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Preface 

In the fall of 1999, I was asked to teach a course on computer intrusion detection 
for the Department of Mathematical Sciences of The Johns Hopkins University. 
That course was the genesis of this book. I had been working in the field for 
several years at the Naval Surface Warfare Center, in Dahlgren, Virginia, under 
the auspices of the SHADOW program, with some funding by the Office of Naval 
Research. 

In designing the class, I was concerned both with giving an overview of the 
basic problems in computer security, and with providing information that was of 
interest to a department of mathematicians. Thus, the focus of the course was to 
be more on methods for modeling and detecting intrusions rather than one on how 
to secure one's computer against intrusions. 

The first task was to find a book from which to teach. I was familiar with several 
books on the subject, but they were all at either a high level, focusing more on the 
political and policy aspects of the problem, or were written for security analysts, 
with little to interest a mathematician. I wanted to cover material that would appeal 
to the faculty members of the department, some of whom ended up sitting in on 
the course, as well as providing some interesting problems for students. None of 
the books on the market at the time had an adequate discussion of mathematical 
issues related to intrusion detection. 

Lacking a text, I was thus forced to provide examples from articles, Web sites, 
and the like. After the course was over, I decided it would be a good idea to provide 
a compendium of the information that I had found. This book is the result. It's 
purpose is to provide an introduction to some of the issues in computer intrusion 
detection, with a focus on problems and techniques that would be of interest to a 
mathematician or statistician. 

v 



vi PREFACE 

I have provided an extensive bibliography, covering much of the research in 
computer intrusion detection. This is not complete, but it does cover most of the 
important papers in the area. 

My background is in pattern recognition and statistics, with a focus on compu­
tational statistics. This is the branch of statistics that is interested in the interface 
between statistics and computers. It considers issues related to computation, large 
data sets and high-dimensional data, visualization of complex data, and nonpara­
metric models. Thus, computer intrusion detection was a natural area in which to 
become involved. 

Dahlgren, Virginia, USA DJ. MARCHETfE 
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Introduction 

Computer networks are a rich source of interesting problems and data for statisti­
cians. This book will explore some of the issues of interest to the statistician that 
arise from the general problem of protecting computers and computer networks 
from unauthorized use or malicious attacks. This book will not attempt to be 
comprehensive, but rather will focus on a few areas of particular interest that lend 
themselves to statistical or probabilistic analysis. 

One reason to forego any claim of comprehensiveness is the speed at which 
change occurs in networking and on the Internet. When I started this work, in 
December of 1999, I had intended a chapter on future threats, in which I placed 
distributed attacks. It was not more than a few months later that several major Web 
servers were shut down by distributed denial of service attacks. Thus, the future 
quickly becomes the past. 

Another factor is the vast literature on networking and network modeling, which 
is of immense interest to a statistician and of only marginal interest in network 
defense. I will briefly touch on this topic in Chapter 2, but it deserves a separate 
book in its own right. 

Since the subject of computer and network security is quite broad, some dis­
cussion of scope is in order. First, I will consider what I refer to as "network 
monitoring." A typical network within a corporation or university is a collection 
of machines that can communicate with each other and with machines on other 
networks (the Internet) through a gateway. A network monitor is a system de­
signed to monitor the traffic in and out of the network (or between machines on the 
network) for the purposes of determining whether the network is working properly 
and that it is not being attacked from without. 

xiii 
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Network monitoring can be as simple as collecting statistics on usage to deter­
mine such things as average and peak loads and other measures of the health of the 
network. It can also include characterizing the kind of traffic on the network as 
either "normal" (and hence not of concern) or "abnormal" (and hence warranting 
further investigation). Detecting and characterizing changing activity on the net­
work is of interest, as are sudden deviations from "normal" activity. These ideas 
will be considered in some detail in Chapters 2 and 4. 

An analogy to keep in mind as you read this book is the "envelope" analogy. 
The information sent across the network is broken into small "chunks," referred to 
as "packets". Each packet contains addressing information and data. Consider a 
standard (paper) letter. It contains an address (to and from) and some information 
as to how the letter is to be handled (e.g., return to sender if undeliverable) as well 
as content, which resides inside the letter and is generally inaccessible to the mail 
handlers. A packet is like a letter. It contains addressing and handling information 
(the "header") and private information (the "data"), which, unlike a letter, is also 
freely accessible to anyone who wants to look at it (although it can be encrypted 
for privacy). 

Essentially, network monitoring involves measuring statistics on the individual 
packets sent across the network. One can keep statistics on the headers (the address 
information on the letter), or one can look at the content to try to infer the intent 
of the sender. Looking at content is problematic for several reasons: 

• High network speeds require extremely fast processing to analyze content. 

• Privacy issues often make it politically (or legally) difficult. 

• The difficulty of parsing the content is comparable to that of natural lan­
guage. 

• Encryption can make it difficult or impossible to determine the content. 

I take the position that network monitoring should primarily concern the ad­
dress information (header) of the packets, while any content monitoring should be 
restricted to the individual hosts. Thus, we consider issues of analyzing content 
or specific individual actions in the chapter on host monitoring, Chapter 5. 

Intrusion detection is more specific than network monitoring in the sense that it 
focuses not only on the detection of "abnormal" behavior but the determination that 
the behavior is undesirable and/or harmful. In order to make this determination, 
an intrusion detection system (IDS) must infer both the intent of the activity and 
the ultimate results of the activity, should it be successful. 

There has been a lot of press about computer intrusions in the last few years. 
Usually the culprits are identified as "hackers," a term that has come to connote a 
person bent on illegal entry and malicious damage to a computer system. I will 
refrain from using this term for several reasons. The term "hacker" originally 
meant someone who was very good at writing computer programs, possibly to 
the point of obsession. To be a "hacker" was a badge of honor, for it denoted 
programmers who were at the top of their field. There are still those who hold to 
the old definition and prefer the term "cracker" for the person intent on damage. 
Rather than get involved in this battle, I have chosen to sidestep the issue entirely. 
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Another reason to avoid the term is that it still retains the connotation of a 
knowledgeable person, when in reality many so-called "hackers" are simply kids 
(literally or metaphorically) who come across programs that allow them to break 
into other people's computers. These programs require little skill, assuming the 
target computer is not well-defended. 

Finally, there is the issue of the insider, a person with legitimate access to 
the computer who, for revenge or gain, decides to damage or otherwise make 
unauthorized use of the machine. These people are not necessarily expert users 
and often do no "hacking" in any usual sense of the word. I will refer to any of 
the above as an "attacker." 

This is not a book on how to secure your computer from attack. I will, however, 
point out various utilities that can help you in this or that are useful for collecting 
data relevant to intrusion detection. These utilities are all Unix-based, although 
most of them are also available for other operating systems. All are also available 
for free. Although there are many commercial products that perform these and 
other useful security and monitoring functions, I will not cover any commercial 
products. 

There are a number of very good books describing how to secure a given oper­
ating system. One I recommend for Linux is Toxen [2001]. 

The focus of the utilities discussed in this book is almost entirely on collecting 
data rather than securing a system. Many of the utilities also help to secure a 
system, and a few are really designed primarily for this task. There are many 
utilities that have not been listed, due to space limitations, and the interested 
reader is encouraged to check the Unix manual pages and the Web addresses in 
AppendixD. 

This avoidance of commercial products extends to those designed specifically 
for intrusion detection. There are several books that cover these, such as anony­
mous [1997], Escamilla [1998], Amoroso [1999], Northcutt [1999], and Bace 
[2000]. Also, products change so quickly that anything said about them will likely 
be inaccurate in a few months. Finally, in order to do a good job of evaluating 
commercial systems, I would feel the need to acquire them and test them out. This 
is not an option. Although we have several systems at NSWC that I could evalu­
ate, I decided it best to leave the evaluation of these systems to others. Industry 
magazines are good places to find such evaluations. 

Throughout the book, I have examples of IP addresses and machine names. 
These should all be considered imaginary, in no way corresponding to a real 
machine. This is particularly important in the examples of attacks. In no case 
does an attack example contain the name or IP address of the real attacker or 
victim, even in those cases where the data come from a real attack. 

This book is organized into three sections, covering network basics, intrusion 
detection, and viruses. Computer professionals with a knowledge of basic net­
working and TCP/IP can skip most of the first section, whereas statisticians may 
find this material helpful. 

The section on intrusion detection is split into network and host monitoring. 
Many of the same techniques are relevant to both of these areas, but each has 
unique features. I will describe some of the more common attacks and some of 
the approaches to detecting these and other attacks. 
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The final section covers viruses, worms, and other types of malicious code. 
The chapter on viruses describes how these operate and takes a slightly different 
approach to analysis. Rather than focusing on detection, I consider the problem of 
modeling virus propagation. This is similar to biological virus epidemiology and 
will make use of techniques from epidemiology. The chapter on trojan programs 
discusses some common examples ofthese and the more general problem of covert 
channels. 

Since Unix may not be familiar to all readers of this book, a list of common 
commands follows. 

• alias Rename a command (this is actually a shell command rather than a 
Unix command, but I will ignore this distinction). For example, I have the 
following on my computers: 

alias 11 "Is -It" 

which allows me to simply type "11" when I want a time-ordered long listing 
of a directory. 

• cd Change the current directory. 

• chmod Change the mode (read, write, execute permission) of a file or di­
rectory. 

• chown Change the owner of a file or directory. 

• cp Copy a file. 

• csh The C command shell (similar to the MS-DOS prompt). 

• echo Echo the string to the terminal. 

• grep Search a file for occurrences of a given string. 

• gzip A file compression utility. 

• head List the first few lines of a file. 

• kill Stop the execution of a process. 

• Is List a directory (similar to MS-DOS dir command). 

• man Look up a command in the manual pages. I will refer to a manual page 
as a "man page," which is the standard terminology among Unix users. 

• mkdir Create a directory. 

• more View a file one page at a time. 

• mv Move a file. 

• perl A powerful language for scanning and extracting information from text 
files. 
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• rm Remove a file (similar to MS-DOS del command). 

• rmdir Remove an empty directory. 

• sh The Bourne command shell. 

• su Substitute user. Change to another user (for example, root). Some people 
think "su" stands for "super user," since typing "su" alone is used to change 
to the "super user," known as "root" in the Unix world. Assuming you know 
the user's password, you can use "su" to change to that person's account. In 
particular, root can change to anyone's account. The syntax is 

su username 
or 
su - username 

The "-" makes the shell a login shell, and hence reads any initialization files 
that are read at login. 

• tail List the last few lines in a file. 

• vi A file editor. There are many text editors available. Vi is the classic Unix 
"visual editor" that is used by many programmers, particularly those who 
learned programming in the early days of Unix. 

There are many books on Unix that provide information on the preceding com­
mands and more. Rather than provide a list, I will leave it to the interested reader 
to visit a local bookstore. 
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1 
TCPI/P 

Networking 

This chapter is intended to provide an overview of networking and the protocols 
that are most often used for attacks. This should provide the background needed 
to understand network data and the various attacks described in the following 
chapters. 

The discussion is at a fairly high level. Readers who wish a more in depth 
discussion of networking are encouraged to investigate one of the many books on 
the subject. A good place to start is Stevens [1994]. 

We will start with a brief overview of networking using an analogy of the postal 
system, a continuation of the envelope analogy discussed in the Introduction. 
This will provide an intuitive feel for what happens on networks. A program for 
collecting network data will be described, followed by a discussion of the network 
layers and encapsulation. The three basic protocols that make up the bulk of IP 
traffic are described. Packet fragmentation, routing, and domain name service are 
covered briefly, followed by a few useful utilities for collecting network data. 

1.1 OVERVIEW OF NETWORKING 

Let us consider the postal system as a high-level analogy to the process that occurs 
when data (e.g., files, email) are transmitted across a network. To communicate via 
the postal system one places a message in an envelope and puts the receiver's name, 
address, and zip code on the envelope. Usually, although this is not required, a 
return address is put on the envelope. The envelope is then placed in a mailbox. A 
mail carrier retrieves the envelope and takes it to a substation, where the zip code is 
read. This code provides the address of the final substation to which the letter is to 
be delivered. The letter is passed around through various intermediate substations 

3 D. J. Marchette, Computer Intrusion Detection and Network Monitoring
© Springer Science+Business Media New York 2001
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until it arrives at the final substation. The final address is then read, and the letter is 
delivered to the proper address (if all has gone well). Finally, if there is more than 
one person at the address, someone looks at the letter to determine to whom the 
letter is addressed and delivers it to that person. All of this is very analogous, at a 
high level, to the process that occurs when messages are delivered on a network. 
The one aspect that is not reflected in the network (yet) is the concept of a stamp. 

With the preceding discussion in mind, consider what happens when a user de­
cides to send information across a network. For specificity, let us consider email. 
The user calls up a mail application, types in the message, including the destination 
email address, and clicks "send." In this instance, let us assume the email address 
IS: 

john.doe@someplace.com. 

If this were a letter sent through the post office, the handler would read the zip 
code, which would indicate the city to which the letter should be sent. The Internet 
has a similar code, called the IP address. This is actually slightly more specific 
than the standard 5-digit zip code. It corresponds to the complete address, as do 
the newer 9-digit zip codes. The machine name (someplace.com) gets converted to 
an IP address, a 4-byte address usually written as four 8-bit numbers separated by 
periods (these four numbers are referred to as "octets"); for example, 10.10.125.17. 
The letter is forwarded to the city (or post office within the city), at which point 
the rest of the address is read. This and further substations are analogous to the 
routers on the Internet. See Figure 1.1 for a depiction of this. 

One advantage networks have over the post office is that they do not require 
one to remember the numerical zip code (IP address). Instead, a name is provided 
(someplace.com). To convert the name (which a human can easily remember) to 
the IP address (which is more convenient for the machine), the network software 
queries a domain name server (DNS, see Section 1.8), a machine that knows (or 
knows how to find out) the mapping from name to IP address. 

In the simplest case, the email then gets bundled into a packet (analogy: enve­
lope) with the destination IP address included and sent to a router. The application 
does not actually do the bundling, however. The networking software is imple­
mented in a layered fashion, so that each layer knows just enough to perform its 
function. This way, the applications need not concern themselves with the details 
of the networking communications. 

We will discuss the network layers in more detail later, but a brief introduction 
will give a feel for how they work. The application passes the email message to 
the protocol layer. This layer takes care of such things as making sure that packets 
are actually delivered and do not get lost. It makes a packet out of the email that 
tells what protocol is being used for the transmission (more on this later). The 
next layer, the IP,layer, makes the packet into an IP packet for transmission out 
across the Internet. The IP protocol is the fundamental "language" of the Internet. 
Finally, the hardware layer takes care of actually putting the packet out through 
the hardware and onto the network. 
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Lo;;.;;.. ...... =;.;.;;.o...;.;.~ 

Mailbox:~er 

III po~ce: Router 

Po t Offic 

Fig. 1. 1 Post Office analogy picture, illustrating the correspondence between network 
communications and the postal system. 

This is a simplification of the process which ignores several layers. The reader is 
encouraged to investigate Stevens [1994] for more details. It is, however, sufficient 
for our purposes. 

The packet is now on its way to the first router (analogy: the local post office). 
The router knows the next router to send it to (analogy: the main post office for the 
destination city). Each router that the packet goes through knows the next router 
to send to, so eventually it arrives at a router that knows the direct route to the 
destination machine: someplace. com (AKA 10.10.125.17). 

Note that the "routers" of the postal analogy are generally fixed. Letters be­
tween two cities go through the same substations, airports, and so on, every time. 
However, if an airport is closed (for example, by fog), the letter may be rerouted 
to a train or truck (after all, the mail must get through). This also happens in net­
works. In fact, it happens much more often in networks, which were designed to 
be fault-tolerant to an extreme degree. We will see this when we discuss routing. 

Now the packet goes back up the network layers. The hardware layer pulls the 
packet off the network. It passes it up to the IP,layer, which passes it to the protocol 
layer and finally to the application layer, where the email program (analogy: the 
local mail carrier) finally reads the "john.doe" of the email address and puts it in 
the appropriate mailbox. 

This overview is a reasonably good approximation of what happens in real life 
as long as one does not focus too closely on the details. We will now consider 
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the process in a little more detail. As you will see, the post office analogy breaks 
down when we start looking at the details. 

1.2 TCPDUMP 

In order to analyze network data one must be able to collect the data. To this 
end, various programs, called "sniffers" have been written to capture copies of 
the packets directly from the network interface. One of the most popular such 
programs is tcpdump. 

The tcpdump program can be set either to collect the data and store it on disk 
in binary format or provide human-readable output. A typical such output is: 

11:00:03.797988 10.10.171.206.1102> 42.197.95.138.80: S 685673:685673(0) 
win 8192 <eol> (DF) 

This is a TCP packet. We will learn more about these fields in Section 1.5.4, but 
for completeness I will describe each one in tum. Note that in all the examples the 
home network will be 10.1 O.x.x, and all other IP addresses have been "scrambled," 
or obfuscated, to hide their identity. This obfuscation serves two purposes. First, it 
acts like the "555-" phone number in movies and television, which protects people 
from annoying phone calls from confused viewers or pranksters. Second, some 
of the examples are taken from real attacks, and it is not the purpose of this book 
to accuse any individual or organization. As will be seen, the "attacker" address 
is easily manipulated, making it difficult to assign blame for the attack. Also, IP 
addresses can be reused when the machines that had those addresses are discarded 
or the company goes out of business. Therefore, if by chance any of the addresses 
in this book are ever owned by a company or individual, it is safe to assume this 
is an accident. 

The first set of colon-separated numbers is the time the packet was collected. 
Note that the date does not appear in the timestamp. The usual usage oftcpdump is 
to encode the date in the filename if the data are stored on disk or to otherwise retain 
this information for future reference. As we will see later, the date is accessible 
from binary tcpdump data but is not printed out in the standard human-readable 
format. 

The next two sets of numbers, separated by a">", are the source and destination 
IP addresses, with the source and destination port numbers appended on the end. 
The port numbers are used to set up connections between specific applications and 
will be discussed in more detail in Section 1.5.4. In this case, the destination port 
(80) is the port for Web access (http). 

The next two colon-separated numbers are the sequence numbers, which pro­
vide the packets with a unique ordering. Although the packets are sent out in the 
correct order, there is no guarantee that they will arrive in order, so some mech­
anism must be in place to allow the destination machine to properly order the 
incoming packets. Sequence numbers perform this function. 

The "s" in the packet indicates that the "SYN" flag is set (that is that the source 
machine is requesting a new session to be set up). This is a feature specific to TCP 
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and will be discussed at some length in Section 1.5.4. A packet with only the SYN 
flag set is called a "SYN packet". 

The "win 8192" indicates a window size of 8192 bytes. Anything in the "< 
>" at the end represents TCP,options. Finally, tcpdump indicates that the "don't 
fragment" flag (DF) is set. All of these will be discussed in more detail in the 
appropriate sections. 

The tcpdump program has another useful feature, the ability to filter packets. 
For example, one can choose to collect only packets that use the TCP protocol. 
More specific filters are also possible. For example, one can collect all TCP packets 
having only the SYN flag set from a specific machine to a specific port on another 
machine (these terms will be defined in the sections to follow). This capability is 
useful for monitoring for specific known attacks and will be discussed in detail in 
Section 4.2. 

tcpdump can be called with a number of flags to control its operation and output. 
I will not go through all of them but rather touch on some of the more important 
ones: 

-r file Read from a file of data in tcpdump's binary format. To read from standard 
input use "-r -". Without the "-r" flag, tcpdump will read from the network 
interface. Only root has read permission on this interface, so this only works 
if the user has root permission. 

-p Do not put the interface in promiscuous mode. This is useful if you do not 
want to see any data except that destined for your own machine. Also, it is 
possible to detect machines with network cards in promiscuous mode, and 
some organizations (for example, some Internet Service Providers) view 
such actions as contrary to their security policy. Note: some versions of 
tcpdump seem to have this option reversed - the default being not to put the 
interface in promiscuous mode - requiring the "-p" to put it in promiscuous 
mode. 

-w file Write a file in tcpdump's binary format. 

-F file Use the filter defined in the file. This will be covered in more detail in 
Section 4.2. 

-s sleD This defines the number of bytes (slen) to retain from each packet (the default 
is 68, which is adequate for the protocols that interest us: IP, TCP, UDP, and 
ICMP). Larger values of slen allow the collection of packet data, or even the 
entire packet, if desired. This can be useful for detecting some attacks, but 
has privacy and security implications. 

-tt Display the time as an unformatted timestamp corresponding to the number 
of seconds since the beginning of time (which in the Unix world is defined 
to be January 1, 1970). 

-D Do not do address conversion. If this flag is not given, tcpdump will attempt 
to convert IP addresses to names and will also convert some port numbers to 
application names. This can dramatically slow the execution oftcpdump, as 
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it requires a DNS lookup (Section 1.8) for each IP address. The result can 
be lost packets, so use this flag when using tcpdump as a network monitor. 

-dd Dump the packet-matching code as a C program fragment. This can be 
useful for debugging. Similarly, a single "d" dumps the code in a human­
readable form, and "ddd" dumps the code as decimal numbers. 

For short filters, one can place the filter at the end of the command line, so, for 
example, to collect only ip packets, use the command: 

tcpdump ip 

A more involved example might look like: 

tcpdump -n "tcp and dst host 10.10.17.25 and not src net 10.10" 

In this case, we used quotes to delimit the filter and have specified that we want 
all TCP packets destined to a given host that does not come from our network 
(lO.lO.x.x). Filters will be discussed in more detail in Section 4.2. 

It should be noted that although anyone can use tcpdump to view data in a file 
(assuming they have read permission on the file), only root can use tcpdump to 
collect live data. 

A note on the ethics and legality of sniffers is in order here. One should never 
install a sniffer on a machine without the permission of the owner of the machine 
and the security officer in charge of the network. There are serious issues of 
privacy involved as well as legal issues. A sniffer can provide a copy of every 
character sent over the network. This allows the reading of passwords (if they 
are sent unencrypted, which is often the case), email messages, and other private 
information. Reading these may be considered the same as a wiretap, and hence 
illegal, in certain circumstances. Although tcpdump can be configured (via the -s 
flag discussed earlier) to collect a minimum amount of the actual data sent, some 
data are inevitably collected. 

Even if no data are collected, the sniffer provides information such as which 
Web sites are visited. This information may be considered private in some environ­
ments. In some situations, such as work environments, the owner of the network 
specifies a monitoring policy and provides a security and usage policy detailing 
the kinds of activity that will be allowed on the network. This policy may allow 
certain kinds of monitoring, and one may be allowed to install a sniffer for security 
or research purposes. Check with your network security officer before installing 
a network monitor on your computer. 

It should be noted that a sniffer may not see all the traffic on a network. Traffic 
between hosts on the network may not travel past the machine hosting the sniffer. 
This can happen if the sniffer is on a switched network, which is one in which the 
router acts essentially as a direct connection between any two machines, but it can 
also happen purely as a result of the network technology. If the destination of a 
packet is between the source and the sniffer, the sniffer will never see the packet. 
The destination machine will take it before it reaches the sniffer. 
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Sniffers can be utilized to enforce computer usage policy as well as for detecting 
attacks. At NSWC the information security officers decided to monitor traffic 
looking for inappropriate use of government equipment (porn sites, stock trading, 
and so on). They used a sniffer to look for certain strings in the content of the 
packets. However, for whatever reason, it was discontinued. This caused me 
some relief when I went looking for a book on graph theory. The book (Haynes 
et al. [1998]) is a compendium of research in an area called "domination", and 
naturally, one of the words used to describe a particular kind of "domination" in 
graph theory, is "bondage." Both words appeared on the Web site providing me 
with the information on the book I was looking for (interestingly enough, my search 
did not pick up any books that actually were inappropriate). To my amusement, 
one of the chapters is entitled "Global Domination," which, if it is not one of the 
key phrases searched for in any inappropriate usage system, should be. I assume, 
since nobody called me about it, that the filters are indeed turned off (or else I am 
now on the "enhanced scrutiny" list). 

This points out one of the problems with monitoring content. It is difficult to 
avoid false alarms caused by the many synonyms, idioms, and analogies that are 
used all the time in English (or any other language). It is possible sometimes to 
restrict the strings searched for to fairly unambiguous ones (such as "/etc/passwd"), 
but more general "inappropriate usage" monitors tend to become plagued by false 
alarms. 

This example is relevant to network monitoring from another perspective. In 
effect, a dominating set for a graph is a set of nodes that are neighbors of all the 
nodes in the graph. A minimum dominating set is one that contains the smallest 
number of nodes. It is easy to see applications of this to network monitoring 
(placement of sensors) and network design (Das and Bharghavan [1997]). 

1.3 NETWORK LAYERING 

As discussed earlier, TCPIIP networking is implemented in a layered fashion. 
Many networking books use seven layers to describe the processing. This level of 
detail is not necessary for our purposes, so the number of levels has been collapsed 
to four, which is in agreement with the discussion in Stevens [1994]. Each layer 
will be described in tum, starting from the lowest level and working up to the level 
seen by the average user. 

1.3.1 The Hardware Layer 

The hardware (or "link") layer has the task of interfacing with the network hard­
ware. In our postal analogy, the hardware layer plays the part of the mail carrier. 
This is where packets are physically placed on the network or retrieved from the 
network. The hardware layer must know details about the specific network inter­
face in the machine as well as what kind of network (e.g., Ethernet, token ring) is 
to be accessed. 
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This is where special protocols such as PPP (Point-to-Point Protocol) are im­
plemented for transmission across slow lines such as modems. For the most part, 
this layer does not play much part in intrusion detection, so we will not cover it in 
any detail. This is not to say that there are no exploits that utilize specific knowl­
edge about the underlying network protocol, but these are beyond the scope of this 
work. For a discussion of two such attacks, see Toxen [2001], pages 231-232. 
These attacks are against the MAC (Media Access Control) address, which is used 
to route packets to the specific machine on a local area network. 

1.3.2 The IP Layer 

The IP protocol is the lingua franca of the Internet. It is the underlying "language" 
that all machines on the Internet must understand in order to communicate. All 
the higher-level protocols, such as UDP and TCP, are built on this foundation. 

The IP layer can be thought of as the letter handler. This is where source and 
destination addresses are set or read. It also makes sure that the packets have not 
been damaged in transit. If packets are too large to go across the network in one 
piece, the IP layer is where they are broken up (see Section 1.6) and subsequently 
reassembled. 

IP is an unreliable protocol. This means that it does not attempt to guarantee 
that packets are delivered. It is up to higher-level protocols (in particular, TCP) to 
implement any desired reliability. 

1.3.3 The Protocol Layer 

The protocol (sometimes called transport) layer is where reliability of delivery is 
implemented. As mentioned previously, the IP protocol does not guarantee that 
all packets sent will be received, and has no mechanism for handling packets that 
are lost. It is up to the protocol layer to implement any kind of guarantee. 

1.3.4 The Application Layer 

The application layer is where the user programs interact with the network. This 
is where programs such as telnet, FTP, http (Web browsing and serving) operate. 
Each application can define its own protocol, for example, FTP implements the 
"file transfer protocol" (hence the name "FTP"), and it is up to the application to 
manage its protocol. The application layer should be thought of as providing the 
interface between the user and the network services. 

1.4 DATA ENCAPSULATION 

One of the important concepts of TCPIIP is the idea of data encapSUlation. The 
application takes the data and prepends an application-specific header, which is 
used to inform the receiving application of any pertinent information about the data. 
The application layer then sends the resulting packet to the protocol layer, which 
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prepends the appropriate protocol header. This header contains any information 
necessary for the functioning of the particular protocol used. The IP layer then 
prepends an IP header. The IP header can be thought of as the envelope in our postal 
analogy. This contains the source and destination addresses and other information 
required to properly route the packet to its destination. Finally, the hardware layer 
adds a header (and possibly a trailer) required by the specific network over which 
the packet is to traverse upon exiting the source machine. Encapsulation is depicted 
in Figure 1.2. 

Encapsulation means that each layer need only know about its own header, 
which it either adds on or strips off, depending on whether it is sending or receiving 
a packet. This means that the layers need not be cognizant of the specifics of the 
other layers, and changes to anyone of the layers need not affect the others. 

From the perspective of intrusion detection, there are two aspects of the network 
packets that are important. The headers give information about the source and 
destination, what protocol is used, options about how the packet should be routed, 
and what service or user program is the ultimate destination of the packet. The 
data field contains the actual data transmitted and so contains things such as email 
addresses, files being transferred, and passwords (for example, in a login session). 
Although many intrusion detection systems look for strings within the data, there 
are some systems that look exclusively at the header information (SHADOW, 
discussed in Section 4.4, is one example of such a system). Also, many of the 
interesting statistical questions deal with header information. We will look at these 
in some detail. 

1.5 HEADER INFORMATION 

We now consider the different headers in detail. We will not be concerned with 
the hardware-specific headers. Although these may be of interest for certain kinds 
of network reliability and other analysis tasks, and can be of interest in detecting 
certain kinds of sophisticated attacks, we will leave discussion of these to more 
specialized texts. 

For all the headers in the following figures, each row corresponds to 4 bytes of 
information. The fields of the headers are (unless otherwise specified in the text) 
either 32-,16-,8- or 4-bits, as indicated by the size of the box. For example, Figure 
1.3 depicts the IP header. The first row consists of two 4-bit fields, one 8-bit field 
and one 16-bit field. 

1.5.1 IP Packets 

IP stands for Internet Protocol and is the fundamental protocol of the Internet. 
Essentially all packets sent over the Internet are IP packets. 

As seen in the encapsulation figure (Figure 1.2), the IP layer is the one constant 
in the layers of TCPIIP. The hardware layer is specific to the network hardware 
and the specific local area network to which the machine is connected. As we will 
see, there are several protocols implemented at the protocol layer, and obviously 
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Fig. 1.2 Data encapsulation. Each layer prepends a header onto the packet as it is passed 
down the IP stack. 



1.5. HEADER INFORMATION 13 

Version 1 Length J Type of Service Total Length 

Identification Flags I Fragment Offset 

Time to Live I Protocol Header Checksum 

Source IP Address 

Destination IP Address 

Options (if any) 

Data 

Fig. 1.3 The IP header. 

there are many different applications. It is only the IP layer that is constant. All 
TCPIIP packets have an IP header. 

Before considering the header fields in detail, we must address byte order. 
Consider an integer that is two bytes long. For some machines (so-called "little 
endian") the high-order bits are in the leftmost byte, the low-order bits on the right. 
For all network headers, the "big endian" convention is used. High-order bits are 
on the right. So a 4-byte number has bits 0-7 first, then bits 8-15, ... , 24-31. This 
convention is consistent regardless of the convention of the machine constructing 
or reading the header. This byte ordering is called the network byte order. 

The IP header is depicted in Figure 1.3. The first field, the 4-bit version, is 
always set to 4 (for the current version, IPv4). The next version will be IPv6, 
which is not yet in wide use as this book is being written. The header length field 
contains the number of 4-byte words in the header. Since this is also a 4 bit field, 
this means that there can be no more than 60 bytes, or 15 4-byte words in an IP 
header. If no options are set, the value ofthis field will be 5. 

The type of service field (8 bits long) is used to indicate a preference for how 
the packet should be routed. The first three bits are ignored. Only one of the next 
four bits should be set. The bit that is set indicates that the packet should be routed 
according to one of the following criteria. 

• Minimize delay. 

• Maximize throughput. 

• Maximize reliability. 

• Minimize monetary cost. 

The final bit must be set to O. 
The total length field contains the total length (in bytes) of the IP datagram. 

Thus, no packet can be longer than 65,536 bytes. 
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Each packet has an identifier contained in the identification field. Packets from 
a given machine that are likely to be on the network at the same time should have 
distinct identifiers. Obviously, these are ultimately reused. 

The flags (3 bits) and fragment offset (13 bits) fields will be discussed in more 
detail in Section 1.6. Suffice it to say that they are used when a packet is too large 
to traverse a given network and must be broken into smaller packets. 

The time-to-live (TIL) field is used to keep packets from being immortal. 
Each router that handles a packet decrements the TIL field. If this field reaches 
0, the packet is dropped (ceases to exist) and a message is sent back to the source 
computer (see Section 1.5.2). In this manner, no packet can survive through more 
than 255 routers, and most packets have an initial TTL much smaller than this. As 
we will see in Section 1.9.5, this functionality can be used to determine the route 
a packet can take and to map the network. 

The protocol field tells which protocol is used by the protocol layer. This is the 
one place where the IP layer looks at the header passed down to it by the protocol 
layer. Different protocols have different header lengths and fields, and the protocol 
field is used to indicate which header is encapsulated in the packet. 

The header checksum is used for error detection. It is computed over the 
IP header only. The checksum is calculated by treating the entire header as a 
collection of 16-bit numbers. The checksum field is first initialized to zero. The 
one's complement sum is taken of the header. The one's complement of this value 
is stored in the checksum field. Upon receipt of an IP packet, the one's complement 
sum of the header is taken (again as a series of 16-bit numbers), and, since the 
checksum is the one's complement of the sum of the rest, this number should 
consist of all ones. If it does not, the header has been corrupted and the packet is 
dropped. The IP layer does not generate an error message in this case, but merely 
discards the packet. 

The source and destination IP addresses are 4-byte numbers. These are also in 
big-endian format, and so are stored low byte first: the IP address 10.11.127.13 is 
stored as 13 127 11 10 in the 4-byte field. 

The (optional) options field allows the selection of a number of possible routing 
and/or recording choices. The possible options are: 

• Record Route. If this option is set, the IP address of each router the packet 
goes through is added to the end of the IP header, recording the route taken 
by the packet. Unfortunately, since the IP header has a limited capacity, 
only a maximum of nine IP addresses can be stored. 

• Timestamp. This is similar to the record route option except that it records 
the time each router receives the packet. It can be set to record only the 
times, or the times and IP addresses, of each router. A list of up to four IP 
addresses can be provided, in which case only those routers matching the 
list will record arrival times. 

• Loose Source Routing. This specifies a list of IP addresses through which 
the packet must be routed. It does not restrict the packet from traveling 
through other routers in addition to those on the list. 
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• Strict Source Routing. Like loose source routing, this specifies a list of 
IP addresses through which the packet must be routed. However, only the 
addresses on the list can be traversed; no other routers may be used. 

Not all the options are implemented by all machines and routers, and for the 
most part they are not used on modem networks. Some of them can be security 
threats. For example, source routing can be used to implement a covert channel. 
Suppose John wishes to send proprietary data to Maria without it being obvious 
that the data are leaving his company. If Maria owns a router, John can simply 
route his packets through Maria's router using source routing, thus allowing Maria 
to see whatever John sends. Thus, when John sends email to his boss discussing 
the bid their company will be making on a contract, Maria sees the information as 
it passes through her router. Although this kind of activity is easily detected by a 
security analyst, it is generally undetectable by John's boss, or other coworkers, 
and hence may go unnoticed in many organizations. For this reason, among others, 
source routing is often disabled on modem networks. 

We now tum to the three most common protocols on the Internet. 

1.5.2 ICMP Packets 

The Internet Control Message Protocol (lCMP) is, as its name implies, a protocol 
for sending messages related to the control of the Internet. It is used to send error 
messages or other information pertinent to the functioning of the network. Figure 
1.4 depicts the ICMP header. 

The type and code fields are used to identify the type of message sent. Table 1.1 
contains a description of the types currently implemented. See Stevens [1994] for 
more information on the types and codes currently implemented. The data field 
of ICMP packets can contain extra header fields for specific types and codes. For 
example, Figure 1.5 shows the header used for ICMP echo requests and replies. 
This will be used when we look at the Loki trojan in Section 7.4, which uses ICMP 
packets to implement a hidden login session. 

ICMP is the protocol in which the ping program is generally implemented. 
Ping is a program that is used to determine if a machine is alive on the network 
(see Section 1.9.1). A series of echo requests are sent to the computer, and the 
program looks for echo replies returned by the computer. It keeps track of how 
many packets elicited responses (giving a measure of packet loss on the network) 

Type Code Checksum 

Data 

Fig. 1.4 The ICMP header. 
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Type I Code Checksum 

identifier sequence number 

Data 

Fig. 1.5 The ICMPheader for echo requests and replies. 

Table 1.1 ICMP message types. 

type Description Purpose 

0 Echo Reply Query 

3 Destination Unreachable Error 

4 Source Quench Error 

5 redirect Error 

8 Echo Request Query 

9 Router Advertisement Query 

10 Router Solicitation Query 

11 Time Exceeded Error 

12 Parameter Problem Error 

13 Timestamp Request Query 

14 Timestamp Reply Query 

15 Information Request Query 

16 Information Reply Query 

17 Address Mask Request Query 

18 Address Mask Reply Query 

and how long between each request and subsequent reply, providing a measure of 
the distance to the machine (or load on the network). 

1.5.3 UDP Packets 

The User Datagram Protocol (UDP) provides a mode of communication between 
applications. A single datagram is produced for each output of an application. 
There is no guarantee that a packet will reach its destination, and there is no built­
in mechanism to detect lost packets. This means that the protocol is not reliable, 
in the sense that TCP (to be discussed in Section 1.5.4) is. 

The datagram consists of the UDP header (Figure 1.6) and data generated by 
the application. 
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UDP implements the concept of "ports" used to communicate with different 
processes. The port numbers are identifiers used to mark the different processes. 
The ports are a logical construct rather than a physical one. Each application 
process selects one or more ports through which it will send information and one 
or more at which it will listen for incoming information. Since the port numbers 
are 16-bit numbers, there are a maximum of 65,536 ports. 

The source port and destination port indicate which application is sending and 
receiving the packet. The length field is the total length ofthe UDP datagram in 
bytes. This field must have a value of at least 8, since that is the length of the header. 
The checksum is calculated in the same manner as in the IP packet, except that it 
is calculated for the entire datagram, including the data. This provides a measure 
of error checking to determine whether the packet was corrupted in transit. If a 
packet is determined to have been corrupted (fails the checksum test) it is dropped. 
This means that the packet is ignored, not sent up to the application layer, and no 
error message is generated. 

The checksum is optional, unlike the IP checksum, but should always be used. 
As with IP, the packet is silently discarded if the checksum indicates that the packet 
has been modified. If checksums are disabled, no test is made, and all packets are 
sent up to the application layer. 

Since the UDP checksum is computed over both the data and the header, and 
like the IP checksum uses a 16-bit word, it must be able to handle data of an odd 
length. It does this by padding with a zero if necessary. 

The UDP checksum is different from the IP checksum in another respect. It 
prepends a "pseudo-header" consisting of the source and destination IP addresses, 
the 8-bit protocol from the IP header, and the UDP data length to the UDP header 
prior to calculation of the checksum. This adds another layer of assurance that the 
packet was properly delivered and unmodified. 

1.5.4 TCP Packets 

The Transmission Control Protocol (TCP) is the protocol that implements reliable 
communication on the Internet. Rather than simply sending packets from one 
machine to another, as in UDP, TCP implements the concept of a connection. A 
connection can be thought of as a communication channel, where both sides have 

Source Port Destination Port 

Length UDP Checksum 

Data 

Fig. 1.6 The UDP header. 
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agreed on the communication, and mechanisms are put in place to ensure that all 
packets arrive unchanged at their destination. 

Reliability is provided by several key features unique to TCP. First, TCP ac­
knowledges the receipt of each packet. It maintains a timer, and if the acknowl­
edgment is not received within the predefined time limit, it resends the packet. 
Second, since IP packets can be received in any order, it includes a unique number 
for each packet, ensuring the receiving application can reconstruct the correct order 
and also detect when packets have been lost and hence will eventually be resent. 
Finally, since each process has a finite buffer space in which to store packets, TCP 
ensures that the sending machine never sends too much data to be stored in the 
receiver's buffer. 

The TCP header is depicted in Figure 1.7. Like UDP, it has source and des­
tination ports, which indicate which application is the ultimate recipient of the 
packet. 

The 32-bit sequence and acknowledgment numbers are used to ensure that the 
packet ordering is maintained and that no packets are lost. When a connection 
is first initiated between two machines, the initiating machine provides an ini­
tial sequence number, which is subsequently incremented throughout the session, 
providing an ordering to the packets. We will discuss this in more detail later. 

The length field, like the IP length field, is the length of the header in 32-bit 
words. It is a 4-bit number, hence restricting the header length to at most 60 bytes. 

The reserved field is a 6-bit area reserved for future extensions to TCP. Since 
the advent of IPv6, it is unlikely that this will ever be used. 

The flags are bit values within a 6-bit field, used to implement and control the 
connection. Their values are, in the order they appear in the bit field: 

• URG indicates that the urgent pointer is valid (see below). 

Source Port Destination Port 

Sequence Number 

Acknowledgment Number 

Length I Reserved I Flags Window Size 

Checksum Urgent Pointer 

Options (if any) 

Data 

Fig. 1.7 The TCP header. 
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• ACK the acknowledgment number is valid. This is used to acknowledge 
receipt of a packet. 

• PSH this indicates that the data should be "pushed" up to the application as 
soon as possible. 

• RST reset the connection. This indicates that something has gone wrong, 
and the connection should be broken off. 

• SYN synchronize the connection. The sequence numbers are synchronized 
so that each end knows the order of the subsequent packets. The SYN flag 
is used to initiate a connection. 

• FIN finish the connection. This is used to indicate that the sender is finished 
sending data and that thus the connection (in this direction) should be closed 
down. 

We will discuss the flags in more detail later. 
Window size is the number of bytes that the receiver is willing to accept. This is 

the size of the transmit or receive buffer. The window size can be used to increase 
throughput for file transfers and other applications. 

TCP, like the other protocols, includes a checksum in the header. In the case 
of TCP, the checksum is mandatory. It also utilizes a pseudo-header in the same 
manner as UDP, described in Section 1.5.3. 

The urgent pointer is a way for an application to send emergency data to the 
receiver. For example, when a user aborts a program (by hitting Control-C), the 
application can notify the receiver that the next few bytes of data are important 
and should be handled as such. This is implemented by setting the urgent flag and 
placing in the urgent pointer the offset to be added to the current sequence number 
to indicate the last byte of urgent data. 

There are a number of other options available in TCP. A complete list is beyond 
the scope ofthis discussion. The reader is encouraged to check Stevens [1994] or 
other books on TCPIIP for details about the possible options. 

1.5.4.1 TCP connections A TCP connection is first initiated by a machine 
sending a packet with only the SYN flag set. This is analogous to the machine 
asking "hello, are you there?". The receiving machine then sends a packet with 
both the SYN and ACK flags set, acknowledging the initial SYN, analogous to 
the reply: "yes, I'm here, let's talk." Finally, the initiating machine sends a packet 
with only the ACK flag set, indicating that the connection is now in place. 

Let us consider this "three-way handshake" in more detail. The initial SYN 
packet must have no flags other than the SYN flag set, and it must contain a 
sequence number. This is the number to be used from now on as the initial 
number for the sequencing of packets. Each subsequent packet sent from this 
machine will have a sequence number incremented from the previous one. The 
receiving machine then replies with only the SYN and ACK flags sent and with an 
acknowledgment number that is the original sequence number incremented by one. 
This is the next sequence number it expects to see from the first machine. It also 
adds a sequence number of its own. The first machine, when it acknowledges this 
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packet, sends this second sequence number, incremented by one, thus indicating 
the next sequence number it expects to see from the second machine. This is 
illustrated in Figure 1.8. 

Once the three-way handshake has been completed the TCP connection is open 
for communication both ways. The sequence and acknowledgment number keep 
track of the order of the packets and allow the detection of packets that are lost 
along the way. 

The connection is closed via a four-way handshake (or pair of two-way hand­
shakes, if you prefer) of FIN/ ACK packets, closing the two directions of the com­
munication channel. One host sends a FIN packet, which is acknowledged by the 
other host via a FIN/ ACK. This closes communication from the first host to the 
second. The second can continue sending packets to the first, however, until it 
sends its closing FIN packet, which is acknowledged by a FIN/ACK. 

A typical TCP session might look like the one depicted in Table 1.2. It begins 
with the three-way handshake. There are a series of pushes and acknowledgments, 
and then the two closing FIN handshakes. Note that the machines do not have 
to acknowledge every PSH. Instead, an acknowledgment indicates receipt of all 
packets up to the one acknowledged. Also, note that after one side closes the 
connection, the other side can continue sending data until it decides to close its 
connection. 

IfTCP is so much more reliable than UDP, why does UDP exist at all? Why not 
use TCP exclusively? The main reason is the overhead involved in ensuring the 
reliability. For applications where reliability is not that critical, UDP can be faster, 
and require fewer packets, than TCP. For example, I was involved with a project 
to automatically find objects in a video (for example, tanks in the desert). This 
was implemented on a cluster of nine Linux machines, where the processing was 

Initiator Receiver 

Fig. 1.8 The TCP three-way handshake. The initiator starts the connection with an 
initial SYN flag. The receiver acknowledges the SYN, and the initiator acknowledges the 
acknowledgment. 
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distributed across the machines using UDP packets. Any corrupted packets would 
merely cause a slight error on a piece of one frame, and the speed requirement 
was such that this was considered a small price to pay (in fact, in several months 
of processing, we have never noticed a problem). The system runs at 15 frames a 
second (112 of real time) on eight 450 MHz Pentium III microprocessors (the ninth 
computer simply manages the processing and displays the results to the user). 

1.6 FRAGMENTATION 

If we send a large letter through the postal system, we simply pay more for stamps. 
On a network, the letter (packet) gets broken up into smaller packets, which get 
sent along and then reassembled at their destination. This process is called frag­
mentation. 

Fragmentation is controlled by the flags and fragment offset in the IP header 
1.5.1. There are two flags that control the fragmentation, denoted DF and ME If 
the "Don't Fragment" (DF) flag is set, the packet will not be fragmented. This 
means that if it arrives at a router that wants to fragment the packet, the packet is 

Table 1.2 A "typical" TCP session. 

Host 1 Host 2 

SYN 

SYN/ACK 

ACK 

PSH 

PSH 

PSH 

ACK 

PSH 

PSH 

ACK 

PSH 

ACK 

FIN 

FIN/ACK 

PSH 

PSH 

ACK 

FIN 

FIN/ACK 
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1 2 3 4 

lIP Header I 1000:bytes 

Fragment 1 

I 111 256 256 bytes Fragment 2 

I 111 512 256 bytes Fragment 3 

110 1 
768 232 bytes Fragment 4 

Fig. 1.9 An illustration of packet fragmentation. A packet arrives at a router which has 
a maximum packet size of 256 bytes. The packet is broken into packets of this size, each 
(except the last) having the "more fragments" (MF) bit set and the offset set appropriately. 

not forwarded and an ICMP error message (type 3, code 4: "fragmentation needed 
but don't fragment bit set") is generated and sent back to the originating machine. 

If the DF flag is not set, the packet is broken up into smaller packets, each small 
enough to be forwarded. Each packet, except the last, has the "more fragments 
coming" (MF) bit set. 

The fragment offset field is used to indicate where each fragment belongs in 
the reconstructed packet. The first packet has this field set to zero. Subsequent 
packets have the field set to the number of bytes that come before the fragment. 
This is illustrated in Figure 1.9. 

Upon receipt by the destination machine, the fragments are reassembled into 
the original packet. The placement of the fragments in the reassembled packet is 
governed by the fragment offset since the fragments are not guaranteed to arrive 
in order. 

1.7 ROUTING 

The Internet is a loose collection of machines with no global authority ensuring 
that packets are delivered or even that machines know where to send packets. 
Providing a direct route between all machines on the network might be practical 
for a network of a few tens of machines, but for the Internet this is simply not 
possible. Instead, machines must be able to determine for themselves the best 
route to use to send packets to a particular destination. 

To this end, each host maintains a routing table, which is basically a list of 
destinations (hosts or networks) and gateways (routers) to use as the first hop to 
the destination. This list is fairly stable, changing only occasionally, compared to 
the number of times it is accessed. It provides the host with an address (in our 
postal analogy, a mailbox or local post office) to send packets destined for a given 
machine. 
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We will consider this process at only a very high level. The basic ideas presented 
here can be found in Stevens [1994]. Networking books can provide a more 
detailed description for those interested in routing. 

Suppose host S wishes to send a packet to host D. First, S checks its routing 
table to see whether host D (or its network) is on the list. If it is, it obtains the 
gateway address and sends the packet to this address. If there is no match, it checks 
to see whether there is a default entry in the table. This has a router associated 
with it to which all packets should be sent, if no more direct route can be found 
in the table. If you configured your machine yourself when it was first placed on 
the network, you were asked for a "default gateway". This is the router to which 
most of your outgoing packets will be sent. If there is no default, then a "network 
unreachable" or "host unreachable" message is sent (if S is a router forwarding on 
a packet) or the application is notified that the packet cannot be sent. 

A digression is appropriate here. Up to now we have considered only the 
information in the IP header. Suppose, in our example, that S wants to send a 
packet to D and the routing table indicates that the packet should therefore be sent 
to router R1. How is this done? How is the address for Rl put into the packet so 
that the network can deliver it? Obviously, the destination IP address cannot be 
used since this would overwrite the intended destination address. The solution is 
to note that the packet is going out over a particular network interface and must be 
encoded with the network address to which it is to be delivered. This is the purpose 
of the Ethernet header depicted in Figure 1.2. Thus, the routing table provides a 
network address, rather than an IP address, to be used to route the packet. 

Since the routing table is so important to the functioning of the network, there 
must be mechanisms in place to initialize the table and to update it as needed. At 
boot time, a router will broadcast a series of ICMP packets which advertise its 
availability. These let hosts on its networks know that it is up and ready to receive. 
When a host boots up, it broadcasts ICMP solicitation packets, which then cause 
any routers on the network to respond, letting the host initialize its routing table. 

The routing table can also be updated by a "redirect" message. Suppose in our 
example, router Rl notes that the next router, R2, can be reached directly by our 
host S. It then sends a "redirect" message to S informing it of this fact. S updates 
its routing table so that all future packets to D can be sent directly to R2, bypassing 
the unnecessary router R1. 

In addition to the preceding mechanism, routers can talk to each other using 
for example the routing information protocol (RIP). This allows them to inform 
each other of changes in the networks they connect to so that better routes can be 
computed and routes dropped if they are no longer available through a particular 
router. 

1.8 DOMAIN NAME SERVICE 

In order to send a letter, you need to know the address, and the same is true for a 
packet. People have a much easier time remembering names, and have a penchant 
for narning their machines, so it is convenient to have a "human readable" address 
for each machine, such as "dvader. wallaby.org." Unfortunately, the network needs 
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Root node 

www.amazon.com www.stmarys.ca 

www.nswc.navy.mil 

Fig. 1. 10 The hierarchical organization of the domain name service. The first level 
domains are referred to as top-level domains, the next level as second-level domains. 

IP addresses, such as 10.10.138.42. The way the mapping is made from the easy­
to-remember names to the IP address is through the Domain Name Service (DNS). 

DNS is a distributed database. No single machine contains all the information 
necessary to make the mapping. This is important for two main reasons. It means 
that there is no single failure point, and it also means that a network the size of the 
Internet can function. If every machine had to query a single machine (or small 
number of machines) every time it wanted to send a packet, there would be a huge 
bottleneck that would make large networks impossible. DNS is the solution to this 
problem. 

Each site (for example, a company, university, or Internet service provider 
(lSP)) maintains a database of all the machines (hostname and IP address) that 
are on its network. This information is hosted on a "domain name server" (also 
abbreviated DNS), a machine that maintains the database for the site and provides 
the information as needed. 

The DNS is organized hierarchically, as depicted in Figure 1.10. Each top 
level domain is given a 2- or 3-character designator (there is at least one 4-
character designator, arpa, which we will not discuss). Table 1.3 lists the 3-
character domains (as given in Stevens [1994]). 

In addition to the generic domains, there are two-character country codes, such 
as us (United States), ca (Canada), and so on. See Appendix C for a listing of the 
country codes as of the time of this writing. Each country may have a convention 
for other domains (such as for states in the U.S. or educational institutions in the 
u.K.). The rest of the name can be fairly arbitrary, with some restrictions on legal 
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characters, up to 63 characters in length (capitalization is ignored). If one were 
so inclined, (and the administrator in charge of the "someisp.net" DNS allowed), 
one could have a machine called: 

givemeyourtiredyourpooryourhuddledmassesyearningtobefree.someisp.net 

It is unlikely that one would be allowed to choose such a name. It is also hard 
to imagine that one would want to. On the other hand, it is quite common for us 
at NSWC to see packets that appear to come from machines named things like 

will. work.for.food.com 

or 

dazed.and.confused.org 

or somewhat less appropriate phrases, often involving bodily functions. This 
is probably a result of someone inappropriately manipulating an insufficiently 
protected DNS. 

To illustrate this, I looked through the SHADOW logs (see Section 4.4 for a 
description of the SHADOW system) for three days and came up with six appar­
ently hacked machine names. The two that did not contain profanities and hence 
can be reproduced here were: 

dont. blame-me.im-a. be ginner.org 

and 

is.not. the.dumbe.st, 

the latter using a splitting of the word "dumbest" to spoof originating in Sao Tome. 

Table 1.3 Generic domain designators. 

Domain Description 

com commercial organizations 

edu educational organizations 

gov some U.S. government organizations 

int international organizations 

mil U.S. military 

net networks (Internet service providers) 

org non-profit organizations 

arpa old style arpanet 

nato NATO field 
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There are two common goals in attacking DNS servers. The first is to map IP 
addresses to funny names, as just indicated. This is (relatively) harmless. The 
second is to change the IP address for a given domain name. This is much more 
serious. The attacker changes the table so that when a machine requests the IP 
address for mybank.com, it gets the IP address for villainsrus.net. The attacker's 
machine is set up to mimic the bank's and waits for unsuspecting users to start 
entering account and password information. 

This happened to a colleague of mine. He tried to show me his Web page and 
ended up at the page of some rock band instead. He thought his page had been 
hacked, but instead it was the DNS server. In this case, the "attack" was mostly 
harmless, at least from his perspective, but it was quite annoying, particularly when 
he thought he had lost everything on his Web site. This apparently innocuous prank 
could have been quite costly if he had been running a business from his Web site 
instead of simply providing information about his area of expertise. 

Although it is true that nobody maintains everything, there must be a place to 
start a DNS lookup if the information is not maintained locally. There are a small 
number of computers that know which name servers are responsible for which 
domains. There are about a dozen of these "root" servers, which each DNS must 
know about. These servers maintain a list of the responsible name servers for the 
various top-level domains. As illustrated in Figure 1.10, these maintain lists of 
secondary name servers and on down the tree. 

When you want to send a packet to www.widgetsrus.com. your machine first 
checks to see if it already knows the IP address (for example, if it is in your local 
host table or you have recently done a DNS lookup for that host). If not, then it 
queries the local DNS. This machine keeps a cache of recent queries as well as its 
local table, so it checks these to see if it knows the IP address or if it knows which 
DNS to go to for the information (say, from a recent query on ftp.widgetsrus.com). 
If not, it queries one of the root servers, which tells it where to start on the tree. 
Eventually (usually after just a few steps), it obtains the information from the 
appropriate DNS. 

How does the attacker go about changing the DNS entry? Obviously, one way 
would be to gain access to the host that is acting as the domain name server and 
directly change the lookup table. There is a much easier (and safer) way, however. 
It is called DNS "cache poisoning" (see Klein [1999]). 

To understand how this works, it is important to know that DNS lookups work 
via UDP. Since UDP is connectionless and stateless, it is easy to spoof UDP 
packets. The idea is to use a UDP packet that purports to be the answer to a DNS 
lookup but contains altered information. The target updates its cache and from 
then on provides the wrong address when queried. 

There are several reasons for doing this. Obviously, some people do it just to 
show they can. Others do it for profit, as described earlier. Another way to profit 
is to have a site that earns money through advertising based on the number of hits 
to the site. Redirecting a popular site to yours can artificially increase the number 
of hits. Redirecting the site of a competitor can increase your sales. Finally, one 
may wish to sabotage a site by redirecting it, thus causing loss of customers or 
embarrassment. It goes without saying that all of these are both illegal and wrong. 
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One can actually steal a domain name by forging an email authorizing a change 
to the domain name registry. Although one can take steps to avoid this, many 
people (particularly those new to the Internet) do not. Thus, an attacker can in 
effect take your domain name away from you. 

Finally, one can register a domain name similar to the one owned by someone 
else. When companies decide to go on the Internet, or when they change their 
name, they will often buy up all the domain names that are at all relevant to their 
company (if they can). There was a story that illustrated this (and its futility) when 
GTE and Bell Atlantic merged to form Verizon. Verizon registered (Goldstein 
[2000], pp. 16-17) over 700 domain names, some of them legitimate sounding, 
such as verizonwireless.net, as well as others, such as verizonstinks.net, aimed at 
stopping critics and disgruntled customers from using the company name. The 
people at 2600 (a group of self-described hackers) found one (slightly rude) that 
had been missed and promptly registered it. After some legal scuffling, 2600 reg­
istered the domain name 

verizonshouldspendmoretimefixingitsnetworkandlessmoneyonlawyers.com 

This anecdote illustrates an important lesson: although it may be a good idea to 
register a few names to protect yourself from copy cats, you cannot think of them 
all. In fact, trying to can just make things worse. 

1.9 MISCELLANEOUS UTILITIES 

This section includes a few useful utilities for investigating networks. These 
include information-gathering tools such as ping, traceroute, and whois, as well 
as ssh, a program to allow secure logins. 

1.9.1 ping 

Ping, the Packet Internet Groper, originally written by Mike Muuss, is used to 
measure the round-trip travel time between two machines. (Actually, the name 
"ping" comes from an analogy with submarines and sonar, the expansion as an 
acronym came later). 

There are a number of implementations of the ping utility, but I will discuss the 
most common (ICMP) implementation. 

The standard usage is 

ping host 

Several "echo request" ICMP packets are sent to the host. The host replies with 
"echo reply" (unless a firewall or other security measure denies this or the machine 
is not responding or nonexistent), and the time between packets is computed. This 
gives an estimate for the time it takes for packets to transit between the machines. 
Packets will be sent until the user kills the program (one can specify the number of 
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packets to send by using the command line option "-c count"). One can also adjust 
the time between packets and the size of the packet. As we will see in Section 
4.3.1.3, this latter capability is a boon to attackers (although most implementations 
of ping limit the size to a legal one, defeating this particular approach to mounting 
an attack). 

Network engineers can use ping to analyze problems on a network. It is also 
useful to users for determining whether a particular machine is down or the net­
work itself is down. On one of the networks that I use, it is not uncommon for 
connectivity to the outside (for example, for Web surfing) to be down for no appar­
ent reason. In the past, I could use ping to determine whether it was the network 
that was down qr the Web site I was trying to reach (by "pinging" other hosts on 
the inside and outside). This is no longer possible since many sites no longer allow 
"echo requests" or "echo replies" in or out of their networks. 

Ping has been useful to attackers to determine whether a particular machine is 
up, to map a network (see Section 4.3.2.1), or to mount an attack (see Sections 
4.3.1.3 and 4.3.1.6). This is one of the reasons that many sites do not allow these 
packets into or out of their network. 

A related utility (on some machines) is fping, which allows the user to specify 
multiple hosts and returns the results in a more machine-readable format. See the 
man page for more information. Also see 

http://ftp .arl.army .miU "-'mike/ping.html 

for some interesting background (and humor) about the program. 

1.9.2 nslookup 

As mentioned earlier, the IP address of the destination computer is needed for net­
work connections, but people use easily remembered names for the computers. We 
have seen in Section 1.8 how computers obtain this information. The "nslookup" 
command is how a user can map between names and IP addresses. 

The simplest usage is 

nslookup machine 

where "machine" is either a machine name or IP address. nslookup will return 
something like: 

Server: resolver.myisp.com 
Address: 10.10.1.1 

Name: www.amazon.com 
Address: 208.216.181.15 

(assuming "machine" is .. www.amazon.com .. ). 
In addition to the preceding usage, nslookup has an interactive mode. This is 

entered simply by typing 
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nslookup 

This will give you a prompt (probably">"). Now you can type machine names 
(or IP addresses) one at a time, and it will resolve each one. There are other com­
mands available; type "help" at the prompt for a listing of the available commands. 

1.9.3 whois 

The "whois" directories give information on the owner of a particular domain name 
or IP address. There are a number of implementations of whois, but the easiest 
ones to use are Web-based servers, such as those found at 

http://rs.internic.net/whois.html 
http://www.nsiregistry.com/whois/ 
http://www.iana.org/cctld/cctld-whois.htm 
http://www.betterwhois.com/ 
http://www.networksolutions.com/cgi-bin/whois/whois 
http://www.whois.net/ 

Also, SHADOW (Section 4.4) contains a utility for doing whois searches. 
The whois servers have the look and feel of an Internet search engine. There is 

a field to type your query (such as "microsoft.com" or "10.10.132." - don't forget 
the final "."), and the server will return an address for the owner of the domain 
name or network. One problem is that each server tends to search a subset of 
domain name space (for example, .com, .org, and .net only), so one may have to 
do several searches. In particular, most whois servers do not provide information 
on U.S. military (.mil) domains. The utility in SHADOW allows the selection of 
the domains to search, making this relatively painless. 

One site 

http://www.cybergeography.org/, 

uses whois lookups to map domain names to physical addresses and then plots 
these on maps. This is not perfect since, for example, a company may use its 
corporate address for its domain names, regardless of the actual location of the 
machines. Thus, the "cybergeography" is really a display of the locations of the 
owners of domain names rather than a map of the actual physical locations of the 
machines. 

1.9.4 ssh 

Logging on to machines outside your network can be hazardous due to the pro­
liferation of sniffers that can obtain your user name and password without your 
knowledge. One way to avoid this is to encrypt the information. This is the func­
tion of the secure shell (ssh) utility. ssh, and its related copy command scp, first 
negotiates an encrypted session between the machines. This sets up a secure chan­
nel through which information, such as the password, can be (relatively) safely 
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transmitted. Since the whole session is encrypted, any information transmitted is 
protected from observation. 

ssh (actually the encrypted copy utility scp) is used by SHADOW (Section 4.4) 
to transfer the hourly files from the sensor to the analysis station. This way, even 
data from remote sites can safely be transferred without fear that someone will 
capture the data. This is important since the data consist basically of sniffer files, 
and we do not want others using our sniffer against us. 

One of the nice things about ssh is that other TCP connections can be forwarded 
over the secure channel. Thus, one can run X Windows connections (for example, 
use Netscape to browse the Web from the remote machine). 

Since ssh uses encryption, its availability may be restricted outside of the U.S. 
(although these laws appear to be changing). It supports several different methods 
for authentication and encryption. A full description is beyond the scope of this 
book. The man pages and documentation that come with ssh should be consulted 
for more information. 

The Web address for ssh is 

http://www.ssh.fi/ 

1.9.5 traceroute 

Traceroute, as its name implies, is a utility for tracing the route from one host to 
another. It is similar to ping in that it sends a series of packets to the destination 
and computes some simple statistics on the returning packets. In fact, a version 
of traceroute could be implemented using ping. However, UDP packets are used 
instead, as will be described later. One can force traceroute to use ICMP packets 
via the -I option (see the following). 

Recall that the IP header contains a field called the "time-to-live" (TTL) field. 
This field is decremented at each router. When a router decrements a TTL field to 
0, it sends a "time exceeded" ICMP packet back to the originating host. The idea 
behind traceroute is that if you know the original value of the TTL field, you then 
know how many routers the packet passed through before the final router. The 
key to making this really useful is the fact that the "time exceeded" ICMP packet 
contains the IP address of the final router as the source address. 

Traceroute works by sending packets with increasing TTL values and reporting 
the IP addresses of the routers. The TTL increases from an initial value of 1 until 
the destination machine responds, indicating that the full route has been traversed. 

How does traceroute know that it has reached the destination? The fact that 
no router has responded with a "time exceeded" packet might be the result of lost 
packets, rather than the packets reaching the destination. Traceroute solves this 
by sending several UDP packets to very high-order ports (above 30,000), the idea 
being that it is very unlikely that there is an application listening on these ports. 
Therefore, when the destination machine receives the packets, it sends back an 
ICMP "port unreachable" packet. Traceroute need simply distinguish between the 
two types of ICMP error messages. 

Recall that the route between any two machines is not fixed and in fact can 
change even between fragments of a single packet. How can traceroute provide 
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any useful information in this kind of dynamic environment? The answer is that 
although routes do change, they change slowly (relative to packet transit times) 
and sporadically. Thus, from the perspective of traceroute, the route between two 
hosts is quite stable. 

The usage for traceroute is 

traceroute destinationllost 

One can use either the IP address or hostname (in which case a DNS lookup is 
made to map the name to an IP address; see Section 1.8). 

The user can specify the starting port number for the UDP packets with the -p 
option. The default (in Red Hat 6.1) is 33434, which is useful to know if one is 
trying to recognize traceroute traffic. 

If all goes well, each router sends back a "time exceeded" packet as the TTL 
reaches O. Some routers will actually forward a packet with a TTL of 0 (this is a 
bug), and some will either not send a "time exceeded" packet or choose an initial 
TTL that is too small to reach the sending machine. Other interesting results are 
possible (see the traceroute man pages for some examples), so interpretation of 
the results can require some effort. 

Some useful options for traceroute are: 

• -f ttl Set the initial time-to-live value for the first outgoing packet to "ttl." 

• -I Use ICMP ECHO instead ofUDP datagrams. 

• -m max-ttl Set the maximum number of hops used in outgoing packets to 
"max-ttl." 

• -p port Set the base UDP port number used in probes. As mentioned earlier, 
the default value is 33434. 

• -v Provide more verbose output. 

• -w time Set the time to wait for a response to "time." 

More information on traceroute can be found in the man page. 

1.9.6 tcpshow 

The output of tcpdump, as seen in the preceding examples and in Chapter 4, can be 
quite terse and require some experience to tease out the information. The tcpshow 
program is designed to provide a more human-readable format for the packets. 

Consider the following tcpdump trace: 

08:00:03.760332 10.130.219.103.www > 10.10.205.136.1063: 
. 2850371889:2850373345(1456) ack 2835338 win 18928 (DF) 

Now, consider the following result from tcpshow: 
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Packet 1 
Timestamp: 05:01:03.760332 
Source Ethernet Address: 01:EA:IE:23:66:11 
Destination Ethernet Address: 10:6A:83:41:64:60 
Encapsulated Protocol: IP 
IP Header 
Version: 4 
Header Length: 20 bytes 
Service Type: OxOO 
Datagram Length: 1496 bytes 
Identification: OxA57A 
Flags: MF=off, DF=on 
Fragment Offset: 0 
TTL: 248 
Encapsulated Protocol: TCP 
Header Checksum: OxlA29 
Source IP Address: 10.130.219.103 
Destination IP Address: 10.10.205.136 
TCP Header 
Source Port: 80 (www) 
Destination Port: 1063 «unknown» 
Sequence Number: 2850371889 
Acknowledgement Number: 0002835338 
Header Length: 20 bytes (data=1456) 
Flags: URG=off, ACK=on, PSH=off 
RST=off, SYN=off, FIN=off 
Window Advertisement: 18928 bytes 
Checksum: Ox4E68 
Urgent Pointer: 0 
TCP Data 

<*** Rest of data missing from packet dump ***> 

The information is in a much more human-readable format. There is also more 
information in this output than in the tcpdump version, although all the information 
in this display is available from tcpdump (in fact, tcpshow calls tcpdump to obtain 
the information). A naive user may find the tcpshow format much more accessible, 
whereas a more sophisticated user may find the terse, one or two line output of 
tcpdump to be preferable. 

Since tcpshow calls tcpdump, any changes in the output of tcpdump can cause 
tcpshow to fail to recognize the packets. In particular, one version of tcpdump 
places an extra "<" in its output. This confuses the version of tcpshow that I have. 
However, since I have the source code to tcpshow it was a simple matter to make 
the change to handle this case. This is one of the reasons I am very much a fan of 
free software. 
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1.9.7 snort 

snort is billed as a "lightweight network intrusion detection system." What this 
means is that it is suited to intrusion detection on a single host or small network 
but is not designed to protect large networks. It is a sniffer like tcpdump, with 
added capabilities for content analysis and an expanded filtering capability. Like 
tcpdump, snort can log the packets in binary tcpdump format or provide an ascii 
report. In addition to providing the packets that pass the filter, snort can provide 
information about why the packet was flagged by the filter. Currently, snort only 
analyzes three protocols: TCP, UDP, and ICMP. 

A subset of the command-line arguments for snort are: 

• -A alert Tum alert mode on or off. In full mode, snort prints the full alerts 
to the alert file. In fast mode, terse output consisting of the timestamp, 
message, IPs, and ports is generated. If "alert" is "none" alerting is turned 
off. 

• -b Log the packets in binary (tcpdump) format. 

• -c ciUe Use the configuration (rules) file "cfile." 

• -d Dump the application layer data. 

• -F tfile Use the tcpdump filter file "tfile." This is useful for using SHADOW 
filters with snort. 

• -h IP Set the home network to "IP." This must be an IP address, not a domain 
name (for example, 10.10.1.0). This tells snort which packets are incoming 
and which are outgoing and adjusts the output to display this information. 

• -i if Use the network interface "if." 

• -I dir Log the packets in the directory "dir." The packets from a given IP 
address will be placed in a subdirectory corresponding to the IP address. 

• -N Tum off logging. Only alerts will be processed. 

• -0 The normal order for applying rules is Alert->Pass->Log. This changes 
the order to Pass->Alert->Log. 

• -0 Obfuscate the IP addresses. The IP addresses are modified to hide their 
values; they are printed as "xxx.xxx.xxx.xxx". If the -h flag is set, only the 
home IP addresses are obfuscated. 

• -p Do not go into promiscuous mode. 

• -r tfile Read the tcpdump-generated file "tfile" instead of a network interface. 

• -s Log the alerts to the syslog. 

• -v Verbose output to the console. This can be quite slow. 

• -V Show version number and exit. 
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• -? Show usage summary and exit. Remember to escape the question mark 
if necessary as appropriate for your shell. 

As with tcpdump, snort will take the filter commands on the command line, but 
for anything but the simplest filter it is best to put these in a file. First let us look 
at a simple example of snort usage. 

snort -dv -1 ./log -h 10.10.1.0/24 -c snort.rules 

will log the packets to the "log" directory (which must exist), displaying the ap­
plication layer data as well as the header, with the class C network above as the 
home network. The rules file, or filter, "snort.rules" is used to determine which 
packets to log. 

The source code for snort, as well as executable versions for some operating 
systems, can be found at 

http://www.snort.org 

or at 

http://packetstorm.securify.com/sniffers/ 

snort rules are quite a bit more flexible than tcpdump filters and as a result 
somewhat more complicated. We will look at them briefly here, but for more 
information the documentation at the Web site should be consulted. 

A rule is divided into two sections, a header and options. The header contains 
the rule action, protocol, and source and destination information. The options 
section describes the constraints on the header or content fields that will trigger 
the rule. There are three actions that can be taken as the result of a rule: 

• alert Generate an alert and log the packet. 

• log Log the packet. 

• pass Ignore the packet. 

Some examples will help to illustrate the power of snort. These are taken (with 
slight modifications) from the snort documentation. 

• log udp any any -> 192.168.1.0/24 :1024 
Log UDP traffic from any IP address and any port to the class C network 
192.I.x with destination port less than or equal to 1024. 

• log tcp any :1024 -> 192.168.1.0/24500: 
Log any packet with a source port less than or equal to 1024 and a destination 
port greater than or equal to 500. 

• alert any any -> 192.168.1.0124 any (flags: SF; msg: "Possible SYN FIN 
scan";) 



1.9. MISCELLANEOUS UTILITIES 35 

Generate an alert for packets with the SYN and FIN flags set. The alert 
message will indicate that there may be a SYN FIN scan in progress. 

• alert tcp any any -> 192.168.1.0/2480 (content: "cgi-hin/phf" offset: 3; 
depth: 22; msg: "CGI-PHF access";) 
This illustrates content matching. Web traffic that contains "cgi-bin/phf" in 
the first 22 bytes of the content indicates an attempted PHF attack. The cgi 
program phf is known to have a vulnerability that allows the attacker to gain 
access to files (such as /etc/passwd) that are otherwise denied to them (see 
page 164). 

There are currently 15 rule option keywords. These are 

• ack Test the TCP acknowledgment field for a specific value. 

• content Search for a pattern in the packet's payload. 

• depth Modifier for the content option, sets the maximum search depth for 
a pattern match attempt. 

• dsize Test the packet's payload size against a value. 

• flags Test the TCP flags for certain values. 

• icmp-.id Test the ICMP ECHO ID field against a specific value. 

• icmp-seq Test the ICMP ECHO sequence number against a specific value. 

• icode Test the ICMP code field against a specific value. 

• id test The IP header's fragment ID field for a specific value. 

• ipoption Watch the IP option fields for specific codes. 

• itype Test the ICMP type field against a specific value. 

• logto Log the packet to a user-specified filename instead of the standard 
output file. 

• msg Print a message in alerts and packet logs. 

• nocase Match the preceding content string with case insensitivity. 

• offset Modifier for the content option, sets the offset to begin attempting a 
pattern match. 

• resp Active response (knock down connections, etc.). 

• rpc Watch RPC services for specific application/procedure calls. 

• seq Test the TCP sequence number field for a specific value. 

• session Dumps the application layer information for a given session. 
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• ttl Test the IP header's TTL field value. 

The preceding illustrates several powerful properties of snort that make it su­
perior to tcpdump: 

1. The ability to generate alerts to the syslog, console, or other logging mech­
anism. 

2. The ability to scan the content for attack patterns. 

3. The ability to add a message to the packet, indicating the reason the packet 
was logged or providing the message for the alert. 

4. The ability to respond to an attack. 

Another strength of snort is the ability to add plug-ins. A plug-in is a program 
which extends the abilities of a piece of software. These are familiar to the users 
of Web browsers, where plug-ins allow the browser to expand the types of files 
it can process or adds functionality that is otherwise missing. In snort plug-ins 
add capabilities such as the collection of statistics, storing output in a database, or 
special visualization tools. This extensibility makes snort a very useful tool. 

1.9.8 ifconfig 

The ifconfig utility is used to configure the network interfaces but can also provide 
information about them. It provides a variety of information about whether the 
interface is up and how it is configured. This gives a quick look at the different 
interfaces that are operating and can be used to configure the interface, for example 
to take it out of promiscuous mode. 

Executing ifconfig with no arguments displays the status of the active interfaces. 
With the "-a" flag it will provide information about all interfaces, even those 
that are inactive. Otherwise, the arguments are used to configure the interface. 
It is not recommended that you play with this if you don't know what you are 
doing (although any damage you do can (probably) be repaired by rebooting the 
computer). See the man page for more information. 

1.9.9 netstat 

The netstat utility provides a great deal of useful information about network con­
nections. Calling netstat with no options shows all the open sockets, which shows 
all the network connections as well as all the programs using sockets, such as X 
Windows, etc. 

The information available from netstat is generally far more than one wants, 
so some kind of filtering is required. For example, on my home machine, the 
command 

nets tat -a I grep www 
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results in the line 

tcp 0 0 localhost.localdoma:www *:* LISTEN 

This tells me that my Web server is available only to my local host and not to any 
outside machine. 

A few of the useful flags are: 

• -r Show the kernel routing table. This is equivalent to "route -e". 

• -i [iface] Show a table of all the networking interfaces. If "iface" is given, 
then show that particular interface. (The Unix convention of using a "[]" to 
indicate an optional argument is used here.) 

• -n Do not try to resolve IP addresses into host names but rather print the 
address (similarly for port or user names). This can make the program run 
much faster. 

• -p Display the process name and PID for the owner for each socket that is 
dumped. 

• -I Display the sockets that are listening. 

• -c Run netstat continuously. 

• -s Display networking statistics. 

As with many Linux utilities, netstat will accept a "help" flag and return the usage 
information. 

On my home computer, which is only connected to the Internet using PPP across 
a modem (and hence does very little networking most days), 

netstat -s 

produced 

Ip: 
7214 total packets received 
1 with invalid headers 
o forwarded 
o incoming packets discarded 
207 incoming packets delivered 
6798 requests sent out 

Icmp: 
45 IeMP messages received 
o input IeMP message failed. 
IeMP input histogram: 

destination unreachable: 45 
75 IeMP messages sent 
o IeMP messages failed 



38 1. TCPIIP NETWORKING 

Tcp: 

Udp: 

ICMP output histogram: 
destination unreachable: 75 

431 active connections openings 
o passive connection openings 
o failed connection attempts 
o connection resets received 
o connections established 
6961 segments received 
6563 segments sent out 
408 segments retransmitted 
58 bad segments received. 
419 resets sent 

132 packets received 
75 packets to unknown port received 
o packet receive errors 
223 packets sent 

TcpExt: 

As you can see, very little activity is represented by this, testifying to the fact that 
I have been writing this section rather than surfing the Internet. The packet counts 
are displayed according to the protocols, broken down into incoming and outgoing 
packets, with statistics about the quality of the connection implicit in the errors 
reported. 

Using 

netstat -1 

will indicate which ports are listening, which is a good place to start looking for 
trojan programs (Chapter 7). 

1.9.10 pppstats 

A related utility is pppstats, which provides information about a PPP connection. 
PPP, or Point -to-Point Protocol, is the protocol used for most serial communication, 
such as that through a modem. An example output for pppstats is shown in Table 
1.4. 

Table 1.4 Output from pppstats. 

IN PACK VJCOMP VJUNC VJERR 

1327 19 0 9 0 

OUT PACK VJCOMP VJUNC NON-VJ 

916 18 1 7 10 
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This is what one might see right after initializing a PPP connection. The fields 
displayed are: 

IN The number of bytes received by the PPP interface. 

PACK The number of packets received by the PPP interface. 

VJCOMP The number of compressed TCP packets received by the PPP 
interface. 

VJUNC The number of uncompressed TCP packets received by the PPP 
interface. 

VJERR The number of corrupted compressed TCP packets received by the 
PPP interface. 

OUT The number of bytes transmitted by the PPP interface. 

PACK The number of packets transmitted by the PPP interface. 

VJCOMP The number of compressed TCP packets transmitted by the PPP 
interface. 

VJUNC The number of uncompressed TCP packets transmitted by the PPP 
interface. 

NON-VJ The number of non-TCP packets transmitted by the PPP interface. 

More information can be obtained using the "-v" flag on the command line. 
See the man page for the details. 

1.9.11 Is01 

A final useful utility is lsof, which stands for "list open files." This will list all the 
open files belonging to all the active processes on the machine. This is extremely 
useful for determining who is looking at what (for instance, your syslog file) and 
what programs are dependent on which files (which can be useful for determining 
which files to protect from trojans). 

An open file may be a regular file (for example, a text file you are editing), a 
directory, a library, a stream or network file (socket or NFS file), or various kinds 
of "special" files. 

The lsof program comes with many Unix implementations and can be obtained 
at: 

ftp://vic.cc.purdue.edu/pub/tools/unixllsof 

Some of the useful command line options for lsof are: 

• -i [spec] List Internet files. If "spec" is provided, it lists those files whose 
Internet address matches "spec." For example, on my home system (which at 
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the time was not connected to any network), the command "lsof -i" produced 
the output in Table 1.5. Each entry had a TYPE=IPv4 and NODE=TCP, 
which were removed in the interest of space. It may come as a surprise 
to some that there are TCP ports active even though the machine is not 
connected to a network. 

FD stands for file descriptor. In the listing in Table 1.5, the number corre­
sponds to the file descriptor number of the file, while the "u" indicates that 
it is open for both reading and writing. An "r" or "w" would indicate read 
or write access, respectively. 

The Internet address is specified in the following format: 

[protocol] [@hostname I hostaddr] [:service I port] 

The Unix convention of square brackets "[]" is used to indicate optional 
arguments and "I" to represent "or." Here, 

- protocol is a protocol name (TCP or UDP). 

- hostname is an Internet host name. 

- hostaddr is an IP address. 

- service is the name of a service (for example, smtp). See fete/services 
for a list of these names. 

- port is a port number. 

Both service and port can be a comma-delimited list. Thus, the command 

lsof -i : 1590 

produces the listing for the single application (gnomepage) that is listening 
on port 1590. 

Table 1.5 An example of the output from "lsof -i," listing all the open Internet files. 

COMMAND PID USER FD DEVICE NAME 

gnome-ses 13587 dmarche 3u 37496 *:1578 (LISTEN) 

magicdev 13612 dmarche 6u 37603 *:1582 (LISTEN) 

panel 13629 dmarche 6u 37714 *:1587 (LISTEN) 

gnome-nam 13633 dmarche 4u 37680 *: 1586 (LISTEN) 

gmc 13639 dmarche 6u 37769 *:1588 (LISTEN) 

gnomepage 13669 dmarche 5u 38094 *:1590 (LISTEN) 

gen_utiL 13671 dmarche 5u 38082 *:1589 (LISTEN) 

rp3 13675 dmarche 5u 38146 *: 1592 (LISTEN) 

rp3 13677 dmarche 5u 38132 *:1591 (LISTEN) 



1.9. MISCELLANEOUS UTILITIES 41 

• -0 Inhibit the conversion of network numbers to host names. This conversion 
can take quite a bit of time, so it is a good idea to suppress it for most 
applications. 

• -0 I -s Toggle between showing the file size and the file offset. Only one of 
these flags may be used. 

• -P Like the "-n" option, this suppresses the conversion of port numbers to 
port names. 

• +I-r [t] Put lsof in repeat mode. This causes the program to run every "t" 
seconds. If the "-" is used, lsof will run forever (until killed), whereas with 
the "+" lsof will exit on the first iteration in which no open files are listed. 

• -R List the process ID (PID) ofthe parent process under the PPID heading. 

• -t Terse output. For example, in the example depicted in Table 1.5, running 
lsof -i -t will return just the list of PID numbers. This is particularly useful 
for piping the output to the "kill" program to kill off all processes that have 
a particular file open. 

• -U List Unix socket files. 

• -v Print the version information. 

• -V List the items that lsof was asked to find but could not. 

We have seen some examples of the use of lsof previously. Let us look at a few 
more. To list the open files for user dmarche, use 

lsof -u dmarche 

To find the processes that have opened the file "foo," use 

lsoffoo 

It is interesting to try this with the text editor "vi." First type 

vi foo 

in a window. In another window, type 

lsoffoo 

What happened? On my machine, the lsof command returned nothing. How could 
this be? I am clearly editing the file foo. To investigate further, try 

lsof -u <yourusername> I grep foo 



42 1. TCPIIP NETWORKING 

You will see something like 

vi 18370 dmarche 4u REG 3,7 983041884896 .foo.swp 

What has happened is that when vi is started, it opens a temporary file, ".foo.swp" 
in this case, and copies your file into it. Once this is done, the original file is closed 
until you tell vi to write the changes. Thus, Isof was not wrong in stating that 
no processes had the file foo open. The problem was that you asked the wrong 
question. Asking the right question is always a goal worth striving for. 

See the man pages for a more complete listing of the options and for many more 
examples. 

It should be noted that on some systems Isof will not show any files that are not 
opened by processes owned by the user. Thus, many of the preceding commands 
will not work (actually, they will work, but their output will not be complete). 
If you compile Is of and want this security feature, use the compile-time option 
HAS SECURITY. On my version of Red Hat Linux 6.1, Isof came installed in 
"unsecure" mode, meaning that any user can obtain information about all open 
files for all users. There are two ways to tell whether your version is installed in 
this manner (assuming you did not do the installation yourself): you can run it and 
see if you see processes that do not belong to you (for example, root processes), 
or you can use the -h flag, which will give various information about the program, 
as well as say 

Anyone can list all files; 

if the program is "unsecure." 
This is a tiny example of the potential utility of Isof. We will return to this pro­

gram in Section 5.6.3, where we consider its implications for host-based security. 

1.10 FURTHER READING 

There are many books on networking and TCPIIP, and I will refrain from listing 
them here. As mentioned earlier, a very good place to start is Stevens [1994]. 
Other books include Comer [1991], Loshin [1997], and Simoneau [1997]. 

A book that focuses specifically on IP and the three protocols we have dis­
cussed in this chapter is Hall [2000]. O'Reilly has a number of books on TCPIIP, 
networking, DNS, and related topics, and these tend to be quite useful references. 

For information on available utilities, the definitive reference is always the man 
page. However, unless you know the name of the command you want to reference, 
it is difficult to find it in the man pages. There are several books that provide manual 
pages for a given operating system, one of which, for Linux, is Petron [2000]. 

The definitive references for the Internet protocols are the RFCs. These layout 
the details for each protocol and address the requirements and options available. 
It can be tedious looking through these, particularly as they are not indexed. Two 
books that help with this are Loshin [2000b] and Loshin [2000a]. 



2 
Network Statistics 

2.1 INTRODUCTION 

This chapter looks at some issues related to collecting, measuring, and analyzing 
network traffic. This will be a brief introduction aimed at introducing some of the 
issues involved, with a focus on applications of statistical methods to the problems. 
Some suggestions for further reading are provided at the end. 

There are a number of issues relevant to network traffic modeling. First, we will 
look at some work on estimating network intensities, such as transit times. This is 
a statistical treatment, looking at determining good ways to collect the data. Then 
we will investigate some work on network tomography, which involves inferring 
intensities on routes from information at the endpoints. 

The next section involves issues related to modeling the distributions of network 
traffic. It turns out that network traffic has very interesting structure and is much 
more complex than simple Poisson models might lead one to believe. 

A brieflook at projects undertaking the mapping of the Internet will be followed 
by some discussion on visualization techniques for network data. The final section 
will provide pointers to further reading. 

2.2 NETWORK TRAFFIC INTENSITIES 

In this section, we will look at two issues involved in the collection and analysis 
of network intensity data. The first is the question of how we collect data given 
constraints such as the number of sensors we can place or restrictions on how 
much impact we wish our collection to have on the network. The second section 

43 D. J. Marchette, Computer Intrusion Detection and Network Monitoring
© Springer Science+Business Media New York 2001



44 2. NETWORK STATISTICS 

will look at a specific estimation problem, the so-called "network tomography" 
problem. 

2.2.1 Design of Experiments 

Consider the problem of monitoring a network for such quantities as transit times 
between nodes, delays at a node, and so forth. We wish to collect data to estimate 
the quantity of interest. Following Fedorov and Flanagan [1998], this section will 
investigate the problem of designing an experiment to estimate a single quantity. 

One of the constraints that we wish to impose is that data can be collected at 
only a small number of nodes. There are two models for data collection. If we have 
a sensor at each node for which data are taken, we call this a "passive" collection, 
or a "passive sensor." If the data are taken by sending packets out and measuring 
responses to the packets, this is called "active" collection, or an "active sensor." 
Resource constraints may force us to use a small number of passive sensors rather 
than have a sensor on every node. If an active sensor is used, we may wish to 
minimize the impact of the collection on the network. 

We will consider round-trip transit time as measured by the ping program (Sec­
tion 1.9.1). As in Fedorov and Flanagan [1998], we will restrict our discussion 
to the problem of determining the transit time between a single host and S other 
machines. We will assume N, the number of observations to be made, and S are 
given. The question then is how best to allocate our measurements in order to get 
the best estimate of transit time. 

We will use the notation of Fedorov and Flanagan [1998] throughout. The S 
hosts will be denoted X = (Xl' ... ' X s). Let our variable of interest be denoted 
U = (u(xd, ... , U(XS))T, and an observation is 

Yj = U(Xi) + €j(Xi). (2.1) 

This is the jth observation at the ith node. At node i there will be ri observations 
taken. We assume that no changes in the value we are estimating occur during the 
collection of the observations. The errors €j (Xi) are assumed to have zero mean 
and to be uncorrelated with variance (72, independent of the node. Let 

K = E[(U - E[U])(U - E[Ulfl (2.2) 

be the covariance matrix. 
The goal is to design a data collection experiment. We wish to determine which 

N nodes to sample to best predict the vector U. This set of nodes is called the 
experimental design. The predictor will assign a weight to each node, and the 
prediction will be a weighted sum of the observations. Thus, we are considering 
a linear predictor in this work. 

The experimental design is defined to be 
n 

~n = {pi,xdf, Pi = rdN , N = Lri' Xi EX, n::::; S. (2.3) 
i=l 

The Pi denote the weight on the node or the proportion of the observations to be 
taken at node i. The Xi are the design points of the experiment, the nodes at which 
the observations are to be made. 
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Upon collection of our observations, we average them to obtain 

r1 Yl /1 E Yj(Xt} 
j=l 

Y(~n) = (2.4) 
rn 

/ E Yj(Xn) 
n j=l Yn 

Thus, we collect ri observations from each of the nodes defined in ~n. We 
average these observations for each node. This is the observation vector that will 
be used to make the predictions. The averaging could be thought of as a method 
for denoising, or reducing the variance, of the estimate. Instead of averaging, one 
could consider a robust estimate of location, such as the median, but we will not 
consider this here. 

Note that one way to reduce the impact on the network would be to make our 
measurements during off hours. However, if the purpose is to measure delay, this 
would defeat the purpose. For some quantities, we have no choice but to make our 
measurements during peak hours. 

It is important to keep in mind that we are predicting the activity across the 
entire collection of nodes from measurements collected at a subset of nodes. As 
mentioned earlier, this is often necessary due to lack of resources or a desire to 
reduce the impact of the data collection on the network. We want to design our 
experiment (select the monitored nodes) in such a way that our estimate is as 
accurate as possible. To this end we need a way to measure the accuracy of our 
estimate. 

Given U an estimate of U, define the matrix of expected squared residuals 
D(~n' U) as 

(2.5) 

We write D(~n, U) = D(~n) when the estimator is clear. 
Let K(~n) be the submatrix of K corresponding to the nodes Xl, ""xn' let 

K(x, ~n) be the column of covariances between u(x) and the U(Xl), ... , u(xn), 
and let K(Z, ~n) be the corresponding matrix for the nodes Z C X. Finally, let 
W(~n) be the diagonal matrix with elements rw- 2 • Fedorov and Flanagan show 
that the best estimator (in the sense of minimizing the expected squared residuals 
D(~n, U(Z))) is 

U(Z) = KT(Z'~n)(K(~n) + W-l(~n))-lY(~n)' (2.6) 

This looks complicated, but it is nothing more than a linear combination of the 
Y's. 

Often, one wishes to optimize some function of D(~n), such as the trace or 
maximal diagonal element. This, in general, is not possible in closed form, and 
Fedorov and Flanagan give some approximations with an optimization algorithm. 
They then proceed to illustrate the results with an example of estimating round-trip 
times to a number of sites. 
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The algorithm is as follows. First, we are looking for the design that minimizes 
the function 10g(ID(~)I). Such a design is called "D-optimal". We have the 
equality 

(2.7) 

when N = S and Z = X. To choose a given number m of nodes from a design 
~, we will choose the m largest weights from W, setting the rest to O. Now, set 
0:0 = llN,Poi = 0:0, whichdefinestheinitialdesign~o. Let'Y be a small positive 
number less than 1 and € > 0 a small number (used as a stopping criterion). 

1. Given ~t and D t , find the index of the largest element of the diagonal of D t 
and increase the corresponding weight by O:t. 

2. Using the new weights, construct a new D matrix and find the index of the 
smallest nonzero diagonal element of this matrix. Reduce the corresponding 
weight by O:t. This produces the new design ~t+1. 

3. If ID(~t+dI/ID(~t)1 < 1 - 'Y (that is, the change in D is "large"), set 
O:t+l = O:t and go to step 1. Otherwise, set O:t+l = 0:t/2. If O:t+l < €, 

return ~t+l; otherwise, go to step 1. 

In their experiment, Fedorov and Flanagan used ping to determine the round­
trip time between a single node and 39 sites. They used only the ten largest weights 
in the design; hence only ten sites were to be used in the estimate. The number of 
pings sent to a site was proportional to the weight. They report that the D-optimal 
design is nearly four times as efficient as the uniform design (using all 39 sites) 
in their experiment. This may at first seem counterintuitive since it would seem 
that using all the sites should provide more information than using only ten, but 
remember that the total number of observations is fixed. The gain comes from the 
fact that multiple observations from a site can be used to reduce the variance of 
the estimator through averaging. This is the "denoising" referred to previously. 

All of this assumes knowledge of the covariance matrix K. This is estimated 
prior to the experiment. It must be assumed that K is stationary throughout the 
data collection and that the estimate is of good quality. Fedorov and Flanagan 
admit that they used a simple approach for this estimate and that more care should 
be taken. 

2.2.2 Network Tomography 

A related problem is described in Vardi [1996] and Tebaldi and West [1998]. Called 
"network tomography" by Vardi, the idea is to infer the traffic intensity across the 
routes in a network using only measurements of intensity at the nodes. 

We start with a network of nodes with directed connections between the nodes. 
In graph theory, this is called a directed graph, or digraph. Traffic can travel from 
one node to another if and only if there is a connection from the first to the second. 
This is illustrated in Figure 2.1. In this figure, there are two possible routes from a 
to b: a -t b and a -t c -t b (while the route a -t c -t d -t c -t b is theoretically 
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Fig. 2.1 A simple four-node network with directed arcs indicating links between nodes. 

possible, we do not allow traffic to retrace its steps in this model). There is a single 
route possible from b to c: b -+ a -+ c. 

Assume a network of n nodes. Then there are c = n( n - 1) source/destination 
(SD) pairs. Let r denote the number of directed links. In Figure 2.1, n = 4, 
c = 12, and r = 6. 

The work proceeds along two lines. First, in the simpler case, the routes are 
fixed and known. In the second case, the routes are random but the transition 
probabilities between nodes are known. We will consider the fixed route in this 
section. 

In the first case, define the routing matrix A as an r x c binary matrix, where 
aij = 1 if and only if the ith link is in the route between the jth SD pair. This is 
illustrated in Table 2.1. Note that although it is possible to go between a and b via 
the node c, the routing matrix indicates that this route is not allowed (see the first 
column of the routing matrix). Only the direct link from a -+ b is allowed in the 
SD pair ab, so the routing matrix provides the information necessary to decide the 
route between any two nodes, and these routes are unique. 

For a set of measurement periods, we will measure the traffic along each directed 
link. These observations are denoted y(k) = (y(kh, ... , y/k)), taken at times 

k = 1, .,', K. The underlying random variables are X(k) = (xik) , ... , X~k)), 

Table 2. 1 A routing matrix for routes for the network in Figure 2.1. The columns 
correspond to source/destination (SD) pairs, while the rows correspond to the links between 
nodes. Thus, a 1 in position i, j indicates that link i is used in the route corresponding to 
source/destination (SD) pair j. A blank corresponds to a 0, indicating that the link does not 
appear in the route. 

ab ac ad ba bc bd ca cb cd da db dc 
a-+b 1 

a-+c 1 1 1 1 

b-+a 1 1 1 1 1 

c-+b 1 1 1 1 

c-+d 1 1 1 

d-+c 1 1 1 



48 2. NETWORK STATISTICS 

where each X?) is the number of transmitted messages for the SD pair j at 
measurement period k. Thus, 

y(k) = X(k) A. (2.8) 

We assume that the X?) are independent for each j and k, and distributed 
as a Poisson distribution, with a different rate for each SD pair. In other words, 

X?) '" Poissan(Aj), where the Poisson distribution is defined as 

X"e->" 
f(X;A) = -,-, 

x. 
(2.9) 

where x is constrained to be a nonnegative integer. The mean and variance of a 
Poisson random variable with density as in Equation (2.9) are both A. For more 
information about the Poisson distribution, see any statistics text, such as Hogg 
and Craig [1995]. 

Thus, the goal is to estimate A = (AI, ... , Ac) from the observations y(k). First 
we must determine whether we can in fact estimate A. 

Recall that a parameter vector is identifiable if it can be determined uniquely. 
For example, if we can only determine Al + A2, we cannot "identify" the vector 
(AI, A2)' For another example of nonidentifiability, consider the problem of trying 
to identify a mixture of two uniform densities. Consider Figure 2.2. This could 
be modeled as a mixture of uniform densities in many ways, in particular 

~u (o,~) + ~u (~, 1) , (2.10) 

1 1 (1 ) -U (0 1) + -U - 1 . 
2 ' 2 2' 

(2.11) 

There is no way to distinguish the parameters in these models since the different 
parameters produce the same density. 

In the Poisson model we are considering here, A is only identifiable when all the 
columns of A contain at least one nonzero entry and are distinct. Clearly, real-life 
routing matrices would generally not have a column of zeros (this corresponds to 
a source/destination pair that has no route: "you can't get there from here"). An 
example of identical columns can be found by considering Figure 2.1 and allowing 
the following two routes: 

ab : a -+ c -+ b -+ a -+ b 

and 

ac : a -+ b -+ a -+ c -+ b -+ a -+ c, 

which correspond to two columns equal to (111100)T. This also is clearly not 
likely in a real routing matrix due to the number of backtracks. Clearly, these routes 
are not possible in real life since they both would stop as soon as the destination 
node had been reached. 
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Fig. 2.2 A mixture of uniform densities. The dotted lines indicate two different ways of 
representing the mixture, as indicated by Equations (2.10) and (2.11). 

It should be noted that there are situations in which a routing table may indicate 
no route to a host. For example, with portsentry (Section 5.6.5), one has the option 
of "dropping the route" to an attacking host, which means that your machine will 
simply refuse to send any packets to the attacker, making it difficult to execute a 
successful network attack on your machine. Normally, however, there will always 
be a route between any SD pair. 

There are several issues that are not addressed in the Vardi [1996] paper. As 
we saw in Section 1.2, we could in fact measure traffic between SD pairs directly 
at each node. In fact, we could make these measurements without knowledge of 
the routing matrix; that is, at each node, we could measure the traffic between any 
SD pair as it passes through the node. This allows us to infer the routing matrix, 
or in the case of random routing, we could estimate the transition probabilities. 

This brings up an interesting question, which is more in keeping with the title 
"network tomography". From the traffic at a subset of the nodes, can we infer 
the network topology? For example, in Figure 2.1, given traffic measurements at 
nodes a, b, and d, can we infer the existence of node c? This is easy if c is one of 
the SD pairs and we are using a sniffer such as tcpdump. Once we see a packet 
destined for c, we know of c's existence, assuming the destination address has 
not been spoofed (that is, assuming that the packet is a legitimate packet destined 
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for a legitimate machine). It is somewhat more difficult if we are only measuring 
traffic intensities at a, b, and d. A harder problem would be if c is a router, with no 
traffic specifically destined to or from it. For example, if we were sampling TCP 
traffic, we might not see any traffic to or from c. On the other hand, if we were 
measuring ICMP traffic, we might very well see traffic, and if we were allowed 
to inject traffic (for example, through traceroute) we could in effect probe for c 
directly. This is the problem addressed by the people trying to map the Internet 
(Section 2.4). A much more difficult problem would be to infer the existence of c 
and estimate the routing matrix from TCP traffic alone using, for example, delays 
between the handshaking to infer the existence and number of routers between 
any SD pair. Inferring the existence of c from traffic intensities at the other three 
nodes alone would also be a difficult task that would be worth considering. Under 
what constraints on the network topology can these questions, and variations, be 
answered? This is an interesting set of open questions. 

Returning to the "easier" question, we need to estimate .A from the y(k). To 
accomplish this, we use the EM algorithm. 

"EM" stands for expectation/maximization. The EM algorithm is a method for 
maximum likelihood estimation in missing data problems. To illustrate the idea, 
consider the problem of fitting a mixture of two normals to data. The probability 
density function (PDF) is 

(2.12) 

where ¢ is the univariate normal density 

(2.13) 

Assume further that we knew the means and variances and were only interested 
in determining the value of p. We have data, Xl, ... ,Xn , which are assumed to 
have been drawn from the distribution f, so each of the Xi "came from" one of 
the two components. If, for each observation, we knew which of the components 
was the source of the observation, the estimation of p would be easy: p = nl / n, 
where nl is the number of observations from component 1. Unfortunately, this 
information is unavailable, or "missing." 

The EM algorithm approaches this problem by first estimating the missing data 
(the "expectation" part), and then, given the estimated information, we obtain the 
parameter that best fits with this estimate and the data (the "maximization" part). 

In our example, we start with some guess for p, say p = 1/2. For each 
observation, Xi, we compute the posterior probability (the probability that the 
observation was drawn from component 1) and then use this to obtain a new 
estimate for p. Thus, for iteration j (letting Po = 1/2), we have 
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T(i) = 
p(j) ¢( Xi, J..Ll, aD 

(2.14) 
!(Xi) 

p(j+1) ~ tT(i). 

n i=l 

(2.15) 

This is repeated until the algorithm converges. Thus, Equation (2.14) is the "E" 
step and Equation (2.15) is the "M" step. 

The EM algorithm is a very general procedure. One of the best references for 
it is McLachlan and Krishnan [1997]. The original reference is Dempster et al. 
[1977]. 

In the case at hand, we observe sums of Poisson random variables (Equation 
(2.8». It would be much easier to estimate A if we observed the random variables 
themselves. In a sense, we have lost information, so the EM algorithm is a natural 
approach to try. 

The EM algorithm for A can be derived as 

K 

At+l = ~ L E[X(k) Iy(k), A (k)], (2.16) 
k=l 

for n = 0,1, ... , where the superscript t has been suppressed for the A(k) in the 
expectation. The expectations in the sum are conditional expectations - that is, the 
expected value of X conditional on the values of Y and A. Unfortunately, this is 
hard to calculate, and Vardi [1996] provides several solutions to this dilemma. 

The first solution relies on a normal approximation. Let A be the diagonal 
matrix whose diagonal entries are the components of A. An approximation allows 
a solution to Equation (2.16). After some derivation, the EM algorithm for this 
approximation is shown to be 

K 

A(t+1) = ~L [A(t) +A(t)AT(AA(t)AT)-l(y(k) -AA(t))]. (2.17) 
k=l 

Equation (2.17) is a particularly nasty looking one at first glance. It comes 
from the following approximation. Recall that the mean and variance of a Poisson 
distribution with parameter A are both A. Since the conditional expectation in 
Equation (2.16) is so hard to calculate for the Poisson distribution at hand, consider 
approximating the distribution of X as a normal with mean A and covariance A. 
Then, the joint distribution of X and Y is 

AAT )) 
AAAT ' 

(2.18) 

from which the conditional distribution of XIY can be derived (see Seber [1984], 
pages 18-19), resulting in the formula (2.17). 
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The preceding normal approximation is not particularly good for small A'S, 

so Vardi [1996] also provides one based on approximating the distribution of the 
average of the Y's as a normal (which is justified by the central limit theorem if 
K is large). 

The EM algorithm is relatively easy to apply, but Vardi prefers a technique based 
on moments. The idea is to use the equations for the mean (Yi) and covariance 
(5) of the Yi to construct a family of equations to solve 

(2.19) 

where B is constructed via element-wise products of rows of A (the details can 
be found in Vardi [1996]). The basic point is that this is a relatively simple linear 
algebra problem, which can be easily solved. Set 

and similarly for b. j , and 

~ . (A Y A) = Aj '" aij Yi . 
J " • ~'\' \' 

a.j . L...J aikAk 

• k 

then the solution becomes the iteration 

H1 a.j A t b. j A t 
Aj =. . Aj(A,Y,A)+. . Aj(B,5,A). 

a.j + b. j a.j + b. j 
(2.20) 

Equation (2.20) provides an algorithm for estimating A. It assumes that the 
Poisson model is correct, an assumption that we will see is not always warranted. 
Vardi [1996] discusses this and provides a solution that allows the user to "de­
weight" the second-moment terms, which are the ones that make use of the Poisson 
model assumption. 

In the case of random routing, the matrix A consists of transition probabilities 
rather than O's and 1 'so This is somewhat more complicated, and we leave this for 
the interested reader to pursue. 

This section has developed a number of ideas for measuring and modeling net­
work traffic. It is important to keep in mind that network traffic is complicated, 
requiring care in selecting models, and it typically consists of extremely large data 
sets. Further, the ability of the researcher to measure the data can be restricted, as 
is the case in many interesting problems. In the case of network data, the restric­
tions are often a result of security policy or the desire to limit the impact of the 
measurement on the network. We will delve a little deeper into modeling network 
traffic in the next section. 
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2.3 MODELING NETWORK TRAFFIC 

In this section we consider the problem of describing and modeling the distributions 
of various statistics of network traffic. In the previous section, we looked at a 
particular kind of inference, determining the traffic loads between source and 
destination pairs. Here we are more interested in characterizing network traffic in 
general. 

The previous work assumed that the traffic intensity was distributed as a Poisson 
random variable. As we will see, this assumption breaks down as we investigate 
network traffic in more detail. 

Network traffic is quite complex. For example, consider Web traffic. When you 
type in a URL to your browser, many things that you are mostly unaware of happen 
behind the scenes. We have seen that the TCP handshaking is used to initialize the 
connection. Data pass back and forth until the session is closed. However, a Web 
session usually consists of more than just one session. Even if you only go to a 
single page, you will probably initiate several sessions. Each image you download 
is a separate session, as are other files that may be loaded by the page. After a few 
seconds of reviewing the page, you then select a new URL and the process starts 
over. In addition to these explicit sessions, there are generally DNS lookups that 
occur to obtain the IP addresses of the pages and images. 

Thus, there are several levels to the network data. Within each TCP session 
there are the individual packets, whose statistics are determined primarily by the 
network and hardware considerations. The number of sessions spawned by the 
main session is different for each Web page and thus has another distribution 
associated with it. Finally, there is the user input, which determines the time 
between new sessions. 

I will consider several models for network traffic. These are by no means a 
complete listing of the work done on this problem. I will provide references to 
other work, so interested readers can learn more. 

In the simplest case, we consider the initiation times of TCP user sessions. 
A basic probability course would tell us that arrival times are Poisson, so this is 
a good starting place. Note that it is also reasonable to believe that the rate is 
slowly varying (diurnal), and in fact several groups (Paxson and Floyd [1995], 
Nuzman et al. [2000]) have found that (some) user session initiation times are well 
modeled by a Poisson distribution with a slowly time-varying rate. This model 
breaks down, however, if one considers other factors such as the data transfer times 
for FTP traffic or activity that spawns new activity, such as news and Web transfers. 

It is shown in Paxson and Floyd [1995] that telnet and FTP session arrival times 
are well-modeled by the Poisson process (Equation (2.9». Recall that a Poisson 
process is one where the counts within fixed time intervals are distributed as Pois­
son. Thus, when talking about continuous random variables as being "Poisson," 
we mean they come from a Poisson process. In the same paper, the claim is made 
that email, Web and news are not Poisson. 

Let us look at some data. Figure 2.3 shows data collected over a two-hour 
period. The interarrival times between connection requests to a mail server are 
plotted against arrival times. Notice the burstiness of the data (gaps in the plot). 
The data are quite correlated (with a correlation of 0.33 in this case), as can be 
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Fig. 2.3 Scatter plot of the interarrival times of connections to a mail server. The data 
were collected over a two hour time period. 

seen in Figure 2.4. This tells us that the data are not independent - that the time 
between packets now is to an extent related to the time between packets in the 
recent past. 

Figure 2.5 shows another view of these data. Here, the interarrival times be­
tween connection requests are depicted as a histogram with a gamma distribution 
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Fig.2.4 Autocorrelation of the data in Figure 2.3. 
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Fig. 2.5 Histogram of the interarrival times of connections to a mail server. The data 
were collected over a two hour time period. The times are in seconds. A gamma distribution 
fit to the data is shown as a curve overlaid on the histogram. 

fit to the data, 

. _ 1 ",-1 -xlf3 
,(x, a, (3) - (3"'f(a) x e . (2.21) 

The parameters of the gamma distribution fit are a = 0.278 and (3 = 4.24l. 
There are 6104 observations in these data. Figure 2.6 depicts the same graph 
zoomed in to the range from 0 to 5 seconds. As can be seen, the fit is not too bad, 
although there seems to be something interesting happening at around 112 second. 

Paxson [1994] calculates statistics for several different quantities, such as num­
ber of bytes per session and duration of session for several different applications 

Fig. 2.6 Histogram of the interarrival times of connections to a mail server (Figure 2.5) 
zoomed in to the range from 0 to 5 seconds. A gamma distribution fit to the data is shown 
as a curve overlaid on the histogram. 
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(telnet, email, news, and FrP). He fits a number of distributions to the data, per­
forming tests of fit to determine the best fit. The distributions investigated are: 

Extreme: f (x) 
1 _z-a _ -(z-a)//3 
-e /3 e e . (3 , 

Pareto: f(x) 

Exponential: f(x) 

xa - 1 ' 

1 -,,/13 (je . 

In addition, he considers the lognormal and log-extreme distributions. A random 
variable is said to have a log-f distribution iflog(x) has distribution f. In this case, 
the logarithms are taken base 2. 

Using a series of tests based on the X2 test, a "best fit" distribution is found 
for various quantities. Some of these are reproduced in Table 2.2. These data 
represent the analysis of 3 million connections. In the table, "originator bytes" 
refers to the number of bytes per packet from the originator of the session and 
similarly for "responder bytes." In FrP, data transfers often occur in "bursts," 
sessions that occur less than 4 seconds apart. These can be caused by multiple gets 
or puts, in which several files are transferred in rapid succession. The number of 
bytes in these burst sessions is referred to as the "burst bytes" in the table. 

The conclusion of the Paxson [1994] paper is that although the models are not 
perfect, they do a good job of approximating the empirical distributions of the 
network data investigated. Further, different quantities are distributed according 
to different families of distributions, and none of the quantities considered was 
well-modeled as a Poisson process. 

As we saw in our small example (Figures 2.3-2.6), network data are compli­
cated, even if we restrict our investigation to relatively simple problems such as 
session interarrival times. Several authors have investigated these issues and found 
interesting structure. Leland et al. [1994] were among the first to comment on 
the self-similar nature of network traffic. They first illustrate the self-similarity 
graphically by noting that the traffic looks similar at different scales. Our little 
6000 point data set is not large enough to provide evidence nearly as convincing as 
in Leland et al. [1994]; however we can illustrate it on a small scale (Figure 2.7). 

Table 2.2 Models selected in Paxson [1994] for various traffic quantities. 

Protocol Variable Model 

Telnet Originator bytes log-extreme 

Responder bytes log-normal 

Duration in seconds log-normal 

NNTP Originator bytes log-normal 

SMTP Originator bytes log-normal 

FrP Connection bytes log-normal 

Session bytes log-normal 

Burst bytes Pareto 
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Fig.2.7 Two views of the data from Figure 2.3. The number of packets per 10 seconds is 
depicted in the top graph, while the number of packets per second is depicted on the bottom. 

This shows some evidence of self-similarity at two scales. Leland et al. [1994] 
show similar plots across five scales, ranging from a time unit of 100 seconds 
down to one of 11100 of a second. This is very subjective and to strengthen the 
argument Leland et al. [1994] show similar plots for a synthetic data set based on 
a compound Poisson model fit to the data, for which self-similarity is not evident. 

The concept of self-similarity can be made precise. Recall that the autocorre­
lation function of a process X = Xl, X 2 , . .. is defined to be 

(2.22) 

Assume that X has a finite variance a2 and that r(k) '" k-fJL(t) as k -+ 00 

and L is asymptotically constant. Processes with these properties are called self­
similar. Define the aggregate time series x(m) to be the average of X taken over 

nonoverlapping blocks ofsizem: X~m) = l/m(Xkm- m+l + .. ·+Xkm ). Denote 
the autocorrelation function of this process by rem) (k). We say that X is second­
order self-similar if rem) (k) = r(k). Similarly, we call the process asymptotically 
second-order self-similar if the autocorrelation function of the aggregate time series 
converges to r( k) as m goes to infinity. The parameter f3 gives a measure of the 
self-similarity, usually defined to be the Hurst exponent H = 1 - {3/2. 
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Several papers describe the self-similar nature of network traffic. The interested 
reader is encouraged to investigate Feldmann et al. [1998], which analyzes data 
collected over several years, Crovella and Bestavros [1997], which looks at self­
similarity for Web traffic, and Willinger et al. [1997] and Yang et al. [1999], who 
describe and apply the so-called "On/Off" model and variants to network data. 

2.4 MAPPING THE INTERNET 

Everyone knows the Internet is big. But just how big is it? How is it connected? 
If it had been designed, one could just go to the designers and ask to see the plans. 
However, the Internet was not so much designed as grown, and it is still growing. 
Floyd and Pacson [1999] give statistics on the growth, showing exponential growth 
through the 1990s. They are measuring traffic intensities rather than number of 
hosts, but the number of hosts shows similar growth. 

The Internet Mapping Project 

http://www.cs.bell-labs.com/who/Ches/map/ 

is trying to map the Internet by running daily traceroutes. This allows them to 
construct a dynamic database of (nearly) all the machines on the Internet and 
the routes between them. These traceroutes are run from a number of different 
machines, in effect probing the Internet from different directions. 

One of the results of this work is a set of very interesting and beautiful pictures 
of the Internet. Various color schemes add information to the graphs, such as 
coloring by domain or by latency. The database is available for researchers and is 
potentially of great use for those interested in studying the growth and extent of 
the Internet. 

Displaying graphs of this size is not a trivial problem. These maps are laid out 
by a spring-embedding algorithm that basically simulates placing springs along 
the edges of nodes and solving for a minimal energy state. A good place to start 
learning about graph drawing is the book by Di Battista et al. [1999]. A paper 
discussing a particular technique for displaying large graphs is Wills [1999]. 

An interesting result of the network mapping project is shown in Figure 2.8. 
Since the Internet consists of machines all over the world, it is sometimes possible 
to link traffic on the network to events in the real world. The figure depicts the 
network maps from May 1 through May 6, 1999, for a part of the Internet that is 
found in Yugoslavia. As can be seen, there was considerable disruption on May 
3. Some of the machines gradually came on line as the days progressed, but there 
was still some loss on the 6th. This period corresponds to a bombing campaign 
by NATO forces in neighboring Bosnia, which may have caused disruptions in 
Yugoslavia's power grid. 

One possible modification to the display in Figure 2.8 would be to fix the po­
sition in the plot of each host throughout the graphs, perhaps with a rule to deal 
with new nodes that come on line, rather than recomputing the graph each time. 
Still, the effect is quite noticeable, even with the slight variation in node placement 
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Fig. 2.8 A map of networks in Yugoslavia, showing the effect of the war on the networks. 
May I is in the upper left, with May 2-6 listed in lexicographical order. 
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across days. These images and a short movie, can be found at 

http://www.cs.bell-Iabs.com/who/Ches/map/yu/index.html. 

The Internet weather report 

http://www.mids.org/weather/ 

provides a view of the latency (round trip time) on the Internet as well as various 
statistics and other information gathered by scanning the Internet. 

Another interesting site is 

http://www.cybergeography.org/, 

where whois lookups have been run to extract the mailing addresses of the owners 
of domains. These are then mapped onto a geographic database to produce a map 
of where the domains reside. Of course, this does not necessarily mean that the 
machines reside at those locations, but it gives an estimate of the spatial distribution 
of machines on the Internet. 

Quite a bit of the information in the preceding references is available in the book 
by Dodge and Kitchin [2001]. This book considers many of the issues related to 
the mapping of the Internet, including sociological, geographic, and visualization 
issues. It also has extensive references and is a good starting place to learn about 
the various lines of research under way (at the time of its publication) in this area. 

2.5 VISUALIZING NETWORK TRAFFIC 

We have seen a number of ways to visualize network traffic in the preceding 
sections. In this section, we will look at some of these techniques in a little more 
detail and discuss some techniques that might not be familiar to many people 
working in computer security. 

We will start with the simplest technique, the scatter plot. This will lead us to 
pairs plots, which are a way to display higher-dimensional data, which will in tum 
lead us to parallel coordinates. These techniques will be illustrated on network 
data. 

2.5.1 Scatter Plots 

The simplest (and arguably most powerful) technique for visualization of data is 
the scatter plot. In this technique, bivariate data are plotted as points in a plane, 
with coordinates corresponding to their values. We have already seen this in 
previous sections (for example, Figure 2.3). Another example, Figure 2.9, depicts 
about a minute and a half of incoming TCP packets to a site. Time is depicted 
on the x-axis and destination port is on the y-axis. Note that sessions are quite 
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Fig. 2.9 Scatter plot of 93 seconds worth of data incoming to a site. In this case, there 
are 67,134 observations. The destination port number is plotted against time. 

clear in this depiction as horizontal line segments. We can also see banding effects 
corresponding to port ranges for popular applications. 

It is instructive to zoom in on this plot. Figure 2.10 depicts the data for which 
the destination port is less than 10,000, which is where the bulk of the data lie in 
Figure 2.9. Here we see an interesting phenomenon in the range between 40 and 80 
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Fig. 2.10 Scatter plot of packets from Figure 2.9 with destination port number less than 
10,000. 
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Fig. 2.11 Scatter plot of packets from Figure 2.9 with destination port between 1000 and 
2000. 

seconds. There is a line that is angled slightly, corresponding to destination ports 
between 2000 and 2500. Some further investigation shows this to be a Web session 
(the source port is 80). In this case, one of the site's users has gone to a Web server, 
and the downloads from the Web site are happening on the higher-numbered ports 
(which is typical Web client behavior). 
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Fig.2.12 Scatter plot of source port against destination port for the data from Figure 2.9. 
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This plot does not allow us to see that the Web session described above is 
actually a session to a single machine. In other words, although the line in the 
figure appears to indicate a single session we cannot tell that these packets are in 
fact related. They may be going to several different machines and the apparent 
correlation may simply be a coincidence. This is unlikely, especially given the 
length of the line but we cannot rule it out from this plot. 

One way to solve this problem would be to use color to encode the destination (or 
source) machine. This would allow us to pick out sessions much more easily, but 
there are limitations to the number of colors that humans can reliably distinguish. 
Also, there can be problems with overplotting, especially when attempting to depict 
large time intervals for networks with heavy traffic loads. This requires interactive 
exploration where the user chooses a number of different views of the data; for 
example, zooming in to regions of interest. 

A further zoom of these data is depicted in Figure 2.11. Here we can see quite 
a bit of fine structure. There are several angled lines, indicating data transfers of 
some kind, as well as a lot of horizontal lines, indicating application sessions on 
a number of ports. Again, color could be used to enhance this picture. Further 
zooms can also be used to explore different regions in the data. 

Another way to look at these data is to plot source port against destination port. 
This is done in Figure 2.12. The "L" shape of this plot is indicative of the tendency 
for applications to use low-order ports. Thus, one can usually infer the application 
that corresponds to the packets as the one corresponding to the smaller of the two 
ports. 

This is not a particularly useful plot. However, there are some outliers in the 
plot and by definition outliers are interesting. These outliers stand out quite easily 
in this plot, while they would be very hard to detect by looking in the raw data. A 
good rule of thumb is to look at any data via several different kinds of plots. Look 
for "interesting" structure and for "abnormal" or unusual data. The definition of 
unusual is subjective, but like art, one usually can recognize unusual data when 
one sees them. 

Scatter plots are arguably one of the most powerful ways to visualize data, 
primarily because of their simplicity of interpretations. Their main drawback is 
the inherent low-dimensionality of the data that can easily be displayed in a scatter 
plot. In the rest of this section we will look at ways to plot higher-dimensional 
information. 

Another drawback to scatter plots, which is common to all plots, is the problem 
of overplotting. There are only so many pixels on the screen, or dots on the paper, 
and so there are only so many distinct dots that can be represented. This problem 
can be partially addressed by binning the data and depicting the bins as is done 
with histograms, or by interactive displays which allow the user to zoom in to areas 
of high density. Unfortunately, paper generally does not lend itself well to user 
interaction. 

2.5.2 Pairs Plots 

An obvious extension of a scatter plot to higher-dimensional data is to plot each 
pair of variates in a separate scatter plot. This is the idea behind a pairs plot. We 
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Fig. 2.13 Pairs plot 90 seconds of packets to a site. SPort and DPort represent the source 
and destination ports, respectively. 

reconsider the data discussed in Figures 2.9-2.12, plotted as a pairs plot in Figure 
2.13. The pairs plot is symmetric about the diagonal, so we are actually plotting 
twice as many plots as we need. However, sometimes it helps to see things from 
two perspectives, so I will use the default plot of the R pairs function in these plots. 

We can see from these plots that the low-value destination ports span both 
time and source port, whereas the high destination ports are only associated with 
relatively low source ports. This corresponds to our earlier analysis. What cannot 
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Fig. 2.14 Pairs plot of email (port 25) connections. SIP and DIP represent the source 
and destination IP addresses, while SPort is the source port. In this case, all the destination 
ports are port 25. 
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Fig. 2.15 Pairs plot depicting the packet size, source and destination ports and window 
size for 13,680 TCP packets. A histogram of each variate is plotted down the diagonal, and 
the correlations are given in the upper triangle. 

be determined with single scatter plots is the combined information of all three 
variables. For example, consider the largest destination port in the SPort by DPort 
plot. Looking at this value in the Dport by time plot, we see a very regular pattern 
(points spaced roughly 3.5 seconds apart). This turns out to be activity between 
source port 9100 and destination port 56,946. This is an interesting pattern. Further 
investigation of the data determined that the session was initiated by the monitored 
site, and the temporal pattern was probably a result of load at one end or a delay 
in the route (other data between these two machines did not show the 3.5 second 
delay between packets). 

Figure 2.14 depicts data to port 25 (email) for one hour's worth of data. The 
three variables source IP, source port, and destination IP are plotted (source and 
destination IP having been converted to 32-bit numbers). For example, the plot in 
the upper right corner has vertical axis source IP and horizontal axis destination 
IP. From this, we can count roughly nine destination IPS (the resolution of the 
plot makes this an inexact count). We can see that most sources send to one of 
two destinations (presumably the main mail servers for the site). From the SIP by 
SPort plot, we can see that most machines use source ports below 10,000, although 
some use higher ports. 
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Personally, I am not particularly impressed with pairs plots, particularly for 
more than three variables. I find that I have trouble visually processing more than 
three plots at a time, and so tend to not use pairs plots for much of my data analysis. 
Occasionally, though, they do provide useful information and so are a part of my 
visualization toolbox. 

The pairs plots depicted here have a lot of redundancy and unused space. This 
extra plotting area could be used much more efficiently. One use of the extra 
plotting area would be to utilize color. One could color the points according to a 
separate scheme in the upper triangle of the pairs plot than in the lower. Another 
use would be to provide a different zoom level. The R function "pairs" allows 
separate functions of the data to be plotted in the different panels. 

One interesting idea is to put a histogram of each variate down the diagonal 
of the plot. This is illustrated in Figure 2.15. In this plot the histogram for 
each variable is displayed in the diagonal. Also, in the upper triangle are the 
correlations for the pairs. Thus, we can see that the window size is most correlated 
with the destination port while packet size is inversely correlated with destination 
port. These correlations are fairly low. Note that source port is uncorrelated with 
window size, as is packet size. This illustrates the fact that the window size is a 
feature of the application, and has nothing to do with the size of the packet. 

Pairs plots can usefully display up to about a dozen variables, depending on the 
amount and complexity of the data to be displayed. Other methods are required 
for higher-dimensional displays. We will look at two such methods in the next 
sections. 

2.5.3 Parallel Coordinates 

As we have seen, it is difficult to visualize high-dimensional data. Since the 
variates are generally considered to be independent, our usual approach is to place 
the axes perpendicular to each other. This only works for two-dimensional data, 
however. As we saw with pairs plots, we can get some information by looking at 
several bivariate plots, but it is difficult to extract multivariate information about 
the data from these plots. 

The idea of parallel coordinates (Inselberg [1984], Wegman [1990]) is to place 
the coordinate axes parallel to each other rather than perpendicular. This allows 
us to plot points as connected line segments between the axes. Figure 2.16 illus­
trates this. The coordinate axes in this plot are displayed as vertical lines. Each 
observation is plotted as a piecewise linear curve. For example, the observation 
x = (1.1,2.3,1.3,2.8, ... ) would correspond to the curve that first connects the 
point LIon the first axis to the point 2.3 on the second, then from there to 1.3 on 
the third, 2.8 on the fourth, and so on. 

Figure 2.17 depicts the email connections to a site during one hour. The first 
and third axes correspond to the source and destination IP addresses as 32-bit num­
bers. The second and fourth axes correspond to the source and destination ports. 
The values have been scaled between 0 and 1 for plotting. 1251 4-dimensional 
observations are represented in this plot, corresponding to 1251 email sessions. 

One can learn quite a bit from this plot. There are 11 email servers depicted, 
two or three main ones representing the bulk of the data. The difference between 
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Fig. 2.16 Parallel coordinates plot of 10 observations drawn from a lO-dimensional 
standard normal density. One of the observations, corresponding to the point x 
(-1.35, -0.08,0.95,1.82, -1.88, 0.53, 0.58, -0.53, -0.36, -0.05), is highlighted in 
bold. 

the number of email servers arrived at with this plot and that arrived at from the 
pairs plot (Figure 2.14) is a result of the low resolution of the pairs plot. 

Machines sending email mostly tend to use relatively low source ports, although 
there are a number of machines that prefer higher ranges. The resolution is not 
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Fig. 2.17 Parallel coordinates plot of email (port 25) connections. SIP and DIP represent 
the source and destination IP addresses, while SPort and D Port are the source and destination 
ports. In this case, all the destination ports are port 25. The line at all zeros is not an 
observation but rather serves to delineate the minimum of the graph. 
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Time Flag IP SPort DPort 

Fig. 2.18 Parallel coordinates plot of an email (port 25) session. The flags are, in in­
creasing order on the axis, SYN, SYN ACK, ACK, ACK PUSH, ACK FIN. 

good enough to determine whether the same machine will use low and high source 
ports (there are roughly 160 distinct machines represented by the SIP axis). 

Figure 2.18 shows a single email session. In this plot, we have time as the first 
axis, followed by the flag combination set, the source IP, and source and destination 
ports (each either 25 or 1584). Since there are only two IPs in a session, we coded 
the mail server as 0 and the other IP as 1. By traveling up the time axis, we can 
clearly see the three-way handshake, followed by PUSHs and ACKs. 

Parallel coordinates can be used to view data up to about 20-30 dimensions. 
They also suffer from problems of overplotting and interpretation. Ed Wegman 
has suggested using saturation brushing to deal with the overplotting problem and 
has provided some insights into interpretation. 

Parallel coordinates plots, like all the techniques discussed in this section, can 
be enhanced by the proper use of color in the plots. This is an important aspect 
of visualization, that is often ignored in the literature due to printing limitations. 
This is changing, and as the cost of color reproductions drop, we will see a much 
more common use of color to enhance graphic displays. 

2.5.4 Color Histograms 

Another technique for viewing high-dimensional data is the color histogram, also 
called the data image. The idea is to treat the data as an image with, for example, 
the columns of the image corresponding to observations and the rows to variates. A 
simple example is given in Figure 2.19. Here, we have five measurements on each 
packet: the time of arrival (at the sensor); a binary value indicating whether the 
packet originated from the protected network; the source port; a binary value indi­
cating whether the destination is the protected network; and the destination port. 
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Fig. 2.19 A color histogram of SYN packets into and out of a site. There are 500 packets 
represented in this figure. The columns correspond to packets. The rows correspond to the 
variates, which are the time of arrival of the packet, whether the source IP is internal to the 
protected network, the source port, whether the destination IP is internal to the protected 
network, and the destination port. 

Destination ports are scaled between 0 (black) and 1 (white), with values above 
500 set to 1. Source ports are also scaled between 0 and 1, with 0 corresponding 
to a source port of 533 (the minimum in this data set) and ports above 2000 set to 
1. Since it is difficult to separate the incoming and outgoing data in this graphic, 
we present these as separate images in Figure 2.20. We see that the outgoing ses­
sions tend to be much more homogeneous than the incoming sessions, probably 
the result of a smaller pool of users, who are constrained by usage policies. 

We will see more examples of color histograms and an extension, the data 
image, in Section 4.5.2.2. 
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Fig. 2.20 The same data as in Figure 2.19 with the incoming and outgoing packets split 
into separate plots. 
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2.6 FURTHER READING 

The problem of network tomography discussed in Section 2.2 can be approached 
from a number of other perspectives. A Bayesian approach is discussed in Tebaldi 
and West [1998]. This is a discussion article with two discussants, Vardi and 
McCulloch. Dinwoodie [2000], presents a Monte Carlo technique for computing 
the maximum likelihood estimates for the>' parameters of the Poisson distributions. 
In related work, Cao et al. [2000] describe a method using sliding windows to attack 
the network tomography problem. 

Much work has been done on modeling network traffic, and we have just touched 
the surface with the discussion here. For example, Khalil et al. [1990] discuss the 
non-Poisson character of LAN traffic. Morris and Lin [2000] describe their work 
showing that although Web traffic is definitely not Poisson, aggregating it causes 
the behavior to settle down somewhat so that, while still not Poisson, the aggregated 
data scales in roughly the same manner as Poisson data. Many other papers have 
been written on these and related topics as a literature search will attest - far too 
many to list here. 

To learn more about self-similarity measures and multifractal processes, in­
vestigate Riedi [1995], which provides some mathematical formalism. Another 
paper that looks at the fractal nature of network traffic is Addie et al. [1995]. Abry 
and Veitch [1998] use wavelets to analyze the multiscale nature of network traffic. 
Feldmann et al. [1997] also discuss self-similarity at the large and small scales 
for wide area network traffic. Fiorini [1999] looks at modeling heavy-tailed net­
work traffic, from the perspective of analyzing its impact on quality of service. A 
similar issue is considered in Feldmann et al. [1999]. Gilbert et al. [1998] pro­
pose a method for visualizing multifractal scaling behavior. Roughan et al. [2000] 
provide a fast method for estimating the Hurst parameter and apply it to traffic 
modeling. 

A slightly different perspective on network mapping is discussed in Theilmann 
and Rothermel [2000]. They provide dynamic distance maps, where the data 
collection is coordinated via hierarchical clustering of the hosts, to reduce the 
impact of the data collection on the network. 

Much work has been done on modeling telecommunications traffic, and some of 
this is relevant to network traffic. Martine [1994] provides extensive discussion of 
these issues. A special issue of the Journal of Heuristics (Doverspike and Saniee 
[2000]) also has some articles of interest for understanding networks, although 
these focus more on the issue of designing rather than analyzing. Similarly, much 
work has been done on (vehicular) traffic analysis. Some of these techniques can 
transfer over, particularly those that are based on basic mathematics and computer 
science. Forinstance, see Foulds [1992],pp. 344-358, or Ettema and Timmermans 
[1997]. 

There are a number of good books on data visualization. Bertin [1967] is 
the classic, which appears to contain, in one form or another, every visualization 
technique ever invented (this is a slight exaggeration, but only slight). I highly 
recommend that anyone interested in the visual display of data take some time to 
look through this book. It is amazing the number of techniques depicted. 
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The classic series by Tufte (Tufte [1983, 1990, 1997]) is a very good place 
to get insight into the proper display of infonnation. He discusses good and bad 
methods for representing data. He has many examples of displays designed so that 
the desired infonnation is easily discerned, without distorting the true relationships 
between the data. These books are full of examples from a wide variety of problem 
domains and data types. The first book describes basic statistical graphics. In 
Tufte's nomenclature, it describes pictures of numbers. The second book is pictures 
of nouns. This refers to descriptions of evidence and data, particularly complex 
infonnation. The third book contains pictures of verbs. This refers to illustrating 
cause and effect. These three books provide considerable infonnation and advice 
for accurately and infonnatively depicting infonnation. 

The book Wainer [1997] is similar to the Tufte books and provides a good 
discussion of the issues of the infonnative display of quantitative infonnation. It 
is quite a nice book, with all the visual impact of the Tufte books. I recommend it. 

Another good book is Wilkinson [1999]. He develops a fonnal system for the 
graphical display of infonnation, with many examples. In analogy with language, 
he describes a "grammar" of graphics, that ties mathematical and aesthetic rules 
together into a single framework. 

Spence [2001] is another nice book on visualization. It has a chapter on the 
visualization of graphs, which is obviously relevant to the study of networks. There 
are a lot of nice color pictures generated by a variety of tools. 

A very good paper on some of the mathematical issues in data visualization is 
Wegman et al. [1993]; see also Wegman and Carr [1993]. 

A very interesting phenomenon that is relevant to network modeling and anal­
ysis is the so-called "small world," or "Kevin Bacon" phenomenon. This is de­
scribed in some detail in the book by Watts [1999]. The idea is best illustrated by 
the "Kevin Bacon Game": select any actor. If he or she was in a movie with Kevin 
Bacon, they receive a score of 1. If they were in a movie with another actor who 
was in a movie with Kevin Bacon, they score a 2, etc. The claim is that all (or 
very nearly all) actors have a score of not more than 7. Thus, the world of actors 
is a "small world." This is the "small world" phenomenon that is familiar to us 
all when we meet someone new (possibly on a trip far from home) and discover 
that we have a friend in common with them. In the Internet, this is relevant from 
the standpoint of determining, for example, how many links one must follow from 
one Web site to any other (is the World Wide Web a "small world"?). The work 
detailed in the book uses quite a lot of machinery from graph theory, and so is 
rather technical. 



3 
Evaluation 

3.1 INTRODUCTION 

Statistics involves the fitting of models to data and making inferences from these 
models. One is often interested in the models themselves because of what they 
may tell us about the underlying physical process that generated the data. Thus, 
much of statistics concerns itself with goodness of fit tests, confidence regions, 
and other tools for determining whether one's model appropriately and accurately 
describes the data, and for making inferences from the estimated model. 

In pattern recognition the inferences that one wants to make are ones of as­
signment. For example, given a trace of network data, one wants to classify it 
as an attack, or not. Thus, while the model that one chooses is not uninteresting, 
the ultimate goal is a pragmatic one: how well does our model detect or classify 
attacks? As a result, one often finds that the tests of model fitness are reduced to 
tests of classifier performance. In this section we will look at some of the issues 
that are of interest in evaluating the performance of intrusion detection systems. 

Any evaluation of a pattern recognition system requires the estimation of two 
quantities: the probability of detection (PD) and the probability of flase alarm 
(PFA). These are intertwined, and in general it is not possible to simultaneously 
achieve a PD of 1 and a PFA of O. The idea is that there is a "target" class that one 
is interested in detection. For example, an intrusion. The probability of detection 
is the probability of correctly detecting the presence of the target class. A false 
alarm occurs when a detection is declared even though the target is not present. 
For example, declaring an intrusion has occurred when none did. 

In statistical terms, the probability of a false alarm is related to the type I error 
(rejecting the hypothesis when it is true). The null hypothesis in this case is that 
no attack is present. Thus, a type I error would occur if we incorrectly labeled a 
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benign event as an attack. The PFA is the probability of making a type I error. 
The probability of detection corresponds indirectly to the type II error (failing to 
reject the null hypothesis when it is false). In our case, this means failing to detect 
an attack when one is in fact present. Thus the probability of detection is 1 minus 
the probability of making a type II error. 

Some authors use the terms recall and precision rather than probability of 
detection or false alarm. "Recall" corresponds to the probability of detection. 
This is the probability of correctly "recalling" the target class. Precision is one 
minus the probability of false alarm, or the probability of correctly stating that a 
target is not present. 

Let us consider the two class problem. Assume we have designed a classifier 
that discriminates between two different classes and that we have identified one 
of the classes as "target" (or, in our setting, "intrusion"). We wish to determine 
how well it performs. Assume further that we have an independent data set with 
which to test the classifier. We evaluate the classifier on the data and determine 
the proportion of target observations correctly classified (PD) and the proportion 
of nontarget observations incorrectly classified as target (PFA). 

For most classifiers there are parameters to adjust (for example a detection 
threshold) that can affect the performance of the classifier. Varying these param­
eters produces slightly different classifiers with slightly different PD and PFA 
values. By varying these parameters and obtaining a range of values, we can plot 
a curve of PFA vs. PD, the so-called Receiver Operating Characteristic curve, or 
ROC curve. 

One generally tries to choose the classifier with the best PD within constraints 
on the acceptable PFA. This is chosen based on the relative costs of the two types 
of errors: missing an attack versus analyzing a false alarm. Given an ROC curve, 
one can select the parameters that produce the desired classifier. 

This becomes a bit more complicated when one considers problems with more 
than two classes. For example, one might want to classify the type of attack into 
one of several groups, rather than simply announcing the detection of an attack. 
This can be formulated as a sequence of two class problems, either as "class i" 
against all others, or pairwise, "class i" against "class j" for each pair i and j. 
Consult a book on pattern recognition for more discussion of these approaches. 

There is a school of thought in the computer security domain that says there 
is no such thing as a false alarm. The assumption here is that in a well-designed 
system, any alarm contains information. Different alarms require different levels 
of intervention. For example, one may see a few packets that look like a probe 
for vulnerable systems. The security officer may want to know about this, even 
though it is not yet a problem and even though in reality it may not be a prelude 
to an attack at all. Proctor [200 1], pages 108-111, discusses this in some detail. 
It is worth keeping this in mind when evaluating an intrusion detection system. 

Evaluation of intrusion detection algorithms is problematical for several rea­
sons. First, it is difficult to collect data representative of the threat. Since the 
threat is constantly changing as new attacks (and vulnerabilities) are developed, it 
is vital that an IDS be able to detect novel attacks. It is well known to be difficult 
(and perilous) to make predictions outside one's data, and this is precisely what is 
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expected of IDS evaluations. Worse, the data are by definition non stationary, so 
any evaluations are of transient utility. 

Second, if one collects real data, one can never be sure that there are no subtle 
attacks hiding undiscovered in the data. This affects both the calculation of the 
probability of detection and the probability of false alanns. You cannot count 
missed detections that you do not know about, and you cannot be absolutely sure 
that a false alann is not in fact a correct detection. Further, in order to get a good 
sample of attacks, you may have to collect a very large amount of data. One way 
around this is to embed real attacks in the data (either artificially or by attacking 
your own network). 

Finally, few intrusion detection systems are truly automated. For example, the 
SHADOW system (Section 4.4) fundamentally relies on an analyst to process the 
suspicious events and generate the reports. One could simply count each suspicious 
packet (or block of packets for a given source host) as a candidate detection and 
compute false alanns and detections from these. However, this would overestimate 
the false alann rate. Alternatively, one could treat the analyst as part of the overall 
system and evaluate the performance of the system with the human in the loop. 
Of course, this adds another level of variability (analyst expertise) that must be 
controlled for. 

Still, it is essential to do careful evaluations. None of these problems are unique 
to intrusion detection, they are simply more obvious than in some other domains. 
We will look at two methodologies for evaluating intrusion detection systems, but 
first we must discuss evaluation of classification systems in general. 

3.2 EVALUATING CLASSIFIERS 

We have discussed one method of evaluating a classifier, which is to use an inde­
pendent test set. Thus, one collects data and then separates the data into a "training 
set" and a "testing set." The classifier is then designed using the training set. Re­
call that a classifier is a rule that assigns a class label to observations. In order to 
devise the rule, example observations for which the class labels are known must be 
available. These observations are called "training points." Using training points, 
the parameters of the classifier can be adjusted to maximize the performance of 
the classifier (on the training points). Once the classifier has been constructed, its 
performance on the test set is measured, providing an estimate of the performance 
of the classifier. 

Care must be taken to ensure that the sets are indeed independent and that 
an unconscious (or conscious) bias is not introduced. For example, one may 
(accidentally or on purpose) place all the "difficult" points in the training set, 
thereby biasing the estimate toward better performance. One way to avoid this 
is to randomly split the data to reduce selection bias. Then, after using the two 
sets to evaluate the classifier, reverse them (the training set now becomes the test 
set and vice versa) and redo the evaluation. An extension of this idea is to repeat 
the random selection of training/testing observations many times to get an average 
performance measure that avoids the problem of selection bias. 
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A related idea is that of cross validation. In its extreme form (I-point cross 
validation), the test set consists of a single observation. The classifier is built on all 
the remaining observations and then its performance on the single test observation 
is measured (this is a binary response: it either gets the observation's class right or 
it does not). This is then repeated with a different observation until all the available 
observations have been used as test observations. 

This can be generalized to k-point cross validation. The data are split into 
subsets of size k, and each subset in tum is used as a test set, while the rest go 
into the training set. The other extreme from the I-point cross validation is the 
n/2-point cross validation, where the data are split evenly into two sets. This is 
the training/testing described earlier. 

Another terminology is sometimes used in cross validation. Instead of "leave 
k-out," one will sometimes see the phrase "k-fold" cross validation. The difference 
is that in k-fold cross validation one splits the data into k subsets of equal (or nearly 
equal) size. Then one subset is withheld, the classifier is trained on the remaining 
subsets, and the withheld set is used as a test set. This is repeated, in the same 
manner as described above. Thus, k-fold cross validation is essentially n/k-point 
cross validation. This can be slightly confusing the first time one comes across it. 

The collection of the data to be used for training and evaluating the classifier is a 
nontrivial task, particularly for intrusion detection. Imagine setting up a sensor on 
a network, collecting data for (say) a month, then using the data for the evaluation. 
A few obvious questions come to mind: 

• What is "truth"? In other words, which packets or sessions are intrusions 
and which are not? 

• Is this a typical data set? One collected at a university in July might not be 
representative of the network in November. 

• How long are the data going to be representative (if they are)? How fast is 
the network (and the threat) evolving? 

• Have we measured the threat? Are the attacks representative of the ones we 
want to detect? 

• Along the same lines, are the ones we currently know how to detect really 
all of them? 

There is a (possibly apocryphal) example of this from an image processing 
problem. A classifier was built to distinguish images that had tanks in them 
from those that did not. The classifier worked quite well. However, when an 
independent set of images was subsequently produced, the classifier was no better 
than chance. Upon investigation, it turned out that the images in the original data 
set that contained tanks were all taken in the morning, whereas those without tanks 
were taken around noon. The classifier was detecting the brightness of the images. 
Low-light images had tanks in them (in the training set) so all one needed to do to 
detect tanks was take a light level! 

Another example involves a radar that was used to detect tanks. In order to 
identify the tank it was necessary to determine its orientation. To collect data from 
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a variety of orientations the tank was mounted on a large turntable and data was 
collected from a variety of orientations relative to the radar. It subsequently turned 
out that the best discriminator of tank orientation was a return that was generated 
by a comer of the turntable. This clearly is of little practical utility, unless one can 
convince the enemy to mount their tanks on turntables. 

This sounds silly, but it is a real concern. Suppose you want to detect buffer 
overflow attacks against network applications such as telnet. If all your training 
examples are attacks against telnet, there is a very real possibility that the classifier 
willieam to detect something that is related to telnet (and possibly unrelated to 
buffer overflows). 

There are some studies in the pattern recognition literature in which the same 
data are used to evaluate the classifier as were used to build it. This is called 
"resubstitution." It would seem that this is a very dumb idea from what has been 
said previously. However, it is a valid method of evaluation of classifiers. It is 
biased, but it does provide an estimate of performance. It is probably best to avoid 
it, though, because it will tend to give optimistic estimates of performance. For 
the mathematically inclined, Devroye et al. [1996] has a short chapter devoted to 
resubstitution. 

An example of a classifier where resubstitution should never be used is the 
nearest-neighbor classifier. In this classifier, the observation is given the class 
associated with its nearest neighbor from the training data. However, if the test 
observation is in the training data (as it would be with resubstitution), then it will 
always get the observation right (assuming the observations are all distinct). Thus, 
the resubstitution estimate of performance for the nearest-neighbor classifier is 
perfect! The PD is 1 and the PFA is O. Note that this is the case regardless of 
the problem or the training data. Obviously, this is not a particularly accurate 
estimate of performance for this classifier. 

Note that even with k-nearest neighbor (where the classifier takes a vote 
amongst the k training observations closest to the point) the performance esti­
mate will be severely biased by the resubstitution method. The effect would be 
as if one were to take a vote among k people, where one of them always knew 
the right answer. This will give a very optimistic estimate of the performance of 
the classifier. In either of these cases, however, it is easy to turn the resubstitution 
estimate into a leave I-out cross validation estimate assuming the observations are 
distinct: instead of taking the k closest, take the k + 1 closest, but drop the closest 
from the vote. 

There is another problem with the detection and classification of rare events. 
Even if you have a very good detector, with a very smallfalse alarm rate, it could be 
that a large proportion of the "detections" are in fact false alarms. This seemingly 
counter intuitive result can be derived as follows. 

Recall Bayes' Theorem (Hogg and Craig [1995],): 

P(CjIC) = ;(Cj)P(C!Cj ) 

L: P(Ci)P(C!Ci ) 
i=l 

(3.1) 

In our context, let C be the event that our classifier tells us it has detected an attack 
(raises an alarm), C1 be the event that it really is an attack, and C2 the event that 
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it is a false alarm (for this example, k = 2). Then, we have, from Equation (3.1), 
letting I indicate an attack (intrusion), A indicate an alarm, and ..., indicating the 
logical negative ("not"): 

P{I)P{AII) 
P(IIA) = P{I)P{AII) + P{...,I)P{AI...,I)· (3.2) 

Now, let us look at some reasonable values. Suppose a network logs 1,000,000 
packets per day, and of these 20 packets per day correspond to attacks (on average). 
That says P{I) = 20/1,000,000 = 1/50,000. Suppose that our detection rate is 
99% and false alarm rate 0.1 %. This says that P{AII) = 0.99 and P{AI...,I) = 
0.001. Plugging these in, we have P{I/A) = 0.019, or about 2%, so only 1 alarm 
out of 50 is an attack. If we can get our false alarm rate down to 0.01 %, things look 
a little better: P{I/A) = 0.1653, or about 17%. This is the "base-rate fallacy" 
described in Axelsson [1999] and Axelsson [2000]. It takes a false alarm rate of 
0.001% (a probability of 10-5) to bring our probability of intrusion given an alarm 
up to 66%. A security officer may very well ignore a system that is wrong 49 out 
of 50 times and might very well be disgusted with a system that is right only 213 
of the time, but as we have seen, it takes an extraordinarily good system to obtain 
this level of performance. 

This might seem strange until you realize what is actually happening here. 
Since we only care about alarms, we are ignoring the vast majority of packets. 
Thus, a system with a false alarm rate of 0.0000 1 and detection rate of 0.99 detects 
(essentially) all of the 20 attacks, and roughly 10 extra packets. Put this way, this 
seems quite reasonable (in fact, it's outstanding). The security officer mentioned 
earlier might consider 66% to be perfectly fine. With a false alarm rate of 0.001, 
this grows to 1000 extra packets. Now, our security officer may simply learn to 
ignore the system. The problem lies in the vast number of "normal" packets. This 
explains the focus of many research efforts on the reduction of false alarms. 

The reduction of false alarms is particularly important in computer security. 
As we will see, there are intrusion detection systems designed to detect network 
intrusions (Chapter 4) and those designed for detection on a single host (Chapter 
5). We will see that some attacks cannot be detected at the network level, whereas 
other attacks are best handled at this level. False alarms at these two different 
levels have dramatically different consequences. 

For example, consider a network consisting of 100 machines. This network has 
a network monitor at the firewall looking for network intrusion attempts such as 
probes and mapping attempts (Section 4.3.2) or denial-of-service attacks (Section 
4.3.1). On each host is a host-based intrusion detection system (IDS). Assume 
that the people using the systems know nothing about security, so the attacks must 
be reported to the site security officer (SSO). Now, consider the false alarm rates. 
If the network IDS has 20 false alarms per day, then the SSO has 20 alarms that 
must be tracked down and identified. If a host-based system has two false alarms 
per day, then the SSO has 200 alarms to track down. Clearly, host-based systems 
must either be handled by the individual owner of the system (an ideal that does 
not appear to be attainable for the majority of organizations) or must have a much 
lower false alarm rate (as measured by alarms per day) than network IDS systems. 
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3.3 ROC CURVES 

Most intrusion detection systems are primarily focused on the problem of detecting 
attacks. Thus, they are two-class classifiers, with the two classes being "attack" 
(class 1) and "not an attack" (class 2). Some go further and try to determine what 
kind of attack it is and what the potential consequences are, but first and foremost 
is the detection of the attack. 

As we have seen, the two numbers of interest are the PD and PFA. However, 
one generally cannot simply state the PD and PFA that one wants and design the 
algorithm to provide them. If one could, one would always require a PD of one 
and a PFA of zero. Consider for illustration the nearest neighbor-algorithm, with 
the following twist: take the distances to the nearest observations from each class, 
and consider the ratio. Thus, 

L(x) _ d(x, Cd 
- d(x, C2 )' 

(3.3) 

where d is some distance metric and d(x,Ci ) = min(d(x,c)lc E Ci ). Using 
Equation (3.3), we have the standard nearest-neighbor rule: Assign the point to 
class 1 if L(x) < 1; otherwise, assign it to class 2. 

Putting the algorithm into the form of Equation (3.3), however, allows us to 
adjust the rule to change the PDIPFA. By considering L( x) < T for various values 
of T < 1, we require the classifier to be "more sure" of its answer and thus 
(potentially) decrease the PFA (possibly at the expense of decreasing the PD). 
Similarly, considering values of T > 1 allows us to insist that the classifier call it 
class 1 as long as there is some chance that it is an attack, increasing the PD, while 
at the same time (potentially) increasing the PFA. By choosing different values for 
T and computing the PDIPFA, we can produce a plot of PD vs. PFA. This is an 
ROC curve. 

3.4 THE DARPAIMITLL ID TESTBED 

DARPA, the Defense Advanced Research Projects Agency, had a program in 
computer security and intrusion detection and wished to obtain reliable estimates of 
the detection and false alarm rates of competing algorithms and systems. In order to 
do this, MIT Lincoln Labs (MITLL) was contacted to build a simulation network. 
This would simulate network traffic into which attacks could be injected. This 
eliminates the second problem mentioned earlier: there could be no "unknown" 
attacks in the data. MITLL, and hence DARPA, would know everything about all 
the attacks and other traffic. 

In order to model network traffic, 4 months' worth of traffic was collected 
at an Air Force base and analyzed. From this, the percentage of email, Web, 
and other traffic was determined, as well as other information required for the 
model. The simulation model consisted of models for different types of users 
(secretaries, managers, etc.), so that a representative mix of the types of traffic 
would be obtained. 
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In order to model Web traffic, actual Web pages were downloaded that were 
representative of the kinds of accesses seen in the Air Force data. Web surfing 
sessions were then simulated throughout the network, with virtual machines acting 
as the Web servers. 

Email was simulated by generating random messages with the statistics of 
English messages. It is not clear how the generation of these emails affects the 
false alarm rate for systems that search email text for included viruses or other 
attacks. 

By producing a virtual network, MITLL was able to simulate a very large 
network on a small number of real machines. This was a very cost-effective 
scheme. 

The MITLL approach is probably the best way to simulate network traffic. 
Floyd and Paxson [1999] argue that we do not have enough infonnation about 
the underlying statistics of the Internet, and thus that modeling Internet traffic is 
inherently extremely difficult. They conclude that the best way to simulate network 
traffic is by focusing on "source-level" traffic rather than packet-level traffic. This 
is essentially what the MITLL simulation does by focusing on the applications 
and simulated users rather than constructing individual packets. I do not know 
whether the statistics of the packets (sizes, arrival times, etc.) is representative of 
the true distributions of Internet traffic, but it is not clear that this level of detail 
is relevant to intrusion detection systems. Cabrera et al. [2000] showed some 
ability to detect intrusions by looking at deviations from traffic intensities (telnet 
session arrival times) using a Kolmogorov-Smirnov test to test for deviations from 
a Poisson distribution. This does indicate that at least for this kind of statistic the 
simulated data seem to agree with Internet traffic statistics. 

One issue that is relevant to the MITLL data is the question of how well the data 
simulate real networks. As an anecdote, several of people who install SHADOW 
sensors have told me that the first thing that must be done once a sensor is put in 
place is to track down all the misconfigured hosts and routers on the network. They 
always see a lot of broadcast packets and other indications of misconfigurations. 
At NSWC, we had an instance of a machine in Colorado that kept trying to mount 
a disk on one of our machines. This was the result not of an attack but rather of an 
error in the IP address. The experience is that real networks are noisy. This noise 
can have an impact on the false alarm rate of intrusion detection systems. 

The first part of the MITLL study involved diseminating data to researchers 
involved in the evaluation. Several weeks of data were generated and given to 
researchers to tune their algorithms. For these data, all attacks were clearly marked. 
The researchers were also given any infonnation about the protected network that 
they desired. Data were of several types. There was network (tcpdump) data, log 
data, and file data (such as file sizes, times and dates, and so on). 

In the first evaluation, several algorithms were installed at MIT Lincoln Labs as 
if they resided on the virtual network. In later tests, researchers were given several 
weeks of test data in which no attacks were identified. The systems were then 
required to provide DARPA with their detections in an agreed-upon fonnat. They 
were encouraged to provide confidence numbers rather than binary responses, but 
most algorithms in the early evaluations produced binary responses, so ROC curves 
could not be computed. 
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The first results of the DARPA evaluation are reported in Durst et al. [1999]. 
This is a preliminary report of the first attempt. The evaluation process is ongoing, 
and a number of problems with the first evaluation have been ironed out in subse­
quent evaluations. For example, there was some controversy about scoring some 
systems: do you count a detection if you flag some (but not all) of the attack as 
suspicious? If you do not correctly classify the attack, but do flag it as an attack? 
Differences of opinion on the scoring resulted in slight differences between the 
claims of researchers and the results that DARPA reported. 

The results of this first evaluation are not encouraging. The best algorithms 
operated at a detection rate of about 25% with a false alarm rate of about 0.1 %. 
A PFA of 0.1 % on network traffic is unacceptable for most large networks, even 
though this number is computed on a per-session basis rather than on individual 
packets. 

More extensive evaluations have been performed since this first attempt. These 
evaluations are reported in Lippmann et al. [1999]. Although the systems tested 
continue to improve, the results are still not encouraging. The systems have a 
difficult time with new attacks (not surprisingly), and they are not yet performing 
(as of this evaluation) at the level DARPA has set as the goalposts for IDS systems. 

The most difficult task that the DARPA evaluators have set for themselves is to 
evaluate the performance of algorithms in the detection of novel attacks. In order 
to perform this evaluation, the DARPA evaluators developed several new attacks, 
which were not provided to the researchers in the training data. An obvious 
question is how representative these novel attacks are of real attacks. 

Another issue of concern in evaluating intrusion detection systems is to ensure 
that systems are not penalized for missing attacks that they could not detect. For 
example, the email viruses (see, for example, Section 6.7.3.1) cannot be detected 
by a network monitoring system that only considers the packet headers. Thus, the 
evaluators must determine the class of attacks that a given system can be used to 
detect and only score a system on attacks appropriate to the system. To this end, 
researchers were required to inform DARPA of the data used by the system and 
the kinds of attacks that the system could be expected to detect. 

There is a subtlety in the definition of "attack" that needs to be considered in 
evaluating intrusion detection systems. The problem is that in some cases it is 
intent that determines whether some activity constitutes an attack. The traceroute 
"attack" is a good example (see pages 109 and 130). In this, the attacker uses the 
traceroute utility to determine all the routes to a site. This can be used to determine 
potential bottlenecks or downstream sites that can be attacked to shut off the target 
site from the Internet. Traceroute can also be used to map out the routers within a 
site. Unfortunately, traceroute is a commonly used utility, and there is no way to 
tell the intent from the packets. 

Some security analysts want to know when a host (or set of hosts) sends a large 
number of traceroutes to their site, whereas others don't want to be bothered. If 
a system reports traceroutes when they are not part of an attack, is this a false 
positive? Is it a missed detection if the system does not report such an event 
and it turns out to be an information gathering attempt prior to an attack? Since 
one cannot determine intent from the packet trace, there is no way to distinguish 
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between benign traceroutes and those intent on information gathering unless one 
can correlate the packets with others that are also gathering information. 

The problem is particularly germane to the DARPA approach of using simulated 
data. One can easily set most systems to ignore specific events (like traceroute). 
This kind of tuning is always done to configure the system for a specific network 
environment and security policies. However, unless the security policies are very 
specific and the virtual network environment well known, some systems may 
produce poor results as a consequence of not being properly configured for the test 
environment. To their credit, DARPA and MITLL have considered these issues 
quite carefully in their evaluation. 

The most recent published evaluation of the DARPA work is Lippmann et al. 
[1999]. Six different research groups participated. Each group was given a train­
ing data set in which attacks were identified and information about the protected 
network was provided. 

The groups were subsequently given test data in which attacks were embed­
ded but not identified to the researchers. Thus, the evaluation was blind. The 
researchers had to provide their system's detections, which were then used to 
evaluate their performance. 

As described earlier (and in more detail in Lippmann et al. [1999]), a con­
siderable amount of work went into designing the victim network. Users were 
simulated (and in some cases real users interacted with the network), different 
applications were run on the network (Web, FTP, telnet, email, etc.), and the traffic 
from these applications was sometimes generated according to models developed 
by DARPA and MITLL and sometimes real sessions were taken and inserted on 
the virtual network. 

There was one potential flaw in the design of the experiment, however. There 
were three Unix machines that were the victims of the bulk of the attacks (this 
study involved only Unix machines): a Linux machine, a SunOS and a Solaris. 
(A router was also a victim for some of the attacks.) If these machines were also 
those attacked in the training data (Lippmann et al. [1999] are not clear on this 
point), then there is the potential that algorithms could learn this (recall the tank 
anecdotes from before) and ignore packets sent to other systems. Even if this were 
not the case, it appears that only these three systems provided audit and file data, 
so it would be reasonable even for those that did not use these data to assume that 
they were the only machines attacked. 

Recall the tank anecdote. I do not mean to imply that any of the researchers 
used this information in designing their algorithms or in providing the results from 
their algorithms to DARPA. However, a sufficiently sophisticated algorithm might 
be able to infer that only a subset of the machines are ever attacked and incorporate 
this into its algorithm, unbeknownst to the researchers. Even if this did not happen 
in this experiment, it is something to keep in mind in future evaluations. 

3.5 LIVE NETWORK TESTING 

The DARPA approach has some very strong advantages over live data. For one, all 
the attacks are known by the evaluation team (although not by the systems being 
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evaluated), so true detection and false alarm values can be calculated (with the 
caveats mentioned in the previous section). The size of the network, volume of 
traffic, and type of traffic can be adjusted as desired. Any desirable data can be 
captured. The entire network is known down to the level of the operating systems 
and users on the systems. 

One problem with any simulation is to determine how well it simulates the real 
world. Another is that even the best simulation is only modeling a specific network 
environment, which may not be typical. The results may not be relevant to other 
environments. 

Another problem with a simulation is the modeling of novel attacks. Without 
some model of attacks, it is very difficult to model new ones. DARPA and MITLL 
have tried to create new attacks, and judging from the results of their studies, they 
have done a pretty good job from the perspective of creating attacks that are hard 
to detect. However, by their very nature, new attacks are often ones that nobody 
predicted. 

A good example, which we will see in Section 6.7.3.1, is the Melissa virus. 
Unless one knows to look for certain types of macro-language commands within 
attachments to email, this virus is going to be hard to detect. More importantly, it 
requires quite a bit of imagination to come up with such an attack the first time. 
Now that Melissa has made the news, these kinds of attacks are quite common. 
However, how does one determine the probability that a system will detect next 
year's "Melissa" attack? In other words, how does one determine the probability 
of detecting the next new type of attack? 

Live network testing tries to answer the questions related to real-world per­
formance measures. By running real network data through a system, one can 
determine the answers to the following questions: 

• Does the system have an acceptable alarm rate? This means that the number 
of alarms that tum out to be false is small enough, on the given network, 
that the SSO can handle them. 

• Does the system detect the attacks that it should? In a well-designed study, 
one can have several different systems running, along with an SSO that 
understands the network and the typical threats, and alert system adminis­
trators that are on the lookout for attacks. Thus, one can detect the kinds 
of attacks that are known, and can determine whether the tested system is 
detecting them. This does not address the problem of novel attacks. 

• What kinds of attacks are missed? With several systems looking at the 
network, plus a knowledgeable SSO and alert system administrators, most 
of the attacks on a given network or machine can be detected. This level of 
alertness may not be maintained over the long term, but for short periods of 
time, with sufficient effort, one can do a pretty good job of detecting all but 
the most subtle attacks. 

• What kinds of attacks are detected? A "red team" can be used to attack the 
network, ensuring that real attacks are mounted. This can also allow for 
interaction between the red t\'!am and the researchers to try to determine the 
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blind spots in the systems being evaluated and suggest methods to improve 
them. 

• Does the system provide sufficient information about a suspected attack that 
the true nature of the incident can be determined? Some systems may not 
collect or retain the data necessary to do this. 

• Can the system handle real data rates and all the problems that occur on real 
networks? 

Obviously, true false alarm and detection rates cannot be determined on a live 
network, but they can be estimated, and it is not clear that these estimates are 
worse than those obtained from simulations. As an analogy, consider the problem 
of constructing a system to detect breast cancer from digital mammograms. One 
needs a training set. This is a bit tricky. One could take all mammograms of 
women who have had their cancer confirmed by biopsy, but this assumes that the 
cancer was detected, and hence at best the training set consists of those cancers we 
already know how to detect (although perhaps not as reliably as we would wish). 
What images should we use as "clean" images? Again, if we call those for which 
no biopsy was done "clean" we have no idea how many missed detections we are 
allowing into our training set. It is infeasible (and unethical) to biopsy apparently 
healthy breasts simply to construct a good training set, so one must live with the 
fact that there may be missed cancers in both the training set and any test set we use 
to evaluate the classifier. Imagine how difficult it would be to get FDA approval 
for a system for the detection of breast cancer that had been designed and tested 
exclusively on simulated mammograms. 

Similarly, in real life, unless the intrusion detection algorithm can be constructed 
from first principles (for example, using the RFCs to determine legal/illegal be­
havior), it must be trained on real data, and these real data may contain missed 
attacks. It seems reasonable that such systems should be trained and evaluated on 
real data to get the best estimate possible of how they really work. This is not to 
imply that simulation results are not extremely valuable, but it is my opinion that 
they cannot completely take the place of real-world evaluations on real networks. 

3.6 FURTHER READING 

There are several good books on pattern recognition, and most of them discuss 
classifier evaluation. One of the classics in statistical pattern recognition is Fuku­
naga [1990]. Another classic that has been expanded and reissued in anew edition 
is Duda et al. [2000] This is an excellent book that I highly recommend. 

A book that discusses evaluation of classifiers at length is Hand [1997]. Devroye 
et al. [1996] has a good, but quite theoretical, treatment of pattern recognition 
theory. 

Both Axelsson [1999] and McHugh [2000] give extensive critiques of the 
DARPA intrusion detection evaluations. At the time of this writing the McHugh 
paper is not yet published, so I am relying on descriptions of the paper. Axelsson 
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[1999] also discusses and critiques other evaluations that have appeared in the 
literature. 



Part II 

Intrusion Detection 



4 
Network Monitoring 

4.1 INTRODUCTION 

Network monitoring involves attempting to detect attacks on a network, or on 
hosts on the network, by monitoring the network traffic. This is usually done at 
the firewall or filtering router, so that all traffic corning into the network can be 
analyzed. 

One of the best introductions to network monitoring can be found in Northcutt's 
book (Northcutt [1999]). This is one of the few books, as of the time this is written, 
that give explicit details on how one can detect intrusions at the network level. 

We will start by describing one of the tools used for network monitoring, the 
tcpdump program. We have seen how to use this program to monitor network 
traffic in Section 1.2. In Section 4.2 we will look at how filters can be defined 
to specify the types of packets of interest. This will give us the ability to scan 
tcpdump files (or live network traffic) for packets that are indicative of certain 
attacks. 

In Section 4.3 we will consider some specific network-based attacks. Each 
attack will be described in detail, with examples of network traffic illustrating the 
attack when applicable and examples of tcpdump filters designed to detect the 
attack when possible. 

Although we will not detail any commercial network security products, we 
will look at a freeware program, SHADOW, which is the result of work at the 
Naval Surface Warfare Center. The advantage of considering SHADOW is that 
the code is freely available and is based, for the most part, on tcpdump filters. This 
discussion takes place in Section 4.4. 

Finally, in Section 4.5, we look at using statistics to go beyond simple signature­
based intrusion detection. 
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4.2 TCPDUMP FILTERS 

The tcpdump utility (see Section 1.2) has a built-in capability to filter packets 
based on the header fields. This allows the user to look for certain known attacks 
or unusual packets that may be indicative of new attacks, as we will see in the rest 
of this chapter. 

The syntax of the filters is quite simple. It makes use of a number of keywords: 

src, dst, host, net, port, ip, tcp, udp, icmp, and, or, not. 

In addition, specific fields can be addressed by their positions in the header. 
There are other keywords, for example those specific to other protocols, but we 
will focus on these alone. See the man page for more details. 

Some examples will make this clear. A filter to select all TCP packets to the 
machine 10.10.2.7 is simply 

tcp and dst host 10.10.2.7 

To select TCP packets to all machines on the 1O.IO.x.x network we use (note 
the final period) 

tcp and dst net 10.10. 

Parentheses can be used for grouping. Consider the following 

tcp and «dst port 22) or (dst port 23)) and host waldo.ourhouse.org 

This filter looks for TCP packets that are sent to either port 22 (ssh) or 23 
(telnet) and are to or from the machine waldo.ourhouse.org. Note that you can 
specify the machines as either IP addresses or domain names, although specifying 
domain names requires a DNS lookup initially, which may take a while if the filter 
contains a large number of hosts. 

Specific fields are addressed using a bracket notation 

ip[6:2] & Oxlfff = 0 

This tests the 2-byte field at position 6 bytes in the IP header, which contains 
the flags and fragment-offset fields. It tests to see whether the fragment offset is 
0, so we can use this to find the first fragment of a fragmented packet 

(ip[6:1] & Ox20) and (ip[6:2] & Ox lfff = 0) 

The first part finds packets with the "more fragments" flag set, and the second 
ensures that it's the first fragment. 

We can look for ranges using this notation as well. To find UDP packets with 
destination port values less than 20, we use 
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udp[2:2] < 20 

Note that we cannot use something like: "dst port < 20"; we must use the field 
index notation for ranges and bit manipulations. 

We can combine these filter fragments using the "and" and "or" operators and 
can negate using the "not" keyword. Thus, a filter to detect imap scans could be 
written as 

port 143 and not (dst host imapserv 1.ournet.com or dst host imapserv2.ournet.com 
or src host imapserv3.friendnet.com) 

The filters are "compiled" into a table for fast execution. Thus, there is a small 
initial overhead in parsing the filters, but the execution has been optimized to 
reduce packet loss. There is, however, a limit to the size of a filter. 

4.3 COMMON ATTACKS 

4.3.1 DOS Attacks 

Denial-of-service (DOS) attacks attempt to shut down a network, computer, or 
process, or otherwise deny the use of resources or services to the authorized users. 
Generally speaking, DOS attacks at the network level attempt either to shut down 
a computer or network, cause a dramatic slowdown in performance, or shut down 
or otherwise make inaccessible a given service. 

The listing in this section is not comprehensive, especially because new attacks 
are invented almost daily, it seems, but rather gives a flavor for the kinds of attacks 
that are possible. 

4.3.1.1 Land Attack In the land attack, a TCP SYN packet is constructed 
with the source and destination IP addresses the same and both set to the target 
machine. On some older systems, this causes the system to lock up, and the 
machine must be rebooted. A single packet is all that is needed by this attack. The 
land attack signature is shown in Table 4.1. 

A land attack is probably not effective in today's environment, but due to soft­
ware reuse and potential coding errors in future systems, there is always the pos­
sibility that this attack, like any other, may become effective once again against 
some future system. 

The land attack illustrates a common thread in most denial-of-service (and 
many other) attacks. A strange or "impossible" packet is specially crafted, and 
some bug or unrecognized feature is exercised by the receipt of the strange packet. 
These "features" can be detected by perusing the source code of the application 
or operating system, trial-and-error, logical extension of published standards, and 
by accident. 

Note that in this attack the source destination of the packet has been set by the 
attacker. This is called "spoofing" and can occur either to hide the identity of the 
attacker or, as in this case, as a fundamental part of the attack. 
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Table 4. 1 Land attack signature. 

Protocol Specifics Effect 

TCP SYN packet with same source and destination Locks up system 

Example: 

06:49:55.4710.10.2.23.139> 10.10.2.23.139: S 

Filter: ip[12:4] = ip[16:4] 

Comment: 

General filter to detect any IP packet with equal source and destination. Note 

that we cannot say the more natural "src host == dst host." 

Table 4.2 Neptune attack signature. 

Protocol Specifics Effect 

TCP SYN packet from unreachable host Overflows connection buffer 

Example: 

09:23:17.47172.16.43.19.1233> 10.10.2.23.25: S 

09:23:17.61 172.16.43.19.1234> 10.10.2.23.25: S 

09:23:17.96172.16.43.19.1235> 10.10.2.23.25: S 

etc. 

Filter: This cannot be filtered with tcpdump. 

Comment: 

The signature requires that 172.16.43.19 be unreachable. The destination IP 

addresses need not be the same so long as they are unreachable. The destination 

ports can be any open port. The source ports are arbitrary. Some services have 

mechanisms in place to restrict the number of connections, so this may be 

ineffective against those services. 

4.3.1.2 Neptune Neptune, or "SYN flood," utilizes the fact that for each 
half-open TCP connection made to a machine, tcpd (the program that handles 
telnet, FTP, and other connections) creates a record in a data structure to hold 
the information about the connection. If the connection is not completed within 
a certain amount of time, the connection "times out" and the record is freed. If 
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enough connections can be initialized before the timeout occurs, the data structure 
can overflow, causing a segmentation fault and locking up the computer. 

In this attack, the packets are crafted to have a source IP address that is unreach­
able. This is so that no host responds to the SYNI ACK sent by the target, forcing 
the connection to stay open. A large number of such SYN packets are sent to the 
machine in a short amount of time. See Table 4.2 for the Neptune attack signature. 

4.3.1.3 Ping 0' Death The Ping 0' Death is an ICMP echo request (ping) 
packet with an illegally long (longer than 64K bytes) payload. Older operating 
systems lock up or reboot when the buffer into which the incoming packet is stored 
overflows. Early versions ofWindows95 had a ping program that would allow one 
to specify the packet length, even if the length was too big for a normal packet, 
making this a particularly popular attack for a while. As with the land attack, this 
requires only a single packet to be effective. Also, like the land attack, few if any 
modem operating systems are vulnerable. The Ping 0' Death signature is shown 
in Table 4.3. 

Table 4.3 Ping 0' Death signature. 

Protocol Specifics Effect 

ICMP Packet larger than maximum IP packet Locks up system 

Example: 

172.16.12.37> 10.10.2.23: icmp: echo request (frag 1213:350@0+) 

172.16.12.37> 10.10.2.23: (frag 1213:350@350+) 

172.16.12.37> 10.10.2.23: (frag 1213:350@700+) 

172.16.12.37> 10.10.2.23: (frag 1213:350@1050+) 

172.16.12.37> 10.10.2.23: (frag 1213:350@65100+) 

172.16.12.37> 10.10.2.23: (frag 1213:300@65450) 

Filter: icmp and (ip[6:1] & Ox20 != 0) or (ip[6:2] & Oxlfff!= 0) 

Comment: 

This only detects fragmented ICMP packets. One must then 

check to see whether the packet is too large. 

4.3.1.4 Process Table The process table attack was developed by MIT Lin­
coln Labs for DARPA to be used as part of a test of intrusion detection systems. 
The idea was to develop a new attack to see whether the systems would be able 
to detect it. It is an attack against Unix systems. The basic idea comes from the 
fact that each time an incoming TCP connection is received, a process is forked. 
By initiating many connections, the attacker can fill up the process table. Once 
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the table is full, no new processes can be spawned, so nothing can be done on the 
computer. See Table 4.4 for the attack signature. 

This attack must be mounted against a service that accepts connections but 
not against one that restricts the number of connections accepted. For example, 
sendmail will not accept new connections if the load average is too high, so it is 
not a good target for this attack. 

Table 4.4 Process table signature. 

Protocol Specifics Effect 

TCP Large number of connections initiated Locks up the system 

Example: 

07:42:16.57172.16.43.19.1233> 10.10.2.23.79: S 

07:42:16.64172.16.43.19.1234> 10.10.2.23.79: S 

07:42:17.06172.16.43.19.1235> 10.10.2.23.79: S 

Comment: 

There is no way to filter or detect this at the single packet level. 

One must tally the number of connections between machines. 

One example of this attack is to initiate a large number of finger sessions. 
The finger program is a method of sharing information about users that pre-dates 
the Web. Some earlier versions of finger did not time out, which means that 
once you open a connection it stays open until you close it (or the machine is 
rebooted). Each connection gets its own process ID, and if enough connections 
are initiated, eventually the process table is full. This is particularly annoying to 
anyone legitimately using the machine since any command will generate a "no 
more processes" message and fail to execute. 

A related phenomenon is caused by a program using all the machine memory. 
If a program allocates all the memory that the machine has (including most of the 
swap space), typing any command (even Is) will cause a core dump (the program 
crashes). This is usually the result of a programmer not taking care to check the 
available memory before allocating, but it could also be the result of a worm or 
other malicious code. 

4.3.1.5 Targa3 The Targa3 attack sends a combination of illegal packets to 
the victim machine. These malformed packets cause some systems to crash, and 
even those that are not specifically harmed by the packets will use up resources 
dealing with the packets. These packets have one or more of the following: 

• Invalid fragmentation, protocol, packet size, or IP header values; 

• Invalid options; 
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Fig. 4. 1 A Smurf attack . 

• Invalid TCP segments; 

• Invalid routing flags. 

Rather than list all possible malformed packets (which would be necessary for 
a tcpdump filter), the way to detect this attack is simply to check each incoming 
packet for legitimacy. 

4.3.1.6 Smurf Attack The Smurf attack has three participants: the attacker, 
the target, and an intermediary who is fooled into actually mounting the attack. The 
attack is depicted in Figure 4.1. The attacker constructs echo request packets (ping) 
with the target as the source IP and the intermediary as the destination IP. These 
are broadcast, to maximize the number of machines responding. The machines 
at the intermediary network all respond to the echo request with packets destined 
for the target machine. The target machine cannot process the large number of 
packets received and goes down under the load. At the very least, it is unable to 
process legitimate connections and so is effectively cut off from the network. The 
signature is shown in Table 4.5. 

Note that, from the target's perspective, the attacker does not appear in the 
network trace. Only by looking at the intermediary network's logs (if they are 
kept) can the attacker be traced. 

4.3.1.7 Syslogd Attack The syslogd attack kills the syslogd demon on a 
Solaris server. Older versions of this demon would crash if given a source address 
with no DNS entry, so the attack consists of packets sent to the syslog port, where 
the source IP address has been spoofed to be one without a DNS entry. The 
signature is shown in Table 4.6. 

Note that we cannot tell that there is no DNS entry for the source without doing 
a DNS lookup ourselves. This is unnecessary since none but our own machines 
should be connecting to our syslog. These should be blocked at the firewall, so the 
attack should fail on any reasonably secure network even ifthere are old, unpatched 
Solaris machines on the network. (Of course, a reasonably secure network should 
not have unpatched machines on it in the first place.) 
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Table 4.5 Smurf signature. 

Protocol Specifics Effect 

ICMP Echo requests sent to broadcast with the Target taken off the 

target host spoofed as the destination 

Filter: icmp and (ip[l9] = 255) or (ip[l9] = 0) 

Comment: 

network 

This only detects attempts to use your network as an intermediary. Filtering 

for ICMP echo replies combined with further processing to count the 

number of packets to any individual machine is necessary to detect a Smurf 

attack. A solution is to deny ICMP echo replies at the firewall unless they 

are in response to an outgoing ICMP echo request. This requires a stateful 

firewall. Some people advise blocking (nearly) all ICMP packets at the firewall. 

4.3.1.8 Teardrop Teardrop takes advantage of the fact that some older TCPIIP 
implementations do not properly handle overlapping fragments. An attacker sends 
a series of packets carefully crafted to look like a normal packet that has been frag­
mented but such that the fragments overlap instead of being disjoint. The receiving 
machine crashes. An example is given in Table 4.7. 

4.3.1.9 UDP Storm UDP storm causes two of your machines to attack each 
other. The idea is that there are a number of ports that will respond with another 

Table 4.6 Syslogd signature. 

Protocol Specifics Effect 

TCP Source host has no DNS entry syslogd crashes 

Example: 

11:23:17.42172.16.51.2137> 10.10.13.32.514 S: 

Filter: tcp and (dst port 514) and not (src net 10.10.) 

Comment: 

Look for external connections to the syslogd port. 
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Table 4.7 Teardrop signature. 

Protocol Specifics Effect 

UDP Fragmented packet, fragments overlap Locks up system 

Example: 

07:21:33.21172.16.123.37.23453> 10.10.2.23.53: udp (frag 1213:350@0+) 

07:21:33.21172.16.123.37.23453> 10.10.2.23.53: (frag 1213:300@350) 

Filter: udp and (ip[6:1] & Ox20 != 0) 

Comment: 

This only detects fragmented UDP packets. 

One must then check to see whether the fragments overlap. 

packet if a packet is sent. Echo (port 7) and chargen (port 19) are this way. Echo 
will echo the packet back, while chargen will generate a stream of characters. 

Consider a UDP packet with source port 7 and destination port 19. The packet 
generates some characters from the destination machine, headed for the echo port 
of the source machine. The source machine echoes these packets back, generating 
even more packets, and so on. Eventually, both machines are spending all their 
time sending packets back and forth until one or both of them go down. See Table 
4.8 for the signature. 

As a matter of course packets that come from outside your network that have 
a source IP address inside your network should be blocked at the firewall. These 

Table 4.8 UDP storm signature. 

Protocol Specifics 

UDP Source Port: 7 

Destination Port: 19 

Example: 

Effect 

Both hosts lock up 

11:23:17.4210.10.2.34.7> 10.10.2.37.19 

Filter: udp and (src port 7) and (dst port 19) 

Comment: 

Other ports can be used, as long as they both respond to packets. 
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are almost certainly spoofed packets. Even if they are not an attack they are an 
indication of something gone wrong. 

4.3.2 Probes and Network Mapping 

One of the first things an attacker needs to do is determine information about the 
hosts on your network. This includes a list of the IP addresses that are valid and 
the operating systems and services running on the hosts. Network mapping refers 
to the act of obtaining a list of the hosts on the network, whereas probing refers to 
methods for determining specific information about individual machines. 

A typical attack involves first mapping the network to determine the active ma­
chines, followed by probing select machines to determine the operating system 
and services running on the machine, selecting a service for which a known vul­
nerability exists, and launching an attack against the selected machine and service. 
We will discuss each of these topics in tum. 

4.3.2.1 Network Mapping The simplest network mapping technique is to 
send a ping to broadcast and see who replies. If the target network is the class B 
network 1O.IO.x.x, the attacker sends some packets such as 

11:42:16.33 attacker. com > 10.10.255.255 ICMP: Echo Request 

Several packets are sent to ensure that the information is not corrupted by lost 
packets. The source address cannot be spoofed since the return packets must be 
examined. However, the attacker can send several packets with spoofed addresses 
along with the real ones in order to sow confusion. This kind of mapping attack is 
trivial to detect and can easily be blocked by a firewall that refuses to pass broadcast 
packets. 

Another approach is to send packets to every possible computer on the network. 
Using TCP, one selects a port that is passed by the firewall, and hence will get to 
the target machines, and then starts sending packets to each possible IP address. 
Suppose the firewall allows telnet (port 23) access from any IP address outside the 
network. Then, the first few packets in this scan look like: 

11:47:34.09 attacker.com.2213 > 10.10.1.1.23 S 
11:47:34.19 attacker.com.2213 > 10.10.1.2.23 S 
11:47:34.27 attacker.com.2213 > 10.10.1.3.23 S 
etc. 

Again, this is easy to detect if the attacker is this single-minded. If the target 
machines are randomized, however, and the packets are spread out in time (a so­
called low-and-slow scan), this kind of attack can be difficult to detect. There is a 
tradeoff of course. With over 65,000 possible machines in this network, sending 
one packet a minute results in a scan that takes a month and a half. If the attacker 
has the patience to do this, the attack may go undetected. However, it only takes 
one alert system administrator to see the connection attempt and become curious 
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and detect the attack. Also, one packet a minute might be too many; the attacker 
may want to send only one an hour, in which case this scan is not feasible. 

A more sophisticated attacker might try to target the scan more intelligently. 
For example, it may be enough for the attacker's purposes to find a small number of 
machines, in which case a randomized low-and-slow scan as above will probably 
be successful. It stops when enough machines have been detected. 

There are ways to make the scan harder to detect. The preceding scan used SYN 
packets, which are logged on many machines and which most intrusion detection 
systems watch. By simply changing the flag, one can make the scan harder to 
detect: 

10:47:34.33 attacker.com.2213 > 10.10.17.121.23 Sack 
11:13:21.24 attacker.com.2213 > 10.10.3.207.23 Sack 
12:11:11.53 attacker.com.2213 > 10.10.51.14.23 Sack 
etc. 

In this case, the scan looks as if the attacker is simply responding to a series 
of connection requests from machines on the target network. If the attacker is 
slightly more clever, the scan can look as though the target machines are simply 
Web surfing (port 80): 

10:47:34.33 attacker. com. 80 > 1O.1O.17.121.2214S ack 
11: 13:21.24 attacker.com.80 > 10.10.3.207.2043 Sack 
12:11:11.53 attacker.com.80 > 10.10.51.14.3219 Sack 
etc. 

In order to detect this kind of scan, the intrusion detection system must either 
be stateful (remember that there were no outgoing SYN packets to initiate the 
sessions) or keep a (current) list of all active machines on the network. 

Another option is to send reset packets: 

11:47:34.09 attacker.com.2213 > 10.10.17.121.23 R 
11:53:43.12 attacker.com.2213 > 10.10.3.207.23 R 
12:31:24.01 attacker.com.2213 > 10.10.51.14.23 R 
etc. 

Reset flags are used to indicate that something has gone wrong with a connection 
session and are passed by most firewalls (stateful firewalls can detect that the reset 
was not the result of an ongoing connection and deny it.) They are not logged by 
many hosts, and they are common enough that they are often ignored by intrusion 
detection systems. Again, unless the system is stateful, these have a very good 
chance of going undetected. 

Several examples of reset scans are discussed in Green et al. [1999]. Resets 
can be explained in a number of ways: 

• As discussed earlier, a reset is sent during the normal functioning of TCPIIP. 
For example, if a machine sends a SYN packet to a port that is not accepting 
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connections, a reset packet will result. Thus, an incoming reset that is in 
response to an outbound connection attempt is not an indication of a reset 
scan. 

• Incoming resets can be the result of an attack on a third party. As in the Smurf 
attack, if an attacker sends packets to a network with the source address 
spoofed, all the response packets (SYN/ACKs or resets, for example) go to 
the spoofed machines and can show up as if it were a coordinated scanning 
or denial-of-service attempt. 

• Reset scanning is an inverse mapping technique. If a machine receives a 
reset packet, it simply ignores it, sending no response. If, however, a router 
receives a reset packet destined for a machine that does not exist, it will send 
an ICMP error message indicating that the host does not exist. Thus, the 
inverse of the machines that generated a response is a list of the machines 
that are alive on the network. 

• A final use for resets as an attack tool is in TCP hijacking. To close off 
one side of a connection during a hijacking, a reset packet is sent. This is 
discussed in more detail in Section 4.3.3.2. 

Another use for network scanning is to look for installed trojans. Trojans are 
programs that are loaded on a system (often unknowingly by the legitimate users 
of the system) that have a sinister hidden purpose as well as their apparent one. 
The name comes from the Greek horse of the same name, of course. Some trojans 
listen at particular ports and, upon receipt of a packet to that port, announce their 
presence to the attacker. The attacker can then make use of the troj an to gain access 
to the machine. In some cases, the trojan gives the attacker complete control over 
the machine, even to the extent of turning on the microphone (if one is plugged 
in) and listening to conversations around the machine! We will discuss trojans in 
more detail in Chapter 7. 

4.3.2.2 Fingerprinting Fingerprinting is the term used for determining the 
operating system (or other unique identifier) for a system. For example, as we 
will see in Sections 4.9.1 and 4.9.2, there are programs that will perform this 
function for you, either actively (by sending packets to the machine) or passively 
(by analyzing the packets sent to your machine). 

As we will see later, fingerprinting can be done in a fairly deterministic manner. 
Different operating systems react differently to different stimuli, and their reactions 
can be used to do a pretty good job of operating system (OS) identification. 

However, this is not perfect, which means that there is a great opportunity for 
statistics to playa part. In this section, I will present some thoughts on this topic, 
although to my knowledge no one has attempted to apply statistical methods to 
the problem of (passive or active) operating system determination. 

Fyodor [1999] is one of the first papers to discuss operating system fingerprint­
ing. Let us consider some of the issues discussed in this paper, with a view to 
discovering areas in which the statistician may participate. 

Fyodor lists a number of techniques for OS determination. He is primarily 
interested in this paper in active fingerprinting, in which responses to crafted 
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packets are used to make inferences about the as of the probed machine. One 
obvious use for statistics would be to determine the best order of packets, so that 
we can reduce the number of packets sent prior to making an as determination. 
This would be a useful contribution. 

One basic technique in as fingerprinting is to send a packet with a strange flag 
combination. For example, an unexpected FIN packet will cause some systems 
to respond even though the "correct" action is to ignore the packet. Similarly, 
different ass will respond to strange flag combinations differently. Fyodor reports 
that early Linux implementations will leave the strange flags set in their response 
back. Thus, by looking at the response to these unusual flag combinations, one 
obtains information that can help to identify the operating system of the machine 
of interest. 

Another indicator that can be used is the pattern of sequence numbers chosen 
by the host. Is it random or deterministic? Fyodor reports that statistics computed 
on the sequence numbers (such as variance) can be be used to cluster operating 
systems. This requires a fair number of packets and so might be better as a passive 
fingerprinting technique. 

Many operating systems set the "don't fragment" bit as a matter of course, 
whereas others only do it under certain circumstances. Newer operating systems 
tend to set it more often than older ones. This is my favorite example because it 
allows the clustering of operating systems by considering a single bit (although 
obviously there are only two clusters). This could be used in either an active or 
passive fingerprinting system. 

There are various options available to an operating system for reporting errors 
via ICMP. For example, if a machine receives a large number of packets to a 
closed port, it need not generate an ICMP destination umeachable message for 
every one. Different operating systems make different choices about what to do 
in these optional situations. 

One of the richest areas for fingerprinting features is the options field. Obvi­
ously, since these are optional, operating systems are free to implement those they 
wish, and to use these pretty much whenever they wish. Thus, the pattern of their 
usage can be very useful in determining the as. 

Fyodor notes that a certain operating system (which will remain nameless) has 
not (apparently) changed the stack since 1995 (this is a hint). Thus, it is difficult to 
distinguish which version of the operating system the host is running, since they 
all act the same. One method (suggested tongue-in-cheek by Fyodor) is to start 
with old attacks against this operating system suite and work your way up the list 
until one of them succeeds. This is one reason why I prefer passive fingerprinting 
to active fingerprinting: the temptation to be bad can be quite strong. 

Now let us focus on passive fingerprinting. A good place to start learning about 
passive fingerprinting is Spitzner [2000]. Much of the preceding discussion is 
also relevant to passive fingerprinting. There are several issues unique to passive 
fingerprinting, however. We will look at these to search for potential applications 
of statistical methods. 

Passive fingerprinting, like active fingerprinting, uses the values of the header 
fields to guess the operating system of the originating machine. Examples of 
useful fields are the ones that allow for variability among operating systems, such 
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as TTL, window size, type of service, and whether the don't fragment flag is set. 
I conjecture that the value in the urgent pointer field is a potential key to operating 
systems if the urgent flag is not set. 

The first field mentioned, TTL, already points out an area worthy of investigation 
by the statistician. Since the initial value of this field is unknown (but is the value 
needed for as fingerprinting), one must estimate it. One method is to assume the 
original value to be the smallest power of 2 larger than the current value, or 255, 
whichever is smaller. An alternative would be to use other values to get a list of 
tentative ass and then, using the default values of the TTL for them, determine 
the best fit for the TTL. Since not all ass set the value to a power of 2, the second 
method is more likely to work than the first. 

The report by the Swiss Academic & Research Network [1999] gives a listing 
of the default values of the TTL for various operating systems. They make two 
observations up front. First, the guidelines for Internet hosts state that the default 
TTL must be configurable, which means that a sufficiently sophisticated attacker 
can change the default TTL (or the TTL value of any individual outgoing packet). 
Recall that this ability is critical to the functioning of traceroute (Section 1.9.5). 
Second, the default number must be larger than the diameter of the Internet. This is 
defined as the longest possible path between hosts (recall that loops are not allowed, 
so this is well-defined). Obviously, this brings up the interesting question of how 
one estimates the diameter of the Internet. 

The values of default TTLs for TCP packets given in Swiss Academic & Re­
search Network [1999] are: 30, 32, 60, 64, 128, and 255. Thus, given a packet 
with a TTL value of X, one must first determine whether it was originally set at 
one of these values or another value (which in itself provides information about 
the attacker) and, if so, which one. This seems to be an interesting problem to 
investigate. 

Note that if we take the advice given by the RFC (which is to set the value at 
twice the diameter of the Internet) and ignore the 255 value, we have the vendor 
estimates of the diameter of the Internet at (at least) 15, 16,60,32 and 64. 

Current methods for passive fingerprinting rely mostly on table lookups. The 
preceding discussion argues for a tree-based method. Given certain values of the 
parameters, one may impute the original value of the TTL and, using this estimate 
and the other values, make a decision. Since each field splits the possible operating 
systems into groups based on the value, a technique such as CART (Brieman et al. 
[1998]) seems like an obvious method to try. 

4.3.2.3 Probes Several services have known vulnerabilities that can be ex­
ploited by an attacker to gain access to the machine. Different versions of the 
software will of course contain different vulnerabilities, so it is important to deter­
mine not only which services the target machine is running but also which versions 
of the different services are running. 

First, the attacker determines the services running by a port scan of the target 
machine. The simplest is once again to scan all the ports, an approach that is 
easy to detect. Smarter attackers will only probe for ports that they know they can 
compromise: 
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13: 12:22.33 attacker.com.2113 > 10.10. 17. 12l.telnet S 
13:13:22.54 attacker.com.2114 > 10. 10. 17.121.smtp S 
13:13:22.73 attacker.com.2115 > 10. 10. 17. 121.finger S 
13:13:22.97 attacker.com.2116 > 10. 10. 17. 121.http S 
13:13:23.13 attacker.com.2117 > 10. 10. 17.1 21.imap S 
13:13:23.27 attacker.com.2118 > 1O.1O.17.121.rloginS 
13:13:23.41 attacker.com.2119 > 1O.1O.17.121.printerS 

Once a service has been detected, the easiest way to determine what version it 
is running is to look at the response it sent. For example, if one types the command 

telnet mycomputer.com 25 

one gets an answer like 

220 mycomputer.com ESMTP Sendmail 8.9.3/8.9.3; Sat, 8 Jan 2000 12:04:01 -
0500 

Typing help at this prompt results in 

214-This is Sendmail version 8.9.3 
214-Topics: 
214-HELO EHLO MAIL RCPT DATA 
214-RSET NOOP QUIT HELP VRFY 
214-EXPN VERB ETRN DSN 
214-For more info use 'HELP <topic>'. 
214-To report bugs in the implementation send email to 
214-sendmail-bugs@sendmail.org. 
214-For local information send email to Postmaster at 
214- your site. 
214 End of HELP info 

In this manner, many of the services will tell the attacker what version of the 
software is running and even provide simple help menus for the novice attacker. 

Most intrusion detection systems have a list of ports that are considered "bad" 
and will result in an alert if a packet is sent to one of these ports. An example list 
is shown in Table 4.9. 

Of course, one may want to run some of these services on some of the machines 
on one's network, so a single global list like this is probably inappropriate for most 
real networks. Instead, one might add a list of the machines that are running the 
services listed plus a list ofthe machines (or networks) that are allowed to access 
those services. 

4.3.3 Gaining Access 

Most of the techniques for gaining access to machines are better discussed in 
the chapter on host monitoring, Chapter 5. However, there are some that can be 
detected via network monitoring, and we will discuss these here. 
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Tab/e4.9 An example "bad ports" list. 

Port Number Protocol Service Comment 

<20 TCP,UDP Low-numbered ports 

23 TCp,UDP Telnet 

25 TCP,UDP SMTPEmail Many vulnerabilities 

53 TCP DNS Zone transfer 

79 TCP,UDP Finger Vulnerabilities 

111 TCP,UDP sunrpc Vulnerabilities 

143 TCP,UDP IMAP Vulnerabilities 

666 TCP,UDP Doom Networked game 

4.3.3.1 Password Guessing Most machines allow some form of remote 
access, such as telnet, rlogin, FTP, ssh,. These require a user name and a password. 
User names are relatively easy to obtain. Many systems use the user name as the 
email address, so one can obtain user names from email, Usenet postings, or by 
doing email searches on the Web. Also, most operating systems have specific user 
names for particular tasks: root, lp, admin, guest, and so forth. 

Once one has a user name and has determined that a service is running (such as 
telnet) to allow remote access, one can attempt to log in as that user. If the system 
is poorly maintained, some of the accounts may not even require a password (in 
the past, Silicon Graphics machines were shipped with no password for the user 
"lp"). Otherwise, one can try to guess the password. 

From the perspective of network monitoring, password guessing shows up as 
a large number of connections to telnet (or whichever service is utilized) that end 
abruptly. If one looks at content, these are obvious from the number of different 
passwords attempted. Of course, people are often forgetting their passwords, and 
so this could simply be the legitimate user trying likely passwords. However, any 
such attempts should be investigated. 

It should be noted that in spite of the movie portrayals, guessing passwords in 
this manner is particularly ineffective. A better way to determine a password is 
either through social engineering or by obtaining the password file and running a 
password cracking program on it. 

Social engineering is one of the most useful tools for a hacker intent on unau­
thorized access. For example, the user receives a call from someone claiming to 
be a representative of the manufacturer of the computer. It seems that there is a 
potential problem with one of the system files on the machine, and the company 
engineer needs access to an account so that it can be checked and, if necessary, 
fixed. This is all part of the maintenance agreement. Or the caller is a harried vice 
president who can't remember his password and needs to get his viewgraphs off 
the company server. If he can just get access to the machine for a few minutes 
he can download his viewgraphs to his laptop. Surprisingly, there are people who 
will dutifully provide the caller with an account on the machine. 
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4.3.3.2 TCP Hijacking TCP hijacking is a clever attack that takes advantage 
of the fact that computers generally only check things once. It also takes advantage 
of the fact that many (most?) operating systems are not written with security 
foremost in mind. This is the attack that Kevin Mitnick used against Tsutomu 
Shimomura's system, as described in Northcutt [1999]. See also Hafner and 
Markoff [1995]. 

Consider Figure 4.2. The attacker wishes access to computer A. The attacker 
knows that computer A trusts computer B. This has been determined by some 
intelligence gathering described in Northcutt [1999], pages 5-7. Recall how a 
connection is set up (see Section 1.5.4.1, Figure 1.8). A SYN packet is sent with a 
unique sequence number from B to A. A responds with a SYNI ACK and a unique 
acknowledgment number. B responds with an ACK. The idea of TCP hijacking is 
to pretend to be the trusted machine B, set up a connection, but have the connection 
be between A and the attacker rather than between A and B. In order to accomplish 
this, the attacker must perform the following steps. 

Machine A Machine B 

L. SYN Flood 

Fig. 4.2 TCP hijacking. 1. Attacker SYN floods machine B to make sure it does not 
respond to any packets from machine A. 2. Attacker initiates a connection with Machine A 
using a SYN packet spoofed to appear to be from Machine B. 3. Machine A acknowledges 
the connection. 4. Attacker sends an ACK packet with the correct sequence number 
to Machine A, finishing the three-way handshake. This assumes that the attacker has 
previously determined the sequence number algorithm that A uses, and has determined the 
next sequence number that A will use. 

1. Determine the next sequence number to be used by A. 

2. Take B off the network so that it cannot respond. 

3. Send a SYN packet to A with B as the source. 
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4. Send an ACK packet to A using the acknowledgment number A expects, 
now with the source host as the attacker. 

The sequence number rule is determined by sending a series of connection 
requests to A and analyzing the sequence numbers with which it responds. Often, 
these use a simple algorithm such as adding a constant to the last number used. 
Once the rule has been determined, a SYN packet followed by a RESET is sent to 
determine the current sequence number. Then, the SYN packet is sent to initiate 
the connection. 

Machine B can be taken off the network with a SYN flood or similar denial­
of-service attack (Section 4.3.1.2). With B unable to respond to A's SYN/ACK, 
the attacker is free to jump in with the right response to the SYN/ACK, now with 
the attacking machine as the source IP address, and the connection is established. 
Further packets now proceed between A and the attacker. 

Why isn't the change in IP addresses detected? After all, the final ACK is 
coming from a different machine than the original S YN. Shouldn't this be noticed? 
The reason it generally is not noticed can be placed on the doorstep of the layered 
approach to networking. The IP address is at the IP layer, while the sequence 
number, which determines the connection to which the packet belongs, is handled 
at the TCP (protocol) layer. Thus, unless the TCP layer specifically looks back at 
the IP header to validate the connection, it does not keep track of the IP addresses 
at all. Similarly, since the IP layer does not handle the connections, it does not 
know to check that the IP addresses have changed. As far as it's concerned, these 
are just more packets to be forwarded to the protocol layer. 

Furthermore, A trusts the attacking machine. The first packet, which had B 
as the source address, was used to determine whether the machine asking for the 
connection is trusted. Once it was determined that B is a trusted machine, the 
connection is deemed to be with a trusted machine, and since the change in IP 
addresses is not noted, the attacking machine inherits this trust relationship. 

Hijacking is easy to detect and foil. A stateful firewall can notice that the IP 
addresses have changed and disallow the connection, and network monitors can 
watch for connections that change IP addresses in midstream. Also, hijacking 
can be discouraged by making sequence numbers difficult to guess. For example, 
Linux uses a random number generator to generate new sequence numbers, making 
it extremely difficult to hijack sessions in this manner. 

4.4 SHADOW 

SHADOW, which stands for Secondary Heuristic Analysis for Defensive Online 
Warfare, is a project developed at the Naval Surface Warfare Center (NSWC) for 
the purpose of detecting intrusion attempts into the network and correlating data 
across multiple networks. 

SHADOW is a suite of freely available software consisting of tcpdump filters, 
perl scripts, and Web pages for the detection and display of unusual or inappropriate 
packets. The system is designed to be configured to the network in order to 
allow security people to tune the filters as appropriate to their network. The 
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Sensor 

Firewall 

Internet 

~i~~i~ Internal Network 

Fig. 4.3 A typical SHADOW configuration. The sensor is passive with no IP address 
for the network card on the Internet. Special care is taken to ensure that no packets are sent 
out onto the external network by the sensor and that only connections from the analysis 
station, on the internal network card, are allowed. 

software also helps the security analyst to write and send intrusion reports, gather 
information on the intruder (through nslookup (Section 1.9.2) and whois (Section 
1.9.3) commands), and gather information on the security ofthe protected network 
(using nmap (Section 4.9.1». The software allows the monitoring of multiple sites 
and allows simple searches of the data to determine the context in which a suspected 
attack occurs or to determine the past activity of a suspected attacker. 

SHADOW is an "interval-based IDS," rather than a "real-time IDS." This means 
that the data are collected over a period of time (usually an hour) and processed in 
batches rather than having the system on-line, detecting attacks as they happen. 

The usual SHADOW setup (Figure 4.3) is to have two machines dedicated to 
SHADOW. The first, called the sensor, is a machine (usually a Linux box with two 
network cards) sitting outside the firewall. The second, called the analysis station, 
is usually a high-end Linux box, which resides inside the firewall. The sensor does 
little more than collect packets. On an hourly basis, it transmits (via secure shell) 
the last hour's worth of data to the analysis station for processing. Actually, for 
obvious reasons, the analysis station initiates the transfer, getting the data from the 
sensor rather than the sensor sending data to the analysis station unasked. 

The reason the sensor sits outside the firewall is to ensure that all attacks (even 
those that do not succeed in passing the firewall) are detected. Although firewall 
logs could be used to detect unsuccessful attacks, they are (surprisingly) not always 
available to the people doing intrusion detection. The people running the network 
(and hence the firewall) are not always the people in charge of security, even 
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network security. This seems counter-intuitive (and it is), but is not that uncommon. 
It clearly is not the best model for security. 

Some people advocate having a second sensor inside the firewall. This allows 
the security officer to determine which packets passed the firewall and which were 
knocked down (by differencing the inside and outside files). It also gives a second 
line of defense, protected by the firewall, in the event that the outside sensor is 
taken out. 

There are some differences of opinion about how the sensor should be config­
ured. One model is to have a single network card and have all communication with 
the sensor go through the firewall. This has the disadvantage that it increases the 
load on the network (as the packets are sent to the analysis station). It also means 
that the sensor is visible to the outside since it needs to have an IP address. 

An alternative is to give the sensor two network cards. The first, connected to 
the incoming network, is a read-only interface (made so with software, or by a 
judicious use of wire cutters). This is the sensor card, which watches the traffic and 
makes copies of all the packets. This card does not have an IP address associated 
with it, so the sensor is relatively invisible to the outside world. Since it is read­
only, the sensor cannot be used to send information out even if it is compromised. 
The second card is connected to a local area network inside the firewall, which 
also serves the analysis station. In this manner, the data transfers do not impact 
on the protected network, and the sensor is protected by the firewall. 

The downside to the preceding model is the extra hardware involved (not a big 
burden), and the fact that the local area network does provide a passage around the 
firewall. This passage is not easily accessible from the outside since the read-only 
interface and the lack of an IP address make this a difficult target to exploit, yet 
there is at least a theoretical possibility of data (for example, malicious code) being 
transferred inside without going through the firewall. 

After collecting an hour's worth of data, the packets (in tcpdump binary format) 
are compressed (using gzip, a public domain compression utility) and sent to the 
analysis station via secure shell. Thus, the analysis station works on files in one 
hour increments. The collection times overlap slightly to ensure that no packets 
are missed during the transition between the hourly data collections. 

The analysis station processes the file by first uncompressing it and running its 
tcpdump filters on the packets. Those packets that pass the filters are considered 
"suspicious" and will be displayed on a Web page. Other statistics, such as the 
number of different machines a host tried to access, are calculated, and those above 
a (user settable) threshold are also added to the Web page. 

The suspicious packets are then sorted by outside IP address, and all the sus­
picious packets from a given IP address are shown together (in time order) on the 
Web page. The analyst can then look at each hour's worth of data, decide which 
constitute attacks worth reporting, and generate a report containing the suspicious 
packets, and host identity information. 

Multiple sensors can report to a single SHADOW analysis station. This can 
be used to monitor the traffic inside one's network to watch for insider attacks. It 
can also be used to implement enterprise-wide monitoring. I am aware of several 
organizations that use SHADOW to monitor several sites, utilizing one to two 
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analysts for the monitoring. The data for each site is transferred to the central 
headquarters where the SHADOW filters are applied. 

Doing all the monitoring at a central site works well if the monitored sites do not 
have too much traffic and are relatively homogeneous. It makes sense for larger 
organizations to have an analyst at each site, with only intrusion reports forwarded 
to the central site. These choices are left entirely up to the organization using the 
software. 

One of the philosophies behind SHADOW is that the analyst needs more infor­
mation than a flashing red light saying an intrusion has been detected. SHADOW 
provides this information by allowing the user to pull up all the data relevant to a 
particular suspicious event and even to search past data for similar activity. This 
allows the analyst to do a better job of determining the true nature of the suspicious 
event. 

Another side of this philosophy is that events that are probably not attacks but 
might be precursors, or simply of interest to the user, are reported. For example, 
a site may want to see any traceroute (Section 1.9.5) attempts to the site because 
this is a standard information gathering technique. Although a single traceroute is 
in and of itself not an attack, it can provide a heads-up to alert the security officer 
to watch for future activity from the source network. 

In addition to monitoring, since SHADOW keeps all the packet headers, the 
data can be archived to allow historical searches and statistical analysis. Since the 
data can be quite large, it is a challenge to maintain a database with more than a 
few month's worth of data unless one uses data reduction methods. 

To get an idea of the magnitude of such project here are some statistics. A 
typical day's worth of data at NSWC is about 2 Gigabytes (compressed). The file 
for llAM-12 Noon, April 3, 2000 was 22 Megabytes (compressed) consisting of 
just under a million packets. It is important to note that this is a peak time, early 
morning and late night traffic is much less. 

SHADOW does not search the content of the packets, so only the headers are 
stored. This is adjustable, up to full content, if desired. There were scripts origi­
nally for searching content, but these are not a part of the SHADOW distribution. 
Keep the preceding discussion about data sizes in mind before you consider going 
to full content. 

A possible extension to SHADOW would be to add snort (Section 1.9.7) to allow 
content searching and more specific signatures through its more extensible filtering 
capability. Since snort uses tcpdump binary format files just like SHADOW, it is 
a simple matter to add this functionality in an ad hoc manner if desirable. 

4.5 ACTIVITY PROFILING 

Profiling the activity on the network is the act of collecting statistics that give a 
summary of the kinds of activities that are naturally occurring on the network. 
This gives a picture of the normal traffic on the network, which can be used to 
detect intrusions as deviations from this normal behavior. It can also be used to 
get a better understanding of the machines on the network by clustering machines 
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into specific activity clusters. We will look at several ways of constructing these 
profiles. 

First, one must know what services are running on the different machines on 
the network and to what extent each machine is accessed through the various ports 
available. One could collect these data by interviewing the system administrator 
for each machine or by requiring this information as a condition of operation, or 
one can probe each machine with a scanner such as nmap (see Section 4.9.1) to 
determine which ports respond to access attempts. 

Another approach is to consider the services running as they are represented in 
the network traffic. For example, to determine which services are running under 
TCP on each machine, and their relative levels of activity, we could tally the 
number of SYN packets sent to each port, keeping a separate tally for each port. 
This represents the activity levels of services that are requested from outside the 
network. Alternatively, we could tally the SYN/ACKs from our network to the 
outside, which represents the subset of those services requested that are actually 
available on the machine. Finally, we could consider the outgoing SYN packets for 
each destination port, which represents the kind of services the machine typically 
attempts to access from other machines. 

These three tallies represent the activity of the machine. We can cluster ma­
chines based on these activity vectors in a number of ways. It seems reasonable to 
cluster the machines by each activity vector individually, so that one gets clusters 
for each of the three types of activity of interest. Alternatively, one can cluster the 
machines by the combined activity represented by the three vectors. 

Once we have the activity profiles for the machines, we can look for deviations 
from these "normal" activity profiles. Intrusions can be detected by looking for 
activity that has not been seen before on a given machine or activity levels that 
are greater than is normal. Thus, activity profiles give a way of detecting possible 
intrusions by the detection of outliers. 

If we also keep track of which machines normally interact with a given machine, 
we can detect when new machines attempt access, which can be used as an indicator 
of possible attacks. 

With machines clustered by activity level, a different kind of outlier can be 
investigated: those machines that do not fit well into any cluster. These are the 
machines that are unusual when compared to the rest of the machines on the 
network. This information can be used to determine which machines require 
specialized attention. It can also be used to detect machines that may have security 
holes, such as trojan programs installed on them. 

We will consider an activity profile for a given machine (or cluster of machines) 
to be a vector of counts or probabilities. Each count is associated with a specific 
activity, such as TCP SYN packets sent to a specific port. 

There is an important issue to address. How should the vectors be collected? 
Should one simply average the number of activities per hour without regard to 
which hour of the day or night it is? This does not seem to be the best way to 
approach this problem. An alternative would be to keep an individual tally for 
each hour of the day. This results in multivariate data, which could be viewed as 
functional data. If one also makes a distinction between the days of the week, the 
activity vector for a given machine/port pairing can be thought of as a function 
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Fig. 4.4 An illustration of hierarchical clustering. 

indicating the average number of packets within a given time period (say one hour) 
at any given time of the week. 

4.5.1 Clustering by Activity Level 

Clustering is an inherently difficult problem, due in part to the difficulty of defining 
clusters. Different algorithms are appropriate to different definitions of a cluster, 
and it is not always apparent what definition is appropriate for a given problem. A 
good reference for clustering algorithms is Everitt [1993]. 

Several different clustering algorithms will be described later. Here we will 
describe one of the most common techniques, hierarchical clustering. 

Hierarchical clustering has two main variants, agglomerative and divisive. We 
will only consider the agglomerative method here, see Everitt [1993] for more 
information on this and other clustering methods. The idea of agglomerative 
clustering is initially to place each observation in its own cluster. Subsequently, 
the two closest clusters are merged, and this is repeated until there is a single 
cluster. This is illustrated in Figure 4.4. 

To decide which clusters to merge, the distance between clusters is computed, 
and the two clusters with the smallest distance are merged. Different definitions 
of cluster distance result in different properties of the clustering. Three common 
definitions are illustrated in Figure 4.5. In complete linkage clustering, the distance 
between two clusters is taken to be the distance between their furthest points. This 
results in clusters that are tight since large clusters are necessarily far from all other 
clusters. With nearest-neighbor clustering (the distance used in the approximate 
distance clustering method described later), the distance is taken to be the minimum 
distance between points in the clusters. Other possible distances are the group 
average (compute the average distance between points), or the distance between 
the means (possibly scaled by inter-group covariance). 
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Fig. 4.5 An illustration of distances used in clustering. 
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Hierarchical clustering results in a tree of clusters, from the root, consisting of 
the cluster of all the data, to the leaves, consisting of a separate cluster for every 
observation (see Figure 4.7). This presents one with the problem of deciding the 
proper set of clusters for the data. This is not unique to hierarchical methods. In 
fact, all clustering methodologies require some way to determine the number of 
clusters to use and validate the clusters chosen. 

As we will see later, many of the most useful techniques are subjective, utilizing 
some clever visualization technique to depict the clusters and then relying on the 
training of the data analyst to decide whether the clusters are well-chosen or not. 
There are also a number of quantitative techniques available. 

If one has the luxury of using tagged data, where each observation has a tag 
(class label) associated with it, one can validate the clusters by determining their 
"class purity." For example, suppose one had data measured from K users, where 
each observation consisted of measurements taken from one session (for example, 
keystroke timings on a password). After clustering the data (without using the user 
information in the clustering), one could assign to each cluster a class label (based 
on the observations clustered in the class) and a purity based on the percentage of 
observations whose associated user matched the cluster label. 

One generally does not have pre-classified data of this sort when tackling a 
Clustering problem. Usually, the whole point is that there is no a priori information 
about the clusters, so one needs a method for validating the clusters without this 
extra information. This requires some measure of cluster "goodness," which is 
then computed for the clusters at hand. 

For example, generally one thinks of clusters as being groups of observations 
that are distinguished from other groups by being closer to each other than they are 
to the other groups. Figure 4.6 depicts data grouped into three clusters, indicated 
by the different plotting symbols. Most people would agree that these data are 
correctly clustered (although some might argue the point). These clusters have 
the property that for each cluster the within-cluster variance is smaller than the 
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Fig. 4.6 An example of simple clusters. 

between-cluster variance, which is a measure of cluster purity for symmetric ("ball­
like") clusters such as these. These clusters are easy to distinguish, both by the 
eye and using clustering algorithms. 

4.5.2 Visualizing Clusters 

Given data that have been clustered, we want a method for deciding whether the 
clustering algorithm has produced a "good" set of clusters. There are a number of 
quantitative measures of goodness that can be used (see any book on clustering, 
for example Everitt [1993]) but it is important to be able to look at the data and the 
cluster structure and assess by eye whether the clusters are appropriate. This is not 
a substitute for the quantitative assessors since the eye can be fooled, particularly 
with high-dimensional data, but it is a useful addition. However, as we have seen, 
visualizing high-dimensional data is quite difficult. In this section, we will consider 
methods for visualization that are appropriate for visualizing cluster structure. 

4.5.2.1 Dendograms A dendogram is a plot depicting the tree structure of a 
hierarchical clustering algorithm. The tree depicted in Figure 4.4 depicts a small 
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dendogram. The branches connect the sets to those in which they are subsequently 
grouped. 

Another example is provided in Figure 4.7. This depicts a famous data set that 
relates certain measurements on flowers to the species of the plant. Three different 
species are represented in the data. Starting at the top of the figure, we can see 
that if one wishes to cluster these data into two clusters, the data will be split 
roughly in two, with Setosa in one cluster, Virginica in the other, and Versicolor 
split between the two clusters. By traversing the tree, we can infer quite a bit about 
the cluster structure of the data, even though the data may be too high-dimensional 
to be conveniently investigated through scatter plots (in this case, the data are 
four-dimensional). 

4.5.2.2 Color Histograms and Data Images It is difficult to display high­
dimensional data in a manner that is readily interpretable to humans. Several 
approaches have been suggested, including pairs plots (Section 2.5.2), parallel 
coordinates (Section 2.5.3), and color histograms (also called "data images"). 
Some techniques are described in Solka et aI. [2000]. 

For our purposes, we will use the terminology "color histogram" and "data 
image" fairly interchangeably, but there is a distinction that can be made. In 
essence, the color histogram is an image of the data, with the only processing 

N 

o 

Fig. 4.7 An illustration of hierarchical clustering using the Fisher iris data (Fisher [1936] 
and Anderson [1935]). The three species of iris - Setosa, Versicolor and Virginica - are 
denoted S, C and V respectively. 
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being binning the data (if desired) and selecting the mapping from the observation 
domain to the color or gray scale of the image. With data images, it is customary to 
group the data, using a (usually hierarchical) clustering algorithm, so that similar 
observations lie close to each other. One can also sort the variables, to improve 
the visual impact of the display. 

The first example of a data image that I am familiar with is in Ling [1973]. This 
paper is worth looking at for the graphics alone (remember that this was written 
in 1973). The author uses character graphics to display a data image. One version 
of the data image is described in Minnotte and West [1998]. 

Shoch and Hupp [1990] use data images to display the progress of a worm, 
plotting the source IP against the destination IP for traffic during its propagation. 
This is a simple but effective graphic, showing the worm moving from machine to 
machine in a staircase pattern in the plot. 

The genome analysis community has made good use of the color histogram. 
For example, Eisen et al. [1998] use a data image to display gene expression as 
a function of time, with the genes clustered using a hierarchical clustering tech­
nique. They depict the dendogram, colored by cluster, next to the color histogram, 
producing a particularly impressive graphic. These days, with the interest in the 
Human Genome Project, nearly every issue of the journal Science has a data im­
age in it displaying information about gene expression or such. This is further 
evidence that the technique is a useful and powerful one. 

Figure 4.8 illustrates a color histogram for 300 observations from the 20-
dimensional density 

(4.1) 

where J-tl is zero for ten variables and 3 for ten (randomly selected and unknown 
to the data analyst) variables. Similarly, J-t2 has ten zeros and -3 in ten randomly 
selected variables. I corresponds to the 20-dimensional identity matrix. (For 
the purposes of demonstration, there were actually 100 observations generated 
from each of the components rather than generating data from the distribution of 
Equation (4.1) directly. The data were then randomized.) 

Note that although we call this a "color" histogram, all our graphics are in gray. 
This is in part due to the desire to reduce the expense of producing (and hence 
purchasing) this book and in part due to the fact that unless care is taken, color can 
create unnecessary confusion. The exception is when color can be used to encode 
specific information, such as a priori groupings of the data. This is used to good 
effect by the gene expression researchers (Eisen et al. [1998]). It is unnecessary 
for the data we are interested in here. 

Looking at Figure 4.8, it is clear that there are approximately ten variables 
(rows) that are darker than the others, indicating the effect of the two nonzero 
means. However, we have no way of telling from this figure whether there are 
one, two, three, or more populations in the data. All we can really tell is that the 
variables are not identically distributed. 

Figure 4.9 shows the same data as a data image, where both the observations and 
variables have been grouped (independently) using a complete linkage agglomer­
ative hierarchical clustering algorithm. The three clusters are clearly evident. 
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Fig. 4.8 An example of a color histogram for 300 observations of 20-dimensional data 
from a three component distribution. The x-axis corresponds to the observations and the 
y-axis corresponds to the variates. 

Another way to analyze these data is to compute the interpoint distance matrix 
and display this as a data image. The interpoint distance matrix is a matrix where 
the (i, j)th entry is the distance between the ith and jth observations. This is 
grouped, again with a hierarchical clustering algorithm, and displayed in Figure 
4.10. Since the interpoint distance matrix is symmetrical, both the rows and the 
columns are grouped using the same scheme. This results in a symmetrical image. 
Black corresponds to small distances (note the diagonal black line, corresponding 
to a distance of zero between observations and themselves). The three clusters are 
clearly evident as dark squares along the diagonal. 

Figure 4.11 depicts the dendogram associated with the data image of the in­
terpoint distance matrix in Figure 4.10. The three clusters are clearly evident in 
this figure. In some sense, the data image is a picture of the dendogram, with the 
added information of the relative values of the observations coded as a gray scale 
or color value. 

One issue that I have not seen addressed is that, like the pairs plots of Section 
2.5.2, the data image of the interpoint distance matrix is redundant. It would be 
interesting to consider informative uses for the upper triangle of the plot. One 
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Fig. 4.9 A data image of the data in Figure 4.8. Both the observations and the variables 
have been grouped with complete linkage hierarchical clustering algorithms. 

potential use would be to plot a second distance metric. This is an area for future 
work. 

A use of the data image that to my knowledge has not appeared in the literature 
is its use to detect outliers. Figure 4.12 depicts the interpoint distance matrix of 
the data in Figure 4.10, except that three of the observations have been modified 
to be outliers (by adding 5 to each of their variates). This image has been inverted 
for display purposes; white now corresponds to small values and black to large, 
instead of the other way around. Since the diagonal must always be zero in the 
interpoint distance matrix, one can easily tell the color scheme by examining the 
diagonal of the image. 

The outliers show up clearly in this image as a "v" of dark color in the bottom 
left of the image. Thus, outliers can be detected visually as either a "v" or a "+" in 
the data image. Further, this is particularly useful for detecting outlying clusters 
since these outliers will show up as broader bands of black with a small gray or 
white square in the center of the "+" (or the vertex of the "v"). 

This latter is particularly important for computer security. After all, attacks 
on a computer or network are, by definition, outliers. Provided we can choose 
an appropriate way to map network data into vectors, we can use data images to 
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Fig. 4.10 A data image of the interpoint distances of the data depicted in Figures 4.8 and 
4.9. 

detect these outliers and hence the attacks. This is not a trivial caveat, but it does 
provide promise for future work. 

Fig. 4.11 A dendogram of the data depicted in Figures 4.8 through 4.10. 
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Fig. 4.12 A data image of the interpoint distances of the data depicted in Figures 4.8 
where three of the observations have been changed to be outliers. These are clearly evi­
denced as a dark "v" with vertex in the lower left. The gray scale has been inverted in this 
image for display purposes. 

4.5.3 An Example 

An organization wanted to know what kinds of machines (e.g., mail servers, Web 
servers) were active on its network. This might seem like a strange request, since 
many organizations have some kind of accreditation procedure that must be fol­
lowed before a machine can be installed on the network and so have a list of the 
active machines. Several things can go wrong with this, however: 

-. Machines can have new applications installed without informing manage­
ment. 

• Machines can be installed without notification of management by simply 
taking the IP address of a machine that was accredited but is no longer used . 

• Some facilities have subnets that are not the purview of the security manage­
ment. These subnets sit behind a firewall, and the machines on the subnet 
are not accredited by the normal means. Only the firewall is accredited. 
The organization that owns the subnet is then responsible for its security 
and management. 
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• Some sites (particularly military sites) have several organizations behind 
their perimeter firewalls. The security managers of the site may not have 
specific information on the machines used by other organizations . 

• Some sites (particularly universities) have very lax accreditation policies 
and allow quite a bit more freedom on their networks. 

The organization that commissioned the study does not want its data used, even 
after scrambling the IF addresses. Instead, we collected data from another network 
to use as an example of the approach. 

To investigate the activity on the network, we collected data for slightly less than 
2 months. These data consisted of hourly counts, where for each IP address/port 
pair we counted the number of outgoing SYN/ ACK packets within an hour. The 
network was a Class B network, consisting of all machines with a 10.1O.x.x IP 
address (the IP addresses have been changed throughout). The active machines 
are displayed in Figure 4.13. In this figure, the axes correspond to the third and 
fourth octets of the IF address, and a black dot corresponds to a machine with 
activity during the two-month period. Thus, the coordinate (23,192) corresponds 
to the machine 10.10.23.192. In order to further protect the information about the 
network, the IP addresses have been scrambled. 

There are 64,270 machines "active" on this network (Figure 4.13, upper left). 
If we consider only those machines with four or more packets (Figure 4.13, lower 
right), there are only 929 machines. What is going on? Are there really 64K 
machines on this network? A DNS lookup at the site gives an answer much closer 
to 2K registered machines. The answer, I believe, is a helpful firewall. My guess 
is that the site has a proxying firewall, which initiates the session for the protected 
network prior to checking to see whether the destination machine exists and is 
accepting connections. Whether this is intended or not is unclear. The site has, 
off and on, had a proxying firewall but has not been consistent in its use. I have 
not been able to verify that this is what is happening in these data. I do know that 
several large scans appear in the data, which would account for access attempts 
at nearly the entire address space. This would not normally result in outgoing 
SYN/ ACK packets from nonexistent machines, however, so something must be 
producing these packets. 

To get an idea of the amount of data in this two-month period, Figure 4.14 
shows the (natural) log of the number of outgoing SYN/ ACK packets to the 929 
machines indicated by Figure 4.13 (bottom right), sorted by activity. Note that the 
most active machines have approximately 3 million connections in this time period, 
which corresponds to 50,000 connections per day. Some of this is a result of scans, 
some due to services such as Web and FTP, which generate many connections per 
session, and some due to hosting multiple services on one machine. 

The same visualization idea as in Figure 4.13 can be applied to the ports ac­
cessed. By treating the 2-byte port number as two individual coordinates between 
o and 255, we can plot the port accesses in an image in much the way we did 
with the IP addresses. Figure 4.15 shows the port accesses in the data. There are 
19,621 distinct ports accessed (Figure 4.15, upper image). If we restrict to only 
those ports accessed at least four times, this reduces to 56 distinct ports (Figure 
4.15, lower image). These correspond to the "active" applications on the network. 
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Fig. 4.13 Active machines on a Class B network. The axes correspond to the last two 
octets. The upper left image shows all machines (in black) that have had at least one 
outgoing SYNI ACK packet in a two-month period. The upper right image consists of those 
machines with at least two outgoing SYN/ACK packets. The lower left and right images 
are those with three or four outgoing SYN/ACK packets, respectively. 

In both examples, the number four is chosen arbitrarily. We want to eliminate 
nonexistent machines, and ports that are used very rarely, because we are trying to 
obtain an understanding of "normal" behavior. If we were looking for "abnormal" 
behavior, we might take a different approach. 

The first few active ports (ordered by port number, not by amount of activity) 
are: 

21 FfP 

22 SSH (secure shell) 

23 Telnet 

25 SMTP (email) 
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Fig. 4.14 Dot plot of the log of the number of accesses to the 929 machines in Figure 
4.13, bottom right. 

53 DNS (domain name service) 

79 Finger 

80 HTTP (WWW) 

These applications will probably be found (with the possible exception of finger) 
on nearly any network in the world. 

It is interesting to consider the upper image in Figure 4.15. There is a band of 
active ports in the low number ports, which makes sense. These are the common 
applications such as those listed earlier. They are also applications that would be 
scanned for by an attacker. The band near the middle corresponds to the large 
number of applications that allocate a port for data transfers. These port numbers 
don't necessarily mean anything by themselves, because any application can use 
them. They have a low number of accesses, as evidenced by the lower image in 
Figure 4.15. This is primarily a result of the fact that there are a large number of 
ports from which to choose, so most machines do not recycle them very quickly. 

The 56 ports with at least four accesses are depicted in Figure 4.16. This is a 
dot plot of the log of the number of accesses. It is not surprising that email is the 
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Fig.4.15 Active ports for the machines in Figure 4.13. The upper image corresponds to 
all active ports, while the lower image corresponds to those ports for which some machine 
responded at least four distinct times. The axes correspond to the first and second bytes of 
the port number. 

most popular port by far. Secure shell and secure Web (https) are the next most 
common, which is also reasonable for a relatively security-conscious site. 

Figure 4.17 depicts the color histogram of the activity vectors. In this plot it is 
difficult to discern much structure. It is clear that there are two or three ports that 
are quite common across many machines. Thus, we would feel confident stating 
that there appear to be several clusters (those that have these services and those that 
do not), but it is impossible to determine the cluster structure from this unsorted 
plot. 

Figure 4.18 depicts the data image of the data from Figure 4.17. Now, the clus­
ters are much clearer. There are a number of small clusters, which are somewhat 
difficult to discern, followed by four or five clear clusters corresponding to the use 
of four distinct ports. Note that even in this picture it is difficult to decide exactly 
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Fig. 4.16 Dot plot of the log of the number of accesses to the 56 ports depicted in the lower 
image in Figure 4.15. The vertical axis corresponds to port numbers, while the horizontal 
axis corresponds to the log of the number of accesses. 

how many distinct clusters there are in these data. This is pretty much always the 
case when dealing with real data. 

The dendogram for the activity vectors is depicted in Figure 4.19. This is 
difficult to interpret due to overplotting, which results from the large number of 
observations. This figure illustrates the difficulty of adequately displaying large 
dendograms within the constraints of static media (such as paper). 

Figure 4.19 also points to a subtle problem with visualization techniques such 
as those discussed in this section. When the number of observations is large, 
there is a very real probability of overplotting. In fact, with color histograms, 
overplotting is certain whenever the number of observations exceeds the number 
of pixels in the image. This is precisely why binning is implemented (hence the 
name "color histogram"). Thus, in Figure 4.18, we can really see only a portion 
of the observations and hence the clusters. 

To illustrate this, consider Figure 4.20. Here we have zoomed in to the right­
hand side of Figure 4.18, the last 150 machines. We can see several things in this 
plot. For example, we note that there are several singleton machines on the far 
right that did not show up in the original plot. Further, we see some structure that 
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Fig. 4.17 The activity vectors of the 929 machines of Figure 4.13. The machines corre­
spond to the x-axis, while the port numbers correspond to the y-axis. 

was not apparent. This is due in part to the overplotting and in part to the fact that 
the zoomed-in region has a smaller dynamic range, which allows the use of more 
gray values for these regions in the image. 

As mentioned earlier, it is sometimes easier to see the clusters if one uses the 
interpoint distance matrix instead of the raw data. This is particularly true if the 
data are very high-dimensional. For example, if we were to keep all the ports in the 
activity vectors, we would be unable to view the color histogram easily (unless we 
happened to have 65 screens attached to our computer, an unlikely event). Figure 
4.21 depicts the color histogram for the interpoint distance matrix. The structure 
is quite apparent in this image. 

4.5.4 Statistical Anomaly Detection 

As discussed earlier, we are interested in collecting statistics on the activity on the 
network with a view toward detecting anomalies in the traffic on the network. One 
approach is described later, the NillES system, described in Section 5.3. NIDES 
was really designed to be a host-based intrusion detection system, but the basic 
idea is easily adapted to apply to network monitoring, and in fact it is the statistical 



126 4. NETWORK MONITORING 

• 

I. 
I I • 

• 
I II 'r 

Fig. 4.18 Data image of the data of Figure 4.17. Again, the x-axis corresponds to 
machines, while the y-axis corresponds to port numbers. The port numbers have been 
resorted using a hierarchical clustering technique to improve the visual impact of the plot. 

engine in EMERALD (Section 4.6). In this section, we will look at a simpler 
implementation, described in Marchette [1999]. 

The idea, as before, is to collect activity vectors for each machine. These 
activity vectors are defined to be the proportion of accesses (TCP SYN packets or 
UDP packets) to a given port on a given machine over a given time period. Thus, 
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Fig. 4.19 A dendogram for the data plotted in Figure 4.18. 

an activity vector for a machine consists of 2*65,536 values (corresponding to the 
TCP and UDP ports available). 

This is a very high-dimensional vector, and some domain knowledge is re­
quired. Recall that while the first 1024 or so ports are generally assigned to spe­
cific services, the higher ports are often assigned by other services at run time. For 
example, FrP will assign ports (usually in the low thousands) for data transfers, 
but which ports get used is implementation- and machine-dependent. Thus, for 
ports above 1024, one is really interested in ranges of ports more than individual 
ports. In Marchette [1999], this approach was taken to its extreme. Ports 0-1024 
were treated individually, while all ports above 1024 were considered "big ports" 
and grouped together. Thus, the vectors are reduced to 2*(1024+ I)-dimensional. 

Alternatively, one could define several ranges in the "big port" range, such as 
ports 6000-6063 for X window access, FrP data-transfer port ranges, traceroute 
port ranges, and so on. Some of the "big ports," for example 2049, which is used 
by NFS, should probably be treated individually in the same manner as the low­
numbered ports. Even within the low-numbered ports, one could group the ports 
corresponding to related services or ports corresponding to services not offered on 
the network. 

For each machine, an activity vector is defined, consisting of the proportion of 
accesses to the ports or port ranges. We view these proportions as estimates of the 
probability of accessing the given port. The idea behind using activity vectors for 
anomaly detection is to flag as anomalous any port access that has a low probability 
of access. 

In the simplest form, these activity vectors can be a method for constructing 
individual tcpdump filters. If we set a threshold on the activity values, every port 
access for those ports above the threshold is "normal" and should thus be ignored. 
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Fig.4.20 The last 150 observations in Figure 4.18, zoomed in for improved resolution. 

A filter that itemizes these can be used to provide a "personal SHADOW" system 
for the machine. 

For example, suppose for machine 10.10.1.23 the ports above threshold consist 
of ports 22, 23, 514 TCP, and 2049 UDP. Place the following filter in the file 
"myfilter": 

dst host 10.10.1.23 and 

not ( 
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Fig. 4.21 Color histogram for the interpoint distance matrix for the data in Figure 4.18. 

Running 

(tcp and (dst port 22 or dst port 23 or dst port 514)) 
or 
(udp and dst port 2049) 

tcpdump -F myfilter I logger 

will result in any accesses that are "abnormal" being logged to the syslog file. 
Like the SHADOW system described in Section 4.4, this will alert the system 
administrator when undesirable network activity is aimed at the system. 

This simple filter is inadequate for most real systems because of services such as 
Web and FTP, which use many ports. These can be handled, however, by making 
the filter a little more complicated. I will leave this as an exercise to the reader. 

Note that the preceding command must be run as root and that it puts the 
network interface in promiscuous mode. In some organizations, a network card 
in promiscuous mode is considered a threat (after all, it copies all the packets that 
pass it, whether destined for that host or not), so it is probably a good idea to use 
the "-p" flag of tcpdump to keep it from going promiscuous. It should be further 
noted that even though you will no longer be seeing packets to other hosts, you 
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Table 4. 10 Attacks identified in the data used in Marchette [1999] to demonstrate activity 
profiling. 

Attack Type Number 

Bad Ports (111, 161, etc) 5 

Suspicious Telnets 6 

Suspicious FTPs 1 

Netbios Probs 6 

Zone Transfers (53 TCP) 2 

Port Scans 1 

Traceroute 1 

Finger Probe 1 

NNTP 1 

NFS 1 

Miscellaneous Ports 2 

will be seeing packets belonging to other users on your system. For this reason, 
care should be taken to ensure that their privacy is not invaded. Even this level 
of monitoring may be against the policy of your organization or even the laws of 
your country. 

Once we have constructed the activity profiles for all the machines on the net­
work, we need to use these to detect abnormal access attempts. A set of experiments 
is described in Marchette [1999]. Data were collected for a network consisting of 
993 active machines. Activity vectors were computed for the machines using the 
data from a single month. A second month's worth of data was used to determine 
the performance of the approach in detecting attacks. These data consisted of a 
total of approximately 1.7 million TCP SYN and UDP packets in each month. 
There were 27 attacks identified within the data. The task was to determine the 
number of attacks detected (designated "abnormal") at different threshold values 
and therefore produce an ROC curve. (See Section 3.3 for a discussion of ROC 
curves.) 

The data consist exclusively of incoming SYN packets and UDP packets from 
outside the network. There was no attempt to determine whether the machines had 
responded to the connection attempts (in fact, this information was lost due to the 
decision to retain only incoming TCP SYN and UDP packets). The attacks were 
detected by an experienced analyst investigating the reports from a SHADOW 
system. The attacks were broken into 11 groups, based on the type of attack. The 
groups are listed in Table 4.10. 

The port scan was an unusual one, which looked for services running on ports 
above 1024. This made it potentially difficult to detect using the method described 
in Marchette [1999] because of the grouping of all high-port accesses into a single 
bin. Similarly, the traceroute attack, which also shows up in the high ports, would 
be impossible to detect on a machine that normally had accesses on high ports. 

A note on the traceroute attack is in order here. A reasonable person might 
say that traceroute is not an attack. It is, after all, a common utility that has many 
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legitimate uses. It may even seem difficult at first to identify some illegitimate uses. 
There are two that come to mind, however. Obviously, since traceroute provides 
information about the routers between two machines, it can provide information 
about a network's internal routers. A map of the internal routers can provide an 
attacker with very useful information. 

There is another, more sinister reason to be suspicious of traceroute access to 
a network, however. Imagine that an attacker wanted to completely disable your 
network connection. Imagine further that you are a very well-protected site, say 
a military site, and a direct attack against your site may not be desirable. How 
would the attacker accomplish this goal? One way would be to attack not your site 
but the ISP(s) that service your site. By taking out the organization(s) that provide 
your connectivity, an attacker can completely remove your site from the Internet. 

What this reduces to is that somehow the attacker needs to find out what routers 
service your site. This is where traceroute comes in. By running traceroutes to 
machines at your site from a variety of sources, the attacker can (in principle) 
determine all the (active) routers connecting your site to the Internet. By attacking 
these routers (which you have no power to protect because they are the property 
of another organization), your adversary can damage or eliminate your ability to 
function. 

Of course, as we have seen in Section 2.4, there are people using traceroute to 
perform network mappings all the time for perfectly legitimate purposes. Because 
of the accessibility of these data, it may very well be that the traceroute "attack" 
is now unnecessary because the desired information is freely available. 

Whether the particular traceroute in the data for this experiment was an attack 
is a matter of speculation. There were other factors that made it suspicious, so it 
was left in the data. 

Since these are real data, there is no guarantee that the attacks detected are 
the only ones that occur in the data. These data were collected early on in the 
SHADOW project, so it is reasonable to assume that some attacks were missed. 
Also, some of the "suspicious telnets" were identified because of their source IP 
address (for example, coming from a foreign country), information that is not 
retained in the activity vectors. 

Using the activity profiles for a machine, new packets can be scored as to their 
"normality" by considering the probability that a packet of that type would be seen 
coming to the destination machine. Low-probability packets are flagged as being 
suspicious. 

In addition to looking at individual machines, Marchette [1999] looked at clus­
tering machines into groups with similar activity profiles, then used an average 
activity level for the cluster profiles. Two different clustering techniques were 
used and compared to an approach using the individual machine activity profiles. 

The first method used is the k-means algorithm, a standard clustering technique 
(see Everitt [1993]). The number of clusters, k, is assumed known. The algorithm 
is then as follows: 

The k-means Clustering Algorithm 

1. Initialize the k cluster centers (for example at k randomly chosen ob­
servations). 
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2. While the centers change do 

(a) Assign the data to the cluster with the closest center. 

(b) Recompute the centers as the mean (or median or other measure 
of location) of the data in the cluster. 

3. Return the clusters. 

The k-means algorithm is extremely easy to implement and works well when 
the clusters are well-separated and spherical. There are a number of issues that 
need to be addressed in applying it, however. First, the number of clusters needs 
to be known a priori. The selection of distance metric is another important issue. 
Finally, the choice of center definition (mean, median, or some other appropriate 
statistic) needs to be made. 

In general, it is a difficult task to decide how many groups there are in a data 
set. Usually, one either uses domain knowledge for this or some exploratory data 
analysis and visualization, which, as we have seen, can be difficult for very high­
dimensional data. It should be noted that the k-means algorithm can produce 
strange answers if the number of clusters chosen does not match the data. For 
example, running the k-means algorithm on normal data with k = 2 often results 
in splitting the single cluster in half. Worse, rerunning with a different center will 
often result in a different split (for example, east-to-west one time, north-to-south 
another), so, like all clustering techniques, the clusters should not be taken at face 
value without some analysis as to their appropriateness to the data. Interested 
readers should consult one of the many good books on clustering, such as Everitt 
[1993]. 

Although the distance metric chosen can be critical to the performance of any 
clustering algorithm, most practitioners choose either Euclidean distance (b) or 
absolute distance (h) unless something about the problem domain suggests a met­
ric. In Marchette [1999], the Euclidean distance was used throughout. Similarly, 
the mean is usually used for the center, and this was the case in Marchette [1999]. 

A clustering using an (arbitrary) value of 10 for k is shown in Figure 4.22. These 
are small color histograms, one for each cluster. The vertical axis corresponds to 
machine, while the horizontal corresponds to port number. Only those ports for 
which at least one machine had a probability above 0.2 of activity are shown. One 
of the clusters contains only a single observation and hence is not shown. The fact 
that a cluster contains a single observation is evidence that the choice of 10 for k 
was not appropriate or that the machine in question was an outlier. 

One thing that is immediately noticeable about the images in Figure 4.22 is that 
the clusters are determined primarily by one to three ports. Thus, the activity on 
a machine can be determined in large part by the ports that have the most activity, 
and these are typically a small number of ports. This is intuitively reasonable, 
given that most (properly configured) machines provide a small number of services 
to outsiders. However, at least one of the clusters (cluster number four, counting 
from the top left) shows quite a bit of variability in the observations. This probably 
consists primarily of outliers to other clusters. 

A drawback to this kind of display is that it is difficult to determine the port 
numbers associated with the clusters. This information is of course available and 
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Fig_ 4_22 Clusters from the k-means clustering of 993 machines. Each cluster is depicted 
as a separate data image. The x-axis corresponds to port number whereas the y-axis 
corresponds to the machine. 

can be used to characterize the clusters further. We will see this later when we 
consider the problem of determining the types of activity available on a network. 

The second clustering technique used in Marchette [1999] is the approximate 
distance clustering (ADC) technique described in Cowen and Priebe [1997a] and 
Cowen and Priebe [1997b]. The idea is to select out a subset of the data, referred 
to as the witness set, which acts as a kind of prototype for the data. For each 
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observation, the smallest distance to any element of the witness set is computed. 
The observation is then projected to one-dimensional data by taking this distance 
as the value of the projected observation. The method can be extended to utilize 
several witness sets, in which case the projecting dimension is the number of 
witness sets. 

Therefore, given a set of observations X and a witness set W, the ADC pro­
jection is 

d(x) = arg min d(x, w). 
wEW 

(4.2) 

The ADC approach taken in Marchette [1999] is to project the data to the 
real line using Equation (4.2) and then cluster the one-dimensional data. The 
clustering on the one-dimensional data was performed by modeling the data as a 
mixture of normals. See McLachlan and Basford [1988], Titterington et al. [1985], 
or McLachlan and Krishnan [1997] for more information on mixture models in 

general. The equation for a (univariate) normal mixture density is 

m 

f(x) = L 7rj¢(x; I1j, a;) (4.3) 
j=l 

where the 7r'S are positive and sum to one, ¢ is the normal density, I1j is the mean, 
and a; is the variance. 

As with the k-means algorithm, the number of clusters must be chosen. This 
can be done a priori as in the k-means algorithm described above, or the number 
of terms can be estimated from the data. 

The EM algorithm (see page 50; also McLachlan and Krishnan [1997]) for the 
normal mixture parameters produces the following update equations, given data 
X1,···,Xn: 

T~:+l 
7rj¢(Xi; 11;, vj) 

(4.4) 
<} ft(Xi) 

n 
11~+1 LTfjXi, (4.5) 

i=l 
n 

vt+1 
} LTfj(Xi -11;)2, (4.6) 

i=l 
n 

7r~+1 
} LTfj, (4.7) 

i=l 

where Vj = a; and the superscript t indicates the iteration number. There is a 
similar formula for multivariate mixtures. See McLachlan and Basford [1988], 
Titterington et al. [1985], or McLachlan and Peel [2000] for more details. The 
procedure is to start with an initial guess at the parameters, then run the iterations 
defined in Equations (4.4)-(4.7) until a convergence criterion is met (usually until 
the change in the log likelihood is small). 

In order to estimate the number of terms in the mixture model, the alternating 
kernel and mixture density estimator (AKMDE) of Priebe and Marchette [2000] 
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was used. As with most methods for determining the number of components of 
a mixture, this operates by starting with a single component, and then testing to 
decide whether a second component is warranted. This continues until the test 
fails to support a new component. In order to do the test, the AKMDE compares 
the mixture model to a kernel estimator constructed using the mixture model. If 
the kernel estimator exhibits structure not accounted for by the mixture model, 
then a new term is added. 

The resulting model is then a mixture of normals 

m 
f(x) = L 7rjc/>(x,/1j,u;), (4.8) 

j=l 

where the 7r'S are the mixing coefficients and c/> is the normal density as before. In 
this case, the number of terms is estimated from the data, as is indicated by the m. 

The kernel estimator is a commonly used nonparametric density estimate (Sil­
verman [1986]). It is similar to the histogram, but instead of counting the number 
of observations within a bin, the kernel estimator in effect counts the number 
of bins at an observation. Specifically, given observations Xl, ... , Xn , the kernel 
estimator is defined as 

(4.9) 

The kernel K is generally taken to be a symmetric probability density function. 
We will take it to be the standard normal density c/>(x, 0,1). The parameter h, 
called the bandwidth, controls the smoothness of the estimate in much the same 
way that the bin width controls the quality of a histogram. Large values of h 
produce very smooth, broad estimates, whereas small values of h produce rough, 
spiky estimates. 

The choice of h is therefore critical to the performance of the estimator. There 
are many approaches to the selection of h, but this would take us far beyond the 
scope of this book. See Wand and Jones [1995] for more information on bandwidth 
selection and kernel estimation in general. One common technique is to use a pilot 
estimate such as a normal density fit to the data. The bandwidth is then chosen 
to be the optimal one (in the sense of mean integrated squared error) for the pilot 
density. 

In the AKMDE, the mixture is used as the pilot estimator. Then, the kernel 
estimator is the optimal one under the assumption that the data are distributed 
as the mixture density. However, the AKMDE uses a modification of the kernel 
estimator, the filtered kernel estimator (FKE), that is better suited to the modeling 
of mixture densities. Consider the density depicted in Figure 4.23. This is the 
mixture 

f(x) = 0.9c/>(x, 0, 1) + 0.1c/>(x13, 0.01). (4.10) 

A single bandwidth estimator on data drawn from this distribution would have 
difficulty ob~aining a good estimate. The c~mponen{ on the left requires a ~elatively 
large bandWIdth, whereas the one on the nght requues a smaller bandWIdth. For 
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Fig. 4.23 The mixture model of Equation (4.10). The top pane depicts the density and 
the bottom depicts the mixture model. The y-axis of the bottom pane denotes the mixing 
proportion of the component. The x-axis denotes the component mean. Each component is 
plotted as an interval indicating a one-q range on either side of the mean, which is plotted 
as a circle. 

100 observations, the optimal bandwidths are approximately 0.5 on the left and 0.05 
on the right. Figure 4.24 depicts the two kernel estimators with these "optimal" 
bandwidths. Note that each estimate does a good job on the mode for which the 
bandwidth is "optimal," and a poor job on the other. Intuitively, the "right" thing 
to do for this density is to use two bandwidths. This is the idea behind the filtered 
kernel estimator (FKE) in Marchette [1996], and Marchette et al. [1996]. 

The filtered kernel estimator provides a multi-bandwidth kernel estimator driven 
by a pilot normal mixture model. Given a mixture estimate as in Equation (4.8) 
(referred to as the "filtering mixture"), the FKE is defined to be 

fke(x) 

(4.11) 
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Fig. 4.24 Two kernel estimators of 100 observations drawn from the mixture model of 
Equation (4.10). The true density is depicted as a dotted curve. The kernel estimators have 
bandwidths of 0.5 and 0.05, optimal for the two components. 

where hj = haj. Note that there is still a single bandwidth to be chosen in the 
formulation of Equation (4.11). However, because of the filtering mixture f (x) 
and the variances a}, there are actually m different bandwidths in the estimator. 
The range of influence of the individual bandwidths is controlled by the posterior 
probability functions Pj(x). 

The bandwidth, either for the kernel estimator or the FKE, can be chosen by 
minimizing the mean integrated squared error (MISE), 

MISE(g,g) = E [I: (g(x) - g(X))2dX] . (4.12) 

In either case, the unknown function 9 is replaced by a pilot estimate. In the case 
of the FKE, the pilot estimate used is the filtering mixture. Thus, given a pilot 
estimate in place of g, the bandwidth h is chosen to minimize the MISE. 

In practice, the minimization must be done numerically. In order to simplify 
the calculation, an approximation is made via the expansion of 9 as a Taylor 
series. The details can be found in Silverman [1986], Wand and Jones [1995], 
Marchette [1996], and Marchette et al. [1996]. Suffice it to say that a relatively 



138 4. NETWORK MONITORING 

<D 
c:i 

Lt> 
c:i 

.;-
c:i 

(') 

c:i 

'" c:i 

c:i 

a 
c:i 

-3 -2 -1 o 2 

" 
" 
" 
" , , , , , , , , 
: ' , 

3 

Fig. 4.25 The filtered kernel estimator of the data from Figure 4.9 using the mixture 
model of Equation (4.10) as the filtering density. The true density is depicted as a dotted 
curve. The filtered kernel estimator has bandwidths of 0.5 and 0.05, optimal for the two 
components. 

straightforward calculation can provide a reasonably good bandwidth using this 
technique. 

Figure 4.25 depicts the filtered kernel estimator for the same data used in Figure 
4.9. Note that in this case the FKE uses essentially the "correct" modes of the two 
kernel estimators pasted together. This provides an estimator with the correct 
amount of smoothness in the different regions of the data. 

Given two models for a data set, one method for choosing one model over the 
other is the Akaike information criterion (AIC), Akaike [1974]. This compares the 
increase in the likelihood of one model over the other, penalized by the increase 
in the number of parameters. In particular, for the mixture model, the criterion 
is to reject the new component if 3 - 8(likelihood) > 0 (3 being the number of 
parameters added to the model by a new term). 
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Fig. 4.26 An example of computing the excess mass between a mixture model and a 
filtered kernel estimator. The mixture is a single normal fit to the data, the filtered kernel 
estimator using the mixture as the filtering mixture is shown, and the difference curve is 
shown on the bottom, with the excess mass colored in gray. The true mixture components 
have means at 0 and 2. 

Now, we can describe the AKMDE in more detail. Starting with a mixture of m 
components, a filtered kernel estimator is formed using the mixture as the filtering 
mixture. A new m + 1 component is formed by adding a term corresponding to 
the maximal excess mass between the FKE and the mixture model, and then fitting 
the mixture model to the FKE. If the Ale fails to reject, the m + 1 model becomes 
the new mixture model and the procedure repeats. 

Figure 4.26 illustrates the excess mass calculation. The mixture model (in 
this example, a single normal fit to the data) is shown with the corresponding 
filtered kernel estimator. Since the filtering mixture has a single component, the 
FKE reduces to a standard kernel estimator in this case. The difference curve is 
shown with the excess mass highlighted in gray. The larger (rightmost) region 
then determines the position, size, and shape of the new component added to the 
mixture. In this example, there were 100 observations drawn from the density 
0.5N(0, 1) + 0.5N(2, 0.25) . Note that in this case, the region of largest excess 
mass is found near the component which is not modeled by the mixture. Thus, 
adding a term at the region of excess mass results in a better fit to the true density 
(in this case). 
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We must now choose the parameters associated with the new component. The 
idea is to use the center of mass, spread, and proportion of the mass represented 
by the excess mass to determine the new parameters. 

Setting n to be the interval containing the largest excess mass and e(x) the 
difference (excess mass) curve, we let 

w 

/L = 

v 

In e(x)dx 

!.. r xe(x)dx win 
!.. r (x - /L)2e(x)dx win 
(1 - w)jm(x) + W¢(X,/L, v). 

The new mixture jm+! is then fit to the kernel estimator to produce the new m + 1 
term mixture. 

The mixture model selected by the AKMDE is shown in Figure 4.27. The 
top of the figure shows the density defined by the mixture model. The mixture 
components are depicted in the lower panel as a collection of dots and line seg­
ments, showing the means, standard deviations, and mixing proportions of the 
components. The x-axis corresponds to the mean of the component, the y-axis 
corresponds to the mixing coefficient, and the line segment denotes a one standard 
deviation spread about the mean. 

In order to cluster the observations, an observation is assigned to the component 
with the greatest posterior probability. Alternatively, each observation could be 
given a "fuzzy" cluster designation consisting of the posterior probability vector. 
We consider only the first approach. 

The result of the ADC algorithm is shown in Figure 4.28. The third component 
from the left, with a mean of about 0.08 and the smallest proportion of the first 
three components, has no observations in its cluster and so is not shown in the 
figure. 

Looking at Figure 4.27, it is easy to discern three clear clusters, corresponding 
to the three obvious modes. Of course, some might argue for four, five, or more 
"obvious" modes. Looking at Figure 4.28, the first two images, corresponding 
to the first two components and the first mode in the density, are very similar. 
The next three or four images, corresponding roughly to the observations falling 
between 0.2 and 1.0, are quite similar yet show a progression from the third image 
on the top to the second image on the bottom. The last three images on the bottom 
correspond to the three components on the right, displaying at least two distinct 
clusters, with the middle one appearing to be a mixture of the two others. This 
kind of phenomenon is to be expected with this type of clustering. 

Once the models were constructed, they were evaluated to determine whether 
they could be used for anomaly detection. There were 1,757,206 observations in 
the testing set. There were two basic experiments performed. In the first, each 
observation was given the probability associated with the machine/port pairing, 
according to the activity vector for that machine. If the probability exceeded a 
threshold, then the packet was considered "suspicious" and marked for further 
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Fig. 4.27 Mixture model constructed using the AKMDE algorithm. The mixture model 
is plotted as a curve in the top plot, while the mixture components are depicted in the bottom, 
with the means of the components on the x-axis and the mixture proportions on the y-axis. 
The variance of each component is depicted via a two standard deviation bar centered at 
the component mean. 

processing. Otherwise, the packet was deemed "normal" and ignored. For a 
variety of thresholds, the number of packets marked "suspicious" and the number 
of attacks detected as "suspicious" are tallied in Table 4.11. 

The downside to using the individual activity vectors is the amount of storage 
required (or the time needed to access the disk for each packet). The storage 
increases linearly with the number of machines on the network. It also increases 
with the number of individual ports tallied. The speed and load of the monitored 
network will determine the time that can be devoted to making a decision about 
an individual packet. 

The second experiment involved first clustering the machines as described ear­
lier, using either the k-means or ADC method, and taking the profile for the 
machines in the cluster to be the cluster center. The same procedure was now 
used to determine whether a packet was "normal," using this profile rather than the 
individual activity vector. The results are shown in Tables 4.12 and 4.13. Since the 
clusters require the retention of only the cluster centers and a cluster assignment 
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Fig. 4.28 Color histogram of the clusters from the ADC algorithm. Reading from left to 
right, top to bottom, these are in the order of increasing mean of the components. 

vector, the processing/storage required is much less and is relatively insensitive to 
the number of machines monitored. 

To get a better picture of the performance, a set of curves similar to ROC curves 
was produced. The percentage of the packets retained as "suspicious" is plotted 
against the number of attacks detected. This is roughly analogous to the probability 
of false alarm vs. probability of detection of the ROC curve. These are depicted 
in Figure 4.29. 

As can be seen in Figure 4.29, the individual profiles are superior to the others 
for low thresholds, provided the criterion is a low number of attacks missed. This 
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Fig. 4.29 Perfonnance curves for the three techniques for activity level profiling. The 
precentage of packets detennined to be "abnonnal" is plotted against the number of attacks 
detected in the training data. 

makes sense since the clustering of machines can cause activity that is rare for one 
machine to be considered common for the cluster, and hence this type of attack 
on the machine would be ignored at low thresholds. On the other hand, the ADC 
clusters did a better job if the criterion was to detect all the attacks. This is a result 
of the same kind of effect described earlier. Activities that are fairly rare for a 
given machine, can become much rarer when combined into an average profile 
through clustering, so attacks that previously required a larger threshold can now 
be detected at a lower one. 

Table 4.11 Results of the profiling test using unclustered profiles. 

Number of Number of 

Threshold Records Attacks Detected Type of Attacks Missed 

0 50,217 21 1 Telnet, 2 netbios, FrP, NFS, 1 misc 

0.0001 50,288 22 1 Telnet, 2 netbios, NFS, 1 misc 

0.001 54,069 23 2 netbios, NFS, 1 misc 

0.005 58,962 23 2 netbios, NFS, 1 misc 

0.01 63,410 23 2 netbios, NFS, 1 misc 
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Table 4. 12 Results of the profiling test using ADC clustered profiles. 

Number of Number of 

Threshold Records Attacks Detected Type of Attacks Missed 

0 17,069 9 Te1nets, netbios, news, FTP, 

finger, tracerout, misc 

0.0001 60,975 13 Te1nets, netbios, news, FTP 

0.001 108,529 14 Telnets, netbios, FTP 

0.005 140,435 23 3 netbios, FTP 

0.01 160,875 27 none 

Table 4.13 Results of the profiling test using k-means clustered profiles. 

Number of Number of 

Threshold Records Attacks Detected Type of Attacks Missed 

0 61,023 12 Telnets, netbios, FTP, misc 

0.0001 78,642 20 nebios,FTP 

0.001 112,961 21 nebios 

0.005 131,393 23 4 netbios 

0.01 146,742 23 4 netbios 

The conclusion is that this technique can be used to filter out about 90% of the 
packets so that more sophisticated techniques can be used to focus on the 10% 
that may be suspicious. Since the processing/storage requirements are small for 
the clusters as compared with the individual machine activity vectors, the cluster 
techniques may be desirable for networks with a large number of machines. 

Another consideration is the security policy of the network. Obviously, a net­
work in which a very tight policy is enforced is likely to have machines clustering 
quite nicely along their activity profiles. A network with a loose policy, for exam­
ple an ISP or university network, might have machines that do not fit any clustering 
scheme and, in fact, the individual activities might change according to which users 
are on the system. Thus, the approach described here is only a first step. 

The "personal SHADOW" approach described on page 128 is similar to the ac­
tivity profile approach described earlier. It places the processing on the individual 
machines, thus distributing the work across the entire network. This is a solution to 
the processing/storage dilemma described above. The technique appears to work 
quite well, in combination with an activity vector to aid in the definition of the 
filter used. Only those packets that do not match the filter's definition of "normal" 
are passed to the operator for consideration. This approach has been running quite 
successfully on my machine for several months now. 

There are two major downsides to this approach, however. It requires a fair bit 
of maintenance to handle new situations. For example, when a new machine is 
added to our group, the machine needs to be added to the filter. Also, since only the 
suspicious packets are identified, the context is lost. Thus, for example, one cannot 
tell whether UDP packets are the result of activity initiated by the local machine. 



4.5. ACTIVITY PROFILING 145 

Such packets, assuming the initiating activity is authorized, are probably not a 
problem. Packets coming unasked may be a probe, and hence should be treated 
with some suspicion. 

4.5.5 Functional Data 

We have considered network data both from the perspective of single packets (for 
example building filters to detect "bad packets" or detecting "anomalous" packets), 
and we have looked at aggregates such as the number of packets of a specific type 
in an hour. Now, we will briefly consider more general patterns of packets. 

In a very real sense, network traffic really should be thought of in terms of 
collections of packets in time. This is most obviously seen in the TCP sessions, 
but it is also relevant for clustering machine activity types as was done in Section 
4.5. 

One way of approaching a more general theory of network modeling is through 
time series analysis. We will consider a slightly more general approach to the 
analysis of these data and look at functional data analysis (Ramsay and Silverman 
[1997]). 

Consider the plots in Figure 4.30. This depicts the ten most active mail servers 
for a given network, over a period slightly longer than ten days (actually 250 hours). 
Time has been discretized into one-hour bins, and the number of SYNI ACK packets 
leaving the machine is tallied for each hour. This corresponds to the number of 
email sessions initiated within an hour. This does not correspond to the number 
of emails received since a single session can result in the transfer of multiple 
individual email messages. The first day of these plots is a Thursday. 

Several things are readily apparent from the figure. First, there is quite a large 
variability of activity within each machine across time. Consider the first two and 
last four plots. These are machines that appear to have been active for only a portion 
of the ten-day period. Similarly, something interesting seems to have happened to 
the fourth and fifth machines during the last three days of the collection period. 

Another interesting observation is the different dynamic ranges for the ma­
chines. The first six plots show values that go into the thousands or tens of thou­
sands of sessions per hour while the last four get tens of connections per hour. 
Even though the pattern for, say, the first plot in the figure is very similar to the 
one for the last two plots, there is a significant difference between the activities of 
these machines. 

Also, it is clear that there is periodic structure to some (but not all) of the 
machines. Consider in particular the third machine. There is a very strong periodic 
structure in this plot, especially if one ignores the outlier occurring on day 6 (a 
Tuesday). 

The data for the third machine are replotted in Figure 4.31, where each day is 
plotted as a separate curve. Now, we can clearly see that the early morning and 
late night activity is quite stable over these ten days. Most of the variance of these 
curves occurs between 9 in the morning and 8 at night. 

To further analyze these data, we replot, in Figure 4.32, the data with the sixth 
day missing. The mid-day variability is quite apparent in this plot, as is the periodic 
structure, with period approximately two hours. Figure 4.33 depicts the mean for 
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Fig. 4.30 Time series plots for the ten most active mail servers during a ten-day period. 

these data, with dotted curves showing one standard deviation from the mean. The 
top graph depicts the full data set, while the bottom shows the graph with the sixth 
day removed. The mid-day variability is quite clear in these graphs, as is the fact 
that the nighttime variability is relatively low. Note that the bottom curve (with 
the outlying day 6 removed) shows clearly that the variance ramps up starting 
in the morning, peaks around 1 p.m. and then drops off into the evening. This 
information can be used to adjust thresholds for detecting an abnormal amount of 
activity on the server, which could be an indication of a spam or mailbomb attack. 

4.6 EMERALD 

EMERALD (Event Monitoring Enabling Responses to Live Disturbances) (Porras 
and Neumann [1997]), is SRI's environment for scalable, distributed intrusion de­
tection and network monitoring. It is a hierarchical model, allowing different types 
of processing at different levels of abstraction. It is also highly modular, allowing 
different kinds of processing and analysis on different platforms or sections of the 
network. 
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Fig. 4.31 Time series plots for the third most active mail server during a ten-day period. 
Each day is plotted as a separate curve. 

Information on EMERALD can be obtained from many of the latest books on 
intrusion detection, such as Escamilla [1998], Amoroso [1999], and Bace [2000]. 
The definitive references are Porras and Neumann [1997] and the technical reports 
available at the SRI Web site (see Appendix D). 

An underlying philosophy of EMERALD is to abstract the computation engines 
away from the details of the data or problem domain. This allows very flexible 
and extensible modules to be developed from a basic underlying architecture. 

The EMERALD architecture is made up of a single basic unit, the monitor. A 
monitor can be thought of as a single IDS sitting on a specific host, but it is a much 
more general construct than this. 

EMERALD is made up of three basic levels of processing. The service monitors 
are in the lowest level. These are the basic intrusion detection engines that monitor 
a host or small network. They communicate with other service monitors and with 
the next level, the domain-wide monitors. 

The domain monitors correlate the reports from the service monitors. In keeping 
with the EMERALD philosophy, they are made of the same basic components as 
the service monitors. Only the specifics of the algorithms used in the analysis and 
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Fig. 4.32 Time series plots for the mail server in Figure 4.32 with the sixth day removed. 

reporting changes. The domain monitors report to the highest level, the enterprise­
wide monitors. 

One way to think about the EMERALD hierarchy is in terms of a large corpo­
ration. The service monitors may be host-based security monitors on each desktop 
or network monitors on local area networks. The domain monitors correspond to 
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Fig. 4.33 Time series plots for the mail server in Figure 4.32. The plots show the mean 
and one standard deviation bands for the number of connections for the full data (top) and 
for the data with the sixth day removed (bottom). 
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the systems used by the security officers at each corporate site. These correlate 
the reports from the internal monitors and give the security officer a picture of 
the overall security at the site. The enterprise-wide monitors correspond to the 
systems at corporate headquarters, to which all the sites report, giving a picture of 
the situation for the entire company. 

The generic EMERALD monitor consists of four parts: 

• resource object, 

• resolver, 

• profiler, 

• signature engine. 

The signature engine is an analog of a set of SHADOW filters or a snort ruleset. 
This takes a set of rules for defining signatures and comparing data to signatures, 
making it easily configurable for different situations. This allows the detection of 
known attacks. 

The profiler is the statistical anomaly detector. It uses NIDES, the "Next­
generation Intrusion Detection Expert System" (Section 5.3). More properly, it 
uses the basic ideas ofNIDES in a generic statistical profiling framework. This al­
lows the incorporation of new techniques and different data types without requiring 
a redesign of the overall system. 

The resolver is the coordinator and interface to other monitors and IDS systems. 
It correlates the results from the profiler and signature engine. It communicates 
any detections to the higher levels and/or the security officer. 

The resource object contains the specific information needed for a particular 
deployment of the monitor. It contains all the information about the data feeds, 
rule sets, and so on, that the other parts need to perform their function. This is the 
single part of the monitor that needs to be configured for any deployment. 

The resource object has a number of configurable components. These are 
implemented through pluggable libraries, allowing extreme flexibility in the func­
tionality of an individual monitor. 

The data streams used by the monitor are configured via the "event structures" 
that define the types of data that the monitor will process. This includes both the 
inputs and the outputs of the monitor. Related to the event structures are event 
collection methods, which define the basic routines for collecting and filtering the 
data streams. 

The detection engines and analysis units are configured within the resource ob­
ject. These define the intrusion detection algorithms implemented by the monitor. 

Finally, there are communications configurations, called subscription lists, 
which define how communication between monitors will be handled. This is 
more than just a list of the other monitors, but it handles any information related to 
encryption and, in principle, multilevel security that might be implemented. There 
are also response methods defined, which determines what the monitor is to do 
once it detects an event. 
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While the EMERALD software is provided as an IDS, it is really a very flexible 
architecture which can be used to implement an IDS. Thus, it is not constrained 
by the actual implementation provided in the distribution. 

4.7 WATCHERS 

WATCHERS, which stands for "Watching for Anomalies in Transit Conversation: 
a Heuristic for Ensuring Router Security," is a distributed network monitor that 
watches for evidence of malicious routers, and removes them from the network. 
A malicious router is defined to be one that either discards packets or misroutes 
them (sends them on non-optimal routes). WATCHERS assumes that neighboring 
routers share the same view of the network, share a bi-directionallink through 
which they can communicate, and that all (non-malicious) routers send packets 
along the shortest route (unless specifically directed otherwise). 

WATCHERS works by having each pair of routers keep a set of counters that 
keep track of the packets that pass between them, either generated by one of them 
or forwarded from one to the other. Periodically, the routers report their counter 
values, and the counters are analyzed. 

The main analysis consists of determining whether the packet flow is conserved: 
that is, that the number of packets going into a router is roughly the same as the 
number coming out. 

This work is discussed in detail in Hughes [2000], Hughes et al. [2000], and 
Bradley et al. [1998]. 

4.8 GRIDS 

The Graph-Based Intrusion Detection System (GrIDS) (Cheung et al. [1999]) is 
a program developed by the computer science department of the University of 
California at Davis. It is designed for use on large networks, analyzing network 
traffic in a hierarchical manner, that allows the technique to scale up to very large 
networks. 

The idea is to construct and analyze activity graphs. The simplest version 
of an activity graph is a graph describing which hosts are connected to which. 
These graphs can be aggregated to allow various levels of resolution. Rules are 
constructed to detect "bad" or anomalous graphs, indicating potential attacks. 

For example, consider the spread of a worm through a network (see Section 
6.7 for more discussion about computer worms). If we were to represent the 
connections between machines as a graph, we might see something like Figure 
4.34 in a very short period of time. This tree-like structure for the activity on the 
network is an indication of the spread of a worm. 

To the GrIDS system, a graph is then a collection of nodes and edges, where 
both have attributes (for example, connection type (port), operating system, etc.). 
GrIDS contains a collection of rules for building and combining activity graphs 
and for analyzing them to detect intrusions, attacks, and anomalies. 
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Fig. 4.34 A GrIDS activity tree for a worm. Each host (indicated by a lettered box) 
transmits the worm to other hosts, spreading the worm across the network. 

4.9 MISCELLANEOUS UTILITIES 

Here are some utilities that are useful for collecting data on a network. As always, 
care should be taken to ensure that the security policy allows the use of these 
utilities and that permission for their use has been granted. These are by no means 
a complete list. Resources for these and other utilities can be found in Appendix 
D. 

4.9.1 nmap 

The nmap program is a very powerful tool for security analysis. It performs a 
wide variety of scans on a system or network to detect open ports and potential 
vulnerabilities. It is also an extremely useful tool for an attacker. 

Nmap operates by sending various packets to the host or hosts and seeing what 
comes back. In its simplest instantiation, it sends packets to a list of ports to 
determine what services are active. It can do this by actually trying to make a 
connection to the port (which can be easily detected since it will (usually) show up 
in the system logs), or it can use more stealthy techniques, such as sending only 
the SYN flag, the so-called "half-open" or SYN scan. 

It can also send packets with strange flag combinations (for example, SYN and 
FIN both set). The purpose of these is to see how the host will react. Different 
operating systems will react differently to "illegal" packets, and this can allow one 
to determine the operating system of the host. This is called operating system 
fingerprinting. 
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The results of a simple scan against a machine follows. The name and IP ad­
dress have been changed. Note that the version of nmap used in this example is 
not the most current (at the time of this writing), so newer versions may provide 
more or better information. In this case, the command used was 

nmap -sS -v -0 waldo 

Starting nmap V. 2.02 by Fyodor (fyodor@dhp.com, 
www.insecure.org/nmap/) 

Host waldo (10.10.12.193) appears to be up ... good. 
Initiating SYN half-open stealth scan against waldo 

(10.10.12.193) 
Adding TCP port 25 (state Open) . 
Adding TCP port 13 (state Open) . 
Adding TCP port 1024 (state Open) . 
Adding TCP port 9 (state Open) . 
Adding TCP port 111 (state Open) . 
Adding TCP port 513 (state Open) . 
Adding TCP port 515 (state Open) . 
Adding TCP port 80 (state Open) . 
Adding TCP port 21 (state Open) . 
Adding TCP port 22 (state Open) . 
Adding TCP port 37 (state Open) . 
Adding TCP port 514 (state Open) . 
Adding TCP port 841 (state Open) . 
Adding TCP port 1 (state Open) . 
Adding TCP pon~ 23 (state Open) . 
The SYN scan took 0 seconds to scan 1068 ports. 
For OSScan assuming that port 1 is open and port 

31200 is closed and neither are firewalled 
Interesting ports on waldo (10.10.12.193): 
Port State Protocol Service 
1 open tcp tcpmux 
9 open tcp discard 
13 open tcp daytime 
21 open tcp ftp 
22 
23 
25 
37 
80 
111 
513 
514 
515 
841 
1024 

open 
open 
open 
open 
open 
open 
open 
open 
open 
open 
open 

tcp 
tcp 
tcp 
tcp 
tcp 
tcp 
tcp 
tcp 
tcp 
tcp 
tcp 

ssh 
telnet 
smtp 
time 
www 
sunrpc 
login 
shell 
printer 
unknown 
unknown 



4.9. MISCELLANEOUS UTILITIES 153 

TCP Sequence Prediction: Class=trivial time dependency 
Difficulty=26 (Easy) 

Sequence numbers: 799148CO 799229CO 799339AO 79943580 
79952B20 79961440 

Remote operating system guess: IRIX 6.4 - 6.5 

Nmap run completed - 1 IP address (1 host up) scanned 
in 1 second 

We see the open ports with service names (where known) next to them. This 
is useful for determining potential vulnerabilities. Note that it also tried to pre­
dict sequence numbers to see whether the system might be vulnerable to a TCP 
hijacking attack (see Section 4.3.3.2). In this case, it decided that it would be easy 
to guess sequence numbers (a potentially bad sign). Finally, it guessed (correctly) 
that the operating system was SGI's IRIX version 6.4 or 6.5 (it is actually 6.4 in 
this case). 

The tcpdump trace of this attack follows. This is a subset of the actual trace, 
showing only the incoming packets. I have edited this to remove some redundancy 
(there were a total of 1093 packets incoming as a result of this scan). I have 
also annotated a few of the interesting lines, indicating these with a # sign at 
the beginning. The attacking machine is called "attacker." I have removed some 
information (such as sequence numbers) from the traces in order to conserve space. 

12:55:46.078119 attacker> waldo: icmp: echo request 
# Ping waldo to find out if the machine is up 
12:55:46.156 attacker.52498 > waldo.161: S win 4096 
12:55:46.156 attacker.52498 > waldo.122: S win 4096 
12:55:46.156 attacker.52498 > waldo.2003: S win 4096 
12:55:46.156 attacker.52498 > waldo.290: S win 4096 
12:55:46.156 attacker.52498 > waldo.665: S win 4096 
12:55:46.158 attacker.52498 > waldo. time: S win 4096 
12:55:46.158 attacker.52498 > waldo.252: S win 4096 
12:55:46.158 attacker.52498 > waldo.ftp: S win 4096 
# Scan a few common ports. There were quite a few more 
# packets like these. 
12:55:46.384 attacker.52498 > waldo.412: S win 4096 
12:55:46.384 attacker.52498 > waldo.1813: S win 4096 
12:55:46.384 attacker.52498 > waldo.493: S win 4096 
12:55:46.390 attacker.52498 > waldo.smtp: R win 0 
# Note that a reset was sent to smtp (port 25, email) 
# indicating that the port is open. This machine is 
# running sendmail! 
12:55:46.422 attacker.52505 > waldo.tcpmux: S win 4096 
<wscale 10,nop,mss 265,timestamp 1061109567[ltcpl> 

Port 1 (tcpmux) 
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# This is the start of the fingerprinting. 
# is used, as is port 31200. The first is an open 
# port, the second one that is not open. These will 
# react differently to packets sent to them. Note 
# that nmap has also added a few options on for good 
# measure. 
12:55:46.422 attacker.52506 > waldo.tcpmux: . win 4096 
<wscale 10,nop,mss 265,timestamp 1061109567[ltcp]> 
12:55:46.422 attacker.52507 > waldo.tcpmux: SFP win 

4096 urg 0 <wscale 10,nop,mss 265,timestamp 
1061109567[ltcp]> 
# Note that the SFPU flags are set. This would never 
# happen in normal traffic. 
12:55:46.422 attacker.52508 > waldo.tcpmux: . ack 0 

win 4096 <wscale 10,nop,mss 265,timestamp 
1061109567[ltcp]> 
12:55:46.422 attacker.52509 > waldo.31200: S win 4096 
<wscale 10,nop,mss 265,timestamp 1061109567[ltcp]> 
12:55:46.422 attacker.52510 > waldo.31200: . ack 0 win 

4096 <wscale 10,nop,mss 265,timestamp 1061109567 
[Itcp]> 
12:55:46.423 attacker.52511 > waldo.31200: FP win 4096 

urg 0 <wscale 10,nop,mss 265,timestamp 1061109567 
[Itcp]> 
12:55:46.424 attacker.52498 > waldo.31200: udp 300 
# Now try to guess sequence numbers. 
12:55:46.424 attacker.52505 > waldo.tcpmux: R win 0 
12:55:46.424 attacker.52507 > waldo.tcpmux: R win 0 
12:55:46.705 attacker.52499 > waldo.tcpmux: S win 4096 
12:55:46.706 attacker.52499 > waldo.tcpmux: R win 0 
12:55:46.735 attacker.52500 > waldo.tcpmux: S win 4096 
12:55:46.736 attacker.52500 > waldo.tcpmux: R win 0 
12:55:46.765 attacker.52501 > waldo.tcpmux: S win 4096 
12:55:46.766 attacker.52501 > waldo.tcpmux: R win 0 
12:55:46.795 attacker.52502 > waldo.tcpmux: S win 4096 
12:55:46.796 attacker.52502 > waldo.tcpmux: R win 0 
12:55:46.825 attacker.52503 > waldo.tcpmux: S win 4096 
12:55:46.826 attacker.52503 > waldo.tcpmux: R win 0 
12:55:46.855 attacker.52504 > waldo.tcpmux: S Wln 4096 
12:55:46.856 attacker.52504 > waldo.tcpmux: R win 0 

There are a large number of options available for nmap. Some of the useful 
ones are: 

• -sT TCP connect port scan. One need not be root to execute this option. 
This completes the three-way handshake to those ports that are open. 
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• -sS TCP stealth SYN port scan. This sends packets with only the SYN flag 
set. Those ports that respond are then sent a reset packet to close off the 
connection. 

• -sF TCP stealth FIN port scan. Also, using X or N in place of F will result 
in an Xmas scan (all flags set) or Null scan (no flags set). 

• -sU UDP port scan. 

• -0 Use fingerprinting to determine the operating system. 

• -F Fast scan (only scan those services listed in /etc/services). 

• -0 logfile Output results to a logfile. 

• -g port Set the source port number for the scans. 

• -v Be verbose in output. Can be given twice for even more information. 

• -h Print help. 

• -V Print version information. 

There are a number of other options available. See the man page for more 
information. Some of these are better suited for using nmap as an attack tool 
rather than a vulnerability scanner to improve security. One such is the -D option, 
which allows one to add decoy hosts into the scan. The result is a scan that appears 
to come from a number of hosts, making it difficult to determine who the attacker 
really is. 

The decoy option provides an opportunity for the statistician. Given packets 
apparently from several sites (as generated by nmap), can one determine which 
is the real attacker? This depends on how the packets were generated. Let us 
consider a couple of cases as an illustration. 

If the packets from the different sites are identical, one would have to use other 
information to try to determine which site is the real one. For example, one could 
do an nslookup and a whois to determine the names and (rough) locations of the 
machines. This could allow one to estimate the approximate number of hops taken. 
This, with an estimate of the initial TTL value (which can be obtained from the 
operating system (OS) estimate, by pOf (Section 4.9.2), or by using techniques 
discussed in Section 4.3.2.2), can be used to see which of the packets is most 
likely to have originated from the attacking machine and which are decoys. 

If all packets are different, one could use passive fingerprinting to determine 
the operating systems for the packets. Using statistical models for the operating 
systems would allow one to perform a goodness of fit with the different operating 
systems to see which of the packet streams best fits one coming from the purported 
OS. 

Although it may seem that nmap is purely an information gathering tool, it is 
not without its dangers. A colleague of mine was doing a scan of our network 
when one of the routers he was scanning went down. It turned out there was a 
bug in the router software that caused it to be vulnerable to a particular type of 
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packet. The resulting effort to find and fix the problem resulted in the network 
being essentially shut down for more than a day. Although one can argue that it 
was not my colleague's fault (and he did indeed argue this), it is clear that one 
should never institute scans against computers without first obtaining permission 
from all involved, including the network security officer (fortunately, my colleague 
did have permission for his scan). 

Nmap may be obtained from www.insecure.orginmap. 

4.9.2 pOf 

Although nmap can do a good job of determining the operating system of a remote 
host, it is an active system, which means that the host can be aware of the finger­
printing attempt, and firewalls can block the attempt. Imagine instead that you 
are attacked by a system, and you wish to determine the operating system of the 
attacking system (I will leave the issue of why you might want this information to 
your imagination). If you run nmap against the attacker, you alert himlher that you 
have detected the attack. It would be nice if you could tell the operating system 
simply from the incoming packets. This is what pOf attempts to do. 

POf operates by considering incoming SYN packets and extracting information 
from the packet to be used to characterize the operation system. For example, 
the time-to-live (TTL) value, window size, maximum segment size, whether the 
don't fragment flag is set, and which options are used can tell a great deal about 
the operating system of the source machine. 

An example of pOf output is 

10.10.10.23 [15 hops]: Linux 2.2.14 or Cobalt Linux 2.2.12C3 

This was run on a packet from a machine that attacked my work machine (as 
always, the IP address has been changed). Whether or not the machine really is 
running Linux is unknown (I resisted the temptation to run nmap on it and find 
out). 

Note that pOf uses the TTL to determine the operating system. However, this 
is inherently unknowable since it has been decremented by an unknown number 
of routers in transit. POf tries to guess the value by looking for reasonable initial 
values for known operating systems and matching the other parameters up with 
the operating system. Thus, one obtains both an estimate of operating system type 
and an estimate of distance away (in terms of the number of hops taken). 

The version of pOf that I have looks only at the SYN packet. Adding the other 
protocols, and information about the TCP session, would be a useful enterprise. 
Also, it uses a table lookup. Adding statistical fingerprinting would be a very 
interesting endeavor. 

The pOf program can be obtained from http://lcamtuf.hack.pl. 



4.10. FURTHER READING 157 

4.10 FURTHER READING 

A number of papers have been written on the topic of network intrusion detection 
at the level appropriate for the layperson. See, for example, Herringshaw [1997], 
Mukherjee et al. [1994], and Meinel [1998]. 

Another statistical modeling technique is discussed in Cabrera et al. [2000] 
in which a Kolmogorov-Smirnov test is used to detect deviations from "normal" 
traffic activity. A neural network approach is discussed in Tan and Collie [1997]. 

Girardin [1999] proposes using Kohonen maps (Kohonen [1995] or Van Hulle 
[2000]) to visualize network activity. Since these maps also can be used for 
clustering, this is a potential alternative to the work in Section 4.5. 

Some comments on experience developing and using EMERALD are given in 
Neumann and Porras [1999]. 

A discussion of a methodology for avoiding network-based denial-of-service 
attacks is found in Meadows and McLean [1999]. It is argued that the defense 
against DOS attacks must be built into the protocols themselves. 

An agent-based technique for attacking networks is discussed in Stewart [1999]. 
This argues that much more sophisticated detection techniques are needed to detect 
the attacks of the future. 

A technique for using finite-state machines for the detection of intrusions is 
discussed in Vigna and Kemmerer [1998]. Several spoofing attacks are described, 
and details on how they could be detected and analyzed using these methods are 
discussed. Other finite-state machines are discussed in Chapter 4 of Bace [2000]. 

Sekar et al. [1999b] describe a language for specifying normal and abnormal 
packet sequences. This results in a concise and efficient mechanism for specifying 
both normal activity and specific types of attacks that use abnormal packets. A 
sufficiently well-designed set of specifications should be able to detect any attacks 
that use malformed packets, such as Targa3 or teardrop (Sections 4.3.1.5 and 
4.3.1.8), and can also detect floods and scans and other packet activity that is not 
normal for the network. 

A different kind of traffic analysis is discussed in Ettema and Timmermans 
[1997]. This looks at analysis of travel patterns. Some of this may be relevant 
to routing or anomaly detection in networks. Newman-Wolfe and Venkatraman 
[1991] discusses techniques to prevent traffic analysis. The less an attacker can 
learn about the typical patterns of traffic on your network, the less they learn 
about the machines and users on the system. For example, knowing the traffic 
patterns can indicate the kinds of applications running on the different machines, 
as described in Section 4.5.3. The basic idea is to use dummy packets, reroute, 
and delay packets in order to confuse any monitor as to the real patterns of activity 
on the network. 

I have not discussed anonymity on the Internet except to note that packets can 
be spoofed. Chapter 5 of Amoroso [1999] contains a fairly extensive discussion 
of anonymity, including how to track back attackers to determine their identity. 
He also discusses many of the utilities for gathering information about people on 
the Internet. Chapter 7 discusses a number of techniques for trapping intruders. 
These should be used with caution but can be very useful tools for the security 
analyst. 
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Another area of Internet security that is missing from this book is cryptography. 
This is a huge field and far beyond our scope. Some people seem to think that 
encryption solves all security problems - that with a sufficiently sophisticated 
encryption scheme their networks would be safe. This is not the case, although 
it is certainly true that properly used encryption is a powerful tool for security. 
Rather than list a few of the hundreds of books on cryptography, I leave it to the 
reader to browse a local bookstore. Instead, I will mention an interesting new book 
(at the time of this writing) by Ryan and Schneider [2001]. This book suggests that 
security can be enhanced by properly modeling security protocols and using the 
models to suggest improvements or point out flaws. This book focuses primarily 
on cryptographic protocols, but the basic idea is sound throughout the security 
field. 

One of the big areas of research, particularly among military organizations, is 
that of data fusion. The goal is to determine optimal ways of "fusing" data from 
disparate sensors into a common framework to improve detection and identifi­
cation, situational assessment and analysis, and provide a unified picture of the 
battlefield. In Bass [2000], the techniques of data fusion are proposed as a set of 
tools that should be applied to the intrusion detection arena. 
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Host Monitoring 

5.1 INTRODUCTION 

Host monitoring refers to gathering and analyzing information related to the se­
curity of a single computer. This usually involves looking at the security log files, 
monitoring processes, disk usage, file access, and other information related to the 
proper functioning of the computer. It can also refer to monitoring users on a 
computer, in an attempt to detect unauthorized users. 

A good reference for host-based attacks is Kendall [1999]. We will cover the 
main attacks described in this thesis as well as several from other sources. 

As with network monitoring there are denial-of-service attacks that are focused 
on attacking a specific host and that make use of application flaws or quirks rather 
than network intricacies. These are of essentially three main types. They either 
attempt to bring down the machine, bring down an application, or destroy data. 
We will see examples of all three in this chapter. 

In addition, we will see two new classes of attacks: the so-called "remote to 
user," in which an attacker gains access to the machine from outside; and "user to 
root," in which the attacker gains super user permissions. In this latter case, the 
attacker can eliminate all (local) evidence of the attack, obtain any information (not 
protected by encryption or other methods), or remove any files on the machine. 

5.2 COMMON ATTACKS 

5.2.1 DOS 

159 D. J. Marchette, Computer Intrusion Detection and Network Monitoring
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We have seen a number of denial-of-service attacks from a network perspective 
in Section 4.3.1. Now, we consider some that are more properly grouped with 
host-based attacks. These are generally attacks that deny access to a service or 
a machine by exploiting vulnerabilities of particular applications rather than by 
attacking the IP stack or blocking access to the network. 

5.2.1.1 Apache2 Old versions of the Apache Web server can be slowed to a 
crawl or caused to crash by sending many requests with a large number of HTTP 
headers. Typical HTTPrequests contain less than 20 headers, whereas an Apache2 
attack will have requests containing thousands. This causes the load average of 
the machine to rise dramatically, memory usage to climb, and usually the machine 
will crash. 

Obviously, in order to detect this kind of attack, the requests coming in to 
a Web server should be tracked. Some statistics worth knowing would be the 
number of connections per time unit (where the time depends on the typical load 
on the server), the number of headers per request, the number of distinct machines 
per time unit, and the number of requests per machine. Given an estimate of the 
typical variation, these statistics can be used to flag any large deviations from 
normal activity as being worthy of the security analyst's scrutiny. 

More details about this attack can be found at 

http://www.geek-girl.com/bugtraq/1998 3/0442.html 

5.2.1.2 Back Another attack against old versions of the Apache Web server 
was the back attack. In this attack, requests were sent that contained a large number 
of front slashes'/, , on the order of six or seven thousand. This causes a temporary 
slowdown of the machine. The machine recovers when the attack stops. 

This is an example of what I call a "stupid user" attack. When an application 
is not designed to handle strange but technically legal input, it may be vulnerable 
to attack, for example, by someone simply holding down a key or even hitting 
the keyboard with one's forehead. Generally, it is a good idea to harden one's 
applications against "stupid users." 

5.2.1.3 Mailbomb A mailbomb is an attack against an individual, which can 
also cause the machine to crash. The idea is to send many mail messages to a 
user on the machine. If "many" is in the hundreds, this can cause great pain to 
the individual. If "many" is thousands, and the mail messages are large, the mail 
queue can fill up and the machine crash. Also, the disk can fill up with these 
messages, causing other legitimate messages to be undeliverable or to be lost. 

Mailbombs are easy to implement and quite popular. They are cousin to the 
other scourge of email, spam. Spam is the name for junk email mailings. They 
are to email what all those credit card solicitations are to the postal system (the 
postal system is also known as "snail mail"). A company (or individual) will 
send unsolicited email to a large number of recipients. Often, the sender field 
is spoofed in order to make it difficult to take action against the sender. If you 
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have ever received email directing you to porn sites on the Web, you have been 
spammed. 

Note that although the sender (or "from") field can be spoofed (and often is), 
the originating IP address cannot be since email uses the TCPprotocol. Thus, it is 
often possible to contact a system administrator responsible for the machine, who 
can detect and stop the offending party. Some of the larger ISPs do not respond 
to these requests, others are very responsive, so at the moment it is a hit-or-miss 
proposition to obtain relief from spam (or mailbombs). 

Although spam is universally considered to be an evil, it is generally not an 
attack, and aside from a small amount of resources required to process the email, 
it does not constitute a threat. Mailbombs are a threat, since they can deny access 
to legitimate email, or to the machine itself. 

5.2.1.4 Webbomb This is my terminology for the Web equivalent of a mail­
bomb. It is easy to write a script to generate a large number of Web requests to 
a single Web server. This is the poor man's version of the distributed attack (the 
distributed denial-of-service attack discussed in Section 7.5.1) that brought down 
many famous Web sites. 

This can be as devastating to the Web server as a mailbomb can be to the mail 
server. Like themailbomb.itis easy to detect (a lot of requests coming from the 
same site), and so can be defended against. Note that both email and Web use TCP, 
so one cannot spoof the IP address since the full handshake must be completed 
before the data are transfered. This is one reason why attackers will often first 
obtain access to an intermediary computer from which to mount their attack (called 
"looping") to make it difficult to track the attack back to the attacker. 

5.2.1.5 Resource Hogging Any kind of program that hogs the resources 
on a machine can be a denial-of-service attack. These usually require user access 
to the machine. We will see a simple worm in Section 6.7.1, which will eventually 
bring a machine down. A similar idea is to run something like 

#!/bin/csh 
cd /tmp 
while (true) 
mkdir foo 
cd foo 
cp -r -/* 
end 

This is essentially the program given on page 249 of Escamilla [1998] (please 
do not try this or any of the "attacks" described in this book). The first line 
indicates that the program is a cshell program. This program will create a series 
of directories in the /tmp directory, filling each one with a copy of the user's home 
directory. This will quickly fill up the disk as well as cause some annoying slow 
downs due to all the copying. Even without the copy command (the line starting 
with "cp"), this will bring down most systems. Some systems are invulnerable to 
this attack because of disk quotas which make it impossible for a single user to 
use too much disk space. 
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The inverse of the resource hog is the famous 

rm -r * 

If executed in a directory in which the user has write privilege, all the files (and all 
files in subdirectories) are removed. This is the ultimate in denial of service. The 
only protection is regular backups. 

Of course, nobody would do such a thing by accident, right? I'll bet that the 
rm command for root is aliased to "rm -i" on your system. This asks the user to 
confirm any file removals. It is extremely annoying, but, since removal is forever, 
it is a very good idea. (Helpful hint: using "\rm" executes the unaliased version 
of the command. Use with caution. The alias is there for a reason.) Most of us 
have the experience of typing quickly and hitting the return just before we see that 
instead of typing 

rm *.bak 

we've typed: 

rm * bak 

or some such. Instead of removing the backups that we thought we no longer 
needed, we've removed everything (including the backups). 

It is a good idea to back your work up regularly. I tend to make "Save" directories 
where I put copies of things while I am working. The preceding command is not 
recursive, and so will leave the Save directory intact. This will not protect you 
from attackers, but will provide some protection from yourself. 

5.2.1.6 Creative Telnets Old versions of Windows NT were vulnerable to 
telnets to high ports (anonymous [1997]). For example, if one telnets to port 1031 
and sends a few characters, the destination machine will crash. This is a very old 
vulnerability and is undoubtedly fixed in newer versions of NT. 

This points out one of the difficulties in computer security. Bugs appear in 
operating systems (and applications) all the time, and until someone discovers the 
bug, and thus describes the attack it allows, it is difficult to defend against the 
resulting attack. Open-source programs help here since people can look at the 
code and determine both the problem and the fix without waiting for the vendor. 
Of course, this is a two-edged sword. The potential attackers can also look at the 
code and determine new attacks. 

5.2.2 Remote to User 

In order to get into a computer, one must either have physical, network, or modem 
access. If the computer is on the Internet, network access is often easy to achieve 
unless it is protected by a particularly tight firewall. Physical access can be obtained 
by breaking-and-entering or simply by wandering around during business hours 
acting like someone who belongs there. Modem access can be obtained by "war 
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dialing." This is a process whereby a range of phone numbers are called, looking 
for numbers that are answered by machines. Surprisingly, or maybe not, many 
machines are configured to have the modem answer if its number is called. Most 
of the time the user is not aware of this "feature." 

An attacker that wants to utilize your computer or gain access to information 
on the computer must somehow obtain a user's account. The simplest way is to 
simply log in with the correct user name and password. In order to do this, the 
attacker must obtain this information from somewhere or guess it. 

Probably the most successful method for obtaining user and password infor­
mation is through social engineering. Through various tricks, the attacker gets a 
legitimate user to provide the desired information. This is discussed at length in 
Hafner and Markoff [1995] and in Denning [1999], pp. 216-217. 

A similar idea is to go through the trash (hence the name "trashing") of the 
victim organization, hoping to come across interesting and useful information. 
This too is discussed in Hafner and Markoff [1995] in some detail. Trashing is 
also referred to as "dumpster diving" (see also Denning [1999], pp 159-160). 

An alternative approach is simply to try to guess the password. First the attacker 
obtains (or guesses) a user name. Some common ones are "guest," "lp," "root," 
and "administrator". If the attacker knows the names of some of the people in 
the victim organization (say, through "trashing"), user names can be guessed by 
performing simple operations on the names. For example, Diane B. Jones probably 
has a user name such as: djones, jonesdb, dbjones, or dianej. 

Given a user name, the password can often be guessed because people often do 
not use secure passwords. The password for "guest" is often "guest." If Diane has 
a daughter, try her name, birthday, etc. It would seem that even with this kind of 
information, the number of possibilities is endless, but surprisingly this approach 
has been used quite effectively. 

This kind of guessing can be detected by considering the number of access 
attempts (such as telnet or FTP) that fail. If the attacker is patient, these may be 
spread over a long time, making detection difficult. Also, it is possible to guess 
the password on the first try, so this is not a reliable approach to detection. 

Another key to detection is to consider the source of the connection attempt. 
Attempts from unusual places, or at unusual times, are a tipoff that something 
suspicious may be happening. This requires some kind of user or activity profiling, 
such as is discussed in Sections 4.5 and 5.5. Many attacks at NSWC are detected 
because they come from foreign sources. Remember, however, that the apparent 
source is not necessarily the true source. Attackers often go through a number 
of intermediary machines before they attack a well-defended site in order to hide 
their trail and avoid prosecution. This is called "looping." In some countries, most 
"cyber-attacks" are legal, and therefore an attacker may first obtain a machine in 
one of these countries before attacking a site in a country with more restrictive 
laws. 

If one can obtain the password file (letc/passwd on a Unix machine), one can 
attempt to crack the passwords using one of the many password cracking programs. 
These run through a dictionary, trying all the words, and various modifications, as 
passwords, attempting to find one that works. Recall that the password file contains 
encrypted passwords, using a one-way encryption scheme, so the cracking program 
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encrypts the prospective password and compares it with the one in the password 
file. 

There are many password cracking utilities. I like "John the Ripper," available at 

http://www.openwall.com/johnl. 

There are a number of other such utilities, including some that can be built in 
to the password program, so that when users change their password an attempt 
is made to crack the new password immediately, thus (hopefully) catching easily 
cracked passwords before they are used. 

Password cracking may take a while, especially if the dictionary is large and 
the cracking tool tries many variations (for example, replacing the letter "0" with 
the digit "0" or concatenating two small words together), but the attacker can run 
this at home, with no risk of detection, once the password file has been obtained. 
Attackers will also use other computers they have compromised to distribute the 
password cracking code. Thus, it is not a bad idea to watch for processes named 
things such as "crack" or "LOphtcrack" as indications that your machine has been 
compromised and is being used to compromise other machines. 

Trying to crack a password file would at first seem to be as futile as trying to 
guess one (although even this latter is not always as futile as one might think). 
An informal investigation of password cracking is reported in Farmer and Venema 
[1993]. They checked 656 hosts and found that they were able to obtain 24 
password files with little difficulty. Of these, a third had an account with no 
password. They ran crack, a freely available password cracker, and found that in a 
lO-minute run on 1594 accounts they were able to obtain more than 50 passwords. 
After a few days, they had: 

• 5 root passwords. 

• 19 files that had at least one password, giving them access to 80% of the 
machines. 

• 259 passwords guessed. 

If you think we are more secure now since everyone is now so security-conscious, 
you haven't been paying attention to the news lately (no matter when you read 
this!). For another anecdote: the first time I ran crack on my machine at work, I 
cracked a password (fortunately, not mine). 

The password file can often be obtained without logging on to the machine, 
for example through the phf attack. In this, a machine with a Web server and 
the phf program in its "cgi-bin" directory is sent a request for phf to provide the 
password file, which it does. Obviously, if you have phf on your machine, you 
should remove it. Other cgi programs have this vulnerability, so it is a good idea 
to remove all such programs that you do not need and to check the security sites 
to make sure no new vulnerabilities have been discovered. 

Some machines run "TFTP," the so-called "trivial file transfer protocol." Some 
of these have misconfigured the software to allow reading of files without a pass­
word, which is another way to obtain the password file. Some FTP servers have 
real password files in their /ftp/etc directory. Denning [1999] reports that at least 
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one individual was able to obtain encrypted root passwords simply by doing a Web 
search. 

The preceding discussion points out the need to carefully secure your password 
file. Some systems use shadowed password files, where the world-readable pass­
word file contains no password information. The passwords are kept in a "shadow" 
password file with restricted access. 

5.2.2.1 FTP Write This is a specific case of a general idea. If a user's home 
directory contains a ".rhosts" file, this file is checked for "trusted" remote hosts. 
This is a nice utility to make it possible to move from machine to machine without 
needing to type user name and password information. This is very useful, and 
loved by users, which is a tip-off that it is a huge security problem. If the ".rhosts" 
file contains the string "++," then any user from any machine can log into the 
account (using "rlogin") without providing a password. 

Anonymous FTP is one of the most useful methods for providing file transfers 
across the Internet. Even most Web servers utilize this facility for transferring 
files that are not meant to be displayed as Web pages. A directory is set up (with 
protections to make it "locked off" from the rest of the directory structure) with 
a user name "anonymous" which can be used to FTP to the computer without a 
password (most anonymous servers require the password to be given as the email 
address of the person logging in; generally little to no checking is done on this). 
Only those files under this directory are accessible, so the system administrator 
places those files that are to be shared with the world in directories under this FTP 
directory. 

The anonymous FTP directory should not be writable. If it is, the attacker can 
place a ".rhosts" file in the directory. The attacker then logs out and logs back in 
(using "rlogin" this time) as "ftp." The user "ftp" is not restricted in the same way 
as "anonymous" since the application used is now rlogin. 

This attack can be detected either by searching the content of packets for the 
string "rhosts" or by using a file integrity checker such as tripwire (Section 5.6.6) 
to check that the FIP directory has not been modified. 

This specific attack relies on a misconfigured FTP server. However, this basic 
idea works for any attack that allows the attacker to write a file in a user's home 
directory. For example, misconfigured TFTP servers have been known to allow 
anyone to write files without requiring a password. 

5.2.2.2 Buffer Overflows There are a number of buffer overflow attacks that 
allow an outsider to gain access to a computer. Kendall [1999] discusses a number 
of them that utilize bugs in imap, named, and sendmail. The interested reader is 
encouraged to read Kendall [1999] for more details on these attacks. 

These attacks are network-based in the sense that they operate by sending 
packets with particular data to an application running on a remote machine. The 
data contain executable commands that the application runs, giving the attacker 
access to the machine. We will discuss this in more detail in Section 5.2.3.1. The 
attacks can be detected by looking for specific strings in the content of packets; 
however, this will not allow one to detect new attacks against other applications. 
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Thus, the attacks really need to be detected by monitoring the host system, watching 
for inappropriate accesses, activity, and changes in access permission. 

5.2.2.3 Trojans We will discuss trojan programs in more detail in Chapter 
7, but there are a few trojan programs that are worth mentioning in this section. 
In a nutshell, trojan programs are programs that appear to be one thing but act to 
provide information to an attacker or mount the attack themselves. 

In an X Windows environment, only those machines that the user has indicated 
have permission may connect to the X Windows server. Thus, if you are running 
X Windows as yourself, and su to root, you may find that you cannot execute 
commands that use the X console because you (the owner of the session) have not 
given root permission to do so. One solution to this is to type "xhost +machine," 
where "machine" is the name of the host you are on (this needs to be executed as 
the owner of the X console). Lazy (or inexperienced) users may choose to simply 
type "xhost ++". Like the "++" in the .rhosts file mentioned previously, this allows 
access to the console from any machine. 

Assume that the attacker can gain access to the X console. The attacker can then 
run a fake "xlock" program that makes it look like the screen has been locked and 
request the password from the user to unlock the screen. Once the unsuspecting 
user has typed the password, the screen lock goes away and the user is none the 
wiser. However, the attacker now has the user's password. 

Another way to gain information on an open X server is simply to watch all the 
characters typed. This can be done, if the X console is open, as above, providing 
the attacker with a lot of interesting information. For example, if the user logs in 
to another machine, the user name and password may be obtained. 

5.2.3 User to Root 

User to root attacks are ones designed to extend the user's privilege to that of 
the super user. These attacks can be mounted by attempting to obtain the root 
password, either by cracking the passwords in the password file, by sniffing the 
password, or by social engineering. These have been discussed earlier, so we will 
consider other attacks, which do not rely on obtaining the root password. 

The most common user to root attack is the buffer overflow attack. In this, 
the attacker exploits a programming error that allows data to be placed on the 
execution stack. When the data are executed, the program corresponding to the 
data provides the user with root access. 

Other attacks involve clever tricks that are not easy to characterize. One such 
attack, taken from Kendall [1999] works as follows (the attack works against 
SunOS 4.1). 

The internal field separator (IPS) is used to define the character that separates 
fields. Generally, this is set to the space character. The attack is: 

1. Copy /binlsh to ./bin (The "./" corresponds to the current directory). 

2. Add "." to the beginning of your path variable if it is not already there (this 
makes your current directory the first one searched for executable programs). 
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3. Change the IFS to "/". 

4. Execute the command "loadmodule a" (this is a program that loads modules 
in the Sun operating system). 

The loadmodule program executes the command 

exec("lbinJa") 

which gets translated (thanks to the IFS) to the equivalent of 

exec("bin a") 

which then executes the local copy of "bin," which happens to be a shell. Since 
loadmodule does its "exec" as root, the shell is executed as root. 

This kind of trickery is quite common. It illustrates the level of knowledge 
required to come up with some of these attacks. While so-called "script kiddies" 
are held in contempt by security experts due to their lack of knowledge and the lack 
of sophistication of their attacks, the people who discover the attacks are generally 
quite knowledgeable. In fact, they are often the very security experts tasked with 
protecting the machines and networks. There is some controversy as to whether 
these people should publish the attacks they discover, but it is generally agreed 
that this is a good thing, allowing system administrators (and vendors) to fix the 
problems before someone with evil intent discovers and utilizes the attack. 

5.2.3.1 Buffer Overflow Examples There are a number of buffer overflow 
attacks detailed in Kendall [1999]. Instead of detailing each one, let us consider 
a hypothetical attack in some detail. The interested reader is encouraged to read 
Kendall [1999] for some specific examples. 

The basic requirement of all buffer overflow attacks is a program that places 
data into a buffer without doing any bounds checking to make sure that the data 
do not extend beyond the buffer. Data that overflow the buffer can overwrite the 
execution stack or parts of the program and hence be executed as if they were 
legitimate parts of the program. By careful manipulation of the data placed on the 
stack, the user can execute pretty much anything desired, with the same permission 
level as that of the targeted program. Thus, if the program is owned by root, the 
attacker's program is executed as root. 

Figure 5.1 illustrates the attack. In this example, the attacker calls the program 
with a long string for an argument, which gets placed into a buffer. The buffer 
is too small to hold all the arguments, and the programmer did not bother to do 
bounds checking (after all, who is going to call this program with 100 arguments or 
more). The attacker has carefully crafted the argument string so that it corresponds 
to spawning a shell command with root privileges. 

Ko et al. [1994] describe a buffer overflow attack on the finger daemon. The 
problem is that finger uses the library routine "gets" to read strings into a buffer, 
but the gets function does no bounds checking. Thus, the attacker, who knows the 
size of the buffer from investigating the finger code or by trial and error, can send 
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I> buggy "stuff· .. x <01101100> ... <1001100>" I 

Buffer 

I stuff· .. x I 01101100 ... 1001100 I 

Fig. 5.1 An illustration of a buffer overflow attack. The attacker executes the command 
"buggy" with a very long string. The buggy code does not check the string size to ensure that 
it will fit in its buffer ("x" marks the end of the buffer in the figure), and as a result the string 
overflows into other memory, in this case the execution stack. The attacker has arranged 
that the binary values of the string that gets written on stack memory are the instruction 
code for some action, such as spawning a terminal. 

a sufficiently long string with appropriate binary code to be placed on the stack, 
and this code is then executed. 

There are a number of ways to detect such an attack, depending on the sophisti­
cation of the attacker. If source code for an implementation has been captured (or 
downloaded from a Web site), a signature can be constructed to look for unique 
strings that appear in the code. Thus, an attacker who moves the code to a machine 
can be detected by looking for this particular signature. This is, of course defeated 
if the attacker is smart enough to encrypt the code first. However, the code must 
eventually be decrypted, which gives a sufficiently paranoid operating system the 
opportunity to detect the signature. Such an operating system would presumably 
be invulnerable to this kind of attack. After all, why go to all this trouble when 
it is possible to make the operating system nearly invulnerable to buffer overflow 
attacks? 

A moderately clever attacker can recode the attack easily enough, making the 
job of detection via signatures much harder, so other detection methods must be 
employed. 

If the system monitors for inappropriate changes of permission, the attack can 
be detected by noting that permission has been changed without the appropriate 
legal sequence of events. This is much more reliable than the signature approach. 

5.2.3.2 Race Condition Imagine that you want to change an entry in the 
password file. Why would you want to do this? One reason would be to change 
the root password from something you do not know to something you do. If you 
could only write to the password file, you could do this and you could then gain 
root permission. This has the added benefit that nobody else would have root 
permission anymore, since they would not know the new root password. Like 
Yertle the Turtle, you would be king of all you could see! 

The problem with this is that you cannot write to the password file unless you 
already have root permission. The solution to this is to trick a program that has 
root permission into writing the file for you. 
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2. Link X to letc/passwd 

'Or--------·/etc/Passwd 

1. Access X to write rite to X 

Fig. 5.2 An example of a race condition allowing write access to a password file. After 
opening the file /tmp/X for writing, but before writing any data, the file is deleted and 
replaced with a link to /etc/passwd. Subsequent writes then end up in this file. 

When a program goes to open a file, it first checks (with a system call) to see 
whether it has permission to access the file. Then, if the answer is "yes," it opens 
the file (with a second system call). The problem comes in when the file changes 
between the two system calls. This is illustrated in Bishop and Dilger [1996]. 
Figure 5.2 shows the steps. 

Suppose that the attacker wishes to overwrite the file letc/passwd (the Unix 
password file) with the file /home/userx/mypasswd. The Itmp directory is world­
writable (that is, writable by any user), so it affords a nice place to perform this 
attack. 

1. The attacker creates a file in Itmp, say ItmplX. 

2. The attacker program checks to see whether it has permission to open ItmplX. 
It does, since it is the user's file. 

3. Before the program opens the file, the attacker removes ItmplX and makes 
a hard link between ItmplX and letc/passwd. 

4. The program then opens ItmplX and copies /home/userxlmypasswd into it 
and hence into the letc/passwd file. 

This kind of vulnerability is referred to as a time-of-check-to-time-of-use (TOCT­
TOU) flaw. As in the preceding example, it comes about when a program checks 
an object for a property and then assumes that the property still holds when it goes 
to perform some operation on the object. If the property no longer holds when the 
second operation is performed, a security fault occurs. 

A similar example is given in Ko et al. [1994]. There is a program, rdist, which 
is used to maintain file consistency across a number of hosts. When rdist updates 
a file, it creates a temporary file, copies the data into the file, and changes the 
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permissions on the temporary file to match those of the copied file using "chown" 
(change owner) and "chmod" (change mode). Then, it renames the file to the 
correct name. 

Suppose an attacker (who already has obtained a local shell on the machine) 
wishes to change the "suid" bit on Ibinlsh. Recall that Ibinlsh (the Bourne shell) 
is owned by root, and if the suid bit is set, then the program is run as the owner 
of the program. Thus, if one can set the suid bit on Ibinlsh, one can obtain a shell 
that is running as root, thus obtaining root access on the machine. Unfortunately 
for the attacker (but fortunately for everyone else), one cannot (normally) set the 
bits on a program one does not own, so some kind of trick must be employed. 

The trick, using rdist, is as follows. The attacker updates a file local to the 
machine with the appropriate bits set. After rdist opens the temporary file and has 
started copying the data, the attacker renames the file and makes a symbolic link 
to Ibinlsh with the name of the temporary file. After rdist has finished copying 
(note: the copy continues into the renamed file, not the new linked file), it runs 
chown and chmod (this time on the symbolic link file). The trick is that chown 
does not follow symbolic links (so Ibinlsh remains owned by root) but chmod does, 
changing the bits on Ibinlsh. The attacker then runs Ibinlsh and has root. 

Bishop and Dilger [1996] give several other examples of these kinds of prob­
lems. They also describe some approaches to detecting these flaws. The first 
involves a code checker that searches source code for potential flaws. The second 
is a dynamic approach that watches the run-time environment for potential TOCT­
TOU flaws. A third approach, not mentioned by Bishop and Dilger [1996], would 
be to use a file integrity checker such as tripwire (Section 5.6.6) incorporated with 
a monitor such as Is of (Sections 1.9.11 and 5.6.3) to see who is opening the various 
files. This is potentially quite expensive from a computational standpoint since 
the checks must be done essentially continuously. That makes this an impractical 
solution. The real solution is to write the operating system so that it is invulnerable 
to this kind of attack, which is no easy task. 

A similar attack, which effectively destroys a file that the user otherwise would 
not have permission to touch, can be found at 

www.rootshell.com 

(search for gcc). The idea is that gcc, the Gnu C compiler, uses temporary files 
in itmp for its intermediate files. The script watches the itrnp directory for files 
whose names match those used by gcc. When it finds one, it links the victim file 
to the file used by gcc. When gcc outputs the temporary data, it overwrites the 
victim file. 

This attack is purely destructive since the attacker has no control over the content 
written to the file. It can be detected with a file integrity checker such as tripwire, 
provided the victim file is one of the ones protected. It can also be detected by 
noticing garbage that looks like the output of a C compiler in files that should have 
something else in them. 
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5.2.4 Covering Up 

Once an attacker has gained access to a machine, the first order of business is 
usually to cover their tracks to make detection (and, ultimately, prosecution) more 
difficult. There are a number of techniques that are useful for this purpose. 

The simplest thing to do is to hide any new files that the attacker has put on 
the machine by starting their name with a ".". These files are not listed in normal 
directory listings. One must execute a "Is -a" to see these "hidden" files. A related 
method is to make a directory called " ... ". In Unix, the directory "." is the current 
working directory, " .. " is the previous directory, and" ... " will often be overlooked. 

The next thing to do is to remove any traces from audit logs. There are various 
tools that will help with this. It only works if the logs are accessible (which is an 
argument for using a log server, making the log files inaccessible on any machine 
eccept the log server itself). Once this is done, ps and netstat can be replaced with 
trojan programs that do not display the attacker's processes or connections. 

5.3 NIDES 

The Next-generation Intrusion Detection Expert System (NIDES) (Anderson et al. 
[1995]) was developed by SRIin the early 1990s (see Javitz and Valdes [1991] and 
Javitz and Valdes [1993]). We will concern ourselves mainly with the statistical 
component of the NIDES system. NIDES utilizes logfile entries to extract infor­
mation about various activities such as file access and cpu usage. The idea is to 
construct statistics on these usages under normal conditions then use the statistics 
to test for abnormal usage in subsequent operation. 

NIDES operates by measuring various activity levels for a set of defined activi­
ties and combining these into a single overall measure of the "normality" of activity 
for the recent past. This statistic, denoted T2, is then tested against a predefined 
threshold to determine whether the recent activity is sufficiently "abnormal" to 
warrant alerting the security officer. 

NlDES uses a wide range of disparate data to make its assessment, which makes 
it a particularly interesting approach from a statistical viewpoint. The data types 
are broken into four categories: 

• Intensity measures An example would be the number of audit records 
generated within a set time interval. Several different time intervals are 
used in order to track short-, medium-, and long-term behavior. 

• Distribution measures. The overall distribution of the various audit records 
is tracked via histograms. A difference measure is defined to determine how 
close a given short-term histogram is to "normal" behavior. These measures 
could properly be treated as functional data (Ramsay and Silverman [1997]). 

• Categorical data The names of files accessed or the names of remote com­
puters accessed are examples of categorical data used. 

• Counting measures These are numerical values that measure such things 
as the number of seconds of CPU time used (to an accuracy of about a 
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microsecond). They are generally taken over a fixed amount of time or over 
a specific event, such as a single login. Thus, they are similar in character 
to intensity measures, although they measure a different kind of activity. 

A set of measurements is defined from the preceding categories, measuring 
such things as CPU usage, number of files accessed, which files were accessed, and 
elapsed time for different applications. These measurements are used to generate 
a statistic denoted S, and the T2 statistic is defined as a sum of the squares of the 
Sj: 

(5.1) 

The developers ofNIDES suggest that future work look at correlations between 
the Sj as an area that might provide useful information. To my knowledge, this 
has not yet been investigated. 

The NIDES approach is to compare recent performance with past performance. 
One way that the developers could have chosen to implement this is to use time 
windows on the data. One could compute a statistic on a window of, say the last 
ten seconds and then compare this with values taken over windows in the past to 
determine whether the statistic has changed. 

5.3.1 Statistical Calculations in NIDES 

Host-based detection should occur in real time, so computational efficiency is 
essential. Thus, one would implement the window approach efficiently by updating 
current values rather than recomputing them. For example, if one were computing 
an average of values At,n = (XHI + Xt+2 + ... + XHn) In, one would compute 
At+1,n as 

At+1,n = At,n - Xt+1/n + Xt+1+n/n . (5.2) 

Similar "downdate/update" strategies are available for other statistics that one 
might wish to compute on these windows. 

A related formulation is the recursive update formula for the mean and variance 
of a random variable. They are introduced here so that they can be used as a simple 
procedure for implementing exponential windows. The formulas are shown in 
Equations (5.3)-(5.5). 

1 
Xn+l xn + --1 (xn+1 - x n ), (5.3) 

n+ 

Sn+1 
A n 

= Sn + --1' (xn - xn)'(Xn - Xn) (5.4) 
n+ 

tn+1 
1 A 

= -Sn+1' (5.5) 
n 
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These are easy to derive. For example, for Xl, ... ,Xn , the sample mean cal­
culation is 

1 n 
xn = - LXi. 

n i=l 

(5.6) 

Now, assume that we obtain a new observation X n+1. We can recompute the 
sample mean via Equation (5.6), but we'd like to simply update the mean we 
already have. 

= 

(5.7) 

A similar calculation can be used to derive Equation (5.5). 
It should be noted that the order of the updates of the recursive formulas is 

important. As seen in Equation (5.4), the update of Sn uses Xn , not Xn+1, so code 
to implement these equations should update S before updating the mean. 

The NIDES development team chose to take a slightly different approach. They 
put an exponential window on the observations rather than a rectangular one. In 
this way, the current statistic depends not only on a small window in time but on all 
the data for all time (in principle, although in practice since the dependence on past 
data drops off exponentially there is little dependence on data a few half-lives in 
the past). An exponential window can be implemented in the preceding recursive 
formulas by setting the ns on the right-hand side of the equalities in Equations 
(5.3) and (5.4) to some fixed value, say N. 

Each S statistic is computed from a "raw" statistic denoted Q. We will first 
investigate the kinds of measurements that might correspond to Q statistics and 
consider how the Q statistics are computed. We will then describe how an S 
statistic is computed from a given Q for the different data types. 

5.3.1.1 Intensity Measures Intensity measures are counts of audit records 
per fixed time unit. The idea is to get a measure of the overall activity level of the 
system (or the user if the records are restricted to those generated by the user's 
processes). In its simplest form it is a simple count of the number of audit records, 
however one could easily implement different counts for different types of records. 

We will deviate from the notation of the NIDES report (Anderson et al. [1995]) 
at this point. Rather than referring to all measures as Q, we will denote intensity 

measures as I. Thus, the intensity at time t is denoted It, and the intensity after 
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n records is In. One first initializes the intensity value to Io, some initial value 
that is chosen to be a reasonable start. Generally, one either sets Io = 0 or sets it 
to some value determined by considering average values for a number of related 
data sets. The formula for updating In from the (n + l)st audit record is 

(S.8) 

where !::J.t is the time between the nth and (n + l)st audit records and r is the 
decay rate, determining the rate of decay of the exponential window. In this case, 
and throughout the NIDES discussion, the rate is discussed in terms of half-life, 
for obvious reasons. This formula is recursive since it only requires the previous 
value of the statistic and the elapsed time in order to update the value. 

The NIDES implementation discussed in Anderson et al. [199S] implements 
three intensity measures with half-lives of 1, 10, and 60 minutes. 

5.3.1.2 Audit Record Distribution Measures The first thing that comes 
to mind upon looking at the intensity measures is the question of the distribution 
of the audit records. The intensity measures are in effect averages of the time 
between records, taken over different scales. An obvious question is how audit 
records are distributed. Audit records describe different types of behavior, such 
as file access, 110, network access, and so on. Audit record distribution measures 
try to take into account the overall distribution of the different types of activities. 

First, one determines the different activity types that will be monitored. This 
can be done by reviewing the log files for a period of time to determine what things 
are typically logged and by reading the documentation for the different logging 
programs to determine what kinds of activity are typically logged. This will be 
different for different architectures; however, there are a number of things (such 
as those mentioned previously) that will be pretty much universal. 

Once a set of activity types has been defined, NIDES computes the relative fre­
quency of occurrence of each type and compares this with historical (longer-term) 
values for these types. This amounts to computing the weighted sum of squared 
differences between the observed and historical rates, weighted by a measure of 
the variance of the historical estimates. In order to be precise, we need to define 
some of the values used in the calculation. 

The sample size for the statistic, N r , is defined as the sum of the decay weights: 

n 

N r = L: 2-r (n-j). (S.9) 
j=l 

The audit record distributions concern daily tabulations of audit records of 
different types. Let Wj,m be the number of audit records of type m that were 
observed on day j, and Wj the number of audit records of all types on day j. Just 
like with intensity measures, we take weighted averages to allow a sliding window 
in the calculation, so define 

k 

Nk = L:WjTb(n-j ), 

j=l 

(S.lO) 
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the exponentially weighted total number of records that have occurred. In this 
case, the decay rate has been denoted b to indicate that it can be a different value 
than the one used in the calculation of In. The NIDES report notes that a recursive 
calculation of Nk can be defined as 

Nk = TbNk_1 + Wk. (5.11) 

Let 9m,n denote the short-term relative frequency for activity type m, computed 
upon the observation of the nth record. This is computed as 

9m,n = ~ L nTr(n-j) I(j, m) (5.12) 
r j=l 

or recursively as 

(5.13) 

where I(j, m) is the indicator function indicating whether the jth record was of 
type m. 

Note that 9m,n is updated for every audit record whether it is of the appropriate 
activity type or not. This puts some constraints on the number of activity types 
that are practical to monitor. For example, it is probably not feasible to consider 
every type of TCP connection (each possible port) as being a different activity 
type since this requires the updating of 65536 values for every record. Although 
this can easily be done on modem systems, the computational overhead of this is 
probably more than can be justified. 

Letting f m,n denote the long-term historical frequency of occurrence of activity 
type m as of record n, we compute 

f = ~ ~ n2-b(n- j )W . m,n N ~ m,] 
r j=l 

(5.14) 

and 

Vm,n = min(O.OI, fm,n(1- fm,n))/Nr. (5.15) 

The statistic, which we will denote Dn, for the distribution of the audit records 
is then defined as 

M 

Dn = L (9m,n - fm,n)2/Vm. (5.16) 
m=l 

5.3.1.3 Categorical Measures Categorical measures are computed exactly 
like distributional measures except that only the bin associated with the categorical 
value is updated. Thus, if we modify Equation (5.13) as in Equation (5.17) below, 
we can compute the statistic for categorical values in essentially the same manner 
as before: 

I 
9m ,n 2-r 9:r"n-1 + l/Nr , 

M 

L (9:r"n - fm,n)2/Vm , 
m=l 

where, of course, all the values are calculated for the categorical variables. 

(5.17) 

(5.18) 



176 5. HOST MONITORING 

5.3.1.4 Counting Measures Counting measures are computed by convert­
ing them to categorical variables. Recall that counting measures are things such 
as CPU usage, which are naturally measured in terms of counts, such as number 
of milliseconds of CPU usage. These are binned into 32 ranges, which are then 
treated as categorical measures and treated as before. 

5.3.1.5 Computing S from Q Since the Q values defined earlier are from 
quite disparate distributions, some kind of normalization is needed to allow the 
simple combination defined in Equation (5.1) to make sense. This is accomplished 
as follows. For each intensity measurement, In, a histogram is made of historical 
values; that is, one considers several time periods in which the In were computed, 
and constructs a histogram of the values observed. This histogram typically has 32 
bins, with the last bin consisting of all instances of In above the lower bound for 
the bin. The histogram then is an estimate of the density of the In, and this in tum 
determines an estimate of the distribution function as the sum of bin frequencies 
for bins with ranges less than or equal to the observed value 1m. An obvious 
modification to this would be to use the empirical distribution function F for the 
historical data; however, this requires retention of all the data, and this approach 
was not taken, presumably for reasons of computational efficiency. The value of 
S for the intensity measure is then 

(5.19) 

where <I> is the distribution function for the standard normal. 
This histogram is defined in a manner similar to that used for the computation 

of the Q measures themselves. For bin m, the value of relative frequency with 
which Q is in this bin is 

F - ~ ~ W ·Tb(n-j) (5.20) 
m,n - N L....t m,} , 

n j=1 

where in this case the W m,j is the number of audit records on day j that fell into 
binm. 

The nonintensity measures are treated similarly, using Equations (5.20) and 
(5.19), except that the sum of bins greater than or equal to the observation is used. 

5.3.1.6 New and Rare Categories NIDES allows the creation of new cate­
gories. Because ofthe decay discussed earlier, these may actually be old categories 
that have not been used recently, or they may be genuinely new. 

The mechanism for handling novel events is a separate category labeled "new." 
When a novel event is observed for the first time during a day, the "new" category's 
short-term probability is incremented. The short-term probability is then compared 
to the long-term probability to determine whether there is a significant amount 
of "new" activity. If there is, a new category can be created and/or the system 
administrator can be notified. 

Similarly, the rarest categories are aggregated into a single "rare" category. 
In this manner, while an intruder that touches a few rare categories may not be 
detected for the individual categories, the large amount of activity in the "rare" 
category may be enough to signal a problem. 
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5.3.1.7 T2 and Alerts Once a T2 has been observed, a decision must be 
made as to whether this value is large enough to indicate abnormal behavior. There 
are several points to consider. First, the value of T2 at audit record n is highly 
correlated with that for record n + 1. This means that some kind of memory 
of past alerts needs to be kept to avoid having the system give redundant alerts 
once T2 goes over the alert threshold the first time. This dependence makes the 
analysis of the statistic rather difficult, although it is approximately X2 , being the 
sum of squares of values which themselves come from sums of random variables. 
Rather than attempt any kind of theoretical analysis of this statistic, however, it is 
probably sufficient to set the threshold via an empirical study. For example, one 
could collect the statistic for a period of time in which one knew when the activity 
was "normal" and when attacks had been mounted and use these data to set the 
threshold. This once again brings up the issue of how one gets nice clean data 
such as this, which was addressed to some extent in Chapter 3. 

5.3.2 NIDES Performance 

The performance of NIDES in several experiments is reported in Anderson et al. 
[1995]. NIDES has several parameters (most notably the half-life) and a threshold 
to adjust. The authors performed a set of experiments with varying values of the 
parameters to determine the possible range of performance measures. 

Thirty programs were identified as having sufficient examples within a data set 
that had been collected. The activity of these programs was then monitored, and 
NIDES was evaluated to determine the false alarm rates on these data. These rates 
varied between programs and the parameters that were set. In one experiment, 
NIDES performed at false alarm rates between 0 and 13% for the individual pro­
grams. For example, the best performance reported in this experiment was that 
four of the programs had false alarm rates larger than 1 %. Thus, the performance 
was quite dependent on the activity of the program, presumably on the variability 
of "normal" activity for that program. Other experiments showed results in the 
range from 0 to 5% false alarms. 

To determine the detection probabilities, other programs were substituted (and 
renamed) in place of the "normal" programs, and the task of NIDES was to de­
termine that a substitution occurred. For the most part, it was able to do this, 
although not always in all the places where a substitution occurred. The proba­
bility of detection ranges (depending on experiment run and application programs 
considered) from around 72% to 100%. The latter is only attained for specific 
programs, not for the overall problem of detecting the masqueraders within all the 
data. 

Overall, these results are not bad, considering the difficulty of the task at­
tempted. We will see other approaches to this and related problems in the next 
section and in Section 5.5.2. 
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5.4 COMPUTER IMMUNOLOGY 

Consider the problem of determining whether a program is operating normally or 
whether something has gone wrong. If the program is acting in an unusual manner, 
it is possible that it has been compromised by an outside agent, perhaps resulting 
in system compromise. How can we determine whether the program is operating 
normally? 

If the program is simple and well-understood, one can simply list all the possible 
"normal" actions that the program could take and check this list in subsequent 
program evaluations. However, for most non-trivial programs, this is a daunting 
task. 

One way to characterize the actions taken by a program is to list the sequence 
of system calls it makes. In order to effect any changes to the system, the program 
must use system calls to interact with the system (for example, to store something 
in a file), so considering the sequence of system calls is a reasonable place to start. 

Unfortunately, there are quite a number of possible system calls, and the se­
quence of calls performed is data-dependent, so one must perform some kind of 
statistical analysis to determine what "normal" sequences look like. This is done 
by considering strings of system calls of a fixed size n, so-called "n-grams" (see, 
for example, Forrest et al. [1996]) . First, define an alphabet of symbols which 
correspond to all system calls. Fix a length n, which will be the length of charac­
teristic strings. Then, for many "normal" operations of the program in question, 
keep a list of all "n-grams" observed for that program. 

Note that these "n-grams" are not independent. Consider the following exam­
ple: 

ABBACDDAEABBCAED 

This results in the following set of 7-grams: 

ABBACDD 
BBACDDA 
BACDDAE 
ACDDAEA 
CDDAEAB 
DDAEABB 
DAEABBC 
AEABBCA 
EABBCAE 
ABBCAED 

In this alphabet consisting of five symbols, there are 57 = 78, 125 possible 
distinct 7 -grams. One question of interest is how long one has to observe the 
program in order to be confident that one has seen a given percentage of the 
"normal" n-grams for the program. 

On a Linux machine, the command to trace the system calls of a program is 
strace. For example, the following is a shell script to trace any command: 



#!/binlcsh -f 
strace -0 $1.$$ $* 
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If the preceding is in a file called "my trace," then running 

my trace vi main.c 

results in a file named vi.1986 (assuming that when my trace was run it was given 
the process ID 1986) containing a listing of all of the system calls made by the vi 
process. 

I ran a small experiment to illustrate the process. Consider the problem of 
characterizing the operations of the GNU C-compiler, gcc, in this manner. First, 
I compiled the R language (Ihaka and Gentleman [1996] on a Red Hat Linux 6.1 
machine. R is a language very similar to S, a statistical language. R is public 
domain software, with both executable and source distributions. The version I 
used (0.90) made 446 calls to gcc. There were 19 distinct system calls, listed in 
Table 5.1. 

With n = 7, there were 122 distinct n-grams throughout the 446 calls to gcc. 
Is this representative of the "normal" activity of gcc? The number of n-grams as 
a function of the number of files read is plotted in Figure 5.3. Note the relatively 
long period where no new n-grams are defined, followed by a sharp increase in 
the number of n-grams. This increase at the end is evidence that we have not yet 
found all the n-grams for gcc. 

A much more extensive experiment is shown in Figure 5.4. A wide range of 
programs were compiled, and the unique 7-grams were tallied at the end of each 
file. Figure 5.4 shows the total number of unique 7-grams plotted against the 
number of files processed. Two new system calls, "pipe" and "write," were added 
for a total of 21. Thus, there are 217 , or nearly 2 billion, possible 7-grams. 

It appears clear from the curve in Figure 5.4 that we have not yet completely 
characterized the normal behavior of the program gcc. We would therefore need 
to collect more data on the operations of gcc. As an anecdote, after compiling a 
large number of programs, I compiled everyone's first C program, "hello world," 

Table 5.1 System calls made by gcc during compilation of R. 

access brk close 

execve _exit fstat 

getpid gettimeofday mmap 

mprotect munmap open 

personality read rLsigaction 

stat unlink vfork 

wait4 
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Fig. 5.3 gee n-grams. 

and discovered a new 7-gram. Clearly, more data are needed. The question is how 
much more data are needed? 

One way to approach answering this question is to consider the work on es­
timating the probability of discovering a new species, for example Starr [1979], 
Chao [1981], and Bickel and Yahav [1986]. See also Finch et al. [1989]. Another 
approach would be to model the system calls as a Markov process and then run 
the model for a very long time. This is the approach of Dan Naiman of The Johns 
Hopkins University. (This work is unpublished, but was presented at the 2000 
Souther Regional Council on Statistics Summer Research Conference in Statis­
tics). He found that a simple Markov model leads one to the conclusion that we 
have not come close to finding all the "normal" n-grams for gcc. 

The seminal work on using n-grams for intrusion detection is by Stephanie 
Forrest and her team at the University of New Mexico. It is documented in several 
papers, such as Forrest et al. [1994], Forrest et al. [1996], Hofmeyr et al. [1998], 
and Warrender et al. [1999]. The idea behind the n-gram approach is that any attack 
(such as a buffer overflow attack) that compromises a particular program will cause 
that program to either execute system calls that it does not normally execute or 
execute system calls in an unusual order. By characterizing the normal pattern 
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Fig. 5.4 A more extensive experiment with gee n-grams. 

of system calls, one can detect attacks by detecting never-before seen patterns of 
calls. 

The n-gram approach proceeds as follows. Define the size, n. The authors 
suggest 6 as a reasonable value. Run the program many times, storing the unique 
strings of size n observed in a database. 

As seen in the preceding experiment, care must be taken in the construction 
of the database. One way to populate it would be to monitor the program during 
normal operation. A program like gcc, which may be used often on some machines 
and rarely on others, is particularly problematic. As the experiment shows, the 
data (the C programs that gcc compiles) have a large impact on the order of system 
calls, so one needs to ensure that the test period is a proper sample of the program 
execution. 

Now define a window size W. This is suggested to be 20 in most of the work 
cited earlier. For a new observation of the program execution, tally the number 
of sequences within each window of size W that do not match any sequence in 
the database. If this number is larger than some threshold, signal an alert. An 
alternative to this measure would be to allow partial matches of the sequences 
and score the mismatch according to the Hamming distance. This is described in 
Hofmeyr et al. [1998]. 
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The first paper, Forrest et al. [1994], takes a slightly different approach, which 
we will see again in Section 6.5. The idea is to construct a collection of "detectors" 
aimed at detecting things that have never been seen. This is intended more to 
protect a particular piece of code from being changed rather than for the detection 
of unusual behavior, but it could be used for the latter as well. 

Forrest et al. [1996] describe the n-gram idea as applied to the sendmail pro­
gram. They found that after approximately 10,000 system calls, they had obtained 
a database of roughly 1400 6-grams for sendmail. Further experimentation showed 
that attacks against sendmail produced a significant number of 6-grams that did 
not appear in their "normal" database, thus indicating that the basic idea is sound. 

Warrender et al. [1999] evaluate several methods for detecting intrusions via 
n-grams. They used data on several different programs, such as Ipr, xlock, and 
login, and attacked each application with an exploit designed for that application. 
This gives them "normal" data as well as intrusions. They collected data for their 
models until the rate of increase in the number of new sequences dropped below 
a preset value. As we have seen in our small experiment (Figure 5.4), this curve 
can be quite rough, with long flat periods and sudden jumps. Hence, the authors 
smooth these curves prior to calculating the rate of increase. 

Several techniques were compared, including the "standard" n-gram approach 
described earlier, a version where the relative frequencies of the "normal" n­
grams were used, a rule learning system called RIPPER (Repeated Incremental 
Pruning to Produce Error Reduction - an algorithm from the machine-learning 
community), developed by William Cohen (Cohen [1995]), and a hidden Markov 
model (HMM). The results of the study show that the HMM did quite well, as 
did the standard approach. No method was universally superior, and there was 
some evidence that there was insufficient training data for the more complicated 
models. Still, the results were promising, particularly the fact that the simplest 
model performed quite well. The bottom line was a probability of detection in the 
high 90% range with a false alarm rate on the order of 1/10,000--111000 for the 
best algorithms. These results are, of course, preliminary, due to the size of the 
training and test sets and the small number of attacks available for testing, but, as 
mentioned in Chapter 3, all researchers must struggle with this is a problem. 

A related approach is described in Hofmeyr and Forrest [1999], Hofmeyr and 
Forrest [2000], and Forrest and Hofmeyr [In press]. These papers describe a 
technique for developing an "immune system" for computers (or networks) with 
detectors that look for "self" and "nonself." This work will be discussed in more 
detail in Section 6.5. See also Somayaji et al. [1997] for some thoughts on immune 
systems for computers. 

In Somayaji and Forrest [2000], a technique is described for responding to 
intrusions. The idea is that once anomalies are detected, the monitor can abort or 
delay system calls, thus stopping the attack. This integrates the response into the 
"immune system." 
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5.5 USER PROFILING 

Most systems have a method of user authentication. This usually consists of a 
required user name and password. Once this information is obtained, however, 
the attacker is free to access the system just as the legitimate user would. There 
are several ways one could go about stopping this. In this section, we will look at 
attempts to detect when the user is not the person authorized to use the account. 

The basic idea behind these user profiling methods is to measure something 
about the way the user interacts with the computer and use this to determine a 
profile of the user. These measurements may be biometric, such as keystroke 
timings, or even finger or palm prints or retina scans, or they may be measures of 
activity, such as which commands are executed and in what order. If the person 
accessing the account does not match the profile, the assumption is that the person 
is an attacker. For a discussion of some of the biometric techniques available, see 
Miller [1994]. Although this paper is somewhat dated, it is written at an accessible 
level. 

Several possible measurements can be made, but we will concern ourselves 
only with those that can be made on any computer, without specialized hardware 
such as palm readers or retina scanners. A short list (mostly taken from Shepherd 
[1995]) includes: 

• Intervals between keystrokes For example, when the user types a pass­
word, the computer retains the timings between the different characters, and 
compares these against stored patterns. Similarly, one could measure how 
long the key is depressed and, on some systems, the force of the keystroke. 

• Mistypings People tend to make the same typing mistakes over and over. 

• Typing speed This is obviously context-dependent (text versus program­
ming, for example). 

• Text or command statistics People tend to use the same commands over and 
over (for example, most people, after typing cd to move to a new directory, 
will type Is to see what is there. Some of us type the Is command even when 
we know what is there or don't really care. Similarly, people have words or 
phrases they use habitually. For example, I have a colleague who likes to 
use "heretofore". 

• Mouse events How often one uses the mouse, how fast the mouse moves, 
the timings of mouse events are all potentially useful for constructing user 
profiles. 

• Computer usage statistics Examples would be the amount of memory or 
CPU usage, which disks/directories are accessed, or whether the access 
is from the console, telnet, rlogin, or ssh. Another potentially interesting 
statistic is the number/type of system calls resulting from the user's actions. 

Several issues need to be considered in developing a user authentication tech­
nique based on a profile such as those just listed. These are not unique to the 
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problem of user authentication, and in fact are relevant to most intruder detection 
problems: 

• What data need be collected? 

• Does the user select the word/phrase to be measured? For example, pass­
words tend to be selected by the user, and are often easy to type (partly 
due to practice). Alternatively, one could collect data for several words or 
phrases and present a randomly selected one for authentication purposes. 
This makes it more difficult for an attacker to mimic the authorized user. 

• What method of classification is to be used? 

• Is it to be used once, for example in conjunction with a user name/password, 
or will it be continuous? 

• How many users need to be profiled? For example, a personal computer may 
only have one authorized user, whereas a main server may have hundreds. 

• How much processing (CPU time) is acceptable for making a decision. For 
example, a system with hundreds of authorized users may require much 
faster authentication, in order to provide an acceptable level of service to 
the users, than a single-user system. 

• What level of false alarms is acceptable? 

• How secure does the system need to be? This is another way of asking the 
question of how many missed attacks are acceptable. 

5.5.1 Keystroke Timings 

We will consider keystroke timings first. A typical scenario is to collect the time 
between keystrokes within the password (with or without the final carriage return) 
and use this to classify the user as authorized or unauthorized. 

Another possible application would be online authentication. In this applica­
tion, the machine would monitor the activity of a user - for example, the timings 
of keystrokes for commonly used words - and try to determine whether a masquer­
ader is at work. This could either be done by assuming the user is legitimate and 
looking for a sufficient deviation from normal or by requiring the user to remain 
in the "normal" range in order to remain online. 

The data are a vector of timings, one for each adjacent pair of characters in 
the password. Since different people use different passwords, this means that the 
problem really reduces to one of a true hypothesis test: the null hypothesis being 
that the user is who they are purporting to be. 

Several methods for classification are possible. We will discuss the problem 
as one of deciding which of a number of possible users is the one actually typing. 
The obvious extension to this is to classify users as "unauthorized" if they are 
sufficiently different from the user they are attempting to impersonate. Looking at 
the problem as a multiclass one allows us to consider the possibility that we may 
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be able to determine who the user truly is in those situations where the physical 
security restricts the possibilities. 

A typical experiment consists of collecting samples for each user, denoted 
"training samples" which are used to construct a classifier. Further samples are then 
used to test the system to determine the performance of the classifier. Generally, 
one is interested in the probability that the classifier will reject a valid user (type 
I error) and the probability that it will incorrectly pass an unauthorized user (type 
II error). 

The simplest classifier that has been used for this set of problems is the minimum 
distance classifier. The idea is to compute the mean (or median) for the training 
samples. The classifier then involves computation of the distance to the mean 
(or median), and a threshold determines whether the observation is to be classed 
according to its closest class or rejected as unknown. The distance is generally 
taken to be Euclidean, 

(5.21) 

where J.Li corresponds to the mean for class (user) i. In the case of the median, the 
same equation is used with median in place of mean. 

The minimum distance classifier is a type of linear classifier. An obvious 
extension of this idea is to use the covariance matrix as well as the mean, producing 
a quadratic classifier, 

(5.22) 

Another commonly used classifier is the k-nearest neighbor classifier. First, 
consider the nearest-neighbor classifier (see page 77). Given a training set and 
a new observation, classify the observation according to the class of the closest 
training observation. The k-nearest neighbor classifier extends this idea by in 
effect voting amongst the k closest training observations. 

Bleha and Gillespie [1998] compared three simple techniques for classification 
of keystroke data. The first was a simple minimum distance classifier. The two 
others involved extracting features from the timing vectors (for example, averaging 
the first three times, the next three times, and so on, to produce a vector one­
third as long as the original). Their conclusion was that the best technique was 
to use the original data and the minimum distance classifier. This was not an 
extensive examination of possible classifiers but rather compared two specific 
feature extraction methods and determined that they were not preferred over the 
original data. 

There have been many papers written about the use of keystrokes for user 
authentication (for example, Bleha et al. [1990], Bleha and Obaidat [1991], Brown 
and Rogers [1994], Lin [1997], Obaidat and Sadoun [1997], and Maisuria et al. 
[1999]). These use the minimum distance classifier described earlier, quadratic 
classifiers, nearest-neighbor classifiers and neural networks, to classify keystroke 
timing vectors by user. 

For example, in Bleha et al. [1990] and Bleha and Obaidat [1991], several ex­
periments are described in which the linear and quadratic classifiers are compared 
to each other and to classifiers constructed on features, such as Fisher's linear 
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discriminant (FLD). In these experiments, each user typed the same phrase (UNI­
VERSITY OF MISSOURI COLUMBIA) and the task was to distinguish among 
the users. 

The Fisher linear discriminant attempts to find the projection of the data that 
provides the best separation between the classes. If we define the scatter matrix 
for class i as 

Si = 2: (x - f-ti)(X - f-ti)t, (5.23) 
XECi 

where Ci contains the data from class i and f-ti is the sample mean of class i then 
the FLD projection is 

(5.24) 

See Duda et al. [2000], or any other book on pattern recognition for the details of 
the derivation. 

The results reported on the preceding experiments were on the order of 3% type 
I error and 0.5% type II error (Bleha et al. [1990]) or a total misclassification error 
rate of about 1 % (Bleha and Obaidat [1991]). These studies involved ten users 
studied over several weeks. 

Obaidat and Sadoun [1997] performed similar tests with 15 users and included 
several neural network classifiers, with comparable results. With thresholds set 
to detect all unauthorized users, Brown and Rogers [1994] report false alarm 
rates between 14% and 40% for the minimum distance classifier and two neural 
networks. Lin [1997] reports performance slightly better than the results discussed 
above. 

Several issues are ignored in most of the papers in the literature. For example, 
typing errors are usually eliminated from the data. In a password system, this 
seems to be a reasonable approach (after all, a mistyped password is a failed au­
thentication, which keystroke timings should never override). In most password 
authentication systems, however, the user is allowed to correct mistypings (using 
the backspace). In this case, the interkeystroke timings are changed dramatically, 
causing many false rejections. Most systems do not take this into account. Sim­
ilarly, for online authentication, mistypings are both a source of data and a com­
plication that must be addressed. Robinson et al. [1998] report typical password 
mistyping errors of over ten%. 

Figure 5.5 shows some timing data for three users. Each user typed the 10 words: 

home mark dart start hello dash fast task past mask 

in order. The time between keystrokes within words was measured for a total 
of 42 timings. Each user repeated this 100 times. The data image in Figure 5.5 
shows that the three users are quite distinct overall but that some words show 
bigger differences than others, indicating that the choice of word to use in the 
authentication is important. 

Table 5.2 presents the results of a nearest-neighbor classifier on the keystroke 
data. Recall that the nearest neighbor classifier assigns to each new observation 
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I I 

Fig. 5.5 Keystroke timings for three users. Each user typed ten words (42 characters) 
100 times. Each observation (the y-axis) is then of length 42, and there are a total of 300 
observations (the x-axis). The three bands visible in the image correspond to the three 
users. 

the class associated with the observation from the training data that is closest. 
The results are a leave one out cross validation (see Section 3.2). Similar results 
are obtained using k-nearest neighbor classifiers for other choices of k. The k­
nearest neighbor classifier takes a vote among the k closest training observations, 
classifying the new observation according to the consensus from these. 

The results in Table 5.2 are in the form of a confusion matrix. This provides 
the information on how many observations were correctly classified (the diagonal) 
and which users the classifier confused. For example, the row labeled "D" shows 
the number of observations from user "D" that were classified as each of the users. 

Tab/e5.2 Nearest-neighbor classifier results (confusion matrix) for the keystroke data. 

D J T 

D 96 1 3 

J 7 85 8 
T 2 2 96 
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This indicates that of the four observations misclassified, most (3) were called user 
"T." 

The nearest-neighbor results indicate that the users can be distinguished quite 
well by considering their keystroke timings for a short list of words. The perfor­
mance is not perfect, however, resulting in an error of slightly less than 8%. This 
is comparable to the results reported in other studies, with much larger amounts 
of data. From a practical standpoint, this level of error is probably much too large 
to be of much utility. 

5.5.2 Command Usage 

The results on the keystroke data indicate that something other than keystroke 
timings needs to be used to detect unauthorized users. Although keystroke timings 
have their place, they are not sufficient on their own. The preceding results indicate 
that perhaps by monitoring typing over a long period of time, computing statistics 
on the timings of many words, one could build a strong authentication system 
based on timings of multiple words, but this still needs to be demonstrated. 

Another approach would be to look at the commands that a user executes. Users 
will have a preference toward a certain subset of the available commands and will 
tend to use them in a particular order. For example, I almost always type "Is" after 
typing "cd," almost without conscious thought. These types of patterns may be 
useful for modeling user behavior and detecting unauthorized users. This idea is 
investigated in Schonlau et al. [1999]. 

Another paper that looks at this problem is Lane and Brodley [1999]. They 
take a machine-learning approach to analyzing the patterns of user commands. 
Basically, they define a similarity measure to use in comparing two sequences and 
define an anomaly detector which indicates when a sequence is "too unlike" a 
training observation for the user. 

In this section, we will focus on the work in Schonlau et al. [1999]. The authors 
collected data on 70 users, where the command name used is recorded for each 
Unix command. They retained the first 15,000 commands for each user. Fifty 
users were denoted the "authorized" users, while the remaining 20 users were 
"masqueraders." Command sequences from masqueraders were then interspersed 
within the authorized users at random. The task was to detect the masqueraders. 
In order to construct algorithms to detect masqueraders, the first 5000 commands 
of each user were kept inviolate, so that masqueraders appeared only in the last 
10,000 commands. The data were decomposed into blocks of 100 commands, and 
a block is either uncontaminated or it is entirely from a masquerader. 

Six methods for detecting masqueraders were explored. Before discussing 
these, let's look at the data. Figure 5.6 (provided by the authors) shows a data 
image of the commands executed by each user. The commands are sorted by 
popularity, with the most popular commands at the top. The x-axis corresponds 
to the user. 

Two other views of these data are presented in Figures 5.7 and 5.8. The first 
shows a data image (see Section 4.5.2.2) of the first 500 program calls for each user. 
Each column corresponds to a user, while the rows are time, with the commands 
numbered (alphabetically), resulting in a gray scale value for each command. The 



---~== -- - .~ - .=.. .. .. 
~2: ' 
. ~ " 

.. 
"3 a. o 
Cl. 

..:. 
1 .'. . 

.. ~ 

5.5. USER PROFILING 189 

- - := .... _=- . 
,. 
<-

~';; - M.:" 

::. = 
= 

". _ .... 

m -

1234567 8 91011121314151617181920212223242526272829303132333435363738394041424344454647484950 

User 

Fig. 5.6 A plot of the commands executed by each user with the commands ordered by 
popularity (courtesy of Matt Schonlau). 

data image has been sorted by user, with the time axis left unsorted. Above the 
data image I have plotted a dendogram showing the user clusters used to order the 
plot. 

There are several clusters of users evident in this plot (I count seven, but as 
mentioned elsewhere, selecting the number of clusters can be a matter of taste). 
We get a slightly different answer when we look at the data image of the interpoint 
distance matrix (Figure 5.8). There still appears to be some structure to these data; 
that is, there are individuals who appear similar. 

The data images were produced using a naive choice of distance. Each program 
was given a number, and the Euclidean distance between vectors was used. This 
makes the distance between two programs an artifact of the numbering scheme. 
Thus, one should not make much of the clustering "discovered" in the two images. 
These plots do provide some interesting information, however, particularly Figure 
5.7. We can see that there is quite a bit of variability within users as well as a fair 
amount of repetition within users. 

In particular, consider the user who appears in position 42 from the left (this is 
actually user 30 in the original ordering). This user executes the three commands 
rdistd, tcsh, and rshd, repeatedly with very little deviation from this pattern. In 
fact, since rshd is a remote shell, the user is probably only using this system as a 
terminal to access a remote machine. 

The Euclidean distance is not a very appropriate metric for these data. A better 
distance to use in this application would be simply to note whether the program 
used was the same or different. This is illustrated in Figure 5.9, where this distance 
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I 
1 

Fig. 5.7 A data image of the first 500 commands for each user. The x-axis corresponds 
to the users, while the y-axis corresponds to time. Only the users have been ordered. 

is used instead of the Euclidean distance. In this case, we have plotted the log of 
the distances to enhance the plot, which otherwise is too uniform to distinguish 
any differences. Now, we see that the users are much more uniform, with little 
obvious cluster structure. This is actually the desired result since we want our 
users to be as different as possible in order to be able to tell them apart or, in this 
case, to tell them from the masqueraders. 

There are many other distance metrics that one might want to use on these data. 
Obviously, the temporal nature of the command sequences is of some importance 
and so should be taken into account. However, for the most part, this structure is 
flexible in the sense that users can vary the pattern quite a bit and do so in the normal 
course of their work. For instance, users execute an occasional new command or 
vary the order of some commands slightly. The computational biologists have 
studied various metrics used for comparing DNA strands, which might be of use 
in this problem. Two references that cover these and related topics are Watterman 
[1995] and Durbin et al. [1999]. 
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Fig. 5.8 Data image of the interpoint distance matrix for the data in Figure 5.7. In this 
case, the Euclidean distance between activity vectors was used. 

A nontemporal measure, which simply counts the number of times a particular 
program is used by each user, is 

M 

d. ( ) '" II#(UI = k) - #(U2 = k)11 1st Ul,U2 = ~ , 
k=l nk 

(5.25) 

where M is the number of programs, # (Ui = k) is the number of times user i 
used program k, and nk is the number of times program k appears in the data. The 
data image using this metric is shown in Figure 5.10. 

The original temporal data is displayed in Figure 5.11, using the ordering defined 
by Equation 5.25. This shows clearly that the distance ignores the temporal nature 
of the data since there is no obvious correspondence between the clusters and the 
vectors of the data. 

We now turn to the question of whether there is any structure to the data for an 
individual user. For this, we take the first 5000 commands for each user and break 
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Fig. 5.9 Data image of the interpoint distance matrix for the data in Figure 5.7 using 
the binary distance on the vectors, which measures the number of times the same function 
occurs in the same place in the vector. The log of the distance is plotted as the intensity in 
this image. 

them into "sessions" oflength 100, as is done in Schonlau et al. [1999]. Then, for 
each user, we have 50 observations of dimension 100. We sort these observations 
within each user, using Equation (5.25) as the distance metric. Looking at the 
individual data images gives some reason for hope since they show that, for the 
most part, the within-user distances are small, indicating that under this distance 
the user sessions look fairly homogeneous. Nevertheless, as can be seen in Figure 
5.12, there is some variability in the users' activity. 

The data image for this ordering is shown in Figure 5.13. This is essentially 
the picture of Figure 5.6 with a smaller data set, which makes it a little easier to 
see the differences among users. 

We have seen that there is some hope for a solution to the problem of detecting 
masqueraders, since the users do appear to be quite different from one another 
in their selection of commands and command sequences. However, the problem 
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Fig. 5.10 Data image of the interpoint distance matrix for the data in Figure 5.7 using 
Equation (5 .25) for the distance metric. 

is still difficult due to the within-user variability and the difficulty of properly 
handling the temporal nature of the data. 

Schonlau et al. [1999] report on a set of six methods for detecting masqueraders. 
I will describe these briefly, followed by a discussion of the results they report for 
the algorithms tested. The interested reader is urged to consult the paper for more 
details. 

The authors devised a clever algorithm based on the following observation. 
There are many commands that are used by only one or a small number of users or 
are generally much rarer than other commands. These commands should be most 
useful for discriminating among users . The downside is that the commands must 
appear fairly often within any individual user's command stream or they become 
useless for detecting masqueraders in relatively short command sequences. They 



194 5. HOST MONITORING 

Fig. 5. 11 Data image of the command sequences of Figure 5.7 using the user ordering 
produced by Equation (5.25) corresponding to Figure 5.10. 

define a statistic 

(5.26) 

where U is the number of users, Uk is the number of users who have used command 
k in the training data, nuk is the number of times command k appears in the block 
for user u, nu is the number of commands in the block, K is the number of distinct 
commands,and 

if command k is in user u's training data 

otherwise. 

This scores the users based on whether they have used the commands in the 
block before, scoring rare commands more heavily than common ones. It ignores 
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Fig. 5.12 Within-user distances for six users (users 1,5, 19,22,35 and 43). 

command ordering, being concerned only with a tally of the commands in the 
block. See Theus and Schonlau [1998] for some examples of using rare events to 
profile users. 

A threshold (the same for all users) is calculated via cross validation. Then, for 
any new block, the statistic Xu is calculated and if it is above the threshold, the 
block is considered to be the result of a masquerader. 

Another issue addressed in Schonlau et al. [1999] is updating. Although it is 
reasonable for a small data set to fix the training data, and hence the algorithm, and 
then test on the test set, this is not a realistic scenario for a deployed system. One 
wishes to use all the data available, and so a method for updating the algorithm is 
needed. The authors set a second threshold, and any blocks in the test set that fall 
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Fig.5.13 Users ordered by Equation (5.25); compare with Figure 5.6. 

below this threshold are added to the training data. This is done sequentially as 
the blocks are presented for scoring. 

The next two methods considered are based on Markov models. These compute 
the transition probabilities. The first method, one-step Bayes, based on the work in 
DuMouchel [1999], computes the transition probabilities of executing command 
Cj given that the last command was Ci. This then tests the hypothesis that the 
matrix constructed on the test block came from the same process that produced 
the matrix computed on the training data. 

Let Ct be the command observed at time t. Let Puj k be the historical (estimated 
from the training data) transition probability from Ct-l to Ct. In other words, Pujk 

is the probability that command t will be k given that the previous command was j. 
We need one further piece of machinery: the Dirichlet distribution. The vector of 
random variables Q = (Q l, ... ,Q K ) has a Dirichlet distribution, with parameters 
(al, ... ,aK+t), if their joint probability density function is 

I(Q) 

(5.27) 
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The one-step method performs the following hypothesis test: 

Ho : P(Ct = klCt - 1 = j) = Pujk, 

HI : P(Ct = klCt - 1 = j) = Qk· 

(5.28) 

(5.29) 

The basic idea of the model is that one fits the Pujk and the parameters of the 
Dirichlet distribution, Qk, using the training data. Details of these estimates can 
be found in DuMouchel [1999]. The hypothesis test involves computing 

(5.30) 

For large values of 10g(BF) from Equation (5.30), the null hypothesis is rejected 
in favor of a masquerader. More details about hypothesis testing for command 
transition probabilities are given in DuMouchel and Schonlau [1998]. 

The hybrid multi-step Markov uses a higher-order Markov model, when the 
data support it and a simpler model otherwise. This is described in some detail in 
Schonlau et al. [1999] and is based on work by Ju and Vardi [1999]. The basic 
idea is to expand the single-step model to a multi-step model, where care is taken 
to ensure that the model does not become unstable when the block contains many 
new commands. This is the "hybrid" part of the model, where this case is handled 
by a simpler model (a contingency table of users vs. commands). Again, refer to 
the papers cited for the details. 

The next algorithm stems from the intuition that if new data are appended to 
the training data for a user, the augmented data will compress (nearly) as well 
as the training data, whereas if the new data are from another user, they will 
not compress well. they Given training data C and a block of test data c, the 
augmented data { C, c} are constructed by appending c to the end of C. Using the 
Unix utility compress, the statistic compress( {C, c}) - compress ( C) is computed. 
Large values result in a rejection of the hypothesis that the new data c were from 
the user associated with the training data C. 

The next algorithm (lPAM) is similar to the one-step Markov model, except that 
instead of a hypothesis test, the transition probabilities are used to predict the next 
command, based on the current command. The number of incorrect predictions is 
tallied, and if this is large the data are flagged as a masquerader. 

Finally, a method similar to the Forrest approach (see Section 5.4) is imple­
mented. The idea is to consider all strings of commands of length 10 within the 
training data for each user. A similarity measure is defined where two sequences 
are compared command-by-command, with a score computed that is based on 
the number of matches, adjacent matches, and so on. Each new ten-command 
sequence is given the maximum similarity score from all the training data for the 
user. The most recent 100 consecutive such scores are then averaged, producing 
the score for the block. 

Figure 5.14 depicts a data image of these ten-command sequences for the 50 
users. Each user has 500 nonoverlapping blocks displayed as a data image. Since 
the blocks are disjoint, there are clearly many more command sequences for each 
user (in fact there are over 4000 distinct ten-command sequences in these data). 
One thing to note from this is that some users are clearly more homogeneous than 
others. Also, there are several users who are clearly distinct from others. 
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Fig. 5.14 Sequences of commands of length 10 for each of the 50 users are plotted as 
a data image. In this case, each user has 500 nonoverlapping blocks plotted. The white 
bands are separators between users. 

The results of the six techniques are depicted in Table 5.3 and Figures 5.15 
and 5.16. Both figures depict the results for the algorithms with updating. Similar 
figures are presented in Schonlau et al. [1999] for the algorithms without updating. 

The test was blinded, so none of the researchers applying the algorithms knew 
the placement of the masqueraders or even whether there were masqueraders in a 
given user's data. The results reported in Table 5.3 are not too impressive, but as 
we have seen in our analysis, this is a particularly difficult task. 

In Figure 5.15, each algorithm has been adjusted to produce a false alarm rate 
of 1 %. Uniqueness appears to be the best algorithm by this measure, although 
IPAM is better in the region of lowest false alarm, which is where one wants the 
algorithms to operate. The probability of the intruder surviving (going undetected) 
is plotted against the number of blocks until a detection is made. Thus, we can see 
that, depending on the algorithm, between 5% and 30% of the attacks are detected. 
By the tenth block, somewhere between 20% and 40% have been detected. From 
this plot, it seems that IPAM and Uniqueness are the best algorithms. 

The work of Schonlau et al. [1999] addresses only the commands executed. 
Ignored in this work are the arguments to the commands, in part due to the difficulty 
of dealing with these data. This leaves off several pieces of information that can 
be key to characterizing users. Some useful information that could be used in a 
follow-on study includes: 

Table 5.3 The results (in percent) for the six algorithms reported in Schonlau et al. [1999]. 
The algorithms aimed at a false alarm rate of 1 %. 

Method FA PD 

Uniqueness 1.4 39.4 

Bayes I-Step 6.7 69.3 

Hybrid 3.2 49.3 

Compression 5.0 34.2 

IPAM 2.7 41.1 

Sequence Match 3.7 36.8 
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Fig. 5. 15 Performance ofthe various algorithms tested in Schonlau et al. [1999] (courtesy 
of Matt Schonlau). 

• The command line flags used with the command. For example, if I do a 
long listing ("Is -I"), I almost always combine this with a flag indicating the 
results should be sorted in time ("Is -It''). This kind of information can be 
quite useful in characterizing users. 

• Whether the commands were executed from a script or otherwise. A 
set of commands in a script may be executed by anyone with access to the 
script, and hence the order of execution of those commands is not really 
indicative of a particular user. However, some users like to put commonly 
executed sequences into a script for convenience. 

• The use of aliases. To return to the "Is" example, I actually have an alias 
("11") for "Is -It" and almost always actually type "11" instead. In addition, 
I have a number of aliases that I set up thinking they were a good idea, but 
that I have stopped using (for various reasons). For example, to see the 
"new" files in a directory, one could type "Is -It I head." I have an alias for 
this but never use it. I always type "111 head." Why? Personal eccentricity. 
A masquerader, even if they looked in my .cshrc file (where aliases are 
defined), would not know which aliases I typically use and thus would have 
a difficult time matching my normal usage patterns. 

• Where the commands are executed. More generally, which directories 
are visited and which files are touched. These can be both a tip-off that the 
user is a masquerader and an indication of what the user is doing and why. 
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Fig.5.16 ROC curves for the various algorithms tested in citeschonlau:l999 (courtesy 
of Matt Schonlau). 

Further, even if the user is the authorized user he or she purports to be, this 
can be an indication of a "user gone bad," also known as "the insider threat." 

• The machines accessed. As we saw earlier, one of the users simply used 
the machine as a terminal to (one or more) other machines. Other users may 
rarely go to other machines (through, for example, telnet, rlogin, FfP, ssh, 
etc.). However, if the user starts going to machines that have never been 
visited before, that is an indication that there might be a problem. 

• The shell used. Users can be quite dogmatic about the shell they want to use, 
whether it be the bourne shell, the cshell, or one of the many others. Some 
users will automatically change to their favorite shell if they find themselves 
in another (as a result of accessing someone else's account). 

• Window usage. Some people love the file manager windows and other 
"user-friendly" interfaces. Some people hate them. 

• How the user accessed the system. If you never telnet to a machine, then 
anyone claiming to be you who telnets to the machine is suspicious. 

This command-based detection can and should be combined with biometric 
information such as the keystroke timings. Other authentication techniques, such 
as key-cards or retina scans can be implemented. 

The preceding discussion shows some of the promise of statistical methods for 
intrusion detection on host systems. Most of this work is quite recent, and there are 
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many areas for future research. The results to date are not that impressive given the 
desire for (near) perfect detection, but this appears to be in part due to the narrow 
focus of many of the projects. One of the areas for potential future work is to try 
to combine many disparate sources of information into a single set of algorithms. 
NIDES (Section 5.3) is a first attempt at this, and EMERALD (Section 4.6) is a 
more sophisticated attempt to do this. 

5.6 MISCELLANEOUS UTILITIES 

A few utilities for collecting data on a single host and monitoring for intrusions 
are described in this section. As always, this is not meant to be a complete list but 
rather a list of a few important utilities. More such utilities can be found in the 
resources listed in Appendix D. 

5.6.1 strings 

A useful program for investigating binary files (either programs or data) is "strings." 
This program prints out all the printable character sequences of at least 4 characters 
in the file. These may occur by accident - for example, if the data in the file just 
happens to have a value corresponding to the ascii values of the characters in 
the word "foobar." However, often there are error messages, prompts, version 
information, and so on in programs that are stored as character strings, and one 
can see these by running strings on the file. 

For example, try running strings on Is: 

strings Ibinlls I more 

The use of "more" is to keep the listing from running offthe screen. You will 
get a long listing of all the strings within the file. Scroll down the page, and you 
will come to the help information. This is what is printed out when you run 

Is help. 

When I ran strings, I got, near the bottom, the following strings: 

Sunday 
Monday 
Tuesday 
Wednesday 
Thursday 
Friday 
Saturday 
January 
February 
March 
April 



202 5. HOST MONITORING 

June 
July 
August 
September 
October 
November 
December 

Note: there is no "May" because the strings program is looking for strings at least 
4 characters long. Running strings on a program I wrote resulted in: 

/lib/ld-linux.so.2 
_gmon_start_ 
libc.so.6 
fscanf 
calloc 
fprintf 
_deregister_frame_info 
sscanf 
fclose 
stderr 
exit 
fopen 

IO_stdin_used 
libc start_main 

_register_frame_info 
GLIBC_2.1 
GLIBC_2.0 
PTRhl 
QVhP 
@WVS 
Usage: 
sample 
-l <infile> (stdin) 
-0 <outfile> (stdout) 
-n <number_data-points> 
-d <dimension> 
-h this help 
Unknown flag %s. Try doubles -h for options 
Could not open input file %s 
Could not open output file %s 
%d (%d): 
%d (%d) 

You can see the libraries called by the program, some of the functions used, and 
the help strings. There appear to be three strings that are accidental (for example, 
QVhP), a result of bytes that happen to have values within the range of printing 
characters. Running strings on a binary data file will display a large number of 
these accidental strings. 
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Some useful options to strings are: 

• -a Scan the whole file (the default is to scan only the initialized and loaded 
sections of object files). 

• -m minlength Print only strings of length at least minlength. The default 
is 4. 

• -t Print the offset into the file before each string. A following 0, x, or d 
defines the output radix as octal, hexadecimal or decimal. 

5.6.2 ps and top 

The ps command is used to report the processes running on a machine. For exam­
ple, on my machine I just executed the command 

ps aux 

and obtained a long list of processes, a partial listing of which follows. 

USER PID %CPU %MEM TTY STAT START TIME COMMAND 
dmarche 10757 0.0 0.3 pts/O S 08:23 0:00 -csh 
dmarche 10758 0.0 0.3 pts/1 S 08:23 0:00 -csh 
dmarche 10767 0.0 0.5 pts/2 S 08:23 0:00 -csh 
dmarche 12376 0.0 0.4 pts/2 R 21:40 0:00 ps aux 

This shows the process ID (PID), how much of the cpu and memory are used 
by the process, the status and start time of the process, and the command name 
(truncated if necessary for display). This could, in principle, be used to watch for 
attackers executing suspicious programs. However, it does not run continuously, 
so it is not a terribly good monitoring program. It is also relatively easy for a 
knowledgeable attacker to fool the ps program. 

The "top" command performs a similar function. It runs continuously, updating 
the process list every second or so. It also sorts the processes by their CPU usage, 
which can be useful to determine who is hogging your machine. Top can be 
modified interactively (type the "h" key to see the options) and can be run in 
"secure mode" (run "top s"), which disables some of the interactive functions. 
The top man page suggests that running "top s" in a spare window is a "nifty 
thing" to do. 

These utilities will show any processes that become active, provided someone 
(or some monitoring program) is watching. Unfortunately, it is possible to hide 
one's program so that it does not appear in a ps listing. On a related note, one of 
the first C programs I saw early in my career was a utility for changing the text 
that is displayed in a ps listing, so that instead of seeing something like: 

dmarche 112320.00.3 5361 743 pts/O S 09:320:00 crack /etc/passwd 

ps might show something like 
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dmarche 112320.00.3 5361 743 pts/O S 09:32 0:00 Your Ad Here! 

Sufficiently sophisticated attackers (or those who have downloaded the right scripts) 
will simply hide their processes from ps, making it that much more difficult to de­
tect their presence. Another approach is to run a "rootkit" that replaces the ps 
program with one that ignores the attacker's programs. 

5.6.3 Isof revisited 

We saw in Section 1.9.11 how to use the Isofutility to learn about the open Internet 
files and ports. We now tum to its use for host-based security. Lsof can be used 
to search for unlinked files, which are invisible to Is, using 

Isof +L1 

This lists the files with link counts less than 1, which may be files hidden by an 
attacker. 

Another use for Is of is to collect data for user profiling. For example, using 

Isof -u dmarche 

will collect data such as 

\symbol{44}\,ND PID FD TYPE DEVICE SIZE NAME 
Default 597 cwd DIR 3,7 4096 Ihome/dmarche 
Default 597 rtd DIR 3,7 4096 I 
Default 597 txt REG 3,7 373176 Ibin/bash 
gnome-ses 610 cwd DIR 3,7 4096 Ihome/dmarche 
gnome-ses 610 rtd DIR 3,7 4096 I 
gnome-ses 610 txt REG 3,7 46036 lusr/bin/gnome-
gnome-ses 610 mem REG 3,7 344890 Ilib/ld-2.1.2.so 

where USER and NODE are not displayed in order to use a single line for the 
display. This provides information about which files the user opened as well as 
the application used to open them. This can be used both for profiling typical 
user activity and determining when a user is examining or using files that are not 
typically used by that user or are (supposed to be) off limits. 

5.6.4 logcheck 

The system logs are one of the most useful places for gathering data for use in 
intrusion detection. All problems and many diagnostics are reported to the syslog 
(in Linux these are in /var/log). On Sun Solaris systems, there is a utility called 
BSM, which provides extensive logging and auditing capabilities to the level of 
logging individual system calls if desired. These files get quite large, and there is 
a mechanism in all system loggers to roll the files over either at a specified time 
or a specified file size. 
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As can be imagined, it is a nontrivial matter to check the system logs for evidence 
of attacks. This begs for automation, and there are several such solutions available. 

One of the easiest utilities for monitoring the system log is logcheck. This is a 
program that is started as a cron job (meaning that it is run at a prespecified time: 
every 15 minutes, once an hour, alternate Tuesdays, or whatever you want). It 
monitors the system log for changes, and then compares these new entries with a 
couple of lists of things you have told it about. These lists telllogcheck what to 
ignore, what to flag as definite attacks, and what to flag as suspicious. Anything 
that is not on the "ignore" list will be sent via email to wherever you specify. In 
particular, it can be sent to a corporate email account that is inaccessible from the 
machine if you are truly paranoid. (This is only useful if someone monitors this 
account regularly and so may not be a viable solution for some.) 

With logcheck running every 15 minutes, I have found that I get something like 
10-15 emails a day on my machine at work. One of the reasons I get so many is 
that I have several monitoring systems running, all reporting to the syslog, so I see 
a lot of things that I want to know about such as when others with accounts on my 
system log in. Most people are not this paranoid. 

There are a number of system log monitoring utilities. One of the most popular 
is swatch, which can be found at 

http://www.stanford.edul'''atkins/swatch/ 

I have found that logcheck meets my needs. It is relatively easy to configure 
and use. The fact that it emails reports to me as needed means that I can check up 
on my system when I am at home or traveling. 

Logcheck can be found at: 

http://www.psionic.com 

5.S.5 portsentry 

The portsentry utility is designed to watch for access attempts to a pre specified list 
of ports. It can watch either TCP or UDP ports (or two copies can be run, watching 
each protocol). It reports any access attempts to its list of ports to the system log. 

In this manner, it is similar to the simple tcpdump-based monitor described in 
Section 4.5.4 on page 129. It is less flexible in what it detects, not having all the 
functionality of a full tcpdump filter, but it is quite powerful. 

One of the interesting capabilities of portsentry is the ability to deny access to 
any host attempting to connect. This is done in two ways. First, an entry can be 
made in the letc/hosts.deny file. This is a file that is checked when machines try to 
connect to your machine (assuming you have properly configured your machine). 
Any machine on the list is not allowed to connect. A second mechanism is to 
drop the route to the host. This basically places the host in your route tal?le with 
a "block," forcing route lookups for the host to fail. Thus, no packets go back to 
the host, making it look as though your machine has disappeared. 

I do not recommend this latter functionality for novices. It is too easy to 
accidentally drop the route to something important (like your router, for example). 
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These can be removed but not as easily as the entries in /etclhosts.deny. Also, 
even if you manage to place your router in /etclhosts.deny, no harm will be done 
(the router has no business logging on to your machine anyway). Luckily, the 
routing table is regenerated at boot time, so if you make too big a mess of it you 
can simply reboot. Thus, the dropped route stops the attack without doing any 
permanent damage. Dropping the route is probably a good thing to do for very 
important systems, or in "attack-rich" environments. Just be sure you don't allow 
an attacker to use it to effect a denial-of-service attack against your system. 

Since portsentry sends its reports to the system log, you must either check your 
system log regularly or use a monitor program such as logcheck (Section 5.6.4). 
You should do this anyway. 

Portsentry can be found at: 

http://www.psionic.com 

5.6.6 tripwire 

One of the earliest file integrity checkers was tripwire, written by Gene Kim and 
Eugene Spafford of Purdue University. Originally, tripwire was designed to con­
struct sophisticated checksums on a set of files to be protected. The checksums 
were stored on a removable medium. Periodically, one would compare newly 
computed checksums with those previously stored and report the files that have 
changed. 

Tripwire also checks whether permissions have changed or whether the file 
modification times have changed. It records the deletion or addition of files within 
the directories it is protecting. Thus, it is useful for detection of attacks but also 
for assessing the consequences of the attack and the extent of damage. This makes 
tripwire, or a similar program, an essential tool for computer security. 

Newer versions of tripwire allow the encryption of the checksum file, which 
allows it to remain on the protected disk. This makes periodic checks easier (a copy 
should always be kept on a removable medium to ensure that if the tripwire file 
itself is corrupted or removed one can still determine what else has been touched). 

Tripwire first builds a database using a configuration file (/etc/tw.config) to 
indicate which files/directories are to be protected. The database is then stored 
away in a protected place. It can be updated if new files are added or if files are 
changed by the system administrator on purpose (for example, if a new user is 
added, the password file is changed). When an intrusion is suspected, or as a 
precaution against undetected intrusions, tripwire constructs a new database and 
compares it against the old. Any changes are reported to the operator. 

Tripwire is "semi-free," in the sense that versions of it are available for free 
for noncommercial use. There is also a commercial product available. There are 
similar programs available, which include source code. One of these is aide, which 
stands for "Advanced Intrusion Detection Environment." One nice feature of aide 
is that it uses no shared libraries. (I believe that tripwire does not either but am 
not certain of this.) This is critical. As we will see in Section 7.6, one can modify 
the behavior of a program by modifying the libraries it loads. Thus, security tools 
should be very wary of the use of shared libraries if possible. 
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In any case, a file integrity checker such as tripwire or aide is an essential tool 
for computer security. As the manual for aide puts it, paranoia is your friend. 

Aide can be found at: 

http://www.cs.tut.fiI ... rammer/aide.html 

Tripwire can be found at 

http:www.tripwire.org 

or 

http://www.sourceforge.netlprojects/tripwire/ 

One might think that a file integrity checker is only useful after an attack or 
if one is paranoid enough to run the thing every once in a while as a check. It is 
possible, however, to run tripwire in a cron job, which executes it, for example, 
once a day and emails the results or puts them in the system log. In this manner, 
one has a daily check of the integrity of the system files. If one does this, it is 
essential that a copy of the tripwire database be kept on removable media and that a 
check still be made against this database periodically by the system administrator. 

5.6.7 ipchains 

In Linux, no discussion of security tools would be complete without the inclusion 
of ipchains. Although I make no claims of completeness, I will say a few words 
about this useful program. 

Ipchains is an implementation of a firewall. It can provide a firewall in the usual 
sense, providing protection for a network, or it can be used as a host-based firewall, 
protecting your single host from attack. It is this latter use that I will discuss here. 

A packet filtering firewall is basically a set of rules that tells the kernel what 
packets are to be let through to the IP stack. Any packets that pass the rule set are 
sent up the stack (or sent out on the network - the rules work both ways), and those 
that do not pass either generate an error or are simply ignored, depending on the 
rule. There is also a facility for logging that allows one to collect information on 
the packets that failed (or the packets that were let through, if one wishes). 

There are two philosophies in packet filtering. The first, and the one that 
I recommend, is to deny everything except those few services that one wishes 
specifically to allow. The other, is to allow everything except those services that 
one considers a danger and specifically denies. With ipchains one can choose 
either approach, while with some commercial firewalls, only the first is allowed. 

Setting up a personal firewall is far too complicated for this short section. 
Instead, I will illustrate what is involved with a small example. Some of the most 
commonly used arguments to ipchains follow . 

• -All [num] Append the rule to the end or insert at rule "num." 

• -i interface Set the interface to which the rule applies, for example ethO. 
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• -p protocol The protocol to which the rule applies, for example TCP. 

• -y The SYN flag is set and the ACK and FIN flags are cleared. A "!" in 
front of this option inverts it: the SYN flag is not set, and the ACK flag is 
set. 

• -f The rule applies to fragmented packets. 

• -s address:port The source IP address and (if necessary) port or port range. 

• -d address:port The destination IP address and (if necessary) port or port 
range. 

• -j policy What to do if the rule matches a packet (ACCEPT, DENY, RE­
JECT). 

• -I Log any matches to the rule. 

• -L List all the rules. 

• -F Flush all the rules. 

• -P chain target Set the policy (see the following). 

An example will give some idea of how this works. Please do not try this without 
some further research. The man pages are a good place to start. An excellent book 
is Ziegler [1999]. Also, never execute these from the command line. Always put 
them in a script, and execute the whole script. One reason for this is that the first 
few will lock out all network accesses (including X Windows), and you may find 
that you cannot execute the others (or do anything else on your machine except 
reboot). 

Let us look at a firewall that would let in only secure shell, ssh, and nothing 
else. This might be desirable on a network sensor, for example, but is probably 
too strict for most desktop workstations. It will, however, illustrate some of the 
ideas. 

First, we set the policy: 

ipchains -F 
ipchains -P input DENY 
ipchains -P output REJECT 
ipchains -P forward REJECT 

The first line flushes all current rules, leaving us with a clean slate. The second 
says that any packet sent to our machine will be ignored. The third and fourth 
say that we will not output or forward any packets, and we will generate an ICMP 
error message. Now we have blocked everything, so we need to carefully allow 
the things we want to allow in. 

An important point here is that the first line removes all the current rules but 
does not change the policy. Thus, if you have the preceding policy in place, after 
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removing all the rules with the "flush" command, you are now in a position of deny­
ing everything. The distinction between rules and policy is important to remember. 

ipchains -Ainput-i ethO -ptcp -s any/O 1024:65535 -d 10.10.12.3222 -j ACCEPT-l 

This says that we will let any tcp packet from any IP address with a source port in 
the unprivileged ports 1024-65535 and destination port 22 (ssh) into our machine 
(IP address 10.10.12.32). The initial connection is logged, which is probably a 
good idea if you are at all paranoid. The preceding rule only lets packets in; we 
must let some out in order to have a connection. 

ipchains -A output -i ethO -p tcp ! -y -s 10.10.12.3222 -d any/O 1024:65535 -j 
ACCEPT 

Note the "! -y," which allows everything but the SYN packet out. This is because 
these are precisely the packets that are needed for a connection initiated from the 
outside. 

After the connection is initiated, ssh forks off a copy using privileged ports, 
starting at 1023 and going down. To allow up to five connections, we use 

ipchains -A input -i ethO -p tcp -s any/O 1019:1023 -d 10.10.12.3222 -j ACCEPT 
ipchains -A output -i ethO -p tcp! -y -s 10.10.12.3222 -d any/O 1019:1023 -j 
ACCEPT 

To allow a different number of connections, change the port number range. If you 
want to also be able to secure shell out, you will need similar rules to allow these 
connections. 

The "any/O" refers to "anywhere." If we want to allow only connections from 
our class B network 10.10, we could replace this with "10.10/16". This says that 
the first 16 bits of the IP address must match 10.10, and the rest can be anything. 

Obviously, for a workstation there are many more rules to put in place, which is 
one reason for putting them all in a script. There are a number of utilities that help 
you write firewall rules, and the book by Ziegler [1999] is highly recommended. 

5.7 FURTHER READING 

There are several books and articles that provide insight into attackers' methods 
and motivation. Some famous ones include Stoll [1990], Cheswick [1992], and 
Freedman and Mann [1997]. 

Sekar et al. [1999a] suggest some methods for detecting race conditions. They 
provide several suggestions for process monitoring and describe a basic system 
for host monitoring. 

Early work on IDES, the predecessor to NIDES, is discussed in Lunt [1989] 
and Lunt et al. [1990]. 

We have not really discussed visualization of host -based security in this chapter. 
Vert et al. [1998] suggest using "spicules," which are rays of decreasing thickness, 
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to represent various quantities such as CPU usage. Also, Jeffrey [1999] discusses 
several methods of program monitoring and visualization that would be relevant 
to host-monitoring. 

An alternative approach to system monitoring is described in Elbaum and Mun­
son [1999]. They model program execution as a stochastic system, where the prob­
abilities oftransitioning from one state to another (for example, calling function F 
given you have just called function E) are estimated from "normal behavior" and 
then used to detect abnormal activity. 

Ghosh et al. [1999] propose using neural networks to model program behavior, 
with a goal of anomaly detection. Ko et al. [1994] and Ko et al. [1997] discuss the 
detection of vulnerability exploits in executing programs. 

Ilgun [1993] describes a method of audit trail analysis based on state transi­
tions to detect misuse. This allows the modeling of specific attacks as a series 
of transitions of state; for instance, whether a file is open or a link has been cre­
ated. An inference engine then recognizes the type of attack that is under way. 
Mounji et al. [1995] discuss the analysis of audit trails from multiple machines 
or processes. In Mounji and Charlier [1997], they discuss integrating audit trail 
analysis with configuration analysis. Endler [1998] compares neural networks and 
a likelihood-based approach on Solaris Basic Security Module (BSM) data. 

Bace [2000] also discusses state transition approaches, including work on col­
ored petri nets. Chapter 4 of her book covers a large number of different ap­
proaches, including a number that I have not covered. It is a very good place to 
look for other approaches. 

One of the problems security analysts have is the removal of sensitive informa­
tion from the logs prior to disseminating the log, either for the purpose of reporting 
on the attack or providing researchers with data to analyze. Fisch et al. [1994] 
provide a brief discussion of these issues. 

For a discussion of the legal and ethical issues related to intrusion detection, 
and what to do if you are attacked, several books have extensive discussions of 
these issues. Some in particular are Neumann [1995], Denning and Denning 
[1998], Denning [1999], Bace [2000], and Proctor [2001]. Another good book 
is Andrews and Peterson [1990], which provides insight into evidence gathering 
and analysis from the perspective of criminal investigations. A similar book is 
Casey [2000]. This latter focuses on the use of computers in crime and the issues 
of collecting and protecting digital evidence. There are a number of anecdotes 
of cases that make interesting reading as well as useful information. A readable 
overview for the layman is found in Icove [1997]. Brackney [1998] discusses 
the problem of intrusion response from the perspective of the U.S. Department of 
Defense. 

The problem of user profiling continues to be of interest. Helman and Liepins 
[1993] propose a statistical method whereby pairs of the form <user,action> are 
modeled with probability of occurrence as a measure of misuse likelihood. Lane 
and Brodley [1997] discuss the issues of matching sequences of events for the 
purpose of user profiling or anomaly detection and show that exact matches are 
not appropriate for these purposes. They discuss a number of inexact matching 
algorithms. Biischkes et al. [1998] discuss anomaly detection in mobile networks, 
where user profiles are used to define "normal" activity for the user. A method for 
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profiling users of relational database systems is described in Chung et al. [1999]. 
This is used to detect misuses of the database, which can be indications of attacks 
against the database. 

One aspect of user profiling that is a little different from what we have discussed 
here is the profiling of people by their Web activity. Martin-Bautista and Vila 
[2000] describe a technique to profile users by the documents they have accessed 
on the Web. The purpose would be to better serve, or market to, the users. An 
approach to clustering Web sessions is described in N asraoui et al. [1999]. Another 
example of user profiling, concerned with providing personalized multimedia news 
and information to the user, is described in Tan and Teo [1998]. 

A good overview of the basic ideas of the computer immunology approach is 
found in Forrest et al. [1997]. This and related papers are available at 

www.cs.unm.eduJ"-Jimmsec/papers.html. 

A technique that is similar to the immunological approaches described in Sec­
tion 5.4 is discussed in Balasubramaniyan and Garcia-Fernandez [1998]. In this 
technique, autonomous agents are used as a hierarchy of intrusion detectors, which 
can be confined to a single host or migrate from host to host, providing protection 
for a whole network. 

Miller et al. [2000] discuss a system that uses n-grams for document retrieval. 
The document is characterized by a vector of the n-grams that appear in it, and 
one retrieves those documents that are close to a given search string or example 
document. 

The basic idea of computer immunology has also been used to detect attacks 
on Common Object Request Broker Architecture (CORBA) systems. This is 
described in Stillerman et al. [1999]. 

There are also several researchers applying machine-learning techniques to 
intrusion detection. For example, Lunt et al. [1989] and Bauer et al. [1989] discuss 
rule-based approaches, as do Snapp et al. [1991] and Lindqvist and Porras [1999]. 
Maloof and Michalski [1995] describe an inductive learning method. Shieh and 
Gligor [1991] discuss a method of detecting patterns of intrusions via finite-state 
machines. A data mining approach is described in Lee et al. [1998] and Lee et al. 
[1999b]. Rules are constructed using RIPPER to characterize various kinds of 
attacks, and association rules (such as "user! reads email in the morning") are also 
utilized. Related work is described in Lee et al. [1999a]. A data mining approach 
to fraud detection is discussed in Stolfo et al. [1999]. Finally, Me [1998] proposes 
a genetic algorithm to analyze audit trails and detect intrusions. 



6.1 INTRODUCTION 

6 
Computer Viruses 

and Worms 

Computer viruses are programs that copy themselves onto other programs. When 
the host program is run, the virus also runs, and as a consequence of its execution 
it makes further copies of itself. Most viruses also have other effects, such as 
erasing or damaging files, displaying rude words or pictures, or even damaging 
the computer or monitor itself. 

The first computer virus, as reported by Cohen [1987], was created on Novem­
ber 3, 1983. It was an experimental program designed to demonstrate the possi­
bility of virus programs, and it was released in a tightly controlled environment. It 
was extremely successful. This was predated by self-replicating programs written 
in the early 1970s at Xerox and the popular "core wars" games, where program­
mers wrote self replicating programs to compete for the resources (memory) of a 
computer. The first virus detected "in the wild" (as opposed to in the laboratory) 
was reported around 1985, according to McAfee and Haynes [1989] (Highland 
[1990a] places the first "wild" virus detection on October 22, 1987), so it didn't 
take long from the creation of the first virus to unauthorized infection of machines. 
A few early viruses are described in Highland [1990b], with many more described 
in McAfee and Haynes [1989]. A report on virus prevalence can be found at 

www.trusecure.comlhtmVtspub/pdf/vps2000 l.pdf 

Viruses most commonly infect personal computers. This is in part due to their 
general lack of any permission enforcement, meaning that any program can do 
pretty much anything on the machine in question. Another reason for this focus, 
particularly on Microsoft MS-DOS and Microsoft Windows machines, is that they 

2"5 D. J. Marchette, Computer Intrusion Detection and Network Monitoring
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are so prevalent, and thus a virus can spread easily to many machines. This has 
been termed "death by monoculture," meaning that homogeneous environments 
are particularly susceptible to infection. This is true in biology as well, which is 
one reason why genetic diversity is usually a sign of health for a biological species 
or ecosystem. 

In this chapter, we will first consider how viruses work. This tutorial is not 
aimed at providing instructions on how to write viruses but rather at providing 
a basic understanding of how they work. Following this is a brief discussion of 
how virus detection software works and some issues relevant to the statistician. 
Next, we will consider some work to model the spread of computer viruses, using 
random graph models. We will then look at some extensions of the immunological 
ideas discussed in Section 5.4. The final section on computer viruses will look at 
some work on producing computer virus phylogenies. 

We then turn to computer worms. The distinction between worms and viruses 
is subtle, and some would say irrelevant, but worms can be quite different from 
viruses. In particular, worms can be stand-alone programs, whereas viruses are 
usually attached to other programs. We will look at a few famous worms and 
discuss some issues related to their detection. 

The definition used in this book for a worm is that it is a program that spawns 
running copies of itself. An alternate definition is that a virus requires the action 
of a human to replicate, while a worm does not. The distinction is not really that 
important, in my view. While I will categorize individual programs as worms or 
viruses (or both), I understand that some will disagree with these categories. 

Actually, if you think about it, the two definitions are not that far apart. A 
virus that infects a program requires the program to be executed (hence requiring 
user intervention to propagate). The differences will be more pronounced in some 
cases than in others, and I leave it to the reader to decide whether it's important 
enough to be pedantic over. 

6.2 VIRUS REPLICATION 

In order to understand how viruses replicate, we need to consider some details 
about computer programs. A computer program is nothing more than a section of 
memory in the computer containing binary words that are codes for performing 
certain actions. As a result, one can change a program simply by writing new 
values into the part of memory in which the program resides. This is how viruses 
propagate - by copying themselves into other programs. Usually, computer viruses 
operate on programs stored to disk rather than in memory, but the principle is the 
same. 

Most people who have used computers for any length of time have come across 
the concept of a "software patch," which is software that vendors give out to fix 
problems in software the user has already purchased (see Ali [1991 D. Considering 
how patches work will help in understanding how viruses replicate. 

In its simplest form, consider the program illustrated in Figure 6.1. The patch 
program is given the instructions to allow it to find the beginning of the code to be 
patched. It places a "jump" instruction here, so that when the execution reaches 
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OK OK 

Jump to / Patch 

Bad Code Bad Code 

/ 
Jump to 

OK OK 

Fig. 6.1 Patching code. A "jump" instruction is placed at the beginning of the "bad code" 
causing execution to move to the patch code. At the end of the patch is another "jump" 
instruction to return to the beginning of the remaining "good" code. 

this position in the code it will jump to the patch code. The patch program then 
places the appropriate return code at the end of the patch so that execution returns 
to the beginning of the remaining code. 

This is a simplification. A real software patch may need to save and restore 
various registers to ensure that the code functions properly before and after the 
patch code. Also, it is possible for other parts of the program to have commands 
that cause the execution to jump to somewhere inside the "bad code." All such 
cases need to be handled properly. Further, all the patches that have been applied to 
a particular program need to be known by the patching software since the patches 
and the order in which they are applied can impact the manner in which new patches 
are to be applied. This is beyond the scope of this discussion and is irrelevant for 
virus propagation. 

Obviously, the patch code resides somewhere in memory, and we could illustrate 
this by placing it on the bottom of the code depicted in the figure. Alternatively, 
if the patch is no larger than the "bad code" block, we could place the patch in the 
memory that contained the bad code, overwriting what is there with the patch. 

One can think about virus replication as if the virus is "patching" the code with 
its own code. A description of some methods of virus replication can be found in 
Davis [1988]. Some sample code is provided in that paper to show how some of 
the basic ideas can be implemented. 

One of the things that a virus needs to do is hide its presence to avoid detection. 
For example, every time a file is changed, its date field is changed, so a virus will 
generally change the date field back to its original value. Some viruses go to pains 
to ensure that the size of the file does not change. 
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If the infected program does not operate normally, the probability of detection 
increases, so most viruses try to ensure that they do not change the program exe­
cution in any noticeable way. The simplest way to do this is to place the virus at 
the beginning of the execution code. When the program is run, the virus executes 
first, propagating itself, or executing whatever other actions it is designed to per­
form. Then, the original program is executed as if the virus wasn't there. Some 
viruses will even erase their presence from the original program once they have 
successfully propagated. 

6.3 VIRUS SCANNERS 

There are two changes that are unavoidable: the actual values in the file must 
change, and the program execution must change to allow the virus to propagate 
(and potentially cause damage). It is these changes that allow virus detection 
software to detect viruses. 

There are basically four ways to detect viruses. A brief discussion of these ideas 
can be found in Kumar and Spafford [1992], which also includes an implementation 
of a virus scanner. 

One approach is to keep checksums for every file (or every file under your 
protection) and provide a notification to the system administrator when the check­
sums have changed for any file. This must be done with some care. Obviously, 
the stored checksums cannot be modifiable since otherwise the virus could sim­
ply change the stored value to match the file's new checksum. In fact, the stored 
checksums cannot even be readable or computable by the virus because if they 
were the virus could simply add data to ensure that the checksum matched the 
originally computed value. 

One way to ensure that the stored checksums are not altered is to store them on 
removable or read-only media. This is the most secure. An alternative is to encrypt 
the checksums and store the encrypted values. Neither of these approaches directly 
addresses the last point, which is that if the virus can compute the checksum then 
it can ensure that the final checksum matches the original. This can be arranged by 
making the checksum calculation depend on an external event, such as a password. 
For example, the simplest approach would be to have the word-size used in the 
checksum be user-settable and use a different one for each file or even for regions 
within a file. The resulting checksum algorithm could then be encrypted and stored 
along with the encrypted checksum. 

Of course, the ultimate version of this approach would be to keep a complete 
copy of the file either on a removable media or encrypted. Then the file can be 
compared bit-for-bit to ensure that no changes have occurred. This cannot be 
defeated, (assuming both the operating system and the comparison program are 
also kept on read-only media), but what it makes up for in security it loses in 
convenience, time, and storage requirements. This is not an unusual tradeoff in 
computer security. 

There are versions of operating systems that are run entirely from a CD ROM. 
Since the CD ROM is read-only, these are safe from virus infection, at least for 
the operating system files on the CD. Of course, CD ROMs are not as fast as hard 
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disks, nor can they contain as much data, so these operating systems are necessarily 
smaller than those that are stored on the hard disk. 

A second approach to virus detection is to compile a list of "signatures" of 
known viruses and search for these signatures within the files. This is the approach 
taken by virus detection software, and its widespread use attests to its success. A 
particular virus will place certain code in given (usually fixed) places within the 
file, and searching for these distinct patterns allows the detector to find and remove 
the virus. Of course, the downside to this is that as the number of viruses (and 
hence signatures) increases, the probability of false detections increases as well. 

A technique related to the signature approach will be discussed in Section 6.5. 
The idea is to construct a set of "nonself" signatures, which are designed to detect 
sections of code that are not "normal." 

Several potential defenses against the signature approach are possible for the 
virus writer. Most viruses place their code at the beginning or end of the file. 
Instead, the virus can be designed to place code at random places within the 
program. This requires the anti-virus software to scan the entire file to detect 
infection. On the other hand, it makes it much more difficult to hide the effect of the 
virus if the program is executed. This may seem irrelevant since once the program 
executes the virus has propagated, but it can inform the system administrator that 
the system has become infected and steps can be taken to isolate the computer 
from others, stopping further infections. Also, as will be seen later, one method 
of virus detection relies on running the program in a protected environment, so 
unusual behavior will produce a detection without allowing the propagation of the 
virus. 

The virus can compress or encrypt the code prior to placing it into the program, 
making the actual byte values inserted change with each infection. This means 
that the main body of the virus cannot be detected by a scanner; however, the 
encryption/decryption part of the code must remain, and this can form the basis 
for a detector. 

Finally, viruses can be written to change their own code - so-called "polymor­
phic" viruses. These programs mutate, causing their copies to be different from 
the "parent" virus, making their detection via scanning for signatures much more 
difficult or impossible. The "polymorphic" engine must remain to some extent, 
however, and this can form the basis for a detector. 

The third approach to virus detection is to categorize "bad behavior" and scan 
programs for evidence that they are engaging in such behavior. For example, very 
few programs should be allowed to write on the boot sector of a disk. Most should 
not be allowed to format hard-drives, delete files outside oftheir working directory, 
write to system memory, and so forth. An extreme version of this is what is called 
"generic decryption" technology (Nachenberg [1997]). The idea is to build an 
emulation of the computer, run the program within the emulation, and determine 
whether it performs any of the actions that are proscribed. This is an extremely 
powerful idea, but it has some drawbacks. First, it is only as good as the emulation. 
It might be possible to write a virus to detect an imperfect emulation and simply 
not activate (copy itself or run) if it is being run by an emulation. Also, one does 
not want to run in emulation all the time, so, for example, a virus that is designed 
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to activate only on the tenth execution of a program, or on December 13, 2003, 
may go undetected. 

The fourth approach is to consider statistical measures for "normality" to deter­
mine when programs are not acting as they should. This is similar to the approach 
taken in host-based intrusion detection, discussed in Section 5.4. 

The preceding discussion has focused on viruses that infect files. These are the 
traditional viruses that most people who owned personal computers in the 1980s 
and 1990s recognize. There is a new breed of viruses, called macro viruses. There 
was a time when it was said that a virus could not be transmitted via email. There 
were a number of hoaxes, the so-called "Good Times Virus" and others (Denning 
[1999], pp. 276-279). In these, an email message was sent warning against reading 
certain emails that would infect your machine with a virus, erase your hard drive, 
or cause other catastrophic events (there was even an urban legend about some 
people fearing that biological viruses could be sent via email). Of course, all of 
this was nonsense. You could not get a virus (computer or otherwise) by reading 
email. 

This is no longer true. As the Melissa virus (actually a worm by our definitions; 
see Section 6.7.3.1) showed (Garber [1999]), simply opening an attachment to an 
email can cause unforeseen consequences. Word processors now come with very 
powerful macro-languages that allow extremely sophisticated operations to be 
performed merely by opening a document. 

A related issue is the increased power and functionality of email readers. As 
vendors increase the functionality of these readers (for example, automatically 
displaying attachments or executing mobile code sent by email), the possibilities 
for virus infection will be increased. If past is prelude, the security issues are not 
likely to be adequately addressed in these programs until the next big event causes 
users to demand protection. 

The effectiveness of viruses is a function oftwo factors: the number of machines 
that can be infected by the virus and the susceptibility of the machines to damage. 
Unix machines have not been as common a target of viruses as personal computers 
due to their file protection scheme and other security measures, which limit the 
damage that simple viruses can do. As personal computer operating systems start 
to adopt security measures, viruses will have to be more sophisticated in order to get 
around the security measures, making them harder to write, and thus, presumably, 
less common. Another reason few viruses were written for Unix platforms was 
the diversity of such platforms. A virus that would infect a Silicon Graphics 
workstation would be unable to propagate to a Sun workstation, for example. The 
very strength of the personal computer (relative interoperability across all PCs) is 
a fundamental reason for the success of virus attacks. 

Cohen [1987] proved that a perfect virus detection scheme is impossible. The 
proof is as follows: 

Let D be a perfect virus detector; that is, for a program P we have 

D(P) = T if P is a virus 

D(P) = F if P is not a virus. 



Let the program V be defined as follows: 

if (D(V) = F) then infect another program 

else do nothing 
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If D(V) = F, then V is not a virus, yet V then proceeds to infect another 
program, thus proving that it is in fact a virus. Thus, we must have D(V) = T, 
in which case V is a virus but it does nothing and hence is not a virus. This is a 
contradiction. 

This seems at first glance to be somewhat silly, an impractical "non-existence" 
proof. However, it is precisely the strategy that I suggested to defeat the generic 
decryption technology described in Nachenberg [1997]. First, the virus checks 
to see whether it is running in an emulator - if so, it does nothing; otherwise, it 
infects. Given that the virus writer can buy the same anti virus software that you 
can, it will always be possible for a sufficiently clever virus writer to defeat any 
given detector. 

For another discussion of virus detection and elimination, see Phillippo [1990]. 

6.4 VIRUS EPIDEMIOLOGY 

Treating computer viruses as if they were biological ones and studying their behav­
ior using the tools of epidemiology is an appealing idea. Kephart et aI. (Kephart 
and White [1991], Kephart and White [1993], Kephart et al. [1993]) describe this 
approach, and we will describe their work in some detail in this section. 

Consider the problem of describing the spread of a virus over the Internet. The 
idea is to consider the Internet as a number of hosts each of which can pass a virus 
(assuming they are infected) to a fixed set of hosts. 

First, some terminology: 

virus A computer virus is a program that copies itself (infects) to other programs. 
It mayor may not perform other tasks. 

worm A computer worm is a program that spawns running copies of itself. 

infected A computer is infected if the virus exists on the computer (in a manner 
such that the virus can be run or passed to another computer). 

susceptible A computer is susceptible to a virus if it could become infected with 
the virus, provided the virus is somehow introduced to the computer. 

adequate contact Two computers have adequate contact if one would have trans­
mitted a virus to the other had it been infected and had the other been 
susceptible. 

birth rate The birth rate of a virus is the frequency with which adequate contact 
occurs. 
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cured A computer is cured of a virus if all copies of the virus are removed from 
the computer. 

death rate The death rate of a virus is the frequency of cure. 

epidemic An epidemic is the widespread occurrence of a disease. 

epidemic threshold The epidemic threshold is the relationship between the birth 
rate and the death rate at which the virus becomes widespread. 

extinction rate The extinction rate is defined to be the ratio of the death rate to 
the birth rate. 

endemic A disease that can maintain an epidemic for a long time is called endemic. 
For example, common childhood diseases are endemic. 

Let us consider a simple epidemiology model, the SIS Susceptible-Infected­
Susceptible model, depicted in Figure 6.2, in which a computer is susceptible to 
infection until it becomes infected. Subsequently, the computer may be cured, 
at which point it is once again susceptible to infection. There is no concept of 
immunity in this simple model. All computers are either susceptible or infected. 

A compartmental model (Walter and Contreras [1999]) is constructed by divid­
ing the system into homogeneous entities (compartments) and identifying the flow 
between compartments. Thus, for the SIS model, we have two compartments, S 
and I. The flow from S to I corresponds to the changing of a computer from 
susceptible to infected. This happens by an infected computer interacting with a 
susceptible one and so happens at a rate proportional to the product of the number 
of infected machines and the number of susceptible machines. Machines that are 
infected become susceptible (cured) at a rate proportional to the number of infected 
machines. This is illustrated in Figure 6.2. 

(JIS 
-I S I 

t I 
8I 

Fig. 6.2 The compartmental model for an SIS epidemic (see Walter and Contreras [1999]). 
~ 

Setting N = S + I, this results in the differential equation 

dI 
- = (JICN - I) - M. 
dt 

This has the solution (Walter and Contreras [1999]) 

(6.1) 

(6.2) 

where C is a constant depending on the number of initially infected computers. 
Kephart and White [1991] consider the SIS model as well but take a slightly 

different perspective. The network is modeled as a random graph G with IIGII = N 
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nodes. For each pair of nodes, a random, independent decision is made as to 
whether the nodes are connected. These connections are directional, to denote the 
fact that in some cases infection can only travel one way due to, for instance, the 
security policy on one of the nodes. Recall that graphs with directed edges are 
called digraphs. 

There are N(N - 1) possible (directed) connections. Let P be the probability 
of connection, fixed for all pairs of nodes. Let e( G) denote the number of edges 
in a graph (also called the size of the graph). Then, we have 

E[e(G)] = PN(N - 1), 

where E denotes the expectation with respect to the probability model. 
Let the infection rate from node j to node k be denoted (3jk = (3. Similarly, 

let the death rate be denoted 8jk = 8; that is, the rates are the same for all nodes. 
I(t) will denote the number of infected nodes at time t and define the fraction of 
infected nodes i(t) = I(t)/N. For a given node, the expected number of edges 
from the node is 

E[number of edges from node] = P(N - 1) == b. 

The fraction of neighbors to the node that are susceptible is 1 - i (t). The expected 
number of nodes that can be infected by this node is b * (1 - i(t)). Thus, on 
average, we expect the total rate by which infected nodes infect new nodes to be 

(3I(t)b(l - i(t)) == (3' I(t)(l - i(t)) 

Similarly, the rate at which nodes are cured is t5I(t). This results in the determin­
istic differential equation 

~! = (3bi(l-i), 

which is essentially Equation (6.2), and which the authors solve as 

. (. 0 ) 
~o t - -; 

i(t) =. C 0 ~) (f3' o)t' 
~o + t - f3' - to e- -

where io is the initial fraction of infected nodes. 
If we consider the ratio of cure rate to death rate, p' = 8/(3', then 

. ( ) _ io (i - p') 
t t - io + (i _ p' _ io)e-(f3'-o)t' 

and this simple analysis leads to two cases of interest. If p' > 1, it is easy to see 
that this corresponds to exponential decay with i(t) -t O. If p' ~ 1, then i(t) 
asymptotes to 1 - p'. This matches our intuition: if the death rate is greater than 
the birth rate, the virus eventually dies out; otherwise, it reaches an equilibrium. 

Ignoring the stochastic nature of the problem leads to a very simplistic model. 
However, the results are not uninteresting. Basically, we have a crude bound for 
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the i (t) depending on p'. Either i (t) goes to 0, which means that the virus becomes 
extinct, or it is roughly bound by the value 1 - p'. 

In a stochastic model, it is easy to see that the virus must always become extinct 
since at any time there is a nonzero probability that every infected node will be 
cured. This is another reason to consider a more reasonable model. 

Let P(I, t) be the probability distribution function for I infected nodes at time 
t. Then, the probability of extinction at time t is P(O, t). Let 

L I-I 

1+ 1+1, 

and define Ra-+b to be the rate at which transitions occur from state a to state b. By 
considering the nodes that become infected versus the nodes that become cured at 
time t, Kephart and White derive the equation 

dP(I, t) 
dt = -P(I, t)[RI-+I+ + RI-+L] + P(h, t)RI+-+I + P(L, t)RL-+I. 

(6.3) 

R a-+a+1 is calculated as 
(#infected nodes) * (rate of infection)*(probability of susceptibility)*(#of neigh­

bors): 

a -
a(l- N)f3b 

a(l- ;)f3I. 

The probability of cure is (# infected) * (cure rate): 

Ra-+a-l = a8. 

Letting L = LIN, Equation (6.3) becomes (suppressing the dependence of 
I and ion t) 

dP~!, t) = -P(I, t)[I(1 - i)f3' + 18] + P(h, t)h8 + P(L, t)L(1 - L)f3'. 

(6.4) 

For N nodes this is a tri-diagonal set of N + 1 coupled linear differential equations 
and hence relatively easy to solve. If we define the matrix A with aj, j E 0, ... , N 
on the diagonal, bk , k E 0, ... , N - 1 above and Cl, lEI, ... , N below the diagonal, 
we have 

aj j(l- jIN)f3' + j8 

bk (k+l)8 

Cl (l-I)(I- (l-I)IN)f3'. 

These equations can now be written as 

p/=AP, 
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which can be solved (see Kreyszig [1999], pp. 162-163) as 

(6.5) 

where the Ai are the eigenvalues of A and the x(i) are the corresponding eigen­
vectors. 

For the simplest (non-trivial) case, where N = 2, we have 

(
0 8 ° ) 

A = ° -(~t3' + 8) 28 , 

° ~t3' -28 

and solving for the eigenvalues and eigenvectors of A produces 

AD 0, (6.6) 
x(O) (1,0,0)', (6.7) 

Al 
1 

-4(13' + 68 + a), (6.8) 

x(l) 28(13' - 28 + a) 13' - 28 + a , 
( 13' (13' + 68 + a) , - 213' , 1) , (6.9) 

A2 -~(t3' + 68 - a) 
4 

(6.10) 

x(2) 28(13' - 28 - a) 13' - 28 - aI' 
13'(13' + 68 - a) ,- 213' ,) , (6.11) 

where 

a = J 13,2 + 1213'8 + 482. 

Using the fact that P(o) = (0,1,0)', we can use Equation (6.5) and Equations 
(6.6-6.11) to solve for aD, aI, a2: 

aD 1, 

al 
13' 
a 

13' a2 
a 

The resulting solution of Equation (6.4) for N = 2 is then 

PO(t) 
28(13' - 28 + a) -!((3'+6o+a)t 28(13' - 28 - a) -!((3'+60-a)t 

1- e 4 + e 4 

a(t3' + 68 + a) a(t3' + 68 - 0:) , 

13' - 28 + 0:) e-!((3'+6O+a )t _ 13' - 28 - 0:) e-!((3'+6o- a )t 

20: 20: ' 

_13' e-!((3'+60+a)t + 13' e-!((3'+60-a)t. 
0: 0: 

P2 (t) 
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Figure 6.3 depicts the solution for N = 2. 
Although this is a trivial example, one can still see interesting behavior, which 

is typical of the solutions for more realistic values of N. In Figure 6.3 we see that 
the probability of extinction starts at zero and quickly goes toward an asymptote of 
1. Similarly, the probability of both systems becoming infected quickly increases 
to a maximum and then drops off toward zero. 

Since the probability of extinction approaches one, the limiting distribution is 
an uninfected network. If we consider the conditional distribution of infection 
given that at least one of the nodes is infected, we have a limiting distribution that 
has the probability of both nodes being infected at slightly over 0.6 (when {31 = 1 
andd = .2): 

lim P(both infectedlone infected) = 2~1 {3 
t-+oo a + 2 + I 

(6.12) 

The same kind of analysis can be performed in the general case. Analyzing 
Equations (6.4) and comparing the results to the deterministic model described 
earlier (with N = 100, Ii = 5, {31 = 1, and d = .2), Kephart and White [1991] 
make the following observations, which agree with our simple example. The 
density considered is the mixture of the densities Pi (t) at a fixed t 

• At time t = 0, there is only a single machine infected, so the density is a 
delta function at I = 1. 

• As time progresses, the density is a mixture of a delta function at I = 0, 
corresponding to the extinction of the virus, and a "survival" component. 

• At time t = 1, the survival component is exponentially distributed. 

• At first, the survival component grows quite rapidly (exponentially), with 
a growing standard deviation. This continues until the population becomes 
saturated, reaching a balance between new infections and cures. 

• The survival component at saturation is roughly Gaussian. They call this 
the "metastable" phase. 

• The metastable phase is long-lived. However, the extinction component 
grows slowly until finally the virus goes extinct. 

The preceding discussion shows that the probability of a virus going extinct 
eventually is 1. However, it is possible to analyze the metastable distribution. 
The conditional probability of I infections given that there is at least one infected 
machine does approach a well defined limit, which Kephart and White [1991] 
denoted Poo (I). In our simple example, the metastable distribution is indicated in 
Equation (6.12). 

This model is, of course, a simplification of the true problem. Several possible 
extensions to this model are discussed in Kephart and White [1991] and Kephart 
and White [1993]. Some of these, and a few suggestions of my own, are presented 
in the following list: 
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Fig.6.3 Solution of Equations (6.4) for N = 2 with (3' = 1 and 8 = 0.2. 
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• People tend to share files often with a small group but also occasionally with 
a much larger group. This could be modeled as a hierarchical model, where 
a machine has a small group under it that has a high probability of infection, 
then a larger group under that with a smaller probability of infection, and so 
on. This is a special case of the more general case where !3jk is not constant. 

• Similarly, not all machines have an equal probability of cure. 

• In some cases, a spatial model could be considered, where each node can 
infect others in its neighborhood but none outside the neighborhood. This 
could be a model for some kinds of security systems where machine inter­
actions are restricted to those within a given security domain, with gateways 
between domains. 

• Virus spreading in an organization is another interesting model. In this 
model, there is a collection of machines that can communicate with each 
other and a "boundary" through which all communications to the Internet 
must pass. In this model virus infections can be inserted only through the 
boundary, and thus even after extinction within the organization there is a 
probability of re-infection via machines outside the organization. 

• Even after a virus is extinct "in the wild," it can still be re-introduced by 
attackers or by accident from archives. This can be modeled either by the 
organizational model described earlier, by having a small probability of 
"spontaneous infection" whereby a node becomes infected even though it is 
not susceptible from any connecting node, or by having a set of nodes that 
always remain infected, with a small probability that they will pass on their 
infection. 

• When a virus infection is detected, it is good practice to warn others of 
the detected virus. These others then scan their machines looking for the 
virus, thus increasing the probability of detection and elimination and also 
decreasing the probability that these machines will become infected in the 
future. This can be modeled as a "kill signal" that propagates from a cured 
machine in much the same way the original virus propagated. 

• An obvious extension to the model would be to allow machines to become 
immune to the virus. A further extension would be to allow machines to 
pass this immunity on to others, propagating in much the same manner that 
the "kill signal" discussed earlier. 

• Incorporating some of the preceding ideas into a model with multiple viruses 
would be very interesting. In this model, a virus detection could not only 
warn others about that specific virus, but due to an enhanced vigilance the 
probability that other viruses would be detected would increase. This is 
the so-called "Michaelangelo" effect discussed in Kephart et al. [1993] and 
Kephart and White [1993]. 

• A better model for real networks would be a random graph where the graph 
itself changed with time. One way to model this would be to have time-
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varying (3jk, allowing values to be zero occasionally, indicating no connec­
tion. Also, the size of the graph changes. Nodes are inserted (new machines 
coming online) and deleted (old machines taken off the network). This kind 
of dynamic network model introduces many interesting areas for future re­
search. 

One issue not discussed in this work is that of scale. While Equation (6.4) can 
be solved fairly easily for networks with hundreds of nodes, to model the spread of 
viruses on the Internet, networks will have to contain millions of nodes. It may not 
be a trivial matter to scale these calculations up to networks of this size, particularly 
if some of the modifications discussed earlier are implemented. However, it may 
be possible to do asymptotic analysis under the assumption that networks with 
millions of nodes are approaching the asymptotic regime. Investigations of these 
issues might be fruitful. 

6.5 IMMUNOLOGY 

The team at the University of New Mexico has adapted its immunology-inspired 
approach to the detection of viruses. Recall from Section 5.4 that the basic idea 
is to generate a collection of "n-grams" which correspond to "self" and to use 
the number of "nonself" mismatches to determine the likelihood that an anomaly 
has occurred. The analogy is taken one step further in D'haeseleer et al. [1997]. 
A biological immune system has antigens that are specific to certain pathogens. 
These antigens actively detect "nonself" by matching parts of known pathogens. 

In order to implement something such as this, one could take the approach of 
most of the virus scanners: make specific detectors for each known virus. The 
problem with this is that it makes the detection of new viruses difficult. 

The approach taken in D'haeseleer et al. [1997] is a little bit different. The idea 
is to generate a large collection of n-grams designed to detect "nonself." These 
are analogous to biological antigens. 

D'haeseleer et al. [1997] provide three algorithms for generating these "nonself" 
n-grams. The first, referred to as the generate-and-test algorithm, is to generate a 
large number at random, test them against "self," and throwaway those that match. 
The remaining strings, by definition, match "nonself." This is the simplest of the 
three methods. The others, which require specific knowledge of the matching al­
gorithm employed, will not be discussed here. The interested reader is encouraged 
to read D'haeseleer et al. [1997]. 

The D'haeseleer et al. [1997] approach, in its purest form, does not require any 
examples of viruses. Obviously, if such examples are available, it makes sense to 
use them. This is a part of the architecture discussed in Marmelstein et al. [1998]. 
The idea is actually more sophisticated than simply using a few captive viruses to 
generate virus-detector n-grams. Instead, the idea of a "decoy" file is introduced 
(this idea appears to have originated in Kephart [1994] and Kephart et al. [1997]). 
A decoy file is one designed to be infected by viruses. These files are never used 
by the computer and by design should never change. Their only purpose is to 
exist, awaiting infection by viruses. Once an infection has occurred (detected via 
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detecting a change to the decoy file), the virus can be the source of "nonself" 
patterns. 

Obviously, the selection of "decoy" files is critical to this process. In order to 
increase the probability of infection, a genetic algorithm is used to try to find files 
with attributes (filenames, location, size, priority, etc.) such that the probability of 
infection is maximized. 

An alternate approach, not discussed in the preceding work, would be to try to 
estimate the probability of infection for a specific set of attributes. This estimation 
would require the modeling of the set of all possible attributes and the collection of 
a large amount of data, presumably via repeated infection of various machines by a 
wide range of viruses. This approach appears infeasible when stated in these terms, 
but it is in effect what the genetic algorithm is attempting to do in Marmelstein 
et al. [1998]. 

In a series of papers (Hofmeyr and Forrest [1999], Hofmeyr and Forrest [2000], 
and Forrest and Hofmeyr [In press]) Steven Hofmeyr and Stephanie Forrest detail 
an artificial immune system for computers. This can be used for any kind of 
intrusion detection, whether network-based or host-based, unauthorized use, or 
virus detection. As before, the basic idea is to construct a collection of detectors. 
These detectors are bit strings, which are matched against "foreign material" (code 
or packets) that enters the system. They use the "r-contiguous bits" matching rule: 
two strings match if they have at least r identical, contiguous, bits. These bits need 
not be in the same position within the string but must be contiguous. One could 
extend this rule, for instance, to allow at most q mismatches within the r bits. 

The construction of the "nonself" detectors is closely related to biological im­
munology. The interested reader should consult the papers cited, where this rela­
tionship is discussed in considerably more detail than we have room for here. The 
basic idea is as follows. A detector is created at random and labeled "immature." 
If a detector detects a match while it is immature, it is deleted. The idea is that 
"nonself" is rare, so anything an immature detector finds will actually be "self." 
Once a detector "matures" (after a fixed amount of time), it becomes part of the 
database of "things that should not be detected." This is analogous to lymphocytes, 
which look for "nons elf" to bind to and kill. 

In addition, the system can be trained with "nonself" to construct detectors 
specifically designed to detect certain known attacks. In addition, when a detection 
does occur, a "nonself" detector that matches the attack exactly can be constructed 
to speed up future detections. 

The system is also adaptive. This is implemented by giving the detectors a life 
span. Each detector has a probability of dying (disappearing from the database). 
In this manner, as the system changes, the detectors can adapt to the new "self," 
and old detectors that are no longer valid do not clutter up the system. 

This work is extremely interesting and shows great promise. It remains to be 
seen whether it can be made practical, but the results to date are quite impressive. 
Even if it turns out to be impractical for individual systems, it should lead to very 
interesting immunological models, which may be of interest in their own right. 

In a very short paper, Gilfix [1999] discusses extending the immune system idea 
to overall system and network management. This is little more than a proposal at 
this point. 
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6.6 VIRUS PHYLOGENIES 

As with biological viruses, there is an interest in tracing the "ancestors" of computer 
viruses. This section will discuss some work on constructing these phylogenies. 

Unlike biological viruses, it is possible for a computer virus to be created with 
no ancestors. Also, except for polymorphic or other evolving virus types, computer 
viruses don't actually "give birth" to new species. These differences are not that 
important, really, but are worth keeping in mind while we look at the work. 

The main references for this work are Goldberg et al. [1991], which documents 
the original work, and the later journal article documenting this work, Goldberg 
et al. [1998]. The basic idea is that new computer viruses are often written using 
ideas, or even code fragments, from previous viruses. By matching the code strings 
in these viruses along with the dates of first detection of the viruses, one can produce 
a phylogenic mapping of the ancestors and descendants of the viruses. Some care 
must be taken to ensure that the code strings used are long enough to be valid. 
The analogy to keep in mind is biological phylogenies based on genetic maps. 
Obviously, these genetic maps must be made using sufficiently long segments of 
DNA (for example, genes). A phylogeny based on looking at segments of only a 
few base pairs would be useless. Similarly, in the computer virus case, there are 
certain operations that must be performed by computer viruses, such as file reads 
and writes and memory copies, and so on. Only relatively long sequences of code 
will be of value in constructing meaningful phylogenies. Goldberg et al. [1998] 
suggest using sequences of 20 bytes or more. 

The basic technology used in constructing virus phylogenies is to compare the 
binary code of the viruses, finding sequences that are common to all of those in 
the collection, and then computing the probability that a sequence of that length 
would occur by chance in such a collection. If the probability is small, then the 
viruses are assumed to be related, with a common ancestor (which may be one of 
the viruses in the collection). 

The assumption is made that (for sufficiently long code fragments) each frag­
ment is invented only once. This is a reasonable assumption, assuming the frag­
ment is "long enough," an assessment that is to a degree subjective. This as­
sumption can be tested. Collect a large number of programs for which there is 
no reasonable chance that any of the code of one program was borrowed from 
another, and test to see whether any code fragments of a given size. are found in 
more than one program. If some are found, one has an estimate for the probability 
that such fragments would be found by chance. This probability can then be used 
to give a confidence for the constructed phylogeny. 

A phylogeny is defined to be a directed acyclic graph. Recall that a graph 
without cycles is called acyclic, while the adjective "directed" means that the edges 
have a direction associated with them, and that hence any cycles must follow the 
direction of the edges. 

By comparing bit strings within the virus code, a phylogeny is constructed 
showing the implied relationships among the different viruses. In this way, one 
can determine when particular ideas first appeared, and which viruses built on 
ideas from previous viruses. 



232 6. COMPUTER VIRUSES AND WORMS 

The main contribution of Goldberg et al. [1998] is an algorithm for constructing 
these phylogenies. They provide a fast (greedy) algorithm, and provide a proof 
of its performance. Like most greedy algorithms, it is not guaranteed to find the 
optimum match, but it is off by at most a factor of (approximately) the log of the 
input length. 

Further work on the actual construction of phylogenies for specific collections 
of viruses is needed. This would be particularly interesting for the "new" macro 
viruses (see Sections 6.7.3.1 and 6.7.3.2). My guess is that they owe quite a lot to 
earlier viruses. 

A more ambitious but related effort is proposed in Spafford and Weeber [1993]. 
This proposes looking at the source code with the purpose of determining the author 
of the code rather than constructing a phylogeny. This would make use of choices 
of data structures, coding and formatting styles, library calls, grammar and spelling 
errors, and so forth. This is a good place to utilize statistical techniques, as are 
used in the determination of authorship for written documents. 

6.7 WORMS 

6.7.1 Introduction 

A worm is a program that, like a virus, reproduces itself. The distinction is that a 
worm makes new running copies of itself instead of infecting files. 

The world's simplest worm (Do NOT try this at home! Or anywhere else!) is 

#!lbinlcsh 
echo "Wiggle Wiggle" 
$0& 
$0& 

The first line indicates that this program is to be run under the "cshell." The 
"echo" is simply to give the worm some effect besides propagation. This would 
be replaced by any action that the worm is expected to take prior to propagation. 
The "$0" gets expanded by the shell to the name of the calling program, in this 
case the name of the file. The "&" puts the program in the background. 

This particular worm is also called a "fork bomb" because it forks off processes, 
which in tum fork more processes. Some people would not consider this kind of 
program a worm since it does not attempt to propagate itself outside the originating 
computer. 

If executed on a Unix machine, this will print "Wiggle Wiggle" to the terminal, 
then spawn two copies of itself, each of which will print and spawn two copies. 
Even though the individual processes exist for a tiny amount of time, this quickly 
fills up the processes table and the computer slows to a crawl (or crashes). The 
only reliable way I have found to shut the thing down is to reboot the computer. It 
may be possible to kill it with the command: 
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kill -9 -1 

which will kill all processes owned by the user that executes this. If you are root, 
it will bring the machine down. However, if you execute it as a normal user, there 
is no guarantee that it will work on the "wiggle" worm. 

A "safe" version of this program is as follows: 

#!lbinlcsh 
echo "Wiggle Wiggle" 
$0 

This one is relatively safe to run. It will print a bunch of "Wiggle Wiggle"s to 
the screen until it is killed (via a control-c). At any time only one version of the 
program is active. I say "relatively safe" because even this program will eventually 
suck up all the resources on your computer. It is a recursive function with no exit 
criterion, and each call gets a new process ID. The program is easy to kill (unlike 
the previous worm) and so is really not much more dangerous than an infinite loop 
in a program. However, it can, if left unchecked, bring a machine to its knees, so 
do not try it on any machine that is not your personal property. 

Here is another twist on the "wiggle" worm. This one renames itself: 

#!lbinlcsh 
echo "Wiggle Wiggle" 
set d='date' 
set n='echo $d[4] I sed "s/:llg" , 
@ n *= 131 
@ n %= 10000 
@ n *= 71 
@ n %=40000 
set name= 'head -$n lusr/dict/words I tail -1 ' 
mv$O $name 
sleep 1 
$name 

The single quotes in this program are "backquotes." These cause the enclosed 
command to be executed. The variable is set to value that the command returns. 
The lines starting with "set" and"@" are intended to select a random name from the 
local dictionary (this is not a particularly good pseudo random number generator, 
but it suffices to make the point). This program will start one copy a second, each 
copy showing up in the process list with another name. It gets these names from 
the local dictionary, lusr/dict/words. This is certainly not the most elegant such 
program, but it will work on most Unix systems, provided the dictionary file is 
changed to match the local system. 

Running the preceding script for a few seconds produced the names 
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Dewitt Esmark acclimates atrophy brassy cocking gasser grime inherits loafed 
oblivion polygons regaining sensitively 

Note that the "random number generator" is far from random. Obviously, a 
better random name generator (which did not use "date" and therefore could start 
more than one worm a second) would be easy enough to write. 

Change the "$name" to "$name &; $name &" in the program and you will very 
quickly crash your system. Once again, I must beseech you: DO NOT DO THIS. 
It is merely for the purpose of illustration. Playing around with malicious code 
may very well get you fired, fined, or jailed. The writers of the Internet worm and 
the Melissa virus were not treated as harmless pranksters when they were caught. 
It is a very serious offense and will be prosecuted if anything goes wrong. 

Unlike their biological counterparts, a worm can be a virus and a virus can be a 
worm. We will see several examples of worms that are also viruses. Some of the 
more famous "viruses" were both viruses and worms. 

Are worms bad? After all, many important problems require vast computing 
resources, and most home computers are sitting idle most of the time. Why not 
use them? This is the approach taken by the SET! (Search for Extra Terrestrial 
Intelligence) people. The idea is to provide a screen saver that processes a piece 
of the vast amount of data that the SET! program has collected. This distributes 
the computation across a very large number of machines (as of January 15,2001, 
the SET! Web page reports over 2.5 million users, for a total of over half a million 
years of CPU time). The key is that this is a purely voluntary activity. Anyone 
who wishes to participate is welcome to obtain the software and install it on their 
computer. If they decide they no longer want to participate, they simply stop using 
the screen saver. At no time is the program propagated to another machine without 
the permission and knowledge of the owner of the machine. See 

http://setiathome.ssl. berkeley.edu/ 

for more information about this project. 
The distinction between this kind of voluntary distributed computing and worms 

is clear. A worm or virus infects a machine by obtaining unauthorized access. 
Although it is true that most machines are idle most of the time, this does not give 
one license to use these machines without permission. It is as if one decided that 
since people don't use their cars at night after they go to bed, it should be okay to 
borrow them during those hours. 

Detecting worms is generally quite easy since they tend to be quite greedy, using 
up resources quickly and moving rapidly from machine to machine. This is an 
artifact of the way previous worms have been written, however, not a fundamental 
property of computer worms. Assuming that the purpose of a worm is not simply 
a denial-of-service attack, the only reason for it to replicate quickly is to avoid 
destruction. This is only necessary if the worm is detected. Thus, the future may 
hold very subtle worms that spread slowly, gathering information and waiting for a 
certain stimulus before making themselves known. In some sense, from a benign 
point of view, this is what some people have envisioned as the way intelligent 
agents are destined to be written. 
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6.7.2 Internet Worm 

On November 2, 1988, the Internet was infected by a worm (Rochlis and Eichin 
[1989], Spafford [1989], Denning [1990c]), which became known as the Internet 
worm. The Internet worm, written by Robert Morris, a computer science graduate 
student at Cornell University (Eisenberg et al. [1989]), exploited a hole in the 
sendmail program that allowed it to propagate itself from machine to machine. 
Once a machine was infected, the worm spawned more and more copies of itself 
until the machine was so bogged down that either it crashed or was pretty much 
useless to anyone and had to be rebooted. 

The worm infected between 2000 and 6000 machines, which corresponded to 
between 3% and 10% of the machines on the Internet at the time (Denning [1999]). 

The worm was actually quite sophisticated. Once it infected a host, it set about 
trying to find new hosts to attack. It did this in various ways, such as by looking in 
the mail forwarding files ofthe users on the machine and looking at host tables for 
trusted hosts. Simultaneously, it set out to crack the password file on its current 
host. This was done by first trying a collection of common passwords (McAfee 
and Haynes [1989] pp. 89-90) that the worm brought with it, and ifthis did not 
work (it often did) trying the dictionary resident on the compromised machine. 

The worm spread by utilizing an exploit in sendmail, by trying to log in as one 
of the users it had discovered, and by trying an exploit against the finger program. 
Once it obtained access to a new machine, it sent a bootstrap program, compiled it, 
started it, and closed the connection. If all went well, the bootstrap program called 
the original machine back (actually, it made a tcp connection), and the parent worm 
sent across the rest of the code. 

The program also hid itself on the compromised machine. It removed its files 
from the disk, running in memory only, and changed its process name to look 
innocuous. 

As stated earlier, the worm was actually fairly innocuous. It did not use too 
many resources, was not overly destructive, and would disappear from a system 
upon a reboot. This does not make it a good thing, but if that were all it did it would 
not have been the disaster that in fact it was. The problem was that it propagated 
faster than it died. A newly infecting worm would look for copies already on 
the machine, and if found, some copies would be killed off. Unfortunately, not 
all copies were killed, and they propagated to many hosts before they died. Had 
Morris written the worm so that it would never have more than one copy on any 
host and the copy would terminate after a short period of time, the Internet worm 
might even have gone undetected after (briefly) infecting nearly every machine on 
the Internet. It did not work out that way. 

6.7.3 Macro Worms 

There was a hoax which popped up periodically about a virus that was being sent 
by email. There were several variants, but the gist was that if you read a particular 
email message, your computer would be infected with a virus. The computer 
literate among us would laugh at this since, after all, everyone knew you couldn't 
get a virus by reading email. We are not laughing now. (Well, maybe a little.) 
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It should be pointed out that we were not wrong. You cannot get a virus by 
reading email. You never could, and you can't now. However, email readers no 
longer simply display the text for you to read. Helpful software vendors have 
added nice features to allow people to send documents and programs and to have 
the email reader interpret (run) the programs so that the reader gets the full effect 
of the message. Thus, we are no longer reading email, but rather running it. 

I recently received a hoax email like the one mentioned above. This one in­
formed me that a new virus had been detected that destroyed one's hard drive. It 
looked like a real warning, complete with links to news stories (which turned out 
to go to the home pages of the news organization, not to a specific story). At the 
end of the message as a note telling me to forward the message to all my friends. 

This last line caused me to re-evaluate my impression of the email. Instead of 
considering it a hoax, I now view this as a worm itself. By forwarding the email 
on, I would be propagating the worm. I find this view intriguing. In a sense, this 
is a worm that is never executed (except in a person's brain, if you will), and yet 
can propagate via the Internet. 

Macro worms are usually referred to as macro viruses, primarily because the 
term "virus" has caught on with the public much more than the term "worm." It 
is perhaps a bit pedantic to call these worms, particularly since many of them also 
act as viruses. The ones that have made the most press are still definitely worms 
by our definition. 

The term "macro" comes from the old idea of being able to program single 
keystrokes to perform mUltiple tasks in one's word processing software. These 
were called macros, and were extremely useful, allowing users to customize their 
systems so that commonly used sequences could be performed with a single 
keystroke. 

Not willing to let well enough alone, the writers of word processors and other 
software systems made these languages more and more powerful. This is always 
good from the perspective of the users since it makes it even easier to do more 
wonderful things. It would still be good, if either security had been a strong focus 
of the developers or the software industry had not gone more and more into bundled 
software. 

Now, when you read your email, if it contains a document in a word processor 
format, your reader will display the document for you, calling the appropriate word 
processor seamlessly. This is very good from your perspective since you don't have 
to worry about formats, saving things to disk, finding the right program to read 
them, and so on. Unfortunately, the document also executes all the appropriate 
macros, which is where the trouble starts. 

In the following sections, we will look at two of the most famous (at the time 
of this writing) macro worms. 

6.7.3.1 Melissa Friday, March 26, 1999, was an interesting day for computer 
security professionals. (Remember the famous curse: May you live in interesting 
times.) This was the day that many people (including some security professionals) 
found in their mailboxes a message containing a document, which, when opened, 
spread a worm (which was also a virus) to their colleagues. This was the debut of 
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Melissa, and it literally changed the way people thought about viruses, email, and 
the Internet. 

The Melissa virus took advantage of two useful functions that modem mail 
systems provide for their users. The first was discussed earlier. Mail readers allow 
the user to mail documents (as attachments), and these documents can be read 
by the recipient without the hassle of first saving them, exiting the news reader, 
finding the right application, and so on. One merely "clicks" on the attachment, 
and the document is displayed. With the document can come code (macros) that 
is also executed when the document is opened. 

The second feature that macro worms such as Melissa use to great effect is elec­
tronic address books bundled with the email software. This is really an essential 
part of any email system, which allows one to associate the person's name with 
the email address. Without address books, email systems would simply be too 
awkward to use. 

Melissa was an email message that had the subject line: "Important Message 
From" and the name of someone you know. It came from someone you know, 
and was addressed to you, not some email list you belonged to. In the body of 
the message was the phrase "Here is that document you asked for" followed by a 
(Microsoft Word) document. When you opened the document, it looked in your 
address book and sent itself to everyone in it (at least, to the first 50 addresses in 
the list). Thus, they received "personalized" email from you (their friend), and so 
it went. 

It went one step further. It infected your Microsoft Word software so that new 
documents you created would be infected. This is why Melissa was in fact both 
a worm and a virus. It also changed the security settings on your Microsoft Word 
software to make your system more vulnerable to macro viruses and harder for 
you to increase the security level. 

Melissa cost millions of dollars (Garber [1999]) in lost time, services, and 
an unknown amount of productivity caused by everyone talking about the virus 
instead of doing any work. I know of several large facilities where the network 
connections to the Internet were closed down for more than a day while the process 
of recovering from the virus and cleaning the infected machines was performed. 

Tracing Melissa to its author might have been all but impossible except for 
one oversight. Microsoft Office 97 puts hidden data in its documents identifying 
the machine on which the document was created. This is how the perpetrator of 
Melissa was finally identified. Of course, future authors of malicious code will 
simply change these bytes to cover their tracks. 

6.7.3.2 !Love You The "I Love You" virus (ILY) hit on May 4,2000. Another 
version of a macro worm that attacks Microsoft platforms, it was the next stage 
of evolution from Melissa. Its name came from the subject line: "I love you," a 
message that is hard to resist, particularly coming from someone you know. 

ILY was truly both a worm and a virus. Like Melissa, it spread by sending 
copies of itself to people in your address book. It also changed the default Web 
page for Microsoft Internet Explorer to connect to a page that executed the virus. 
It added files to the computer so that anyone who connected via Internet Relay 
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Chat (IRC) would become infected. Finally, it changed image and music files so 
that they executed the virus. 

If this was all that it did, it would be very bad. But ILY went one step further. 
It mailed dial-up account names and passwords to a site in the Philippines, so that 
the author ofILY could use these accounts for free. 

When ILY modified an image or music file (say a JPEG image), it made it an 
executable (VB Script) file. This is accomplished by changing the content of the 
file, and making the extension ".vbs" instead of ".jpg." People used to Unix might 
wonder how such a thing could go unnoticed. How could you execute an image by 
accident? But remember, Microsoft Windows has the philosophy that files should 
be tied to the application that opens them, and when you select a file, you should 
run the appropriate application on it. Thus, when someone wants to view an image 
or listen to a tune, they simply click on the icon or name associated with the file, 
and the operating system takes care of running the appropriate program. A further 
aid to ILY is the convention that files do not display their extensions (unless the 
user specifically wants to see them), so the change in file name generally goes 
undetected. 

Like Melissa, ILY caused a lot of consternation, made big headlines, and cost a 
lot of organizations a lot of money cleaning their systems. It probably also made 
a lot of money for companies that detect and eliminate viruses. 

6.7.4 Ramen 

In early January, 2001, a new worm was detected that compromised Linux systems. 
This worm uses a script of attack tools to first compromise new systems and then 
install itself on the new systems for further propagation. 

This worm illustrates the sophistication of recent malicious code. Like the dis­
tributed denial-of-service tools (Section 7.5.1), it utilizes several different attacks, 
depending on the vulnerabilities found on the system. It looks for FTP servers, 
particularly a version of wU-ftp with known vulnerabilities, rpc.statd, and LPRng. 
It is reported to be easy to add new exploits to the worm due to its scripted nature. 

Once the worm has found a vulnerable system, it installs itself on the system, 
setting up a Web-like server on port 27374. It provides a copy of itself to any 
request on that port. It also searches the disk for files named "index.html" and 
replaces them with its own page. It sends email to announce the compromise 
of the system. This could, potentially, provide a mechanism to track down the 
originator of the worm, although with free email and public terminals it is unlikely 
the perpetrators will be caught this way. 

Finally, it scans for new machines, scanning for services on port 21. 
Thus, ramen can be detected via a variety of ways. First, any port scans to 

port 21 should be investigated. If your network does allow FTP activity through 
the firewall, an anomaly detection system that looks for connection requests to 
machines that do not run FTP, scans, and connections from machines that do not 
normally access the network may be able to detect the initial attempt to propagate 
the worm. Any outgoing or internal FTP scans should be investigated as potential 
evidence that a machine has been compromised (these should be investigated as a 
matter of course since they are an indication that something bad is happening). The 
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security officer should add port 27374 to the list of ports scanned by vulnerability 
assessment software such as nmap or saint. 

Obviously, the first order of business is to patch the systems with the vulnerabil­
ities. This should always be done upon the announcement of a new vulnerability 
or software that exploits a known vulnerability. Since programs such as ramen are 
easily adaptable, the indicators listed earlier (FIP scans, port 27374) can be mod­
ified in future versions, so the ultimate detector must look for unusual behavior of 
all types to detect the new attacks for which prior know ledge of their signatures is 
unavailable. 

6.7.5 Statistics and Worms 

We close out this chapter with some thoughts about detecting worms. One ap­
proach worth considering is that described in Section 4.8. The GrIDS system 
might be used as a worm detector by constructing graphs showing connections 
between nodes. A large tree or, in the case of a worm such as the email worms 
described in Sections 6.7.3.1 and 6.7.3.2, a graph with high degree (number of 
edges per vertex), might be indicative of a worm. 

A single machine sending email to a large number of recipients should be a 
tipoff of a potential problem. This is only true if the machine does not do this on a 
regular basis. For example, a machine that maintains an email list might regularly 
send copies of a single message to a large number of recipients. Most desktop 
systems will do this very rarely, if at all. 

Similarly, one could look at the process table and look for a large number 
of processes or for many short-lived processes. One could monitor the number 
of processes, the amount of memory, load average, or other measures of system 
performance and flag unusual deviations from the normal range. For many systems, 
this will give a good early warning of problems. On my machine, I regularly 
use nearly all of the available memory, but rarely do I spawn a large number 
of processes. Therefore, just as in Section 4.5.4 where we modeled "normal" 
behavior for network traffic, one needs to do the same thing for system performance 
monitoring. 

Some of the visualization techniques discussed in previous chapters are of value 
in the detection of worms. For example, the data image can be used to investigate 
the progress of a worm by plotting source IP against destination IP, as was done in 
Shoch and Hupp [1990]. A plot ofIP address against load average could be used 
to detect a CPU-intensive worm as it spreads through a network. 

6.8 FURTHER READING 

There are a number of articles on computer viruses for the lay person. Denning 
[1990a] is a nice short piece, supplemented in the same book by Spafford et al. 
[1990]. Ashmanov and Kasperskaya [1999] describes a virus encyclopedia avail­
able at 
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http://www.viruslist.com. 

Hedberg [1996] describes the work done at IBM, including Kephart's work 
on computer immunology. Pelaez and Bowles [1991] give a classification of 
"malicious code" such as viruses and discuss the various kinds of "beasties" that 
have been developed. 

Cohen [1987] and Cohen [1991] are good places to start learning about com­
puter viruses, as is the "Random Bits & Bytes" column of Harold Highland (see, for 
example, Highland [1988] and Highland [1989]). Hruska [1997] gives a brief de­
scription of virus scanners, while Kensey [1993] discusses several issues involving 
computer viruses. 

For the mathematically inclined, Andersson [1998] provides some limit theo­
rems describing the time evolution of random graph models of virus epidemics. 
In this work, an SIR epidemic is considered, where a homogeneous population is 
assumed but the individuals have a fixed number of acquaintances. There are a 
number of similar papers describing different modifications to the basic assump­
tions of the epidemic. These include Nilsell [1999], which considers the time to 
extinction for a class of epidemic models, and Andersson and Britton [1998], which 
looks at modeling an epidemic among a population that has varying susceptibility 
to the diseases. 

The book by Andersson and Britton [2000] gives a nice introduction to these 
issues and stochastic modeling of epidemics in general. The review article Het­
hcote [2000] covers the basic models and discusses their applications to human 
diseases. Like most Siam Review articles, this is quite accessible to the non-expert, 
while being quite thorough. It also has an extensive bibliography. Another good 
reference is Daley and Gani [2000]. 

Another approach to virus detection is discussed in Lee et al. [1997]. This 
incorporates an emulator, which provides a simulated environment in which the 
virus can be safely executed, and an analyzer, which does the detection and analy­
sis. Lo et al. [1991] discuss an architecture for a testbed to detect malicious code 
and give a brief taxonomy of malicious code. 

Tesauro et al. [1996] report on a neural network for the recognition of computer 
viruses but without enough details to evaluate the technique. 

A very interesting twist on the computer virus is described in Young and Yung 
[1996]. The idea is that rather than destroying files, viruses could utilize public 
key cryptography to encrypt files. The virus writer could then offer, for a fee, to 
decrypt the files. I am not aware of any cases where this form of extortion was 
attempted, but if it were successful it is unlikely that the victim would publicize it. 



7 
Trojan Programs and 

Covert Channels 

7.1 INTRODUCTION 

We are all familiar with the story of the Trojan Horse. The Greeks built a large 
wooden horse (or rabbit, according to Monty Python), rolled the horse up to the 
gates of Troy, and left. The Trojans, thinking this was a gift, brought the horse 
inside the gates. Unbeknownst to them, the horse contained Greek warriors, who 
sneaked out under cloak of darkness and opened the gates, letting in the rest of the 
Greek army, resulting in the sacking of Troy. 

The Trojan Horse was something other than it appeared. In the same sense 
trojan programs are ones that are not what they appear. They come in all shapes and 
sizes. Some simply replace existing programs with ones that perform additional 
(and undesirable) functions. For example, one might replace the "telnet" function 
with one that is identical to telnet with the single addition that the user name and 
password are retained and saved somewhere for future pickup. Others masquerade 
as useful or amusing utilities, which when executed open up "back doors", allowing 
access to the machine by anyone who knows how to utilize the back door. Some are 
simply one-shot programs: upon execution they do something really nasty, such 
as reformat the hard drive. Others stay dormant, awaiting some external event to 
activate them. 

A trojan was installed on a machine at George Mason University in Fairfax, 
Virginia, in the Netscape browser (Denning [1999], page 261). Whenever anyone 
brought Netscape up, a protest email message was sent to the local security review 
panel. After a number of students complained about receiving email replies to 
messages they had not (to their knowledge) sent, the problem was tracked down 
and the trojan discovered. 
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Like viruses and worms, it is not a simple matter to distinguish a trojan from 
another of these denizens. A trojan can replicate itself and thus be either a virus 
or a worm, or both. Some programs nevertheless clearly fall into the category of 
"trojan," so in this chapter we will consider some of the characteristics of trojan 
programs. 

In this chapter, we will also consider covert channels, one of the mechanisms that 
trojans use for hidden communications. These are of interest in their own right and 
are of critical importance in the area of multilevel security. We then briefly consider 
steganography, which concerns hiding messages in other messages. Then, we will 
look at a few common trojans and consider methods for detecting trojans. 

7.2 COVERT CHANNELS 

A covert channel is a communication channel that is hidden or otherwise not ap­
parent to others. For example, imagine you and a partner are planning the Great 
Bubble Gum Robbery of 2003. Your partner is currently in temporary seclusion 
(to be paroled in another month) as a result of the foiled Great Lottery Ticket 
Scam of 1996. You need to communicate through letters without worrying about 
interception by the authorities. You know that your letters are read by the prison 
officials, so you institute the following scheme: you both have access to comput­
ers, so you will use a different font for the real message. Thus, 

"Your mom is thrilled about your coming release. Angela urges you to remain 
a model prisoner. Does challenge of a legitimate lifestyle excite you? We know 
you'll do nothing that will jeopardize your freedom." 

sends the real message: "The guards change at midnight." This is a covert channel, 
a communication hidden within another overt communication channel. 

The preceding example is not a particularly good covert channel since it is easy 
to detect. Denning [1999] provides a similar example. The message is encoded 
as the first letter of each word in the following cable: 

"President's embargo ruling should have immediate notice. Grave situation 
affecting international law, statement foreshadows ruin of many neutrals. Yellow 
journals unifying national excitement immensely." 

As you might imagine, it is not an easy task to construct such an encoding in 
a manner that does not arouse suspicion. The typically stilted phrasing of cables 
may help here, but it is still not a trivial matter. 

Other approaches are easy to construct, particularly if one moves from the some­
what cumbersome arena of human communication to computer communication. 
We will look at a number of ideas for implementations of covert communication 
channels and consider methods of detecting them. Some simple ideas are: 

• A Web server sends packets containing the contents of the Web page to any 
machine that connects and requests the page. The Web ser.:ver controls the 
size of the packets sent to specific machines, encoding the covert channel 
as the packet sizes. 
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• The IP and TCP headers have a number of fields whose values are not speci­
fied or are unused in some cases. For instance, the urgent pointer is only used 
if the urgent flag is set. This field can be used to send covert messages. The 
program covert_tcp implements a covert channel using sequence numbers 
to encode the message. More information on this (including the covert_tcp 
program) can be obtained at 

http://www.firstmonday.dk/issues/issue2..5/rowland! 

• A company decides to disallow telnet sessions into their facility and institutes 
a firewall policy to deny them. A user bypasses the firewall by using the 
data field in ICMP packets to implement a covert telnet. This is essentially 
what the Loki program does. 

A good place to start learning about covert channels is the technical report 
NCSC [1993]. A brief (two-page) discussion on covert channels is found in Millen 
[1999]. A very entertaining article on covert channels is Simmons [1998a]. 

Covert channels are a serious problem for multilevel security systems. Consider 
a system with two security levels, Low and High. In a military situation, these 
might be different levels of classifications, for example unclassified and secret. 
Low can write to (send information to) High, but High cannot write to Low. In 
the classification analogy, unclassified information is allowed to pass to systems 
cleared for secret material, but secret information must not be transferred to an 
unclassified system. If a covert channel can be implemented, however, the security 
can be breached. 

Consider the case where the High system must be able to ACK data from the 
Low system. Sending the ACK directly is obviously not acceptable, even if it is 
constrained to be a single bit (1 for ACK). A simple covert channel can be set up 
via timings of the ACK responses. 

In Moskowitz and Kang [1994b ], a statistical communication channel is defined. 
The original definition was defined in terms of response times, but we broaden the 
definition slightly here: 

Definition 1 If High can affect a parameter of the distribution of some system 
attribute measurable by Low, we say that there is a statistical channel between 
High and Low. 

Thus, there must be some entity between the High and Low systems that acts as 
a mediator. This mediator is called a "pump." A detailed discussion of a network 
pump can be found in Kang et al. [1996]. The basic idea is quite simple. Place a 
buffer between High and Low. The buffer takes the ACKs from High, and releases 
them to Low with times chosen from a given distribution. This can be made more 
reliable by using multiple buffers, with buffers for the data from Low, as well as 
buffers for the ACKs from High. 

The pump must be stateful in the sense that it needs to remember the sequence 
numbers of the packets to ensure that High does not try to ACK packets that it did 
not receive (and hence construct a channel either using bad packets as bits, or using 
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Fig. 7.1 A simple pump. The pump buffers the ACKs from High and passes them down 
to Low at a random rate Li. 

the sequence number to transfer data). All the fields sent with the ACK (usually 
only a sequence number and ACK flag in these systems) must be prescribed to 
ensure that data are not sent in unused fields. 

The goal is not to eliminate covert channels but rather to reduce their bandwidth 
to as near zero as possible. It is always possible to construct a covert channel 
through manipulating the statistics of the responses, but with care this can be 
made to have a very small bandwidth. Further, the more difficult the channel is to 
construct, the more likely it is that it will be detectable (at least, one hopes so). 

As an example, let us consider the simplest pump. A pump consists of a buffer 
of size n (we will assume n is large enough that it is never full). Messages are 
passed from Low to the pump and then on to High. The ACK from High goes to 
the pump and into the buffer. Let H m be the average of the past m High response 
times. The pump releases ACKs from its buffer at a rate Li. The rate Li has a 
density that is a function of Hm. This is illustrated in Figure 7.1. 

In this simple example, High can instantiate a covert channel by manipulating 
its response rate to change the statistical distribution of L i . By using multiple 
buffers, this can be made more difficult. More information on these pumps can be 
found in Moskowitz and Kang [1994b], Moskowitz and Kang [1994a], Kang et al. 
[1995], and Kang et al. [1996]. Related techniques are described in Venkatraman 
and Newman-Wolfe [1993] and Browne [1994]. 

An interesting idea has been developed by Ronald Rivest at MIT. Called 
"chaffing and winnowing," the idea is as follows. Suppose John wants to send 
a message to Mary, but does not want anyone else to be able to determine what 
the message said. One thing John and Mary could do is decide on an encryption 
scheme. Rivest's method is a little different, since it allows the text to be sent 
unencrypted but still undecipherable by a listener. John and Mary decide on an 
authentication method. This is like the checksum that tells the TCPIIP stack that a 
packet has been delivered intact. For example, let us suppose that the authentica­
tion consists of the ascii value of the first letter in the message (obviously a more 
sophisticated authentication would be used in real life), so a message might look 
like 

l:We need:127 
2:to sell:164 
3:all shares:141 
4:of Consolidated:157 



5:Widgets:127 
6:immediately:151 
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The first number is a sequence number, so that the message can be put together 
properly, followed by a few characters of text, followed by the authentication 
number. Just like IP, we break the message up into small packets that get sent 
individually. 

The clever trick is thatJ ohn sends this message along with a set offake messages 
(which will fail the authentication test). These fake messages are the "chaff" that 
confuses any listener. Without the proper authentication algorithm, the listener 
cannot tell which message fragments are authentic, and which are confusers, so 
the full session might look something like 

l:We need:127 
l:We must not:131 
l:Your mother:117 
l:There is a:117 
2 :buy: 154 
2:to sell:164 
2:wants to:164 
2:fine line:164 
3:all shares:141 
3:bake a:141 
3 :marry: 141 
4:of Consolidated:157 
4:between:172 
4:pie:152 
4:perfume:152 
5:Widgets:127 
5:baker:127 
6:immediately:151 
6: tomorrow: 151 
6:and aftershave:151 

Note that if the amount of chaff is large relative to the message, and the chaff 
comes from legitimate messages, it will be extremely difficult to extract the true 
message. Further, if John wants to send messages to Mary, Jane, and Esmerelda, 
he can use different authentication algorithms for each recipient, and the message 
to Mary becomes chaff to Jane and Esmerelda. 

If the amount of chaff is relatively small and/or does not come from legitimate 
messages, it may be possible to extract the true message as the only combination 
that makes sense. In an extreme case, each packet could consist of a single char­
acter, which makes reconstructing the message from the chaff using this kind of 
textual analysis extremely difficult. If one adds encryption to the message prior 
to breaking it up into packets, then textual analysis will fail even in a "low-chaff" 
environment. The purpose of the technique was to argue that the desire of the U. S. 
Government to control encryption technology was misguided and futile, so adding 
encryption goes against the original intent of the work. 
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The paper describing this idea is available at 

http://theory.lcs.mit.edul "-'rivest/chaffing -980701. txt 

One idea that I have not had a chance to test is that it may be possible to use 
this "chaff" idea to fool some content-based network monitors. Any such system 
must put the packets together in order to look for suspicious strings, particularly in 
applications such as telnet, where each packet may contain a single character. If 
one were to add in a few packets in the right places, with invalid TCP checksums 
it may be that the monitor would use their data in the reconstructed content. This 
assumes that the monitors do not check the checksums and that the fact that there 
would be multiple packets with the same sequence number would not cause an 
alarm by itself. This is something for the developers of such systems to consider. 

Alternatively, one could install a trojan that used a sniffer and only used packets 
that failed the checksum and were hence discarded. The data in the discarded 
packets could be used for the channel. If the intrusion detection system does 
"correctly" reassemble packets, ignoring those that do not pass the checksum test, 
they would miss these. As you can see, it is very hard to take every eventuality into 
account. It would be interesting to know whether any network monitors check for 
packets with bad checksums. 

7.3 STEGANOGRAPHY 

Steganography ("covered writing") is the art of hiding messages. We saw an 
example of this in Section 7.2 when the two would-be masterminds used different 
fonts to hide their messages. Another famous example is the use of micro dots 
hidden in the periods of letters. Herodotus (Herodotus [1998] 5:35) tells us that 
Histireus shaved the head of a slave and tattooed a message on it. Once the hair had 
grown back, it covered the message. Since the message was to tell Aristigoras to 
rebel against the king, it was important that only Aristigoras read it. The slave was 
sent to Aristigoras, and the message was delivered. This and other such stories 
can be found in the introductory chapter of Petit colas [2000] and in Jarnil [1999]. 
An overview of steganography can be found in Johnson and Jajodia [1998]. 

Another use of steganography is digital watermarking. This is a way of marking 
(usually in a manner that is not readily detectable) images and other digital media 
in order to prove ownership or origination of the material. For example, if you are 
a photographer, you might like to display your images on the Web, but if someone 
uses your images without your permission, you may want to be able to prove that 
the image was in fact yours. This is not unlike branding cows except that it is 
designed to be less obvious and less painful to the cows. 

Let us focus on hiding messages in images since images are a common target 
for steganography, and they allow for simple illustration. The first method that 
one might consider for hiding a message in an image is as follows. Recall that an 
image is an array of 8-bit (or if it is a color image 24-bit) entries called pixels. Let 
us just consider 8-bit, or grayscale, images. The value of each pixel determines 
its gray level, with 0 being black and 255 being white. As a result of the way 
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the human visual system is designed, we do not notice very slight differences in 
grayscale values, so first set all the lowest-order bits in the image to zero. Then, 
take your message, represent it as a bit stream, and for each bit in the message set 
the lowest bit of a pixel to that value. You can do this systematically or randomly, 
provided that you retain the seed to the random number generator so that you can 
extract your message and that you take care not to reuse any pixels. The image (or 
other digital medium) in which your message is hidden is called the cover. 

Surprisingly enough, we need not be as stingy about our pixels as to use only 
the lowest bit. Figure 7.2 shows an example where a whole image is hidden in the 
lower 4 bits of another image. The procedure is to take the four highest-order bits 
of the image to be hidden and set the low-order bits of the cover to these values. 

As can be seen from the figure, one cannot see the hidden image in the cover. 
There is a perceptible change to the cover, as can be seen in a higher resolution 
view, but this is really only noticeable if one has the original for comparison. 

This form of steganography is extremely simple, and as a result, generally pretty 
easy to detect. Further, it can be destroyed by very simple image manipulation. 
For example, lossy compression will generally destroy the hidden image. This is 
shown in Figure 7.3, where we have extracted the hidden picture after undergoing 
JPEG compression with a quality setting of 75%. This resulted in a compression 
factor of about 7. Although the cover is not noticeably changed by the compression, 
the hidden image is nearly destroyed. 

An approach to steganography that is more robust to compression and other 
filters applied to the image is to perform the embedding in a transform space, such 
as the Fourier domain. More information about this and other techniques can be 
found in Marvel and Retter [1998], Johnson and Katzenbeisser [2000], and Lee 
and Chen [2000]. This is by no means a complete list. The book by Katzenbeisser 
and Petitcolas [2000] is a good place to start learning about the subject, and the 
chapters therein contain an extensive bibliography. 

Digital watermarking is slightly different in intent than steganography, but many 
of the same techniques can be used. It is important for commercial reasons to be 
able to mark an image, movie, or music with some kind of secure tag to detect 
or prevent unauthorized copies. However, as reported in Seife [2000], these tech­
niques are not yet perfect. There is some controversy, but the gist of the article 
is that some researchers claim to be able to crack a wide range of existing water­
marking technologies, essentially rendering them useless. Clearly, there is work 
to be done here (assuming you accept the need for this kind oftechnology). 

We have seen another method for hiding messages in Section 7.2, where a 
message is passed by changing the statistics of a signal. 

Basically, all steganography techniques come down to the following procedure. 
First, transform the cover using some transformation that leaves redundant bits. 
Select a (usually random) subset of the bits and tweak them to embed the mes­
sage. Note that when computer scientists say "random" they almost always mean 
"pseudo-random." It must be possible to reproduce the pseudo-random sequence 
in order to extract the image. 

One then (usually) applies the inverse transform to obtain something indistin­
guishable (to the casual observer) from the original but now containing the hidden 
message. Most of the work in steganography and digital watermarking comes 
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Fig. 7.2 Hiding dogs in cars. The top two images are the original. The bottom image 
contains the first image (rotated 90 degrees counterclockwise) in the lower four bits. 
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Fig. 7.3 The result of extracting the hidden picture of Figure 7.2 after JPEG compression 
of the cover. 

in finding the transforms and adding redundancy so that the message is as unde­
tectable as possible and as robust to further transforms of the cover (for example, 
compression) as possible. 

Another line of research is methods to detect or defeat steganography. We have 
seen one method for defeating steganography, illustrated in Figure 7.3. In this 
case, a very simplistic steganography method was defeated by compressing the 
image. More sophisticated approaches are needed to detect or defeat more sophis­
ticated steganography or watermarking technology. The book by Katzenbeisser 
and Petitcolas [2000] is once again a good place to learn more about these issues. 

7.4 BACK DOORS 

There are a large number of backdoor trojans. These are programs that open up a 
"back door" (also called a "trap door" by some) to the computer, allowing others 
to have access, bypassing the usual authentication procedures. 

Loki is a program that implements an information tunnel between two machines. 
The idea is to use the data field in ICMP echo requests and replies to implement a 
login session on a remote machine. Once the Loki client is installed on a machine, 
a Loki server can connect to the client by sending an ICMP echo request to the 
machine. The machine replies with an echo reply, just as it should. However, in 
the packet data of the request are commands to be executed on the client, and in 
the reply are the results of the commands. Thus, for example, one can ask to see 
the password file, and this is transmitted back in the echo replies. 
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Loki can be detected by looking for a specific value ofthe sequence number (see 
Figure 1.5, page 16): fOOl in hexadecimal, or "fool." Of course, anyone with the 
source code can easily change this. Another indicator is a mismatch in the number 
of echo replies relative to the echo requests, which is caused by relatively large 
data transfers in one direction. This is an example of where statistical inference 
can be brought to bear, to look for statistical anomalies in the numbers of requests 
and replies. 

Loki is one example of a backdoor. Next we will look at one of the more popular 
and powerful ones: Back Orifice (BO). 

The "legitimate" use for Back Orifice is as a remote system administration tool. 
Install it on your computer, and any time you need to do some administration, even 
when you are away from your desk, you can simply connect through Back Orifice 
and do whatever you need to do. Most early firewalls would pass Back Orifice 
packets, since the security analysts did not know to block them, and the Internet 
was kinder and gentler in those days. Thus, you could bypass the firewall even if 
your company had a policy that did not allow logins from outside. 

One of the problems with Back Orifice is that it does not just give you this 
nice back door, but it allows anybody in. After all, the whole point is to bypass 
authentication. This can obviously be a serious problem. 

Back Orifice was first released in 1998 by the Cult of the Dead Cow, a self­
described "hacker" group. It was not the first (netbus, a similar program preceded 
it), but it is one of the most popular. Other similar programs are Portal of Doorn, 
DeepThroat, Sockets de Troie (French for "Trojan Sockets"), SubSeven, Doly 
Trojan, RingZero, and many others. These trojans all infect various flavors of the 
Microsoft Windows operating system for many of the same reasons that nearly all 
viruses target this operating system. 

Among the many things that BO and these other back doors allow one to do 
is to capture the mouse (and move it about at will), open and close the CD, tum 
on the microphone (if one is plugged in) and listen, watch every key typed, and 
access any files on the computer. It is quite an eye opener to watch this happening, 
as if by magic. 

There is an interesting story involving the RingZero trojan. In late September, 
1999, a number of people started noticing incoming scans to ports 80, 8080, and 
3128. The pattern was curious and there was much speculation about its purpose. 
One thought was that it was a scan for proxies. A proxy is a gateway between 
networks. For example, a proxy might be used to present a single IP address to 
the outside, with the proxy server acting to handle the address mapping required 
to ensure the correct delivery of packets to the internal network. 

The SANS (System Administration and Network Security) Institute sent out a 
call to its members to be on the lookout for these scans, and to try to find out its 
purpose. Finally, Ron Marcum of Vanderbilt University found a copy of the trojan 
on one of his machines. This is an example of the Internet community working 
together to detect and neutralize a threat. It is also an example of alert system 
administrators noticing interesting patterns in the data they were monitoring. This 
ability to notice interesting patterns is critical to detecting new attacks. 

One method for detecting back doors on a machine is to do a port scan (for 
example using nmap, Section 4.9.1) and look for open ports. This assumes the 
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back door has opened a port. Obviously the port must be open in order to use the 
back door, and so equally obviously the back door program must leave the port 
open, right? Wrong. An interesting program is available from 

http://packetstorm.securify .comlUNIXIpenetrationirootkits/cdOOr.c. 

The program listens on the interface for a particular pattern of packets, and only 
upon seeing the right pattern does it open the back door. For example, the original 
source code watched for TCP SYN packets to the following ports (in order): 20080 
22533. If packets are detected to these ports in this order, the program then opens 
the back door on port 5002 (all of these are configurable). The back door consists 
of a shell program listening on 5002, giving anyone who wishes to connect access 
to the computer. The program can be configured to look for these port accesses 
all corning from the same IP address or simply to watch for the pattern regardless 
of the IP addresses. 

Several comments are in order here. First, since the port pattern is configurable, 
it is impossible to construct a signature for this kind of trojan. Further, there is 
no reason one couldn't modify the code to look for packets other than TCP SYN 
packets. For example, RESET packets are quite common and often ignored by 
intrusion detection systems (see Green et al. [1999] and Section 4.3.2.1). Further, 
why restrict oneself to TCP? How about the following as a pattern to turn on the 
back door? 

1. A RESET packet sent to port 25 from any IP address (call it IPl). 

2. An echo reply (ICMP) from IP1. 

3. A UDP packet to port 53 from IP1. 

4. Two echo request (ICMP) packets from the same IP address, call it IP2 
(which must be different from IPl). 

5. A SYN packet to port 80 from IPI and source port above 3024. 

If the preceding pattern is seen, take the sum of the source port of the first packet 
and the last packet and open a back door on that port number (thus allowing the 
attacker to specify the back door port on the fly). Since IP addresses can easily 
be spoofed, it would be easy to send the preceding packet sequence from a single 
machine. Further, if the firewall policy allows all the packets in, it is extremely 
unlikely that any intrusion detection system would notice the preceding pattern. 

The only way to detect such a trojan on the network side is to look for unusual 
activity (for example, suddenly seeing connections on ports that previously had 
no activity). Thus, anomaly detection is essential for network security. 

On the host side, it is possible to detect this trojan once it opens a port by 
detecting this through netstat, lsof, or a port scanner such as nmap. Also, looking 
at the process table can sometimes detect these trojans, but only if they are either 
given unfortunate names (such as "back door") or you are extremely careful to 
track down each and every process that your machine runs, which can be quite 
tedious. This particular program uses inetd to handle the network operations, and 
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so a wrapper program (which logs all accesses and allows only connections from 
specific machines to specific ports) could detect and/or defeat this program. A 
more sophisticated program could get around this. 

7.5 MISCELLANEOUS TROJANS 

There are many trojans that are simply programs that claim to do something nice (a 
cool screen saver, a digital birthday card, etc.) and when run actually do something 
very bad, like format the hard drive. These are often called viruses or worms (and 
sometimes they are). 

McAfee and Haynes [1989] report (page 76) on a program that purported to 
be a graphics program but when executed erased files and taunted: "Arf arf! Got 
you!" 

Other trojans are truly viruses or worms. One such is Happy 99. When run, it 
opens a window, displays fireworks and the words "Happy New Year 1999," and 
exits. However, whenever the computer is online and sends email, Happy 99 sends 
itself along, propagating itself to other computers. 

Some trojans (or viruses, or worms), called "logic bombs" by some, do not 
do anything untoward until a pre specified time (such as Michaelangelo's birthday, 
Columbus day, etc.), when it suddenly "goes off." 

7.5.1 Distributed Denial of Service 

A distributed denial-of-service attack is a denial of service attack that is simulta­
neously launched by many machines against a single site. Several programs are 
available to implement these. I will describe four of them: TrinOO, Tribe Flood 
Network (TFN), TFN2K, and Stacheldraht (German for Barb Wire). Most of this 
information is available in Criscuolo [2000]. 

The basic architecture of these attacks is to have a client control a set of han­
dlers, with each handler controlling a set of agents. Each of these entities should 
be thought of as a machine that has been compromised and had the appropriate 
software installed. The client is the main attacker, but it is hidden from the victim 
and need not even be online at the time of the attack. 

A handler is usually set up on a machine that normally has a lot of traffic, for 
example, a DNS server. The reason for this is to attempt to hide the traffic between 
the handler and its agents. As the name implies, the handler controls the agents, 
who perform the actual attack. 

The basic attack is to flood the victim with a large number of packets, far more 
than the victim can handle. This has the effect of (at least) locking out legitimate 
users of the system and may in fact bring the victim machine down completely. 
The attacks are usually launched against commercial Web servers, so in addition 
to creating havoc, they can result in considerable lost revenue. 

Although the programs described implement a certain subset of possible denial­
of-service attacks, there is no reason why future programs won't expand this list. 
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As we will see, this kind of "upgrading" of attacks is one of the distinguishing 
characteristics separating these programs. 

The attack consists of two phases. In the first phase, the program tries to 
compromise as many systems as possible. These systems will then be used in the 
second phase of the attack, which is the flood discussed earlier. Note that the first 
indication that the victim has of the attack is the attack itself. The victim has no 
way of detecting the first phase, since this is occurring on other machines on the 
Internet. 

The earliest tool for setting up a distributed attack was TrinOO. As with all 
of the tools discussed here, TrinOO affects Linux and Solaris systems. It follows 
the basic steps outlined earlier. In addition, it usually installs a rootkit on the 
compromised machines to hide the program. As a result, it is hard to detect TrinOO 
without specialized scanners. Look for a file called" ... ", which will contain a list of 
compromised machines. In fact, any time you find a file with this name you should 
be concerned. Recall that on Unix machines a filename with an initial period is 
"hidden", not listed without specifying the "-a" flag on Is. The directories "." (the 
current directory) and " .. " (the previous or parent directory) are always there, and 
it is easy to overlook a file with one too many dots. There is no legitimate reason 
to have a file or directory with this name. 

TrinOO attacks systems over random UDP ports, and so it is difficult to design a 
detector for it. It also can be configured to communicate over arbitrary ports, but 
it defaults to ports 27665ffCP, 27444IUDP, and 31335IUDP. 

The next generation of attack tools is the Tribe Flood Network. Its handlers 
and agents communicate via ICMP echo reply packets. It adds a root shell on a 
port, allowing easy access to the system by the attacker (and anyone else). 

TFN has four methods of attack: 

• SYN flood (see Section 4.3.1.2). 

• UDP flood. In this attack, many UDP packets are sent. The victim machine 
cannot handle them all, and cannot accept new connections as a result. 

• Smurf (see Section 4.3.1.6). 

• ICMP flood. A large number of ICMP echo requests are sent, and are too 
many to handle. 

TFN2K adds yet another attack method, Targa3 (see Section 4.3.1.5). In addi­
tion, the attacks use spoofed addresses. In communications among the processes 
(client, handlers and agents), TFN2K adds decoy packets with each legitimate 
packet to make it difficult to backtrack to the attacker. 

Finally, Stacheldraht adds to the preceding capabilities encrypted communica­
tions between client and handlers and automatic updating of agents. Stacheldraht 
has a limit of 6000 agents per handler. 
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7.6 DETECTING TROJANS 

Some trojan programs are relatively easy to detect. They use a particular port to 
send information out or use a data field that can be checked for unusual data or 
particular strings. The catch is that one must know this in advance. New trojans 
must be detected as unusual activity (see Sections 4.5.4 and 4.8). 

The problem of detection of trojans before they are activated is unexpectedly 
difficult. Consider the following problem: you have heard that someone has 
modified "login" to allow a back door. It operates exactly as it should unless the 
password given is a special one known only to the author of the trojan program. 
How can you determine that your copy of login is uncorrupted, rather than a copy 
of this trojan? 

The first thing that may come to mind is to run "strings" (Section 5.6.1) on the 
login program. This is a program that scans through a binary file and prints out 
all segments that look as though they might be ascii text. This may work if you 
know what password the author of the trojan used, or if the password happens to 
be something suspicious such as "backdoorpassword," but is unlikely to work in 
real life. 

But wait, you are running Linux and thus have access to the full source code! 
You find the source for login, pore through it, and find nothing at all suspicious! 
You are clean! Well, just to be sure, you recompile the program from the source. 
Now, you are sure you are clean and can proceed safe in the knowledge that no 
back door exists! 

But what if the problem was in the compiler all the time, and not in the login 
program itself? This is illustrated by Thompson [1984], one of the originators of 
Unix. The basic technique is also discussed in Denning [1990b] by Witten [1990]. 
The idea is to place in the compiler code that compiles the trojan into the login 
program. Of course, this leaves the compiler with suspicious code in the source, 
so we compile the compiler and then change the source back. The binary for the 
compiler has the "bug" that will compile the back door into the login program, but 
the source code for both the compiler and the login program is clean. If we want 
to be really clever, we have the binary compiler also insert the appropriate "bug" 
into any newly compiled version of itself, so we cannot even save ourselves by 
recompiling the compiler. 

Thompson points out that there is nothing magic about the compiler: the same 
kind of thing can be done with assemblers, linkers, and even hardware microcode 
(how much of your computer was manufactured in the country in which you 
reside?) Another approach is to modify one of the shared libraries that a program 
loads. 

This points out one of the fundamental problems with security. If you cannot 
trust the people providing the systems to you, you are potentially doomed. Con­
sider how much of the computer code written today is written overseas. Working 
for the U.S. Navy, I am naturally suspicious of code from foreign countries, but if 
you prefer, think about how much you might want to trust code written by your 
competitor. Further, consider how much of the code is delivered in binary format 
only (no source code), and hence there is no easy way to determine what it is doing 
or what its vulnerabilities might be. 
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As you can see, if one wishes to be paranoid, it is not hard at all to come up 
with reasons to be. Good security professionals tend to be paranoid. 

7.7 FURTHER READING 

There has been a lot of work in multilevel security and covert channels. Kang 
et al. [1997b] provide information on the design of an architecture using the pump 
described earlier. Kang et al. [1997a] describe a multilevel security architecture 
using the pump. 

A very good place to start learning about steganography and digital watermark­
ing is the book by Katzenbeisser and Petitcolas [2000). Anderson and Petitcolas 
[1998] and Simmons [1998b] discuss the issues of how much information can be 
hidden, given the constraints of trying to make the message hard to discover and 
robust to degradation. 

For those with a theoretical computer science background, Thimbleby et al. 
[1998] present a formal model for trojan programs and computer viruses. They 
define a trojan to be a "nonempty recursively enumerable relation T ~ R x 
R x L" that has certain formal properties. In this definition, R is the set of all 
"representations" (essentially the different possible states that the machine can be 
in or different environments in which processing is taking place) and L is a set of 
labels. The properties boil down to stating that a program with the same name will 
operate differently in two different but similar environments. Describing this work 
in detail would require too much of a departure into computer science background, 
so I leave it to the interested reader to pursue. 

A discussion of malicious code and what to do about it can be found in McGraw 
and Morrisett [2000]. Weiss and Amoroso [1988] is an early paper describing an 
approach to ensuring the integrity of software written by a team. This kind of source 
code protection should be the minimum requirement for vendors producing code 
for sensitive applications, such as military, banking, or critical infrastructure. 

Finally, Denning [1990b] has a number of good articles about famous attacks, 
malicious code, and what to do about them. We have cited several of these papers 
in the preceding discussion, but there are a number of others that are of interest. 
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Table A.1 Port/service pairings for some of the more common ports (1-33). 

Keyword Decimal Description 

tcpmux lItcp TCP Port Service Multiplexer 

tcpmux lIudp TCP Port Service Multiplexer 

compressnet 2/tcp Management Utility 

compressnet 2/udp Management Utility 

compressnet 3/tcp Compression Process 

compressnet 3/udp Compression Process 

rje 5/tcp Remote Job Entry 

rje 5/udp Remote Job Entry 

echo 7/tcp Echo 

echo 7/udp Echo 

discard 9/tcp Discard 

discard 9/udp Discard 

systat 111tcp Active Users 

systat ll1udp Active Users 

daytime 13/tcp Daytime (RFC 867) 

daytime 13/udp Daytime (RFC 867) 

qotd 17/tcp Quote of the Day 

qotd 17/udp Quote of the Day 

msp 18/tcp Message Send Protocol 

msp 18/udp Message Send Protocol 

chargen 19/tcp Character Generator 

chargen 19/udp Character Generator 

ftp-data 20/tcp File Transfer [Default Data] 

ftp-data 20/udp File Transfer [Default Data] 

ftp 211tcp File Transfer [Control] 

ftp 211udp File Transfer [Control] 

ssh 22/tcp SSH Remote Login Protocol 

ssh 22/udp SSH Remote Login Protocol 

telnet 23/tcp Telnet 

telnet 23/udp Telnet 

smtp 25/tcp Simple Mail Transfer 

smtp 25/udp Simple Mail Transfer 

dsp 33/tcp Display Support Protocol 

dsp 33/udp Display Support Protocol 
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Table A.2 PorUservice pairings for some of the more common ports (37-95). 

Keyword Decimal Description 

time 37/tcp Time 

time 37/udp Time 

rap 38/tcp Route Access Protocol 

rap 38/udp Route Access Protocol 

rlp 39/tcp Resource Location Protocol 

rlp 39/udp Resource Location Protocol 

graphics 411tcp Graphics 

graphics 411udp Graphics 

nameserver 421tcp Host Name Server 

nameserver 42/udp Host Name Server 

nicname 43/tcp Who Is 

nicname 43/udp Who Is 

domain 53/tcp Domain Name Server 

domain 53/udp Domain Name Server 

whois++ 63/tcp whois++ 

whois++ 63/udp whois++ 

bootps 67/tcp Bootstrap Protocol Server 

bootps 67/udp Bootstrap Protocol Server 

bootpc 68/tcp Bootstrap Protocol Client 

bootpc 68/udp Bootstrap Protocol Client 

tftp 69/tcp Trivial File Transfer 

tftp 69/udp Trivial File Transfer 

gopher 70/tcp Gopher 

gopher 70/udp Gopher 

finger 79/tcp Finger 

finger 79/udp Finger 

http 80/tcp World Wide Web HTTP 

http 80/udp World Wide Web HTTP 

hosts2-ns 811tcp HOSTS2 Name Server 

hosts2-ns 811udp HOSTS2 Name Server 

kerberos 88/tcp Kerberos 

kerberos 88/udp Kerberos 

supdup 95/tcp SUPDUP 

supdup 95/udp SUPDUP 
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Table A.3 Port/service pairings for some of the more common ports (10 1-139). 

Keyword Decimal Description 

hostname 101ltcp NIC Host Name Server 

hostname 101Iudp NIC Host Name Server 

rtelnet 107/tcp Remote Telnet Service 

rtelnet 107/udp Remote Telnet Service 

pop2 109/tcp Post Office Protocol - Version 2 

pop2 109/udp Post Office Protocol - Version 2 

pop3 110/tcp Post Office Protocol - Version 3 

pop3 11O/udp Post Office Protocol - Version 3 

sunrpc 1111tcp SUN Remote Procedure Call 

sunrpc 1111udp SUN Remote Procedure Call 

ident 113/tcp 

auth 113/tcp Authentication Service 

auth 113/udp Authentication Service 

audionews 114/tcp Audio News Multicast 

audionews 114/udp Audio News Multicast 

sftp 115/tcp Simple File Transfer Protocol 

sftp 115/udp Simple File Transfer Protocol 

nntp 119/tcp Network News Transfer Protocol 

nntp 119/udp Network News Transfer Protocol 

statsrv 133/tcp Statistics Service 

statsrv 133/udp Statistics Service 

ingres-net 134/tcp INGRES-NET Service 

ingres-net 134/udp INGRES-NET Service 

epmap 135/tcp DCE endpoint resolution 

epmap 135/udp DCE endpoint resolution 

profile 136/tcp PROFILE Naming System 

profile 136/udp PROFILE Naming System 

netbios-ns 137/tcp NETBIOS Name Service 

netbios-ns 137/udp NETBIOS Name Service 

netbios-dgm 138/tcp NETBIOS Datagram Service 

netbios-dgm 138/udp NETBIOS Datagram Service 

netbios-ssn 139/tcp NETBIOS Session Service 

netbios-ssn 139/udp NETBIOS Session Service 
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Table A.4 Port/service pairings for some of the more common ports (142-565). 

Keyword Decimal Description 

imap 143/tcp Internet Message Access Protocol 

imap 143/udp Internet Message Access Protocol 

pcmail-srv 158/tcp PCMail Server 

pcmail-srv 158/udp PCMail Server 

sgmp-traps 160/tcp SGMP-TRAPS 

sgmp-traps 160/udp SGMP-TRAPS 

snmp 1611tcp SNMP 

snmp 1611udp SNMP 

snmptrap 162/tcp SNMPTRAP 

snmptrap 162/udp SNMPTRAP 

imap3 220/tcp Interactive Mail Access Protocol v3 

imap3 220/udp Interactive Mail Access Protocol v3 

yak-chat 258/tcp Yak Winsock Personal Chat 

yak-chat . 258/udp Yak Winsock Personal Chat 

http-mgmt 280/tcp http-mgmt 

http-mgmt 280/udp http-mgmt 

exec 512/tcp remote process execution; 

biff 512/udp used by mail system to notify users 

login 513/tcp remote login a la telnet; 

who 513/udp who is logged on 

shell 514/tcp cmd 

syslog 514/udp syslog 

printer 515/tcp spooler 

printer 515/udp spooler 

talk 517/tcp like tenex link, but across 

talk 517/udp like tenex link, but across 

uucp 540/tcp uucpd 

uucp 540/udp uucpd 

uucp-rlogin 5411tcp uucp-rlogin 

uucp-rlogin 5411udp uucp-rlogin 

nntps 563/tcp nntp protocol over TLS/SSL (was snntp) 

nntps 563/udp nntp protocol over TLS/SSL (was snntp) 

whoami 565/tcp whoami 

whoami 565/udp whoami 
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Table A.5 Port/service pairings for some of the more common ports (666-2049). 

Keyword Decimal Description 

doom 666/tcp doom Id Software 

doom 666/udp doom Id Software 

ftexlm 744/tcp Flexible License Manager 

ftexlm 744/udp Flexible License Manager 

kerberos-adm 749/tcp Kerberos administration 

kerberos-adm 749/udp Kerberos administration 

kerberos-iv 750/udp Kerberos version iv 

phonebook 767/tcp phone 

phonebook 767/udp phone 

access builder 888/tcp AccessBuilder 

access builder 888/udp AccessBuilder 

ftps-data 989/tcp FTP protocol, data, over TLS/SSL 

ftps-data 989/udp FTP protocol, data, over TLS/SSL 

ftps 990/tcp FTP protocol, control, over TLS/SSL 

ftps 990/udp FTP protocol, control, over TLS/SSL 

nas 991/tcp Netnews Administration System 

nas 991/udp Netnews Administration System 

telnets 992/tcp telnet protocol over TLS/SSL 

telnets 992/udp telnet protocol over TLS/SSL 

imaps 993/tcp imap4 protocol over TLS/SSL 

imaps 993/udp imap4 protocol over TLS/SSL 

ircs 994/tcp irc protocol over TLS/SSL 

ircs 994/udp irc protocol over TLS/SSL 

pop3s 995/tcp pop3 protocol over TLS/SSL (was spop3) 

pop3s 995/udp pop3 protocol over TLS/SSL (was spop3) 

blackjack 1025/tcp network blackjack 

blackjack 1025/udp network blackjack 

lotusnote 1352/tcp Lotus Note 

lotusnote 1352/udp Lotus Note 

shockwave 1626/tcp Shockwave 

shockwave 1626/udp Shockwave 

nfs 2049/tcp Network File System - Sun Microsystems 

nfs 2049/udp Network File System - Sun Microsystems 
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Table A.6 Port/service pairings for some of the more common ports (3334-33434). 

Keyword Decimal Description 

directv-web 3334/tcp Direct TV Webcasting 

directv-web 3334/udp Direct TV Webcasting 

directv-soft 3335/tcp Direct TV Software Updates 

directv-soft 3335/udp Direct TV Software Updates 

directv-tick 3336/tcp Direct TV Tickers 

directv-tick 3336/udp Direct TV Tickers 

directv-catlg 3337/tcp Direct TV Data Catalog 

directv-catlg 3337/udp Direct TV Data Catalog 

rwhois 43211tcp Remote Who Is 

rwhois 43211udp Remote Who Is 

aol 5190/tcp AmericaOnline 

aol 5190/udp AmericaOnline 

aol-l 51911tcp AmericaOnlinel 

aol-l 51911udp AmericaOnlinel 

aol-2 5192/tcp AmericaOnline2 

aol-2 5192/udp AmericaOnline2 

aol-3 5193/tcp AmericaOnline3 

aol-3 5193/udp AmericaOnline3 

xlI 6000-6063/tcp X Window System 

xlI 6000-6063/udp X Window System 

statsci I-1m 6144/tcp StatSci License Manager - 1 

statscil-1m 6144/udp StatSci License Manager - 1 

statsci2-1m 6145/tcp StatSci License Manager - 2 

statsci2-1m 6145/udp StatSci License Manager - 2 

http-alt SOOS/tcp HTTP Alternate 

http-alt SOOS/udp HTTP Alternate 

http-alt SOSO/tcp HTTP Alternate (see port SO) 

http-alt SOSO/udp HTTP Alternate (see port SO) 

quake 26000/tcp quake 

quake 26000/udp quake 

traceroute 33434/tcp traceroute use 

traceroute 33434/udp traceroute use 
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Table B.1 Port/trojan pairings for some of the more common trojans, ports 2-456. 

Port Trojan(s) 

2 Death 

21 Back Construction, Blade Runner, 

Doly Trojan, Fore, 

FTP trojan, Invisible FTP, 

Larva, MBT, Motiv, 

Net Administrator, Senna Spy FTP Server, 

WebEx, WinCrash 

23 Tiny Telnet Server, Truva Atl 

25 Aji, Antigen, Email Password Sender 

Gip, Happy 99, I Love You, 

Kuang 2, Magic Horse, 

Moscow Email Trojan, Naebi, 

NewApt, ProMail trojan, 

Shtrilitz, Stealth, Tapiras, 

Terminator WinPC, WinSpy 

31 Agent 31, Hackers Paradise, 

Masters Paradise 

41 DeepThroat 

48 DRAT 

50 DRAT 

59 DMSetup 

79 Firehotcker 

80 Back End, Executor, Hooker, RingZero 

99 Hidden Port 

110 ProMail trojan 

113 Invisible Identd Deamon, Kazimas 

119 Happy 99 

121 J arnmerKillah 

123 Net Controller 

133 Farnaz, Infector 

146 (UDP) Infector 

170 A-trojan 

421 TCP Wrappers 

456 Hackers Paradise 
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Table B.2 Port/trojan pairings for some of the more common trojans, ports 531-1245. 

Port Trojan(s) 

531 Rasmin 

555 Ini-Killer, NeT Administrator, Phase Zero, 

Stealth Spy 

606 Secret Service 

666 Attack FrP, Back Construction, NokNok, 

Cain & Abel, Satanz Backdoor, ServeU, Shadow Phyre 

667 SniperNet 

669 DPTrojan 

692 GayOL 

777 Aim Spy 

808 WinHole 

911 Dark Shadow 

999 DeepThroat, WinSatan 

1000 Der Spacher 3 

1001 Der Spacher 3, Le Guardien, Silencer, WebEx 

1010-12 Doly Trojan 

1015-16 DolyTrojan 

1020 Vampire 

1024 NetSpy 

1042 Bla 

1045 Rasmin 

1050 MiniCommand 

1080-3 WinHole 

1090 Xtreme 

1095,7,8 RAT 

1099 BFevolution, RAT 

1170 Psyber Stream Server, Streaming Audio trojan, Voice 

1200-1 (UDP) NoBackO 

1207 SoftWAR 

1212 Kaos 

1225 Scarab 

1234 Ultors Trojan 

1243 BackDoor-G, SubSeven, SubS even Apocalypse, Tiles 

1245 VooDoo Doll 
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Table B.3 Port/trojan pairings for some of the more common trojans, ports 1255-3024. 

Port Trojan(s) 

1255 Scarab 

1256 Project nEXT 

1269 Mavericks Matrix 

1313 NETrojan 

1338 Millennium Worm 

1349 (UDP) BODLL 

1492 FTP99CMP 

1509 Psyber Streaming Server 

1524 Trinoo 

1600 Shivka-Burka 

1777 Scarab 

1807 SpySender 

1966 FakeFTP 

1969 OpCBO 

1981 Shockrave 

1999 BackDoor, TransScout 

2000 Der Spaeher 3, Insane Network, TransScout 

2001 Der Spaeher 3, TransScout, Trojan Cow 

2002-5 TransScout 

2023 Ripper 

2080 WinHole 

2115 Bugs 

2140 Deep Throat, The Invasor 

2155 Illusion Mailer 

2283 HVLRat5 

2300 Xplorer 

2565 Striker 

2583 WinCrash 

2600 Digital RootBeer 

2716 The Prayer 

2773 SubS even 

2801 Phineas Phucker 

3000 Remote Shutdown 

3024 WinCrash 
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Table 8.4 Port/trojan pairings for some of the more common trojans, ports 3128-6006. 

Port Trojan(s) 

3128 RingZero 

3129 Masters Paradise 

3150 Deep Throat, The Invasor 

3456 Terror Trojan 

3459 Eclipse 2000, Sanctuary 

3700 Portal of Doom 

3791 Eclypse 

3801 (UDP) Eclypse 

4000 Skydance 

4092 WinCrash 

4242 Virtual hacking Machine 

4321 BoBo 

4444 Prosiak, Swift remote 

4567 File Nail 

4590 ICQTrojan 

5000 Bubbel, Back Door Setup, Sockets de Troie 

5001 Back Door Setup, Sockets de Troie 

5010 Solo 

5011 One of the Last Trojans (OOTLT) 

5031 NetMetropolitan 

5321 Firehotcker 

5343 wCrat 

5400-2 Blade Runner, Back Construction 

5550 Xtcp 

5512 Illusion Mailer 

5555 ServeMe 

55567 BOFacil 

5569 Robo-Hack 

5637-8 PC Crasher 

5742 WinCrash 

5882 (UDP) Y3KRAT 

5888 Y3KRAT 

6000 The Thing 

6006 The Thing 
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Table 8.5 Port/trojan pairings for some of the more common trojans, ports 6272-9878. 

Port Trojan(s) 

6272 Secret Service 

6400 The Thing 

6667 Schedule Agent 

6669 Host Control, Vampyre 

6670 DeepThroat, BackWeb Server, WinNuke, eXtreame 

6711 SubS even 

6712 Funny Trojan, SubSeven 

6713 SubS even 

6723 Mstream 

6771 DeepThroat 

6776 2000 Cracks, BackDoor-G, SubSeven 

6838 (UDP) Mstream 

6912 Shit Heep (not port 69123!) 

6939 Indoctrination 

6969 GateCrasher, Priority, IRC 3, NetController 

6970 GateCrasher 

7000 Remote Grab, Kazimas, SubSeven 

7001 Freak88 

7215 SubSeven 

7300-1 NetMonitor 

7306-8 NetMonitor 

7424 Host Control 

7789 Back Door Setup, ICKiller 

7983 Mstream 

8080 RingZero 

8787 Back Orifice 2000 

8897 HackOffice 

8988 BacHack 

8989 Rcon 

9000 Netministrator 

9325 (UDP) Mstream 

9400 InCommand 

9872-5 Portal of Doom 

9876 Cyber Attacker, RUX 

9878 TransScout 
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Table B.6 Port/trojan pairings for some of the more common trojans, ports 9989-17300. 

Port Trojan(s) 

9989 iNi-Killer 

9999 The Prayer 

10067 (UDP) Portal of Doom 

10085-6 Syphilis 

10101 BrainSpy 

10167 (UDP) Portal of Doom 

10528 Host Control 

10520 Acid Shivers 

10607 Coma 

10666 (UDP) Ambush 

11000 Senna Spy 

11050-1 Host Control 

11223 Progenie trojan, Secret Agent 

12076 Gjamer 

12223 Hack'99 KeyLogger 

12345 GabanBus, My Pies, NetBus, Pie Bill Gates, 

Whack Job, X-bill 

12346 GabanBus, NetBus, X-bill 

12349 BioNet 

12361-2 Whack-a-mole 

12623 (UDP) DUN Control 

12624 Buttman 

12631 WhackJob 

12754 Mstream 

13000 Senna Spy 

13010 Hacker Brazil 

15092 Host Control 

15104 Mstreiun 

16660 Stacheldraht 

16484 Mosucker 

16772 ICQRevenge 

16969 Priority 

17166 Mosaic 

17300 Kuang2 The Virus 
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Table B.7 Port/trojan pairings for some of the more common trojans, ports 17777-31336. 

Port Trojan(s) 

17777 Nephron 

18753 (UDP) Shaft 

19864 ICQRevenge 

20001 Millennium 

20002 AcidkoR 

20034 NetBus 2 Pro, NetRex, Whack Job 

20203 Chupacabra 

20331 Bla 

20432 Shaft 

20432 (UDP) Shaft 

21544 GirlFriend, Kidterror, Schwindler, 

WinSpOOfer 

22222 Prosiak 

23023 Logged 

23432 Asylum 

23456 Evil FTP, Ugly FTP, Whack Job 

23476-7 Donald Dick 

26274 (UDP) Delta Source 

26681 Spy Voice 

27374 SubSeven 

27444 (UDP) Trinoo 

27573 SubSeven 

27665 Trinoo 

29104 Host Control 

29891 (UDP) The Unexplained 

30001 TerrOr32 

30029 AOL Trojan 

30100-3 NetSphere 

30133 NetSphere 

30303 Sockets de Troie 

30947 Intruse 

30999 Kuang2 

31335 (UDP) Trinoo 

31336 Bo Whack, ButtFunnel 
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Table B.B Port/trojan pairings for some of the more common trojans, ports 31337--60000. 

Port Trojan(s) 

31337 Baron Night, BO client, B02, Bo Facil 

31337 (UDP) Backfire, Back Orifice, DeepBO, Freak> 

31338 NetSpy DK, ButtFunnel 

31338 (UDP) Back Orifice, DeepBO 

31339 NetSpyDK 

31666 BOWhack 

31785,87-89,91-92 Hack'alack 

32100 Peanut Brittle, Project nEXT 

32418 Acid Battery 

33333 Blakharaz, Prosiak 

33577 PsychWard 

33777 PsychWard 

33911 Spirit 2001a 

34324 BigGluck, TN 

34555 (UDP) Trinoo (Windows) 

35555 (UDP) Trinoo (Windows) 

37651 YAT 

40412 The Spy 

40421 Agent 40421, Masters Paradise 

40422-3,6 Masters Paradise 

41666 Remote Boot 

44444 Prosiak 

47262 (UDP) Delta Source 

50505 Sockets de Troie 

50766 Fore, Schwindler 

51996 Cafeini 

52317 Acid Battery 2000 

53001 Remote Windows Shutdown 

54283 SubS even 

54320 Back Orifice 2000 

54321 School Bus 

54321 (UDP) Back Orifice 2000 

57341 NetRaider 

58339 ButtFunnel 

60000 Deep Throat 



274 B. TROJAN PORT NUMBERS 

Table B.9 Port/trojan pairings for some ofthe more common trojans, ports 60068-65535. 

Port Trojan(s) 

60068 Xzip 6000068 

60411 Connection 

61348 Bunker-Hill 

61466 Telecommando 

61603 Bunker-Hill 
63485 Bunker-Hill 

65000 Devil, Stacheldraht 

65432 The Traitor 

65432 (UDP) The Traitor 

65535 RC 
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Table C.1 Two character country codes, AD-FM. 

Code Country Code Country 

AD Andorra CA Canada 

AE United Arab Emirates CC Cocos (Keeling) Islands 

AF Afghanistan CF Central African Republic 

AG Antigua and Barbuda CG Congo 

AI Anguilla CH Switzerland 

AL Albania CI Cote D'Ivoire (Ivory Coast) 

AM Armenia CK Cook Islands 

AN Netherlands Antilles CL Chile 

AO Angola CM Cameroon 

AQ Antarctica CN China 

AR Argentina CO Colombia 

AS American Samoa CR Costa Rica 

AT Austria CS Czechoslovakia (former) 

AU Australia CU Cuba 

AW Aruba CV Cape Verde 

AZ Azerbaijan CX Christmas Island 

BA Bosnia and Herzegovina CY Cyprus 

BB Barbados CZ Czech Republic 

BD Bangladesh DE Germany 

BE Belgium OJ Djibouti 

BF Burkina Faso DK Denmark 

BG Bulgaria DM Dominica 

BH Bahrain DO Dominican Republic 

BI Burundi DZ Algeria 

BJ Benin EC Ecuador 

BM Bermuda EE Estonia 

BN Brunei Darussalam EG Egypt 

BO Bolivia EH Western Sahara 

BR Brazil ER Eritrea 

BS Bahamas ES Spain 

BT Bhutan ET Ethiopia 

BV Bouvet Island PI Finland 

BW Botswana FJ Fiji 

BY Belarus FK Falkland Islands (Malvinas) 

BZ Belize FM Micronesia 
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Table C.2 Two character country codes, FO-MN. 

Code Country Code Country 

FO Faroe Islands IT Italy 

FR France JM Jamaica 

FX France, Metropolitan JO Jordan 

GA Gabon JP Japan 

GB Great Britain (UK) KE Kenya 

GD Grenada KG Kyrgyzstan 

GE Georgia KH Cambodia 

GF French Guiana KI Kiribati 

GH Ghana KM Comoros 

GI Gibraltar KN Saint Kitts and Nevis 

GL Greenland KP Korea (North) 

GM Gambia KR Korea (South) 

GN Guinea KW Kuwait 

GP Guadeloupe KY Cayman Islands 

GQ Equatorial Guinea KZ Kazakhstan 

GR Greece LA Laos 

GS S. Georgia and S. Sandwich IsIs. LB Lebanon 

GT Guatemala LC Saint Lucia 

GU Guam LI Liechtenstein 

GW Guinea-Bissau LK Sri Lanka 

GY Guyana LR Liberia 

HK Hong Kong LS Lesotho 

HM Heard and McDonald Islands LT Lithuania 

HN Honduras LU Luxembourg 

HR Croatia (Hrvatska) LV Latvia 

HT Haiti LY Libya 

HU Hungary MA Morocco 

ID Indonesia MC Monaco 

IE Ireland MD Moldova 

IL Israel MG Madagascar 

IN India MH Marshall Islands 

10 British Indian Ocean Territory MK Macedonia 

IQ Iraq ML Mali 

IR Iran MM Myanmar 

IS Iceland MN Mongolia 
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Table C.3 Two character country codes, MO-TJ. 

Code Country Code Country 

MO Macau PR Puerto Rico 

MP Northern Mariana Islands PT Portugal 

MQ Martinique PW Palau 

MR Mauritania PY Paraguay 

MS Montserrat QA Qatar 

MT Malta RE Reunion 

MU Mauritius RO Romania 

MV Maldives RU Russian Federation 

MW Malawi RW Rwanda 

MX Mexico SA Saudi Arabia 

MY Malaysia Sb Solomon Islands 

MZ Mozambique SC Seychelles 

NA Namibia SD Sudan 

NC New Caledonia SE Sweden 

NE Niger SG Singapore 

NF Norfolk Island SH St. Helena 

NG Nigeria SI Slovenia 

NI Nicaragua SJ Svalbard and Jan Mayen IsIs. 

NL Netherlands SK Slovak Republic 

NO Norway SL Sierra Leone 

NP Nepal SM San Marino 

NR Nauru SN Senegal 

NT Neutral Zone SO Somalia 

NU Niue SR Suriname 

NZ New Zealand (Aotearoa) ST Sao Tome and Principe 

OM Oman SU USSR (former) 

PA Panama SV El Salvador 

PE Peru SY Syria 

PF French Polynesia SZ Swaziland 

PG Papua New Guinea TC Turks and Caicos Islands 

PH Philippines TD Chad 

PK Pakistan TF French Southern Territories 

PL Poland TG Togo 

PM St. Pierre and Miquelon TH Thailand 

PN Pitcairn TJ Tajikistan 
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Table C.4 Two character country codes, TK-ZW. 

Code Country 

TK Tokelau. 

TM Turkmenistan 

TN Thnisia 

TO Tonga 

TP East Timor 

TR Thrkey 

TT Trinidad and Tobago 

TV Tuvalu 

TW Taiwan 

TZ Tanzania 

UA Ukraine 

ua Uganda 

UK United Kingdom 

UM US Minor Outlying Islands 

US United States 

UY Uruguay 

UZ Uzbekistan 

VA Vatican City State (Holy See) 

VC Saint Vincent and the Grenadines 

VE Venezuela 

va Virgin Islands (British) 

VI VIrgin Islands (U.S.) 

VN VietNam 

VU Vanuatu 

WF Wallis and Futuna Islands 

WS Samoa 

YE Yemen 

YT Mayotte 

YU Yugoslavia 

ZA South Africa 

ZM Zambia 

ZR Zaire 

ZW Zimbabwe 



AppendixD 

Security Web Sites 

D.1 INTRODUCTION 

In this section, I list a number of Web sites that are of interest for computer security 
and intrusion detection purposes. This listing is not complete, but is a good starting 
point. At the time of this writing (January-April 2001) all of these Web sites were 
active, but I cannot guarantee they will be in the future. 

I do not endorse any of these pages. This is a list of pages that I have found 
interesting or useful or that I have simply come across while Web surfing. By the 
same token, I do not claim that it is in any way complete. There are bound to be 
important sites I have left off. A Web search will no doubt tum up many sites of 
interest that are not on the list. 

A note of caution is in order here. Most of these Web sites are legitimate and any 
software provide by them is probably safe (but I do not make any guarantees here). 
Care should always be taken when obtaining software from the Web, particularly 
executables. In fact, I would not recommend using any software obtained from 
the Web that is not provided as source code. Further, some of these Web pages are 
self-described "hacker" sites. A few of these may interpret your access of their 
site as an invitation for them to visit your machine. 
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I have organized these sites into rough categories. There will be some duplica­
tion because some sites fit in more than one category. Within categories there is 
no ordering. This may be somewhat annoying to the reader but the listings here 
are short enough that it should cause no major problems. Note that in typing these 
Web addresses in, case can be important, particularly for directories. Also beware 
of "zeros" that look like "Os." 

First, there is a list of general information Web sites (including sites that do not 
fit well into the other categories) and then a listing of security-related Web sites. 
A listing of Web sites providing information about "cyber crime" is also provided 
as well as sites where the software described in the book is available and where 
data may be obtained. Finally is a list of Web sites that are specifically aimed at 
intrusion detection. 

0.2 GENERAL 

Miscellaneous Web sites with useful information relevant to computer security, 
statistical analysis, and data visualization follow. 

freshmeat.net A repository of software for Linux. 

slashdot.org "News for Nerds," with a focus on Linux. 

www.nd.eduJ ... networks/visuaVtable.htmIA collection of examples of network 
visualization. 

www.caida.orgltoolsl Tools and software for visualization. 

www.isoc.orgl Internet Society. 

www.ietf.orgl Internet Engineering Task Force. 

Iib.stat.cmu.eduIR/CRAN/contents.html The R repository at Camegy Mellon, 
where the R distribution, documentation, and contributed packages are available. 

www.R-project.org The R Project. The official Web site for R. 

lark.cc.ukans.eduJ"'pauljohnIRIstatsRus.html A tip sheet for the R language. 

www.bell-labs.com/topic/societies/asagraphics/resources.htmIA collection of 
Online resources for statistical graphics. 

hotspur.psych.yorku.ca/SCS/Galiery/intro.html A gallary of data visualization 
examples, both good and bad. 
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alephO.clarku.edul ",djoyce/javaIPhyltree/cover.html A discussion of phylogeny 
and reconstructing phylogenetic trees. Includes a Java applet. 

www.cs.bell-Iabs.comlwho/ches/map/ Bill Cheswick's Internet Mapping Project. 

www.mids.orglweather/ The Internet Weather Report. 

www.cybergeography.org Cybergeography research and information. 

www.mappingcyberspace.com Mapping cyberspace book and information. 

www.viruslist.comInformation about viruses. 

www.isc.org The Internet Software Consortium. 

www.slac.stanford.edulgrp/scs/netltalklescc-sdo-apr97/measlppframe.htm 
Internet End-to-end monitoring and performance measuring. 

www.internettrafficreport.com The Internet Traffic Report. Monitoring the flow 
of data around the world. 

www.netsizer.com Evaluating the size of the Internet. 

www.fnc.gov The Federal Networking Council. 

www.fnc.gov/claffy.htmIInternet measurement tools. 

www.sims.berkeley.eduiresourcesiinfoeconiAccounting.htmIAccounting and 
measurement of Internet traffic. 

www.mit.edulpeople/mkgray/netl Statistics on the growth of the Internet. 

www.science.uva.nU ... mes/jargoni A jargon dictionary useful for tracking down 
the definitions of unfamiliar jargon. 

www.uni-paderborn.de/cs/ag-klbue/stafflmurray/worklpublications/iccOl.p­
df An interesting paper entitled "Visualization of Traffic Structures," by Oliver 
Niggemann, Benno Stein and Jens Tolle. The "-" after the "p" is not part of the 
URL. 

members.aol.comledswinglftodar/ftodarviz.html A description of FLO DAR, a 
visualization tool for network traffic, developed at the National Security Agency 
(according to the Web site). There are a few references listed here that might be 
of interest. 

dmoz.org The Open Directory Project. The goal of this project is to have the most 
comprehensive directory of the Web. Most relevant to this book is the subdirectory 
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at dmoz.org/Computers/. 

jeff.cs.mcgill.ca/ ...... godfried/teaching/pr-web.html Pattern recognition resources 
and information on the Web. 

www.mpi-sb.mpg.de/ ...... mutzel/alcom-itlalcomgdraw.html Graph drawing tools. 

www.ics.uci.edul ...... eppsteinlgina/gdraw.html More graph drawing tools, links 
and information. 

rw4.cs.uni-sb.de/users/sander/html/gstools.html More graph drawing tools and 
links. 

www.contrib.andrew.cmu.edul ...... krackl KrackPlot: a social network visualiza­
tion program. Might be of interest for visualizing networks and attacks. 

www.mpi-fg-koeln.mpg.de/ ...... lklnetvis.html Another site devoted to (social) net­
work visualization. 

0.3 SECURITY 

Web sites with a security focus follow. 

www.cert.org CERT coordination center. 

www.sans.org System Administration and Network Security. 

xforce.iss.net Internet Security Systems page of vulnerabilities and information. 

www.fish.comlsecurity/ Some of Dan Farmer's security-related papers. 

www.practicalsecurity.com Computer security information. Contains a list of 
links. 

www.insecure.org Computer security information and the Nmap scanner. 

www.packetfactory.net Network security clearinghouse. A number of interest­
ing papers are available here. 

packetstorm.securify.com Information security database. Many of the main 
computer security tools are available here. 

seclab.cs.ucdavis.edu Computer Security Research Laboratory at DC Davis. 
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csrc.ncsl.nist.gov Computer security resource clearinghouse for the National In­
stitute of Standards and Technology. 

csrc.ncsi.nist.gov/toois/toois.htm Unix host and network security tools. 

www.infowar.comInformation Warfare homepage. 

www.2600.com Homepage of the 2600 magazine, the "hacker quarterly." 

www.itpolicy.gsa.gov The U.S. General Services Administration IT page. 

www.cit.nih.gov/security.htmiNational Institutes of Health Internet security 
page. 

www.nswc.navy.miIlISSEC NSWC information security site. 

ee.lbi.gov Lawrence Berkeley National Laboratory Network Research Group 
homepage. 

www.issa-intl.org International Information Systems Security Association. 

www.usenix.org Usenix, the Advanced Computing Systems Association. 

www.gocsi.com Computer Security Institute. 

cve.mitre.org Mitre's common vulnerabilities and exposures page. 

www.rootshell.com A repository of software to exploit vulnerabilities, which 
contains information about vulnerabilities and news related to computer security. 

www.iss.netInternet Security Systems Web site. 

www.mountainwave.com Computer security news site. 

www.ntbugtraq.com NT Bugtraq. 

www.nsi.org/compsec.htmiSecurity resource net's computer security site. In­
cludes a security glossary and several FAQs and papers. 

www.boran.comlsecurity/ IT security cookbook. 

www.securityfocus.com News and information about computer security. Con­
tains "bugtraq," a listing of the current bugs and vulnerabilities for various oper­
ating systems. 

www.iOpht.comInformation. software, and vulnerability reports. To quote their 
banner: "That vulnerability is completely theoretical" - Microsoft. LOpht, making 
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the theoretical practical since 1992. (Note: the "0" in the URL is a zero.) 

www.first.org Forum of Incident Response and Security Teams. 

www.nipc.gov National Infrastructure Protection Center. 

www.cs.purdue.edu Purdue Computer Science Department. 

www.cs.purdue.edulcoastlcoast.html Computer Operations, Audit, and Secu­
rity Technology. 

www.cerias.purdue.edu Center for Education and Research in Informaiont As­
surance and Security, Purdue University. 

www.isse.gmu.edul"'csis/ Center for Secure Information Systems at George Ma­
son University. 

www.issl.org Information Systems Security Laboratory at Iowa State University. 

www.infosec.jmu.edul Information Security Program at James Madison Univer­
sity. 

www.cs.ucsb.edu Department of Computer Science at the University of Califor­
nia, Santa Barbara. 

www.c1.cam.ac.uk The Computer Laboratory of the University of Cambridge. 

www.cs.uidaho.edu Computer Science Department of the University of Idaho. 

www.cs.uow.edu.au School of Information Technology and Computer Science, 
University of Wollongong, Australia. 

www.cs.umbc.edu Computer Science Department, University of Maryland Bal­
timore County. 

www.niss.org National Institute of Statistical Sciences. 

www.happyhacker.orgl The Happy Hacker. 

www.trusecure.netlhtmlltspublhypeorhotlindex.shtml TruSecure' s so called 
"Hype or Hot" site. Lots of information about viruses and worms. 

www.virusbtn.comlThe Virus Bulletin. Lots of information on viruses. 

www.mitre.orglpubs/edge/february_Ol/ Mitre's "The Edge" Newsletter issue 
on Information Assurance. 
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www.cert.orglkb/aircert/ AirCERT. A project involving the placement of sen­
sors on various networks attached to the Internet. 

attrition.org Information about computer security and vulnerabilities. 

doe-is.llnl.gov/ConferenceProceedingsIDOECompSec97IDOEConf97.html 
The proceedings of the 1997 DOE Information Security Conference. 

dmoz.org/Computers/Securityl The Open directory listing for information rel­
evant to computer security. 

project.honeynet.org/ The Web page for the HoneyNet Project. Contains a num­
ber of "Know Your Enemy" papers, and information about "blackhats" (attackers). 

www.simovits.com A consulting firm that has information related to security and 
intrusion detection (see the link to their article archive). In particular, there is a 
list of the ports used by trojan horses. 

www.wias.net Windermere's information assurance page. 

www.Vmyths.com A site devoted to virus myths and hoaxes. 

www.whitehats.com A resource for security information and recent security re­
lated news. 

0.4 CRIME 

These Web sites focuse on the legal and law enforcement aspects of computer 
security. 

www.htcia.org High Technology Crime Investigation Association. 

www.gahtan.comlcyberlaw/ The Cybedaw Encyclopedia. Information about 
law as it applies to computers, networks and the Internet. 

www.forensics.com Computer Forensics Inc. Web page containing a number of 
interesting case studies and documents on computer forensics. 

www.computer-forensics.com Company Web page with some articles and news 
stories. 

www.usdoj.gov/criminaVcybercrime/index.htmICybercrime page for the U.S. 
Department of Justice. 
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0.5 SOFTWARE 

The following sites contain software and publications available on the Web. 

www.cs.tut.filrvrammer/aide.html Home page for the aide software. 

icamtuf.hack.pl Home of pOf. 

rs.internic.netlwhois.html Internic whois server. 

www.nsiregistry.com/whoisl VeriSign whois server. 

www.iana.org/cctldlcctld-whois.htm A page providing the Internet Assigned 
Numbers Authority whois information. 

www.betterwhois.com/A whois server. 

www.networksolutions.com/cgi-binlwhoislwhois The whois server run by Net­
work Solutions. 

www.whois.netlAnother whois server. 

www.ssh.filHome of secure shell. 

www.snort.org Home of snort. 

www.cs.umbc.edulcadip/pubs.html University of Maryland Baltimore County, 
Center for Architectures for Data-Driven Information Processing publications. 

www.cs.unm.edulrvimmsec/papers.htm University of New Mexico papers on 
computer immunology. 

www.niss.orgldownloadabletechreports.html National Institute of Statistical 
Science technical reports. 

www.enteract.com/rvlspitzlpapers.html White papers and publications on se­
curity. 

www.switch.chldocslttLdefault.html Paper on default TTL values. 

www.firstmonday.dklissueslissue2~/rowlandl A paper discussing covert chan­
nels in TCP/IP. 

setiathome.ssl.berkeley.edu SETI at home Web page. 

www.research.ibm.com/antiviruslSciPapers.htmAnitvirusResearchpapers.at 
mM. 
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0.6 DATA 

This section lists data available on the Web. There is not much data available, pri­
marily because of the large volume of such data but also partly a result of privacy 
concerns. However, some organizations have made some of their data available. 

www.schonlau.netlMatt Schonlau's "masquerading user" data. 

www.ics.uci.edul",mlearnIMLRepository.html VCI machine learning reposi­
tory. A lot of data sets used by the machine learning community reside here. One 
or two of these are of interest for the computer security/intrusion detection com­
munity. 

kdd.ics.uci.edul Knowledge Discovery Database. Some data sets of Web ac­
cesses. 

kdd.ics.uci.eduldatabases/kddcup99/kddcup99.html 1999 data mining com­
petition data. Task: build a system to detect intrusions in the data provided. 

www.cs.unm.edul",immseclresearch.htm The Computer Immune System. Sys­
tem call data sets. 

www.ll.mit.edulIST/idevali Information on the DARPA intrusion detection sys­
tems evaluation, including points of contact for access to data. 

www.virusbtn.comIPrevaience/ Index of virus bulletin prevalence tables. His­
torical and current information on the prevalance of computer viruses. 

0.7 INTRUSION DETECTION 

The following Web sites have an intrusion detection focus. Many of the sites listed 
above in the security section (Section D.3) also have pages devoted to intrusion 
detection. 

packetstorm.securify.com Papers, code, and articles for and about computer se­
curity. 

www.snort.org Home page for snort. 

seclab.cs.ucdavis.edu The Computer Security Research Laboratory at VC Davis. 

olympus.cs.ucdavis.edulcidfJ The DARPA Common Intrusion Detection Frame­
work. 

www.isi.edulgostlcidfJ Common Intrusion Detection Framework. 
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www-rnks.informatik.tu-cottbus.de/ "-'sobirey/ids.html Michael Sobirey' sin­
trusion detection systems page. A list of links to IDS systems. 

www.robertgraham.comlpubs/network-intrusion-detection.html Intrusion de­
tection FAQ. 

www.research.ibm.comljournaVsj/371Ibouianger.html .. Catapults and grap­
pling hooks: The tools and techniques of information warfare," by A. Boulanger. 

www.cert.orgltech_tips/ Technical tips on Internet security issues. 

www.cert.orgltech_tipslintruder _detection_checklist A good step-by-step 
checklist for determining whether a system has been compromised. 

ftp:/Iresearch.att.comldist/internet...securitylberferd.ps The paper "An evening 
with Berferd: In which a cracker is lured, endured, and studied," by Bill Cheswick. 

www.forensics.com Computer Forensics Inc. Web page. 

www.computer-forensics.com Company Web site. 

www.sdl.sri.comlintrusionlindex.htmISRl.s intrusion detection page. 

www.sdl.sri.comlemerald SRI's EMERALD information site. 

www.cerias.purdue.edulcoast/intrusion-detectionl Purdue's intrusion detec­
tion page. 

www.nswc.navy.miIlISSEC/CID/ NSWC intrusion detection and network secu­
rity page, home of SHADOW. 

www.dshield.org Distributed IDS. A free service providing a platform for sharing 
intrusion information. 

www.sei.cmu.edulpublications/documents/99.reports/99tr028/99tr028abstr­
act.html A technical report entitled "State of the Practice of Intrusion Detection 
Technologies." The "-" in the word "abstract" is not part of the URL. 
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Glossary 

Attacker A person who attacks a computer. See Cracker. 

Back Door A section of code in a program or operating system that allows 
unauthorized access to those with the knowledge to exploit it. These are often 
put in by the original programmers to allow easy debugging in the early stages 
of development, but become a problem when the programmers forget (or choose 
not) to close them off. 

Bias Bias is a statistical term which means the amount that the estimate differs 
from its expectation. For an estimate T of a quantity T, the bias b(T) is defined 
as b(T) = E(T) - T. For example, the sample mean is unbiased (has zero 
bias), since its expectation is the mean. 

Cache Poisoning Changing the DNS cache on a machine so that a host (usually 
a Web server) is redirected to a different host. 

Core Dump When a program dies unexpectedly, the operating system saves the 
current state of the program (memory values, registers, etc.) in a file (called 
"core"). A core dump, or "dumping core," refers to this process. 

Covert Channel A channel of communications that is hidden. This can be done 
through placing data in unexpected places (such as packet header fields) or by 
encoding the message in subtle ways such as the timing of packet acknowledg­
ments. 

Cracker A person who attacks or gains access to a machine for malicious 
purposes. 

Daemon A program that runs in the background; usually a system program 
that handles events such as connection requests or performs other maintenance 
functions. 
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Digraph A graph with directed edges. 

DMZ The DMZ (demiliterized zone) consists of the machines on your network 
that lie outside your firewall. These may sit behind another firewall, but they 
are in some sense less protected than the rest of your network. They usually 
consist of those machines that the world is supposed to know about, such as 
Web servers, DNS servers, and mail servers. 

Domain Name Server (DNS) A machine that maintains a database to perform 
the mapping between a host name and an IP address. 

Dominating Set A set of vertices of a graph that are neighbors of all the vertices 
of the graph. The number of elements in a minimal dominating set is called the 
domination number. 

Dumpster Diving See Trashing. 

Ethernet A widely used networking technology. 

Firewall Software that monitors and controls the communications into and out 
of a network (or machine). 

Fork Create a child process. One also talks about "spawning" a process. The 
idea is to start up a new process (program) from an existing one. 

Graph A graph is a set of vertices and edges between vertices. These are used to 
construct efficient data structures, to model various kinds of physical processes, 
and to construct efficient algorithms in computer science. 

Hacker 1. A person who is a good and enthusiastic computer programmer. A 
prolific and expert coder. 2. A person who breaks into computers. People who 
adhere to definition # 1 call the latter "crackers." 

Hamming Distance A distance measure that computes the number of places in 
which two strings differ. 

Host A computer connected to a network. 

Load Average A measure of the amount of work a computer is performing; the 
"load" on the computer. 

Identifiable A set of parameters for a model are identifiable if they can be 
determined from the data in a way that uniquely determines the model. For 
example, if one has parameters a and b and can only determine a + b, the 
parameters are not identifiable since many choices for a and b result in the 
same sum. 

Insider Threat An attacker that is a member of the attacked organization. This 
is usually a disgruntled employee or a prankster. Insiders are a particularly 
difficult and important problem since an insider by definition has access to the 
organization's computers. 

Internet Service Provider (ISP) An organization that provides the "on ramp to 
the Information Superhighway" (sorry, I promise not to use that phrase again). 
An ISP provides modems, phone lines, or other infrastructure to allow comput­
ers to connect to its network (for example, from home via a modem). 

Logic Bomb A computer program that appears innocuous until a respecified 
time, when it performs some nasty action, such as deleting files. 
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Malicious Code Any software written with evil intent. Examples include 
viruses, worms, and trojans. 

Man Page The manual page for a command in the Unix operating system. 

Mixture Model A model for the probability density function of a random vari­
able as a convex sum of density functions. 

Nearest-Neighbor Classifier An algorithm that assigns to new data the class 
associated with the nearest exemplar from a training set. 

Outlier A datum that is in the tails of its (assumed) distribution. For example, 
when considering the daily rainfall on the island of Hawaii, the day (in 2000) 
when it received 38" of rain was an outlier. 

Packet The fundamental information unit on a network. All communications 
are broken into packets, with each packet routed individually to the destination. 

Patch Code to fix a bug or vulnerability in a program. Also used as a verb 
or adjective: to patch a machine means to install all appropriate patches; an 
unpatched machine is one that has known bugs that have not been corrected via 
the appropriate patches. 

Port A number that UDP and TCP assign to network services and applications. 
Each application is assigned one or more ports, and these port numbers are then 
used to route packets to the appropriate application. 

Probability Density Function (PDF) The continuous version of the probability 
mass function. One way to define it is as the derivative of the distribution 
function. 

Probability Distribution Function Usually denoted with a capital letter, the 
probability distribution function returns the probability of observing a value at 
least as large as the one observed: F(x) = P(X :::; x). SeeProbabilityDensity 
Function. 

Promiscuous A network interface in promiscuous mode will make a copy of 
every packet that passes the interface rather than only grabbing those packets 
destined for the interface. 

Proxy A proxy is an application that acts as a gateway between two networks. 
It provides access control to the network and can also hide information about 
the protected network, hiding the internal network structure. 

Red Team A group of "good guys" that plays "bad guys." The red team is 
used to try to break into, or otherwise attack, a system or network in order to 
determine the quality of the security or to identify weaknesses to be addressed. 

Resolve To map an IP address to a machine name (or vice versa). 

Root The "super user" or administrator on a Unix machine is called "root." This 
user has full permission for reading, writing, and executing essentially any file 
on the system. An attacker with root permission is said to "own" the machine 
since he or she can operate with impunity. A slang expression, "to get root on 
someone," has been coined as a result. 

Rootkit A collection of programs that hides the activities of an attacker. This 
may include programs designed to give the attacker root permission on the 
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machine, change log files to eliminate evidence of the attack, and install trojan 
copies of system programs. 

Router A machine that forwards packets on a network. 

Script Kiddie An attacker who uses an attack script written by others. Usually, 
this is someone with little knowledge of the details of the attack, who is merely 
executing a program written by someone else. 

Sensor A network sensor is a program that examines all the packets on a network 
interface and stores a subset of these packets for analysis. 

Signature A pattern by which an entity or activity of interest can be identified. 

Snail Mail Mail that goes through the postal system. This is to be contrasted 
with email, which gets delivered (nearly) instantaneously, assuming the mail 
servers are configured properly. 

Sniffer A program that examines all the packets on a network interface. The 
distinction between a sensor and a sniffer is basically that network security 
officers use sensors, whereas everyone else uses sniffers. 

Social Engineering Obtaining information (for example user IDs and pass­
words) by personal contact with someone who has the desired information. For 
example, the attacker calls the system administrator and poses as a vice pres­
ident of the company who has forgotten his password and needs to get some 
data from his computer immediately for a meeting with an important client. 

Spam Unsolicited email from strangers, the equivalent of junk mail or junk 
phone calls. This is often advertisement, sometimes part of a scam, and is 
generally detested. 

Spawn See Fork. 

Spoof To pretend to be something you are not. This is the term used when a 
packet is sent with a source IP address that has been changed to hide the identity 
of the true originator of the packet. 

Stateful This refers to maintaining information about the state of a process. 
For example, a stateful firewall keeps track of the state of a TCP connection 
(whether the three-way handshake has been properly completed, for example) 
and denies connections that "break state." 

Steganography The hiding of information in other information. 

Super User The user with full permission on a Unix machine. This user (usually 
named "root") can execute, view, or modify any file on the computer and is in 
charge of maintaining, administering, and securing the computer. 

TCPIIP Transmission Control Protocol/Internet Protocol. The lingua franca 
of the Internet. This is the protocol to which all packets on the Internet must 
conform, regardless of the specifics of their originating internal network. 

Trashing Looking through trash in the hopes of finding useful information about 
an organization or individual. Attackers will do this in order to get user names, 
passwords, documentation, or other useful information. 

Trojan A program that purports to perform one function but secretly performs 
another, usually a diabolical one. 
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Virus A computer virus is a program that copies itself into (infects) other pro­
grams. It mayor may not perform other tasks. It can be passed by infected files 
on a disk, by files downloaded from another computer, or by attachments sent 
via email. See also the entry for Worm. 

War Dialer A program that dials a range of telephone numbers looking for 
answering computers. 

Worm A computer worm is a program that spawns running copies of itself, such 
as the Internet worm of 1988, which was one of the first and most famous of these 
computer denizens. An alternate definition used by some is that viruses require 
a user to propagate them (for instance by executing a program or inserting a 
disk) while worms do not. 



ADC 

AIC 

AIDE 

AKA 

AKMDE 

BSM 

CART 

CORBA 

DARPA 

DNS 

DOS 

DMZ 

DDOS 

DOE 

DOS 

EMERALD 

FAQ 

FKE 

Acronyms 

Approximate Distance Clustering 

Akaike Information Criterion 

Advanced Intrusion Detection Environment 

Also Known As 

Alternating Kernel and Mixture Density Estimation 

Basic Security Module 

Classification and Regression Trees 

Common Object Request Broker Architecture 

Defense Advanced Research Projects Agency 

Domain Name Service. Also, Domain Name Server 

Denial of Service attack. Also, an old PC operating system, now 
generic for Microsoft operating systems. 

Demiliterized Zone 

Distributed Denial of Service 

Department of Energy 

Denial of Service 

Event Monitoring Enabling Responses to Anomalous Live 
Disturbances 
Frequently Asked Questions 

Filtered Kernel Estimator 
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318 ACRONYMS 

FLD 

FfP 

GrIDS 

GNU 

HMM 

lANA 

ICMP 

IDS 

IFS 

ILY 

IRC 

ISP 

IP 

LAN 

MAC 

MISE 

MITLL 

NCSC 

NFS 
NIC 

NIDES 

NSWC 

OS 

PC 

PD 

PFA 

PID 

PPP 

RFC 

RIP 

RIPPER 

ROC 

SANS 

SET! 

SHADOW 

Fisher's Linear Discriminant 

File Transfer Protocol 

Graph-Based Intrusion Detection System 

GNU is Not Unix 

Hidden Markov Model 

Internet Assigned Numbers Authority 

Internet Control Message Protocol 

Intrusion Detection System 

Internet Field Separator 

I Love You (a virus/worm) 

Internet Relay Chat 

Internet Service Provider 

Internet Protocol 

Local Area Network 

Media Access Control 

Mean Integrated Squared Error 

Massachusetts Institute of Technology, Lincoln Labs 

National Computer Security Center 

Network File Service 

Network Information Center 

Next-generation Intrusion Detection Expert System 

Naval Surface Warfare Center 

Operating System 

Personal Computer 

Probability of Detection 

Probability of False Alarm 

Process ID 

Point-to-Point Protocol 

Request For Comment 

Routing Information Protocol 

Repeated Incremental Pruning to Produce Error Reduction 

Receiver Operating Characteristics 

System Administration and Network Security 

Search for Extra Terrestrial Intelligence 

Secondary Heuristic Analysis for Defensive Online Warfare 
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SIR Susceptible-Infected-Recovered 

SIS Susceptible-Infected-Susceptible 

SRI Sarnoff Research Institute 

SSO Site Security Officer 

SWITCH Swiss Academic & Research Network 

TCP Transmission Control Protocol 

TFN Tribe Flood Network 

TFN2K Tribe Flood Network 2000 

TOCTTOU Time-of-check-to-time-of -use 

TTL Time To Live 

UDP User Datagram Protocol 

WAN Wide Area Network 

WATCHERS Watching for Anomalies in Transit Conversation: a Heuristic for 
Ensuring Router Security 
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