasonably as

CHARACTER*20 last,first, MI*2

the program's response to entering David Brooks, 33 will not be useful. (Try
it and see.)

Because of these potential problems with reading text, it is good
programming style, at least for inexperienced programmers, to read numerical and
string information in separate statements, as has been done in P-3.3, and to
specify in the user prompt that strings entered should contain no spaces or
commas.
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3.5 Arithmetic Operators, Assignment Statements, and Calculations
3.5.1 Arithmetic Operators, Expressions, and the Assignment Operator

We will now return to the P-3.1, the first program in this text, to examine the part
of the program that calculates the area and circumference of a circle with a
specified radius. The two statements are

! do calculations...
!

circumference=2.0*pi*radius
area=pi*radius*radius

It’s easy to understand what these two calculations do because the statements look
very similar to their algebraic equivalents. However, we need to examine
statements like this in the broader context of how Fortran evaluates expressions
and performs calculations.

Fortran supports several arithmetic operators, as shown in Table 3.3. The
first five are familiar from algebra, although you may be accustomed to using the
symbol X or e instead of a * for multiplication. The algebraic expressions a*b
or ab must be represented as a*b in Fortran. The characters asb can’t even be
translated into source code because the ¢ symbol doesn’t exist as a “keyboard
character” and it wouldn’t be recognized by Fortran even if it did. The characters
ab will be interpreted not as “a times b,” but as a variable named ab—not at all
what you intended.

The exponentiation operator is used for raising a constant, variable, or
expression to an integer or real power. The power may be a constant, variable, or
expression. The algebraic expression x> is represented in Fortran by x**3; the
square root of x can be represented by x**0.5 or x**(1./2.).

The first five operators in Table 3.3 are called
binary operators, which means that there must be a
variable, constant, or expression on each side of the
operator. Therefore expressions such as *a or a*/b
aren’t allowed. (They don’t make any algebraic sense, either.) The last two
operators are unary operators. This means that they need a variable, constant, or
expression only on the right side of the operator. Therefore, expressions such as
-z, -3.5+x%, - (a+b), or +(a*b) are perfectly reasonable. In the last of these,
the + sign is optional and the expression is equivalent to a*b.

binary operators
unary operators
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Table 3.3. Fortran arithmetic operators

Operation Symbol

Binary Operators

Addition +
Subtraction -
Multiplication *
Division /
Exponentiation * %

Unary Operators

Multiply by +1 +

Multiply by -1 -

In Fortran, statements can contain expressions consisting of a combination
of constants, variable names, and operators. Algebraic expressions such as

Xx=a+b
x=y+3

can be translated directly into Fortran. Consider program fragment P-3.4. A and
B are first assigned values of 2 and 4. Then X is assigned the value A+B. The
value of X is now 6. In the next line, Y is assigned the value of X; Y now has the
value 6. In the final line, X is assigned the value Y+3. X now has the value 9.

P-3.4 (fragment)

REAL X, Y, A, B

.0
.0
+ B

L[| I
KX PN

+ 3.0

X KXW
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In the examples in P-3.4, the = sign means
“assign the value of the expression to the right of the
= sign to the variable name to the left of the =
sign.” The = sign is called an assignment operator.
A statement containing an assignment operator is
called an assignment operation or an assignment statement. The general syntax
of the assignment statement is

assignment operator
assignment operation
assignment statement

variable name = expression consisting of constants,
variables, functions, and operators

(We haven’t discussed “functions” yet, but we will in Chapter 6.) The executable
statements in P-3.4 are all examples of assignment statements. Note that the only
thing that can appear on the ieft side of an assignment operator is a single variable
name.

“Assigning” a value has an obvious English-language interpretation that is
not too -different from the technical programming-language interpretation.
However, the fact that the Fortran assignment operator is an = sign (it could easily
be something else) does not mean that an assignment operation is the same thing
as an algebraic equality. The specific programming-language interpretation of an
assignment operation is very important.

An assignment statement means: Evaluate the expression on the right side
of the assignment operator and place the result in the computer memory
location associated with the variable name on the left side of the assignment
operator.

Because of this interpretation, you need to be careful about how you think about
and write assignment statements.

First of all, it is a serious mistake to associate the = sign in Fortran with
its meaning of “equality” in the algebraic sense. For one thing, only a single
variable name can appear on the left side of an assignment operator. So, for
example, the algebraic expression x + y = z + 3 is perfectly reasonable because
it expresses the symbolic equality between x + y and z + 3, but the Fortran
statement

X +Y =12+ 3 !makes no sense

makes no sense at all and is not allowed under any circumstances.

.There s another important dlfferfence betw.een I uninitialized variable I
an assignment statement and an algebraic expression.
Note that the variables A and B are assigned
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numerical values in P-3.4 before the statement X=A+B. This is because it is
necessary for A and B to have values in order for the assignment statement to be
executed correctly. To put it another way, the assignment statement X=A+B
doesn’t express a symbolic relationship between A and B in the algebraic sense;
rather, it indicates an operation whereby the sum of the memory locations
associated with A and B will be placed in the memory location associated with the
variable X. If A and B don’t have values, they are “uninitialized,” and the results
can be unpredictable. Sometimes a programming language or a particular compiler
will assume that uninitialized variables have the value 0, but you should never
assume that this will be the case. The programming rule, to which you should
NEVER make exceptions, is

Variables should not appear on the right side of an assignment operator
until they have been given a value as a result of a previous statement.

Variables may be given a value by appearing on the left side of an
assignment operator, by being given the PARAMETER attribute, by appearing in
a DATA statement, or as a result of a READ statement.'® In P-3.4, A and B have
been assigned values by placing them on the left side of an assignment operator.
You could also let the user provide values for A and B in response to a READ
statement.

3.5.2 Assignment Statements That Increment Variables
Because of the way the assignment operation is defined, the code fragment in P-

3.5 makes perfect sense in Fortran, even though the second assignment statement
doesn’t make algebraic sense:

P-3.5 (fragment)

INTEGER Xx

X 3
X x‘+ 1

First x is assigned the integer value 3. In the second statement, the
expression on the right side of the assignment operator is evaluated—it has a
value of 4. Then this result is placed in the memory location represented by x.

197 and B could also be given a value as output from a subroutine, as we will discuss in
Chapter 7.
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(In general...)

X = expression
Evaluate _(temp)

x
& store

(A simple assignment...)

x=3

Evaluate _(temp)
:|—>| : |-> X

& store

(Incrementing a variable...)

X=X+1
Evaluate (temp)
-X +1 -3+1 =4 X
& store

Figure 3.2. How assignment statements are
used to initialize and increment a variable

That is, the original value of x, 3, is replaced (or “overwritten’) by the new value.
This process is illustrated in Figure 3.2.

Incrementing a variable (not always just by 1) is a very common
assignment operation in programs, and we will use it often in problems throughout
the text. Recall that we defined two pseudocode commands in Chapter
2—INITIALIZE and INCREMENT—to emphasize the special purpose of these
two kinds of assignment statements. In pseudocode, the statements in P-3.5 would
be written

INITIALIZE index = 3
INCREMENT index = index + 1

We will use the INITIALIZE and INCREMENT pseudocode commands again
when we discuss loop structures in Chapter 6. Note that the INCREMENT
command also includes “decrementing” a variable in an assignment statement. The
Fortran statements

3
index - 1

index
index

/']

result in index having a value of 2.
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3.5.3 Mixed-Mode Calculations

The observant reader will notice that the numerical constants in P-3.4 are
expressed as real constants; for example,“2 . 0” rather than “2”. This is because
you must be careful to distinguish between real numbers and integers in Fortran.
All the variables in P-3.4 are declared as REAL and therefore all the operations
involve real, as opposed to integer, arithmetic.

Assuming X and Y are REAL variables, as they are in P-3.4, the Fortran
statement

X=Y+3
will produce the same result as
X =Y+ 3.0

However, the first of these two statements is a
mixed-mode expression that combines two
different data types, INTEGER (the constant 3)
and REAL (the variable Y), in the same expression. This statement requires your
compiler to convert the integer constant on the right side of the assignment
operator to a real number when it is added to Y.

Consider also the statement

I ‘mixed-mode expression I

from P-3.4. This statement, too, will produce the same result as

>
I
[ ]
o

Again, in the first of these two statements, your compiler is required to perform
a type conversion to convert the integer constant on the right side of the
assignment operator to a real number when it is assigned to the REAL variable A
on the left.

In almost all cases, it is preferable to avoid mixed-mode expressions. Why?
Because these operations can cause problems! Consider P-3.6, which contains
several examples of mixed-mode calculations.



110 = 3. Getting Started with Fortran: Writing Simple Programs

P-3.6 [MIXED.F90]

PROGRAM mixed

IMPLICIT NONE
INTEGER 1i,]j
REAL x,y

x=2/3%4,
PRINT *,x
x=2%*4./3
PRINT *,x

END

Running P-3.6

5 ¢ 2.0000000
2

0.0000000E+00
2.6666667

How do you determine what value will be printed for x in the first PRINT
statement? The variables i1 and j are integers, but x is real. With i=5 and j=2,
the result of the division is 2, not 2.5, because the remainder is lost in integer
division. Therefore, even though x is real, it has a value of 2.0 after the type
conversion, not 2.5! This result is due to the fact that the first step in an
assignment operation is to evaluate the expression on the right side of the
assignment operator. At the time this evaluation is carried out, Fortran doesn’t
“know” that you intend to store the result of the evaluation in a location
associated with a REAL variable. Hence it has no way of knowing that you
probably wish the division operation 5/2 to be treated as an operation involving
REAL constants. Similarly, the statement i=x/y results in i being assigned a
value of 2 because i is an integer and can’t have a value of 2.2.

What results will be displayed by the third and fourth PRINT statements?
Clearly, the statements x=2/3*4 . and x=2*4. /3 are “algebraically” equivalent,
but they do not produce the same value! The integer division 2/3 in the first of
these statements is truncated to 0, so x eventually will be assigned a value of 0.
In the second statement, the result of the multiplication operation 2*4 . is the real
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value 8.0. When this real value is divided by the integer value 3, the result is the
real value 2.666667.

Programming Tip

The interpretation of mixed-mode expression varies from language to
language. In Fortran and C, the data types of the numerator and denominator
determine the result of division; 5/2 equals 2 because 5 and 2 are both
INTEGER constants. In Pascal, for example, the operator and not the operand
determines the data type of the result. Hence, in Pascal, 5/2 yields a value of 2.5
rather than 2 and the assignment of this result to an integer data type isn’t
allowed. This kind of language dependency is another good reason to be careful
about using mixed-mode expressions carelessly.

Although this discussion may seem a bit theoretical, the way Fortran
evaluates mixed-mode expressions and performs type conversions can have
important practical consequences. Consider these Fortran statements intended for
converting back and forth between centigrade (C) and Fahrenheit (F) degrees,
assuming both C and F have been declared as type REAL:

Cc
F

5/9*(F - 32) !wrong!
9/5*C + 32 !wrong!

These statements look like straightforward translations of algebraic expressions.
However, both statements produce incorrect results. The conversion from
Fahrenheit to centigrade gives a value of O for every value of F because the
division operation 5/9 equals 0. The second expression is equivalent to F=C+32
because the division operation 9/5 equals 1. These expressions should be
written'!

C
F

5./9.%(F - 32.)
9./5.*C + 32.

Although it is possible to develop a set of rules for determining the results
of mixed-mode calculations, it is not worth the effort for a beginning programmer.
It is easy to make mistakes with these kinds of calculations, and the resulting
errors are very hard to track down in a program because, from Fortran’s point of
view, there is nothing wrong with them. To avoid these kinds of errors, it is
usually a much better idea to avoid mixed-mode calculations. This means

”Actually, writing either the 9 or the 5 as a REAL constant will produce the desired
result, but it is better style to write all the values as REAL constants.
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Usually, all the variables, functions, and constants appearing in a Fortran
assignment statement should have the same data type.

There are a few reasonable exceptions to this rule. Program P-3.7 illustrates
a typical example in which the average of three real numbers is calculated by
dividing the sum of the three numbers by the integer value 3; this mixed-mode
calculation won’t cause any problems.

P-3.7 [AVERAGE. F90]

PROGRAM average

IMPLICIT NONE

REAL X,y,z,avg

INTEGER n

PRINT #*,' Give three numbers: '

READ *,x,y,2

n=3

avg=(x+y+z)/n

PRINT *,'The average of these three numbers is ', avg

END

Running P-3.7

Give three numbers:
3.3 5.24.9 _
The average of these three numbers is

4.4666667

The number of values n is an INTEGER. However, the mixed-mode expression
(x+y+z) /n is evaluated properly because x, y, and z are REAL variables and
the result, avg, is also a real number. That is, the result of dividing a REAL
variable by an INTEGER variable is a real number.'

2The interpretation of mixed-mode expressions through “type coercion” is a topic of
interest in a more theoretical study of programming languages. For our purposes, it is sufficient
to understand the examples given in P-3.6 and P-3.7. When we discuss Fortran intrinsic functions
in Chapter 4, you will see that the mixed-mode expression in P-3.7 could be rewritten as
(x+y+2) /REAL(n), which might be a better choice because the INTEGER-to-REAL conversion
is done exnlicitly.
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Programming Tip
Remember that the statement

PRINT *,'The average of these three numbers is ', (x+y+z)/n

in P-3.7 is permissible. In that case, the variable name avg need not be declared
and the assignment statement in which it appears is not required. Whether this
kind of “short cut” is a good idea depends on the program in which it is used.

3.5.4 Using Compatible Constants

As we have indicated in the previous discussion of mixed-mode expressions and
type conversions, some mixing of data types is allowed in Fortran regardless of
whether this is a good idea. However, some incompatible assignments simply
aren’t allowed. Consider Fortran program fragment P-3.8:

P-3.8 (fragment)

REAL a

CHARACTER*8 b

a='computer' !Syntax error.
b=3.0 !Syntax error.

It should be obvious that the code in P-3.8 doesn’t make any sense. If a is a
REAL variable, then it cannot be assigned the value of a character constant.
Similarly, b can’t be assigned a numerical value. These assignments will cause
your program to crash because it cannot perform the requested operation."
However, some incompatible assignments are acceptable to your Fortran compiler
even when they can cause problems in your program. Consider code fragment
P-3.9:

P-3.9 (fragment)

REAL a
INTEGER b
a=3

b=3.3

Byf you study the C programming language, you will find that assignment statements in
that language allow type conversions that don't “make sense” in Fortran.
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The assignment a=3 won’t cause any problems in a program because the integer
value 3 will be converted to a real value, but b=3. 3 results in 3.3 being truncated
to 3; this is almost surely not what you wish to happen. This problem was noted
previously in the discussion of keyboard input. Remember:

In general, constants should be assigned only to identically typed variables.

In some cases Fortran will object if you try to make incompatible assignments
with constants, but in other cases Fortran will be perfectly happy to return answers
that won’t be what you expect. Be careful!

3.5.5 Operator Precedence

Expressions evaluated as part of an assignment statement can sometimes be quite
complicated. When Fortran evaluates an expression, the process follows specific
rules so that there can never be any ambiguity about what the value of the
expression should be. Fortunately, the rules are similar to what you should have
learned in algebra. Consider code fragment P-3.10:

P-3.10 (fragment)

REAL X,Y,A,B

LU
C D RNDW

wooo

*

>

s oHKm o X
oo .

What is the value of Y? The answer depends on the order in which Fortran
performs the indicated arithmetic operations. If all the operations are performed
in order from left to right, then in algebraic notation, y = (2 + 4)3 = 18. However,
this is not the case. In fact, y = 2 + 12 = 14. Why? Because in the same sense
that the algebraic expression y=a+bx implies a specific order of operations in
which the multiplication is done first, Fortran assigns priorities to operators and,
if there are no parentheses present, evaluates operators with the highest priority
first. The evaluation priorities for arithmetic operators are given in Table 3.4.
First Fortran reads through an expression from left to right and performs
all the exponentiation operations. Then it reads through the expression again and
performs all the multiplications and divisions. Finally, it reads the expression
again and performs all the additions and subtractions. In P-3.10, the operation B*X
is performed first. The result of that operation, the value 12.0, is temporarily
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stored, and on the second pass through the expression, the operation A + 12.0 is
performed.

Table 3.4. Priority for Arithmetic Operator Evaluation

Operator | Evaluation Priority

* % First
* / Second
+, - Third

Here is another Fortran statement that involves all the operators:
Y = A+B*X**2/A-B

Using Table 3.4 and the values in P-3.10, try to calculate the value of Y yourself
now. After the first pass through the expression, the exponentiation operation has
been completed and the expression is equivalent to the algebraic expression

y=a+ (9b/a)-b
During subsequent passes, the expressions are equivalent to
y=a+@36/2)-b=a+18-b=2+18-4=16

Parentheses can be used to alter the order in which Fortran evaluates
expressions. For example, the Fortran assignment statement

Y = (A+B)*X
is not the same as
Y = A+B*X

for the same reason that the algebraic expression y = (a + b)x is different from
y = a + bx. In both algebra and Fortran, the parentheses force the addition
operation inside the parentheses to be performed first. Fortran expressions are
always evaluated from the innermost set of parentheses outward. For y=(a+b)x,
y = (2 + 4)3 = (6)3 = 18, and not 14, for the values used in P-3.10. Similarly, the
Fortran assignment statement

Y = A+(B*X)**2/A-B
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is not the same as
Y = A+B*X**2/A-B

because, in the former case, B*X is evaluated first and this product, not just X, is
squared.

Whenever you convert algebraic expressions into their Fortran equivalents,
you must be careful to use pairs of parentheses when they are required to produce
the desired result. Use of parentheses in a statement such as

Y = A+(B*X)

is unnecessary because the multiplication will be performed first even if the
parentheses aren’t there, but they may make your intentions more clear. However,
if you wish to translate the algebraic expression y = (a + b)x into Fortran, the
parentheses in the statement Y = (A+B) *X are essential because you are asking
Fortran to evaluate this expression in a way that overrides the normal operator
precedence.

Algebraic expressions are often written on more than one line; for example,

_ a+b

c+d

Remember that the translation of this algebraic expression into a Fortran
expression must occupy just one line. If you rewrite the algebraic expression as
X = (a + b)/(c + d), the Fortran translation is more obvious:

X = (atb)/(c+d)

All of these Fortran expressions are perfectly legal, but none of them gives the
same result or correctly translates the above algebraic expression:

X atb/c+d
(atb)/c+d

a+b/(c+d)

X
X

It is easy to misrepresent algebraic expressions in Fortran. Consider this
expression for one real root of a quadratic equation:

-b+y/b?-4ac
2a

Which of these Fortran implementations is correct, assuming that the expression
under the square root sign b® — 4ac is greater than or equal to zero?
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(a) Root=-B+(B*B-4.0*A*C)**0.5/2.0%A

(b) Root=(-B+(B*B-4.0*%A*C)**0.5)/2.0*A
(c) Root=(-B+(B*B-4.0*%A*C)**0.5)/(2.0%*A)
(d) Root=(-B+(B*B-4.0*%A*C)**0.5)/2.0/A

(a) is wrong because the entire numerator needs to be enclosed in parentheses.
This problem is corrected in (b), but both (a) and (b) are wrong because although
the A appears to the right of the /, it is still not part of the denominator of the
expression, as required. Either (c) or (d) will give the correct result.

A common syntax error in Fortran is to leave sets of parentheses
unbalanced in complicated expressions. The rule is that

In any expression, the number of left parentheses must equal the number
of right parentheses.

The Fortran statement
Y=((A+B)*X+3.0*C
cannot be evaluated because a right parenthesis is missing. You might intend
Y=( (A+B)*X)+3.0*C
or
Y=((A+B)*X+3.0)*C
or even
Y=( (A+B)*X+3.0*C)

even though the outer parentheses serve no purpose in the first and third
possibilities. In any event, you cannot expect your Fortran compiler to guess your
intentions!

Here’s one final point about operator precedence. When two or more
exponentiation operations appear consecutively in an expression, the operations are
performed in right-to-left order rather than in left-to-right order. This is
“backward” relative to the usual order in which operators are evaluated and can
cause problems if you’re not careful. The expression a**b**c is equivalent to
a** (b**c) and, in general, is not equal to (a**b)**c. For example,
2*% (3*%*3) evaluates as 2**27, but (2**3)**3 becomes 8**3. In such
cases, it would be a good idea to use parentheses to make clear the order in which
you wish the exponentiations to be performed.
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3.6 Program Termination

As noted earlier in this chapter, the END statement, which marks the end of a
source code file, is the only required statement in a Fortran program. The general
syntax is

END [PROGRAM |[program_name]]

The keyword PROGRAM is optional. If the PROGRAM keyword is present, then
program_name may also appear. We will not use the PROGRAM keyword option
in this text.

The STOP statement terminates program execution. It can appear anywhere
in a program before the END statement, and a program can include more than one
STOP statement. The syntax forms for the STOP statement are

STOP
STOP ddddd
STOP 'string constant'

where ddddd is an integer of up to five digits.

If an integer of up to five digits or a string constant is included in the
statement, it is printed after the word STOP. Hence the STOP statement can be
used not just to terminate a program, but also to generate a message that indicates
where termination occurred. For example, the statement

STOP 'Normal program termination.

at the end of a program could be used to indicate that the program executed and
terminated normally.

In the complete programs given in this text, we will rarely use a STOP
statement because good programming style should make it unnecessary to
terminate a program anywhere except at the end. (One example of an appropriate
use appears in Program P-6.13 in Chapter 6. In that case, a STOP statement is
used to terminate a program and print a message when a user enters inappropriate
input.)

However, the STOP statement is extremely useful for developing and
debugging programs. Initially, you can include PRINTSs to display intermediate
results at several critical points in your program. Follow each such PRINT or
group of PRINTSs by a STOP statement, perhaps including an explanatory message
about where you are in your program. Then, as you verify the operation at each
one of these critical points, you can remove the PRINTSs and the STOP. Of course,
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you can approach this the other way around. If your completed program doesn’t
work, you can temporarily insert PRINTs and STOPs anywhere you think they
might be useful in locating the problem. For completed programs, however,
multiple STOPs should be avoided as a matter of programming style.

3.7 Compiling and Executing a Program
3.7.1 Source Code Portability

As you now know, Fortran source code must be written according to a very rigid
set of syntax rules. The unforgiving nature of source code syntax often seems
excessively burdensome for beginning programmers. However, the advantage of
these rules in a standardized language is that source code is highly portable from
one computer and compiler to another. As noted earlier in this chapter and
previously in Chapter 2, any Fortran 90 source code you write during a course
based on this text can probably be compiled and used with no (or very minor)
changes on any other computer that has a Fortran 90 compiler.

Why is your source code only “probably” portable to another computer? To
answer this question, consider the Fortran’s predecessor, Fortran 77, which has
been around for a long time—as you would guess, since the late 1970s. Since
then, the authors of compilers have added many new features to Fortran 77, some
to meet specific programming needs and others in response to concepts
implemented in newer languages such as Pascal and C. These nonstandard
extensions differ from compiler to compiler, so that a program written to take
advantage of extensions available on one compiler will not work on a compiler
that does not have those same extensions. Some extensions, such as those allowing
variable names to be written in both uppercase and lowercase letters and to be
longer than six characters, are almost universal, but others are not.

With the implementation of a new Fortran standard, compatibility is at least
temporarily less of an issue for programs written in the Fortran 90 language.
Therefore, all the programs in this text should execute on any computer equipped
with a Fortran 90 compiler, although it is not practical to guarantee 100 percent
compatibility. The only likely incompatibility lies in the syntax of file names,
which arises from the fact that the syntax for naming files is system dependent.

However, the “programmer’s market” demands that led to extensions to
Fortran 77 will eventually be applied to Fortran 90. Although this new standard
undoubtedly has its own weaknesses, not nearly enough time has elapsed for either
its weaknesses or its strengths to be fully determined or appreciated; even though
it is called Fortran 90, compilers were not commercially available until 1993. It
is inevitable that extensions to the Fortran 90 standard will cause the same kinds
of compatibility problems that are now evident in Fortran 77. Likely areas for
extensions include object-oriented programming and, especially for large science
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and engineering applications, language extensions to take advantage of parallel
processing and supercomputers.

There are two additional points of interest about language compatibility.
First it is typical for Fortran texts to adhere to the language standard in order to
ensure their widespread adoption. However, this means that the Fortran 77
language students have been taught for the past several years is only a restrictive
subset of the language as it is used in practice. It will be several years before this
will be a significant problem for Fortran 90 texts.

Finally, Fortran 77 language extensions affect the compatibility between
Fortran 77 programs and Fortran 90 compilers. Although the standard requires that
Fortran 90 compilers accept Fortran 77 programs, this requirement applies only to
programs that adhere to the Fortran 77 standard. As a practical matter, this means
that many programs written with nonstandard pre-Fortran 90 compilers will
require modification before they can be compiled under Fortran 90.

3.7.2 Compilation and Execution

As mentioned briefly earlier in this chapter, a source code file is often referred to
as a “program.” This is somewhat misleading because the contents of a source
code file need to be translated into computer-specific machine instructions before
your computer can- actually perform any operations. It is this translated file that
might more properly be called a program because this is the set of instructions
that is used directly by your computer.

Regardless of what kind of a computer system you are using, you and your
Fortran environment will need to perform several specific tasks in order to “run”
a program. These are shown schematically in Figure 3.3.

First, the Fortran compiler checks your source code for syntax errors. If it
finds errors, it prints (sometimes helpful) messages and stops. You must then fix
the errors and recompile the source code. When the compilation is successful, the
Fortran environment creates an object file. It links this object file with any Fortran
libraries needed by your program, as well as with object files from other program
units. (Most of the programs in this text will not need to access other program
units.)

Finally, the Fortran environment creates an executable file and loads it into
computer memory, where the program executes. Your instructor will provide you
with specific instructions for carrying out this process on the computer you are
using for this course. For the purposes of a course based on this text, you do not
need to understand any more than the mechanics of compiling and executing a
program. The details are more appropriate for later courses in computing.
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| Write source code. |

Modify source code.

I Compile source code. l

Yes

Examine error
messages.

No
| Create object file. | | Fortran libraries (object files) l

|Other libraries (object files)|

|

| Link with other object files. !

| Create executable file. |

| Load executable file into memory. I

Figure 3.3. Steps to create an executable program

If you have written programs in other languages in PC-based environments,
you may wonder how those environments make compiling and executing a
program look so easy. The answer is that the required steps are still the same, but
they are taken care of automatically. In some environments, for example, your
source code is automatically checked for syntax errors as you write it. Code may
be compiled “on the fly” as you write it, and a link to other program libraries may
have been done ahead of time. This makes compilation and generation of an
executable program file appear virtually instantaneous. With Fortran, you may
have to perform each of these steps manually by typing an appropriate sequence
of commands. In some cases, you may be able to use “batch” files that simplify
the process.

3.7.3 Saving Output from Your Programs

The programs we have di.scussed up .to now produce simple I parallel port l
output, and you can certainly transcribe the results by hand
when you need to save them. However, it is much more useful
to be able to save a permanent record of a program’s activities, including your
typed responses to prompts for input. An easy way to do this is to “dump” the
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contents of your screen to a printer. On PCs, this is accomplished by pressing the
PrtScr key, usually located near the upper righthand corner of your keyboard.
This action assumes that your computer is connected to a printer at the default
port (usually the parallel port at address LPT1). On a UNIX system, you can use
the script command to copy everything that appears on the screen into a text
file; check the online documentation by typing man script.

The PC method is adequate when the entire output from a program fills no
more than one screen on your computer’s monitor, and it is a convenient way to
record your work when you hand in programming assignments. It will be less
satisfactory when your programs get larger and generate more output than will fit
on one screen. In Chapter 5 we will discuss how to save the output from programs
in a permanent file.

3.8 Applications

In this section, and in similar sections in later chapters, we will develop programs
that use and sometimes extend the material discussed in the chapter. Hopefully,
even these relatively simple programs will help you solve the kinds of problems
you will encounter in your other introductory science, engineering, and
mathematics courses. It will always be helpful for you to read the problem
statement and then try to design the algorithm and write the program on your own.
The two applications in this chapter follow the simple input—calculations—output
format used in P-3.1 at the beginning of this chapter.

3.8.1 Maximum Deflection of a Beam Under Load

1 Define the problem.

Consider a beam of length L feet supported at each end and subject to a
downward force of F pounds concentrated at the middle of the beam. The
maximum downward deflection of the beam (at its middle) is -FL*/(48EI). Write
a program to calculate the maximum deflection if L, F, E, and I are specified as
input. For a particular steel I-beam (a beam with an I-shaped cross section),
E=30%10° 1b/in* and 1=797 in*. The deflection of such a beam as a function of
length is illustrated in Figure 3.4. (This problem appeared previously as an
algorithm design application in Chapter 2.)
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Figure 3.4. Deflection of a steel I-beam under a central load

2 Outline a solution.

1. Specify L, F, E, and I as user input. Convert length from feet to inches.

2. Calculate deflection according to the above formula. The sign of the deflection
can be either positive or negative as long as it’s understood that the deflection is
in the downward direction.

3. Display the output.

3 Design an algorithm.

DEFINE (L, F, E, I, and deflection as real numbers.)
WRITE (Give length (ft), force (Ib), elasticity (Ib/ir?)
and moment of inertia (in®))
READ (L,F,E,l)
ASSIGN L = L+12.0 (convert to inches)
deflection = -F+L°/(48El)
WRITE (deflection)
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1 Convert the algorithm into a program.

P-3.11 [BEAM.F90]

PROGRAM beam

Calculate maximum deflection of a beam supported at both ends,
with the load concentrated at the middle of the beam.

IMPLICIT NONE
REAL length, force, elasticity, moment_of_inertia,deflection

PRINT *,' Give length (ft), force (lb): '

READ *,length, force

PRINT*,' Give elasticity (1lb/in”2), mom. of inertia (in"4):'
READ *,elasticity,moment_of_inertia

length=length*12.0

deflection=&
-force*length**3/(48.0*elasticity*moment_of_inertia)

PRINT *,'The deflection (in) is: ',deflection

END

Running P-3.11

Give length (ft), foi‘c‘e (1b):
20 50000 :
Give elasticity {lb/xn”Z}, moment of 1nertla (in”é}

30e6 797
Tha deflectlon (in) is -0.6022584

5 Verify the operation of the program.

You probably don’t have an intuitive feel for what the answer should be
for a beam having the values of elasticity and moment of inertia specified in the
problem statement. As indicated in the sample output, and according to Figure 3.4,
the maximum downward deflection of a 20-foot section of such a beam when it
is subjected to a load of 50,000 pounds concentrated at the middle is about 0.6
inches. What would you think about using this formula if it returned an answer
of 0.001 inches? How about 10 inches? See this application in Chapter 2 for
additional discussion.
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Problem Discussion

P-3.11 is a straightforward program, but there is one interesting Fortran-
related detail. In the expression for calculating the deflection, the expression
length® is translated as 1ength**3 rather than length*+*3. or, equivalently,
length**3.0. Is there any difference between these two Fortran expressions?
Both will give the same answer, but the first choice makes it possible for a
Fortran compiler to calculate (length)® the “easy” way, just by multiplying
length by itself two times, because the power is expressed as an integer. The
other two expressions, in which 3 is expressed as a real number, will force Fortran
to invoke a more sophisticated, and hence more time-consuming, algorithm to
evaluate the expression. Such an algorithm is required when a power can’t be
expressed as an integer, but should be avoided when it can. That is, x>2 can’t be
calculated by multiplying x by itself an integer number of times, but x* can. Thus
x>? must be represented as x**3 . 2, but x**3 is preferable to x**3.0." If x is
negative, then only integer exponents are allowed.

3.8.2 Relativistic Mass and Speed of an Electron

This program requires some minor algebraic manipulation of the equations given
in the problem to solve for the required values. This particular problem has been
chosen specifically because the quantities involved may be unfamiliar. Hopefully,
this unfamiliarity will encourage you to be careful when you translate this and
every other problem statement into a program, and to be especially diligent when
you verify that program’s operation.

1 Define the problem.

An electron accelerated by a voltage V in an electron gun acquires an
energy of Ve = mc? — m,c?, where

charge on an electron e = 1.602x10"° coulomb
rest mass m, = 9.109x10°' kg
speed of light c = 2.9979x10® m/s

The speed v_of an electron of relativistic mass m kg is obtained from
m/m, = 1/\/1—(v/c)2. Write a program that prompts the user to supply a voltage
and calculates the relativistic mass and speed of an electron. (Sample answer: for
a voltage of 1.5x10° V, m=3.58x10* kg and v=2.9x10° m/s. See Figure 3.5.)

“The expression x" can be evaluated as ¢!

both be evaluated by using a series expansion.

. The expressions In(x) and e(z) can
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Figure 3.5. Relativistic mass and speed of an electron

2 Outline a solution.

The terminology of this problem may be unfamiliar, but the algebraic
manipulations required are straightforward. The “relativistic mass” is a
consequence of relativity theory, which predicts that mass is not a constant
property of matter, but increases with speed.

1. Specify the voltage of the electron gun.

2. Calculate the mass first, then the speed, using the equations given in Step 1.
Solve the first equation for mass. Then solve the second equation for speed.

3. Display the output.

3 Design an algorithm.

DEFINE (All variables are real numbers. The rest_mass,
charge e, and speed of light ¢ are constants)

WRITE (prompt for voltage)

READ (voltage)
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ASSIGN mass = (voltagee + rest_massec?)/c?
velocity = ¢[1 - (rest_mass/mass)’]"?
WRITE (mass and velocity)

4 Convert the algorithm into a program.

P-3.12 [REL_MASS.F90]

PROGRAM Rel_Mass
! Calculate relativistic mass and speed of an electron.

IMPLICIT NONE

REAL e electron charge, Coulomb
REAL c ! speed of light, m/s
PARAMETER (e=1.602e-19, c¢=2.9979e8, rest_mass=9.109e-31)

REAL rest_mass,relativistic_mass ! kg
REAL voltage ! volt
REAL speed ! m/s
!
]

PRINT *,' Give electron gun voltage in volts: '
READ *,voltage

relativistic_mass=(voltage*etrest_mass*c**2)/c**2
speed=c* (1. - (rest_mass/relativistic_mass)**2)**0.5

PRINT *,'relativistic mass (kg) and speed (m/s): ', &
relativistic_mass, speed
END

Running P-3.12

Give electron gun voltage in volts:
le6

relativistic mass and speed: 2.6933944E-30 2.8212490E+08

5 Verify the operation of the program.

These calculations are easy to implement in Fortran, but it is imperative to
check them by hand, using a calculator to do the arithmetic. Be careful when you
calculate the exponents on powers of 10. It is easy to accept wrong answers when
the numbers are so large, or small, that it is difficult to develop a “feel” for them.
If you have never had an introductory physics course (or even if you have!), the
numbers may be essentially meaningless, so a wrong answer will look as
reasonable, or unreasonable, as the right one.
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3.9 Debugging Your Programs
3.9.1 Programming Style

It’s important to pay attention to details in even the simplest program. Every
Fortran program should have a descriptive name and, when reasonable, that name
should be the same as the file name under which the source code is stored on your
computer. (This is easier on some systems than others.) Explicit typing for every
variable should be enforced through use of the IMPLICIT NONE statement.
Comments should be used to describe and give units for all variable names
corresponding to physical quantities. The PARAMETER attribute should be used
to define basic physical and mathematical constants, as well as other values that
can be determined ahead of time and shouldn’t be changed while the program is
running. Input, calculation, and output sections of the program should be clearly
separated, often by blank comment lines. Comments should be used liberally to
explain what the program does.

Algebraic expressions should be translated into Fortran in a straightforward
manner. Although it is sometimes possible to simplify algebraic expressions, it is
not usually worth sacrificing clarity for brevity just to save a few arithmetic
operations. Parentheses can sometimes help to clarify algebraic expressions even
when they’re not required.

Straightforward implementation of an algorithm is always preferred over
“clever” but more obscure solutions. Although it is sometimes possible to improve
the performance of large and computationally intensive programs by optimizing
the source code, this is wasted effort for the kinds of programs you will be writing
in a course based on this text (even if you knew how to do it).

When a program requests input from the user, the prompt for input should
describe specifically what actions are expected, including a description of the
appropriate physical units. Output statements should contain a description of what
the output means, including physical units, where appropriate.

While a program is being developed, it can contain several temporary
PRINT statements that “echo” program input and display the results of
intermediate calculations. As a trivial example, you could add the line

PRINT#*, 'New length: ', length

after the statement length=1ength#*12. 0 in P-3.11, just to make sure that the
conversion from feet to inches has been done properly. You won’t find many
examples of these temporary statements in this or any other text because they are
removed when the program is complete. Nonetheless, they are as essential to good
programming style as the code remaining in the final version of any program you
write.
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3.9.2 Your Programs Will Often Contain Errors

There is no shortage of problems that can arise in Fortran programs. You can
minimize errors by being careful with algorithm design and following good
programming practice as described in this chapter and summarized in the previous
section. However,

No amount of planning can prevent errors in programs.

This fact will never change, no matter how proficient a programmer you become.

The kinds of errors beginning programmers worry about the most are those
that prevent their programs from compiling or executing successfully. It is
discouraging to write programs that don’t work, and it probably isn’t very
comforting to be told that even experienced programmers expect only the simplest
programs to work the first time they try to compile and execute them.

A generation ago, when Fortran programs were written on punch cards and
submitted in “batch” mode to a mainframe computer at a (perhaps remotely
located) computer center, a single misplaced character could mean a delay of
hours or days. With the nearly instantaneous error detection and feedback provided
by modern interactive computing environments, it is no longer worth the extra
effort required to write a program that is correct in every syntax detail before you
try to compile and execute it for the first time. It is usually more efficient to write
source code using reasonable care and then fix whatever errors the compiler
detects.

3.9.3 Some Common Errors

After you have discovered that your program doesn’t
work, what then? First you need to be aware of the
difference between compile-time errors and run-time
errors. Compilation errors result from using incorrect
syntax when you create your program’s source code. Execution (run-time) errors
can occur only after your program is free from syntax errors. They occur once
your program is running and attempts to execute an instruction that doesn’t make
sense in context, or that results in an illegal operation.

Here are some common programming errors, grouped as compilation,
execution, or logical errors. It is a mistake to think of this list as a place to look
only after you have a problem. You can save yourself a lot of time and prevent
future problems by reading through this list before you write your next program.

compile-time errors
run-time errors
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Compilation Errors

1. Using unbalanced parentheses

Whenever you use parentheses to clarify an expression or to force your
compiler to evaluate an expression in a particular way, the number of left
parentheses must equal the number of right parentheses.

2. Undeclared variables

This is a “good” error because it helps you find misspelled variable names
and variables that you have not yet associated with an appropriate data type. You
can expect this helpful error message only if you always use the IMPLICIT
NONE statement, as discussed in this chapter.

3. Misspelled keywords

Because your compiler doesn’t know how to interpret statements with
misspelled keywords, it may not have anything helpful to say about how to fix the
statement. If you are using the IMPLICIT NONE statement, your compiler may
interpret the keyword as an undeclared variable. Remember that spaces embedded
in most keywords are not allowed.

4. Nonexecutable statements appearing after executable statements

Even if individual statements you write are free from syntax errors, they
can still generate errors if they are placed inappropriately within your program.
Remember that nonexecutable statements must precede all executable statements.
(Comment lines can appear anywhere.)

Execution Errors

1. Arithmetic errors

By far the most common arithmetic error is dividing by zero. For example,
the statement Y=A/B cannot be evaluated if B equals 0. Of course you didn’t
mean for B ever to equal zero. Perhaps you haven’t yet given B any value at all;
in that case, your compiler may assume that B equals zero. Some compilers may
actually “allow” division by zero, but won’t allow the resulting value, which is
meaningless, to be used for anything. In this case, the error may be harder to
isolate.

2. Finding illegal data during a READ

The most common action that produces this error is responding with an
inappropriate numerical value. For example, if you write a program that asks a
user to respond to this prompt,



3.9 Debugging Your Programs = 131

How much money do you have in your account?

and the user responds, $1000, this will generate an error because Fortran doesn’t
understand that $1000 is a number. You can minimize this problem by changing
the prompt to read,

How much money do you have in your account? $

so the user will understand that the $ sign shouldn’t be typed as part of the
response.

Another potential source of trouble is using punctuation in numbers. For
example, if you have $10,000 in a bank account, you might type 10,000 in
response to the above prompt instead of 10000. Usually, your program will
assume that you have entered two numbers instead of one—10 and 0—separated
by commas, and it will simply ignore the extra value. As a result, your program
will assume that you have $10 in your account instead of $10,000. Obviously, this
is a potentially serious problem for a program that processes financial transactions!

3. Not finding enough data.

This occurs when you don’t provide as many values as your program
expects. If you’re reading data from an external file, as we will discuss later in the
text, your program will crash and produce a message something like “attempt
to read past end of file.” When you are providing keyboard input,
your program won’t crash. This can be a very puzzling error because your
computer doesn’t provide any kind of error message. Instead it simply waits
patiently for you to complete the required response. You can avoid this problem
by remembering that a prompt for information must clearly reflect the program’s
demands.

Note, by the way, that it’s OK—from Fortran’s point of view, at least—to
provide too many values. Your program will simply ignore the extra ones.

Logical Errors

Are your problems over after your programs are free from compilation and
execution errors? Possibly not. The most dangerous kinds of programming errors
are logical (algorithm design) errors. Programs with logical errors often run
smoothly and appear to be working properly. It is up to you to determine, based
on your examination of the program’s output, whether the answers are actually
correct.

Even if you assume that your algorithm design is logically correct, there
are still ways for errors to creep into your programs. It’s not possible to list them
all, because students have an uncanny ability to devise new logical programming
errors. However, here are some common pitfalls:



132 = 3. Getting Started with Fortran: Writing Simple Programs

1. Giving incorrect information in a prompt for keyboard input

In science and engineering problems, physical units are always important.
Therefore, a prompt for input should always indicate the units of quantities to be
supplied by the user. Fortran doesn’t care about these kinds of inconsistencies, but
you should if you want your calculations to be correct!

2. Using improper units in calculations

This is related to the previous logical pitfall. As everyone who has taken
an introductory engineering or science course knows, one of the most frequent
causes of wrong numerical solutions to problems is improper or inappropriately
mixed units. It’s bad enough to make these kinds of errors with a pencil and
paper, but the problem is compounded when they are embedded in programs.
Then, instead of making the mistakes just once, you can make them every time
you run the program.

It is this kind of error that makes validating the performance of your
program so important. Whenever you incorporate calculations with physical
quantities into a program, there is absolutely no substitute for comparing that
program’s output with sample calculations worked out carefully by hand or with
known results.

3. Using mixed-mode arithmetic and type conversions

Errors can arise from unanticipated results of mixed-mode arithmetic
operations and type conversions. (Recall program P-3.6.) Because of Fortran’s
automatic type conversions, mixed-mode arithmetic is allowed even when it
produces unintended results. As noted in the text, the best way to avoid these
problems is to avoid mixed-mode arithmetic and type conversions unless you
make a conscious choice to use them for a specific reason.

4. Using variables that have not been initialized or assigned a value

You should rever expect a compiler to assume a value for an uninitialized
or unassigned variable appearing on the right side of an assignment operation. The
most common assumption is that an uninitialized value will be zero, but you
should never assume that this will be true.

5. Providing a real number in response to a prompt for an integer
Consider this code:
INTEGER radius

PRINT *,'Give radius: '
READ *,radius
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Clearly, the program expects the radius to be given as an integer (because
radius is of type INTEGER), even though the prompt message doesn’t make
this clear. So 3 is an appropriate response, but 3.3 isn’t. Your compiler will
truncate 3.3 to 3; this will keep your program running, but it will produce
answers that are wrong.

One way to avoid this kind of error is to restrict your use of the INTEGER
data type. Many beginning programmers assume that just because numbers are
conveniently expressed as whole numbers without decimal points (in algebraic
expressions, for example), they should be declared as type INTEGER. Usually,
unless a variable is specifically intended to count events or “things,” it should be
declared as REAL. For example, suppose your program is intended to calculate the
average of three test grades. Your prompt might look like this:

Enter three test grades in the range 0-100:

and you might respond 83, 91, 77. These look like integers, but variables to
hold these values should be REAL. (Just let your program perform the type
conversion.) Why? Because, in general, the average of a list of whole numbers
won’t be a whole number (the average of these three numbers is 83 2/3, or about
83.66667), so all the calculations involving these numbers involve real arithmetic.

To summarize, it’s OK to enter REAL numbers without a decimal point, but

You should never enter INTEGER numbers as values with a decimal point
and digits to the right of the decimal point even if your compiler lets you
get away with it.

3.9.4 Forcing Your Programs to Fail

Part of verifying the proper operation of any program is trying to devise
conditions under which it will fail. Forcing your program to fail is analogous to
performing destructive testing on a physical mechanism; only by going through
this process can you be convinced that the mechanism, or program, will perform
reliably when it is used properly. In the same sense that a bridge is built to
withstand a specified maximum load, calculations in science and engineering
applications can often be made appropriately only within a specific range of input
values.

Once you have encoded a formula, however, a Fortran program is usually
perfectly willing to perform calculations with any set of input values; the only
common exception occurs when input values result in dividing by zero. If you
wish to limit the range of calculations, you may need to instruct your program to
reject certain input values. Later in the text, we will discuss the kind of syntax
that will make this possible. Within the constraints of the programming skills you
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have now, the best you can do is include limits for input values when you write
prompts for keyboard input. For example, the prompt

PRINT*," Enter a positive integer >0, NOT=0:"
is certainly more informative, and restrictive, than
PRINT*," Enter an integer:"

and the former statement should certainly motivate a user of your program to be
careful about the value she enters.

In general, you should always consider the maximum and minimum
possible values that your program might encounter, regardless of whether those
values are “reasonable.” You should also consider the effects of assigning a
variable a value of 0 even if you never intend that to happen, as well as the
effects of negative values in a program that is expecting positive values (or vice
versa). Only by trying these “unreasonable” values can you gain confidence in the
output produced by your program under “reasonable” conditions.

3.10 Exercises
3.10.1 Self-Testing Exercises

These exercises are intended to make sure you have a basic understanding of
material—especially the Fortran syntax—presented in this chapter. When the
exercises ask for Fortran statements or code fragments, it is good practice to test
your answers by trying them in a complete program. You should review
appropriate parts of the chapter if you have problems with any of these exercises.

Exercise 1. Referring to the table of ASCII characters in Appendix 1, find some
printable characters that cannot be part of a Fortran token.

Exercise 2. Design some comment lines to appear at the beginning of each of
your programs. These could include a course number and description, your
instructor’s name, and your name.

Exercise 3. Which of these are legal variable names? If they aren’t legal, why
not?

(@) X/Y () Y1995
(b) First Name (g) last;
(¢) right angle (h) The first dav of the new calendar vear
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(d) 2001_year (i) x_003
(e) _radius_ () print

Exercise 4. For each item, choose an appropriate data type and decide whether the
value could reasonably be given the PARAMETER attribute.

(a) e (the base of natural logarithms) (f) Avogadro’s number

(b) the period of an orbiting satellite (g) daily production of widgets
(c) social security number (h) telephone number

(d) weight per foot of a steel I-beam (i) number of hours in a week

(e) your grade on an exam (j) number of days in a month

For each item, write an appropriate type declaration statement and, where
appropriate, a PRINT statement to prompt a program user for input. The prompt
message should help the user enter the value correctly.

Exercise 5. Declare appropriate variables for a program that processes transactions
in a bank account. The quantities of interest include the date, the amount of the
transaction, and the type of transaction—‘“deposit,” “withdrawal,” or “service
charge.”

Hints: use a character “flag” to tell the program what kind of transaction
is to be processed. Write list-directed PRINT and READ statements that will help
the program user enter information correctly.

Exercise 6. Declare appropriate variables for entries on an order form. The
required information includes customer name, telephone number, credit card
number, item number, quantity required, and unit price. Write list-directed PRINT
and READ statements for obtaining this infomation from a customer. The
information about the customer needs to be given only once, but the customer
might wish to order several items.

You haven’t learned how to implement loop structures in Fortran, so you
can use a combination of pseudocode commands (LOOP...END LOOP) and
Fortran statements for this problem.

Exercise 7. Which of these algebraic expressions can be translated directly into
Fortran assignment statements in their present form, assuming that the variables
X, y, and c have previously been given values?

(@) z=(x*+y)
b))z =x*+y
(©)z=2x+3y+c
(d)z-1=4x73y
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For those expressions that can’t be written as Fortran assignment statements, how
could you rewrite them to “solve for z” in the algebraic sense so they can be
written as Fortran assignment statements?

Exercise 8. Translate the following algebraic expressions into Fortran statements.

KA
a) C = —
@ 47rd
N2
(b) A = 3646
N2 -
oM, - 2P
Vi™V,
Vi
1 |T
df=— |—
@ 2¢\ m

3.10.2 Basic Programming Exercises

Exercise 9. Write a source code “shell” that can serve as the starting point for all
your other programs. What three statements should be included in this shell?

Exercise 10. Modify program P-3.1 so that it also calculates and prints the surface
area and volume of a sphere with the specified radius. The surface area of a
sphere is 4nr* and the volume is 4mr’/3.

Exercise 11. Modify program P-3.2 so that it also calculates and prints the area
of the material required to construct an open rectangular container with the same
dimensions. That is, the container doesn’t have a top.

Exercise 12. Modify program P-3.3 so that it also asks the user to supply a birth
date in the format mm dd yyyy, e.g., 01 01 1977. You can print the birth date in
the format mm/dd/yyyy, but there will be extra spaces because of the list-directed
output. (You might wish to modify this program when you have learned to use
formatted output.)

Exercise 13. Using the following code, write a complete program that will assign
values to x, j, b, and c and print the results of the calculations as shown. You
may either “hard code” the values using assignment statements within the program
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or ask the program user to supply them. Be sure to use values that make it easy
to check the program’s output with a hand calculator. Some of the expressions
involve mixed-mode calculations. Which ones give answers that might not be what
you expect or desire? What happens if b or ¢ equals zero?

REAL x,b
INTEGER j,c
! (Assign values here.)

PRINT *,x**0.5,x**(-1./b),x**(-1/b)
PRINT *,**0.5,j%*(-1./b),j**(-1/b)
PRINT *, X**(-1./c),x**(-1/C)

PRINT *, j*x(-1./c),j**(-1/c)
PRINT *, x**(1./b),x**(1/b)
PRINT *, j**(1./b),j**(1/b)
PRINT *, X**(1./c),x**(1/c)
PRINT *, j*x(1./c),j**(1/c)
END

Exercise 14. Based on material from other courses you are taking, state a
computational problem and write a complete program to solve it.

3.10.3 Programming Applications

These programming applications should include Steps 2-5 of the problem-solving
process described in Chapter 2: a written outline of the solution, including
formulas, an algorithm design using the pseudocode language from Chapter 2, a
working Fortran program, a description of how the program’s operation has been
verified, and representative input and output to document your program’s
operation. You may also wish to restate the problem for yourself (Step 1 of the
problem-solving process) to make sure you understand what is required.

The name in brackets given at the end of each exercise refers to a source
code file that is available to instructors who are using this text. (See Section i.5
of the preface.)

Exercise 15. Write a program that calculates and prints the total resistance of
three resistors connected (a) in series and (b) in parallel (as illustrated in Figure
3.6). When n resistors are connected in series, the total resistance of the connected
Tesistors is Iy = 1, + I, + 13 +...+ r,. When they are connected in parallel, the total
resistance is 1/r; = 1/r; + 1/r, + 1/r; +...+1/r,. Prompt the user to enter values in
ohms, the usual unit of resistance. [RESISTOR.F901
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Figure 3.6. Resistors in parallel and in series

Exercise 16. Consider the reliability of a system consisting of three components
connected in series or parallel. If the reliability of the components is given as R,
R,, and R;, where 0 < R <1, then the reliability of a system with the components
wired in series is R;R,R,. If the same components are wired in parallel, and if the
system remains functional as long as any one of the components is working, then
the system reliability is 1 - (1 - R;)(1 - Ry)(1 - R;). Write a program to calculate
the reliability of such systems for three user-specified values of reliability.

Systems using components in series are vulnerable to failure even if the
individual components are very reliable. On the other hand, “redundant” systems,
with components in parallel, are very reliable even if the components aren’t
individually very reliable. For example, if each component has a reliability of
0.900, a system with these components in series has a reliability of only 0.729. If
the same components are in parallel, then the system reliability is 0.999.
[RELIABLE.F90]

Exercise 17. Write a program that calculates and displays the volume and surface
area of a cylinder, given the radius and height in meters. The volume of such a
cylinder is nr*h and its surface area is 2mr? + 2nrh. [CYLINDER. F90]

Extra Credit

1. Assuming that the cylinder is solid and that the density (kg/m®) of the
material is specified as input, calculate the mass of the cylinder. Use an
engineering handbook to find densities for one or more materials. Your program
output should indicate what materials you have used.

2. Assuming that the cylinder is an empty container made of thin sheets of
material with a specified thickness, calculate the mass of the cylinder. Is it
appropriate to assume that this value is just the surface area times the mass per
unit area of the material?

Exercise 18. Write a program that asks the user to supply the mass and velocity
of an object and then calculates and displays the kinetic energy and momentum
of that obiect. The kinetic energy is mv¥2 and the momentum is mv. Use SI units
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(mass in kilograms, velocity in meters per second, energy in Joules).
[KINETIC.F90]

Extra Credit

Include source code that will convert the kinetic energy and momentum
into their British system equivalents. The British unit of energy is foot-pounds and
the unit of momentum is slug-feet per second. 1 foot-pound = 1.356 Joule;
1 slug = 14.59 kilogram; 1 foot/second = 0.3048 meters/second.

Exercise 19. Write a program that requests as input the clock time in hours
(0-24), minutes, and seconds, in the format hh mm ss, and displays the time in
seconds and fractions of a day. One day contains 86,400 seconds. For example,
12 00 00 is 43,200 seconds, or 0.5 days. [TIME.F90]

Exercise 20. Write a program that requests as input an angle expressed in degrees,
minutes, and seconds, in the format dd mm ss, and converts it to whole and
fractional degrees. There are 60 minutes in a degree and 60 seconds in a minute.
For example, 30 15 04 equals 30.25111°. [ANGLES . F90]

Exercise 21. Write a program that requests as input the time in seconds required
to cover a distance of one mile and calculates the speed in units of feet per
second, meters per second, and miles per hour. For example, a 4-minute
(240-second) mile is run at an average speed of 22 feet per second, 6.7 meters per
second, or 15 miles per hour. There are 5,280 feet in one mile and 3.2808 feet in
one meter. [SPEED.F90]

Exercise 22. A mass swinging at the end of a massless string (a simple pendulum)
undergoes simple harmonic motion as long as the displacement of the mass from
the vertical is very small compared to the length of the string. The period T of a
simple pendulum is independent of its mass and is given by T = 2n(L/g)"?, where
the length L is given in meters and g = 9.807 m/s. (See Figure 3.7.) Write a
program that will determine (a) the period of a pendulum with a specified length
and (b) the length a pendulum must have to produce a period of 1 second.
[PENDULUM. F90]
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Figure 3.7. Period of a simple pendulum as a function of length

Exercise 23. Write a program that calculates and prints the energy of a photon the
wavelength of which A is given in centimeters. Energy=hf Joule, where
h = 6.626x10** Joule-s (Planck’s constant); f = ¢/A, where ¢ = 2.9979x10® m/s
(the speed of light) and wavelength is given in meters. (See Figure 3.8.)

Hint: declare the speed of light and Planck’s constant with a PARAMETER
attribute, using “E” notation, e.g., 2.9979e8. [PHOTON.F90]

Extra Credit

A 1 eV (electron volt) photon has an energy of 1.602x10"° Joule. Modify
your program so it will also calculate the wavelength of a photon with an energy
of 1 eV. (Answer: about 1240x10° m. This is in the infrared part of the
electromagnetic spectrum.)
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Figure 3.8 Wavelength of a photon as a function of energy.

Exercise 24. Write a program that asks for a student’s name, ID, and cumulative
grade point average (GPA). Print this information on a single line. NOTE: You
may find that if you enter a GPA as 3.9, for example, your program will print
something different, such as 3.900000, 3.900001 or 3.899999. This isn’t your
fault. It is a consequence of how Fortran stores REAL numbers and the limitations
of list-directed output. You can’t change the appearance of this number until you
learn how to specify your own output format in a later chapter. [GPA.F90]

Extra Credit

Modify your program so it asks the user to provide the total number of
credit hours she has accumulated through last semester. Calculate the total number
of grade points by multiplying the number of credit hours by the GPA. Now ask
the user to supply information about a new course she has just completed. This
information should include the number of credit hours for the course and the
number of points for each credit hour—4 for an A, 3 for a B, 2 for a C, 1 for a
D, and O for an F. Multiply the credit hours by this number and add the result to
the old number of total grade points. Add the new credit hours to the old credit
hours. Divide the new number of grade points by the new total credit hours to
recalculate the GPA. Display this value.
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Exercise 25. Given the (x,y) coordinates of two points in a plane, write a program
that calculates (a) the shortest distance between the two points and (b) the (x,y)
coordinates of a point halfway between the two points, lying on a straight line
joining the points. (See Figure 3.9.)

Hint: you will need to calculate a square root in your program. In Chapter
4 we will discuss how to use a standard Fortran function to do this: y=SQRT (x)
assigns a value to y equal to the square root of x, where x represents any non-
negative number, expression, or variable. You can use this function or you can
calculate the square root of any number, variable, or expression by using the
exponentiation operator with a value of 0.5. For example, x"? can be expressed as
x**0 .5, [POINTS.F90]

Extra Credit:

If you have had a precalculus course, you should understand the concept
of a line slope. (The derivative of a function that produces a straight line is the
constant slope of that line.) Modify your program so that it also calculates the
slope of the line joining two points in a plane. What restriction will this
calculation impose on the location of the two points?

5.5 ----=----==-----1 (x1,y1)

(x2,y2)

o
o
o |
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—_
-
[$,}
N A

56 6

Figure 3.9. Distance between two points in a plane
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Exercise 26. The ideal gas law describes the relationships among pressure (p),
volume (V), and temperature (T) of an ideal gas,

pV = pRT

where p is the number of kilomoles of gas and R is the universal gas constant. For
volume in m?, temperature in kelvins, and pressure in Newtons/m? (Pascals),
R = 8314.3 Joule/kilomole-K and 1.0132x10° Pascals = 1 standard atmosphere
(atm). Write a program that calculates the volume occupied by a specified number
of kilomoles of an ideal gas at temperature T (kelvins) and pressure p (atm).
(Sample answer: under standard conditions of T = 273.15 K (0° C) and a pressure
of 1 atm, 1 kilomole of an ideal gas occupies a volume of about 22.4 m’.)
[GAS.F90]

Extra Credit

1. If you were trying to determine the validity of the ideal gas law
experimentally, it would make more sense to use the law to calculate pressure for
a specified volume and temperature. Modify the program to do this calculation
instead of the calculation specified in the original problem statement.

2. Because molecules occupy volume and exert intermolecular (bonding)
forces on each other, the ideal gas law becomes less accurate as density increases;
that is, as more molecules occupy the same volume. The van der Waals
modification to the ideal gas law attempts to take this into account with the
following empirical formula,

(p + a/v)(v -b) =RT

where v is the specific volume (m*kilomole, for example). The constants a and
b are different for each gas and are experimentally derived. Table 3.5 contains
data for several gases. Figure 3.10 shows some calculations for nitrogen. Over an
appropriate range of specific volumes, for which v > b, the van der Waals
pressure is less than the ideal gas pressure.
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Figure 3.10. Pressure as a function of specific volume for nitrogen at

T=273.15 K

Table 3.5. Molar masses and van der Waals coefficients for selected gases.

van der Waals coefficients

a, b, a, b,
Molar mass, kPa-m‘/ m’/kg 12?-atm/ 1/mole

Gas gm/mole kg? mole?
air 28.97 0.1630 0.001270 1.350 0.0368
ammonia 17.03 1.4680 0.002200 4.202 0.0375
carbon dioxide 44.01 0.1883 0.000972 3.600 0.0428
helium 4.00 0.2140 0.005870 0.034 0.0235
hydrogen 2.02 6.0830 0.013200 0.245 0.0267
methane 16.04 0.8880 0.002660 2.255 0.0427
nitrogen 28.02 0.1747 0.001380 1.354 0.0387
oxygen 32.00 0.1344 0.000993 1.358 0.0318
propane 44.09 0.4810 0.002040 9.228 0.0899

Source: M. C. Potter and C. W. Somerton (1993). Schaum’s Outline Series:
Theory and Problems of Engineering Thermodynamics, Tables B-3, B-8.
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Modify your program (the extra credit one, not the original one) to do calculations
for both the ideal gas law and the van der Waals modified law.

Hint: be careful with units. 1 liter/mole is numerically identical to 1
m’/kilomole. If the pressure is calculated in Pascals, then the tabulated value for

a must be multiplied by 101320. Use Figure 3.10 to check your answers.
[GAS2.F90]
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Using Functions to Expand the
Power of Fortran

Much of the power of Fortran is due to its dozens of predefined functions for
performing mathematical and other calculations. This chapter describes many of
these functions and introduces one way to create your own functions.

4.1 Fortran Intrinsic Functions
4.1.1 Intrinsic Functions for Arithmetic Calculations: Arguments and Ranges

You shouldn’t be surprised to find that a programming
language designed specifically for solving scientific and
engineering problems includes many of the important
basic mathematical functions used in these disciplines. In this section, we will
discuss mathematical and other functions that are part of the Fortran language.
These “built-in” functions are called intrinsic functions.'

Fortran intrinsic functions are related to what you normally think of as a
“function” in mathematics, as defined generically for functions of one variable by
the algebraic expression y = f(x), but with some specific programming-related
details. In the mathematical interpretation of the expression y = f(x), f is a
symbolic name for the function, the argument x represents a value of the
independent variable at which the function is evaluated, and y is equal to the value
of the function at argument x. For example, the expression y=sin(x) means that
y is equal to the trigonometric sine evaluated at the angle x.

In Fortran, an intrinsic function is a built-in
subprogram that accepts, through an argument list, one or
more input values in the form of constants, variable names,
expressions, or other functions and returns a single value as output. In source
code, an intrinsic function is “called” or “invoked” when it appears on the
right-hand side of an assignment operator (either alone or as part of a larger

intrinsic function l

I argument list I

'Fortran intrinsic functions are sometimes referred to as intrinsic procedures. However,
“functions” is a preferable description based on how these terms are used in other programming
languages.

D. R. Brooks, Problem Solving with Fortran 90
© Springer-Verlag New York, Inc. 1997
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expression) or in an output statement such as the PRINT statement. That is,
functions are treated just like values.

Code fragment P-4.1 shows how an intrinsic function is used in a Fortran
program.

P-4.1 (fragment)

REAL Z,Y,DegToRad

DegToRad=3.1415927/180.
z=0.5

Y=SIN(Z)

PRINT *,Y,SIN(Z/2.)

PRINT *,SIN(30.*DegToRad)

A Fortran compiler knows what SIN(Z)means because SIN is an intrinsic
function that is supported by all Fortran compilers as part of the language
standard. So, in the same sense that a pocket calculator knows how to evaluate the
sine of an angle, your Fortran program will be able to evaluate SIN(Z). (As
always, Fortran isn’t case-sensitive, so SIN, Sin, and sin are all equivalent and
equally acceptable. This text will adopt the convention of spelling the names of
intrinsic functions with uppercase letters.)

Once the variable Z has the value 0.5 assigned to it in P-4.1, the
assignment statement Y=SIN(Z) results in the variable Y having a value of
0.4794255. In order to understand this result, you need to know that the Fortran
SIN function expects as its argument an angle expressed in radians, not degrees.
Thus the value of 0.5 used in P-4.1 is interpreted as 0.5 radians, or about 28.6°.
All the Fortran trigonometric functions that have angles as arguments require that
the angles be expressed in radians. Functions that return an angle as output (the
inverse trigonometric functions) return that value in radians.

The second and third calls to the SIN function in P-4.1 illustrate the fact
that the argument(s) of a function can be expressions as well as variables (or
constants). Pay special attention to the third call to SIN (in the second PRINT
statement). If you forget to convert an angle to radians before using it as an
argument in a trigonometric function, you will get results that often appear
reasonable but will be wrong. For example, SIN(30. ) is not the correct way to
calculate the sine of 30°. The value of this argument will be interpreted as 30
radians (equivalent to about 278.9°), not 30°.2 So (because 180° equals 7 radians),

230 radians is (30x180)/m = 1718.873387°, which equals 4x360° plus approximately
278 Q°
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When an angle is given in degrees, multiply it by #/180.0 to convert it to
radians before using it as the argument in a Fortran intrinsic trigonometric
function.

In P-4.1, this conversion factor is stored in the variable DegToRad.

What happens in P-4.1 if the statement Z=0.5 is not included? That is,
what happens if Z is not given a value before it is used as an argument? Your
compiler will probably assume that Z equals zero. (Try it and see.) However, no
matter what the result of this experiment,

It is unacceptable programming practice to use an uninitialized variable as
an argument for any intrinsic function.

Why is this so important? Because even though uninitialized variables often don’t
prevent your program from executing, the results are compiler-dependent and
unpredictable. In general, regardless of the language you are using, you should
never allow a compiler to make assumptions about values you wish to use!

There are many intrinsic functions in Fortran. In order to use one, it’s
necessary to know its name, its purpose, the restrictions on its argument(s), and
the data type and range of the value it returns. For example, you need to know
that when you use the SIN function, the argument must be an angle in radians,
expressed as a type REAL numeric constant, expression, or variable, and that the
function returns a REAL value in the range [-1.0,1.0]. (Following conventional
mathematical usage, a bracket means that the limit includes the value to the right
or left of the bracket and a parenthesis means that the limit excludes the value to
the right or left of the bracket. Thus, for example, a range (-1.0,1.0) means that
the range includes values between -1 and +1, but excludes the values -1 and +1
themselves.)

As another example, in order to use the inverse trigonometric function,
ASIN, you need to know that the argument must be a REAL numeric constant,
expression, or variable in the range [-1.0,1.0] and that the function returns a REAL
angle expressed in radians, in the range [-w/2,m/2]. In this case, and with many
other intrinsic functions, an argument outside the allowed range will cause your
program to crash, as there is no built-in protection against the effects of providing
inappropriate arguments.

Table 4.1 contains a partial list of Fortran intrinsic functions that return
values of type REAL or INTEGER. We will use only a few of these functions in
this chapter, but Table 4.1 will be important for future reference.
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Table 4.1. Selected intrinsic Fortran functions for arithmetic operations

4.1 (a) Mathematical functions

Argument
Fortran Type(s) Result Type

Trigonometric Usage and Range and Range
sin(x) SIN(X) REAL, any REAL, [-1,1]?
cos(x) COS (X) REAL, any REAL, [-1,1]
tan(x) TAN(X) REAL, any REAL, (-c0,00)
sin’(x) ASIN(X) REAL, [-1,1] REAL, [-/2,m/2]
cos(x) ACOS (X) REAL, [-1,1] REAL, [0,]
tan’(x) ATAN(X) REAL, any REAL, [-/2,7/2]
tan’ (y/x) * ATAN2(Y,X) REAL, any REAL, (-T,7]
Hyperbolic
sinh(x) * SINH(X) REAL, any REAL, (-00,00) *
cosh(x) ¢ COSH(X) REAL, any REAL, [1,:0) ?
tanh(x) 7 TANH (X) REAL, any REAL, [-1,1]
Transcendental
Vx SQRT (X) REAL, 20 REAL, [0,%0) ’

e* EXP (X) REAL, any REAL, (0,) *
In(x) LOG(X) REAL, >0 REAL, (-o0,00) *
log,(x) LOG10 (X) REAL, >0 REAL, (-00,%0) *

! For all trigonometric and inverse trigonometric functions, angles are expressed as radians.

2 For any values x and y given as limits on a range, “[x” means that the lower limit of the range
includes x, “(x” means that the lower limit excludes x, “y]” means that the upper limit includes
y, and “y)” means that the upper limit excludes y.

3 “Infinite” values are limited by the range of REAL numbers.

#The ATAN2 function calculates the arctangent of Y/X. By using information about the sign of
both X and Y, it preserves the quadrant associated with the coordinates X and Y. The values of X
and Y may not both be zero.

3 sinh(x) = (e*-¢™)/2. 6 cosh(x) = (¢*+e™/2. 7 tanh(x) = sinh(x)/cosh(x).
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4.1 (b) Numeric functions

Argument
Fortran Type(s) and
Purpose Usage Range(s) Result Type
INTEGER result
Truncate to integer INT(X) REAL, any INTEGER
Round to integer NINT(X) REAL, any INTEGER
Least integer >X CEILING(X) REAL, any INTEGER
Greatest integer <X FLOOR (X) REAL, any INTEGER
REAL result
Truncate toward zero AINT(X) REAL, any REAL
Nearest whole number ANINT(X) REAL, any REAL
Convert to real REAL(X) INTEGER, any | REAL
Result type depends on argument(s) ’
Absolute value ABS (X) Numeric REAL or INTEGER
Maximum difference 2 DIM(X,Y) Numeric REAL or INTEGER
MAX (X1, X2 REAL or INTEGER
Maximum [/X3,...1) Numeric
MIN(X1,X2
Minimum [,X3,...1) Numeric REAL or INTEGER
Remainder of X1
modulo X2, with INT ° | MOD(X1,X2) Numeric REAL or INTEGER
Remainder of X1
modulo X2, with MODULO (X1, X2) Numeric REAL or INTEGER
FLOOR *#
Sign transfer ° SIGN(X1,X2) Numeric REAL or INTEGER

'If there are multiple arguments, they must all be of the same type.
2 Returns the maximum of X-Y or 0.
3 Returns X1- INT (X1/X2)*X2. Results are undependable (compiler-dependent) if X2=0.
“Returns X1-FLOOR(X1/X2)*X2 if X1 and X2 are REAL,
X1-FLOOR(REAL(X1)/REAL(X2))*X2 if X1 and X2 are INTEGER. Results are
undependable (compiler-dependent) if X2=0.
3 Returns absolute value of X1 times the sign of X2. If X2=0, its sign is considered positive.
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Programming Tip

Some of the intrinsic function names, for example, INT and AINT, follow
Fortran implicit data typing conventions. Hence INT returns an INTEGER value
and AINT returns a REAL value. However, you may not recognize this convention
because it is part of an old-fashioned Fortran programming style specifically
avoided in this text. Based on implicit typing, any function name beginning with
a letter I through N returns an INTEGER value, and a name beginning with any
other letter returns a REAL value.

Functions that don’t follow implicit type conventions include, for example,
the CEILING and FLOOR functions, which are implicitly of type REAL, but
which return INTEGER results (and didn’t exist in older versions of Fortran), and
the last seven functions in Table 4.1(b), which return results of the same type as
their argument(s). Also, the L.OG and 1,OG10 functions return REAL results even
though their names are implicitly INTEGER. In older versions of Fortran, these
functions are named ALOG and ALOG10 in order to conform to implicit typing
rules.

It’s important to remember that the name X and other argument names
used in Table 4.1 are just “place holders” used to illustrate how a particular
function should be used. In your programs, function arguments can be constants,
variable names, other functions that return a value of the appropriate data type, or
expressions that evaluate to the appropriate data type.

The difference between the MOD and MODULO functions in Table 4.1(b) is
subtle. Suppose, for example, X1= -5.55 and X2=3.1. INT(-5.55/3.1)=-1,
SO MOD (X1, X2)=-5.55-(-1)(3.1)=-2.45. However, FLOOR(-5.55/3.1) =-2,
sO0 MODULO (X1,X2)= -5.55-(-2)(3.1)= 0.65. The MOD and MODULO functions
return the same value if both arguments are either positive or negative, but if one
of the arguments is negative, you need to make sure you choose the appropriate
function for your program.

The MIN and MAX functions in Table 4.1(b) are unique because they accept
a variable number of arguments (two or more).

As long as you understand the mathematical purpose of these functions,
their application in Fortran is straightforward. However, you must always be
careful to provide arguments of the proper data type and within the allowed range.
To give just two examples, your program will crash (terminate with a run-time
error) if you try to evaluate ACOS (2.0) (because the cosine of an angle can’t
possibly have a value of 2) or if you use the SQRT function with a negative
argument. Whenever you provide a constant value, a variable name, or an
expression to be evaluated as an argument for a function, it is up to you to
guarantee that the value falls within the allowed range. (Fortran syntax discussed
in Chapter 6 will provide you with some programming tools for performing
checks on values before you use them as function arguments.)
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Table 4.1(a) contains the ranges for arguments and for the results returned
by the mathematical functions. As noted in footnote 3 to Table 4.1(a), functions
that become either positively or negatively infinite at an endpoint of the range for
their argument can’t actually return an infinite value. The largest value (in
absolute magnitude) they can return depends on the range of REAL numbers. This
restriction can sometimes cause problems when such functions are used in
numerical calculations.

It is worth reiterating the very important and not always obvious restriction
on the use of the mathematical intrinsic functions: the arguments must have the
expected data type. It’s tempting to think that, for example, SQRT(2) is an
appropriate use of the SQRT function even though Table 4.1 indicates that the
argument must be REAL. You might make this assumption because, for example,
the assignment X=2 is OK (even though it is not usually good programming
practice) because Fortran will make an appropriate type conversion. In principle,
there is no reason why a compiler shouldn’t be able to perform the required type
conversion from the integer value 2 to the real value 2.0, but under the Fortran 90
standard, it is not supposed to do this.’ Therefore, an INTEGER variable, constant,
or expression used in a function that expects a REAL argument should generate
a run-time error. This is important enough to state as a rule:

Never use INTEGER arguments in an intrinsic function that calls for REAL
arguments, or vice versa.

4.1.2 Intrinsic Functions for Character and String Manipulation

In addition to intrinsic functions for arithmetic operations, Fortran 90 also includes
several functions for manipulating individual characters and “strings” of
characters. Table 4.2 lists these functions.

The first four functions in Table 4.2 perform conversions back and forth
between characters and their position in a system-dependent table of characters
called a collating sequence. The most common collating sequence is the ASCII
sequence, given in Appendix 1. The functions ACHAR and IACHAR produce
values based on this sequence, regardless of whether the computer you are
working on uses the ASCII sequence. The functions CHAR and ICHAR assume
that your computer uses the ASCII sequence. On most computers, these functions
are equivalent because such computers do in fact use the ASCII collating
sequence. However, assuming that you wish to perform these conversions based

3This was not true in earlier versions of Fortran. Fortran 77 compilers would allow
SQRT(2), for example.
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Table 4.2. Fortran intrinsic functions for manipulating characters and strings.

in S appears in SET, or
position in S of first
character that does not *

SET[,BACK])

Argument
Fortran Type and Result

Purpose Usage Range Type
Character-Integer Conversions
Character in ASCII INTEGER, CHARACTER
collating sequence ACHAR(I) [0,127]
Character in processor INTEGER, CHARACTER
collating sequence CHAR(I) [O,n-1]
Position in ASCII sequence IACHAR(C) CHARACTER INTEGER
Position in
processor sequence ICHAR(C) CHARACTER INTEGER
String Manipulation and Inquiry Functions
Remove leading blanks ’ ADJUSTL(S) CHARACTER CHARACTER
Remove trailing blanks 2 ADJUSTR(S) CHARACTER CHARACTER
Leftmost [rightmost]
starting position of substring | INDEX(S, CHARACTER | INTEGER
(SS) in string (S) * SS[,BACK])
Length of string * LEN(S) CHARACTER INTEGER
Length of string, not LEN_TRIM(S) CHARACTER INTEGER
counting trailing blanks
Concatenate n copies of S ** | REPEAT(S,n) CHARACTER, | CHARACTER

INTEGER
Position of character SCAN(S, CHARACTER INTEGER
included in string SET * SET[,BACK])
Remove trailing blanks * TRIM(S) CHARACTER CHARACTER
Returns O if each character VERIFY (S, CHARACTER INTEGER

! Inserts the same number of trailing blanks.
? Inserts the same number of leading blanks.
J Returns leftmost value if BACK is absent or present with a value of . FALSE. ; otherwise returns
the rightmost value. INDEX and SCAN functions return 0 if search string or character isn’t found.
# Accepts only scalar arguments. (See discussion of arrays in Chapter 8.)
’ See discussion of the concatenation operator later in this section.
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on the ASCII sequence, use of the ACHAR and TACHAR functions will make your
programs portable even to systems that use another collating sequence (such as
some IBM mainframe computers).

The ACHAR function produces a truly portable result only if the argument
does not exceed 127 because the ASCII collating sequence standardizes only those
characters in the range [0,127]. For values in the range [128,255], the result is
system-dependent. On IBM-compatible PCs, for example, these characters include
the so-called “IBM graphics™ characters, mathematical symbols, and characters
from nonEnglish languages (including Greek characters for use in mathematical
expressions).

In addition to the string manipulation
functions described in Table 4.2, Fortran also
provides an operator for “adding” strings. The
symbol for the concatenation operator is a double slash (//), and it is the only
intrinsic operator for data of type CHARACTER. For two CHARACTER variables
A and B, the result of A//B is a new string that contains all characters of B
appended to the end of the characters of A.

If the result of the concatenation is stored in another CHARACTER variable,
that variable should be long enough to hold all the characters. If it’s not, no error
message is generated, but the resulting string is truncated from the right to fit the
declared length of the variable.

Program P-4.2 demonstrates the concatenation operator and the TRIM,
LEN, and LEN_TRIM functions.

I concatenation operator I

P-4.2 [STRING.F90]

PROGRAM string
! Demo program for string operations.

IMPLICIT NONE
CHARACTER *10 first_name,last_name,name*15

first_name='Laura'

last_name='Brooks'
name=first_name//last_name

PRINT *,name

PRINT *,'untrimmed length: ',6 LEN(name)
name=TRIM(first_name)//' '//TRIM(last_name)
PRINT *,name

PRINT *,'untrimmed length: ',6 LEN(name)
PRINT #*,'trimmed length: ', LEN_TRIM(name)

END
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Running P-4.2

Laura Brook
untrimmed length: 15
Laura Brooks

untrimmed length: 15
trimmed length: 12

When values are assigned to first_name and last_name, they are
“right-padded” with enough blanks to make up the declared length of 10
characters, as demonstrated by the result from the LEN function. When the
concatenated value of name is printed, only the leftmost 15 characters are printed
because the variable name has a declared length of only 15 characters. When the
TRIM function is used twice in a new concatenation operation, three trailing
blanks are still added to LaurapBrooks to fill name, and the LEN function
still returns a value of 15. However, the LEN_TRIM returns a more useful value
of 12 characters, the length of the string ignoring the trailing blanks.

The fact of the matter is that string manipulation is relatively unimportant
for the kinds of problems Fortran is most often called upon to solve. However, the
functions in Table 4.2 can sometimes be used to solve tricky problems when you
must interpret the contents of a data file. Suppose a file contains information about
monthly snowfall recorded at a weather station. Most of the time, the value for a
month will be 0 or some other numerical value for the recorded snowfall.
Occasionally, a “trace” level will be recorded (perhaps as the character T) when
snow fell, but there was not a measurable accumulation. How can the information
in such a file be interpreted if it is not possible to know ahead of time whether the
data fields will contain numbers or characters?

If the fields containing these values can first be read as character strings,
the presence of certain characters can be detected by using the INDEX function.
If the appropriate characters aren’t found, then the (presumed) numerical
information in the string can be processed. We will discuss the details of the kind
of code required to do this in Chapter 9.

As a final example, consider the problem of converting lowercase
characters to uppercase characters. This might be required when you want a text
search to be case-insensitive. (Normally such a search will be case-sensitive.)
Here is a statement that performs this operation:

upper_ch = ACHAR(IACHAR(ch)-32)

The statement assumes that the variables upper_ch and ch are declared as type
CHARACTER, and it makes use of the fact that, in the ASCII collating sequence,
the lowercase alphabet starts at position 97 and the uppercase alphabet starts at
position 65, a difference of 32. Assuming only that every uppercase and lowercase
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letter is separated by the same numer of positions in the collating sequence, you
can generalize this statement for nonASCII systems:

upper_ch = ACHAR(IACHAR("A")+(IACHAR("a")-IACHAR(ch)))

4.1.3 Examples of Calculations Using Intrinsic Functions
Polar/Cartesian conversions
First we will present a complete program that uses Fortran intrinsic functions to

convert between Cartesian and polar coordinates. Figure 4.1 shows the relationship
between these two coordinate systems.

1 Define the problem.

Given a point expressed in polar coordinates (r,0), calculate the corresponding
Cartesian coordinates (x,y), or the other way around.

2 Outline a solution.

For the polar coordinates (r,0), the corresponding Cartesian coordinates are

X = recos(0)
y = resin(0)

For the Cartesian coordinates (x,y), the corresponding polar coordinates are

r=yx2+y?

0 = tan’\(y/x)

Y=rsin@) p---------------mmmmm o

X =r cos(6)

Figure 4.1. Relationship between Cartesian
and polar coordinates
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3 Design an algorithm.

This algorithm converts specified Cartesian coordinates to polar coordinates
and back again.

DEFINE (x, y, r, theta (in degrees) )
From polar to Cartesian:
WRITE (prompt for input)
READ (r,theta)
ASSIGN x = recos(theta)
y = resin(theta)
WRITE (x,y)
Back to polar:
ASSIGN r = (X+y?)"?
theta = tan’ (y/x) (Be sure to get the quadrant right,
based on the signs of x and y.)
WRITE (r,theta)

In this algorithm, the details of a WRITE command that tells the user what
kinds of input values to provide have been left out. We will often omit this detail
in future algorithms even though it is essential in a program. By now, you should
know that such prompts are always required whenever keyboard input is required.

This algorithm design has also omitted the conversions between degrees
and radians that will be required in the Fortran implementation. It would certainly
be acceptable to include those calculations, but they represent an implementation
detail that need not be part of the algorithm design.

: 1 Convert the algorithm into a program.

P-4.3 [POLAR.F90]

PROGRAM polar

Convert polar coordinates to Cartesian and check the
results by converting them back to polar coordinates.

IMPLICIT NONE
REAL X,Y,r,theta,pi,DegToRad

pi=4.0*ATAN(1.0)
DeagToRad=pi/180.0
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PRINT*,' Give polar coordinates r, theta (deg): '
READ*, r,theta

X=r*COS (theta*DegToRad)
Y=r*SIN(theta*DegToRad)

PRINT*,' x and y: ',X,Y
! Recalculate values of r and theta...

r=SQRT (X*X+Y*Y)
theta=ATAN2 (Y, X)/DegToRad

PRINT#*,' recalculated r and theta: ', r,theta

END

Running P-4.3

Give polar coordinates r, theta (deg):
5.0 30.0

x and y: 4.3301272 2.5000000
recalculated r and theta: 5.0000000 29.9999981

When you implement the algorithm for this problem in Fortran, you must
include conversions between radians and degrees to use the ATAN, SIN, COS, and
ATAN?2 functions appropriately. Remember that the ATAN2 function is required
in order to return the original value of 6.

5 Verify the operation of the program.

Program P-4.3 has been designed to check its own calculations. When the
user gives a set of polar coordinates, the program calculates the corresponding
Cartesian coordinates and then converts these Cartesian coordinates back to polar
coordinates. Because of the way Fortran does arithmetic with real numbers,
conversion of the x and y coordinates back to radius and angle may not yield
precisely the original value. This apparent problem, or at least its appearance in
displayed output, can be minimized by exerting more control over the form of
program output, as will be discussed in Chapter 5.

It’s especially important to verify the operation of the program at angles
of 90° and 270° because the tangent is undefined at these two angles.* What will
Fortran produce for r = 10 and 6 = 90°, for example? The calculated x-coordinate
will be small, but not exactly 0, and the y-coordinate may not be exactly 10.

“Because the tangent is defined as y/x in Cartesian coordinates, the tangent approaches
infinity whenever x approaches 0.
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Although the definition of the ATAN2 function implies that a division by zero may
occur if x=0, this will not actually occur within the function, and your program
will not crash. Try some potentially troublesome values on your system and see
what happens. You may or may not see anything that looks strange, depending on
the number of significant figures displayed by your compiler’s list-directed output
format.

Problem Discussion

There are several points worth mentioning about P-4.3’s solution to this
apparently simple problem. Recall that, in program P-3.1 from Chapter 3, pi was
defined as a constant (by giving it the PARAMETER attribute) when T was needed
to calculate the area and circumference of a circle. In P-4.3, &t is defined as a
variable and calculated by making use of the fact that m/4 radians (45°) is the
arctangent of 1. In this way, pi is automatically calculated to as many significant
digits as your compiler supports for REAL numbers. You may use whichever
method you or your instructor prefers.

Another important point concerns the conversion back and forth between
degrees and radians. The program user is asked to provide angles in degrees, and
angular output is expressed in degrees. However, remember that Fortran
trigonometric functions require arguments expressed in radians. Multiply an angle
by n/180 to convert from degrees to radians and by 180/% to convert from radians
to degrees. It’s easy to forget this conversion, and the error can be difficult to
detect, especially in programs where the results of trigonometric calculations are
used internally and never printed as part of the program’s output.

Program P-4.3 uses the ATAN2 function rather than the ATAN function to
calculate 0. Suppose, for example, the Cartesian coordinates are (x,y) = (1,2). If
the Fortran argument X for the ATAN function is set equal to y/x, or 2.0, then
ATAN returns a value of 1.107 radians, or 63.43°. For the same arguments used
in the ATAN2 function, the same correct value is returned. Now, however, suppose
the Cartesian coordinates are (-1,-2). For the ATAN function, X still equals 2.0, and
the value returned is still 1.107 radians. However, this isn’t the correct answer.
Only the ATAN2 function knows how to interpret the signs of x and y to return
the correct value for 0, 4.249 radians, or 243.43°, an angle in the third quadrant.
Also, it is essential to remember the order in which the two arguments for the
ATAN2 function must be given: first y, then x.

Finally, remember that intrinsic functions can be used in PRINT statements
just like other expressions, and they can be used as arguments in other functions.
This means that the code for recalculating r and 6 could reasonably be rewritten
as:

PRINT*, SQRT(X*X+Y*Y), ATAN2(Y,X)/DegToRad
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Just to demonstrate how functions can be used in expressions that are arguments
of other functions, theta could also be recalculated in terms of itself, like this:

theta=ATAN2 (r*SIN(theta*DegToRad), r*COS(theta*DegToRad) ) /DegToRad

However, substituting these expressions for Y and X doesn’t make sense except
as a demonstration.

Calculating the absolute value

Programs are often required to compare the absolute magnitude of the difference
between two numbers. Consider the algebraic expression d = |y — x|. A Fortran
translation of this expression is

abs_dif = ABS(y-x)

The remainder from integer or real division

As a final example, consider this question: if today is the fourth day of the week
(Wednesday), what day of the week will it be 53 days from now? The answer is
the integer remainder of dividing 53 + 4 by 7, or 1 (Sunday). Use the MOD
function for this calculation:

MOD (53+4,7)

The function MOD (n,m) returns a value between 0 and m - 1. In this example,
it returns a value between 0 and 6. If it returns a value of 0, this must be
interpreted as day 7 (Saturday).

A similar function is available for real numbers. Here’s an example. Full
moons occur every 29.53 days. If a full moon occurred 3.7 days ago, how many
days after full will it be 144.7 days from now? Use the AMOD function (the REAL
version of the MOD function) for this calculation:

AMOD(3.7+144.7,29.53)

The answer is the remainder from dividing 3.7 + 144.7 by 29.53, or 0.025 days.
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4.2 Fortran Statement Functions

The large number of intrinsic functions supported by
Fortran is an essential reason for its continuing
popularity. However, it is often convenient to be able to
define your own functions in programs that require the same calculation to be
performed many times with different arguments. In Fortran, you can define such
functions, called statement functions, at the beginning of your program. Once
defined, these functions can be used just like the intrinsic functions.’ An important
difference is that, unlike intrinsic functions, statement functions exist only within
the program or subprogram in which they are defined. If you need them in another
program or subprogram, you have to write or copy the code again. The types of
calculations that can be performed with statement functions are restricted by the
fact that they must consist of one and only one Fortran statement, which may be
continued onto more than one line. Chapter 7 will present additional ways to
define more complicated functions as separate subprograms.®

A statement function definition is not an executable Fortran statement. It
must appear after the specification (data declaration) statements and before the
first executable statement in the program unit. The general syntax for a statement
function is

statement function I

function_name(one or more “dummy” parameters) = expression

Example:
REAL BoxVolume,1l,w,h
BoxVolume(l,w,h)=1*w*h

There is no specific Fortran keyword that identifies a statement function. This
means that your program must be able to interpret a statement as a statement
function based only on its syntax and position prior to executable statements in
your program.

The statement function definition includes a
parameter list of one or more quantities needed as “input”
to the function. The parameter list defines the number and
data type of the arguments expected by the function. The expression uses
these parameters and can also contain references to constants, PARAMETERS,

I parameter list I

SThere is an important exception. Intrinsic functions can be used as arguments in a call
to a subprogram, as will be discussed in Chapter 7, but statement functions cannot.

1t is worth noting here that some Fortran programmers believe statement functions, which
have been supported in older versions of Fortran, should no longer be used in Fortran 90 programs.
Alternatives will be discussed in Chanter 7
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Fortran intrinsic functions, and even other statement functions that have already
been defined in the source code. (It cannot contain references to statement
functions that have not yet been defined in the source code.)

When you define a calculation in pseudocode that will later become a
statement function, you can put that definition anywhere you want. However,
when you convert the pseudocode to Fortran, you must follow the syntax rules.
Here they are.

1. The data type of the result produced by a statement function is determined by
the data type of its name, which must be explicitly declared in a previous type
declaration statement.

2. The dummy parameter(s) used in defining the statement function must appear
in a type declaration statement.’

3. The number and type of the argument(s) used when the function is invoked
should match the number and type of the function’s parameter list. The arguments
may be constants, variables, or expressions.

4. The names of variables in an argument list that calls a statement function may
be, but don’t have to be and usually aren’t, the same as the names of dummy
variables used in the function’s parameter list.

As an illustrative example, consider this problem:

1 Define the problem.

Write a program to calculate the area of a circular ring with a user-
specified inner and outer radius.

2 Outline a solution.

1. Provide the inner and outer radius.
2. Subtract the area of the circle with the inner radius from the area of the circle
having the outer radius.

7Saying that a statement function and its arguments “must" appear in explicit type
declaration functions assumes that the program in which they appear includes an IMPLICIT
NONE statement.
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3 Design an algorithm.

DEFINE (inner radius, outer radius, 7, ring area as real numbers;
a function to calculate area)

READ (inner and outer radius)

(Assume that the “Area” subprogram will be defined.)

ASSIGN ring area = Area(outer radius) — Area(inner radius)

WRITE (ring area)

SUBPROGRAM Area(IN: radius; OUT: area of a circle)

ASSIGN Area = rreradius®
(end subprogram)

1 Convert the algorithm into a program.

P-4.4 [RING.F90]

PROGRAM Ring
! Calculate the area of a circular ring.

IMPLICIT NONE

REAL Inner_Radius,Outer_Radius,AREA,radius
REAL, PARAMETER :: pi=3.1415927
AREA(radius)=pi*radius*radius

PRINT#*,' Give outer radius, then inner radius: '
READ*,Quter_Radius, Inner_Radius

PRINT#*,' The area of the ring is: ', &
AREA (Outer_Radius)-AREA(Inner_Radius)
!
END
Running P-4.4

Give outer radius, then inner radius:
5.3 2.1

The area of the ring is: 74.3929214
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5 Verify the operation of the program.

Check the calculations with a hand calculator.

Problem Discussion
In P-4.4, the statement

AREA(radius)=pi*radius*radius

appearing just after the type declaration statements defines the statement function
the purpose of which is to calculate the area of a circle of specified radius. It
requires a single input parameter, symbolically referred to as radius, and
calculates the area of the circle corresponding to the value of that argument. The
value for © doesn’t have to appear in the parameter list because pi is defined as
a constant in a PARAMETER statement.

Note that the data type of AREA must be declared. As long as you include
the IMPLICIT NONE statement in your program, you won’t be allowed to use
implicit typing for statement function names and arguments.® As usual, it wouldn’t
be a good idea to rely on implicit typing even if you could get away with it.

It is especially important to understand the relationship between the
parameter used in AREA’s definition, radius, and the arguments used when the
function is used, Outer_Radius and Inner_Radius. Obviously, the names
of the arguments don’t match the name appearing in the parameter list. What is
essential is only that radius, Outer_Radius, and Inner_Radius all have
the same data type.

The Fortran implementation of the algorithm in P-4.4 results in adding
some items associated with the statement function definition to the data
specifications that didn’t appear in the DEFINE section of the algorithm. Also,
there is no variable corresponding to “ring area” because the PRINT statement
displays the desired result without assigning its value to a separate variable name.
These discrepancies between the algorithm and the source code are due to the way
the algorithm was implemented in Fortran and are not an inherent part of the
problem solution. There is no reason to try to change the algorithm to match these
details of the Fortran implementation, or vice versa.

8In Section 3.3.2 of Chapter Three, it was mentioned that every variable name plus “a few
other things” must appear in a data type declaration statement. The names and parameters of
statement functions are some of those “other things.”
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4.3 Applications

4.3.1 Refraction of Light

1 Define the problem.

Snell’s law describes the refraction (bending) of light as it passes from one
medium to another. If the refractive index of the incident medium is n; and that
of the refracting medium is n,, the angles of incidence i and refraction r of a ray
of light, measured from the perpendicular to the boundary between the two
mediums, are related by

n;sin(i) = n,sin(r)
Figure 4.2 illustrates the geometry and Figure 4.3 gives some typical data.

Write a program that asks the user to provide two refractive indices and
the angle of an incident ray and then calculates the angle of a refracted ray.

2 Outline a solution.

1. Prompt the user to supply two indices and an incident angle.
2. Apply Snell’s law to determine the angle of the refracted ray:

r = sin!

n, , .
—sin(i)
nl’

Table 4.3 gives the angles of refraction when a light ray is directed from
air (n; = 1) into some common materials. (They are the data shown in Figure 4.3.)



4.3 Applications = 167

incident
beam

refracted
beam

Figure 4.2. Geometry for Snell’s
law of refraction

50 ——
45_ ............................
e " Water (1.33) % i A
o o0 — ' i 5 /Glass (1.50) -----
° / : :
L R M 4 :
& o5 b /// S
3 ; z
8 207 s / =~ Diamond (2.42) -
B o 7408l . —
/" / i :
1 // o ’ i f : '
Y &
00 10 20 30 40 80 6 70 8 90
Incident angle, deg

Figure 4.3. Angles of refraction as a function of angle of incidence



168 = 4. Using Functions To Expand the Power of Fortran

Table 4.3. Calculations for Snell’s law

Refractive Index of air=1

Angle of For refractive index of:
Incidence 1.33 1.50 2.42
(from air) (Water) (Glass)(Diamond)
0 0.00 0.00 0.00

10 7.50 6.65 4.11

20 14.90 13.18 . 8.12

3 Design an algorithm.

DEFINE (n, n, incident_angle, refracted angle as real numbers,
7 and DegToRad (conversion from angles to radians) as real)
ASSIGN DegToRad = 7/180
WRITE (“Give index of refraction for incident and refracting medium:”)
READ (n, n)
WRITE (“Give incident angle, in degrees:”)
READ (incident_angle)
(Convert to radians before doing trig calculations.)
ASSIGN refracted_angle = sin’ (n; /n,esin(incident_angle+DegToRad))
(Display output in degrees.)
WRITE (“Refracted angle is”, refracted_angle/DegToRad)

This algorithm explicitly includes the conversions back and forth between
degrees and radians. As noted previously, this is optional for the algorithm design,
but essential for a Fortran program.
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1 Convert the algorithm into a program.

P-4.5 [REFRACT . F90]

PROGRAM Refract

Calculate angle of refraction for an incident ray,
using Snell's Law.

IMPLICIT NONE

REAL ni,nr ! indices of refraction (dimensionless)
REAL incident,refracted ! angles from perpendicular (deg)
REAL DegToRad ! required for trig functions

REAL, PARAMETER :: pi=3.1415927

DegToRad=pi/180.

PRINT*,' Give indices for incident and refracting medium:'
READ *,ni,nr

PRINT*,' What is the angle of incidence?'

READ *,incident

! Convert refracted angle to degrees before displaying its value.
refracted=ASIN(ni/nr*SIN(incident*DegToRad))

PRINT *,' refracted angle = ',refracted/DegToRad
END

Running P-4.5

Give indices of refraction for incident and refracting medium:
1.0 1.5

What is the angle of incidence?

30

refracted angle = 19.471227

Note how in-line comments in P-4.5 are used to explain the variables, including
their units.

5 Verify the operation of the program.

Check your results with a hand calculator. Compare your values with those
in Table 4.3.
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4.3.2 Inverse Hyperbolic Functions

1 Define the problem.

Although Fortran includes the hyperbolic functions among its intrinsic
functions, it doesn't include the inverse hyperbolic functions

sinh(x) = In(x + yx2+1)
cosh(x) = In(x + yx2-1)

1 (1+x)
- 1-x
®) 2

Write a program that calculates the hyperbolic functions and their inverses, using
statement functions. Based on results from your program, make a table for the
inverse hyperbolic functions that shows the theoretical range for arguments and
the range of values returned for each function. These three functions are illustrated
in Figure 4.4.

2 Outline a solution.

1. Ask the user to provide a real number.

2. Display the intrinsic hyperbolic functions.

3. Use each of the results as the argument in the corresponding inverse hyperbolic
function and display the results.

3 Design an algorithm.

DEFINE (x, hyperbolic_sin, hyperbolic_cos, hyperbolic_tan as real numbers)

WRITE (“Give any real number.”)

READ (x)

ASSIGN hyperbolic_sin = sinh(x), hyperbolic_cos = cosh(x)
hyperbolic_tan = hyperbolic_sin/hyperbolic_cosine

WRITE (hyperbolic_sin,hyperbolic_cos,hyperbolic_tan)

WRITE (InvSinh(hyperbolic_sin),InvCosh(hyperbolic_cos),

InvTanh(hyperbolic_tan))
(Define functions for inverse functions—see problem statement.)
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4 Convert the algorithm into a program.

P-4.6 [HYPERBOL. F90]

PROGRAM hyperbol
! Calculate inverse hyperbolic functions.

IMPLICIT NONE

REAL x,hyperbolic_sin, hyperbolic_cos, hyperbolic_tan
REAL z,InvSinH,InvCosH,InvTanH !for statement functions
InvSinH(z)=LOG(z+SQRT (z*z+1.0))
InvCosH(z)=LOG(z+SQRT(z*z-1.0))
InvTanH(z)=LOG((1.0+z)/(1.0-2))/2.0

PRINT*,' Give any real number: '

READ*, x

hyperbolic_sin=SINH(x)
hyperbolic_cos=COSH(x)
hyperbolic_tan=hyperbolic_sin/hyperbolic_cos

PRINT#*,' Hyperbolic sin,cos,tan:', &
hyperbolic_sin, hyperbolic_cos, hyperbolic_tan
PRINT#*,' Inverse hyperbolic sin, cos, tan: ', &
InvSinH(hyperbolic_sin), &
SIGN(InvCosH(hyperbolic_cos),x),InvTanH (hyperbolic_tan)
!
END
Running P-4.6
 Give any real number: . _ -
1.5 : ' . L . . ' :
Hyperbolic sin, cos, tan: = 2.1292794  2.3524096 0.9051482

Inv. hyper. sin, cos, tan: 1.5000000 1.5000000 1.4999998

5 Verify the operation of the program.

You can assume the Fortran hyperbolic functions work correctly. With this
assumption, your program should return the original input if the inverse hyperbolic
calculations are done correctly and the functions are used appropriately.

In response to the second part of the problem, Table 4.4 presents argument
and function ranges for the inverse hyperbolic functions. Make sure you
understand these ranges and that they are consistent with results from your
program.
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Table 4.4. Argument and value ranges for inverse hyperbolic functions. (See
Table 4.1 for ranges of hyperbolic functions.)

Function | Argument | Function

Range Range
sinh(x) | (-0,) (-00,00)
cosh(x) (-o0,00) [1,0)
tanh(x) (-00,%0) -1,1)
sinh’'(x) (-00,20) (-0,%0)

cosh’(x) [£1,%0) [0,%0)

tanh™(x) [-1,1] (-00,0)

Problem Discussion

This is an excellent example of a problem that appears very simple, but
actually contains several potential programming problems. First of all, cosh™(x)
requires that its argument be greater than or equal to 1, and it always returns a
non-negative value. Because cosh(x) is always greater than or equal to zero,
regardless of the sign of x, cosh™(cosh(x)) will always return a positive result even
if x is negative. This means that the inverse function won’t give back the original
value of x unless the SIGN function is used, as shown in the final PRINT
statement; it makes the sign of the displayed result dependent on the sign of the
original value of x.

A more serious problem concerns the accuracy of the underlying
computations for numbers of type REAL. An obvious trouble spot is the
calculation for the inverse hyperbolic tangent, which contains 1 -z in the
denominator, where z = tanh(x) when the function is used in the program. How
big (in absolute magnitude) does x have to be before tanh(x) is so close to 1 that
the 1-z in the denominator results in an apparent division by zero, or before it’s
so close to 1 that the calculation is no longer sufficiently accurate? The answer
is “Not very big!” Why? Because tanh(x) is very close to 1 for any value larger
than about 3. Table 4.5 gives some representative values for the hyperbolic
functions.

With the compiler used for the programs in this text, x = 4 produces
tanh™'(tanh(x))=3.99998. For x = 8, the calculation produces 8.11503—a significant
error. For slightly larger values, the calculation is either completely unreliable or
causes the program to crash.
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Table 4.5. Values for hyperbolic functions

x | sinh(x) cosh(x) tanh(x)
0 0.00000 1.00100 0.00000
1 1.17520 1.54308 0.76159
2 3.62686 3.76220 0.96403
3| 10.01787 10.06766 | 0.99505
4| 27.28992 27.30823 | 0.99933
5| 7420321 7420995 | 0.99991
6 | 201.71316 | 201.71564 | 0.99999
7 | 548.31612 | 548.31704 | 1.00000

Similar computational problems also arise in i s
the sinh and cosh calculations because the exponential | @ithmetic overflow I
function ¢* causes an arithmetic overflow error for
large values of x. With the compiler used for the programs in this text, arithmetic
overflows occur for the sinh and cosh functions when x reaches a value of about
90.

These kinds of computational problems result from the fact that the
accuracy of arithmetic calculations is limited by the accuracy with which real
numbers are represented in Fortran. Their onset can be delayed by using Fortran
data type declarations that allow more accurate calculations, which we will discuss
briefly in Chapter 12, but in general they can’t really be solved in Fortran, or any
other procedural language, for that matter. As is so often the case, you are
responsible for appropriate use of a programming language. In many situations,
a loss of accuracy in calculations means that you should reformulate your
problem, rather than worrying about the limitations imposed by the programming
language. This topic, which is covered in courses on numerical analysis, is beyond
the scope of this text.

Programming Tip

If you’re curious about the kinds of
computational problems that might occur in
programs similar to P-4.6, you can investigate
limitations on the REAL and INTEGER data types by using Fortran 90’s intrinsic

numeric inquiry function I



4.4 Debugging Your Programs = 175

numeric inquiry functions. Program P-4.7, offered without additional comment,
shows how to use some of these functions. For additional details, consult a
Fortran 90 reference manual. With the compiler used for the programs in this text,
the Huge function returns 3.4028235E+38 as the largest REAL number. An
examination of the properties of REAL and INTEGER data types on your
computer system would make an excellent extra-credit project!

P-4.7 [NUMBERS . F90]

PROGRAM Numbers
! Performs some tests on default REAL and INTEGER values.
IMPLICIT NONE
REAL x
INTEGER i

x=1. !can be any value of type REAL
i=1 Ican be any value of type INTEGER
PRINT *,' For real numbers...'

PRINT *,' Digits(x) ',Digits(x)

PRINT *,' Huge(x) ', Huge(x)

PRINT *,' Tiny(x) ',Tiny(x)

PRINT *,' MaxExponent(x) ', MaxExponent(x)
PRINT *,' MinExponent(x) ', MinExponent(x)
PRINT *,' Precision(x) ',Precision(x)
PRINT *,' Epsilon(x) ',Epsilon(x)

PRINT *,' For integers...'

PRINT *,' Digits(i) ',Digits(i)

PRINT *,' Huge(i) ',Huge(i)

END

4.4 Debugging Your Programs
4.4.1 Programming Style

Your programs should use intrinsic functions whenever possible. There is hardly
ever any justification for writing your own code to duplicate the capabilitites of
these functions. Whenever you need to perform simple calculations several times,
typically with different input values each time, your program can use statement
functions to perform the calculations. These functions should be descriptively
named and given appropriate type declarations. Comments should be included to
describe their output and the nature of the input required to use them.

4.4.2 Problems with Programs

Major sources of errors when using functions include using inappropriate input
arguments and misusing output values. (See the discussion of P-4.6.) If you’re
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lucky, inappropriate arguments will result in compilation or execution errors. If
you’re not, your program will appear to work, but your answers will be wrong.
Here are some problems to watch for whenever you include functions in your
programs.

1. Trigonometric calculations give strange answers. A very common programming
error is forgetting to convert angles expressed in degrees to radians when you use
them as arguments in Fortran trigonometric functions. This sometimes produces
odd-looking answers, but all too often the answers look OK even when they are
wrong. Similarly, inverse trigonometric functions return values in radians. Be sure
to convert from radians to degrees if you wish to see angles displayed in degrees
as part of your program’s output. When trigonometric functions are used internally
in your program, it is often easier simply to retain the values in radians.

2. Misuse of the ATAN function. Trigonometric calculations are often a source of
elusive problems. The ATAN function returns values in the range +90°. Many
practical problems require an arctangent function that returns angles in the proper
quadrant based on the value of the x and y coordinates. (For example, if x and y
are both negative, the angle must be in the third quadrant.) In these cases, you
should use the ATAN2 function. (Review the use of the ATAN2 function in P-4.3
earlier in this chapter.)

3. Misuse of the LOG and LOG10 functions. Although there are no “rules” for
knowing whether to use natural (base ¢) or common (base 10) logarithms,
mathematical formulas usually use natural logarithms. Common logarithms are
often used when the range of numerical results to be plotted on a graph spans
many orders of magnitude. For example, values in the range 10 to 10*® can be
plotted conveniently on a common log scale with values in the range -6 to +6.

4. Statement functions generate compilation errors. Remember that statement
function definitions are nonexecutable statements and must appear before all
executable statements in your program.

5. Your program crashes when you run it. Run-time errors can often be traced to
inappropriate use of functions. As discussed throughout this chapter, functions
must be used with an understanding of their limitations. Remember that function
arguments that exceed the allowed range will produce run-time errors rather than
compile-time errors. This is because your Fortran compiler has no way to know
during compilation that an input argument eventually will be given an
inappropriate value. When these kinds of errors occur, you may need to re-
evaluate the source of the function’s arguments or rethink how the function is
being used.
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4.5 Exercises
4.5.1 Self-Testing Exercises

Exercise 1. Describe in your own words the two most important concepts you
have learned from this chapter.

Exercise 2. Describe in your own words how you could use in your own
programs a problem-solving skill demonstrated in a program described in this
chapter.

Exercise 3. Use Fortran 90 intrinsic functions to translate these definitions or
algebraic expressions into Fortran statements.

(a) The hypotenuse of a right triangle is equal to the square root of the sum of the
squares of the two perpendicular sides.

(b) The height as a function of time reached by a projectile fired with speed v at
an elevation angle 0 is h = vtsin(0) - gt¥/2.

(© X = Veos(@)(1-e Yk

WX/F + -WX/F

(d) Y = F/I(2W)e(e e )+ Y, -FW

Exercise 4. Create statement functions for the following:
(a) The definitions or expressions in Exercise 3

(b) Cartesian coordinates x and y as a function of the polar coordinates r and 0,
where x = recos(0) and y = resin(0) (see P-4.3)

(c) Trigonometric functions (sine, cosine, and tangent) for angles expressed in
degrees’

(d) Inverse trigonometric functions (arc sine, arc cosine, and arc tangent) that
return angles in degrees

°In earlier versions of Fortran, some compilers included such functions as a nonstandard
extension.
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Exercise 5. Create statement functions for the following conversions:
(a) Fahrenheit to centigrade

(b) Fahrenheit to kelvins

(c) Newtons/m? to pound/in®

(d) a lowercase ASCII character to uppercase (see the discussion at the end of
Section 4.1.2)

(e) an uppercase ASCII character to lowercase

4.5.2 Basic Programming Exercises

Exercise 6. Using P-4.4 as a model, write a program that defines a statement
function to calculate the volume and mass of a sphere. Use this statement function
to calculate the volume and mass of the wall of a hollow sphere with a user-
specified outer radius, wall thickness, and material density. Use metric units of kg
and kg/m®.

Extra Credit

Suppose all the air could be removed from a hollow sphere without it
collapsing. For some reasonable material (aluminum, for example), how thin must
the walls be before a sphere with an outer diameter of 50 m will “float” in air at
standard pressure and temperature?

Exercise 7. Modify program P-4.5 so the calculation for the refracted angle is
contained in a statement function.

Exercise 8. Suppose a light ray passes from a medium of higher refractive index
to a medium of lower refractive index. For some critical angle 6., measured from
the local perpendicular to the plane that separates the two mediums, the light ray
will be reflected internally, with no light passing into the medium of lower
refractive index. Modify program P-4.5 to calculate the critical angle for the two
mediums defined by the indices of refraction you provide as input.

Hint: the critical angle occurs when the refracted angle is 90°. If the
medium with the lower refractive index is air, the critical angles are given as the
last refraction angle in each column of Table 4.3.
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Exercise 9. Based on material from other courses you are taking, state a
computational problem and write a complete program to solve it. Make sure the
problem involves the use of one or more Fortran intrinsic functions or a statement
function.

4.5.3 Programming Applications

Exercise 10. Radioactive elements decay at a rate characterized by their “half-
life,” defined as the time required for the original amount of radioactive material
to decrease by half. (The decayed material doesn’t disappear, of course. The
process produces decay products that may themselves be stable or unstable.) For
example, radon has a half-life of 3.8 days. If there are originally 100 mg of radon
gas in an enclosed container, there will be 50 mg after 3.8 days, 25 mg after 7.6
days, and so forth. The process of radioactive decay can be described by the
formula

t

At) = A e

where A, is the initial amount, A(t) is the amount after time t, and t, is
proportional to the half-life t, ;.. To relate t, to t,,;, set A(t)=A/2 and take the
logarithm of both sides:

A/2 - Aoe_tha]f/to
ty = “thae/In(1/2)

o

For radon, t, is about 5.48 days. Figure 4.5 shows a radioactive decay curve for
radon.

Write a program that calculates and prints the amount of radon remaining
from a given original sample mass after a specified number of days. Include the
calculation for t, in the program rather than doing it by hand ahead of time.

Note: You may already have done the algorithm design for this problem
when it appeared as Exercise 21 at the end of Chapter 2. [HALFLIFE.F90]
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Figure 4.5. Radioactive decay of radon

Extra Credit

(a) Half-lives vary over a wide range, from small fractions of a second to
thousands of years. Modify your program so it will let the user provide both the
half-life, in appropriate time units, and the elapsed time in the same units, so the
program will work for elements other than radon. (This would be a better way to
write the original program, too, because it represents a more general approach to
the problem.)

t/t
(b) You may prefer to write A = A _(1/2) /thait to calculate radioactive
decay. Modify your program accordingly.

Exercise 11. Write a program that asks the user to enter a currency amount and
then calculates how many dollar bills, quarters, dimes, nickels, and pennies are
required to return this amount in change. Assume that the minimum total number
of coins should be returned. This means that your program should return first the
maximum number of quarters, then the maximum number of dimes, and so forth.
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That is, even though you obviously could return $0.66 in change as, for example,
six dimes and six pennies, the program should tell you to return this change as
two quarters, one dime, one nickel, and one penny. This “restriction” actually
makes the problem easier to solve.

Hint: first convert the currency to cents and then use integer division and
the MOD function, starting with the fact that one dollar equals 100 cents, one
quarter equals 25 cents, and so forth. [CHANGE . F90]

Exercise 12. Write a program that calculates the volume and surface area of a
cylinder, given the radius and height in inches. The volume of such a cylinder is
nrth and the surface area is 2mr* + 2nrh. Use a statement function for each
calculation. (For comparison, see Exercise 17 in Chapter 3.) [CYLINDR2.F90]

Exercise 13. Write a program that asks the user to supply the mass and velocity
of an object and then calculates and prints the kinetic energy and linear
momentum of that object. The kinetic energy is mv*2 and the momentum is mv.
Use SI units (mass in kilograms, velocity in meters per second, energy in joules).
Use a statement function for each calculation. (For comparison, see Exercise 18
in Chapter 3.) [KINETIC2.F90]

Extra Credit

Include code for statement functions that will convert the kinetic energy
and momentum into their British system equivalents. The British unit of energy
is foot-pounds and the unit of momentum is slug-feet/seconds. 1 foot-pound=1.356
joule; 1 slug=14.59 kilogram; 1 foot/second=0.3048 meters/second. Use statement
functions for the conversion calculations.

Exercise 14. Under natural conditions of ample food supplies, adequate living
space, and a stable environment, animal populations grow exponentially, as
illustrated for the global human population in Figure 4.6. That is, the projected
population at some future time will be proportional to the current population. A
simple single-parameter model for extrapolating an initial population P, n years
into the future is:

P =P (1+g)"

where g is the net annual growth rate as determined by the difference between
births and deaths.
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Figure 4.6. Exponential growth of global human population

Write a program that uses this formula to calculate the growth rate needed
to achieve a specified population at some time in the future. In 1992, the global
human population was about 5.4x10° people. Some estimates predict that global
population will be about 8.5x10° in the year 2025. It is not at all clear that the
“natural” conditions required to support exponential growth will continue to exist
for the human population. Food shortages, overcrowding, poor economic
conditions, war, and environmental degradation can significantly affect both birth
and death rates. [POPULATN.F90]

Exercise 15. The loudness of a sound is measured in decibels (dB) on an arbitrary
scale that relates perceived loudness to the ratio of the intensity of a sound to the
intensity of the weakest audible sound I,, which is about 10" W/m?*

Loudness = 10log,,(I/1,)

Intensity is a physically measurable quantity, but loudness is a subjective human
perception. The perception of loudness has approximately the logarithmic relation
indicated by the equation, but it varies among individuals. Write a program that
calculates and displays the intensity and loudness for sounds 10, 100, and 1000
times more intense than the weakest audible sound. [NOISE.F90]
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Extra Credit

Modify your program to calculate and display the intensity of a sound with
a specified dB value. What is the intensity of a sound of 100 dB, which is loud
enough to cause permanent hearing damage?

Exercise 16. The efficiency of solar energy systems depends critically on the
ability to track the sun’s position. One required value is the solar elevation angle
g, the angle to the sun measured upward from the local horizontal. It depends on
the latitude of the subsolar point (solar declination) &, the observer’s latitude A,
and the hour angle B, where hour angle is the angle from the observer’s meridian
to the subsolar meridian. (B = 0° occurs at local “high noon,” which generally
differs from clock noon by a few minutes. One hour of clock time corresponds to
approximately 15° of hour angle. A meridian is a line of constant longitude
running from the north pole to the south pole.) The latitude of the subsolar point
is seasonally dependent, with a range of +23.4°. The largest positive value occurs
at northern hemisphere midsummer, and the largest negative value occurs at
northern hemisphere midwinter. The solar elevation angle for any solar
declination, latitude, and hour angle is given by:

€ = 90° — cos'(cosdcosAcosP + sindsinA)
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Figure 4.7. Solar elevation angle in winter and summer at 40°N
Iatitude
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Write a program that asks the user to supply an observer’s latitude and the
solar declination and then calculates and displays solar elevation angle for hour
angles of 60°, 30°, and 0° (corresponding approximately to 8am, 10am, and noon
in clock time). Use your program to determine the range of high noon (maximum)
elevation angles as a function of season at a specified latitude. What happens in
the polar regions, when the sun may not shine at all during part of the year?
Figure 4.7 shows the elevation angle for 40°N latitude in the summer and winter.
[ELEVATIN.F90]

Exercise 17. The well-known factorial function n! is defined as
n! = ne(n — 1)e(n — 2)e...02¢1

For example, 5! = 5¢4e3¢2¢1 = 120. For large values of n, this is a very
impractical calculation. However, n! can be approximated for large values of n
with Stirling’s formula:

n! = (n/e)"(2nm)"?

Write a program that requests a value of n and calculates n! using
Stirling’s approximation. How close is Stirling’s approximation for values of n!
you can calculate yourself by hand? This approximation is especially useful when
calculating the ratio of two large factorials, as required for certain problems in
probability theory.

Hint: declare n as REAL. [STIRLING.F90]

Extra Credit

What is the largest value of n for which n! can be calculated from its
definition when n is declared as the default INTEGER data type? Can you
comment on the applicability of Stirling’s formula for larger values of n? In order
to answer this question, you could look ahead to the part of Section 3 in
Chapter 12 that deals with declaring numbers with greater precision and range
than the default REAL data type.

Exercise 18. Suppose a single measurement is taken from a standard normal
(Gaussian) distribution. For such a distribution, the mean (arithmetic average) is
0 and the standard deviation is 1. The probability that a single measurement will
be no greater than some specified value z is equal to the area under the curve
defined by the standard normal probability density distribution function, integrated
from -0 to z.

The standard normal probability density function cannot be integrated
analytically. One solution is to approximate the integral with a polynomial:
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cumulative probability = 1 — r(a,t + a,t* + a,t’)
where

r=o%?)\ 2 t=(1 +0.33262)" a, = 0.4361836
a, = -0.1201676  a, = 0.9372980

The error resulting from using this approximation is less than 107,
Write a program that will calculate cumulative probability for some
specified value z using this approximation. [NORMAL2 . F90]

Extra Credit

The standard normal variable z is related to measurements of normally
distributed quantities taken from populations whose sample mean and standard
deviation m and s have values other than 0 and 1 by

X-m
X

zZ =

Modify your program so that it will calculate the probability that a single
measurement from a normally distributed population with sample mean m and

standard deviation s will not exceed the mean by more than some specified
amonnt.
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Gaining Control Over Program Output

This chapter discusses techniques for supplementing the list-directed output
formats used in the previous chapters with formats that provide a wide range of
options for controlling the appearance of displayed output from your programs.

5.1 The Formatted PRINT Statement
5.1.1 Introduction to Formatted Output

In the previous two chapters, output from programs in the text and programs you
wrote yourself was generated by using the PRINT *, ... statement. This list-
directed output is easy to use because your Fortran compiler decides how the
output will be displayed on your computer’s default output device, usually a
monitor. List-directed output is very convenient for “quick and dirty”
programming, or as an intermediate step when you’re developing a complicated
programming project.

Eventually, however, you will wish to make use
of Fortran’s extensive features for controlling the
appearance of your programs’ output. These formatted
output features can be implemented either with the PRINT statement, which has
been used in previous chapters to produce list-directed output, or the WRITE
statement, which will be described in this chapter.

' First consider the PRINT statement. The list- I format specifier I
directed output from the PRINT *, ... statement syntax
can be modified by including a format specifier that
describes how the programmer wants output to appear. An expanded syntax for
the PRINT statement now looks like this:

' Jformatted output I

PRINT *[, list of variables, expressions, functions,
or constants, separated by commas]

PRINT label[, list...]

PRINT format string[, list...]

The first form is the familiar syntax for list-directed output and the other two are
for formatted output. As an introduction to how the PRINT statement is used to

D. R. Brooks, Problem Solving with Fortran 90
© Springer-Verlag New York, Inc. 1997
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produce formatted output, consider program P-5.1, which involves a minor
modification of program P-4.3 from Chapter 4.

P-5-1 [POLAR2.F90]

PROGRAM polar2

Convert polar coordinates to Cartesian and check the
results by converting them back to polar coordinates.
Demonstrates formatted output.

IMPLICIT NONE
REAL X,Y,r,theta,pi,DegToRad

pi=4.0*ATAN(1.0)

DegToRad=pi/180.0

PRINT *,' Give polar coordinates r, theta (deg): '
READ *,r,theta

X=r*COS (theta*DegToRad)
Y=r*SIN(theta*DegToRad)

PRINT 1000,X,Y
! Recalculate values of r and theta...

r=SQRT (X*X+Y*Y)
theta=ATAN2 (Y, X)/DegToRad

PRINT 1001, r,theta
! FORMAT statements...
1000 FORMAT(1lx,'x and y: ',2f6.2)

1001 FORMAT(1lx,'recalculated r and theta: ',2f7.3)
END

Running P-5.1

Give polar coordinates r, theta (deg):

5. 30,
x and y: 4.33 2.50
recalculated r and theta: 5.000 30.000

Compare this output with that from program P-4.3, which used list-directed
output. The results of the calculations are the same in each case. However, the
output from P-5.1 is easier to read and makes more sense in the context of how
the input values are expressed because the extraneous digits in the output of P-4.3
are no longer present in this output.

Program P-5.1 differs from program P-4.3 in the syntax of its two PRINT
statements and the addition of two FORMAT statements; these four statements are
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printed in bold italics. In place of the asterisk that specifies list-directed output,
each PRINT statement now contains a reference to a line containing a FORMAT
statement that controls how the output is displayed.

FORMAT statements are identified by line labels in the
form of numbers. This is the first time we have used such labels.
In older versions of Fortran, columns 1-5 were reserved for line
labels and we will continue to follow this style even though it’s not required in
the free-format environment of Fortran 90. All that is required by Fortran 90 is
that the label appear first on the line containing the statement to which it refers.

The syntax of the format statement is :

I line labels I

label FORMAT(format descriptors)

Example:
1000 FORMAT(1lx,'x and y: ',2f6.2)

Here are some rules for using FORMAT statements:

1. A line label can be any positive integer up to five digits. That is, lines can be
labelled from 1 to 99999.

2. You can’t use the same label for more than one FORMAT statement in a single
program unit.' However, the labels don’t have to be numbered consecutively, and
they don’t have to appear in any particular numerical order.

3. FORMAT statements can appear anywhere in a program after the nonexecutable
statements.

4, More than one PRINT statement can reference the same FORMAT statement.

5. It is an error to reference a FORMAT statement label that does not actually
appear in the program.

In this text, FORMAT statements will always appear at the end of a
program and always with their labels in ascending numerical order because that
makes the code easier to read.” The first FORMAT statement label will usually be
1000, but this is just a style choice and not a Fortran requirement.

! As you will see in later chapters, FORMAT statement labels can be reused in subprograms.

“This is a personal preference. Some programmers prefer to put FORMAT statements
directly after the output statements that refer to them.
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Although the differences in the output produced by P-4.3 and P-5.1 may
seem minor, the ability to control the appearance of output is an important feature
of Fortran. We will make extensive use of these capabilities in many of the
programs in this text.

5.1.2 Format Descriptors for Numbers and Character Strings

The FORMAT statements labeled 1000 and 1001 in
P-5.1 include the string constants that formerly were
part of the list-directed output statement. They also
include other format descriptors, which may be grouped in three classes:
numerical, character, and control. Table 5.1(a) includes a listing of several
descriptors. A program including examples of each descriptor, DESCRIPT.F90,
is included in the files available from the World Wide Web Site mentioned in
Section i.5 of the Preface, but it will not be discussed in the text.

For the a, 1, E, EN, ES, and F descriptors, the total | field width I

I Jormat descriptors I

number of characters allocated for the output, the field width, is
given by the positive integer constant w. Some general rules for
using descriptors include:

(1) Any descriptor can be repeated by including an optional repeat count specifier
n.

(2) Descriptors in a FORMAT statement are always separated by a comma.

(3) Descriptors must always match the data type of values being printed under that
descriptor.

INTEGER descriptors

The Iw descriptor is used to display INTEGER values. If the field width w isn’t
wide enough to display the entire value, asterisks will be displayed. Numbers are
always right-justified in the field specified by w.

REAL descriptors

The basic descriptor for REAL (or “floating point”) numbers is Fw. d. The field
width w must be wide enough to include a space for a sign, all required digits to
the left of the decimal point, the decimal point itself, and the specified number of
digits to the right of the decimal point, as specified by d. If w is too narrow,
asterisks will be displayed. If the number is positive, the default action calls for
the “+” sign not to be displayed. It is possible that your compiler will require one
space for a sign regardless of whether it is actually displayed. Because of this, and



5.1 The Formatted PRINT Statement = 191

for general readability of your output, it’s always a good idea to leave at least one
extra space in the field width. Numbers printed using the F descriptor are always
right-justified in the field specified by w.

Table 5.1. Format descriptors

Table 5.1(a) Numerical and character descriptors

Data Type | Descriptor Example’ Output
Syntax’
INTEGER [n]Iw 4;4 BPB17BBY3BB- 38567
[n]Iv.m 3.4 $0099
(Inserts leading zeros)
REAL [n]Fw.d 2f6.2 Bpl.41p-1.41
[n]Ew.d ? el3.4 PPP0 . 2998E+09
[n]ENw.d # | enl3.4 6299.7900E+06
[n]ESw.d ° | esl3.4 Pp-2.9979E+08
CHARACTER [n]A a Fortran
[n]Aw alo PppFortran
a4 Fort
(Assuming a character
variable of length 10)
LOGICAL [n]Lw L3 PBYT
General [n]Gw.d 3g5.0 1994119951996
String ' ' 'Fortran' | Fortran
constant " " "Fortran" | (String may contain any
printable character.)

’d, m, n, and w are unsigned (positive) integer constants. The repeat count specifier [n] is
optional in all cases. A repeat count of 1 is allowed but extraneous.

2 Either lowercase or uppercase letters can be used.

3 The absolute magnitude of the significand (digits to the left of the decimal point) is less than 1.
*The absolute magnitude of the significand is greater than or equal to 1 and less than 1000. The
exponent is evenly divisible by 3.

®The absolute magnitude of the significand is greater than or equal to 1 and less than 10.
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Table 5.1(b) Control descriptors

Control Function Descriptor Example/Comment
Syntax
Carriage control ’ character embedded ¥ start new line
in a string constant + remain on same line
o skip a line
1 skip to new page
Skip spaces nX 10x
Sign display ss suppresses + sign
SP displays + sign
s returns to default *
New line [,nl/ 3 ,3/ is equivalent to
/77
Tabulation Tn tab to column n
TRn tab right n spaces
TLn tab left n spaces
Terminate format [,1:[,] stops processing format

when I/O list is empty

! See text for description of carriage control functions.

2 Default condition (suppress or print + sign) is system-dependent.

3The comma is required only when the slash descriptor is preceded by another edit descriptor.
“Tn is an “absolute” tab to a specified position in the line. TRn and TLn are “relative” tabs from
the current position; TRn is equivalent to nX.

For a REAL number less than 10, as in the first line of output from P-5.1,
a descriptor of F4 .2 might work, but F5.2 might be required. A descriptor of
F3.2 would not work because a minimum of four characters is required.
Assuming that your compiler will accept an F4 . 2 descriptor for the first line of
output from P-5.1, the repeated descriptor 2F4 . 2 would display the confusing
output 8. 665 . 00, which is another reason to make sure w is wide enough so that
all your output is easily readable. The total field width should be at least three
more than d, including a space for a sign.

The E descriptors display REAL numbers in “exponential” or “scientific”
format, as a value times a power of 10. For Ew. d, w must be at least seven more
than d: one space for a sign, two spaces for the 0 and decimal point, and four
spaces for the exponent.
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The E, EN, and ES descriptors differ in the number of nonzero digits they
place to the left of the decimal point, as explained in the notes accompanying
Table 5.1(a). For the same value of d, the EN descriptor may require a field width
up to nine more than d, depending on the size of the number being displayed.

CHARACTER descriptors

The A descriptor is used to display character data. It displays the value using the
number of characters in the string. The Aw descriptor will right-justify the
character string in a field of width w if w is greater than the number of characters
in the type declaration and will truncate characters from the right if w is less than
the number of characters in the string.

LOGICAL descriptor

The Lw descriptor prints a T or an F for the logical value . TRUE. or .FALSE.,
right-justified in a field of width w.

General descriptor

The G descriptor can be used to display any of the data types discussed above. Its
use of w or w.d follows the rules for the data type being displayed.

String constant descriptors

String constants (literals) are displayed by including them in statements enclosed
in single or double quotes. The constants may include any printable character.
5.1.3 Control Descriptors

Carriage control

In the early days of Fortran, the standard output device was a mechanical printer,
so the concepts of “line” and “page” had a very specific physical interpretation.
The carriage control descriptors controlled the position of the printer’s printhead
and the motion of paper past the printhead. The first character generated as a

result of a PRINT statement was not actually printed, but was used to control the
motion of the paper and the printhead. As shown in Table 5.1(b), these controls
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included characters to start a new line (J§), to remain on the same line (+), to skip
a line (0), and to advance to the beginning of a new page (1). The “new page”
control was especially insidious, as it could turn a short printed output into
hundreds of mostly empty pages if you happened to be unlucky enough to print
lots of numbers starting with a “1” in the first column.

In modern Fortran implementations, the standard output device is a monitor
screen rather than a printer. The IBM-compatible PC-based compiler used to
develop the programs for this text doesn’t even recognize carriage control
characters, and it prints all characters, even the first one, directly on the monitor
screen. You can test the performance of your own version of Fortran by running
the DESCRIPT.F90 program mentioned at the beginning of Section 5.1.2.

Regardless of how your version of Fortran treats control characters, you
can avoid potential problems by developing the habit of including one blank space
as the first printable character in every output statement, unless you are using a
system that interprets these characters and you wish to use them. For example,
when a formatted output statement is used to display a string constant, the first
character should always be blank. When data are displayed using unformatted
(list-directed) output, the compiler-generated default field width is always wide
enough so that the first space is blank. The compiler used to develop programs for
this text always starts list-directed output in the second column. That is, the
statement PRINT *, 'message' displays pmessage rather than message.
Thus if you run sample programs from this text on a different system, spacing
may sometimes differ by one column.

Skipping spaces

The nX descriptor prints blank spaces. For example, including 1X as the first
descriptor in a FORMAT statement generates a space, which avoids unintentional
carriage control problems as described in the previous section. For this descriptor,
a value for n must be included even if it is 1.

Sign display

As mentioned previously, your system may or may not print a + sign in front of
positive numbers, and your system may or may not require your format
specification statement to include a space for this sign. In any case, you can use
the S descriptors to force the + sign to be displayed (SP) or suppressed (SS), or
to revert to the default condition for your system (S).
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New lines

The slash (/) descriptor is used to force a line feed and
carriage return. By using this control, you can create
several lines of output within a single PRINT statement.
The slash descriptor does not have to be separated from
previous descriptors with a comma unless the n/ syntax is used. Multiple slashes
can appear together. As noted in Table 5.1(b), /// is equivalent to , 3/.

line feed
carriage return

Tabulation

The T descriptors generate “tabs” on a printed line. They may be relative (TRn
and TLn) or absolute (Tn). An absolute tab counts n spaces from the beginning
of the line. The relative tab counts n spaces from the current position on the line.
Hence TRn is equivalent to nX. The T descriptors are useful for printing output
in columns, although it is hardly ever necessary to use them because uniform
columns can also be generated by adjusting the field width in data format
descriptors. Note that the tabulation descriptors don’t actually generate “tab”
characters, as word processors do. Rather, they simply move the “printhead” an
appropriate number of blank spaces. This distinction may be important in some
applications. For example, suppose you used the T descriptors in a Fortran
program that saved its output in a data file. If you tried to use that data file as
input to an application that was expecting “tab-delimited” values (a spreadsheet,
for example), the Fortran-generated file would not meet that requirement.

Programming Tip

You might be tempted to think that you could use the TL descriptor to
create multiple-character overstrikes. This won’t work. Instead only the last
character printed in a space is retained.

Format termination

The colon (:) descriptor terminates processing of the contents of a format
statement as soon as there are no more items to be read or written in the
input/output list. A practical application is to prevent output of unwanted string
constants used for annotating output. For example, the statements

a=5
b=1776
PRINT 1000,a,b
1000 FORMAT(' a=',i5,' b=',i5,' c="',1i5)
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produce the output
a= 5 b= 1776 c=

even though no value for c is being displayed. However, replacing the PRINT
statement with ‘

PRINT 1000,a,b
1000 FORMAT(' a=',i5,:,' b=',i5,:,' c=',1i5)

produces the output
a= 5 b= 1776

In some circumstances, use of the colon terminator can significantly reduce the
number of different format statements you must create for a program.

5.1.4 Repeating Groups of Descriptors

It is clear from Table 5.1 that individual descriptors can be repeated n times by
placing n in front of the descriptor. It is also possible to repeat groups of
descriptors by enclosing them in parentheses. For example, the FORMAT
statements

FORMAT (1x,3(£6.2,15))
FORMAT(1x,2(f4.1,3(a6)),£10.5)

are equivalent to

FORMAT (1x,£6.2,i5,£6.2,i5,£6.2,15)
FORMAT (1x,f4.1,a6,a6,a6,f4.1,a6,a6,a6,£10.5)

Especially with repeated groups of descriptors, it is important to make sure that
the data types of the values being printed agree with the descriptors; if they don’t,
your program will issue an error message.

5.1.5 Producing Formatted Output without a FORMAT Statement

As noted previously in the syntax definition for formatted output, it is possible to
replace a reference to a labeled FORMAT statement with a string that contains the
format description. Some programmers prefer this approach because they believe
line labels should be avoided whenever possible. The format string may be either
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a string literal or a CHARACTER constant declared with an appropriate length.
Consider the two PRINT statements in program P-5.1:

PRINT 1000,x,y
PRINT 1001, r,theta

1000 FORMAT(1lx,'x and y: ',2£f6.2)
1001 FORMAT(1x, 'recalculated r and theta: ',2f7.3)

These can be written as

PRINT "(1x,'x and y: ',2f6.2)",x,y
PRINT " (1lx, 'recalculated r and theta: ',2f7.3)",r,theta

and also as

CHARACTER*40 F1,F2

l;‘i;"(lx, 'x and y: ',2f6.2)"
F2="(1x, 'recalculated r and theta: ',2f7.3)"

PRINT F1,X,Y
PRINT F2,r,theta

Note the use of quotation marks to delimit the format strings. These, rather than
single quotation marks, are necessary because the string itself contains single
quotation marks. The format string must include parentheses as shown.

This text favors the use of labeled FORMAT statements over the use of
character strings for defining formats. We will be consistent about placing these
statements in numerical order at the end of a program—or subprogram, when we
get to that later in the text. String literals embedded within output statements often
make those statements more cluttered and harder to read. Also, defining
CHARACTER constants seems like a waste of time when done just for the purpose
of avoiding line labels.’

There is one circumstance in which the use of string constants to describe
formats can be very helpful. Suppose a program needs to read an external data
file—a topic that will be covered in Chapter 9. If the file is originally created with
a Fortran program in mind, the first line in the file can contain a string that gives
the format for the file. Then a program can construct its own format based on the
information provided in the file.

3 Author's note: this style is purely a personal preference and some Fortran programmers
will disagree. However, I find nothing objectionable about using line labels for this purpose, and
I believe the use of appropriately placed FORMAT statements at the end of a program or
subprogram usually makes source code easier to read.
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5.2 The WRITE Statement
5.2.1 Syntax of the WRITE Statement and the Standard Output Unit

The PRINT statement always directs its output to the standard output device for
a particular Fortran implementation. In the early days of Fortran, this standard
device was a mechanical printer. In modern Fortran usage, the standard output
device is almost always a monitor screen. However, it is often necessary to direct
Fortran output to some other destination. Typically, this destination is a data file
that will contain a permanent record of the output generated by a program. In
order to direct output to anywhere other than the standard output device, you must
use a WRITE statement in place of a PRINT statement. A simplified syntax for
the WRITE statement is

WRITE(u,*)[list of variables, expressions, functions,
or constants, separated by commas]

WRITE(*,*)[list...]

WRITE(u, [FMT=] label, [ADVANCE='NO'])[ list...]

WRITE(u, [FMT=] format string, [ADVANCE='NO'])[ list..]

where u represents a unit number. A unit number is used to
create an association between a programmed I/O operation and
a physical device. In particular, a unit number can be used to
direct output to a specified output device, including the standard output device.
We will discuss a simple application of this concept in the next section of this
chapter, and we will discuss the use of unit numbers in detail in Chapter 9. For
now, it is sufficient to know that for output to a monitor screen, the unit number
in a WRITE statement that directs output to the standard output device can be
either an asterisk or, on most systems, a 6. If the 6 has to be replaced with some
other unit number on your system, your instructor will tell you what value to use.

The WRITE statement can be used for either list-directed or formatted
output. An asterisk in place of a format specification indicates list-directed output.
The FMT= text for the format specification is optional as long as the label or
format string occurs immediately after the unit number. The format specification
can be either a label or a string constant. The optional ADVANCE="'NO" specifier,
available only with formatted output, produces “nonadvancing output” that
prevents a carriage return from being added to the end of the output line. With
nonadvancing output, the output from more than one WRITE statement can appear
on the same line. This is often useful when displaying output from inside DO. . .
loops, for example.

As a simple example of using nonadvancing output, consider this common
code using PRINT:

unit number I
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PRINT *,'Type an integer: '
READ *,1i

If you enter a value of 10, your screen will look like this:

Type an integer:
10

That is, the message from PRINT appears on one line and the response appears
on the next line. It’s a minor point, but it might be convenient to have your screen
look like this:

Type an integer: 10

You can produce this result by using a formatted WRITE statement and the
ADVANCE="'NO" specifier:

WRITE(6,'("Type an integer: ")',advance='no')
READ *,i

In addition to providing the option of nonadvancing output, there is at least
one more significant advantage to using WRITE instead of PRINT. The unit
number u can be a constant, an integer variable, or an expression that returns an
appropriate positive value. How could you make use of this fact? Suppose you are
developing a program. During the development process, you can direct all the
output to your monitor screen by assigning u a value of 6 at the beginning of your
program. When the program is complete, you can redirect the output to a data file
just by opening that data file from within your program and associating it with an
appropriate value of u. We will demonstrate this process in the next section of this
chapter.

5.2.2 Format Descriptors for the WRITE Statement

The good news about format descriptors for the WRITE statement is that they are
the same as for the PRINT statement. Therefore, Table 5.1 applies to both PRINT
and WRITE. For formatted output, the only difference in the syntax of PRINT and
WRITE statements is that WRITE provides the option of nonadvancing output.

5.3 Saving Program Output
As noted in the previous section, the default output destination for program output

is probably your monitor screen. On some systems, you can save the output from
a program simply by “dumping” the contents of your computer’s monitor screen



200 = 5. Gaining Control Over Program Output

to a printer. However, what you usually wish to do is create a permanent
electronic record of your program’s output.

Fortunately, it is easy to direct output from a program to other destinations,
including a data file that captures a permanent electronic record of all the output
from your program. This is an excellent way to record your work on homework
assignments, but the major advantage is that data generated by a Fortran program
can be saved in a file that can then be “imported” into a variety of other computer
applications, including word processors, spreadsheets, and graphing applications.

To demonstrate the process of creating a permanent electronic file, consider
program P-5.2, which is a modification of P-5.1. P-5.2 is identical to P-5.1
(POLAR2.F90) except for the addition of several statements printed in bold
italics. It even produces the same output on your computer monitor, so its
displayed output isn’t duplicated here.

After the data declarations, an OPEN statement is used to create an
association between a data file called POLAR3 . OUT and unit number 1. This unit
number is a label that can be referenced later by the program. Any WRITE
statement that refers to unit number 1 will send output to this file.

The choice of a value of 1 for the unit number is somewhat arbitrary. As
noted in the previous section, unit number 6 is “preconnected” to the default
output device of many Fortran systems. Similarly, on most systems, unit number
5 is preconnected to the default input device. There may also be restrictions on
other unit numbers; ask your instructor. However, assuming that 5 and 6 are the
preconnected unit numbers, the values 1-4 should be available.*

P-5.2 [POLAR3 .F90]

PROGRAM polar3

Convert polar coordinates to Cartesian and check the
results by converting them back to polar coordinates.
Demonstrates formatted output and creation of an output
data file.

IMPLICIT NONE
REAL X,Y,r,theta,pi,DegToRad

OPEN(1,file='polar3.out')

pi=4.0*ATAN(1.0)

DegToRad=pi/180.0

PRINT *,' Give polar coordinates r, theta (deg): '
READ *,r,theta

WRITE(1,*)' For r and theta = ',r,theta

“It may actually be possible to reassign the preconnected unit numbers 5 and 6 to an
external file. but there is no reason to do this.
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X=r*COS (theta*DegToRad)
Y=r*SIN(theta*DegToRad)

PRINT 1000,X,Y
WRITE(1,1000)X,Y

! Recalculate values of r and theta...

r=SQRT (X*X+Y*Y)
theta=ATAN2(Y,X)/DegToRad

PRINT 1001, r,theta
WRITE(1,1001)r,theta
CLOSE(1)

! FORMAT statements...
1000 FORMAT(1x,'x and y: ',2f6.2)

1001 FORMAT(1x,'recalculated r and theta: ',2f7.3)
END

The file that your program will create can have any name that is legal for
your system. Use of the . OUT extension (which is a typical choice for MS-DOS
systems, for example) is an arbitrary but reasonable choice in the context of P-5.2.
If the requested output file name does not already exist on your computer, Fortran
will create such a file. If the file name already exists, program output will be sent
to that file and will overwrite existing information on that file.

Statements that prompt the user of a program to provide input while it is
executing must still be directed to the monitor screen; there is usually no reason
to send copies of such directions to a file. This isn’t a problem because output not
specifically sent to a file will continue to be sent to the monitor screen. Also,
responses that a user types at the computer’s keyboard won’t be recorded in the
output file. For this reason, an extra WRITE statement has been added to P-5.2 to
“echo” the input values to the output file.

Later in P-5.2, each PRINT statement is followed by a corresponding
WRITE statement that sends duplicate copies of the output to POLAR3 . OUT. Thus
output from this program continues to appear on the monitor screen, but identical
output is also recorded in a permanent file. When the output is complete, a
CLOSE statement closes POLAR3 . OUT.

Another approach to saving program output is to use WRITE statements
with a unit number for all output except for that which must appear on the
monitor screen to direct user responses. For output that should always appear on
the screen, use either a PRINT or a WRITE with an asterisk (for the default output
unit) instead of a unit number.

For output that may later be directed to a file, declare the unit number as
a variable and assign it an initial value of 6 so that output from WRITE statements
using that unit number will be directed to the screen. (See, for example, P-5.4 in
Section 5.4.2 below.) Later, the unit number variable can be assigned a different
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value, and statements can be added to open and close a file associated with that
unit number.

Figure 5.1 summarizes the use of PRINT and WRITE statements to send
output to various destinations (including a printer, which will be discussed in the
next part of this section). The characters £ffff represent either a label for a
FORMAT statement or a complete format specification given as a string constant.
The solid arrow from the upper box to the monitor icon indicates that these output
options send output only to the default output device. It is only by using the
WRITE statement with a unit number that output can be directed optionally to the
default device, a printer, or an external data file. (The diskette icon represents
storage on any electronic medium—typically a hard drive on your PC or other
computer.) We will discuss unit numbers and the syntax of the OPEN and CLOSE
statements in more detail in Chapter 9. For now, you can use P-5.2 and the other
suggestions in this section as a “cookbook” model for saving program output in
a permanent electronic form.

Programming Tip

On MS-DOS systems, you can use the OPEN statement to send output from
a program directly to a printer by replacing the name of an output file with the
DOS “file name” for a printer, usually LPT1. The most convenient way to do this
is to modify your program so that it asks the user to provide the name of the
output file when the program executes. Then you can provide the name LPT1
instead of a “real” file. For an example, see the program POLAR4 . F90 available
from the World Web Site mentioned in Section i.5 of the Preface.

Figure 5.1. Summary of options for directing program output
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5.4 Applications

5.4.1 Stellar Magnitude and Distance

1 Define the problem.

The absolute magnitude M of a star is related to its relative magnitude m
and the distance to a star r measured in parsecs, where 1 parsec = 3.26 light years,
by the equation

M =m + 5 - 5log,(r)

According to this equation, a star with relative magnitude of +1 at a distance of
10 parsecs has an absolute magnitude of +1. The larger the magnitude, the dimmer
the star. Sirius is a very bright star, with a relative magnitude of -1.58. Stars
visible to the naked eye range mostly from about +1 to +6 in relative magnitude.
The dimmest star that can be seen with the 200-inch Hale telescope has a
magnitude of about +23. Write a program to calculate and display the absolute
magnitude of a star based on user-supplied values for its distance and relative
magnitude. Display the results using appropriate formatted output.

2 Outline a solution.

The calculations are straightforward, but be sure to use base 10 logarithms.

3 Design an algorithm.

DEFINE absolute and relative magnitudes and distance as real numbers.
WRITE (Give relative magnitude and distance in parsecs.)

READ (m,r)

ASSIGN M =m + 5 - 5°og,,(r)

WRITE (M)
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‘4 Convert the algorithm into a program.

Remember that Fortran is case-insensitive. Therefore, the symbols m and
M used in the problem statement and algorithm must be given distinct names in
a program.

P-5.3 [STARMAG. F90]

PROGRAM StarMag
! Calculates absolute stellar magnitude based on relative magnitude
! and distance.
!

IMPLICIT NONE

REAL abs_mag,rel_mag,parsecs

WRITE(6," (' To calculate absolute stellar magnitude:')")

WRITE(6," (' Give relative mag. and distance in parsecs: ')"&
,advance='no')

READ *,rel_mag,parsecs

abs_mag=rel_mag+5.0-5.0*LOG10 (parsecs)
WRITE(6,1000)rel_mag,parsecs,abs_mag
i000 FORMAT(' A star with relative magnitude ',f6.2/&
' at a distance of ',f5.1,' parsecs'/s

' has an absolute magnitude of ',6£f6.2)
END

Running P-5.3

To calculate absolute stellar magnitude:

Give relative magnitude and distance in parsecs: 10 3
A star with relative magnitude 10.00

at a distance of 3.0 parsecs

has an absolute magnitude of 12.61

5 Verify the operation of the program.

The best way to verify the operation of this program is to look up the
absolute and relative magnitudes of some stars in an astronomy textbook. Other
than that, your only recourse is to check some calculations by hand.
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Problem Discussion

Note how the / descriptor in P-5.3 is used to divide the output into several
lines. It would also be OK to use formatted PRINT statements instead of WRITES
in P-5.3. One alternative to the first two WRITE statements is:

WRITE(6,"(' To calculate absolute stellar magnitude:'/&
' Give relative mag. and distance in parsecs: ')"&
,advance='no')

Another alternative is:

PRINT 1001

1001 FORMAT(' To calculate absolute stellar magnitude: '/&
' Give relative magnitude and distance in parsecs:')

With the second alternative, the only difference is that the values you type in
response to the prompt appear on the third line rather than at the end of the
second line because the nonadvancing input option isn’t available with PRINT.

5.4.2 Relativistic Mass and Speed of an Electron

Refer to the application in Chapter 3, Section 3.8.2, and to program P-3.12, a
program that calculates the relativistic mass and speed of an electron. We will
modify that program so that it produces neatly formatted output that looks like
this:

For an electron gun voltage of: 1.0000E+06 V
rest mass of electron: 9.1090E-31 kg
relativistic mass and speed: 2.6934E-30 kg 2.8212E+08 m/s
ratio of relativistic to rest mass: 2.9568E+00
ratio of speed to speed of light: 9.4108E-01

You will need to include two new calculations for the specified ratios, but you can
include them as expressions within a PRINT or WRITE statement rather than
assigning the values to two new variables. It is essential to use the E descriptors
whenever numbers are very large or very small, and it is often helpful to use them
when you’re not sure what the magnitude of calculated values will be.

We will not bother to follow a formal problem-solving procedure for this
problem, as the algorithm design changes relative to P-3.12 are minor. The major
modifications deal with the implementation details required to replace the list-
directed output with formatted output. Here is the modified program. Compare its
output against the values in Figure 3.5 from Chapter 3.
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In P-5.4, the unit number is declared as a variable and assigned a value of
6, so output is directed to the monitor screen. An end-of-chapter exercise will ask
you to modify this program according to the discussion in Section 5.3 so that its
output will be directed to some other destination.

P-5.4 [RELMASS2.F90]

PROGRAM RelMass2
!
! Calculates relativistic mass and speed of an electron.
!

IMPLICIT NONE

REAL rest_mass,relativistic_mass ! kg
REAL voltage ! volts
REAL speed ! m/s
REAL e ! electron charge, Coulomb
REAL c ! speed of light, m/s
|

INTEGER u ! output unit
PARAMETER (e=1.602e-19, ¢=2.9979e8, rest_mass=9.109e-31)
u=6 !output to monitor

PRINT *,' Give electron gun voltage in volts: '
READ *,voltage

relativistic_mass=(voltage*et+rest_mass*c**2)/c**2
speed=c*SQRT (1. - (rest_mass/relativistic_mass)**2)

WRITE(u,1000)voltage
WRITE(u,1001)rest_mass
WRITE(u,1002)relativistic_mass, speed, &
relativistic_mass/rest_mass
WRITE(u,1003)speed/c

1000 FORMAT(' For an electron gun voltage of: ',esl0.4,' V')
1001 FORMAT(' rest mass of electron: ',esl0.4,' kg')
1002 FORMAT(' relativistic mass and speed: ',esl0.4, &
' kg',esl2.4,"' m/s'/&
' ratio of relativistic to rest mass: ',esl0.4)
1003 FORMAT(' ratio of speed to speed of light: ',esl10.4)
END

Running P-5.4
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5.5 Debugging Your Programs
5.5.1 Programming Style

Formatted output should be used to produce output that is readable and reflects
the accuracy of the quantities being calculated. Descriptions of the output should
be concise but complete. When appropriate, numerical values should be formatted
so that their decimal points are in the same column. You should resist the
temptation to display output with a large number of significant figures. A quantity
that is calculated from measurements accurate to, for example, only three
significant figures usually is not displayed with more than three significant figures.
A carefully planned program should contain a mixture of PRINT and
WRITE statements organized so that prompts for user input are displayed on the
monitor screen and program output can be saved in a data file or printed.

5.5.2 Problems with Programs
There are two common problems with output formats:

(1) The format descriptor doesn’t match the data type of the value being
displayed.
This kind of error will cause your program to crash.

(2) The specified field width is too narrow for the value being displayed.
Your program will run, but it will fill the inappropriately formatted field
with asterisks.

Solutions to these problems are usually self-explanatory. When a field width is too
narrow, it may be not because you have written an inappropriate field descriptor
but because an error in your program is producing a value much larger than you
expected.

Problems with WRITE statements containing unit numbers can arise when
the unit number’s value conflicts with a preconnected input or output unit, or
when the unit number isn’t preconnected and hasn’t been connected with an OPEN
statement. Preconnected unit numbers that work on one system may not work on
all systems.

When you wish, at least initially, to display output on a monitor screen,
there is a tradeoff in convenience between using an asterisk to direct output to the
default output device and using a unit number variable assigned the value
associated with the preconnected output device. In the first instance, the program
will be completely portable to other systems, but you will have to manually
replace all the asterisks if you later wish to direct output to some other device. In
the second instance, redirection to another device can be accomplished simply by
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changing the value of the unit number variable; however, the original program
may not be portable to all systems.

5.6 Exercises
5.6.1 Self-Testing Exercises

Exercise 1. Describe in your own words the two most important concepts you
have learned from this chapter.

Exercise 2. Describe in your own words how you could use in your own
programs a problem-solving skill demonstrated in a program described in this
chapter.

Exercise 3. What format(s) could be used to produce these outputs?

(a) 33.33E+09

0.3333E+11
3.333E+10

(b) You have won a grand total of $ 99999.00. Congratulations!

(c) Assume an address consists of four separate character strings containing the
street address, city, state postal abbreviation, and ZIP code.

123 Main St., Anytown, PA 19000-1234

@
Yearly total sales: 1990 17.7

1991 23.3

1992 22.9

1993 24.1

1994 26.9

1995 28.0

1996 29.3

5

1997 31.5 (projected)

Exercise 4. Define these terms in your own words:

(a) default output device (b) preconnected unit number
(c) external output device (d) list-directed output
(e) formatted output (f) format specification

(2) format descriptor
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5.6.2 Basic Programming Exercises

Exercise 5. What happens to the output of program P-5.3 if you replace all the
format descriptors with G descriptors?

Exercise 6. Write a short program that prints several numbers, including very
large and very small numbers that require the use of scientific notation, using E,
EN, ES, F, and G formats.

Exercise 7. Modify program P-5.3 to include a conversion of stellar distance from
parsecs to meters or kilometers. A light year is the distance light travels in 1 year.
There are approximately 86,400x365.25 s/year. The speed of light is 2.9979x10?
m/s. Use an appropriate format for the output.

Exercise 8. A more useful application of the relationship between absolute and
relative stellar magnitude is to compute stellar distances. This is possible because
the absolute magnitude of a star can be inferred from its spectral characterstics
(essentially, from its color). Modify program P-5.3 so that the inferred absolute
magnitude and the observed relative magnitude can be used to determine the
distance of a star from the observer.

Exercise 9. Modify program P-5.4 so that program output is sent to an
appropriately named output file.

Exercise 10. Modify program P-5.4 so that all the output is produced with a
single WRITE statement. The appearance of the output should be unchanged.

Exercise 11. Modify program P-5.4 so that program output can be sent either to
an output file or to the monitor, based on a user-supplied file name.

Exercise 12. Based on material from other courses you are taking, state a
computational problem and write a program to solve it. Use formatted output and
save the output from your program in an external file.
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5.6.3 Programming Applications

Figure 5.2. Layout of a
water tower

Exercise 13. A tower 100 feet high supports a spherical water tank with a
diameter of 30 feet. What is the range of pressures, measured in pounds per
square inch (psi), available from this storage tank at a water line located four feet
below ground level? See Figure 5.2. The density of water is 62.43 pounds per
cubic foot. [TOWER.F90]

Exercise 14. A water company regularly tests its residential meters for accuracy
against laboratory standards. It often finds that the meters slightly underestimate
the actual flow at low rates, are more accurate in the mid range of flow rates, and
slightly overestimate the actual flow at high rates. In order to assess the overall
performance of a particular meter, it calculates a weighted accuracy A, based on
measured accuracies and estimates of the percentage of total water usage at low,
middle, and high flow rates:

A, - T Tt Ay oAy
100

Write a program that asks the user to provide estimated percentages of total water
usage in each range, the actual accuracy of a meter at each range, and the
weighted accuracy for the meter.

Some sample measurements are given in Table 5.2. Use your program to
reproduce the values in this table and to fill in the missing values for weighted
accuracy. [METERS.F90]
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Table 5.2. Measured accuracies for residential water meters.

Meter Low Range | Mid Range | High Range | Weighted
Number (30%) 45%) (25%) Accuracy
1 98.7 99.6 1100.3
2 99.2 100.1 101.4

Exercise 15. The weight and muzzle velocity of bullets for several firearms are
given in Table 5.3. Write a program that will reproduce the values in the table and
fill in the missing muzzle energy values in the table. The muzzle energy is mv%/2
foot-1bf where Ibf indicates pound-force rather than pound-mass. There are 7000
grains in one pound. [BULLETS.F90]

Table 5.3. Bullet weights, muzzle velocities, and muzzle energies for several

firearms.
Weight | Speed | Muzzle Energy
Bullet (grains) | (fps) (ft-1bf)
.38 special 95 1175
357 Magnum 125 1450
.308 Winchester 150 | 2533
.223 Remington 55| 3240
.22 long rifle 40 1150

Exercise 16. Suppose you are a highway engineer designing an intersection that
will be controlled by a traffic light. When the light turns yellow, a driver
approaching the intersection must have time to decelerate safely to a stop before
the light turns red. If you know the speed limit for cars approaching the
intersection (in miles per hour), how long must the light stay yellow? You must
know the driver’s reaction time—the time that elapses between when the light
turns from green to yellow and when brakes are applied—and the average
deceleration (ft/s?). See Figure 5.3.
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Figure 5.3. Events as a car approaches an intersection

Write a program to solve this problem. Your output should appear in a
table that looks something like this:

Approach speed, mph:
Approach speed, fps:
Reaction time, sec:
Distance covered, ft:
Braking time, sec:
Distance covered, ft:

Total stopping time, sec:
Total distance covered, ft:

The equation describing the distance covered by the car is
distance = speedet, ,cion + Aty 2

where a is a constant acceleration and the time t during which brakes are applied
IS tyruing = V/a. See Figure 5.4 for some representative stopping distances.

You must make several assumptions to solve this problem. First of all,
ignore the possibility that a driver within some critical distance of an intersection
may decide not to stop at all. As a rough estimate, assume that a car can be
decelerated at a constant average rate in the range 10-15 ft/s* and that a driver’s
reaction time to start braking is a few tenths of a second. How much of a safety
margin do you want to design into the system to allow, for example, safe stopping
when roads are wet? [STOPLITE.F90]
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Figure 5.4. Stopping distances for a car approaching an intersection

Exercise 17. When you were in grade school, you may have made a “shoebox”
solar system with models of the planets, and you may even have kept the size of
the planets to scale. As instructive as this might have been, it badly distorts spatial
scales within the solar system. Write a program that allows you to specify the
diameter of a model earth and then calculates the size of a model sun and all the
other planets, along with the average distance of each model planet from the sun,
all to the same spatial scale. Calculate the diameter of the model sun and planets
in inches and their distance from the model sun in feet. (You can use comparable
metric units if you prefer.)

A pea-sized (1/4" diameter) model earth is a reasonable value to start with.
Table 5.4 contains the actual diameters and average orbital distances of the planets
from the Sun. Your program should create a table that includes the data in this
table plus the scaled diameters (in inches or centimeters) and distances (in feet or
meters). [PLANETS.F90]
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Table 5.4. Diameters and distances for sun and the planets.

Object Diameter (km) | Average Orbital Distance
from Sun (million km)

Sun 1,392,000

Mercury 4,878 57.9

Venus 12,102 108

Earth 12,760 150

Mars 6,786 228

Jupiter 142,800 778

Saturn 120,660 1,427

Uranus 52,400 2,870

Neptune 50,460 4,500

Pluto 2,200 5,900
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Program Control:
Branching and Repetitive Calculations

The chapter begins with a discussion of Fortran 90's implementation of program
control constructs, including the IF...THEN... and CHOOSE... pseudocode
commands and the LOOP..END LOOP pseudocode command. Fortran
implementation of the relational operators and the LOGICAL data type is
discussed.

6.1 Using Program Control Structures

As noted in Chapter 2, all computer algorithms can be implemented with just three
basic program control structures: sequence, selection, and repetition. The programs
presented so far in Chapters 3 through 5 have required only sequential structures.
That is, each executable statement has been executed once, in order. Many
algorithms require more sophisticated controls. These include selection or
branching structures, which provide the ability to execute certain statements and
not others, and repetition structures, which allow groups of statements to be
executed repetitively.

In the pseudocode language presented in Chapter 2, branching structures
are represented by the IF...THEN... and CHOOSE commands and repetition
constructs by the LOOP...END LOOP command. We will now examine these
two commands in more detail.

6.1.1 The IF...THEN...(ELSE...) Pseudocode Construct

Consider the common computing task of taking the square root of a number. In
Fortran, you would use the SQRT intrinsic function. However, there's a catch: if
the argument of the SQRT function is negative, your program will crash. In some
situations, this doesn't represent a serious problem. The worst that can happen is
that the crash is due to a mistake in input and you will simply have to start your
program over again. However, in larger programs that involve many complex and
interrelated calculations, it may be important to keep the program running and,
more important, to prevent inappropriate calculations from being made in the first
place.

D. R. Brooks, Problem Solving with Fortran 90
© Springer-Verlag New York, Inc. 1997
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With respect to using the SQRT function, you might wish your program to
respond like this: “Here is a potential argument for the SQRT function. If it's non-
negative, it's OK to take the square root. Otherwise, I won't try to take the square
root, and instead I'll send an appropriate message.” This is easy to implement in
pseudocode. Suppose the potential argument is X and Y will contain the square
root of X:

IF X> 0 THEN
ASSIGN Y = SQRT(X)

ELSE
WRITE (“I can't take this square root!”)
WRITE (“Instead | will set Y = 0.”)
ASSIGN Y =0

(end IF...)

In this particular pseudocode example, Y is assigned a value of 0 if the
square root function can't be applied. You can take any action you like; giving Y
a negative value might also be a good choice because the SQRT function always
returns a positive value. However, as a matter of style, it's not a good idea to
leave Y unassigned. Another way to achieve this result in pseudocode, without the
explanatory messages, is:

ASSIGN Y =0
IF X> 0 THEN ASSIGN Y = SQRT(X)

In this case, too, Y always has an assigned value. The important feature shared by
these algorithms is that they test the value of X before attempting to take the
square root. Clearly, this algorithm won't work:

ASSIGN Y = SQRT(X)
IF X < 0 THEN WRITE (“I can't take this square root!”)

In this case, the test on X is made too late—a program based on this algorithm
will crash before the message is printed.

_ The pseudocode soluti.ons to this problem are I logiéa! expression I
typical examples of a selection construct. A logical
expression (such as X < 0) is evaluated, and the result
controls the subsequent action. Later in this chapter, we will discuss in detail what
it means for Fortran to be asked to answer questions such as “Is x greater than or
equal to 0?7
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|

Assign value to condition.

Is
condition
true?

Yes Execute code for

condition true.

Execute code for
condition false
(optional).

l<

Figure 6.1. Flowchart for an
IF...THEN...ELSE... construct

The operation of the IF...THEN...ELSE... pseudocode command can be
visualized in terms of a flowchart using the symbols discussed briefly in
Chapter 2, as in Figure 6.1. First one or more values are assigned—for example,
A=0, B=1. Then a condition involving those values is evaluated—for example, “Is
A equal to B?” The diamond symbol represents a decision point. If the condition
is true, then the “yes” branch is taken. If the expression is false, then the “no”
branch is taken. For the example given, A is not equal to B, so the “no” branch
is taken. Rectangular symbols represent blocks of statements that are executed
sequentially. As noted, statements associated with an ELSE... branch are optional;
in some cases nothing should happen if the condition is false.

6.1.2 The CHOOSE Pseudocode Command

Another kind of branching structure involves choosing a course of action from a
list of possibilities. In the pseudocode command language described in Chapter 2,
this structure is represented by the CHOOSE command. To investigate the use
of this command, we will reconsider the application originally presented in Section
2.4.1—determining the maximum deflection of a beam under a load.

In that application, a formula was given for the maximum deflection at the
center of a beam when it is supported at each end and a concentrated force is
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applied to the center of the beam. However, there are several other possibilities
for loading a beam. Table 6.1 presents four, including the original, with formulas
for calculating the maximum deflection:

Table 6.1. Maximum deflection of a beam subject to various support and
loading conditions

Maximum
Support and Loading | Schematic Deflection
Supported at each end, -FL%/(48EI)
concentrated force F ' at L/2
Supported at each end,
distributed weight W -5WL?*/(384EI)
at L/2
Supported at one end, F o
concentrated force F | -FLY(3EI)
at free end at free end
W
Supported at one end, PALLLLlld ‘L
distributed weight W - | -WLY(8EI)
at free end

! Force F and weight W have units of Ib; length L has a unit of in, elasticity E has a unit of 1b/in?,
and moment of inertia has a unit of in®.

Here is one way this table might be incorporated into an algorithm, assuming that
values for F, L, E, and I are already available, as defined in Table 6.1.

WRITE (menu describing four possible support systems, user prompt)
READ (choice of support system 1-4)
CHOOSE (based on support/load ID)
1: ASSIGN deflection = -FL%/(48El)
2: ASSIGN deflection = -5WL%/(384EI)
3: ASSIGN deflection = -FL%/(3EI)
4: ASSIGN deflection = -WL?/(8EI)
anything else: WRITE (“Input error.”)
(end CHOOSE)
WRITE (deflection)
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Although the CHOOSE command could be represented as a flowchart
with a series of decision symbols, such flowcharts are rather cumbersome.

6.1.3 The LOOP...END LOOP Pseudocode Command

represented by the LOOP...END LOOP pseudocode
command. Repetition constructs are divided into two
basic types: count-controlled loops and conditional
loops. In this section, we will discuss these loops, and later in the chapter, we
will discuss their Fortran implementations.

Repetition is the third program control construct, | count-controlled loop I

conditional loop

Count-controlled loops

Count-controlled loops are appropriate when you [ loop counter variable
know ahead of time, or your program can calculate, '

how many times the statements inside the loop will

be executed. The execution of the loop is controlled by a loop counter variable
that is initialized to a specified lower limit and incremented by a specified amount
for each “trip” through the loop. When the loop counter reaches a specified upper
limit, the loop terminates. The command

LOOP (for counter = 1 to 10)

is typical pseudocode for a count-controlled loop. It is also possible to construct
loops in which the counter is initialized to an upper limit and decremented; the
loop continues to execute as long as the counter is greater than or equal to a lower
limit.

Figure 6.2(a) shows a basic flowchart for a count-controlled loop. The
boxes shown with dotted outlines and the assignments in parentheses mean that
when these kinds of loops are implemented in a language such as Fortran, the
initial assignment of the counter variable and the incrementing of the counter are
managed automatically by the loop syntax. This fact makes count-controlled loops
very easy to write, and we will often use them in programs throughout the rest of
this text.

Figure 6.2(b) shows another way of drawing a flowchart for count-
controlled loops. The loop control conditions are gathered together in one place
and the initialization and incrementing steps are not shown specifically.
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Y

| Assign lower, upper, step. I

...............................

1
(counter = counter + step)

Execute one or more statements.

Figure 6.2(a). Basic flowchart for a count-controlled loop

Execute one or more statements.

v

Figure 6.2(b) Alternate flowchart for a count-controlled loop

Conditional Loops

Conc.litional loops are appro.pri.ate when the m.meer iterative calculation
of tlmes. the statements inside a 190p will be convergence criterion
executed is unknown or can't be determined ahead of pre-test loop

time. This kind of loop is often required for iterative '
calculations, in which successive estimates of a
desired quantity improve until a specified

post-test loop
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convergence criterion is met. Conditional loops may be either pre-test or post-test
loops. The difference is that the conditions under which the statements inside a
loop are executed are determined either before (pre-test) or after (post-test) those
statements have been executed at least once. To put it another way, the
terminating conditions are evaluated at the “top” of the loop for a pre-test loop
and at the “bottom” for a post-test loop.

LOORP (until a condition is true) is a generic pseudocode statement of a
post-test loop. It indicates that statements inside a loop will be executed at least
once before the program determines whether the loop will terminate. LOOP (as
long a condition is true) is generic pseudocode for a pre-test loop. It implies that
the test for continuing, or starting, the loop is done before the statements inside
the loop are executed.

By definition, statements inside a post-test loop are always executed at
least once, whereas statements inside a pre-test loop might not be executed at all.
In principle, conditional loops can be designed as either pre-test or post-test loops.
As a practical matter, the way a problem is stated will often determine the easiest
way to implement the loop.

Figure 6.3 illustrates the operation of the two kinds of conditional loops.
In a pre-test loop, some condition is initialized before the loop begins. Then, if the
condition is “true” (however the particular problem requires that test to be
evaluated), one or more statements are executed and the condition is modified.
Depending on the initial value of the condition, the statements inside the loop may
never be executed. In a post-test loop, statements inside the loop are executed at
least once. Only after they have been executed once is the terminating condition
evaluated. At this point, the statements inside the loop may or may not be

executed again.

Execute statements
for true condition.

!

Initialize/modify condition.

Initialize condition.

Modify condition. I

Execute statements
for true condition.

Is
condition
true?

Is
condition
true?

Yes Yes

Pre-test loop Post-test loop

Figure 6.3. Flowcharts for pre-test and post-test loops
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A difference between count-controlled loops and conditional loops is that
count-controlled loops are controlled, as the name implies, by “counting”
something; this usually means that the counter variable is an integer to be
incremented, or decremented, by some specified integer value during each “trip”
through the loop.' The operation of conditional loops is more flexible. Their
terminating conditions may be set by counting something, but they may also be
controlled by other kinds of terminating conditions.

6.2 Relational and Logical Operators and the Fortran IF . . . Construct

Now that we have completed a discussion about using program control structures
in pseudocode, we will examine their implementation in Fortran, starting with the
relational and logical operators.

6.2.1 Relational and Logical Operators

Let's look again at the /F...THEN...ELSE... pseudocode example from Section
6.1.1:

IF X> 0 THEN
ASSIGN Y = SQRT(X)

ELSE
WRITE (“l can't take this square root!”)
WRITE (“Instead | will set Y = 0.”)
ASSIGN Y =0

(end IF...)

Here's one way to translate this pseudocode into English: “If it is true that X > 0,
then assign y a value equal to the square root of x. Otherwise, assign y a value
of 0.” In this expression, the > sign is one of the relational operators previously
defined in Table 2.3. The result of evaluating the logical expression X >0 is a
logical (or “boolean”) value of true or false. If the expression has a value of true,
then the THEN... branch of the IF...THEN...ELSE... statement is taken. If the
value is false, then the ELSE... branch is taken; only one branch of the structure
can be taken.

'As you will see when the text discusses the implementation of count-controlled loops in
Fortran, the counter variable doesn't have to be an integer number, although we will require this
as a matter of good programming style.
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It's easy to translate this pseudocode into source code because the Fortran
language includes syntax nearly identical to the IF... pseudocode command.
Table 6.2 contains the Fortran 90 symbols for the relational and logical operators
given previously in Table 2.3.

Table 6.2. Fortran implementation of relational and logical operators

Relational
or Logical Meaning Fortran
Operator Implementation
= equal ==or .EQ.
> greater than >or .GT.
< less than <or .LT.
< less than
or equal to <=or .LE.
> greater than
or equal to >=or .GE.
# not equal to /=or .NE.
and logical “and” .AND.
or logical or .OR.
not logical not .NOT.

There are no special characters in the Fortran language that allow single-character
representations equivalent to, for example, the < symbol from mathematics; in
Fortran 90, this symbol is represented by the two-character symbol <=. Note that
the symbol for equality is == and not just =; this symbol serves as a reminder that
a test for equality is not the same thing as an assignment statement. The
implementations that use these more familiar mathematical symbols are new to
Fortran 90. The implementations using letters, such as . EQ., were used in older
versions of Fortran and are still supported under the Fortran 90 standard. You may
use whichever representation you like, but the Fortran 90 symbols are probably
a better choice.

Fortran also includes intrinsic functions for comparing strings. A list of
these boolean lexical comparison functions is given in Table 6.3.
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Table 6.3. Lexical string comparison functions

Function Name Description

LGE(string_a,string_b) Returns . TRUE. if string_a is equal to
' or follows string_b in the ASCII
collating sequence, . FALSE. otherwise.

LGT(string_a,string_b) Returns . TRUE. if string_a follows
string_b in the ASCII collating
sequence, . FALSE. otherwise.

LLE(string_a,string_b) Returns . TRUE. if string_a is equal to
or precedes string_b in the ASCII
collating sequence, . FALSE. otherwise.

LLT(string_a,string_b) Returns . TRUE. if string_a precedes
string_b in the ASCII collating
sequence, . FALSE. otherwise.

When strings are compared, “greater than” or “less than” means that one
string follows or precedes another relative to some character collating sequence.
The purpose of these lexical comparison functions is to force all computer
systems, even ones that don't use the ASCII collating sequence, to compare strings
relative to the ASCII sequence. For systems that do use the ASCII sequence, the
two statements

IF (a<b) THEN
IF (LLT(a,b)) THEN

are equivalent. Otherwise, the results might be different. When strings are
compared in this way, the comparisons are always case-sensitive, with the result
that, for example, 'David’' is “less than” 'david' because the uppercase
alphabet comes before the lowercase alphabet in the ASCII collating sequence.

6.2.2 The 1IF. .. Construct

As indicated above, the pseudocode IF... command is easy to translate into
Fortran, using the IF. . . construct. Program fragment P-6.1(a) gives Fortran code
that checks the value of a variable before taking its square root. Note how close
the syntax of this Fortran code fragment is to the corresponding pseudocode.
However, the parentheses around the logical expression X >= 0 are required as
part of the Fortran syntax. The modification of P-6.1(a) given in P-6.1(b) provides
more insight into the implementation of logical expressions.
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P-6.1(a) (fragment)

IF (X >= 0) THEN
Y=SQRT (X)
ELSE
PRINT *,'I can't take this square root!'
PRINT *,'Instead, I will set Y=0.'
Y=0.0
END IF

P-6.1(b) (fragment)

LOGICAL X_test

X_test = (x >= 0)
IF (X_test) THEN
Y=SQRT (X)
ELSE
PRINT *,'I can't take this square root!'
PRINT *,'Instead, I will set Y=0.'
Y=0.0
END IF

In P-6.1(b), the variable X_test is declared as having type LOGICAL. Such
variables can have only two values, true or false, represented in Fortran by
.TRUE. or .FALSE.. The evaluation of the expression (x >= 0) yields one
of these values, depending on the value of x. There isn't much point in rewriting
the simple example in P-6.1(a) as we've done in P-6.1(b), but in more complicated
programs, the value of X_test might be assigned as the result of several
statements, or it might be returned as the output from a function. It's also possible
to give a logical variable such as X_test a value of . TRUE. or .FALSE.
directly by using an assignment statement such as x=.TRUE., assuming x has
been declared as type LOGICAL.

Again, the parentheses around the logical expression in the assignment
statement X_test = (x >= 0) are required as part of its syntax. In the
IF. .. statement, the logical expression consists solely of the logical variable
X_test, but it must still be enclosed in parentheses. The value of X_test
determines which branch of the IF... statement is executed. This example
demonstrates that an IF... statement decides which branch to execute by
examining the logical expression and proceeding according to whether the value
of that expression is true or false.

Beginning programmers often write the IF test in P-6.1(b) like this:

IF (X_test==.TRUE.) THEN
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This is OK, but redundant. Remember that the variable X_test contains the
result of determining whether x is greater than or equal to zero, so if X_test has
a value of . TRUE., then the expression X_test==.TRUE. must also have a
value of . TRUE..

Compound relational expressions can be formed with the three logical
operators given in Table 6.2. Program fragment P-6.2 gives an example:

P-6.2 (fragment)

LOGICAL raining
REAL temperature
CHARACTER YesNo

PRINT *,' Is it raining (y/n)?'
READ *,YesNo
raining=.false.
IF (YesNo='y') raining=.TRUE.
PRINT *,' How hot is it? '
READ *,temperature
IF ((.NOT. raining) .AND. (temperature>85.0)) THEN
PRINT *,'Time to go swimming.'
ELSE
PRINT *,'Stay inside.'
END IF

The .NOT. operator is a unary operator that operates on the logical value of the
expression that follows it by converting a value of .TRUE. to a value of
.FALSE. and vice versa. The .AND. and .OR. operators are binary operators
that produce a value of .TRUE. or .FALSE. depending on the value of
expressions on either side of the operator. In order for the message “Time to
go swimming.” to be printed by P-6.2, the expressions on both sides of the
.AND. operator must have a value of .TRUE.. The results of applying the
.AND. and .OR. operators to two expressions are shown in the “truth tables”
given in Table 6.4. The expression (A .AND. B) is true only if both A and B
are true. The expression (A .OR. B) is true if either A or B is true.
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Table 6.4. “Truth tables” for logical expressions “A” and “B”

.AND. B is true. B is false.
A is true. true false
A is false. || false false
.OR. B is true. ‘B is false.
A is true. true true
A is false.

There are several forms of the Fortran IF.
syntax is:

Syntax
form

(1) IF (logical expression) action_statement

(2) [pname:] IF (logical expression) THEN
statement block
END IF [name]

(3) [name:] IF (logical expression) THEN
statement block
ELSE [name]
statement block
END IF [name]

(4) [pname:] IF (logical expression) THEN
statement block
[ELSE IF (logical expression) THEN [name]
statement block]...
[ELSE [name]
statement block]
END IF [name]

In the first and simplest form, the THEN. .

. construct. The general

. is implied. The action consists of a

single statement following the logical expression, which must be enclosed in

parentheses. As an example, the statement

IF (YesNo=='y') THEN
raining=.true.
FEND TR
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can be written more compactly as
IF (YesNo=='y') raining=.TRUE.

In the other forms, there can be multiple statements, forming a statement block,
in each branch of the construct. The third form is the IF. . .THEN. . .ELSE. ..
form—a two-branch construct. The fourth form shows multiple branches using the
ELSE IF... syntax.

Note that IF... constructs and their parts can be given names.
(Remember that the brackets around name: are not part of the syntax, but an
indication that using a name label is optional.) In all cases, the name must be the
same. In the third and fourth examples, the ELSE and ELSE IF statements may
be named only if the corresponding IF and END IF statements are named. In this
text, we will not use names as “labels” in IF. .. statements. We will rely on in-
line comments if needed to clarify the purpose of IF. .. constructs.

Programming Tip
The END IF Fortran keywords can also be spelled as one word, ENDIF.

Here's one more important point about evaluating logical expressions. What
does it mean to ask Fortran to evaluate the expression (A == B) when A and
B are REAL variables? Suppose A and B have both been assigned the value 10.0.
Clearly, A is equal to B. However, when the values of A and B are produced
through arithmetic operations, problems can arise. For example, what is the value
of A as a result of the Fortran assignment A=10.0/3.0*3.0? In the algebraic
sense, it is obvious that A is equal to 10. However, Fortran doesn't care about
algebra. It just evaluates expressions by performing operations from left to right,
following the precedence rules. The results of arithmetic operations are limited by
the numerical accuracy of your computer system and compiler. In this case, it will
produce 10.0/3.0=3.3333333... and then perhaps 9.9999999... rather than 10 as the
result of multiplying the intermediate result by 3. If so, the expression (A == B)
will then have a value of . FALSE. because 9.9999999... is not exactly equal to
10. In fact, some compilers will produce the “algebraic” result of 10 for this
particular example. (Try it with your compiler.) However, it is inevitable that
similar kinds of operations will eventually cause unexpected results in your
programs.

The solution is never to test REAL variables for equality. In this case, it
would be better to compare the values of REAL variables A and B like this, using
the ABS intrinsic function:

IF (ABS(A-B) <= error limit) THEN...
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For the expression to have a value of “true,” the difference between A and B must
be smaller than some number that you select. Its value should bear some
relationship to the internal accuracy of calculations done by your compiler or the
requirements of your problem. Often, for calculations involving physical
quantities, 10 or 107 is more than sufficiently small. An error limit as small as
10°, for example, is unreasonable for calculations involving default REAL
numbers, because such calculations are probably not performed to this degree of
accuracy.

The same problem applies to testing values for equality when they have
different data types. Suppose A is REAL and B is INTEGER. The code

A=10.
B=10
IF (A == B) THEN

will work as expected here, but it may not work if A is the result of arithmetic
operations. One way to fix this would be to modify the IF. .. test:

IF (NINT(A) == B) THEN
This forces a type conversion and will give the expected result of . TRUE..
Because of these potential problems—and for basically the same reasons they

should be avoided in assignment statements—it's a good idea to avoid mixed-
mode expressions in logical expressions.

6.2.3 Using the IF. .. Construct in Programs

Here's a typical problem that uses an IF. .. construct.

1 Define the problem.

Write a program that asks the user to supply a numerical grade and then
converts it to a letter grade according to this table:

90-100 A
80- 89 B
70- 79 C
60- 69 D
<h0 13
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2 Outline a solution.

Prompt the user to supply the numerical grade and then use an IF
construct to control the translation of the numerical grade into a letter grade

3 Design an algorithm.

DEFINE (numerical grade as a real number)

WRITE (“Give a numerical grade:”)

READ (grade)

IF (grade >= 90) THEN
WRITE (A)

ELSE IF (grade >= 80) THEN
WRITE (B)

ELSE IF (grade >= 70) THEN
WRITE (C)

ELSE IF (grade >= 60) THEN
WRITE (D)

ELSE
WRITE (F)

(end IF)

Here's a question you might have about this pseudocode. Suppose the
numerical grade is 91. This is greater than 90, so the WRITE (A) command will
be executed. However, 91 is also greater than 80, so will the WRITE (B)
command, and all the other commands, also be executed? As you would hope, the
answer is “No.” A selection construct executes only one branch—in particular, the
first branch for which the relational expression is true—and then ignores all the
others; this is true for the pseudocode conception of the /F... command and also
for its language implementation. Even though you may be tempted to rewrite the
first ELSE IF... command, for example, to be “more restrictive,” like this:

ELSE IF ((grade >= 80) and (grade < 90)) THEN

This is not necessary and probably means that you don't really understand the
operation of the IF... command.
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1 Translate the algorithm into a program.

P-6.3 [GRADES . F90]

PROGRAM Grades

Convert a numerical grade to a letter grade. Demonstrates
compound IF... statements.

IMPLICIT NONE
REAL grade

PRINT *,' Give a numerical grade 0-100: '
READ *,grade

IF (grade .GE. 90.0) THEN
PRINT *,' Letter grade: A'
ELSE IF (grade .GE. 80.0) THEN
PRINT *,' Letter grade: B'
ELSE IF (grade .GE. 70.0) THEN
PRINT *,' Letter grade: C'
ELSE IF (grade .GE. 60.0) THEN
PRINT *,' Letter grade: D'

ELSE
PRINT #*,' Letter grade: F'
END IF

END

Running P-6.3

Give a numerical grade 0-100:
87 i
Letter grade: B

For demonstration purposes, this program uses the older style (.GE.)
representation for the “greater than or equal to” relational operator. It is better
Fortran 90 style to use the >= representation, which is completely equivalent.

5 Verify the operation of the program.

Run the program with numerical grades that will produce all possible
outputs. It's especially important to think carefully about the structure of IF. ..
constructs at the algorithm design level before you implement them in Fortran
because logical errors in this kind of code are often very difficult to find.
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6.3 The SELECT CASE Construct

Recall that the pseudocode CHOOSE command allows your program to select
from a limited number of specified options. In Fortran, the CHOOSE pseudocode
command is implemented with the SELECT CASE construct. Its general syntax
is

[name:] SELECT CASE (expression)
[CASE (list of nonoverlapping values and ranges
with same data type as expression) [name]
statement block]...
[CASE DEFAULT
statement block]
END SELECT [name]

Based on the value of expression, the statement block following one of the
CASE selectors is executed. The [ 1... notation means that the code
represented inside the brackets may appear one or more times. Therefore, there
may be one or more CASE selectors containing a list of nonoverlapping values
and ranges of values. As noted, the values and ranges must have the same data
type as expression.

The CASE DEFAULT statement allows action to be taken for any possible
value of expression not specifically included in the CASE selectors; it is often
given as the last CASE selector, but it and the other choices can appear in any
order. A name can be given to the individual CASE statements only if the
SELECT CASE statement and the END SELECT statements are named, and all
must have the same name. In this text, we will not use names in this way. The
CASE expression must be type CHARACTER, LOGICAL, or INTEGER. It may not
be REAL. Each value in the list of values and ranges of values in the various
CASE statements must have the same type as expression.

The restrictions on the type of expression and the I il valis I
CASE selector values basically mean that these values must
be ordinal, that is, enumerable. Integers are ordinal, but real
numbers are not. The exception is that if expression is of type CHARACTER,
then the lengths of the values given as CASE selectors don't have to be the same.
That is, strings of differing numbers of characters are allowed even though strings
of characters aren't ordinal.?

2Single characters are ordinal—B comes after A, for example—but strings of characters
are not because there is no way to enumerate strings in the sense that it's not possible to specify
which string comes “after” some other string. Other languages—Pascal, for example—may enforce
this distinction by allowing their equivalent of the SELECT CASE to use characters but not strings
as a controlling expression.
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A range of ordinal values may be included in the list of CASE selectors
using the format 1ow: high. The range is [low,high] in the mathematical sense;
that is, the range is inclusive of the end points. Either low or high may be absent,
in which case the remaining value acts as a limit. For example, the range of CASE
(:0) is all integers less than or equal to O and the range of CASE (1:) is all
positive integers. The CASE selectors must not overlap, either within the range of
a single selector or with other selectors in the same SELECT CASE construct.

As an example of how to use the SELECT CASE construct, consider
program P-6.3 from the previous section. It might seem that the problem
addressed in this program—to convert a numerical grade into a letter grade—is
an ideal situation in which to use a SELECT CASE construct because the letter
grade choices are taken from a relatively small list of possibilities. In fact, a
SELECT CASE construct is a good idea, but it can be used only if the grade
value used in the SELECT CASE expression is converted to an integer. This can
be accomplished by rounding the grade, or truncating it, depending how generous
a grader you wish to be. Program P-6.4 offers a solution to the grade assignment
problem using a SELECT CASE construct.

P-6.4 [GRADES2.F90]

PROGRAM Grades2

Converts a numerical grade to a letter grade. Demonstrates
SELECT CASE statements.

IMPLICIT NONE
REAL grade

PRINT *,' Give a numerical grade 0-100: '
READ *,grade

SELECT CASE (NINT(grade))
CASE (90:100)
PRINT *,' Letter grade: A'
CASE (80:89)
PRINT *,' Letter grade: B'
CASE (70:79)
PRINT *,' Letter grade: C'
CASE (60:69)
PRINT *,' Letter grade: D'
CASE DEFAULT
PRINT *,' Letter grade: F'
END SELECT

END

Just as in the compound IF. .. construct used in P-6.3, the SELECT CASE
construct executes only one of the possibilities; that's why the ranges of the CASE
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values must not overlap. (The output is identical with that of P-6.3 for the same
input values, so it is not repeated here.) Note that the first CASE range could be
given as (90:) and the last could be given as (0:59) or (:59) rather than
CASE DEFAULT, depending on how you wish to treat grades outside the range
0-100. For example, giving the first CASE range as (90:) would allow for
grades over 100 as the result of extra credit.

6.4 Fortran Loop Constructs

In this section, we will discuss Fortran implementations for repetition constructs,
and we will use count-controlled and conditional loops to solve some typical
programming problems.

6.4.1 Count-Controlled (DO. . . ) Loops

Count-controlled loops are often used to generate tables of values. Here is a
typical problem.

1 Define the problem.

Write a program to generate a table of sin(x), cos(x), and tan(x) for 5°
increments of x, in the range 0°-180°.

2 Outline a solution.

Use a count-controlled loop to generate the values. The program will not
require any user input. Be sure to take into account the fact that tan(90°) is
undefined.

3 Design an algorithm.

DEFINE (x as real number)
WRITE (column headings)
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LOOP (for x = 0 to 180 in steps of 5)
IF x # 90° THEN
WRITE (x, sin(x), cos(x), tan(x))
ELSE
WRITE (x, sin(x), cos(x))
END LOOP

Pay special attention to the way the terminating condition in the LOOP...
END LOOP command is written. It gives an initial value (0), a final value (180),
and an increment (5) for a value that will be incremented inside the loop. Even
though this text has previously stated (several times!) that pseudocode can and
should be language-independent, you probably wouldn't express the terminating
condition in exactly this way unless you had some idea about how count-
controlled loops work. You might think that in order to supply the values of x
implied by the comment about the loop's operation, this pseudocode needs to be
given in more detail, something like this:

INITIALIZE x=0
LOOP (until x > 180)
IF x # 90° THEN
WRITE (x, sin(x), cos(x), tan(x))
ELSE
WRITE (x, sin(x), cos(x))
INCREMENT x = x + 5
END LOOP

This pseudocode is logically correct, but you will see that it's not required in
situations where a count-controlled loop can be used. When the pseudocode for
a count-controlled loop is converted to real code, the corresponding program
statements will automatically initialize and increment the loop variable (X, in this
case).

4 Convert the algorithm into a program.

Count-controlled loops are implemented in Fortran with a DO. . . END DO
statement. It has several syntax forms:



236 = 6. Program Control: Branching and Repetitive Calculations

Syntax
form
(1) [name:] DO n = 1limitl,l1imit2[,step]
statement block
END DO [name]
(2) DO label n = 1limitl,limit2][,step]
statement block, except for...
label last line of statement block
(3) DO label n = limitl,limit2[,step]
statement block
label CONTINUE

The values 1imitl, 1imit2, and step are INTEGER
constants, variables, or expressions. The loop counter n is
automatically initialized to 1im7t1 when the loop begins, is
incremented by the amount step, and ends after statement block is
executed for n equal to 1imit2. A specified step size is optional, but it must be
nonzero when it is present. When step isn't present, the default increment is 1.
Usually, step is set so that it evenly divides the interval from l1imit1 to
1imit2, with the last value of the loop counter being 1imit2. For example,
n=0,100, 5 results in n having the values 0, 5, ..., 95, 100. However, step can
also be set so that the last value taken by a loop counter is less than the upper
limit. For example, n=1, 20, 3 results in n having the values 1, 4, 7, 10, 13, 16,
19.

I loop _cf)unretl

The loop can be made to execute “backward” by having 1imit1 greater
than 1imit2 and step less than 0. If 1imit1 is greater than 1imit2 and
step is specified as positive, or has its default value of 1, the loop isn't executed
at all. That is, it's not an error to have 1imit1 greater than 1imit2, although
it's not usually what you intend.

In the first syntax form, an END DO statement marks the end of the loop.
That is, the statement block consists of all statements between the DO. . .
and END DO statements. The name labels are optional and, as in earlier cases, we
will not use them in this text.

In earlier versions of Fortran, the DO. . . statement required a reference
to a line label in the form of an integer of one to five digits. This line could
reference either the last line of the statement block, as shown in the second syntax
example, or a line containing the CONTINUE keyword. These three DO. . . loops
are equivalent:
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10

10

DO i=1,10
statement block
END DO

DO 10 i=1,10
statement block except for the...
last statement

DO 10 i=1,10
statement block
CONTINUE

In Fortran 90, the DO. . .END DO syntax is preferred, as modern programming
languages tend to avoid line labels whenever possible; in this text, we will always
use the DO. . .END DO syntax.}

Program P-6.5 implements the count-controlled loop algorithm to generate

a table of trigonometric functions defined in Step 3.

P-6.5 [TRIGTABL.F90]

1000
1001

PROGRAM TrigTabl

Generate a table of trig values. Demonstrates count-controlled
loops.

IMPLICIT NONE
REAL angle,deg_to_rad
INTEGER i !loop counter

deg_to_rad=4.0*ATAN(1.0)/180.0
PRINT *,' x sin(x) cos (Xx) tan(x)'
PRINT *,' =------oooomooomomoooooooooo '

DO i=0,180,5
angle=REAL(i)*deg_to_rad
IF (i .NE. 90) THEN
PRINT 1000,i,SIN(angle),COS(angle),TAN(angle)
ELSE
PRINT 1001,i,SIN(angle),COS(angle)
END IF
END DO

FORMAT (1x,i3,3f9.4)
FORMAT(1x,i3,2f9.4," undef.')
END

3 Author's note: some Fortran 90 programmers will accuse me of seriously understating this

point. They feel so strongly that line labels should be avoided that they consider the labelled
DO. .. loops unacceptable.
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Running P-6.5

5 Verify the operation of the program.

These calculations are straightforward. However, remember that the tangent
funtion is undefined for an angle of 90°. The IF...THEN...ELSE...
statement prevents this calculation from being done. The expected result of
actually trying to calculate tan(90°) is that your program will crash.

It should be noted that the DO. .. loop values 1imitl, 1imit2, and
step do not actually have to be integers. In principle, they can be real numbers.
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In practice, however, this is not a good idea because computed limits are subject
to numerical limitations, including roundoff errors. As a result, you can never be
certain that a DO. . . loop with a REAL loop counter will terminate properly. In
P-6.5, the loop counter is used to generate integer values between 0 and 180. Then
the statement angle=REAL(1i)*deg_to_rad converts these values to angles
expressed in radians. Even if the values 0.0, 5.0, 10.0, and so forth, could be used
directly in the loop calculations, the loop counter itself should still be an
INTEGER variable and the required values should be obtained by using the REAL
function.

If you study P-6.5 carefully, you will notice that, as discussed above, the
initialization and incrementing of the loop counter i are, in fact, done
“automatically” by the loop structure. That is, it is necessary neither to initialize
i to zero before the loop starts nor to increment i by writing something like
i=i+5 inside the loop. Beginning programmers often write code that looks like
this:

i=0
DO i=...

There's nothing wrong with this code, but it indicates that the programmer doesn't
understand how DO. .. loops work. The statement i=0 has no effect in the
program because i is initialized to the specified lower limit when the loop starts.

Values of the loop counter can be used inside the loop, as they are in
P-6.5, but they don't have to be used for anything except to control the execution
of the loop. You should never reassign loop counters inside the loop. Suppose, for
example, you write code that looks like this, because you've forgotten that loop
counters are automatically incremented in loops:

i=0
DO i=1,10

i=i+1

other statements
END DO

The statement i=i+1, or any other similar incrementing or decrementing
assignment, is not allowed, and your compiler should generate an error message.
To put it another way,

The loop counter variable should never appear on the left side of an
assignment operator inside the loop.

What do you suppose the value of a loop counter is after the loop is
completed? This code
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DO i=1,10
PRINT *,1i

END DO

PRINT *,1i

will print the values

PRV WN R

= o

The fact that i equals 11 when the loop is terminated indicates that the loop
counter is incremented before it is tested against the second limit value, that is,
that a DO. . . loop is a form of pre-test loop. You may be tempted to rely on the
loop counter value having a value one “step size” greater than the value that
terminates the loop, but it is very poor programming practice to make this
assumption.

It is proper programming practice to treat the value of a loop counter as
undefined anywhere except inside its loop.

In the above example, if you wished to save the last value of the loop counter in
order to get a value of 11, you should use this code:

last=10

DO i=1,last
print *,i

END DO

last=last+1

The programs in this text will never use the value of a loop counter anywhere
except inside the loop. However, it's perfectly OK to reuse a loop counter in
another loop, or even to reuse the loop counter variable for an entirely different
purpose, even though the latter practice can be confusing and therefore isn't very
good programming style. Beginning programmers often define a different loop
counter for every loop in their program even though this isn't usually necessary
and results in the declaration of unnecessary variables.
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6.4.2 Pre- and Post-Test Conditional Loop Constructs

Recalling the discussions in Section 6.1, we know that it is not always possible
to determine ahead of time how many times the statements inside a loop must be
executed. This situation occurs, for example, in certain kinds of mathematical
problems requiring iterative solutions in which a calculation is repeated until a
specified accuracy goal is met. In such situations, conditional rather than count-
controlled loops must be used. There are two kinds of conditional loops, pre-test
and post-test.

Pre-test loops

Here is a typical problem that can use a pre-test conditional loop.

1 Define the problem.

For x’<1, the arctangent function tan™(x) may be calculated in terms of the
following infinite series:

tan'(x) = x - Lo Ly Loy
3 5 7

Design an algorithm that will use this series to approximate tan'(x) for a specified
value of x, using all terms greater than or equal to some specified small value.

2 Outline a solution.

1. Supply the value of x and a lower limit on the size of the last term included in
the series. (The latter value can be specified as a constant within the algorithm
rather than as user input.)

2. Initially, let tan™(x)=x, term=x, and denominator=1.

3. Inside a loop, increment the denominator by 2, set the power for x equal to the
denominator, and change the sign on “term.”

4. Increment the value of tan’(x).

5. Repeat steps 3 and 4 as long as the current value of “term” is greater than or
equal to the specified lower value.
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3 Design an algorithm.

DEFINE (arctan, term, denominator as real numbers;
sign as +1 or -1, error_limit as real)
WRITE (“Give value of x, x’<1.”)
ASSIGN error_limit = ? (choose a reasonable small value)

READ (x)
INITIALIZE arctan = x
term = x

denominator = 1
ASSIGN sign = 1
LOORP (as long as term > error_limit)
INCREMENT dencminator = denominator + 2
ASSIGN sign = -sign
term = sign ex“®"™"& /denominator
INCREMENT arctan = arctan + term
END LOOP
WRITE (arctan)

1 Convert the algorithm into a program.

In Fortran, a pre-test conditional execution loop is implemented with a
DO WHILE. .. loop. This loop evaluates a relational/logical expression before
executing statements inside the loop. That is, the statement block is executed if
and only if the relational/logical expression being evaluated is true. The general

syntax of the DO WHILE. .. construct is

[name:] DO WHILE (relational/logical expression)
statement block
END DO [name]

As usual, the name label option will not be used in this text. Program P-6.6

implements the algorithm for calculting the arctangent.
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P-6.6 [ARCTAN.F90]

PROGRAM tan_1

File name ARCTAN.F90. .
Uses conditional loop to estimate tan”1l(x) from its series
expansion.

IMPLICIT NONE

REAL x,term,arctan,sign

INTEGER denominator

REAL, PARAMETER :: error_limit=le-7

PRINT *,' Give x, where x"2<1'
READ *,x

arctan=x

term=x

denominator=1

sign=1

PRINT *,' Intermediate values...'

DO WHILE (ABS(term)>error_limit)
sign=-sign
denominator=denominator+2
term=sign*x**denominator/REAL (denominator)
arctan=arctan+term
PRINT *,denominator,term,arctan

END DO

PRINT *,' Estimated = ',arctan,' Intrinsic = ',ATAN(X)

END

Running P-6.6

Algorithms that require conditional execution loops can, in principle, be
implemented using either pre- or post-test loops even though one or the other
often seems more logical. In an exercise at the end of this chapter, you will be
asked to modify P-6.6 to use a post-test loop instead of a pre-test loop.
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5 Verify the operation of the program.

When this algorithm is implemented in Fortran, the results can be
compared with the intrinsic ATAN function.

Post-test loops

With a post-test loop, the terminating condition is tested at the end of a loop
rather than at the beginning. This is sometimes the most natural way to implement
a particular algorithm. Here is a typical problem.

1 Define the problem.

An adhesive needs to be cured in an oven by raising its temperature
gradually from room temperature to 150°C. Write a program that will request the
user to specify proposed temperature increases. For each proposed increase, the
program must check to make sure that the oven temperature never exceeds 150°C.
Terminate the program when the temperature has been raised to 150°C.

2 Outline a solution.

1. Assume that room temperature is 20°C. Let the user supply the desired final
oven temperature rather than “hard-coding” this value.

2. Design a post-test loop that asks the user for a proposed temperature increase
and checks whether it is allowed. Provide “feedback” to the user after each
temperature increase by displaying the difference between the current temperature
and the final temperature.

3. Keep count of the number of increases and print a summary report after the
loop terminates.

4. Assume that temperatures and increases are always given as whole numbers so
integer variables can be used.
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3 Design an algorithm.

DEFINE (All integers: room_temperature, final_temperature,
proposed_increase, current temperature, counter)
ASSIGN room_temperature = 20
current_temperature = room_temperature
WRITE (Give final oven temperature.)
READ (final_temperature)
INITIALIZE counter = 0

LOORP (until final temperature is reacheq)
INCREMENT counter = counter + 1
WRITE (Give proposed temperature increase.)
READ (proposed_increase)
IF (current_temperature + proposed_increase) > final_temperature THEN
WRITE (This increase is too large!)
ELSE
INCREMENT current_temperature =
current_temperature + proposed_increase
WRITE (“This is how far you have to go:”,
final_temperature — current_temperature)
(end IF...)
END LOOP
WRITE (“It took”,counter,“increases to reach the final oven temperature.”)

1 Convert the algorithm into a program.

In Fortran, there is no special syntax for post-test loops, but they can still
be implemented by using a DO WHILE. .. loop and the EXIT keyword. The
structure of such a loop looks like this:

DO

<statement block>

IF (terminating condition is true) EXIT
END DO

When the terminating condition is true, the EXIT command transfers program

control to the first executable statement after the END DO. Otherwise, the loop
continuies to execnte.



246 = 6. Program Control: Branching and Repetitive Calculations

Program P-6.7 gives one possible implementation of the algorithm in Step
3, using a post-test loop.

Verify the operation of the program.

Because of the printout that displays the current temperature and the
number of degrees remaining between the current and final temperatures, you can
check the operation of the program just by trying various combinations of
proposed temperature increases. The sample output includes a proposed
temperature increase that is too large.

P-6.7 [CURE.F90]

PROGRAM Cure
! Control temperature increases in a curing oven.

INTEGER final_temperature, proposed_increase
INTEGER current_temperature

INTEGER, PARAMETER :: room_temperature=20
INTEGER counter

PRINT *,' Give final oven temperature...'
READ *,final_temperature
counter=0

current_temperature=room_temperature
DO
counter=counter+1l
PRINT *,' Give proposed temperature increase...'
READ *,proposed_increase
IF ((current_temperature + proposed_increase) > &
final_temperature) THEN
PRINT *,'This increase is too large!'
ELSE
current_temperature = &
current_temperature + proposed_increase
PRINT *, 'This is how far you have to go: ', &

final_ temperature - current_temperature
END IF

IF (current_temperature >= final_temperature) EXIT
END DO

PRINT *, 'It took ', counter, &
' increases to reach the final oven temperature.'

END




6.4 Fortran Loop Constructs = 247

Running P-6.7

Problem Discussion

Note that P-6.7 uses all integer variables even though we have previously
suggested that REAL variables are usually a better choice for physical quantities.
In this case, integers are OK as long as we are willing to restrict temperatures to
whole numbers. Using integers will make it easier to write a simple loop
terminating condition. (Recall that comparisons of REAL numbers for equality can
cause problems.)

6.4.3 Nested Loops

As mentioned in the discussion of the application in Section 2.4.2 (generating
oscillating frequencies for an LC circuit), loop structures can be nested. We will
write a Fortran program to solve that problem as an application in Section 6.6.2
of this chapter. As a preliminary exercise, consider this output:

1

1234

2

1234

3

1234

4

1234

5

1234
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Program P-6.8 gives the Fortran code for generating this output:

P-6.8 [LOOP.F90]

PROGRAM loop

IMPLICIT NONE
INTEGER 1i,j

DO i=1,5
WRITE(*, '(1x,il)')i
WRITE(*,'(1x)',advance='no')
DO j=1,4

WRITE(*,'(il)',advance='no')j

END DO
WRITE(*, *)

END DO

END

Note the use of WRITE statements with the advance="no' option to control
the placement of the output generated by the inner loop.

6.4.4 Loop Design Considerations

From the point of view of programming style and code readability, it's important
to follow a consistent plan for indenting code inside loops. In P-6.8, each DO. . .
statement lines up with its corresponding END DO statement and the statement
block for each loop is indented.

It is more than a matter of style to make sure that loop counter variables
in nested DO. . . loops don't overlap. In P-6.8, for example, it would be a serious
logical error, as well as a syntax error, to try to use the same loop counter variable
for both loops. As a matter of algorithm design, it can't possibly be (or shouldn't
be!) what you really intended. As a matter of syntax, the inner loop would
redefine the outer loop counter inside the loop, which isn't allowed.

In P-6.8, the output demonstrates that the loop on the counter j is executed
completely for each “trip” through the loop on i. This a logical way for nested
loops to work; in fact, it's hard to think of any other way that would make sense.
However, this logic works only if the range of an interior loop is contained
entirely within the. statement block of its exterior loop. Loops can be nested
several layers “deep.” Although there may be some implementation-specific
maximum allowed number of layers, it is unlikely that this restriction will ever
cause problems in practice.

Conditional execution loops can be nested just as DO. . . loops can, and
the different kinds of loops can even be intermixed without syntax restrictions.
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There are two potential pitfalls to avoid. First, make sure that counter variables,
whether as part of a count-controlled loop or incremented inside conditional
execution loops, are distinct. Second, make sure that interior loops are contained
entirely within exterior loops. The presence of overlapping, as opposed to properly
nested, loop structures is certainly a design error, and in most cases will generate
a syntax error. Finally, it should be obvious, as a matter of algorithm design, that
your Fortran source code shouldn't try to enter any kind of loop except at the
beginning. In fact, this is not allowed as a matter of syntax for the DO. . . and DO
WHILE. .. loops.

Fortran's support of an EXIT command raises the question whether it's a
good idea to exit a loop anywhere except at the end. As a matter of syntax, an
EXIT command can appear anywhere in a loop. However, as a matter of style, we
will restrict the use of EXIT to situations where it appears only at the end of a
post-test loop construct.

With respect to “infinite loops,” note that count-controlled (DO. . .) loops
can never execute indefinitely, but that any conditional execution loop is
potentially infinite if its terminating conditions are never met. There are no syntax
prohibitions against writing conditional loops that will never terminate. This is an
algorithm design problem the solution of which is left completely to you when
you write programs!

Although you may be tempted to believe these design considerations are
just irksome Fortran implementation details, they are almost always algorithm
design details that should be worked out before the first line of Fortran code is
written.

6.5 Using Implied DO. . . Loops in Output Statements

The DO... loop is a comprehensive count-controlled repetition construct.
However, Fortran also provides an extremely useful “shortcut” way of
implementing a count-controlled loop within an output statement. Suppose you are
creating a table and need to provide numerical values as column headers, similar
to this:

value: 2 4 6 8 10 12 14 16 18 20

Consider the code fragment in P-6.9. First this heading is produced with a DO. . .
loop, using the advance="'no"' option in a WRITE statement. There is certainly
nothing wrong with this approach, but it seems an unwieldy way to produce a
very simple result. An alternative is given in the WRITE and PRINT statements
printed in bold italics, each of which produces with a single statement the same
line of output as the original loop structure. In both cases, printing the values for
value is controlled by an implied DO. .. loop matched with an appropriate
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format description. (The FORMAT statement could also be referenced with a line
label instead of being given as a string constant.)

P-6.9 (fragment)

INTEGER label

WRITE(*," (' value: ')",advance='no')
DO label=2,20,2
WRITE(*," (i4)",advance="no')label
END DO
WRITE(*, *)
!
! Using implied DO... loops...
WRITE(*,"(' value: ',10i4)")(label,label=2,20,2)
PRINT "(' value: ',10i4)",(label,label=2,20,2)

The general syntax possibilities for implied DO. . . loops include

PRINT *, loop

PRINT fffff,loop
WRITE(*, *)loop
WRITE(*, fffff)loop

where loop is
(variable_name, variable_name=lower, upper, step)
or
(array_name(index), index=1lower, upper, step)
and fffff is
format label or format description in the form of
a string constant

In P-6.9, the value printed in the implied DO. . . loop is the value of the implied
loop counter itself. However, any appropriate value or expression can be printed
here. For example, implied DO. . . loops are especially useful for displaying the
contents of arrays, which we will discuss in Chapter 8. Implied DO. . . loops can
also be used in input statements, as we will discuss in Chapter 9.
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6.6 Applications

6.6.1 Refraction of Light

1 Define the problem.

Refer to Section 4.3.1 for a discussion of Snell's Law, which gives the
angle of a refracted ray of light as a function of the angle of the incident ray with
respect to a perpendicular to the plane that forms the interface between two
materials with different refractive indices:

n;sin(i)=n,sin(r)

Table 4.3 in that section gives angles of refraction for a ray of light passing from
air into three different materials over a range of incident angles ranging from 0°
to 90°. Write a program that duplicates the calculations in that table.

2 Outline a solution.

1. Specify the refractive index for each of the three materials in Table 4.2; they
can be “hard-coded” within the program.

2. Use a count-controlled loop to generate the incident angles. Within the loop,
calculate refracted angles for an air-material interface with the three materials.

3 Design an algorithm.

DEFINE (incident_angle, water_angle, glass_angle, diamond_angle, as
real numbers; pi and DegToRad (conversion from angles to
radians) as real numbers; water_index, glass_index,
diamond_index, air_index as real numbers)

ASSIGN DegToRad = pi/180

water_index = 1.33
glass_index = 1.50
diamond_index = 2.42
air_index = 1.00

WRITE (headings)
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LOORP (incident_angle = 0 to 90, steps of 10)
ASSIGN incident_angle = incident_angle DegToRad
water_angle =
sin”[(air_index/water_index)esin(incident_angle)]
glass_angle =
sin’[(air_index/glass_index)esin(incident_angle)]
diamond_angle =
sin” [(air_index/diamond_index) ssin(incident _ angle)]
(Display angles in degrees.)
WRITE (incident_angle,water_index/DegToRad,
glass_index/DegToRad, diamond_index/DegToRad)
END LOOP

1 Convert the algorithm into a program.

P-6.10 [REFRACT3.F90]

PROGRAM refract3
1
! Creates table of refracted angles for light ray in air incident
! on water, glass, and diamond.
IMPLICIT NONE
REAL air_index,water_index,glass_index,diamond_index
REAL water_angle,glass_angle,diamond_angle
REAL angle,DegToRad
REAL ni,nr,incident,Refract ! for statement function
INTEGER i
PARAMETER (air_index=1.00,water_index=1.33,glass_index=2.50)
PARAMETER (diamond_index=2.42)
! Function to calculate refracted angle...
Refract(ni,nr,incident)=ASIN(ni/nr*SIN(incident))

DegToRad=4.0*ATAN(1.0)/180.0

WRITE(*, *)' Refracted angle........ !
WRITE(*,*)' inc. water glass diamond'
WRITE(*,1001)water_index,glass_index,diamond_index
WRITE(*,*)'------------mmomooo oo '

DO i=0,90,10
angle=REAL(1i)*DegToRad
water_angle=Refract(air_index,water_index,angle)/DegToRad
glass_angle=Refract(air_index, glass_index,angle)/DegToRad
diamond_angle= &

Refract(air_index,diamond_index,angle)/DegToRad

WRITE(*,1000)i,water_angle,glass_angle,diamond_angle

END DO

1000 FORMAT(1x,i5,3£9.2)
1001 FORMAT(1x, 'angle',3(3x,'(',£4.2,')"))
END
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Running P-6.10

Problem Discussion

In P-6.10, separate PARAMETER statements have been used to specify the
several values of refractive index. They could also be given in assignment
statements or, with minor modification of the program, obtained as user input
from the keyboard. In this program, 7 isn't needed except to calculate the variable
DegToRad, so it's never declared or defined separately. Be sure you understand
how and why the INTEGER loop counter is used inside the loop to generate the
angle needed for the calculations. It would be OK to use the mixed-mode
expression angle=i*DegToRad instead of angle=REAL (i) *DegToRad, but
the latter code makes the required type conversion perfectly clear.

5 Verify the operation of the program.

Verify the tabulated values with a hand calculator in addition to comparing
your results with Table 4.2. Textbooks can make mistakes, too!

6.6.2 Oscillating Frequency of an LC Circuit

This problem statement and its solution developed in pseudocode have been given
in Section 2.4.2 and will not be repeated here. P-6.11 uses nested DO. . . loops
to generate resonant oscillating frequencies for seven values of inductance (L) and
10 values of capacitance (C) in an LC circuit.
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P-6.11 [OSCILLAT.F90]

PROGRAM Oscillat
! Generates resonant frequency table for LC circuit.
IMPLICIT NONE

REAL inductance ! Henrys
INTEGER capacitance ! pico Farads
!
!

REAL f frequency, kHz
INTEGER row loop index
INTEGER u
REAL, PARAMETER :: pi=3.1415927
!
u=6
! OPEN(u,file='oscillat.out')
WRITE (u,"('Frequency, kHz')")
WRITE (u,"(' C (pF)")")
WRITE (u,"(' L (H)',10i5)")(capacitance,capacitance=2,20,2)
WRITE (U, " ('=---==---=--=-“=-"“=-@c-@c--co- &
& _______________ l)")
DO row=1,7

inductance=(row+1l)*.0005
WRITE (u,'(f7.4)',ADVANCE='NO') inductance
DO capacitance=2,20,2
! NOTE: Express frequency in kHz by dividing by 1000.
! Convert pico Farads to Farads by multiplying by 107-12.
f=1./(2.*pi*SQRT(inductance*REAL(capacitance)*le-12))/1000.
WRITE (u,'(i5)',ADVANCE='NO') NINT(f)
END DO
WRITE (u,'()') ! line feed
END DO
! CLOSE(u)

END

Running P-6.11

Problem Discussion
The output from P-6.11 is sent to the default output device. This is why
the OPEN and CLOSE statements have been changed to comment lines. To send
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the output to the data file OSCILLAT . OUT, “uncomment” the OPEN and CLOSE
statements by removing the ! character. It would be a good idea to change the
unit number assignment to a value other than the preconnected value of 6, but it's
not required.

The advance='no' option (either uppercase or lowercase is OK) is
required to control the position of “carriage returns” when you're writing the
results. Remember that PRINT and WRITE statements automatically move to the
start of a new line and only WRITE offers the possibility of preventing this action.

P-6.11 contains a typical use of an implied DO... loop to generate
column headings. (See the line printed in bold italics.)

6.6.3 Calculating Radiation Exposures for a Materials Testing Experiment

1 Define the problem.

This problem is similar to the heat curing problem discussed in Section
6.4. The new feature is the use of a random number generator to select radiation
doses instead of having these values provided by user input.

In a test of the effects of radiation on materials, an experiment protocol
requires that:

(1) a sample be subjected to several bursts of radiation of random intensity, each
of which must not exceed some specified maximum value;

(2) the sum of the intensities must never exceed a specified limit for total
exposure.

Write a program to simulate this experiment by generating a sequence of random
exposure levels that satisfy this protocol.

2 Outline a solution.

1. Ask the user to supply the maximum intensity for a single exposure and the
limit on total cumulative exposure; the former must be less than the latter.

2. Initialize the cumulative exposure to O and generate a random exposure value;
call this value the “current value.”

3. Construct a loop that allows the execution of statements inside the loop only
if the cumulative exposure plus the current value doesn't exceed the allowed total
cumulative exposure.
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4. Inside the loop, add the current value to the cumulative exposure. Print the
current and cumulative exposures. Generate a new current exposure value.

5. Outside the loop, after it terminates, print the current exposure value along with
a message indicating that this exposure would have exceeded the allowed
maximum.

3 Design an algorithm.

It would be a good idea to try to design your own algorithm before
studying this one. Think carefully about how to satisfy the demands of the
problem statement. For this problem, the flowchart shown in Figure 6.4 might be
helpful.

READ max_single,
max_total

L]

n=0
cumulative=0 (NOTE: (random) no more than max_single)
current=(random)

{ current=(random) |

A

/ WRITE n, current, cumulative /

cumulative=cumulative+current
n=n+1

cumulative+current
>max_total?

"is too large,terminate test"

Y

Figure 6.4. Flowchart for radiation exposure problem

WRITE current, /
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DEFINE (max_single, max_total, current_exposure,
cum_exposure as real numbers;
number of exposures (n) as integer)

WRITE (“What are the maximum single intensity and maximum
total exposure?”)

READ (max_single, max_total)

INITIALIZE n = 0

cum_exposure = 0
(Select an initial exposure.)

ASSIGN current_exposure = random value, no more than max_single

LOORP (while cum_exposure + current_exposure doesn't exceed max_total)
INCREMENT cum_exposure = cum_exposure + current_exposure

n=n+1
WRITE (n, current_exposure, cum_exposure)
(Get a new exposure to try.)
ASSIGN current_exposure = random value, < max_single
END LOOP
WRITE (current exposure, “is too big”)

4 Convert the algorithm into a program.

P-6.12 [EXPOSE. F90]

PROGRAM Expose

Generate a random radiation exposure history for a sample

IMPLICIT NONE
REAL current_exposure !the proposed current exposure

REAL max_single !maximum single exposure

REAL cum_exposure lcumulative exposure

REAL max_total Imaximum allowed total exposure
INTEGER n_exposures Inumber of exposures

REAL x 10<=x<1

INTEGER Count(1) !lcurrent value of system clock

PRINT *,' What is the total allowed exposure?'
READ *,max_total
PRINT *, &

so that the total exposure doesn't exceed a specified maximum.

' What is the largest allowed single exposure (< total)?'

READ *,max_single

CALL System Clock(Count(l))
CALL Random_Seed(Put=Count)
CALL Random_Number(x)
current_exposure=max_single*x
cum_exposure=0.0

n exposures=0
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DO WHILE ((cum_exposuret+current_exposure)<=max_total)
n_exposures=n_exposures+1l
cum_exposure=cum_exposure+current_exposure
PRINT 1000, x,n_exposures,current_exposure, cum_exposure

! Get a new exposure value to try...
CALL Random_Number(x)
current_exposure=Max_single*x

END DO

PRINT 1001, current_exposure

1000 FORMAT(f10.5,i3,2f8.1)
1001 FORMAT(' The next proposed exposure of ',f5.1, &
' is too large.'/' Terminate the experiment.')

END

Running P-6.12

5 Verify the operation of the program.

The goal of your program testing must be to ensure that the specified
maximum limit is never exceeded. The simplest way to do this is to observe the
operation of the program several times. However, it is also worth temporarily
replacing the random levels generated in the program with user-supplied levels.
That way you can test specific combinations of levels. What happens if the first
proposed intensity is greater than the maximum allowed intensity? What happens
if the cumulative exposure exactly equals the total allowed exposure? These are
questions that are difficult to answer when each exposure is chosen randomly, but
easy if you can select the exposures yourself.
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Problem Discussion

There are several features of P-6.12 that are worth studying. First, each
variable is declared on a separate line, with a comment about its purpose. This is
good programming style whenever there could be confusion about the purpose of
some variables. No physical units have been specified in the problem statement
or program. From the point of view of writing the code for this simulation, the
units don't matter as long as they are consistent.

Second, this program requires a
sequence of random numbers. Computers can't
generate truly random numbers, but Fortran,
and other high-level languages, include a
software-based random number generator that can be used to produce sequences
of pseudorandom numbers that appear to be random. The statements required to
generate random numbers are printed in bold italics in P-6.12.

For now, don't worry about the syntax of the CALL statements; they access
built-in subprograms that you can use whenever a program needs a sequence of
random numbers. (We will discuss the CALL statement in Chapter 7.) Briefly, the
CALL System_Clock(Count (1)) statement obtains an integer value from
your computer's internal (system) clock. The INTEGER Count (1) declaration
is required for this CALL statement. The statement

random number generator
pseudorandom numbers

CALL Random_Seed(Put=Count)

uses the integer retrieved from the system clock to “seed” a random number
generator. Because the value obtained from the system clock is essentially a
random number, this “seed” generates a different sequence of random numbers
every time the program runs.

The CALL Random_Number(x) generates a random REAL value X
uniformly distributed on the range [0,1). (Remember that this notation means that
x may be exactly 0, but it will never be exactly 1.*) The value of x is then used
to calculate an exposure that will always be less than the maximum single
exposure; this is OK because the problem definition states only that the maximum
value of a single exposure is limited by a specified maximum intensity, without
stating specifically how the limit should be imposed. In this case, the code will
generate values arbitrarily close to a specified limit.

“The reason for this is obscure; however, it is sometimes helpful to know that a value of
exactly 1 will never be generated.
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6.6.4 Maximum Deflection of a Beam with Various Support/Loading Systems

The pseudocode for this problem, using the CHOOSE command, has been
discussed in Section 6.1.2, so only Steps 4 and 5 of the problem-solving process
will be discussed here. Recall that the CHOOSE pseudocode command is
implemented in Fortran with the SELECT CASE. .. construct.

Convert the algorithm into a program.

P-6.13 [BEAM2.F90]

PROGRAM Beam?2

Calculates beam deflection for four different
support/loading systems.

IMPLICIT NONE

REAL elasticity 11b/in”"2
REAL moment_of_inertia !in"4
REAL length 1ft
REAL load t1b

REAL deflection tin

INTEGER systemID !1 - supported at each end, concentrated load
12 - supported at each end, distributed load
13 - supported one end, concentrated at free end
14 - supported one end, distributed
CHARACTER YesNo
!
! (begin post-test loop)
10 PRINT *, &
' Give elasticity (1lb/in”2) and moment of inertia (in”4).'
READ *,elasticity, moment_of_inertia
PRINT *,' Give the beam length in, ft.'
READ *,length
PRINT *,' Choose one of these support/loading systems: '
PRINT *,' 1 - supported at each end, concentrated load'
PRINT *, &
' 2 - supported at each end, uniformly distributed load’
PRINT *, &
' 3 - supported at one end, concentrated load at free end’
PRINT *,' 4 - supported at one end, distributed load'
READ *,systemID
SELECT CASE (systemlID)
CASE (1,3)
PRINT *,' Give the concentrated force.'
CASE (2,4)
PRINT *,' Give the distributed weight.'
CASE DEFAULT
STOP 'Program termination due to input error.'
END SELECT
READ *,load

lenath=lenath*12.0
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SELECT CASE (systemID)
CASE (1)
deflection= &
-load*length**3/(48.0*elasticity*moment_of_inertia)
CASE (2)
deflection=&
-5.0*load*length**3/(384.0*elasticity*moment_of_inertia)
CASE (3)
deflection= &
-load*length**3/(3.0*elasticity*moment_of_inertia)
CASE(4)
deflection= &
-load*length**3/(8.0*elasticity*moment_of_inertia)
END SELECT

PRINT 1000,deflection
PRINT *, 'More? (y/n)'
READ *,YesNo
IF (YesNo=='y') GO TO 10
! (end post-test loop)
!
1000 FORMAT(1lx,esl0.3)
END

Running P-6.13

5 Verify the operation of the program.

Refer to Figure 3.4 in Chapter 3, which shows the maximum deflection of
a beam supported at both ends as a function of load when the load is concentrated
in the center. For additional verification, you will have to look elsewhere!
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Problem Discussion

P-6.13 contains several interesting features. The input section, which
consisted of one WRITE and one PRINT command in the pseudocode, has been
expanded to provide better control over input. It includes a SELECT CASE
construct that prompts the user to supply either a concentrated force or a
distributed weight, depending on which support and loading system is chosen. All
the program's executable statements are included in a post-test loop so you can
calculate the deflection for many different conditions without having to re-execute
the program; the loop continuation test (IF (YesNo=='y') GO TO 10)
looks at the value of a character entered by the user in response to a prompt. You
might wish to make this test a little more foolproof by modifying the IF. ..
statement to read

IF ((YesNo=='y') .OR. (YesNo=='Y')) GO TO 10

to allow for either an uppercase or a lowercase y.’

Finally, note the use of the STOP statement in the first SELECT CASE
construct. This is the first time this statement has been used in a program in this
text. It terminates the program and prints an appropriate message if the user enters
an inappropriate value for systemID. This prevents the program from trying to
execute the next SELECT CASE construct with an inappropriate value of
systemID. It is possible to rewrite the program so that the prompt for
systemID is repeated, using another post-test loop, until the user provides an
appropriate value in the range 1-4, but it doesn't seem worth the trouble in this
case.

6.7 Debugging Your Programs
6.7.1 Programming Style

In well-written programs, control structures need to be carefully planned to make
sure that all problem requirements are considered. In selection constructs, it is
important to make sure that all possible branches, even “abnormal” ones, are
accounted for. If you know which branch of an IF. . . statement is most likely,
it is a good idea for this branch to appear first. IF. .. statements should never
test REAL variables directly for equality. Choices in a SELECT CASE statement
should be arranged in a logical order.

Your choice of loop constructs should reflect what you know about the
calculations that must be done. If you know, or your program can calculate, how

SRemember that even though Fortran is case-insensitive in its interpretation of source code,
the character constant 'y ' is not the same as 'Y"'.
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many times the statements inside a loop will be executed, always use a count-
controlled loop to reflect that knowledge. Conditional loops should always be
written in a way that makes the terminating condition(s) as clear and simple as
possible.

In DO... loops, you should not use REAL loop control variables.
Calculations that need to be done only once should never be done repetitively
inside a loop even if the answers are unaffected.

6.7.2 Logical Problems

Potential problems with selection and repetition structures often are related to
algorithm design rather than language syntax. These problems can be difficult to
isolate because it is not easy to guarantee that you have tested all possible
conditions under which IF... and SELECT CASE statements may fail to
operate, or under which DO..., DO WHILE... loops may not terminate
properly (or at all). Nonetheless, here are some suggestions.

1. For the kinds of programs discussed in this chapter, a reasonable execution time
is no more than a few seconds. If a program doesn't terminate within a few
seconds, it is almost certainly due to the program being trapped inside a
conditional loop for which the terminating condition is never met. Check your
algorithm, and if you're convinced that the logic is OK, make sure that your
program actually implements this logic. If a loop doesn't include a PRINT or
WRITE statement, put one there temporarily so you will see some output displayed
for each “trip” through the loop.

2. When you test a program containing an IF. .. or SELECT CASE statement,
make sure that you try it with input that will force it to execute the code
associated with every possible branch or CASE selector. It may be helpful to
include temporary PRINT statements inside each branch to let you know when
statements in that branch are being executed.

3. A common logical error is to use a conditional loop when a count-controlled
loop would have sufficed. Count-controlled loops are easier to write and less
prone to logical errors, so you should use them whenever you can.

4. Make sure that IF. . . statements don't have overlapping conditions. Here's an
example:

IF (A>=0) THEN

ELSE IF (A=0) THEN
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ELSE
END IF

The condition A=0 overlaps the condition A>=0. Fortran won't detect this as a
syntax error, but it can't possibly be logically correct.

6.7.3 Syntax and Execution Problems

1. Syntax problems with IF. . . statements sometimes lead to error messages that
aren't very helpful because your Fortran compiler is trying unsuccessfully to
understand what you are asking it to do. One common error is to forget to include
the END IF statement at the end of an IF. .. statement. It may be helpful to
“label” each END IF statement with an inline comment to indicate which IF. . .
statement it is terminating. Consistent use of indented statements will make
debugging easier. Each END IF statement should begin in the same column as
its corresponding IF. .. statement.

2. A common error with the SELECT CASE statement is to forget the
END SELECT statement. Again, consistent use of indenting will make these
statements easier to understand and debug.

3. Remember that you're not allowed to reassign loop counter variables inside a
DO loop. This means that nested loops must each use a different name for their
counter variables.

4. If a program containing a SELECT CASE statement sometimes works and
sometimes ‘“crashes,” it may mean that the CASE expression has a value not
included in the list of CASE selectors. You should determine which value is
causing the problem and either include it in the list of CASE selectors or include
a CASE DEFAULT statement.

6.8 Exercises

6.8.1 Self-Testing Exercises

Exercise 1. Describe in your own words the two most important concepts you
have learned from this chapter.

Exercise 2. Describe in your own words how you could use in your own
programs a problem-solving skill demonstrated in a program described in this
chapter.
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Exercise 3. How does the statement

IF ((.NOT. raining) .AND. (temperature>85.0)) THEN...
differ from the statement

IF ((.NOT. raining) .OR. (temperature>85.0)) THEN...

6.8.2 Basic Programming Exercises
Exercise 4. Create a flowchart for the beam deflection example in Section 6.1.2.
Exercise 5. Create a flowchart for P-6.7.

Exercise 6. Include code fragment P-6.1(a) in a complete program that asks the
user to supply a number and then calculates and displays the square root of that
number if it's non-negative and prints an appropriate message if it's not.

Exercise 7. Modify program P-6.13 so that it tests the deflection against some
specified maximum and prints an informative message if the maximum deflection
appears to be unreasonably large. You will have to decide what “unreasonably
large” means; is a 12-inch deflection unreasonably large for a 20-foot beam?

Hint: you could express the maximum reasonable deflection as a
percentage of the length of the beam.

Exercise 8. Modify Program P-6.6 so that it uses a post-test loop syntax as
described in Section 6.4.2.

Exercise 9. Write pseudocode for a loop to print the values 1-20 in steps of 0.5.
That is, the loop should print

1.0
1.5
2.0
(and so forth)

Implement the pseudocode first as a DO. . . loop, then as a DO WHILE. . . loop,
and finally as a post-test loop using a GO TO statement at the end. Do not use a
REAL variable for the counter in the DO. . . loop.

Exercise 10. A wage tax is collected according to the following rule: the tax is
7 percent on income less than or equal to $50,000 and 3 percent on income in



266 = 6. Program Control: Branching and Repetitive Calculations

excess of $50,000. Write a program that will calculate the tax for a user-supplied
income. (See Section 2.1.3 for a brief discussion of this problem.)

Exercise 11. Refer to Exercise 19 in Chapter 3. Modify that program so that it
will display seconds and fractions of a day when the input time is given in am and
pm time. Take into account the fact that 12:00 am should be interpreted as
OhOmOs and 12:00 pm as 12hOmOs.

Exercise 12. Based on material from other courses you are taking, state a
computational problem and write a complete program to solve it. Make sure the
problem requires the use of either a conditional or a count-controlled loop or a
SELECT CASE construct.

6.8.3 Programming Applications

2
Exercise 13. The quadratic equation ax> + bx + ¢ = 0 has roots b * 2b = 4ac
a
The expression b? — 4ac is called the discriminant. If it is positive, there are two
real roots—one calculated using the + sign and the other using the — sign. If the
discriminant is zero, there is one real root. If the discriminant is negative, there
are no real roots. Write a program to find the real roots, if any, for specified
values of a, b, and c. Your program's output should include an informative
message concerning the number of real roots it found. [QUADRAT1 . F90]

Exercise 14. Electric utility rates in the Philadelphia area are among the highest
in the country. In 1994, charges for residential customers who use electric
resistance heating or an electric heat pump were calculated as follows:

Service Charge: $5.08
Energy Charge

Winter: $0.1345/kWh for first 600 kWh
$0.0679/kWh for additional kWh
Summer: $0.1345/kWh for first 500 kWh

$0.1530/kWh for additional kWh

The service charge is always added to each month's bill. The energy charge is
different in the summer and the winter. Summer months are defined as June
through September. The rest are winter months. Write a program that asks the user
for the month and number of kWh (kilowatt hours) used during that month and
then calculates her monthly basic charges.
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Hints: use a SELECT CASE construct to control calculation of charges for
winter and summer months. Use a CHARACTER* 9 specification for a variable to
hold the month because September, the longest month name, contains nine letters.)
[PECO.F90]

Exercise 15. A tray is formed from a sheet of metal by cutting the same size
square from each corner and bending up the sides. Given the length and width of
the original sheet, what is the size of the square cut that gives a tray with
maximum volume? Write a program that will provide an approximate answer to
this question by assuming a user-specified size for the sheet and then calculating
the volume based on a series of cut sizes in increments of 0.1". Ignore the fact
that because the sheet has a finite thickness, bending it results in a small loss in
the height of the sides. [TRAY_VOL.F90]

If you have had an introductory
course in differential calculus, you should
be able to determine the exact answer for
this problem. Compare it with the result from your program.

Extra Credit
{calculus is required.

An understanding of elementary}

Exercise 16. (a) The population of a certain animal is 1,000,000 at the beginning
of the year. During each year, 6 percent of the animals alive at the beginning of
the year die. The number of animals born during the year that survive to the end
of the year is equal to 1 percent of the population at the beginning of the year.
Write a program that prints out the births, deaths, and total population at the end
of each year and stops when the population falls to 10 percent or less of the
original population.

Hint: populations can have only integer values.

(b) Assuming that the death rate stays the same as in part (a), what birth
rate is required for the population to double in 20 years? Starting with the original
population of 1,000,000, print the births, deaths, and total population at the end
of each year for 20 years, using the newly calculated birth rate. The population
after 20 years will be twice the original population when 2=(1+1)*, where r is the
overall population growth rate—birth rate minus death rate.

You may include both parts of the problem in a single program.
[POPULATN.F90]

Exercise 17. The average temperature of the earth/atmosphere system as viewed
from space depends on the solar constant S,, which is about 1368 W/m?, and the
earth's albedo (reflectivity). Assuming the earth acts like a “blackbody” (i.e., it
radiates 100 percent of the radiation that strikes it), the temperature is related to
the solar constant by
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S,(1 - a)/4 = oT*

where o is the Stefan-Boltzmann constant, 5.67x10® W/(m?>K?*), and o is the
earth's albedo, about 0.30. (Albedo is a dimensionless measure of the fraction of
incoming solar energy reflected by the earth/atmosphere system.)

Write a program that calculates the temperature as a function of changes
in the solar constant over the range +10 percent. Note that the temperature of the
earth/atmosphere system as viewed from space is not the same as the average
surface temperature of the earth, which is about 33°C warmer because of the well-
known “greenhouse” effect of the Earth's atmosphere. [EARTHATM. F90]

Exercise 18. The resistivity p of tungsten wire is roughly 100x10® ohm-cm at the
operating temperature of a lightbulb filament. Suppose a lightbulb consumes
100 W of power on a 110-volt circuit. The power can be expressed in terms of the
voltage V and resistance R of the filament as

Power = V¥R = V¥(pL/A)

where L is the length of the filament in cm and A is the cross-sectional area in
2
cm”.

Write a program that generates a table of reasonable lengths and diameters

that will give the required resistance. It is up to you to decide what “reasonable”

means. [TUNGSTEN.F90]

Exercise 19. The wavelengths of the Balmer series of lines in the hydrogen
spectrum are given by
A = 3646°n’
n’* -4

where n is an integer having values greater than 2. Write a program that generates
the first 10 wavelengths in the Balmer series. [BALMER . F90]

Exercise 20. One of the concerns about global warming is that the average sea
level may rise. Suppose you are a civil engineer who has been asked to estimate
the loss of land along a coastline. Write a program that relates a sealevel rise of
R cm to loss of land, given in units of km¥km and acres/mile along a coastline
with a specified range of grades. A grade of 0.1 percent—10 percent with respect
to the sea, in increments of 0.1°, is reasonable.

If the coastline makes an angle 0 with the sea, the distance lost from the
original coastline, measured along the sloping ground, is R/sin(0). The grade is
defined as 100<tan(0) percent. Suppose the sea level rises 10 cm (about 4 inches).
A 1° slope (about 1.75 percent grade) means that the coastline will recede about
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5.7 m, with a loss of about 0.0057 km? per kilometer of coastline, or about 2.3
acres per mile of coastline. (There are 1609.3 m/mile and 640 acres/mile?.)
[SEA_LEVL.F90]

Exercise 21. Simulation studies in science, mathematics, and engineering often
require random numbers from a so-called “normal distribution.” Such numbers
have a mean of 0 and a standard deviation of 1. (The standard deviation is a
measure of the “spread” of values in a distribution.) Fortran includes a random
number generator (recall the application from Section 6.6.3), but it generates
uniformly distributed numbers in the range [0,1) rather than normally distributed
numbers.

Fortunately, there is a simple way to generate a pair of normally distributed
numbers X, and X, from a pair of uniformly distributed numbers u, and u,:

X, = -2In(u,)cos(2mu,)
X, = /-2In(u,)sin(2mru,)

Write a program that uses this formula to generate a sample of 200
normally distributed numbers. You can check the numbers to see if they actually

appear to be normally distributed by calculating their mean and standard deviation:

m = Xx/n
§2 - Tx? - (Zx)*m
n-1

Accumulate the sums of x and x* inside the loop and use the sums to calculate the
mean and standard deviation when the loop is complete. The mean and standard
deviation, or the average of the means and standard deviations from several sets
of numbers, will be “close” to 0 and 1, but they won't be exactly 0 and 1. There
are quantitative statistical tests for a normal distribution, but they are beyond the
scope of this problem. Hint: remember that a DO... loop from 1 to 100
generates 200 random numbers, not 100.

The formulas given above for generating normally distributed numbers
require uniform numbers in the range (0,1] because In(0) is undefined. Fortran's
random number generator produces numbers in the range [0,1). The upper limit
can be arbitrarily close to 1, so that end of the range is of no concern. However,
it's possible that a value of exactly O might be generated. Your program should
protect against this possibility, even though it is unlikely, by testing u, and
replacing it with a very small number if its generated value is exactly O.
[NORMAL.F90]

Exercise 22. One way to estimate the square root of a number is to use Newton's
algorithm. Given a number n, guess its square root. For the purposes of the
algorithm, the value of the initial guess is relatively unimportant; guess=n/2 is a
reasonable choice. Then calculate a new estimate by calculating a new guess:
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guess = (guess + n/guess)/2

Continue to make new estimates until the absolute value of the difference between
n and the guess multiplied by itself differs from the original number by less than
some specified small amount. [NEWTON . F90]

Exercise 23. The Internal Revenue Service acknowledges that the value of
equipment used in manufacturing and other businesses declines as that equipment
ages. Therefore, businesses can gain a tax advantage by depreciating the value of
new equipment over an assumed useful lifetime of n years. At the end of n years,
the equipment may have either no value or some small “salvage” value.
Depreciation can be computed in three ways:

1. Straight-line depreciation. The value of an asset minus its salvage value
depreciates by the same amount over its useful life of n years.

2. Double-declining depreciation. Each year, the original value of an asset minus
previously declared depreciation (its “book value™) is diminished by 2/n.

3. Sum-of-digits depreciation. Add the integers from 1 through n. The
depreciation on the original value of an asset minus its salvage value allowed in
year iis (n — i) + 1 divided by the sum of the digits.

Write a program that calculates the depreciation available for years 1 through n.
Assume that the salvage value is some small percentage (perhaps a value in the
range 5 percent—10 percent) of the original value. Here is a depreciation table for
an asset originally valued at $1000 with a useful lifetime of 7 years and an
assumed salvage value of $100.

Original value $1000

Salvage value $ 100
Lifetime 7 years
Straight Asset Double- Asset Sum-of- Asset
Year line value declining value digits value
1 128.57 871.43 285.71 714.29 225.00 775.00
2 128.57 742.86 204.08 510.20 192.86 582.14
3 128.57 614.29 145.77 364.43 160.71 421.43
4 128.57 485.71 104.12 260.31 128.57 292.86
5 128.57 357.14 74.37 185.93 96.43 196.43
6 128.57 228.57 53.12 132.81 64.29 132.14
7 128.57 100.00 37.95 94.86 32.14 100.00

Note that the double-declining method doesn't depend at all on the salvage value.
This means that not all the depreciation in the seventh year could actually be
taken if the asset really has a salvage value of $100 at the end of seven years.
[DEPRECIA.F90]
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Extra Credit

Businesses often like to maximize depreciation when equipment is new in
order to maximize their tax advantage. Which method should they choose? If
businesses can change the method by which they calculate depreciation at any
time during the life of an asset, when, if ever, should they change methods? (The
answer to this questions depends on the salvage value of the asset.)

Exercise 24. In orbital mechanics, the angular position of an orbiting object is
calculated as a function of time. For a circular orbit, the calculation is simple
because the position is directly proportional to time. For noncircular orbits, the
calculation is more complicated.

First, some definitions. The time required for an orbiting object to
complete one revolution is called its period. The mean anomaly is the angular
position that an object would have in its orbit if it were in a circular orbit with the
same period. Mean anomaly is directly proportional to time.

The eccentric anomaly E_ is related to the mean anomaly M through the
transcendental equation

M = E_ - esin(E)

where both angular quantities must be expressed in radians rather than degrees and
the eccentricity e is a measure of the shape of the orbit. The range of e is 01,
with circular orbits having an eccentricity of 0. The true anomaly 0 is related to
the eccentric anomaly through the algebraic equation

cos(E) — e

1 + ecos(E))

Therefore, true anomaly can be related to mean anomaly, and hence to time,
through the eccentric anomaly. The geometry is illustrated in Figure 6.5.

cos(0) =

Perigee,
mean anomaly =\
0 degrees N

True anomaly (for e=0.5)

Mean anomaly = 90 degrees

Figure 6.5. Geometry of noncircular orbits
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The equation involving M (Kepler's equation) can't be solved directly for
eccentric anomaly, but it can be solved iteratively:

1. As a first guess, assume E, = M.

2. Replace E_ with a new value: E: E=M + essin(E)).

3. Calculate a new M using the new value of E: M, = E, — essin(E,).

4. Repeat steps 2 and 3 until the absolute magnitude of M minus M,,,, is less than
some specified small value (10~ is a reasonable choice).

Write a program that calculates true anomaly as a function of mean
anomaly for values of mean anomaly in the range 0°-360°, in steps of 5°, for
these values of eccentricity: 0.1, 0.25, 0.50, 0.75, and 0.90.

Hints

1. Remember that all angular calculations must be done in radians and converted
to degrees if you like only when the values are displayed as output.

2. Arithmetic errors can occur when the mean anomaly is 180° because the
argument of the arccosine function must never exceed 1. As the eccentric anomaly
approaches 180°, the calculation for cos(8) might produce a value slightly greater
than 1. Account for this possibility by testing the value of cos(8) before you take
its arccosine. Also, the arccosine function doesn't produce values in the range
0-271 or 0°-360°. Use the values of mean anomaly to make sure your program
produces answers in the appropriate range. [KEPLER2 .F90]

Exercise 25. A satellite flies over a cloudless desert. The satellite contains an
instrument that measures the longwave radiance emitted in the direction of the
instrument from a particular spot on the desert's surface. The instrument records
the radiance L as a function of zenith angle 6 relative to the spot on the surface.
A series of such measurements leads to an empirical model of the radiance as a
function of zenith angle and the radiance L, that would be measured from a
satellite passing directly over the site:

L = L sec(0)*, 6<60°
L = L _sec(0)*-a[sec(0) — sec(60°)], 6>60°

The secant of the zenith angle is proportional to the amount of atmosphere
between the satellite and the ground (the atmospheric “path length”). The model
reflects the fact that a satellite view of a site on the surface undergoes “limb
darkening” because the satellite must look through more atmosphere as the zenith
angle increases. At large zenith angles, an additional term is required to account
for the rapidly decreasing transparency of the atmosphere to longwave radiation.
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Table 6.5 gives empirical model parameters for three desert surfaces
derived from measurements taken in January. This is winter in the northern
hemisphere, which explains why the value of L, is higher for Australian deserts
than it is for the two northern hemisphere deserts; because the satellite measures
longwave radiance, a larger radiance means that the surface is warmer. Figure 6.6
shows predicted radiances for these surfaces.

Table 6.5. Model parameters for longwave radiance from deserts

Desert Overhead Radiance,

Location W/m?%/ster X a
Australia 110 -0.2116 | 3.184
Sahara 85 -0.0998 | 1.854
Saudi Arabia 90 -0.0974 | 1.241
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Figure 6.6. Predicted longwave radiances for three desert sites.
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Write a program that will calculate predicted values of radiance as a
function of satellite zenith angle for the three sets of model parameters given in
Table 6.5. What happens as the zenith angle approaches 90°? What can you
conclude about the validity of the model as the satellite approaches the horizon?
What might you conclude about the fact that as the zenith angle increases, the
differences in radiances observed from different surfaces tend to decrease?
[LIMBDARK.F90]

Exercise 26. A rectangular container with specified length, width (as viewed from
the side), and depth contains a liquid (molten metal, for example). The container
is rotated about an axis parallel to the depth dimension at a constant angular rate,
and the contents of the container spill into a mold. Write a program that will
calculate the total volume of liquid that pours into the mold as a function of
container angle. Also, calculate an approximation to the “instantaneous” rate at
which liquid pours from the container.

Hints: rotate the container in equal angular increments and calculate the
resulting volume that has been emptied from the container. Subtract the volume
at the previous angular value and divide by the angle increment. If the angle
changes at a constant rate with respect to time, this calculation gives an
approximation of the changing volume rate with respect to time.

Divide the calculations into two parts. The first part calculates the angles
from the beginning of the rotation to the time when the liquid level reaches the
bottom corner of the container. The second calculates the angles for this point to
90°, at which time the container is empty. The angle at which this transition
occurs is given by

tan(0) = height/width
[POURING.F90]

Extra credit

1. Suppose you need to pour liquid at a constant rate. Modify your
program to calculate how the angle must change with respect to some arbitrary
time unit. One way to visualize this problem “discretely” rather than continuously
is to imagine that the molten metal is used to fill 100 identical molds; that is, each
mold uses 1 percent of the liquid. How much should the angle increase to fill each
mold? Clearly, the change in angle required to fill each mold is not constant.

rather than rectangular. The equations for
emptying the first half of the container are easy
because the volume at any angle is just half a
cylinder with height equal to the intersection of the liquid with the side. However,

2. Suppose the container is cylindrically shaped
{integral calculus is required

A good understanding of J
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after the liquid reaches the upper bottom corner of the container, the volume
becomes a conic section, and this volume is harder to calculate.

Exercise 27. A simple model of population growth assumes that a new population
p' is linearly related to the current population p; that is, p' = rp. Such a population
will increase or decrease monotonically, depending on the value of r. Biologists
have long recognized that populations are usually bounded in some way. For
example, as an animal population reproduces and grows, limited food resources
may constrain its growth. Conversely, when a population shrinks, those same
limited food resources may be able to support a population that starts to grow
again.
Here is a simple equation that models this “bounded” behavior:

p'=1p(l - p)

where, for simplicity, the population has a normalized value in the range [0,1].
Clearly, this model has the desired properties of bounding p'. As p grows, 1 — p
shrinks, and vice versa. Suppose r = 2. Here are the first few values derived from
iterating this equation from an initial value of p = 0.2:

cycle p p'
1 0.20 0.32000
2 .32 .43520
3 .4352 .49160
4 .4916 .49986
5 .49986 .50000

One remarkable property of this function is that for r = 2, the population stabilizes
at a value of 0.5 for any value of initial population p in the range (0,1)—that is,
for any value between, but not including, 0 and 1.

For many years, however, some interesting properties of this disarmingly
simple equation went unnoticed. Suppose r = 3.2. Iterate on the equation, starting
with p = 0.5:

cycle p p'
1 0.50000 0.80000
2 .80000 .51200
3 .51200 .79954

12 .79946 .51304
13 51304 .79946
12 .79946 .51304
15 .51304 .79946

Now the population no longer stabilizes at a single value. Instead it cycles back
and forth between two values.
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For r = 3.5, the population cycles among four different values. For a
slightly higher value, it cycles among eight values. For r just in excess of 3.57,
the population oscillates randomly. At even larger values of r, other cycles
emerge, only to disappear into randomness as r continues to increase. The
discovery that an apparently simple dynamic system could produce this odd kind
of “random” behavior gave birth to what is now known as chaos theory and, some
would say, has had as profound an effect on our view of the natural world in the
second half of the 20th century as relativity theory had in the first half.

Fortunately, it is easy to investigate the behavior of this remarkable
equation. Write a program that requests a value for r between 0 and 4 and for p
between O and 1 and then performs multiple iterations. What happens if r is
greater than 47

Hint: there is no simple way to terminate the iteration if it is implemented
as a conditional loop because there is, in general, no way to predict future values
of the population. [POPCHAOS . F90]



7

Program Modularization

This chapter describes how to design modularized Fortran programs. It begins with
a discussion of algorithms that use the CALL and SUBPROGRAM commands
from the pseudocode language of Chapter 2. It then shows how to implement
these algorithms using Fortran subroutine and function subprograms.

7.1 Designing Modularized Algorithms with the CALL and
SUBPROGRAM Pseudocode Commands

Modularized programs are an integral part of structured programming and problem
solving. The basic idea is simple: it is easier to solve difficult problems when they
are divided into smaller and potentially more manageable parts. As a valuable
byproduct, solutions you develop for one problem can often be reused in similar
problems. This is especially important for programming in science and
engineering, where algorithms designed to solve complex computational problems
often represent enormous investments of time and expertise; it would be very
wasteful to have to “reinvent” such solutions for each new application.

Some authors and instructors would have preferred a discussion of program
modularization earlier in this text. In a computer science course based on C or
Pascal, for example, program modularization is often introduced even before
discussing some basic language syntax. However, this text has taken the approach
that program modularization can be postponed until your programs are worth
modularizing. There is little practical reason to modularize programs that perform
only one task, and the programming overhead required isn’t worth the effort. The
programs you have written so far fall into this category. On the other hand, many
of the calculations those programs perform could later become part of more
complex programming tasks. We will illustrate this point by rewriting some
previous programs with subprograms that can be incorporated into larger
programs.

The CALL and SUBPROGRAM pseudcode commands introduced in
Chapter 2 define, in a generic way, a framework within which to design
modularized programs. They imply that procedural programming languages will
encourage the division of a large problem into several smaller parts. The purpose
of using CALL and SUBPROGRAM in your algorithms is to encourage you to
think carefully about how to define the tasks your program must perform and how
information will flow among those tasks.

D. R. Brooks, Problem Solving with Fortran 90
© Springcl'»\r’cr[ag New York, Inc. 1997
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When you design a subprogram, you can think of it as a “black box.”" One
or more inputs go in one end of the box, and one or more outputs come out the
other end. The box processes the input in a prescribed way, and it is not necessary
for you to understand the details of the box’s contents. This model is illustrated
in Figure 7.1. When you write an entire program yourself, including the
subprograms, presumably you understand everything that happens inside the
subprograms. However, it’s not always necessary for the user of a subprogram to
understand the details of what happens inside. It’s only necessary for the user to
understand the requirements for the input and how to interpret the output. That is,
the user must understand the information interfaces.

Beginning programmers often concentrate first on the contents of
subprograms. However, your first task should always be to concentrate on the
“ends” of the subprogram; that is, to design an information interface for the
subprogram. Begin by asking yourself these questions:

1. Do I understand what the subprogram is supposed to do?
2. What information is required for the subprogram to complete its assigned task?
3. What information will be returned as output from the subprogram?

You cannot answer the second and third questions until you know the answer to
the first question. Even if you do not know precisely how the calculations in the
subprogram will be done, you must at least understand the nature of the task.
Once you have answered the first question, you can decide how information
should flow into and out of the subprogram. Only when you have answered all
these questions should you concern yourself with details of the calculations that
are performed inside each subprogram.

The place to ask these questions is in Step 2 of the problem-solving
process. You can start to answer them when you write DEFINE commands into

Figure 7.1. "Black box" model of a
subprogram

"The “black box” analogy comes from electronics, where a device to process a signal may
literally be constructed inside a black box.
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demonstrate this process, consider again P-3.1 from Chapter 3. The very simple
problem was: given a radius, calculate the area and circumference of a circle.
The user is prompted to provide a radius, and the program calculates and displays
the circumference and area of a circle with this radius. In pseudocode, an
algorithm to modularize this calculation could be written like this:

(main program)

DEFINE (radius, area, and circumference as real numbers)
WRITE (prompt user to provide radius of a circle)

READ (radius)

CALL CircleStuff(IN: radius; OUT: area,circumference)
WRITE (area and circumference)

The CALL CircleStuff command implies that there is a subprogram that, given
a value for the radius as its input, will calculate the area and circumference as its
output. The CALL command defines an information interface between your
algorithm and the subprogram. It specifies which values are input to the
subprogram and which are output. The list of values in the CALL command is
called the argument list or sometimes the actual parameter list. (The argument list
was introduced in Chapter 4’s discussion of intrinsic functions.)

When you write a program based on this algorithm, you will provide
specific values in the CALL to the subprogram. Some of the input information
may be in the form of variables, and some may be in the form of constants. When
you design the SUBPROGRAM, you should further define the information
interface by

(1) selecting an appropriate data type for each piece of information entering or
leaving the subprogram, and

(2) designating each piece of information as input to or output from the
subprogram.

The resulting list is called the formal parameter list, or just the parameter list (as
opposed to the argument list).> This parameter list and its description should
contain all the information a potential user needs to know to use the subprogram.
For the circle problem, the subprogram’s parameter list could look like this:

SUBPROGRAM CircleStuff(IN: radius, a real number;
OUT: area and circumference, real numbers)

2This text will always use the terminology "argument list" and "parameter list."
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In this example, the parameter list tells the user of this subprogram that three
arguments are required and that they must all be either real numbers or variables
associated with real numbers. The first argument should be the radius of a
circle—the input. The second and third arguments will contain the output from the
subprogram—the area and circumference.

As a matter of style, it often makes sense to describe the input first and
then the output. However, the order doesn’t make any difference, especially at this
initial design state. In fact, parameters can appear in any convenient order in
algorithms and, as you will see later in this chapter, in programs.

The names in this parameter list—radius, area, and circumference—are
the same as those used in the CALL statement, but it’s important to understand
that they don’t have to be. For example, this version of the SUBPROGRAM
parameter list definition is perfectly OK even though the variable names are less
descriptive:

SUBPROGRAM CircleStuff(IN: r, a real number;
OUT: a and c, real numbers)

Essentially, the names in a subprogram’s parameter list are “place holders” for the
actual values or variables that will be associated with them in an argument list
when a program uses the subprogram.

In some cases, information in a subprogram’s parameter list needs to be
treated as both input and output. That is, a parameter associated with a variable
having a certain value when the subprogram is CALLed may be modified in the
subprogram so that, when the subprogram is complete, the value of the argument
associated with that parameter will be changed. You may indicate such a
parameter by specifying it as IN/OUT, or some similar terminology, in the
subprogram’s parameter list.

This text will be consistent about writing pseudocode CALL commands
and SUBPROGRAM definitions in the format shown here (with varying degrees
of detail), but don’t worry about trying to duplicate every nuance in your own
algorithms. Unlike a real programming language, pseudocode imposes no rigid
syntax rules and restrictions! The important point to remember is that the CALL
command and the SUBPROGRAM definition are organizational aids that should
clearly define the data type and intended use of each quantity needed as input or
produced as output. As you gain more programming experience, you may not need
to define this list at the algorithm design stage in as much detail as you should
now.

Now that the information interface has been established in pseudocode for
the new version of P-3.1, you can think about the contents of the subprogram. In
this case, the required definitions and calculations are simple:
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DEFINE (7, a real constant)
ASSIGN area = mreradius?

circumference = 2rmreradius
(end of subprogram)

Within the code of the subprogram, the names must match the names in the
parameter list. In this case, the names radius, area, and circumference indicate
that these names, and not 7, &, and ¢, for example, are used in the parameter list.
Although there isn’t any pseudocode “syntax rule” that requires the names to be
the same, this is just a common sense rule that you would be foolish to ignore.
When you translate the algorithm into Fortran, this name association will be
enforced through use of the IMPLICIT NONE statement.

Not surprisingly, all the pieces from the design of P-3.1 are still present
in its redesign, but they are rearranged. The significant difference is that the
calculations of area and circumference are performed inside a subprogram rather
than in the main program. Information required for this calculation, the radius,
flows into the subprogram and the answers, area and circumference, flow back
out, as indicated by the /N: and OUT: specifiers in the subprogram’s parameter
list.

You might have noticed that the value of 7 isn’t included in the parameter
list. This is because © is needed only for the calculations performed in the
subprogram. In that sense, it’s neither “input” nor “output,” but a constant value
that is needed only locally within the subprogram. In some other situation, you
might choose to define & in the main program and make its value available to one
or more subprograms. In general, subprograms will contain a mixture of values
passed through the parameter list and locally defined variables and constants.

Because of the simplicity of the pseudocode CALL command, it’s easy to
underestimate both the power of subprograms and the problems that can arise
when you are careless about their design and use. For example, consider these two
uses of the CircleStuff subprogram:

CALL CircleStuff(3,area,circumference)
CALL CircleStuff(radius, 10,circumference)

The first use of CircleStuffis OK because the first item in the SUBPROGRAM
CircleStuff parameter list is specified as input in the algorithm design. In this
case, the calling program is providing a number, rather than a variable name, that
the subprogram will then use in its calculations.

The second use of CircleStuff is inappropriate. Why? Because the second
item in SUBPROGRAM CircleStuff s parameter list is designated as output. This
means that the subprogram will calculate a value and then expect to associate this
value with a variable name from the calling program that will hold the calculated
value. Instead the 70 in the second use of CircleStuff looks like input to the
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subprogram; this does not make sense for this algorithm. Even after we describe
details of how subprograms are implemented in Fortran and the problems that can
arise when argument lists contain inappropriate quantities, it will be important to
remember that using appropriate choices for values and variables in argument lists
is fundamentally a matter of proper algorithm design, not just a language
implementation detail. '

Before converting this modified algorithm into a new version of P-3.1, let’s
take a more general look at how information flows to and from subprograms.
Figure 7.2 illustrates two examples of how programming languages might treat
variables within a single source code file consisting of a main program and one
or more subprograms.

In Figure 7.2(a), all variables are global variables. .

As indicated by the “leaky” boxes surrounding the main I £io0a; vanies I
program and subprograms, this means that all variables

defined anywhere in the source code file, whether in the main program or in one
of the subprograms, are available to the main program and any of the other
subprograms contained in the source code file. There is no need for a subprogram
to have a parameter list because, since all calculations are “global,” there is no
need to think about “input” and “output.” This is the model used in early versions
of BASIC, for example.

In Figure 7.2(b), the other extreme, local variables
are available only to the main program or subprogram in
which they are defined. Information is exchanged between
the main program and the subprograms, and among subprograms only along
specific “paths.” These paths can operate in one direction, as “input” or “output,”
or in both directions. This is close to the model used by Fortran.

At first, you might think that the arrangement of Figure 7.2(a) is simple
and efficient because you can simply define variables anywhere you like and have
them available everywhere else in your program. However, this defeats the
purpose of program modularization. At the algorithm design level, each
subprogram should be a self-contained solution to a particular part of a larger
problem, with well-defined lines of communication with other parts of the
program. This separation of tasks is nullified when the names of variables and the
results of calculations in a subprogram are available globally to the rest of the
program.

At the programming level, a lack of local variables means that you have
to be careful never to duplicate variable names in the various parts of your
program. This might not seem like much of a problem when your programs are
small, but eventually you will make a mistake. When you do, the results can range
from catastrophic to unnoticeable; the latter result is by far the more dangerous,
as your program may appear to work properly even though it may sometimes, or
always, produce incorrect answers.

I local variables I
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(source code file)

variables for joint use by @ —— - - — — —
main program and all [}nain program }
subprograms @00 @ L= — - - — — -

(a) All variables are global

(source code file)

main program, (input) subprogram 1,
with local > with parameter
variables (output) list and local
< variables
(in/out)
< >
(input) subprogram 2,
> with parameter
(output) list and local
< variables
subprogram 3, (input)
with parameter >
list and local (output)
variables <

(b) All variables are local

Figure 7.2. Two models for controlling information flow between a program
and one or more subprograms

Because of these potential problems, modern programming languages favor
isolated subprograms with local variables and calculations and restricted
communications with other parts of the program. Fortran has always provided
strong support for this concept, and as we shall see, Fortran 90 provides new ways
to define very specific interfaces between a program and its subprograms. In
Fortran, subprograms can be implemented in two basic ways. We will discuss both
implementations in considerable detail in this chapter.

If you still need to convince yourself of the importance of isolated program
modules, imagine you are writing a program to solve a problem that requires a
very lengthy and difficult calculation involving mathematical skills you don’t yet
have. Your instructor has already written a subprogram to perform this calculation
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and distributes a copy to each student. What is required for you to take advantage
of this generous offer? Should you have to worry about the details of the
calculations? Should you have to worry about what variable names your instructor
used in the subprogram? Should you have to worry about whether variable names
in your program will conflict with variable names in the subprogram? “No” is the
answer to each of these questions. You should have to know only the number, data
type, and purpose of each quantity in the parameter list of the subprogram.

A strictly controlled information interface is absolutely essential to the way
Fortran is used in practice. Many of the professional uses of Fortran depend on
subprogram libraries written by others, and there are many commercially available
libraries of Fortran code for solving specific computational problems. Even in
applications where programs are written entirely from “scratch,” large programs
often require the efforts of many individuals. In such circumstances, it should be
clear that the potential for confusion in the situation depicted in Figure
7.2(a)—where every variable name is available globally—is unacceptable.
Fortunately, Fortran supports the strict separation between program and
subprogram units depicted in Figure 7.2(b). In fact, the model of completely
global variables in Figure 7.2(a) doesn’t even exist in Fortran.?

Assuming that this discussion has convinced you of the need for strictly
controlled information interfaces between parts of a program, you should be aware
that when subprograms are implemented in Fortran, there are ways to share
information other than through the parameter list. However, this is an
implementation issue and not an algorithm design issue. At the algorithm design
level, all information flowing to and from a subprogram can be included in the
parameter list.

7.2 Fortran Subroutines

Once the concepts of designing information interfaces with I . I
. . X ) subroutine
subprograms are clear, it is then possible to discuss the specifics

of their implementation. The most important Fortran

implementation of a subprogram is the subroutine. The keyword SUBROUTINE
marks the beginning of a subroutine in the same way that the keyword PROGRAM
begins a main program. An important difference is that although the PROGRAM
keyword that begins the source code for a main program is optional, the
SUBROUTINE keyword is required at the beginning of a block of source code
intended to be a subroutine.

*It’s possible to approximate such a model in Fortran, but it’s such a bad idea that we
won’t even discuss it!
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The general syntax for a SUBROUTINE header I heoder stiutenieni I
statement is

SUBROUTINE name [ (parameter 1list)]

Example:
SUBROUTINE Polar_to_Cartesian(r,theta,x,y)

Names for subroutines follow the same rules as Fortran variable names. As
a matter of style, names should describe the purpose of the subroutine. Even
though the brackets in the syntax definition imply that the parameter list is
optional, it is almost always required. Subroutines used in this text will always
require a parameter list.

Don’t be confused by the similarity between the pseudocode command
SUBPROGRAM and the Fortran reserved word SUBROUTINE. The former is
just a generic way to define modularized calculations. The latter is one specific
implementation of the subprogram concept in Fortran.

The general structure of a subroutine is similar to that of a main program:

SUBROUTINE name [ (parameter list)]
[specification statements]
[executable statements]

[RETURN] [label or string constant]

END [SUBROUTINE [name]]

When subroutines are used by themselves in programs, only the END statement
by itself is needed to terminate the subroutine. In some other circumstances, as we
shall see later in this chapter, the last statement must contain END SUBROUTINE
rather than just END, although the name is still optional.

When a subroutine is completed, it returns control to the (sub)program
from which it was called. One or more RETURN statements are optional in a
subroutine. Just as the STOP statement can be used to terminate a main program
prior to the END statement, the RETURN statement provides an optional means of
terminating a subroutine and returning control to the main program. Like the
STOP statement, a RETURN statement may appear anywhere after the
nonexecutable statements and may include a line label or a string constant that
will be printed when the RETURN statement is executed. A RETURN statement
may not appear anywhere in a main program.

To access a Fortran subroutine, use a CALL statement. This is a direct
implementation of the pseudocode CALL command. Its syntax is
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CALL name [(argument 1list)]

Example:
CALL Polar_to_Cartesian(r,theta,x,y)

When you use the CALL statement, there must be a SUBROUTINE with the same
name somewhere in your source code file.* Usually, subroutines follow the main
program in the source code, but this isn’t a requirement.

It is often the case that subroutines are CALLed in a program only from
a main program. However, Fortran doesn’t impose this as a restriction; subroutines
can CALL other subroutines. That is the reason for the phrase “the calling
(sub)program,” used often in this chapter to indicate that a subprogram (including
a subroutine) can be accessed from any other part of a program.

The number of items in a call to a subroutine must agree in number and
data type with the items in the subroutine’s parameter list. The quantities in the
argument list may be (depending on the circumstances, as discussed below)
variable names, constants, or functions. The requirement for matching data types
in argument and parameter lists is extremely important and deserves closer
examination. Consider code fragment P-7.1.

P-7.1 (fragment)

REAL X,y

INTEGER 2z

x=1.5

y=3.5

CALL Add(x,y,z) !Not allowed!
PRINT *,z

SUBROUTINE Add(x,Y,2z)
REAL xX,Y,2

z=xX+y

END

This code is not allowed in Fortran 90 because the data type of the variable z is
different in the main program (INTEGER) and subroutine (REAL), no doubt due
to a programming oversight (in either the main program or the subroutine).’

4Progra.m units can also be “linked” to subroutines in other program units, but we will not
address that topic now.

SHowever, this code is allowed in earlier versions of Fortran. Fortran 90's ability to trap
this kind of programming error is another significant improvement over previous versions.
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Suppose you “fix” this code by declaring z as REAL in the main program.
The following code, with a different assignment to x, will work because of the
integer-to-real type conversion performed in the first assignment statement:

x=3
y=3.5
CALL Add(x,y,2z)

Now consider this “reasonable” call to Add, in which you ask the subroutine to
perform a type conversion between the integer value in the argument list and the
REAL variable in the parameter list:

y=3.5
CALL Add(3,y,z) !Won't work!

This won’t work, again because of the disagreement between data types.

We can now complete the conversion of P-3.1, using the pseudocode
modifications presented so far in this chapter. Program P-7.2 produces the same
output as P-3.1, but it uses a subroutine to calculate the area and circumference
of the circle.

P-7.2 [CIRCLSUB.F90]

PROGRAM CircleSub

File name CIRCLSUB.F90.
Calculate area and circumference of a circle, using
a subroutine.

IMPLICIT NONE

REAL radius,area,circumference

PRINT *,' What is the radius of the circle?'
READ *,radius
CALL CircleStuff(radius,area,circumference)
PRINT 1000,area,circumference

1000 FORMAT(1x,2f10.3)
END

SUBROUTINE CircleStuff(radius,area,circumference)
! Do area and circumference calculations.

IMPLICIT NONE

REAL radius,area,circumference, pi
INTENT (IN) radius

INTENT (OUT) area,circumference
PARAMETER (pi=3.14159)

area=pi*radius*radius
circumference=2.0*pi*radius
END
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Figure 7.3. Flow of information between main
PROGRAM CircleSub and SUBROUTINE
CircleStuff

The flow of information between the main program CircleSub and the
subprogram SUBROUTINE CircleStuff is shown in Figure 7.3. The details
of SUBROUTINE CircleStuff are important and we will discuss them in
detail.

7.2.1 Using Subroutines

The parameter list in SUBROUTINE CircleStuff defines how information
flows between the main program and the subroutine. As indicated in Figure 7.3,
the radius of a circle is the input to the subroutine, and the area and circumference
of the circle are the output. Except for the fact that the programmer needs to be
aware of the purpose of the three variables, area, circumference, and
radius (the purposes are made clear by the choice of meaningful variable
names), the main program is unaware of what happens in the subroutine, and vice
versa.

As one consequence of the independence of a subroutine, the data types
of parameters—radius, area, and circumference in this case—must be
redeclared in the subroutine. This is how Fortran makes sure that there are no
inconsistencies between the parameter list and the argument list in the calling
(sub)program. You should include the IMPLICIT NONE statement in every
subroutine for the same reasons you include it in every main program. The
IMPLICIT NONE affects not just locally defined variables, but also all variables
in the parameter list. Any variable name appearing in the parameter list, but not
in a data declaration statement, will generate a compile-time error.

The names used in the parameter list of a subroutine don’t have to
be—and, in general, aren’t—the same as the names used in the argument list when
that subroutine is called. Only the number and data type of parameters and calling
arguments must agree. The names in the formal parameter list define the local
names by which the variables will be known and used inside the subroutine. In
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P-7.2, the same names are used in the argument and parameter lists, but only
because those names are reasonable and convenient. We could also start the
subroutine like this:

SUBROUTINE CircleStuff(r,a,c)

This is OK, even if the variable names aren’t very good choices as a matter of
style, as long as we use those names appropriately for calculations within the
subroutine.

The important point of this discussion about names is that the programmer
doesn’t have to worry about matching names between a CALL to a subroutine and
the subroutine itself. All the programmer should need to know to use a subroutine
is the data types and purposes of the items in the parameter list.

Even though Fortran will not allow you to become confused about the data
types of variables, it’s certainly possible to be confused about the meaning of
parameters and arguments. Suppose a programmer accessed CircleStuff like
this:

CALL CircleStuff(radius,circumference,area)

This is perfectly OK from Fortran’s point of view, assuming all three variables are
declared as REAL numbers, but in the context of P-7.2, this represents a fatal
design error because the references to area and circumference are switched. These
kinds of errors can be very difficult to find in programs, so be careful!

7.2.2 Controlling the Flow of Information
Expressing intent

In the general discussion of subprograms earlier in the
chapter, we emphasized the importance of understanding
how information flows between a subprogram and a calling
(sub)program. When you design subprograms, you need to know what constitutes
“input” and “output,” or to put it another way, which way the information flows.
In Fortran 90, in contrast with earlier versions of Fortran and some other high-
level languages, it’s possible to make and enforce distinctions between input to
and output from subprograms. This is done by giving variables an intent attribute
using the INTENT kevword. The general svntax of an TNTENT statement is

intent attribute I
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data_ type, INTENT(status) :: list of names from parameter list
or
INTENT (status) list of names from parameter list

where status may be IN, OUT, or INOUT

Examples:
REAL, INTENT(IN) :: X,y
REAL, INTENT(OUT) :: r,theta

REAL x,y,r,theta
INTENT(IN) x,¥
INTENT (OUT) r,theta

In the first syntax form and the first example, data declarations are given in the
same statement as the INTENT attribute. In the second form and the second
example, the data declarations and INTENT attributes appear in separate
statements. Some Fortran programmers have a strong preference for the first form,
but either is OK. In the examples, the first group of two statements is equivalent
to the second group of three statements.

Program P-7.2 contains two examples of INTENT statements. In
SUBROUTINE CircleStuff, the statements

INTENT(IN) radius
INTENT (OUT) area,circumference

identify radius as “input”to CircleStuff and area and circumference
as “output.”

What are the implications of assigning the INTENT attribute? In P-7.2, the
specification of area and circumference as INTENT (OUT ) means that this
statement should be unacceptable:

CALL CircleStuff(3.0,4.0,5.0)

The first argument is OK because it’s associated with the input quantity radius.
However, constant values for the second and third arguments, associated with area
and circumference, don’t make sense. Why not? Because the corresponding
quantities in SUBROUTINE CircleStuff’s parameter list have been given the
INTENT (OUT) attribute, which implies that the corresponding items in this
argument list must be variables to “receive” the output.

Returning to the first value in the argument list, what is the implication of
assigning radius the INTENT (IN) attribute in SUBROUTINE CircleStuff?
There are two reasonable possibilities. The first is that changes can be made to
radius inside CircleStuff, and those changes will be “invisible” to the
calling (sub)program. For this interpretation to work., SUBROUTINE
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Circlestuff will make a copy of radius and will make changes only to that
copy. Regardless of what changes are made locally (inside the subroutine), the
INTENT (IN) attribute protects the value originally assigned to radius in the
calling (sub)program, whether it’s a constant or a value held in a variable, because
the information flow is a “one way street” info CircleStuff.

Another possibility is that a subroutine will have access to the original
value passed through a parameter list, but the INTENT (IN) will prevent the
value from being changed inside the subroutine. Thus in the case of
SUBROUTINE CircleStuff, giving radius the INTENT (IN) attribute will
prevent the value of radius from being changed inside CircleStuff. This
implies that even though the information flow between a subprogram and its
calling (sub)program is a “two way street,” you may still wish, in some cases, to
prevent changed values from flowing back to a calling (sub)program.

Which of these interpretations does Fortran 90 apply to an INTENT ( IN)
attribute? Even though the meaning of INTENT attributes seems clear from the
algorithm design point of view—rvariables designed as “input” should not be
changed in a subprogram and variables designed as “output” are, by definition,
subject to change, it is worth thinking about the possibilities. With respect to the
INTENT (IN) attribute, consider the code fragment in P-7.3(a):

P-7.3(a) (fragment, see INTENT .F90)

(main program)

x=3.0

CALL InTest(x)
PRINT *,x

END

SUBROUTINE InTest(x)
IMPLICIT NONE

REAL x

INTENT (IN) x

x=2.0

END

If Fortran subprograms make a copy of INTENT (IN) parameters, the code in
P-7.3(a) should be allowed and x will still have a value of 3 when it is printed in
the main program. However, Fortran does not apply this interpretation to treating
INTENT (IN) parameters.

The alternative, which implies that Fortran subprograms have access to the
original memory locations of parameters, is that the code in P-7.3(a) should not
be allowed because, by specifying the INTENT ( IN) attribute, you have asked
your program to protect the original value of x. The compiler used to develop the
programs in this text does, in fact, prevent reassignment of the value of an
INTENT (IN) variable inside SUBROUTINE InTest; it generates a compilation
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error message. However, an earlier version of this same compiler printed only a
warning that the INTENT (IN) attribute was being violated; it did not actually
prevent the reassignment of x.

This behavior demonstrates that communication between a subprogram and
its calling (sub)program may be a “two way street” even when the INTENT ( IN)
attribute is used. Such an interpretation can be confusing if you consider the
possibility that violation of an INTENT ( IN) attribute might force a compiler to
try to “redefine” the value of a constant appearing in an argument; it can’t do that,
of course.®

What about violations of the INTENT (OUT) attribute? Consider the code
in P-7.3(b).

P-7.3(b) (fragment, see INTENT . F90)

(main program)

CALL OutTest(3.0)
END

SUBROUTINE OutTest(x)
IMPLICIT NONE

REAL, INTENT(OUT) :: x
x=2.0

END

This code shouldn’t be allowed because it apparently tries to “redefine” the value
of the constant 3.0. However, even though the Fortran 90 standard is clear that
arguments associated with INTENT (OUT ) parameters must be variable names and
not constants, it is not required that compilers check for such violations. The
compiler used to develop the programs in this text executes without errors even
though the code asks it to do something—assign an output value to a
constant—that makes no sense.

Consequently, referring back to P-7.2, adding the statement
CALL CircleStuff(3.0,4.0,5.0) may or may not generate an error. If
no error message is generated, your program will continue to run, but you may not
have the access to output quantities that you thought you would. This is yet
another reason, not that more are needed, to be careful with the design of
algorithms before they are incorporated into programs. It is always your
responsibility to ensure that the tasks you ask a program to perform make sense
independent of the implementation details of the programming language.

It’s also possible to give quantities in a subroutine’s parameter list an
INTENT attribute of INOUT. In this case, values associated with variable names

®This possibility isn't as ridiculous as it seems. In some early versions of Fortran, it was
actually possible to change the value of a constant, such as the integer value 3, in this way!
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can flow in either direction between a subprogram and a calling (sub)program.
Constants or function values should not be allowed as arguments in the CALL
statement. However, the same compiler-dependent ambiguities exist with respect
to enforcing these restrictions.

It’s not always required to assign INTENT attributes to subroutine
parameters. Any name in a parameter list that’s not given an INTENT attribute
will have INOUT status by default. The programs in this text will generally be
consistent about explicitly assigning INTENT attributes. A final restriction is that
only variable names appearing in the parameter list can be given an INTENT
attribute; it doesn’t make sense, and isn’t allowed, to ascribe INTENT to a
quantity defined and used only locally within a subprogram. Table 7.1 summarizes
the restrictions on arguments appearing in calls to functions and subroutines.

Table 7.1 Restrictions on arguments based on their INTENT attribute

INTENT Attribute | Allowed Argument

IN variable, constant, expression,
function

OuUT variable

INOUT variable

Enforcing intent

Considering the importance we have attached to specifying INTENT attributes in
your program, you may be surprised to find that responses to intent violations may
vary from compiler to compiler. You can protect yourself by following these two
program design rules.

Intent Rule 1. Never change the value of an INTENT (IN) variable inside
a subprogram.

Intent Rule 2. Never use a constant value or a variable with the PARAMETER
attribute as an argument to a subprogram in which that variable has
INTENT (OUT).

In addition to following these rules, there are some important modifications
you can make to programs containing subprograms that will improve the chances
that intent violations will generate appropriate responses. P-7.4 gives another
version of P-7.2.
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P-7.4 [CIRCLSB2.F90]

MODULE CircleSubs

CONTAINS

SUBROUTINE CircleStuff(radius,area,circumference)
! Do area and circumference calculations.

IMPLICIT NONE

REAL radius,area,circumference,pi
INTENT (IN) radius

INTENT (OUT) area,circumference
PARAMETER (pi=3.14159)

area=pi*radius*radius
circumference=2.0*pi*radius

END SUBROUTINE CircleStuff

END MODULE

PROGRAM CirclSub2

1
! File name CIRCLSB2.F90.

! Calculate area and circumference of a circle, using
! a subroutine. Uses MODULE to enforce intent.

1

USE CircleSubs
IMPLICIT NONE
REAL radius,area,circumference

PRINT *,' What is the radius of the circle?’

READ *,radius

CALL CircleStuff(radius,area,circumference)
!

PRINT 1000,area,circumference

!
1000 FORMAT(1x,2f10.3)
END

The code in P-7.4 is nearly identical to the code in P-7.2. There are only
two differences:

(1) SUBROUTINE CircleStuff is contained in a MODULE structure named

CircleSubs that appears before the main program.

(2) The USE statement (printed in bold italics) gives the main program access to
MODULE CircleSubs and. within this module. SUBROUTINE CircleStuff.
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MODULES are a new kind of program structure. A simplified syntax for
MODULESs as they are used in P-7.4 is:

MODULE module name

CONTAINS

<one or more SUBROUTINEs or FUNCTIONs>
END [MODULE [module name]]

Example:
MODULE SeveralSubs
CONTAINS
SUBROUTINE Subl

END SUBROUTINE Subl
SUBROUTINE Sub2

END SUBROUTINE Sub2
! (more subroutines)
END MODULE SeveralSubs

The CONTAINS keyword appears whenever subprograms are included within a
MODULE. The only difference in how subprograms are written when they appear
within a MODULE is that the END statement must also contain the word
SUBROUTINE or FUNCTION, as discussed in the next section. When
subprograms appear by themselves, the word SUBROUTINE is optional. The name
of the subprogram is still optional.

Because each MODULE has a name, your program can contain more than
one MODULE. Unlike subroutines and functions, which can be included in any
order along with a main program in a source code file, the source code for
MODULE structures must appear before the main program. One simple explanation
for this difference is that MODULES can contain data declarations that are needed
before the main program can be compiled.’

The contents of a MODULE are accessed with the USE statement. A
simplified form of its syntax is:

USE module_name

Example:
USE SeveralSubs

"It is unclear whether this restriction is part of the Fortran 90 standard. Therefore, it is
possible that some Fortran 90 compilers will not enforce this requirement. It is also possible to
access subroutines, functions, and MODULEs stored in other files. This topic will be discussed in
Chapter Twelve.
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In P-7.4, the subroutine has been “encased” in a module structure and the
END statement has been replaced by END SUBROUTINE CircleStuff. The
subroutine in the MODULE is accessed by inserting the USE CircleSubs
statement before the type declarations statements in P-7.4. (That is, the USE
statement must appear directly after the PROGRAM statement.)

The changes in P-7.4 might seem to serve no purpose other than adding
yet another layer of programming overhead; after all, the main program had access
to SUBROUTINE CircleStuff even before it was included in a MODULE.
MODULEs might be pointless in this context except for the fact that the use of this
structure should force your Fortran compiler to detect and respond appropriately
to intent violations. The same compiler that allowed the INTENT (OUT) violation
in P-7.3(b) to go unnoticed doesn’t allow that same violation when a subprogram
is defined in a MODULE and accessed through a USE statement. This additional
protection is sufficient reason to use MODULE structures, but they will make even
more sense when you learn some of their other uses later in this chapter.

Programming Tip

The source code files available for downloading from the World Wide Web
site mentioned in Section i.5 of the Preface include program INTENT . F90, which
contains the code fragments in P-7.3(a) and P-7.3(b), and some similar small
subroutines contained within a MODULE structure. You should study the code and
observe how your compiler responds to intent violations before you try to use
INTENT attributes in your programs.

7.2.3 More About SUBROUTINE Syntax

Except for some differences in the data declaration statements, the structure of
subroutines is similar to the structure of a main program. Remember that, except
for information passed back and forth through the parameter list, what happens
inside a subroutine is local to that subroutine. This means that you may reuse
variable names and line labels even if they have been used elsewhere, either in the
main program or in other subprograms. This is especially useful when you write
large programs with many variable names and FORMAT statements. If you are in
the habit of numbering FORMAT statements starting at 1000 (as is done in this
text), you may restart this sequence in each subroutine. As another example, if
you’re in the habit of using i, j, k, and so forth, for loop control variables, you
may reuse these variables in any subroutine without worrying about causing
interference with loop calculations in other subroutines.
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7.3 Fortran Functions

The other important Fortran subprogram is the function. Two kinds of Fortran
functions have already been discussed in Chapter 4. One is the statement function,
a one-line, user-defined calculation that can be referenced elsewhere in a program.
(See P-4.4, for example.) The other kind is the Fortran intrinsic function. This
section will extend the concept of the function to include user-defined
subprograms that work like intrinsic functions.

The idea of treating program modules like “black boxes,” as discussed
earlier in this chapter, is especially evident in the use of intrinsic functions. In
order to use an intrinsic function, you need to know the number and data type(s)
of the required argument(s) and the data type of the value returned in the name
of the function. What you don’t need to know, and in the case of intrinsic
functions, can’t easily find out, is what happens inside the function; its
calculations are completely isolated from the rest of your source code and,
assuming you’re confident that the intrinsic function works properly, of no interest
to your program. In Fortran, you can write your own external functions that work
just like intrinsic (internal) functions. The difference is that presumably you will
understand how the function works.

As an example, P-7.5 provides yet another rewrite of P-3.1 so that the area
and circumference of a circle are each calculated in separate user-defined Fortran
functions.

P-7.5 [CIRCLFUN.F90]

MODULE CircleFunctions
CONTAINS
REAL FUNCTION Area(radius)
! Do area calculation.
IMPLICIT NONE
REAL, PARAMETER :: pi=3.14159
REAL, INTENT(IN) :: radius
Area=pi*radius*radius
END FUNCTION Area
REAL FUNCTION Circumference(radius)
! Do circumference calculation.
IMPLICIT NONE
REAL, PARAMETER :: pi=3.14159
REAL, INTENT(IN) :: radius

Circumference=2.0*pi*radius
END FUNCTION Circumference
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END MODULE
PROGRAM CirclFun

Calculate area and circumference of a circle, using
two functions.

USE CircleFunctions, ONLY : Area,Circumference
IMPLICIT NONE
REAL radius

PRINT #*,' What is the radius of the circle?'
READ *,radius

PRINT 1000,Area(radius),Circumference(radius)

1000 FORMAT(1x,2£10.3)
END

It is obvious that P-7.5 is a much longer solution to the problem of
calculating the area and circumference of a circle than the original P-3.1. What
has been gained? In fact, there isn’t much justification for modularizing this
simple program to this extent. However, it is the concepts illustrated in P-7.5 that
are important, and we will discuss the code in detail.

The general syntax of the FUNCTION subprogram is

[data_type] FUNCTION name|(parameter 1list)]
[specification statements]

[executable statements]

[RETURN]

END [FUNCTION [name]]

Example of FUNCTION header:
REAL FUNCTION DotProduct(xl,yl,zl,x2,y2,22)

The data type specification is optional only if implicit data typing is used. That
is, the data type of a function must be declared, either implicitly based on the first
letter in its name or explicitly, just as though it were a variable. (Remember that
implicit data typing is never used in this text.)

The structure of the code inside functions is the same as for subroutines;
specification and other nonexecutable statements are followed by executable
statements. The name of the function must appear at least once on the left side of
an assignment statement in order to provide the value returned by the function to
the calling (sub)program. The function ends with an END statement and may
include one or more RETURN statements prior to the END statement.

P-7.5 contains a great deal of information about how to define and use
functions, and it deserves careful study. It includes the functions Area and
Circumference. Thev are called with the single aroument radius and their
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values are printed at the end of the program. In P-7.5, the functions are contained
in a MODULE, but this isn’t necessary as a matter of Fortran syntax; they could
simply follow the main program in the same way that SUBROUTINE
Circlestuff follows the main program in P-7.2 earlier in this chapter.
However, there are good reasons for including subroutines and functions in one
or more MODULES. A sufficient reason is to enforce intent attributes, as discussed
in Section 7.2; other reasons will become clear later in this chapter.

Once a function has been defined, it can be used just like an intrinsic
function within the program unit that contains its definition. It can appear on the
right side of an assignment operator either alone or as part of an expression, or as
a value to be printed. In P-7.5, the functions appear in a PRINT statement, but
you could also assign them to other variable names:

areal=Area(radius)
circumferencel=Circumference(radius)

assuming areal and circumferencel are declared as REAL variables.
However, you can’t use functions like this:

CALL Area(radius) ! NOT ALLOWED
Circumference(radius)=x ! NOT ALLOWED

The first statement isn’t allowed because a function can’t be “CALLed” like a
subroutine; functions return single values. The second statement isn’t allowed
because only variable names, not function names, can appear on the left side of
assignment operators; a function is equivalent to a value, not a variable name.

As you can see from P-7.5, FUNCTION parameters can and should be
given INTENT attributes for the same reasons that subroutine parameters should
be given INTENT attributes. In fact, the rules are identical to those for expressing
intent in subroutines.

7.4 Using Subroutines and Functions

7.4.1 Using the MODULE Structure for Passing Information to Subroutines and
Functions

This chapter has introduced MODULE structures as a way to provide access to
subroutines and functions in a way that allows Fortran to enforce intent attributes.
The other important use of MODULESs is to make data definitions and values
available to Fortran subprograms without having to include them in the formal
parameter list. This has been done in P-7.5 to make the value of 7 available to the
two functions and to assure that the same value of 7 is used in both; information
can be passed to subroutines in the same way.
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A simplified syntax of the MODULE structure for passing information,
including data type definitions and declarations and values from PARAMETER
statements, is

MODULE module_name
[specification statements]
END [MODULE [module_name]]

Example:
MODULE Constants
REAL, PARAMETER :: pi=3.1415927,dr=0.0174532
END MODULE Constants

As indicated in P-7.5, the same MODULE can also include subroutines following
a CONTAINS statement.

Once again, access to the information in a MODULE structure is provided
through the USE statement. The default condition is for all information in the
MODULE to be available to the (sub)program containing a reference to the
MODULE. However, it is possible to give access to only some of the information
in the MODULE referred to in the USE statement. An expanded syntax for the USE
statement is

USE module_name[, ONLY : list of included names,
separated by commas]

where each item in the ONLY list has the form
[local_name =>] module_name

Examples:
USE Constants

USE Constants, ONLY : pi, deg_to_rad => dr

The Iocal_name => module_name option allows you to assign a different
name locally within a (sub)program that uses data definitions and other
information from a module. This makes it easier to reuse modules in several
programs because you can write a new program, with its own variable names,
without initially having to refer to the names in the module.

When variables or other names, such as function names, are USEd in a
(sub)program, they shouldn’t and can’t be redeclared within that (sub)program;
that defeats the purpose of defining them in a MODULE in the first place and will
generate a compile-time error. This applies even when a quantity accessed from
a MODULE has been given a local name.

You might reasonably ask why MODULEs should be used to pass
information to subprograms, especially when those values then no longer appear



7.4 Using Subroutines and Functions = 301

in a subroutine’s or function’s argument list. Doesn’t this violate the algorithm
design principle that a subprogram’s parameter list should completely define the
information interface between the subprogram and its calling (sub)program?

In Fortran 90, MODULES are essentially an implementation detail, albeit a
relatively large and complicated detail. They are important because they provide
new kinds of information interfaces among programs and their subprograms which
were not available in earlier versions of Fortran. They should be used whenever
they can make programs less prone to error or easier to modify and maintain. In
fact, we will use MODULEs in this text whenever a program requires a
subprogram. However, these capabilities don’t have to affect the way your
algorithms are designed. That, after all, is the point of having a “syntax free” way
to design algorithms. You can still think of all information flowing through a
subprogram’s parameter list.

In small programs, the practical advantages of using MODULEs are
marginal, but in large programs where many subprograms share common
information, the use of MODULEs greatly reduces the possibility of errors. For
example, remember that every variable appearing in a parameter list must be
explicitly typed within the subprogram in which it appears. However, variables
made available through a MODULE have to be declared only once, in the MODULE.
When variables and other entities are made available in this way, it is good
programming style to use the ONLY option to provide a list of the names of the
entities even when all these entities are being USEd.

Programming Tip

In programs written with older versions of Fortran, you will often see the
keyword COMMON. This keyword is used to define “common blocks” of values
that can be shared among a main program and its subprograms by making them
available “in common.” Common blocks are still supported by Fortran 90, but we
will not use them in this text. Why not? Because the information contained in
common blocks is “storage associated” rather than “name associated.” Without
going into the details, suffice it to say that programs that use MODULESs to share
information by name association are much less prone to errors than programs that
use COMMON blocks to share information by storage association. This fact, coupled
with the other advantages of MODULEs in Fortran 90, is sufficient reason for
anyone learning Fortran for the first time to avoid using COMMON blocks.
Nonetheless, because you will see COMMON blocks in older Fortran programs, a
brief description of the syntax is given in Chapter 12.



302 = 7. Program Modularization

7.4.2 Initializing Information in Subroutines and Functions

As discussed in this chapter, there are two basic mechanisms for making
externally generated information available to a subprogram: its parameter list,
through which a calling (sub)program can transmit values, and a MODULE, which
can transmit information about data types and subprograms as well as values.
What about information that is generated inside a subprogram? Consider this code
fragment from a subroutine:

P-7.6 (fragment)

SUBROUTINE X(...)
INTEGER i
REAL z
DATA z/0./
DO i=1,10
z=z+1.
END DO
RETURN
END

The first time this subroutine is called, z initially has a value of 0 because it
appears in a DATA statement. When control is returned to the calling program, z
has a value of 10. What is the value of z when the subroutine is called again
during the same program? Because of the DATA statement, it is tempting to
conclude that z will be reinitialized to O every time the subroutine is called.
However, this is NOT TRUE!

A DATA statement is not an executable statement, which means that values
are assigned to variables in a DATA statement before the program starts to
execute. As a result, the initialization performed in a DATA statement is
performed only once.

In the above example, the “initial” value of z when the subroutine is called a
second time is 10. If it is called yet again, its value is 20, and so forth. Note that
this problem doesn’t apply to variable names initialized as constants in
PARAMETER statements because such values can’t be changed while the program
is running.

Subroutines and functions are often called more than once within the same
program, which is one reason the subprogram was written in the first place. Also,
subprograms often contain many internal variables that, if they appeared in a main
program, could appropriately be initialized in a DATA statement to avoid writing
many assignment statements. This situation represents a tempting but potentially
fatal design trap that is verv difficult to find after a prosram has heen written.
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Fortran issues no warning message because it might be reasonable to ask a
subprogram to do what the code in P-7.6 does, but it is almost never what you
intended!

The solution is to use an assignment statement to initialize z to O.
Assignment statements are executable, so the assignments will be made every time
the subprogram is called. In P-7.6, the code should probably look like this:

INTEGER i

REAL 2z

z=0.

DO i=1,10
z=z+1.

END DO

7.4.3 Using Subroutines and Functions in Argument and Parameter Lists

Suppose you have written a subroutine to print a table of values of sin(x). The
intrinsic SIN function could be used in code something like that in P-7.7,
assuming appropriate data declarations and assignments for all variables:

P-7.7 (fragment)

SUBROUTINE Printer(lo,hi,step)

x=first

DO i=lo,hi
PRINT *,x,SIN(X)
x=x+step

END DO

In order to “reuse” this subroutine to print values of a different function,
you would have to rewrite the subroutine by replacing the SIN(x) in the PRINT
statement with some other function; this other function could be a different
intrinsic function or some function you defined yourself, such as x**3,

Especially if you consider this example in a broader context of using
functions for more involved calculations in subprograms, you might wish to find
a way to give a subprogram access to a function without having to define the
function inside the subprogram. If you could do this, it would mean that the code
in such subprograms could be written independently of the function itself.

In fact, it is possible for either a function or a subroutine to appear in the
parameter list of a subprogram and therefore in its corresponding argument list.
This means that you could use something similar to SUBROUTINE Printer in
P-7.7 to print values of any function of one variable simply by representing the
name of the function symbolically in SUBROUTINE Printer’s parameter list
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and including the name of the actual function in the argument list when Printer
is called. However, quite a bit of extra code is required to do this properly.
Program P-7.8 shows how. This is an important code example and it is important
to study it thoroughly.

P-7.8 [EXT_FUNC.F90]

MODULE ExternalFunctions
CONTAINS

REAL FUNCTION f_of_x(x)
IMPLICIT NONE

REAL, INTENT(IN) :: X
f_of_x=x**2

END FUNCTION f_of_x

SUBROUTINE Print_f(lo,hi,step, f)
IMPLICIT NONE
INTEGER, INTENT(IN) :: lo,hi
REAL, INTENT(IN) :: step
REAL f,x
INTEGER i
! Explicit function interface definition...

INTERFACE

REAL FUNCTION f(x)

REAL, INTENT(IN) :: X

END FUNCTION f
END INTERFACE
x=0.-step
PRINT *,' x f(x)'
DO i=lo,hi

x=x+step

PRINT 1000,x, f(x)
END DO

1000 FORMAT(1x,2f10.5)

END SUBROUTINE Print_f

SUBROUTINE f_of_x_sub(x,s)
IMPLICIT NONE

REAL, INTENT(IN) :: X
REAL, INTENT(OUT) :: s
s=SQRT(x)

END SUBROUTINE f_of_x_sub

SUBROUTINE Print_s(lo,hi,step,s)
IMPLICIT NONE

INTEGER, INTENT(IN) :: lo,hi
REAL, INTENT(IN) :: step
REAL x,y
INTEGER i
! Explicit subroutine interface definition...
INTERFACE

SUBROUTINE S(X,y)
REAL, INTENT(IN) :
REAL, INTENT(OUT)

END SUBROUTINE

TATN TATMDODDIAND

x
Y
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x=0.-step
PRINT *,' x f(x)'
DO i=lo,hi
x=x+step
CALL s(X,Y)
PRINT 1000,x,y
END DO

1000 FORMAT(1x,2f10.5)

END SUBROUTINE Print_s

PROGRAM Ext_Func

Demonstrate how to pass a function or subroutine
to a subprogram.

USE ExternalFunctions, ONLY : f_of_x,f_of_x_sub, &
print_f,print_s

IMPLICIT NONE

INTRINSIC SIN !for an intrinsic function

CALL Print_f(1,11,.1,SIN) !uses an intrinsic function
CALL Print_f(1,11,.1,f_of_x) !uses a user-defined function
CALL Print_s(1,11,.1,f_of_x_sub) !uses a subroutine

END
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Running P-7.8

In P-7.8, the main program does nothing more than call subprograms to
illustrate some Fortran implementation details. Consider the first CALL statement
in the main program:

CALL Print_f(1,11,.1,SIN) !uses an intrinsic function

Clearly, the purpose of this call is to give SUBROUTINE Print_f access to the
intrinsic SIN function by including the name of this function in the argument list
when Print_f£ is called. In the parameter list of Print_f£, the function is
represented symbolically by the parameter £. As a result, Print_f prints a table
of values of sin(x).

In the first call to Print_f in P-7.8, the critical question is this: “How
does Fortran know to interpret the argument SIN as the intrinsic SIN function
being passed to Print_f rather than as a variable named SIN?” The answer is
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that the name of the function is included in an INTRINSIC statement, which
allows Fortran to make the association between the name SIN and the intrinsic
funcion of this name. In P-7.8, the INTRINSIC statement is printed in bold
italics. The general form of the INTRINSIC statement is

INTRINSIC list of external names, separated by commas

Now consider the second and third CALL statements in P-7.8.

CALL Print_f£(1,11,.1,f_of_x) !uses a user-defined function
CALL Print_s(1,11,.1,f_of_x_sub) !uses a subroutine

The first of these statements includes as an argument the name of the user-defined
function f_of_x in the call to SUBROUTINE Print_f. The code in Print_f
doesn’t change, but as you can see by examining the code in REAL, FUNCTION
f_of_x, Print_f now evaluates and prints values of x> The critical question
for this call is the same as before: “How does Fortran know to interpret the name
f_of_x as a user-defined function being passed to Print_f rather than as a
variable name?”

.The answer to this. qu'est?on is s.omewhat more I explicit interface I
complicated than it is for intrinsic functions. The basic
answer is that you must should provide Print_f with
an explicit interface definition for the parameter that will be interpreted as a
function, using an INTERFACE code block. This code is printed in bold italics in
Print_f. The general syntax definition is:

INTERFACE

<function or subroutine header>
<data declaration statements>

END <FUNCTION or SUBROUTINE> [name]

END INTERFACE

This code structure includes the first line (the “header”) of a function or
subroutine and the data declaration statements for all quantities appearing in its
parameter list, but not the local declarations. The name of the function or
subroutine must be the same as its name in the parameter list of the subprogram
unit in which the INTERFACE block appears, but the names of the quantities in
the header don’t have to be the same as in the subprogram unit or in the function
or subroutine that the INTERFACE block is describing. More than one function
and subroutine can be included in an INTERFACE block.

The third CALL statement in P-7.8’s main program references a different
subroutine, Print_s, and the argument list now includes a subroutine that
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calculates the square root of x. A subroutine different from Print_f is necessary
because the code required to access values returned from a subroutine is slightly
different from the code required to use a value returned as the result of evaluating
a function. The output from SUBROUTINE Print_s is similar to that from
Print_f—it still performs the simple task of printing a table of calculated
values. This time, however, the value comes as output from SUBROUTINE
f_of_x_sub. Because there is only one value returned from f_of_x_sub,
there is actually no compelling reason to use a subroutine to provide the square
root of x; it could also have been defined as a function. It has been defined as a
subroutine in this example only to illustrate how to include a subroutine in a
parameter list.

For the same reason that a function name used in Print_f’s parameter
list was described in an INTERFACE block, a subroutine name appearing in
Print_s’s parameter list must also appear in an INTERFACE block. This code
is also printed in bold italics in P-7.8.

Inside the subroutines Print_f and Print_s, the parameters are given
INTENT attributes as usual, except for the parameter associated with the function
or subroutine. Such a parameter can’t have an INTENT attribute because it isn’t
a variable; it represents a different kind of entity that is accessible to the
subprogram.

Even though the examples in P-7.8 involve only one function or subroutine
used in a parameter list, it is certainly possible to have more than one such
parameter in a list of several parameters. Several intrinsic functions can appear in
the parameter lists of subprograms as long as the names of the intrinsic functions
appear in INTRINSIC statements in the calling (sub)program. Several user-
defined functions and subroutines can appear in the parameter lists of subprograms
as long as the functions and subroutines are described in an INTERFACE block.

7.4.4 Choosing Between Subroutines and Functions

This chapter has described, among other things, several modifications of program
P-3.1, all of which resulted in programs that are longer and more complex than
the original. Were these attempts to modularize P-3.1 worth the effort? Perhaps
not for the simple task involved. However, in general, any source code that
occupies more than a page or so is a candidate for some kind of modularization.
Beginning programmers often react inappropriately to the concept of
modularization, either by creating subprograms for every calculation, even when
it makes little sense to do so, or by refusing to break even large programs into
more easily manageable pieces.

Between these extremes there are choices to be made. If two people
independently solve the same reasonably complex programming problem, their
programs often will not look the same. either in their details or in the overall
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structure as expressed through their choices of subroutines and functions. The
programs in the rest of this text, hopefully, reflect reasonable approaches to the
use of subroutines and functions. However, other equally reasonable approaches
may also be possible.

Some decisions about using subroutines and functions can be based on the
two important differences between these two kinds of subprograms:

(1) A subroutine can return multiple values, each associated with its own variable
name. It is accessed through the CALL statement.

(2) A function returns a single value. It is accessed by name, just as any other
variable name.

Obviously, if your subprogram needs to produce several output values, you must
use a subroutine. If you need only a single value, then you have the option of
using a function. However, if a single value that results from the same function
call is needed more than once in a program, repeated use of a function with the
same arguments to obtain this value represents redundant calculations that should
be eliminated. A better approach in this case is either to use a subroutine or to use
the function just once and assign the result to a variable name. If the same
calculation needs to be done many times for different input arguments, then it
makes sense to use a function.

Based on the material presented in this chapter, it may seem that a great
deal of programming overhead is required to use Fortran subprograms. It’s true,
and these details can make small programs seem more trouble than they’re worth.
However, the ability to write completely isolated subprograms, assign INTENT
attributes to control the flow of information, and make selected information
available to different parts of a program, through the MODULE structure, makes
Fortran an ideal language for developing large and complex programs that use
combinations of commercial and <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>