
Statistics for Engineering
and Infonnation Science

Series Editors
M. Jordan, S.L. Lauritzen, J.P. Lawless, V. Nair

Springer Science+Business Media, LLC

Statistics for Engineering and Information Science

Akaike and Kitagawa: The Practice of Time Series Analysis.
Cowell, Dawid, Lauritzen, and Spiegelhalter: Probabilistic Networks and

Expert Systems.
Doucet, de Freitas, and Gordon: Sequential Monte Carlo Methods in Practice.
Fine: Feedforward Neural Network Methodology.
Hawkins and otwell: Cumulative Sum Charts and Charting for Quality Improvement.
Jensen: Bayesian Networks and Decision Graphs.
Marchette: Computer Intrusion Detection and Network Monitoring:

A Statistical Viewpoint.
Vapnik: The Nature of Statistical Learning Theory, Second Edition.

David J. Marchette

Computer Intrusion Detection
and Network Monitoring
A Statistical Viewpoint

With 86 Illustrations

Springer

David J. Marchette
Naval Surface Warfare Center
Code BlO
17320 Dahlgren Road
Dahlgren, V A 22448
USA
marchettedj@nswc.navy.mil

Series Editors
Michael Jordan
Department of Computer Science
University of California, Berkeley
Berkeley, CA 94720
USA

Jerald F. Lawless
Department of Statistics
University of Waterloo
Waterloo, Ontario N2L 3G 1
Canada

Steffen L. Lauritzen
Department of Mathematical Sciences
Aalborg University
Fredrik Bajers Vej 7G
9220 Aalborg East
Denmark

Vijay Nair
Department of Statistics
University of Michigan
Ann Arbor, MI 48109
USA

Library of Congress Cataloging-in-Publication Data
Marchette, David J.

Computer intrusion detection and network monitoring: a statistical viewpoint 1 David J. Marchette.
p. cm. - (Statistics for engineering and information science)

Includes bibliographical references and index.
ISBN 978-1-4419-2937-2 ISBN 978-1-4757-3458-4 (eBook)
DOI 10.1007/978-1-4757-3458-4

1. Computer security-Statistical methods. 2. Computer networks-Security
measures-Statistical methods. I. Title. II. Series.
QA76.9.A25 .M342001
005.8-dc21 2001032011

Printed on acid-free paper.

© 200 I Springer Science+Business Media New York

Originally published by Springer-Verlag New York, Inc. in 2001.

Softcover reprint of the hardcover I st edition 200 I

All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher Springer Science+Business Media, LLC
except for brief excerpts in connection with reviews or scholarly analysis. Use
in connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the
former are not especially identified, is not to be taken as a sign that such names, as understood by
the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Michael Koy; manufacturing supervised by Joe Quatela.
Photocomposed copy prepared from the author's ~TEJX2e files.

9 8 7 6 5 432 1

SPIN 10833837

Preface

In the fall of 1999, I was asked to teach a course on computer intrusion detection
for the Department of Mathematical Sciences of The Johns Hopkins University.
That course was the genesis of this book. I had been working in the field for
several years at the Naval Surface Warfare Center, in Dahlgren, Virginia, under
the auspices of the SHADOW program, with some funding by the Office of Naval
Research.

In designing the class, I was concerned both with giving an overview of the
basic problems in computer security, and with providing information that was of
interest to a department of mathematicians. Thus, the focus of the course was to
be more on methods for modeling and detecting intrusions rather than one on how
to secure one's computer against intrusions.

The first task was to find a book from which to teach. I was familiar with several
books on the subject, but they were all at either a high level, focusing more on the
political and policy aspects of the problem, or were written for security analysts,
with little to interest a mathematician. I wanted to cover material that would appeal
to the faculty members of the department, some of whom ended up sitting in on
the course, as well as providing some interesting problems for students. None of
the books on the market at the time had an adequate discussion of mathematical
issues related to intrusion detection.

Lacking a text, I was thus forced to provide examples from articles, Web sites,
and the like. After the course was over, I decided it would be a good idea to provide
a compendium of the information that I had found. This book is the result. It's
purpose is to provide an introduction to some of the issues in computer intrusion
detection, with a focus on problems and techniques that would be of interest to a
mathematician or statistician.

v

vi PREFACE

I have provided an extensive bibliography, covering much of the research in
computer intrusion detection. This is not complete, but it does cover most of the
important papers in the area.

My background is in pattern recognition and statistics, with a focus on compu
tational statistics. This is the branch of statistics that is interested in the interface
between statistics and computers. It considers issues related to computation, large
data sets and high-dimensional data, visualization of complex data, and nonpara
metric models. Thus, computer intrusion detection was a natural area in which to
become involved.

Dahlgren, Virginia, USA DJ. MARCHETfE

Acknowledgments

My mentors and teachers have had an important part in making this book possible.
In particular, I am indebted to my dissertation advisor, Prof. Ed Wegman, for his
encouragement, advice and friendship. I would not have learned about computer
security and intrusion detection without John Green, Vicki Irwin and Stephen
Northcutt. They have been extremely helpful, providing information, data, and
training that were invaluable. I also want to thank the Department of Mathemat
ical Sciences of The Johns Hopkins University, particularly Dan Naiman, John
Wierman, Alan Goldman, and Carey Priebe. Many other people have had parts in
bringing some of the information in this book to light, including Pat Carter, Jim
Matthews, and Jeff Solka. Glen Moore, my boss at NSWC, has been extremely
supportive, as has Wendy Martinez of the Office of Naval Research. I would partic
ularly like to thank Matt Schonlau and Bill Cheswick for allowing me to use their
graphics. Fred Kirby offered suggestions and caught several glaring errors. John
Kimmel has been instrumental in bringing this work to fruition with a minimum of
pain and suffering on my part. Finally, I must thank my family, particularly Susan,
who has put up with a lot and spent a lot of time reading through and correcting
manuscripts. The errors that remain are there in spite of her heroic efforts. Also,
thanks to Steven, Jeffrey, and Katy for putting up with me while this work was
written.

DJ. MARCHETIE

vii

Preface
Acknowledgments
Introduction

Part I Networking Basics

1 TCP/IP Networking
1.1 Overview of Networking
1.2 tcpdump.......
1.3 Network Layering .
1.4 Data Encapsulation
1.5 Header Information
1.6 Fragmentation .. .
1.7 Routing
1.8 Domain Name Service
1.9 Miscellaneous Utilities
1.10 Further Reading

2 Network Statistics
2.1 Introduction
2.2 Network Traffic Intensities

Contents

.....

.......

.......

v
vii

xiii

3
3
6

9

10

11

21
22
23
27
42

43
43
43

ix

x CONTENTS

2.3 Modeling Network Traffic 53

2.4 Mapping the Internet 58

2.5 Visualizing Network Traffic 60

2.6 Further Reading 70

3 Evaluation 73
3.1 Introduction...................... 73

3.2 Evaluating Classifiers 75

3.3 Receiver Operator Characteristic Curves 79

3.4 The DARPAIMITLL ID Testbed 79

3.5 Live Network Testing 82

3.6 Further Reading 84

Part II Intrusion Detection

4 Network Monitoring

4.1 Introduction
4.2 tcpdump Filters.

Common Attacks
SHADOW

89
89

90

91

106

4.3
4.4
4.5
4.6
4.7
4.8

Activity Profiling .. 109

EMERALD 146

WATCHERS .. 150

GrIDS 150

4.9 Miscellaneous Utilities 151

4.10 Further Reading 157

5 Host Monitoring 159
5.1 Introduction...................... 159

5.2 Common Attacks . 159

5.3 NIDES 171

5.4 Computer Immunology 178

5.5 User Profiling. 183

5.6 Miscellaneous Utilities 201

5. 7 Further Reading 209

Part III Viruses and Other Creatures

6 Computer Viruses and Worms

6.1 Introduction..........
6.2 How Viruses Replicate
6.3 How Viruses Scanners Work
6.4 Epidemiology
6.5 An Immunology Approach
6.6 Virus Phylogenies
6.7 Computer Worms
6.8 Further Reading ..

7 Trojan Programs and Covert Channels

7.1 Introduction ...
7.2 Covert Channels
7.3 Steganography .
7.4 Back Doors ...
7.5 Miscellaneous Trojans .
7.6 Detecting Trojans
7.7 Further Reading

Appendix A Well-Known Port Numbers

Appendix B Trojan Port Numbers

Appendix C Country Codes

Appendix D Security Web Sites

D.1 Introduction
D.2 General Information Web Sites
D.3 Security ...
D.4 Cyber Crime
D.5 Software . . .
D.6 Data
D.7 Intrusion Detection

Bibliography

Glossary

CONTENTS xi

215
215
216
218
221
229
231
232
239

241
241
242
246
249
252
254
255

257

265

275

281
281
282
284
287
288
289
289

291

311

xii CONTENTS

Acronyms

Author Index

Subject Index

317

320

325

Introduction

Computer networks are a rich source of interesting problems and data for statisti
cians. This book will explore some of the issues of interest to the statistician that
arise from the general problem of protecting computers and computer networks
from unauthorized use or malicious attacks. This book will not attempt to be
comprehensive, but rather will focus on a few areas of particular interest that lend
themselves to statistical or probabilistic analysis.

One reason to forego any claim of comprehensiveness is the speed at which
change occurs in networking and on the Internet. When I started this work, in
December of 1999, I had intended a chapter on future threats, in which I placed
distributed attacks. It was not more than a few months later that several major Web
servers were shut down by distributed denial of service attacks. Thus, the future
quickly becomes the past.

Another factor is the vast literature on networking and network modeling, which
is of immense interest to a statistician and of only marginal interest in network
defense. I will briefly touch on this topic in Chapter 2, but it deserves a separate
book in its own right.

Since the subject of computer and network security is quite broad, some dis
cussion of scope is in order. First, I will consider what I refer to as "network
monitoring." A typical network within a corporation or university is a collection
of machines that can communicate with each other and with machines on other
networks (the Internet) through a gateway. A network monitor is a system de
signed to monitor the traffic in and out of the network (or between machines on the
network) for the purposes of determining whether the network is working properly
and that it is not being attacked from without.

xiii

xiv INTRODUCTION

Network monitoring can be as simple as collecting statistics on usage to deter
mine such things as average and peak loads and other measures of the health of the
network. It can also include characterizing the kind of traffic on the network as
either "normal" (and hence not of concern) or "abnormal" (and hence warranting
further investigation). Detecting and characterizing changing activity on the net
work is of interest, as are sudden deviations from "normal" activity. These ideas
will be considered in some detail in Chapters 2 and 4.

An analogy to keep in mind as you read this book is the "envelope" analogy.
The information sent across the network is broken into small "chunks," referred to
as "packets". Each packet contains addressing information and data. Consider a
standard (paper) letter. It contains an address (to and from) and some information
as to how the letter is to be handled (e.g., return to sender if undeliverable) as well
as content, which resides inside the letter and is generally inaccessible to the mail
handlers. A packet is like a letter. It contains addressing and handling information
(the "header") and private information (the "data"), which, unlike a letter, is also
freely accessible to anyone who wants to look at it (although it can be encrypted
for privacy).

Essentially, network monitoring involves measuring statistics on the individual
packets sent across the network. One can keep statistics on the headers (the address
information on the letter), or one can look at the content to try to infer the intent
of the sender. Looking at content is problematic for several reasons:

• High network speeds require extremely fast processing to analyze content.

• Privacy issues often make it politically (or legally) difficult.

• The difficulty of parsing the content is comparable to that of natural lan
guage.

• Encryption can make it difficult or impossible to determine the content.

I take the position that network monitoring should primarily concern the ad
dress information (header) of the packets, while any content monitoring should be
restricted to the individual hosts. Thus, we consider issues of analyzing content
or specific individual actions in the chapter on host monitoring, Chapter 5.

Intrusion detection is more specific than network monitoring in the sense that it
focuses not only on the detection of "abnormal" behavior but the determination that
the behavior is undesirable and/or harmful. In order to make this determination,
an intrusion detection system (IDS) must infer both the intent of the activity and
the ultimate results of the activity, should it be successful.

There has been a lot of press about computer intrusions in the last few years.
Usually the culprits are identified as "hackers," a term that has come to connote a
person bent on illegal entry and malicious damage to a computer system. I will
refrain from using this term for several reasons. The term "hacker" originally
meant someone who was very good at writing computer programs, possibly to
the point of obsession. To be a "hacker" was a badge of honor, for it denoted
programmers who were at the top of their field. There are still those who hold to
the old definition and prefer the term "cracker" for the person intent on damage.
Rather than get involved in this battle, I have chosen to sidestep the issue entirely.

INTRODUCTION xv

Another reason to avoid the term is that it still retains the connotation of a
knowledgeable person, when in reality many so-called "hackers" are simply kids
(literally or metaphorically) who come across programs that allow them to break
into other people's computers. These programs require little skill, assuming the
target computer is not well-defended.

Finally, there is the issue of the insider, a person with legitimate access to
the computer who, for revenge or gain, decides to damage or otherwise make
unauthorized use of the machine. These people are not necessarily expert users
and often do no "hacking" in any usual sense of the word. I will refer to any of
the above as an "attacker."

This is not a book on how to secure your computer from attack. I will, however,
point out various utilities that can help you in this or that are useful for collecting
data relevant to intrusion detection. These utilities are all Unix-based, although
most of them are also available for other operating systems. All are also available
for free. Although there are many commercial products that perform these and
other useful security and monitoring functions, I will not cover any commercial
products.

There are a number of very good books describing how to secure a given oper
ating system. One I recommend for Linux is Toxen [2001].

The focus of the utilities discussed in this book is almost entirely on collecting
data rather than securing a system. Many of the utilities also help to secure a
system, and a few are really designed primarily for this task. There are many
utilities that have not been listed, due to space limitations, and the interested
reader is encouraged to check the Unix manual pages and the Web addresses in
AppendixD.

This avoidance of commercial products extends to those designed specifically
for intrusion detection. There are several books that cover these, such as anony
mous [1997], Escamilla [1998], Amoroso [1999], Northcutt [1999], and Bace
[2000]. Also, products change so quickly that anything said about them will likely
be inaccurate in a few months. Finally, in order to do a good job of evaluating
commercial systems, I would feel the need to acquire them and test them out. This
is not an option. Although we have several systems at NSWC that I could evalu
ate, I decided it best to leave the evaluation of these systems to others. Industry
magazines are good places to find such evaluations.

Throughout the book, I have examples of IP addresses and machine names.
These should all be considered imaginary, in no way corresponding to a real
machine. This is particularly important in the examples of attacks. In no case
does an attack example contain the name or IP address of the real attacker or
victim, even in those cases where the data come from a real attack.

This book is organized into three sections, covering network basics, intrusion
detection, and viruses. Computer professionals with a knowledge of basic net
working and TCP/IP can skip most of the first section, whereas statisticians may
find this material helpful.

The section on intrusion detection is split into network and host monitoring.
Many of the same techniques are relevant to both of these areas, but each has
unique features. I will describe some of the more common attacks and some of
the approaches to detecting these and other attacks.

xvi INTRODUCTION

The final section covers viruses, worms, and other types of malicious code.
The chapter on viruses describes how these operate and takes a slightly different
approach to analysis. Rather than focusing on detection, I consider the problem of
modeling virus propagation. This is similar to biological virus epidemiology and
will make use of techniques from epidemiology. The chapter on trojan programs
discusses some common examples ofthese and the more general problem of covert
channels.

Since Unix may not be familiar to all readers of this book, a list of common
commands follows.

• alias Rename a command (this is actually a shell command rather than a
Unix command, but I will ignore this distinction). For example, I have the
following on my computers:

alias 11 "Is -It"

which allows me to simply type "11" when I want a time-ordered long listing
of a directory.

• cd Change the current directory.

• chmod Change the mode (read, write, execute permission) of a file or di
rectory.

• chown Change the owner of a file or directory.

• cp Copy a file.

• csh The C command shell (similar to the MS-DOS prompt).

• echo Echo the string to the terminal.

• grep Search a file for occurrences of a given string.

• gzip A file compression utility.

• head List the first few lines of a file.

• kill Stop the execution of a process.

• Is List a directory (similar to MS-DOS dir command).

• man Look up a command in the manual pages. I will refer to a manual page
as a "man page," which is the standard terminology among Unix users.

• mkdir Create a directory.

• more View a file one page at a time.

• mv Move a file.

• perl A powerful language for scanning and extracting information from text
files.

INTRODUCTION xvii

• rm Remove a file (similar to MS-DOS del command).

• rmdir Remove an empty directory.

• sh The Bourne command shell.

• su Substitute user. Change to another user (for example, root). Some people
think "su" stands for "super user," since typing "su" alone is used to change
to the "super user," known as "root" in the Unix world. Assuming you know
the user's password, you can use "su" to change to that person's account. In
particular, root can change to anyone's account. The syntax is

su username
or
su - username

The "-" makes the shell a login shell, and hence reads any initialization files
that are read at login.

• tail List the last few lines in a file.

• vi A file editor. There are many text editors available. Vi is the classic Unix
"visual editor" that is used by many programmers, particularly those who
learned programming in the early days of Unix.

There are many books on Unix that provide information on the preceding com
mands and more. Rather than provide a list, I will leave it to the interested reader
to visit a local bookstore.

Part!

Networking Basics

1
TCPI/P

Networking

This chapter is intended to provide an overview of networking and the protocols
that are most often used for attacks. This should provide the background needed
to understand network data and the various attacks described in the following
chapters.

The discussion is at a fairly high level. Readers who wish a more in depth
discussion of networking are encouraged to investigate one of the many books on
the subject. A good place to start is Stevens [1994].

We will start with a brief overview of networking using an analogy of the postal
system, a continuation of the envelope analogy discussed in the Introduction.
This will provide an intuitive feel for what happens on networks. A program for
collecting network data will be described, followed by a discussion of the network
layers and encapsulation. The three basic protocols that make up the bulk of IP
traffic are described. Packet fragmentation, routing, and domain name service are
covered briefly, followed by a few useful utilities for collecting network data.

1.1 OVERVIEW OF NETWORKING

Let us consider the postal system as a high-level analogy to the process that occurs
when data (e.g., files, email) are transmitted across a network. To communicate via
the postal system one places a message in an envelope and puts the receiver's name,
address, and zip code on the envelope. Usually, although this is not required, a
return address is put on the envelope. The envelope is then placed in a mailbox. A
mail carrier retrieves the envelope and takes it to a substation, where the zip code is
read. This code provides the address of the final substation to which the letter is to
be delivered. The letter is passed around through various intermediate substations

3 D. J. Marchette, Computer Intrusion Detection and Network Monitoring
© Springer Science+Business Media New York 2001

4 1. TCPIIP NETWORKING

until it arrives at the final substation. The final address is then read, and the letter is
delivered to the proper address (if all has gone well). Finally, if there is more than
one person at the address, someone looks at the letter to determine to whom the
letter is addressed and delivers it to that person. All of this is very analogous, at a
high level, to the process that occurs when messages are delivered on a network.
The one aspect that is not reflected in the network (yet) is the concept of a stamp.

With the preceding discussion in mind, consider what happens when a user de
cides to send information across a network. For specificity, let us consider email.
The user calls up a mail application, types in the message, including the destination
email address, and clicks "send." In this instance, let us assume the email address
IS:

john.doe@someplace.com.

If this were a letter sent through the post office, the handler would read the zip
code, which would indicate the city to which the letter should be sent. The Internet
has a similar code, called the IP address. This is actually slightly more specific
than the standard 5-digit zip code. It corresponds to the complete address, as do
the newer 9-digit zip codes. The machine name (someplace.com) gets converted to
an IP address, a 4-byte address usually written as four 8-bit numbers separated by
periods (these four numbers are referred to as "octets"); for example, 10.10.125.17.
The letter is forwarded to the city (or post office within the city), at which point
the rest of the address is read. This and further substations are analogous to the
routers on the Internet. See Figure 1.1 for a depiction of this.

One advantage networks have over the post office is that they do not require
one to remember the numerical zip code (IP address). Instead, a name is provided
(someplace.com). To convert the name (which a human can easily remember) to
the IP address (which is more convenient for the machine), the network software
queries a domain name server (DNS, see Section 1.8), a machine that knows (or
knows how to find out) the mapping from name to IP address.

In the simplest case, the email then gets bundled into a packet (analogy: enve
lope) with the destination IP address included and sent to a router. The application
does not actually do the bundling, however. The networking software is imple
mented in a layered fashion, so that each layer knows just enough to perform its
function. This way, the applications need not concern themselves with the details
of the networking communications.

We will discuss the network layers in more detail later, but a brief introduction
will give a feel for how they work. The application passes the email message to
the protocol layer. This layer takes care of such things as making sure that packets
are actually delivered and do not get lost. It makes a packet out of the email that
tells what protocol is being used for the transmission (more on this later). The
next layer, the IP,layer, makes the packet into an IP packet for transmission out
across the Internet. The IP protocol is the fundamental "language" of the Internet.
Finally, the hardware layer takes care of actually putting the packet out through
the hardware and onto the network.

1.1. OVERVIEW OF NETWORKING 5

Lo;;.;;.. =;.;.;;.o...;.;.~

Mailbox:~er

III po~ce: Router

Po t Offic

Fig. 1. 1 Post Office analogy picture, illustrating the correspondence between network
communications and the postal system.

This is a simplification of the process which ignores several layers. The reader is
encouraged to investigate Stevens [1994] for more details. It is, however, sufficient
for our purposes.

The packet is now on its way to the first router (analogy: the local post office).
The router knows the next router to send it to (analogy: the main post office for the
destination city). Each router that the packet goes through knows the next router
to send to, so eventually it arrives at a router that knows the direct route to the
destination machine: someplace. com (AKA 10.10.125.17).

Note that the "routers" of the postal analogy are generally fixed. Letters be
tween two cities go through the same substations, airports, and so on, every time.
However, if an airport is closed (for example, by fog), the letter may be rerouted
to a train or truck (after all, the mail must get through). This also happens in net
works. In fact, it happens much more often in networks, which were designed to
be fault-tolerant to an extreme degree. We will see this when we discuss routing.

Now the packet goes back up the network layers. The hardware layer pulls the
packet off the network. It passes it up to the IP,layer, which passes it to the protocol
layer and finally to the application layer, where the email program (analogy: the
local mail carrier) finally reads the "john.doe" of the email address and puts it in
the appropriate mailbox.

This overview is a reasonably good approximation of what happens in real life
as long as one does not focus too closely on the details. We will now consider

6 1. TCPIIP NETWORKING

the process in a little more detail. As you will see, the post office analogy breaks
down when we start looking at the details.

1.2 TCPDUMP

In order to analyze network data one must be able to collect the data. To this
end, various programs, called "sniffers" have been written to capture copies of
the packets directly from the network interface. One of the most popular such
programs is tcpdump.

The tcpdump program can be set either to collect the data and store it on disk
in binary format or provide human-readable output. A typical such output is:

11:00:03.797988 10.10.171.206.1102> 42.197.95.138.80: S 685673:685673(0)
win 8192 <eol> (DF)

This is a TCP packet. We will learn more about these fields in Section 1.5.4, but
for completeness I will describe each one in tum. Note that in all the examples the
home network will be 10.1 O.x.x, and all other IP addresses have been "scrambled,"
or obfuscated, to hide their identity. This obfuscation serves two purposes. First, it
acts like the "555-" phone number in movies and television, which protects people
from annoying phone calls from confused viewers or pranksters. Second, some
of the examples are taken from real attacks, and it is not the purpose of this book
to accuse any individual or organization. As will be seen, the "attacker" address
is easily manipulated, making it difficult to assign blame for the attack. Also, IP
addresses can be reused when the machines that had those addresses are discarded
or the company goes out of business. Therefore, if by chance any of the addresses
in this book are ever owned by a company or individual, it is safe to assume this
is an accident.

The first set of colon-separated numbers is the time the packet was collected.
Note that the date does not appear in the timestamp. The usual usage oftcpdump is
to encode the date in the filename if the data are stored on disk or to otherwise retain
this information for future reference. As we will see later, the date is accessible
from binary tcpdump data but is not printed out in the standard human-readable
format.

The next two sets of numbers, separated by a">", are the source and destination
IP addresses, with the source and destination port numbers appended on the end.
The port numbers are used to set up connections between specific applications and
will be discussed in more detail in Section 1.5.4. In this case, the destination port
(80) is the port for Web access (http).

The next two colon-separated numbers are the sequence numbers, which pro
vide the packets with a unique ordering. Although the packets are sent out in the
correct order, there is no guarantee that they will arrive in order, so some mech
anism must be in place to allow the destination machine to properly order the
incoming packets. Sequence numbers perform this function.

The "s" in the packet indicates that the "SYN" flag is set (that is that the source
machine is requesting a new session to be set up). This is a feature specific to TCP

1.2. TCPDUMP 7

and will be discussed at some length in Section 1.5.4. A packet with only the SYN
flag set is called a "SYN packet".

The "win 8192" indicates a window size of 8192 bytes. Anything in the "<
>" at the end represents TCP,options. Finally, tcpdump indicates that the "don't
fragment" flag (DF) is set. All of these will be discussed in more detail in the
appropriate sections.

The tcpdump program has another useful feature, the ability to filter packets.
For example, one can choose to collect only packets that use the TCP protocol.
More specific filters are also possible. For example, one can collect all TCP packets
having only the SYN flag set from a specific machine to a specific port on another
machine (these terms will be defined in the sections to follow). This capability is
useful for monitoring for specific known attacks and will be discussed in detail in
Section 4.2.

tcpdump can be called with a number of flags to control its operation and output.
I will not go through all of them but rather touch on some of the more important
ones:

-r file Read from a file of data in tcpdump's binary format. To read from standard
input use "-r -". Without the "-r" flag, tcpdump will read from the network
interface. Only root has read permission on this interface, so this only works
if the user has root permission.

-p Do not put the interface in promiscuous mode. This is useful if you do not
want to see any data except that destined for your own machine. Also, it is
possible to detect machines with network cards in promiscuous mode, and
some organizations (for example, some Internet Service Providers) view
such actions as contrary to their security policy. Note: some versions of
tcpdump seem to have this option reversed - the default being not to put the
interface in promiscuous mode - requiring the "-p" to put it in promiscuous
mode.

-w file Write a file in tcpdump's binary format.

-F file Use the filter defined in the file. This will be covered in more detail in
Section 4.2.

-s sleD This defines the number of bytes (slen) to retain from each packet (the default
is 68, which is adequate for the protocols that interest us: IP, TCP, UDP, and
ICMP). Larger values of slen allow the collection of packet data, or even the
entire packet, if desired. This can be useful for detecting some attacks, but
has privacy and security implications.

-tt Display the time as an unformatted timestamp corresponding to the number
of seconds since the beginning of time (which in the Unix world is defined
to be January 1, 1970).

-D Do not do address conversion. If this flag is not given, tcpdump will attempt
to convert IP addresses to names and will also convert some port numbers to
application names. This can dramatically slow the execution oftcpdump, as

8 1. TCPIIP NETWORKING

it requires a DNS lookup (Section 1.8) for each IP address. The result can
be lost packets, so use this flag when using tcpdump as a network monitor.

-dd Dump the packet-matching code as a C program fragment. This can be
useful for debugging. Similarly, a single "d" dumps the code in a human
readable form, and "ddd" dumps the code as decimal numbers.

For short filters, one can place the filter at the end of the command line, so, for
example, to collect only ip packets, use the command:

tcpdump ip

A more involved example might look like:

tcpdump -n "tcp and dst host 10.10.17.25 and not src net 10.10"

In this case, we used quotes to delimit the filter and have specified that we want
all TCP packets destined to a given host that does not come from our network
(lO.lO.x.x). Filters will be discussed in more detail in Section 4.2.

It should be noted that although anyone can use tcpdump to view data in a file
(assuming they have read permission on the file), only root can use tcpdump to
collect live data.

A note on the ethics and legality of sniffers is in order here. One should never
install a sniffer on a machine without the permission of the owner of the machine
and the security officer in charge of the network. There are serious issues of
privacy involved as well as legal issues. A sniffer can provide a copy of every
character sent over the network. This allows the reading of passwords (if they
are sent unencrypted, which is often the case), email messages, and other private
information. Reading these may be considered the same as a wiretap, and hence
illegal, in certain circumstances. Although tcpdump can be configured (via the -s
flag discussed earlier) to collect a minimum amount of the actual data sent, some
data are inevitably collected.

Even if no data are collected, the sniffer provides information such as which
Web sites are visited. This information may be considered private in some environ
ments. In some situations, such as work environments, the owner of the network
specifies a monitoring policy and provides a security and usage policy detailing
the kinds of activity that will be allowed on the network. This policy may allow
certain kinds of monitoring, and one may be allowed to install a sniffer for security
or research purposes. Check with your network security officer before installing
a network monitor on your computer.

It should be noted that a sniffer may not see all the traffic on a network. Traffic
between hosts on the network may not travel past the machine hosting the sniffer.
This can happen if the sniffer is on a switched network, which is one in which the
router acts essentially as a direct connection between any two machines, but it can
also happen purely as a result of the network technology. If the destination of a
packet is between the source and the sniffer, the sniffer will never see the packet.
The destination machine will take it before it reaches the sniffer.

1.3. NETWORK LAYERING 9

Sniffers can be utilized to enforce computer usage policy as well as for detecting
attacks. At NSWC the information security officers decided to monitor traffic
looking for inappropriate use of government equipment (porn sites, stock trading,
and so on). They used a sniffer to look for certain strings in the content of the
packets. However, for whatever reason, it was discontinued. This caused me
some relief when I went looking for a book on graph theory. The book (Haynes
et al. [1998]) is a compendium of research in an area called "domination", and
naturally, one of the words used to describe a particular kind of "domination" in
graph theory, is "bondage." Both words appeared on the Web site providing me
with the information on the book I was looking for (interestingly enough, my search
did not pick up any books that actually were inappropriate). To my amusement,
one of the chapters is entitled "Global Domination," which, if it is not one of the
key phrases searched for in any inappropriate usage system, should be. I assume,
since nobody called me about it, that the filters are indeed turned off (or else I am
now on the "enhanced scrutiny" list).

This points out one of the problems with monitoring content. It is difficult to
avoid false alarms caused by the many synonyms, idioms, and analogies that are
used all the time in English (or any other language). It is possible sometimes to
restrict the strings searched for to fairly unambiguous ones (such as "/etc/passwd"),
but more general "inappropriate usage" monitors tend to become plagued by false
alarms.

This example is relevant to network monitoring from another perspective. In
effect, a dominating set for a graph is a set of nodes that are neighbors of all the
nodes in the graph. A minimum dominating set is one that contains the smallest
number of nodes. It is easy to see applications of this to network monitoring
(placement of sensors) and network design (Das and Bharghavan [1997]).

1.3 NETWORK LAYERING

As discussed earlier, TCPIIP networking is implemented in a layered fashion.
Many networking books use seven layers to describe the processing. This level of
detail is not necessary for our purposes, so the number of levels has been collapsed
to four, which is in agreement with the discussion in Stevens [1994]. Each layer
will be described in tum, starting from the lowest level and working up to the level
seen by the average user.

1.3.1 The Hardware Layer

The hardware (or "link") layer has the task of interfacing with the network hard
ware. In our postal analogy, the hardware layer plays the part of the mail carrier.
This is where packets are physically placed on the network or retrieved from the
network. The hardware layer must know details about the specific network inter
face in the machine as well as what kind of network (e.g., Ethernet, token ring) is
to be accessed.

10 1. TCPIIP NETWORKING

This is where special protocols such as PPP (Point-to-Point Protocol) are im
plemented for transmission across slow lines such as modems. For the most part,
this layer does not play much part in intrusion detection, so we will not cover it in
any detail. This is not to say that there are no exploits that utilize specific knowl
edge about the underlying network protocol, but these are beyond the scope of this
work. For a discussion of two such attacks, see Toxen [2001], pages 231-232.
These attacks are against the MAC (Media Access Control) address, which is used
to route packets to the specific machine on a local area network.

1.3.2 The IP Layer

The IP protocol is the lingua franca of the Internet. It is the underlying "language"
that all machines on the Internet must understand in order to communicate. All
the higher-level protocols, such as UDP and TCP, are built on this foundation.

The IP layer can be thought of as the letter handler. This is where source and
destination addresses are set or read. It also makes sure that the packets have not
been damaged in transit. If packets are too large to go across the network in one
piece, the IP layer is where they are broken up (see Section 1.6) and subsequently
reassembled.

IP is an unreliable protocol. This means that it does not attempt to guarantee
that packets are delivered. It is up to higher-level protocols (in particular, TCP) to
implement any desired reliability.

1.3.3 The Protocol Layer

The protocol (sometimes called transport) layer is where reliability of delivery is
implemented. As mentioned previously, the IP protocol does not guarantee that
all packets sent will be received, and has no mechanism for handling packets that
are lost. It is up to the protocol layer to implement any kind of guarantee.

1.3.4 The Application Layer

The application layer is where the user programs interact with the network. This
is where programs such as telnet, FTP, http (Web browsing and serving) operate.
Each application can define its own protocol, for example, FTP implements the
"file transfer protocol" (hence the name "FTP"), and it is up to the application to
manage its protocol. The application layer should be thought of as providing the
interface between the user and the network services.

1.4 DATA ENCAPSULATION

One of the important concepts of TCPIIP is the idea of data encapSUlation. The
application takes the data and prepends an application-specific header, which is
used to inform the receiving application of any pertinent information about the data.
The application layer then sends the resulting packet to the protocol layer, which

1.5. HEADER INFORMATION 11

prepends the appropriate protocol header. This header contains any information
necessary for the functioning of the particular protocol used. The IP layer then
prepends an IP header. The IP header can be thought of as the envelope in our postal
analogy. This contains the source and destination addresses and other information
required to properly route the packet to its destination. Finally, the hardware layer
adds a header (and possibly a trailer) required by the specific network over which
the packet is to traverse upon exiting the source machine. Encapsulation is depicted
in Figure 1.2.

Encapsulation means that each layer need only know about its own header,
which it either adds on or strips off, depending on whether it is sending or receiving
a packet. This means that the layers need not be cognizant of the specifics of the
other layers, and changes to anyone of the layers need not affect the others.

From the perspective of intrusion detection, there are two aspects of the network
packets that are important. The headers give information about the source and
destination, what protocol is used, options about how the packet should be routed,
and what service or user program is the ultimate destination of the packet. The
data field contains the actual data transmitted and so contains things such as email
addresses, files being transferred, and passwords (for example, in a login session).
Although many intrusion detection systems look for strings within the data, there
are some systems that look exclusively at the header information (SHADOW,
discussed in Section 4.4, is one example of such a system). Also, many of the
interesting statistical questions deal with header information. We will look at these
in some detail.

1.5 HEADER INFORMATION

We now consider the different headers in detail. We will not be concerned with
the hardware-specific headers. Although these may be of interest for certain kinds
of network reliability and other analysis tasks, and can be of interest in detecting
certain kinds of sophisticated attacks, we will leave discussion of these to more
specialized texts.

For all the headers in the following figures, each row corresponds to 4 bytes of
information. The fields of the headers are (unless otherwise specified in the text)
either 32-,16-,8- or 4-bits, as indicated by the size of the box. For example, Figure
1.3 depicts the IP header. The first row consists of two 4-bit fields, one 8-bit field
and one 16-bit field.

1.5.1 IP Packets

IP stands for Internet Protocol and is the fundamental protocol of the Internet.
Essentially all packets sent over the Internet are IP packets.

As seen in the encapsulation figure (Figure 1.2), the IP layer is the one constant
in the layers of TCPIIP. The hardware layer is specific to the network hardware
and the specific local area network to which the machine is connected. As we will
see, there are several protocols implemented at the protocol layer, and obviously

12 1. TCPIIP NETWORKING

Application
Data

Application
Layer

Application Application
Header Data

Protocol
Layer

Protocol Application Application
Header Header Data

IP
Layer

IP Protocol Application Application
Header Header Header Data

Hardware
Layer

IEtheme IP Protocol Application Application Etheme
Header Header Header Header Data Trailer

Fig. 1.2 Data encapsulation. Each layer prepends a header onto the packet as it is passed
down the IP stack.

1.5. HEADER INFORMATION 13

Version 1 Length J Type of Service Total Length

Identification Flags I Fragment Offset

Time to Live I Protocol Header Checksum

Source IP Address

Destination IP Address

Options (if any)

Data

Fig. 1.3 The IP header.

there are many different applications. It is only the IP layer that is constant. All
TCPIIP packets have an IP header.

Before considering the header fields in detail, we must address byte order.
Consider an integer that is two bytes long. For some machines (so-called "little
endian") the high-order bits are in the leftmost byte, the low-order bits on the right.
For all network headers, the "big endian" convention is used. High-order bits are
on the right. So a 4-byte number has bits 0-7 first, then bits 8-15, ... , 24-31. This
convention is consistent regardless of the convention of the machine constructing
or reading the header. This byte ordering is called the network byte order.

The IP header is depicted in Figure 1.3. The first field, the 4-bit version, is
always set to 4 (for the current version, IPv4). The next version will be IPv6,
which is not yet in wide use as this book is being written. The header length field
contains the number of 4-byte words in the header. Since this is also a 4 bit field,
this means that there can be no more than 60 bytes, or 15 4-byte words in an IP
header. If no options are set, the value ofthis field will be 5.

The type of service field (8 bits long) is used to indicate a preference for how
the packet should be routed. The first three bits are ignored. Only one of the next
four bits should be set. The bit that is set indicates that the packet should be routed
according to one of the following criteria.

• Minimize delay.

• Maximize throughput.

• Maximize reliability.

• Minimize monetary cost.

The final bit must be set to O.
The total length field contains the total length (in bytes) of the IP datagram.

Thus, no packet can be longer than 65,536 bytes.

14 1. TCPIIP NETWORKING

Each packet has an identifier contained in the identification field. Packets from
a given machine that are likely to be on the network at the same time should have
distinct identifiers. Obviously, these are ultimately reused.

The flags (3 bits) and fragment offset (13 bits) fields will be discussed in more
detail in Section 1.6. Suffice it to say that they are used when a packet is too large
to traverse a given network and must be broken into smaller packets.

The time-to-live (TIL) field is used to keep packets from being immortal.
Each router that handles a packet decrements the TIL field. If this field reaches
0, the packet is dropped (ceases to exist) and a message is sent back to the source
computer (see Section 1.5.2). In this manner, no packet can survive through more
than 255 routers, and most packets have an initial TTL much smaller than this. As
we will see in Section 1.9.5, this functionality can be used to determine the route
a packet can take and to map the network.

The protocol field tells which protocol is used by the protocol layer. This is the
one place where the IP layer looks at the header passed down to it by the protocol
layer. Different protocols have different header lengths and fields, and the protocol
field is used to indicate which header is encapsulated in the packet.

The header checksum is used for error detection. It is computed over the
IP header only. The checksum is calculated by treating the entire header as a
collection of 16-bit numbers. The checksum field is first initialized to zero. The
one's complement sum is taken of the header. The one's complement of this value
is stored in the checksum field. Upon receipt of an IP packet, the one's complement
sum of the header is taken (again as a series of 16-bit numbers), and, since the
checksum is the one's complement of the sum of the rest, this number should
consist of all ones. If it does not, the header has been corrupted and the packet is
dropped. The IP layer does not generate an error message in this case, but merely
discards the packet.

The source and destination IP addresses are 4-byte numbers. These are also in
big-endian format, and so are stored low byte first: the IP address 10.11.127.13 is
stored as 13 127 11 10 in the 4-byte field.

The (optional) options field allows the selection of a number of possible routing
and/or recording choices. The possible options are:

• Record Route. If this option is set, the IP address of each router the packet
goes through is added to the end of the IP header, recording the route taken
by the packet. Unfortunately, since the IP header has a limited capacity,
only a maximum of nine IP addresses can be stored.

• Timestamp. This is similar to the record route option except that it records
the time each router receives the packet. It can be set to record only the
times, or the times and IP addresses, of each router. A list of up to four IP
addresses can be provided, in which case only those routers matching the
list will record arrival times.

• Loose Source Routing. This specifies a list of IP addresses through which
the packet must be routed. It does not restrict the packet from traveling
through other routers in addition to those on the list.

1.5. HEADER INFORMATION 15

• Strict Source Routing. Like loose source routing, this specifies a list of
IP addresses through which the packet must be routed. However, only the
addresses on the list can be traversed; no other routers may be used.

Not all the options are implemented by all machines and routers, and for the
most part they are not used on modem networks. Some of them can be security
threats. For example, source routing can be used to implement a covert channel.
Suppose John wishes to send proprietary data to Maria without it being obvious
that the data are leaving his company. If Maria owns a router, John can simply
route his packets through Maria's router using source routing, thus allowing Maria
to see whatever John sends. Thus, when John sends email to his boss discussing
the bid their company will be making on a contract, Maria sees the information as
it passes through her router. Although this kind of activity is easily detected by a
security analyst, it is generally undetectable by John's boss, or other coworkers,
and hence may go unnoticed in many organizations. For this reason, among others,
source routing is often disabled on modem networks.

We now tum to the three most common protocols on the Internet.

1.5.2 ICMP Packets

The Internet Control Message Protocol (lCMP) is, as its name implies, a protocol
for sending messages related to the control of the Internet. It is used to send error
messages or other information pertinent to the functioning of the network. Figure
1.4 depicts the ICMP header.

The type and code fields are used to identify the type of message sent. Table 1.1
contains a description of the types currently implemented. See Stevens [1994] for
more information on the types and codes currently implemented. The data field
of ICMP packets can contain extra header fields for specific types and codes. For
example, Figure 1.5 shows the header used for ICMP echo requests and replies.
This will be used when we look at the Loki trojan in Section 7.4, which uses ICMP
packets to implement a hidden login session.

ICMP is the protocol in which the ping program is generally implemented.
Ping is a program that is used to determine if a machine is alive on the network
(see Section 1.9.1). A series of echo requests are sent to the computer, and the
program looks for echo replies returned by the computer. It keeps track of how
many packets elicited responses (giving a measure of packet loss on the network)

Type Code Checksum

Data

Fig. 1.4 The ICMP header.

16 1. TCPIIP NETWORKING

Type I Code Checksum

identifier sequence number

Data

Fig. 1.5 The ICMPheader for echo requests and replies.

Table 1.1 ICMP message types.

type Description Purpose

0 Echo Reply Query

3 Destination Unreachable Error

4 Source Quench Error

5 redirect Error

8 Echo Request Query

9 Router Advertisement Query

10 Router Solicitation Query

11 Time Exceeded Error

12 Parameter Problem Error

13 Timestamp Request Query

14 Timestamp Reply Query

15 Information Request Query

16 Information Reply Query

17 Address Mask Request Query

18 Address Mask Reply Query

and how long between each request and subsequent reply, providing a measure of
the distance to the machine (or load on the network).

1.5.3 UDP Packets

The User Datagram Protocol (UDP) provides a mode of communication between
applications. A single datagram is produced for each output of an application.
There is no guarantee that a packet will reach its destination, and there is no built
in mechanism to detect lost packets. This means that the protocol is not reliable,
in the sense that TCP (to be discussed in Section 1.5.4) is.

The datagram consists of the UDP header (Figure 1.6) and data generated by
the application.

1.5. HEADER INFORMATION 17

UDP implements the concept of "ports" used to communicate with different
processes. The port numbers are identifiers used to mark the different processes.
The ports are a logical construct rather than a physical one. Each application
process selects one or more ports through which it will send information and one
or more at which it will listen for incoming information. Since the port numbers
are 16-bit numbers, there are a maximum of 65,536 ports.

The source port and destination port indicate which application is sending and
receiving the packet. The length field is the total length ofthe UDP datagram in
bytes. This field must have a value of at least 8, since that is the length of the header.
The checksum is calculated in the same manner as in the IP packet, except that it
is calculated for the entire datagram, including the data. This provides a measure
of error checking to determine whether the packet was corrupted in transit. If a
packet is determined to have been corrupted (fails the checksum test) it is dropped.
This means that the packet is ignored, not sent up to the application layer, and no
error message is generated.

The checksum is optional, unlike the IP checksum, but should always be used.
As with IP, the packet is silently discarded if the checksum indicates that the packet
has been modified. If checksums are disabled, no test is made, and all packets are
sent up to the application layer.

Since the UDP checksum is computed over both the data and the header, and
like the IP checksum uses a 16-bit word, it must be able to handle data of an odd
length. It does this by padding with a zero if necessary.

The UDP checksum is different from the IP checksum in another respect. It
prepends a "pseudo-header" consisting of the source and destination IP addresses,
the 8-bit protocol from the IP header, and the UDP data length to the UDP header
prior to calculation of the checksum. This adds another layer of assurance that the
packet was properly delivered and unmodified.

1.5.4 TCP Packets

The Transmission Control Protocol (TCP) is the protocol that implements reliable
communication on the Internet. Rather than simply sending packets from one
machine to another, as in UDP, TCP implements the concept of a connection. A
connection can be thought of as a communication channel, where both sides have

Source Port Destination Port

Length UDP Checksum

Data

Fig. 1.6 The UDP header.

18 1. TCPIIP NETWORKING

agreed on the communication, and mechanisms are put in place to ensure that all
packets arrive unchanged at their destination.

Reliability is provided by several key features unique to TCP. First, TCP ac
knowledges the receipt of each packet. It maintains a timer, and if the acknowl
edgment is not received within the predefined time limit, it resends the packet.
Second, since IP packets can be received in any order, it includes a unique number
for each packet, ensuring the receiving application can reconstruct the correct order
and also detect when packets have been lost and hence will eventually be resent.
Finally, since each process has a finite buffer space in which to store packets, TCP
ensures that the sending machine never sends too much data to be stored in the
receiver's buffer.

The TCP header is depicted in Figure 1.7. Like UDP, it has source and des
tination ports, which indicate which application is the ultimate recipient of the
packet.

The 32-bit sequence and acknowledgment numbers are used to ensure that the
packet ordering is maintained and that no packets are lost. When a connection
is first initiated between two machines, the initiating machine provides an ini
tial sequence number, which is subsequently incremented throughout the session,
providing an ordering to the packets. We will discuss this in more detail later.

The length field, like the IP length field, is the length of the header in 32-bit
words. It is a 4-bit number, hence restricting the header length to at most 60 bytes.

The reserved field is a 6-bit area reserved for future extensions to TCP. Since
the advent of IPv6, it is unlikely that this will ever be used.

The flags are bit values within a 6-bit field, used to implement and control the
connection. Their values are, in the order they appear in the bit field:

• URG indicates that the urgent pointer is valid (see below).

Source Port Destination Port

Sequence Number

Acknowledgment Number

Length I Reserved I Flags Window Size

Checksum Urgent Pointer

Options (if any)

Data

Fig. 1.7 The TCP header.

1.5. HEADER INFORMATION 19

• ACK the acknowledgment number is valid. This is used to acknowledge
receipt of a packet.

• PSH this indicates that the data should be "pushed" up to the application as
soon as possible.

• RST reset the connection. This indicates that something has gone wrong,
and the connection should be broken off.

• SYN synchronize the connection. The sequence numbers are synchronized
so that each end knows the order of the subsequent packets. The SYN flag
is used to initiate a connection.

• FIN finish the connection. This is used to indicate that the sender is finished
sending data and that thus the connection (in this direction) should be closed
down.

We will discuss the flags in more detail later.
Window size is the number of bytes that the receiver is willing to accept. This is

the size of the transmit or receive buffer. The window size can be used to increase
throughput for file transfers and other applications.

TCP, like the other protocols, includes a checksum in the header. In the case
of TCP, the checksum is mandatory. It also utilizes a pseudo-header in the same
manner as UDP, described in Section 1.5.3.

The urgent pointer is a way for an application to send emergency data to the
receiver. For example, when a user aborts a program (by hitting Control-C), the
application can notify the receiver that the next few bytes of data are important
and should be handled as such. This is implemented by setting the urgent flag and
placing in the urgent pointer the offset to be added to the current sequence number
to indicate the last byte of urgent data.

There are a number of other options available in TCP. A complete list is beyond
the scope ofthis discussion. The reader is encouraged to check Stevens [1994] or
other books on TCPIIP for details about the possible options.

1.5.4.1 TCP connections A TCP connection is first initiated by a machine
sending a packet with only the SYN flag set. This is analogous to the machine
asking "hello, are you there?". The receiving machine then sends a packet with
both the SYN and ACK flags set, acknowledging the initial SYN, analogous to
the reply: "yes, I'm here, let's talk." Finally, the initiating machine sends a packet
with only the ACK flag set, indicating that the connection is now in place.

Let us consider this "three-way handshake" in more detail. The initial SYN
packet must have no flags other than the SYN flag set, and it must contain a
sequence number. This is the number to be used from now on as the initial
number for the sequencing of packets. Each subsequent packet sent from this
machine will have a sequence number incremented from the previous one. The
receiving machine then replies with only the SYN and ACK flags sent and with an
acknowledgment number that is the original sequence number incremented by one.
This is the next sequence number it expects to see from the first machine. It also
adds a sequence number of its own. The first machine, when it acknowledges this

20 1. TCPIIP NETWORKING

packet, sends this second sequence number, incremented by one, thus indicating
the next sequence number it expects to see from the second machine. This is
illustrated in Figure 1.8.

Once the three-way handshake has been completed the TCP connection is open
for communication both ways. The sequence and acknowledgment number keep
track of the order of the packets and allow the detection of packets that are lost
along the way.

The connection is closed via a four-way handshake (or pair of two-way hand
shakes, if you prefer) of FIN/ ACK packets, closing the two directions of the com
munication channel. One host sends a FIN packet, which is acknowledged by the
other host via a FIN/ ACK. This closes communication from the first host to the
second. The second can continue sending packets to the first, however, until it
sends its closing FIN packet, which is acknowledged by a FIN/ACK.

A typical TCP session might look like the one depicted in Table 1.2. It begins
with the three-way handshake. There are a series of pushes and acknowledgments,
and then the two closing FIN handshakes. Note that the machines do not have
to acknowledge every PSH. Instead, an acknowledgment indicates receipt of all
packets up to the one acknowledged. Also, note that after one side closes the
connection, the other side can continue sending data until it decides to close its
connection.

IfTCP is so much more reliable than UDP, why does UDP exist at all? Why not
use TCP exclusively? The main reason is the overhead involved in ensuring the
reliability. For applications where reliability is not that critical, UDP can be faster,
and require fewer packets, than TCP. For example, I was involved with a project
to automatically find objects in a video (for example, tanks in the desert). This
was implemented on a cluster of nine Linux machines, where the processing was

Initiator Receiver

Fig. 1.8 The TCP three-way handshake. The initiator starts the connection with an
initial SYN flag. The receiver acknowledges the SYN, and the initiator acknowledges the
acknowledgment.

1.6. FRAGMENTATION 21

distributed across the machines using UDP packets. Any corrupted packets would
merely cause a slight error on a piece of one frame, and the speed requirement
was such that this was considered a small price to pay (in fact, in several months
of processing, we have never noticed a problem). The system runs at 15 frames a
second (112 of real time) on eight 450 MHz Pentium III microprocessors (the ninth
computer simply manages the processing and displays the results to the user).

1.6 FRAGMENTATION

If we send a large letter through the postal system, we simply pay more for stamps.
On a network, the letter (packet) gets broken up into smaller packets, which get
sent along and then reassembled at their destination. This process is called frag
mentation.

Fragmentation is controlled by the flags and fragment offset in the IP header
1.5.1. There are two flags that control the fragmentation, denoted DF and ME If
the "Don't Fragment" (DF) flag is set, the packet will not be fragmented. This
means that if it arrives at a router that wants to fragment the packet, the packet is

Table 1.2 A "typical" TCP session.

Host 1 Host 2

SYN

SYN/ACK

ACK

PSH

PSH

PSH

ACK

PSH

PSH

ACK

PSH

ACK

FIN

FIN/ACK

PSH

PSH

ACK

FIN

FIN/ACK

22 1. TCPIIP NETWORKING

1 2 3 4

lIP Header I 1000:bytes

Fragment 1

I 111 256 256 bytes Fragment 2

I 111 512 256 bytes Fragment 3

110 1
768 232 bytes Fragment 4

Fig. 1.9 An illustration of packet fragmentation. A packet arrives at a router which has
a maximum packet size of 256 bytes. The packet is broken into packets of this size, each
(except the last) having the "more fragments" (MF) bit set and the offset set appropriately.

not forwarded and an ICMP error message (type 3, code 4: "fragmentation needed
but don't fragment bit set") is generated and sent back to the originating machine.

If the DF flag is not set, the packet is broken up into smaller packets, each small
enough to be forwarded. Each packet, except the last, has the "more fragments
coming" (MF) bit set.

The fragment offset field is used to indicate where each fragment belongs in
the reconstructed packet. The first packet has this field set to zero. Subsequent
packets have the field set to the number of bytes that come before the fragment.
This is illustrated in Figure 1.9.

Upon receipt by the destination machine, the fragments are reassembled into
the original packet. The placement of the fragments in the reassembled packet is
governed by the fragment offset since the fragments are not guaranteed to arrive
in order.

1.7 ROUTING

The Internet is a loose collection of machines with no global authority ensuring
that packets are delivered or even that machines know where to send packets.
Providing a direct route between all machines on the network might be practical
for a network of a few tens of machines, but for the Internet this is simply not
possible. Instead, machines must be able to determine for themselves the best
route to use to send packets to a particular destination.

To this end, each host maintains a routing table, which is basically a list of
destinations (hosts or networks) and gateways (routers) to use as the first hop to
the destination. This list is fairly stable, changing only occasionally, compared to
the number of times it is accessed. It provides the host with an address (in our
postal analogy, a mailbox or local post office) to send packets destined for a given
machine.

1.B. DOMAIN NAME SERVICE 23

We will consider this process at only a very high level. The basic ideas presented
here can be found in Stevens [1994]. Networking books can provide a more
detailed description for those interested in routing.

Suppose host S wishes to send a packet to host D. First, S checks its routing
table to see whether host D (or its network) is on the list. If it is, it obtains the
gateway address and sends the packet to this address. If there is no match, it checks
to see whether there is a default entry in the table. This has a router associated
with it to which all packets should be sent, if no more direct route can be found
in the table. If you configured your machine yourself when it was first placed on
the network, you were asked for a "default gateway". This is the router to which
most of your outgoing packets will be sent. If there is no default, then a "network
unreachable" or "host unreachable" message is sent (if S is a router forwarding on
a packet) or the application is notified that the packet cannot be sent.

A digression is appropriate here. Up to now we have considered only the
information in the IP header. Suppose, in our example, that S wants to send a
packet to D and the routing table indicates that the packet should therefore be sent
to router R1. How is this done? How is the address for Rl put into the packet so
that the network can deliver it? Obviously, the destination IP address cannot be
used since this would overwrite the intended destination address. The solution is
to note that the packet is going out over a particular network interface and must be
encoded with the network address to which it is to be delivered. This is the purpose
of the Ethernet header depicted in Figure 1.2. Thus, the routing table provides a
network address, rather than an IP address, to be used to route the packet.

Since the routing table is so important to the functioning of the network, there
must be mechanisms in place to initialize the table and to update it as needed. At
boot time, a router will broadcast a series of ICMP packets which advertise its
availability. These let hosts on its networks know that it is up and ready to receive.
When a host boots up, it broadcasts ICMP solicitation packets, which then cause
any routers on the network to respond, letting the host initialize its routing table.

The routing table can also be updated by a "redirect" message. Suppose in our
example, router Rl notes that the next router, R2, can be reached directly by our
host S. It then sends a "redirect" message to S informing it of this fact. S updates
its routing table so that all future packets to D can be sent directly to R2, bypassing
the unnecessary router R1.

In addition to the preceding mechanism, routers can talk to each other using
for example the routing information protocol (RIP). This allows them to inform
each other of changes in the networks they connect to so that better routes can be
computed and routes dropped if they are no longer available through a particular
router.

1.8 DOMAIN NAME SERVICE

In order to send a letter, you need to know the address, and the same is true for a
packet. People have a much easier time remembering names, and have a penchant
for narning their machines, so it is convenient to have a "human readable" address
for each machine, such as "dvader. wallaby.org." Unfortunately, the network needs

24 1. TCPIIP NETWORKING

Root node

www.amazon.com www.stmarys.ca

www.nswc.navy.mil

Fig. 1. 10 The hierarchical organization of the domain name service. The first level
domains are referred to as top-level domains, the next level as second-level domains.

IP addresses, such as 10.10.138.42. The way the mapping is made from the easy
to-remember names to the IP address is through the Domain Name Service (DNS).

DNS is a distributed database. No single machine contains all the information
necessary to make the mapping. This is important for two main reasons. It means
that there is no single failure point, and it also means that a network the size of the
Internet can function. If every machine had to query a single machine (or small
number of machines) every time it wanted to send a packet, there would be a huge
bottleneck that would make large networks impossible. DNS is the solution to this
problem.

Each site (for example, a company, university, or Internet service provider
(lSP)) maintains a database of all the machines (hostname and IP address) that
are on its network. This information is hosted on a "domain name server" (also
abbreviated DNS), a machine that maintains the database for the site and provides
the information as needed.

The DNS is organized hierarchically, as depicted in Figure 1.10. Each top
level domain is given a 2- or 3-character designator (there is at least one 4-
character designator, arpa, which we will not discuss). Table 1.3 lists the 3-
character domains (as given in Stevens [1994]).

In addition to the generic domains, there are two-character country codes, such
as us (United States), ca (Canada), and so on. See Appendix C for a listing of the
country codes as of the time of this writing. Each country may have a convention
for other domains (such as for states in the U.S. or educational institutions in the
u.K.). The rest of the name can be fairly arbitrary, with some restrictions on legal

1.8. DOMAIN NAME SERVICE 25

characters, up to 63 characters in length (capitalization is ignored). If one were
so inclined, (and the administrator in charge of the "someisp.net" DNS allowed),
one could have a machine called:

givemeyourtiredyourpooryourhuddledmassesyearningtobefree.someisp.net

It is unlikely that one would be allowed to choose such a name. It is also hard
to imagine that one would want to. On the other hand, it is quite common for us
at NSWC to see packets that appear to come from machines named things like

will. work.for.food.com

or

dazed.and.confused.org

or somewhat less appropriate phrases, often involving bodily functions. This
is probably a result of someone inappropriately manipulating an insufficiently
protected DNS.

To illustrate this, I looked through the SHADOW logs (see Section 4.4 for a
description of the SHADOW system) for three days and came up with six appar
ently hacked machine names. The two that did not contain profanities and hence
can be reproduced here were:

dont. blame-me.im-a. be ginner.org

and

is.not. the.dumbe.st,

the latter using a splitting of the word "dumbest" to spoof originating in Sao Tome.

Table 1.3 Generic domain designators.

Domain Description

com commercial organizations

edu educational organizations

gov some U.S. government organizations

int international organizations

mil U.S. military

net networks (Internet service providers)

org non-profit organizations

arpa old style arpanet

nato NATO field

26 1. TCPIIP NETWORKING

There are two common goals in attacking DNS servers. The first is to map IP
addresses to funny names, as just indicated. This is (relatively) harmless. The
second is to change the IP address for a given domain name. This is much more
serious. The attacker changes the table so that when a machine requests the IP
address for mybank.com, it gets the IP address for villainsrus.net. The attacker's
machine is set up to mimic the bank's and waits for unsuspecting users to start
entering account and password information.

This happened to a colleague of mine. He tried to show me his Web page and
ended up at the page of some rock band instead. He thought his page had been
hacked, but instead it was the DNS server. In this case, the "attack" was mostly
harmless, at least from his perspective, but it was quite annoying, particularly when
he thought he had lost everything on his Web site. This apparently innocuous prank
could have been quite costly if he had been running a business from his Web site
instead of simply providing information about his area of expertise.

Although it is true that nobody maintains everything, there must be a place to
start a DNS lookup if the information is not maintained locally. There are a small
number of computers that know which name servers are responsible for which
domains. There are about a dozen of these "root" servers, which each DNS must
know about. These servers maintain a list of the responsible name servers for the
various top-level domains. As illustrated in Figure 1.10, these maintain lists of
secondary name servers and on down the tree.

When you want to send a packet to www.widgetsrus.com. your machine first
checks to see if it already knows the IP address (for example, if it is in your local
host table or you have recently done a DNS lookup for that host). If not, then it
queries the local DNS. This machine keeps a cache of recent queries as well as its
local table, so it checks these to see if it knows the IP address or if it knows which
DNS to go to for the information (say, from a recent query on ftp.widgetsrus.com).
If not, it queries one of the root servers, which tells it where to start on the tree.
Eventually (usually after just a few steps), it obtains the information from the
appropriate DNS.

How does the attacker go about changing the DNS entry? Obviously, one way
would be to gain access to the host that is acting as the domain name server and
directly change the lookup table. There is a much easier (and safer) way, however.
It is called DNS "cache poisoning" (see Klein [1999]).

To understand how this works, it is important to know that DNS lookups work
via UDP. Since UDP is connectionless and stateless, it is easy to spoof UDP
packets. The idea is to use a UDP packet that purports to be the answer to a DNS
lookup but contains altered information. The target updates its cache and from
then on provides the wrong address when queried.

There are several reasons for doing this. Obviously, some people do it just to
show they can. Others do it for profit, as described earlier. Another way to profit
is to have a site that earns money through advertising based on the number of hits
to the site. Redirecting a popular site to yours can artificially increase the number
of hits. Redirecting the site of a competitor can increase your sales. Finally, one
may wish to sabotage a site by redirecting it, thus causing loss of customers or
embarrassment. It goes without saying that all of these are both illegal and wrong.

1.9. MISCELLANEOUS UTILITIES 27

One can actually steal a domain name by forging an email authorizing a change
to the domain name registry. Although one can take steps to avoid this, many
people (particularly those new to the Internet) do not. Thus, an attacker can in
effect take your domain name away from you.

Finally, one can register a domain name similar to the one owned by someone
else. When companies decide to go on the Internet, or when they change their
name, they will often buy up all the domain names that are at all relevant to their
company (if they can). There was a story that illustrated this (and its futility) when
GTE and Bell Atlantic merged to form Verizon. Verizon registered (Goldstein
[2000], pp. 16-17) over 700 domain names, some of them legitimate sounding,
such as verizonwireless.net, as well as others, such as verizonstinks.net, aimed at
stopping critics and disgruntled customers from using the company name. The
people at 2600 (a group of self-described hackers) found one (slightly rude) that
had been missed and promptly registered it. After some legal scuffling, 2600 reg
istered the domain name

verizonshouldspendmoretimefixingitsnetworkandlessmoneyonlawyers.com

This anecdote illustrates an important lesson: although it may be a good idea to
register a few names to protect yourself from copy cats, you cannot think of them
all. In fact, trying to can just make things worse.

1.9 MISCELLANEOUS UTILITIES

This section includes a few useful utilities for investigating networks. These
include information-gathering tools such as ping, traceroute, and whois, as well
as ssh, a program to allow secure logins.

1.9.1 ping

Ping, the Packet Internet Groper, originally written by Mike Muuss, is used to
measure the round-trip travel time between two machines. (Actually, the name
"ping" comes from an analogy with submarines and sonar, the expansion as an
acronym came later).

There are a number of implementations of the ping utility, but I will discuss the
most common (ICMP) implementation.

The standard usage is

ping host

Several "echo request" ICMP packets are sent to the host. The host replies with
"echo reply" (unless a firewall or other security measure denies this or the machine
is not responding or nonexistent), and the time between packets is computed. This
gives an estimate for the time it takes for packets to transit between the machines.
Packets will be sent until the user kills the program (one can specify the number of

28 1. TCPIIP NETWORKING

packets to send by using the command line option "-c count"). One can also adjust
the time between packets and the size of the packet. As we will see in Section
4.3.1.3, this latter capability is a boon to attackers (although most implementations
of ping limit the size to a legal one, defeating this particular approach to mounting
an attack).

Network engineers can use ping to analyze problems on a network. It is also
useful to users for determining whether a particular machine is down or the net
work itself is down. On one of the networks that I use, it is not uncommon for
connectivity to the outside (for example, for Web surfing) to be down for no appar
ent reason. In the past, I could use ping to determine whether it was the network
that was down qr the Web site I was trying to reach (by "pinging" other hosts on
the inside and outside). This is no longer possible since many sites no longer allow
"echo requests" or "echo replies" in or out of their networks.

Ping has been useful to attackers to determine whether a particular machine is
up, to map a network (see Section 4.3.2.1), or to mount an attack (see Sections
4.3.1.3 and 4.3.1.6). This is one of the reasons that many sites do not allow these
packets into or out of their network.

A related utility (on some machines) is fping, which allows the user to specify
multiple hosts and returns the results in a more machine-readable format. See the
man page for more information. Also see

http://ftp .arl.army .miU "-'mike/ping.html

for some interesting background (and humor) about the program.

1.9.2 nslookup

As mentioned earlier, the IP address of the destination computer is needed for net
work connections, but people use easily remembered names for the computers. We
have seen in Section 1.8 how computers obtain this information. The "nslookup"
command is how a user can map between names and IP addresses.

The simplest usage is

nslookup machine

where "machine" is either a machine name or IP address. nslookup will return
something like:

Server: resolver.myisp.com
Address: 10.10.1.1

Name: www.amazon.com
Address: 208.216.181.15

(assuming "machine" is .. www.amazon.com ..).
In addition to the preceding usage, nslookup has an interactive mode. This is

entered simply by typing

1.9. MISCELLANEOUS UTILITIES 29

nslookup

This will give you a prompt (probably">"). Now you can type machine names
(or IP addresses) one at a time, and it will resolve each one. There are other com
mands available; type "help" at the prompt for a listing of the available commands.

1.9.3 whois

The "whois" directories give information on the owner of a particular domain name
or IP address. There are a number of implementations of whois, but the easiest
ones to use are Web-based servers, such as those found at

http://rs.internic.net/whois.html
http://www.nsiregistry.com/whois/
http://www.iana.org/cctld/cctld-whois.htm
http://www.betterwhois.com/
http://www.networksolutions.com/cgi-bin/whois/whois
http://www.whois.net/

Also, SHADOW (Section 4.4) contains a utility for doing whois searches.
The whois servers have the look and feel of an Internet search engine. There is

a field to type your query (such as "microsoft.com" or "10.10.132." - don't forget
the final "."), and the server will return an address for the owner of the domain
name or network. One problem is that each server tends to search a subset of
domain name space (for example, .com, .org, and .net only), so one may have to
do several searches. In particular, most whois servers do not provide information
on U.S. military (.mil) domains. The utility in SHADOW allows the selection of
the domains to search, making this relatively painless.

One site

http://www.cybergeography.org/,

uses whois lookups to map domain names to physical addresses and then plots
these on maps. This is not perfect since, for example, a company may use its
corporate address for its domain names, regardless of the actual location of the
machines. Thus, the "cybergeography" is really a display of the locations of the
owners of domain names rather than a map of the actual physical locations of the
machines.

1.9.4 ssh

Logging on to machines outside your network can be hazardous due to the pro
liferation of sniffers that can obtain your user name and password without your
knowledge. One way to avoid this is to encrypt the information. This is the func
tion of the secure shell (ssh) utility. ssh, and its related copy command scp, first
negotiates an encrypted session between the machines. This sets up a secure chan
nel through which information, such as the password, can be (relatively) safely

30 1. TCPIIP NETWORKING

transmitted. Since the whole session is encrypted, any information transmitted is
protected from observation.

ssh (actually the encrypted copy utility scp) is used by SHADOW (Section 4.4)
to transfer the hourly files from the sensor to the analysis station. This way, even
data from remote sites can safely be transferred without fear that someone will
capture the data. This is important since the data consist basically of sniffer files,
and we do not want others using our sniffer against us.

One of the nice things about ssh is that other TCP connections can be forwarded
over the secure channel. Thus, one can run X Windows connections (for example,
use Netscape to browse the Web from the remote machine).

Since ssh uses encryption, its availability may be restricted outside of the U.S.
(although these laws appear to be changing). It supports several different methods
for authentication and encryption. A full description is beyond the scope of this
book. The man pages and documentation that come with ssh should be consulted
for more information.

The Web address for ssh is

http://www.ssh.fi/

1.9.5 traceroute

Traceroute, as its name implies, is a utility for tracing the route from one host to
another. It is similar to ping in that it sends a series of packets to the destination
and computes some simple statistics on the returning packets. In fact, a version
of traceroute could be implemented using ping. However, UDP packets are used
instead, as will be described later. One can force traceroute to use ICMP packets
via the -I option (see the following).

Recall that the IP header contains a field called the "time-to-live" (TTL) field.
This field is decremented at each router. When a router decrements a TTL field to
0, it sends a "time exceeded" ICMP packet back to the originating host. The idea
behind traceroute is that if you know the original value of the TTL field, you then
know how many routers the packet passed through before the final router. The
key to making this really useful is the fact that the "time exceeded" ICMP packet
contains the IP address of the final router as the source address.

Traceroute works by sending packets with increasing TTL values and reporting
the IP addresses of the routers. The TTL increases from an initial value of 1 until
the destination machine responds, indicating that the full route has been traversed.

How does traceroute know that it has reached the destination? The fact that
no router has responded with a "time exceeded" packet might be the result of lost
packets, rather than the packets reaching the destination. Traceroute solves this
by sending several UDP packets to very high-order ports (above 30,000), the idea
being that it is very unlikely that there is an application listening on these ports.
Therefore, when the destination machine receives the packets, it sends back an
ICMP "port unreachable" packet. Traceroute need simply distinguish between the
two types of ICMP error messages.

Recall that the route between any two machines is not fixed and in fact can
change even between fragments of a single packet. How can traceroute provide

1.9. MISCELLANEOUS UTILITIES 31

any useful information in this kind of dynamic environment? The answer is that
although routes do change, they change slowly (relative to packet transit times)
and sporadically. Thus, from the perspective of traceroute, the route between two
hosts is quite stable.

The usage for traceroute is

traceroute destinationllost

One can use either the IP address or hostname (in which case a DNS lookup is
made to map the name to an IP address; see Section 1.8).

The user can specify the starting port number for the UDP packets with the -p
option. The default (in Red Hat 6.1) is 33434, which is useful to know if one is
trying to recognize traceroute traffic.

If all goes well, each router sends back a "time exceeded" packet as the TTL
reaches O. Some routers will actually forward a packet with a TTL of 0 (this is a
bug), and some will either not send a "time exceeded" packet or choose an initial
TTL that is too small to reach the sending machine. Other interesting results are
possible (see the traceroute man pages for some examples), so interpretation of
the results can require some effort.

Some useful options for traceroute are:

• -f ttl Set the initial time-to-live value for the first outgoing packet to "ttl."

• -I Use ICMP ECHO instead ofUDP datagrams.

• -m max-ttl Set the maximum number of hops used in outgoing packets to
"max-ttl."

• -p port Set the base UDP port number used in probes. As mentioned earlier,
the default value is 33434.

• -v Provide more verbose output.

• -w time Set the time to wait for a response to "time."

More information on traceroute can be found in the man page.

1.9.6 tcpshow

The output of tcpdump, as seen in the preceding examples and in Chapter 4, can be
quite terse and require some experience to tease out the information. The tcpshow
program is designed to provide a more human-readable format for the packets.

Consider the following tcpdump trace:

08:00:03.760332 10.130.219.103.www > 10.10.205.136.1063:
. 2850371889:2850373345(1456) ack 2835338 win 18928 (DF)

Now, consider the following result from tcpshow:

32 1. TCPIIP NETWORKING

Packet 1
Timestamp: 05:01:03.760332
Source Ethernet Address: 01:EA:IE:23:66:11
Destination Ethernet Address: 10:6A:83:41:64:60
Encapsulated Protocol: IP
IP Header
Version: 4
Header Length: 20 bytes
Service Type: OxOO
Datagram Length: 1496 bytes
Identification: OxA57A
Flags: MF=off, DF=on
Fragment Offset: 0
TTL: 248
Encapsulated Protocol: TCP
Header Checksum: OxlA29
Source IP Address: 10.130.219.103
Destination IP Address: 10.10.205.136
TCP Header
Source Port: 80 (www)
Destination Port: 1063 «unknown»
Sequence Number: 2850371889
Acknowledgement Number: 0002835338
Header Length: 20 bytes (data=1456)
Flags: URG=off, ACK=on, PSH=off
RST=off, SYN=off, FIN=off
Window Advertisement: 18928 bytes
Checksum: Ox4E68
Urgent Pointer: 0
TCP Data

<*** Rest of data missing from packet dump ***>

The information is in a much more human-readable format. There is also more
information in this output than in the tcpdump version, although all the information
in this display is available from tcpdump (in fact, tcpshow calls tcpdump to obtain
the information). A naive user may find the tcpshow format much more accessible,
whereas a more sophisticated user may find the terse, one or two line output of
tcpdump to be preferable.

Since tcpshow calls tcpdump, any changes in the output of tcpdump can cause
tcpshow to fail to recognize the packets. In particular, one version of tcpdump
places an extra "<" in its output. This confuses the version of tcpshow that I have.
However, since I have the source code to tcpshow it was a simple matter to make
the change to handle this case. This is one of the reasons I am very much a fan of
free software.

1.9. MISCELLANEOUS UTILITIES 33

1.9.7 snort

snort is billed as a "lightweight network intrusion detection system." What this
means is that it is suited to intrusion detection on a single host or small network
but is not designed to protect large networks. It is a sniffer like tcpdump, with
added capabilities for content analysis and an expanded filtering capability. Like
tcpdump, snort can log the packets in binary tcpdump format or provide an ascii
report. In addition to providing the packets that pass the filter, snort can provide
information about why the packet was flagged by the filter. Currently, snort only
analyzes three protocols: TCP, UDP, and ICMP.

A subset of the command-line arguments for snort are:

• -A alert Tum alert mode on or off. In full mode, snort prints the full alerts
to the alert file. In fast mode, terse output consisting of the timestamp,
message, IPs, and ports is generated. If "alert" is "none" alerting is turned
off.

• -b Log the packets in binary (tcpdump) format.

• -c ciUe Use the configuration (rules) file "cfile."

• -d Dump the application layer data.

• -F tfile Use the tcpdump filter file "tfile." This is useful for using SHADOW
filters with snort.

• -h IP Set the home network to "IP." This must be an IP address, not a domain
name (for example, 10.10.1.0). This tells snort which packets are incoming
and which are outgoing and adjusts the output to display this information.

• -i if Use the network interface "if."

• -I dir Log the packets in the directory "dir." The packets from a given IP
address will be placed in a subdirectory corresponding to the IP address.

• -N Tum off logging. Only alerts will be processed.

• -0 The normal order for applying rules is Alert->Pass->Log. This changes
the order to Pass->Alert->Log.

• -0 Obfuscate the IP addresses. The IP addresses are modified to hide their
values; they are printed as "xxx.xxx.xxx.xxx". If the -h flag is set, only the
home IP addresses are obfuscated.

• -p Do not go into promiscuous mode.

• -r tfile Read the tcpdump-generated file "tfile" instead of a network interface.

• -s Log the alerts to the syslog.

• -v Verbose output to the console. This can be quite slow.

• -V Show version number and exit.

34 1. TCPIIP NETWORKING

• -? Show usage summary and exit. Remember to escape the question mark
if necessary as appropriate for your shell.

As with tcpdump, snort will take the filter commands on the command line, but
for anything but the simplest filter it is best to put these in a file. First let us look
at a simple example of snort usage.

snort -dv -1 ./log -h 10.10.1.0/24 -c snort.rules

will log the packets to the "log" directory (which must exist), displaying the ap
plication layer data as well as the header, with the class C network above as the
home network. The rules file, or filter, "snort.rules" is used to determine which
packets to log.

The source code for snort, as well as executable versions for some operating
systems, can be found at

http://www.snort.org

or at

http://packetstorm.securify.com/sniffers/

snort rules are quite a bit more flexible than tcpdump filters and as a result
somewhat more complicated. We will look at them briefly here, but for more
information the documentation at the Web site should be consulted.

A rule is divided into two sections, a header and options. The header contains
the rule action, protocol, and source and destination information. The options
section describes the constraints on the header or content fields that will trigger
the rule. There are three actions that can be taken as the result of a rule:

• alert Generate an alert and log the packet.

• log Log the packet.

• pass Ignore the packet.

Some examples will help to illustrate the power of snort. These are taken (with
slight modifications) from the snort documentation.

• log udp any any -> 192.168.1.0/24 :1024
Log UDP traffic from any IP address and any port to the class C network
192.I.x with destination port less than or equal to 1024.

• log tcp any :1024 -> 192.168.1.0/24500:
Log any packet with a source port less than or equal to 1024 and a destination
port greater than or equal to 500.

• alert any any -> 192.168.1.0124 any (flags: SF; msg: "Possible SYN FIN
scan";)

1.9. MISCELLANEOUS UTILITIES 35

Generate an alert for packets with the SYN and FIN flags set. The alert
message will indicate that there may be a SYN FIN scan in progress.

• alert tcp any any -> 192.168.1.0/2480 (content: "cgi-hin/phf" offset: 3;
depth: 22; msg: "CGI-PHF access";)
This illustrates content matching. Web traffic that contains "cgi-bin/phf" in
the first 22 bytes of the content indicates an attempted PHF attack. The cgi
program phf is known to have a vulnerability that allows the attacker to gain
access to files (such as /etc/passwd) that are otherwise denied to them (see
page 164).

There are currently 15 rule option keywords. These are

• ack Test the TCP acknowledgment field for a specific value.

• content Search for a pattern in the packet's payload.

• depth Modifier for the content option, sets the maximum search depth for
a pattern match attempt.

• dsize Test the packet's payload size against a value.

• flags Test the TCP flags for certain values.

• icmp-.id Test the ICMP ECHO ID field against a specific value.

• icmp-seq Test the ICMP ECHO sequence number against a specific value.

• icode Test the ICMP code field against a specific value.

• id test The IP header's fragment ID field for a specific value.

• ipoption Watch the IP option fields for specific codes.

• itype Test the ICMP type field against a specific value.

• logto Log the packet to a user-specified filename instead of the standard
output file.

• msg Print a message in alerts and packet logs.

• nocase Match the preceding content string with case insensitivity.

• offset Modifier for the content option, sets the offset to begin attempting a
pattern match.

• resp Active response (knock down connections, etc.).

• rpc Watch RPC services for specific application/procedure calls.

• seq Test the TCP sequence number field for a specific value.

• session Dumps the application layer information for a given session.

36 1. TCPIIP NETWORKING

• ttl Test the IP header's TTL field value.

The preceding illustrates several powerful properties of snort that make it su
perior to tcpdump:

1. The ability to generate alerts to the syslog, console, or other logging mech
anism.

2. The ability to scan the content for attack patterns.

3. The ability to add a message to the packet, indicating the reason the packet
was logged or providing the message for the alert.

4. The ability to respond to an attack.

Another strength of snort is the ability to add plug-ins. A plug-in is a program
which extends the abilities of a piece of software. These are familiar to the users
of Web browsers, where plug-ins allow the browser to expand the types of files
it can process or adds functionality that is otherwise missing. In snort plug-ins
add capabilities such as the collection of statistics, storing output in a database, or
special visualization tools. This extensibility makes snort a very useful tool.

1.9.8 ifconfig

The ifconfig utility is used to configure the network interfaces but can also provide
information about them. It provides a variety of information about whether the
interface is up and how it is configured. This gives a quick look at the different
interfaces that are operating and can be used to configure the interface, for example
to take it out of promiscuous mode.

Executing ifconfig with no arguments displays the status of the active interfaces.
With the "-a" flag it will provide information about all interfaces, even those
that are inactive. Otherwise, the arguments are used to configure the interface.
It is not recommended that you play with this if you don't know what you are
doing (although any damage you do can (probably) be repaired by rebooting the
computer). See the man page for more information.

1.9.9 netstat

The netstat utility provides a great deal of useful information about network con
nections. Calling netstat with no options shows all the open sockets, which shows
all the network connections as well as all the programs using sockets, such as X
Windows, etc.

The information available from netstat is generally far more than one wants,
so some kind of filtering is required. For example, on my home machine, the
command

nets tat -a I grep www

1.9. MISCELLANEOUS UTILITIES 37

results in the line

tcp 0 0 localhost.localdoma:www *:* LISTEN

This tells me that my Web server is available only to my local host and not to any
outside machine.

A few of the useful flags are:

• -r Show the kernel routing table. This is equivalent to "route -e".

• -i [iface] Show a table of all the networking interfaces. If "iface" is given,
then show that particular interface. (The Unix convention of using a "[]" to
indicate an optional argument is used here.)

• -n Do not try to resolve IP addresses into host names but rather print the
address (similarly for port or user names). This can make the program run
much faster.

• -p Display the process name and PID for the owner for each socket that is
dumped.

• -I Display the sockets that are listening.

• -c Run netstat continuously.

• -s Display networking statistics.

As with many Linux utilities, netstat will accept a "help" flag and return the usage
information.

On my home computer, which is only connected to the Internet using PPP across
a modem (and hence does very little networking most days),

netstat -s

produced

Ip:
7214 total packets received
1 with invalid headers
o forwarded
o incoming packets discarded
207 incoming packets delivered
6798 requests sent out

Icmp:
45 IeMP messages received
o input IeMP message failed.
IeMP input histogram:

destination unreachable: 45
75 IeMP messages sent
o IeMP messages failed

38 1. TCPIIP NETWORKING

Tcp:

Udp:

ICMP output histogram:
destination unreachable: 75

431 active connections openings
o passive connection openings
o failed connection attempts
o connection resets received
o connections established
6961 segments received
6563 segments sent out
408 segments retransmitted
58 bad segments received.
419 resets sent

132 packets received
75 packets to unknown port received
o packet receive errors
223 packets sent

TcpExt:

As you can see, very little activity is represented by this, testifying to the fact that
I have been writing this section rather than surfing the Internet. The packet counts
are displayed according to the protocols, broken down into incoming and outgoing
packets, with statistics about the quality of the connection implicit in the errors
reported.

Using

netstat -1

will indicate which ports are listening, which is a good place to start looking for
trojan programs (Chapter 7).

1.9.10 pppstats

A related utility is pppstats, which provides information about a PPP connection.
PPP, or Point -to-Point Protocol, is the protocol used for most serial communication,
such as that through a modem. An example output for pppstats is shown in Table
1.4.

Table 1.4 Output from pppstats.

IN PACK VJCOMP VJUNC VJERR

1327 19 0 9 0

OUT PACK VJCOMP VJUNC NON-VJ

916 18 1 7 10

1.9. MISCELLANEOUS UTILITIES 39

This is what one might see right after initializing a PPP connection. The fields
displayed are:

IN The number of bytes received by the PPP interface.

PACK The number of packets received by the PPP interface.

VJCOMP The number of compressed TCP packets received by the PPP
interface.

VJUNC The number of uncompressed TCP packets received by the PPP
interface.

VJERR The number of corrupted compressed TCP packets received by the
PPP interface.

OUT The number of bytes transmitted by the PPP interface.

PACK The number of packets transmitted by the PPP interface.

VJCOMP The number of compressed TCP packets transmitted by the PPP
interface.

VJUNC The number of uncompressed TCP packets transmitted by the PPP
interface.

NON-VJ The number of non-TCP packets transmitted by the PPP interface.

More information can be obtained using the "-v" flag on the command line.
See the man page for the details.

1.9.11 Is01

A final useful utility is lsof, which stands for "list open files." This will list all the
open files belonging to all the active processes on the machine. This is extremely
useful for determining who is looking at what (for instance, your syslog file) and
what programs are dependent on which files (which can be useful for determining
which files to protect from trojans).

An open file may be a regular file (for example, a text file you are editing), a
directory, a library, a stream or network file (socket or NFS file), or various kinds
of "special" files.

The lsof program comes with many Unix implementations and can be obtained
at:

ftp://vic.cc.purdue.edu/pub/tools/unixllsof

Some of the useful command line options for lsof are:

• -i [spec] List Internet files. If "spec" is provided, it lists those files whose
Internet address matches "spec." For example, on my home system (which at

40 1. TCPIIP NETWORKING

the time was not connected to any network), the command "lsof -i" produced
the output in Table 1.5. Each entry had a TYPE=IPv4 and NODE=TCP,
which were removed in the interest of space. It may come as a surprise
to some that there are TCP ports active even though the machine is not
connected to a network.

FD stands for file descriptor. In the listing in Table 1.5, the number corre
sponds to the file descriptor number of the file, while the "u" indicates that
it is open for both reading and writing. An "r" or "w" would indicate read
or write access, respectively.

The Internet address is specified in the following format:

[protocol] [@hostname I hostaddr] [:service I port]

The Unix convention of square brackets "[]" is used to indicate optional
arguments and "I" to represent "or." Here,

- protocol is a protocol name (TCP or UDP).

- hostname is an Internet host name.

- hostaddr is an IP address.

- service is the name of a service (for example, smtp). See fete/services
for a list of these names.

- port is a port number.

Both service and port can be a comma-delimited list. Thus, the command

lsof -i : 1590

produces the listing for the single application (gnomepage) that is listening
on port 1590.

Table 1.5 An example of the output from "lsof -i," listing all the open Internet files.

COMMAND PID USER FD DEVICE NAME

gnome-ses 13587 dmarche 3u 37496 *:1578 (LISTEN)

magicdev 13612 dmarche 6u 37603 *:1582 (LISTEN)

panel 13629 dmarche 6u 37714 *:1587 (LISTEN)

gnome-nam 13633 dmarche 4u 37680 *: 1586 (LISTEN)

gmc 13639 dmarche 6u 37769 *:1588 (LISTEN)

gnomepage 13669 dmarche 5u 38094 *:1590 (LISTEN)

gen_utiL 13671 dmarche 5u 38082 *:1589 (LISTEN)

rp3 13675 dmarche 5u 38146 *: 1592 (LISTEN)

rp3 13677 dmarche 5u 38132 *:1591 (LISTEN)

1.9. MISCELLANEOUS UTILITIES 41

• -0 Inhibit the conversion of network numbers to host names. This conversion
can take quite a bit of time, so it is a good idea to suppress it for most
applications.

• -0 I -s Toggle between showing the file size and the file offset. Only one of
these flags may be used.

• -P Like the "-n" option, this suppresses the conversion of port numbers to
port names.

• +I-r [t] Put lsof in repeat mode. This causes the program to run every "t"
seconds. If the "-" is used, lsof will run forever (until killed), whereas with
the "+" lsof will exit on the first iteration in which no open files are listed.

• -R List the process ID (PID) ofthe parent process under the PPID heading.

• -t Terse output. For example, in the example depicted in Table 1.5, running
lsof -i -t will return just the list of PID numbers. This is particularly useful
for piping the output to the "kill" program to kill off all processes that have
a particular file open.

• -U List Unix socket files.

• -v Print the version information.

• -V List the items that lsof was asked to find but could not.

We have seen some examples of the use of lsof previously. Let us look at a few
more. To list the open files for user dmarche, use

lsof -u dmarche

To find the processes that have opened the file "foo," use

lsoffoo

It is interesting to try this with the text editor "vi." First type

vi foo

in a window. In another window, type

lsoffoo

What happened? On my machine, the lsof command returned nothing. How could
this be? I am clearly editing the file foo. To investigate further, try

lsof -u <yourusername> I grep foo

42 1. TCPIIP NETWORKING

You will see something like

vi 18370 dmarche 4u REG 3,7 983041884896 .foo.swp

What has happened is that when vi is started, it opens a temporary file, ".foo.swp"
in this case, and copies your file into it. Once this is done, the original file is closed
until you tell vi to write the changes. Thus, Isof was not wrong in stating that
no processes had the file foo open. The problem was that you asked the wrong
question. Asking the right question is always a goal worth striving for.

See the man pages for a more complete listing of the options and for many more
examples.

It should be noted that on some systems Isof will not show any files that are not
opened by processes owned by the user. Thus, many of the preceding commands
will not work (actually, they will work, but their output will not be complete).
If you compile Is of and want this security feature, use the compile-time option
HAS SECURITY. On my version of Red Hat Linux 6.1, Isof came installed in
"unsecure" mode, meaning that any user can obtain information about all open
files for all users. There are two ways to tell whether your version is installed in
this manner (assuming you did not do the installation yourself): you can run it and
see if you see processes that do not belong to you (for example, root processes),
or you can use the -h flag, which will give various information about the program,
as well as say

Anyone can list all files;

if the program is "unsecure."
This is a tiny example of the potential utility of Isof. We will return to this pro

gram in Section 5.6.3, where we consider its implications for host-based security.

1.10 FURTHER READING

There are many books on networking and TCPIIP, and I will refrain from listing
them here. As mentioned earlier, a very good place to start is Stevens [1994].
Other books include Comer [1991], Loshin [1997], and Simoneau [1997].

A book that focuses specifically on IP and the three protocols we have dis
cussed in this chapter is Hall [2000]. O'Reilly has a number of books on TCPIIP,
networking, DNS, and related topics, and these tend to be quite useful references.

For information on available utilities, the definitive reference is always the man
page. However, unless you know the name of the command you want to reference,
it is difficult to find it in the man pages. There are several books that provide manual
pages for a given operating system, one of which, for Linux, is Petron [2000].

The definitive references for the Internet protocols are the RFCs. These layout
the details for each protocol and address the requirements and options available.
It can be tedious looking through these, particularly as they are not indexed. Two
books that help with this are Loshin [2000b] and Loshin [2000a].

2
Network Statistics

2.1 INTRODUCTION

This chapter looks at some issues related to collecting, measuring, and analyzing
network traffic. This will be a brief introduction aimed at introducing some of the
issues involved, with a focus on applications of statistical methods to the problems.
Some suggestions for further reading are provided at the end.

There are a number of issues relevant to network traffic modeling. First, we will
look at some work on estimating network intensities, such as transit times. This is
a statistical treatment, looking at determining good ways to collect the data. Then
we will investigate some work on network tomography, which involves inferring
intensities on routes from information at the endpoints.

The next section involves issues related to modeling the distributions of network
traffic. It turns out that network traffic has very interesting structure and is much
more complex than simple Poisson models might lead one to believe.

A brieflook at projects undertaking the mapping of the Internet will be followed
by some discussion on visualization techniques for network data. The final section
will provide pointers to further reading.

2.2 NETWORK TRAFFIC INTENSITIES

In this section, we will look at two issues involved in the collection and analysis
of network intensity data. The first is the question of how we collect data given
constraints such as the number of sensors we can place or restrictions on how
much impact we wish our collection to have on the network. The second section

43 D. J. Marchette, Computer Intrusion Detection and Network Monitoring
© Springer Science+Business Media New York 2001

44 2. NETWORK STATISTICS

will look at a specific estimation problem, the so-called "network tomography"
problem.

2.2.1 Design of Experiments

Consider the problem of monitoring a network for such quantities as transit times
between nodes, delays at a node, and so forth. We wish to collect data to estimate
the quantity of interest. Following Fedorov and Flanagan [1998], this section will
investigate the problem of designing an experiment to estimate a single quantity.

One of the constraints that we wish to impose is that data can be collected at
only a small number of nodes. There are two models for data collection. If we have
a sensor at each node for which data are taken, we call this a "passive" collection,
or a "passive sensor." If the data are taken by sending packets out and measuring
responses to the packets, this is called "active" collection, or an "active sensor."
Resource constraints may force us to use a small number of passive sensors rather
than have a sensor on every node. If an active sensor is used, we may wish to
minimize the impact of the collection on the network.

We will consider round-trip transit time as measured by the ping program (Sec
tion 1.9.1). As in Fedorov and Flanagan [1998], we will restrict our discussion
to the problem of determining the transit time between a single host and S other
machines. We will assume N, the number of observations to be made, and S are
given. The question then is how best to allocate our measurements in order to get
the best estimate of transit time.

We will use the notation of Fedorov and Flanagan [1998] throughout. The S
hosts will be denoted X = (Xl' ... ' X s). Let our variable of interest be denoted
U = (u(xd, ... , U(XS))T, and an observation is

Yj = U(Xi) + €j(Xi). (2.1)

This is the jth observation at the ith node. At node i there will be ri observations
taken. We assume that no changes in the value we are estimating occur during the
collection of the observations. The errors €j (Xi) are assumed to have zero mean
and to be uncorrelated with variance (72, independent of the node. Let

K = E[(U - E[U])(U - E[Ulfl (2.2)

be the covariance matrix.
The goal is to design a data collection experiment. We wish to determine which

N nodes to sample to best predict the vector U. This set of nodes is called the
experimental design. The predictor will assign a weight to each node, and the
prediction will be a weighted sum of the observations. Thus, we are considering
a linear predictor in this work.

The experimental design is defined to be
n

~n = {pi,xdf, Pi = rdN , N = Lri' Xi EX, n::::; S. (2.3)
i=l

The Pi denote the weight on the node or the proportion of the observations to be
taken at node i. The Xi are the design points of the experiment, the nodes at which
the observations are to be made.

2.2. NETWORK TRAFFIC INTENSITIES 45

Upon collection of our observations, we average them to obtain

r1 Yl /1 E Yj(Xt}
j=l

Y(~n) = (2.4)
rn

/ E Yj(Xn)
n j=l Yn

Thus, we collect ri observations from each of the nodes defined in ~n. We
average these observations for each node. This is the observation vector that will
be used to make the predictions. The averaging could be thought of as a method
for denoising, or reducing the variance, of the estimate. Instead of averaging, one
could consider a robust estimate of location, such as the median, but we will not
consider this here.

Note that one way to reduce the impact on the network would be to make our
measurements during off hours. However, if the purpose is to measure delay, this
would defeat the purpose. For some quantities, we have no choice but to make our
measurements during peak hours.

It is important to keep in mind that we are predicting the activity across the
entire collection of nodes from measurements collected at a subset of nodes. As
mentioned earlier, this is often necessary due to lack of resources or a desire to
reduce the impact of the data collection on the network. We want to design our
experiment (select the monitored nodes) in such a way that our estimate is as
accurate as possible. To this end we need a way to measure the accuracy of our
estimate.

Given U an estimate of U, define the matrix of expected squared residuals
D(~n' U) as

(2.5)

We write D(~n, U) = D(~n) when the estimator is clear.
Let K(~n) be the submatrix of K corresponding to the nodes Xl, ""xn' let

K(x, ~n) be the column of covariances between u(x) and the U(Xl), ... , u(xn),
and let K(Z, ~n) be the corresponding matrix for the nodes Z C X. Finally, let
W(~n) be the diagonal matrix with elements rw- 2 • Fedorov and Flanagan show
that the best estimator (in the sense of minimizing the expected squared residuals
D(~n, U(Z))) is

U(Z) = KT(Z'~n)(K(~n) + W-l(~n))-lY(~n)' (2.6)

This looks complicated, but it is nothing more than a linear combination of the
Y's.

Often, one wishes to optimize some function of D(~n), such as the trace or
maximal diagonal element. This, in general, is not possible in closed form, and
Fedorov and Flanagan give some approximations with an optimization algorithm.
They then proceed to illustrate the results with an example of estimating round-trip
times to a number of sites.

46 2. NETWORK STATISTICS

The algorithm is as follows. First, we are looking for the design that minimizes
the function 10g(ID(~)I). Such a design is called "D-optimal". We have the
equality

(2.7)

when N = S and Z = X. To choose a given number m of nodes from a design
~, we will choose the m largest weights from W, setting the rest to O. Now, set
0:0 = llN,Poi = 0:0, whichdefinestheinitialdesign~o. Let'Y be a small positive
number less than 1 and € > 0 a small number (used as a stopping criterion).

1. Given ~t and D t , find the index of the largest element of the diagonal of D t
and increase the corresponding weight by O:t.

2. Using the new weights, construct a new D matrix and find the index of the
smallest nonzero diagonal element of this matrix. Reduce the corresponding
weight by O:t. This produces the new design ~t+1.

3. If ID(~t+dI/ID(~t)1 < 1 - 'Y (that is, the change in D is "large"), set
O:t+l = O:t and go to step 1. Otherwise, set O:t+l = 0:t/2. If O:t+l < €,

return ~t+l; otherwise, go to step 1.

In their experiment, Fedorov and Flanagan used ping to determine the round
trip time between a single node and 39 sites. They used only the ten largest weights
in the design; hence only ten sites were to be used in the estimate. The number of
pings sent to a site was proportional to the weight. They report that the D-optimal
design is nearly four times as efficient as the uniform design (using all 39 sites)
in their experiment. This may at first seem counterintuitive since it would seem
that using all the sites should provide more information than using only ten, but
remember that the total number of observations is fixed. The gain comes from the
fact that multiple observations from a site can be used to reduce the variance of
the estimator through averaging. This is the "denoising" referred to previously.

All of this assumes knowledge of the covariance matrix K. This is estimated
prior to the experiment. It must be assumed that K is stationary throughout the
data collection and that the estimate is of good quality. Fedorov and Flanagan
admit that they used a simple approach for this estimate and that more care should
be taken.

2.2.2 Network Tomography

A related problem is described in Vardi [1996] and Tebaldi and West [1998]. Called
"network tomography" by Vardi, the idea is to infer the traffic intensity across the
routes in a network using only measurements of intensity at the nodes.

We start with a network of nodes with directed connections between the nodes.
In graph theory, this is called a directed graph, or digraph. Traffic can travel from
one node to another if and only if there is a connection from the first to the second.
This is illustrated in Figure 2.1. In this figure, there are two possible routes from a
to b: a -t b and a -t c -t b (while the route a -t c -t d -t c -t b is theoretically

2.2. NETWORK TRAFFIC INTENSITIES 47

Fig. 2.1 A simple four-node network with directed arcs indicating links between nodes.

possible, we do not allow traffic to retrace its steps in this model). There is a single
route possible from b to c: b -+ a -+ c.

Assume a network of n nodes. Then there are c = n(n - 1) source/destination
(SD) pairs. Let r denote the number of directed links. In Figure 2.1, n = 4,
c = 12, and r = 6.

The work proceeds along two lines. First, in the simpler case, the routes are
fixed and known. In the second case, the routes are random but the transition
probabilities between nodes are known. We will consider the fixed route in this
section.

In the first case, define the routing matrix A as an r x c binary matrix, where
aij = 1 if and only if the ith link is in the route between the jth SD pair. This is
illustrated in Table 2.1. Note that although it is possible to go between a and b via
the node c, the routing matrix indicates that this route is not allowed (see the first
column of the routing matrix). Only the direct link from a -+ b is allowed in the
SD pair ab, so the routing matrix provides the information necessary to decide the
route between any two nodes, and these routes are unique.

For a set of measurement periods, we will measure the traffic along each directed
link. These observations are denoted y(k) = (y(kh, ... , y/k)), taken at times

k = 1, .,', K. The underlying random variables are X(k) = (xik) , ... , X~k)),

Table 2. 1 A routing matrix for routes for the network in Figure 2.1. The columns
correspond to source/destination (SD) pairs, while the rows correspond to the links between
nodes. Thus, a 1 in position i, j indicates that link i is used in the route corresponding to
source/destination (SD) pair j. A blank corresponds to a 0, indicating that the link does not
appear in the route.

ab ac ad ba bc bd ca cb cd da db dc
a-+b 1

a-+c 1 1 1 1

b-+a 1 1 1 1 1

c-+b 1 1 1 1

c-+d 1 1 1

d-+c 1 1 1

48 2. NETWORK STATISTICS

where each X?) is the number of transmitted messages for the SD pair j at
measurement period k. Thus,

y(k) = X(k) A. (2.8)

We assume that the X?) are independent for each j and k, and distributed
as a Poisson distribution, with a different rate for each SD pair. In other words,

X?) '" Poissan(Aj), where the Poisson distribution is defined as

X"e->"
f(X;A) = -,-,

x.
(2.9)

where x is constrained to be a nonnegative integer. The mean and variance of a
Poisson random variable with density as in Equation (2.9) are both A. For more
information about the Poisson distribution, see any statistics text, such as Hogg
and Craig [1995].

Thus, the goal is to estimate A = (AI, ... , Ac) from the observations y(k). First
we must determine whether we can in fact estimate A.

Recall that a parameter vector is identifiable if it can be determined uniquely.
For example, if we can only determine Al + A2, we cannot "identify" the vector
(AI, A2)' For another example of nonidentifiability, consider the problem of trying
to identify a mixture of two uniform densities. Consider Figure 2.2. This could
be modeled as a mixture of uniform densities in many ways, in particular

~u (o,~) + ~u (~, 1) , (2.10)

1 1 (1) -U (0 1) + -U - 1 .
2 ' 2 2'

(2.11)

There is no way to distinguish the parameters in these models since the different
parameters produce the same density.

In the Poisson model we are considering here, A is only identifiable when all the
columns of A contain at least one nonzero entry and are distinct. Clearly, real-life
routing matrices would generally not have a column of zeros (this corresponds to
a source/destination pair that has no route: "you can't get there from here"). An
example of identical columns can be found by considering Figure 2.1 and allowing
the following two routes:

ab : a -+ c -+ b -+ a -+ b

and

ac : a -+ b -+ a -+ c -+ b -+ a -+ c,

which correspond to two columns equal to (111100)T. This also is clearly not
likely in a real routing matrix due to the number of backtracks. Clearly, these routes
are not possible in real life since they both would stop as soon as the destination
node had been reached.

'" N

'" '"

o
o

I

0.0 0.2

2.2. NETWORK TRAFFIC INTENSITIES 49

....

0.4 0.6 0.8 1.0

Fig. 2.2 A mixture of uniform densities. The dotted lines indicate two different ways of
representing the mixture, as indicated by Equations (2.10) and (2.11).

It should be noted that there are situations in which a routing table may indicate
no route to a host. For example, with portsentry (Section 5.6.5), one has the option
of "dropping the route" to an attacking host, which means that your machine will
simply refuse to send any packets to the attacker, making it difficult to execute a
successful network attack on your machine. Normally, however, there will always
be a route between any SD pair.

There are several issues that are not addressed in the Vardi [1996] paper. As
we saw in Section 1.2, we could in fact measure traffic between SD pairs directly
at each node. In fact, we could make these measurements without knowledge of
the routing matrix; that is, at each node, we could measure the traffic between any
SD pair as it passes through the node. This allows us to infer the routing matrix,
or in the case of random routing, we could estimate the transition probabilities.

This brings up an interesting question, which is more in keeping with the title
"network tomography". From the traffic at a subset of the nodes, can we infer
the network topology? For example, in Figure 2.1, given traffic measurements at
nodes a, b, and d, can we infer the existence of node c? This is easy if c is one of
the SD pairs and we are using a sniffer such as tcpdump. Once we see a packet
destined for c, we know of c's existence, assuming the destination address has
not been spoofed (that is, assuming that the packet is a legitimate packet destined

50 2. NETWORK STATISTICS

for a legitimate machine). It is somewhat more difficult if we are only measuring
traffic intensities at a, b, and d. A harder problem would be if c is a router, with no
traffic specifically destined to or from it. For example, if we were sampling TCP
traffic, we might not see any traffic to or from c. On the other hand, if we were
measuring ICMP traffic, we might very well see traffic, and if we were allowed
to inject traffic (for example, through traceroute) we could in effect probe for c
directly. This is the problem addressed by the people trying to map the Internet
(Section 2.4). A much more difficult problem would be to infer the existence of c
and estimate the routing matrix from TCP traffic alone using, for example, delays
between the handshaking to infer the existence and number of routers between
any SD pair. Inferring the existence of c from traffic intensities at the other three
nodes alone would also be a difficult task that would be worth considering. Under
what constraints on the network topology can these questions, and variations, be
answered? This is an interesting set of open questions.

Returning to the "easier" question, we need to estimate .A from the y(k). To
accomplish this, we use the EM algorithm.

"EM" stands for expectation/maximization. The EM algorithm is a method for
maximum likelihood estimation in missing data problems. To illustrate the idea,
consider the problem of fitting a mixture of two normals to data. The probability
density function (PDF) is

(2.12)

where ¢ is the univariate normal density

(2.13)

Assume further that we knew the means and variances and were only interested
in determining the value of p. We have data, Xl, ... ,Xn , which are assumed to
have been drawn from the distribution f, so each of the Xi "came from" one of
the two components. If, for each observation, we knew which of the components
was the source of the observation, the estimation of p would be easy: p = nl / n,
where nl is the number of observations from component 1. Unfortunately, this
information is unavailable, or "missing."

The EM algorithm approaches this problem by first estimating the missing data
(the "expectation" part), and then, given the estimated information, we obtain the
parameter that best fits with this estimate and the data (the "maximization" part).

In our example, we start with some guess for p, say p = 1/2. For each
observation, Xi, we compute the posterior probability (the probability that the
observation was drawn from component 1) and then use this to obtain a new
estimate for p. Thus, for iteration j (letting Po = 1/2), we have

2.2. NETWORK TRAFFIC INTENSITIES 51

T(i) =
p(j) ¢(Xi, J..Ll, aD

(2.14)
!(Xi)

p(j+1) ~ tT(i).

n i=l

(2.15)

This is repeated until the algorithm converges. Thus, Equation (2.14) is the "E"
step and Equation (2.15) is the "M" step.

The EM algorithm is a very general procedure. One of the best references for
it is McLachlan and Krishnan [1997]. The original reference is Dempster et al.
[1977].

In the case at hand, we observe sums of Poisson random variables (Equation
(2.8». It would be much easier to estimate A if we observed the random variables
themselves. In a sense, we have lost information, so the EM algorithm is a natural
approach to try.

The EM algorithm for A can be derived as

K

At+l = ~ L E[X(k) Iy(k), A (k)], (2.16)
k=l

for n = 0,1, ... , where the superscript t has been suppressed for the A(k) in the
expectation. The expectations in the sum are conditional expectations - that is, the
expected value of X conditional on the values of Y and A. Unfortunately, this is
hard to calculate, and Vardi [1996] provides several solutions to this dilemma.

The first solution relies on a normal approximation. Let A be the diagonal
matrix whose diagonal entries are the components of A. An approximation allows
a solution to Equation (2.16). After some derivation, the EM algorithm for this
approximation is shown to be

K

A(t+1) = ~L [A(t) +A(t)AT(AA(t)AT)-l(y(k) -AA(t))]. (2.17)
k=l

Equation (2.17) is a particularly nasty looking one at first glance. It comes
from the following approximation. Recall that the mean and variance of a Poisson
distribution with parameter A are both A. Since the conditional expectation in
Equation (2.16) is so hard to calculate for the Poisson distribution at hand, consider
approximating the distribution of X as a normal with mean A and covariance A.
Then, the joint distribution of X and Y is

AAT))
AAAT '

(2.18)

from which the conditional distribution of XIY can be derived (see Seber [1984],
pages 18-19), resulting in the formula (2.17).

52 2. NETWORK STATISTICS

The preceding normal approximation is not particularly good for small A'S,

so Vardi [1996] also provides one based on approximating the distribution of the
average of the Y's as a normal (which is justified by the central limit theorem if
K is large).

The EM algorithm is relatively easy to apply, but Vardi prefers a technique based
on moments. The idea is to use the equations for the mean (Yi) and covariance
(5) of the Yi to construct a family of equations to solve

(2.19)

where B is constructed via element-wise products of rows of A (the details can
be found in Vardi [1996]). The basic point is that this is a relatively simple linear
algebra problem, which can be easily solved. Set

and similarly for b. j , and

~ . (A Y A) = Aj '" aij Yi .
J " • ~'\' \'

a.j . L...J aikAk

• k

then the solution becomes the iteration

H1 a.j A t b. j A t
Aj =. . Aj(A,Y,A)+. . Aj(B,5,A).

a.j + b. j a.j + b. j
(2.20)

Equation (2.20) provides an algorithm for estimating A. It assumes that the
Poisson model is correct, an assumption that we will see is not always warranted.
Vardi [1996] discusses this and provides a solution that allows the user to "de
weight" the second-moment terms, which are the ones that make use of the Poisson
model assumption.

In the case of random routing, the matrix A consists of transition probabilities
rather than O's and 1 'so This is somewhat more complicated, and we leave this for
the interested reader to pursue.

This section has developed a number of ideas for measuring and modeling net
work traffic. It is important to keep in mind that network traffic is complicated,
requiring care in selecting models, and it typically consists of extremely large data
sets. Further, the ability of the researcher to measure the data can be restricted, as
is the case in many interesting problems. In the case of network data, the restric
tions are often a result of security policy or the desire to limit the impact of the
measurement on the network. We will delve a little deeper into modeling network
traffic in the next section.

2.3. MODELING NETWORK TRAFFIC 53

2.3 MODELING NETWORK TRAFFIC

In this section we consider the problem of describing and modeling the distributions
of various statistics of network traffic. In the previous section, we looked at a
particular kind of inference, determining the traffic loads between source and
destination pairs. Here we are more interested in characterizing network traffic in
general.

The previous work assumed that the traffic intensity was distributed as a Poisson
random variable. As we will see, this assumption breaks down as we investigate
network traffic in more detail.

Network traffic is quite complex. For example, consider Web traffic. When you
type in a URL to your browser, many things that you are mostly unaware of happen
behind the scenes. We have seen that the TCP handshaking is used to initialize the
connection. Data pass back and forth until the session is closed. However, a Web
session usually consists of more than just one session. Even if you only go to a
single page, you will probably initiate several sessions. Each image you download
is a separate session, as are other files that may be loaded by the page. After a few
seconds of reviewing the page, you then select a new URL and the process starts
over. In addition to these explicit sessions, there are generally DNS lookups that
occur to obtain the IP addresses of the pages and images.

Thus, there are several levels to the network data. Within each TCP session
there are the individual packets, whose statistics are determined primarily by the
network and hardware considerations. The number of sessions spawned by the
main session is different for each Web page and thus has another distribution
associated with it. Finally, there is the user input, which determines the time
between new sessions.

I will consider several models for network traffic. These are by no means a
complete listing of the work done on this problem. I will provide references to
other work, so interested readers can learn more.

In the simplest case, we consider the initiation times of TCP user sessions.
A basic probability course would tell us that arrival times are Poisson, so this is
a good starting place. Note that it is also reasonable to believe that the rate is
slowly varying (diurnal), and in fact several groups (Paxson and Floyd [1995],
Nuzman et al. [2000]) have found that (some) user session initiation times are well
modeled by a Poisson distribution with a slowly time-varying rate. This model
breaks down, however, if one considers other factors such as the data transfer times
for FTP traffic or activity that spawns new activity, such as news and Web transfers.

It is shown in Paxson and Floyd [1995] that telnet and FTP session arrival times
are well-modeled by the Poisson process (Equation (2.9». Recall that a Poisson
process is one where the counts within fixed time intervals are distributed as Pois
son. Thus, when talking about continuous random variables as being "Poisson,"
we mean they come from a Poisson process. In the same paper, the claim is made
that email, Web and news are not Poisson.

Let us look at some data. Figure 2.3 shows data collected over a two-hour
period. The interarrival times between connection requests to a mail server are
plotted against arrival times. Notice the burstiness of the data (gaps in the plot).
The data are quite correlated (with a correlation of 0.33 in this case), as can be

54 2. NETWORK STATISTICS

o 1000 2000 3000 4000 5000 6000 7000

Tlmo In Seconds

Fig. 2.3 Scatter plot of the interarrival times of connections to a mail server. The data
were collected over a two hour time period.

seen in Figure 2.4. This tells us that the data are not independent - that the time
between packets now is to an extent related to the time between packets in the
recent past.

Figure 2.5 shows another view of these data. Here, the interarrival times be
tween connection requests are depicted as a histogram with a gamma distribution

~

..
0

..

1
0

.
.;

N

IIIIIIIIIII! 111111111 !11111I1I1~11i1111 0

0
0 I. 20 30

lAO

Fig.2.4 Autocorrelation of the data in Figure 2.3.

2.3. MODELING NETWORK TRAFFIC 55

~
N

:;:

i
~

j ~

:;:

:: , -.--
• ,. ..

I." ,. TIfTIM

Fig. 2.5 Histogram of the interarrival times of connections to a mail server. The data
were collected over a two hour time period. The times are in seconds. A gamma distribution
fit to the data is shown as a curve overlaid on the histogram.

fit to the data,

. _ 1 ",-1 -xlf3
,(x, a, (3) - (3"'f(a) x e . (2.21)

The parameters of the gamma distribution fit are a = 0.278 and (3 = 4.24l.
There are 6104 observations in these data. Figure 2.6 depicts the same graph
zoomed in to the range from 0 to 5 seconds. As can be seen, the fit is not too bad,
although there seems to be something interesting happening at around 112 second.

Paxson [1994] calculates statistics for several different quantities, such as num
ber of bytes per session and duration of session for several different applications

Fig. 2.6 Histogram of the interarrival times of connections to a mail server (Figure 2.5)
zoomed in to the range from 0 to 5 seconds. A gamma distribution fit to the data is shown
as a curve overlaid on the histogram.

56 2. NETWORK STATISTICS

(telnet, email, news, and FrP). He fits a number of distributions to the data, per
forming tests of fit to determine the best fit. The distributions investigated are:

Extreme: f (x)
1 _z-a _ -(z-a)//3
-e /3 e e . (3 ,

Pareto: f(x)

Exponential: f(x)

xa - 1 '

1 -,,/13 (je .

In addition, he considers the lognormal and log-extreme distributions. A random
variable is said to have a log-f distribution iflog(x) has distribution f. In this case,
the logarithms are taken base 2.

Using a series of tests based on the X2 test, a "best fit" distribution is found
for various quantities. Some of these are reproduced in Table 2.2. These data
represent the analysis of 3 million connections. In the table, "originator bytes"
refers to the number of bytes per packet from the originator of the session and
similarly for "responder bytes." In FrP, data transfers often occur in "bursts,"
sessions that occur less than 4 seconds apart. These can be caused by multiple gets
or puts, in which several files are transferred in rapid succession. The number of
bytes in these burst sessions is referred to as the "burst bytes" in the table.

The conclusion of the Paxson [1994] paper is that although the models are not
perfect, they do a good job of approximating the empirical distributions of the
network data investigated. Further, different quantities are distributed according
to different families of distributions, and none of the quantities considered was
well-modeled as a Poisson process.

As we saw in our small example (Figures 2.3-2.6), network data are compli
cated, even if we restrict our investigation to relatively simple problems such as
session interarrival times. Several authors have investigated these issues and found
interesting structure. Leland et al. [1994] were among the first to comment on
the self-similar nature of network traffic. They first illustrate the self-similarity
graphically by noting that the traffic looks similar at different scales. Our little
6000 point data set is not large enough to provide evidence nearly as convincing as
in Leland et al. [1994]; however we can illustrate it on a small scale (Figure 2.7).

Table 2.2 Models selected in Paxson [1994] for various traffic quantities.

Protocol Variable Model

Telnet Originator bytes log-extreme

Responder bytes log-normal

Duration in seconds log-normal

NNTP Originator bytes log-normal

SMTP Originator bytes log-normal

FrP Connection bytes log-normal

Session bytes log-normal

Burst bytes Pareto

2.3. MODELING NETWORK TRAFFIC 57

~ ~--~

o 50 100 150 200 250 300 350

Time unit = 10 seconds

o 50 100 150 200 250 300 350

Time unit = 1 second

Fig.2.7 Two views of the data from Figure 2.3. The number of packets per 10 seconds is
depicted in the top graph, while the number of packets per second is depicted on the bottom.

This shows some evidence of self-similarity at two scales. Leland et al. [1994]
show similar plots across five scales, ranging from a time unit of 100 seconds
down to one of 11100 of a second. This is very subjective and to strengthen the
argument Leland et al. [1994] show similar plots for a synthetic data set based on
a compound Poisson model fit to the data, for which self-similarity is not evident.

The concept of self-similarity can be made precise. Recall that the autocorre
lation function of a process X = Xl, X 2 , . .. is defined to be

(2.22)

Assume that X has a finite variance a2 and that r(k) '" k-fJL(t) as k -+ 00

and L is asymptotically constant. Processes with these properties are called self
similar. Define the aggregate time series x(m) to be the average of X taken over

nonoverlapping blocks ofsizem: X~m) = l/m(Xkm- m+l + .. ·+Xkm). Denote
the autocorrelation function of this process by rem) (k). We say that X is second
order self-similar if rem) (k) = r(k). Similarly, we call the process asymptotically
second-order self-similar if the autocorrelation function of the aggregate time series
converges to r(k) as m goes to infinity. The parameter f3 gives a measure of the
self-similarity, usually defined to be the Hurst exponent H = 1 - {3/2.

58 2. NETWORK STATISTICS

Several papers describe the self-similar nature of network traffic. The interested
reader is encouraged to investigate Feldmann et al. [1998], which analyzes data
collected over several years, Crovella and Bestavros [1997], which looks at self
similarity for Web traffic, and Willinger et al. [1997] and Yang et al. [1999], who
describe and apply the so-called "On/Off" model and variants to network data.

2.4 MAPPING THE INTERNET

Everyone knows the Internet is big. But just how big is it? How is it connected?
If it had been designed, one could just go to the designers and ask to see the plans.
However, the Internet was not so much designed as grown, and it is still growing.
Floyd and Pacson [1999] give statistics on the growth, showing exponential growth
through the 1990s. They are measuring traffic intensities rather than number of
hosts, but the number of hosts shows similar growth.

The Internet Mapping Project

http://www.cs.bell-labs.com/who/Ches/map/

is trying to map the Internet by running daily traceroutes. This allows them to
construct a dynamic database of (nearly) all the machines on the Internet and
the routes between them. These traceroutes are run from a number of different
machines, in effect probing the Internet from different directions.

One of the results of this work is a set of very interesting and beautiful pictures
of the Internet. Various color schemes add information to the graphs, such as
coloring by domain or by latency. The database is available for researchers and is
potentially of great use for those interested in studying the growth and extent of
the Internet.

Displaying graphs of this size is not a trivial problem. These maps are laid out
by a spring-embedding algorithm that basically simulates placing springs along
the edges of nodes and solving for a minimal energy state. A good place to start
learning about graph drawing is the book by Di Battista et al. [1999]. A paper
discussing a particular technique for displaying large graphs is Wills [1999].

An interesting result of the network mapping project is shown in Figure 2.8.
Since the Internet consists of machines all over the world, it is sometimes possible
to link traffic on the network to events in the real world. The figure depicts the
network maps from May 1 through May 6, 1999, for a part of the Internet that is
found in Yugoslavia. As can be seen, there was considerable disruption on May
3. Some of the machines gradually came on line as the days progressed, but there
was still some loss on the 6th. This period corresponds to a bombing campaign
by NATO forces in neighboring Bosnia, which may have caused disruptions in
Yugoslavia's power grid.

One possible modification to the display in Figure 2.8 would be to fix the po
sition in the plot of each host throughout the graphs, perhaps with a rule to deal
with new nodes that come on line, rather than recomputing the graph each time.
Still, the effect is quite noticeable, even with the slight variation in node placement

2.4. MAPPING THE INTERNET 59

Fig. 2.8 A map of networks in Yugoslavia, showing the effect of the war on the networks.
May I is in the upper left, with May 2-6 listed in lexicographical order.

60 2. NETWORK STATISTICS

across days. These images and a short movie, can be found at

http://www.cs.bell-Iabs.com/who/Ches/map/yu/index.html.

The Internet weather report

http://www.mids.org/weather/

provides a view of the latency (round trip time) on the Internet as well as various
statistics and other information gathered by scanning the Internet.

Another interesting site is

http://www.cybergeography.org/,

where whois lookups have been run to extract the mailing addresses of the owners
of domains. These are then mapped onto a geographic database to produce a map
of where the domains reside. Of course, this does not necessarily mean that the
machines reside at those locations, but it gives an estimate of the spatial distribution
of machines on the Internet.

Quite a bit of the information in the preceding references is available in the book
by Dodge and Kitchin [2001]. This book considers many of the issues related to
the mapping of the Internet, including sociological, geographic, and visualization
issues. It also has extensive references and is a good starting place to learn about
the various lines of research under way (at the time of its publication) in this area.

2.5 VISUALIZING NETWORK TRAFFIC

We have seen a number of ways to visualize network traffic in the preceding
sections. In this section, we will look at some of these techniques in a little more
detail and discuss some techniques that might not be familiar to many people
working in computer security.

We will start with the simplest technique, the scatter plot. This will lead us to
pairs plots, which are a way to display higher-dimensional data, which will in tum
lead us to parallel coordinates. These techniques will be illustrated on network
data.

2.5.1 Scatter Plots

The simplest (and arguably most powerful) technique for visualization of data is
the scatter plot. In this technique, bivariate data are plotted as points in a plane,
with coordinates corresponding to their values. We have already seen this in
previous sections (for example, Figure 2.3). Another example, Figure 2.9, depicts
about a minute and a half of incoming TCP packets to a site. Time is depicted
on the x-axis and destination port is on the y-axis. Note that sessions are quite

2.5. VISUALIZING NETWORK TRAFFIC 61

20 .0 iIO ,00

Fig. 2.9 Scatter plot of 93 seconds worth of data incoming to a site. In this case, there
are 67,134 observations. The destination port number is plotted against time.

clear in this depiction as horizontal line segments. We can also see banding effects
corresponding to port ranges for popular applications.

It is instructive to zoom in on this plot. Figure 2.10 depicts the data for which
the destination port is less than 10,000, which is where the bulk of the data lie in
Figure 2.9. Here we see an interesting phenomenon in the range between 40 and 80

--_._---------

~ - ... ~:~ - -'lr- --
-r-

20 40

~.
.- - 2 -

fiG .. '00

Fig. 2.10 Scatter plot of packets from Figure 2.9 with destination port number less than
10,000.

62 2. NETWORK STATISTICS

~
l
~ ----

.' -"

""""'.'_.--r-"*"_"_:bY_-._jr -_-_" _-_-:_-- - -~ I
20 .. 50 eo 100

Fig. 2.11 Scatter plot of packets from Figure 2.9 with destination port between 1000 and
2000.

seconds. There is a line that is angled slightly, corresponding to destination ports
between 2000 and 2500. Some further investigation shows this to be a Web session
(the source port is 80). In this case, one of the site's users has gone to a Web server,
and the downloads from the Web site are happening on the higher-numbered ports
(which is typical Web client behavior).

~ 0

u 0

0

B
0

i .
~ O!

!

~ ..
~

~.:
0

0 0
0

00 .., m'D cmmCI:I 1) Go a) 0 0

0 10000 20000 """"" >OOIlO OOOOD

so...-CIIIIPon

Fig.2.12 Scatter plot of source port against destination port for the data from Figure 2.9.

2.5. VISUALIZING NETWORK TRAFFIC 63

This plot does not allow us to see that the Web session described above is
actually a session to a single machine. In other words, although the line in the
figure appears to indicate a single session we cannot tell that these packets are in
fact related. They may be going to several different machines and the apparent
correlation may simply be a coincidence. This is unlikely, especially given the
length of the line but we cannot rule it out from this plot.

One way to solve this problem would be to use color to encode the destination (or
source) machine. This would allow us to pick out sessions much more easily, but
there are limitations to the number of colors that humans can reliably distinguish.
Also, there can be problems with overplotting, especially when attempting to depict
large time intervals for networks with heavy traffic loads. This requires interactive
exploration where the user chooses a number of different views of the data; for
example, zooming in to regions of interest.

A further zoom of these data is depicted in Figure 2.11. Here we can see quite
a bit of fine structure. There are several angled lines, indicating data transfers of
some kind, as well as a lot of horizontal lines, indicating application sessions on
a number of ports. Again, color could be used to enhance this picture. Further
zooms can also be used to explore different regions in the data.

Another way to look at these data is to plot source port against destination port.
This is done in Figure 2.12. The "L" shape of this plot is indicative of the tendency
for applications to use low-order ports. Thus, one can usually infer the application
that corresponds to the packets as the one corresponding to the smaller of the two
ports.

This is not a particularly useful plot. However, there are some outliers in the
plot and by definition outliers are interesting. These outliers stand out quite easily
in this plot, while they would be very hard to detect by looking in the raw data. A
good rule of thumb is to look at any data via several different kinds of plots. Look
for "interesting" structure and for "abnormal" or unusual data. The definition of
unusual is subjective, but like art, one usually can recognize unusual data when
one sees them.

Scatter plots are arguably one of the most powerful ways to visualize data,
primarily because of their simplicity of interpretations. Their main drawback is
the inherent low-dimensionality of the data that can easily be displayed in a scatter
plot. In the rest of this section we will look at ways to plot higher-dimensional
information.

Another drawback to scatter plots, which is common to all plots, is the problem
of overplotting. There are only so many pixels on the screen, or dots on the paper,
and so there are only so many distinct dots that can be represented. This problem
can be partially addressed by binning the data and depicting the bins as is done
with histograms, or by interactive displays which allow the user to zoom in to areas
of high density. Unfortunately, paper generally does not lend itself well to user
interaction.

2.5.2 Pairs Plots

An obvious extension of a scatter plot to higher-dimensional data is to plot each
pair of variates in a separate scatter plot. This is the idea behind a pairs plot. We

64 2. NETWORK STATISTICS

.~
F_- ~~I

I: DP""

. -_. - I
~ .. - ,.0

Fig. 2.13 Pairs plot 90 seconds of packets to a site. SPort and DPort represent the source
and destination ports, respectively.

reconsider the data discussed in Figures 2.9-2.12, plotted as a pairs plot in Figure
2.13. The pairs plot is symmetric about the diagonal, so we are actually plotting
twice as many plots as we need. However, sometimes it helps to see things from
two perspectives, so I will use the default plot of the R pairs function in these plots.

We can see from these plots that the low-value destination ports span both
time and source port, whereas the high destination ports are only associated with
relatively low source ports. This corresponds to our earlier analysis. What cannot

; ,
.' . ! . . 11 -,
·1

. I
11

Fig. 2.14 Pairs plot of email (port 25) connections. SIP and DIP represent the source
and destination IP addresses, while SPort is the source port. In this case, all the destination
ports are port 25.

2.5. VISUALIZING NETWORK TRAFFIC 65

101 m:o 4fJ)"I) ~

I' ~.~~' lie---0,------,21 F~~' i:
I ~

Size

~~

1-:.. .. S~" 1-0,12 11 -0081 I
, .. n

Dport B~
0.37 :

o

. - ~ , ,'. .1

I~' I • ..."...., t.. .
.0 • •

I ' II Window
o 1 .0 ~lF . ~"'''II

~ "'1"77 •

~J~. , ,
Jr lT • ' 1

i i

.. , . . .
~

~- ' 1 •
r .

1': J: • •••
• ;u,,;g "'" Imll

Fig. 2.15 Pairs plot depicting the packet size, source and destination ports and window
size for 13,680 TCP packets. A histogram of each variate is plotted down the diagonal, and
the correlations are given in the upper triangle.

be determined with single scatter plots is the combined information of all three
variables. For example, consider the largest destination port in the SPort by DPort
plot. Looking at this value in the Dport by time plot, we see a very regular pattern
(points spaced roughly 3.5 seconds apart). This turns out to be activity between
source port 9100 and destination port 56,946. This is an interesting pattern. Further
investigation of the data determined that the session was initiated by the monitored
site, and the temporal pattern was probably a result of load at one end or a delay
in the route (other data between these two machines did not show the 3.5 second
delay between packets).

Figure 2.14 depicts data to port 25 (email) for one hour's worth of data. The
three variables source IP, source port, and destination IP are plotted (source and
destination IP having been converted to 32-bit numbers). For example, the plot in
the upper right corner has vertical axis source IP and horizontal axis destination
IP. From this, we can count roughly nine destination IPS (the resolution of the
plot makes this an inexact count). We can see that most sources send to one of
two destinations (presumably the main mail servers for the site). From the SIP by
SPort plot, we can see that most machines use source ports below 10,000, although
some use higher ports.

66 2. NETWORK STATISTICS

Personally, I am not particularly impressed with pairs plots, particularly for
more than three variables. I find that I have trouble visually processing more than
three plots at a time, and so tend to not use pairs plots for much of my data analysis.
Occasionally, though, they do provide useful information and so are a part of my
visualization toolbox.

The pairs plots depicted here have a lot of redundancy and unused space. This
extra plotting area could be used much more efficiently. One use of the extra
plotting area would be to utilize color. One could color the points according to a
separate scheme in the upper triangle of the pairs plot than in the lower. Another
use would be to provide a different zoom level. The R function "pairs" allows
separate functions of the data to be plotted in the different panels.

One interesting idea is to put a histogram of each variate down the diagonal
of the plot. This is illustrated in Figure 2.15. In this plot the histogram for
each variable is displayed in the diagonal. Also, in the upper triangle are the
correlations for the pairs. Thus, we can see that the window size is most correlated
with the destination port while packet size is inversely correlated with destination
port. These correlations are fairly low. Note that source port is uncorrelated with
window size, as is packet size. This illustrates the fact that the window size is a
feature of the application, and has nothing to do with the size of the packet.

Pairs plots can usefully display up to about a dozen variables, depending on the
amount and complexity of the data to be displayed. Other methods are required
for higher-dimensional displays. We will look at two such methods in the next
sections.

2.5.3 Parallel Coordinates

As we have seen, it is difficult to visualize high-dimensional data. Since the
variates are generally considered to be independent, our usual approach is to place
the axes perpendicular to each other. This only works for two-dimensional data,
however. As we saw with pairs plots, we can get some information by looking at
several bivariate plots, but it is difficult to extract multivariate information about
the data from these plots.

The idea of parallel coordinates (Inselberg [1984], Wegman [1990]) is to place
the coordinate axes parallel to each other rather than perpendicular. This allows
us to plot points as connected line segments between the axes. Figure 2.16 illus
trates this. The coordinate axes in this plot are displayed as vertical lines. Each
observation is plotted as a piecewise linear curve. For example, the observation
x = (1.1,2.3,1.3,2.8, ...) would correspond to the curve that first connects the
point LIon the first axis to the point 2.3 on the second, then from there to 1.3 on
the third, 2.8 on the fourth, and so on.

Figure 2.17 depicts the email connections to a site during one hour. The first
and third axes correspond to the source and destination IP addresses as 32-bit num
bers. The second and fourth axes correspond to the source and destination ports.
The values have been scaled between 0 and 1 for plotting. 1251 4-dimensional
observations are represented in this plot, corresponding to 1251 email sessions.

One can learn quite a bit from this plot. There are 11 email servers depicted,
two or three main ones representing the bulk of the data. The difference between

2.5. VISUALIZING NETWORK TRAFFIC 67

;1111 x2 ;1113 :10:4 x5 x6)(7)(8)dil' x10

Fig. 2.16 Parallel coordinates plot of 10 observations drawn from a lO-dimensional
standard normal density. One of the observations, corresponding to the point x
(-1.35, -0.08,0.95,1.82, -1.88, 0.53, 0.58, -0.53, -0.36, -0.05), is highlighted in
bold.

the number of email servers arrived at with this plot and that arrived at from the
pairs plot (Figure 2.14) is a result of the low resolution of the pairs plot.

Machines sending email mostly tend to use relatively low source ports, although
there are a number of machines that prefer higher ranges. The resolution is not

So" SPon 00,. OPo"

Fig. 2.17 Parallel coordinates plot of email (port 25) connections. SIP and DIP represent
the source and destination IP addresses, while SPort and D Port are the source and destination
ports. In this case, all the destination ports are port 25. The line at all zeros is not an
observation but rather serves to delineate the minimum of the graph.

68 2. NETWORK STATISTICS

Time Flag IP SPort DPort

Fig. 2.18 Parallel coordinates plot of an email (port 25) session. The flags are, in in
creasing order on the axis, SYN, SYN ACK, ACK, ACK PUSH, ACK FIN.

good enough to determine whether the same machine will use low and high source
ports (there are roughly 160 distinct machines represented by the SIP axis).

Figure 2.18 shows a single email session. In this plot, we have time as the first
axis, followed by the flag combination set, the source IP, and source and destination
ports (each either 25 or 1584). Since there are only two IPs in a session, we coded
the mail server as 0 and the other IP as 1. By traveling up the time axis, we can
clearly see the three-way handshake, followed by PUSHs and ACKs.

Parallel coordinates can be used to view data up to about 20-30 dimensions.
They also suffer from problems of overplotting and interpretation. Ed Wegman
has suggested using saturation brushing to deal with the overplotting problem and
has provided some insights into interpretation.

Parallel coordinates plots, like all the techniques discussed in this section, can
be enhanced by the proper use of color in the plots. This is an important aspect
of visualization, that is often ignored in the literature due to printing limitations.
This is changing, and as the cost of color reproductions drop, we will see a much
more common use of color to enhance graphic displays.

2.5.4 Color Histograms

Another technique for viewing high-dimensional data is the color histogram, also
called the data image. The idea is to treat the data as an image with, for example,
the columns of the image corresponding to observations and the rows to variates. A
simple example is given in Figure 2.19. Here, we have five measurements on each
packet: the time of arrival (at the sensor); a binary value indicating whether the
packet originated from the protected network; the source port; a binary value indi
cating whether the destination is the protected network; and the destination port.

2.5. VISUALIZING NETWORK TRAFFIC 69

Peckel.

Fig. 2.19 A color histogram of SYN packets into and out of a site. There are 500 packets
represented in this figure. The columns correspond to packets. The rows correspond to the
variates, which are the time of arrival of the packet, whether the source IP is internal to the
protected network, the source port, whether the destination IP is internal to the protected
network, and the destination port.

Destination ports are scaled between 0 (black) and 1 (white), with values above
500 set to 1. Source ports are also scaled between 0 and 1, with 0 corresponding
to a source port of 533 (the minimum in this data set) and ports above 2000 set to
1. Since it is difficult to separate the incoming and outgoing data in this graphic,
we present these as separate images in Figure 2.20. We see that the outgoing ses
sions tend to be much more homogeneous than the incoming sessions, probably
the result of a smaller pool of users, who are constrained by usage policies.

We will see more examples of color histograms and an extension, the data
image, in Section 4.5.2.2.

Incoming Outgoing

[t:

0 8
8 8
"3 "3
Q. Q.
U) U)

:;; :;;

~ ~ ... 1=

Packets Packels

Fig. 2.20 The same data as in Figure 2.19 with the incoming and outgoing packets split
into separate plots.

70 2. NETWORK STATISTICS

2.6 FURTHER READING

The problem of network tomography discussed in Section 2.2 can be approached
from a number of other perspectives. A Bayesian approach is discussed in Tebaldi
and West [1998]. This is a discussion article with two discussants, Vardi and
McCulloch. Dinwoodie [2000], presents a Monte Carlo technique for computing
the maximum likelihood estimates for the>' parameters of the Poisson distributions.
In related work, Cao et al. [2000] describe a method using sliding windows to attack
the network tomography problem.

Much work has been done on modeling network traffic, and we have just touched
the surface with the discussion here. For example, Khalil et al. [1990] discuss the
non-Poisson character of LAN traffic. Morris and Lin [2000] describe their work
showing that although Web traffic is definitely not Poisson, aggregating it causes
the behavior to settle down somewhat so that, while still not Poisson, the aggregated
data scales in roughly the same manner as Poisson data. Many other papers have
been written on these and related topics as a literature search will attest - far too
many to list here.

To learn more about self-similarity measures and multifractal processes, in
vestigate Riedi [1995], which provides some mathematical formalism. Another
paper that looks at the fractal nature of network traffic is Addie et al. [1995]. Abry
and Veitch [1998] use wavelets to analyze the multiscale nature of network traffic.
Feldmann et al. [1997] also discuss self-similarity at the large and small scales
for wide area network traffic. Fiorini [1999] looks at modeling heavy-tailed net
work traffic, from the perspective of analyzing its impact on quality of service. A
similar issue is considered in Feldmann et al. [1999]. Gilbert et al. [1998] pro
pose a method for visualizing multifractal scaling behavior. Roughan et al. [2000]
provide a fast method for estimating the Hurst parameter and apply it to traffic
modeling.

A slightly different perspective on network mapping is discussed in Theilmann
and Rothermel [2000]. They provide dynamic distance maps, where the data
collection is coordinated via hierarchical clustering of the hosts, to reduce the
impact of the data collection on the network.

Much work has been done on modeling telecommunications traffic, and some of
this is relevant to network traffic. Martine [1994] provides extensive discussion of
these issues. A special issue of the Journal of Heuristics (Doverspike and Saniee
[2000]) also has some articles of interest for understanding networks, although
these focus more on the issue of designing rather than analyzing. Similarly, much
work has been done on (vehicular) traffic analysis. Some of these techniques can
transfer over, particularly those that are based on basic mathematics and computer
science. Forinstance, see Foulds [1992],pp. 344-358, or Ettema and Timmermans
[1997].

There are a number of good books on data visualization. Bertin [1967] is
the classic, which appears to contain, in one form or another, every visualization
technique ever invented (this is a slight exaggeration, but only slight). I highly
recommend that anyone interested in the visual display of data take some time to
look through this book. It is amazing the number of techniques depicted.

2.6. FURTHER READING 71

The classic series by Tufte (Tufte [1983, 1990, 1997]) is a very good place
to get insight into the proper display of infonnation. He discusses good and bad
methods for representing data. He has many examples of displays designed so that
the desired infonnation is easily discerned, without distorting the true relationships
between the data. These books are full of examples from a wide variety of problem
domains and data types. The first book describes basic statistical graphics. In
Tufte's nomenclature, it describes pictures of numbers. The second book is pictures
of nouns. This refers to descriptions of evidence and data, particularly complex
infonnation. The third book contains pictures of verbs. This refers to illustrating
cause and effect. These three books provide considerable infonnation and advice
for accurately and infonnatively depicting infonnation.

The book Wainer [1997] is similar to the Tufte books and provides a good
discussion of the issues of the infonnative display of quantitative infonnation. It
is quite a nice book, with all the visual impact of the Tufte books. I recommend it.

Another good book is Wilkinson [1999]. He develops a fonnal system for the
graphical display of infonnation, with many examples. In analogy with language,
he describes a "grammar" of graphics, that ties mathematical and aesthetic rules
together into a single framework.

Spence [2001] is another nice book on visualization. It has a chapter on the
visualization of graphs, which is obviously relevant to the study of networks. There
are a lot of nice color pictures generated by a variety of tools.

A very good paper on some of the mathematical issues in data visualization is
Wegman et al. [1993]; see also Wegman and Carr [1993].

A very interesting phenomenon that is relevant to network modeling and anal
ysis is the so-called "small world," or "Kevin Bacon" phenomenon. This is de
scribed in some detail in the book by Watts [1999]. The idea is best illustrated by
the "Kevin Bacon Game": select any actor. If he or she was in a movie with Kevin
Bacon, they receive a score of 1. If they were in a movie with another actor who
was in a movie with Kevin Bacon, they score a 2, etc. The claim is that all (or
very nearly all) actors have a score of not more than 7. Thus, the world of actors
is a "small world." This is the "small world" phenomenon that is familiar to us
all when we meet someone new (possibly on a trip far from home) and discover
that we have a friend in common with them. In the Internet, this is relevant from
the standpoint of determining, for example, how many links one must follow from
one Web site to any other (is the World Wide Web a "small world"?). The work
detailed in the book uses quite a lot of machinery from graph theory, and so is
rather technical.

3
Evaluation

3.1 INTRODUCTION

Statistics involves the fitting of models to data and making inferences from these
models. One is often interested in the models themselves because of what they
may tell us about the underlying physical process that generated the data. Thus,
much of statistics concerns itself with goodness of fit tests, confidence regions,
and other tools for determining whether one's model appropriately and accurately
describes the data, and for making inferences from the estimated model.

In pattern recognition the inferences that one wants to make are ones of as
signment. For example, given a trace of network data, one wants to classify it
as an attack, or not. Thus, while the model that one chooses is not uninteresting,
the ultimate goal is a pragmatic one: how well does our model detect or classify
attacks? As a result, one often finds that the tests of model fitness are reduced to
tests of classifier performance. In this section we will look at some of the issues
that are of interest in evaluating the performance of intrusion detection systems.

Any evaluation of a pattern recognition system requires the estimation of two
quantities: the probability of detection (PD) and the probability of flase alarm
(PFA). These are intertwined, and in general it is not possible to simultaneously
achieve a PD of 1 and a PFA of O. The idea is that there is a "target" class that one
is interested in detection. For example, an intrusion. The probability of detection
is the probability of correctly detecting the presence of the target class. A false
alarm occurs when a detection is declared even though the target is not present.
For example, declaring an intrusion has occurred when none did.

In statistical terms, the probability of a false alarm is related to the type I error
(rejecting the hypothesis when it is true). The null hypothesis in this case is that
no attack is present. Thus, a type I error would occur if we incorrectly labeled a

73 D. J. Marchette, Computer Intrusion Detection and Network Monitoring
© Springer Science+Business Media New York 2001

74 3. EVALUATION

benign event as an attack. The PFA is the probability of making a type I error.
The probability of detection corresponds indirectly to the type II error (failing to
reject the null hypothesis when it is false). In our case, this means failing to detect
an attack when one is in fact present. Thus the probability of detection is 1 minus
the probability of making a type II error.

Some authors use the terms recall and precision rather than probability of
detection or false alarm. "Recall" corresponds to the probability of detection.
This is the probability of correctly "recalling" the target class. Precision is one
minus the probability of false alarm, or the probability of correctly stating that a
target is not present.

Let us consider the two class problem. Assume we have designed a classifier
that discriminates between two different classes and that we have identified one
of the classes as "target" (or, in our setting, "intrusion"). We wish to determine
how well it performs. Assume further that we have an independent data set with
which to test the classifier. We evaluate the classifier on the data and determine
the proportion of target observations correctly classified (PD) and the proportion
of nontarget observations incorrectly classified as target (PFA).

For most classifiers there are parameters to adjust (for example a detection
threshold) that can affect the performance of the classifier. Varying these param
eters produces slightly different classifiers with slightly different PD and PFA
values. By varying these parameters and obtaining a range of values, we can plot
a curve of PFA vs. PD, the so-called Receiver Operating Characteristic curve, or
ROC curve.

One generally tries to choose the classifier with the best PD within constraints
on the acceptable PFA. This is chosen based on the relative costs of the two types
of errors: missing an attack versus analyzing a false alarm. Given an ROC curve,
one can select the parameters that produce the desired classifier.

This becomes a bit more complicated when one considers problems with more
than two classes. For example, one might want to classify the type of attack into
one of several groups, rather than simply announcing the detection of an attack.
This can be formulated as a sequence of two class problems, either as "class i"
against all others, or pairwise, "class i" against "class j" for each pair i and j.
Consult a book on pattern recognition for more discussion of these approaches.

There is a school of thought in the computer security domain that says there
is no such thing as a false alarm. The assumption here is that in a well-designed
system, any alarm contains information. Different alarms require different levels
of intervention. For example, one may see a few packets that look like a probe
for vulnerable systems. The security officer may want to know about this, even
though it is not yet a problem and even though in reality it may not be a prelude
to an attack at all. Proctor [200 1], pages 108-111, discusses this in some detail.
It is worth keeping this in mind when evaluating an intrusion detection system.

Evaluation of intrusion detection algorithms is problematical for several rea
sons. First, it is difficult to collect data representative of the threat. Since the
threat is constantly changing as new attacks (and vulnerabilities) are developed, it
is vital that an IDS be able to detect novel attacks. It is well known to be difficult
(and perilous) to make predictions outside one's data, and this is precisely what is

3.2. EVALUATING CLASSIFIERS 75

expected of IDS evaluations. Worse, the data are by definition non stationary, so
any evaluations are of transient utility.

Second, if one collects real data, one can never be sure that there are no subtle
attacks hiding undiscovered in the data. This affects both the calculation of the
probability of detection and the probability of false alanns. You cannot count
missed detections that you do not know about, and you cannot be absolutely sure
that a false alann is not in fact a correct detection. Further, in order to get a good
sample of attacks, you may have to collect a very large amount of data. One way
around this is to embed real attacks in the data (either artificially or by attacking
your own network).

Finally, few intrusion detection systems are truly automated. For example, the
SHADOW system (Section 4.4) fundamentally relies on an analyst to process the
suspicious events and generate the reports. One could simply count each suspicious
packet (or block of packets for a given source host) as a candidate detection and
compute false alanns and detections from these. However, this would overestimate
the false alann rate. Alternatively, one could treat the analyst as part of the overall
system and evaluate the performance of the system with the human in the loop.
Of course, this adds another level of variability (analyst expertise) that must be
controlled for.

Still, it is essential to do careful evaluations. None of these problems are unique
to intrusion detection, they are simply more obvious than in some other domains.
We will look at two methodologies for evaluating intrusion detection systems, but
first we must discuss evaluation of classification systems in general.

3.2 EVALUATING CLASSIFIERS

We have discussed one method of evaluating a classifier, which is to use an inde
pendent test set. Thus, one collects data and then separates the data into a "training
set" and a "testing set." The classifier is then designed using the training set. Re
call that a classifier is a rule that assigns a class label to observations. In order to
devise the rule, example observations for which the class labels are known must be
available. These observations are called "training points." Using training points,
the parameters of the classifier can be adjusted to maximize the performance of
the classifier (on the training points). Once the classifier has been constructed, its
performance on the test set is measured, providing an estimate of the performance
of the classifier.

Care must be taken to ensure that the sets are indeed independent and that
an unconscious (or conscious) bias is not introduced. For example, one may
(accidentally or on purpose) place all the "difficult" points in the training set,
thereby biasing the estimate toward better performance. One way to avoid this
is to randomly split the data to reduce selection bias. Then, after using the two
sets to evaluate the classifier, reverse them (the training set now becomes the test
set and vice versa) and redo the evaluation. An extension of this idea is to repeat
the random selection of training/testing observations many times to get an average
performance measure that avoids the problem of selection bias.

76 3. EVALUATION

A related idea is that of cross validation. In its extreme form (I-point cross
validation), the test set consists of a single observation. The classifier is built on all
the remaining observations and then its performance on the single test observation
is measured (this is a binary response: it either gets the observation's class right or
it does not). This is then repeated with a different observation until all the available
observations have been used as test observations.

This can be generalized to k-point cross validation. The data are split into
subsets of size k, and each subset in tum is used as a test set, while the rest go
into the training set. The other extreme from the I-point cross validation is the
n/2-point cross validation, where the data are split evenly into two sets. This is
the training/testing described earlier.

Another terminology is sometimes used in cross validation. Instead of "leave
k-out," one will sometimes see the phrase "k-fold" cross validation. The difference
is that in k-fold cross validation one splits the data into k subsets of equal (or nearly
equal) size. Then one subset is withheld, the classifier is trained on the remaining
subsets, and the withheld set is used as a test set. This is repeated, in the same
manner as described above. Thus, k-fold cross validation is essentially n/k-point
cross validation. This can be slightly confusing the first time one comes across it.

The collection of the data to be used for training and evaluating the classifier is a
nontrivial task, particularly for intrusion detection. Imagine setting up a sensor on
a network, collecting data for (say) a month, then using the data for the evaluation.
A few obvious questions come to mind:

• What is "truth"? In other words, which packets or sessions are intrusions
and which are not?

• Is this a typical data set? One collected at a university in July might not be
representative of the network in November.

• How long are the data going to be representative (if they are)? How fast is
the network (and the threat) evolving?

• Have we measured the threat? Are the attacks representative of the ones we
want to detect?

• Along the same lines, are the ones we currently know how to detect really
all of them?

There is a (possibly apocryphal) example of this from an image processing
problem. A classifier was built to distinguish images that had tanks in them
from those that did not. The classifier worked quite well. However, when an
independent set of images was subsequently produced, the classifier was no better
than chance. Upon investigation, it turned out that the images in the original data
set that contained tanks were all taken in the morning, whereas those without tanks
were taken around noon. The classifier was detecting the brightness of the images.
Low-light images had tanks in them (in the training set) so all one needed to do to
detect tanks was take a light level!

Another example involves a radar that was used to detect tanks. In order to
identify the tank it was necessary to determine its orientation. To collect data from

3.2. EVALUATING CLASSIFIERS 77

a variety of orientations the tank was mounted on a large turntable and data was
collected from a variety of orientations relative to the radar. It subsequently turned
out that the best discriminator of tank orientation was a return that was generated
by a comer of the turntable. This clearly is of little practical utility, unless one can
convince the enemy to mount their tanks on turntables.

This sounds silly, but it is a real concern. Suppose you want to detect buffer
overflow attacks against network applications such as telnet. If all your training
examples are attacks against telnet, there is a very real possibility that the classifier
willieam to detect something that is related to telnet (and possibly unrelated to
buffer overflows).

There are some studies in the pattern recognition literature in which the same
data are used to evaluate the classifier as were used to build it. This is called
"resubstitution." It would seem that this is a very dumb idea from what has been
said previously. However, it is a valid method of evaluation of classifiers. It is
biased, but it does provide an estimate of performance. It is probably best to avoid
it, though, because it will tend to give optimistic estimates of performance. For
the mathematically inclined, Devroye et al. [1996] has a short chapter devoted to
resubstitution.

An example of a classifier where resubstitution should never be used is the
nearest-neighbor classifier. In this classifier, the observation is given the class
associated with its nearest neighbor from the training data. However, if the test
observation is in the training data (as it would be with resubstitution), then it will
always get the observation right (assuming the observations are all distinct). Thus,
the resubstitution estimate of performance for the nearest-neighbor classifier is
perfect! The PD is 1 and the PFA is O. Note that this is the case regardless of
the problem or the training data. Obviously, this is not a particularly accurate
estimate of performance for this classifier.

Note that even with k-nearest neighbor (where the classifier takes a vote
amongst the k training observations closest to the point) the performance esti
mate will be severely biased by the resubstitution method. The effect would be
as if one were to take a vote among k people, where one of them always knew
the right answer. This will give a very optimistic estimate of the performance of
the classifier. In either of these cases, however, it is easy to turn the resubstitution
estimate into a leave I-out cross validation estimate assuming the observations are
distinct: instead of taking the k closest, take the k + 1 closest, but drop the closest
from the vote.

There is another problem with the detection and classification of rare events.
Even if you have a very good detector, with a very smallfalse alarm rate, it could be
that a large proportion of the "detections" are in fact false alarms. This seemingly
counter intuitive result can be derived as follows.

Recall Bayes' Theorem (Hogg and Craig [1995],):

P(CjIC) = ;(Cj)P(C!Cj)

L: P(Ci)P(C!Ci)
i=l

(3.1)

In our context, let C be the event that our classifier tells us it has detected an attack
(raises an alarm), C1 be the event that it really is an attack, and C2 the event that

78 3. EVALUATION

it is a false alarm (for this example, k = 2). Then, we have, from Equation (3.1),
letting I indicate an attack (intrusion), A indicate an alarm, and ..., indicating the
logical negative ("not"):

P{I)P{AII)
P(IIA) = P{I)P{AII) + P{...,I)P{AI...,I)· (3.2)

Now, let us look at some reasonable values. Suppose a network logs 1,000,000
packets per day, and of these 20 packets per day correspond to attacks (on average).
That says P{I) = 20/1,000,000 = 1/50,000. Suppose that our detection rate is
99% and false alarm rate 0.1 %. This says that P{AII) = 0.99 and P{AI...,I) =
0.001. Plugging these in, we have P{I/A) = 0.019, or about 2%, so only 1 alarm
out of 50 is an attack. If we can get our false alarm rate down to 0.01 %, things look
a little better: P{I/A) = 0.1653, or about 17%. This is the "base-rate fallacy"
described in Axelsson [1999] and Axelsson [2000]. It takes a false alarm rate of
0.001% (a probability of 10-5) to bring our probability of intrusion given an alarm
up to 66%. A security officer may very well ignore a system that is wrong 49 out
of 50 times and might very well be disgusted with a system that is right only 213
of the time, but as we have seen, it takes an extraordinarily good system to obtain
this level of performance.

This might seem strange until you realize what is actually happening here.
Since we only care about alarms, we are ignoring the vast majority of packets.
Thus, a system with a false alarm rate of 0.0000 1 and detection rate of 0.99 detects
(essentially) all of the 20 attacks, and roughly 10 extra packets. Put this way, this
seems quite reasonable (in fact, it's outstanding). The security officer mentioned
earlier might consider 66% to be perfectly fine. With a false alarm rate of 0.001,
this grows to 1000 extra packets. Now, our security officer may simply learn to
ignore the system. The problem lies in the vast number of "normal" packets. This
explains the focus of many research efforts on the reduction of false alarms.

The reduction of false alarms is particularly important in computer security.
As we will see, there are intrusion detection systems designed to detect network
intrusions (Chapter 4) and those designed for detection on a single host (Chapter
5). We will see that some attacks cannot be detected at the network level, whereas
other attacks are best handled at this level. False alarms at these two different
levels have dramatically different consequences.

For example, consider a network consisting of 100 machines. This network has
a network monitor at the firewall looking for network intrusion attempts such as
probes and mapping attempts (Section 4.3.2) or denial-of-service attacks (Section
4.3.1). On each host is a host-based intrusion detection system (IDS). Assume
that the people using the systems know nothing about security, so the attacks must
be reported to the site security officer (SSO). Now, consider the false alarm rates.
If the network IDS has 20 false alarms per day, then the SSO has 20 alarms that
must be tracked down and identified. If a host-based system has two false alarms
per day, then the SSO has 200 alarms to track down. Clearly, host-based systems
must either be handled by the individual owner of the system (an ideal that does
not appear to be attainable for the majority of organizations) or must have a much
lower false alarm rate (as measured by alarms per day) than network IDS systems.

3.3. RECEIVER OPERATOR CHARACTERISTIC CURVES 79

3.3 ROC CURVES

Most intrusion detection systems are primarily focused on the problem of detecting
attacks. Thus, they are two-class classifiers, with the two classes being "attack"
(class 1) and "not an attack" (class 2). Some go further and try to determine what
kind of attack it is and what the potential consequences are, but first and foremost
is the detection of the attack.

As we have seen, the two numbers of interest are the PD and PFA. However,
one generally cannot simply state the PD and PFA that one wants and design the
algorithm to provide them. If one could, one would always require a PD of one
and a PFA of zero. Consider for illustration the nearest neighbor-algorithm, with
the following twist: take the distances to the nearest observations from each class,
and consider the ratio. Thus,

L(x) _ d(x, Cd
- d(x, C2)'

(3.3)

where d is some distance metric and d(x,Ci) = min(d(x,c)lc E Ci). Using
Equation (3.3), we have the standard nearest-neighbor rule: Assign the point to
class 1 if L(x) < 1; otherwise, assign it to class 2.

Putting the algorithm into the form of Equation (3.3), however, allows us to
adjust the rule to change the PDIPFA. By considering L(x) < T for various values
of T < 1, we require the classifier to be "more sure" of its answer and thus
(potentially) decrease the PFA (possibly at the expense of decreasing the PD).
Similarly, considering values of T > 1 allows us to insist that the classifier call it
class 1 as long as there is some chance that it is an attack, increasing the PD, while
at the same time (potentially) increasing the PFA. By choosing different values for
T and computing the PDIPFA, we can produce a plot of PD vs. PFA. This is an
ROC curve.

3.4 THE DARPAIMITLL ID TESTBED

DARPA, the Defense Advanced Research Projects Agency, had a program in
computer security and intrusion detection and wished to obtain reliable estimates of
the detection and false alarm rates of competing algorithms and systems. In order to
do this, MIT Lincoln Labs (MITLL) was contacted to build a simulation network.
This would simulate network traffic into which attacks could be injected. This
eliminates the second problem mentioned earlier: there could be no "unknown"
attacks in the data. MITLL, and hence DARPA, would know everything about all
the attacks and other traffic.

In order to model network traffic, 4 months' worth of traffic was collected
at an Air Force base and analyzed. From this, the percentage of email, Web,
and other traffic was determined, as well as other information required for the
model. The simulation model consisted of models for different types of users
(secretaries, managers, etc.), so that a representative mix of the types of traffic
would be obtained.

80 3. EVALUATION

In order to model Web traffic, actual Web pages were downloaded that were
representative of the kinds of accesses seen in the Air Force data. Web surfing
sessions were then simulated throughout the network, with virtual machines acting
as the Web servers.

Email was simulated by generating random messages with the statistics of
English messages. It is not clear how the generation of these emails affects the
false alarm rate for systems that search email text for included viruses or other
attacks.

By producing a virtual network, MITLL was able to simulate a very large
network on a small number of real machines. This was a very cost-effective
scheme.

The MITLL approach is probably the best way to simulate network traffic.
Floyd and Paxson [1999] argue that we do not have enough infonnation about
the underlying statistics of the Internet, and thus that modeling Internet traffic is
inherently extremely difficult. They conclude that the best way to simulate network
traffic is by focusing on "source-level" traffic rather than packet-level traffic. This
is essentially what the MITLL simulation does by focusing on the applications
and simulated users rather than constructing individual packets. I do not know
whether the statistics of the packets (sizes, arrival times, etc.) is representative of
the true distributions of Internet traffic, but it is not clear that this level of detail
is relevant to intrusion detection systems. Cabrera et al. [2000] showed some
ability to detect intrusions by looking at deviations from traffic intensities (telnet
session arrival times) using a Kolmogorov-Smirnov test to test for deviations from
a Poisson distribution. This does indicate that at least for this kind of statistic the
simulated data seem to agree with Internet traffic statistics.

One issue that is relevant to the MITLL data is the question of how well the data
simulate real networks. As an anecdote, several of people who install SHADOW
sensors have told me that the first thing that must be done once a sensor is put in
place is to track down all the misconfigured hosts and routers on the network. They
always see a lot of broadcast packets and other indications of misconfigurations.
At NSWC, we had an instance of a machine in Colorado that kept trying to mount
a disk on one of our machines. This was the result not of an attack but rather of an
error in the IP address. The experience is that real networks are noisy. This noise
can have an impact on the false alarm rate of intrusion detection systems.

The first part of the MITLL study involved diseminating data to researchers
involved in the evaluation. Several weeks of data were generated and given to
researchers to tune their algorithms. For these data, all attacks were clearly marked.
The researchers were also given any infonnation about the protected network that
they desired. Data were of several types. There was network (tcpdump) data, log
data, and file data (such as file sizes, times and dates, and so on).

In the first evaluation, several algorithms were installed at MIT Lincoln Labs as
if they resided on the virtual network. In later tests, researchers were given several
weeks of test data in which no attacks were identified. The systems were then
required to provide DARPA with their detections in an agreed-upon fonnat. They
were encouraged to provide confidence numbers rather than binary responses, but
most algorithms in the early evaluations produced binary responses, so ROC curves
could not be computed.

3.4. THE DARPAIMITLL 10 TESTBED 81

The first results of the DARPA evaluation are reported in Durst et al. [1999].
This is a preliminary report of the first attempt. The evaluation process is ongoing,
and a number of problems with the first evaluation have been ironed out in subse
quent evaluations. For example, there was some controversy about scoring some
systems: do you count a detection if you flag some (but not all) of the attack as
suspicious? If you do not correctly classify the attack, but do flag it as an attack?
Differences of opinion on the scoring resulted in slight differences between the
claims of researchers and the results that DARPA reported.

The results of this first evaluation are not encouraging. The best algorithms
operated at a detection rate of about 25% with a false alarm rate of about 0.1 %.
A PFA of 0.1 % on network traffic is unacceptable for most large networks, even
though this number is computed on a per-session basis rather than on individual
packets.

More extensive evaluations have been performed since this first attempt. These
evaluations are reported in Lippmann et al. [1999]. Although the systems tested
continue to improve, the results are still not encouraging. The systems have a
difficult time with new attacks (not surprisingly), and they are not yet performing
(as of this evaluation) at the level DARPA has set as the goalposts for IDS systems.

The most difficult task that the DARPA evaluators have set for themselves is to
evaluate the performance of algorithms in the detection of novel attacks. In order
to perform this evaluation, the DARPA evaluators developed several new attacks,
which were not provided to the researchers in the training data. An obvious
question is how representative these novel attacks are of real attacks.

Another issue of concern in evaluating intrusion detection systems is to ensure
that systems are not penalized for missing attacks that they could not detect. For
example, the email viruses (see, for example, Section 6.7.3.1) cannot be detected
by a network monitoring system that only considers the packet headers. Thus, the
evaluators must determine the class of attacks that a given system can be used to
detect and only score a system on attacks appropriate to the system. To this end,
researchers were required to inform DARPA of the data used by the system and
the kinds of attacks that the system could be expected to detect.

There is a subtlety in the definition of "attack" that needs to be considered in
evaluating intrusion detection systems. The problem is that in some cases it is
intent that determines whether some activity constitutes an attack. The traceroute
"attack" is a good example (see pages 109 and 130). In this, the attacker uses the
traceroute utility to determine all the routes to a site. This can be used to determine
potential bottlenecks or downstream sites that can be attacked to shut off the target
site from the Internet. Traceroute can also be used to map out the routers within a
site. Unfortunately, traceroute is a commonly used utility, and there is no way to
tell the intent from the packets.

Some security analysts want to know when a host (or set of hosts) sends a large
number of traceroutes to their site, whereas others don't want to be bothered. If
a system reports traceroutes when they are not part of an attack, is this a false
positive? Is it a missed detection if the system does not report such an event
and it turns out to be an information gathering attempt prior to an attack? Since
one cannot determine intent from the packet trace, there is no way to distinguish

82 3. EVALUATION

between benign traceroutes and those intent on information gathering unless one
can correlate the packets with others that are also gathering information.

The problem is particularly germane to the DARPA approach of using simulated
data. One can easily set most systems to ignore specific events (like traceroute).
This kind of tuning is always done to configure the system for a specific network
environment and security policies. However, unless the security policies are very
specific and the virtual network environment well known, some systems may
produce poor results as a consequence of not being properly configured for the test
environment. To their credit, DARPA and MITLL have considered these issues
quite carefully in their evaluation.

The most recent published evaluation of the DARPA work is Lippmann et al.
[1999]. Six different research groups participated. Each group was given a train
ing data set in which attacks were identified and information about the protected
network was provided.

The groups were subsequently given test data in which attacks were embed
ded but not identified to the researchers. Thus, the evaluation was blind. The
researchers had to provide their system's detections, which were then used to
evaluate their performance.

As described earlier (and in more detail in Lippmann et al. [1999]), a con
siderable amount of work went into designing the victim network. Users were
simulated (and in some cases real users interacted with the network), different
applications were run on the network (Web, FTP, telnet, email, etc.), and the traffic
from these applications was sometimes generated according to models developed
by DARPA and MITLL and sometimes real sessions were taken and inserted on
the virtual network.

There was one potential flaw in the design of the experiment, however. There
were three Unix machines that were the victims of the bulk of the attacks (this
study involved only Unix machines): a Linux machine, a SunOS and a Solaris.
(A router was also a victim for some of the attacks.) If these machines were also
those attacked in the training data (Lippmann et al. [1999] are not clear on this
point), then there is the potential that algorithms could learn this (recall the tank
anecdotes from before) and ignore packets sent to other systems. Even if this were
not the case, it appears that only these three systems provided audit and file data,
so it would be reasonable even for those that did not use these data to assume that
they were the only machines attacked.

Recall the tank anecdote. I do not mean to imply that any of the researchers
used this information in designing their algorithms or in providing the results from
their algorithms to DARPA. However, a sufficiently sophisticated algorithm might
be able to infer that only a subset of the machines are ever attacked and incorporate
this into its algorithm, unbeknownst to the researchers. Even if this did not happen
in this experiment, it is something to keep in mind in future evaluations.

3.5 LIVE NETWORK TESTING

The DARPA approach has some very strong advantages over live data. For one, all
the attacks are known by the evaluation team (although not by the systems being

3.5. LIVE NETWORK TESTING 83

evaluated), so true detection and false alarm values can be calculated (with the
caveats mentioned in the previous section). The size of the network, volume of
traffic, and type of traffic can be adjusted as desired. Any desirable data can be
captured. The entire network is known down to the level of the operating systems
and users on the systems.

One problem with any simulation is to determine how well it simulates the real
world. Another is that even the best simulation is only modeling a specific network
environment, which may not be typical. The results may not be relevant to other
environments.

Another problem with a simulation is the modeling of novel attacks. Without
some model of attacks, it is very difficult to model new ones. DARPA and MITLL
have tried to create new attacks, and judging from the results of their studies, they
have done a pretty good job from the perspective of creating attacks that are hard
to detect. However, by their very nature, new attacks are often ones that nobody
predicted.

A good example, which we will see in Section 6.7.3.1, is the Melissa virus.
Unless one knows to look for certain types of macro-language commands within
attachments to email, this virus is going to be hard to detect. More importantly, it
requires quite a bit of imagination to come up with such an attack the first time.
Now that Melissa has made the news, these kinds of attacks are quite common.
However, how does one determine the probability that a system will detect next
year's "Melissa" attack? In other words, how does one determine the probability
of detecting the next new type of attack?

Live network testing tries to answer the questions related to real-world per
formance measures. By running real network data through a system, one can
determine the answers to the following questions:

• Does the system have an acceptable alarm rate? This means that the number
of alarms that tum out to be false is small enough, on the given network,
that the SSO can handle them.

• Does the system detect the attacks that it should? In a well-designed study,
one can have several different systems running, along with an SSO that
understands the network and the typical threats, and alert system adminis
trators that are on the lookout for attacks. Thus, one can detect the kinds
of attacks that are known, and can determine whether the tested system is
detecting them. This does not address the problem of novel attacks.

• What kinds of attacks are missed? With several systems looking at the
network, plus a knowledgeable SSO and alert system administrators, most
of the attacks on a given network or machine can be detected. This level of
alertness may not be maintained over the long term, but for short periods of
time, with sufficient effort, one can do a pretty good job of detecting all but
the most subtle attacks.

• What kinds of attacks are detected? A "red team" can be used to attack the
network, ensuring that real attacks are mounted. This can also allow for
interaction between the red t\'!am and the researchers to try to determine the

84 3. EVALUATION

blind spots in the systems being evaluated and suggest methods to improve
them.

• Does the system provide sufficient information about a suspected attack that
the true nature of the incident can be determined? Some systems may not
collect or retain the data necessary to do this.

• Can the system handle real data rates and all the problems that occur on real
networks?

Obviously, true false alarm and detection rates cannot be determined on a live
network, but they can be estimated, and it is not clear that these estimates are
worse than those obtained from simulations. As an analogy, consider the problem
of constructing a system to detect breast cancer from digital mammograms. One
needs a training set. This is a bit tricky. One could take all mammograms of
women who have had their cancer confirmed by biopsy, but this assumes that the
cancer was detected, and hence at best the training set consists of those cancers we
already know how to detect (although perhaps not as reliably as we would wish).
What images should we use as "clean" images? Again, if we call those for which
no biopsy was done "clean" we have no idea how many missed detections we are
allowing into our training set. It is infeasible (and unethical) to biopsy apparently
healthy breasts simply to construct a good training set, so one must live with the
fact that there may be missed cancers in both the training set and any test set we use
to evaluate the classifier. Imagine how difficult it would be to get FDA approval
for a system for the detection of breast cancer that had been designed and tested
exclusively on simulated mammograms.

Similarly, in real life, unless the intrusion detection algorithm can be constructed
from first principles (for example, using the RFCs to determine legal/illegal be
havior), it must be trained on real data, and these real data may contain missed
attacks. It seems reasonable that such systems should be trained and evaluated on
real data to get the best estimate possible of how they really work. This is not to
imply that simulation results are not extremely valuable, but it is my opinion that
they cannot completely take the place of real-world evaluations on real networks.

3.6 FURTHER READING

There are several good books on pattern recognition, and most of them discuss
classifier evaluation. One of the classics in statistical pattern recognition is Fuku
naga [1990]. Another classic that has been expanded and reissued in anew edition
is Duda et al. [2000] This is an excellent book that I highly recommend.

A book that discusses evaluation of classifiers at length is Hand [1997]. Devroye
et al. [1996] has a good, but quite theoretical, treatment of pattern recognition
theory.

Both Axelsson [1999] and McHugh [2000] give extensive critiques of the
DARPA intrusion detection evaluations. At the time of this writing the McHugh
paper is not yet published, so I am relying on descriptions of the paper. Axelsson

3.6. FURTHER READING 85

[1999] also discusses and critiques other evaluations that have appeared in the
literature.

Part II

Intrusion Detection

4
Network Monitoring

4.1 INTRODUCTION

Network monitoring involves attempting to detect attacks on a network, or on
hosts on the network, by monitoring the network traffic. This is usually done at
the firewall or filtering router, so that all traffic corning into the network can be
analyzed.

One of the best introductions to network monitoring can be found in Northcutt's
book (Northcutt [1999]). This is one of the few books, as of the time this is written,
that give explicit details on how one can detect intrusions at the network level.

We will start by describing one of the tools used for network monitoring, the
tcpdump program. We have seen how to use this program to monitor network
traffic in Section 1.2. In Section 4.2 we will look at how filters can be defined
to specify the types of packets of interest. This will give us the ability to scan
tcpdump files (or live network traffic) for packets that are indicative of certain
attacks.

In Section 4.3 we will consider some specific network-based attacks. Each
attack will be described in detail, with examples of network traffic illustrating the
attack when applicable and examples of tcpdump filters designed to detect the
attack when possible.

Although we will not detail any commercial network security products, we
will look at a freeware program, SHADOW, which is the result of work at the
Naval Surface Warfare Center. The advantage of considering SHADOW is that
the code is freely available and is based, for the most part, on tcpdump filters. This
discussion takes place in Section 4.4.

Finally, in Section 4.5, we look at using statistics to go beyond simple signature
based intrusion detection.

89 D. J. Marchette, Computer Intrusion Detection and Network Monitoring
© Springer Science+Business Media New York 2001

90 4. NETWORK MONITORING

4.2 TCPDUMP FILTERS

The tcpdump utility (see Section 1.2) has a built-in capability to filter packets
based on the header fields. This allows the user to look for certain known attacks
or unusual packets that may be indicative of new attacks, as we will see in the rest
of this chapter.

The syntax of the filters is quite simple. It makes use of a number of keywords:

src, dst, host, net, port, ip, tcp, udp, icmp, and, or, not.

In addition, specific fields can be addressed by their positions in the header.
There are other keywords, for example those specific to other protocols, but we
will focus on these alone. See the man page for more details.

Some examples will make this clear. A filter to select all TCP packets to the
machine 10.10.2.7 is simply

tcp and dst host 10.10.2.7

To select TCP packets to all machines on the 1O.IO.x.x network we use (note
the final period)

tcp and dst net 10.10.

Parentheses can be used for grouping. Consider the following

tcp and «dst port 22) or (dst port 23)) and host waldo.ourhouse.org

This filter looks for TCP packets that are sent to either port 22 (ssh) or 23
(telnet) and are to or from the machine waldo.ourhouse.org. Note that you can
specify the machines as either IP addresses or domain names, although specifying
domain names requires a DNS lookup initially, which may take a while if the filter
contains a large number of hosts.

Specific fields are addressed using a bracket notation

ip[6:2] & Oxlfff = 0

This tests the 2-byte field at position 6 bytes in the IP header, which contains
the flags and fragment-offset fields. It tests to see whether the fragment offset is
0, so we can use this to find the first fragment of a fragmented packet

(ip[6:1] & Ox20) and (ip[6:2] & Ox lfff = 0)

The first part finds packets with the "more fragments" flag set, and the second
ensures that it's the first fragment.

We can look for ranges using this notation as well. To find UDP packets with
destination port values less than 20, we use

4.3. COMMON ATTACKS 91

udp[2:2] < 20

Note that we cannot use something like: "dst port < 20"; we must use the field
index notation for ranges and bit manipulations.

We can combine these filter fragments using the "and" and "or" operators and
can negate using the "not" keyword. Thus, a filter to detect imap scans could be
written as

port 143 and not (dst host imapserv 1.ournet.com or dst host imapserv2.ournet.com
or src host imapserv3.friendnet.com)

The filters are "compiled" into a table for fast execution. Thus, there is a small
initial overhead in parsing the filters, but the execution has been optimized to
reduce packet loss. There is, however, a limit to the size of a filter.

4.3 COMMON ATTACKS

4.3.1 DOS Attacks

Denial-of-service (DOS) attacks attempt to shut down a network, computer, or
process, or otherwise deny the use of resources or services to the authorized users.
Generally speaking, DOS attacks at the network level attempt either to shut down
a computer or network, cause a dramatic slowdown in performance, or shut down
or otherwise make inaccessible a given service.

The listing in this section is not comprehensive, especially because new attacks
are invented almost daily, it seems, but rather gives a flavor for the kinds of attacks
that are possible.

4.3.1.1 Land Attack In the land attack, a TCP SYN packet is constructed
with the source and destination IP addresses the same and both set to the target
machine. On some older systems, this causes the system to lock up, and the
machine must be rebooted. A single packet is all that is needed by this attack. The
land attack signature is shown in Table 4.1.

A land attack is probably not effective in today's environment, but due to soft
ware reuse and potential coding errors in future systems, there is always the pos
sibility that this attack, like any other, may become effective once again against
some future system.

The land attack illustrates a common thread in most denial-of-service (and
many other) attacks. A strange or "impossible" packet is specially crafted, and
some bug or unrecognized feature is exercised by the receipt of the strange packet.
These "features" can be detected by perusing the source code of the application
or operating system, trial-and-error, logical extension of published standards, and
by accident.

Note that in this attack the source destination of the packet has been set by the
attacker. This is called "spoofing" and can occur either to hide the identity of the
attacker or, as in this case, as a fundamental part of the attack.

92 4. NETWORK MONITORING

Table 4. 1 Land attack signature.

Protocol Specifics Effect

TCP SYN packet with same source and destination Locks up system

Example:

06:49:55.4710.10.2.23.139> 10.10.2.23.139: S

Filter: ip[12:4] = ip[16:4]

Comment:

General filter to detect any IP packet with equal source and destination. Note

that we cannot say the more natural "src host == dst host."

Table 4.2 Neptune attack signature.

Protocol Specifics Effect

TCP SYN packet from unreachable host Overflows connection buffer

Example:

09:23:17.47172.16.43.19.1233> 10.10.2.23.25: S

09:23:17.61 172.16.43.19.1234> 10.10.2.23.25: S

09:23:17.96172.16.43.19.1235> 10.10.2.23.25: S

etc.

Filter: This cannot be filtered with tcpdump.

Comment:

The signature requires that 172.16.43.19 be unreachable. The destination IP

addresses need not be the same so long as they are unreachable. The destination

ports can be any open port. The source ports are arbitrary. Some services have

mechanisms in place to restrict the number of connections, so this may be

ineffective against those services.

4.3.1.2 Neptune Neptune, or "SYN flood," utilizes the fact that for each
half-open TCP connection made to a machine, tcpd (the program that handles
telnet, FTP, and other connections) creates a record in a data structure to hold
the information about the connection. If the connection is not completed within
a certain amount of time, the connection "times out" and the record is freed. If

4.3. COMMON AITACKS 93

enough connections can be initialized before the timeout occurs, the data structure
can overflow, causing a segmentation fault and locking up the computer.

In this attack, the packets are crafted to have a source IP address that is unreach
able. This is so that no host responds to the SYNI ACK sent by the target, forcing
the connection to stay open. A large number of such SYN packets are sent to the
machine in a short amount of time. See Table 4.2 for the Neptune attack signature.

4.3.1.3 Ping 0' Death The Ping 0' Death is an ICMP echo request (ping)
packet with an illegally long (longer than 64K bytes) payload. Older operating
systems lock up or reboot when the buffer into which the incoming packet is stored
overflows. Early versions ofWindows95 had a ping program that would allow one
to specify the packet length, even if the length was too big for a normal packet,
making this a particularly popular attack for a while. As with the land attack, this
requires only a single packet to be effective. Also, like the land attack, few if any
modem operating systems are vulnerable. The Ping 0' Death signature is shown
in Table 4.3.

Table 4.3 Ping 0' Death signature.

Protocol Specifics Effect

ICMP Packet larger than maximum IP packet Locks up system

Example:

172.16.12.37> 10.10.2.23: icmp: echo request (frag 1213:350@0+)

172.16.12.37> 10.10.2.23: (frag 1213:350@350+)

172.16.12.37> 10.10.2.23: (frag 1213:350@700+)

172.16.12.37> 10.10.2.23: (frag 1213:350@1050+)

172.16.12.37> 10.10.2.23: (frag 1213:350@65100+)

172.16.12.37> 10.10.2.23: (frag 1213:300@65450)

Filter: icmp and (ip[6:1] & Ox20 != 0) or (ip[6:2] & Oxlfff!= 0)

Comment:

This only detects fragmented ICMP packets. One must then

check to see whether the packet is too large.

4.3.1.4 Process Table The process table attack was developed by MIT Lin
coln Labs for DARPA to be used as part of a test of intrusion detection systems.
The idea was to develop a new attack to see whether the systems would be able
to detect it. It is an attack against Unix systems. The basic idea comes from the
fact that each time an incoming TCP connection is received, a process is forked.
By initiating many connections, the attacker can fill up the process table. Once

94 4. NETWORK MONITORING

the table is full, no new processes can be spawned, so nothing can be done on the
computer. See Table 4.4 for the attack signature.

This attack must be mounted against a service that accepts connections but
not against one that restricts the number of connections accepted. For example,
sendmail will not accept new connections if the load average is too high, so it is
not a good target for this attack.

Table 4.4 Process table signature.

Protocol Specifics Effect

TCP Large number of connections initiated Locks up the system

Example:

07:42:16.57172.16.43.19.1233> 10.10.2.23.79: S

07:42:16.64172.16.43.19.1234> 10.10.2.23.79: S

07:42:17.06172.16.43.19.1235> 10.10.2.23.79: S

Comment:

There is no way to filter or detect this at the single packet level.

One must tally the number of connections between machines.

One example of this attack is to initiate a large number of finger sessions.
The finger program is a method of sharing information about users that pre-dates
the Web. Some earlier versions of finger did not time out, which means that
once you open a connection it stays open until you close it (or the machine is
rebooted). Each connection gets its own process ID, and if enough connections
are initiated, eventually the process table is full. This is particularly annoying to
anyone legitimately using the machine since any command will generate a "no
more processes" message and fail to execute.

A related phenomenon is caused by a program using all the machine memory.
If a program allocates all the memory that the machine has (including most of the
swap space), typing any command (even Is) will cause a core dump (the program
crashes). This is usually the result of a programmer not taking care to check the
available memory before allocating, but it could also be the result of a worm or
other malicious code.

4.3.1.5 Targa3 The Targa3 attack sends a combination of illegal packets to
the victim machine. These malformed packets cause some systems to crash, and
even those that are not specifically harmed by the packets will use up resources
dealing with the packets. These packets have one or more of the following:

• Invalid fragmentation, protocol, packet size, or IP header values;

• Invalid options;

1CMP echo reque t

rom: Target (spoofed)

To: 172.16.255.255

Attacker

4.3. COMMON ATTACKS 95

TCMP echo replie

From 1000 of

machines

Target
Fig. 4. 1 A Smurf attack .

• Invalid TCP segments;

• Invalid routing flags.

Rather than list all possible malformed packets (which would be necessary for
a tcpdump filter), the way to detect this attack is simply to check each incoming
packet for legitimacy.

4.3.1.6 Smurf Attack The Smurf attack has three participants: the attacker,
the target, and an intermediary who is fooled into actually mounting the attack. The
attack is depicted in Figure 4.1. The attacker constructs echo request packets (ping)
with the target as the source IP and the intermediary as the destination IP. These
are broadcast, to maximize the number of machines responding. The machines
at the intermediary network all respond to the echo request with packets destined
for the target machine. The target machine cannot process the large number of
packets received and goes down under the load. At the very least, it is unable to
process legitimate connections and so is effectively cut off from the network. The
signature is shown in Table 4.5.

Note that, from the target's perspective, the attacker does not appear in the
network trace. Only by looking at the intermediary network's logs (if they are
kept) can the attacker be traced.

4.3.1.7 Syslogd Attack The syslogd attack kills the syslogd demon on a
Solaris server. Older versions of this demon would crash if given a source address
with no DNS entry, so the attack consists of packets sent to the syslog port, where
the source IP address has been spoofed to be one without a DNS entry. The
signature is shown in Table 4.6.

Note that we cannot tell that there is no DNS entry for the source without doing
a DNS lookup ourselves. This is unnecessary since none but our own machines
should be connecting to our syslog. These should be blocked at the firewall, so the
attack should fail on any reasonably secure network even ifthere are old, unpatched
Solaris machines on the network. (Of course, a reasonably secure network should
not have unpatched machines on it in the first place.)

96 4. NETWORK MONITORING

Table 4.5 Smurf signature.

Protocol Specifics Effect

ICMP Echo requests sent to broadcast with the Target taken off the

target host spoofed as the destination

Filter: icmp and (ip[l9] = 255) or (ip[l9] = 0)

Comment:

network

This only detects attempts to use your network as an intermediary. Filtering

for ICMP echo replies combined with further processing to count the

number of packets to any individual machine is necessary to detect a Smurf

attack. A solution is to deny ICMP echo replies at the firewall unless they

are in response to an outgoing ICMP echo request. This requires a stateful

firewall. Some people advise blocking (nearly) all ICMP packets at the firewall.

4.3.1.8 Teardrop Teardrop takes advantage of the fact that some older TCPIIP
implementations do not properly handle overlapping fragments. An attacker sends
a series of packets carefully crafted to look like a normal packet that has been frag
mented but such that the fragments overlap instead of being disjoint. The receiving
machine crashes. An example is given in Table 4.7.

4.3.1.9 UDP Storm UDP storm causes two of your machines to attack each
other. The idea is that there are a number of ports that will respond with another

Table 4.6 Syslogd signature.

Protocol Specifics Effect

TCP Source host has no DNS entry syslogd crashes

Example:

11:23:17.42172.16.51.2137> 10.10.13.32.514 S:

Filter: tcp and (dst port 514) and not (src net 10.10.)

Comment:

Look for external connections to the syslogd port.

4.3. COMMON ATTACKS 97

Table 4.7 Teardrop signature.

Protocol Specifics Effect

UDP Fragmented packet, fragments overlap Locks up system

Example:

07:21:33.21172.16.123.37.23453> 10.10.2.23.53: udp (frag 1213:350@0+)

07:21:33.21172.16.123.37.23453> 10.10.2.23.53: (frag 1213:300@350)

Filter: udp and (ip[6:1] & Ox20 != 0)

Comment:

This only detects fragmented UDP packets.

One must then check to see whether the fragments overlap.

packet if a packet is sent. Echo (port 7) and chargen (port 19) are this way. Echo
will echo the packet back, while chargen will generate a stream of characters.

Consider a UDP packet with source port 7 and destination port 19. The packet
generates some characters from the destination machine, headed for the echo port
of the source machine. The source machine echoes these packets back, generating
even more packets, and so on. Eventually, both machines are spending all their
time sending packets back and forth until one or both of them go down. See Table
4.8 for the signature.

As a matter of course packets that come from outside your network that have
a source IP address inside your network should be blocked at the firewall. These

Table 4.8 UDP storm signature.

Protocol Specifics

UDP Source Port: 7

Destination Port: 19

Example:

Effect

Both hosts lock up

11:23:17.4210.10.2.34.7> 10.10.2.37.19

Filter: udp and (src port 7) and (dst port 19)

Comment:

Other ports can be used, as long as they both respond to packets.

98 4. NETWORK MONITORING

are almost certainly spoofed packets. Even if they are not an attack they are an
indication of something gone wrong.

4.3.2 Probes and Network Mapping

One of the first things an attacker needs to do is determine information about the
hosts on your network. This includes a list of the IP addresses that are valid and
the operating systems and services running on the hosts. Network mapping refers
to the act of obtaining a list of the hosts on the network, whereas probing refers to
methods for determining specific information about individual machines.

A typical attack involves first mapping the network to determine the active ma
chines, followed by probing select machines to determine the operating system
and services running on the machine, selecting a service for which a known vul
nerability exists, and launching an attack against the selected machine and service.
We will discuss each of these topics in tum.

4.3.2.1 Network Mapping The simplest network mapping technique is to
send a ping to broadcast and see who replies. If the target network is the class B
network 1O.IO.x.x, the attacker sends some packets such as

11:42:16.33 attacker. com > 10.10.255.255 ICMP: Echo Request

Several packets are sent to ensure that the information is not corrupted by lost
packets. The source address cannot be spoofed since the return packets must be
examined. However, the attacker can send several packets with spoofed addresses
along with the real ones in order to sow confusion. This kind of mapping attack is
trivial to detect and can easily be blocked by a firewall that refuses to pass broadcast
packets.

Another approach is to send packets to every possible computer on the network.
Using TCP, one selects a port that is passed by the firewall, and hence will get to
the target machines, and then starts sending packets to each possible IP address.
Suppose the firewall allows telnet (port 23) access from any IP address outside the
network. Then, the first few packets in this scan look like:

11:47:34.09 attacker.com.2213 > 10.10.1.1.23 S
11:47:34.19 attacker.com.2213 > 10.10.1.2.23 S
11:47:34.27 attacker.com.2213 > 10.10.1.3.23 S
etc.

Again, this is easy to detect if the attacker is this single-minded. If the target
machines are randomized, however, and the packets are spread out in time (a so
called low-and-slow scan), this kind of attack can be difficult to detect. There is a
tradeoff of course. With over 65,000 possible machines in this network, sending
one packet a minute results in a scan that takes a month and a half. If the attacker
has the patience to do this, the attack may go undetected. However, it only takes
one alert system administrator to see the connection attempt and become curious

4.3. COMMON ATTACKS 99

and detect the attack. Also, one packet a minute might be too many; the attacker
may want to send only one an hour, in which case this scan is not feasible.

A more sophisticated attacker might try to target the scan more intelligently.
For example, it may be enough for the attacker's purposes to find a small number of
machines, in which case a randomized low-and-slow scan as above will probably
be successful. It stops when enough machines have been detected.

There are ways to make the scan harder to detect. The preceding scan used SYN
packets, which are logged on many machines and which most intrusion detection
systems watch. By simply changing the flag, one can make the scan harder to
detect:

10:47:34.33 attacker.com.2213 > 10.10.17.121.23 Sack
11:13:21.24 attacker.com.2213 > 10.10.3.207.23 Sack
12:11:11.53 attacker.com.2213 > 10.10.51.14.23 Sack
etc.

In this case, the scan looks as if the attacker is simply responding to a series
of connection requests from machines on the target network. If the attacker is
slightly more clever, the scan can look as though the target machines are simply
Web surfing (port 80):

10:47:34.33 attacker. com. 80 > 1O.1O.17.121.2214S ack
11: 13:21.24 attacker.com.80 > 10.10.3.207.2043 Sack
12:11:11.53 attacker.com.80 > 10.10.51.14.3219 Sack
etc.

In order to detect this kind of scan, the intrusion detection system must either
be stateful (remember that there were no outgoing SYN packets to initiate the
sessions) or keep a (current) list of all active machines on the network.

Another option is to send reset packets:

11:47:34.09 attacker.com.2213 > 10.10.17.121.23 R
11:53:43.12 attacker.com.2213 > 10.10.3.207.23 R
12:31:24.01 attacker.com.2213 > 10.10.51.14.23 R
etc.

Reset flags are used to indicate that something has gone wrong with a connection
session and are passed by most firewalls (stateful firewalls can detect that the reset
was not the result of an ongoing connection and deny it.) They are not logged by
many hosts, and they are common enough that they are often ignored by intrusion
detection systems. Again, unless the system is stateful, these have a very good
chance of going undetected.

Several examples of reset scans are discussed in Green et al. [1999]. Resets
can be explained in a number of ways:

• As discussed earlier, a reset is sent during the normal functioning of TCPIIP.
For example, if a machine sends a SYN packet to a port that is not accepting

100 4. NETWORK MONITORING

connections, a reset packet will result. Thus, an incoming reset that is in
response to an outbound connection attempt is not an indication of a reset
scan.

• Incoming resets can be the result of an attack on a third party. As in the Smurf
attack, if an attacker sends packets to a network with the source address
spoofed, all the response packets (SYN/ACKs or resets, for example) go to
the spoofed machines and can show up as if it were a coordinated scanning
or denial-of-service attempt.

• Reset scanning is an inverse mapping technique. If a machine receives a
reset packet, it simply ignores it, sending no response. If, however, a router
receives a reset packet destined for a machine that does not exist, it will send
an ICMP error message indicating that the host does not exist. Thus, the
inverse of the machines that generated a response is a list of the machines
that are alive on the network.

• A final use for resets as an attack tool is in TCP hijacking. To close off
one side of a connection during a hijacking, a reset packet is sent. This is
discussed in more detail in Section 4.3.3.2.

Another use for network scanning is to look for installed trojans. Trojans are
programs that are loaded on a system (often unknowingly by the legitimate users
of the system) that have a sinister hidden purpose as well as their apparent one.
The name comes from the Greek horse of the same name, of course. Some trojans
listen at particular ports and, upon receipt of a packet to that port, announce their
presence to the attacker. The attacker can then make use of the troj an to gain access
to the machine. In some cases, the trojan gives the attacker complete control over
the machine, even to the extent of turning on the microphone (if one is plugged
in) and listening to conversations around the machine! We will discuss trojans in
more detail in Chapter 7.

4.3.2.2 Fingerprinting Fingerprinting is the term used for determining the
operating system (or other unique identifier) for a system. For example, as we
will see in Sections 4.9.1 and 4.9.2, there are programs that will perform this
function for you, either actively (by sending packets to the machine) or passively
(by analyzing the packets sent to your machine).

As we will see later, fingerprinting can be done in a fairly deterministic manner.
Different operating systems react differently to different stimuli, and their reactions
can be used to do a pretty good job of operating system (OS) identification.

However, this is not perfect, which means that there is a great opportunity for
statistics to playa part. In this section, I will present some thoughts on this topic,
although to my knowledge no one has attempted to apply statistical methods to
the problem of (passive or active) operating system determination.

Fyodor [1999] is one of the first papers to discuss operating system fingerprint
ing. Let us consider some of the issues discussed in this paper, with a view to
discovering areas in which the statistician may participate.

Fyodor lists a number of techniques for OS determination. He is primarily
interested in this paper in active fingerprinting, in which responses to crafted

4.3. COMMON ATTACKS 101

packets are used to make inferences about the as of the probed machine. One
obvious use for statistics would be to determine the best order of packets, so that
we can reduce the number of packets sent prior to making an as determination.
This would be a useful contribution.

One basic technique in as fingerprinting is to send a packet with a strange flag
combination. For example, an unexpected FIN packet will cause some systems
to respond even though the "correct" action is to ignore the packet. Similarly,
different ass will respond to strange flag combinations differently. Fyodor reports
that early Linux implementations will leave the strange flags set in their response
back. Thus, by looking at the response to these unusual flag combinations, one
obtains information that can help to identify the operating system of the machine
of interest.

Another indicator that can be used is the pattern of sequence numbers chosen
by the host. Is it random or deterministic? Fyodor reports that statistics computed
on the sequence numbers (such as variance) can be be used to cluster operating
systems. This requires a fair number of packets and so might be better as a passive
fingerprinting technique.

Many operating systems set the "don't fragment" bit as a matter of course,
whereas others only do it under certain circumstances. Newer operating systems
tend to set it more often than older ones. This is my favorite example because it
allows the clustering of operating systems by considering a single bit (although
obviously there are only two clusters). This could be used in either an active or
passive fingerprinting system.

There are various options available to an operating system for reporting errors
via ICMP. For example, if a machine receives a large number of packets to a
closed port, it need not generate an ICMP destination umeachable message for
every one. Different operating systems make different choices about what to do
in these optional situations.

One of the richest areas for fingerprinting features is the options field. Obvi
ously, since these are optional, operating systems are free to implement those they
wish, and to use these pretty much whenever they wish. Thus, the pattern of their
usage can be very useful in determining the as.

Fyodor notes that a certain operating system (which will remain nameless) has
not (apparently) changed the stack since 1995 (this is a hint). Thus, it is difficult to
distinguish which version of the operating system the host is running, since they
all act the same. One method (suggested tongue-in-cheek by Fyodor) is to start
with old attacks against this operating system suite and work your way up the list
until one of them succeeds. This is one reason why I prefer passive fingerprinting
to active fingerprinting: the temptation to be bad can be quite strong.

Now let us focus on passive fingerprinting. A good place to start learning about
passive fingerprinting is Spitzner [2000]. Much of the preceding discussion is
also relevant to passive fingerprinting. There are several issues unique to passive
fingerprinting, however. We will look at these to search for potential applications
of statistical methods.

Passive fingerprinting, like active fingerprinting, uses the values of the header
fields to guess the operating system of the originating machine. Examples of
useful fields are the ones that allow for variability among operating systems, such

102 4. NETWORK MONITORING

as TTL, window size, type of service, and whether the don't fragment flag is set.
I conjecture that the value in the urgent pointer field is a potential key to operating
systems if the urgent flag is not set.

The first field mentioned, TTL, already points out an area worthy of investigation
by the statistician. Since the initial value of this field is unknown (but is the value
needed for as fingerprinting), one must estimate it. One method is to assume the
original value to be the smallest power of 2 larger than the current value, or 255,
whichever is smaller. An alternative would be to use other values to get a list of
tentative ass and then, using the default values of the TTL for them, determine
the best fit for the TTL. Since not all ass set the value to a power of 2, the second
method is more likely to work than the first.

The report by the Swiss Academic & Research Network [1999] gives a listing
of the default values of the TTL for various operating systems. They make two
observations up front. First, the guidelines for Internet hosts state that the default
TTL must be configurable, which means that a sufficiently sophisticated attacker
can change the default TTL (or the TTL value of any individual outgoing packet).
Recall that this ability is critical to the functioning of traceroute (Section 1.9.5).
Second, the default number must be larger than the diameter of the Internet. This is
defined as the longest possible path between hosts (recall that loops are not allowed,
so this is well-defined). Obviously, this brings up the interesting question of how
one estimates the diameter of the Internet.

The values of default TTLs for TCP packets given in Swiss Academic & Re
search Network [1999] are: 30, 32, 60, 64, 128, and 255. Thus, given a packet
with a TTL value of X, one must first determine whether it was originally set at
one of these values or another value (which in itself provides information about
the attacker) and, if so, which one. This seems to be an interesting problem to
investigate.

Note that if we take the advice given by the RFC (which is to set the value at
twice the diameter of the Internet) and ignore the 255 value, we have the vendor
estimates of the diameter of the Internet at (at least) 15, 16,60,32 and 64.

Current methods for passive fingerprinting rely mostly on table lookups. The
preceding discussion argues for a tree-based method. Given certain values of the
parameters, one may impute the original value of the TTL and, using this estimate
and the other values, make a decision. Since each field splits the possible operating
systems into groups based on the value, a technique such as CART (Brieman et al.
[1998]) seems like an obvious method to try.

4.3.2.3 Probes Several services have known vulnerabilities that can be ex
ploited by an attacker to gain access to the machine. Different versions of the
software will of course contain different vulnerabilities, so it is important to deter
mine not only which services the target machine is running but also which versions
of the different services are running.

First, the attacker determines the services running by a port scan of the target
machine. The simplest is once again to scan all the ports, an approach that is
easy to detect. Smarter attackers will only probe for ports that they know they can
compromise:

4.3. COMMON ATTACKS 103

13: 12:22.33 attacker.com.2113 > 10.10. 17. 12l.telnet S
13:13:22.54 attacker.com.2114 > 10. 10. 17.121.smtp S
13:13:22.73 attacker.com.2115 > 10. 10. 17. 121.finger S
13:13:22.97 attacker.com.2116 > 10. 10. 17. 121.http S
13:13:23.13 attacker.com.2117 > 10. 10. 17.1 21.imap S
13:13:23.27 attacker.com.2118 > 1O.1O.17.121.rloginS
13:13:23.41 attacker.com.2119 > 1O.1O.17.121.printerS

Once a service has been detected, the easiest way to determine what version it
is running is to look at the response it sent. For example, if one types the command

telnet mycomputer.com 25

one gets an answer like

220 mycomputer.com ESMTP Sendmail 8.9.3/8.9.3; Sat, 8 Jan 2000 12:04:01 -
0500

Typing help at this prompt results in

214-This is Sendmail version 8.9.3
214-Topics:
214-HELO EHLO MAIL RCPT DATA
214-RSET NOOP QUIT HELP VRFY
214-EXPN VERB ETRN DSN
214-For more info use 'HELP <topic>'.
214-To report bugs in the implementation send email to
214-sendmail-bugs@sendmail.org.
214-For local information send email to Postmaster at
214- your site.
214 End of HELP info

In this manner, many of the services will tell the attacker what version of the
software is running and even provide simple help menus for the novice attacker.

Most intrusion detection systems have a list of ports that are considered "bad"
and will result in an alert if a packet is sent to one of these ports. An example list
is shown in Table 4.9.

Of course, one may want to run some of these services on some of the machines
on one's network, so a single global list like this is probably inappropriate for most
real networks. Instead, one might add a list of the machines that are running the
services listed plus a list ofthe machines (or networks) that are allowed to access
those services.

4.3.3 Gaining Access

Most of the techniques for gaining access to machines are better discussed in
the chapter on host monitoring, Chapter 5. However, there are some that can be
detected via network monitoring, and we will discuss these here.

104 4. NETWORK MONITORING

Tab/e4.9 An example "bad ports" list.

Port Number Protocol Service Comment

<20 TCP,UDP Low-numbered ports

23 TCp,UDP Telnet

25 TCP,UDP SMTPEmail Many vulnerabilities

53 TCP DNS Zone transfer

79 TCP,UDP Finger Vulnerabilities

111 TCP,UDP sunrpc Vulnerabilities

143 TCP,UDP IMAP Vulnerabilities

666 TCP,UDP Doom Networked game

4.3.3.1 Password Guessing Most machines allow some form of remote
access, such as telnet, rlogin, FTP, ssh,. These require a user name and a password.
User names are relatively easy to obtain. Many systems use the user name as the
email address, so one can obtain user names from email, Usenet postings, or by
doing email searches on the Web. Also, most operating systems have specific user
names for particular tasks: root, lp, admin, guest, and so forth.

Once one has a user name and has determined that a service is running (such as
telnet) to allow remote access, one can attempt to log in as that user. If the system
is poorly maintained, some of the accounts may not even require a password (in
the past, Silicon Graphics machines were shipped with no password for the user
"lp"). Otherwise, one can try to guess the password.

From the perspective of network monitoring, password guessing shows up as
a large number of connections to telnet (or whichever service is utilized) that end
abruptly. If one looks at content, these are obvious from the number of different
passwords attempted. Of course, people are often forgetting their passwords, and
so this could simply be the legitimate user trying likely passwords. However, any
such attempts should be investigated.

It should be noted that in spite of the movie portrayals, guessing passwords in
this manner is particularly ineffective. A better way to determine a password is
either through social engineering or by obtaining the password file and running a
password cracking program on it.

Social engineering is one of the most useful tools for a hacker intent on unau
thorized access. For example, the user receives a call from someone claiming to
be a representative of the manufacturer of the computer. It seems that there is a
potential problem with one of the system files on the machine, and the company
engineer needs access to an account so that it can be checked and, if necessary,
fixed. This is all part of the maintenance agreement. Or the caller is a harried vice
president who can't remember his password and needs to get his viewgraphs off
the company server. If he can just get access to the machine for a few minutes
he can download his viewgraphs to his laptop. Surprisingly, there are people who
will dutifully provide the caller with an account on the machine.

4.3. COMMON ATTACKS 105

4.3.3.2 TCP Hijacking TCP hijacking is a clever attack that takes advantage
of the fact that computers generally only check things once. It also takes advantage
of the fact that many (most?) operating systems are not written with security
foremost in mind. This is the attack that Kevin Mitnick used against Tsutomu
Shimomura's system, as described in Northcutt [1999]. See also Hafner and
Markoff [1995].

Consider Figure 4.2. The attacker wishes access to computer A. The attacker
knows that computer A trusts computer B. This has been determined by some
intelligence gathering described in Northcutt [1999], pages 5-7. Recall how a
connection is set up (see Section 1.5.4.1, Figure 1.8). A SYN packet is sent with a
unique sequence number from B to A. A responds with a SYNI ACK and a unique
acknowledgment number. B responds with an ACK. The idea of TCP hijacking is
to pretend to be the trusted machine B, set up a connection, but have the connection
be between A and the attacker rather than between A and B. In order to accomplish
this, the attacker must perform the following steps.

Machine A Machine B

L. SYN Flood

Fig. 4.2 TCP hijacking. 1. Attacker SYN floods machine B to make sure it does not
respond to any packets from machine A. 2. Attacker initiates a connection with Machine A
using a SYN packet spoofed to appear to be from Machine B. 3. Machine A acknowledges
the connection. 4. Attacker sends an ACK packet with the correct sequence number
to Machine A, finishing the three-way handshake. This assumes that the attacker has
previously determined the sequence number algorithm that A uses, and has determined the
next sequence number that A will use.

1. Determine the next sequence number to be used by A.

2. Take B off the network so that it cannot respond.

3. Send a SYN packet to A with B as the source.

106 4. NETWORK MONITORING

4. Send an ACK packet to A using the acknowledgment number A expects,
now with the source host as the attacker.

The sequence number rule is determined by sending a series of connection
requests to A and analyzing the sequence numbers with which it responds. Often,
these use a simple algorithm such as adding a constant to the last number used.
Once the rule has been determined, a SYN packet followed by a RESET is sent to
determine the current sequence number. Then, the SYN packet is sent to initiate
the connection.

Machine B can be taken off the network with a SYN flood or similar denial
of-service attack (Section 4.3.1.2). With B unable to respond to A's SYN/ACK,
the attacker is free to jump in with the right response to the SYN/ACK, now with
the attacking machine as the source IP address, and the connection is established.
Further packets now proceed between A and the attacker.

Why isn't the change in IP addresses detected? After all, the final ACK is
coming from a different machine than the original S YN. Shouldn't this be noticed?
The reason it generally is not noticed can be placed on the doorstep of the layered
approach to networking. The IP address is at the IP layer, while the sequence
number, which determines the connection to which the packet belongs, is handled
at the TCP (protocol) layer. Thus, unless the TCP layer specifically looks back at
the IP header to validate the connection, it does not keep track of the IP addresses
at all. Similarly, since the IP layer does not handle the connections, it does not
know to check that the IP addresses have changed. As far as it's concerned, these
are just more packets to be forwarded to the protocol layer.

Furthermore, A trusts the attacking machine. The first packet, which had B
as the source address, was used to determine whether the machine asking for the
connection is trusted. Once it was determined that B is a trusted machine, the
connection is deemed to be with a trusted machine, and since the change in IP
addresses is not noted, the attacking machine inherits this trust relationship.

Hijacking is easy to detect and foil. A stateful firewall can notice that the IP
addresses have changed and disallow the connection, and network monitors can
watch for connections that change IP addresses in midstream. Also, hijacking
can be discouraged by making sequence numbers difficult to guess. For example,
Linux uses a random number generator to generate new sequence numbers, making
it extremely difficult to hijack sessions in this manner.

4.4 SHADOW

SHADOW, which stands for Secondary Heuristic Analysis for Defensive Online
Warfare, is a project developed at the Naval Surface Warfare Center (NSWC) for
the purpose of detecting intrusion attempts into the network and correlating data
across multiple networks.

SHADOW is a suite of freely available software consisting of tcpdump filters,
perl scripts, and Web pages for the detection and display of unusual or inappropriate
packets. The system is designed to be configured to the network in order to
allow security people to tune the filters as appropriate to their network. The

4.4. SHADOW 107

Sensor

Firewall

Internet

~i~~i~ Internal Network

Fig. 4.3 A typical SHADOW configuration. The sensor is passive with no IP address
for the network card on the Internet. Special care is taken to ensure that no packets are sent
out onto the external network by the sensor and that only connections from the analysis
station, on the internal network card, are allowed.

software also helps the security analyst to write and send intrusion reports, gather
information on the intruder (through nslookup (Section 1.9.2) and whois (Section
1.9.3) commands), and gather information on the security ofthe protected network
(using nmap (Section 4.9.1». The software allows the monitoring of multiple sites
and allows simple searches of the data to determine the context in which a suspected
attack occurs or to determine the past activity of a suspected attacker.

SHADOW is an "interval-based IDS," rather than a "real-time IDS." This means
that the data are collected over a period of time (usually an hour) and processed in
batches rather than having the system on-line, detecting attacks as they happen.

The usual SHADOW setup (Figure 4.3) is to have two machines dedicated to
SHADOW. The first, called the sensor, is a machine (usually a Linux box with two
network cards) sitting outside the firewall. The second, called the analysis station,
is usually a high-end Linux box, which resides inside the firewall. The sensor does
little more than collect packets. On an hourly basis, it transmits (via secure shell)
the last hour's worth of data to the analysis station for processing. Actually, for
obvious reasons, the analysis station initiates the transfer, getting the data from the
sensor rather than the sensor sending data to the analysis station unasked.

The reason the sensor sits outside the firewall is to ensure that all attacks (even
those that do not succeed in passing the firewall) are detected. Although firewall
logs could be used to detect unsuccessful attacks, they are (surprisingly) not always
available to the people doing intrusion detection. The people running the network
(and hence the firewall) are not always the people in charge of security, even

108 4. NETWORK MONITORING

network security. This seems counter-intuitive (and it is), but is not that uncommon.
It clearly is not the best model for security.

Some people advocate having a second sensor inside the firewall. This allows
the security officer to determine which packets passed the firewall and which were
knocked down (by differencing the inside and outside files). It also gives a second
line of defense, protected by the firewall, in the event that the outside sensor is
taken out.

There are some differences of opinion about how the sensor should be config
ured. One model is to have a single network card and have all communication with
the sensor go through the firewall. This has the disadvantage that it increases the
load on the network (as the packets are sent to the analysis station). It also means
that the sensor is visible to the outside since it needs to have an IP address.

An alternative is to give the sensor two network cards. The first, connected to
the incoming network, is a read-only interface (made so with software, or by a
judicious use of wire cutters). This is the sensor card, which watches the traffic and
makes copies of all the packets. This card does not have an IP address associated
with it, so the sensor is relatively invisible to the outside world. Since it is read
only, the sensor cannot be used to send information out even if it is compromised.
The second card is connected to a local area network inside the firewall, which
also serves the analysis station. In this manner, the data transfers do not impact
on the protected network, and the sensor is protected by the firewall.

The downside to the preceding model is the extra hardware involved (not a big
burden), and the fact that the local area network does provide a passage around the
firewall. This passage is not easily accessible from the outside since the read-only
interface and the lack of an IP address make this a difficult target to exploit, yet
there is at least a theoretical possibility of data (for example, malicious code) being
transferred inside without going through the firewall.

After collecting an hour's worth of data, the packets (in tcpdump binary format)
are compressed (using gzip, a public domain compression utility) and sent to the
analysis station via secure shell. Thus, the analysis station works on files in one
hour increments. The collection times overlap slightly to ensure that no packets
are missed during the transition between the hourly data collections.

The analysis station processes the file by first uncompressing it and running its
tcpdump filters on the packets. Those packets that pass the filters are considered
"suspicious" and will be displayed on a Web page. Other statistics, such as the
number of different machines a host tried to access, are calculated, and those above
a (user settable) threshold are also added to the Web page.

The suspicious packets are then sorted by outside IP address, and all the sus
picious packets from a given IP address are shown together (in time order) on the
Web page. The analyst can then look at each hour's worth of data, decide which
constitute attacks worth reporting, and generate a report containing the suspicious
packets, and host identity information.

Multiple sensors can report to a single SHADOW analysis station. This can
be used to monitor the traffic inside one's network to watch for insider attacks. It
can also be used to implement enterprise-wide monitoring. I am aware of several
organizations that use SHADOW to monitor several sites, utilizing one to two

4.5. ACTIVITY PROFILING 109

analysts for the monitoring. The data for each site is transferred to the central
headquarters where the SHADOW filters are applied.

Doing all the monitoring at a central site works well if the monitored sites do not
have too much traffic and are relatively homogeneous. It makes sense for larger
organizations to have an analyst at each site, with only intrusion reports forwarded
to the central site. These choices are left entirely up to the organization using the
software.

One of the philosophies behind SHADOW is that the analyst needs more infor
mation than a flashing red light saying an intrusion has been detected. SHADOW
provides this information by allowing the user to pull up all the data relevant to a
particular suspicious event and even to search past data for similar activity. This
allows the analyst to do a better job of determining the true nature of the suspicious
event.

Another side of this philosophy is that events that are probably not attacks but
might be precursors, or simply of interest to the user, are reported. For example,
a site may want to see any traceroute (Section 1.9.5) attempts to the site because
this is a standard information gathering technique. Although a single traceroute is
in and of itself not an attack, it can provide a heads-up to alert the security officer
to watch for future activity from the source network.

In addition to monitoring, since SHADOW keeps all the packet headers, the
data can be archived to allow historical searches and statistical analysis. Since the
data can be quite large, it is a challenge to maintain a database with more than a
few month's worth of data unless one uses data reduction methods.

To get an idea of the magnitude of such project here are some statistics. A
typical day's worth of data at NSWC is about 2 Gigabytes (compressed). The file
for llAM-12 Noon, April 3, 2000 was 22 Megabytes (compressed) consisting of
just under a million packets. It is important to note that this is a peak time, early
morning and late night traffic is much less.

SHADOW does not search the content of the packets, so only the headers are
stored. This is adjustable, up to full content, if desired. There were scripts origi
nally for searching content, but these are not a part of the SHADOW distribution.
Keep the preceding discussion about data sizes in mind before you consider going
to full content.

A possible extension to SHADOW would be to add snort (Section 1.9.7) to allow
content searching and more specific signatures through its more extensible filtering
capability. Since snort uses tcpdump binary format files just like SHADOW, it is
a simple matter to add this functionality in an ad hoc manner if desirable.

4.5 ACTIVITY PROFILING

Profiling the activity on the network is the act of collecting statistics that give a
summary of the kinds of activities that are naturally occurring on the network.
This gives a picture of the normal traffic on the network, which can be used to
detect intrusions as deviations from this normal behavior. It can also be used to
get a better understanding of the machines on the network by clustering machines

110 4. NETWORK MONITORING

into specific activity clusters. We will look at several ways of constructing these
profiles.

First, one must know what services are running on the different machines on
the network and to what extent each machine is accessed through the various ports
available. One could collect these data by interviewing the system administrator
for each machine or by requiring this information as a condition of operation, or
one can probe each machine with a scanner such as nmap (see Section 4.9.1) to
determine which ports respond to access attempts.

Another approach is to consider the services running as they are represented in
the network traffic. For example, to determine which services are running under
TCP on each machine, and their relative levels of activity, we could tally the
number of SYN packets sent to each port, keeping a separate tally for each port.
This represents the activity levels of services that are requested from outside the
network. Alternatively, we could tally the SYN/ACKs from our network to the
outside, which represents the subset of those services requested that are actually
available on the machine. Finally, we could consider the outgoing SYN packets for
each destination port, which represents the kind of services the machine typically
attempts to access from other machines.

These three tallies represent the activity of the machine. We can cluster ma
chines based on these activity vectors in a number of ways. It seems reasonable to
cluster the machines by each activity vector individually, so that one gets clusters
for each of the three types of activity of interest. Alternatively, one can cluster the
machines by the combined activity represented by the three vectors.

Once we have the activity profiles for the machines, we can look for deviations
from these "normal" activity profiles. Intrusions can be detected by looking for
activity that has not been seen before on a given machine or activity levels that
are greater than is normal. Thus, activity profiles give a way of detecting possible
intrusions by the detection of outliers.

If we also keep track of which machines normally interact with a given machine,
we can detect when new machines attempt access, which can be used as an indicator
of possible attacks.

With machines clustered by activity level, a different kind of outlier can be
investigated: those machines that do not fit well into any cluster. These are the
machines that are unusual when compared to the rest of the machines on the
network. This information can be used to determine which machines require
specialized attention. It can also be used to detect machines that may have security
holes, such as trojan programs installed on them.

We will consider an activity profile for a given machine (or cluster of machines)
to be a vector of counts or probabilities. Each count is associated with a specific
activity, such as TCP SYN packets sent to a specific port.

There is an important issue to address. How should the vectors be collected?
Should one simply average the number of activities per hour without regard to
which hour of the day or night it is? This does not seem to be the best way to
approach this problem. An alternative would be to keep an individual tally for
each hour of the day. This results in multivariate data, which could be viewed as
functional data. If one also makes a distinction between the days of the week, the
activity vector for a given machine/port pairing can be thought of as a function

4.5. ACTIVITY PROFILING 111

Fig. 4.4 An illustration of hierarchical clustering.

indicating the average number of packets within a given time period (say one hour)
at any given time of the week.

4.5.1 Clustering by Activity Level

Clustering is an inherently difficult problem, due in part to the difficulty of defining
clusters. Different algorithms are appropriate to different definitions of a cluster,
and it is not always apparent what definition is appropriate for a given problem. A
good reference for clustering algorithms is Everitt [1993].

Several different clustering algorithms will be described later. Here we will
describe one of the most common techniques, hierarchical clustering.

Hierarchical clustering has two main variants, agglomerative and divisive. We
will only consider the agglomerative method here, see Everitt [1993] for more
information on this and other clustering methods. The idea of agglomerative
clustering is initially to place each observation in its own cluster. Subsequently,
the two closest clusters are merged, and this is repeated until there is a single
cluster. This is illustrated in Figure 4.4.

To decide which clusters to merge, the distance between clusters is computed,
and the two clusters with the smallest distance are merged. Different definitions
of cluster distance result in different properties of the clustering. Three common
definitions are illustrated in Figure 4.5. In complete linkage clustering, the distance
between two clusters is taken to be the distance between their furthest points. This
results in clusters that are tight since large clusters are necessarily far from all other
clusters. With nearest-neighbor clustering (the distance used in the approximate
distance clustering method described later), the distance is taken to be the minimum
distance between points in the clusters. Other possible distances are the group
average (compute the average distance between points), or the distance between
the means (possibly scaled by inter-group covariance).

112 4. NETWORK MONITORING

Furthest eighbor (Complete Linkage) . --
.:~.~---------------------------..~.--- •

•

earest Neighbor (Single Linkage)
• --------------.....

• •
•

Group Average

~",&~~~~£ .~

Fig. 4.5 An illustration of distances used in clustering.

•

•

Hierarchical clustering results in a tree of clusters, from the root, consisting of
the cluster of all the data, to the leaves, consisting of a separate cluster for every
observation (see Figure 4.7). This presents one with the problem of deciding the
proper set of clusters for the data. This is not unique to hierarchical methods. In
fact, all clustering methodologies require some way to determine the number of
clusters to use and validate the clusters chosen.

As we will see later, many of the most useful techniques are subjective, utilizing
some clever visualization technique to depict the clusters and then relying on the
training of the data analyst to decide whether the clusters are well-chosen or not.
There are also a number of quantitative techniques available.

If one has the luxury of using tagged data, where each observation has a tag
(class label) associated with it, one can validate the clusters by determining their
"class purity." For example, suppose one had data measured from K users, where
each observation consisted of measurements taken from one session (for example,
keystroke timings on a password). After clustering the data (without using the user
information in the clustering), one could assign to each cluster a class label (based
on the observations clustered in the class) and a purity based on the percentage of
observations whose associated user matched the cluster label.

One generally does not have pre-classified data of this sort when tackling a
Clustering problem. Usually, the whole point is that there is no a priori information
about the clusters, so one needs a method for validating the clusters without this
extra information. This requires some measure of cluster "goodness," which is
then computed for the clusters at hand.

For example, generally one thinks of clusters as being groups of observations
that are distinguished from other groups by being closer to each other than they are
to the other groups. Figure 4.6 depicts data grouped into three clusters, indicated
by the different plotting symbols. Most people would agree that these data are
correctly clustered (although some might argue the point). These clusters have
the property that for each cluster the within-cluster variance is smaller than the

'"

o

'" I

+

+

+

+

+

+

-4

+

+
+ +

+

+

-2 0

4.5. ACTIVITY PROFILING 113

b.

b. b.
b.

4t;, b.

b. b. b.
b.

b.
b. b.

b.

0

2 4

Fig. 4.6 An example of simple clusters.

between-cluster variance, which is a measure of cluster purity for symmetric ("ball
like") clusters such as these. These clusters are easy to distinguish, both by the
eye and using clustering algorithms.

4.5.2 Visualizing Clusters

Given data that have been clustered, we want a method for deciding whether the
clustering algorithm has produced a "good" set of clusters. There are a number of
quantitative measures of goodness that can be used (see any book on clustering,
for example Everitt [1993]) but it is important to be able to look at the data and the
cluster structure and assess by eye whether the clusters are appropriate. This is not
a substitute for the quantitative assessors since the eye can be fooled, particularly
with high-dimensional data, but it is a useful addition. However, as we have seen,
visualizing high-dimensional data is quite difficult. In this section, we will consider
methods for visualization that are appropriate for visualizing cluster structure.

4.5.2.1 Dendograms A dendogram is a plot depicting the tree structure of a
hierarchical clustering algorithm. The tree depicted in Figure 4.4 depicts a small

114 4. NETWORK MONITORING

dendogram. The branches connect the sets to those in which they are subsequently
grouped.

Another example is provided in Figure 4.7. This depicts a famous data set that
relates certain measurements on flowers to the species of the plant. Three different
species are represented in the data. Starting at the top of the figure, we can see
that if one wishes to cluster these data into two clusters, the data will be split
roughly in two, with Setosa in one cluster, Virginica in the other, and Versicolor
split between the two clusters. By traversing the tree, we can infer quite a bit about
the cluster structure of the data, even though the data may be too high-dimensional
to be conveniently investigated through scatter plots (in this case, the data are
four-dimensional).

4.5.2.2 Color Histograms and Data Images It is difficult to display high
dimensional data in a manner that is readily interpretable to humans. Several
approaches have been suggested, including pairs plots (Section 2.5.2), parallel
coordinates (Section 2.5.3), and color histograms (also called "data images").
Some techniques are described in Solka et aI. [2000].

For our purposes, we will use the terminology "color histogram" and "data
image" fairly interchangeably, but there is a distinction that can be made. In
essence, the color histogram is an image of the data, with the only processing

N

o

Fig. 4.7 An illustration of hierarchical clustering using the Fisher iris data (Fisher [1936]
and Anderson [1935]). The three species of iris - Setosa, Versicolor and Virginica - are
denoted S, C and V respectively.

4.5. ACTIVITY PROFILING 115

being binning the data (if desired) and selecting the mapping from the observation
domain to the color or gray scale of the image. With data images, it is customary to
group the data, using a (usually hierarchical) clustering algorithm, so that similar
observations lie close to each other. One can also sort the variables, to improve
the visual impact of the display.

The first example of a data image that I am familiar with is in Ling [1973]. This
paper is worth looking at for the graphics alone (remember that this was written
in 1973). The author uses character graphics to display a data image. One version
of the data image is described in Minnotte and West [1998].

Shoch and Hupp [1990] use data images to display the progress of a worm,
plotting the source IP against the destination IP for traffic during its propagation.
This is a simple but effective graphic, showing the worm moving from machine to
machine in a staircase pattern in the plot.

The genome analysis community has made good use of the color histogram.
For example, Eisen et al. [1998] use a data image to display gene expression as
a function of time, with the genes clustered using a hierarchical clustering tech
nique. They depict the dendogram, colored by cluster, next to the color histogram,
producing a particularly impressive graphic. These days, with the interest in the
Human Genome Project, nearly every issue of the journal Science has a data im
age in it displaying information about gene expression or such. This is further
evidence that the technique is a useful and powerful one.

Figure 4.8 illustrates a color histogram for 300 observations from the 20-
dimensional density

(4.1)

where J-tl is zero for ten variables and 3 for ten (randomly selected and unknown
to the data analyst) variables. Similarly, J-t2 has ten zeros and -3 in ten randomly
selected variables. I corresponds to the 20-dimensional identity matrix. (For
the purposes of demonstration, there were actually 100 observations generated
from each of the components rather than generating data from the distribution of
Equation (4.1) directly. The data were then randomized.)

Note that although we call this a "color" histogram, all our graphics are in gray.
This is in part due to the desire to reduce the expense of producing (and hence
purchasing) this book and in part due to the fact that unless care is taken, color can
create unnecessary confusion. The exception is when color can be used to encode
specific information, such as a priori groupings of the data. This is used to good
effect by the gene expression researchers (Eisen et al. [1998]). It is unnecessary
for the data we are interested in here.

Looking at Figure 4.8, it is clear that there are approximately ten variables
(rows) that are darker than the others, indicating the effect of the two nonzero
means. However, we have no way of telling from this figure whether there are
one, two, three, or more populations in the data. All we can really tell is that the
variables are not identically distributed.

Figure 4.9 shows the same data as a data image, where both the observations and
variables have been grouped (independently) using a complete linkage agglomer
ative hierarchical clustering algorithm. The three clusters are clearly evident.

116 4. NETWORK MONITORING

Fig. 4.8 An example of a color histogram for 300 observations of 20-dimensional data
from a three component distribution. The x-axis corresponds to the observations and the
y-axis corresponds to the variates.

Another way to analyze these data is to compute the interpoint distance matrix
and display this as a data image. The interpoint distance matrix is a matrix where
the (i, j)th entry is the distance between the ith and jth observations. This is
grouped, again with a hierarchical clustering algorithm, and displayed in Figure
4.10. Since the interpoint distance matrix is symmetrical, both the rows and the
columns are grouped using the same scheme. This results in a symmetrical image.
Black corresponds to small distances (note the diagonal black line, corresponding
to a distance of zero between observations and themselves). The three clusters are
clearly evident as dark squares along the diagonal.

Figure 4.11 depicts the dendogram associated with the data image of the in
terpoint distance matrix in Figure 4.10. The three clusters are clearly evident in
this figure. In some sense, the data image is a picture of the dendogram, with the
added information of the relative values of the observations coded as a gray scale
or color value.

One issue that I have not seen addressed is that, like the pairs plots of Section
2.5.2, the data image of the interpoint distance matrix is redundant. It would be
interesting to consider informative uses for the upper triangle of the plot. One

4.5. ACTIVITY PROFILING 117

Fig. 4.9 A data image of the data in Figure 4.8. Both the observations and the variables
have been grouped with complete linkage hierarchical clustering algorithms.

potential use would be to plot a second distance metric. This is an area for future
work.

A use of the data image that to my knowledge has not appeared in the literature
is its use to detect outliers. Figure 4.12 depicts the interpoint distance matrix of
the data in Figure 4.10, except that three of the observations have been modified
to be outliers (by adding 5 to each of their variates). This image has been inverted
for display purposes; white now corresponds to small values and black to large,
instead of the other way around. Since the diagonal must always be zero in the
interpoint distance matrix, one can easily tell the color scheme by examining the
diagonal of the image.

The outliers show up clearly in this image as a "v" of dark color in the bottom
left of the image. Thus, outliers can be detected visually as either a "v" or a "+" in
the data image. Further, this is particularly useful for detecting outlying clusters
since these outliers will show up as broader bands of black with a small gray or
white square in the center of the "+" (or the vertex of the "v").

This latter is particularly important for computer security. After all, attacks
on a computer or network are, by definition, outliers. Provided we can choose
an appropriate way to map network data into vectors, we can use data images to

118 4. NETWORK MONITORING

Fig. 4.10 A data image of the interpoint distances of the data depicted in Figures 4.8 and
4.9.

detect these outliers and hence the attacks. This is not a trivial caveat, but it does
provide promise for future work.

Fig. 4.11 A dendogram of the data depicted in Figures 4.8 through 4.10.

4.5. ACTIVITY PROFILING 119

Fig. 4.12 A data image of the interpoint distances of the data depicted in Figures 4.8
where three of the observations have been changed to be outliers. These are clearly evi
denced as a dark "v" with vertex in the lower left. The gray scale has been inverted in this
image for display purposes.

4.5.3 An Example

An organization wanted to know what kinds of machines (e.g., mail servers, Web
servers) were active on its network. This might seem like a strange request, since
many organizations have some kind of accreditation procedure that must be fol
lowed before a machine can be installed on the network and so have a list of the
active machines. Several things can go wrong with this, however:

-. Machines can have new applications installed without informing manage
ment.

• Machines can be installed without notification of management by simply
taking the IP address of a machine that was accredited but is no longer used .

• Some facilities have subnets that are not the purview of the security manage
ment. These subnets sit behind a firewall, and the machines on the subnet
are not accredited by the normal means. Only the firewall is accredited.
The organization that owns the subnet is then responsible for its security
and management.

120 4. NETWORK MONITORING

• Some sites (particularly military sites) have several organizations behind
their perimeter firewalls. The security managers of the site may not have
specific information on the machines used by other organizations .

• Some sites (particularly universities) have very lax accreditation policies
and allow quite a bit more freedom on their networks.

The organization that commissioned the study does not want its data used, even
after scrambling the IF addresses. Instead, we collected data from another network
to use as an example of the approach.

To investigate the activity on the network, we collected data for slightly less than
2 months. These data consisted of hourly counts, where for each IP address/port
pair we counted the number of outgoing SYN/ ACK packets within an hour. The
network was a Class B network, consisting of all machines with a 10.1O.x.x IP
address (the IP addresses have been changed throughout). The active machines
are displayed in Figure 4.13. In this figure, the axes correspond to the third and
fourth octets of the IF address, and a black dot corresponds to a machine with
activity during the two-month period. Thus, the coordinate (23,192) corresponds
to the machine 10.10.23.192. In order to further protect the information about the
network, the IP addresses have been scrambled.

There are 64,270 machines "active" on this network (Figure 4.13, upper left).
If we consider only those machines with four or more packets (Figure 4.13, lower
right), there are only 929 machines. What is going on? Are there really 64K
machines on this network? A DNS lookup at the site gives an answer much closer
to 2K registered machines. The answer, I believe, is a helpful firewall. My guess
is that the site has a proxying firewall, which initiates the session for the protected
network prior to checking to see whether the destination machine exists and is
accepting connections. Whether this is intended or not is unclear. The site has,
off and on, had a proxying firewall but has not been consistent in its use. I have
not been able to verify that this is what is happening in these data. I do know that
several large scans appear in the data, which would account for access attempts
at nearly the entire address space. This would not normally result in outgoing
SYN/ ACK packets from nonexistent machines, however, so something must be
producing these packets.

To get an idea of the amount of data in this two-month period, Figure 4.14
shows the (natural) log of the number of outgoing SYN/ ACK packets to the 929
machines indicated by Figure 4.13 (bottom right), sorted by activity. Note that the
most active machines have approximately 3 million connections in this time period,
which corresponds to 50,000 connections per day. Some of this is a result of scans,
some due to services such as Web and FTP, which generate many connections per
session, and some due to hosting multiple services on one machine.

The same visualization idea as in Figure 4.13 can be applied to the ports ac
cessed. By treating the 2-byte port number as two individual coordinates between
o and 255, we can plot the port accesses in an image in much the way we did
with the IP addresses. Figure 4.15 shows the port accesses in the data. There are
19,621 distinct ports accessed (Figure 4.15, upper image). If we restrict to only
those ports accessed at least four times, this reduces to 56 distinct ports (Figure
4.15, lower image). These correspond to the "active" applications on the network.

4.5. ACTIVITY PROFILING 121

,,"
, .

': .
!l :-

. ,
' .. '

,
. I ,~. '" .. '

; f

.'

Fig. 4.13 Active machines on a Class B network. The axes correspond to the last two
octets. The upper left image shows all machines (in black) that have had at least one
outgoing SYNI ACK packet in a two-month period. The upper right image consists of those
machines with at least two outgoing SYN/ACK packets. The lower left and right images
are those with three or four outgoing SYN/ACK packets, respectively.

In both examples, the number four is chosen arbitrarily. We want to eliminate
nonexistent machines, and ports that are used very rarely, because we are trying to
obtain an understanding of "normal" behavior. If we were looking for "abnormal"
behavior, we might take a different approach.

The first few active ports (ordered by port number, not by amount of activity)
are:

21 FfP

22 SSH (secure shell)

23 Telnet

25 SMTP (email)

122 4. NETWORK MONITORING

00000 00

2 4 6 B 10 12 14

log 01 .he number 01 accesses

Fig. 4.14 Dot plot of the log of the number of accesses to the 929 machines in Figure
4.13, bottom right.

53 DNS (domain name service)

79 Finger

80 HTTP (WWW)

These applications will probably be found (with the possible exception of finger)
on nearly any network in the world.

It is interesting to consider the upper image in Figure 4.15. There is a band of
active ports in the low number ports, which makes sense. These are the common
applications such as those listed earlier. They are also applications that would be
scanned for by an attacker. The band near the middle corresponds to the large
number of applications that allocate a port for data transfers. These port numbers
don't necessarily mean anything by themselves, because any application can use
them. They have a low number of accesses, as evidenced by the lower image in
Figure 4.15. This is primarily a result of the fact that there are a large number of
ports from which to choose, so most machines do not recycle them very quickly.

The 56 ports with at least four accesses are depicted in Figure 4.16. This is a
dot plot of the log of the number of accesses. It is not surprising that email is the

4.5. ACTIVITY PROFILING 123

Fig.4.15 Active ports for the machines in Figure 4.13. The upper image corresponds to
all active ports, while the lower image corresponds to those ports for which some machine
responded at least four distinct times. The axes correspond to the first and second bytes of
the port number.

most popular port by far. Secure shell and secure Web (https) are the next most
common, which is also reasonable for a relatively security-conscious site.

Figure 4.17 depicts the color histogram of the activity vectors. In this plot it is
difficult to discern much structure. It is clear that there are two or three ports that
are quite common across many machines. Thus, we would feel confident stating
that there appear to be several clusters (those that have these services and those that
do not), but it is impossible to determine the cluster structure from this unsorted
plot.

Figure 4.18 depicts the data image of the data from Figure 4.17. Now, the clus
ters are much clearer. There are a number of small clusters, which are somewhat
difficult to discern, followed by four or five clear clusters corresponding to the use
of four distinct ports. Note that even in this picture it is difficult to decide exactly

124 4. NETWORK MONITORING

25 0
22 0 - 0
53 0
118 0
80 0

'~
0

~" 7
0

0
23 0
5'5 0
2' 0
51' 0
1$2' 0
'526 0
3128 0
1080 0
102 0

m 0
0

135 0

~
0

0
7001 0

I
0

0
0

0
0

0

~
0
0

!m
0

0
0

0
11667 0
'222 0 .,.6, 0
1027 0
"'5O 0
3447. 0 _'2 0
49158 0
491~ 0

:~~ 0
0

46813 0

~ 0
0

2000 0
1761 0

m&e 0
0

4524/1 0
7'9 0

2 4 6 8 10 12 14 16

Fig. 4.16 Dot plot of the log of the number of accesses to the 56 ports depicted in the lower
image in Figure 4.15. The vertical axis corresponds to port numbers, while the horizontal
axis corresponds to the log of the number of accesses.

how many distinct clusters there are in these data. This is pretty much always the
case when dealing with real data.

The dendogram for the activity vectors is depicted in Figure 4.19. This is
difficult to interpret due to overplotting, which results from the large number of
observations. This figure illustrates the difficulty of adequately displaying large
dendograms within the constraints of static media (such as paper).

Figure 4.19 also points to a subtle problem with visualization techniques such
as those discussed in this section. When the number of observations is large,
there is a very real probability of overplotting. In fact, with color histograms,
overplotting is certain whenever the number of observations exceeds the number
of pixels in the image. This is precisely why binning is implemented (hence the
name "color histogram"). Thus, in Figure 4.18, we can really see only a portion
of the observations and hence the clusters.

To illustrate this, consider Figure 4.20. Here we have zoomed in to the right
hand side of Figure 4.18, the last 150 machines. We can see several things in this
plot. For example, we note that there are several singleton machines on the far
right that did not show up in the original plot. Further, we see some structure that

4.5. ACTIVITY PROFILING 125

III • • • I I I I I ••• -
II

• D I . I II

11111 II • •
II

• I I I I I
I

I I
1' 1 II I I I II I III II I I , II I~ II II I I

I 1111 II I I I I

IIII ", III I

Fig. 4.17 The activity vectors of the 929 machines of Figure 4.13. The machines corre
spond to the x-axis, while the port numbers correspond to the y-axis.

was not apparent. This is due in part to the overplotting and in part to the fact that
the zoomed-in region has a smaller dynamic range, which allows the use of more
gray values for these regions in the image.

As mentioned earlier, it is sometimes easier to see the clusters if one uses the
interpoint distance matrix instead of the raw data. This is particularly true if the
data are very high-dimensional. For example, if we were to keep all the ports in the
activity vectors, we would be unable to view the color histogram easily (unless we
happened to have 65 screens attached to our computer, an unlikely event). Figure
4.21 depicts the color histogram for the interpoint distance matrix. The structure
is quite apparent in this image.

4.5.4 Statistical Anomaly Detection

As discussed earlier, we are interested in collecting statistics on the activity on the
network with a view toward detecting anomalies in the traffic on the network. One
approach is described later, the NillES system, described in Section 5.3. NIDES
was really designed to be a host-based intrusion detection system, but the basic
idea is easily adapted to apply to network monitoring, and in fact it is the statistical

126 4. NETWORK MONITORING

•

I.
I I •

•
I II 'r

Fig. 4.18 Data image of the data of Figure 4.17. Again, the x-axis corresponds to
machines, while the y-axis corresponds to port numbers. The port numbers have been
resorted using a hierarchical clustering technique to improve the visual impact of the plot.

engine in EMERALD (Section 4.6). In this section, we will look at a simpler
implementation, described in Marchette [1999].

The idea, as before, is to collect activity vectors for each machine. These
activity vectors are defined to be the proportion of accesses (TCP SYN packets or
UDP packets) to a given port on a given machine over a given time period. Thus,

4.5. ACTIVITY PROFILING 127

o

Fig. 4.19 A dendogram for the data plotted in Figure 4.18.

an activity vector for a machine consists of 2*65,536 values (corresponding to the
TCP and UDP ports available).

This is a very high-dimensional vector, and some domain knowledge is re
quired. Recall that while the first 1024 or so ports are generally assigned to spe
cific services, the higher ports are often assigned by other services at run time. For
example, FrP will assign ports (usually in the low thousands) for data transfers,
but which ports get used is implementation- and machine-dependent. Thus, for
ports above 1024, one is really interested in ranges of ports more than individual
ports. In Marchette [1999], this approach was taken to its extreme. Ports 0-1024
were treated individually, while all ports above 1024 were considered "big ports"
and grouped together. Thus, the vectors are reduced to 2*(1024+ I)-dimensional.

Alternatively, one could define several ranges in the "big port" range, such as
ports 6000-6063 for X window access, FrP data-transfer port ranges, traceroute
port ranges, and so on. Some of the "big ports," for example 2049, which is used
by NFS, should probably be treated individually in the same manner as the low
numbered ports. Even within the low-numbered ports, one could group the ports
corresponding to related services or ports corresponding to services not offered on
the network.

For each machine, an activity vector is defined, consisting of the proportion of
accesses to the ports or port ranges. We view these proportions as estimates of the
probability of accessing the given port. The idea behind using activity vectors for
anomaly detection is to flag as anomalous any port access that has a low probability
of access.

In the simplest form, these activity vectors can be a method for constructing
individual tcpdump filters. If we set a threshold on the activity values, every port
access for those ports above the threshold is "normal" and should thus be ignored.

128 4. NETWORK MONITORING

I •

Fig.4.20 The last 150 observations in Figure 4.18, zoomed in for improved resolution.

A filter that itemizes these can be used to provide a "personal SHADOW" system
for the machine.

For example, suppose for machine 10.10.1.23 the ports above threshold consist
of ports 22, 23, 514 TCP, and 2049 UDP. Place the following filter in the file
"myfilter":

dst host 10.10.1.23 and

not (

4.5. ACTIVITY PROFILING 129

Fig. 4.21 Color histogram for the interpoint distance matrix for the data in Figure 4.18.

Running

(tcp and (dst port 22 or dst port 23 or dst port 514))
or
(udp and dst port 2049)

tcpdump -F myfilter I logger

will result in any accesses that are "abnormal" being logged to the syslog file.
Like the SHADOW system described in Section 4.4, this will alert the system
administrator when undesirable network activity is aimed at the system.

This simple filter is inadequate for most real systems because of services such as
Web and FTP, which use many ports. These can be handled, however, by making
the filter a little more complicated. I will leave this as an exercise to the reader.

Note that the preceding command must be run as root and that it puts the
network interface in promiscuous mode. In some organizations, a network card
in promiscuous mode is considered a threat (after all, it copies all the packets that
pass it, whether destined for that host or not), so it is probably a good idea to use
the "-p" flag of tcpdump to keep it from going promiscuous. It should be further
noted that even though you will no longer be seeing packets to other hosts, you

130 4. NETWORK MONITORING

Table 4. 10 Attacks identified in the data used in Marchette [1999] to demonstrate activity
profiling.

Attack Type Number

Bad Ports (111, 161, etc) 5

Suspicious Telnets 6

Suspicious FTPs 1

Netbios Probs 6

Zone Transfers (53 TCP) 2

Port Scans 1

Traceroute 1

Finger Probe 1

NNTP 1

NFS 1

Miscellaneous Ports 2

will be seeing packets belonging to other users on your system. For this reason,
care should be taken to ensure that their privacy is not invaded. Even this level
of monitoring may be against the policy of your organization or even the laws of
your country.

Once we have constructed the activity profiles for all the machines on the net
work, we need to use these to detect abnormal access attempts. A set of experiments
is described in Marchette [1999]. Data were collected for a network consisting of
993 active machines. Activity vectors were computed for the machines using the
data from a single month. A second month's worth of data was used to determine
the performance of the approach in detecting attacks. These data consisted of a
total of approximately 1.7 million TCP SYN and UDP packets in each month.
There were 27 attacks identified within the data. The task was to determine the
number of attacks detected (designated "abnormal") at different threshold values
and therefore produce an ROC curve. (See Section 3.3 for a discussion of ROC
curves.)

The data consist exclusively of incoming SYN packets and UDP packets from
outside the network. There was no attempt to determine whether the machines had
responded to the connection attempts (in fact, this information was lost due to the
decision to retain only incoming TCP SYN and UDP packets). The attacks were
detected by an experienced analyst investigating the reports from a SHADOW
system. The attacks were broken into 11 groups, based on the type of attack. The
groups are listed in Table 4.10.

The port scan was an unusual one, which looked for services running on ports
above 1024. This made it potentially difficult to detect using the method described
in Marchette [1999] because of the grouping of all high-port accesses into a single
bin. Similarly, the traceroute attack, which also shows up in the high ports, would
be impossible to detect on a machine that normally had accesses on high ports.

A note on the traceroute attack is in order here. A reasonable person might
say that traceroute is not an attack. It is, after all, a common utility that has many

4.5. ACTIVITY PROFILING 131

legitimate uses. It may even seem difficult at first to identify some illegitimate uses.
There are two that come to mind, however. Obviously, since traceroute provides
information about the routers between two machines, it can provide information
about a network's internal routers. A map of the internal routers can provide an
attacker with very useful information.

There is another, more sinister reason to be suspicious of traceroute access to
a network, however. Imagine that an attacker wanted to completely disable your
network connection. Imagine further that you are a very well-protected site, say
a military site, and a direct attack against your site may not be desirable. How
would the attacker accomplish this goal? One way would be to attack not your site
but the ISP(s) that service your site. By taking out the organization(s) that provide
your connectivity, an attacker can completely remove your site from the Internet.

What this reduces to is that somehow the attacker needs to find out what routers
service your site. This is where traceroute comes in. By running traceroutes to
machines at your site from a variety of sources, the attacker can (in principle)
determine all the (active) routers connecting your site to the Internet. By attacking
these routers (which you have no power to protect because they are the property
of another organization), your adversary can damage or eliminate your ability to
function.

Of course, as we have seen in Section 2.4, there are people using traceroute to
perform network mappings all the time for perfectly legitimate purposes. Because
of the accessibility of these data, it may very well be that the traceroute "attack"
is now unnecessary because the desired information is freely available.

Whether the particular traceroute in the data for this experiment was an attack
is a matter of speculation. There were other factors that made it suspicious, so it
was left in the data.

Since these are real data, there is no guarantee that the attacks detected are
the only ones that occur in the data. These data were collected early on in the
SHADOW project, so it is reasonable to assume that some attacks were missed.
Also, some of the "suspicious telnets" were identified because of their source IP
address (for example, coming from a foreign country), information that is not
retained in the activity vectors.

Using the activity profiles for a machine, new packets can be scored as to their
"normality" by considering the probability that a packet of that type would be seen
coming to the destination machine. Low-probability packets are flagged as being
suspicious.

In addition to looking at individual machines, Marchette [1999] looked at clus
tering machines into groups with similar activity profiles, then used an average
activity level for the cluster profiles. Two different clustering techniques were
used and compared to an approach using the individual machine activity profiles.

The first method used is the k-means algorithm, a standard clustering technique
(see Everitt [1993]). The number of clusters, k, is assumed known. The algorithm
is then as follows:

The k-means Clustering Algorithm

1. Initialize the k cluster centers (for example at k randomly chosen ob
servations).

132 4. NETWORK MONITORING

2. While the centers change do

(a) Assign the data to the cluster with the closest center.

(b) Recompute the centers as the mean (or median or other measure
of location) of the data in the cluster.

3. Return the clusters.

The k-means algorithm is extremely easy to implement and works well when
the clusters are well-separated and spherical. There are a number of issues that
need to be addressed in applying it, however. First, the number of clusters needs
to be known a priori. The selection of distance metric is another important issue.
Finally, the choice of center definition (mean, median, or some other appropriate
statistic) needs to be made.

In general, it is a difficult task to decide how many groups there are in a data
set. Usually, one either uses domain knowledge for this or some exploratory data
analysis and visualization, which, as we have seen, can be difficult for very high
dimensional data. It should be noted that the k-means algorithm can produce
strange answers if the number of clusters chosen does not match the data. For
example, running the k-means algorithm on normal data with k = 2 often results
in splitting the single cluster in half. Worse, rerunning with a different center will
often result in a different split (for example, east-to-west one time, north-to-south
another), so, like all clustering techniques, the clusters should not be taken at face
value without some analysis as to their appropriateness to the data. Interested
readers should consult one of the many good books on clustering, such as Everitt
[1993].

Although the distance metric chosen can be critical to the performance of any
clustering algorithm, most practitioners choose either Euclidean distance (b) or
absolute distance (h) unless something about the problem domain suggests a met
ric. In Marchette [1999], the Euclidean distance was used throughout. Similarly,
the mean is usually used for the center, and this was the case in Marchette [1999].

A clustering using an (arbitrary) value of 10 for k is shown in Figure 4.22. These
are small color histograms, one for each cluster. The vertical axis corresponds to
machine, while the horizontal corresponds to port number. Only those ports for
which at least one machine had a probability above 0.2 of activity are shown. One
of the clusters contains only a single observation and hence is not shown. The fact
that a cluster contains a single observation is evidence that the choice of 10 for k
was not appropriate or that the machine in question was an outlier.

One thing that is immediately noticeable about the images in Figure 4.22 is that
the clusters are determined primarily by one to three ports. Thus, the activity on
a machine can be determined in large part by the ports that have the most activity,
and these are typically a small number of ports. This is intuitively reasonable,
given that most (properly configured) machines provide a small number of services
to outsiders. However, at least one of the clusters (cluster number four, counting
from the top left) shows quite a bit of variability in the observations. This probably
consists primarily of outliers to other clusters.

A drawback to this kind of display is that it is difficult to determine the port
numbers associated with the clusters. This information is of course available and

-
- . -.
~-

I'

.,' !
",'

. ! . ; ~

j! :. .,.

,.'

. ~
I

I .
'!. i
'J.
;!:
i :
'1 ;
I.
II!

..
~,

I '

I
I
I
I
;
'j

i.: . ,
i ~
J.

1
I

i

4.5. ACTIVITY PROFILING 133

i
I
I

D"· i .

; ..

I '.":
I "" . :

'j "::

.-

Fig_ 4_22 Clusters from the k-means clustering of 993 machines. Each cluster is depicted
as a separate data image. The x-axis corresponds to port number whereas the y-axis
corresponds to the machine.

can be used to characterize the clusters further. We will see this later when we
consider the problem of determining the types of activity available on a network.

The second clustering technique used in Marchette [1999] is the approximate
distance clustering (ADC) technique described in Cowen and Priebe [1997a] and
Cowen and Priebe [1997b]. The idea is to select out a subset of the data, referred
to as the witness set, which acts as a kind of prototype for the data. For each

134 4. NETWORK MONITORING

observation, the smallest distance to any element of the witness set is computed.
The observation is then projected to one-dimensional data by taking this distance
as the value of the projected observation. The method can be extended to utilize
several witness sets, in which case the projecting dimension is the number of
witness sets.

Therefore, given a set of observations X and a witness set W, the ADC pro
jection is

d(x) = arg min d(x, w).
wEW

(4.2)

The ADC approach taken in Marchette [1999] is to project the data to the
real line using Equation (4.2) and then cluster the one-dimensional data. The
clustering on the one-dimensional data was performed by modeling the data as a
mixture of normals. See McLachlan and Basford [1988], Titterington et al. [1985],
or McLachlan and Krishnan [1997] for more information on mixture models in

general. The equation for a (univariate) normal mixture density is

m

f(x) = L 7rj¢(x; I1j, a;) (4.3)
j=l

where the 7r'S are positive and sum to one, ¢ is the normal density, I1j is the mean,
and a; is the variance.

As with the k-means algorithm, the number of clusters must be chosen. This
can be done a priori as in the k-means algorithm described above, or the number
of terms can be estimated from the data.

The EM algorithm (see page 50; also McLachlan and Krishnan [1997]) for the
normal mixture parameters produces the following update equations, given data
X1,···,Xn:

T~:+l
7rj¢(Xi; 11;, vj)

(4.4)
<} ft(Xi)

n
11~+1 LTfjXi, (4.5)

i=l
n

vt+1
} LTfj(Xi -11;)2, (4.6)

i=l
n

7r~+1
} LTfj, (4.7)

i=l

where Vj = a; and the superscript t indicates the iteration number. There is a
similar formula for multivariate mixtures. See McLachlan and Basford [1988],
Titterington et al. [1985], or McLachlan and Peel [2000] for more details. The
procedure is to start with an initial guess at the parameters, then run the iterations
defined in Equations (4.4)-(4.7) until a convergence criterion is met (usually until
the change in the log likelihood is small).

In order to estimate the number of terms in the mixture model, the alternating
kernel and mixture density estimator (AKMDE) of Priebe and Marchette [2000]

4.5. ACTIVITY PROFILING 135

was used. As with most methods for determining the number of components of
a mixture, this operates by starting with a single component, and then testing to
decide whether a second component is warranted. This continues until the test
fails to support a new component. In order to do the test, the AKMDE compares
the mixture model to a kernel estimator constructed using the mixture model. If
the kernel estimator exhibits structure not accounted for by the mixture model,
then a new term is added.

The resulting model is then a mixture of normals

m
f(x) = L 7rjc/>(x,/1j,u;), (4.8)

j=l

where the 7r'S are the mixing coefficients and c/> is the normal density as before. In
this case, the number of terms is estimated from the data, as is indicated by the m.

The kernel estimator is a commonly used nonparametric density estimate (Sil
verman [1986]). It is similar to the histogram, but instead of counting the number
of observations within a bin, the kernel estimator in effect counts the number
of bins at an observation. Specifically, given observations Xl, ... , Xn , the kernel
estimator is defined as

(4.9)

The kernel K is generally taken to be a symmetric probability density function.
We will take it to be the standard normal density c/>(x, 0,1). The parameter h,
called the bandwidth, controls the smoothness of the estimate in much the same
way that the bin width controls the quality of a histogram. Large values of h
produce very smooth, broad estimates, whereas small values of h produce rough,
spiky estimates.

The choice of h is therefore critical to the performance of the estimator. There
are many approaches to the selection of h, but this would take us far beyond the
scope of this book. See Wand and Jones [1995] for more information on bandwidth
selection and kernel estimation in general. One common technique is to use a pilot
estimate such as a normal density fit to the data. The bandwidth is then chosen
to be the optimal one (in the sense of mean integrated squared error) for the pilot
density.

In the AKMDE, the mixture is used as the pilot estimator. Then, the kernel
estimator is the optimal one under the assumption that the data are distributed
as the mixture density. However, the AKMDE uses a modification of the kernel
estimator, the filtered kernel estimator (FKE), that is better suited to the modeling
of mixture densities. Consider the density depicted in Figure 4.23. This is the
mixture

f(x) = 0.9c/>(x, 0, 1) + 0.1c/>(x13, 0.01). (4.10)

A single bandwidth estimator on data drawn from this distribution would have
difficulty ob~aining a good estimate. The c~mponen{ on the left requires a ~elatively
large bandWIdth, whereas the one on the nght requues a smaller bandWIdth. For

136 4. NETWORK MONITORING

q

e
cq
0

E
·8 co

~ 0

u
'" ...
c: 0 :8
::;:

'" 0

0
0

-3 -2 -1 o 2 3

Mean

Fig. 4.23 The mixture model of Equation (4.10). The top pane depicts the density and
the bottom depicts the mixture model. The y-axis of the bottom pane denotes the mixing
proportion of the component. The x-axis denotes the component mean. Each component is
plotted as an interval indicating a one-q range on either side of the mean, which is plotted
as a circle.

100 observations, the optimal bandwidths are approximately 0.5 on the left and 0.05
on the right. Figure 4.24 depicts the two kernel estimators with these "optimal"
bandwidths. Note that each estimate does a good job on the mode for which the
bandwidth is "optimal," and a poor job on the other. Intuitively, the "right" thing
to do for this density is to use two bandwidths. This is the idea behind the filtered
kernel estimator (FKE) in Marchette [1996], and Marchette et al. [1996].

The filtered kernel estimator provides a multi-bandwidth kernel estimator driven
by a pilot normal mixture model. Given a mixture estimate as in Equation (4.8)
(referred to as the "filtering mixture"), the FKE is defined to be

fke(x)

(4.11)

4.5. ACTIVITY PROFILING 137

-3 -2 -1 o 2 3

Fig. 4.24 Two kernel estimators of 100 observations drawn from the mixture model of
Equation (4.10). The true density is depicted as a dotted curve. The kernel estimators have
bandwidths of 0.5 and 0.05, optimal for the two components.

where hj = haj. Note that there is still a single bandwidth to be chosen in the
formulation of Equation (4.11). However, because of the filtering mixture f (x)
and the variances a}, there are actually m different bandwidths in the estimator.
The range of influence of the individual bandwidths is controlled by the posterior
probability functions Pj(x).

The bandwidth, either for the kernel estimator or the FKE, can be chosen by
minimizing the mean integrated squared error (MISE),

MISE(g,g) = E [I: (g(x) - g(X))2dX] . (4.12)

In either case, the unknown function 9 is replaced by a pilot estimate. In the case
of the FKE, the pilot estimate used is the filtering mixture. Thus, given a pilot
estimate in place of g, the bandwidth h is chosen to minimize the MISE.

In practice, the minimization must be done numerically. In order to simplify
the calculation, an approximation is made via the expansion of 9 as a Taylor
series. The details can be found in Silverman [1986], Wand and Jones [1995],
Marchette [1996], and Marchette et al. [1996]. Suffice it to say that a relatively

138 4. NETWORK MONITORING

<D
c:i

Lt>
c:i

.;-
c:i

(')

c:i

'" c:i

c:i

a
c:i

-3 -2 -1 o 2

"
"
"
" , , , , , , , ,
: ' ,

3

Fig. 4.25 The filtered kernel estimator of the data from Figure 4.9 using the mixture
model of Equation (4.10) as the filtering density. The true density is depicted as a dotted
curve. The filtered kernel estimator has bandwidths of 0.5 and 0.05, optimal for the two
components.

straightforward calculation can provide a reasonably good bandwidth using this
technique.

Figure 4.25 depicts the filtered kernel estimator for the same data used in Figure
4.9. Note that in this case the FKE uses essentially the "correct" modes of the two
kernel estimators pasted together. This provides an estimator with the correct
amount of smoothness in the different regions of the data.

Given two models for a data set, one method for choosing one model over the
other is the Akaike information criterion (AIC), Akaike [1974]. This compares the
increase in the likelihood of one model over the other, penalized by the increase
in the number of parameters. In particular, for the mixture model, the criterion
is to reject the new component if 3 - 8(likelihood) > 0 (3 being the number of
parameters added to the model by a new term).

4.5. ACTIVITY PROFILING 139

...
0

'" 0

N
0

-0

0
0

0
I

N

~
- 3 - 2 - 1 0 2 3 4

Fig. 4.26 An example of computing the excess mass between a mixture model and a
filtered kernel estimator. The mixture is a single normal fit to the data, the filtered kernel
estimator using the mixture as the filtering mixture is shown, and the difference curve is
shown on the bottom, with the excess mass colored in gray. The true mixture components
have means at 0 and 2.

Now, we can describe the AKMDE in more detail. Starting with a mixture of m
components, a filtered kernel estimator is formed using the mixture as the filtering
mixture. A new m + 1 component is formed by adding a term corresponding to
the maximal excess mass between the FKE and the mixture model, and then fitting
the mixture model to the FKE. If the Ale fails to reject, the m + 1 model becomes
the new mixture model and the procedure repeats.

Figure 4.26 illustrates the excess mass calculation. The mixture model (in
this example, a single normal fit to the data) is shown with the corresponding
filtered kernel estimator. Since the filtering mixture has a single component, the
FKE reduces to a standard kernel estimator in this case. The difference curve is
shown with the excess mass highlighted in gray. The larger (rightmost) region
then determines the position, size, and shape of the new component added to the
mixture. In this example, there were 100 observations drawn from the density
0.5N(0, 1) + 0.5N(2, 0.25) . Note that in this case, the region of largest excess
mass is found near the component which is not modeled by the mixture. Thus,
adding a term at the region of excess mass results in a better fit to the true density
(in this case).

140 4. NETWORK MONITORING

We must now choose the parameters associated with the new component. The
idea is to use the center of mass, spread, and proportion of the mass represented
by the excess mass to determine the new parameters.

Setting n to be the interval containing the largest excess mass and e(x) the
difference (excess mass) curve, we let

w

/L =

v

In e(x)dx

!.. r xe(x)dx win
!.. r (x - /L)2e(x)dx win
(1 - w)jm(x) + W¢(X,/L, v).

The new mixture jm+! is then fit to the kernel estimator to produce the new m + 1
term mixture.

The mixture model selected by the AKMDE is shown in Figure 4.27. The
top of the figure shows the density defined by the mixture model. The mixture
components are depicted in the lower panel as a collection of dots and line seg
ments, showing the means, standard deviations, and mixing proportions of the
components. The x-axis corresponds to the mean of the component, the y-axis
corresponds to the mixing coefficient, and the line segment denotes a one standard
deviation spread about the mean.

In order to cluster the observations, an observation is assigned to the component
with the greatest posterior probability. Alternatively, each observation could be
given a "fuzzy" cluster designation consisting of the posterior probability vector.
We consider only the first approach.

The result of the ADC algorithm is shown in Figure 4.28. The third component
from the left, with a mean of about 0.08 and the smallest proportion of the first
three components, has no observations in its cluster and so is not shown in the
figure.

Looking at Figure 4.27, it is easy to discern three clear clusters, corresponding
to the three obvious modes. Of course, some might argue for four, five, or more
"obvious" modes. Looking at Figure 4.28, the first two images, corresponding
to the first two components and the first mode in the density, are very similar.
The next three or four images, corresponding roughly to the observations falling
between 0.2 and 1.0, are quite similar yet show a progression from the third image
on the top to the second image on the bottom. The last three images on the bottom
correspond to the three components on the right, displaying at least two distinct
clusters, with the middle one appearing to be a mixture of the two others. This
kind of phenomenon is to be expected with this type of clustering.

Once the models were constructed, they were evaluated to determine whether
they could be used for anomaly detection. There were 1,757,206 observations in
the testing set. There were two basic experiments performed. In the first, each
observation was given the probability associated with the machine/port pairing,
according to the activity vector for that machine. If the probability exceeded a
threshold, then the packet was considered "suspicious" and marked for further

1':
Q)
.(3

;;:
Q)
0
()
C)
c: ·x
~

~

co
0

<D
0

...
0

'" 0

0
0

..
e

0.0

4.5. ACTIVITY PROFILING 141

8
8

0.2 0.4 0.6 0.8 1.0 1.2

Mean

Fig. 4.27 Mixture model constructed using the AKMDE algorithm. The mixture model
is plotted as a curve in the top plot, while the mixture components are depicted in the bottom,
with the means of the components on the x-axis and the mixture proportions on the y-axis.
The variance of each component is depicted via a two standard deviation bar centered at
the component mean.

processing. Otherwise, the packet was deemed "normal" and ignored. For a
variety of thresholds, the number of packets marked "suspicious" and the number
of attacks detected as "suspicious" are tallied in Table 4.11.

The downside to using the individual activity vectors is the amount of storage
required (or the time needed to access the disk for each packet). The storage
increases linearly with the number of machines on the network. It also increases
with the number of individual ports tallied. The speed and load of the monitored
network will determine the time that can be devoted to making a decision about
an individual packet.

The second experiment involved first clustering the machines as described ear
lier, using either the k-means or ADC method, and taking the profile for the
machines in the cluster to be the cluster center. The same procedure was now
used to determine whether a packet was "normal," using this profile rather than the
individual activity vector. The results are shown in Tables 4.12 and 4.13. Since the
clusters require the retention of only the cluster centers and a cluster assignment

142 4. NETWORK MONITORING

~~
i

= i
! -' ,I

.1 i t ;
, j

-:
:

_.
--.
. -

I
--
.' -.
~ -.

I

'1 r

1
i

-I'

:1' ..

'1;, .. .~ . . ' - . ,

r - I ,

·i I
: I

:1 j- ,
I -J. .. I

, i
•

'f ~. , .
: . I '.

il .
I. J ':

~~ :
.;

I

',1
~ : : .

I :.

Fig. 4.28 Color histogram of the clusters from the ADC algorithm. Reading from left to
right, top to bottom, these are in the order of increasing mean of the components.

vector, the processing/storage required is much less and is relatively insensitive to
the number of machines monitored.

To get a better picture of the performance, a set of curves similar to ROC curves
was produced. The percentage of the packets retained as "suspicious" is plotted
against the number of attacks detected. This is roughly analogous to the probability
of false alarm vs. probability of detection of the ROC curve. These are depicted
in Figure 4.29.

As can be seen in Figure 4.29, the individual profiles are superior to the others
for low thresholds, provided the criterion is a low number of attacks missed. This

0.00

.. . . /.

: ,

•• ••• • •••.• ,J :)

, ,'
r--· ...

0.05

4.5. ACTIVITY PROFILING 143

0.10

- Individual Machines
ADC Clusters
KMeans Clusters

0.15

% packets

020

Fig. 4.29 Perfonnance curves for the three techniques for activity level profiling. The
precentage of packets detennined to be "abnonnal" is plotted against the number of attacks
detected in the training data.

makes sense since the clustering of machines can cause activity that is rare for one
machine to be considered common for the cluster, and hence this type of attack
on the machine would be ignored at low thresholds. On the other hand, the ADC
clusters did a better job if the criterion was to detect all the attacks. This is a result
of the same kind of effect described earlier. Activities that are fairly rare for a
given machine, can become much rarer when combined into an average profile
through clustering, so attacks that previously required a larger threshold can now
be detected at a lower one.

Table 4.11 Results of the profiling test using unclustered profiles.

Number of Number of

Threshold Records Attacks Detected Type of Attacks Missed

0 50,217 21 1 Telnet, 2 netbios, FrP, NFS, 1 misc

0.0001 50,288 22 1 Telnet, 2 netbios, NFS, 1 misc

0.001 54,069 23 2 netbios, NFS, 1 misc

0.005 58,962 23 2 netbios, NFS, 1 misc

0.01 63,410 23 2 netbios, NFS, 1 misc

144 4. NETWORK MONITORING

Table 4. 12 Results of the profiling test using ADC clustered profiles.

Number of Number of

Threshold Records Attacks Detected Type of Attacks Missed

0 17,069 9 Te1nets, netbios, news, FTP,

finger, tracerout, misc

0.0001 60,975 13 Te1nets, netbios, news, FTP

0.001 108,529 14 Telnets, netbios, FTP

0.005 140,435 23 3 netbios, FTP

0.01 160,875 27 none

Table 4.13 Results of the profiling test using k-means clustered profiles.

Number of Number of

Threshold Records Attacks Detected Type of Attacks Missed

0 61,023 12 Telnets, netbios, FTP, misc

0.0001 78,642 20 nebios,FTP

0.001 112,961 21 nebios

0.005 131,393 23 4 netbios

0.01 146,742 23 4 netbios

The conclusion is that this technique can be used to filter out about 90% of the
packets so that more sophisticated techniques can be used to focus on the 10%
that may be suspicious. Since the processing/storage requirements are small for
the clusters as compared with the individual machine activity vectors, the cluster
techniques may be desirable for networks with a large number of machines.

Another consideration is the security policy of the network. Obviously, a net
work in which a very tight policy is enforced is likely to have machines clustering
quite nicely along their activity profiles. A network with a loose policy, for exam
ple an ISP or university network, might have machines that do not fit any clustering
scheme and, in fact, the individual activities might change according to which users
are on the system. Thus, the approach described here is only a first step.

The "personal SHADOW" approach described on page 128 is similar to the ac
tivity profile approach described earlier. It places the processing on the individual
machines, thus distributing the work across the entire network. This is a solution to
the processing/storage dilemma described above. The technique appears to work
quite well, in combination with an activity vector to aid in the definition of the
filter used. Only those packets that do not match the filter's definition of "normal"
are passed to the operator for consideration. This approach has been running quite
successfully on my machine for several months now.

There are two major downsides to this approach, however. It requires a fair bit
of maintenance to handle new situations. For example, when a new machine is
added to our group, the machine needs to be added to the filter. Also, since only the
suspicious packets are identified, the context is lost. Thus, for example, one cannot
tell whether UDP packets are the result of activity initiated by the local machine.

4.5. ACTIVITY PROFILING 145

Such packets, assuming the initiating activity is authorized, are probably not a
problem. Packets coming unasked may be a probe, and hence should be treated
with some suspicion.

4.5.5 Functional Data

We have considered network data both from the perspective of single packets (for
example building filters to detect "bad packets" or detecting "anomalous" packets),
and we have looked at aggregates such as the number of packets of a specific type
in an hour. Now, we will briefly consider more general patterns of packets.

In a very real sense, network traffic really should be thought of in terms of
collections of packets in time. This is most obviously seen in the TCP sessions,
but it is also relevant for clustering machine activity types as was done in Section
4.5.

One way of approaching a more general theory of network modeling is through
time series analysis. We will consider a slightly more general approach to the
analysis of these data and look at functional data analysis (Ramsay and Silverman
[1997]).

Consider the plots in Figure 4.30. This depicts the ten most active mail servers
for a given network, over a period slightly longer than ten days (actually 250 hours).
Time has been discretized into one-hour bins, and the number of SYNI ACK packets
leaving the machine is tallied for each hour. This corresponds to the number of
email sessions initiated within an hour. This does not correspond to the number
of emails received since a single session can result in the transfer of multiple
individual email messages. The first day of these plots is a Thursday.

Several things are readily apparent from the figure. First, there is quite a large
variability of activity within each machine across time. Consider the first two and
last four plots. These are machines that appear to have been active for only a portion
of the ten-day period. Similarly, something interesting seems to have happened to
the fourth and fifth machines during the last three days of the collection period.

Another interesting observation is the different dynamic ranges for the ma
chines. The first six plots show values that go into the thousands or tens of thou
sands of sessions per hour while the last four get tens of connections per hour.
Even though the pattern for, say, the first plot in the figure is very similar to the
one for the last two plots, there is a significant difference between the activities of
these machines.

Also, it is clear that there is periodic structure to some (but not all) of the
machines. Consider in particular the third machine. There is a very strong periodic
structure in this plot, especially if one ignores the outlier occurring on day 6 (a
Tuesday).

The data for the third machine are replotted in Figure 4.31, where each day is
plotted as a separate curve. Now, we can clearly see that the early morning and
late night activity is quite stable over these ten days. Most of the variance of these
curves occurs between 9 in the morning and 8 at night.

To further analyze these data, we replot, in Figure 4.32, the data with the sixth
day missing. The mid-day variability is quite apparent in this plot, as is the periodic
structure, with period approximately two hours. Figure 4.33 depicts the mean for

146 4. NETWORK MONITORING

email

8
~

g CD §
U) U)
OJ OJ
.~

~
.~

(f) (f)

~
0

~

C\J
~

..... :"
U) U)
OJ OJ

" .~ "5i
(f)

~
(f)

M §
'"

iil
U) U)
OJ OJ g "ai .~

(f) ~ (f)

"
... § '"

:"
U) U)

" OJ OJ
"ai "ffi
(f)

~
(f)

~

8 0

g

'" ~ ~
U)

U) OJ OJ "ai § .~ ..
(f) (f)

50 100 150 200 250 50 100 150 200 250

Time

Fig. 4.30 Time series plots for the ten most active mail servers during a ten-day period.

these data, with dotted curves showing one standard deviation from the mean. The
top graph depicts the full data set, while the bottom shows the graph with the sixth
day removed. The mid-day variability is quite clear in these graphs, as is the fact
that the nighttime variability is relatively low. Note that the bottom curve (with
the outlying day 6 removed) shows clearly that the variance ramps up starting
in the morning, peaks around 1 p.m. and then drops off into the evening. This
information can be used to adjust thresholds for detecting an abnormal amount of
activity on the server, which could be an indication of a spam or mailbomb attack.

4.6 EMERALD

EMERALD (Event Monitoring Enabling Responses to Live Disturbances) (Porras
and Neumann [1997]), is SRI's environment for scalable, distributed intrusion de
tection and network monitoring. It is a hierarchical model, allowing different types
of processing at different levels of abstraction. It is also highly modular, allowing
different kinds of processing and analysis on different platforms or sections of the
network.

4.6. EMERALD 147

o 5 10 15 20

Hour

Fig. 4.31 Time series plots for the third most active mail server during a ten-day period.
Each day is plotted as a separate curve.

Information on EMERALD can be obtained from many of the latest books on
intrusion detection, such as Escamilla [1998], Amoroso [1999], and Bace [2000].
The definitive references are Porras and Neumann [1997] and the technical reports
available at the SRI Web site (see Appendix D).

An underlying philosophy of EMERALD is to abstract the computation engines
away from the details of the data or problem domain. This allows very flexible
and extensible modules to be developed from a basic underlying architecture.

The EMERALD architecture is made up of a single basic unit, the monitor. A
monitor can be thought of as a single IDS sitting on a specific host, but it is a much
more general construct than this.

EMERALD is made up of three basic levels of processing. The service monitors
are in the lowest level. These are the basic intrusion detection engines that monitor
a host or small network. They communicate with other service monitors and with
the next level, the domain-wide monitors.

The domain monitors correlate the reports from the service monitors. In keeping
with the EMERALD philosophy, they are made of the same basic components as
the service monitors. Only the specifics of the algorithms used in the analysis and

148 4. NETWORK MONITORING

Hour

Fig. 4.32 Time series plots for the mail server in Figure 4.32 with the sixth day removed.

reporting changes. The domain monitors report to the highest level, the enterprise
wide monitors.

One way to think about the EMERALD hierarchy is in terms of a large corpo
ration. The service monitors may be host-based security monitors on each desktop
or network monitors on local area networks. The domain monitors correspond to

All 0".

~

i
~

5 10 15 20

Hour

Without 0 y 6

~

-I ~ ..
~

5 ,0 15 20

Hour

Fig. 4.33 Time series plots for the mail server in Figure 4.32. The plots show the mean
and one standard deviation bands for the number of connections for the full data (top) and
for the data with the sixth day removed (bottom).

4.6. EMERALD 149

the systems used by the security officers at each corporate site. These correlate
the reports from the internal monitors and give the security officer a picture of
the overall security at the site. The enterprise-wide monitors correspond to the
systems at corporate headquarters, to which all the sites report, giving a picture of
the situation for the entire company.

The generic EMERALD monitor consists of four parts:

• resource object,

• resolver,

• profiler,

• signature engine.

The signature engine is an analog of a set of SHADOW filters or a snort ruleset.
This takes a set of rules for defining signatures and comparing data to signatures,
making it easily configurable for different situations. This allows the detection of
known attacks.

The profiler is the statistical anomaly detector. It uses NIDES, the "Next
generation Intrusion Detection Expert System" (Section 5.3). More properly, it
uses the basic ideas ofNIDES in a generic statistical profiling framework. This al
lows the incorporation of new techniques and different data types without requiring
a redesign of the overall system.

The resolver is the coordinator and interface to other monitors and IDS systems.
It correlates the results from the profiler and signature engine. It communicates
any detections to the higher levels and/or the security officer.

The resource object contains the specific information needed for a particular
deployment of the monitor. It contains all the information about the data feeds,
rule sets, and so on, that the other parts need to perform their function. This is the
single part of the monitor that needs to be configured for any deployment.

The resource object has a number of configurable components. These are
implemented through pluggable libraries, allowing extreme flexibility in the func
tionality of an individual monitor.

The data streams used by the monitor are configured via the "event structures"
that define the types of data that the monitor will process. This includes both the
inputs and the outputs of the monitor. Related to the event structures are event
collection methods, which define the basic routines for collecting and filtering the
data streams.

The detection engines and analysis units are configured within the resource ob
ject. These define the intrusion detection algorithms implemented by the monitor.

Finally, there are communications configurations, called subscription lists,
which define how communication between monitors will be handled. This is
more than just a list of the other monitors, but it handles any information related to
encryption and, in principle, multilevel security that might be implemented. There
are also response methods defined, which determines what the monitor is to do
once it detects an event.

150 4. NETWORK MONITORING

While the EMERALD software is provided as an IDS, it is really a very flexible
architecture which can be used to implement an IDS. Thus, it is not constrained
by the actual implementation provided in the distribution.

4.7 WATCHERS

WATCHERS, which stands for "Watching for Anomalies in Transit Conversation:
a Heuristic for Ensuring Router Security," is a distributed network monitor that
watches for evidence of malicious routers, and removes them from the network.
A malicious router is defined to be one that either discards packets or misroutes
them (sends them on non-optimal routes). WATCHERS assumes that neighboring
routers share the same view of the network, share a bi-directionallink through
which they can communicate, and that all (non-malicious) routers send packets
along the shortest route (unless specifically directed otherwise).

WATCHERS works by having each pair of routers keep a set of counters that
keep track of the packets that pass between them, either generated by one of them
or forwarded from one to the other. Periodically, the routers report their counter
values, and the counters are analyzed.

The main analysis consists of determining whether the packet flow is conserved:
that is, that the number of packets going into a router is roughly the same as the
number coming out.

This work is discussed in detail in Hughes [2000], Hughes et al. [2000], and
Bradley et al. [1998].

4.8 GRIDS

The Graph-Based Intrusion Detection System (GrIDS) (Cheung et al. [1999]) is
a program developed by the computer science department of the University of
California at Davis. It is designed for use on large networks, analyzing network
traffic in a hierarchical manner, that allows the technique to scale up to very large
networks.

The idea is to construct and analyze activity graphs. The simplest version
of an activity graph is a graph describing which hosts are connected to which.
These graphs can be aggregated to allow various levels of resolution. Rules are
constructed to detect "bad" or anomalous graphs, indicating potential attacks.

For example, consider the spread of a worm through a network (see Section
6.7 for more discussion about computer worms). If we were to represent the
connections between machines as a graph, we might see something like Figure
4.34 in a very short period of time. This tree-like structure for the activity on the
network is an indication of the spread of a worm.

To the GrIDS system, a graph is then a collection of nodes and edges, where
both have attributes (for example, connection type (port), operating system, etc.).
GrIDS contains a collection of rules for building and combining activity graphs
and for analyzing them to detect intrusions, attacks, and anomalies.

4.9. MISCELLANEOUS UTILITIES 151

Fig. 4.34 A GrIDS activity tree for a worm. Each host (indicated by a lettered box)
transmits the worm to other hosts, spreading the worm across the network.

4.9 MISCELLANEOUS UTILITIES

Here are some utilities that are useful for collecting data on a network. As always,
care should be taken to ensure that the security policy allows the use of these
utilities and that permission for their use has been granted. These are by no means
a complete list. Resources for these and other utilities can be found in Appendix
D.

4.9.1 nmap

The nmap program is a very powerful tool for security analysis. It performs a
wide variety of scans on a system or network to detect open ports and potential
vulnerabilities. It is also an extremely useful tool for an attacker.

Nmap operates by sending various packets to the host or hosts and seeing what
comes back. In its simplest instantiation, it sends packets to a list of ports to
determine what services are active. It can do this by actually trying to make a
connection to the port (which can be easily detected since it will (usually) show up
in the system logs), or it can use more stealthy techniques, such as sending only
the SYN flag, the so-called "half-open" or SYN scan.

It can also send packets with strange flag combinations (for example, SYN and
FIN both set). The purpose of these is to see how the host will react. Different
operating systems will react differently to "illegal" packets, and this can allow one
to determine the operating system of the host. This is called operating system
fingerprinting.

152 4. NETWORK MONITORING

The results of a simple scan against a machine follows. The name and IP ad
dress have been changed. Note that the version of nmap used in this example is
not the most current (at the time of this writing), so newer versions may provide
more or better information. In this case, the command used was

nmap -sS -v -0 waldo

Starting nmap V. 2.02 by Fyodor (fyodor@dhp.com,
www.insecure.org/nmap/)

Host waldo (10.10.12.193) appears to be up ... good.
Initiating SYN half-open stealth scan against waldo

(10.10.12.193)
Adding TCP port 25 (state Open) .
Adding TCP port 13 (state Open) .
Adding TCP port 1024 (state Open) .
Adding TCP port 9 (state Open) .
Adding TCP port 111 (state Open) .
Adding TCP port 513 (state Open) .
Adding TCP port 515 (state Open) .
Adding TCP port 80 (state Open) .
Adding TCP port 21 (state Open) .
Adding TCP port 22 (state Open) .
Adding TCP port 37 (state Open) .
Adding TCP port 514 (state Open) .
Adding TCP port 841 (state Open) .
Adding TCP port 1 (state Open) .
Adding TCP pon~ 23 (state Open) .
The SYN scan took 0 seconds to scan 1068 ports.
For OSScan assuming that port 1 is open and port

31200 is closed and neither are firewalled
Interesting ports on waldo (10.10.12.193):
Port State Protocol Service
1 open tcp tcpmux
9 open tcp discard
13 open tcp daytime
21 open tcp ftp
22
23
25
37
80
111
513
514
515
841
1024

open
open
open
open
open
open
open
open
open
open
open

tcp
tcp
tcp
tcp
tcp
tcp
tcp
tcp
tcp
tcp
tcp

ssh
telnet
smtp
time
www
sunrpc
login
shell
printer
unknown
unknown

4.9. MISCELLANEOUS UTILITIES 153

TCP Sequence Prediction: Class=trivial time dependency
Difficulty=26 (Easy)

Sequence numbers: 799148CO 799229CO 799339AO 79943580
79952B20 79961440

Remote operating system guess: IRIX 6.4 - 6.5

Nmap run completed - 1 IP address (1 host up) scanned
in 1 second

We see the open ports with service names (where known) next to them. This
is useful for determining potential vulnerabilities. Note that it also tried to pre
dict sequence numbers to see whether the system might be vulnerable to a TCP
hijacking attack (see Section 4.3.3.2). In this case, it decided that it would be easy
to guess sequence numbers (a potentially bad sign). Finally, it guessed (correctly)
that the operating system was SGI's IRIX version 6.4 or 6.5 (it is actually 6.4 in
this case).

The tcpdump trace of this attack follows. This is a subset of the actual trace,
showing only the incoming packets. I have edited this to remove some redundancy
(there were a total of 1093 packets incoming as a result of this scan). I have
also annotated a few of the interesting lines, indicating these with a # sign at
the beginning. The attacking machine is called "attacker." I have removed some
information (such as sequence numbers) from the traces in order to conserve space.

12:55:46.078119 attacker> waldo: icmp: echo request
Ping waldo to find out if the machine is up
12:55:46.156 attacker.52498 > waldo.161: S win 4096
12:55:46.156 attacker.52498 > waldo.122: S win 4096
12:55:46.156 attacker.52498 > waldo.2003: S win 4096
12:55:46.156 attacker.52498 > waldo.290: S win 4096
12:55:46.156 attacker.52498 > waldo.665: S win 4096
12:55:46.158 attacker.52498 > waldo. time: S win 4096
12:55:46.158 attacker.52498 > waldo.252: S win 4096
12:55:46.158 attacker.52498 > waldo.ftp: S win 4096
Scan a few common ports. There were quite a few more
packets like these.
12:55:46.384 attacker.52498 > waldo.412: S win 4096
12:55:46.384 attacker.52498 > waldo.1813: S win 4096
12:55:46.384 attacker.52498 > waldo.493: S win 4096
12:55:46.390 attacker.52498 > waldo.smtp: R win 0
Note that a reset was sent to smtp (port 25, email)
indicating that the port is open. This machine is
running sendmail!
12:55:46.422 attacker.52505 > waldo.tcpmux: S win 4096
<wscale 10,nop,mss 265,timestamp 1061109567[ltcpl>

Port 1 (tcpmux)

154 4. NETWORK MONITORING

This is the start of the fingerprinting.
is used, as is port 31200. The first is an open
port, the second one that is not open. These will
react differently to packets sent to them. Note
that nmap has also added a few options on for good
measure.
12:55:46.422 attacker.52506 > waldo.tcpmux: . win 4096
<wscale 10,nop,mss 265,timestamp 1061109567[ltcp]>
12:55:46.422 attacker.52507 > waldo.tcpmux: SFP win

4096 urg 0 <wscale 10,nop,mss 265,timestamp
1061109567[ltcp]>
Note that the SFPU flags are set. This would never
happen in normal traffic.
12:55:46.422 attacker.52508 > waldo.tcpmux: . ack 0

win 4096 <wscale 10,nop,mss 265,timestamp
1061109567[ltcp]>
12:55:46.422 attacker.52509 > waldo.31200: S win 4096
<wscale 10,nop,mss 265,timestamp 1061109567[ltcp]>
12:55:46.422 attacker.52510 > waldo.31200: . ack 0 win

4096 <wscale 10,nop,mss 265,timestamp 1061109567
[Itcp]>
12:55:46.423 attacker.52511 > waldo.31200: FP win 4096

urg 0 <wscale 10,nop,mss 265,timestamp 1061109567
[Itcp]>
12:55:46.424 attacker.52498 > waldo.31200: udp 300
Now try to guess sequence numbers.
12:55:46.424 attacker.52505 > waldo.tcpmux: R win 0
12:55:46.424 attacker.52507 > waldo.tcpmux: R win 0
12:55:46.705 attacker.52499 > waldo.tcpmux: S win 4096
12:55:46.706 attacker.52499 > waldo.tcpmux: R win 0
12:55:46.735 attacker.52500 > waldo.tcpmux: S win 4096
12:55:46.736 attacker.52500 > waldo.tcpmux: R win 0
12:55:46.765 attacker.52501 > waldo.tcpmux: S win 4096
12:55:46.766 attacker.52501 > waldo.tcpmux: R win 0
12:55:46.795 attacker.52502 > waldo.tcpmux: S win 4096
12:55:46.796 attacker.52502 > waldo.tcpmux: R win 0
12:55:46.825 attacker.52503 > waldo.tcpmux: S win 4096
12:55:46.826 attacker.52503 > waldo.tcpmux: R win 0
12:55:46.855 attacker.52504 > waldo.tcpmux: S Wln 4096
12:55:46.856 attacker.52504 > waldo.tcpmux: R win 0

There are a large number of options available for nmap. Some of the useful
ones are:

• -sT TCP connect port scan. One need not be root to execute this option.
This completes the three-way handshake to those ports that are open.

4.9. MISCELLANEOUS UTILITIES 155

• -sS TCP stealth SYN port scan. This sends packets with only the SYN flag
set. Those ports that respond are then sent a reset packet to close off the
connection.

• -sF TCP stealth FIN port scan. Also, using X or N in place of F will result
in an Xmas scan (all flags set) or Null scan (no flags set).

• -sU UDP port scan.

• -0 Use fingerprinting to determine the operating system.

• -F Fast scan (only scan those services listed in /etc/services).

• -0 logfile Output results to a logfile.

• -g port Set the source port number for the scans.

• -v Be verbose in output. Can be given twice for even more information.

• -h Print help.

• -V Print version information.

There are a number of other options available. See the man page for more
information. Some of these are better suited for using nmap as an attack tool
rather than a vulnerability scanner to improve security. One such is the -D option,
which allows one to add decoy hosts into the scan. The result is a scan that appears
to come from a number of hosts, making it difficult to determine who the attacker
really is.

The decoy option provides an opportunity for the statistician. Given packets
apparently from several sites (as generated by nmap), can one determine which
is the real attacker? This depends on how the packets were generated. Let us
consider a couple of cases as an illustration.

If the packets from the different sites are identical, one would have to use other
information to try to determine which site is the real one. For example, one could
do an nslookup and a whois to determine the names and (rough) locations of the
machines. This could allow one to estimate the approximate number of hops taken.
This, with an estimate of the initial TTL value (which can be obtained from the
operating system (OS) estimate, by pOf (Section 4.9.2), or by using techniques
discussed in Section 4.3.2.2), can be used to see which of the packets is most
likely to have originated from the attacking machine and which are decoys.

If all packets are different, one could use passive fingerprinting to determine
the operating systems for the packets. Using statistical models for the operating
systems would allow one to perform a goodness of fit with the different operating
systems to see which of the packet streams best fits one coming from the purported
OS.

Although it may seem that nmap is purely an information gathering tool, it is
not without its dangers. A colleague of mine was doing a scan of our network
when one of the routers he was scanning went down. It turned out there was a
bug in the router software that caused it to be vulnerable to a particular type of

156 4. NETWORK MONITORING

packet. The resulting effort to find and fix the problem resulted in the network
being essentially shut down for more than a day. Although one can argue that it
was not my colleague's fault (and he did indeed argue this), it is clear that one
should never institute scans against computers without first obtaining permission
from all involved, including the network security officer (fortunately, my colleague
did have permission for his scan).

Nmap may be obtained from www.insecure.orginmap.

4.9.2 pOf

Although nmap can do a good job of determining the operating system of a remote
host, it is an active system, which means that the host can be aware of the finger
printing attempt, and firewalls can block the attempt. Imagine instead that you
are attacked by a system, and you wish to determine the operating system of the
attacking system (I will leave the issue of why you might want this information to
your imagination). If you run nmap against the attacker, you alert himlher that you
have detected the attack. It would be nice if you could tell the operating system
simply from the incoming packets. This is what pOf attempts to do.

POf operates by considering incoming SYN packets and extracting information
from the packet to be used to characterize the operation system. For example,
the time-to-live (TTL) value, window size, maximum segment size, whether the
don't fragment flag is set, and which options are used can tell a great deal about
the operating system of the source machine.

An example of pOf output is

10.10.10.23 [15 hops]: Linux 2.2.14 or Cobalt Linux 2.2.12C3

This was run on a packet from a machine that attacked my work machine (as
always, the IP address has been changed). Whether or not the machine really is
running Linux is unknown (I resisted the temptation to run nmap on it and find
out).

Note that pOf uses the TTL to determine the operating system. However, this
is inherently unknowable since it has been decremented by an unknown number
of routers in transit. POf tries to guess the value by looking for reasonable initial
values for known operating systems and matching the other parameters up with
the operating system. Thus, one obtains both an estimate of operating system type
and an estimate of distance away (in terms of the number of hops taken).

The version of pOf that I have looks only at the SYN packet. Adding the other
protocols, and information about the TCP session, would be a useful enterprise.
Also, it uses a table lookup. Adding statistical fingerprinting would be a very
interesting endeavor.

The pOf program can be obtained from http://lcamtuf.hack.pl.

4.10. FURTHER READING 157

4.10 FURTHER READING

A number of papers have been written on the topic of network intrusion detection
at the level appropriate for the layperson. See, for example, Herringshaw [1997],
Mukherjee et al. [1994], and Meinel [1998].

Another statistical modeling technique is discussed in Cabrera et al. [2000]
in which a Kolmogorov-Smirnov test is used to detect deviations from "normal"
traffic activity. A neural network approach is discussed in Tan and Collie [1997].

Girardin [1999] proposes using Kohonen maps (Kohonen [1995] or Van Hulle
[2000]) to visualize network activity. Since these maps also can be used for
clustering, this is a potential alternative to the work in Section 4.5.

Some comments on experience developing and using EMERALD are given in
Neumann and Porras [1999].

A discussion of a methodology for avoiding network-based denial-of-service
attacks is found in Meadows and McLean [1999]. It is argued that the defense
against DOS attacks must be built into the protocols themselves.

An agent-based technique for attacking networks is discussed in Stewart [1999].
This argues that much more sophisticated detection techniques are needed to detect
the attacks of the future.

A technique for using finite-state machines for the detection of intrusions is
discussed in Vigna and Kemmerer [1998]. Several spoofing attacks are described,
and details on how they could be detected and analyzed using these methods are
discussed. Other finite-state machines are discussed in Chapter 4 of Bace [2000].

Sekar et al. [1999b] describe a language for specifying normal and abnormal
packet sequences. This results in a concise and efficient mechanism for specifying
both normal activity and specific types of attacks that use abnormal packets. A
sufficiently well-designed set of specifications should be able to detect any attacks
that use malformed packets, such as Targa3 or teardrop (Sections 4.3.1.5 and
4.3.1.8), and can also detect floods and scans and other packet activity that is not
normal for the network.

A different kind of traffic analysis is discussed in Ettema and Timmermans
[1997]. This looks at analysis of travel patterns. Some of this may be relevant
to routing or anomaly detection in networks. Newman-Wolfe and Venkatraman
[1991] discusses techniques to prevent traffic analysis. The less an attacker can
learn about the typical patterns of traffic on your network, the less they learn
about the machines and users on the system. For example, knowing the traffic
patterns can indicate the kinds of applications running on the different machines,
as described in Section 4.5.3. The basic idea is to use dummy packets, reroute,
and delay packets in order to confuse any monitor as to the real patterns of activity
on the network.

I have not discussed anonymity on the Internet except to note that packets can
be spoofed. Chapter 5 of Amoroso [1999] contains a fairly extensive discussion
of anonymity, including how to track back attackers to determine their identity.
He also discusses many of the utilities for gathering information about people on
the Internet. Chapter 7 discusses a number of techniques for trapping intruders.
These should be used with caution but can be very useful tools for the security
analyst.

158 4. NETWORK MONITORING

Another area of Internet security that is missing from this book is cryptography.
This is a huge field and far beyond our scope. Some people seem to think that
encryption solves all security problems - that with a sufficiently sophisticated
encryption scheme their networks would be safe. This is not the case, although
it is certainly true that properly used encryption is a powerful tool for security.
Rather than list a few of the hundreds of books on cryptography, I leave it to the
reader to browse a local bookstore. Instead, I will mention an interesting new book
(at the time of this writing) by Ryan and Schneider [2001]. This book suggests that
security can be enhanced by properly modeling security protocols and using the
models to suggest improvements or point out flaws. This book focuses primarily
on cryptographic protocols, but the basic idea is sound throughout the security
field.

One of the big areas of research, particularly among military organizations, is
that of data fusion. The goal is to determine optimal ways of "fusing" data from
disparate sensors into a common framework to improve detection and identifi
cation, situational assessment and analysis, and provide a unified picture of the
battlefield. In Bass [2000], the techniques of data fusion are proposed as a set of
tools that should be applied to the intrusion detection arena.

Part III

Viruses
and

Other Creatures

5
Host Monitoring

5.1 INTRODUCTION

Host monitoring refers to gathering and analyzing information related to the se
curity of a single computer. This usually involves looking at the security log files,
monitoring processes, disk usage, file access, and other information related to the
proper functioning of the computer. It can also refer to monitoring users on a
computer, in an attempt to detect unauthorized users.

A good reference for host-based attacks is Kendall [1999]. We will cover the
main attacks described in this thesis as well as several from other sources.

As with network monitoring there are denial-of-service attacks that are focused
on attacking a specific host and that make use of application flaws or quirks rather
than network intricacies. These are of essentially three main types. They either
attempt to bring down the machine, bring down an application, or destroy data.
We will see examples of all three in this chapter.

In addition, we will see two new classes of attacks: the so-called "remote to
user," in which an attacker gains access to the machine from outside; and "user to
root," in which the attacker gains super user permissions. In this latter case, the
attacker can eliminate all (local) evidence of the attack, obtain any information (not
protected by encryption or other methods), or remove any files on the machine.

5.2 COMMON ATTACKS

5.2.1 DOS

159 D. J. Marchette, Computer Intrusion Detection and Network Monitoring
© Springer Science+Business Media New York 2001

160 5. HOST MONITORING

We have seen a number of denial-of-service attacks from a network perspective
in Section 4.3.1. Now, we consider some that are more properly grouped with
host-based attacks. These are generally attacks that deny access to a service or
a machine by exploiting vulnerabilities of particular applications rather than by
attacking the IP stack or blocking access to the network.

5.2.1.1 Apache2 Old versions of the Apache Web server can be slowed to a
crawl or caused to crash by sending many requests with a large number of HTTP
headers. Typical HTTPrequests contain less than 20 headers, whereas an Apache2
attack will have requests containing thousands. This causes the load average of
the machine to rise dramatically, memory usage to climb, and usually the machine
will crash.

Obviously, in order to detect this kind of attack, the requests coming in to
a Web server should be tracked. Some statistics worth knowing would be the
number of connections per time unit (where the time depends on the typical load
on the server), the number of headers per request, the number of distinct machines
per time unit, and the number of requests per machine. Given an estimate of the
typical variation, these statistics can be used to flag any large deviations from
normal activity as being worthy of the security analyst's scrutiny.

More details about this attack can be found at

http://www.geek-girl.com/bugtraq/1998 3/0442.html

5.2.1.2 Back Another attack against old versions of the Apache Web server
was the back attack. In this attack, requests were sent that contained a large number
of front slashes'/, , on the order of six or seven thousand. This causes a temporary
slowdown of the machine. The machine recovers when the attack stops.

This is an example of what I call a "stupid user" attack. When an application
is not designed to handle strange but technically legal input, it may be vulnerable
to attack, for example, by someone simply holding down a key or even hitting
the keyboard with one's forehead. Generally, it is a good idea to harden one's
applications against "stupid users."

5.2.1.3 Mailbomb A mailbomb is an attack against an individual, which can
also cause the machine to crash. The idea is to send many mail messages to a
user on the machine. If "many" is in the hundreds, this can cause great pain to
the individual. If "many" is thousands, and the mail messages are large, the mail
queue can fill up and the machine crash. Also, the disk can fill up with these
messages, causing other legitimate messages to be undeliverable or to be lost.

Mailbombs are easy to implement and quite popular. They are cousin to the
other scourge of email, spam. Spam is the name for junk email mailings. They
are to email what all those credit card solicitations are to the postal system (the
postal system is also known as "snail mail"). A company (or individual) will
send unsolicited email to a large number of recipients. Often, the sender field
is spoofed in order to make it difficult to take action against the sender. If you

5.2. COMMON ATTACKS 161

have ever received email directing you to porn sites on the Web, you have been
spammed.

Note that although the sender (or "from") field can be spoofed (and often is),
the originating IP address cannot be since email uses the TCPprotocol. Thus, it is
often possible to contact a system administrator responsible for the machine, who
can detect and stop the offending party. Some of the larger ISPs do not respond
to these requests, others are very responsive, so at the moment it is a hit-or-miss
proposition to obtain relief from spam (or mailbombs).

Although spam is universally considered to be an evil, it is generally not an
attack, and aside from a small amount of resources required to process the email,
it does not constitute a threat. Mailbombs are a threat, since they can deny access
to legitimate email, or to the machine itself.

5.2.1.4 Webbomb This is my terminology for the Web equivalent of a mail
bomb. It is easy to write a script to generate a large number of Web requests to
a single Web server. This is the poor man's version of the distributed attack (the
distributed denial-of-service attack discussed in Section 7.5.1) that brought down
many famous Web sites.

This can be as devastating to the Web server as a mailbomb can be to the mail
server. Like themailbomb.itis easy to detect (a lot of requests coming from the
same site), and so can be defended against. Note that both email and Web use TCP,
so one cannot spoof the IP address since the full handshake must be completed
before the data are transfered. This is one reason why attackers will often first
obtain access to an intermediary computer from which to mount their attack (called
"looping") to make it difficult to track the attack back to the attacker.

5.2.1.5 Resource Hogging Any kind of program that hogs the resources
on a machine can be a denial-of-service attack. These usually require user access
to the machine. We will see a simple worm in Section 6.7.1, which will eventually
bring a machine down. A similar idea is to run something like

#!/bin/csh
cd /tmp
while (true)
mkdir foo
cd foo
cp -r -/*
end

This is essentially the program given on page 249 of Escamilla [1998] (please
do not try this or any of the "attacks" described in this book). The first line
indicates that the program is a cshell program. This program will create a series
of directories in the /tmp directory, filling each one with a copy of the user's home
directory. This will quickly fill up the disk as well as cause some annoying slow
downs due to all the copying. Even without the copy command (the line starting
with "cp"), this will bring down most systems. Some systems are invulnerable to
this attack because of disk quotas which make it impossible for a single user to
use too much disk space.

162 5. HOST MONITORING

The inverse of the resource hog is the famous

rm -r *

If executed in a directory in which the user has write privilege, all the files (and all
files in subdirectories) are removed. This is the ultimate in denial of service. The
only protection is regular backups.

Of course, nobody would do such a thing by accident, right? I'll bet that the
rm command for root is aliased to "rm -i" on your system. This asks the user to
confirm any file removals. It is extremely annoying, but, since removal is forever,
it is a very good idea. (Helpful hint: using "\rm" executes the unaliased version
of the command. Use with caution. The alias is there for a reason.) Most of us
have the experience of typing quickly and hitting the return just before we see that
instead of typing

rm *.bak

we've typed:

rm * bak

or some such. Instead of removing the backups that we thought we no longer
needed, we've removed everything (including the backups).

It is a good idea to back your work up regularly. I tend to make "Save" directories
where I put copies of things while I am working. The preceding command is not
recursive, and so will leave the Save directory intact. This will not protect you
from attackers, but will provide some protection from yourself.

5.2.1.6 Creative Telnets Old versions of Windows NT were vulnerable to
telnets to high ports (anonymous [1997]). For example, if one telnets to port 1031
and sends a few characters, the destination machine will crash. This is a very old
vulnerability and is undoubtedly fixed in newer versions of NT.

This points out one of the difficulties in computer security. Bugs appear in
operating systems (and applications) all the time, and until someone discovers the
bug, and thus describes the attack it allows, it is difficult to defend against the
resulting attack. Open-source programs help here since people can look at the
code and determine both the problem and the fix without waiting for the vendor.
Of course, this is a two-edged sword. The potential attackers can also look at the
code and determine new attacks.

5.2.2 Remote to User

In order to get into a computer, one must either have physical, network, or modem
access. If the computer is on the Internet, network access is often easy to achieve
unless it is protected by a particularly tight firewall. Physical access can be obtained
by breaking-and-entering or simply by wandering around during business hours
acting like someone who belongs there. Modem access can be obtained by "war

5.2. COMMON ATTACKS 163

dialing." This is a process whereby a range of phone numbers are called, looking
for numbers that are answered by machines. Surprisingly, or maybe not, many
machines are configured to have the modem answer if its number is called. Most
of the time the user is not aware of this "feature."

An attacker that wants to utilize your computer or gain access to information
on the computer must somehow obtain a user's account. The simplest way is to
simply log in with the correct user name and password. In order to do this, the
attacker must obtain this information from somewhere or guess it.

Probably the most successful method for obtaining user and password infor
mation is through social engineering. Through various tricks, the attacker gets a
legitimate user to provide the desired information. This is discussed at length in
Hafner and Markoff [1995] and in Denning [1999], pp. 216-217.

A similar idea is to go through the trash (hence the name "trashing") of the
victim organization, hoping to come across interesting and useful information.
This too is discussed in Hafner and Markoff [1995] in some detail. Trashing is
also referred to as "dumpster diving" (see also Denning [1999], pp 159-160).

An alternative approach is simply to try to guess the password. First the attacker
obtains (or guesses) a user name. Some common ones are "guest," "lp," "root,"
and "administrator". If the attacker knows the names of some of the people in
the victim organization (say, through "trashing"), user names can be guessed by
performing simple operations on the names. For example, Diane B. Jones probably
has a user name such as: djones, jonesdb, dbjones, or dianej.

Given a user name, the password can often be guessed because people often do
not use secure passwords. The password for "guest" is often "guest." If Diane has
a daughter, try her name, birthday, etc. It would seem that even with this kind of
information, the number of possibilities is endless, but surprisingly this approach
has been used quite effectively.

This kind of guessing can be detected by considering the number of access
attempts (such as telnet or FTP) that fail. If the attacker is patient, these may be
spread over a long time, making detection difficult. Also, it is possible to guess
the password on the first try, so this is not a reliable approach to detection.

Another key to detection is to consider the source of the connection attempt.
Attempts from unusual places, or at unusual times, are a tipoff that something
suspicious may be happening. This requires some kind of user or activity profiling,
such as is discussed in Sections 4.5 and 5.5. Many attacks at NSWC are detected
because they come from foreign sources. Remember, however, that the apparent
source is not necessarily the true source. Attackers often go through a number
of intermediary machines before they attack a well-defended site in order to hide
their trail and avoid prosecution. This is called "looping." In some countries, most
"cyber-attacks" are legal, and therefore an attacker may first obtain a machine in
one of these countries before attacking a site in a country with more restrictive
laws.

If one can obtain the password file (letc/passwd on a Unix machine), one can
attempt to crack the passwords using one of the many password cracking programs.
These run through a dictionary, trying all the words, and various modifications, as
passwords, attempting to find one that works. Recall that the password file contains
encrypted passwords, using a one-way encryption scheme, so the cracking program

164 5. HOST MONITORING

encrypts the prospective password and compares it with the one in the password
file.

There are many password cracking utilities. I like "John the Ripper," available at

http://www.openwall.com/johnl.

There are a number of other such utilities, including some that can be built in
to the password program, so that when users change their password an attempt
is made to crack the new password immediately, thus (hopefully) catching easily
cracked passwords before they are used.

Password cracking may take a while, especially if the dictionary is large and
the cracking tool tries many variations (for example, replacing the letter "0" with
the digit "0" or concatenating two small words together), but the attacker can run
this at home, with no risk of detection, once the password file has been obtained.
Attackers will also use other computers they have compromised to distribute the
password cracking code. Thus, it is not a bad idea to watch for processes named
things such as "crack" or "LOphtcrack" as indications that your machine has been
compromised and is being used to compromise other machines.

Trying to crack a password file would at first seem to be as futile as trying to
guess one (although even this latter is not always as futile as one might think).
An informal investigation of password cracking is reported in Farmer and Venema
[1993]. They checked 656 hosts and found that they were able to obtain 24
password files with little difficulty. Of these, a third had an account with no
password. They ran crack, a freely available password cracker, and found that in a
lO-minute run on 1594 accounts they were able to obtain more than 50 passwords.
After a few days, they had:

• 5 root passwords.

• 19 files that had at least one password, giving them access to 80% of the
machines.

• 259 passwords guessed.

If you think we are more secure now since everyone is now so security-conscious,
you haven't been paying attention to the news lately (no matter when you read
this!). For another anecdote: the first time I ran crack on my machine at work, I
cracked a password (fortunately, not mine).

The password file can often be obtained without logging on to the machine,
for example through the phf attack. In this, a machine with a Web server and
the phf program in its "cgi-bin" directory is sent a request for phf to provide the
password file, which it does. Obviously, if you have phf on your machine, you
should remove it. Other cgi programs have this vulnerability, so it is a good idea
to remove all such programs that you do not need and to check the security sites
to make sure no new vulnerabilities have been discovered.

Some machines run "TFTP," the so-called "trivial file transfer protocol." Some
of these have misconfigured the software to allow reading of files without a pass
word, which is another way to obtain the password file. Some FTP servers have
real password files in their /ftp/etc directory. Denning [1999] reports that at least

5.2. COMMON ATTACKS 165

one individual was able to obtain encrypted root passwords simply by doing a Web
search.

The preceding discussion points out the need to carefully secure your password
file. Some systems use shadowed password files, where the world-readable pass
word file contains no password information. The passwords are kept in a "shadow"
password file with restricted access.

5.2.2.1 FTP Write This is a specific case of a general idea. If a user's home
directory contains a ".rhosts" file, this file is checked for "trusted" remote hosts.
This is a nice utility to make it possible to move from machine to machine without
needing to type user name and password information. This is very useful, and
loved by users, which is a tip-off that it is a huge security problem. If the ".rhosts"
file contains the string "++," then any user from any machine can log into the
account (using "rlogin") without providing a password.

Anonymous FTP is one of the most useful methods for providing file transfers
across the Internet. Even most Web servers utilize this facility for transferring
files that are not meant to be displayed as Web pages. A directory is set up (with
protections to make it "locked off" from the rest of the directory structure) with
a user name "anonymous" which can be used to FTP to the computer without a
password (most anonymous servers require the password to be given as the email
address of the person logging in; generally little to no checking is done on this).
Only those files under this directory are accessible, so the system administrator
places those files that are to be shared with the world in directories under this FTP
directory.

The anonymous FTP directory should not be writable. If it is, the attacker can
place a ".rhosts" file in the directory. The attacker then logs out and logs back in
(using "rlogin" this time) as "ftp." The user "ftp" is not restricted in the same way
as "anonymous" since the application used is now rlogin.

This attack can be detected either by searching the content of packets for the
string "rhosts" or by using a file integrity checker such as tripwire (Section 5.6.6)
to check that the FIP directory has not been modified.

This specific attack relies on a misconfigured FTP server. However, this basic
idea works for any attack that allows the attacker to write a file in a user's home
directory. For example, misconfigured TFTP servers have been known to allow
anyone to write files without requiring a password.

5.2.2.2 Buffer Overflows There are a number of buffer overflow attacks that
allow an outsider to gain access to a computer. Kendall [1999] discusses a number
of them that utilize bugs in imap, named, and sendmail. The interested reader is
encouraged to read Kendall [1999] for more details on these attacks.

These attacks are network-based in the sense that they operate by sending
packets with particular data to an application running on a remote machine. The
data contain executable commands that the application runs, giving the attacker
access to the machine. We will discuss this in more detail in Section 5.2.3.1. The
attacks can be detected by looking for specific strings in the content of packets;
however, this will not allow one to detect new attacks against other applications.

166 5. HOST MONITORING

Thus, the attacks really need to be detected by monitoring the host system, watching
for inappropriate accesses, activity, and changes in access permission.

5.2.2.3 Trojans We will discuss trojan programs in more detail in Chapter
7, but there are a few trojan programs that are worth mentioning in this section.
In a nutshell, trojan programs are programs that appear to be one thing but act to
provide information to an attacker or mount the attack themselves.

In an X Windows environment, only those machines that the user has indicated
have permission may connect to the X Windows server. Thus, if you are running
X Windows as yourself, and su to root, you may find that you cannot execute
commands that use the X console because you (the owner of the session) have not
given root permission to do so. One solution to this is to type "xhost +machine,"
where "machine" is the name of the host you are on (this needs to be executed as
the owner of the X console). Lazy (or inexperienced) users may choose to simply
type "xhost ++". Like the "++" in the .rhosts file mentioned previously, this allows
access to the console from any machine.

Assume that the attacker can gain access to the X console. The attacker can then
run a fake "xlock" program that makes it look like the screen has been locked and
request the password from the user to unlock the screen. Once the unsuspecting
user has typed the password, the screen lock goes away and the user is none the
wiser. However, the attacker now has the user's password.

Another way to gain information on an open X server is simply to watch all the
characters typed. This can be done, if the X console is open, as above, providing
the attacker with a lot of interesting information. For example, if the user logs in
to another machine, the user name and password may be obtained.

5.2.3 User to Root

User to root attacks are ones designed to extend the user's privilege to that of
the super user. These attacks can be mounted by attempting to obtain the root
password, either by cracking the passwords in the password file, by sniffing the
password, or by social engineering. These have been discussed earlier, so we will
consider other attacks, which do not rely on obtaining the root password.

The most common user to root attack is the buffer overflow attack. In this,
the attacker exploits a programming error that allows data to be placed on the
execution stack. When the data are executed, the program corresponding to the
data provides the user with root access.

Other attacks involve clever tricks that are not easy to characterize. One such
attack, taken from Kendall [1999] works as follows (the attack works against
SunOS 4.1).

The internal field separator (IPS) is used to define the character that separates
fields. Generally, this is set to the space character. The attack is:

1. Copy /binlsh to ./bin (The "./" corresponds to the current directory).

2. Add "." to the beginning of your path variable if it is not already there (this
makes your current directory the first one searched for executable programs).

5.2. COMMON ATTACKS 167

3. Change the IFS to "/".

4. Execute the command "loadmodule a" (this is a program that loads modules
in the Sun operating system).

The loadmodule program executes the command

exec("lbinJa")

which gets translated (thanks to the IFS) to the equivalent of

exec("bin a")

which then executes the local copy of "bin," which happens to be a shell. Since
loadmodule does its "exec" as root, the shell is executed as root.

This kind of trickery is quite common. It illustrates the level of knowledge
required to come up with some of these attacks. While so-called "script kiddies"
are held in contempt by security experts due to their lack of knowledge and the lack
of sophistication of their attacks, the people who discover the attacks are generally
quite knowledgeable. In fact, they are often the very security experts tasked with
protecting the machines and networks. There is some controversy as to whether
these people should publish the attacks they discover, but it is generally agreed
that this is a good thing, allowing system administrators (and vendors) to fix the
problems before someone with evil intent discovers and utilizes the attack.

5.2.3.1 Buffer Overflow Examples There are a number of buffer overflow
attacks detailed in Kendall [1999]. Instead of detailing each one, let us consider
a hypothetical attack in some detail. The interested reader is encouraged to read
Kendall [1999] for some specific examples.

The basic requirement of all buffer overflow attacks is a program that places
data into a buffer without doing any bounds checking to make sure that the data
do not extend beyond the buffer. Data that overflow the buffer can overwrite the
execution stack or parts of the program and hence be executed as if they were
legitimate parts of the program. By careful manipulation of the data placed on the
stack, the user can execute pretty much anything desired, with the same permission
level as that of the targeted program. Thus, if the program is owned by root, the
attacker's program is executed as root.

Figure 5.1 illustrates the attack. In this example, the attacker calls the program
with a long string for an argument, which gets placed into a buffer. The buffer
is too small to hold all the arguments, and the programmer did not bother to do
bounds checking (after all, who is going to call this program with 100 arguments or
more). The attacker has carefully crafted the argument string so that it corresponds
to spawning a shell command with root privileges.

Ko et al. [1994] describe a buffer overflow attack on the finger daemon. The
problem is that finger uses the library routine "gets" to read strings into a buffer,
but the gets function does no bounds checking. Thus, the attacker, who knows the
size of the buffer from investigating the finger code or by trial and error, can send

168 5. HOST MONITORING

I> buggy "stuff· .. x <01101100> ... <1001100>" I

Buffer

I stuff· .. x I 01101100 ... 1001100 I

Fig. 5.1 An illustration of a buffer overflow attack. The attacker executes the command
"buggy" with a very long string. The buggy code does not check the string size to ensure that
it will fit in its buffer ("x" marks the end of the buffer in the figure), and as a result the string
overflows into other memory, in this case the execution stack. The attacker has arranged
that the binary values of the string that gets written on stack memory are the instruction
code for some action, such as spawning a terminal.

a sufficiently long string with appropriate binary code to be placed on the stack,
and this code is then executed.

There are a number of ways to detect such an attack, depending on the sophisti
cation of the attacker. If source code for an implementation has been captured (or
downloaded from a Web site), a signature can be constructed to look for unique
strings that appear in the code. Thus, an attacker who moves the code to a machine
can be detected by looking for this particular signature. This is, of course defeated
if the attacker is smart enough to encrypt the code first. However, the code must
eventually be decrypted, which gives a sufficiently paranoid operating system the
opportunity to detect the signature. Such an operating system would presumably
be invulnerable to this kind of attack. After all, why go to all this trouble when
it is possible to make the operating system nearly invulnerable to buffer overflow
attacks?

A moderately clever attacker can recode the attack easily enough, making the
job of detection via signatures much harder, so other detection methods must be
employed.

If the system monitors for inappropriate changes of permission, the attack can
be detected by noting that permission has been changed without the appropriate
legal sequence of events. This is much more reliable than the signature approach.

5.2.3.2 Race Condition Imagine that you want to change an entry in the
password file. Why would you want to do this? One reason would be to change
the root password from something you do not know to something you do. If you
could only write to the password file, you could do this and you could then gain
root permission. This has the added benefit that nobody else would have root
permission anymore, since they would not know the new root password. Like
Yertle the Turtle, you would be king of all you could see!

The problem with this is that you cannot write to the password file unless you
already have root permission. The solution to this is to trick a program that has
root permission into writing the file for you.

5.2. COMMON ATTACKS 169

2. Link X to letc/passwd

'Or--------·/etc/Passwd

1. Access X to write rite to X

Fig. 5.2 An example of a race condition allowing write access to a password file. After
opening the file /tmp/X for writing, but before writing any data, the file is deleted and
replaced with a link to /etc/passwd. Subsequent writes then end up in this file.

When a program goes to open a file, it first checks (with a system call) to see
whether it has permission to access the file. Then, if the answer is "yes," it opens
the file (with a second system call). The problem comes in when the file changes
between the two system calls. This is illustrated in Bishop and Dilger [1996].
Figure 5.2 shows the steps.

Suppose that the attacker wishes to overwrite the file letc/passwd (the Unix
password file) with the file /home/userx/mypasswd. The Itmp directory is world
writable (that is, writable by any user), so it affords a nice place to perform this
attack.

1. The attacker creates a file in Itmp, say ItmplX.

2. The attacker program checks to see whether it has permission to open ItmplX.
It does, since it is the user's file.

3. Before the program opens the file, the attacker removes ItmplX and makes
a hard link between ItmplX and letc/passwd.

4. The program then opens ItmplX and copies /home/userxlmypasswd into it
and hence into the letc/passwd file.

This kind of vulnerability is referred to as a time-of-check-to-time-of-use (TOCT
TOU) flaw. As in the preceding example, it comes about when a program checks
an object for a property and then assumes that the property still holds when it goes
to perform some operation on the object. If the property no longer holds when the
second operation is performed, a security fault occurs.

A similar example is given in Ko et al. [1994]. There is a program, rdist, which
is used to maintain file consistency across a number of hosts. When rdist updates
a file, it creates a temporary file, copies the data into the file, and changes the

170 5. HOST MONITORING

permissions on the temporary file to match those of the copied file using "chown"
(change owner) and "chmod" (change mode). Then, it renames the file to the
correct name.

Suppose an attacker (who already has obtained a local shell on the machine)
wishes to change the "suid" bit on Ibinlsh. Recall that Ibinlsh (the Bourne shell)
is owned by root, and if the suid bit is set, then the program is run as the owner
of the program. Thus, if one can set the suid bit on Ibinlsh, one can obtain a shell
that is running as root, thus obtaining root access on the machine. Unfortunately
for the attacker (but fortunately for everyone else), one cannot (normally) set the
bits on a program one does not own, so some kind of trick must be employed.

The trick, using rdist, is as follows. The attacker updates a file local to the
machine with the appropriate bits set. After rdist opens the temporary file and has
started copying the data, the attacker renames the file and makes a symbolic link
to Ibinlsh with the name of the temporary file. After rdist has finished copying
(note: the copy continues into the renamed file, not the new linked file), it runs
chown and chmod (this time on the symbolic link file). The trick is that chown
does not follow symbolic links (so Ibinlsh remains owned by root) but chmod does,
changing the bits on Ibinlsh. The attacker then runs Ibinlsh and has root.

Bishop and Dilger [1996] give several other examples of these kinds of prob
lems. They also describe some approaches to detecting these flaws. The first
involves a code checker that searches source code for potential flaws. The second
is a dynamic approach that watches the run-time environment for potential TOCT
TOU flaws. A third approach, not mentioned by Bishop and Dilger [1996], would
be to use a file integrity checker such as tripwire (Section 5.6.6) incorporated with
a monitor such as Is of (Sections 1.9.11 and 5.6.3) to see who is opening the various
files. This is potentially quite expensive from a computational standpoint since
the checks must be done essentially continuously. That makes this an impractical
solution. The real solution is to write the operating system so that it is invulnerable
to this kind of attack, which is no easy task.

A similar attack, which effectively destroys a file that the user otherwise would
not have permission to touch, can be found at

www.rootshell.com

(search for gcc). The idea is that gcc, the Gnu C compiler, uses temporary files
in itmp for its intermediate files. The script watches the itrnp directory for files
whose names match those used by gcc. When it finds one, it links the victim file
to the file used by gcc. When gcc outputs the temporary data, it overwrites the
victim file.

This attack is purely destructive since the attacker has no control over the content
written to the file. It can be detected with a file integrity checker such as tripwire,
provided the victim file is one of the ones protected. It can also be detected by
noticing garbage that looks like the output of a C compiler in files that should have
something else in them.

5.3. N1DES 171

5.2.4 Covering Up

Once an attacker has gained access to a machine, the first order of business is
usually to cover their tracks to make detection (and, ultimately, prosecution) more
difficult. There are a number of techniques that are useful for this purpose.

The simplest thing to do is to hide any new files that the attacker has put on
the machine by starting their name with a ".". These files are not listed in normal
directory listings. One must execute a "Is -a" to see these "hidden" files. A related
method is to make a directory called " ... ". In Unix, the directory "." is the current
working directory, " .. " is the previous directory, and" ... " will often be overlooked.

The next thing to do is to remove any traces from audit logs. There are various
tools that will help with this. It only works if the logs are accessible (which is an
argument for using a log server, making the log files inaccessible on any machine
eccept the log server itself). Once this is done, ps and netstat can be replaced with
trojan programs that do not display the attacker's processes or connections.

5.3 NIDES

The Next-generation Intrusion Detection Expert System (NIDES) (Anderson et al.
[1995]) was developed by SRIin the early 1990s (see Javitz and Valdes [1991] and
Javitz and Valdes [1993]). We will concern ourselves mainly with the statistical
component of the NIDES system. NIDES utilizes logfile entries to extract infor
mation about various activities such as file access and cpu usage. The idea is to
construct statistics on these usages under normal conditions then use the statistics
to test for abnormal usage in subsequent operation.

NIDES operates by measuring various activity levels for a set of defined activi
ties and combining these into a single overall measure of the "normality" of activity
for the recent past. This statistic, denoted T2, is then tested against a predefined
threshold to determine whether the recent activity is sufficiently "abnormal" to
warrant alerting the security officer.

NlDES uses a wide range of disparate data to make its assessment, which makes
it a particularly interesting approach from a statistical viewpoint. The data types
are broken into four categories:

• Intensity measures An example would be the number of audit records
generated within a set time interval. Several different time intervals are
used in order to track short-, medium-, and long-term behavior.

• Distribution measures. The overall distribution of the various audit records
is tracked via histograms. A difference measure is defined to determine how
close a given short-term histogram is to "normal" behavior. These measures
could properly be treated as functional data (Ramsay and Silverman [1997]).

• Categorical data The names of files accessed or the names of remote com
puters accessed are examples of categorical data used.

• Counting measures These are numerical values that measure such things
as the number of seconds of CPU time used (to an accuracy of about a

172 5. HOST MONITORING

microsecond). They are generally taken over a fixed amount of time or over
a specific event, such as a single login. Thus, they are similar in character
to intensity measures, although they measure a different kind of activity.

A set of measurements is defined from the preceding categories, measuring
such things as CPU usage, number of files accessed, which files were accessed, and
elapsed time for different applications. These measurements are used to generate
a statistic denoted S, and the T2 statistic is defined as a sum of the squares of the
Sj:

(5.1)

The developers ofNIDES suggest that future work look at correlations between
the Sj as an area that might provide useful information. To my knowledge, this
has not yet been investigated.

The NIDES approach is to compare recent performance with past performance.
One way that the developers could have chosen to implement this is to use time
windows on the data. One could compute a statistic on a window of, say the last
ten seconds and then compare this with values taken over windows in the past to
determine whether the statistic has changed.

5.3.1 Statistical Calculations in NIDES

Host-based detection should occur in real time, so computational efficiency is
essential. Thus, one would implement the window approach efficiently by updating
current values rather than recomputing them. For example, if one were computing
an average of values At,n = (XHI + Xt+2 + ... + XHn) In, one would compute
At+1,n as

At+1,n = At,n - Xt+1/n + Xt+1+n/n . (5.2)

Similar "downdate/update" strategies are available for other statistics that one
might wish to compute on these windows.

A related formulation is the recursive update formula for the mean and variance
of a random variable. They are introduced here so that they can be used as a simple
procedure for implementing exponential windows. The formulas are shown in
Equations (5.3)-(5.5).

1
Xn+l xn + --1 (xn+1 - x n), (5.3)

n+

Sn+1
A n

= Sn + --1' (xn - xn)'(Xn - Xn) (5.4)
n+

tn+1
1 A

= -Sn+1' (5.5)
n

5.3. NlDES 173

These are easy to derive. For example, for Xl, ... ,Xn , the sample mean cal
culation is

1 n
xn = - LXi.

n i=l

(5.6)

Now, assume that we obtain a new observation X n+1. We can recompute the
sample mean via Equation (5.6), but we'd like to simply update the mean we
already have.

=

(5.7)

A similar calculation can be used to derive Equation (5.5).
It should be noted that the order of the updates of the recursive formulas is

important. As seen in Equation (5.4), the update of Sn uses Xn , not Xn+1, so code
to implement these equations should update S before updating the mean.

The NIDES development team chose to take a slightly different approach. They
put an exponential window on the observations rather than a rectangular one. In
this way, the current statistic depends not only on a small window in time but on all
the data for all time (in principle, although in practice since the dependence on past
data drops off exponentially there is little dependence on data a few half-lives in
the past). An exponential window can be implemented in the preceding recursive
formulas by setting the ns on the right-hand side of the equalities in Equations
(5.3) and (5.4) to some fixed value, say N.

Each S statistic is computed from a "raw" statistic denoted Q. We will first
investigate the kinds of measurements that might correspond to Q statistics and
consider how the Q statistics are computed. We will then describe how an S
statistic is computed from a given Q for the different data types.

5.3.1.1 Intensity Measures Intensity measures are counts of audit records
per fixed time unit. The idea is to get a measure of the overall activity level of the
system (or the user if the records are restricted to those generated by the user's
processes). In its simplest form it is a simple count of the number of audit records,
however one could easily implement different counts for different types of records.

We will deviate from the notation of the NIDES report (Anderson et al. [1995])
at this point. Rather than referring to all measures as Q, we will denote intensity

measures as I. Thus, the intensity at time t is denoted It, and the intensity after

174 5. HOST MONITORING

n records is In. One first initializes the intensity value to Io, some initial value
that is chosen to be a reasonable start. Generally, one either sets Io = 0 or sets it
to some value determined by considering average values for a number of related
data sets. The formula for updating In from the (n + l)st audit record is

(S.8)

where !::J.t is the time between the nth and (n + l)st audit records and r is the
decay rate, determining the rate of decay of the exponential window. In this case,
and throughout the NIDES discussion, the rate is discussed in terms of half-life,
for obvious reasons. This formula is recursive since it only requires the previous
value of the statistic and the elapsed time in order to update the value.

The NIDES implementation discussed in Anderson et al. [199S] implements
three intensity measures with half-lives of 1, 10, and 60 minutes.

5.3.1.2 Audit Record Distribution Measures The first thing that comes
to mind upon looking at the intensity measures is the question of the distribution
of the audit records. The intensity measures are in effect averages of the time
between records, taken over different scales. An obvious question is how audit
records are distributed. Audit records describe different types of behavior, such
as file access, 110, network access, and so on. Audit record distribution measures
try to take into account the overall distribution of the different types of activities.

First, one determines the different activity types that will be monitored. This
can be done by reviewing the log files for a period of time to determine what things
are typically logged and by reading the documentation for the different logging
programs to determine what kinds of activity are typically logged. This will be
different for different architectures; however, there are a number of things (such
as those mentioned previously) that will be pretty much universal.

Once a set of activity types has been defined, NIDES computes the relative fre
quency of occurrence of each type and compares this with historical (longer-term)
values for these types. This amounts to computing the weighted sum of squared
differences between the observed and historical rates, weighted by a measure of
the variance of the historical estimates. In order to be precise, we need to define
some of the values used in the calculation.

The sample size for the statistic, N r , is defined as the sum of the decay weights:

n

N r = L: 2-r (n-j). (S.9)
j=l

The audit record distributions concern daily tabulations of audit records of
different types. Let Wj,m be the number of audit records of type m that were
observed on day j, and Wj the number of audit records of all types on day j. Just
like with intensity measures, we take weighted averages to allow a sliding window
in the calculation, so define

k

Nk = L:WjTb(n-j),

j=l

(S.lO)

5.3. NlDES 175

the exponentially weighted total number of records that have occurred. In this
case, the decay rate has been denoted b to indicate that it can be a different value
than the one used in the calculation of In. The NIDES report notes that a recursive
calculation of Nk can be defined as

Nk = TbNk_1 + Wk. (5.11)

Let 9m,n denote the short-term relative frequency for activity type m, computed
upon the observation of the nth record. This is computed as

9m,n = ~ L nTr(n-j) I(j, m) (5.12)
r j=l

or recursively as

(5.13)

where I(j, m) is the indicator function indicating whether the jth record was of
type m.

Note that 9m,n is updated for every audit record whether it is of the appropriate
activity type or not. This puts some constraints on the number of activity types
that are practical to monitor. For example, it is probably not feasible to consider
every type of TCP connection (each possible port) as being a different activity
type since this requires the updating of 65536 values for every record. Although
this can easily be done on modem systems, the computational overhead of this is
probably more than can be justified.

Letting f m,n denote the long-term historical frequency of occurrence of activity
type m as of record n, we compute

f = ~ ~ n2-b(n- j)W . m,n N ~ m,]
r j=l

(5.14)

and

Vm,n = min(O.OI, fm,n(1- fm,n))/Nr. (5.15)

The statistic, which we will denote Dn, for the distribution of the audit records
is then defined as

M

Dn = L (9m,n - fm,n)2/Vm. (5.16)
m=l

5.3.1.3 Categorical Measures Categorical measures are computed exactly
like distributional measures except that only the bin associated with the categorical
value is updated. Thus, if we modify Equation (5.13) as in Equation (5.17) below,
we can compute the statistic for categorical values in essentially the same manner
as before:

I
9m ,n 2-r 9:r"n-1 + l/Nr ,

M

L (9:r"n - fm,n)2/Vm ,
m=l

where, of course, all the values are calculated for the categorical variables.

(5.17)

(5.18)

176 5. HOST MONITORING

5.3.1.4 Counting Measures Counting measures are computed by convert
ing them to categorical variables. Recall that counting measures are things such
as CPU usage, which are naturally measured in terms of counts, such as number
of milliseconds of CPU usage. These are binned into 32 ranges, which are then
treated as categorical measures and treated as before.

5.3.1.5 Computing S from Q Since the Q values defined earlier are from
quite disparate distributions, some kind of normalization is needed to allow the
simple combination defined in Equation (5.1) to make sense. This is accomplished
as follows. For each intensity measurement, In, a histogram is made of historical
values; that is, one considers several time periods in which the In were computed,
and constructs a histogram of the values observed. This histogram typically has 32
bins, with the last bin consisting of all instances of In above the lower bound for
the bin. The histogram then is an estimate of the density of the In, and this in tum
determines an estimate of the distribution function as the sum of bin frequencies
for bins with ranges less than or equal to the observed value 1m. An obvious
modification to this would be to use the empirical distribution function F for the
historical data; however, this requires retention of all the data, and this approach
was not taken, presumably for reasons of computational efficiency. The value of
S for the intensity measure is then

(5.19)

where <I> is the distribution function for the standard normal.
This histogram is defined in a manner similar to that used for the computation

of the Q measures themselves. For bin m, the value of relative frequency with
which Q is in this bin is

F - ~ ~ W ·Tb(n-j) (5.20)
m,n - N L....t m,} ,

n j=1

where in this case the W m,j is the number of audit records on day j that fell into
binm.

The nonintensity measures are treated similarly, using Equations (5.20) and
(5.19), except that the sum of bins greater than or equal to the observation is used.

5.3.1.6 New and Rare Categories NIDES allows the creation of new cate
gories. Because ofthe decay discussed earlier, these may actually be old categories
that have not been used recently, or they may be genuinely new.

The mechanism for handling novel events is a separate category labeled "new."
When a novel event is observed for the first time during a day, the "new" category's
short-term probability is incremented. The short-term probability is then compared
to the long-term probability to determine whether there is a significant amount
of "new" activity. If there is, a new category can be created and/or the system
administrator can be notified.

Similarly, the rarest categories are aggregated into a single "rare" category.
In this manner, while an intruder that touches a few rare categories may not be
detected for the individual categories, the large amount of activity in the "rare"
category may be enough to signal a problem.

5.3. N1DES 177

5.3.1.7 T2 and Alerts Once a T2 has been observed, a decision must be
made as to whether this value is large enough to indicate abnormal behavior. There
are several points to consider. First, the value of T2 at audit record n is highly
correlated with that for record n + 1. This means that some kind of memory
of past alerts needs to be kept to avoid having the system give redundant alerts
once T2 goes over the alert threshold the first time. This dependence makes the
analysis of the statistic rather difficult, although it is approximately X2 , being the
sum of squares of values which themselves come from sums of random variables.
Rather than attempt any kind of theoretical analysis of this statistic, however, it is
probably sufficient to set the threshold via an empirical study. For example, one
could collect the statistic for a period of time in which one knew when the activity
was "normal" and when attacks had been mounted and use these data to set the
threshold. This once again brings up the issue of how one gets nice clean data
such as this, which was addressed to some extent in Chapter 3.

5.3.2 NIDES Performance

The performance of NIDES in several experiments is reported in Anderson et al.
[1995]. NIDES has several parameters (most notably the half-life) and a threshold
to adjust. The authors performed a set of experiments with varying values of the
parameters to determine the possible range of performance measures.

Thirty programs were identified as having sufficient examples within a data set
that had been collected. The activity of these programs was then monitored, and
NIDES was evaluated to determine the false alarm rates on these data. These rates
varied between programs and the parameters that were set. In one experiment,
NIDES performed at false alarm rates between 0 and 13% for the individual pro
grams. For example, the best performance reported in this experiment was that
four of the programs had false alarm rates larger than 1 %. Thus, the performance
was quite dependent on the activity of the program, presumably on the variability
of "normal" activity for that program. Other experiments showed results in the
range from 0 to 5% false alarms.

To determine the detection probabilities, other programs were substituted (and
renamed) in place of the "normal" programs, and the task of NIDES was to de
termine that a substitution occurred. For the most part, it was able to do this,
although not always in all the places where a substitution occurred. The proba
bility of detection ranges (depending on experiment run and application programs
considered) from around 72% to 100%. The latter is only attained for specific
programs, not for the overall problem of detecting the masqueraders within all the
data.

Overall, these results are not bad, considering the difficulty of the task at
tempted. We will see other approaches to this and related problems in the next
section and in Section 5.5.2.

178 5. HOST MONITORING

5.4 COMPUTER IMMUNOLOGY

Consider the problem of determining whether a program is operating normally or
whether something has gone wrong. If the program is acting in an unusual manner,
it is possible that it has been compromised by an outside agent, perhaps resulting
in system compromise. How can we determine whether the program is operating
normally?

If the program is simple and well-understood, one can simply list all the possible
"normal" actions that the program could take and check this list in subsequent
program evaluations. However, for most non-trivial programs, this is a daunting
task.

One way to characterize the actions taken by a program is to list the sequence
of system calls it makes. In order to effect any changes to the system, the program
must use system calls to interact with the system (for example, to store something
in a file), so considering the sequence of system calls is a reasonable place to start.

Unfortunately, there are quite a number of possible system calls, and the se
quence of calls performed is data-dependent, so one must perform some kind of
statistical analysis to determine what "normal" sequences look like. This is done
by considering strings of system calls of a fixed size n, so-called "n-grams" (see,
for example, Forrest et al. [1996]) . First, define an alphabet of symbols which
correspond to all system calls. Fix a length n, which will be the length of charac
teristic strings. Then, for many "normal" operations of the program in question,
keep a list of all "n-grams" observed for that program.

Note that these "n-grams" are not independent. Consider the following exam
ple:

ABBACDDAEABBCAED

This results in the following set of 7-grams:

ABBACDD
BBACDDA
BACDDAE
ACDDAEA
CDDAEAB
DDAEABB
DAEABBC
AEABBCA
EABBCAE
ABBCAED

In this alphabet consisting of five symbols, there are 57 = 78, 125 possible
distinct 7 -grams. One question of interest is how long one has to observe the
program in order to be confident that one has seen a given percentage of the
"normal" n-grams for the program.

On a Linux machine, the command to trace the system calls of a program is
strace. For example, the following is a shell script to trace any command:

#!/binlcsh -f
strace -0 $1.$$ $*

5.4. COMPUTER IMMUNOLOGY 179

If the preceding is in a file called "my trace," then running

my trace vi main.c

results in a file named vi.1986 (assuming that when my trace was run it was given
the process ID 1986) containing a listing of all of the system calls made by the vi
process.

I ran a small experiment to illustrate the process. Consider the problem of
characterizing the operations of the GNU C-compiler, gcc, in this manner. First,
I compiled the R language (Ihaka and Gentleman [1996] on a Red Hat Linux 6.1
machine. R is a language very similar to S, a statistical language. R is public
domain software, with both executable and source distributions. The version I
used (0.90) made 446 calls to gcc. There were 19 distinct system calls, listed in
Table 5.1.

With n = 7, there were 122 distinct n-grams throughout the 446 calls to gcc.
Is this representative of the "normal" activity of gcc? The number of n-grams as
a function of the number of files read is plotted in Figure 5.3. Note the relatively
long period where no new n-grams are defined, followed by a sharp increase in
the number of n-grams. This increase at the end is evidence that we have not yet
found all the n-grams for gcc.

A much more extensive experiment is shown in Figure 5.4. A wide range of
programs were compiled, and the unique 7-grams were tallied at the end of each
file. Figure 5.4 shows the total number of unique 7-grams plotted against the
number of files processed. Two new system calls, "pipe" and "write," were added
for a total of 21. Thus, there are 217 , or nearly 2 billion, possible 7-grams.

It appears clear from the curve in Figure 5.4 that we have not yet completely
characterized the normal behavior of the program gcc. We would therefore need
to collect more data on the operations of gcc. As an anecdote, after compiling a
large number of programs, I compiled everyone's first C program, "hello world,"

Table 5.1 System calls made by gcc during compilation of R.

access brk close

execve _exit fstat

getpid gettimeofday mmap

mprotect munmap open

personality read rLsigaction

stat unlink vfork

wait4

180 5. HOST MONITORING

0

~

0 ;:

0 co

'" E
f!! 0
Cl <D
I

c:

~
~

0

'"

0

0 100 200 300 400

file

Fig. 5.3 gee n-grams.

and discovered a new 7-gram. Clearly, more data are needed. The question is how
much more data are needed?

One way to approach answering this question is to consider the work on es
timating the probability of discovering a new species, for example Starr [1979],
Chao [1981], and Bickel and Yahav [1986]. See also Finch et al. [1989]. Another
approach would be to model the system calls as a Markov process and then run
the model for a very long time. This is the approach of Dan Naiman of The Johns
Hopkins University. (This work is unpublished, but was presented at the 2000
Souther Regional Council on Statistics Summer Research Conference in Statis
tics). He found that a simple Markov model leads one to the conclusion that we
have not come close to finding all the "normal" n-grams for gcc.

The seminal work on using n-grams for intrusion detection is by Stephanie
Forrest and her team at the University of New Mexico. It is documented in several
papers, such as Forrest et al. [1994], Forrest et al. [1996], Hofmeyr et al. [1998],
and Warrender et al. [1999]. The idea behind the n-gram approach is that any attack
(such as a buffer overflow attack) that compromises a particular program will cause
that program to either execute system calls that it does not normally execute or
execute system calls in an unusual order. By characterizing the normal pattern

5.4. COMPUTER IMMUNOLOGY 181

0

'" '"

0
0

'"

0

'" '"
E
!!'
C) 0 I 0

" '"

0

~

0

~

0

'"

0 500 1000 1500 2000

file

Fig. 5.4 A more extensive experiment with gee n-grams.

of system calls, one can detect attacks by detecting never-before seen patterns of
calls.

The n-gram approach proceeds as follows. Define the size, n. The authors
suggest 6 as a reasonable value. Run the program many times, storing the unique
strings of size n observed in a database.

As seen in the preceding experiment, care must be taken in the construction
of the database. One way to populate it would be to monitor the program during
normal operation. A program like gcc, which may be used often on some machines
and rarely on others, is particularly problematic. As the experiment shows, the
data (the C programs that gcc compiles) have a large impact on the order of system
calls, so one needs to ensure that the test period is a proper sample of the program
execution.

Now define a window size W. This is suggested to be 20 in most of the work
cited earlier. For a new observation of the program execution, tally the number
of sequences within each window of size W that do not match any sequence in
the database. If this number is larger than some threshold, signal an alert. An
alternative to this measure would be to allow partial matches of the sequences
and score the mismatch according to the Hamming distance. This is described in
Hofmeyr et al. [1998].

182 5. HOST MONITORING

The first paper, Forrest et al. [1994], takes a slightly different approach, which
we will see again in Section 6.5. The idea is to construct a collection of "detectors"
aimed at detecting things that have never been seen. This is intended more to
protect a particular piece of code from being changed rather than for the detection
of unusual behavior, but it could be used for the latter as well.

Forrest et al. [1996] describe the n-gram idea as applied to the sendmail pro
gram. They found that after approximately 10,000 system calls, they had obtained
a database of roughly 1400 6-grams for sendmail. Further experimentation showed
that attacks against sendmail produced a significant number of 6-grams that did
not appear in their "normal" database, thus indicating that the basic idea is sound.

Warrender et al. [1999] evaluate several methods for detecting intrusions via
n-grams. They used data on several different programs, such as Ipr, xlock, and
login, and attacked each application with an exploit designed for that application.
This gives them "normal" data as well as intrusions. They collected data for their
models until the rate of increase in the number of new sequences dropped below
a preset value. As we have seen in our small experiment (Figure 5.4), this curve
can be quite rough, with long flat periods and sudden jumps. Hence, the authors
smooth these curves prior to calculating the rate of increase.

Several techniques were compared, including the "standard" n-gram approach
described earlier, a version where the relative frequencies of the "normal" n
grams were used, a rule learning system called RIPPER (Repeated Incremental
Pruning to Produce Error Reduction - an algorithm from the machine-learning
community), developed by William Cohen (Cohen [1995]), and a hidden Markov
model (HMM). The results of the study show that the HMM did quite well, as
did the standard approach. No method was universally superior, and there was
some evidence that there was insufficient training data for the more complicated
models. Still, the results were promising, particularly the fact that the simplest
model performed quite well. The bottom line was a probability of detection in the
high 90% range with a false alarm rate on the order of 1/10,000--111000 for the
best algorithms. These results are, of course, preliminary, due to the size of the
training and test sets and the small number of attacks available for testing, but, as
mentioned in Chapter 3, all researchers must struggle with this is a problem.

A related approach is described in Hofmeyr and Forrest [1999], Hofmeyr and
Forrest [2000], and Forrest and Hofmeyr [In press]. These papers describe a
technique for developing an "immune system" for computers (or networks) with
detectors that look for "self" and "nonself." This work will be discussed in more
detail in Section 6.5. See also Somayaji et al. [1997] for some thoughts on immune
systems for computers.

In Somayaji and Forrest [2000], a technique is described for responding to
intrusions. The idea is that once anomalies are detected, the monitor can abort or
delay system calls, thus stopping the attack. This integrates the response into the
"immune system."

5.5. USER PROFILING 183

5.5 USER PROFILING

Most systems have a method of user authentication. This usually consists of a
required user name and password. Once this information is obtained, however,
the attacker is free to access the system just as the legitimate user would. There
are several ways one could go about stopping this. In this section, we will look at
attempts to detect when the user is not the person authorized to use the account.

The basic idea behind these user profiling methods is to measure something
about the way the user interacts with the computer and use this to determine a
profile of the user. These measurements may be biometric, such as keystroke
timings, or even finger or palm prints or retina scans, or they may be measures of
activity, such as which commands are executed and in what order. If the person
accessing the account does not match the profile, the assumption is that the person
is an attacker. For a discussion of some of the biometric techniques available, see
Miller [1994]. Although this paper is somewhat dated, it is written at an accessible
level.

Several possible measurements can be made, but we will concern ourselves
only with those that can be made on any computer, without specialized hardware
such as palm readers or retina scanners. A short list (mostly taken from Shepherd
[1995]) includes:

• Intervals between keystrokes For example, when the user types a pass
word, the computer retains the timings between the different characters, and
compares these against stored patterns. Similarly, one could measure how
long the key is depressed and, on some systems, the force of the keystroke.

• Mistypings People tend to make the same typing mistakes over and over.

• Typing speed This is obviously context-dependent (text versus program
ming, for example).

• Text or command statistics People tend to use the same commands over and
over (for example, most people, after typing cd to move to a new directory,
will type Is to see what is there. Some of us type the Is command even when
we know what is there or don't really care. Similarly, people have words or
phrases they use habitually. For example, I have a colleague who likes to
use "heretofore".

• Mouse events How often one uses the mouse, how fast the mouse moves,
the timings of mouse events are all potentially useful for constructing user
profiles.

• Computer usage statistics Examples would be the amount of memory or
CPU usage, which disks/directories are accessed, or whether the access
is from the console, telnet, rlogin, or ssh. Another potentially interesting
statistic is the number/type of system calls resulting from the user's actions.

Several issues need to be considered in developing a user authentication tech
nique based on a profile such as those just listed. These are not unique to the

184 5. HOST MONITORING

problem of user authentication, and in fact are relevant to most intruder detection
problems:

• What data need be collected?

• Does the user select the word/phrase to be measured? For example, pass
words tend to be selected by the user, and are often easy to type (partly
due to practice). Alternatively, one could collect data for several words or
phrases and present a randomly selected one for authentication purposes.
This makes it more difficult for an attacker to mimic the authorized user.

• What method of classification is to be used?

• Is it to be used once, for example in conjunction with a user name/password,
or will it be continuous?

• How many users need to be profiled? For example, a personal computer may
only have one authorized user, whereas a main server may have hundreds.

• How much processing (CPU time) is acceptable for making a decision. For
example, a system with hundreds of authorized users may require much
faster authentication, in order to provide an acceptable level of service to
the users, than a single-user system.

• What level of false alarms is acceptable?

• How secure does the system need to be? This is another way of asking the
question of how many missed attacks are acceptable.

5.5.1 Keystroke Timings

We will consider keystroke timings first. A typical scenario is to collect the time
between keystrokes within the password (with or without the final carriage return)
and use this to classify the user as authorized or unauthorized.

Another possible application would be online authentication. In this applica
tion, the machine would monitor the activity of a user - for example, the timings
of keystrokes for commonly used words - and try to determine whether a masquer
ader is at work. This could either be done by assuming the user is legitimate and
looking for a sufficient deviation from normal or by requiring the user to remain
in the "normal" range in order to remain online.

The data are a vector of timings, one for each adjacent pair of characters in
the password. Since different people use different passwords, this means that the
problem really reduces to one of a true hypothesis test: the null hypothesis being
that the user is who they are purporting to be.

Several methods for classification are possible. We will discuss the problem
as one of deciding which of a number of possible users is the one actually typing.
The obvious extension to this is to classify users as "unauthorized" if they are
sufficiently different from the user they are attempting to impersonate. Looking at
the problem as a multiclass one allows us to consider the possibility that we may

5.5. USER PROFILING 185

be able to determine who the user truly is in those situations where the physical
security restricts the possibilities.

A typical experiment consists of collecting samples for each user, denoted
"training samples" which are used to construct a classifier. Further samples are then
used to test the system to determine the performance of the classifier. Generally,
one is interested in the probability that the classifier will reject a valid user (type
I error) and the probability that it will incorrectly pass an unauthorized user (type
II error).

The simplest classifier that has been used for this set of problems is the minimum
distance classifier. The idea is to compute the mean (or median) for the training
samples. The classifier then involves computation of the distance to the mean
(or median), and a threshold determines whether the observation is to be classed
according to its closest class or rejected as unknown. The distance is generally
taken to be Euclidean,

(5.21)

where J.Li corresponds to the mean for class (user) i. In the case of the median, the
same equation is used with median in place of mean.

The minimum distance classifier is a type of linear classifier. An obvious
extension of this idea is to use the covariance matrix as well as the mean, producing
a quadratic classifier,

(5.22)

Another commonly used classifier is the k-nearest neighbor classifier. First,
consider the nearest-neighbor classifier (see page 77). Given a training set and
a new observation, classify the observation according to the class of the closest
training observation. The k-nearest neighbor classifier extends this idea by in
effect voting amongst the k closest training observations.

Bleha and Gillespie [1998] compared three simple techniques for classification
of keystroke data. The first was a simple minimum distance classifier. The two
others involved extracting features from the timing vectors (for example, averaging
the first three times, the next three times, and so on, to produce a vector one
third as long as the original). Their conclusion was that the best technique was
to use the original data and the minimum distance classifier. This was not an
extensive examination of possible classifiers but rather compared two specific
feature extraction methods and determined that they were not preferred over the
original data.

There have been many papers written about the use of keystrokes for user
authentication (for example, Bleha et al. [1990], Bleha and Obaidat [1991], Brown
and Rogers [1994], Lin [1997], Obaidat and Sadoun [1997], and Maisuria et al.
[1999]). These use the minimum distance classifier described earlier, quadratic
classifiers, nearest-neighbor classifiers and neural networks, to classify keystroke
timing vectors by user.

For example, in Bleha et al. [1990] and Bleha and Obaidat [1991], several ex
periments are described in which the linear and quadratic classifiers are compared
to each other and to classifiers constructed on features, such as Fisher's linear

186 5. HOST MONITORING

discriminant (FLD). In these experiments, each user typed the same phrase (UNI
VERSITY OF MISSOURI COLUMBIA) and the task was to distinguish among
the users.

The Fisher linear discriminant attempts to find the projection of the data that
provides the best separation between the classes. If we define the scatter matrix
for class i as

Si = 2: (x - f-ti)(X - f-ti)t, (5.23)
XECi

where Ci contains the data from class i and f-ti is the sample mean of class i then
the FLD projection is

(5.24)

See Duda et al. [2000], or any other book on pattern recognition for the details of
the derivation.

The results reported on the preceding experiments were on the order of 3% type
I error and 0.5% type II error (Bleha et al. [1990]) or a total misclassification error
rate of about 1 % (Bleha and Obaidat [1991]). These studies involved ten users
studied over several weeks.

Obaidat and Sadoun [1997] performed similar tests with 15 users and included
several neural network classifiers, with comparable results. With thresholds set
to detect all unauthorized users, Brown and Rogers [1994] report false alarm
rates between 14% and 40% for the minimum distance classifier and two neural
networks. Lin [1997] reports performance slightly better than the results discussed
above.

Several issues are ignored in most of the papers in the literature. For example,
typing errors are usually eliminated from the data. In a password system, this
seems to be a reasonable approach (after all, a mistyped password is a failed au
thentication, which keystroke timings should never override). In most password
authentication systems, however, the user is allowed to correct mistypings (using
the backspace). In this case, the interkeystroke timings are changed dramatically,
causing many false rejections. Most systems do not take this into account. Sim
ilarly, for online authentication, mistypings are both a source of data and a com
plication that must be addressed. Robinson et al. [1998] report typical password
mistyping errors of over ten%.

Figure 5.5 shows some timing data for three users. Each user typed the 10 words:

home mark dart start hello dash fast task past mask

in order. The time between keystrokes within words was measured for a total
of 42 timings. Each user repeated this 100 times. The data image in Figure 5.5
shows that the three users are quite distinct overall but that some words show
bigger differences than others, indicating that the choice of word to use in the
authentication is important.

Table 5.2 presents the results of a nearest-neighbor classifier on the keystroke
data. Recall that the nearest neighbor classifier assigns to each new observation

5.5. USER PROFILING 187

I I

Fig. 5.5 Keystroke timings for three users. Each user typed ten words (42 characters)
100 times. Each observation (the y-axis) is then of length 42, and there are a total of 300
observations (the x-axis). The three bands visible in the image correspond to the three
users.

the class associated with the observation from the training data that is closest.
The results are a leave one out cross validation (see Section 3.2). Similar results
are obtained using k-nearest neighbor classifiers for other choices of k. The k
nearest neighbor classifier takes a vote among the k closest training observations,
classifying the new observation according to the consensus from these.

The results in Table 5.2 are in the form of a confusion matrix. This provides
the information on how many observations were correctly classified (the diagonal)
and which users the classifier confused. For example, the row labeled "D" shows
the number of observations from user "D" that were classified as each of the users.

Tab/e5.2 Nearest-neighbor classifier results (confusion matrix) for the keystroke data.

D J T

D 96 1 3

J 7 85 8
T 2 2 96

188 5. HOST MONITORING

This indicates that of the four observations misclassified, most (3) were called user
"T."

The nearest-neighbor results indicate that the users can be distinguished quite
well by considering their keystroke timings for a short list of words. The perfor
mance is not perfect, however, resulting in an error of slightly less than 8%. This
is comparable to the results reported in other studies, with much larger amounts
of data. From a practical standpoint, this level of error is probably much too large
to be of much utility.

5.5.2 Command Usage

The results on the keystroke data indicate that something other than keystroke
timings needs to be used to detect unauthorized users. Although keystroke timings
have their place, they are not sufficient on their own. The preceding results indicate
that perhaps by monitoring typing over a long period of time, computing statistics
on the timings of many words, one could build a strong authentication system
based on timings of multiple words, but this still needs to be demonstrated.

Another approach would be to look at the commands that a user executes. Users
will have a preference toward a certain subset of the available commands and will
tend to use them in a particular order. For example, I almost always type "Is" after
typing "cd," almost without conscious thought. These types of patterns may be
useful for modeling user behavior and detecting unauthorized users. This idea is
investigated in Schonlau et al. [1999].

Another paper that looks at this problem is Lane and Brodley [1999]. They
take a machine-learning approach to analyzing the patterns of user commands.
Basically, they define a similarity measure to use in comparing two sequences and
define an anomaly detector which indicates when a sequence is "too unlike" a
training observation for the user.

In this section, we will focus on the work in Schonlau et al. [1999]. The authors
collected data on 70 users, where the command name used is recorded for each
Unix command. They retained the first 15,000 commands for each user. Fifty
users were denoted the "authorized" users, while the remaining 20 users were
"masqueraders." Command sequences from masqueraders were then interspersed
within the authorized users at random. The task was to detect the masqueraders.
In order to construct algorithms to detect masqueraders, the first 5000 commands
of each user were kept inviolate, so that masqueraders appeared only in the last
10,000 commands. The data were decomposed into blocks of 100 commands, and
a block is either uncontaminated or it is entirely from a masquerader.

Six methods for detecting masqueraders were explored. Before discussing
these, let's look at the data. Figure 5.6 (provided by the authors) shows a data
image of the commands executed by each user. The commands are sorted by
popularity, with the most popular commands at the top. The x-axis corresponds
to the user.

Two other views of these data are presented in Figures 5.7 and 5.8. The first
shows a data image (see Section 4.5.2.2) of the first 500 program calls for each user.
Each column corresponds to a user, while the rows are time, with the commands
numbered (alphabetically), resulting in a gray scale value for each command. The

---~== -- - .~ - .=..
~2: '
. ~ "

..
"3 a. o
Cl.

..:.
1 .'. .

.. ~

5.5. USER PROFILING 189

- - := _=- .
,.
<-

~';; - M.:"

::. =
=

". _

m -

1234567 8 91011121314151617181920212223242526272829303132333435363738394041424344454647484950

User

Fig. 5.6 A plot of the commands executed by each user with the commands ordered by
popularity (courtesy of Matt Schonlau).

data image has been sorted by user, with the time axis left unsorted. Above the
data image I have plotted a dendogram showing the user clusters used to order the
plot.

There are several clusters of users evident in this plot (I count seven, but as
mentioned elsewhere, selecting the number of clusters can be a matter of taste).
We get a slightly different answer when we look at the data image of the interpoint
distance matrix (Figure 5.8). There still appears to be some structure to these data;
that is, there are individuals who appear similar.

The data images were produced using a naive choice of distance. Each program
was given a number, and the Euclidean distance between vectors was used. This
makes the distance between two programs an artifact of the numbering scheme.
Thus, one should not make much of the clustering "discovered" in the two images.
These plots do provide some interesting information, however, particularly Figure
5.7. We can see that there is quite a bit of variability within users as well as a fair
amount of repetition within users.

In particular, consider the user who appears in position 42 from the left (this is
actually user 30 in the original ordering). This user executes the three commands
rdistd, tcsh, and rshd, repeatedly with very little deviation from this pattern. In
fact, since rshd is a remote shell, the user is probably only using this system as a
terminal to access a remote machine.

The Euclidean distance is not a very appropriate metric for these data. A better
distance to use in this application would be simply to note whether the program
used was the same or different. This is illustrated in Figure 5.9, where this distance

190 5. HOST MONITORING

I
1

Fig. 5.7 A data image of the first 500 commands for each user. The x-axis corresponds
to the users, while the y-axis corresponds to time. Only the users have been ordered.

is used instead of the Euclidean distance. In this case, we have plotted the log of
the distances to enhance the plot, which otherwise is too uniform to distinguish
any differences. Now, we see that the users are much more uniform, with little
obvious cluster structure. This is actually the desired result since we want our
users to be as different as possible in order to be able to tell them apart or, in this
case, to tell them from the masqueraders.

There are many other distance metrics that one might want to use on these data.
Obviously, the temporal nature of the command sequences is of some importance
and so should be taken into account. However, for the most part, this structure is
flexible in the sense that users can vary the pattern quite a bit and do so in the normal
course of their work. For instance, users execute an occasional new command or
vary the order of some commands slightly. The computational biologists have
studied various metrics used for comparing DNA strands, which might be of use
in this problem. Two references that cover these and related topics are Watterman
[1995] and Durbin et al. [1999].

5.5. USER PROFILING 191

I
1 I

Fig. 5.8 Data image of the interpoint distance matrix for the data in Figure 5.7. In this
case, the Euclidean distance between activity vectors was used.

A nontemporal measure, which simply counts the number of times a particular
program is used by each user, is

M

d. () '" II#(UI = k) - #(U2 = k)11 1st Ul,U2 = ~ ,
k=l nk

(5.25)

where M is the number of programs, # (Ui = k) is the number of times user i
used program k, and nk is the number of times program k appears in the data. The
data image using this metric is shown in Figure 5.10.

The original temporal data is displayed in Figure 5.11, using the ordering defined
by Equation 5.25. This shows clearly that the distance ignores the temporal nature
of the data since there is no obvious correspondence between the clusters and the
vectors of the data.

We now turn to the question of whether there is any structure to the data for an
individual user. For this, we take the first 5000 commands for each user and break

192 5. HOST MONITORING

Fig. 5.9 Data image of the interpoint distance matrix for the data in Figure 5.7 using
the binary distance on the vectors, which measures the number of times the same function
occurs in the same place in the vector. The log of the distance is plotted as the intensity in
this image.

them into "sessions" oflength 100, as is done in Schonlau et al. [1999]. Then, for
each user, we have 50 observations of dimension 100. We sort these observations
within each user, using Equation (5.25) as the distance metric. Looking at the
individual data images gives some reason for hope since they show that, for the
most part, the within-user distances are small, indicating that under this distance
the user sessions look fairly homogeneous. Nevertheless, as can be seen in Figure
5.12, there is some variability in the users' activity.

The data image for this ordering is shown in Figure 5.13. This is essentially
the picture of Figure 5.6 with a smaller data set, which makes it a little easier to
see the differences among users.

We have seen that there is some hope for a solution to the problem of detecting
masqueraders, since the users do appear to be quite different from one another
in their selection of commands and command sequences. However, the problem

5.5. USER PROFILING 193

Fig. 5.10 Data image of the interpoint distance matrix for the data in Figure 5.7 using
Equation (5 .25) for the distance metric.

is still difficult due to the within-user variability and the difficulty of properly
handling the temporal nature of the data.

Schonlau et al. [1999] report on a set of six methods for detecting masqueraders.
I will describe these briefly, followed by a discussion of the results they report for
the algorithms tested. The interested reader is urged to consult the paper for more
details.

The authors devised a clever algorithm based on the following observation.
There are many commands that are used by only one or a small number of users or
are generally much rarer than other commands. These commands should be most
useful for discriminating among users . The downside is that the commands must
appear fairly often within any individual user's command stream or they become
useless for detecting masqueraders in relatively short command sequences. They

194 5. HOST MONITORING

Fig. 5. 11 Data image of the command sequences of Figure 5.7 using the user ordering
produced by Equation (5.25) corresponding to Figure 5.10.

define a statistic

(5.26)

where U is the number of users, Uk is the number of users who have used command
k in the training data, nuk is the number of times command k appears in the block
for user u, nu is the number of commands in the block, K is the number of distinct
commands,and

if command k is in user u's training data

otherwise.

This scores the users based on whether they have used the commands in the
block before, scoring rare commands more heavily than common ones. It ignores

5.5. USER PROFILING 195

Fig. 5.12 Within-user distances for six users (users 1,5, 19,22,35 and 43).

command ordering, being concerned only with a tally of the commands in the
block. See Theus and Schonlau [1998] for some examples of using rare events to
profile users.

A threshold (the same for all users) is calculated via cross validation. Then, for
any new block, the statistic Xu is calculated and if it is above the threshold, the
block is considered to be the result of a masquerader.

Another issue addressed in Schonlau et al. [1999] is updating. Although it is
reasonable for a small data set to fix the training data, and hence the algorithm, and
then test on the test set, this is not a realistic scenario for a deployed system. One
wishes to use all the data available, and so a method for updating the algorithm is
needed. The authors set a second threshold, and any blocks in the test set that fall

196 5. HOST MONITORING

.' -. - .
. I

:. _' . ~ I , ' ~I .. ,~

, .

Fig.5.13 Users ordered by Equation (5.25); compare with Figure 5.6.

below this threshold are added to the training data. This is done sequentially as
the blocks are presented for scoring.

The next two methods considered are based on Markov models. These compute
the transition probabilities. The first method, one-step Bayes, based on the work in
DuMouchel [1999], computes the transition probabilities of executing command
Cj given that the last command was Ci. This then tests the hypothesis that the
matrix constructed on the test block came from the same process that produced
the matrix computed on the training data.

Let Ct be the command observed at time t. Let Puj k be the historical (estimated
from the training data) transition probability from Ct-l to Ct. In other words, Pujk

is the probability that command t will be k given that the previous command was j.
We need one further piece of machinery: the Dirichlet distribution. The vector of
random variables Q = (Q l, ... ,Q K) has a Dirichlet distribution, with parameters
(al, ... ,aK+t), if their joint probability density function is

I(Q)

(5.27)

5.5. USER PROFILING 197

The one-step method performs the following hypothesis test:

Ho : P(Ct = klCt - 1 = j) = Pujk,

HI : P(Ct = klCt - 1 = j) = Qk·

(5.28)

(5.29)

The basic idea of the model is that one fits the Pujk and the parameters of the
Dirichlet distribution, Qk, using the training data. Details of these estimates can
be found in DuMouchel [1999]. The hypothesis test involves computing

(5.30)

For large values of 10g(BF) from Equation (5.30), the null hypothesis is rejected
in favor of a masquerader. More details about hypothesis testing for command
transition probabilities are given in DuMouchel and Schonlau [1998].

The hybrid multi-step Markov uses a higher-order Markov model, when the
data support it and a simpler model otherwise. This is described in some detail in
Schonlau et al. [1999] and is based on work by Ju and Vardi [1999]. The basic
idea is to expand the single-step model to a multi-step model, where care is taken
to ensure that the model does not become unstable when the block contains many
new commands. This is the "hybrid" part of the model, where this case is handled
by a simpler model (a contingency table of users vs. commands). Again, refer to
the papers cited for the details.

The next algorithm stems from the intuition that if new data are appended to
the training data for a user, the augmented data will compress (nearly) as well
as the training data, whereas if the new data are from another user, they will
not compress well. they Given training data C and a block of test data c, the
augmented data { C, c} are constructed by appending c to the end of C. Using the
Unix utility compress, the statistic compress({C, c}) - compress (C) is computed.
Large values result in a rejection of the hypothesis that the new data c were from
the user associated with the training data C.

The next algorithm (lPAM) is similar to the one-step Markov model, except that
instead of a hypothesis test, the transition probabilities are used to predict the next
command, based on the current command. The number of incorrect predictions is
tallied, and if this is large the data are flagged as a masquerader.

Finally, a method similar to the Forrest approach (see Section 5.4) is imple
mented. The idea is to consider all strings of commands of length 10 within the
training data for each user. A similarity measure is defined where two sequences
are compared command-by-command, with a score computed that is based on
the number of matches, adjacent matches, and so on. Each new ten-command
sequence is given the maximum similarity score from all the training data for the
user. The most recent 100 consecutive such scores are then averaged, producing
the score for the block.

Figure 5.14 depicts a data image of these ten-command sequences for the 50
users. Each user has 500 nonoverlapping blocks displayed as a data image. Since
the blocks are disjoint, there are clearly many more command sequences for each
user (in fact there are over 4000 distinct ten-command sequences in these data).
One thing to note from this is that some users are clearly more homogeneous than
others. Also, there are several users who are clearly distinct from others.

198 5. HOST MONITORING

Fig. 5.14 Sequences of commands of length 10 for each of the 50 users are plotted as
a data image. In this case, each user has 500 nonoverlapping blocks plotted. The white
bands are separators between users.

The results of the six techniques are depicted in Table 5.3 and Figures 5.15
and 5.16. Both figures depict the results for the algorithms with updating. Similar
figures are presented in Schonlau et al. [1999] for the algorithms without updating.

The test was blinded, so none of the researchers applying the algorithms knew
the placement of the masqueraders or even whether there were masqueraders in a
given user's data. The results reported in Table 5.3 are not too impressive, but as
we have seen in our analysis, this is a particularly difficult task.

In Figure 5.15, each algorithm has been adjusted to produce a false alarm rate
of 1 %. Uniqueness appears to be the best algorithm by this measure, although
IPAM is better in the region of lowest false alarm, which is where one wants the
algorithms to operate. The probability of the intruder surviving (going undetected)
is plotted against the number of blocks until a detection is made. Thus, we can see
that, depending on the algorithm, between 5% and 30% of the attacks are detected.
By the tenth block, somewhere between 20% and 40% have been detected. From
this plot, it seems that IPAM and Uniqueness are the best algorithms.

The work of Schonlau et al. [1999] addresses only the commands executed.
Ignored in this work are the arguments to the commands, in part due to the difficulty
of dealing with these data. This leaves off several pieces of information that can
be key to characterizing users. Some useful information that could be used in a
follow-on study includes:

Table 5.3 The results (in percent) for the six algorithms reported in Schonlau et al. [1999].
The algorithms aimed at a false alarm rate of 1 %.

Method FA PD

Uniqueness 1.4 39.4

Bayes I-Step 6.7 69.3

Hybrid 3.2 49.3

Compression 5.0 34.2

IPAM 2.7 41.1

Sequence Match 3.7 36.8

r
.2
~

" rn
:;;

~
oS
'0 ,..
~

i
.D e
n.

5.5. USER PROFILING 199

~ +-----, I

en
0

CD
0

~ J
0

~ j
"1
0

0

..... _--=-j

... ---t~~~' ------ -. -------;
I

Hybrid MLiti-Step Markov
Bayes l-step Markov
Compression
Uniqueness
Se<pence ·Match
IPAM

.. - ... ---- .. -1"-" ----- _ .. -- - ___ , , ,

I
L ____ ,

I ~----r-~~~-~L-------_---____ ~---
L· __ - 1 ~-,.-~~-~

L_-l
..:=--=t-._.-

I
I.... _ _ _ _-_-=----.-...---..-..-~ ___ ~-=-"""-=:_==_. __

2 4 6 8 10

Number of blocks of commands uri II detecting a masquerader

Fig. 5. 15 Performance ofthe various algorithms tested in Schonlau et al. [1999] (courtesy
of Matt Schonlau).

• The command line flags used with the command. For example, if I do a
long listing ("Is -I"), I almost always combine this with a flag indicating the
results should be sorted in time ("Is -It''). This kind of information can be
quite useful in characterizing users.

• Whether the commands were executed from a script or otherwise. A
set of commands in a script may be executed by anyone with access to the
script, and hence the order of execution of those commands is not really
indicative of a particular user. However, some users like to put commonly
executed sequences into a script for convenience.

• The use of aliases. To return to the "Is" example, I actually have an alias
("11") for "Is -It" and almost always actually type "11" instead. In addition,
I have a number of aliases that I set up thinking they were a good idea, but
that I have stopped using (for various reasons). For example, to see the
"new" files in a directory, one could type "Is -It I head." I have an alias for
this but never use it. I always type "111 head." Why? Personal eccentricity.
A masquerader, even if they looked in my .cshrc file (where aliases are
defined), would not know which aliases I typically use and thus would have
a difficult time matching my normal usage patterns.

• Where the commands are executed. More generally, which directories
are visited and which files are touched. These can be both a tip-off that the
user is a masquerader and an indication of what the user is doing and why.

200 5. HOST MONITORING

0

~

0

'"

~ 0

'"
~ «
g>
"iii .. ~ ~

Good

0
N

o

0.1 0.5 1.0

\ ,

5 .0

False Alarm ('.)

Hybrid MtJ~.Step Markov
Bayes 1 -Step Markov
Compression
Uniqueness
Sequence· Match
IPAM

Bad

10.0 50.0 100.0

Fig.5.16 ROC curves for the various algorithms tested in citeschonlau:l999 (courtesy
of Matt Schonlau).

Further, even if the user is the authorized user he or she purports to be, this
can be an indication of a "user gone bad," also known as "the insider threat."

• The machines accessed. As we saw earlier, one of the users simply used
the machine as a terminal to (one or more) other machines. Other users may
rarely go to other machines (through, for example, telnet, rlogin, FfP, ssh,
etc.). However, if the user starts going to machines that have never been
visited before, that is an indication that there might be a problem.

• The shell used. Users can be quite dogmatic about the shell they want to use,
whether it be the bourne shell, the cshell, or one of the many others. Some
users will automatically change to their favorite shell if they find themselves
in another (as a result of accessing someone else's account).

• Window usage. Some people love the file manager windows and other
"user-friendly" interfaces. Some people hate them.

• How the user accessed the system. If you never telnet to a machine, then
anyone claiming to be you who telnets to the machine is suspicious.

This command-based detection can and should be combined with biometric
information such as the keystroke timings. Other authentication techniques, such
as key-cards or retina scans can be implemented.

The preceding discussion shows some of the promise of statistical methods for
intrusion detection on host systems. Most of this work is quite recent, and there are

5.6. MISCELLANEOUS UTILITIES 201

many areas for future research. The results to date are not that impressive given the
desire for (near) perfect detection, but this appears to be in part due to the narrow
focus of many of the projects. One of the areas for potential future work is to try
to combine many disparate sources of information into a single set of algorithms.
NIDES (Section 5.3) is a first attempt at this, and EMERALD (Section 4.6) is a
more sophisticated attempt to do this.

5.6 MISCELLANEOUS UTILITIES

A few utilities for collecting data on a single host and monitoring for intrusions
are described in this section. As always, this is not meant to be a complete list but
rather a list of a few important utilities. More such utilities can be found in the
resources listed in Appendix D.

5.6.1 strings

A useful program for investigating binary files (either programs or data) is "strings."
This program prints out all the printable character sequences of at least 4 characters
in the file. These may occur by accident - for example, if the data in the file just
happens to have a value corresponding to the ascii values of the characters in
the word "foobar." However, often there are error messages, prompts, version
information, and so on in programs that are stored as character strings, and one
can see these by running strings on the file.

For example, try running strings on Is:

strings Ibinlls I more

The use of "more" is to keep the listing from running offthe screen. You will
get a long listing of all the strings within the file. Scroll down the page, and you
will come to the help information. This is what is printed out when you run

Is help.

When I ran strings, I got, near the bottom, the following strings:

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
January
February
March
April

202 5. HOST MONITORING

June
July
August
September
October
November
December

Note: there is no "May" because the strings program is looking for strings at least
4 characters long. Running strings on a program I wrote resulted in:

/lib/ld-linux.so.2
_gmon_start_
libc.so.6
fscanf
calloc
fprintf
_deregister_frame_info
sscanf
fclose
stderr
exit
fopen

IO_stdin_used
libc start_main

_register_frame_info
GLIBC_2.1
GLIBC_2.0
PTRhl
QVhP
@WVS
Usage:
sample
-l <infile> (stdin)
-0 <outfile> (stdout)
-n <number_data-points>
-d <dimension>
-h this help
Unknown flag %s. Try doubles -h for options
Could not open input file %s
Could not open output file %s
%d (%d):
%d (%d)

You can see the libraries called by the program, some of the functions used, and
the help strings. There appear to be three strings that are accidental (for example,
QVhP), a result of bytes that happen to have values within the range of printing
characters. Running strings on a binary data file will display a large number of
these accidental strings.

5.6. MISCELLANEOUS UTILITIES 203

Some useful options to strings are:

• -a Scan the whole file (the default is to scan only the initialized and loaded
sections of object files).

• -m minlength Print only strings of length at least minlength. The default
is 4.

• -t Print the offset into the file before each string. A following 0, x, or d
defines the output radix as octal, hexadecimal or decimal.

5.6.2 ps and top

The ps command is used to report the processes running on a machine. For exam
ple, on my machine I just executed the command

ps aux

and obtained a long list of processes, a partial listing of which follows.

USER PID %CPU %MEM TTY STAT START TIME COMMAND
dmarche 10757 0.0 0.3 pts/O S 08:23 0:00 -csh
dmarche 10758 0.0 0.3 pts/1 S 08:23 0:00 -csh
dmarche 10767 0.0 0.5 pts/2 S 08:23 0:00 -csh
dmarche 12376 0.0 0.4 pts/2 R 21:40 0:00 ps aux

This shows the process ID (PID), how much of the cpu and memory are used
by the process, the status and start time of the process, and the command name
(truncated if necessary for display). This could, in principle, be used to watch for
attackers executing suspicious programs. However, it does not run continuously,
so it is not a terribly good monitoring program. It is also relatively easy for a
knowledgeable attacker to fool the ps program.

The "top" command performs a similar function. It runs continuously, updating
the process list every second or so. It also sorts the processes by their CPU usage,
which can be useful to determine who is hogging your machine. Top can be
modified interactively (type the "h" key to see the options) and can be run in
"secure mode" (run "top s"), which disables some of the interactive functions.
The top man page suggests that running "top s" in a spare window is a "nifty
thing" to do.

These utilities will show any processes that become active, provided someone
(or some monitoring program) is watching. Unfortunately, it is possible to hide
one's program so that it does not appear in a ps listing. On a related note, one of
the first C programs I saw early in my career was a utility for changing the text
that is displayed in a ps listing, so that instead of seeing something like:

dmarche 112320.00.3 5361 743 pts/O S 09:320:00 crack /etc/passwd

ps might show something like

204 5. HOST MONITORING

dmarche 112320.00.3 5361 743 pts/O S 09:32 0:00 Your Ad Here!

Sufficiently sophisticated attackers (or those who have downloaded the right scripts)
will simply hide their processes from ps, making it that much more difficult to de
tect their presence. Another approach is to run a "rootkit" that replaces the ps
program with one that ignores the attacker's programs.

5.6.3 Isof revisited

We saw in Section 1.9.11 how to use the Isofutility to learn about the open Internet
files and ports. We now tum to its use for host-based security. Lsof can be used
to search for unlinked files, which are invisible to Is, using

Isof +L1

This lists the files with link counts less than 1, which may be files hidden by an
attacker.

Another use for Is of is to collect data for user profiling. For example, using

Isof -u dmarche

will collect data such as

\symbol{44}\,ND PID FD TYPE DEVICE SIZE NAME
Default 597 cwd DIR 3,7 4096 Ihome/dmarche
Default 597 rtd DIR 3,7 4096 I
Default 597 txt REG 3,7 373176 Ibin/bash
gnome-ses 610 cwd DIR 3,7 4096 Ihome/dmarche
gnome-ses 610 rtd DIR 3,7 4096 I
gnome-ses 610 txt REG 3,7 46036 lusr/bin/gnome-
gnome-ses 610 mem REG 3,7 344890 Ilib/ld-2.1.2.so

where USER and NODE are not displayed in order to use a single line for the
display. This provides information about which files the user opened as well as
the application used to open them. This can be used both for profiling typical
user activity and determining when a user is examining or using files that are not
typically used by that user or are (supposed to be) off limits.

5.6.4 logcheck

The system logs are one of the most useful places for gathering data for use in
intrusion detection. All problems and many diagnostics are reported to the syslog
(in Linux these are in /var/log). On Sun Solaris systems, there is a utility called
BSM, which provides extensive logging and auditing capabilities to the level of
logging individual system calls if desired. These files get quite large, and there is
a mechanism in all system loggers to roll the files over either at a specified time
or a specified file size.

5.6. MISCELLANEOUS UTILITIES 205

As can be imagined, it is a nontrivial matter to check the system logs for evidence
of attacks. This begs for automation, and there are several such solutions available.

One of the easiest utilities for monitoring the system log is logcheck. This is a
program that is started as a cron job (meaning that it is run at a prespecified time:
every 15 minutes, once an hour, alternate Tuesdays, or whatever you want). It
monitors the system log for changes, and then compares these new entries with a
couple of lists of things you have told it about. These lists telllogcheck what to
ignore, what to flag as definite attacks, and what to flag as suspicious. Anything
that is not on the "ignore" list will be sent via email to wherever you specify. In
particular, it can be sent to a corporate email account that is inaccessible from the
machine if you are truly paranoid. (This is only useful if someone monitors this
account regularly and so may not be a viable solution for some.)

With logcheck running every 15 minutes, I have found that I get something like
10-15 emails a day on my machine at work. One of the reasons I get so many is
that I have several monitoring systems running, all reporting to the syslog, so I see
a lot of things that I want to know about such as when others with accounts on my
system log in. Most people are not this paranoid.

There are a number of system log monitoring utilities. One of the most popular
is swatch, which can be found at

http://www.stanford.edul'''atkins/swatch/

I have found that logcheck meets my needs. It is relatively easy to configure
and use. The fact that it emails reports to me as needed means that I can check up
on my system when I am at home or traveling.

Logcheck can be found at:

http://www.psionic.com

5.S.5 portsentry

The portsentry utility is designed to watch for access attempts to a pre specified list
of ports. It can watch either TCP or UDP ports (or two copies can be run, watching
each protocol). It reports any access attempts to its list of ports to the system log.

In this manner, it is similar to the simple tcpdump-based monitor described in
Section 4.5.4 on page 129. It is less flexible in what it detects, not having all the
functionality of a full tcpdump filter, but it is quite powerful.

One of the interesting capabilities of portsentry is the ability to deny access to
any host attempting to connect. This is done in two ways. First, an entry can be
made in the letc/hosts.deny file. This is a file that is checked when machines try to
connect to your machine (assuming you have properly configured your machine).
Any machine on the list is not allowed to connect. A second mechanism is to
drop the route to the host. This basically places the host in your route tal?le with
a "block," forcing route lookups for the host to fail. Thus, no packets go back to
the host, making it look as though your machine has disappeared.

I do not recommend this latter functionality for novices. It is too easy to
accidentally drop the route to something important (like your router, for example).

206 5. HOST MONITORING

These can be removed but not as easily as the entries in /etclhosts.deny. Also,
even if you manage to place your router in /etclhosts.deny, no harm will be done
(the router has no business logging on to your machine anyway). Luckily, the
routing table is regenerated at boot time, so if you make too big a mess of it you
can simply reboot. Thus, the dropped route stops the attack without doing any
permanent damage. Dropping the route is probably a good thing to do for very
important systems, or in "attack-rich" environments. Just be sure you don't allow
an attacker to use it to effect a denial-of-service attack against your system.

Since portsentry sends its reports to the system log, you must either check your
system log regularly or use a monitor program such as logcheck (Section 5.6.4).
You should do this anyway.

Portsentry can be found at:

http://www.psionic.com

5.6.6 tripwire

One of the earliest file integrity checkers was tripwire, written by Gene Kim and
Eugene Spafford of Purdue University. Originally, tripwire was designed to con
struct sophisticated checksums on a set of files to be protected. The checksums
were stored on a removable medium. Periodically, one would compare newly
computed checksums with those previously stored and report the files that have
changed.

Tripwire also checks whether permissions have changed or whether the file
modification times have changed. It records the deletion or addition of files within
the directories it is protecting. Thus, it is useful for detection of attacks but also
for assessing the consequences of the attack and the extent of damage. This makes
tripwire, or a similar program, an essential tool for computer security.

Newer versions of tripwire allow the encryption of the checksum file, which
allows it to remain on the protected disk. This makes periodic checks easier (a copy
should always be kept on a removable medium to ensure that if the tripwire file
itself is corrupted or removed one can still determine what else has been touched).

Tripwire first builds a database using a configuration file (/etc/tw.config) to
indicate which files/directories are to be protected. The database is then stored
away in a protected place. It can be updated if new files are added or if files are
changed by the system administrator on purpose (for example, if a new user is
added, the password file is changed). When an intrusion is suspected, or as a
precaution against undetected intrusions, tripwire constructs a new database and
compares it against the old. Any changes are reported to the operator.

Tripwire is "semi-free," in the sense that versions of it are available for free
for noncommercial use. There is also a commercial product available. There are
similar programs available, which include source code. One of these is aide, which
stands for "Advanced Intrusion Detection Environment." One nice feature of aide
is that it uses no shared libraries. (I believe that tripwire does not either but am
not certain of this.) This is critical. As we will see in Section 7.6, one can modify
the behavior of a program by modifying the libraries it loads. Thus, security tools
should be very wary of the use of shared libraries if possible.

5.6. MISCELLANEOUS UTILITIES 207

In any case, a file integrity checker such as tripwire or aide is an essential tool
for computer security. As the manual for aide puts it, paranoia is your friend.

Aide can be found at:

http://www.cs.tut.fiI ... rammer/aide.html

Tripwire can be found at

http:www.tripwire.org

or

http://www.sourceforge.netlprojects/tripwire/

One might think that a file integrity checker is only useful after an attack or
if one is paranoid enough to run the thing every once in a while as a check. It is
possible, however, to run tripwire in a cron job, which executes it, for example,
once a day and emails the results or puts them in the system log. In this manner,
one has a daily check of the integrity of the system files. If one does this, it is
essential that a copy of the tripwire database be kept on removable media and that a
check still be made against this database periodically by the system administrator.

5.6.7 ipchains

In Linux, no discussion of security tools would be complete without the inclusion
of ipchains. Although I make no claims of completeness, I will say a few words
about this useful program.

Ipchains is an implementation of a firewall. It can provide a firewall in the usual
sense, providing protection for a network, or it can be used as a host-based firewall,
protecting your single host from attack. It is this latter use that I will discuss here.

A packet filtering firewall is basically a set of rules that tells the kernel what
packets are to be let through to the IP stack. Any packets that pass the rule set are
sent up the stack (or sent out on the network - the rules work both ways), and those
that do not pass either generate an error or are simply ignored, depending on the
rule. There is also a facility for logging that allows one to collect information on
the packets that failed (or the packets that were let through, if one wishes).

There are two philosophies in packet filtering. The first, and the one that
I recommend, is to deny everything except those few services that one wishes
specifically to allow. The other, is to allow everything except those services that
one considers a danger and specifically denies. With ipchains one can choose
either approach, while with some commercial firewalls, only the first is allowed.

Setting up a personal firewall is far too complicated for this short section.
Instead, I will illustrate what is involved with a small example. Some of the most
commonly used arguments to ipchains follow .

• -All [num] Append the rule to the end or insert at rule "num."

• -i interface Set the interface to which the rule applies, for example ethO.

208 5. HOST MONITORING

• -p protocol The protocol to which the rule applies, for example TCP.

• -y The SYN flag is set and the ACK and FIN flags are cleared. A "!" in
front of this option inverts it: the SYN flag is not set, and the ACK flag is
set.

• -f The rule applies to fragmented packets.

• -s address:port The source IP address and (if necessary) port or port range.

• -d address:port The destination IP address and (if necessary) port or port
range.

• -j policy What to do if the rule matches a packet (ACCEPT, DENY, RE
JECT).

• -I Log any matches to the rule.

• -L List all the rules.

• -F Flush all the rules.

• -P chain target Set the policy (see the following).

An example will give some idea of how this works. Please do not try this without
some further research. The man pages are a good place to start. An excellent book
is Ziegler [1999]. Also, never execute these from the command line. Always put
them in a script, and execute the whole script. One reason for this is that the first
few will lock out all network accesses (including X Windows), and you may find
that you cannot execute the others (or do anything else on your machine except
reboot).

Let us look at a firewall that would let in only secure shell, ssh, and nothing
else. This might be desirable on a network sensor, for example, but is probably
too strict for most desktop workstations. It will, however, illustrate some of the
ideas.

First, we set the policy:

ipchains -F
ipchains -P input DENY
ipchains -P output REJECT
ipchains -P forward REJECT

The first line flushes all current rules, leaving us with a clean slate. The second
says that any packet sent to our machine will be ignored. The third and fourth
say that we will not output or forward any packets, and we will generate an ICMP
error message. Now we have blocked everything, so we need to carefully allow
the things we want to allow in.

An important point here is that the first line removes all the current rules but
does not change the policy. Thus, if you have the preceding policy in place, after

5.7. FURTHER READING 209

removing all the rules with the "flush" command, you are now in a position of deny
ing everything. The distinction between rules and policy is important to remember.

ipchains -Ainput-i ethO -ptcp -s any/O 1024:65535 -d 10.10.12.3222 -j ACCEPT-l

This says that we will let any tcp packet from any IP address with a source port in
the unprivileged ports 1024-65535 and destination port 22 (ssh) into our machine
(IP address 10.10.12.32). The initial connection is logged, which is probably a
good idea if you are at all paranoid. The preceding rule only lets packets in; we
must let some out in order to have a connection.

ipchains -A output -i ethO -p tcp ! -y -s 10.10.12.3222 -d any/O 1024:65535 -j
ACCEPT

Note the "! -y," which allows everything but the SYN packet out. This is because
these are precisely the packets that are needed for a connection initiated from the
outside.

After the connection is initiated, ssh forks off a copy using privileged ports,
starting at 1023 and going down. To allow up to five connections, we use

ipchains -A input -i ethO -p tcp -s any/O 1019:1023 -d 10.10.12.3222 -j ACCEPT
ipchains -A output -i ethO -p tcp! -y -s 10.10.12.3222 -d any/O 1019:1023 -j
ACCEPT

To allow a different number of connections, change the port number range. If you
want to also be able to secure shell out, you will need similar rules to allow these
connections.

The "any/O" refers to "anywhere." If we want to allow only connections from
our class B network 10.10, we could replace this with "10.10/16". This says that
the first 16 bits of the IP address must match 10.10, and the rest can be anything.

Obviously, for a workstation there are many more rules to put in place, which is
one reason for putting them all in a script. There are a number of utilities that help
you write firewall rules, and the book by Ziegler [1999] is highly recommended.

5.7 FURTHER READING

There are several books and articles that provide insight into attackers' methods
and motivation. Some famous ones include Stoll [1990], Cheswick [1992], and
Freedman and Mann [1997].

Sekar et al. [1999a] suggest some methods for detecting race conditions. They
provide several suggestions for process monitoring and describe a basic system
for host monitoring.

Early work on IDES, the predecessor to NIDES, is discussed in Lunt [1989]
and Lunt et al. [1990].

We have not really discussed visualization of host -based security in this chapter.
Vert et al. [1998] suggest using "spicules," which are rays of decreasing thickness,

210 5. HOST MONITORING

to represent various quantities such as CPU usage. Also, Jeffrey [1999] discusses
several methods of program monitoring and visualization that would be relevant
to host-monitoring.

An alternative approach to system monitoring is described in Elbaum and Mun
son [1999]. They model program execution as a stochastic system, where the prob
abilities oftransitioning from one state to another (for example, calling function F
given you have just called function E) are estimated from "normal behavior" and
then used to detect abnormal activity.

Ghosh et al. [1999] propose using neural networks to model program behavior,
with a goal of anomaly detection. Ko et al. [1994] and Ko et al. [1997] discuss the
detection of vulnerability exploits in executing programs.

Ilgun [1993] describes a method of audit trail analysis based on state transi
tions to detect misuse. This allows the modeling of specific attacks as a series
of transitions of state; for instance, whether a file is open or a link has been cre
ated. An inference engine then recognizes the type of attack that is under way.
Mounji et al. [1995] discuss the analysis of audit trails from multiple machines
or processes. In Mounji and Charlier [1997], they discuss integrating audit trail
analysis with configuration analysis. Endler [1998] compares neural networks and
a likelihood-based approach on Solaris Basic Security Module (BSM) data.

Bace [2000] also discusses state transition approaches, including work on col
ored petri nets. Chapter 4 of her book covers a large number of different ap
proaches, including a number that I have not covered. It is a very good place to
look for other approaches.

One of the problems security analysts have is the removal of sensitive informa
tion from the logs prior to disseminating the log, either for the purpose of reporting
on the attack or providing researchers with data to analyze. Fisch et al. [1994]
provide a brief discussion of these issues.

For a discussion of the legal and ethical issues related to intrusion detection,
and what to do if you are attacked, several books have extensive discussions of
these issues. Some in particular are Neumann [1995], Denning and Denning
[1998], Denning [1999], Bace [2000], and Proctor [2001]. Another good book
is Andrews and Peterson [1990], which provides insight into evidence gathering
and analysis from the perspective of criminal investigations. A similar book is
Casey [2000]. This latter focuses on the use of computers in crime and the issues
of collecting and protecting digital evidence. There are a number of anecdotes
of cases that make interesting reading as well as useful information. A readable
overview for the layman is found in Icove [1997]. Brackney [1998] discusses
the problem of intrusion response from the perspective of the U.S. Department of
Defense.

The problem of user profiling continues to be of interest. Helman and Liepins
[1993] propose a statistical method whereby pairs of the form <user,action> are
modeled with probability of occurrence as a measure of misuse likelihood. Lane
and Brodley [1997] discuss the issues of matching sequences of events for the
purpose of user profiling or anomaly detection and show that exact matches are
not appropriate for these purposes. They discuss a number of inexact matching
algorithms. Biischkes et al. [1998] discuss anomaly detection in mobile networks,
where user profiles are used to define "normal" activity for the user. A method for

5.7. FURTHER READING 211

profiling users of relational database systems is described in Chung et al. [1999].
This is used to detect misuses of the database, which can be indications of attacks
against the database.

One aspect of user profiling that is a little different from what we have discussed
here is the profiling of people by their Web activity. Martin-Bautista and Vila
[2000] describe a technique to profile users by the documents they have accessed
on the Web. The purpose would be to better serve, or market to, the users. An
approach to clustering Web sessions is described in N asraoui et al. [1999]. Another
example of user profiling, concerned with providing personalized multimedia news
and information to the user, is described in Tan and Teo [1998].

A good overview of the basic ideas of the computer immunology approach is
found in Forrest et al. [1997]. This and related papers are available at

www.cs.unm.eduJ"-Jimmsec/papers.html.

A technique that is similar to the immunological approaches described in Sec
tion 5.4 is discussed in Balasubramaniyan and Garcia-Fernandez [1998]. In this
technique, autonomous agents are used as a hierarchy of intrusion detectors, which
can be confined to a single host or migrate from host to host, providing protection
for a whole network.

Miller et al. [2000] discuss a system that uses n-grams for document retrieval.
The document is characterized by a vector of the n-grams that appear in it, and
one retrieves those documents that are close to a given search string or example
document.

The basic idea of computer immunology has also been used to detect attacks
on Common Object Request Broker Architecture (CORBA) systems. This is
described in Stillerman et al. [1999].

There are also several researchers applying machine-learning techniques to
intrusion detection. For example, Lunt et al. [1989] and Bauer et al. [1989] discuss
rule-based approaches, as do Snapp et al. [1991] and Lindqvist and Porras [1999].
Maloof and Michalski [1995] describe an inductive learning method. Shieh and
Gligor [1991] discuss a method of detecting patterns of intrusions via finite-state
machines. A data mining approach is described in Lee et al. [1998] and Lee et al.
[1999b]. Rules are constructed using RIPPER to characterize various kinds of
attacks, and association rules (such as "user! reads email in the morning") are also
utilized. Related work is described in Lee et al. [1999a]. A data mining approach
to fraud detection is discussed in Stolfo et al. [1999]. Finally, Me [1998] proposes
a genetic algorithm to analyze audit trails and detect intrusions.

6.1 INTRODUCTION

6
Computer Viruses

and Worms

Computer viruses are programs that copy themselves onto other programs. When
the host program is run, the virus also runs, and as a consequence of its execution
it makes further copies of itself. Most viruses also have other effects, such as
erasing or damaging files, displaying rude words or pictures, or even damaging
the computer or monitor itself.

The first computer virus, as reported by Cohen [1987], was created on Novem
ber 3, 1983. It was an experimental program designed to demonstrate the possi
bility of virus programs, and it was released in a tightly controlled environment. It
was extremely successful. This was predated by self-replicating programs written
in the early 1970s at Xerox and the popular "core wars" games, where program
mers wrote self replicating programs to compete for the resources (memory) of a
computer. The first virus detected "in the wild" (as opposed to in the laboratory)
was reported around 1985, according to McAfee and Haynes [1989] (Highland
[1990a] places the first "wild" virus detection on October 22, 1987), so it didn't
take long from the creation of the first virus to unauthorized infection of machines.
A few early viruses are described in Highland [1990b], with many more described
in McAfee and Haynes [1989]. A report on virus prevalence can be found at

www.trusecure.comlhtmVtspub/pdf/vps2000 l.pdf

Viruses most commonly infect personal computers. This is in part due to their
general lack of any permission enforcement, meaning that any program can do
pretty much anything on the machine in question. Another reason for this focus,
particularly on Microsoft MS-DOS and Microsoft Windows machines, is that they

2"5 D. J. Marchette, Computer Intrusion Detection and Network Monitoring
© Springer Science+Business Media New York 2001

216 6. COMPUTER VIRUSES AND WORMS

are so prevalent, and thus a virus can spread easily to many machines. This has
been termed "death by monoculture," meaning that homogeneous environments
are particularly susceptible to infection. This is true in biology as well, which is
one reason why genetic diversity is usually a sign of health for a biological species
or ecosystem.

In this chapter, we will first consider how viruses work. This tutorial is not
aimed at providing instructions on how to write viruses but rather at providing
a basic understanding of how they work. Following this is a brief discussion of
how virus detection software works and some issues relevant to the statistician.
Next, we will consider some work to model the spread of computer viruses, using
random graph models. We will then look at some extensions of the immunological
ideas discussed in Section 5.4. The final section on computer viruses will look at
some work on producing computer virus phylogenies.

We then turn to computer worms. The distinction between worms and viruses
is subtle, and some would say irrelevant, but worms can be quite different from
viruses. In particular, worms can be stand-alone programs, whereas viruses are
usually attached to other programs. We will look at a few famous worms and
discuss some issues related to their detection.

The definition used in this book for a worm is that it is a program that spawns
running copies of itself. An alternate definition is that a virus requires the action
of a human to replicate, while a worm does not. The distinction is not really that
important, in my view. While I will categorize individual programs as worms or
viruses (or both), I understand that some will disagree with these categories.

Actually, if you think about it, the two definitions are not that far apart. A
virus that infects a program requires the program to be executed (hence requiring
user intervention to propagate). The differences will be more pronounced in some
cases than in others, and I leave it to the reader to decide whether it's important
enough to be pedantic over.

6.2 VIRUS REPLICATION

In order to understand how viruses replicate, we need to consider some details
about computer programs. A computer program is nothing more than a section of
memory in the computer containing binary words that are codes for performing
certain actions. As a result, one can change a program simply by writing new
values into the part of memory in which the program resides. This is how viruses
propagate - by copying themselves into other programs. Usually, computer viruses
operate on programs stored to disk rather than in memory, but the principle is the
same.

Most people who have used computers for any length of time have come across
the concept of a "software patch," which is software that vendors give out to fix
problems in software the user has already purchased (see Ali [1991 D. Considering
how patches work will help in understanding how viruses replicate.

In its simplest form, consider the program illustrated in Figure 6.1. The patch
program is given the instructions to allow it to find the beginning of the code to be
patched. It places a "jump" instruction here, so that when the execution reaches

6.2. HOW VIRUSES REPLICATE 217

OK OK

Jump to / Patch

Bad Code Bad Code

/
Jump to

OK OK

Fig. 6.1 Patching code. A "jump" instruction is placed at the beginning of the "bad code"
causing execution to move to the patch code. At the end of the patch is another "jump"
instruction to return to the beginning of the remaining "good" code.

this position in the code it will jump to the patch code. The patch program then
places the appropriate return code at the end of the patch so that execution returns
to the beginning of the remaining code.

This is a simplification. A real software patch may need to save and restore
various registers to ensure that the code functions properly before and after the
patch code. Also, it is possible for other parts of the program to have commands
that cause the execution to jump to somewhere inside the "bad code." All such
cases need to be handled properly. Further, all the patches that have been applied to
a particular program need to be known by the patching software since the patches
and the order in which they are applied can impact the manner in which new patches
are to be applied. This is beyond the scope of this discussion and is irrelevant for
virus propagation.

Obviously, the patch code resides somewhere in memory, and we could illustrate
this by placing it on the bottom of the code depicted in the figure. Alternatively,
if the patch is no larger than the "bad code" block, we could place the patch in the
memory that contained the bad code, overwriting what is there with the patch.

One can think about virus replication as if the virus is "patching" the code with
its own code. A description of some methods of virus replication can be found in
Davis [1988]. Some sample code is provided in that paper to show how some of
the basic ideas can be implemented.

One of the things that a virus needs to do is hide its presence to avoid detection.
For example, every time a file is changed, its date field is changed, so a virus will
generally change the date field back to its original value. Some viruses go to pains
to ensure that the size of the file does not change.

218 6. COMPUTER VIRUSES AND WORMS

If the infected program does not operate normally, the probability of detection
increases, so most viruses try to ensure that they do not change the program exe
cution in any noticeable way. The simplest way to do this is to place the virus at
the beginning of the execution code. When the program is run, the virus executes
first, propagating itself, or executing whatever other actions it is designed to per
form. Then, the original program is executed as if the virus wasn't there. Some
viruses will even erase their presence from the original program once they have
successfully propagated.

6.3 VIRUS SCANNERS

There are two changes that are unavoidable: the actual values in the file must
change, and the program execution must change to allow the virus to propagate
(and potentially cause damage). It is these changes that allow virus detection
software to detect viruses.

There are basically four ways to detect viruses. A brief discussion of these ideas
can be found in Kumar and Spafford [1992], which also includes an implementation
of a virus scanner.

One approach is to keep checksums for every file (or every file under your
protection) and provide a notification to the system administrator when the check
sums have changed for any file. This must be done with some care. Obviously,
the stored checksums cannot be modifiable since otherwise the virus could sim
ply change the stored value to match the file's new checksum. In fact, the stored
checksums cannot even be readable or computable by the virus because if they
were the virus could simply add data to ensure that the checksum matched the
originally computed value.

One way to ensure that the stored checksums are not altered is to store them on
removable or read-only media. This is the most secure. An alternative is to encrypt
the checksums and store the encrypted values. Neither of these approaches directly
addresses the last point, which is that if the virus can compute the checksum then
it can ensure that the final checksum matches the original. This can be arranged by
making the checksum calculation depend on an external event, such as a password.
For example, the simplest approach would be to have the word-size used in the
checksum be user-settable and use a different one for each file or even for regions
within a file. The resulting checksum algorithm could then be encrypted and stored
along with the encrypted checksum.

Of course, the ultimate version of this approach would be to keep a complete
copy of the file either on a removable media or encrypted. Then the file can be
compared bit-for-bit to ensure that no changes have occurred. This cannot be
defeated, (assuming both the operating system and the comparison program are
also kept on read-only media), but what it makes up for in security it loses in
convenience, time, and storage requirements. This is not an unusual tradeoff in
computer security.

There are versions of operating systems that are run entirely from a CD ROM.
Since the CD ROM is read-only, these are safe from virus infection, at least for
the operating system files on the CD. Of course, CD ROMs are not as fast as hard

6.3. HOW VIRUSES SCANNERS WORK 219

disks, nor can they contain as much data, so these operating systems are necessarily
smaller than those that are stored on the hard disk.

A second approach to virus detection is to compile a list of "signatures" of
known viruses and search for these signatures within the files. This is the approach
taken by virus detection software, and its widespread use attests to its success. A
particular virus will place certain code in given (usually fixed) places within the
file, and searching for these distinct patterns allows the detector to find and remove
the virus. Of course, the downside to this is that as the number of viruses (and
hence signatures) increases, the probability of false detections increases as well.

A technique related to the signature approach will be discussed in Section 6.5.
The idea is to construct a set of "nonself" signatures, which are designed to detect
sections of code that are not "normal."

Several potential defenses against the signature approach are possible for the
virus writer. Most viruses place their code at the beginning or end of the file.
Instead, the virus can be designed to place code at random places within the
program. This requires the anti-virus software to scan the entire file to detect
infection. On the other hand, it makes it much more difficult to hide the effect of the
virus if the program is executed. This may seem irrelevant since once the program
executes the virus has propagated, but it can inform the system administrator that
the system has become infected and steps can be taken to isolate the computer
from others, stopping further infections. Also, as will be seen later, one method
of virus detection relies on running the program in a protected environment, so
unusual behavior will produce a detection without allowing the propagation of the
virus.

The virus can compress or encrypt the code prior to placing it into the program,
making the actual byte values inserted change with each infection. This means
that the main body of the virus cannot be detected by a scanner; however, the
encryption/decryption part of the code must remain, and this can form the basis
for a detector.

Finally, viruses can be written to change their own code - so-called "polymor
phic" viruses. These programs mutate, causing their copies to be different from
the "parent" virus, making their detection via scanning for signatures much more
difficult or impossible. The "polymorphic" engine must remain to some extent,
however, and this can form the basis for a detector.

The third approach to virus detection is to categorize "bad behavior" and scan
programs for evidence that they are engaging in such behavior. For example, very
few programs should be allowed to write on the boot sector of a disk. Most should
not be allowed to format hard-drives, delete files outside oftheir working directory,
write to system memory, and so forth. An extreme version of this is what is called
"generic decryption" technology (Nachenberg [1997]). The idea is to build an
emulation of the computer, run the program within the emulation, and determine
whether it performs any of the actions that are proscribed. This is an extremely
powerful idea, but it has some drawbacks. First, it is only as good as the emulation.
It might be possible to write a virus to detect an imperfect emulation and simply
not activate (copy itself or run) if it is being run by an emulation. Also, one does
not want to run in emulation all the time, so, for example, a virus that is designed

220 6. COMPUTER VIRUSES AND WORMS

to activate only on the tenth execution of a program, or on December 13, 2003,
may go undetected.

The fourth approach is to consider statistical measures for "normality" to deter
mine when programs are not acting as they should. This is similar to the approach
taken in host-based intrusion detection, discussed in Section 5.4.

The preceding discussion has focused on viruses that infect files. These are the
traditional viruses that most people who owned personal computers in the 1980s
and 1990s recognize. There is a new breed of viruses, called macro viruses. There
was a time when it was said that a virus could not be transmitted via email. There
were a number of hoaxes, the so-called "Good Times Virus" and others (Denning
[1999], pp. 276-279). In these, an email message was sent warning against reading
certain emails that would infect your machine with a virus, erase your hard drive,
or cause other catastrophic events (there was even an urban legend about some
people fearing that biological viruses could be sent via email). Of course, all of
this was nonsense. You could not get a virus (computer or otherwise) by reading
email.

This is no longer true. As the Melissa virus (actually a worm by our definitions;
see Section 6.7.3.1) showed (Garber [1999]), simply opening an attachment to an
email can cause unforeseen consequences. Word processors now come with very
powerful macro-languages that allow extremely sophisticated operations to be
performed merely by opening a document.

A related issue is the increased power and functionality of email readers. As
vendors increase the functionality of these readers (for example, automatically
displaying attachments or executing mobile code sent by email), the possibilities
for virus infection will be increased. If past is prelude, the security issues are not
likely to be adequately addressed in these programs until the next big event causes
users to demand protection.

The effectiveness of viruses is a function oftwo factors: the number of machines
that can be infected by the virus and the susceptibility of the machines to damage.
Unix machines have not been as common a target of viruses as personal computers
due to their file protection scheme and other security measures, which limit the
damage that simple viruses can do. As personal computer operating systems start
to adopt security measures, viruses will have to be more sophisticated in order to get
around the security measures, making them harder to write, and thus, presumably,
less common. Another reason few viruses were written for Unix platforms was
the diversity of such platforms. A virus that would infect a Silicon Graphics
workstation would be unable to propagate to a Sun workstation, for example. The
very strength of the personal computer (relative interoperability across all PCs) is
a fundamental reason for the success of virus attacks.

Cohen [1987] proved that a perfect virus detection scheme is impossible. The
proof is as follows:

Let D be a perfect virus detector; that is, for a program P we have

D(P) = T if P is a virus

D(P) = F if P is not a virus.

Let the program V be defined as follows:

if (D(V) = F) then infect another program

else do nothing

6.4. EPIDEMIOLOGY 221

If D(V) = F, then V is not a virus, yet V then proceeds to infect another
program, thus proving that it is in fact a virus. Thus, we must have D(V) = T,
in which case V is a virus but it does nothing and hence is not a virus. This is a
contradiction.

This seems at first glance to be somewhat silly, an impractical "non-existence"
proof. However, it is precisely the strategy that I suggested to defeat the generic
decryption technology described in Nachenberg [1997]. First, the virus checks
to see whether it is running in an emulator - if so, it does nothing; otherwise, it
infects. Given that the virus writer can buy the same anti virus software that you
can, it will always be possible for a sufficiently clever virus writer to defeat any
given detector.

For another discussion of virus detection and elimination, see Phillippo [1990].

6.4 VIRUS EPIDEMIOLOGY

Treating computer viruses as if they were biological ones and studying their behav
ior using the tools of epidemiology is an appealing idea. Kephart et aI. (Kephart
and White [1991], Kephart and White [1993], Kephart et al. [1993]) describe this
approach, and we will describe their work in some detail in this section.

Consider the problem of describing the spread of a virus over the Internet. The
idea is to consider the Internet as a number of hosts each of which can pass a virus
(assuming they are infected) to a fixed set of hosts.

First, some terminology:

virus A computer virus is a program that copies itself (infects) to other programs.
It mayor may not perform other tasks.

worm A computer worm is a program that spawns running copies of itself.

infected A computer is infected if the virus exists on the computer (in a manner
such that the virus can be run or passed to another computer).

susceptible A computer is susceptible to a virus if it could become infected with
the virus, provided the virus is somehow introduced to the computer.

adequate contact Two computers have adequate contact if one would have trans
mitted a virus to the other had it been infected and had the other been
susceptible.

birth rate The birth rate of a virus is the frequency with which adequate contact
occurs.

222 6. COMPUTER VIRUSES AND WORMS

cured A computer is cured of a virus if all copies of the virus are removed from
the computer.

death rate The death rate of a virus is the frequency of cure.

epidemic An epidemic is the widespread occurrence of a disease.

epidemic threshold The epidemic threshold is the relationship between the birth
rate and the death rate at which the virus becomes widespread.

extinction rate The extinction rate is defined to be the ratio of the death rate to
the birth rate.

endemic A disease that can maintain an epidemic for a long time is called endemic.
For example, common childhood diseases are endemic.

Let us consider a simple epidemiology model, the SIS Susceptible-Infected
Susceptible model, depicted in Figure 6.2, in which a computer is susceptible to
infection until it becomes infected. Subsequently, the computer may be cured,
at which point it is once again susceptible to infection. There is no concept of
immunity in this simple model. All computers are either susceptible or infected.

A compartmental model (Walter and Contreras [1999]) is constructed by divid
ing the system into homogeneous entities (compartments) and identifying the flow
between compartments. Thus, for the SIS model, we have two compartments, S
and I. The flow from S to I corresponds to the changing of a computer from
susceptible to infected. This happens by an infected computer interacting with a
susceptible one and so happens at a rate proportional to the product of the number
of infected machines and the number of susceptible machines. Machines that are
infected become susceptible (cured) at a rate proportional to the number of infected
machines. This is illustrated in Figure 6.2.

(JIS
-I S I

t I
8I

Fig. 6.2 The compartmental model for an SIS epidemic (see Walter and Contreras [1999]).
~

Setting N = S + I, this results in the differential equation

dI
- = (JICN - I) - M.
dt

This has the solution (Walter and Contreras [1999])

(6.1)

(6.2)

where C is a constant depending on the number of initially infected computers.
Kephart and White [1991] consider the SIS model as well but take a slightly

different perspective. The network is modeled as a random graph G with IIGII = N

6.4. EPIDEMIOLOGY 223

nodes. For each pair of nodes, a random, independent decision is made as to
whether the nodes are connected. These connections are directional, to denote the
fact that in some cases infection can only travel one way due to, for instance, the
security policy on one of the nodes. Recall that graphs with directed edges are
called digraphs.

There are N(N - 1) possible (directed) connections. Let P be the probability
of connection, fixed for all pairs of nodes. Let e(G) denote the number of edges
in a graph (also called the size of the graph). Then, we have

E[e(G)] = PN(N - 1),

where E denotes the expectation with respect to the probability model.
Let the infection rate from node j to node k be denoted (3jk = (3. Similarly,

let the death rate be denoted 8jk = 8; that is, the rates are the same for all nodes.
I(t) will denote the number of infected nodes at time t and define the fraction of
infected nodes i(t) = I(t)/N. For a given node, the expected number of edges
from the node is

E[number of edges from node] = P(N - 1) == b.

The fraction of neighbors to the node that are susceptible is 1 - i (t). The expected
number of nodes that can be infected by this node is b * (1 - i(t)). Thus, on
average, we expect the total rate by which infected nodes infect new nodes to be

(3I(t)b(l - i(t)) == (3' I(t)(l - i(t))

Similarly, the rate at which nodes are cured is t5I(t). This results in the determin
istic differential equation

~! = (3bi(l-i),

which is essentially Equation (6.2), and which the authors solve as

. (. 0)
~o t - -;

i(t) =. C 0 ~) (f3' o)t'
~o + t - f3' - to e- -

where io is the initial fraction of infected nodes.
If we consider the ratio of cure rate to death rate, p' = 8/(3', then

. () _ io (i - p')
t t - io + (i _ p' _ io)e-(f3'-o)t'

and this simple analysis leads to two cases of interest. If p' > 1, it is easy to see
that this corresponds to exponential decay with i(t) -t O. If p' ~ 1, then i(t)
asymptotes to 1 - p'. This matches our intuition: if the death rate is greater than
the birth rate, the virus eventually dies out; otherwise, it reaches an equilibrium.

Ignoring the stochastic nature of the problem leads to a very simplistic model.
However, the results are not uninteresting. Basically, we have a crude bound for

224 6. COMPUTER VIRUSES AND WORMS

the i (t) depending on p'. Either i (t) goes to 0, which means that the virus becomes
extinct, or it is roughly bound by the value 1 - p'.

In a stochastic model, it is easy to see that the virus must always become extinct
since at any time there is a nonzero probability that every infected node will be
cured. This is another reason to consider a more reasonable model.

Let P(I, t) be the probability distribution function for I infected nodes at time
t. Then, the probability of extinction at time t is P(O, t). Let

L I-I

1+ 1+1,

and define Ra-+b to be the rate at which transitions occur from state a to state b. By
considering the nodes that become infected versus the nodes that become cured at
time t, Kephart and White derive the equation

dP(I, t)
dt = -P(I, t)[RI-+I+ + RI-+L] + P(h, t)RI+-+I + P(L, t)RL-+I.

(6.3)

R a-+a+1 is calculated as
(#infected nodes) * (rate of infection)*(probability of susceptibility)*(#of neigh

bors):

a -
a(l- N)f3b

a(l- ;)f3I.

The probability of cure is (# infected) * (cure rate):

Ra-+a-l = a8.

Letting L = LIN, Equation (6.3) becomes (suppressing the dependence of
I and ion t)

dP~!, t) = -P(I, t)[I(1 - i)f3' + 18] + P(h, t)h8 + P(L, t)L(1 - L)f3'.

(6.4)

For N nodes this is a tri-diagonal set of N + 1 coupled linear differential equations
and hence relatively easy to solve. If we define the matrix A with aj, j E 0, ... , N
on the diagonal, bk , k E 0, ... , N - 1 above and Cl, lEI, ... , N below the diagonal,
we have

aj j(l- jIN)f3' + j8

bk (k+l)8

Cl (l-I)(I- (l-I)IN)f3'.

These equations can now be written as

p/=AP,

6.4. EPIDEMIOLOGY 225

which can be solved (see Kreyszig [1999], pp. 162-163) as

(6.5)

where the Ai are the eigenvalues of A and the x(i) are the corresponding eigen
vectors.

For the simplest (non-trivial) case, where N = 2, we have

(
0 8 °)

A = ° -(~t3' + 8) 28 ,

° ~t3' -28

and solving for the eigenvalues and eigenvectors of A produces

AD 0, (6.6)
x(O) (1,0,0)', (6.7)

Al
1

-4(13' + 68 + a), (6.8)

x(l) 28(13' - 28 + a) 13' - 28 + a ,
(13' (13' + 68 + a) , - 213' , 1) , (6.9)

A2 -~(t3' + 68 - a)
4

(6.10)

x(2) 28(13' - 28 - a) 13' - 28 - aI'
13'(13' + 68 - a) ,- 213' ,) , (6.11)

where

a = J 13,2 + 1213'8 + 482.

Using the fact that P(o) = (0,1,0)', we can use Equation (6.5) and Equations
(6.6-6.11) to solve for aD, aI, a2:

aD 1,

al
13'
a

13' a2
a

The resulting solution of Equation (6.4) for N = 2 is then

PO(t)
28(13' - 28 + a) -!((3'+6o+a)t 28(13' - 28 - a) -!((3'+60-a)t

1- e 4 + e 4

a(t3' + 68 + a) a(t3' + 68 - 0:) ,

13' - 28 + 0:) e-!((3'+6O+a)t _ 13' - 28 - 0:) e-!((3'+6o- a)t

20: 20: '

_13' e-!((3'+60+a)t + 13' e-!((3'+60-a)t.
0: 0:

P2 (t)

226 6. COMPUTER VIRUSES AND WORMS

Figure 6.3 depicts the solution for N = 2.
Although this is a trivial example, one can still see interesting behavior, which

is typical of the solutions for more realistic values of N. In Figure 6.3 we see that
the probability of extinction starts at zero and quickly goes toward an asymptote of
1. Similarly, the probability of both systems becoming infected quickly increases
to a maximum and then drops off toward zero.

Since the probability of extinction approaches one, the limiting distribution is
an uninfected network. If we consider the conditional distribution of infection
given that at least one of the nodes is infected, we have a limiting distribution that
has the probability of both nodes being infected at slightly over 0.6 (when {31 = 1
andd = .2):

lim P(both infectedlone infected) = 2~1 {3
t-+oo a + 2 + I

(6.12)

The same kind of analysis can be performed in the general case. Analyzing
Equations (6.4) and comparing the results to the deterministic model described
earlier (with N = 100, Ii = 5, {31 = 1, and d = .2), Kephart and White [1991]
make the following observations, which agree with our simple example. The
density considered is the mixture of the densities Pi (t) at a fixed t

• At time t = 0, there is only a single machine infected, so the density is a
delta function at I = 1.

• As time progresses, the density is a mixture of a delta function at I = 0,
corresponding to the extinction of the virus, and a "survival" component.

• At time t = 1, the survival component is exponentially distributed.

• At first, the survival component grows quite rapidly (exponentially), with
a growing standard deviation. This continues until the population becomes
saturated, reaching a balance between new infections and cures.

• The survival component at saturation is roughly Gaussian. They call this
the "metastable" phase.

• The metastable phase is long-lived. However, the extinction component
grows slowly until finally the virus goes extinct.

The preceding discussion shows that the probability of a virus going extinct
eventually is 1. However, it is possible to analyze the metastable distribution.
The conditional probability of I infections given that there is at least one infected
machine does approach a well defined limit, which Kephart and White [1991]
denoted Poo (I). In our simple example, the metastable distribution is indicated in
Equation (6.12).

This model is, of course, a simplification of the true problem. Several possible
extensions to this model are discussed in Kephart and White [1991] and Kephart
and White [1993]. Some of these, and a few suggestions of my own, are presented
in the following list:

6.4. EPIDEMIOLOGY 227

C!

'" 0

<0
0

g:
a. ..

0

'" 0

0
0

20 40 60 80 100

time

C!

'" 0

<0
0

s
0:: ..

0

'" 0

0
0

20 40 60 80 100

time

..
0

'" 0

s '" '" 0 a.

0

0
0

0 20 40 60 80 100

time

Fig.6.3 Solution of Equations (6.4) for N = 2 with (3' = 1 and 8 = 0.2.

228 6. COMPUTER VIRUSES AND WORMS

• People tend to share files often with a small group but also occasionally with
a much larger group. This could be modeled as a hierarchical model, where
a machine has a small group under it that has a high probability of infection,
then a larger group under that with a smaller probability of infection, and so
on. This is a special case of the more general case where !3jk is not constant.

• Similarly, not all machines have an equal probability of cure.

• In some cases, a spatial model could be considered, where each node can
infect others in its neighborhood but none outside the neighborhood. This
could be a model for some kinds of security systems where machine inter
actions are restricted to those within a given security domain, with gateways
between domains.

• Virus spreading in an organization is another interesting model. In this
model, there is a collection of machines that can communicate with each
other and a "boundary" through which all communications to the Internet
must pass. In this model virus infections can be inserted only through the
boundary, and thus even after extinction within the organization there is a
probability of re-infection via machines outside the organization.

• Even after a virus is extinct "in the wild," it can still be re-introduced by
attackers or by accident from archives. This can be modeled either by the
organizational model described earlier, by having a small probability of
"spontaneous infection" whereby a node becomes infected even though it is
not susceptible from any connecting node, or by having a set of nodes that
always remain infected, with a small probability that they will pass on their
infection.

• When a virus infection is detected, it is good practice to warn others of
the detected virus. These others then scan their machines looking for the
virus, thus increasing the probability of detection and elimination and also
decreasing the probability that these machines will become infected in the
future. This can be modeled as a "kill signal" that propagates from a cured
machine in much the same way the original virus propagated.

• An obvious extension to the model would be to allow machines to become
immune to the virus. A further extension would be to allow machines to
pass this immunity on to others, propagating in much the same manner that
the "kill signal" discussed earlier.

• Incorporating some of the preceding ideas into a model with multiple viruses
would be very interesting. In this model, a virus detection could not only
warn others about that specific virus, but due to an enhanced vigilance the
probability that other viruses would be detected would increase. This is
the so-called "Michaelangelo" effect discussed in Kephart et al. [1993] and
Kephart and White [1993].

• A better model for real networks would be a random graph where the graph
itself changed with time. One way to model this would be to have time-

6.5. AN IMMUNOLOGY APPROACH 229

varying (3jk, allowing values to be zero occasionally, indicating no connec
tion. Also, the size of the graph changes. Nodes are inserted (new machines
coming online) and deleted (old machines taken off the network). This kind
of dynamic network model introduces many interesting areas for future re
search.

One issue not discussed in this work is that of scale. While Equation (6.4) can
be solved fairly easily for networks with hundreds of nodes, to model the spread of
viruses on the Internet, networks will have to contain millions of nodes. It may not
be a trivial matter to scale these calculations up to networks of this size, particularly
if some of the modifications discussed earlier are implemented. However, it may
be possible to do asymptotic analysis under the assumption that networks with
millions of nodes are approaching the asymptotic regime. Investigations of these
issues might be fruitful.

6.5 IMMUNOLOGY

The team at the University of New Mexico has adapted its immunology-inspired
approach to the detection of viruses. Recall from Section 5.4 that the basic idea
is to generate a collection of "n-grams" which correspond to "self" and to use
the number of "nonself" mismatches to determine the likelihood that an anomaly
has occurred. The analogy is taken one step further in D'haeseleer et al. [1997].
A biological immune system has antigens that are specific to certain pathogens.
These antigens actively detect "nonself" by matching parts of known pathogens.

In order to implement something such as this, one could take the approach of
most of the virus scanners: make specific detectors for each known virus. The
problem with this is that it makes the detection of new viruses difficult.

The approach taken in D'haeseleer et al. [1997] is a little bit different. The idea
is to generate a large collection of n-grams designed to detect "nonself." These
are analogous to biological antigens.

D'haeseleer et al. [1997] provide three algorithms for generating these "nonself"
n-grams. The first, referred to as the generate-and-test algorithm, is to generate a
large number at random, test them against "self," and throwaway those that match.
The remaining strings, by definition, match "nonself." This is the simplest of the
three methods. The others, which require specific knowledge of the matching al
gorithm employed, will not be discussed here. The interested reader is encouraged
to read D'haeseleer et al. [1997].

The D'haeseleer et al. [1997] approach, in its purest form, does not require any
examples of viruses. Obviously, if such examples are available, it makes sense to
use them. This is a part of the architecture discussed in Marmelstein et al. [1998].
The idea is actually more sophisticated than simply using a few captive viruses to
generate virus-detector n-grams. Instead, the idea of a "decoy" file is introduced
(this idea appears to have originated in Kephart [1994] and Kephart et al. [1997]).
A decoy file is one designed to be infected by viruses. These files are never used
by the computer and by design should never change. Their only purpose is to
exist, awaiting infection by viruses. Once an infection has occurred (detected via

230 6. COMPUTER VIRUSES AND WORMS

detecting a change to the decoy file), the virus can be the source of "nonself"
patterns.

Obviously, the selection of "decoy" files is critical to this process. In order to
increase the probability of infection, a genetic algorithm is used to try to find files
with attributes (filenames, location, size, priority, etc.) such that the probability of
infection is maximized.

An alternate approach, not discussed in the preceding work, would be to try to
estimate the probability of infection for a specific set of attributes. This estimation
would require the modeling of the set of all possible attributes and the collection of
a large amount of data, presumably via repeated infection of various machines by a
wide range of viruses. This approach appears infeasible when stated in these terms,
but it is in effect what the genetic algorithm is attempting to do in Marmelstein
et al. [1998].

In a series of papers (Hofmeyr and Forrest [1999], Hofmeyr and Forrest [2000],
and Forrest and Hofmeyr [In press]) Steven Hofmeyr and Stephanie Forrest detail
an artificial immune system for computers. This can be used for any kind of
intrusion detection, whether network-based or host-based, unauthorized use, or
virus detection. As before, the basic idea is to construct a collection of detectors.
These detectors are bit strings, which are matched against "foreign material" (code
or packets) that enters the system. They use the "r-contiguous bits" matching rule:
two strings match if they have at least r identical, contiguous, bits. These bits need
not be in the same position within the string but must be contiguous. One could
extend this rule, for instance, to allow at most q mismatches within the r bits.

The construction of the "nonself" detectors is closely related to biological im
munology. The interested reader should consult the papers cited, where this rela
tionship is discussed in considerably more detail than we have room for here. The
basic idea is as follows. A detector is created at random and labeled "immature."
If a detector detects a match while it is immature, it is deleted. The idea is that
"nonself" is rare, so anything an immature detector finds will actually be "self."
Once a detector "matures" (after a fixed amount of time), it becomes part of the
database of "things that should not be detected." This is analogous to lymphocytes,
which look for "nons elf" to bind to and kill.

In addition, the system can be trained with "nonself" to construct detectors
specifically designed to detect certain known attacks. In addition, when a detection
does occur, a "nonself" detector that matches the attack exactly can be constructed
to speed up future detections.

The system is also adaptive. This is implemented by giving the detectors a life
span. Each detector has a probability of dying (disappearing from the database).
In this manner, as the system changes, the detectors can adapt to the new "self,"
and old detectors that are no longer valid do not clutter up the system.

This work is extremely interesting and shows great promise. It remains to be
seen whether it can be made practical, but the results to date are quite impressive.
Even if it turns out to be impractical for individual systems, it should lead to very
interesting immunological models, which may be of interest in their own right.

In a very short paper, Gilfix [1999] discusses extending the immune system idea
to overall system and network management. This is little more than a proposal at
this point.

6.6. VIRUS PHYLOGENIES 231

6.6 VIRUS PHYLOGENIES

As with biological viruses, there is an interest in tracing the "ancestors" of computer
viruses. This section will discuss some work on constructing these phylogenies.

Unlike biological viruses, it is possible for a computer virus to be created with
no ancestors. Also, except for polymorphic or other evolving virus types, computer
viruses don't actually "give birth" to new species. These differences are not that
important, really, but are worth keeping in mind while we look at the work.

The main references for this work are Goldberg et al. [1991], which documents
the original work, and the later journal article documenting this work, Goldberg
et al. [1998]. The basic idea is that new computer viruses are often written using
ideas, or even code fragments, from previous viruses. By matching the code strings
in these viruses along with the dates of first detection of the viruses, one can produce
a phylogenic mapping of the ancestors and descendants of the viruses. Some care
must be taken to ensure that the code strings used are long enough to be valid.
The analogy to keep in mind is biological phylogenies based on genetic maps.
Obviously, these genetic maps must be made using sufficiently long segments of
DNA (for example, genes). A phylogeny based on looking at segments of only a
few base pairs would be useless. Similarly, in the computer virus case, there are
certain operations that must be performed by computer viruses, such as file reads
and writes and memory copies, and so on. Only relatively long sequences of code
will be of value in constructing meaningful phylogenies. Goldberg et al. [1998]
suggest using sequences of 20 bytes or more.

The basic technology used in constructing virus phylogenies is to compare the
binary code of the viruses, finding sequences that are common to all of those in
the collection, and then computing the probability that a sequence of that length
would occur by chance in such a collection. If the probability is small, then the
viruses are assumed to be related, with a common ancestor (which may be one of
the viruses in the collection).

The assumption is made that (for sufficiently long code fragments) each frag
ment is invented only once. This is a reasonable assumption, assuming the frag
ment is "long enough," an assessment that is to a degree subjective. This as
sumption can be tested. Collect a large number of programs for which there is
no reasonable chance that any of the code of one program was borrowed from
another, and test to see whether any code fragments of a given size. are found in
more than one program. If some are found, one has an estimate for the probability
that such fragments would be found by chance. This probability can then be used
to give a confidence for the constructed phylogeny.

A phylogeny is defined to be a directed acyclic graph. Recall that a graph
without cycles is called acyclic, while the adjective "directed" means that the edges
have a direction associated with them, and that hence any cycles must follow the
direction of the edges.

By comparing bit strings within the virus code, a phylogeny is constructed
showing the implied relationships among the different viruses. In this way, one
can determine when particular ideas first appeared, and which viruses built on
ideas from previous viruses.

232 6. COMPUTER VIRUSES AND WORMS

The main contribution of Goldberg et al. [1998] is an algorithm for constructing
these phylogenies. They provide a fast (greedy) algorithm, and provide a proof
of its performance. Like most greedy algorithms, it is not guaranteed to find the
optimum match, but it is off by at most a factor of (approximately) the log of the
input length.

Further work on the actual construction of phylogenies for specific collections
of viruses is needed. This would be particularly interesting for the "new" macro
viruses (see Sections 6.7.3.1 and 6.7.3.2). My guess is that they owe quite a lot to
earlier viruses.

A more ambitious but related effort is proposed in Spafford and Weeber [1993].
This proposes looking at the source code with the purpose of determining the author
of the code rather than constructing a phylogeny. This would make use of choices
of data structures, coding and formatting styles, library calls, grammar and spelling
errors, and so forth. This is a good place to utilize statistical techniques, as are
used in the determination of authorship for written documents.

6.7 WORMS

6.7.1 Introduction

A worm is a program that, like a virus, reproduces itself. The distinction is that a
worm makes new running copies of itself instead of infecting files.

The world's simplest worm (Do NOT try this at home! Or anywhere else!) is

#!lbinlcsh
echo "Wiggle Wiggle"
$0&
$0&

The first line indicates that this program is to be run under the "cshell." The
"echo" is simply to give the worm some effect besides propagation. This would
be replaced by any action that the worm is expected to take prior to propagation.
The "$0" gets expanded by the shell to the name of the calling program, in this
case the name of the file. The "&" puts the program in the background.

This particular worm is also called a "fork bomb" because it forks off processes,
which in tum fork more processes. Some people would not consider this kind of
program a worm since it does not attempt to propagate itself outside the originating
computer.

If executed on a Unix machine, this will print "Wiggle Wiggle" to the terminal,
then spawn two copies of itself, each of which will print and spawn two copies.
Even though the individual processes exist for a tiny amount of time, this quickly
fills up the processes table and the computer slows to a crawl (or crashes). The
only reliable way I have found to shut the thing down is to reboot the computer. It
may be possible to kill it with the command:

6.7. COMPUTER WORMS 233

kill -9 -1

which will kill all processes owned by the user that executes this. If you are root,
it will bring the machine down. However, if you execute it as a normal user, there
is no guarantee that it will work on the "wiggle" worm.

A "safe" version of this program is as follows:

#!lbinlcsh
echo "Wiggle Wiggle"
$0

This one is relatively safe to run. It will print a bunch of "Wiggle Wiggle"s to
the screen until it is killed (via a control-c). At any time only one version of the
program is active. I say "relatively safe" because even this program will eventually
suck up all the resources on your computer. It is a recursive function with no exit
criterion, and each call gets a new process ID. The program is easy to kill (unlike
the previous worm) and so is really not much more dangerous than an infinite loop
in a program. However, it can, if left unchecked, bring a machine to its knees, so
do not try it on any machine that is not your personal property.

Here is another twist on the "wiggle" worm. This one renames itself:

#!lbinlcsh
echo "Wiggle Wiggle"
set d='date'
set n='echo $d[4] I sed "s/:llg" ,
@ n *= 131
@ n %= 10000
@ n *= 71
@ n %=40000
set name= 'head -$n lusr/dict/words I tail -1 '
mv$O $name
sleep 1
$name

The single quotes in this program are "backquotes." These cause the enclosed
command to be executed. The variable is set to value that the command returns.
The lines starting with "set" and"@" are intended to select a random name from the
local dictionary (this is not a particularly good pseudo random number generator,
but it suffices to make the point). This program will start one copy a second, each
copy showing up in the process list with another name. It gets these names from
the local dictionary, lusr/dict/words. This is certainly not the most elegant such
program, but it will work on most Unix systems, provided the dictionary file is
changed to match the local system.

Running the preceding script for a few seconds produced the names

234 6. COMPUTER VIRUSES AND WORMS

Dewitt Esmark acclimates atrophy brassy cocking gasser grime inherits loafed
oblivion polygons regaining sensitively

Note that the "random number generator" is far from random. Obviously, a
better random name generator (which did not use "date" and therefore could start
more than one worm a second) would be easy enough to write.

Change the "$name" to "$name &; $name &" in the program and you will very
quickly crash your system. Once again, I must beseech you: DO NOT DO THIS.
It is merely for the purpose of illustration. Playing around with malicious code
may very well get you fired, fined, or jailed. The writers of the Internet worm and
the Melissa virus were not treated as harmless pranksters when they were caught.
It is a very serious offense and will be prosecuted if anything goes wrong.

Unlike their biological counterparts, a worm can be a virus and a virus can be a
worm. We will see several examples of worms that are also viruses. Some of the
more famous "viruses" were both viruses and worms.

Are worms bad? After all, many important problems require vast computing
resources, and most home computers are sitting idle most of the time. Why not
use them? This is the approach taken by the SET! (Search for Extra Terrestrial
Intelligence) people. The idea is to provide a screen saver that processes a piece
of the vast amount of data that the SET! program has collected. This distributes
the computation across a very large number of machines (as of January 15,2001,
the SET! Web page reports over 2.5 million users, for a total of over half a million
years of CPU time). The key is that this is a purely voluntary activity. Anyone
who wishes to participate is welcome to obtain the software and install it on their
computer. If they decide they no longer want to participate, they simply stop using
the screen saver. At no time is the program propagated to another machine without
the permission and knowledge of the owner of the machine. See

http://setiathome.ssl. berkeley.edu/

for more information about this project.
The distinction between this kind of voluntary distributed computing and worms

is clear. A worm or virus infects a machine by obtaining unauthorized access.
Although it is true that most machines are idle most of the time, this does not give
one license to use these machines without permission. It is as if one decided that
since people don't use their cars at night after they go to bed, it should be okay to
borrow them during those hours.

Detecting worms is generally quite easy since they tend to be quite greedy, using
up resources quickly and moving rapidly from machine to machine. This is an
artifact of the way previous worms have been written, however, not a fundamental
property of computer worms. Assuming that the purpose of a worm is not simply
a denial-of-service attack, the only reason for it to replicate quickly is to avoid
destruction. This is only necessary if the worm is detected. Thus, the future may
hold very subtle worms that spread slowly, gathering information and waiting for a
certain stimulus before making themselves known. In some sense, from a benign
point of view, this is what some people have envisioned as the way intelligent
agents are destined to be written.

6.7. COMPUTER WORMS 235

6.7.2 Internet Worm

On November 2, 1988, the Internet was infected by a worm (Rochlis and Eichin
[1989], Spafford [1989], Denning [1990c]), which became known as the Internet
worm. The Internet worm, written by Robert Morris, a computer science graduate
student at Cornell University (Eisenberg et al. [1989]), exploited a hole in the
sendmail program that allowed it to propagate itself from machine to machine.
Once a machine was infected, the worm spawned more and more copies of itself
until the machine was so bogged down that either it crashed or was pretty much
useless to anyone and had to be rebooted.

The worm infected between 2000 and 6000 machines, which corresponded to
between 3% and 10% of the machines on the Internet at the time (Denning [1999]).

The worm was actually quite sophisticated. Once it infected a host, it set about
trying to find new hosts to attack. It did this in various ways, such as by looking in
the mail forwarding files ofthe users on the machine and looking at host tables for
trusted hosts. Simultaneously, it set out to crack the password file on its current
host. This was done by first trying a collection of common passwords (McAfee
and Haynes [1989] pp. 89-90) that the worm brought with it, and ifthis did not
work (it often did) trying the dictionary resident on the compromised machine.

The worm spread by utilizing an exploit in sendmail, by trying to log in as one
of the users it had discovered, and by trying an exploit against the finger program.
Once it obtained access to a new machine, it sent a bootstrap program, compiled it,
started it, and closed the connection. If all went well, the bootstrap program called
the original machine back (actually, it made a tcp connection), and the parent worm
sent across the rest of the code.

The program also hid itself on the compromised machine. It removed its files
from the disk, running in memory only, and changed its process name to look
innocuous.

As stated earlier, the worm was actually fairly innocuous. It did not use too
many resources, was not overly destructive, and would disappear from a system
upon a reboot. This does not make it a good thing, but if that were all it did it would
not have been the disaster that in fact it was. The problem was that it propagated
faster than it died. A newly infecting worm would look for copies already on
the machine, and if found, some copies would be killed off. Unfortunately, not
all copies were killed, and they propagated to many hosts before they died. Had
Morris written the worm so that it would never have more than one copy on any
host and the copy would terminate after a short period of time, the Internet worm
might even have gone undetected after (briefly) infecting nearly every machine on
the Internet. It did not work out that way.

6.7.3 Macro Worms

There was a hoax which popped up periodically about a virus that was being sent
by email. There were several variants, but the gist was that if you read a particular
email message, your computer would be infected with a virus. The computer
literate among us would laugh at this since, after all, everyone knew you couldn't
get a virus by reading email. We are not laughing now. (Well, maybe a little.)

236 6. COMPUTER VIRUSES AND WORMS

It should be pointed out that we were not wrong. You cannot get a virus by
reading email. You never could, and you can't now. However, email readers no
longer simply display the text for you to read. Helpful software vendors have
added nice features to allow people to send documents and programs and to have
the email reader interpret (run) the programs so that the reader gets the full effect
of the message. Thus, we are no longer reading email, but rather running it.

I recently received a hoax email like the one mentioned above. This one in
formed me that a new virus had been detected that destroyed one's hard drive. It
looked like a real warning, complete with links to news stories (which turned out
to go to the home pages of the news organization, not to a specific story). At the
end of the message as a note telling me to forward the message to all my friends.

This last line caused me to re-evaluate my impression of the email. Instead of
considering it a hoax, I now view this as a worm itself. By forwarding the email
on, I would be propagating the worm. I find this view intriguing. In a sense, this
is a worm that is never executed (except in a person's brain, if you will), and yet
can propagate via the Internet.

Macro worms are usually referred to as macro viruses, primarily because the
term "virus" has caught on with the public much more than the term "worm." It
is perhaps a bit pedantic to call these worms, particularly since many of them also
act as viruses. The ones that have made the most press are still definitely worms
by our definition.

The term "macro" comes from the old idea of being able to program single
keystrokes to perform mUltiple tasks in one's word processing software. These
were called macros, and were extremely useful, allowing users to customize their
systems so that commonly used sequences could be performed with a single
keystroke.

Not willing to let well enough alone, the writers of word processors and other
software systems made these languages more and more powerful. This is always
good from the perspective of the users since it makes it even easier to do more
wonderful things. It would still be good, if either security had been a strong focus
of the developers or the software industry had not gone more and more into bundled
software.

Now, when you read your email, if it contains a document in a word processor
format, your reader will display the document for you, calling the appropriate word
processor seamlessly. This is very good from your perspective since you don't have
to worry about formats, saving things to disk, finding the right program to read
them, and so on. Unfortunately, the document also executes all the appropriate
macros, which is where the trouble starts.

In the following sections, we will look at two of the most famous (at the time
of this writing) macro worms.

6.7.3.1 Melissa Friday, March 26, 1999, was an interesting day for computer
security professionals. (Remember the famous curse: May you live in interesting
times.) This was the day that many people (including some security professionals)
found in their mailboxes a message containing a document, which, when opened,
spread a worm (which was also a virus) to their colleagues. This was the debut of

6.7. COMPUTER WORMS 237

Melissa, and it literally changed the way people thought about viruses, email, and
the Internet.

The Melissa virus took advantage of two useful functions that modem mail
systems provide for their users. The first was discussed earlier. Mail readers allow
the user to mail documents (as attachments), and these documents can be read
by the recipient without the hassle of first saving them, exiting the news reader,
finding the right application, and so on. One merely "clicks" on the attachment,
and the document is displayed. With the document can come code (macros) that
is also executed when the document is opened.

The second feature that macro worms such as Melissa use to great effect is elec
tronic address books bundled with the email software. This is really an essential
part of any email system, which allows one to associate the person's name with
the email address. Without address books, email systems would simply be too
awkward to use.

Melissa was an email message that had the subject line: "Important Message
From" and the name of someone you know. It came from someone you know,
and was addressed to you, not some email list you belonged to. In the body of
the message was the phrase "Here is that document you asked for" followed by a
(Microsoft Word) document. When you opened the document, it looked in your
address book and sent itself to everyone in it (at least, to the first 50 addresses in
the list). Thus, they received "personalized" email from you (their friend), and so
it went.

It went one step further. It infected your Microsoft Word software so that new
documents you created would be infected. This is why Melissa was in fact both
a worm and a virus. It also changed the security settings on your Microsoft Word
software to make your system more vulnerable to macro viruses and harder for
you to increase the security level.

Melissa cost millions of dollars (Garber [1999]) in lost time, services, and
an unknown amount of productivity caused by everyone talking about the virus
instead of doing any work. I know of several large facilities where the network
connections to the Internet were closed down for more than a day while the process
of recovering from the virus and cleaning the infected machines was performed.

Tracing Melissa to its author might have been all but impossible except for
one oversight. Microsoft Office 97 puts hidden data in its documents identifying
the machine on which the document was created. This is how the perpetrator of
Melissa was finally identified. Of course, future authors of malicious code will
simply change these bytes to cover their tracks.

6.7.3.2 !Love You The "I Love You" virus (ILY) hit on May 4,2000. Another
version of a macro worm that attacks Microsoft platforms, it was the next stage
of evolution from Melissa. Its name came from the subject line: "I love you," a
message that is hard to resist, particularly coming from someone you know.

ILY was truly both a worm and a virus. Like Melissa, it spread by sending
copies of itself to people in your address book. It also changed the default Web
page for Microsoft Internet Explorer to connect to a page that executed the virus.
It added files to the computer so that anyone who connected via Internet Relay

238 6. COMPUTER VIRUSES AND WORMS

Chat (IRC) would become infected. Finally, it changed image and music files so
that they executed the virus.

If this was all that it did, it would be very bad. But ILY went one step further.
It mailed dial-up account names and passwords to a site in the Philippines, so that
the author ofILY could use these accounts for free.

When ILY modified an image or music file (say a JPEG image), it made it an
executable (VB Script) file. This is accomplished by changing the content of the
file, and making the extension ".vbs" instead of ".jpg." People used to Unix might
wonder how such a thing could go unnoticed. How could you execute an image by
accident? But remember, Microsoft Windows has the philosophy that files should
be tied to the application that opens them, and when you select a file, you should
run the appropriate application on it. Thus, when someone wants to view an image
or listen to a tune, they simply click on the icon or name associated with the file,
and the operating system takes care of running the appropriate program. A further
aid to ILY is the convention that files do not display their extensions (unless the
user specifically wants to see them), so the change in file name generally goes
undetected.

Like Melissa, ILY caused a lot of consternation, made big headlines, and cost a
lot of organizations a lot of money cleaning their systems. It probably also made
a lot of money for companies that detect and eliminate viruses.

6.7.4 Ramen

In early January, 2001, a new worm was detected that compromised Linux systems.
This worm uses a script of attack tools to first compromise new systems and then
install itself on the new systems for further propagation.

This worm illustrates the sophistication of recent malicious code. Like the dis
tributed denial-of-service tools (Section 7.5.1), it utilizes several different attacks,
depending on the vulnerabilities found on the system. It looks for FTP servers,
particularly a version of wU-ftp with known vulnerabilities, rpc.statd, and LPRng.
It is reported to be easy to add new exploits to the worm due to its scripted nature.

Once the worm has found a vulnerable system, it installs itself on the system,
setting up a Web-like server on port 27374. It provides a copy of itself to any
request on that port. It also searches the disk for files named "index.html" and
replaces them with its own page. It sends email to announce the compromise
of the system. This could, potentially, provide a mechanism to track down the
originator of the worm, although with free email and public terminals it is unlikely
the perpetrators will be caught this way.

Finally, it scans for new machines, scanning for services on port 21.
Thus, ramen can be detected via a variety of ways. First, any port scans to

port 21 should be investigated. If your network does allow FTP activity through
the firewall, an anomaly detection system that looks for connection requests to
machines that do not run FTP, scans, and connections from machines that do not
normally access the network may be able to detect the initial attempt to propagate
the worm. Any outgoing or internal FTP scans should be investigated as potential
evidence that a machine has been compromised (these should be investigated as a
matter of course since they are an indication that something bad is happening). The

6.8. FURTHER READING 239

security officer should add port 27374 to the list of ports scanned by vulnerability
assessment software such as nmap or saint.

Obviously, the first order of business is to patch the systems with the vulnerabil
ities. This should always be done upon the announcement of a new vulnerability
or software that exploits a known vulnerability. Since programs such as ramen are
easily adaptable, the indicators listed earlier (FIP scans, port 27374) can be mod
ified in future versions, so the ultimate detector must look for unusual behavior of
all types to detect the new attacks for which prior know ledge of their signatures is
unavailable.

6.7.5 Statistics and Worms

We close out this chapter with some thoughts about detecting worms. One ap
proach worth considering is that described in Section 4.8. The GrIDS system
might be used as a worm detector by constructing graphs showing connections
between nodes. A large tree or, in the case of a worm such as the email worms
described in Sections 6.7.3.1 and 6.7.3.2, a graph with high degree (number of
edges per vertex), might be indicative of a worm.

A single machine sending email to a large number of recipients should be a
tipoff of a potential problem. This is only true if the machine does not do this on a
regular basis. For example, a machine that maintains an email list might regularly
send copies of a single message to a large number of recipients. Most desktop
systems will do this very rarely, if at all.

Similarly, one could look at the process table and look for a large number
of processes or for many short-lived processes. One could monitor the number
of processes, the amount of memory, load average, or other measures of system
performance and flag unusual deviations from the normal range. For many systems,
this will give a good early warning of problems. On my machine, I regularly
use nearly all of the available memory, but rarely do I spawn a large number
of processes. Therefore, just as in Section 4.5.4 where we modeled "normal"
behavior for network traffic, one needs to do the same thing for system performance
monitoring.

Some of the visualization techniques discussed in previous chapters are of value
in the detection of worms. For example, the data image can be used to investigate
the progress of a worm by plotting source IP against destination IP, as was done in
Shoch and Hupp [1990]. A plot ofIP address against load average could be used
to detect a CPU-intensive worm as it spreads through a network.

6.8 FURTHER READING

There are a number of articles on computer viruses for the lay person. Denning
[1990a] is a nice short piece, supplemented in the same book by Spafford et al.
[1990]. Ashmanov and Kasperskaya [1999] describes a virus encyclopedia avail
able at

240 6. COMPUTER VIRUSES AND WORMS

http://www.viruslist.com.

Hedberg [1996] describes the work done at IBM, including Kephart's work
on computer immunology. Pelaez and Bowles [1991] give a classification of
"malicious code" such as viruses and discuss the various kinds of "beasties" that
have been developed.

Cohen [1987] and Cohen [1991] are good places to start learning about com
puter viruses, as is the "Random Bits & Bytes" column of Harold Highland (see, for
example, Highland [1988] and Highland [1989]). Hruska [1997] gives a brief de
scription of virus scanners, while Kensey [1993] discusses several issues involving
computer viruses.

For the mathematically inclined, Andersson [1998] provides some limit theo
rems describing the time evolution of random graph models of virus epidemics.
In this work, an SIR epidemic is considered, where a homogeneous population is
assumed but the individuals have a fixed number of acquaintances. There are a
number of similar papers describing different modifications to the basic assump
tions of the epidemic. These include Nilsell [1999], which considers the time to
extinction for a class of epidemic models, and Andersson and Britton [1998], which
looks at modeling an epidemic among a population that has varying susceptibility
to the diseases.

The book by Andersson and Britton [2000] gives a nice introduction to these
issues and stochastic modeling of epidemics in general. The review article Het
hcote [2000] covers the basic models and discusses their applications to human
diseases. Like most Siam Review articles, this is quite accessible to the non-expert,
while being quite thorough. It also has an extensive bibliography. Another good
reference is Daley and Gani [2000].

Another approach to virus detection is discussed in Lee et al. [1997]. This
incorporates an emulator, which provides a simulated environment in which the
virus can be safely executed, and an analyzer, which does the detection and analy
sis. Lo et al. [1991] discuss an architecture for a testbed to detect malicious code
and give a brief taxonomy of malicious code.

Tesauro et al. [1996] report on a neural network for the recognition of computer
viruses but without enough details to evaluate the technique.

A very interesting twist on the computer virus is described in Young and Yung
[1996]. The idea is that rather than destroying files, viruses could utilize public
key cryptography to encrypt files. The virus writer could then offer, for a fee, to
decrypt the files. I am not aware of any cases where this form of extortion was
attempted, but if it were successful it is unlikely that the victim would publicize it.

7
Trojan Programs and

Covert Channels

7.1 INTRODUCTION

We are all familiar with the story of the Trojan Horse. The Greeks built a large
wooden horse (or rabbit, according to Monty Python), rolled the horse up to the
gates of Troy, and left. The Trojans, thinking this was a gift, brought the horse
inside the gates. Unbeknownst to them, the horse contained Greek warriors, who
sneaked out under cloak of darkness and opened the gates, letting in the rest of the
Greek army, resulting in the sacking of Troy.

The Trojan Horse was something other than it appeared. In the same sense
trojan programs are ones that are not what they appear. They come in all shapes and
sizes. Some simply replace existing programs with ones that perform additional
(and undesirable) functions. For example, one might replace the "telnet" function
with one that is identical to telnet with the single addition that the user name and
password are retained and saved somewhere for future pickup. Others masquerade
as useful or amusing utilities, which when executed open up "back doors", allowing
access to the machine by anyone who knows how to utilize the back door. Some are
simply one-shot programs: upon execution they do something really nasty, such
as reformat the hard drive. Others stay dormant, awaiting some external event to
activate them.

A trojan was installed on a machine at George Mason University in Fairfax,
Virginia, in the Netscape browser (Denning [1999], page 261). Whenever anyone
brought Netscape up, a protest email message was sent to the local security review
panel. After a number of students complained about receiving email replies to
messages they had not (to their knowledge) sent, the problem was tracked down
and the trojan discovered.

241 D. J. Marchette, Computer Intrusion Detection and Network Monitoring
© Springer Science+Business Media New York 2001

242 7. TROJAN PROGRAMS AND COVERT CHANNELS

Like viruses and worms, it is not a simple matter to distinguish a trojan from
another of these denizens. A trojan can replicate itself and thus be either a virus
or a worm, or both. Some programs nevertheless clearly fall into the category of
"trojan," so in this chapter we will consider some of the characteristics of trojan
programs.

In this chapter, we will also consider covert channels, one of the mechanisms that
trojans use for hidden communications. These are of interest in their own right and
are of critical importance in the area of multilevel security. We then briefly consider
steganography, which concerns hiding messages in other messages. Then, we will
look at a few common trojans and consider methods for detecting trojans.

7.2 COVERT CHANNELS

A covert channel is a communication channel that is hidden or otherwise not ap
parent to others. For example, imagine you and a partner are planning the Great
Bubble Gum Robbery of 2003. Your partner is currently in temporary seclusion
(to be paroled in another month) as a result of the foiled Great Lottery Ticket
Scam of 1996. You need to communicate through letters without worrying about
interception by the authorities. You know that your letters are read by the prison
officials, so you institute the following scheme: you both have access to comput
ers, so you will use a different font for the real message. Thus,

"Your mom is thrilled about your coming release. Angela urges you to remain
a model prisoner. Does challenge of a legitimate lifestyle excite you? We know
you'll do nothing that will jeopardize your freedom."

sends the real message: "The guards change at midnight." This is a covert channel,
a communication hidden within another overt communication channel.

The preceding example is not a particularly good covert channel since it is easy
to detect. Denning [1999] provides a similar example. The message is encoded
as the first letter of each word in the following cable:

"President's embargo ruling should have immediate notice. Grave situation
affecting international law, statement foreshadows ruin of many neutrals. Yellow
journals unifying national excitement immensely."

As you might imagine, it is not an easy task to construct such an encoding in
a manner that does not arouse suspicion. The typically stilted phrasing of cables
may help here, but it is still not a trivial matter.

Other approaches are easy to construct, particularly if one moves from the some
what cumbersome arena of human communication to computer communication.
We will look at a number of ideas for implementations of covert communication
channels and consider methods of detecting them. Some simple ideas are:

• A Web server sends packets containing the contents of the Web page to any
machine that connects and requests the page. The Web ser.:ver controls the
size of the packets sent to specific machines, encoding the covert channel
as the packet sizes.

7.2. COVERT CHANNELS 243

• The IP and TCP headers have a number of fields whose values are not speci
fied or are unused in some cases. For instance, the urgent pointer is only used
if the urgent flag is set. This field can be used to send covert messages. The
program covert_tcp implements a covert channel using sequence numbers
to encode the message. More information on this (including the covert_tcp
program) can be obtained at

http://www.firstmonday.dk/issues/issue2..5/rowland!

• A company decides to disallow telnet sessions into their facility and institutes
a firewall policy to deny them. A user bypasses the firewall by using the
data field in ICMP packets to implement a covert telnet. This is essentially
what the Loki program does.

A good place to start learning about covert channels is the technical report
NCSC [1993]. A brief (two-page) discussion on covert channels is found in Millen
[1999]. A very entertaining article on covert channels is Simmons [1998a].

Covert channels are a serious problem for multilevel security systems. Consider
a system with two security levels, Low and High. In a military situation, these
might be different levels of classifications, for example unclassified and secret.
Low can write to (send information to) High, but High cannot write to Low. In
the classification analogy, unclassified information is allowed to pass to systems
cleared for secret material, but secret information must not be transferred to an
unclassified system. If a covert channel can be implemented, however, the security
can be breached.

Consider the case where the High system must be able to ACK data from the
Low system. Sending the ACK directly is obviously not acceptable, even if it is
constrained to be a single bit (1 for ACK). A simple covert channel can be set up
via timings of the ACK responses.

In Moskowitz and Kang [1994b], a statistical communication channel is defined.
The original definition was defined in terms of response times, but we broaden the
definition slightly here:

Definition 1 If High can affect a parameter of the distribution of some system
attribute measurable by Low, we say that there is a statistical channel between
High and Low.

Thus, there must be some entity between the High and Low systems that acts as
a mediator. This mediator is called a "pump." A detailed discussion of a network
pump can be found in Kang et al. [1996]. The basic idea is quite simple. Place a
buffer between High and Low. The buffer takes the ACKs from High, and releases
them to Low with times chosen from a given distribution. This can be made more
reliable by using multiple buffers, with buffers for the data from Low, as well as
buffers for the ACKs from High.

The pump must be stateful in the sense that it needs to remember the sequence
numbers of the packets to ensure that High does not try to ACK packets that it did
not receive (and hence construct a channel either using bad packets as bits, or using

244 7. TROJAN PROGRAMS AND COVERT CHANNELS

Fig. 7.1 A simple pump. The pump buffers the ACKs from High and passes them down
to Low at a random rate Li.

the sequence number to transfer data). All the fields sent with the ACK (usually
only a sequence number and ACK flag in these systems) must be prescribed to
ensure that data are not sent in unused fields.

The goal is not to eliminate covert channels but rather to reduce their bandwidth
to as near zero as possible. It is always possible to construct a covert channel
through manipulating the statistics of the responses, but with care this can be
made to have a very small bandwidth. Further, the more difficult the channel is to
construct, the more likely it is that it will be detectable (at least, one hopes so).

As an example, let us consider the simplest pump. A pump consists of a buffer
of size n (we will assume n is large enough that it is never full). Messages are
passed from Low to the pump and then on to High. The ACK from High goes to
the pump and into the buffer. Let H m be the average of the past m High response
times. The pump releases ACKs from its buffer at a rate Li. The rate Li has a
density that is a function of Hm. This is illustrated in Figure 7.1.

In this simple example, High can instantiate a covert channel by manipulating
its response rate to change the statistical distribution of L i . By using multiple
buffers, this can be made more difficult. More information on these pumps can be
found in Moskowitz and Kang [1994b], Moskowitz and Kang [1994a], Kang et al.
[1995], and Kang et al. [1996]. Related techniques are described in Venkatraman
and Newman-Wolfe [1993] and Browne [1994].

An interesting idea has been developed by Ronald Rivest at MIT. Called
"chaffing and winnowing," the idea is as follows. Suppose John wants to send
a message to Mary, but does not want anyone else to be able to determine what
the message said. One thing John and Mary could do is decide on an encryption
scheme. Rivest's method is a little different, since it allows the text to be sent
unencrypted but still undecipherable by a listener. John and Mary decide on an
authentication method. This is like the checksum that tells the TCPIIP stack that a
packet has been delivered intact. For example, let us suppose that the authentica
tion consists of the ascii value of the first letter in the message (obviously a more
sophisticated authentication would be used in real life), so a message might look
like

l:We need:127
2:to sell:164
3:all shares:141
4:of Consolidated:157

5:Widgets:127
6:immediately:151

7.2. COVERT CHANNELS 245

The first number is a sequence number, so that the message can be put together
properly, followed by a few characters of text, followed by the authentication
number. Just like IP, we break the message up into small packets that get sent
individually.

The clever trick is thatJ ohn sends this message along with a set offake messages
(which will fail the authentication test). These fake messages are the "chaff" that
confuses any listener. Without the proper authentication algorithm, the listener
cannot tell which message fragments are authentic, and which are confusers, so
the full session might look something like

l:We need:127
l:We must not:131
l:Your mother:117
l:There is a:117
2 :buy: 154
2:to sell:164
2:wants to:164
2:fine line:164
3:all shares:141
3:bake a:141
3 :marry: 141
4:of Consolidated:157
4:between:172
4:pie:152
4:perfume:152
5:Widgets:127
5:baker:127
6:immediately:151
6: tomorrow: 151
6:and aftershave:151

Note that if the amount of chaff is large relative to the message, and the chaff
comes from legitimate messages, it will be extremely difficult to extract the true
message. Further, if John wants to send messages to Mary, Jane, and Esmerelda,
he can use different authentication algorithms for each recipient, and the message
to Mary becomes chaff to Jane and Esmerelda.

If the amount of chaff is relatively small and/or does not come from legitimate
messages, it may be possible to extract the true message as the only combination
that makes sense. In an extreme case, each packet could consist of a single char
acter, which makes reconstructing the message from the chaff using this kind of
textual analysis extremely difficult. If one adds encryption to the message prior
to breaking it up into packets, then textual analysis will fail even in a "low-chaff"
environment. The purpose of the technique was to argue that the desire of the U. S.
Government to control encryption technology was misguided and futile, so adding
encryption goes against the original intent of the work.

246 7. TROJAN PROGRAMS AND COVERT CHANNELS

The paper describing this idea is available at

http://theory.lcs.mit.edul "-'rivest/chaffing -980701. txt

One idea that I have not had a chance to test is that it may be possible to use
this "chaff" idea to fool some content-based network monitors. Any such system
must put the packets together in order to look for suspicious strings, particularly in
applications such as telnet, where each packet may contain a single character. If
one were to add in a few packets in the right places, with invalid TCP checksums
it may be that the monitor would use their data in the reconstructed content. This
assumes that the monitors do not check the checksums and that the fact that there
would be multiple packets with the same sequence number would not cause an
alarm by itself. This is something for the developers of such systems to consider.

Alternatively, one could install a trojan that used a sniffer and only used packets
that failed the checksum and were hence discarded. The data in the discarded
packets could be used for the channel. If the intrusion detection system does
"correctly" reassemble packets, ignoring those that do not pass the checksum test,
they would miss these. As you can see, it is very hard to take every eventuality into
account. It would be interesting to know whether any network monitors check for
packets with bad checksums.

7.3 STEGANOGRAPHY

Steganography ("covered writing") is the art of hiding messages. We saw an
example of this in Section 7.2 when the two would-be masterminds used different
fonts to hide their messages. Another famous example is the use of micro dots
hidden in the periods of letters. Herodotus (Herodotus [1998] 5:35) tells us that
Histireus shaved the head of a slave and tattooed a message on it. Once the hair had
grown back, it covered the message. Since the message was to tell Aristigoras to
rebel against the king, it was important that only Aristigoras read it. The slave was
sent to Aristigoras, and the message was delivered. This and other such stories
can be found in the introductory chapter of Petit colas [2000] and in Jarnil [1999].
An overview of steganography can be found in Johnson and Jajodia [1998].

Another use of steganography is digital watermarking. This is a way of marking
(usually in a manner that is not readily detectable) images and other digital media
in order to prove ownership or origination of the material. For example, if you are
a photographer, you might like to display your images on the Web, but if someone
uses your images without your permission, you may want to be able to prove that
the image was in fact yours. This is not unlike branding cows except that it is
designed to be less obvious and less painful to the cows.

Let us focus on hiding messages in images since images are a common target
for steganography, and they allow for simple illustration. The first method that
one might consider for hiding a message in an image is as follows. Recall that an
image is an array of 8-bit (or if it is a color image 24-bit) entries called pixels. Let
us just consider 8-bit, or grayscale, images. The value of each pixel determines
its gray level, with 0 being black and 255 being white. As a result of the way

7.3. STEGANOGRAPHY 247

the human visual system is designed, we do not notice very slight differences in
grayscale values, so first set all the lowest-order bits in the image to zero. Then,
take your message, represent it as a bit stream, and for each bit in the message set
the lowest bit of a pixel to that value. You can do this systematically or randomly,
provided that you retain the seed to the random number generator so that you can
extract your message and that you take care not to reuse any pixels. The image (or
other digital medium) in which your message is hidden is called the cover.

Surprisingly enough, we need not be as stingy about our pixels as to use only
the lowest bit. Figure 7.2 shows an example where a whole image is hidden in the
lower 4 bits of another image. The procedure is to take the four highest-order bits
of the image to be hidden and set the low-order bits of the cover to these values.

As can be seen from the figure, one cannot see the hidden image in the cover.
There is a perceptible change to the cover, as can be seen in a higher resolution
view, but this is really only noticeable if one has the original for comparison.

This form of steganography is extremely simple, and as a result, generally pretty
easy to detect. Further, it can be destroyed by very simple image manipulation.
For example, lossy compression will generally destroy the hidden image. This is
shown in Figure 7.3, where we have extracted the hidden picture after undergoing
JPEG compression with a quality setting of 75%. This resulted in a compression
factor of about 7. Although the cover is not noticeably changed by the compression,
the hidden image is nearly destroyed.

An approach to steganography that is more robust to compression and other
filters applied to the image is to perform the embedding in a transform space, such
as the Fourier domain. More information about this and other techniques can be
found in Marvel and Retter [1998], Johnson and Katzenbeisser [2000], and Lee
and Chen [2000]. This is by no means a complete list. The book by Katzenbeisser
and Petitcolas [2000] is a good place to start learning about the subject, and the
chapters therein contain an extensive bibliography.

Digital watermarking is slightly different in intent than steganography, but many
of the same techniques can be used. It is important for commercial reasons to be
able to mark an image, movie, or music with some kind of secure tag to detect
or prevent unauthorized copies. However, as reported in Seife [2000], these tech
niques are not yet perfect. There is some controversy, but the gist of the article
is that some researchers claim to be able to crack a wide range of existing water
marking technologies, essentially rendering them useless. Clearly, there is work
to be done here (assuming you accept the need for this kind oftechnology).

We have seen another method for hiding messages in Section 7.2, where a
message is passed by changing the statistics of a signal.

Basically, all steganography techniques come down to the following procedure.
First, transform the cover using some transformation that leaves redundant bits.
Select a (usually random) subset of the bits and tweak them to embed the mes
sage. Note that when computer scientists say "random" they almost always mean
"pseudo-random." It must be possible to reproduce the pseudo-random sequence
in order to extract the image.

One then (usually) applies the inverse transform to obtain something indistin
guishable (to the casual observer) from the original but now containing the hidden
message. Most of the work in steganography and digital watermarking comes

248 7. TROJAN PROGRAMS AND COVERT CHANNELS

Fig. 7.2 Hiding dogs in cars. The top two images are the original. The bottom image
contains the first image (rotated 90 degrees counterclockwise) in the lower four bits.

7.4. BACK DOORS 249

Fig. 7.3 The result of extracting the hidden picture of Figure 7.2 after JPEG compression
of the cover.

in finding the transforms and adding redundancy so that the message is as unde
tectable as possible and as robust to further transforms of the cover (for example,
compression) as possible.

Another line of research is methods to detect or defeat steganography. We have
seen one method for defeating steganography, illustrated in Figure 7.3. In this
case, a very simplistic steganography method was defeated by compressing the
image. More sophisticated approaches are needed to detect or defeat more sophis
ticated steganography or watermarking technology. The book by Katzenbeisser
and Petitcolas [2000] is once again a good place to learn more about these issues.

7.4 BACK DOORS

There are a large number of backdoor trojans. These are programs that open up a
"back door" (also called a "trap door" by some) to the computer, allowing others
to have access, bypassing the usual authentication procedures.

Loki is a program that implements an information tunnel between two machines.
The idea is to use the data field in ICMP echo requests and replies to implement a
login session on a remote machine. Once the Loki client is installed on a machine,
a Loki server can connect to the client by sending an ICMP echo request to the
machine. The machine replies with an echo reply, just as it should. However, in
the packet data of the request are commands to be executed on the client, and in
the reply are the results of the commands. Thus, for example, one can ask to see
the password file, and this is transmitted back in the echo replies.

250 7. TROJAN PROGRAMS AND COVERT CHANNELS

Loki can be detected by looking for a specific value ofthe sequence number (see
Figure 1.5, page 16): fOOl in hexadecimal, or "fool." Of course, anyone with the
source code can easily change this. Another indicator is a mismatch in the number
of echo replies relative to the echo requests, which is caused by relatively large
data transfers in one direction. This is an example of where statistical inference
can be brought to bear, to look for statistical anomalies in the numbers of requests
and replies.

Loki is one example of a backdoor. Next we will look at one of the more popular
and powerful ones: Back Orifice (BO).

The "legitimate" use for Back Orifice is as a remote system administration tool.
Install it on your computer, and any time you need to do some administration, even
when you are away from your desk, you can simply connect through Back Orifice
and do whatever you need to do. Most early firewalls would pass Back Orifice
packets, since the security analysts did not know to block them, and the Internet
was kinder and gentler in those days. Thus, you could bypass the firewall even if
your company had a policy that did not allow logins from outside.

One of the problems with Back Orifice is that it does not just give you this
nice back door, but it allows anybody in. After all, the whole point is to bypass
authentication. This can obviously be a serious problem.

Back Orifice was first released in 1998 by the Cult of the Dead Cow, a self
described "hacker" group. It was not the first (netbus, a similar program preceded
it), but it is one of the most popular. Other similar programs are Portal of Doorn,
DeepThroat, Sockets de Troie (French for "Trojan Sockets"), SubSeven, Doly
Trojan, RingZero, and many others. These trojans all infect various flavors of the
Microsoft Windows operating system for many of the same reasons that nearly all
viruses target this operating system.

Among the many things that BO and these other back doors allow one to do
is to capture the mouse (and move it about at will), open and close the CD, tum
on the microphone (if one is plugged in) and listen, watch every key typed, and
access any files on the computer. It is quite an eye opener to watch this happening,
as if by magic.

There is an interesting story involving the RingZero trojan. In late September,
1999, a number of people started noticing incoming scans to ports 80, 8080, and
3128. The pattern was curious and there was much speculation about its purpose.
One thought was that it was a scan for proxies. A proxy is a gateway between
networks. For example, a proxy might be used to present a single IP address to
the outside, with the proxy server acting to handle the address mapping required
to ensure the correct delivery of packets to the internal network.

The SANS (System Administration and Network Security) Institute sent out a
call to its members to be on the lookout for these scans, and to try to find out its
purpose. Finally, Ron Marcum of Vanderbilt University found a copy of the trojan
on one of his machines. This is an example of the Internet community working
together to detect and neutralize a threat. It is also an example of alert system
administrators noticing interesting patterns in the data they were monitoring. This
ability to notice interesting patterns is critical to detecting new attacks.

One method for detecting back doors on a machine is to do a port scan (for
example using nmap, Section 4.9.1) and look for open ports. This assumes the

7.4. BACK DOORS 251

back door has opened a port. Obviously the port must be open in order to use the
back door, and so equally obviously the back door program must leave the port
open, right? Wrong. An interesting program is available from

http://packetstorm.securify .comlUNIXIpenetrationirootkits/cdOOr.c.

The program listens on the interface for a particular pattern of packets, and only
upon seeing the right pattern does it open the back door. For example, the original
source code watched for TCP SYN packets to the following ports (in order): 20080
22533. If packets are detected to these ports in this order, the program then opens
the back door on port 5002 (all of these are configurable). The back door consists
of a shell program listening on 5002, giving anyone who wishes to connect access
to the computer. The program can be configured to look for these port accesses
all corning from the same IP address or simply to watch for the pattern regardless
of the IP addresses.

Several comments are in order here. First, since the port pattern is configurable,
it is impossible to construct a signature for this kind of trojan. Further, there is
no reason one couldn't modify the code to look for packets other than TCP SYN
packets. For example, RESET packets are quite common and often ignored by
intrusion detection systems (see Green et al. [1999] and Section 4.3.2.1). Further,
why restrict oneself to TCP? How about the following as a pattern to turn on the
back door?

1. A RESET packet sent to port 25 from any IP address (call it IPl).

2. An echo reply (ICMP) from IP1.

3. A UDP packet to port 53 from IP1.

4. Two echo request (ICMP) packets from the same IP address, call it IP2
(which must be different from IPl).

5. A SYN packet to port 80 from IPI and source port above 3024.

If the preceding pattern is seen, take the sum of the source port of the first packet
and the last packet and open a back door on that port number (thus allowing the
attacker to specify the back door port on the fly). Since IP addresses can easily
be spoofed, it would be easy to send the preceding packet sequence from a single
machine. Further, if the firewall policy allows all the packets in, it is extremely
unlikely that any intrusion detection system would notice the preceding pattern.

The only way to detect such a trojan on the network side is to look for unusual
activity (for example, suddenly seeing connections on ports that previously had
no activity). Thus, anomaly detection is essential for network security.

On the host side, it is possible to detect this trojan once it opens a port by
detecting this through netstat, lsof, or a port scanner such as nmap. Also, looking
at the process table can sometimes detect these trojans, but only if they are either
given unfortunate names (such as "back door") or you are extremely careful to
track down each and every process that your machine runs, which can be quite
tedious. This particular program uses inetd to handle the network operations, and

252 7. TROJAN PROGRAMS AND COVERT CHANNELS

so a wrapper program (which logs all accesses and allows only connections from
specific machines to specific ports) could detect and/or defeat this program. A
more sophisticated program could get around this.

7.5 MISCELLANEOUS TROJANS

There are many trojans that are simply programs that claim to do something nice (a
cool screen saver, a digital birthday card, etc.) and when run actually do something
very bad, like format the hard drive. These are often called viruses or worms (and
sometimes they are).

McAfee and Haynes [1989] report (page 76) on a program that purported to
be a graphics program but when executed erased files and taunted: "Arf arf! Got
you!"

Other trojans are truly viruses or worms. One such is Happy 99. When run, it
opens a window, displays fireworks and the words "Happy New Year 1999," and
exits. However, whenever the computer is online and sends email, Happy 99 sends
itself along, propagating itself to other computers.

Some trojans (or viruses, or worms), called "logic bombs" by some, do not
do anything untoward until a pre specified time (such as Michaelangelo's birthday,
Columbus day, etc.), when it suddenly "goes off."

7.5.1 Distributed Denial of Service

A distributed denial-of-service attack is a denial of service attack that is simulta
neously launched by many machines against a single site. Several programs are
available to implement these. I will describe four of them: TrinOO, Tribe Flood
Network (TFN), TFN2K, and Stacheldraht (German for Barb Wire). Most of this
information is available in Criscuolo [2000].

The basic architecture of these attacks is to have a client control a set of han
dlers, with each handler controlling a set of agents. Each of these entities should
be thought of as a machine that has been compromised and had the appropriate
software installed. The client is the main attacker, but it is hidden from the victim
and need not even be online at the time of the attack.

A handler is usually set up on a machine that normally has a lot of traffic, for
example, a DNS server. The reason for this is to attempt to hide the traffic between
the handler and its agents. As the name implies, the handler controls the agents,
who perform the actual attack.

The basic attack is to flood the victim with a large number of packets, far more
than the victim can handle. This has the effect of (at least) locking out legitimate
users of the system and may in fact bring the victim machine down completely.
The attacks are usually launched against commercial Web servers, so in addition
to creating havoc, they can result in considerable lost revenue.

Although the programs described implement a certain subset of possible denial
of-service attacks, there is no reason why future programs won't expand this list.

7.5. MISCELLANEOUS TROJANS 253

As we will see, this kind of "upgrading" of attacks is one of the distinguishing
characteristics separating these programs.

The attack consists of two phases. In the first phase, the program tries to
compromise as many systems as possible. These systems will then be used in the
second phase of the attack, which is the flood discussed earlier. Note that the first
indication that the victim has of the attack is the attack itself. The victim has no
way of detecting the first phase, since this is occurring on other machines on the
Internet.

The earliest tool for setting up a distributed attack was TrinOO. As with all
of the tools discussed here, TrinOO affects Linux and Solaris systems. It follows
the basic steps outlined earlier. In addition, it usually installs a rootkit on the
compromised machines to hide the program. As a result, it is hard to detect TrinOO
without specialized scanners. Look for a file called" ... ", which will contain a list of
compromised machines. In fact, any time you find a file with this name you should
be concerned. Recall that on Unix machines a filename with an initial period is
"hidden", not listed without specifying the "-a" flag on Is. The directories "." (the
current directory) and " .. " (the previous or parent directory) are always there, and
it is easy to overlook a file with one too many dots. There is no legitimate reason
to have a file or directory with this name.

TrinOO attacks systems over random UDP ports, and so it is difficult to design a
detector for it. It also can be configured to communicate over arbitrary ports, but
it defaults to ports 27665ffCP, 27444IUDP, and 31335IUDP.

The next generation of attack tools is the Tribe Flood Network. Its handlers
and agents communicate via ICMP echo reply packets. It adds a root shell on a
port, allowing easy access to the system by the attacker (and anyone else).

TFN has four methods of attack:

• SYN flood (see Section 4.3.1.2).

• UDP flood. In this attack, many UDP packets are sent. The victim machine
cannot handle them all, and cannot accept new connections as a result.

• Smurf (see Section 4.3.1.6).

• ICMP flood. A large number of ICMP echo requests are sent, and are too
many to handle.

TFN2K adds yet another attack method, Targa3 (see Section 4.3.1.5). In addi
tion, the attacks use spoofed addresses. In communications among the processes
(client, handlers and agents), TFN2K adds decoy packets with each legitimate
packet to make it difficult to backtrack to the attacker.

Finally, Stacheldraht adds to the preceding capabilities encrypted communica
tions between client and handlers and automatic updating of agents. Stacheldraht
has a limit of 6000 agents per handler.

254 7. TROJAN PROGRAMS AND COVERT CHANNELS

7.6 DETECTING TROJANS

Some trojan programs are relatively easy to detect. They use a particular port to
send information out or use a data field that can be checked for unusual data or
particular strings. The catch is that one must know this in advance. New trojans
must be detected as unusual activity (see Sections 4.5.4 and 4.8).

The problem of detection of trojans before they are activated is unexpectedly
difficult. Consider the following problem: you have heard that someone has
modified "login" to allow a back door. It operates exactly as it should unless the
password given is a special one known only to the author of the trojan program.
How can you determine that your copy of login is uncorrupted, rather than a copy
of this trojan?

The first thing that may come to mind is to run "strings" (Section 5.6.1) on the
login program. This is a program that scans through a binary file and prints out
all segments that look as though they might be ascii text. This may work if you
know what password the author of the trojan used, or if the password happens to
be something suspicious such as "backdoorpassword," but is unlikely to work in
real life.

But wait, you are running Linux and thus have access to the full source code!
You find the source for login, pore through it, and find nothing at all suspicious!
You are clean! Well, just to be sure, you recompile the program from the source.
Now, you are sure you are clean and can proceed safe in the knowledge that no
back door exists!

But what if the problem was in the compiler all the time, and not in the login
program itself? This is illustrated by Thompson [1984], one of the originators of
Unix. The basic technique is also discussed in Denning [1990b] by Witten [1990].
The idea is to place in the compiler code that compiles the trojan into the login
program. Of course, this leaves the compiler with suspicious code in the source,
so we compile the compiler and then change the source back. The binary for the
compiler has the "bug" that will compile the back door into the login program, but
the source code for both the compiler and the login program is clean. If we want
to be really clever, we have the binary compiler also insert the appropriate "bug"
into any newly compiled version of itself, so we cannot even save ourselves by
recompiling the compiler.

Thompson points out that there is nothing magic about the compiler: the same
kind of thing can be done with assemblers, linkers, and even hardware microcode
(how much of your computer was manufactured in the country in which you
reside?) Another approach is to modify one of the shared libraries that a program
loads.

This points out one of the fundamental problems with security. If you cannot
trust the people providing the systems to you, you are potentially doomed. Con
sider how much of the computer code written today is written overseas. Working
for the U.S. Navy, I am naturally suspicious of code from foreign countries, but if
you prefer, think about how much you might want to trust code written by your
competitor. Further, consider how much of the code is delivered in binary format
only (no source code), and hence there is no easy way to determine what it is doing
or what its vulnerabilities might be.

7.7. FURTHER READING 255

As you can see, if one wishes to be paranoid, it is not hard at all to come up
with reasons to be. Good security professionals tend to be paranoid.

7.7 FURTHER READING

There has been a lot of work in multilevel security and covert channels. Kang
et al. [1997b] provide information on the design of an architecture using the pump
described earlier. Kang et al. [1997a] describe a multilevel security architecture
using the pump.

A very good place to start learning about steganography and digital watermark
ing is the book by Katzenbeisser and Petitcolas [2000). Anderson and Petitcolas
[1998] and Simmons [1998b] discuss the issues of how much information can be
hidden, given the constraints of trying to make the message hard to discover and
robust to degradation.

For those with a theoretical computer science background, Thimbleby et al.
[1998] present a formal model for trojan programs and computer viruses. They
define a trojan to be a "nonempty recursively enumerable relation T ~ R x
R x L" that has certain formal properties. In this definition, R is the set of all
"representations" (essentially the different possible states that the machine can be
in or different environments in which processing is taking place) and L is a set of
labels. The properties boil down to stating that a program with the same name will
operate differently in two different but similar environments. Describing this work
in detail would require too much of a departure into computer science background,
so I leave it to the interested reader to pursue.

A discussion of malicious code and what to do about it can be found in McGraw
and Morrisett [2000]. Weiss and Amoroso [1988] is an early paper describing an
approach to ensuring the integrity of software written by a team. This kind of source
code protection should be the minimum requirement for vendors producing code
for sensitive applications, such as military, banking, or critical infrastructure.

Finally, Denning [1990b] has a number of good articles about famous attacks,
malicious code, and what to do about them. We have cited several of these papers
in the preceding discussion, but there are a number of others that are of interest.

Appendix A

Well-Known Port
Numbers

257

258 A. WELL-KNOWN PORT NUMBERS

Table A.1 Port/service pairings for some of the more common ports (1-33).

Keyword Decimal Description

tcpmux lItcp TCP Port Service Multiplexer

tcpmux lIudp TCP Port Service Multiplexer

compressnet 2/tcp Management Utility

compressnet 2/udp Management Utility

compressnet 3/tcp Compression Process

compressnet 3/udp Compression Process

rje 5/tcp Remote Job Entry

rje 5/udp Remote Job Entry

echo 7/tcp Echo

echo 7/udp Echo

discard 9/tcp Discard

discard 9/udp Discard

systat 111tcp Active Users

systat ll1udp Active Users

daytime 13/tcp Daytime (RFC 867)

daytime 13/udp Daytime (RFC 867)

qotd 17/tcp Quote of the Day

qotd 17/udp Quote of the Day

msp 18/tcp Message Send Protocol

msp 18/udp Message Send Protocol

chargen 19/tcp Character Generator

chargen 19/udp Character Generator

ftp-data 20/tcp File Transfer [Default Data]

ftp-data 20/udp File Transfer [Default Data]

ftp 211tcp File Transfer [Control]

ftp 211udp File Transfer [Control]

ssh 22/tcp SSH Remote Login Protocol

ssh 22/udp SSH Remote Login Protocol

telnet 23/tcp Telnet

telnet 23/udp Telnet

smtp 25/tcp Simple Mail Transfer

smtp 25/udp Simple Mail Transfer

dsp 33/tcp Display Support Protocol

dsp 33/udp Display Support Protocol

A. WELL-KNOWN PORT NUMBERS 259

Table A.2 PorUservice pairings for some of the more common ports (37-95).

Keyword Decimal Description

time 37/tcp Time

time 37/udp Time

rap 38/tcp Route Access Protocol

rap 38/udp Route Access Protocol

rlp 39/tcp Resource Location Protocol

rlp 39/udp Resource Location Protocol

graphics 411tcp Graphics

graphics 411udp Graphics

nameserver 421tcp Host Name Server

nameserver 42/udp Host Name Server

nicname 43/tcp Who Is

nicname 43/udp Who Is

domain 53/tcp Domain Name Server

domain 53/udp Domain Name Server

whois++ 63/tcp whois++

whois++ 63/udp whois++

bootps 67/tcp Bootstrap Protocol Server

bootps 67/udp Bootstrap Protocol Server

bootpc 68/tcp Bootstrap Protocol Client

bootpc 68/udp Bootstrap Protocol Client

tftp 69/tcp Trivial File Transfer

tftp 69/udp Trivial File Transfer

gopher 70/tcp Gopher

gopher 70/udp Gopher

finger 79/tcp Finger

finger 79/udp Finger

http 80/tcp World Wide Web HTTP

http 80/udp World Wide Web HTTP

hosts2-ns 811tcp HOSTS2 Name Server

hosts2-ns 811udp HOSTS2 Name Server

kerberos 88/tcp Kerberos

kerberos 88/udp Kerberos

supdup 95/tcp SUPDUP

supdup 95/udp SUPDUP

260 A. WELL-KNOWN PORT NUMBERS

Table A.3 Port/service pairings for some of the more common ports (10 1-139).

Keyword Decimal Description

hostname 101ltcp NIC Host Name Server

hostname 101Iudp NIC Host Name Server

rtelnet 107/tcp Remote Telnet Service

rtelnet 107/udp Remote Telnet Service

pop2 109/tcp Post Office Protocol - Version 2

pop2 109/udp Post Office Protocol - Version 2

pop3 110/tcp Post Office Protocol - Version 3

pop3 11O/udp Post Office Protocol - Version 3

sunrpc 1111tcp SUN Remote Procedure Call

sunrpc 1111udp SUN Remote Procedure Call

ident 113/tcp

auth 113/tcp Authentication Service

auth 113/udp Authentication Service

audionews 114/tcp Audio News Multicast

audionews 114/udp Audio News Multicast

sftp 115/tcp Simple File Transfer Protocol

sftp 115/udp Simple File Transfer Protocol

nntp 119/tcp Network News Transfer Protocol

nntp 119/udp Network News Transfer Protocol

statsrv 133/tcp Statistics Service

statsrv 133/udp Statistics Service

ingres-net 134/tcp INGRES-NET Service

ingres-net 134/udp INGRES-NET Service

epmap 135/tcp DCE endpoint resolution

epmap 135/udp DCE endpoint resolution

profile 136/tcp PROFILE Naming System

profile 136/udp PROFILE Naming System

netbios-ns 137/tcp NETBIOS Name Service

netbios-ns 137/udp NETBIOS Name Service

netbios-dgm 138/tcp NETBIOS Datagram Service

netbios-dgm 138/udp NETBIOS Datagram Service

netbios-ssn 139/tcp NETBIOS Session Service

netbios-ssn 139/udp NETBIOS Session Service

A. WELL-KNOWN PORT NUMBERS 261

Table A.4 Port/service pairings for some of the more common ports (142-565).

Keyword Decimal Description

imap 143/tcp Internet Message Access Protocol

imap 143/udp Internet Message Access Protocol

pcmail-srv 158/tcp PCMail Server

pcmail-srv 158/udp PCMail Server

sgmp-traps 160/tcp SGMP-TRAPS

sgmp-traps 160/udp SGMP-TRAPS

snmp 1611tcp SNMP

snmp 1611udp SNMP

snmptrap 162/tcp SNMPTRAP

snmptrap 162/udp SNMPTRAP

imap3 220/tcp Interactive Mail Access Protocol v3

imap3 220/udp Interactive Mail Access Protocol v3

yak-chat 258/tcp Yak Winsock Personal Chat

yak-chat . 258/udp Yak Winsock Personal Chat

http-mgmt 280/tcp http-mgmt

http-mgmt 280/udp http-mgmt

exec 512/tcp remote process execution;

biff 512/udp used by mail system to notify users

login 513/tcp remote login a la telnet;

who 513/udp who is logged on

shell 514/tcp cmd

syslog 514/udp syslog

printer 515/tcp spooler

printer 515/udp spooler

talk 517/tcp like tenex link, but across

talk 517/udp like tenex link, but across

uucp 540/tcp uucpd

uucp 540/udp uucpd

uucp-rlogin 5411tcp uucp-rlogin

uucp-rlogin 5411udp uucp-rlogin

nntps 563/tcp nntp protocol over TLS/SSL (was snntp)

nntps 563/udp nntp protocol over TLS/SSL (was snntp)

whoami 565/tcp whoami

whoami 565/udp whoami

262 A. WELL-KNOWN PORT NUMBERS

Table A.5 Port/service pairings for some of the more common ports (666-2049).

Keyword Decimal Description

doom 666/tcp doom Id Software

doom 666/udp doom Id Software

ftexlm 744/tcp Flexible License Manager

ftexlm 744/udp Flexible License Manager

kerberos-adm 749/tcp Kerberos administration

kerberos-adm 749/udp Kerberos administration

kerberos-iv 750/udp Kerberos version iv

phonebook 767/tcp phone

phonebook 767/udp phone

access builder 888/tcp AccessBuilder

access builder 888/udp AccessBuilder

ftps-data 989/tcp FTP protocol, data, over TLS/SSL

ftps-data 989/udp FTP protocol, data, over TLS/SSL

ftps 990/tcp FTP protocol, control, over TLS/SSL

ftps 990/udp FTP protocol, control, over TLS/SSL

nas 991/tcp Netnews Administration System

nas 991/udp Netnews Administration System

telnets 992/tcp telnet protocol over TLS/SSL

telnets 992/udp telnet protocol over TLS/SSL

imaps 993/tcp imap4 protocol over TLS/SSL

imaps 993/udp imap4 protocol over TLS/SSL

ircs 994/tcp irc protocol over TLS/SSL

ircs 994/udp irc protocol over TLS/SSL

pop3s 995/tcp pop3 protocol over TLS/SSL (was spop3)

pop3s 995/udp pop3 protocol over TLS/SSL (was spop3)

blackjack 1025/tcp network blackjack

blackjack 1025/udp network blackjack

lotusnote 1352/tcp Lotus Note

lotusnote 1352/udp Lotus Note

shockwave 1626/tcp Shockwave

shockwave 1626/udp Shockwave

nfs 2049/tcp Network File System - Sun Microsystems

nfs 2049/udp Network File System - Sun Microsystems

A. WELL-KNOWN PORT NUMBERS 263

Table A.6 Port/service pairings for some of the more common ports (3334-33434).

Keyword Decimal Description

directv-web 3334/tcp Direct TV Webcasting

directv-web 3334/udp Direct TV Webcasting

directv-soft 3335/tcp Direct TV Software Updates

directv-soft 3335/udp Direct TV Software Updates

directv-tick 3336/tcp Direct TV Tickers

directv-tick 3336/udp Direct TV Tickers

directv-catlg 3337/tcp Direct TV Data Catalog

directv-catlg 3337/udp Direct TV Data Catalog

rwhois 43211tcp Remote Who Is

rwhois 43211udp Remote Who Is

aol 5190/tcp AmericaOnline

aol 5190/udp AmericaOnline

aol-l 51911tcp AmericaOnlinel

aol-l 51911udp AmericaOnlinel

aol-2 5192/tcp AmericaOnline2

aol-2 5192/udp AmericaOnline2

aol-3 5193/tcp AmericaOnline3

aol-3 5193/udp AmericaOnline3

xlI 6000-6063/tcp X Window System

xlI 6000-6063/udp X Window System

statsci I-1m 6144/tcp StatSci License Manager - 1

statscil-1m 6144/udp StatSci License Manager - 1

statsci2-1m 6145/tcp StatSci License Manager - 2

statsci2-1m 6145/udp StatSci License Manager - 2

http-alt SOOS/tcp HTTP Alternate

http-alt SOOS/udp HTTP Alternate

http-alt SOSO/tcp HTTP Alternate (see port SO)

http-alt SOSO/udp HTTP Alternate (see port SO)

quake 26000/tcp quake

quake 26000/udp quake

traceroute 33434/tcp traceroute use

traceroute 33434/udp traceroute use

Appendix B

Trojan Port Numbers

265

266 B. TROJAN PORT NUMBERS

Table B.1 Port/trojan pairings for some of the more common trojans, ports 2-456.

Port Trojan(s)

2 Death

21 Back Construction, Blade Runner,

Doly Trojan, Fore,

FTP trojan, Invisible FTP,

Larva, MBT, Motiv,

Net Administrator, Senna Spy FTP Server,

WebEx, WinCrash

23 Tiny Telnet Server, Truva Atl

25 Aji, Antigen, Email Password Sender

Gip, Happy 99, I Love You,

Kuang 2, Magic Horse,

Moscow Email Trojan, Naebi,

NewApt, ProMail trojan,

Shtrilitz, Stealth, Tapiras,

Terminator WinPC, WinSpy

31 Agent 31, Hackers Paradise,

Masters Paradise

41 DeepThroat

48 DRAT

50 DRAT

59 DMSetup

79 Firehotcker

80 Back End, Executor, Hooker, RingZero

99 Hidden Port

110 ProMail trojan

113 Invisible Identd Deamon, Kazimas

119 Happy 99

121 J arnmerKillah

123 Net Controller

133 Farnaz, Infector

146 (UDP) Infector

170 A-trojan

421 TCP Wrappers

456 Hackers Paradise

B. TROJAN PORT NUMBERS 267

Table B.2 Port/trojan pairings for some of the more common trojans, ports 531-1245.

Port Trojan(s)

531 Rasmin

555 Ini-Killer, NeT Administrator, Phase Zero,

Stealth Spy

606 Secret Service

666 Attack FrP, Back Construction, NokNok,

Cain & Abel, Satanz Backdoor, ServeU, Shadow Phyre

667 SniperNet

669 DPTrojan

692 GayOL

777 Aim Spy

808 WinHole

911 Dark Shadow

999 DeepThroat, WinSatan

1000 Der Spacher 3

1001 Der Spacher 3, Le Guardien, Silencer, WebEx

1010-12 Doly Trojan

1015-16 DolyTrojan

1020 Vampire

1024 NetSpy

1042 Bla

1045 Rasmin

1050 MiniCommand

1080-3 WinHole

1090 Xtreme

1095,7,8 RAT

1099 BFevolution, RAT

1170 Psyber Stream Server, Streaming Audio trojan, Voice

1200-1 (UDP) NoBackO

1207 SoftWAR

1212 Kaos

1225 Scarab

1234 Ultors Trojan

1243 BackDoor-G, SubSeven, SubS even Apocalypse, Tiles

1245 VooDoo Doll

268 B. TROJAN PORT NUMBERS

Table B.3 Port/trojan pairings for some of the more common trojans, ports 1255-3024.

Port Trojan(s)

1255 Scarab

1256 Project nEXT

1269 Mavericks Matrix

1313 NETrojan

1338 Millennium Worm

1349 (UDP) BODLL

1492 FTP99CMP

1509 Psyber Streaming Server

1524 Trinoo

1600 Shivka-Burka

1777 Scarab

1807 SpySender

1966 FakeFTP

1969 OpCBO

1981 Shockrave

1999 BackDoor, TransScout

2000 Der Spaeher 3, Insane Network, TransScout

2001 Der Spaeher 3, TransScout, Trojan Cow

2002-5 TransScout

2023 Ripper

2080 WinHole

2115 Bugs

2140 Deep Throat, The Invasor

2155 Illusion Mailer

2283 HVLRat5

2300 Xplorer

2565 Striker

2583 WinCrash

2600 Digital RootBeer

2716 The Prayer

2773 SubS even

2801 Phineas Phucker

3000 Remote Shutdown

3024 WinCrash

B. TROJAN PORT NUMBERS 269

Table 8.4 Port/trojan pairings for some of the more common trojans, ports 3128-6006.

Port Trojan(s)

3128 RingZero

3129 Masters Paradise

3150 Deep Throat, The Invasor

3456 Terror Trojan

3459 Eclipse 2000, Sanctuary

3700 Portal of Doom

3791 Eclypse

3801 (UDP) Eclypse

4000 Skydance

4092 WinCrash

4242 Virtual hacking Machine

4321 BoBo

4444 Prosiak, Swift remote

4567 File Nail

4590 ICQTrojan

5000 Bubbel, Back Door Setup, Sockets de Troie

5001 Back Door Setup, Sockets de Troie

5010 Solo

5011 One of the Last Trojans (OOTLT)

5031 NetMetropolitan

5321 Firehotcker

5343 wCrat

5400-2 Blade Runner, Back Construction

5550 Xtcp

5512 Illusion Mailer

5555 ServeMe

55567 BOFacil

5569 Robo-Hack

5637-8 PC Crasher

5742 WinCrash

5882 (UDP) Y3KRAT

5888 Y3KRAT

6000 The Thing

6006 The Thing

270 B. TROJAN PORT NUMBERS

Table 8.5 Port/trojan pairings for some of the more common trojans, ports 6272-9878.

Port Trojan(s)

6272 Secret Service

6400 The Thing

6667 Schedule Agent

6669 Host Control, Vampyre

6670 DeepThroat, BackWeb Server, WinNuke, eXtreame

6711 SubS even

6712 Funny Trojan, SubSeven

6713 SubS even

6723 Mstream

6771 DeepThroat

6776 2000 Cracks, BackDoor-G, SubSeven

6838 (UDP) Mstream

6912 Shit Heep (not port 69123!)

6939 Indoctrination

6969 GateCrasher, Priority, IRC 3, NetController

6970 GateCrasher

7000 Remote Grab, Kazimas, SubSeven

7001 Freak88

7215 SubSeven

7300-1 NetMonitor

7306-8 NetMonitor

7424 Host Control

7789 Back Door Setup, ICKiller

7983 Mstream

8080 RingZero

8787 Back Orifice 2000

8897 HackOffice

8988 BacHack

8989 Rcon

9000 Netministrator

9325 (UDP) Mstream

9400 InCommand

9872-5 Portal of Doom

9876 Cyber Attacker, RUX

9878 TransScout

B. TROJAN PORT NUMBERS 271

Table B.6 Port/trojan pairings for some of the more common trojans, ports 9989-17300.

Port Trojan(s)

9989 iNi-Killer

9999 The Prayer

10067 (UDP) Portal of Doom

10085-6 Syphilis

10101 BrainSpy

10167 (UDP) Portal of Doom

10528 Host Control

10520 Acid Shivers

10607 Coma

10666 (UDP) Ambush

11000 Senna Spy

11050-1 Host Control

11223 Progenie trojan, Secret Agent

12076 Gjamer

12223 Hack'99 KeyLogger

12345 GabanBus, My Pies, NetBus, Pie Bill Gates,

Whack Job, X-bill

12346 GabanBus, NetBus, X-bill

12349 BioNet

12361-2 Whack-a-mole

12623 (UDP) DUN Control

12624 Buttman

12631 WhackJob

12754 Mstream

13000 Senna Spy

13010 Hacker Brazil

15092 Host Control

15104 Mstreiun

16660 Stacheldraht

16484 Mosucker

16772 ICQRevenge

16969 Priority

17166 Mosaic

17300 Kuang2 The Virus

272 B. TROJAN PORT NUMBERS

Table B.7 Port/trojan pairings for some of the more common trojans, ports 17777-31336.

Port Trojan(s)

17777 Nephron

18753 (UDP) Shaft

19864 ICQRevenge

20001 Millennium

20002 AcidkoR

20034 NetBus 2 Pro, NetRex, Whack Job

20203 Chupacabra

20331 Bla

20432 Shaft

20432 (UDP) Shaft

21544 GirlFriend, Kidterror, Schwindler,

WinSpOOfer

22222 Prosiak

23023 Logged

23432 Asylum

23456 Evil FTP, Ugly FTP, Whack Job

23476-7 Donald Dick

26274 (UDP) Delta Source

26681 Spy Voice

27374 SubSeven

27444 (UDP) Trinoo

27573 SubSeven

27665 Trinoo

29104 Host Control

29891 (UDP) The Unexplained

30001 TerrOr32

30029 AOL Trojan

30100-3 NetSphere

30133 NetSphere

30303 Sockets de Troie

30947 Intruse

30999 Kuang2

31335 (UDP) Trinoo

31336 Bo Whack, ButtFunnel

B. TROJAN PORT NUMBERS 273

Table B.B Port/trojan pairings for some of the more common trojans, ports 31337--60000.

Port Trojan(s)

31337 Baron Night, BO client, B02, Bo Facil

31337 (UDP) Backfire, Back Orifice, DeepBO, Freak>

31338 NetSpy DK, ButtFunnel

31338 (UDP) Back Orifice, DeepBO

31339 NetSpyDK

31666 BOWhack

31785,87-89,91-92 Hack'alack

32100 Peanut Brittle, Project nEXT

32418 Acid Battery

33333 Blakharaz, Prosiak

33577 PsychWard

33777 PsychWard

33911 Spirit 2001a

34324 BigGluck, TN

34555 (UDP) Trinoo (Windows)

35555 (UDP) Trinoo (Windows)

37651 YAT

40412 The Spy

40421 Agent 40421, Masters Paradise

40422-3,6 Masters Paradise

41666 Remote Boot

44444 Prosiak

47262 (UDP) Delta Source

50505 Sockets de Troie

50766 Fore, Schwindler

51996 Cafeini

52317 Acid Battery 2000

53001 Remote Windows Shutdown

54283 SubS even

54320 Back Orifice 2000

54321 School Bus

54321 (UDP) Back Orifice 2000

57341 NetRaider

58339 ButtFunnel

60000 Deep Throat

274 B. TROJAN PORT NUMBERS

Table B.9 Port/trojan pairings for some ofthe more common trojans, ports 60068-65535.

Port Trojan(s)

60068 Xzip 6000068

60411 Connection

61348 Bunker-Hill

61466 Telecommando

61603 Bunker-Hill
63485 Bunker-Hill

65000 Devil, Stacheldraht

65432 The Traitor

65432 (UDP) The Traitor

65535 RC

Appendix C

Country Codes

275

276 CCOUNTRYCODES

Table C.1 Two character country codes, AD-FM.

Code Country Code Country

AD Andorra CA Canada

AE United Arab Emirates CC Cocos (Keeling) Islands

AF Afghanistan CF Central African Republic

AG Antigua and Barbuda CG Congo

AI Anguilla CH Switzerland

AL Albania CI Cote D'Ivoire (Ivory Coast)

AM Armenia CK Cook Islands

AN Netherlands Antilles CL Chile

AO Angola CM Cameroon

AQ Antarctica CN China

AR Argentina CO Colombia

AS American Samoa CR Costa Rica

AT Austria CS Czechoslovakia (former)

AU Australia CU Cuba

AW Aruba CV Cape Verde

AZ Azerbaijan CX Christmas Island

BA Bosnia and Herzegovina CY Cyprus

BB Barbados CZ Czech Republic

BD Bangladesh DE Germany

BE Belgium OJ Djibouti

BF Burkina Faso DK Denmark

BG Bulgaria DM Dominica

BH Bahrain DO Dominican Republic

BI Burundi DZ Algeria

BJ Benin EC Ecuador

BM Bermuda EE Estonia

BN Brunei Darussalam EG Egypt

BO Bolivia EH Western Sahara

BR Brazil ER Eritrea

BS Bahamas ES Spain

BT Bhutan ET Ethiopia

BV Bouvet Island PI Finland

BW Botswana FJ Fiji

BY Belarus FK Falkland Islands (Malvinas)

BZ Belize FM Micronesia

CCOUNTRYCODES 277

Table C.2 Two character country codes, FO-MN.

Code Country Code Country

FO Faroe Islands IT Italy

FR France JM Jamaica

FX France, Metropolitan JO Jordan

GA Gabon JP Japan

GB Great Britain (UK) KE Kenya

GD Grenada KG Kyrgyzstan

GE Georgia KH Cambodia

GF French Guiana KI Kiribati

GH Ghana KM Comoros

GI Gibraltar KN Saint Kitts and Nevis

GL Greenland KP Korea (North)

GM Gambia KR Korea (South)

GN Guinea KW Kuwait

GP Guadeloupe KY Cayman Islands

GQ Equatorial Guinea KZ Kazakhstan

GR Greece LA Laos

GS S. Georgia and S. Sandwich IsIs. LB Lebanon

GT Guatemala LC Saint Lucia

GU Guam LI Liechtenstein

GW Guinea-Bissau LK Sri Lanka

GY Guyana LR Liberia

HK Hong Kong LS Lesotho

HM Heard and McDonald Islands LT Lithuania

HN Honduras LU Luxembourg

HR Croatia (Hrvatska) LV Latvia

HT Haiti LY Libya

HU Hungary MA Morocco

ID Indonesia MC Monaco

IE Ireland MD Moldova

IL Israel MG Madagascar

IN India MH Marshall Islands

10 British Indian Ocean Territory MK Macedonia

IQ Iraq ML Mali

IR Iran MM Myanmar

IS Iceland MN Mongolia

278 CCOUNTRYCODES

Table C.3 Two character country codes, MO-TJ.

Code Country Code Country

MO Macau PR Puerto Rico

MP Northern Mariana Islands PT Portugal

MQ Martinique PW Palau

MR Mauritania PY Paraguay

MS Montserrat QA Qatar

MT Malta RE Reunion

MU Mauritius RO Romania

MV Maldives RU Russian Federation

MW Malawi RW Rwanda

MX Mexico SA Saudi Arabia

MY Malaysia Sb Solomon Islands

MZ Mozambique SC Seychelles

NA Namibia SD Sudan

NC New Caledonia SE Sweden

NE Niger SG Singapore

NF Norfolk Island SH St. Helena

NG Nigeria SI Slovenia

NI Nicaragua SJ Svalbard and Jan Mayen IsIs.

NL Netherlands SK Slovak Republic

NO Norway SL Sierra Leone

NP Nepal SM San Marino

NR Nauru SN Senegal

NT Neutral Zone SO Somalia

NU Niue SR Suriname

NZ New Zealand (Aotearoa) ST Sao Tome and Principe

OM Oman SU USSR (former)

PA Panama SV El Salvador

PE Peru SY Syria

PF French Polynesia SZ Swaziland

PG Papua New Guinea TC Turks and Caicos Islands

PH Philippines TD Chad

PK Pakistan TF French Southern Territories

PL Poland TG Togo

PM St. Pierre and Miquelon TH Thailand

PN Pitcairn TJ Tajikistan

CCOUNTRYCODES 279

Table C.4 Two character country codes, TK-ZW.

Code Country

TK Tokelau.

TM Turkmenistan

TN Thnisia

TO Tonga

TP East Timor

TR Thrkey

TT Trinidad and Tobago

TV Tuvalu

TW Taiwan

TZ Tanzania

UA Ukraine

ua Uganda

UK United Kingdom

UM US Minor Outlying Islands

US United States

UY Uruguay

UZ Uzbekistan

VA Vatican City State (Holy See)

VC Saint Vincent and the Grenadines

VE Venezuela

va Virgin Islands (British)

VI VIrgin Islands (U.S.)

VN VietNam

VU Vanuatu

WF Wallis and Futuna Islands

WS Samoa

YE Yemen

YT Mayotte

YU Yugoslavia

ZA South Africa

ZM Zambia

ZR Zaire

ZW Zimbabwe

AppendixD

Security Web Sites

D.1 INTRODUCTION

In this section, I list a number of Web sites that are of interest for computer security
and intrusion detection purposes. This listing is not complete, but is a good starting
point. At the time of this writing (January-April 2001) all of these Web sites were
active, but I cannot guarantee they will be in the future.

I do not endorse any of these pages. This is a list of pages that I have found
interesting or useful or that I have simply come across while Web surfing. By the
same token, I do not claim that it is in any way complete. There are bound to be
important sites I have left off. A Web search will no doubt tum up many sites of
interest that are not on the list.

A note of caution is in order here. Most of these Web sites are legitimate and any
software provide by them is probably safe (but I do not make any guarantees here).
Care should always be taken when obtaining software from the Web, particularly
executables. In fact, I would not recommend using any software obtained from
the Web that is not provided as source code. Further, some of these Web pages are
self-described "hacker" sites. A few of these may interpret your access of their
site as an invitation for them to visit your machine.

281

282 D. SECURITY WEB SITES

I have organized these sites into rough categories. There will be some duplica
tion because some sites fit in more than one category. Within categories there is
no ordering. This may be somewhat annoying to the reader but the listings here
are short enough that it should cause no major problems. Note that in typing these
Web addresses in, case can be important, particularly for directories. Also beware
of "zeros" that look like "Os."

First, there is a list of general information Web sites (including sites that do not
fit well into the other categories) and then a listing of security-related Web sites.
A listing of Web sites providing information about "cyber crime" is also provided
as well as sites where the software described in the book is available and where
data may be obtained. Finally is a list of Web sites that are specifically aimed at
intrusion detection.

0.2 GENERAL

Miscellaneous Web sites with useful information relevant to computer security,
statistical analysis, and data visualization follow.

freshmeat.net A repository of software for Linux.

slashdot.org "News for Nerds," with a focus on Linux.

www.nd.eduJ ... networks/visuaVtable.htmIA collection of examples of network
visualization.

www.caida.orgltoolsl Tools and software for visualization.

www.isoc.orgl Internet Society.

www.ietf.orgl Internet Engineering Task Force.

Iib.stat.cmu.eduIR/CRAN/contents.html The R repository at Camegy Mellon,
where the R distribution, documentation, and contributed packages are available.

www.R-project.org The R Project. The official Web site for R.

lark.cc.ukans.eduJ"'pauljohnIRIstatsRus.html A tip sheet for the R language.

www.bell-labs.com/topic/societies/asagraphics/resources.htmIA collection of
Online resources for statistical graphics.

hotspur.psych.yorku.ca/SCS/Galiery/intro.html A gallary of data visualization
examples, both good and bad.

0.2. GENERAL INFORMATION WEB SITES 283

alephO.clarku.edul ",djoyce/javaIPhyltree/cover.html A discussion of phylogeny
and reconstructing phylogenetic trees. Includes a Java applet.

www.cs.bell-Iabs.comlwho/ches/map/ Bill Cheswick's Internet Mapping Project.

www.mids.orglweather/ The Internet Weather Report.

www.cybergeography.org Cybergeography research and information.

www.mappingcyberspace.com Mapping cyberspace book and information.

www.viruslist.comInformation about viruses.

www.isc.org The Internet Software Consortium.

www.slac.stanford.edulgrp/scs/netltalklescc-sdo-apr97/measlppframe.htm
Internet End-to-end monitoring and performance measuring.

www.internettrafficreport.com The Internet Traffic Report. Monitoring the flow
of data around the world.

www.netsizer.com Evaluating the size of the Internet.

www.fnc.gov The Federal Networking Council.

www.fnc.gov/claffy.htmIInternet measurement tools.

www.sims.berkeley.eduiresourcesiinfoeconiAccounting.htmIAccounting and
measurement of Internet traffic.

www.mit.edulpeople/mkgray/netl Statistics on the growth of the Internet.

www.science.uva.nU ... mes/jargoni A jargon dictionary useful for tracking down
the definitions of unfamiliar jargon.

www.uni-paderborn.de/cs/ag-klbue/stafflmurray/worklpublications/iccOl.p
df An interesting paper entitled "Visualization of Traffic Structures," by Oliver
Niggemann, Benno Stein and Jens Tolle. The "-" after the "p" is not part of the
URL.

members.aol.comledswinglftodar/ftodarviz.html A description of FLO DAR, a
visualization tool for network traffic, developed at the National Security Agency
(according to the Web site). There are a few references listed here that might be
of interest.

dmoz.org The Open Directory Project. The goal of this project is to have the most
comprehensive directory of the Web. Most relevant to this book is the subdirectory

284 D. SECURITY WEB SITES

at dmoz.org/Computers/.

jeff.cs.mcgill.ca/ godfried/teaching/pr-web.html Pattern recognition resources
and information on the Web.

www.mpi-sb.mpg.de/ mutzel/alcom-itlalcomgdraw.html Graph drawing tools.

www.ics.uci.edul eppsteinlgina/gdraw.html More graph drawing tools, links
and information.

rw4.cs.uni-sb.de/users/sander/html/gstools.html More graph drawing tools and
links.

www.contrib.andrew.cmu.edul krackl KrackPlot: a social network visualiza
tion program. Might be of interest for visualizing networks and attacks.

www.mpi-fg-koeln.mpg.de/ lklnetvis.html Another site devoted to (social) net
work visualization.

0.3 SECURITY

Web sites with a security focus follow.

www.cert.org CERT coordination center.

www.sans.org System Administration and Network Security.

xforce.iss.net Internet Security Systems page of vulnerabilities and information.

www.fish.comlsecurity/ Some of Dan Farmer's security-related papers.

www.practicalsecurity.com Computer security information. Contains a list of
links.

www.insecure.org Computer security information and the Nmap scanner.

www.packetfactory.net Network security clearinghouse. A number of interest
ing papers are available here.

packetstorm.securify.com Information security database. Many of the main
computer security tools are available here.

seclab.cs.ucdavis.edu Computer Security Research Laboratory at DC Davis.

0.3. SECURITY 285

csrc.ncsl.nist.gov Computer security resource clearinghouse for the National In
stitute of Standards and Technology.

csrc.ncsi.nist.gov/toois/toois.htm Unix host and network security tools.

www.infowar.comInformation Warfare homepage.

www.2600.com Homepage of the 2600 magazine, the "hacker quarterly."

www.itpolicy.gsa.gov The U.S. General Services Administration IT page.

www.cit.nih.gov/security.htmiNational Institutes of Health Internet security
page.

www.nswc.navy.miIlISSEC NSWC information security site.

ee.lbi.gov Lawrence Berkeley National Laboratory Network Research Group
homepage.

www.issa-intl.org International Information Systems Security Association.

www.usenix.org Usenix, the Advanced Computing Systems Association.

www.gocsi.com Computer Security Institute.

cve.mitre.org Mitre's common vulnerabilities and exposures page.

www.rootshell.com A repository of software to exploit vulnerabilities, which
contains information about vulnerabilities and news related to computer security.

www.iss.netInternet Security Systems Web site.

www.mountainwave.com Computer security news site.

www.ntbugtraq.com NT Bugtraq.

www.nsi.org/compsec.htmiSecurity resource net's computer security site. In
cludes a security glossary and several FAQs and papers.

www.boran.comlsecurity/ IT security cookbook.

www.securityfocus.com News and information about computer security. Con
tains "bugtraq," a listing of the current bugs and vulnerabilities for various oper
ating systems.

www.iOpht.comInformation. software, and vulnerability reports. To quote their
banner: "That vulnerability is completely theoretical" - Microsoft. LOpht, making

286 D. SECURITY WEB SITES

the theoretical practical since 1992. (Note: the "0" in the URL is a zero.)

www.first.org Forum of Incident Response and Security Teams.

www.nipc.gov National Infrastructure Protection Center.

www.cs.purdue.edu Purdue Computer Science Department.

www.cs.purdue.edulcoastlcoast.html Computer Operations, Audit, and Secu
rity Technology.

www.cerias.purdue.edu Center for Education and Research in Informaiont As
surance and Security, Purdue University.

www.isse.gmu.edul"'csis/ Center for Secure Information Systems at George Ma
son University.

www.issl.org Information Systems Security Laboratory at Iowa State University.

www.infosec.jmu.edul Information Security Program at James Madison Univer
sity.

www.cs.ucsb.edu Department of Computer Science at the University of Califor
nia, Santa Barbara.

www.c1.cam.ac.uk The Computer Laboratory of the University of Cambridge.

www.cs.uidaho.edu Computer Science Department of the University of Idaho.

www.cs.uow.edu.au School of Information Technology and Computer Science,
University of Wollongong, Australia.

www.cs.umbc.edu Computer Science Department, University of Maryland Bal
timore County.

www.niss.org National Institute of Statistical Sciences.

www.happyhacker.orgl The Happy Hacker.

www.trusecure.netlhtmlltspublhypeorhotlindex.shtml TruSecure' s so called
"Hype or Hot" site. Lots of information about viruses and worms.

www.virusbtn.comlThe Virus Bulletin. Lots of information on viruses.

www.mitre.orglpubs/edge/february_Ol/ Mitre's "The Edge" Newsletter issue
on Information Assurance.

0.4. CYBER CRIME 287

www.cert.orglkb/aircert/ AirCERT. A project involving the placement of sen
sors on various networks attached to the Internet.

attrition.org Information about computer security and vulnerabilities.

doe-is.llnl.gov/ConferenceProceedingsIDOECompSec97IDOEConf97.html
The proceedings of the 1997 DOE Information Security Conference.

dmoz.org/Computers/Securityl The Open directory listing for information rel
evant to computer security.

project.honeynet.org/ The Web page for the HoneyNet Project. Contains a num
ber of "Know Your Enemy" papers, and information about "blackhats" (attackers).

www.simovits.com A consulting firm that has information related to security and
intrusion detection (see the link to their article archive). In particular, there is a
list of the ports used by trojan horses.

www.wias.net Windermere's information assurance page.

www.Vmyths.com A site devoted to virus myths and hoaxes.

www.whitehats.com A resource for security information and recent security re
lated news.

0.4 CRIME

These Web sites focuse on the legal and law enforcement aspects of computer
security.

www.htcia.org High Technology Crime Investigation Association.

www.gahtan.comlcyberlaw/ The Cybedaw Encyclopedia. Information about
law as it applies to computers, networks and the Internet.

www.forensics.com Computer Forensics Inc. Web page containing a number of
interesting case studies and documents on computer forensics.

www.computer-forensics.com Company Web page with some articles and news
stories.

www.usdoj.gov/criminaVcybercrime/index.htmICybercrime page for the U.S.
Department of Justice.

288 D. SECURITY WEB SITES

0.5 SOFTWARE

The following sites contain software and publications available on the Web.

www.cs.tut.filrvrammer/aide.html Home page for the aide software.

icamtuf.hack.pl Home of pOf.

rs.internic.netlwhois.html Internic whois server.

www.nsiregistry.com/whoisl VeriSign whois server.

www.iana.org/cctldlcctld-whois.htm A page providing the Internet Assigned
Numbers Authority whois information.

www.betterwhois.com/A whois server.

www.networksolutions.com/cgi-binlwhoislwhois The whois server run by Net
work Solutions.

www.whois.netlAnother whois server.

www.ssh.filHome of secure shell.

www.snort.org Home of snort.

www.cs.umbc.edulcadip/pubs.html University of Maryland Baltimore County,
Center for Architectures for Data-Driven Information Processing publications.

www.cs.unm.edulrvimmsec/papers.htm University of New Mexico papers on
computer immunology.

www.niss.orgldownloadabletechreports.html National Institute of Statistical
Science technical reports.

www.enteract.com/rvlspitzlpapers.html White papers and publications on se
curity.

www.switch.chldocslttLdefault.html Paper on default TTL values.

www.firstmonday.dklissueslissue2~/rowlandl A paper discussing covert chan
nels in TCP/IP.

setiathome.ssl.berkeley.edu SETI at home Web page.

www.research.ibm.com/antiviruslSciPapers.htmAnitvirusResearchpapers.at
mM.

0.6. DATA 289

0.6 DATA

This section lists data available on the Web. There is not much data available, pri
marily because of the large volume of such data but also partly a result of privacy
concerns. However, some organizations have made some of their data available.

www.schonlau.netlMatt Schonlau's "masquerading user" data.

www.ics.uci.edul",mlearnIMLRepository.html VCI machine learning reposi
tory. A lot of data sets used by the machine learning community reside here. One
or two of these are of interest for the computer security/intrusion detection com
munity.

kdd.ics.uci.edul Knowledge Discovery Database. Some data sets of Web ac
cesses.

kdd.ics.uci.eduldatabases/kddcup99/kddcup99.html 1999 data mining com
petition data. Task: build a system to detect intrusions in the data provided.

www.cs.unm.edul",immseclresearch.htm The Computer Immune System. Sys
tem call data sets.

www.ll.mit.edulIST/idevali Information on the DARPA intrusion detection sys
tems evaluation, including points of contact for access to data.

www.virusbtn.comIPrevaience/ Index of virus bulletin prevalence tables. His
torical and current information on the prevalance of computer viruses.

0.7 INTRUSION DETECTION

The following Web sites have an intrusion detection focus. Many of the sites listed
above in the security section (Section D.3) also have pages devoted to intrusion
detection.

packetstorm.securify.com Papers, code, and articles for and about computer se
curity.

www.snort.org Home page for snort.

seclab.cs.ucdavis.edu The Computer Security Research Laboratory at VC Davis.

olympus.cs.ucdavis.edulcidfJ The DARPA Common Intrusion Detection Frame
work.

www.isi.edulgostlcidfJ Common Intrusion Detection Framework.

290 D. SECURITY WEB SITES

www-rnks.informatik.tu-cottbus.de/ "-'sobirey/ids.html Michael Sobirey' sin
trusion detection systems page. A list of links to IDS systems.

www.robertgraham.comlpubs/network-intrusion-detection.html Intrusion de
tection FAQ.

www.research.ibm.comljournaVsj/371Ibouianger.html .. Catapults and grap
pling hooks: The tools and techniques of information warfare," by A. Boulanger.

www.cert.orgltech_tips/ Technical tips on Internet security issues.

www.cert.orgltech_tipslintruder _detection_checklist A good step-by-step
checklist for determining whether a system has been compromised.

ftp:/Iresearch.att.comldist/internet...securitylberferd.ps The paper "An evening
with Berferd: In which a cracker is lured, endured, and studied," by Bill Cheswick.

www.forensics.com Computer Forensics Inc. Web page.

www.computer-forensics.com Company Web site.

www.sdl.sri.comlintrusionlindex.htmISRl.s intrusion detection page.

www.sdl.sri.comlemerald SRI's EMERALD information site.

www.cerias.purdue.edulcoast/intrusion-detectionl Purdue's intrusion detec
tion page.

www.nswc.navy.miIlISSEC/CID/ NSWC intrusion detection and network secu
rity page, home of SHADOW.

www.dshield.org Distributed IDS. A free service providing a platform for sharing
intrusion information.

www.sei.cmu.edulpublications/documents/99.reports/99tr028/99tr028abstr
act.html A technical report entitled "State of the Practice of Intrusion Detection
Technologies." The "-" in the word "abstract" is not part of the URL.

Bibliography

P. Abry and D. Veitch. Wavelet analysis of long-range-dependent traffic. IEEE
Transactions on Information Theory, 44:2-15,1998.

R. G. Addie, M. Zukerman, and T. Neame. Fractal traffic: Measurements, mod
elling and performance evaluation. In INFOCOM '95. Fourteenth Annual Joint
Conference of the IEEE Computer and Communications Societies, pages 977-
984,1995.

H. Akaike. A new look at statistical model identification. IEEE Transactions on
Automatic Control, 19:716-723, 1974.

A. R. Ali. Software patching in the spc environment and its impact on switching
system reliability. IEEE Journal on Selected Areas in Communications, 9:626-
631,1991.

E. Amoroso. Intrusion Detection: An Introduction to Internet Surveillance, Cor
relation, Trace Back, Traps, and Response. Intrusion.net Books, Sparta, New
Jersey, 1999.

D. Anderson, T. F. Lunt, H. Javitz, A. Tamaru, and A. Valdes. Detecting unusual
program behavior using the statistical component of the next-generation intru
sion detection expert system (nides). Technical Report SRI-CSL-95-06, SRI
International, May, 1995.

E. Anderson. The irises of the gaspe peninsula. Bulletin of the American Iris
Society, 59:2-5, 1935.

291

292 BIBLIOGRAPHY

R. Anderson and F. A. P. Petitcolas. On the limits of steganography. IEEE Journal
on Selected Areas in Communications, 16(4):474-481, 1998.

H. Andersson. Limit theorems for a random graph epidemic model. The Annals
of Applied Probability, 9(4):1331-1349,1998.

H. Andersson and T. Britton. Heterogeneity in epidemic models and its effect on
the spread of infection. Journal of Applied Probability, 35:651-661, 1998.

H. Andersson and T. Britton. Stochastic Epidemic Models and Their Statistical
Analysis. Springer, New York, 2000.

J. Andrews, Paul P. and M. B. Peterson, editors. Criminal Intelligence Analysis.
Palmer Enterprises, Loomis, California, 1990.

anonymous. Maximum Security. Sams.net Publishing, Indianapolis, IN, 1997.

I. Ashmanov and N. Kasperskaya. The virus encyclopedia: Reaching a new level
of information comfort. IEEE Multimedia, 6(3):81-84, July-Sept, 1999.

S. Axelsson. The base-rate fallacy and its implications for the difficulty of intru
sion detection. In Proceedings of the 6th ACM Conference on Computer and
Communciations Security, pages 1-7, 1999.

S. Axelsson. The base-rate fallacy and the difficulty of intrusion detection. Trans
actions on Information Systems Security, pages 186-205,2000.

R. G. Bace. Intrusion Detection. MacMillan Technical Publishing, Indianapolis,
IN,2000.

J. S. Balasubramaniyan and J. O. Garcia-Fernandez. An architicture for intru
sion detection using autonomous agents. In Proceedings of the 14th Annual
Computer Security and Applications Conference, pages 13-24, 1998.

T. Bass. Intrusion detection systems and multisensor data fusion. Communications
of the ACM, 43:99-105, 2000.

D. S. Bauer, F. R. Eichelman, II, R. M. Herrera, and A. E. Irgon. Intrusion detection:
An application of expert systems to computer security. In Proceedings of the
1989 International Carnahan Conference on Security Technology, pages 97-
100,1989.

J. Bertin. Semiologie Graphique. Editions Gauthier-Villars, Paris, 1967. (English
translation by W. J. Berg as Semiology of Graphics, University of Wisconsin
Press, Madison, 1983).

P. J. Bickel and J. A. Yahav. On estimating the total probability of the unobserved
outcomes of an experiment. In J. van Ryzin, editor, Adaptive Statistical Proce
dures and Related Topics, pages 332-337. Institute of Mathematical Statistics,
Hayward, CA, 1986.

M. Bishop and M. Dilger. Checking for race conditions in file accesses. Computing
Systems, 9:131-152,1996.

BIBLIOGRAPHY 293

S. Bleha and D. Gillespie. Computer user identification using the mean and the
median as features. In IEEE International Conference on Systems, Man, and
Cybernetics, pages 4379-4381, 1998.

S. Bleha, C. Slivinsky, and B. Hussien. Computer-access security systems us
ing keystroke dynamics. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12(12):1217-1222,1990.

S. A. Bleha and M. S. Obaidat. Dimensionality reduction and feature extraction
applications in identifying computer users. IEEE Transactions on Systems, Man,
and Cybernetics, 21(2):452-456, 1991.

R. Brackney. Cyber-intrusion response. In Proceedings of the Seventeenth IEEE
Symposium on Reliable Distributed Systems, pages 413-415, 1998.

K. A. Bradley, S. Cheung, N. Puketza, B. Mukherjee, and R. A. Olsson. Detecting
disruptive routers: A distributed network monitoring approach. IEEE Network,
12(5):50-60, 1998.

L. Brieman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Chapman & HalVCRC, Boca Raton, 1998.

M. Brown and S. J. Rogers. A practical approach to user authentication. In lEE
Colloquium on Image Processing for Biometric Measurement, pages 5/1-5/6,
1994.

R. Browne. Mode security: An infrastructure for covert channel suppression. In
Proceedings of the 1994 IEEE Computer Society Symposium on Research in
Security and Privace, pages 39-55, 1994.

R. Biischkes, D. Kesdogan, and P. Reichl. How to increase security in mobile
networks by anomaly detection. In Proceedings of the 14th Annual Computer
Security Applications Conference, pages 3-12, 1998.

J. B. D. Cabrera, B. Ravichandran, and R. K. Mehra. Statistical traffic modeling for
network intrusion detection. In Proceedings of the 8th International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommunicaton
Systems, pages 466-473, 2000.

J. Cao, D. Davis, S. Vander Wiel, and B. Yu. Time-varying network tomography:
Router link data. Journal of the American Statistical Association, 95(452):
1063-1075, 2000.

E. Casey. Digital Evidence and Computer Crime. Academic Press, San Diego,
CA,2000.

A. Chao. On estimating the probability of discovering a new species. The Annals
of Statistics, 9(6):1339-1342,1981.

B. Cheswick. An evening with Berferd, in which a cracker is lured, endured, and
studied. In Proceedings of the Winter USENIX Conference, 1992.

294 BIBLIOGRAPHY

S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland, K. Levitt, J. Rowe,
S. Staniford-Chen, R. Yip, and D. Zerkle. The design of GrIDS: A graph-based
intrusion detection system. Technical report, Department of Computer Science,
University of California at Davis, 1999.

C. Y. Chung, M. Gertz, and K. Levitt. Demids: A misuse detection system for
database security. Integrity and Internal Control in Information Systems, 1999.
Available at www.cs.umbc.edulcadip/pubs.html.

F. Cohen. Computer viruses, theory and experiments. Computers and Security, 6:
22-35, 1987.

F. Cohen. Current best practice against computer viruses. In IEEE International
Carnahan Conference on Security Technology, pages 261-270,1991.

W. Cohen. Fast effective rule induction. In Machine Learning: The 12th Interna
tional Conference. Morgan Kaufmann, San Francisco, CA, 1995.

D. E. Comer. Internetworking with TCPIIP. Prentice-Hall, Englewood Cliffs, NJ,
1991.

L. J. Cowen and C. E. Priebe. Approximate distance clustering. Computing Science
and Statistics, 29:337-346, 1997a.

L. J. Cowen and C. E. Priebe. Randomized nonlinear projections uncover high
dimensional structure. Advances in Applied Mathematics, 9:319-331, 1997b.

P. J. Criscuolo. Distributed denial of service: TrinOO, tribe flood network, tribe
flood network 2000, and stacheldraht. Technical Report UCRL-ID-136939,
Computer Incident Advisory Capability, U.S. Department of Energy, 2000.
Available at ciac.llnl.gov.

M. E. Crovella and A. Bestavros. Self-similarity in world wide web traffic: Evi
dence and possible causes. IEEEIACM Transactions on Networking, 5:835-846,
1997.

D. J. Daley and J. Gani. Epidemic Modelling: An Introduction. Cambridge
University Press, Cambridge, UK, 2000.

B. Das and V. Bharghavan. Routing in ad-hoc networks using minimum con
nected dominating sets. In Proceedings of the Sixth Annual IEEE International
Conference on Computer Communications, pages 376-380,1997.

R. Davis. Exploring computer viruses. In Fourth Aerospace Computer Security
Applications Conference, pages 7-11, 1988.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from in
complete data via the em algorithm (with discussion). Journal of the Royal
Statistical Society, B, 39:1-38, 1977.

D. E. Denning. Information Waifare and Security. Addison-Wesley, Reading,
MA,1999.

BIBLIOGRAPHY 295

D. E. Denning and P. J. Denning. Internet Besieged: Countering Cyberspace
Scofflaws. Addison-Wesley, Reading, MA, 1998.

P. J. Denning. Computer viruses. In P. 1. Denning, editor, Computers Under
Attack: Intruders, Worms, and Viruses, pages 285-292. Addison Wesley, New
York, 1990a.

P. J. Denning, editor. Computers Under Attack: Intruders, Worms, and Viruses.
Addison-Wesley, New York, 1990b.

P. J. Denning. The Internet worm. In P. 1. Denning, editor, Computers Under
Attack: Intruders, Worms, and Viruses, pages 193-200. Addison-Wesley, New
York, 1990c.

L. Devroye, L. Gyorfi, and G. Lugosi. A Probabilistic Theory of Pattern Recogni
tion. Springer, New York, 1996.

P. D'haeseleer, S. Forrest, and P. Helman. A distributed approach to anomaly
detection. Available at www.cs.unm.eduJ ... immsec/papers.htm. 1997.

G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, editors. Graph Drawing.
Prentice Hall, Upper Saddle River, NJ, 1999.

I. H. Dinwoodie. Conditional expectations in network traffic estimation. Statistics
& Probability Letters, 47(1):99-103, 2000.

M. Dodge and R. Kitchin. Mapping Cyberspace. Routledge, London, 2001.

R. Doverspike and I. Saniee, editors. Journal of Heuristics, Special issue: Heuris
tic Approaches for Telecommunciations Network Management, Planning and
Expansion, volume 6. Kluwer Academic Publishers, Amsterdam" April, 2000.

R. o. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley &
Sons, New York, 2000.

W. DuMouchel. Computer intrusion detection based on bayes fac-
tors for comparing command transition probabilities. Technical Re-
port 91, National Institute of Statistical Sciences, 1999. Available at
www.niss.org/downloadabletechreports.htrnl.

W. DuMouchel and M. Schonlau. A fast computer intrusion detection
algorithm based on hypothesis testing of command transition probabili
ties. In Proceedings of the Fourth International Conference of Knowl
edge Discovery and Data Mining, pages 189-193, 1998. Available at
www.niss.org/downloadabletechreports.htrnl.

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis.
Cambridge University Press, Cambridge, UK, 1999.

R. Durst, T. Champion, B. Witten, E. Miller, and L. Spagnuolo. Testing and
evaluating computer intrusion detection systems. Communications of the ACM,
42(7):53-61, 1999.

296 BIBLIOGRAPHY

M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis
and display of genome-wide expression patterns. Proceedings of the National
Academy of Sciences, 95: 14863-14868, 1998.

T. Eisenberg, D. Gries, J. Hartmanis, D. Holcomb, M. S. Lynn, and T. Santoro.
The Cornell commission: On Morris and the worm. Communications of the
ACM, 32:706-709, 1989.

S. Elbaum and 1. C. Munson. Intrusion detection through dynamic software mea
surement. In USENIX Workshop on Intrusion Detection and Network Monitor
ing (JD '99) Proceedings, pages 41-50, 1999.

D. Endler. Intrusion detection. Applying machine learning to solaris audit data.
In Proceedings of the 14th Annual Computer Security Applications Conference,
pages 268-279, 1998.

T. Escamilla. Intrusion Detection: Network Security Beyond the Firewall. John
Wiley & Sons, Inc., New York, 1998.

D. F. Ettema and H. 1. P. Timmermans, editors. Activity-Based Approaches to
Travel Analysis. Elsevier Science Ltd., Oxford, UK, 1997.

B. S. Everitt. Cluster Analysis. John Wiley & Sons, Inc., New York, third edition,
1993.

D. Farmer and W. Venema. Improving the security of your site by breaking into
it, 1993. Available at www.trouble.org/security.

V. Fedorov and D. Flanagan. Optimal monitoring of computer networks. In
N. Flournoy, W. F. Rosenberger, and W. K. Wong, editors, New Develop
ments and Applications in Experimental Design, volume 34 of Lecture Notes
Monograph Series, pages 1-10. Institute of Mathematical Statistics, 1998. Se
lected Proceedings of a 1997 Joint AMS-IMS-SIAM Summer Conference.

A. Feldmann, A. C. Gilbert, P. Huang, and W. Willinger. Dynamics of IP traffic:
A study of the role of variability and the impact of control. In Proceedings of
the ACMISIGCOMM'99, 1999.

A. Feldmann, A. C. Gilbert, W. Willinger, and T. G. Kurtz. Looking behind
and beyond self-similarity: On scaling phenomena in measured WAN traffic.
In Proceedings of the 35th Annual Allerton Conference on Communication,
Control and Computing, pages 269-280,1997.

A. Feldmann, A. C. Gilbert, W. Willinger, and T. G. Kurtz. The changing nature
of network traffic: Scaling phenomena. ACM SIGCOMM Computer Commu
nications Review, 28:5-29, 1998.

S. J. Finch, N. R. Mendell, and H. Thode, JR. Probabilistic measures of adequacy
of a numerical search for a global maximum. Journal of the American Statistical
Association, 84(408):1020--1023, 1989.

BIBLIOGRAPHY 297

P. M. Fiorini. On modeling concurrent heavy-tailed network traffic sources and its
impact on QoS. In 19991EEE Conference on Communications, pages 716-720,
1999.

E. A. Fisch, G. B. White, and U. W. Pooch. The design of an audit trail analysis tool.
In Proceedings of the 10th Annual Computer Security Applications Conference,
pages 126-132, 1994.

R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals
of Eugenics, 7(PartII):179-188, 1936.

S. Floyd and V. Paxson. Why we don't know how to simulate the Internet, 1999.
Available at www.aciri.org.

S. Forrest and S. A. Hofmeyr. Immunology as information processing. In L. A.
Segel and I. Cohen, editors, Design Prinicples for the Immune System and Other
Distributed Autonomous Systems, Santa Fe Institute Studies in the Sciences of
Complexity. Oxford University Press, Oxford, UK, In press. Also available at
www.cs.unm.edul forrest/ism-papers.htm.

S. Forrest, S. A. Hofmeyr, and A. Somayaji. Computer immunology. Communi
cations of the ACM, 40:88-96, 1997.

S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense of self for
unix processes. In 19961EEE Symposium on Computer Security and Privacy,
1996. Also available at www.cs.unm.eduJ forrest/isa-papers.htm.

S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri. Self-nonself discrimination
in a computer. In 19941EEE Symposium on Research in Security and Privacy,
1994. Also available at www.cs.unm.edul forrest/isa-papers.htm.

L. R. Foulds. Graph Theory Applications. Springer-Verlag, New York, 1992.

D. H. Freedman and C. C. Mann. @ Large: The Strange Case of the World's
Biggest Internet Invasion. Simon & Schuster, New York, 1997.

K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press,
San Diego, second edition, 1990.

Fyodor. Remote OS detection via TCPIIP stack fingerprinting, 1999. Available at
www.insecure.org/nmapinmap-fingerprinting-article.html.

L. Garber. Melissa virus creates a new type of threat. Computer, 32(6):16-19,
1999.

A. K. Ghosh, A. Schartzbard, and M. Schatz. Learning program behavior pro
files for intrusion detection. In USENIX Workshop on Intrusion Detection and
Network Monitoring (ID '99) Proceedings, pages 51-62,1999.

A. C. Gilbert, W. Willinger, and A. Feldmann. Visualizing multifractal scaling
behavior: A simple coloring heuristic. In Proceedings of the 32nd Asilomar
Conference on Signals, Systems and Computers, 1998.

298 BIBLIOGRAPHY

M. Gilfix. An integrated software immune system: A framework for automated
network management, system health, and security. In Conference on Local
Computer Networks, LCN '99, pages 254-255, 1999.

L. Girardin. An eye on network intruder-administrator shootouts. In USENIX
Workshop on Intrusion Detection and Network Monitoring (ID '99) Proceed
ings, pages 19-28, 1999.

L. A. Goldberg, P. W. Goldberg, C. A. Phillips, and G. B. Sorkin. Constructing
computer virus phylogenies. In D. Hirschberg and G. Myers, editors, Combi
natorial Pattern Matching, pages 253-270. Springer, New York, 1991.

L. A. Goldberg, P. W. Goldberg, C. A. Phillips, and G. B. Sorkin. Constructing
computer virus phylogenies. Journal of Algorithms, 26:188-208,1998.

E. Goldstein, editor. 2600: The Hacker Quarterly, volume 17. 2600 Enterprises,
Inc., 2000.

1. Green, D. Marchette, S. Northcutt, and B. Ralph. Analysis techniques for
detecting coordinated attacks and probes. In USENIX Workshop on Intrusion
Detection and Network Monitoring (ID '99) Proceedings, pages 1-9, 1999.

K. Hafner and J. Markoff. Cyberpunk: Outlaws and Hackers on the Computer
Frontier. Simon & Schuster, New York, 1995.

E. A. Hall. Internet Core Protocols: The Definitive Guide. O'Reilly & Associates,
Sebastopol, CA, 2000.

D. J. Hand. Construction and Assessment of Classification Rules. John Wiley &
Sons, New York, 1997.

T. W. Haynes, S. T. Hedetniemi, and P. 1. Slater, editors. Domination in Graphs:
Advanced Topics. Marcel Dekker, Inc., New York, 1998.

S. Hedberg. Combating computer viruses: IBM's new computer immune system.
IEEE Parallel & Distributed Technology: Systems & Applications, 4(2):9-11,
Summer, 1996.

P. Helman and G. Liepins. Statistical foundations of audit trail analysis for the
detection of computer misuse. IEEE Transactions on Software Engineering, 19
(9):886-901, 1993.

Herodotus. The Histories. Oxford University Press, Oxford, UK, Oxford, 1998.
Translated by Robin Waterfield.

C. Herringshaw. Detecting attacks on networks. Computer, 30(12):16-17, De
cember, 1997.

H. W. Hethcote. The mathematics of infectious diseases. Siam Review, 42(4):
599-653, 2000.

H. J. Highland. Random bits & bytes. Computers & Security, 7:337-346,1988.

BIBLIOGRAPHY 299

H. J. Highland. Random bits & bytes. Computers & Security, 7:460-481,1989.

H. J. Highland. The brain virus: Fact and fantasy. In P. J. Denning, editor, Com
puters Under Attack: Intruders, Worms, and Viruses, pages 293-298. Addison
Wesley, Reading, MA, 1990a.

H. 1. Highland. Computer viruses - a postmortem. In P. J. Denning, editor, Com
puters Under Attack: Intruders, Worms, and Viruses, pages 299-315. Addison
Wesley, Reading, MA, 1990b.

S. A. Hofmeyr and S. Forrest. Immunology by design: An artificial immune sys
tem. In Proceedings of the Genetics and Evolutionary Computation Conference,
pages 1289-1296, 1999.

S. A. Hofmeyr and S. Forrest. Architecture for an artificial immune sys
tem. Evolutionary Computation lournal, 2000. In press. Also available at
www.cs.unm.edul ... forrest/isa-papers.htm.

S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection using sequences
of system calls. lournal of Computer Security, 6:151-180, 1998.

R. V. Hogg and A. T. Craig. Introduction to Mathematical Statistics. Prentice-Hall,
Englewood Cliffs, NJ, fifth edition, 1995.

J. Hruska. Virus detection. In European Conference on Security and Detection,
pages 128-130, 1997.

J. R. Hughes. Conservation of flow as a security mechanism in network protocols.
Master's thesis, Purdue University, June, 2000.

J. R. Hughes, T. Aura, and M. Bishop. Using conservation of flow as a security
mechanism in network protocols. In Proceedings of the 2000 IEEE Symposium
on Security and Privacy, pages 132-141,2000.

D. J. leove. Collaring the cybercrook: An investigator's view. IEEE Spectrum, 34
(6):31-36, June, 1997.

R. Ihaka and R. Gentleman. R: A language for data analysis and graphics. lCGS,
5(3):299-314,1996.

K. Ilgun. USTAT: A real-time intrusion detection system for Unix. In Proceedings
of the IEEE Computer Society Symposium on Research in Security and Privacy,
pages 16-28, 1993.

A. Inselberg. The plane with parallel coordinates. The Visual Computer, 1:69-91,
1984.

T. Jamil. Steganography: the art of hiding information in plain sight. IEEE
Potentials, 18:10-12, 1999.

H. Javitz and A. Valdes. The SRI IDES statistical anomaly detector. In Proceedings
of the 1991 IEEE Computer Society Symposium on Research in Security and
Privacy, pages 316-326,1991.

300 BIBLIOGRAPHY

H. Javitz and A. Valdes. The NIDES statistical component: description
and justification. Technical report, SRI International, 1993. available at
www.sdl.sri.comlnides/index5.html.

C. L. Jeffrey, editor. Program Monitoring and Visualization: An Exploratory
Approach. Springer, New York, 1999.

N. F. Johnson and S. Jajodia. Steganalysis: The investigation of hidden infor
mation. In 1998 IEEE Information Technology Conference, pages 113-116,
1998.

N. F. Johnson and S. C. Katzenbeisser. A survey of steganographic techniques. In
S. Katzenbeisser and F. A. P. Petitcolas, editors, Information Hiding Techniques
for Steganography and Digital Watermarking, pages 43-78. Artech House,
Boston, MA, 2000.

W.-H. Ju and Y. Vardi. A hybrid high-order Markov chain model for computer in
trusion detection. Technical Report 92, National Institute of Statistical Sciences,
1999. Available at www.niss.org/downloadabletechreports.html.

M. H. Kang, J. N. Frocher, and I. S. Moskowitz. An architecture for multilevel
secure interoperability. In Proceedings of the 13th Annual Computer Security
Applications Conference, pages 194-204, 1997a.

M. H. Kang, A. P. Moore, and I. S. Moskowitz. Design and assurance strategy for
the nrl pump. In Proceedings of the 1997 High-Assurance Systems Engineering
Workshop, pages 64-71, 1997b.

M. H. Kang, I. S. Moskowitz, and D. C. Lee. A network version of the pump. In
Proceedings of the 1995 Symposium on Security and Privacy, pages 144-154,
1995.

M. H. Kang, I. S. Moskowitz, and D. C. Lee. A network pump. IEEE Transactions
on Software Engineering, 22(5):329-338, May 1996.

S. Katzenbeisser and F. A. P. Petitcolas, editors. Information Hiding techniquesfor
steganography and digital watermarking. Artech House, Boston, MA, 2000.

K. Kendall. A database of computer attacks for the evaluation of intrusion detection
systems. Master's thesis, Massachusetts Instititute of Technology, 1999.

M. F. Kensey. Computer viruses - towards better solutions. Computers and Secu
rity, 12:536-541, 1993.

J. O. Kephart. A biologically inspired immune system for computers. In R. A.
Brooks and P. Maes, editors, Artificial Life IV. Proceedings of the 4th Interna
tional Workshop on Synthesis and Simulation of Living Systems, pages 130-139.
MIT Press, Cambridge, MA, 1994.

J. O. Kephart, G. B. Sorkin, and M. Swimmer. An immune system for cyberspace.
In 1997 IEEE International Conference on Computational Cybernetics and
Simulation, pages 879-884, 1997.

BIBLIOGRAPHY 301

J. O. Kephart and S. R. White. Directed-graph epidemiological models of computer
viruses. In Proceedings of the IEEE Computer Society Symposium on Research
in Security and Privacy, pages 343-359, 1991.

J. O. Kephart and S. R. White. Measuring and modeling computer virus preva
lence. In Proceedings of the IEEE Computer Society Symposium on Research
in Security and Privacy, pages 2-15, 1993.

J. O. Kephart, S. R. White, and D. M. Chess. Computers and epidemiology. IEEE
Spectrum, 30(5):20-26, May, 1993.

K. M. Khalil, K. Q. Luc, and D. V. Wilson. LAN traffic analysis and workload
characterization. In Proceedings of the 15th Conference on Local Computer
Networks, pages 112-122, 1990.

D. V. Klein. Defending against the wily surfer - Web based attacks and defenses.
In USENIX Workshop on Intrusion Detection and Network Monitoring (ID '99)
Proceedings, pages 81-92, 1999.

C. Ko, G. Fink, and K. Levitt. Automated detection of vulnerabilities in privileged
programs by execution monitoring. In Proceedings of the 10th Annual Computer
Security Applications Conference, pages 268-279, 1994.

C. Ko, M. Ruschitzka, and K. Levitt. Execution monitoring of security-critical
programs in distributed systems: A specification-based approach. In Proceed
ings of the 1997 IEEE Symposium on Security and Privacy, pages 175-187,
1997.

T. Kohonen. Self-organizing maps. Springer-Verlag, Berlin, 1995.

E. Kreyszig. Advanced Engineering Mathematics. John Wiley & Sons, Inc., New
York, eighth edition, 1999.

S. Kumar and E. H. Spafford. A generic virus scanner in C++. In Proceedings of
the Eighth Annual Computer Security Applications Conference, pages 210-219,
1992.

T. Lane and C. E. Brodley. Sequence matching and learning in anomaly detec
tion for computer security. In AAAI-97 Workshop on AI Approaches to Fraud
Detection and Risk management, 1997.

T. Lane and C. E. Brodley. Temporal sequence learning and data reduction for
anomaly detection. ACM Transactions on Computer Security, 2:295-331, 1999.

J.-S. Lee, J. Hsiang, and P.-H. Tsang. A generic virus detection agent on the
internet. In Proceedings of the Thirtieth Hawaii International Conference on
System Sciences, pages 210-219, 1997.

W. Lee, C. T. Park, and S. J. Stolfo. Automated intrusion detection using NFR:
Methods and experiences. In USENIX Workshop on Intrusion Detection and
Network Monitoring (ID '99) Proceedings, pages 63-72, 1999a.

302 BIBLIOGRAPHY

W. Lee, S. J. Stolfo, and K. W. Mok. Data mining approaches for intrusion
detection. In Proceedings of the Seventh Usenix Security Symposium, pages
79-93, 1998.

W. Lee, S. J. Stolfo, and K. W. Mok. A data mining framework for building
intrusion detection models. In Proceedings of the 1999 IEEE Symposium on
Security and Privacy, pages 120--132, 1999b.

Y. K. Lee and L. H. Chen. High capacity image steganographic model. In lEE
Proceedings - Vision, Image and Signal Processing, pages 288-294, 2000.

W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On the self-similar
nature of Ethernet traffic (extended version). IEEEIACM Transactions on Net
working, 2(1):1-15, February 1994.

D.-T. Lin. Computer-access authentication with neural network based keystroke
identity verification. In International Conference on Neural Networks, pages
174--178,1997.

U. Lindqvist and P. A. Porras. Detecting computer and network misuse through
the production-based expert system toolset (P-BEST). In Proceedings of the
1999 IEEE Symposium on Security and Privacy, pages 1-16, May 1999.

R. F. Ling. A computer generated aid for cluster analysis. Communications of the
ACM, 16(6):355-361, 1973.

R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall, D. McClung,
D. Weber, S. E. Webster, D. Wyschogorod, R. K. Cunningham, and M. A.
Zissman. Evaluating intrusion detection systems: The 1998 DARPA off-line
intrusion detection evaluation. In Proceedings of the DARPA Information Sur
vivability Conference and Exposition, 2000, volume 2, pages 12-26, 1999.

R. Lo, P. Kerchen, R. Crawford, W. Ho, J. Crossley, G. Fink, K. Levitt, R. Olsson,
and M. Archer. Towards a testbed for malicious code detection. In Compcon
Spring '91 Digest of Papers, pages 160--166, 1991.

P. Loshin. TCPIIP Clearly Explained. Academic Press, Boston, 1997.

P. Loshin. Big Book of IPsec RFCs. Morgan Kaufmann, San Diego, 2000a.

P. Loshin. Essential Ethernet Standards: RFCs and Protocols Made Practical.
John Wiley & Sons, New York, 2000b.

T. F. Lunt. Real-time intrusion detection. In Proceedings of the Thirty-Fourth
IEEE Computer Society International Conference, pages 348-353, 1989.

T. F. Lunt, R. Jagannathan, R. Lee, and A. Whitehurst. Knowledge-based intrusion
detection. In Proceedings of the Annual AI Systems in Government Conference,
pages 102-107, 1989.

T. F. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, P. G. Neumann, and C. Jalali.
Ides: A progress report. In Proceedings of the Sixth Annual Computer Security
Applications Conference, pages 273-285,1990.

BIBLIOGRAPHY 303

L. K. Maisuria, C. S. Ong, and W. K. Lai. A comparison of artificial neural networks
and cluster analysis for typing biometrix authentication. In International Joint
Conference on Neural Networks, UCNN '99, pages 3295-3299, 1999.

M. A. Maloof and R. S. Michalski. A method of partial-memory incremental
learning and its application to computer intrusion detection. In Proceedings of
the Seventh International Conference on Tools with Artificial Intelligence, pages
392-397, 1995.

D. J. Marchette. The Filtered Kernel Density Estimator. PhD thesis, George Mason
University, 1996.

D. J. Marchette. A statistical method for profiling network traffic. In USENIX
Workshop on Intrusion Detection and Network Monitoring (ID '99) Proceed
ings, pages 119-128, 1999.

D. J. Marchette, C. E. Priebe, G. W. Rogers, andJ. L. Solka. Filtered kemel density
estimation. Computational Statistics, 11(2):95-112, 1996.

R. E. Marmelstein, D. A. V. Veldhuizen, and G. B. Lamont. A distributed architec
ture of an adaptive computer virus immune system. In 1998 IEEE International
Conference on Systems, Man, and Cybernetics, pages 3838-3843, 1998.

M. Martin-Bautista and M.-A. Vila. Building adaptive user profiles by a genetic
fuzzy classifier with feature selection. In The Ninth IEEE International Con
ference on Fuzzy Systems, 2000, pages 308-312, 2000.

R. R. Martine. Basic Traffic Analysis. Prentice-Hall, Upper Saddle River, NJ,
1994.

L. M. Marvel and C. T. Retter. A methodology for data hiding using images. In
Military Communications Conference, MILCOM 98, pages 1044-1047, 1998.

J. McAfee and C. Haynes. Computer Viruses, Worms, Data Diddlers, Killer
Programs, and Other Threats to Your System. St. Martin's Press, New York,
1989.

G. McGraw and G. Morrisett. Attacking malicious code: A report to the infosec
research council. IEEE Software, pages 33--41, September/October 2000.

J. McHugh. Testing intrusion detection systems: a critique of the 1998 and 1999
lincoln laboratory evaluations. ACM Transactions on Information System Se
curity, 3:to appear, 2000.

G. J. McLachlan and K. E. Basford. Mixture Models: Inference and Applications
to Clustering. Marcel Dekker, New York, 1988.

G. J. McLachlan and T. Krishnan. The EM Algorithm and Extensions. John Wiley
& Sons, New York, 1997.

G. J. McLachlan and D. Peel. Finite Mixture Models. John Wiley & Sons, New
York,2000.

304 BIBLIOGRAPHY

L. Me. GAS SATTA, a genetic algorithm as an alternative tool for se-
curity audit trails analysis. In First International Workshop on the
Recent Advances in Intrusion Detection, 1998. Web proceedings:
www.zurich.ibm.comlrvdaclProg..RAID98rrable_oLcontents.html.

C. Meadows and J. McLean. Computer security and dependability: Then and
now. In P. Ammann, B. Barnes, and S. Jajodia, editors, Computer Security,
Dependability, and Assurance: From Needs to Solutions, pages 166-170. IEEE
Computer Society Press, New York, 1999.

C. P. Meinel. How hackers break in ... and how they are caught. Scientific American,
pages 98-109, October, 1998.

J. Millen. 20 years of covert channel modeling and analysis. In Proceedings of the
1999 IEEE Symposium on Security and Privacy, pages 113-114, May 1999.

B. Miller. Vital signs of identity [biometrics]. IEEE Spectrum, 31(2):22-30,1994.

E. L. Miller, D. Shen, 1. Liu, and C. Nicholas. Performance and scalability of
a large-scale n-gram based information retrieval system. Journal of Digital
Information, 1(5), 2000. Available at www.cs.umbc.edulcadip/pubs.html.

M. C. Minnotte and R. W. West. The data image: a tool for exploring high
dimensional data sets. In Proceedings of the ASA Section on Statistical Graphics,
1998.

R. Morris and D. Lin. Variance of aggregated web traffic. In Proceedings of the
Nineteenth Annual Joint Conference of the IEEE Computer and Communication
Societies, pages 360-366, 2000.

I. S. Moskowitz and M. H. Kang. Covert channels - here to stay? In COMPASS
'94: Proceedings of the Ninth Annual Conference on Safety, Reliaility, Fault
Tolerance, Concurrency and Real Time Security, pages 235-243, 1994a.

I. S. Moskowitz and M. H. Kang. Discussion of a statistical channel. In Proceedings
of the 1994 IEEE-IMS Workshop on Information Theory and Statistics, page 95,
1994b.

A. Mounji and B. L. Charlier. Continuous assessment of a Unix configuration:
Integrating intrusion detection and configuration analysis. In Proceedings of the
1997 Symposium on Network and Distributed System Security, pages 468-472,
1997.

A. Mounji, B. L. Charlier, and D. Zampunieris. Distributed audit trail analysis.
In Proceedings of the 1995 Symposium on Network and Distributed System
Security, pages 102-112, 1995.

B. Mukherjee, L. T. Heberlein, and K. N. Levitt. Network intrusion detection.
IEEE Network, 8(3):26-41, May-June, 1994.

C. Nachenberg. Computer virus-antivirus coevolution. Communications of the
ACM, 40(1):46-51, January, 1997.

BIBLIOGRAPHY 305

I. Nasen. On the time to extinction in recurrent epidemics. Journal of the Royal
Statistical Society B, 61:309-330, 1999.

O. Nasraoui, R. Krishnapuram, and A. Joshi. Relational clustering based on
a new robust estimator with application to web mining. In Proceedings of
the 18th International Conference of the North American Fuzzion Information
Processing Society, pages 705-709, 1999.

NCSC. A guide to understanding covert channel analysis of trusted systems. Tech
nical Report NCSC-TG-030, National Computer Security Center, November,
1993.

P. G. Neumann. Computer Related Risks. Addison-Wesley, New York, 1995.

P. G. Neumann and P. A. Porras. Experience with EMERALD to date. In USENIX
Workshop on Intrusion Detection and Network Monitoring (ID '99) Proceed
ings, pages 73-80, 1999.

R. E. Newman-Wolfe and B. R. Venkatraman. High level prevention of traffic
analysis. In Proceedings of the Seventh Annual Computer Security Applications
Conference, pages 102-109,1991.

S. Northcutt. Network Intrusion Detection. An Analyst's Handbook. New Riders,
Indianapolis, IN, 1999.

C. J. Nuzman, I. Saniee, W. Sweldens, and A. Weiss. A compound model for TCP
connection arrivals. In Proceedings of the ITC Specialist Seminar on IP Traffic
Measurement, Modeling, and Management, 2000. to appear. Also available at
www.ee.princeton.edul ... cjnuzman/pubs/abs.1cp.html.

M. S. Obaidat and B. Sadoun. Verification of computer users using keystroke
dynamics. IEEE Transactions on Systems, Man, and Cybernetics, 27(2):261-
269,1997.

V. Paxson. Emperically derived analytic models of wide-area TCP connections.
IEEElACM Transactions on Networking, 2(4):316-336, August 1994.

V. Paxson and S. Floyd. Wide area traffic: The failure of Poisson modeling.
IEEElACM Transactions on Networking, 3(3):226-244, June 1995.

C. E. Pelaez and J. Bowles. Computer viruses. In Proceedings of the Twenty-Third
Southeastern Symposium on System Theory, pages 513-517,1991.

F. A. P. Petitcolas. Introduction to information hiding. In S. Katzenbeisser and
F. A. P. Petitcolas, editors, Information Hiding techniques for steganography
and digital watermarking, pages 1-14. Artech House, Boston, MA, 2000.

E. Petron. Lima Essential Reference. New Riders, Indianapolis, IN, 2000.

S. J. Phillippo. Practical virus detection and prevention. In lEE Colloquium on
Viruses and their Impact on Future Computing, pages 211-2/4,1990.

306 BIBLIOGRAPHY

P. A. Porras and P. G. Neumann. EMERALD: Event monitoring enabling responses
to anomalous live disturbances. In Proceedings of the National Information
Systems Security Conference, 1997.

C. E. Priebe and D. J. Marchette. Alternating kernel and mixture models. Com
putational Statistics and Data Analysis, 35:43-65, 2000.

P. E. Proctor. The Practical Intrusion Detection Handbook. Prentice-Hall, Engle
wood Cliffs, NJ, 2001.

1. O. Ramsay and B. W. Silverman. Functional Data Analysis. Springer, New
York, 1997.

R. Riedi. An improved multifractal formalism and self-similar measures. Journal
of Mathematical Analysis and Applications, 189:462-490, 1995.

J. A. Robinson, V. M. Liang, J. A. M. Chambers, and C. L. MacKenzie. Computer
user verification using login string keystroke dynamics. IEEE Transactions on
Systems, Man, and Cybernetics, 28(2):236-241, 1998.

1. A. Rochlis and M. W. Eichin. With microscope and tweezers: The worm from
MIT's perspective. Communications of the ACM, 32:689-698,1989. Reprinted
in Denning [I 990b].

M. Roughan, D. Veitch, and P. Abry. Real-time estimation of the parameters of
long-range dependence. IEEEIACM Transactions on Networking, 8(4):467-
478,2000.

P. Ryan and S. Schneider. Modelling and Analysis of Security Protocols. Addison
Wesley, London, 2001.

M. Schonlau, W. DuMouchel, W.-H. Ju, A. F. Karr, M. Theus, and
Y. Vardi. Computer intrusion: Detecting masquerades. Technical Re
port 95, National Institute of Statistical Sciences, 1999. Available at
www.niss.org/downloadabletechreports.html, to appear in the February, 2001
issue of Statistical Science.

G. A. F. Seber. Multivariate Observations. John Wiley & Sons, Inc., New York,
1984.

C. Seife. Digital music safeguard may need retuning. Science, 290:917-919,
November, 2000.

R. Sekar, T. Bowen, and M. Segal. On preventing intrusions by process behavior
monitoring. In USENIX Workshop on Intrusion Detection and Network Moni
toring (/D '99) Proceedings, pages 29-40, 1999a.

R. Sekar, Y. Guang, S. Verma, and T. Shanbhag. A high-performance network
intrusion detection system. In Proceedings of the 6th ACM Conference on
Computer and Communications Security, pages 8-17, 1999b.

BIBLIOGRAPHY 307

S. 1. Shepherd. Continuous authentication by analysis of keyboard typing char
acteristics. In European Contention on Security and Detection, 1995, pages
356-359, 1995.

S. W. Shieh and V. D. Gligor. A pattern-oriented intrusion-detection model and
its applications. In 1991 IEEE Computer Society Symposium on Research in
Security and Provacy, pages 327-342, 1991.

J. F. Shoch and J. A. Hupp. The "worm" programs - early experience with a
distributed computation. In P. J. Denning, editor, Computers Under Attack:
Intruders, Worms, and Viruses. Addison-Wesley, New York, 1990.

B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman
and Hall, New York, 1986.

G. 1. Simmons. The history of subliminal channels. IEEE Journal on Selected
Areas in Communication, 16(4):452-462, May, 1998a.

G. J. Simmons. Results concerning the bandwidth of subliminal channels. IEEE
Journal on Selected Areas in Communication, 16(4):463-473, May, 1998b.

P. Simoneau. Hands-On TCPIIP. McGraw-Hill, New York, 1997.

S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, T. Grance, L. T. Heberlein, c.-L.
Ho, K. N. Levitt, B. Mukherjee, D. L. Mansur, K. L. Pon, and S. E. Smaha.
A system for distributed intrusion detection. In Compcon Spring '91 Digest of
Papers, pages 170-176, 1991.

J. L. Solka, D. J. Marchette, and B. C. Wallet. Statistical visualization methods
in intrusion detection. In Proceedings of the 32nd Symposium on the Interface:
Computing Science and Statistics, 2000.

A. Somayaji and S. Forrest. Automated response using system-call delays. In
USENIX,2000. Also available at www.cs.unm.eduJ ... forrest/isa..papers.htm.

A. Somayaji, S. Hofmeyr, and S. Forrest. Principles of a computer immune system.
In ACM New Security Paradigms Workshop, pages 75-82, 1997.

E. H. Spafford. The Internet worm: Crisis and aftermath. Communications of the
ACM, 32:678-687,1989.

E. H. Spafford, K. A. Heaphy, and D. J. Ferbrache. A computer virus primer. In
P. J. Denning, editor, Computers Under Attack: Intruders, Worms, and Viruses,
pages 316-355. Addison-Wesley, New York, 1990.

E. H. Spafford and S. A. Weeber. Software forensics: Can we track code to its
authors? Computers and Security, 12:585-595, 1993.

R. Spence. Information Visualization. Addison-Wesley, New York, 2001.

L. Spitzner. Passive fingerprinting, May, 2000. Available at the Web site
www.enteract.coml ... lspitz/papers.html.

308 BIBLIOGRAPHY

N. Starr. Linear estimation of the probability of discovering a new species. The
Annals of Statistics, 7(3):644--652, 1979.

W. R. Stevens. TCPRP Illustrated, Volume 1: The Protocols. Addison-Wesley,
Reading, MA, 1994.

A. J. Stewart. Distributed metastasis: A computer network penetration
methodology. Technical report, The Packet Factory, 1999. Available at
www.packetfactory.netiPaperS/index.html.

M. Stillerman, C. Marceau, and M. Stillman. Intrusion detection for distributed
applications. Communications of the ACM, 42:53-61,1999.

S. J. Stolfo, W. Fan, and W. Lee. Cost-based modeling for fraud and intrusion de
tection: Results from the JAM project. In Proceedings of the DARPA Informa
tion Survivability Conference and Exposition, 2000, volume 2, pages 130--144,
1999.

C. Stoll. The Cuckoo's Egg. Pocket Books, New York, 1990.

Swiss Academic & Research Network. Default TTL values in tcp/ip, 1999. Avail
able at www.switch.chldocs/ttLdefault.html.

A.-H. Tan and C. Teo. Learning user profiles for personalized information dis
semination. In IEEE World Congress on Computational Intelligence, pages
183-188, 1998.

K. M. C. Tan and D. S. Collie. Detection and classification of tcp/ip network
services. In Proceedings of the 13th Annual Computer Security Applications
Conference, pages 99-107, 1997.

C. Tebaldi and M. West. Bayesian inference on network traffic using link count
data. Journal of the American Statistical Association, 93(442):557-572,1998.

G. J. Tesauro, J. O. Kephart, and G. B. Sorkin. Neural networks for computer virus
recognition. IEEE Expert, 11(4):5-6, 1996.

W. Theilmann and K. Rothermel. Dynamic distance maps of the internet. In
Proceedings of the Nineteenth Annual Joint Conference of the IEEE Computer
and Communication Societies, pages 275-284, 2000.

M. Theus and M. Schonlau. Intrusion detection based on structural zeros. Statis
tical Computing & Graphics Newsletter, 9:12-17,1998.

H. Thimbleby, S. Anderson, and P. Cairns. A framework for modelling trojans
and computer virus infection. The Computer Journal, 41(7):444-458, 1998.

K. Thompson. Reflections on trusting trust. Communications of the ACM, 27(8):
761-763, 1984. Reprinted in Denning [1990b].

D. M. Titterington, A. F. M. Smith, and U. E. Makov. Statistical Analysis of Finite
Mixture Distributions. John Wiley & Sons, Inc., New York, 1985.

BIBLIOGRAPHY 309

B. Toxen. Real World Linux Security: Intrusion Prevention, Detection and Re
covery. Open Source Technology Series. Prentice-Hall, Englewood Cliffs, NJ,
2001.

E. R. Tufte. The Visual Display of Quantitative Data. Graphics Press, Cheshire,
CT,1983.

E. R. Tufte. Envisioning Data. Graphics Press, Cheshire, CT, 1990.

E. R. Tufte. Visual Explanations. Graphics Press, Cheshire, CT, 1997.

M. M. Van Hulle, editor. Faithful Representations of Topographic Maps. John
Wiley & Sons, New York, 2000.

Y. Vardi. Network tomography: Estimating source-destination traffic intensities
from link data. Journal of the American Statistical Association, 91(433):365-
377,1996.

B. R. Venkatraman and R. E. Newman-Wolfe. Transmission schedules to pre
vent traffic analysis. In Proceedings of the Ninth Annual Computer Security
Applications Conference, pages 108-l15, 1993.

G. Vert, D. A. Frincke, and J. C. McConnell. A visual mathematical model for
intrusion detection. In 21st National Information Systems Security Conference,
1998. available at csrc.nist.gov/nisscl1998/papers.html.

G. Vigna and R. A. Kemmerer. Netstat: A network-based intrusion detection
system. In Proceedings of the 14th Annual Computer Security Applications
Conference, pages 7-l1, 1998.

H. Wainer. Visual Revelations: Graphical Tales of Fate and Deception from
Mapolean Bonaparte to Ross Perot. Springer-Verlag, New York, 1997.

G. G. Walter and M. Contreras. Compartmental Modeling with Networks.
Birkhliuser, Boston, MA, 1999.

M. P. Wand and M. C. Jones. Kernel Smoothing. Chapman and Hall, London,
1995.

C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intrusions using system
calls: Alternative data models. In 1999 IEEE Symposium on Security and
Privacy, pages l33-145, 1999.

M. S. Watterman, editor. Introduction to Computational Biology: Maps, Sequences
and Genomes. Chapman & HalUCRC, Boca Raton, 1995.

D. J. Watts. Small Worlds. Princeton University Press, Princeton, NJ, 1999.

E. J. Wegman. Hyperdimensional data analysis using parallel coordinates. Journal
of the American Statistical Association, 95:664-675, 1990.

310 BIBLIOGRAPHY

E. J. Wegman and D. B. Carr. Statistical graphics and visualization. In C. R. Rao,
editor, Handbook 0/ Statistics 9: Computational Statistics, pages 857-958.
North Holland, Amsterdam, 1993.

E. J. Wegman, D. B. Carr, and Q. Luo. Visualizing multivariate data. In C. R.
Rao, editor, Multivariate Analysis: Future Directions, pages 423-466. North
Holland, Amsterdam, 1993.

J. D. Weiss and E. G. Amoroso. Ensuring software integrity. In Proceedings o/the
Fourth Aerospace Computer Security Applications Conference, pages 323-330,
1988.

L. Wilkinson. The Grammar 0/ Graphics. Springer, New York, 1999.

W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson. Self-similarity through
high-variablility: statistical analysis of ethemet LAN traffic and the source level.
IEEEIACM Transactions on Networking, 5:71-86, 1997.

G. J. Wills. Nicheworks - interactive visualization of very large graphs. Journal
o/Computational and Graphical Statistics, 8:190-212, 1999.

I. H. Witten. Computer (in)security: Infiltrating open systems. In P. J. Denning, ed
itor, Computers Under Attack: Intruders, Worms, and Viruses. Addison-Wesley,
New York, 1990.

x. Yang, A. P. Petropulu, and V. Adams. The extended onloffmodel for high-speed
data networks. In 10th IEEE Signal Processing Workshop on Statistical Signal
and Array Processing, 1999.

A. Young and M. Yung. Cryptovirology: Extortion-based security threats and
countermeasures. In Proceedings o/the 1996 IEEE Symposium on Security and
Privacy, pages 129-140, 1996.

R. L. Ziegler. Linux Firewalls. New Riders, Indianapolis, IN, 1999.

Glossary

Attacker A person who attacks a computer. See Cracker.

Back Door A section of code in a program or operating system that allows
unauthorized access to those with the knowledge to exploit it. These are often
put in by the original programmers to allow easy debugging in the early stages
of development, but become a problem when the programmers forget (or choose
not) to close them off.

Bias Bias is a statistical term which means the amount that the estimate differs
from its expectation. For an estimate T of a quantity T, the bias b(T) is defined
as b(T) = E(T) - T. For example, the sample mean is unbiased (has zero
bias), since its expectation is the mean.

Cache Poisoning Changing the DNS cache on a machine so that a host (usually
a Web server) is redirected to a different host.

Core Dump When a program dies unexpectedly, the operating system saves the
current state of the program (memory values, registers, etc.) in a file (called
"core"). A core dump, or "dumping core," refers to this process.

Covert Channel A channel of communications that is hidden. This can be done
through placing data in unexpected places (such as packet header fields) or by
encoding the message in subtle ways such as the timing of packet acknowledg
ments.

Cracker A person who attacks or gains access to a machine for malicious
purposes.

Daemon A program that runs in the background; usually a system program
that handles events such as connection requests or performs other maintenance
functions.

311

312 GLOSSARY

Digraph A graph with directed edges.

DMZ The DMZ (demiliterized zone) consists of the machines on your network
that lie outside your firewall. These may sit behind another firewall, but they
are in some sense less protected than the rest of your network. They usually
consist of those machines that the world is supposed to know about, such as
Web servers, DNS servers, and mail servers.

Domain Name Server (DNS) A machine that maintains a database to perform
the mapping between a host name and an IP address.

Dominating Set A set of vertices of a graph that are neighbors of all the vertices
of the graph. The number of elements in a minimal dominating set is called the
domination number.

Dumpster Diving See Trashing.

Ethernet A widely used networking technology.

Firewall Software that monitors and controls the communications into and out
of a network (or machine).

Fork Create a child process. One also talks about "spawning" a process. The
idea is to start up a new process (program) from an existing one.

Graph A graph is a set of vertices and edges between vertices. These are used to
construct efficient data structures, to model various kinds of physical processes,
and to construct efficient algorithms in computer science.

Hacker 1. A person who is a good and enthusiastic computer programmer. A
prolific and expert coder. 2. A person who breaks into computers. People who
adhere to definition # 1 call the latter "crackers."

Hamming Distance A distance measure that computes the number of places in
which two strings differ.

Host A computer connected to a network.

Load Average A measure of the amount of work a computer is performing; the
"load" on the computer.

Identifiable A set of parameters for a model are identifiable if they can be
determined from the data in a way that uniquely determines the model. For
example, if one has parameters a and b and can only determine a + b, the
parameters are not identifiable since many choices for a and b result in the
same sum.

Insider Threat An attacker that is a member of the attacked organization. This
is usually a disgruntled employee or a prankster. Insiders are a particularly
difficult and important problem since an insider by definition has access to the
organization's computers.

Internet Service Provider (ISP) An organization that provides the "on ramp to
the Information Superhighway" (sorry, I promise not to use that phrase again).
An ISP provides modems, phone lines, or other infrastructure to allow comput
ers to connect to its network (for example, from home via a modem).

Logic Bomb A computer program that appears innocuous until a respecified
time, when it performs some nasty action, such as deleting files.

GLOSSARY 313

Malicious Code Any software written with evil intent. Examples include
viruses, worms, and trojans.

Man Page The manual page for a command in the Unix operating system.

Mixture Model A model for the probability density function of a random vari
able as a convex sum of density functions.

Nearest-Neighbor Classifier An algorithm that assigns to new data the class
associated with the nearest exemplar from a training set.

Outlier A datum that is in the tails of its (assumed) distribution. For example,
when considering the daily rainfall on the island of Hawaii, the day (in 2000)
when it received 38" of rain was an outlier.

Packet The fundamental information unit on a network. All communications
are broken into packets, with each packet routed individually to the destination.

Patch Code to fix a bug or vulnerability in a program. Also used as a verb
or adjective: to patch a machine means to install all appropriate patches; an
unpatched machine is one that has known bugs that have not been corrected via
the appropriate patches.

Port A number that UDP and TCP assign to network services and applications.
Each application is assigned one or more ports, and these port numbers are then
used to route packets to the appropriate application.

Probability Density Function (PDF) The continuous version of the probability
mass function. One way to define it is as the derivative of the distribution
function.

Probability Distribution Function Usually denoted with a capital letter, the
probability distribution function returns the probability of observing a value at
least as large as the one observed: F(x) = P(X :::; x). SeeProbabilityDensity
Function.

Promiscuous A network interface in promiscuous mode will make a copy of
every packet that passes the interface rather than only grabbing those packets
destined for the interface.

Proxy A proxy is an application that acts as a gateway between two networks.
It provides access control to the network and can also hide information about
the protected network, hiding the internal network structure.

Red Team A group of "good guys" that plays "bad guys." The red team is
used to try to break into, or otherwise attack, a system or network in order to
determine the quality of the security or to identify weaknesses to be addressed.

Resolve To map an IP address to a machine name (or vice versa).

Root The "super user" or administrator on a Unix machine is called "root." This
user has full permission for reading, writing, and executing essentially any file
on the system. An attacker with root permission is said to "own" the machine
since he or she can operate with impunity. A slang expression, "to get root on
someone," has been coined as a result.

Rootkit A collection of programs that hides the activities of an attacker. This
may include programs designed to give the attacker root permission on the

314 GLOSSARY

machine, change log files to eliminate evidence of the attack, and install trojan
copies of system programs.

Router A machine that forwards packets on a network.

Script Kiddie An attacker who uses an attack script written by others. Usually,
this is someone with little knowledge of the details of the attack, who is merely
executing a program written by someone else.

Sensor A network sensor is a program that examines all the packets on a network
interface and stores a subset of these packets for analysis.

Signature A pattern by which an entity or activity of interest can be identified.

Snail Mail Mail that goes through the postal system. This is to be contrasted
with email, which gets delivered (nearly) instantaneously, assuming the mail
servers are configured properly.

Sniffer A program that examines all the packets on a network interface. The
distinction between a sensor and a sniffer is basically that network security
officers use sensors, whereas everyone else uses sniffers.

Social Engineering Obtaining information (for example user IDs and pass
words) by personal contact with someone who has the desired information. For
example, the attacker calls the system administrator and poses as a vice pres
ident of the company who has forgotten his password and needs to get some
data from his computer immediately for a meeting with an important client.

Spam Unsolicited email from strangers, the equivalent of junk mail or junk
phone calls. This is often advertisement, sometimes part of a scam, and is
generally detested.

Spawn See Fork.

Spoof To pretend to be something you are not. This is the term used when a
packet is sent with a source IP address that has been changed to hide the identity
of the true originator of the packet.

Stateful This refers to maintaining information about the state of a process.
For example, a stateful firewall keeps track of the state of a TCP connection
(whether the three-way handshake has been properly completed, for example)
and denies connections that "break state."

Steganography The hiding of information in other information.

Super User The user with full permission on a Unix machine. This user (usually
named "root") can execute, view, or modify any file on the computer and is in
charge of maintaining, administering, and securing the computer.

TCPIIP Transmission Control Protocol/Internet Protocol. The lingua franca
of the Internet. This is the protocol to which all packets on the Internet must
conform, regardless of the specifics of their originating internal network.

Trashing Looking through trash in the hopes of finding useful information about
an organization or individual. Attackers will do this in order to get user names,
passwords, documentation, or other useful information.

Trojan A program that purports to perform one function but secretly performs
another, usually a diabolical one.

GLOSSARY 315

Virus A computer virus is a program that copies itself into (infects) other pro
grams. It mayor may not perform other tasks. It can be passed by infected files
on a disk, by files downloaded from another computer, or by attachments sent
via email. See also the entry for Worm.

War Dialer A program that dials a range of telephone numbers looking for
answering computers.

Worm A computer worm is a program that spawns running copies of itself, such
as the Internet worm of 1988, which was one of the first and most famous of these
computer denizens. An alternate definition used by some is that viruses require
a user to propagate them (for instance by executing a program or inserting a
disk) while worms do not.

ADC

AIC

AIDE

AKA

AKMDE

BSM

CART

CORBA

DARPA

DNS

DOS

DMZ

DDOS

DOE

DOS

EMERALD

FAQ

FKE

Acronyms

Approximate Distance Clustering

Akaike Information Criterion

Advanced Intrusion Detection Environment

Also Known As

Alternating Kernel and Mixture Density Estimation

Basic Security Module

Classification and Regression Trees

Common Object Request Broker Architecture

Defense Advanced Research Projects Agency

Domain Name Service. Also, Domain Name Server

Denial of Service attack. Also, an old PC operating system, now
generic for Microsoft operating systems.

Demiliterized Zone

Distributed Denial of Service

Department of Energy

Denial of Service

Event Monitoring Enabling Responses to Anomalous Live
Disturbances
Frequently Asked Questions

Filtered Kernel Estimator

317

318 ACRONYMS

FLD

FfP

GrIDS

GNU

HMM

lANA

ICMP

IDS

IFS

ILY

IRC

ISP

IP

LAN

MAC

MISE

MITLL

NCSC

NFS
NIC

NIDES

NSWC

OS

PC

PD

PFA

PID

PPP

RFC

RIP

RIPPER

ROC

SANS

SET!

SHADOW

Fisher's Linear Discriminant

File Transfer Protocol

Graph-Based Intrusion Detection System

GNU is Not Unix

Hidden Markov Model

Internet Assigned Numbers Authority

Internet Control Message Protocol

Intrusion Detection System

Internet Field Separator

I Love You (a virus/worm)

Internet Relay Chat

Internet Service Provider

Internet Protocol

Local Area Network

Media Access Control

Mean Integrated Squared Error

Massachusetts Institute of Technology, Lincoln Labs

National Computer Security Center

Network File Service

Network Information Center

Next-generation Intrusion Detection Expert System

Naval Surface Warfare Center

Operating System

Personal Computer

Probability of Detection

Probability of False Alarm

Process ID

Point-to-Point Protocol

Request For Comment

Routing Information Protocol

Repeated Incremental Pruning to Produce Error Reduction

Receiver Operating Characteristics

System Administration and Network Security

Search for Extra Terrestrial Intelligence

Secondary Heuristic Analysis for Defensive Online Warfare

ACRONYMS 319

SIR Susceptible-Infected-Recovered

SIS Susceptible-Infected-Susceptible

SRI Sarnoff Research Institute

SSO Site Security Officer

SWITCH Swiss Academic & Research Network

TCP Transmission Control Protocol

TFN Tribe Flood Network

TFN2K Tribe Flood Network 2000

TOCTTOU Time-of-check-to-time-of -use

TTL Time To Live

UDP User Datagram Protocol

WAN Wide Area Network

WATCHERS Watching for Anomalies in Transit Conversation: a Heuristic for
Ensuring Router Security

Abry, Po, 70, 291, 306
Adams, V.,31O
Addie, R, 70, 291
Akaike, Ro, 138, 291
Ali, A., 216, 291
Allen, L., 297
Amoroso, Eo, xv, 147, 157,255,291,

310
Anderson, Do, 171, 173-174, 177,291
Anderson, Eo, 114,291
Anderson, R, 255, 292
Anderson, So, 308
Andersson, Ro, 240, 292
Andrews, Po, 210, 292
Anonymous, xv, 162,292
Archer, Mo, 302
Ashmanov, I., 239, 292
Aura, T., 150, 299
Axelsson, So, 78, 84-85, 292

Bace, R, xv, 147, 157,210,292
Balasubramaniyan, Jo, 211, 292
Basford, K., 134, 303
Bass, T., 158, 292
Bauer, Do, 211, 292
Bertin, Jo, 70, 292
Bestavros, A., 58, 294
Bharghavan, v., 9, 294
Bickel, P., 180,292
Bishop, Mo, 150, 169-170,292,299
Bleha, So, 185,293
Botstein, Do, 296

320

Author Index

Bowen, T.,306
Bowles, J., 240, 305
Brackney, R, 210, 293
Bradley, K., 150, 293
Breiman, L., 102, 293
Bretano, Jo,307
Britton, T., 240, 292
Brodley, c., 188,210,301
Brown, Mo, 185,293
Brown, Po, 296
Browne, R, 244, 293
Biischkes, R, 210, 293

Cabrera, Jo, 80, 157,293
Cairns, P., 308
Cao, Jo, 70, 293
Carr, Do, 71,310
Casey, Eo, 210, 293
Chambers, Jo, 306
Champion, To, 295
Chao, A., 180,293
Chen, L., 247, 302
Cherukuri, R, 297
Chess, Do, 301
Cheswick, B., 209, 293
Cheung, So, 150, 293-294
Chung, Co, 211, 294
Cohen, F., 215, 220, 240, 294
Cohen, w., 182,294
Collie, Do, 157,308
Comer, Do, 42, 294
Contreras, Mo, 222, 309

Cowen, L., 133,294
Craig, A., 48, 77, 299
Crawford, R, 294, 302
Criscuolo, P., 252, 294
Crossley, J.,302
Crovella, M., 58, 294
Cunningham, R, 302

Daley, D., 240, 294
Das, B., 9, 294
Davis, D., 293
Davis, R, 217, 294
Dempster, A., 51, 294
Denning, D., 163-164,210,220,235,

242,294-295
Denning, P., 210, 235, 239, 254-255,

295
Devroye, L., 77, 84, 295
D'haeseleer, P., 229, 295
Dias, G., 307
Di Battista, G., 58, 295
Dilger, M., 169-170,292,294
Dinwoodie, I., 70, 295
Dodge, M., 60, 295
Doverspike, R, 295
Duda, R, 84,186,295
DuMouchel, w., 196-197,295,306
Durbin, R, 190, 295
Durst, R., 81, 295

Eades, P., 58, 295
Eddy, S., 295
Eichelman, F., 292
Eichin, M., 235, 306
Eisenberg, T., 235, 296
Eisen, M., 115, 296
Elbaum, S., 210, 296
Endler, D., 210, 296
Escamilla, T., xv, 147, 161,296
Ettema, D., 70, 157,296
Everitt, B., 111, 113, 131-132,296

Fan, W.,308
Farmer, D., 164,296
Fedorov, V., 44-46,296
Feldmann, A., 58, 70, 296-297
Ferbrache, D., 307
Finch, S., 180,296
Fink, G., 301-302
Fiorini, P., 70, 297
Fisch, E., 210, 297
Fisher, RA., 114,297
Flanagan, D., 44-46, 296
Floyd, S., 53, 58, 80, 297, 305
Forrest, S., 178, 180, 182,211,230,

295,297,299,307,309
Foulds, L., 70, 297
Frank, J., 294
Freedman, D., 209, 297

AUTHOR INDEX 321

Fried, D., 302
Friedman, J.,293
Frincke, D., 309
Frocher, J., 300
Fukunaga, K., 84, 297
Fyodor, 100-101,297

Gani, J., 240, 294
Garber, L., 220, 237, 297
Garcia-Fernandez, J., 211, 292
Gentleman, R, 179, 299
Gertz, M., 294
Ghosh, A., 210, 297
Gilbert, A., 70, 296-297
Gilfix, M., 230, 298
Gilgert, A., 296
Gilham, F., 302
Gillespie, D., 293
Girardin, L., 157,298
Gligor, v., 211, 307
Goan, T.,307
Goldberg, L., 231-232, 298
Goldberg, P., 298
Goldstein, E., 298
Graf, 1.,302
Grance, T.,307
Green, J., 251, 298
Gries, D., 296
Guang, Y.,306
Gyorfi, L., 295

Hafner, K., 105, 163,298
Haines, J.,302
Hall, E., 42, 298
Hand, D., 84, 298
Hart, P., 295
Hartmanis, J., 296
Haynes, c., 215, 235, 252, 303
Haynes, T., 9, 298
Heaphy, K., 307
Heberlein, T., 304, 307
Hedberg, S., 240, 298
Hedetniemi, S., 298
Helman, P., 210, 295, 298
Herodotus, 246, 298
Herrera, R,292
Herringshaw, c., 157,298
Hethcote, H., 240, 298
Highland, H., 215, 298-299
Hoagland, J.,294
Ho, C-L., 307
Ho, W.,302
Hofmeyr, S., 180-182,230,297,299,

307
Hogg, R, 48, 77, 299
Holcomb, D., 296
Hruska, J., 240, 299
Hsiang, J.,301
Huang, P., 70, 296

322 AUTHOR INDEX

Hughes, J., 150,299
Hupp, J., 115,239, 307
Hussien, B., 293

!cove, D., 210, 299
Ihaka, R., 179, 299
Ilgun, K., 210, 299
Inse1berg, A., 66, 299
Irgon, A., 292

Jagannatban, R.,302
Jajodia, S., 246, 300
Jalali, c., 302
Jamil, T., 246, 299
Javitz, H., 171,291,299-300
Jeffrey, C., 210, 300
Johnson, N., 246-247, 300
Jones, M., 135, 137, 309
Joshi, A., 305
Ju, W-H., 197,300,306

Kang, M., 243-244, 255, 300, 304
Karr, A., 306
Kasperskaya, N., 239, 292
Katzenbeisser, S., 247, 249, 255, 300
Kemmerer, R., 157,309
Kendall, K., 159, 165-167,300,302
Kensey, M., 240, 300
Kephart, J., 221-222, 226, 228-229,

300-301,308
Kerchen, P., 302
Kesdogan, D., 293
Khalil, K., 70, 301
Kitchin, R., 60, 295
Klein, D., 26, 301
Ko, c., 167, 169,210,301
Kohonen, T., 157,301
Kreyszig, E., 225, 301
Krishnan, T., 51,134,303
Krishnapuram, R., 305
Krogh, A., 295
Kumar, S., 218, 301
Kurtz, T.,296

Lai, W.,303
Laird, N., 294
Lamont, G., 303
Lane, T., 188,210,301
Le Charlier, B., 210, 304
Lee, D., 300
Lee, J., 240, 301
Lee, R.,302
Lee, w., 211, 301-302
Lee, y., 247, 302
Leland, w., 56, 302
Levitt, K., 294, 301-302,304,307
Liang, v., 306
Liepins, G., 210, 298
Lin, D., 70, 185-186,302,304

Lindqvist, U., 211, 302
Ling, R., 115,302
Lippmann, R., 81-82, 302
Liu, J.,304
Lo, R., 240, 302
Longstaff, T., 297
Loshin, P., 42, 302
Luc, K.,301
Lugosi, G., 295
Lunt, T., 209, 211, 291, 302
Luo, Q.,31O
Lynn, M., 296

MacKenzie, c., 306
Maisuria, L., 185,303
Makov, U.,308
Maloof, M., 211, 303
Mann, C., 209, 297
Mansur, D., 307
Marceau, C., 211, 308
Marchette, D., 126-127, 130-134,

136-137,298,303,306-307
Markoff, J., 105, 163,298
Marmelstein, R., 229-230, 303
Martin-Bautista, M., 211, 303
Martine, R., 70, 303
Marvel, L., 247, 303
McAfee, J., 215, 235, 252, 303
McClung, D., 302
McConnell, J.,309
McCulloch, R., 70
McGraw, G., 255, 303
McHugh, J., 84, 303
McLachlan, G., 51,134,303
McLean, J., 304
Meadows, c., 157,304
Me, L., 211, 304
Mehra, R., 293
Meinel, c., 157,304
Mendell, N.,296
Michalski, R., 211, 303
Millen, J., 243, 304
Miller, B., 183, 304
Miller, E., 211, 295, 304
Minnotte, M., 115, 304
Mitchison, G., 295
Mok, K.,302
Moore, A., 300
Morris, R., 70, 304
Morrisett, G., 255, 303
Moskowitz, I., 243-244, 300, 304
Mounji, A., 210, 304
Mukherjee, B., 157,293,304,307
Munson, J., 210, 296

Nachenberg, c., 219, 221, 304
Nasraoui, 0.,211,305
Neame, T.,291

Neumann, Po, 146-147, 157,210,302,
305-306

Newman-Wolfe, Ro, 157,244,305,
309

Nicholas, c., 304
Northcutt, So, xv, 89, 105,298, 305
Nilsell, I., 240, 305
Nuzman, Co, 53, 305

Obaidat, Mo, 185-186,293,305
Olshen, R, 293
Olsson, Ro, 302
Ong, c., 303

Park, c., 301
Paxson, Vo,53,55-56,58,80,297,305
Pearlmutter, Bo, 309
Peel, Do, 134,303
Pelaez, Co, 240, 305
Perelson, Ao, 297
Peterson, Mo, 210, 292
Petitcolas, F., 246-247, 249, 255, 292,

300,305
Petron, E., 42, 305
Petropulu, A., 310
Phillippo, So, 221, 305
Phillips, Co, 298
Pon, K.,307
Pooch, Uo,297
Porras, P., 146-147, 157,211,302,

305-306
Priebe, Co, 133-134, 294, 303, 306
Proctor, P., 74, 210, 306
Puketza, No, 293

Ralph, Bo, 298
Ramsay, Jo, 145, 171,306
Ravichandran, B.,293
Reichl, P.,293
Retter, c., 247, 303
Riedi, R, 70, 306
Robinson, Jo, 186,306
Rochlis, Jo, 235, 306
Rogers, Go,303
Rogers, So, 185,293
Rothermel, K., 70, 308
Roughan, Mo, 70, 306
Rowe, Jo,294
Rubin, Do,294
Ruschitzka, Mo, 301
Ryan, P., 158, 306

Sadoun, Bo, 185-186,305
Saniee, I., 295, 305
Santoro, T., 296
Schartzbard, A., 297
Schatz, Mo, 297
Schneider, So, 158, 306

AUTHOR INDEX 323

Schonlau, Mo, 188, 192-193, 195,
197-200,295,306,308

Seber, Go, 51, 306
Segal, Mo, 306
Seife, c., 247, 306
Sekar, R, 157,209,306
Shanbhag, T.,306
Shen, Do,304
Shepherd, So, 183, 307
Sherman, R,31O
Shieh, So, 211, 307
Shoch, Jo, 115, 239, 307
Silverman, Bo, 135, 137, 145, 171,

306-307
Simmons, Go, 243, 255, 307
Simoneau, P., 42, 307
Slater, Po, 298
Slivinsky, c., 293
Smaha, So,307
Smith, A., 308
Snapp, So, 211, 307
Solka, Jo, 114,303,307
Somayaji, A., 182,297,299,307
Sorkin, Go, 298, 300
Spafford, Eo, 218, 232, 235, 239, 301,

307
Spagnuolo, L., 295
Spellman, Po, 296
Spence, R, 71, 307
Spitzner, L., 307
Staniford-Chen, So, 294
Starr, No, 180, 308
Stevens, W.R, 3, 5, 9, 15, 19,23-24,

42,308
Stewart, A., 157,308
Stillerman, Mo, 211, 308
Stillman, Mo, 308
Stolfo, So, 211, 301-302, 308
Stoll, c., 209, 308
Stone, c., 293
Stork, Do, 295
Sweldens, w., 305
Swimmer, Mo, 300

Tamaru, A., 291, 302
Tamassia, R, 58, 295
Tan, A., 211, 308
Tan, K., 157,308
Taqqu, Mo, 302, 310
Tebaldi, Co, 46, 70, 308
Teo, Co, 211, 308
Tesauro, Go, 240, 308
Theilmann, w., 70, 308
Theus, Mo, 195,306,308
Thimbleby, Ho, 255, 308
Thode, Ho, 296
Thompson, K., 254, 308
Timmermans, Ho,70, 157,296
Titterington, Do, 134, 308

324 AUTHOR INDEX

Tollis, I., 58, 295
Toxen, B., 10, xv, 309
Tsang, P., 301
Tufte, E., 71, 309

Valdes, A, 171,291,299-300
Vander Wiel, S., 293
Van Rulle, M., 157,309
Van Veldhuizen, D., 303
Vardi,)'.,46-49,51-52,70,197 300

306,309 ' ,
Veitch, D., 70, 291, 306
Venema, w., 164,296
Venkatrarnan, B., 157,244,305, 309
Verma, S., 306
Vert, G., 209, 309
Vigna, G., 157,309
Vila, M., 211, 303

Wainer, R., 71, 309
Wallet, B.,307
Walter, G., 222, 309
Wand, M., 135, 137,309
Warrender, c., 180, 182,309
Watterman, M., 190, 309
Watts, D., 71, 309
Weber, D., 302
Webster, S.,302
Webster, w., 304

Weeber, S., 232, 307
Wegman, E., 66, 71, 309-310
Weiss, A, 305
Weiss, J., 255, 310
Wenke, L., 308
West, M., 46, 70, 308
West, R, 115
White, G., 297
White, S., 222, 226, 228, 301
Whitehurst, A, 302
Wilkinson, L., 71, 310
Willinger, w., 58, 296-297 302 310
Wills, G., 58, 310 "
Wilson, D., 301-302, 310
Witten, B., 295
Witten, I., 254, 310
Wyschogorod, D., 302

),ahav, J., 180,292
)'ang, X., 58, 310
)'ip, R, 294
)'oung, A, 240, 310
)'u, B., 293
)'ung, M., 240, 310

Zampunieris, D., 304
Zerkle, D., 294
Ziegler, R, 208-209, 310
Zissman, M., 302
Zukerman, M.,291

.cshrc,199

.rhosts, 165-166
Ibinlsh, 170
/etclhosts.deny, 205
/etc/passwd, 9, 35, 163, 169
/etc/services, 155
/etc/tw.config, 206
/ftp/etc, 164
/trnp, 161, 169-170

Acknowledgment number, 19-20,
105-106

Active sensor, 44
Activity graph, 150-151
Activity profiling, 109, 163,210
Acyclic graph, 231
ADC, 133-134, 140-144,317
Agent, 157,211,252-253
AIC, 138, 317
Aide, 206, 317
Akaike information criterion, 138
AKMDE, 134-135, 139,317
Alias, 162, 199
Anomaly detection, 150,210,229,

238,251
Anomaly detector, 150
Anonymity, 157
Anonymous FTP, 165
Anti-virus software, 219
Apache Web server, 160
Application layer, 5

Subject Index

Arrival times, 53
Attacks

covering up, 171
DDOS,252

Stacheldraht,253
TFN,253
TFN2K,253
TrinOO,253

denial-of-service, 234, 252
DOS, 252
host

apache2, 160
back, 160
buffer overflow, 165-167
denial-of-service, 159
FTP write, 165
loadmodule, 166
mailbomb, 160
password cracking, 163
password guessing, 163
phf, 35,164
race condition, 168
remote to user, 159
resource hogging, 161
spam,160
trojans, 166
user to root, 159
webbomb, 161
Windows NT, 162

network, 91
denial-of-service, 91, 157

325

326 SUBJECT INDEX

gaining access, 103
hijacking, 100, 153
icmp flood, 253
land,91-93
neptune, 92
network mapping, 98
password guessing, 104
ping of death, 93
probe, 98, 102
process table, 93
smurf, 95-96, 253
SYN flood, 253
syslogd,95
targa3, 94, 253
TCP hijacking, 105
teardrop, 95
UDP flood, 253
UDP storm, 96

remote to user, 162
user to root, 166

Audit record, 174
Autonomous agent, 211

Back door, 241, 254, 311
Back orifice, 250
Bacon, Kevin, 71
Base-rate fallacy, 78
Bayes' theorem, 77
Beginning of time, 7
Bias, 75,311
Big endian byte order, 13
Biometric, 183,200
Bourne shell, 170, 200
BSM, 204, 210, 317
Buffer overflow attack, 180
Buffer overflow, 165-167

Cache poisoning, 26, 311
CART, 102,317
Chargen port, 97
Checksum, 14, 17, 19,206,218,244,

246
Chmod,170
Chown, 170
Classifier, 74, 185

k-fold cross validation, 76
k-nearest neighbor, 77, 185, 187
k-point cross validation, 76
I-point cross validation, 76
CART,102
cross validation, 76
evaluation, 75
IPAM,197
linear, 185
Markov model, 197
minimum distance, 185-186
nearest-neighbor, 77, 79, 185-188,

313
neural network, 157, 185-186,240

quadratic, 185
resubstitution, 77
selection bias, 75
test set, 75-76
training set, 75

Clustering
k-means, 131-132, 134
agglomerative, 115
approximate distance, 133
complete linkage, 115
hierarchical, 111, 113, 115-116
nearest-neighbor, 111

Cohen, William, 182
Color histogram, 68-69, 114-115
Common user names, 163, 165
Compartmental model, 222
Compression, 108, 197,219,247,249
Computer immunology, 178
Confusion matrix, 187
CORBA, 211, 317
Core dump, 94, 311
Cornell,235
Correlation, 149
Country code, 24, 276-279
Cover, 247
Covert channel, 15, 242-243, 255, 311
Covert_tcp, 243
Crack,l64
Cracker, 311-312
Cross validation, 76, 187
Cshell,161,200,232
Cult of the Dead Cow, 250
Cybergeography,60

D-optimal experimental design, 46
Daemon, 311
DARPA, 79, 81-82,93,317
Data encapsulation, 10
Data fusion, 158
Data image, 114-119, 188-189,

191-194
Data mining, 211
Datagram, 16
DDOS, 252, 317
Death by monoculture, 216
Deep throat, 250
Default gateway, 23
Dendogram, 113, 115, 118, 189
Denial-of-service, 78, 91-96, 100, 106,

160-162,206,234,238,252
Density estimation

AKMDE,134
filtered kernel estimator, 136, 138
FKE,136
kernel estimator, 135
nonparametric, 135-136

DF, 7, 21
Diameter of the Internet, 102
Digraph,46,223,231, 312

Directed graph, 46, 231
Dirichlet distribution, 196
Distributed denial-of-service, 252
Distribution

X2 ,177
exponential, 56
extreme, 56
gamma,55
log-extreme, 56
lognormal, 56
normal, 134--135
Pareto, 56
Poisson, 48, 51-53, 57,70,80

DMZ, 312, 317
DNA,190
DNS server, 252
DNS,4,23-25,53,90,95, 120, 122,

312,317
cache poisoning, 26

DOE,317
Doly trojan, 250
Domain name server, 4, 8, 23-24, 312
Dominating set, 9, 312
Domination, 9
DOS, 317
Dumpster diving, 163,312

Echo port, 97
EM algorithm, 50, 134

normal mixture, 134
Email attachment, 237
Email virus, 235
Email,53,56,64,66,79-80,82-83,

104, 121, 145, 160-161
EMERALD, 126, 146, 150, 157,201,

317
analysis unit configuration, 149
communications, 149
engine configuration, 149
event collection, 149
event structures, 149
generic monitor, 149
profiler, 149
resolver, 149
resource object, 149
response methods, 149
signature engine, 149
SUbscription lists, 149

Encryption, xiv, 29-30, 149, 158-159,
163,168,206,218-219,240,
244--245,253

Enterprise-wide, 108
Epidemic, 222
Epidemiology, 221
Ethernet, 312
Euclidean distance, 185, 190-191
Evaluation

live network testing, 82
ROC curve, 79

SUBJECT INDEX 327

Execution stack, 166--167
Experimental design, 44--46
Extinction rate, 222

File integrity checker, 165,170,206
File integrity, 218
Filtered kernel estimator, 137
Finger, 94, 122, 167,235
Fingerprinting, 100, 151, 155-156
Finite-state machine, 157,211
Firewall, 107,207-208,238,250-251,

312
Fisher's linear discriminant, 186
FKE, 135,317
FLD, 186,318
Fork bomb, 232
Fork,312
Forrest, Stephanie, 180, 197,230
Fping,28
Fragmentation, 21, 93
FfP, 10,53,56,82,92, 104, 120-121,

127,129,163-165,200,238,
318

Fyodor, 100-101

Gateway, 22
Gcc, 170, 179-181
Genetic algorithm, 211
Gets, 167
Gnu, 170
GNU,318
Graph theory, 9, 46, 71
Graph,9,46, 58, 150,231,239,312

degree, 239
digraph, 223
random, 223
size, 223

GrIDS, 150,239,318
Gzip, xvi, 108

Hacker, 312
Half-open scan, 151
Hamming distance, 181, 312
Happy 99, 252
Hardware layer, 4--5
Herodotus, 246
Hidden files, 171
Hidden Markov Model, 182
Highland, Harold, 240
HMM,182,318
Hofmeyr, Steven, 230
Home network, 6
Host, 312
Http, 6, 10, 160
Https, 123
Human genome project, 115
Human in the loop, 75

I Love You, 237, 318

328 SUBJECT INDEX

lANA, 318
IBM, 240
ICMP, 7,15,22-23,27,30-31,33,35,

50,93,96,98,100-101,208,
243,249,251,253,318

destination unreachable, 101
echo reply, 15-16,96,249,253
echo request, 15-16,93,98,249
header, 15

code, 15
type, 15

port unreachable, 30
Identifiable, 48, 312
IDES, 209
IDS, 78,150,318
Ifconfig, 36
IFS,318
Imap,165
Immune system, 182
Immunology, 178,216,219,229
Inappropriate usage, 9
Inetd,251
Infection rate, 223
Insider threat, 200, 312
Interarrival times, 53-55
Internal field separator, 166
Internet Mapping Project, 58
Internet service provider, 7,24, 131,

312
Internet weather report, 60
Internet worm, 234-235
Internet, 4, 15,38,50,58,60, 71,80,

102,157,221,229,235,253
Interpoint distance matrix, 116,

118-119,125,191-193
Interval-based IDS, 107
IP, 7, 11,318

address, 4, 6-7,14-15,17,23-24,
26,28-31,33-34,37,40

don't fragment flag, 101
fragmentation, 21
header

checksum, 14
destination IP address, 14
don't fragment flag, 102, 156
fragment offset, 14
identification, 14
IP flags, 14
options, 14
protocol, 14
source IP address, 14
time-to-live, 14, 102
total length, 13
ttl, 102
type of service, 13, 102
version, 13

layer, 4-5
options, 14

loose source routing, 14

record route, 14
strict source routing, 15
timestamp, 14

Ipchains, 207
IRC, 238, 318
Iris data, 114
ISP, 24,161,312,318

Johns Hopkins, 180
JPEG,238
Junk email, 160

Kephart, JefiTey,240
Kernel estimator, 135

choice of bandwidth, 135, 137
Kevin Bacon Game, 71
Keystroke timing, 183-188,200
Kill, 41, 232
Kim, Gene, 206

LAN, 318
Latency, 60
Lincoln labs, 79
Linear predictor, 44
Linux,xv, 37,42, 82, 101, 107, 156,

178,204,207,238,253-254
Little endian byte order, 13
Load average, 160
Local area network, 10
Log server, 171
Logcheck, 204, 206
Logger, 129
Logic bomb, 252, 312
Login, 254
Loki, 15,243,249-250
Looping, 161, 163
Loose source routing, 14
Low-and-slow scan, 98
Ls, 171,253
Lsof, 39, 251

MAC, 10,318
Machine-Ieaming, 182, 188,211
Macro, 236
Mailbomb, 146
Malicious code, 94, 108, 234, 255, 313
Man page, 313
Marcum, Ron, 250
Markov model, 180, 196-197
Maximum segment size, 156
Mean integrated squared error, 135,

137
Melissa, 234, 236-237
Memory, 94
MF,21
Michaelangelo effect, 228
Microsoft Windows, 215, 250
Microsoft, 215, 237-238, 317
Minimum distance classifier, 185

MISE, 137,318
MIT, 79, 244
MITLL, 79-80,82,93,318
Mitnick, Kevin, 105
Mixture model, 134-135,313

AKMDE,134
number of components, 135

Modem, 38, 162
Monte Carlo, 70
Monty Python, 241
Morris, Robert, 235
MS-DOS, xvi-xvii, 215
Multilevel security, 242-243, 255
Muuss, Mike, 27

N-~am, 178-181,211,229
Naunan, Dan, 180
Named, 165
NCSC, 243, 318
Netbus,250
Netscape, 30,241
Netstat, 36-37,171,251
Network

byte order, 13
layers, 5
mapping, 78, 98
modeling, 53
profiling, 109
pump, 243-244
tomography, 46, 49, 70
traffic intensities, 43, 70, 80
traffic, 53, 58

Neural network, 210
News, 53, 56
NFS,39,127,318
NIC,318
NIDES, 149, 171,201,209,318
Nmap, 107, 110, 151, 156,239,250
Nonself, 230
Normal activity, 110
Normal density, 134-135
Normal distribution, 134-135
Normal mixture, 134-135
Novel attacks, 81
Nslookup, 28-29,107
NSVVC,9, 25, 80,89, 106, 109, 163,

318
Null scan, 155

Octet, 4
On/Off model, 58
Operating system fingerprinting, 100,

151, 156
Outlier detection, 117-119, 132
Outlier, 313

POf, 155-156
Packet, 313
Pairs plots, 63-64, 66-67, 114

SUBJECT INDEX 329

Parallel coordinates, 66, 68, 114
Passive fingerprinting, 155-156
Passive sensor, 44
Password, 8,11,26,29,104,112,

163-166, 168-169, 183-184,
186,206,218,235,238,241,
249,254,314

/etc/passwd, 169
authentication, 186
cracking, 163, 166
file, 164-166, 168-169,206,235,

249
guessing, 104, 163
shadow, 165
sniffing, 166

Patch, 313
Pattern recognition, 84
PD, 73, 318
PDF, 313
Perl, 106
Personal computer, 220
PFA, 73, 318
Phf,35,164
PID, 203, 318
Ping, 15,27-28,46,93
Point to point protocol, 37-38
Poisson distribution, 48, 51-53, 70, 80
Port numbers, 6, 257-263
Port scan, 155, 250
Port, 313
Portal of doom, 250
Portsentry, 49,205
Postal analogy, 3
PPP, 37-38, 318
pppstats, 38
Precision, 74
Privilege, 166
Probability density function, 50, 196,

313
Probability distribution function, 313
Probability of detection, 73
Probability of false alarm, 73
Probe, 78, 98
Process ID, 41,179,203,233
Process monitoring, 209
Profiler, 149
Profiling database users, 211
Promiscuous, 7,36,129,313
Protocol layer, 4-5, 106
Protocols

ICMP,7, 15,33
Internet control message protocol, 15
Internet protocol, 11
IF, 7, 11
PPP,1O
RIP, 23
routing information protocol, 23
TCP, 7,10,17,19,33
transmission control protocol, 17

330 SUBJECT INDEX

UDP, 7, 10, 16,33
user datagram protocol, 16

Proxy, 313
Ps, 171,203
Purdue University, 206

R,64,66,179
Race condition, 168,209
Ramen, 238
Random graph, 216, 222
Rdist, 169-170
Read-only interface, 108
Real-time IDS, 107
Recall,74
Receiver operating characteristic

curve, 74
Record route, 14
Recursive formulas, 172
Red Hat Linux, 31, 42, 179
Red team, 83, 313
RESET packets, 251
Resolve, 313
RFC, 84,102,318
Ringzero, 250
RIP, 23, 318
RIPPER,182,211,318
Rivest, Ronald, 244
Rlogin, 104, 165,200
Rm, 162
ROC curve, 74, 79, 130, 142
ROC, 318
Root DNS servers, 26
Root, xvii, 162, 166,313-314
Rootkit,204,253,313
Router, 4-5,314
Routing matrix, 47-48
Routing table, 22, 49
Routing, 22

S,179
Saint, 239
SANS, 250, 318
Scatter matrix, 186
Scatter plots, 60-63
Scp, 29-30
Script kiddie, 167, 314
Secure channel, 29
Secure shell, 29, 107-108
Security policy, 7
Security tools

aide, 206
ifconfig, 36
ipchains, 207
logcheck, 204
Isof, 39, 204
netstat,36
NIDES, 171
nmap, 151
nslookup, 28

pOf,156
ping, 27
portsentry,205
pppstats, 38
ps,203
route, 37
SHADOW, 106
snort, 33
ssh,29
swatch,205
tcpdump,6
tcpshow,31
top, 203
traceroute, 30
tripwire, 165, 206
whois, 29

Selection bias, 75
Self-similar, 56-58, 70
Sendmail, 165, 182,235
Sensor, 107, 314
Sequence number, 6, 19-20, 35, 105,

153,243-246,250
SETI,234, 318
SHADOW, 25, 29-30, 33, 75, 80, 89,

106-109,130,149,318
Shell,200
Shimomura, Tsutomu, 105
Signature, 149, 168,219,314
Silicon Graphics, 104
SIR, 240, 319
SIS, 222,319
Site security officer, 78
Small world, 71
Snail mail, 160,314
Sniffer,6,8,29-30,33,49,314
Snort, 33-34,36, 109, 149
Social engineering, 104, 163, 166,314
Socket, 39
Sockets de troie, 250
Software patch, 216-217
Solaris, 82,204,253
Spafford, Eugene, 206
Spam, 146, 160,314
Spawn, 312, 314
Spoof, 26, 49,314
Spoofing, 91,95-96,98, 100, 105,

157,160-161,251,253,314
SRI, 146,319
Ssh,27,29-30, 90, 104, 121, 123,200,

208
SSO, 78, 83, 319
Stacheldraht, 252
Stateful firewall, 99, 314
Stateful, 243, 314
Statistical anomaly, 149
Steganography,242,246,248-249,

314
Strace, 178
Strict source routing, 15

Strings, 201,254
Su, 166
Subseven,250
Suid,170
Sun, 204
SunOS,82
Super user, 159, 166,313-314
Swatch, 205
SWITCH, 102, 319
Switched network, 8
SYN flood, 253
SYN packet, 7, 19,69,91,93, 130,

209,251

TCP,6-7, 10, 17,20,33,50,53,93,
98,106,154,161,205,243,246,
253,313,319

checksums, 246
connections, 19
FIN packet, 101
header

acknowledgment flag, 19
acknowledgment number, 18
checksum, 19
destination port, 18
FIN flag, 19
flags, 18
length, 18
options, 19
PUSH flag, 19
reserved, 18
reset flag, 19
sequence number, 18
source port, 18
SYN flag, 19
urgent flag, 18-19, 102
urgent pointer, 19, 102
window size, 19, 102, 156

options, 7, 101
maximum segment size, 156

reset packet, 99-100, 155
scan, 154
sequence number, 101
SYN flag, 151, 155
SYN packet, 7, 91-93, 99,105-106,

110, 12~ 130, 156,251
SYN scan, 151
three-way handshake, 19-20,50,53,

68, 105, 154, 161,314
TCPIIP,314
Tcpdump,6, 8, 33-34, 36,49, 80,

89-90, 106, 108-109, 129, 153,
205

filters, 90
Tcpshow,31
Telnet, 56, 77,80,82,90,92, 104, 121,

162-163,200,241,243,246
Test data, 82
Test

SUBJECT INDEX 331

X2,56
Kolmogorov-Smirnov,80,157

T~,252-253,319
T~2K,252-253,319
TFfP, 164-165
Time-to-live, 14, 30-31, 156
Timeout, 92
Timestamp, 14
TOCTTOU, 169,319
Top, 203
Traceroute, 27, 30-31,50,81,102,

109, 127, 130
Traffic analysis, 157
Training data, 82
Transition probability, 196
Transmission control protocol, 17
Trap door, 249
Trashing, 163,314
Tribe Flood Network, 252
TrinOO,252-253
Tripwire, 165, 170, 206
Trojan Horse, 241
Trojan port numbers, 266-274
Trojan, 38,166,171,241-242,254,

314
Trojans, 100, 110, 166,252,265

back door, 249
back orifice, 250
deep throat, 250
doly trojan, 250
happy 99, 252
Loki, 15,249-250
netbus,250
portal of doom, 250
ringzero, 250
sockets de troie, 250
subseven, 250

TTL, 14,31, 102, 156,319
Type I error, 73, 185-186
Type II error, 74, 185-186
Type of service, 102

UC Davis, 150
UDP, 7,10, 16, 19-20,26,30-31,

33-34,90,97,126,128,130,
155,205,253,313,319

datagram, 16
header

checksum, 17
destination port, 17
length, 17
source port, 17

Unauthorized use, 230
Unix, 7, xv-xvii, 82, 93,163,171,

220,232-233,238,253-254
commands, xvi

Unix
tools

nslookup, 28

332 SUBJECT INDEX

ping, 27
ps,203
strings, 201
top, 203

Usenet,104
User authentication, 183, 185
User profile, 211
User profiling, 163, 183,210
User session, 53

Virus, 83, 215-216, 221, 242, 250,
252,315

detection software, 219
detection, 218, 220, 230
generic decryption, 219
hoax, 220
immunology, 229
macro, 220, 236
Melissa, 220
metastable distribution, 226
metastable phase, 226
Michaelangelo effect, 228
phylogeny, 231
polymorphic, 219
propagation, 216
replication, 216-218
scanners, 218
signature, 219
SIS model, 222

Visualization
color histogram, 68, 114, 132
data image, 114, 117, 188

pairs plots, 63, 114
parallel coordinates, 66, 114
scatter plots, 60

WAN, 319
War dialer, 315
War dialing, 163
WATCHERS, 150,319
Web resources, 281
Web server, 160
Web, 10,30,53,62-63,70-71,79-80,

82,99,104,120,122-123,129,
160-161,164,211,242

Wegman, E., 68
Whois, 27, 29, 107
Window size, 7,102,156
Worm, 94, 115, 151, 161,216,

220-221,232,235,242,252,
315

ILY,237
macro, 236
melissa, 83, 236
ramen, 238

X Windows, 30, 36,127,166
Xerox, 215
Xhost,166
Xlock,166
Xmas scan, 155

Yertle the Turtle, 168
Yugoslavia, 58

ALSO AVAILABLE .FROM SPRINGER!

FINN V. JENSEN

BAYESIAN NETWORKS
AND DECISION GRAPHS
Bayesian networks and decision graphs are for
mal graphical languages for representation and
communication of decision scenarios requiring
reasoning under uncertainty. The book empha
sizes both the human and the computer side. Part
I gives a thorough introduction to Bayesian net
works as well as decision trees and influence dia
grams, and through examples and exercises, the
reader is instructed in building graphical models
from domain knowledge. This part is self-con
tained. Part II is devoted to the presentation of
algorithms and complexity issues.

2001/280 PAGES/HARDCOVER
I SB N 0.387·952594
STATISTICS FOR ENGINEERING AND INFORMATION SCIENCE

ARNAUD DDUCET, NANDD DE FREITAS, and
NEIL GORDON

SEQUENTIAL
MONTE CARLO
METHODS IN PRACTICE
Monte Carlo methods are revolutionizing the
on-line analysis of data in fields as diverse as finan
cial modeling, target tracking and computer
vision. These methods, appearing under the names
of bootstrap filters, condensation, optimal Monte
Carlo filters, particle filters and survival of the
fittest, have made it possible to solve numerically
many complex, non-standard problems that were
previously intractable. TIlls book presents the first
comprehensive treatment of these techniques,
including convergence results and applications
to tracking, guidance, automated target recogni
tion, and many other areas.

2001/592 PAGES/HARDCOVER
ISBN 0.387·95146-6
STATISTICS FOR ENGINEERING AND INFORMATION SCIENCE

The Elements
of Statistical

Learning

Predlction, lnfcrcncc.
ODd "" .. Mlniog

TREVOR HASTIE, ROBERT TIBSHIRANI, and
JEROME FRIEDMAN

THE ELEMENTS OF
STATISTICAL LEARNING
Prediction, Inference, and Data Mining

During the past decade there has been an explo
sion in computation and information technolo
gy. With it has come vast amounts of data in a
variety of fields such as medicine, biology,
finance, and marketing. The challenge of under
standing these data has led to the development
of new tools in the field of statistics, and spawned
new areas such as data mining, machine learn
ing, and bioinformatics. This book describes the
important ideas in these areas in a common con
ceptual framework. The many topics include
neural networks, support vector machines, clas
sification trees and boosting.

2001/520 PAGES/HARDCOVER/$74.95
ISBN 0.387·95284-5
SPRINGER SERIES IN STATISTICS

To Order or for Infonnation:
In North America: CAll.: 1-8OO-SPRINGER or FAX:
(201) 34S4505 • ~ Sprlnger.Ve~ag New Yorl<.
Inc .. Depl. S2566. PO BOlC 2485. Secaucus. NJ
07096-2485 • VISIT: Your loealtechnical bOOkstore
• E·MAll: orders@springer-nY.com

Outside North America: CAll.: +49/30/8/27 87·3 73
• +49/30/827 87'() • FAX: +49/30 8 27 87 301 •
~ Springer-Verlag. P.O. Bo. 140201. [H4302
Berlin. Germany • [·MAlL: orders@s~nger.de

PROMOTION: S2566

