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Foreword 

Just over 25 years ago, Susan Owicki started working on the problem of 
proving the correctness of concurrent programs (called multiprograms in 
this book) for her Ph.D. thesis. At the time, there was little work on the 
subject, and my attempts to teach that little work in a summer course had 
led to dissatisfaction and to my asking her to work on the topic. Susan did 
a great job, coming up with the idea of interference freeness, which, in one 
form or another, is at the core of most work on correctness of concurrent 
programs. Interference freeness is quite simple to state. 

Consider two processes P and Q, which communicate using 
shared variables. If execution of P doesn't interfere with the 
proof of correctness of Q, and if execution of Q doesn't inter
fere with the proof of correctness of P, then P and Q can be 
executed properly together -their correctness proofs are con
sistent with their concurrent execution. P and Q are said to be 
interference free. 

Thus was born the first complete programming logic for partial correctness 
of multiprograms, now called the "Owicki/Gries Theory". By concentrating 
on a process not interfering with the proof of another process, instead of 
with execution of that other process, the task of proving correctness of 
multiprograms became tractable. 
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But it is difficult to prove a program correct after it has been written. 
It is far easier to develop the proof and program hand in hand -with the 
proof ideas leading the way. A methodology for developing programs, which 
is based on a theory of correctness, is quite necessary. 

In 1969, Tony Hoare gave us the first partial correctness logic for se
quential programs in his famous paper "On an axiomatic basis for com
puter programming". It took five more years for Edsger W. Dijkstra to 
present us with a methodology for developing programs, in his 1974 paper 
"Guarded commands, nondeterminacy and formal derivation of programs" 
and his 1976 book "A Discipline of Programming" . 

However, a useful methodology for developing multiprograms has eluded 
uso There have been attempts in the past 25 years, but, as far as I can see, 
nothing emerged that was really simple, teachable, usable. Until this book! 

Wim Feijen and Netty van Gasteren have done a marvelous job of dis
cussing the formal development of multiprograms. First, they keep the core 
theory simple, allowing one to focus on the problem instead of the tool be
ing used to solve it. So much in the literature is encumbered by awkward, 
complex theory! 

Second, they develop just a few manageable techniques for reducing the 
workload required for proving correctness, like orthogonality, system in
variants, mutual exclusion, exploitation of symmetry, the construction of a 
body of useful theorems, and abstraction. 

Third, they create a nice notation for remembering what remains to be 
accomplished in developing a proof and program. In science and engineer
ing, so much depends on the notations we use! 

Fourth, they carefully craft strategies and principles to be used in guiding 
the development of a multiprogram, keeping them to a manageable few. So 
much depends on the guidelines we can give others and the way they are 
presented, and Wim and Netty have done a superb job in this regard. 

Fifth, they illustrate their methodology on many real multiprograms 
from concurrent vector writing to the safe sluice to Peterson's mutual ex
c1usion example to handshaking protocols. The reader has no choice but to 
be convinced that the ideas in this book are useful! 

Finally, the writing is impeccable! Simple. Clear. Economical. Terse, but 
not to a fault. The care that went into writing this book exudes from every 
page. 
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The formal development of programs has not caught on in the world 
of computer science as much as some of us had expected it would. Not 
that every program should be constructed formally -but the ideas should 
filter into one's everyday programming. For example, it just made sense, 
we thought, for every beginning programming course to teach about loop 
invariants when discussing loops. And yet, today, in most computing de
partments, majors can go through four years of study without learning 
these basic concepts! 

The reason for this may lie in the fact that teaching a methodology 
implies teaching people how to think, and most people have an aversion to 
changing how they think. Their motto might be, "We know how to think; 
just give us the facts." All of us have this tendency in us to some degree, 
as we can see from Mark Twain's, "Nothing needs changing so much as the 
habits of others." 

Therefore, this fine book that Wim and Netty have produced may not 
have the impact that it could (or should). But those who revel in economy 
of thought, who delight in seeing how powerful clear thought can be, who 
like to see guiding principles and strategies at work, who are interested 
in clarifying their own thought processes concerning the devclopment of 
multiprograms -all these people are in for a treat when they pick up this 
book. 

David Gries 
William 1. Lewis Professor Of Engineering and 
Cornell Weiss Presidential Fellow 
Computer Science Department 
Cornell University 
3 February 1999 



Preface 

It was around 1960 that parallel processing became an economie necessity 
and - fortunately - a technieally feasible option as well. Ever since, 
interest in this field of computing has been booming. By now, thousands 
of papers and hundreds of books inform us about a huge variety of topies 
related to parallelism, such as operating systems, machine architectures, 
communieation networks, circuit design, synchrony and asynchrony, sys
tolies, protoeols for eommunication and synchronization, distributed algo
rithms, massive parallelism, logies for concurrency, automatie verification, 
model checking, and so on, and so forth. So why add yet another book to 
the field? The answer is simple: something is missing. 

Among all the interests in parallelism, there is an essential and funda
mental one that has remained largely unexplored, namely the question of 
how to design parallel programs from their specification. And that is what 
this book is about. It proposes a method for the formal development of 
parallel programs - multiprogmms as we have preferred to call them - , 
and it does so with a minimum of formal gear, viz. with the predieate cal
culus and with the meanwhile well-established theory of Owieki and Gries. 
The fact that one can get away with just this theory will probably not 
convey anything to the uninitiated, but it may all the more come as a sur
prise to those who were exposed earlier to correctness of multiprograms. 
Contrary to common belief, the OwickijGries theory can indeed be effec
tively put to work for the formal development of multiprograms, regardless 
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of whether these algorithms are distributed or not. That is wh at we intend 
to exemplify with this book. 

We wish to state, right at the start, that the uninitiated reader may have 
an advantage in coming to grips with our text. He has no choiee but to read 
from Chapter 1 onwards, chapter after chapter, and that is precisely what 
we would like every reader to do. The more experienced reader may perhaps 
start browsing, recognizing all sorts of familiar things, and then conceive 
them in the way he is used to. For instance, he may dive into Chapter 8 
where the guarded skip is discussed, and then conclude that it is nothing 
but the usual await-statement. But then he is on the verge of missing our 
point. 

We understand and construct our multiprograms in a purely static way, 
i.e. without recourse to any form of understanding of what may possibly 
happen during execution. Indeed, we deal with them via the relationship 
between the program text and the corresponding proof obligations. When 
developing multiprograms we will always be guided by the specification 
and by the proof rules of Owicki and Gries, whieh then lead the way in 
how to proceed with the design. So, readers who are inclined to hold an 
operational view of multiprograms will most likely have to make a V-turn in 
their appreciation ofthe subject matter. In our writing, we have anticipated 
this, and we have tried to implant this different feel for the subject in a 
stepwise fashion, building up our concepts and nomenclature, chapter after 
chapter, at a leisurely pace. 

However, it is not true that we can dispense with the computational 
model entirely, because there are a few occasions where we need it for 
arguing about progress or "liveness" properties. Since our method is driven 
solely by the requirement of partial correctness, be it enhanced with a 
numbcr of strategie rules to not exclude progress beforehand, each of our 
developments will, by necessity, end with the obligation to demonstrate 
progress for each of the components of the multiprogram. Because we will 
not introduce a formalism for dealing with progress, we will every now and 
then have to resort to the operational interpretation of our program texts. 
We say "every now and then" because there is a huge class of algorithms 
that run under control of what we have called a multibound, and for such 
algorithms progress for the individual components follows from the absence 
of total system deadlock. And demonstrating the latter is completely within 
the scope of the OwickijGries theory. 

* * 
* 



Preface XIll 

We now briefly sketch the structure of the book and the prerequisites for 
reading it. 

For just reading it, not much is required: a passive familiarity with the 
predicate calculus suffices, and prior exposure to Hoare-triple-like semantics 
of (sequential) programming is an advantage. However, for an active partak
ing in the development of multiprograms, well-versedness in the predicate 
calculus is indispensable; but what is more, it requires a nearly undefinable 
mathematical discipline, aiming at simplicity and at not taking premature 
or hasty design decisions. The reader who embarks on the exercises will 
definitely notice this. So although technically speaking, the material can 
be taught to freshmen, it factually belongs to the computing major and to 
graduate studies, in which we have given classes on it for many years. 

The book consists essentially of two parts, separated by Chapter 12 
the Yellow Pages, wh ich contain a summary of the foregoing. The first part 
sets out the ingredients, vocabulary, techniques and attitudes to be used in 
the second part. In particular, Chapter 10 explains our mode of derivation 
of multiprograms in all relevant detail. The second part contains the true 
subject matter: it presents a long se ries of examples of program derivation. 
In the first half of this se ries - say up to and including Chapter 21 - , 
general strategies, heuristics and rules of thumb guiding the design process 
are discussed along with the examples. Thereupon, they are freely used in 
the second half of the series. The last technical chapter - Chapter 31 -
signals a fundamental shortcoming of our method - one that is related 
to progress issues - and it provides a constructive proposal for how to 
overcome it. 

The book was written as a research monograph, not as a textbook. On 
urgent request of David Gries we included a collection of exercises, which 
can be found in the Yellow Pages. Other exercises are scattered through 
the text, and they can be traced via the index. 

Finally we wish to confess that, no matter how cumbersome the process 
of publication is, we are glad to have undertaken it. Through the compo
sition of this text we have gained a much better understanding of parallel 
programming, and we hope that our readers can now have a share in this 
experience. 

* * 
* 

In a research project like this, many people get involved, some a little 
more and some a little less, some consciously and some without knowing 
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it. And therefore here is the place where it is our pleasure to give credit 
where credit is due. 

The last two people who got involved were Michael Streichsbier (CS
major at the Technical University of Munich), who - on our behalf -
had to fight the LaTeX-standards, and Dr. William R. Sanders (Sr Editor 
Computer Science, Springer-Verlag, California), who conducted the publi
cation process. We very much appreciate their help. 

Among the first people involved were KrzysztofR. Apt and Ernst-Rüdiger 
Olderog, without them knowing it. Their monograph [A091] taught us that 
what we were doing was not essentially wrong, which was a reassuring ob
servation. 

Then, when we had almost finished our text, Fred B. Schneider's text
book [Sch97] was published, and that was exactly what we needed. In it, 
one can find, through his Proof Outline Logic, the mathematical and logical 
underpinning of the kind of objects that we are dealing with here. We are 
glad that next to our engineering-fiavoured approach to multiprogramming, 
he managed to present a more fundamental study on the subject. 

Next we wish to thank our colleague Rob R. Hoogerwoord, who eagerly 
followed and supported our experiments. He also made a number of tech
nical contributions, some of which we were happy to record in this book. 

The ETAC (Eindhoven Tuesday Afternoon Club) - with Lex Bijlsma, 
Ronald W. Bulterman, Carel S. Scholten, and Frans W. van der Sommen 
as the (other) core members over the last five years - had an enormous 
infiuence on our thinking, not just on multiprogramming but on mathemat
ical design in general. It is hard to envision our own scientific development 
without this forum and its members. 

When at some point, due to a number of local circumstances, our project 
had gone into a dip, two very devoted students applied for doing their mas
ter's with uso They were Perry. D. Moerland and Frans W. van der Sommen. 
Their dedication to the subject was so heartwarming and their results were 
so respectable that we so on got out of our dip. Without them, we would 
never have written this book, and they will recognize their contributions 
and infiuence all over the place. 

Another student, Dana S. Buhaceanu, taught us about distributed bar
rier synchronization [BF96], of which Chapter 27 is a variation. We are 
very grateful for her lessons. 
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Once we had decided to embark on our monograph, we felt the need and 
obligation to have the outcome judged by people with different educational 
and cultural backgrounds. We then asked four colleagues, each of them 
active computing scientists, whether they would be willing to do this for 
uSi they were Lex Bijlsma (Dutch, Eindhoven University of Technology), 
Carroll C. Morgan (Australian/British, Oxford University, UK), Greg Nel
son (American, Digital Equipment Corporation, now Compaq, Palo Alto), 
and Birgit Schieder (German, Technical University of Munich), and they 
all agreed. Sadly enough, Greg Nelson had to give up, due to serious health 
problems. We thank hirn for his willingness to participate. The others gave 
us their comments and criticisms and they did so in an impeccable way, 
going far beyond what we could reasonably expect from any of them. We 
have been happy to incorporate their many suggestions. 

Then there is a man who calls hirnself "the Gries". Of course, we realize 
that our manuscript is entirely based on the theory of Susan S. Owicki and 
David Gries, a theory for which they both deserve our greatest respect, 
but there is more to the man whom by now we have known for twenty 
years. He was and still is our American teacher (sometimes pretending to 
be our pupil!), our advisor and collaborator in many enterprises, scientific 
and otherwise, and ... he is a friend. We owe hirn a lot. 

And finally, there is Edsger W. Dijkstra, who guided our first steps into 
the discipline of programming and who has been teaching us, up to this 
very day, what computing and mathematics are really about. To hirn, and 
to Mrs. M.C. Dijkstra-Debets ~ who always took care of all the rest! ~ 
we express our warrnest gratitude. Without them, we would never have 
developed into what we are now, and it is to both of them that we dedicate 
this monograph. 

W.H.J. Feijen 
A.J .M. van Gasteren 

Eindhoven, The Netherlands 
24 February 1999 
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1 

On Our Computational Model 

In this monograph we investigate sets of sequential programs that are ex
ecuted concurrently. Therefore we shall start with an elaboration of the 
two key elements in this description of our subject, viz. "execution of a 
sequential program" and "concurrent execution (of programs)" . 

Of these two notions, we first investigate the one of a sequential program 
and its exccution, because it is the simplest and most familiar one. A se
quential program is a recipe under control of which so me mechanism, e.g. 
an automatie computer, generates a scquential process, that is: a sequence 
of primitive actions ~. to be called actions, for short. The precise details 
of these actions do not concern us now, but it is important to know that 
they take place one after another. That is to say, an action does not begin 
until the preceding one has ended. 

There are two fundamental constraints, however, that we wish to impose 
on the sequential processes to be considered. These are 

- any constituent action will take a finite period of time; 
- if upon termination of an action the recipe ~ the program ~ prescribes 

a next action to take place, then this next action will begin within a finite 
period of time after the preceding action has terminated. 

To put it differently, we will confine our attention to recipes and execution 
mechanisms that can only produce sequences of terminating actions with 
terminating pauscs in between the actions. Such sequenccs can be finite 
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or infinite. The only way in which a sequence can be finite is because the 
recipe demands it, and not because there is an eternallast action or pause. 
In short, the show goes on as long as necessary. 

Here is an example. Consider sequential program 

I[ var x: intj 

x:=o 

j do true ---t x:= x+ 1 od 

]1 

with the usual interpretation of the statements. Our constraints now imply 
that the value of x will eventually exceed any natural number. So execu
tion mechanisms that at some moment can halt indefinitely, for instance 
because being irreparably out-of-order, fall outside the scope of our current 
interest. 

Also, if some mechanism has been designated to execute the above pro
gram and, in addition to that, program 

I[ var y: intj 

y:=o 

j do true ---t y:= y+ 1 od 

]1 
our constraints imply that the values of both x and y will eventually 
exceed any natural number. More specifically, if a number of sequential 
programs are, for instance, to be run "simultaneously" on a one-processor 
installation, the underlying scheduling mechanism for granting computa
tion time to the various programs has to be designed in such a way that 
our "progress" constraints are met. 

The usual jargon would say that, by our constraints, we have adopted a 
"weak fairness" regime far our system. True as this may be, however, we 
have ample reason to avoid the not ion "fairness", one reason being that it 
tends to invite overwhelming complexity - see, for instance, [Fra86]. 

* * 
* 

Now we turn our attention to the concurrent execution of sequential 
programs. By concurrent execution we just mean that the various sequential 
processes take place simultaneously. But what if two actions of different 
processes overlap each other in time? Usually, actions change the state of 
affairs, so the critical quest ion now is what happens if the two overlapping 
actions change the same state of affairs in a conflicting manner. 
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Consider, for instance, the "simultaneous" activities of putting a high 
voltage level on a wire and putting a low voltage level on that same wire. It 
is very likely then, that neither of the two activities will have the intended 
effect. Short circuit could be the result, or worse. If we really want the two 
activities to yield their intended effect, the only safe way out seems to be 
to see to it that these conflicting actions do not overlap but take place one 
after the other: they have to mutually exclude each other in time. 

Many mechanisms provide protection against unwanted interference. 
Most toilet pots can, by construction, be used by only one person at a 
time, and most cars have only one steering wheel. On many a computer 
installation simultaneous aceess to one and the same memory loeation is im
possible. The presence of so me of such built-in, indivisible, non-interferable 
aetivities - to be called atomic activities - is vital for the organization 
of concurrently exeeuted sequential programs. 

So our concept of sequential processes now needs to be constrained one 
further step, to the extent that in our eomputational model all primitive 
actions will be considered atomic. This means that if our programs are to 
be run by a particular mechanism, it had better provide "atomic implemen
tations" of these aetions. And if it does, eonflicting actions no longer are a 
problem: if, in the coneurrent execution of a number of sequential programs, 
an attempt is made to execute two conflicting activities simultaneously, the 
result will be as if the two aetivities take place in some order. 

What ab out the coneurrent execution of two non-eonflicting actions? 
There is not hing wrong if at one and the same time one flip-flop is forced to 
beeome flip and a different flip-flop is foreed to beeome flop; simultaneity 
is harmless in such cases. But we can still think of thc rcsult as if thc 
two non-eonflicting activities take place in some order, and for reasons of 
homogeneity we shall do so. 

As a result, our final understanding of the concurrent execution of a 
number of sequential programs is that the execution mechanism generates, 
under control of the various programs, a huge sequence of atomic actions 
that is an interleaving of the individual sequential processes. 

Note that time plays no röle in our understanding of sequential processes 
and eoncurreney. Nothing is known about the relative speeds of processes, 
and as far as we are eoncerned, the duration of atomic aetions can be 
anything, as long as it is finite. The only thing that matters is the order of 
the atomic actions in the interleaving. 

* * 
* 
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As far as the description of our computational model is concerned, we 
could leave it at this. It is quite instructive, however, to illustrate some 
of the many phenomena that concurrency can lead to. Here is an example 
that we learned from [Sne93]. 

Consider the statements x:= 1 and x:= 2, taken from two different 
sequential programs. If the execution mechanism provides an atomic im
plementation of such assignments, the concurrent execution of x:= 1 and 
x:= 2 yields x = 1 V x = 2. But suppose that we have a different orga
nization. Suppose that x:= 1 is implemented by writing bit string (0,1) 
into a two-bit memory location, bit by bit and from left to right, and that, 
similarly, x:= 2 is implemented by writing (1,0) into that same memory 
location. Now even if writing a single bit is atomic, the composite result of 
the concurrent execution of x:= 1 and x:= 2 can yield any of the final 
values 0, 1, 2 or 3 for x, rat her than the values 1 and 2 only. This 
is due to the six interleavings, Le. orderings, in which 2 + 2 individual bit 
assignments can take place. If, with such an organization, we nevertheless 
wish to achieve x = 1 V x = 2 , we have to do something about it. What 
we have to do is to superimpose, on the bit string writing, an additional 
algorithm that precludes the generation of the faulty answers 0 and 3, 
and we shall do so in a later chapter. One of the conclusions to be drawn 
from this example is that our programming task essentially depends on 
which statements are considered atomic. 

Here is another example of what concurrency has in store for uso Consider 
the following very simple, meaningless program 

x:=y+l 

; X:=y2 

; x :=x-y 

It consists of just three assignment statements, each of which we consider 
atomic. Now if we start it in an initial state such that x = 7 1\ Y = 3, it 
will deliver x = 6 1\ Y = 3 as a final answer. 

Also consider the equally simple and meaningless program 

y:=x+l 

; y:=x2 

;y:=y-x 

When started in the same initial state x = 7 1\ Y = 3 , 
it yields x = 7 1\ Y = 42. 
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Now let us run these programs concurrently. Our advice to the reader 
is not to waste time on finding out what the result iso The possible final 
values for x and y are listed below. 

x y 

-4032 8128 

-3968 4032 

-600 1225 

-575 600 

-72 153 

-63 72 

-1 2 

2 -1 

6 30 

20 380 

56 3080 

132 12 

240 -224 

496 -240 

1722 42 

2352 -2303 

4753 -2352 

5112 72 

6480 -6399 

13041 -6480 

The moral of the story of course is, that while each of the individual 
programs is of an extreme simplicity, their parallel composition has become 
a horrendous beast. 
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Our Program Notation and Its 
Semantics 

Since in this monograph we will bc studying the design of concurrently 
executed sequential programs, we need a notation for sequential programs 
in the first place. At this point we havc made a very traditional choice by 
adopting Dijkstra's Guarded Command Language, which was first defined 
in [Dij76]. Its distinguishing features are notational and mathematical aus
terity, and the incorporation of nondeterminacy in sequential programs. In 
our study of multiprogramming, nondeterminacy will hardly play a röle, 
but mathematical austerity will do so all the more. We will briefly describe 
this program notation, which we expect to offer no problem to anyone fa
miliar with ALGOL60, Pascal, or even C. We will discuss its semantics in 
more detail, anticipating in our discussion that in later chapters sequential 
programs will be considered in cooperation with other ones rather than in 
isolation. 

2.0 The notation 

The elementary statements are 

• skip % which does not hing 
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and 

• x:=E % which evaluates expression E and then as
signs its value to variable x. 

The first statement is just called "the skip", and the second is "an as
signment (statement)". Assignment statements can also take the form of 
so-called "multiple assignments" 

• x, y := E, F % which evaluates E and Fand then as
signs their values to x and y respectively. 

Out of existing statements, one can construct new statements. The Guar
ded Command Language provides three possibilities for construction. They 
are - with So and Si existing statements -

• So; Si % first So is executed, and then Si. 

This is the so-called "sequential composition (of So and Si)". 

• if Bo -) So 

~ Bi -) Si 

fi 

% executes So if Bo evaluates to true, or 
Si if Bi evaluates to true, and otherwise 
we don't know yet - see much later. 

This is the so-called "Alternative Construct". It consists of the two 
guarded commands Bo -) So and Bi -) Si. An alternative con
struct may consist of any number of guarded commands, even zero. 
The B's are called "the guards" and the S's are the "guarded 
statements" . 

• do Bo -) So 

od 

% this is just a loop, which keeps executing 
So or Si as long as the corresponding 
guard evaluates to true. When both guards 
are false the loop terminates. 

This is the so-called "Repetitive Construct" or the "Loop". Like the 
alternative construct, it may contain any number of guarded com
mands. 

So much for our notation. 
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2.1 Hoare-triples and the wlp 

In view of the operational complexity that we are faced with when sequen
tial programs evolve concurrently, the operational description given of the 
semantics of our program notation is all but completely useless. Instead, 
we will resort to a formalism that not only precisely describes what we 
can expect of a program when it is executed on a machine, but ~ most 
importantly -- departs from computational associations as rigorously as 
possible. The formalism that we have chosen is the so-called "predicate 
transformer semantics", and more in particular the predicate transformer 
semantics as given by "the weakest liberal precondition", wlp for short. 

The first stepping stone towards explaining the wlp-semantics is the no
tion of a "Hoare-triple", so named in honour of C.A.R. Hoare. A Hoare
tripIe [Hoa69] consists of a pair of predicates ~ P, Q ~ and a state
ment ~ S. It is denoted 

{P}S{Q} 
Its operational interpretation is as follows: 

{ P} S {Q} is a boolean that has the val ue true if and only 
if each terminating execution of S that starts from an initial 
state satisfying P is guaranteed to end up in a final state 
satisfying Q. 

So if {P} S {Q} holds and S is started in astate satisfying P, we 
can be sure that Seither terminates in astate satisfying Q or does 
not terminate at all. We wish to draw attention to the fact that nonter
minating executions are considered as well. The jargon therefore says that 
{P} S {Q} only models "partial correctness", or that {P} S {Q} is just 
a "safety property" or expresses ~ as Leslie Lamport once phrased it ~ 
that "no bad thing can happen" . 

Remark In many texts on sequential programming, {P} S {Q} denotes 
the stronger property that S when started in P is guaranteed to ter
minate in Q. The semantics corresponding to this notion is the predicate 
transformer semantics that is based on weakest preconditions (wp's) rat her 
than weakest liberal preconditions (wlp's). It requires what is called "total 
correctness" instead of just "partial correctness" . This wp-semantics is okay 
for sequential programs in isolation, but far too demanding for handling 
sequential programs in cooperation. 
End of Remark. 
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Now we ean explain the notion of "weakest liberal preeondition". For 
statement Sand predicate Q, wlp.S.Q is the weakest preeondition P 
such that 

{P}S{Q} 

holds. This state of affairs is eovered quite suecinetly by what, by postulate, 
will be the relationship between Hoare-triples and wlp's: 

(0) {P} S {Q} == [P =} wlp.S.Q] 

(The square braekets are a shorthand for "for all states" [DS90].) 

In words, wlp.S.Q is a predieate that is true in precisely those states -
i.e. no more and no fewer - from which eaeh terminating exeeution of S 
is guaranteed to end up in a final state satisfying Q. 

2.2 Properties of Hoare-triples and the wlp 

We shall define predieate transformer wlp.S for eaeh statement S of our 
program notation. It so happens that all the wlp.S's so obtained share 
the mathematical property of being "universally eonjunetive", i.e. for X 
ranging over an arbitrary set of predieates, they all satisfy (see [DS90]) 

(1) [wlp.S.( \:IX :: X) == (\:IX:: wlp.S.X ) ] 

From (1) we ean derive - proofs omitted - that 

• wlp.S is "finitely eonjunctive" , i.e. 

(2) [wlp.S.(X 1\ Y) == wlp.S.X 1\ wlp.S.Y] for all X, Y 

• wlp.S is "monotonie", i.e. 

(3) [X =} Y] =} [wlp.S.X =} wlp.S.Y] for all X, Y 

• wlp.S is "top-strict", i.e. 

(4) [wlp.S.true == true 1 . 

From these properties of wlp eombined with (0), we ean derive a wealth 
of properties of Hoare-triples. (In his seminal paper [Hoa69], C.A.R. Hoare 
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has cast these properties in the form of inference rules, but now, a quarter 
of a century later, we havc comc to prcfer algebraic calculation to logical 
reasoning.) Herc, wc list some of thcm 

• {P} S {Q} is univcrsally conjunctivc in Q, i.c. 

(5) {P}S{(VX::X)} == (VX::{P}S{X}) 

• {P} S {Q} is finitcly conjunctive in Q, i.e. 

(6) {P} S {X /\ Y} == {P} S {X} /\ {P} S {V} 

• {P} S {Q} is monotonie in Q, i.c. 

(7) [X,*Yj '* ({P}S{X} '* {P}S{Y}) 
"one can always weaken a postcondition without falsifying an estab
lished Hoare-triple", or in a formulation geared to program construc
tion rather than verification: "one can always establish a Hoare-triple 
by establishing a Hoare-triplc with astronger postcondition - and 
the same precondition" . 

• The anonymous property 

(8) {XVY}S{Q} == {X}S{Q} /\ {Y}S{Q} 

• {P} S {Q} is antimonotonie in P, i.e. 

(9) [X,*Yj '* ({X}S{Q} ~ {Y}S{Q}) 
"one can always strengthcn a precondition without falsifying an es
tablished Hoare-triple" , or formulated constructively: "one can always 
establish a Hoarc-triplc by establishing a Hoarc-triplc with a weaker 
prccondition -- and the same postcondition" . 

• And finally 

(10) {P}S{true}. 

2.3 Definition of the wlp's 

Now the moment has come to define the wlp for each statement of our 
program notation. This we do by defining wlp first for the elementary ones 
directly, and then for thc compositcs in terms of their components. 
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2.3.0 The skip, the assignment, and the composition 

The skip 

By definition, 

[wlp.skip.R == R] for aB R. 

There is little useful to be said about this. The most prominent use that 
we make of this definition of skip is that we have 

{P}skip{Q} == [P=>Q] 

The assignment 

By definition, 

[wlp.(x:= E).R == (x:= E).R] 

here (x:= E).R stands for a textual copy of expression R in which each 
free occurrence of x is replaced with E. 

For the multiple assignment we have, by definition, 

[ wlp.(x, y := E, F).R == (x, y := E, F).R ] 

here (x, y := E, F).R stands for a textual copy of expression R in which 
aB free occurrences of x and y are replaced with E and F respec
tively. 

In what folIows, we refer to this definition of the assignment by phrases 
like "rule of assignment", "axiom of assignment" , or "substitution". 

We will not elaborate the axiom of assignment here, because nowadays it 
is widely known, accepted, and appreciated by the scientific-programming 
community. 

The most prominent use that we make of this definition of the assignment 
is that we now have 

{P}x:=E{Q} == [P => (x:=E).Q] 

The sequential composition 

For statements So and Si we have, by definition, 

[ wlp.(So ; Sl).R == wlp.So.(wlp.Sl.R)] 
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From this, one can easily prove that semi ";" is associative. We shall grate
fully use this fact by omitting parentheses in program fragments like 

So; SI; S2 

There is a little theorem on sequential composition that we heavily rely 
on in practiee. It reads: for any Q 

{P} So; SI {R} 
-<= 

{P} So {Q} 1\ {Q}SI{R} 

Here is a proof: 

{P}So; SI{R} 

{definition of Hoare-triples} 

[P =} wlp.(So; SI).R 1 
{definition of sequential composition} 

[P =} wlp.So.(wlp.Sl.R) 1 

-<= {wlp.So is monotonie} 

[ P =} wlp.So.Q 1 1\ [Q =} wlp.Sl.R 1 
{definition of Hoare-triples} 

{P}So{Q} 1\ {Q}SI{R} 

The typieal way in whieh we use this theorem is by explicitly induding the 
intermediate condition Q in the program text, in the following way: 

{P} 
So 

; {Q, see Note I} 

SI 

{R, see Note O} 

Here Note 0 is supposed to contain a proof of correctness for Hoare-triple 
{Q} SI {R} , and Note 1 for {P} So {Q} . In such a way our programs 
will, on-the-fty, become fully documented. Whieh is niee. 

When we are looking for a correctness proof of {P} So; SI {R} or de
signing a program of the form So; SI that should establish R, the ques
tion is: what intermediate assertion Q should we choose? The recom
mendation almost always is to choose wlp.Sl.R for Q. This choiee has 
multiple advantages. One advantage is that now {Q} SI {R} holds by 
definition. And secondly, because wlp.Sl.R is the weakest possible choice 
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for Q, it generates the weakest possible proof obligation {P} So {Q} -
thanks to the monotonicity of Hoare-triples in their second argument. Here 
we see a clear-cut advantage of having a notion like thc weakest (liberal) 
precondition at our disposal. This is just one advantage, however, out of 
many more. 

Finally we mention that eonditions between braees, as they oeeur in our 
program texts, are, in this eontext, ealled "assertions" , and programs that 
eontain assertions are said to be "annotated" (with these assertions). 

2.3.1 The alternative construct 

For statements So and SI, boolean expressions Bo and BI, and IF 
short for 

if Bo -) So 

I BI -) SI 

fi 

we have, by definition, 

[wlp.IF.R == (Bo "* wlp.So.R) A (BI "* wlp.Sl.R) I 
Beeause eonjunetion is symmetrie, we see from this that the order in whieh 
the guarded commands occur in an alternative construct is of no signifi
cance. 

Here also, there is a little theorem eoneerning if-statements (i.e. alter
native eonstructs) that is of great praetieal value. It reads (simple proof 
omitted) 

{P} IF {R} 

{PABo}So{R} A {PABI}SI{R} 

We typically use the theorem by annotating an if-statement as follows 

{P} 
if Bo -) So{R, see Note O} 

I BI -) SI{R, see Note I} 

fi 

{R} 
Here Note 0 is supposed to eontain a proof of {P ABo} So {R} , and 
Note lof {P A BI} SI {R} . 



2.3 Definition of the wlp's 15 

* * 
* 

We have to spend some words on the operational interpretation of an if
statement. In astate in which Bo holds, IF can establish R via So, 
if wlp.So.R holds in that state -- see definition of IF . Likewise, if B1 
holds, S1 can establish R. And if both Bo and B1 hold, either of So 
and S1 can be selected to establish R; which of the two will be chosen 
(by an implementation) is entirely beyond our influence, and we couldn't 
care less, our only care being that R be established. 

It is the alternative construct that intro duces nondeterminacy into se
quential programs. This introduction has been a giant leap forward in the 
study of the semantics of programs and of the behaviour of systems. How
ever, as alluded to before, nondeterminacy will hardly playa röle for our 
subject of study, which is program construction. And indeed, if we take a 
closer look at how to handle the "nondeterministic" if-statement, we see 
that it faces us with just a number of independent proof obligations -
{PI\Bo}So{R} and {PI\Bl}SI{R} in the above -, and that's it. 
Nondeterminacy has faded and theorem proving is left. Nondeterminacy 
has become a phenomenon that only pops up in relation to executions. It 
has become an artefact of a particular implement at ion chosen, and it does 
not belong to the world of pro gram construction. Because in this mono
graph we will be concerned with the formal design of programs, not with 
their implementation, we will, therefore, never be bothered by the potential 
complications caused by nondeterminacy (which has always been consid
ered the main source of complexity in handling multiprograms). 

Not all has been said yet about our operational interpretation of the if
statement. For instance, what about astate in which both Bo and BI 
are false? In such astate each of the alternatives So and SI may fail 
to establish the desired postcondition R. So neither So nor SI can 
be selected for execution, and in one way or another the execution of IF 
gets stuck. But now recall our operational interpretation of wlp's, which 
tells us that the execution of a statement should either terminate in astate 
satisfying R or not terminate at all. So a very viable implementation of 
IF in case both guards are false is "wait" (Le. keep evaluating the guards) 
until one of them becomes true. For a sequential process in isolation this 
boils down to waiting forever , Le. to nontermination, and that was one 
of the options. This implementation - to which we shall stick - does 
not make much sense for a program in isolation, but it does make a lot of 
sense for a program cooperating with other programs, because through the 
activities of these other programs the false guards may very well become 
true, in which case continuation of thc "delayed" IF may again become 
possible. 
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In our description of thc computational model we have promised to see 
to it that the execution of a sequential program should result in a sequence 
of finite atomic actions. For the finite atomic actions that result from an 
cxecution of the IF we propose 

• the evaluation of a guard to false 

• the evaluation of a guard to true followed by the execution of the 
corresponding guarded statement. This guarded statement, however, 
has to be such that it is guaranteed to terminate in isolation, Le. 
without interference from outside t. 

Finally, it goes without saying that during the process of evaluating the 
guards it should not be the case that one of the alternatives is ignored 
forevcr: the evaluation of the guards ought to take place on a fair basis. 

* * 
* 

The above choice for an implementation of the if-statement has a number 
of severe consequences for what is called "progress", or "liveness", or the 
circumstance - as Leslie Lamport once phrased it - "that eventually 
so me good thing will happen". We illustrate this by a number of examples. 

Because 

wlp.(if B V C ~ S fi).R 

{definition wlp if} 

B V C :::} wlp.S.R 

{predicate calculus} 

(B :::} wlp.S.R) 1\ (C:::} wlp.S.R) 

{definition wlp if} 

wlp.(if B ~ S ~ C ~ S fi).R 

the two program fragments 

if B V C ~ S fi 

and 

if B ~ S ~ C ~ S fi 

tBecause of this constraint, having a different notation for the if-statement would be 
preferable, sincc we do not want to impose such a constraint on the regular alternative 
construct as used in sequential programs. However, in this text no confusion will arise. 
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cannot be distinguished by looking at their wlp's. This is only to be ex
pected, because wlp's address partial correctness only. However, if it comes 
to termination, the two pro gram fragments may very weIl differ in their 
behaviours, in particular so when run concurrently with other programs. 
Consider, for instance, a se co nd program that aIl the time changes Band 
C, but does so in such a way that it maintains C == -,B. In that case 
fragment 

if B V C ---> S fi 

is guaranteed to terminate, because the atomic evaluation of guard B V C 
will yield the value true. However, for fragment 

if B ---> S ~ C ---> S fi 

each evaluation of Band each evaluation of C may yield the value false, 
because such an atomic evaluation may always take place in astate where 
the other guard happens to be true. 

Since in this text we will hardly offer a formalism for discussing progress, 
the incorporation of if-statements with more than one alternative would 
present us with severe additional problems in arguing about progress. This 
is one of our most compelling reasons for sticking to if-statements with just 
one guarded command. Fortunately, we can travel a long, long way with 
these. 

There is one case, however, in which we can live with the above two 
program fragments alike. That is the case where one of the express ions 
B or C is stable under the operations of the rest of the system (stable 
means: cannot be falsified). Once the stable expression has become true 
- if it does so at aIl -, both program fragments can and will terminate, 
thanks to our postulate that no guard remains unevaluated forever. 

* * 
* 

We conclude this discussion of the alternative construct with a special 
instance, which will be used very frequently. It is 

if B ---> skip fi 

which we caIl the guarded skip. One of its possible implementations is 

do -,B ---> skip od 

The semantics of the guarded skip is given by 

[ wlp.(if B ---> skip fi).R == B '* R 1 

or by Hoare-triple 

{B '* R} if B ---> skip fi {R} 
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2.3.2 The repetitive construct 

It is possible to give adefinition of the wlp of the repetitive construct, 
viz. as the weakest solution of a fixpoint equation - see [DS90]. Beau
tiful, however, as such adefinition may be, it is of little or no relevance 
to the construction of programs. Instead, we shall come to grips with the 
repetition via the so-called Invariance Theorem for Repetitive Constructs. 
It reads as follows. For statements So and SI, boolean expressions Bo 
and BI, and Da short for 

do Bo -) So ~ BI -) SI od 

we have, for any P, 

{P} Da {P 1\ --,Bo 1\ --,Bl} 
~ 

{PI\Bo}So{P} 1\ {PI\Bl}8I{P} 

A relation P satisfying the antecedent is called an "invariant of the rep
etition". This theorem, which is sometimes called the "Main Theorem of 
Computing Science", was first formulated by C.A.R. Hoare in [Hoa69]. 
Thanks to its simplicity and its utmost usefulness, it has attained a world
wide reputation. More about this later. 

In order to get an operational appreciation of the repetitive construct (or 
"loop"), consider astate satisfying condition P. According to the conse
quent of the invariance theorem, an implementation can only terminate the 
execution of Da in astate in wh ich P holds and both guards Bo and 
BI are false. This implies that in states where at least one of the guards 
equals true, the show should go on. If Bo is true, So can maintain P 
- and will, if it terminates -, and if BI is true, SI can do the job. 
If both Bo and BI are true, either of So and SI can be selected for 
execution. In any of these cases the selected guarded statement will end 
up, if it terminates at all , in astate satisfying P, bringing us back to the 
beginning, from which the story can be repeated. 

In states where both guards are false, the implement at ion not only has 
the permission to terminate the execution of Da, it even has the obli
gation to do so, since the antecedent of the invariance theorem offers no 
opportunity to maintain P in case the guard is false. Thus, the invariance 
theorem acts as a very compelling specification towards an implementor. 

Finally, we postulate which of the actions generated by the execution 
of a repetitive construct are to be considered atomic. These are just the 
evaluations of the individual guards. In case of a true guard, the subsequent 
guarded statement to be executed is not apart of the atomic activity of 
evaluating the guard to true. 
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In what follows we will almost exclusively use repetitive constructs with 
just one guard: 

do B~ 8 od 

in which case the invariance theorem reads 

{P} do B ~ 8 od {P!\ -,B} 

{P!\B}8{P} 

(Isn't this impressively simple?) 
The typical way in which we annotate this program fragment is 

{Inv: P} 
do B ~ {P!\ B} 8 {P, see Note} od 

{P!\ -,B} 

where the Note is supposed to contain a proof of {P!\ B} 8 {P} . 

An even more special instance of the repetitive construct is 

do true ~ 8 od 

It is the prototype of a so-called cyclic progmm, and it will crop up so 
frequently that we introduce a special notation for it, viz. 

*[8] 
So much for the repetitive construct. 

2.4 On aur choice of formalism 

We conclude this chapter with some remarks on what we consider the 
great merits of predicate transformer semantics and Hoare-triples for the 
construction of and the reasoning about programs, be they sequential or 
concurrent. 

One very important advantage of the predicate transformer semantics 
- if not the most important one - is that it does away with operational 
reasoning. 

Operational reasoning refers to understanding a program by taking into 
account thc individual computations - all computations - that can be 
evoked under control of the program. In order to illustrate what this can 
lead to, we consider the following example. 

An operationalist necds at least three steps to check program fragment 
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{P} So; S1 {R} 

first he executes So, second he retains the result, and, third, uses this to 
execute S1. (We have not counted that he should check that the answer 
satisfies R. ) 
Given our semantics for the semicolon, we have to do three things as weH, 
viz. formulate an intermediate assertion Q and then prove {P} So {Q} 
and {Q} S1 {R} . 

Next let us consider an alternative construct IF p with p alterna
tives. The operationalist has to do at least p things in order to check 
{P} IFp {Q} ,viz. execute aH alternatives. Given our semantics for the if
statement, we have to do p things as weH, viz. fulfil the proof obligation 
for each alternative. 

But now consider 

{P}IFp; IFq{R} 

Here, for each alternative of IF p the operationalist has to execute it, 
retain the result, and then consider aH q continuations of it as provided 
by IF q . Hence his total amount of work adds up to at least 

p·(l+l+q) 

Given our semantics, proving {P} IF p; IF q {R} means that we are forced 
to come up with an intermediate state Q in the first place - this is one 
step- andthenweprove {P}IFp{Q} and {Q}IFq{R}.Thisadds 
up to a total amount of work 

p+l+q 

The difference has become dramatic (except for p = 1 /\ q = 1). How come? 

It is the intermediate state Q, which we were forced to introduce, that 
accounts for the difference. The operational interpretation of such an asser
tion Q is that when "program execution has reached that assertion" , the 
state satisfies Q. Thanks to the validity, in our example, of {Q} IFq {R}, 
execution of IF q can do the job and establish R. But for this purpose 
it is absolutely irrelevant how the preceding computation has reached a 
state satisfying Q, be it via an extremely simple or a terribly complicated 
computational history. Thus, the intermediate assertion is a very effective 
history disposal; it erases everything that is irrelevant for the future and 
retains just what does matter, viz. that the state satisfies Q. 

The difference with operational reasoning becomes highly dramatic in 
the case of the repetitive construct, which is the main producer of compu
tational history - and which, for this very reason, is indispensable for the 
exploitation of the speed of electronic computers. A program like 
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do B ---+ IF2 od 

ean, with just 100 iterations, generate over 2100 different computations. 
Here, the operationalist is definitely losing the game. With our semantics 
for the repetitive construct, we only need to do three things, viz. come up 
with an invariant P and prove {P 1\ B} IF2 {P} . Here we see in a nut
sheH how important the Theorem of Invariance is for coming to grips with 
sequential programs and why calling it "The Main Theorem [of Computing 
Sciencel" is not without justification. 

So much for the quality of predicate transformer semantics in its capacity 
of providing us with a water-tight protection against operational reasoning. 

There is one more point regarding our semantics that we would like to 
discuss. By definition we have 

{P} S {Q} == [P =} wlp.S.Q 1 
The question then arises, why we retain two different concepts, viz. Hoare
tripIes and wlp's for expressing the same thing. We have good reasons for 
doing so, however. 

As we have aHuded to before, it is a good habit to annotate programs 
so that the annotation exactly reflects the proof obligations as originating 
from the proof rules. In such a way programs become fuHy documented on
the-fly. But the way we annotate programs is by the Hoare-triple notation, 
and that is one reason why we retain the latter. 

Besides documenting a completed program, annotation also is a good 
thing to have for programs under construction. Halfway through its de
velopment, a program for printing the cubes of thc first hundred natural 
numbers will, typically, have the shape 

n:=O; x:=O 

; {Inv : x = n3 } 

do n #- 100 ---+ 

print(x) 

; {x=n3 1\ n#-100} 

W 

; {x = (n+ 1)3} 

od 

n:=n+l 

{x = n3 } 
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Now the annotation provides a complete specification of what remains to 
be done, viz. designing program fragment W so that 

{x=n3 A n:flOO} W {x=(n+l)3} 

In what follows we shall heavily exploit this specification potential of an
notated programs. 

Why do we retain wlp's? The reason is that expression [P =} wlp.S.Q ) 
contains subexpression wlp.S.Q, an expression that by no means can be 
found in {P} S {Q}. Moreover, wlp.S.Q is an expression that we can 
calculate with for each particular S. What is more, wlp.S.Q is a subex
pression of a predicate, so that in dealing with [P =} wlp.S.Q) we have, 
at one fell swoop, the full-ßedged predicate calculus at our disposal. Thus, 
expression [P =} wlp.S.Q) offers far more manipulative freedom than its 
equivalent {P} S {Q}. The embedding of the Hoare-triple into an alge
braic framework like the predicate calculus has been a major breakthrough 
in our potential for formal program derivation - see [Dij76) and [Gri81]. 

Finally, we wish to emphasize that, by the above, program correctness 
can now be handled by just the predicate calculus. And this is an additional 
advantage, because the predicate calculus is a universal tool for the compact 
and very precise rendering of mathematical reasoning in general - which 
should, therefore, be mastered anyway, by anyone who takes mathematical 
thought seriously. 

* * 
* 

This concludes our treatment of the notation for sequential programs and 
of their semantics when they are executed in isolation. In our operational 
descriptions of the various program constructs we have already anticipated 
the circumstance that in the subsequent chapters sequential programs will 
no longer be considered in isolation but in cooperation (concurrent execu
tion) with other programs. 
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The Core of the Owicki/Gries Theory 

In the previous chapter, the notion of an assertion in a sequential program 
has been introduccd, and we have seen how sequential programs can be an
notated with assertions in such a way that the annotation precisely reflects 
our proof obligations. We have also seen how this effectively protects us 
against operational reasoning, and how it aids in coming to firm grips with 
sequential programs. All these virtues become even more important now 
that we are on the verge of taking multiprograms into account, i.e. entire 
sets of cooperating sequential programs to be executed simultaneously. 

In this chapter we shall create the basis for coming to firm, nonoper
ational grips with multiprograms as weIl. The theory employed for that 
purpose is the theory of Owicki and Gries, which was launched by Susan 
Speer Owicki and David Gries - see [OG76], but also [Dij82]. One of 
the nice things about this theory is that it intro duces no new concepts for 
handling multiprograms, Le. we can come away with just Hoare-triples and 
wlp-semantics, which have proven to be so useful for handling sequential 
programs in isolation. And as a result we stay within the realm of just the 
predicate calculus. As will become apparent in the rest of this text, the 
simple formal entourage of the predicate calculus and the Owicki/Gries 
theory will allow us to travel a long, long way into the battlefield of multi
programming. This need not amaze us, because it is the very simplicity of 
the formalism that accounts for it. 
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3.0 Annotating a multiprogram 

A multiprogram consists of a bunch of ordinary sequential programs, to 
which we will usually refer as the components of the multiprogram. Before 
we dive into the OwickijGries theory, we briefly recall the computational 
model that we have in mind for the simultaneous execution of such a bunch 
of components. Each individual component will, under control of its pro
gram text and under control of the state, evoke a sequence of terminating 
atomic actions. If such a component evolves in isolation, nothing happens 
between two successive actions. However, if other components are executed 
simultaneously, an arbitrary but finite number of atomic actions of these 
other components can take place in between. The net effcct is that the 
execution of a multiprogram generates an unknown (but fair) interleaving 
of thc sequences generated by the individual components. 

In order to demonstrate, in a nutshell, what this brings about, we con
sider the following mini-example. Suppose one component contains program 
fragment 

... x:= 0 {O :::; x}; ... 

in which x:= 0 is considered atomic. Wcre this componcnt to be run in 
isolation, we could safely assert 0:::; x between the completion of atomic 
statement x:= 0 and the beginning of the component's next atomic state
ment. In the presence of other components, however, assertion 0:::; x need 
no longer be correct: due to the interleaving, such other components may, in 
between, change the value of x, for instance by statements like x:= x-I, 
and thus may violate 0:::; x . It seems as if we have to abandon our earlier 
interpretation and appreciation of assertions, which was that the state of 
the computation satisfies the assertion when execution of a component has 
reached that assertion. But we don't want to do so, and fortunately we 
don't have to either, as we shall explain next. 

We don't want to abandon our interpretation of assertions first of all, 
because we badly need it for the purpose of specification. For instance, when 
a consumer is about to consume a portion from a buffer, the buffer had 
better contain at least 1 portion. We formally specify this by demanding 
the correctness of assertion "buffer nonempty" as apre-assertion of the 
consumption. 

Second, we wish to retain the assertion in its capacity of effective history
disposal, even more so in the case of multiprograms: while a component 
resides at an assertion Q, lots of computations can take place due to the 
activities of the other components, but we can ignore them all , if we can 
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insist that the state of the system as a whole will always satisfy Q. Thus 
we would eliminate all interest in individual computations. 

Fortunately we don't have to abandon our interpretation of assertions. 
To sec why, let us return to our mini-example. By requiring the correctness 
of 0:::; x in 

... x:=O{O:::;x}; ... 

we demand that the other components do not violate thc assertion. If, 
for instance, a different component contains a statement x:= x -1, the 
situation would be safe if this statement were equipped with - correct! 

pre-assertion 1:::; x : 

... ;{1:::;x}x:=x-1 ... 

We could then argue as follows. If the original component is at assertion 
0:::; x , and the othcr component is ab out to execute x:= x -1 ,then - by 
our appreciation of the correctness of assertions - the state of the system 
satisfies both 0:::; x and 1:::; x, i.e. 1:::; x. In this state execution of 
x := x -1 is harmlcss to the validity of our target assertion 0:::; x. We 
phrase this as "0:::; x is globally correct under {I:::; x} x:= x -1". 

The moral of the above story is that in dcaling with the global correctness 
of an assertion - 0:::; x in our example - we will usually need to take 
other assertions into account - 1:::; x in our cxample. That is, the price 
to bc paid is that now we also have to take care of the correctness of these 
other assertions. The general state of affairs that we must be willing to 
consider is that a multiprogram ought to be annotated in such a way that 
each atomic statement in each of the components carries apre-assertion. 
Then we can formulate the 

Rule of Global Correctness 

Assertion P in a component is globally correct whenever for 
each {Q} S - i.e. for each atomic statement S with pre
assertion Q - taken from a different component, 

{PAQ} S {P} 

is a correct Hoare-triple. 

End of Rule of Global Correctness. 

Note that with the above convention for the annotation, i.e. each atomic 
statement carrying apre-assertion, we created a one-to-one correspondence 
between atomic statements and assertions: from the given annotation we 
can conclude what the atomic statements are and from the choice of atomic 
statements we know where to plug in the assertions. 
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Intermission As an illustration, let us calculate the weakest Q such 
that assertion 0:::; x is globally correct under {Q} x:= x -1 . To that 
end, we have to calculate the weakest Q such that 

{O:::;x 1\ Q} x:=x-1 {O:::;x} 

is a correct Hoare-triple. In wlp-notation this is 

[O:::;x 1\ Q => (x:=x-1).(0:::;x) 1 

or - equivalently -

[Q => (O:::;x => (x:=x-1).(0:::;x)) 1 

and from the latter expression we see that the weakest Q is 
0:::; x => (x:= x -1).(0:::; x) . Let us simplify it: 

O:::;x => (x:=x-1).(0:::;x) 

{substitution} 

O:::;x => O:::;x-l 

{predicate calculus and arithmetic} 

x<OV1:::;x 

{x is integer} 

xolO 

So 0:::; x is globally correct under {x 01 O} x := x-I . 

Earlier we launched 1:::; x as apre-assertion to x:= x -1, which by be
ing stronger than the x 01 0 calculated above is an adequate pre-assertion 
indeed. As will become apparent in the rest of this monograph, the weaker 
x 01 0 is, in general, to be preferred to the stronger 1:::; x, becausc -
in vicw of our operational appreciation of an assertion - the stronger an 
assertion is, the less manoeuvring space the system has. Thc moral of this 
intermission is, that careful calculation, rather than "intelligent guessing" , 
will be indispensable for the art of constructing multiprograms. 
End of Intermission. 

* * 
* 

The global correctness of an assertion P in a component tells us that 
the rest of the system, does not falsify P, Le. does not flip the state of 
the system from P to -,P. (We find this property commonly phrased as 
"P is stable".) But we want more than just P's stability. We want the 
state of the system to actually satisfy P. This, now, will be the task of 
the component in which assertion P occurs. In our mini-example 
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'" x:=O{O:Sx} ... 

assertion O:S x is clearly established by the preceding atomic statement 
x := O. But if the preceding atomic statement were x:= y , say, it would 
require apre-assertion, for instance O:S y : 

..• j {O:Sy} x:=y {O:Sx} ... 

With this pre-assertion for x:= y, assertion O:S x has become what we 
phrase locally correct. 

As a result, dealing with the local correctness of an assertion - here 
o :S x - will usually require one other assertion - here O:S y . For 
the benefit of locally establishing a component 's initial assertion , Le. the 
assertion without preceding statement, we equip the multiprogram as a 
whole with a preeondition (wh ich eharacterizes the initial state from which 
the execution of the multiprogram starts). We can now formulate the 

Rule of Local Correctness 

For the loeal correctness of an assertion P in a component, 
we distinguish two cases. 

If P is the (one and only) initial assertion of the component, 
it is loeally correct whenever it is implied by the precondition 
of the multiprogram as a whole. 

- If P is textually preeeded by {Q} S , Le. by atomic state
ment S with pre-assertion Q, it is locally eorrect whenever 

{Q} S {P} 

is a correct Hoare-triple. 

End of Rule of Loeal Correetness. 

Thus, cheeking the local correctness of annotation is just what we are used 
to for stand-alone sequential programs. We emphasize that the annotation 
should bc such that it is always clcar which is the textually preceding 
atomic statement of an assertion. The standard annotation schemes for 
the eomposition, the alternative construct, and the repetition have been 
designed the way they are for this purpose. (For repetitions, the evaluation 
of the guard counts as an atomic statement.) We will return to this issue 
at a later stage. 

* * 
* 

Now we are ready to formulate what we call the GOTe of the Owicki/Gries 
theory. We consider a multiprogram annotated in such a way that the anno
tation provides a precondition for the multiprogram as a whole and a pre
assertion for each atomic statement in each individual eomponent. Then, 
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by Owicki and Gries, this annotation is correct whenever each individual 
assertion is correct, Le. 

• locaIly correct according to the Rule of Local Correctness, and 

• globaIly correct according to the Rule of Global Correctness. 

This is the Core of the OwickijGries theory. It can be summarized and 
memorized quite succinctly by 

the annotation of a multiprogram is correct 

each assertion is established by the compo
nent in which it occurs and it is maintained 
by aIl atomic statements of aIl other compo
nents 

The reason why we are calling it the Core is, that later on we will have to 
face a distressing relaxation. 

3.1 Two examples 

Now the time has come to consider some examples. 

Example 0 We consider the following annotated two-component multi
program 

Pre: x=O 

A: {x=O V x=2} B: {x=O V x= 1} 

x:=x+l x:=x+2 

{x= 1 V x=3} {x=2 V x=3} 

Component A consists of just one statement, . viz. x:= x + 1, and com
ponent B of just x:= x + 2 . Both statements are considered atomic, and 
both are equipped with apre-assertion - as required. In this example, 
each of the components has a post-assertion as weIl. We now show that the 
annotation provided is correct. We do so for the assertions in A. 
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We first eonsider x = 0 V x = 2 . Beeause this is A 's initial assertion, its 
loeal eorreetness should follow from the preeondition of the multiprogram 
as a whole. And indeed we have 

x=O V x=2 ~ x=O 

As for its global eorrectness, we have to show that it is not falsified by 

{x=O V x=l} x:=x+2 

of eomponent B. That is, we have to show the eorrectness of Hoare-triple 

{(x=O V x=2) /\ (x=O V x=l)} 
x:=x+2 

{x=O V x=2} 

- the Rule of Global Correctness with x = 0 V x = 2 for P, 
x = 0 V x = 1 for Q, and x: = X + 2 for S. 

Rendered in wlp-nomenclature, this Hoare-triple reads 

(x=O V x=2) /\ (x=O V x=l) => (x:=x+2).(x=O V x=2) , 

or - simplifying the anteeedent -

x=O => (x:=x+2).(x=O V x=2) 

and the validity of this follows from the following little ealculation 

(x:=x+2).(x=O V x=2) 

{substitution} 

x+2=O V x+2=2 

~ {arithmetie and predieate ealculus} 

x=O 

Next we eonsider A's assertion x = 1 V x = 3. Beeause it is textually 
preeeded by 

{x=O V x=2} x:=x+l 

its loeal eorreetness ought to follow from 

{x=O V x=2} 
x:= x+l 

{x=l V x=3} 

whieh - by the axiom of assignment - it does. 
For the global eorrectness of x = 1 V x = 3 we have to prove - in wlp
nomenclature at onee -

(x=l V x=3) /\ (x=O V x=l) => (x:=x+2).(x=1 V x=3) 

or - simplifying the anteeedent -

x=l => (x:=x+2).(x=1 V x=3) 
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and by a similar little ealculation as before, this is eorreet as weIL 

End of Example O. 

Beeause the above reasoning pattern ~ demonstrating the loeal and 
global eorreetness of assertions - is, by definition, so intrinsically related 
to the proof obligations of the Owicki/Gries theory, we wish to give it a 
more eonspicuous shape when rendered on paper. When dealing with an 
assertion P, we will supply it with a reference to a Note, like this 

... {P, Note} ... 

and the Note will get thc shape 

Note "P" 

L: explaining why P is loeally correct 

G: explaining why P is globally correct. 

End of Note. 

Observe that the header of the Note repeats P. 

Small Intermezzo The above eonvention may come aeross as a naive 
clerical device. However, in our experience, it is much more than that. 
Some of our readers will meanwhile have surmised that the Owicki/Gries 
theory will potentially saddle us with a prohibitively large number of proof 
obligations. And, indced: taking care of the global correctness of one single 
assertion forces us to "visit" all atomic statements of alt components. (To 
reassure the reader: the situation will improve in the next chapters.) In the 
presence of such a multitude of obligations, a clear-eut organization of the 
bookkeeping is a prime prerequisite, lest ehaos result. 
When, in one of our classes, we introdueed the regime with the Notes, 
students started to perform significantly better. 
End of Small Intermezzo. 

Whereas Example 0 was purely an exercise in verification, the next ex
ample already has a more constructive flavour. 

Example 1 Consider the following two-component multiprogram ~ 
comments below ~: 

Pre: true 

A: * [x:=E.x] B: * [y:= x 

; z:=x 

{?y~z, NoteO} 

] 
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where E.x is an integer expression that may depend on integer x, but 
not on integers y and z. 

First we observe that the preeondition of the multiprogram is just true 
- some would say: it has no preeondition! - By this we mean that the 
initial values of variables x, y, and z ean by anything. Seeondly we 
observe that the eomponents' annotation is far from eomplete; so what are 
the atomic statements? Let us assurne that the individual assignments are 
atomie. Now we ean meaningfully ask the following quest ion: 

On wh at eondition is queried assertion y:=:; z eorrect? 

In order to investigate this, we address the eorreetness of y:=:; z in Note 0, 
as already announeed in the text of eomponent B. 

Note 0 "y:=:; z " 

L: The textually preeeding atomie statement of y:=:; z is z:= x, and it 
had better have 

wlp.(z:= x).(y:=:; z) 

i.e. y:=:; x, 
as a eorrect pre-assertion. 
We shall insert this in B's program text as a new assertion, to be dealt 
with later on. 

G: {y:=:; z} x:= E.x {y:=:; z} is a eorreet Hoare-triple, and vaeuously so: 
y :=:; z does not depend on x. We will return to this phenomenon in a 
next ehapter under the heading "Orthogonality". 

End of Note O. 

By the above findings, eomponent B now has obtained the following anno
tated shape 

B: * [y:=x 

; {? y:=:;x, Note I} 

z:=x 

{y:=:; z} 

1 , 
and what remains is to investigate queried assertion y:=:; x : 

Note 1 "y:=:;x" 

L: The loeal eorrectness is immediate from the preeeding assignment 
y:=x. 

G: We have to investigate y:=:; x under A's statement x:= E.x. We eal
eulate 
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Y'5.x :::} (x:=E.x).(y'5.x) 

{substitution} 

y '5. x :::} Y'5. E.x 

~ {transitivity of '5.} 

x '5. E.x , 

and as a result the global correctness of y '5. x follows whenever we 
choose E such that x '5. E.x. 

End of Note 1. 

This completes the example. We suppose that someone who had an oper
ational flirt with the original component B, will probably have guessed 
the answer: x is not allowed to decrease. Indeed, if the first inspection of 
x's value - y - is to be at most the (later) second inspection - z -, 
then x had better never be decreased in between. 

End of Exarnple 1. 

3.2 Posteonditions 

Before we can conclude this chapter, there is one more issue to be dealt 
with, namely the "terminating multiprogram" . In most examples that we 
will encounter, the components will be cyclic programs, Le. programs of the 
form * [ S J . But sometimes we will also have to address multiprograms 
in which all components terminate or ought to tcrminate, so as to establish 
a desired postcondition. In those cases, the multiprogram as a whole not 
only has a precondition but it also has a postcondition. For the correctness 
of the latter we have the 

Rule of the Postcondition 

Postcondition R of a multiprogram is correct whenever 

- all cornponents are guaranteed to terminate, and 
- R is implied by the conjunction of the post-assertions of 

the individual components. 

End of Rule of the Postcondition. 

As an example of a terrninating multiprogram, reconsider the multipro
gram in Examplc 0, with components 

A: x:=x+1{x=lVx=3} 

B: x:=x+2 {x=2 V x=3} 
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Both components surely terminate, and thereforc they establish 

(x = 1 V x = 3) 1\ (x = 2 V x = 3) 

Le. x = 3 , as a posteondition of the multiprogram as a whole. 

* * 
* 

Herewith we conclude our explanation of the Core of the Owicki/Gries 
theory. Therc is, however, more to it, because with the mIes given so far, 
we are unable to prove that the little terminating multiprogram 

Pre: x =0 

A: x :=x+l 

B: x :=x+l 

establishes posteondition x = 2 . The reader might care to give it a try. 
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Two Disturbing Divergences 

At the end of the previous chapter, we charged the reader with an impos
sible task, viz. to prove, with the Core rules of the Owicki/Gries theory, 
that the little multiprogram 

Pre: x=O 

A: x:=x+l 

B: x:=x+l 

establishes postcondition x = 2 . This impossibility, which we shall prove 
in amoment, is reaHy disturbing, first, because from an operational point 
of view it is absolutely obvious that the final state satisfies x = 2, and, 
second, because it makes us wonder how many other surprises there are in 
store for uso (To reassure the reader, things will turn out reasonably weH.) 

Remark A phenomenon like the above may raise one's interest in the 
logic and nature of proof systems, for instance to find out their potential 
and their limitations. Valid and useful as, we think, such theoretical, in
depth investigations are, we ourselves are rather more interested in methods 
for constructing multiprograms, but we are glad to observe that others are 
more inclined to address more fundamental issues - such as, for instance, 
Krzysztof R. Apt and Ernst-Rüdiger Olderog in their monograph [A091). 
End of Remark. 
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We now prove that with the Core rules of the Owieki/Gries theory we 
eannot possibly demonstrate the eorrectness of posteondition x = 2 in our 
little eulprit program. We annotate it as follows 

Pre: x=O 

A: {P} B: {P} 

x:=x+l x:=x+l 

{Q} {Q} 

Post: R 

Beeause of the symmetry in the eomponents we ean, without loss of gener
ality, eonfine our attention to a symmetrie annotation. In order to find out 
what posteonditions we ean eonclude, we ealeulate the strongest R that 
ean possibly follow from the Core. 

Aeeording to the Core rules, the eorreetness of the above annotation 
means 

(0) [ x=O '* P] 

(1) [P '* (x:=x+l).P] 

(2) [P '* (x:=x+l).Q] 

(3) [PAQ '* (x:=x+l).Q] 

(4) [Q '* R] 

for the loeal eorreetness 
of the two assertions P 

for the global eorrectness 
of the two assertions P 

for the loeal eorreetness 
of the two assertions Q 

for the global eorreetness 
of the two assertions Q 

for the eorreetness 
of posteondition R. 

First observe that (3) is implied by (2), so that we ean forget about (3). 
Seeondly, observe from (4) that the strongest R equivales the strongest 
Q . And thus we are left with finding the strongest Q that is admitted by 
(0), (1), and (2). 
Sinee Q now only oeeurs in (2), the strongest Q equivales the strongest 
(x:= x -l).P - for a detailed proof see the Appendix of this ehapter. 
We leave it to the reader to prove, by mathematieal induetion, that the 
strongest (x:= x -1 ).P with P satisfying (0) and (1) equivales 1:S x . 
As a result, the strongest R that we ean eonclude from the Core of Owieki 
and Gries is 

l:Sx 
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(which is definitely weaker than the intcnded x = 2 ). 

Acknowledgement We owe the abovc proof to our colleague Rob R. 
Hoogerwoord. 
End of Acknowledgcment. 

As will become apparent later, it is not the Core that is to bc blamed, 
but the fact that in the above example the value of x - which is the only 
variable in the game - cannot fully describe the states that thc system 
can reside in. The remedy will be the introduction of auxiliary variables 
- not an uncommon phenomenon in proving mathematical theorems. Wc 
relegate this subject to the next chapter. 

* * 
* 

A second disturbing observation is exemplified by the following. In the 
previous chapter we have shown the correctness of the annotation in 

Pre: x=O 

A: {x=O V x=2} B: {x=O V x=l} 

x:=x+l x:=x+2 

{x=lVx=3} {x=2 V x=3} 

Let us recall our interpretation and appreciation of a correct assertion P. 
It says that the state of the system satisfies P whenever execution of 
a component has reached that assertion. But then we must be willing to 
accept that an assertion weaker than P is correct as weIl, bccause the 
state of thc system also satisfies this weaker assertion. 

This means, for instance, that we must be willing to accept that thc 
annotation in 

Pre: x=O 

A: {x::;2} B: {x::; I} 

x:=x+l x:=x+2 

{x::;3} {x::;3} 

is correct: each assertion in it is a weakening of the corresponding assertion 
in thc earlier program. However, the problem is that we can no longer 
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show the correctness of this annotation using just the Core. For instance, 
the global correctness of x ~ 1 in B would require a proof of 

[x~l A x~2 :::::} (x:=x+l).(x~1)) 

i.e. of [ x ~ 1 :::::} x ~ 0) , 
which just isn't a theorem. 

The result is that we will have to loosen the reins and face a relaxation 
of our conception of correct annotation. We do so by adding to the Core of 
the Owicki/Gries theory the postulate of 

Weakening the Annotation 

Correct annotation remains correct by weakening an assertion 
or weakening the postcondition. 

End of Weakening the Annotation. 

This addendum to the rules is annoying indeed, in fact almost frighten
ing, because the question now has become how to proceed in proving the 
correctness of annotation. Somehow wc have to invent, find, or construct, 
perhaps with the aid of auxiliary variables, astronger annotation, viz. one 
that is correct on account of the Core rules. Then the correctness of the 
original - weaker - annotation follows from the postulate of "Weak
ening the Annotation". Finding such a stronger annotation is, in general, 
quite a nasty task and will often require a firm operational understanding 
of thc multiprogram. Or, to quote Leslie Lamport in [Lam88): "Finding the 
proper annotation to prove a property of a concurrent program is a difficult 
art; anything that makes the task easier should be welcome." . 

* * 
* 

However annoying the observations in this chapter may seem, we need not 
be too pessimistic, because there is a way to avoid the problem: we shall 
be developing correct programs rather than inventing a-posteriori proofs 
for programs that to all intents and purposes could just have appeared out 
of thin air. And from sequential programming we know - paraphrasing 
Dijkstra [Dij76) - that the development of a program and its correctness 
proof - i.e. the appropriate annotation - go hand in hand, with thc 
correctncss proof being slightly ahead. Thus the development of programs 
and of correctness proofs have becomc two activities of a kind, and as wc 
shall see this will hold for multiprograms as weIl. 
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Appendix 

In this appendix we prove that (x:= x-I ).P is the strongest solution of 
the equation in Q 

Q: [P:::::} (x:=x+l).Q] 

[P :::::} (x:=x+l).Q] 

{substitution x := x -1 is monotonie and invertible} 

[ (x:= x -l).P :::::} (x:= x -l).((x:= x+ l).Q) ] 

{x:=x-l and x:=x+l are inverses} 

[(x:=x-l).P:::::} Q] 

And this completes our proof. 
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Bridling the Complexity 

Let us consider a multiprogram with N components, each containing M 
atomie statements and, hence, M assertions, and let us count how much 
work is involved in proving the correctness of the annotation of such a mul
tiprogram. First of all, there are M x N assertions in the game. Secondly, 
for each individual assertion we have to check its local correctness - count
ing for 1 - and its global correctness - counting for Mx (N -1) . 
As a result, thc total amount of proof obligations to be fulfilled equals 

Mx N x (1+M x (N-l)) 

which is quadratic in the size - Le. the number of atomic statements -
of the multiprogram. Even for a modestly sized program with M = 7 and 
N = 5 , the workload already consists of 

1.015 

proofs to be carried out. This is definitely far beyond what can be expected 
from a human being. Even an automatie proof system would quickly be 
defeated by such a quadratic explosion. The main cause of this explosion 
is the necessity to prove the global correctness of assertions. 

Remark Nevertheless, we once more would like to point out how much 
has been gained by the OwickijGries theory. For our modestly sized mul
tiprogram with M = 7 and N = 5 , the number of possible interleavings, 
Le. the number of different computations that can be generated by it, is 
closer to infinity than to 1.015, viz. it is 
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3.177.459.078.523.411.968.000t 

End of Remark. 

Because the main purpose of this monograph is to investigate how mul
tiprograms can be formally derived, we must find out how the complex
ity of this gigantic proof load can be effectively bridled, lest we have to 
give up the whole enterprise. The main means towards that end comprise 
"orthogonality", the use of "system invariants", the technique of "mutual 
exclusion", exploitation of symmetry, the construction of a body of useful 
theorems, and abstraction. In this chapter we will discuss the first three 
issues, largely leaving the others for later. Each of the techniques discussed 
will, in its own way, reduce the workload, and in particular the proof load 
required for global correctness. 

5.0 Private variables and orthogonality 

Most multiprograms are constructed with the aim that the components 
cooperate on a common, global task. For proper cooperation, information 
exchange will be necessary. We wish to abstract from the various technolo
gies for information exchange, choosing as our "communication medium" 
the rat her neutral, unbiased uni verse of common variables. 

Remark This does not mean that we have adopted the traditional archi
tecture of a physical common store. Of course it is a possible implementa
tion for keeping the values of common variables, but it isn't the only one. 
In this text we shall hardly deal with the question of how the information 
as carried by the common variables is to be represented on actual physical 
machinery, because for the purpose of our investigations this would be too 
specific a concern. 
End of Remark. 

Highly typical of a variable is that its value gets changed. We distinguish 
two cases 

• a variable that is changed by just one component; this we call a private 
variable of that component 

• a variable that is changed by more than one component; this we call 
a shared variable of the system. 

tThis is (7 x 5)!/(7!)5 , courtesy Tom Verhoeff and Mathematica. 
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Of course the values of common variables, whether private or shared, can 
in principle be inspected by all components. 

It is by an adequate use of private variables that we may considerably 
tarne the proof load, viz. we have the 

Rule of Private Variables 

For an assertion in a component that depends on private vari
ables of that component only, it suffices to prove local correct
ness, because its global correctness comes for free. 

End of Rule of Private Variables. 

Indeed, the global correctness of such an assertion comes for free, because, 
by the definition of private variables, the variables in the assertion are not 
changed by the other components. 

Example 0 Consider the following two-component multiprogram 

Pre: x=O 1\ a=O 1\ b=O 

A: {a=O} B: {b=O} 

x,a:= x+l,a+l x,b:= x+l,b+l 

{a= I} {b= I} 

Post: a+b=2 

Variable a is private to component A, and variable b is private to com
ponent B. Therefore, it suffices to check the local correctness of the given 
assertions, which is an elementary exercise of sequential programming. If, 
in the sequel, we address an assertion like a = 1 above in a Note, we will 
do so quite synoptically, for instance like 

Note "a=l" 
Private variable 

End ofNote. 

In passing we observe that the given postcondition - a + b = 2 - is 
obviously correct. 

End of Example O. 

Example 1 We consider a multiprogram with many components. Vari
able di is private to component i. 
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Pre: x=O 1\ (Vj::dj=O) 

Comp.i: * [ {di =O} 

x,di := x+l,l+di 

j{di=l} 

1 

x,di := x-l,-l+di 

{di =O} 

Again, the annotation is obviously correct, thanks to the fact that di is 
private to Comp.i. Observe that di = 0 is an invariant of the loop of 
Comp.i. 

End of Example 1. 

In distributed systems, i.e. usually large and sparse networks of com
ponents or bunches of components, direct communication between com
ponents is physically restricted to communication between neighbouring 
nodes of the network. In such systems, the use of private variables tends to 
abound, with potentially enhanced simplicity - or rather: reduced com
plexity - as a result. This may off er one explanation for the popularity of 
distributed programs. However, the other side of the coin is that this very 
lack of communication faciIities creates its own problems. 

* * 
* 

Even though the global correctness proof of an assertion in principle 
requires us to consider all atomic statements in all other components, in 
practice the number of actual, non-vacuous proof obligations is usually 
fairly limited, because the number of distinct variables occurring in an 
assertion is usually quite small and because wc have the 

Rule of Orthogonality 

An assertion is maintained by all assignments to variables not 
occurring in it. 

End of Rule of Orthogonality. 

The proof of this rulc is simple: if x does not occur in predicate P, 
then {P} x:= E {P} is a correct Hoare-triple. 

In what folIows, we will hardly ever mention the Rule of Orthogonality 
explicitly, but we will exploit it extensively in our global correctness proofs: 
when dealing with the global correctness of an assertion P, we will silently 
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ignore alt assignments - in other eomponents - to variables that do not 
oeeur in P, and foeus on just those assignments that may affeet P. 

Note that the Rule of Private Variables given earlier is subsumed by the 
Rule of Orthogonality: in fact, it deseribes the extreme ease of orthogo
nality where no assignment in another eomponent ean affect the assertion 
in quest ion. Nevertheless the Rule of Private Variables has a right of exis
tenee of its own, for the following reason. In general, when dealing with the 
global eorreetness of an assertion, we have to sean all other eomponents for 
assignments that may affeet it; however simple and quick this task may be, 
it eannot be ignored. If, however, the assertion depends on private variables 
of its eomponent only, we know that the whole sean is superfluous. 

5.1 System Invariants 

More than by any other means, it is through the use of so-ealled system 
invariants that we ean aehieve a huge reduction of the proof load. By defi
nition, a relation P is a system invariant whenever 

(i) it holds initially, Le. is implied by the preeondition of the multipro
gram as a whole 

(ii) it is maintained by eaeh individual atomie statement {Q} S of eaeh 
individual eomponent, Le. whenever for eaeh such {Q} S 

{PAQ} S {P} 

is a eorreet Hoare-triple. 

From this definition we see, for instanee, that true is a system invariant 
for every multiprogram, thanks to the topstrietness of wlp.S for any S. 

Note that the number of proof obligations to be fulfilled with respeet to a 
system invariant is linear in the size of the multiprogram. For instanee, for 
our program in the beginning of this chapter, the one with N components 
each containing M atomic statements, we have to fulfill 

1 +MxN 

proof obligations for a relation to be a system invariant. This proof load is 
comparable to the proof load for a single assertion, but the big differenee 
is that for a system invariant we have the beautiful property that 
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a system invariant can be added as a conjunct 
to each assertion with impunity, i.e. without 
any further, additional proof obligations. 

This can be proved as follows. Let P be a system invariant and R an 
arbitrary assertion. What we have to prove is that R 1\ P is both locally 
and globally correct, if R iso We distinguish two cases: 

• If R is the initial assertion of a component and our concern is loeal 
correctness, we observe that - by (i) - R 1\ P is locally correct 
if R iso 

• In all other cases, the original proof obligation has the shape 
{X 1\ Q} S {R} , where Q is the pre-assertion of S: if it is a 
global correctness obligation, X is Rand if it is a local correctness 
obligation, X is just true. 

What we now have to prove is 

{X I\QI\P} S {RI\P} 

or - because Hoare-triples are finitely conjunctive in the postcon
dition -

{X I\QI\P} S {R} and 
{X I\QI\P} S {P} 

The first of these Hoare-triples follows - by "strengthening the pre
condition" - from the original proof obligation {X 1\ Q} S {R} , 
and the second one follows - by the same rule - from the fact 
that P is a system invariant, more precisely it follows from (ii). 

This completes our proof. 

So the great merit of a system invariant is that we can assert it every
where in our program text, at the expense of only a linear amount of work. 
But this brings about another great merit, viz. 

because a system invariant can be added as a 
conjunct to each assertion, we have the free
dom of not writing it anywhere in our anno
tation. 

And this is what we shall do. Although merely clerical, this rule is very 
important for the clarity and economy of exposition, for writer and reader 
and for student and teacher alike. 
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A consequence, however, is that by following the rule we may break the 
one-to-one correspondence between assertions and atomic statements. As a 
result we can no longer syntactically infer from the annotated program what 
the atomic statements are. Therefore, we shall always obey the following 
rule: 

be explicit about which statements are 
atomic. 

Example 2 We copy the annotated program of Example 0, while adding 
a system invariant: 

Pre: x=O 1\ a=O 1\ b=O 

A: {a=O} B: {b=O} 

x,a:= x+l,a+l x,b:= x+l,b+l 

{a= I} {b= I} 

lnv: P: x=a+b 

Post: a+b=2 

The invariance of P in the above is obvious. 

Furthermore, we observe that - by invariant P - the posteondition 
of the multiprogram implies x = 2. If we now erase all references to the 
variables a and b, we have established that in multiprogram 

Pre: x=O 

A: x := x+l I B: x := x+l 

Post: x=2 

posteondition x = 2 is correct. And here we have obtained the result 
that previously we proved unattainable from just the Core rules of the 
Owicki/Gries theory (see Chapter 4). This time we succeeded, thanks to 
the presence of the - auxiliary - variables a and b. 

Finally, observe that by erasing all references to a and b, we have 
weakened the annotation, because the assertions ab out a and b in the 
components have been replaced by the weaker (and invisible) assertions 
"true". Proving, from scratch, the correctness of posteondition x = 2 in 
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the "stripped" program, would require us to invert the process, Le. to in
vent adequate auxiliary variables and adequate auxiliary assertions, which 
is a kind of exercise that is not too palatable, in general. 

End of Example 2. 

Example 3 We copy the annotated program of Example 1, while adding 
two system invariants: 

Pre: x=O /\ ( Vj :: dj = 0 ) 

Comp.i: *[{di=O} 

x,di := x+l, l+di 

; {di = I} {I :S x, see comments below} 

x,di := x-I, -1+di 

{di = O} 

J 

Inv: Po: (Vj:: O:Sdj ) 

PI: x = ( L. j :: dj ) 

In the above annotation we added assertion 1:S x by juxtaposing it to 
di = 1 . Such juxtaposition of assertions stands for their conjunction, and 
it forms a notational technique that has proven to come in handy in the 
design of multiprograms and their correctness proofs. We will return to this 
in later chapters. Assertions di = 1 and 1:S x are called "co-assertions" 
of each other. 

We are indeed entitled to add 1:S x as a conjunct to di = 1 , because 
from Po and PI - recall: invisible co-assertions of di = 1 - we 
conclude 

di =1 => l:Sx 

or, equivalently, 

di =1 = di =l/\ l:Sx 

Again, the invariance of Po and PI is obvious, from techniques of se
quential programming only. There is one additional phenomenon, though, 
that deserves our attention. It goes under the name "symmetry". If the, 
say, N components in the above multiprogram, each containing 2 atomic 
statements, are to maintain a system invariant, we have to carry out 2 x N 
proofs. However, in the current example symmetries abound. First of all, 
all components are alike: component j is just component i with i re-
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placed by j. Secondly, our eurrent system invariants are symmetrie in the 
eomponcnts: by interehanging the names of two arbitrary eomponents, thc 
invariants do not change. 
As a result of thc symmetrics in the eomponents and in the invariants, 
it suffiees to eonsider one- arbitrary - eomponent and show that it 
maintains the invariants. Thus the proof burden is reduecd from 2 x N 
to just 2 per invariant! 

We eonclude with thc observation that invariants Po and PI together 
imply thc invarianee of 

O:=:;x 

a result to be used below. 

End of Examplc 3. 

* * 
* 

The multiprogram in the above example gives rise to a useful theorem: 
from wcakening the annotation through removal of all referenees to the 
variables d, we obtain the 

First Topology Lemma 

The following multiprogram - with arbitrary number of eom
ponents - is eorreetly annotated 

Pre: x=O 

Comp.i: * [x:=x+1 

; {I:=:; x} 

x:=x-l 

1 
Inv: O:=:;x 

End of First Topology Lemma. 

Eaeh eomponent first inerements x and then deerements it. In between, 
thc value of x exceeds its initial value, irrespcetive of what the other 
eomponents have done to x. Sueh a eonfiguration pops up every so often, 
and having a theorcm about it has proven to be worthwhile. It is the 
"topographie" positioning of the assignments to x that aceounts for thc 
theorem's namc. 
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5.2 Mutual Exclusion 

Most machine architectures provide only a limited repertoire of statements 
that can be considered atomic. Many programming problems, however, 
demand system invariants that cannot be maintained by just the atomic 
statements provided by the machinery. For example, if the machinery only 
supplies atomic increments or decrements of single variables, it will be hard 
to maintain an invariant like 

x+y=z 

a program fragment like 

x:=x+I 

; z:=z+1 

will, during execution, create an intermediate state where x has been 
increased already, but z hasn't. In that intermediate state the invariant 
no longer holds, and all sorts of nasty and unintended things could happen 
due to the activities of other components. However, if in one way or another 
we could see to it that, during the intermediate state, variables x, y, 
and z were untouchable, invisible for the rest of the system, the situation 
would be considerably better. The quest for such an arrangement creates 
(createdt ) the problem of Mutual Exclusion, which - roughly speaking
boils down to the problem of how we can see to it that arbitrary program 
fragments can be dealt with as if they were atomic - "indivisible" or 
"interference-free" during execution. Let us consider the concept of Mutual 
Exclusion in some more detail and investigate how it can be exploited for 
reducing the proof load. 

* * 
* 

For our investigations it suffices to consider a multiprogram with just 
two components, Comp.O and Comp.l, say. They each contain two types 
of program fragments, viz. N-fragments and C-fragments. N-fragments and 
C-fragments are disjoint. We furthermore introduce two booleans, ineo 
and incl, which are coupled to the components by 

inco == (Comp.O is engaged in one of its C-fragments) 

and similarly for incl. Now suppose that somehow we have succeeded in 
tuning the multiprogram in such a way that it maintains system invariant 

-,ineo V -,incl 

tIn fact, Mutual Exclusion was the historically first means towards bridling the com
plexity of parallel programs. 
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or, equivalently, 

(0) incQ A incl == false 

(The operational interpretation of this invariant is that two components 
are never engaged in their respective C-fragment simultaneously; their C
fragments "mutuallyexclude" each other in time: hence the name Mutual 
Exclusion. ) 

Now let us focus on C-fragments, which in general will consist of a num
ber of atomic statements each properly supplied with apre-assertion. In 
Comp.O these pre-assertions can, by definition, all be strengthened with 
conjunct incQ, so that they all have shape incQ A P. Likewise, the atomic 
statements from Comp.1 's C-fragments all have apre-assertion of shape 
incl A Q. Let S be such a statement of Comp.l. Then we have, thanks 
to (0), 

{ineo A P A incl A Q} S {P} 

Le. such an S of Comp.1 does not falsify such a P of Comp.O. As a 
result we have 

(1) the assertions in C-fragments of the one component are globally cor
reet under the atomic statements of the C-fragments of the other 
component. 

* * 
* 

How much is gained by this? Quite a lot, if the components contain 
many C-fragments that, in addition, are large in size. Multiprograms of 
this kind are "coarse-grained" in the sense that, during execution, not too 
much parallelism is exhibited. After all, the executions of the C-fragments 
are supposed to exclude each other in time. In the extreme case, when 
each individual component is just one C-fragment, no parallelism can be 
exhibited at all. It is generally accepted that in multiprogramming - Le. 
in the construction of parallel programs - solutions that are too coarse
grained are to be avoided, because they would be against "the nature of 
parallelism" . They are only tolerated if there are good reasons (far instance 
to avoid otherwise unmanageable complexity). 

Hardly anything is gained by C-fragmentation if there are only a few 
C-fragments that, in addition, are small in size. There are, however, ap
plication areas, most notably the area of operating systems, where the 
components are so "loosely coupled" that all interaction between them can 
be confined to the C-fragments. There we can adhere to a programming 
discipline such that 
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(i) aeeess to shared variables is eonfined to C-fragments (and disallowed 
in N-fragments), 

(ii) the C-assertions of a eomponent are expressed in shared variables and 
private variables of that eomponent only, 

with as a eonsequenee that besides (1) we also have 

(2) the assertions in C-fragments of the one eomponent are globally eor
reet under the atomic statements of the N-fragments of the other 
eomponent. 

And then We ean eombine (1) and (2) into 

(3) on the assumptions (i) and (ii), C-assertions require a proof of loeal 
eorrectness only. 

* * 
* 

Let us see how we ean exploit the above in the example from the begin
ning of this seetion. If for the benefit of "maintaining" x + y = Z , program 
fragment 

x :=x+l 

; z:=z+1 

is embedded in aC-fragment of Comp.O and 

y:=y+l 

; z:=z+1 

say, in aC-fragment of Comp.l, and if there are no other operations on 
x, y, or z, then 

incQ V incl V x+y = z 

is a system invariant, and as a result 

x+y=z 

holds "outside C-fragments", Le. when no eomponent is engaged in a C
fragment. Beeause, if we adhere to (i) and (ii), C-fragments eannot be 
distinguished from genuine atomie statements, we are entitled to say: 
"x + y = z is a system invariant" . 

* * 
* 

It is by (3), that a eonsiderable reduetion in proof load ean be aecom
plished. Program construction based on this principle of mutual exclusion 
has firmly settled itself in the everyday praetice of eomputing, right from 
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the beginning (in the early 1960s). We can find extensive accounts of this 
programming style in the established literature - see, for instance, [Dij68] , 
[Hoa74], [BH73] - and that is why, in this book, we will hardly pay at
tention to it. 

* * 
* 

The concept of Mutual Exclusion should not be confused with what has 
become known as the problem of Mutual Exclusion. The latter refers to 
the quest ion of how to implement Mutual Exclusion, Le. how to tune a 
multiprogram so as to realize (0) with the primitive repertoire of atomic 
statements provided by a particular technology. The problem of finding or 
designing such an implementation - commonly called a Mutual Exclusion 
Algorithm - has, ever since the problem emerged, been so intriguing, 
appealing, and challenging, that a nearly endless stream of (often would
be) solutions has seen the light - see [Ray86]. Up to this very day, "novel" 
solutions are submitted for publication. 

In a later chapter, we ourselves will address the problem of Mutual Ex
clusion as weIl. 
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Co-assertions and Strengthening the 
Annotation 

This short chapter will, as a matter of fact, be at the heart of one of our 
main techniques for the formal derivation of multiprograms. This technique 
will consist in a stepwise strengthening of a too-weakly annotated multi
program, Le. of a multiprogram that cannot be handled with just the Core 
rules of the Owicki/Gries theory. Each individual strengthening step will 
always be guided by the des ire to turn one or more assertions into correct 
ones, Le. correct ones according to the Core. When, after aseries of such 
strengthenings, the entire annotation has become correct in the Core -
if ever! --, the design process has come to an end, because then - by 
the postulate of Weakening the Annotation - the original annotation is 
correct as weIl. In this chapter we shall focus on how to strengthen the 
annotation so as to make a single assertion correct (in the Core). 

* * 
* 

Strengthening an annotation means strengthening one or more assertions 
or the precondition of the multiprogram. The strengthening of any such 
condition amounts to adding a conjunct. Therefore, we first analyze what 
is involved in proving the correctness of an assertion that is a conjunction, 
X 1\ Ysay. 

There are three cases to be distinguished, viz. two dealing with the local 
correctness of X 1\ Y and one with its global correctness. 
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• If X 1\ Y is the initial assertion of a eomponent, then its loeal eor
rectness requires a proof of 

[Pre => X 1\ Y 1 
or, equivalently, of 

(i) [ Pre => X land [Pre => Y 1 

• If X 1\ Y is textually preeeded by {Q} S, then the proof obligation 
for its loeal eorreetness has the shape 

[Q => wlp.S.(X 1\ Y) 1 

Beeause wlp.S is eonjunetive, this equivales 

(ii) [Q => wlp.S.X 1 1\ [Q => wlp.S.Y 1 

• All proofs of global eorreetness of X 1\ Y with respect to {Q} S 
have the shape 

[ Q 1\ X 1\ Y => wlp.S.(X 1\ Y) 1 
whieh equivales 

(iii) [ Q 1\ X 1\ Y => wlp.S.X 1 1\ [Q 1\ X 1\ Y => wlp.S.Y 1 

From (i) and (ii) we see that the loeal eorreetness of a eonjunction ean, 
without loss, be handled eonjunet-wise. And this is nice, beeause, besides 
being more manageable, it mayaiso eontribute to a better separation of 
eoneerns: after all, the individual eonjuncts may be very unrelated. 

Remark Sueh eonjunct-wise treatment of a eonjunetion has become an 
established and sueeessful practice in sequential programming. Note that 
it is only possible thanks to the eonjunetivity of the wlp. 
End of Remark. 

From (iii) we obtain that also the global eorreetness of a eonjunetion ean 
be handled eonjunet-wise, this time not just without loss, but even with 
benefit. Let us eonsider the first eonjunet of (iii), whieh ean be rewritten 
as 

(0) [Y => (Q 1\ X => wlp.S.X) 1 

If we had to prove the global eorreetness of X with respect to {Q} S 
all by itself, we would have to show the validity of 

(1) [ Q 1\ X => wlp.S.X 1 
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Comparing (0) and (1) we see that the body of (1) occurs as the consequent 
in (0), which implies that in the presence of a "conmate"t Y of X, 
proving the global correctness of X via (1) can be replaced by proving 
the weaker (0), and this might be beneficial. Of course, the same holds for 
X and Y interchanged. 

* * 
* 

In the above, we have established that an assertion that is a conjunction 
can be handled conjunct-wise. We now use this property in answering a 
question that is fundamental to our method of stepwise strengthening of 
the annotation: viz. the question is how the original annotation is affected 
if, for some reason, the precondition Pre or an assertion X, say, receives 
a conmate Y. The reassuring answer is that it isn't. 

• If Pre is strengthened to Pre 1\ Y , this does not affect the local 
correctness of the initial assertions of the components. All other proof 
obligations remain the same since Pre is not involved in them. 

• If assertion X receives a conmate Y, the previous section shows 
that this does not affect the correctness of X: from (i) and (ii) we 
see that its proof obligation for local correctness remains the same, 
and from the analysis of (iii) we see that its proof obligations for global 
correctness can only become weaker in the presence of conmate Y 
- so that the global correctness of X cannot by violated either. 

As for the correctness of any assertion other than X we observe 
that if X was involved in its original proof obligations at all, again 
the addition of conmate Y to X can only weaken these proof 
obligations. 

Thus we have established that adding conjuncts to assertions does not 
violate the correctness of the annotation. 

* * 
* 

Now that the above has been said we return to the original problem 
of how to strengthen the annotation so as to make an assertion (or an 
invariant), P say, correct (in the Core). Again we distinguish three cases. 

t In X /\ Y, X and Y are called "conjunctive mates" of each other, or "conmates" 
for short. 
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• Local correctness of initial assertion P 

If P is the initial assertion of a component, its local correctness requires 
the validity of 

[Pre =} P 1 
If this condition is not satisfied, we have to strengthen the precondition of 
the multiprogram as a whole into Pre 1\ P, or something stronger. Thus, 
P becomes locally correct in the Core. Note that - as mentioned be
fore - this strengthening does not affect the correctness of the existing 
annotation. 

Remark In practice, condition Pre 1\ P can often be simplified, but 
that is a different, separate concern. 
End of Remark. 

• Local correctness of non-initial assertion P 

If P is textually preceded by {Q} S, its local correctness requires the 
validity of 

[Q =} wlp.S.P 1 
If this condition is not satisfied, we strengthen pre-assertion Q of Sinto 
Q 1\ wlp.S.P, or something stronger. Thus, P becomes locally correct in 
thc Core. 

Note that by this strengthening Q has received a conmate, which we 
will record in the program text as a co-assertion to Q, to be denoted 
through juxtaposition; Le. the strengthening will become manifest by re
placing 

{Q} S with {Q} {wlp.S.P} S 

We lay down this convention in the 

Rule of Juxtaposition 

The juxtaposition of assertions stands for their conjunction. 

End of Rule of Juxtaposition. 

This notational device will appear to be very important t in the develop
ment of annotation and programs. For one thing, human beings can, in 
fact, only do one thing at a time, here: tackle one assertion after the other. 

~This is quite an understatement: without this notational devicc this book could 
never have been written. 
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For another, we have seen that in case of a conjunction, separate treat
ment of the conjuncts is technically feasible and even to be recommended. 
By juxtaposing the conjuncts, their separate treatment becomes almost 
imposed. 

Finally note that the introduction of a new assertion like wlp.S.P con
stitutes a new proof obligation, which in turn may require new strength
enings of the annotation, but, again, that is aseparate and later concern: 
here we are dealing with P, and P only . 

• Global correctness of assertion P 

The global correctness of P under {Q} S (taken from a different com
ponent) requires the validity of 

(2) [ Q 1\ P '* wlp.S.P 1 

But what if this does not hold? Remembering (0) and (1), we can replace 
it by the weaker 

(3) [F '* (Q 1\ P '* wlp.S.P) 1 
whenever we strengthen assertion P into P 1\ F , i.e. whenever we add 
F as a co-assertion to P. By thus strengthening the annotation and 
requiring (3), P becomes globally correct under {Q} S. 

Equation (3) in F may have many solutions. In a particular application, 
however, finding a solution F that is a correct co-assertion to P may 
be too much to ask for. For instance, each F satisfying [F '* -,p 1 is 
a solution to (3), but if for particular P, Q, and S such F's are the 
only solutions of (3), we are in trouble, because conjoined with P they 
yield false; and false is an assertion that can never be established. 

Fortunately, there is a different possibility for weakening (2), viz. by 
adding a co-assertion G to Q, i.e. by replacing 

{Q} S with {Q}{G} S 

Then (2) can be replaced by the weaker 

[ G 1\ Q 1\ P '* wlp.S.P 1 

or, equivalently, by 

(4) [G '* (Q 1\ P '* wlp.S.P) 1 

Unfortunately, it will often be impossible to find a correct conmate F 
of P that satisfies (3) or a correct conmate G of Q that satisfies (4). A 
"combination" of the two, however, will, in practice, often do. So we shall 
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in general be willing to handle P's global correctness under {Q} S by 
adding a co-assertion F to P and a co-assertion G to Q, such that 

[ G 1\ Q 1\ F 1\ P :::} wlp.S.P 1 
or, equivalently, 

(5) [F 1\ G :::} (Q 1\ P :::} wlp.S.P) 1 
will hold. Note that, indeed, (5) is a further weakening of both (3) and (4). 

* * 
* 

And this concludes our treatment of strengthening the annotation. Many 
examples will follow in subsequent chapters. Here we confine ourselves to 
a few final remarks. 

• The above technique will bc our only mechanism for introducing ncw 
assertions into the program text. That is, in aseries of approximations, the 
annotation becomes stronger and stronger. This may be a little reassuring 
as far as the convergence of the process is concerned, but it isn't a guarantee 
at all. Sometimes convergence can only be reached by the introduction of 
new ingredients such as auxiliary variables. (To get a feel for this, the reader 
is invited to try to prove the First Topology Lemma - see Chapter 5 -
by the technique just described.) In our experience, it is the Fand the 
G in (5) that usually give strong hints as to what auxiliary variables might 
be introduced. 

• The shape of (5) is geared to the way in which we typically derive appro
priate co-assertions Fand G. Mostly we begin massaging the consequent 

Q 1\ P :::} wlp.S.P 

of (5), setting up a sequence of equivalcnce preserving transformations, 
until an expression emerges that is simple enough. This latter expression, 
or a strengthening thereof, will then be our choice for F 1\ G . The quest ion 
of how to divide it over an Fand a G very much depends on specifics 
of the example. 

• Our overall strategy, however, is to choose our strengthenings as weak as 
possible. There are good reasons for this, to which we shall return later. One 
- fundamental - reason can be explained here and now: if a strengthening 
turns out to be too strong, there is no going back, but if it turns out to be 
too weak, we can always perform another strengthening later on, and it is 
this chapter that tells us how to do so! 
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Three Theorems and Two Examples 

Now that most ofthe groundwork has been done, the time has come to show 
the formalism at work. We shall give a number of rather unrelated exam
pIes, some of which are relevant enough to acquire the status of theorems. 
We start with the theorems, which happen to be the simpler exercises, and 
we conclude with slightly more sophisticated examples, which enable us to 
pay attention to the design of a-posteriori proofs, an activity that is quite 
similar to our ultimate goal: the design of multiprograms. 

Disjointness 

The first theorem is the 

Rule of Disjointness 

Assertion P is (globally) correct under {Q} S if 

[ P 1\ Q :::} false 1 

End of Rule of Disjointness. 

The proof is extremcly simple: P is (globally) correct under {Q} S 
whenever 

[ P 1\ Q :::} wlp.S.P 1 
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holds, which it does for [P 1\ Q :=} false 1 . 

However simple this rule may be, it deserves a name because it will 
prove to be of great practical value. A proof of the global correctness of 
an assertion like x = 0 under {x = I} x := 7 , far instance, can now be 
disposed of by the catchword 

"Disjointness" , 

which explains the situation in just a single word. 

Remark The importance of having catchwords or catchphrases for well
understood situations should not be underestimated. They capture at a 
stroke what is going on. We extensively employ this "technique" of using 
catchwards in our calculations by putting in hints. 
End of Remark. 

The Rule of Disjointness not only helps in correctness proofs, it also has 
its röle in program design. A typical usage is illustrated by the following 
little example. 

Assume we want assertion x = 0 in one component to be globally correct 
under statement x:= 7 in another component. It is quite clear that x:= 7 
will certainly falsify x = o. One way to preclude this is to appeal to the 
Rule of Disjointness by requiring x i- 0 , say, to be a correct pre-assertion 
to x:= 7. But if, for one reason or another, pre-assertion xi- 0 would 
be too much to ask for, there is yet another - fairly canonical - way 
to proceed, viz. to strengthen the annotation by adding a co-assertion C 
to the target assertion x = 0 and apre-assertion D to culprit statement 
x := 7 and requiring [C 1\ D :=} false 1 . In such a way C and D do 
the job (without anything being required ab out the value of x prior to 
x:=7 ). 

Remark Operationally speaking, the Rule of Disjointness expresses that 
certain combinations of states (ought to) exclude each other in time, thus 
bringing ab out mutual exclusion for particular program fragments. The 
traditional mutual exclusion proposal with the explicitly designated critical 
sections pushes the idea of Disjointness to the limit. 
End of Remark. 
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Widening 

The second theorem to be dealt with is the 

Rule of Widening 

Assertion x S. y - x and y integer, say - is (globally) 
corrcct under descents of x and ascents of y. 

End of Rule of Widcning. 

Here a "descent" is a decrease of at least o. More precisely, 

{FS.x} x:=F 

descends x. And likewisc, 

{ys.G} y:=G 

ascends y. In many applications F is something like x-I and G 
something like y + 1 , so that the pre-assertions are just true. By such 
assignments thc (x, y)- interval gets "wider", hence the name of the rule. 

The proof that x S. y is (globaHy) correct under, for instance, 
{y S. G} y := Gis, again, extremely simple: 

(y:= G).(x S. y) 

{substitution} 

xs. G 

*' {transitivity of S.} 

x~y 1\ y~G 

from which we see that it is the transitivity of S. that plays a central röle. 

Of course the Rule of Widening comes in many variations: predicate 
x S. y is just one example of a relation that is (anti)monotonic in some of 
its arguments. Another example would be a predicate like c::::} d which is 
globally correct under statements like c:= c 1\ f, d:= d V g, c:= false , 
etc., mainly thanks to the transitivity of ::::}. We da not formulate the Rule 
of Widening in its fuH generality here, because we don't think that would 
be helpful. 

Again, no matter how simple the Rule of Widening is, it deserves a name: 
since it can be used so frequently, it will prove to be of great practical value. 
By thc single catchword 

"Widcning" , 

the situation is again explained at a stroke. 
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Topology 

The third theorem to be dealt with is of a completely different nature. It 
is the 

Second Topology Lemma 

The following multiprogram - with arbitrary number of com
ponents - is correctly annotated 

Pre: x=y 

Comp.i: *[x:=x+l 

j {y < x} 

y:=y+l 

1 
lnv: y5,x 

(The individual assignments are atomic.) 

End of Second Topology Lemma. 

We can prove the theorem in a way very similar to the proof given earlier 
for the First Topology Lemma. But this time we have yet another option: 
we can use the First Lemma to prove the Second, and that is what we 
will do. To that end, we introduce an auxiliary variable z and adjust thc 
given multiprogram so as to make z = x - y a system invariant. We thus 
obtain 

Pre: x=y /\ z=O 

Comp.i: * [x,z := x+l,z+l 

j {O< z} {hence y<x} 

y,z:= y+l,z-l 

1 
lnv: 05,z /\ z=x-y, hence y5,x 

The invariance of z = x - y is correct by construction. The invariance of 
o 5, z and the correctness of assertion 0 < z follow from the First Topol
ogy Lemma by "projecting" the above program on z. The combination 
settles the theorem. 

Topology Lemmata, too, come in many variations. For instance, in a 
multiprogram with N identical components - 1 5, N -, we have the 
correctness of 
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Pre: x=O 

Comp.i: * [{x<N} 

x:=x+l 

; x :=x-l 

{x<N} 

J 

Inv: Osx 1\ xSN 

It is almost undoable to characterize what Topology Lemmata are about 
in general. They usually refer to program structures in which the compo
nents increase and decrease shared variables in some strict and consistent 
order. When dealing with programs like that, we will often motivate the 
correctness of annotation by just using the catchphrase 

"Program Topology". 

We have learned, however, that it should not be used without care. 

So much for our three theorems. 

* * 
* 

Next we consider some examples that will not be raised to theoremhood. 
But they serve at least three other purposes: 

• Thcy give a first performance of how the theory developed so far works 
in practice; 

• They demonstratc how a-posteriori proofs can be designed. We will badly 
need this agility, because at a later stage we will have to design proofs 
for the absence of total deadlock - a phenomenon to be discussed in a 
next chapter -; 

• They anticipate on what is coming, viz. program design. As will become 
clear, the design of programs and the design of a-posteriori proofs for 
existing programs are two activities of a kind. In either case auxiliary 
annotation will generally have to see the light; the main difference is 
that in program development genuine code is introduced along with it. 

In the examples to follow, we will also pay some attention to the heuristics 
of the designs. 
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Example 0 

We return to the artificial, random program from our initial chapter and 
put forward as our goal to prove the correctness of the postcondition in 

Prc: x=7 1\ y=3 

A: x:=y+l B: y:=x+l 

; x:=y2 ; y:=x2 

;x:=x-y ; y:=y-x 

Post: ? SQ.(x+y) 

where SQ is defined by SQ.z == (3i:: z = i2 ) • (The individual assign
ments are atomic.) 

In order not to confuse the reader with our presentation, we will largely 
separate the "what" and the "why". That is, we first present the fuHy 
annotated program, then explain how this annotation was chosen, and we 
conclude with fulfilling the major proof obligations. 

Pre: x=7 1\ y=3 1\ -,j 1\ -'g 

A: {-,f} B: y:=x+l 

x:=y+l ; y:=x2 

; {-,f} ; y,g := y-x, true 

X:=y2 {g} 

; {SQ.x} 

x,j:= x-y, true 

{J} 

Inv: ? P: jl\g => SQ.(x+y) 

Post: SQ.(x+y) 

Let us first explain why there is much more annotation in A than there 
is in B. To that end we observe that in the specification of the problem, 
both the multiprogram and the required postcondition are symmetric -
in x versus y. Our first design decision has been to try to retain that 
symmetry in thc proof as weH. (And we succeeded, as will become clear 
below.) Thanks to the symmetry, however, we can now confine the whole 
discussion to just one component and its annotation - here: component 
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A. That is why most of B's annotation has been omitted. (Besides, if the 
need arises, B's annotation can simply be deduced from A's.) 

Why this particular annotation? 

• Both components certainly terminate; now the Rule of the Postcondi
tion teIls us that we have to introduce post-assertions in the individual 
components such that their conjunction implies SQ.(x+y). We could, 
for instance, have tried SQ.(x + y) itself as a post-assertion of A, but 
this assertion would have been far too vulnerable with respect to the 
operations in B. Therefore, we made a very neutral choice, choosing 1 
in A and - symmetrically - 9 in B. But then, of course, we need 
that 

1 1\ 9 => SQ.(x+y) 

and this we have chosen to become a system invariant - named P. 
(Note that P is symmetrie in (I, x) versus (g, y) !) 

• For P to be a system invariant, it should hold initiaIly; that is why .1 
and - symmetrically - .g have appeared in the precondition. 

• For reasons of simplicity we decided that variable 1 be private to A 
and 9 to B. As a result, the global correctness of assertions 1 and 
.1 in A is for free. Their local correctness is obvious. 

• Assertions .1 and SQ.x have been plugged in because they are useful 
for the invariance of P, to be dealt with shortly. Note that SQ.x is 
obviously correct as weIl. 

• Because 1 is lalse to start with and true at the end, statement 1:= true 
has to be incorporated somewhere in A. The reason why it has been 
coupled to x:= X - Y is that this is the only statement in A that "elim
inates" variable y from the consequent of P, as will become apparent 
below. 

So much for some why's. 

Now we prove the invariance of P. We have to show that it holds ini
tially - which it does by construction - and that no statement of the 
multiprogram violates it. Because of the symmetry, it suffices to address 
the statements of A only, and we now do so one after the other. 

Re {.f} x:=y+l 

Our proof obligation is 
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{P 1\ -.f} x:=y+l {P} 

the correctness of which follows from 

(x:=y+l).P 

= {substitute in P} 

j 1\ 9 :::} SQ.(y+ 1 +y) 

{-.j from the pre-assertion of x := y + 1} 

true 

Remark Here we see why -.j was introduced as apre-assertion 
to x:= y + 1 . In the Hne marked (*), the consequent is absolutely 
hopeless, in that it cannot follow from anything; and since g's value 
is unknown, the only way to "save" (*) is by assuming -.j. 
End of Remark. 

Re {-.f} x := y2 

Similarly. 

Re {SQ.x} x,j := x-y, true 

(x,j := x-y, true).P 

{substitute in P} 

true /\ 9 => SQ.(x-y+y) 

{simplify} 

9 => SQ.x 

= {SQ.x from the pre-assertion of the statement} 

true 

End of Re's. 

* * 
* 

From the above proof we see that neither the initial value of x or 
of y, nor the statements x:= y + 1 and y:= x + 1 playa röle in the 
correctness of the postcondition. This is due to the weird example and 
the particular postcondition chosen. From the table of possible outcomes 
of this multiprogram we see that x + y > 0 is a correct postcondition as 
well. Here the initial value of x and y do playa röle; we leave this proof 
as an exercise. 
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Example 1 

The little multiprogram to be considered here is a simplified version of 
what has been called the "Non-Blocking Write Protocol", to which we shall 
return in a later chapter. Here our only goal is to prove the correctness of 
the assertion in: 

Pre: w/\ -,y /\ -,g 

W: w:=false R: do -'g -+ 

; w:= true g:=y 

; y:= true ; r:=w 

od 

{? r} 

Version 0 

(The individual assignments are atomic.) 

Given the above program, it is not too difficult to show by operational 
reasoning that post-assertion r is, indeed, correct. The reader may have a 
look at it this way, and also convince hirnself that both in the loop body of 
Rand in W the order of the assignments is crucial for the conclusion. 
When, in a later chapter, we derive a generalization of this algorithm from 
some specification, the order of the assignments will follow. Here our goal 
is to develop, in a number of steps, an annotation that is a strengthening of 
the one demanded by Version 0 - our specification - and that is correct 
in the Core of Owicki and Gries. 

Let us first convince ourselves that component R terminates. Compo
nent W surely does, and because variable y is private to W, the final 
state of W satisfies y. In this state, R is guaranteed to terminate as 
well, since g will become stably true. 

Now we proceed to the next, more strongly annotated version, guided 
by the following consideration. How can the local correctness of r 
the post-assertion of arepetition - be concluded? We have little choice, 
viz. it has to follow from the conjunction of a loop invariant Land the 
negation of the guard, Le. we need 

L/\g,*r 

or, equivalently, 

L,* (g '* r) 
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The weakest L thus is g::::} r , and that is the one we ehoose. With this 
loop invariant, the loeal eorreetness of target assertion r is guaranteed. 
Its global eorreetness is for free, sinee r is private to eomponent R. We 
thus arrive at the next approximation for our ultimate annotation: 

Pre: w 1\ -,y 1\ -'g 

W: w:=false R: {? g::::} r} 

; w:= true do -,g ---+ 

; y:= true g:=y 

; r:=w 

{? g::::} r} 

od 

{r} 

Version 1 

and what remains to be done is to take eare of the two assertions g::::} r . 

* * 
* 

The global eorrectness of either assertion g::::} r is again for free. The 
loeal correctness of R's initial assertion g::::} r follows from conjunct -,g 
of the multiprogram's preeondition. As far the loeal eorreetness of the other 
assertion g::::} r , we demand that the preceding statement r:= w have 
precondition 

wlp.(r:= w).(g ::::} r) 

Le. g::::} w. Thus the next approximation becomes 

Pre: w 1\ -,y 1\ -,g 

W: w:=false R: {g::::} r} 

; w:= true do -,g ---+ 

; y:= true g:=y 

.{? , . g::::} w} 

r:=w 

{g::::} r} 

od 

{r} 

Version 2 
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and what remains to be done is to take care of assertion 9 '* w in R. 

* * 
* 

The global correctness of 9 '* w is not for free: statements w:= false 
and w:= true might influence it. Statement w:= true is harmless to 
9 '* w: this is just Widening! As for w:= false , we calculatet 

(g,* w) '* (w:=false).(g '* w) 

{substitution} 

(g '* w) '* (g '* false) 

{simplification} 

,gV,w 

{::: {see Remark below} 

and from this we see that something extra is needed for 9 '* w to be 
correct under w:= false. We gratify this extra need by demanding that 
'g be apre-assertion of w: = false . 

Remark The last step in the above calculation looks like a strengthening, 
but in fact it isn't: looking a little bit ahead, we observe that w is a correct 
precondition of w:= false . Thus the transition from 'g V ,w to ,g is 
merely a simplification. 
End of Remark. 

We satisfy the loeal correetness of 9 =? W in R by requiring that the 
preceding statement g:= y have precondition 

wlp.(g:= y).(g '* w) 

Le. y '* w. 

Thus we have arrived at 

tSee penultimate re mark of Chapter 6 
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Pre: w 1\ -.y 1\ -.g 

W: {? -.g} R: {g => r} 

w:=false do -.g -+ 

; w:= true {? y => w} 

; y:= true g:=y 

; {g => w} 

r:=w 

{g => r} 

od 

{r} 

Version 3 

and we are left with the care for assertion -.g in Wand assertion y => w 
in R. 

* * 
* 

Assertion y => w in R solely depends on private variables of W, which 
means that it ought to be an invariant of the "subsystem" W, and, as a 
result, of the entire system. We leave to the reader to check that y => w 
is, indeed, a system invariant. (The topology of W is accountable for it.) 

The local correctness of -.g in W follows from the precondition of the 
multiprogram. Its global correctness is endangered by g:= y in R. We 
calculate 

-.g => (g: = y). ( -.g ) 

{substitution} 

-.g => -.y 

{= {eliminating g - see below - } 

and we add this last line - -.y - as a co-assertion to target assertion 
-'g. This new assertion only depends on private variables of W, and that 
is why we eliminated g in the above calculation. The local correctness of 
-'Y is obvious. 

Thus wc arrive at our final version which reads 
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Pre: w A ...,y A ...,g 

W: {...,g} {...,y} R: {g =} r} 

w:=false da ...,g -t 

; w:= true {y =} w} 

;{w} g:=y 

y:= true ; {g =} w} 

r:=w 

{g =} r} 

ad 

{r} 

Inv: y=}w 

Version 4 

* * 
* 

The program above is fully documented in that anyone who wants to 
prove the correctness of the annotation, can now do so with just the Core 
rules. This will be a typical feature of almost all our designs, whether 
they pertain to program- or to proof construction. This should not be 
amazing, since ~ after all ~ the Core rules form our ultimate rne ans for 
demonstrating correctness. Also typical will be that a cautiously conducted 
design will not produce more (annotation) than is strictly needed for the 
purpose. In much of the literature on a-posteriori verification we can find 
programs far too lavishly annotated, and needless to say this can only lead 
to unnecessary complication. 

* * 
* 

We hope that through this example we have been able to transmit sorne 
of the fiavour of our intended design process. In a later chapter, the one on 
Concurrent Vector Writing, we will be more explicit about the details of 
design and presentation. 

End of Example 1. 

* * 
* 
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It is quite conceivable that at this stage some readers may be annoyed by 
the long-windedness and tardiness of the treatment of an example as simple 
as our last one. And to some extent they are right. Later on, when the 
reader has grown more familiar with most of the ins and outs of the design 
process, we will speed up the treatments, assisted by some clerical aids. The 
general advice, however, is not to be in a hurry, because in designing delicate 
artefacts - which multiprograms happen to be - hurrying may cause 
oversights or mistakes that are hard to recover from, and thus may seriously 
slow down the design process in the end. Nothing is as costly, ineffective, 
and frustrating as making mistakes that could have been avoided in the 
first place. 
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Synchronization and Total Deadlock 

Most multiprograms are designed with the aim of having the components 
cooperate on a common task. The common task may vary from a large-scale 
computation divided over thc various components to an orderly scheduling 
of the access of components to scarce common resources. Almost all appli
cations will require information exchange - communication - between 
components, and almost always will the need arise for tuning the relative 
speeds - i.c. for synchronization - of the components. Indeed, a compo
nent that is about to perform an addition, might have to be delayed until 
the addends have arrived, and a component that is about to need a printer, 
might have to "wait" if no printer is free. 

There are many technical means for implementing communication 
e.g. shared memory, communication channels, message passing, etc. - and 
there are many ways for realizing synchronization - e.g. via busy waiting, 
via P- and V- operations on semaphores, via conditional critical regions, 
monitors, etc .. We also find the two aspects combined, as is revealed by 
the phrase "synchronous communication", of which C.A.R. Hoare's CSP
constructs [Hoa78, Hoa85] are a prominent representative. 

In a previous chapter we already decided "how to communicate", viz. 
through an abstract universe of variables. Now we must decide "how to 
synchronize" , and in thc chapter on our program notation we already hinted 
that this would be done by means of guarded statements of the form 
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if B ~ S fi 

Here we recall that guarded statements are atomic. However, in this mono
graph we will not allow them to occur in our final program texts, where 
~ by our self-imposed constraint t ~ we wish to make do with the finer
grained guarded skip 

if B ~ skip fi 

8.0 Guarded Statements 

Before we go into some of the rationale for this choice of synchronization 
primitive, we first recall its semantics and its operational interpretation. 
The weakest liberal precondition for a guarded statement is given by 

[ wlp.(if B ~ S fi).R == B =:} wlp.S.R J 

which for a guarded skip specializes to 

[ wlp.(if B ~ skip fi).R == B =:} R J 

In Hoare-triple notation the semantics is given by 

(0) {B =:} R} if B ~ skip fi {R} 

As will turn out later, relation (0) ~ no matter how simple it is ~ will 
playa ccntral röle in the way we shall be dcriving multiprograms. It will be 
one of our prime means for establishing the local correctness of an assertion: 

in (0), post-assertion R is locally correct whenever pre-as
sertion B =:} R is both locally and globally correct. 

This rule is most commonly applied with B (chosen to be) equal to R, 
l.e. 

(1) if R ~ skip fi {R} 

which is the way par excellence to establish the local correctness of asser
tion R. In our annotation-driven handling of multiprograms, it is the com
pelling simplicity of (0) and (1) that forms our first incentive for choosing 
the guarded statement (and its descendant the guarded skip) as our syn
chronization primitive. So much for recalling the semantics of the guarded 
statement. 

The operational interpretation of 

tHad we decided to admit the guarded statement as a primitive atomic statement, 
we would have written a completely different book (cf. Chapter 15). 
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if B ~ S fi 

is that the component executing it, atomically evaluates guard B with 
positive frequency until it is found to be truej if this happens, execution of 
S follows within the same atomic action. Thus Stakes place under "mu
tual exclusion" with all other statements, starting from astate satisfying 
B. 

For the guarded skip, 

if B ~ skip fi 

one of the possible implementations is 

do ...,B ~ skip od 

Now also recall that we have made no assumption ab out the speed with 
which the execution of a component proceeds, except that it is positive. So 
when a component is about to execute a guarded skip, we have absolutely 
no idea as to how frequently the guard will be evaluated, whether it is at a 
frequency as enabled by modern electronic circuitry or just once in a while, 
for instance when triggered by a scheduler. The mere fact that, thus, the 
guarded skip forces, and hence enables us to ignore - to a large extent -
underlying scheduling mechanisms, was an important second incentive for 
adopting it as our synchronization primitive. In such a way, we are able to 
fully separate logical and strategical aspects concerning synchronization. 

Remark Conditional critical regions [Hoa72, BH72] and guarded state
ments are quite similar, be it that the former come with a number of 
strategical assumptions, which causes their use to become slightly more 
cumbersome. They share this "fate" with the P- and V- operations on 
semaphores [Dij68], from which they are outgrowths. We return to the 
latter in a later chaptcr. 
End of Remark. 

8.1 Progress issues 

In the foregoing chapters we rat her emphatically abandoned operational 
reasoning, exchanging it for the far more static theory of Owicki and Gries. 
The quest ion now arises why, with the introduction of the guarded state
ment, we returned to an operational model. The answer is: we have to! 
With the incorporation of the if-statement, a truly complifying, almost 
frightening, phenomenon has entered our game, as we shall explain next. 

The Hoare-triple semantics for sequential programming only addresses 
partial correctness, Le. it cannot deal with issues of termination of, say, 
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arepetition. This is not regrettable at all, because termination - being 
a completely different concern - can be effectively dealt with by other 
means, viz. through variant functions [Dij76], also called bound functions 
[Gri81]. Along with arepetition there should always come abound function, 
for instance an integer function that is bounded from below and that is 
decreased by each step of the repetition. Then termination is guaranteed. 

Remark We ourselves have come to consider this separation of concerns, 
viz. the concern for partial correctness and the concern for termination, as 
a highly adequate one, because the techniques for dealing with the two are 
so very different. 
End of Remark. 

The Owicki/Gries theory is to multiprogramming what Hoare-triples are 
to sequential programming: it can address partial correctness only. Unfor
tunately, in the current state of the art of multiprogramming there is no 
such universal technique like the bound function, for dealing with the issue 
of "progress", as it is called in this context. 

Let us investigate the situation we are in, by considering a component 
containing guarded skip if B -t skip fi. In a stand-alone sequential pro
gram, such a statement would make no sense, because there is no outside 
world to change the value of the guard. In a component of a multiprogram, 
however, the occurrence of if B -t skip fi does make sense, since due to 
the activities of thc other components thc value of guard B may be al
tered. While the component is engaged in the execution of this if-statement, 
three things can happen due to the computations that can be evoked by 
the rest of the system: 

(i) There exists a computation in which the value of B oscillates an 
infinite number of times (between true and false). 

The component might terminate its guarded skip, viz. if 
B is inspected when true. But termination is not guaran
teed: the inspection of B may all the time take place at 
a moment when B is false. There is danger of so-called 

Individual Starvation 
or Infinite Overtaking . 

(ii) There exists a computation in which the value of B oscillates only 
a finite number of times and eventually becomes stably false. 

If the component has not terminated before the last alter
ation of B (if any), nontermination of if B -t skip fi for 
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this computation is guaranteed. There is danger of so-called 

(Individual) Deadlock . 

(iii) In all computations the valuc of B oscillates only a finite numbcr 
of times and eventually becomcs stably true. 

Thc component is guarantced to always terminate. It makes 

Progress. 

In multiprograms thc danger of Individual Starvation or Dcadlock is 
unwanted. It is to be avoided: there is no point in having a componcnt 
that can get stuck forever in a guarded statement. Wc will always demand 
Progress, and from (iii) abovc we conclude the 

Rule of Progress 

Statement {Q} if B ---? S fi in a component is guaranteed to 
terminate 

if and only if 

the rest of the system, when constrained to Q, will, in a finite 
number of steps, converge to astate in wh ich B is stably true. 

End of Rule of Progress. 

And this precisely tells us what we have to prove to cnsure progress. Unfor
tunately, we don't know of a general and technically appealing technique 
for proving that a system converges to some specified state. The problem 
is very similar to problems of self-stabilization, which have been gene rally 
recognized as notoriously difficult. 

Remark General techniques for dealing with progress do exist. Notewor
thy is temporal logic, as pioneered by Amir Pnueli [Pnu77]. Chandy and 
Misra embedded this logic in their UNITY programming formalism and 
provided the semantics for handling progress [CM88]. Thus, powerful for
malisms for dcaling with progress are available. However, the thing that 
has discouraged us from using them in practice is, that they bring about 
so much formal complexity. They are no match for the simplicity of the 
bound functions of sequential programming. It could very well be that the 
formalisms are to bc blamed, but it is also quite possible that the problem 
of progress is, in its full generality, just intrinsically complicated, and then 
we should not be amazed for this to become manifest in a formal system. 
At the moment, we just don't know. We have decided to investigate how 
far we can get in designing multiprograms without doing formal justice to 
progress. And as we shall see, there are quite a number of circumstances 
in which we can make do without temporal logics. 
End of Remark. 
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From the Rule of Progress we extract a very useful condition to be im
posed on the shape of multiprograms, lest progress be seriously endangered. 
It is the following. 

Ground Rule for Progress 

For each guarded statement if B ~ S fi in a component, it 
should hold that the rest of the system has the potential of 
ultimately truthifying B. 

End of Ground Rule for Progress. 

Programs that do not satisfy this requirement are wrong or make no sense: 
if B is a provably correct pre-assertion to if B ~ S fi, the guarded 
statement is a fake synchronization, since it can be simplified to just S, 
but if B can be false, then we are in great trouble with if B ~ S fi 
whenever the rest of the system cannot ultimately truthify B, because 
then individual deadlock will be the result. 

Naive as the Ground Rule may at first seem, it will show to be of great 
heuristic value. 

8.2 Some examples 

We now give aseries of examples that exhibit the various phenomena dis
cussed so far in this chapter. 

Example 0 

Pre: .x 1\ .y 

A: x:= true B: y:= true 

; if .y ~ skip fi ; if .x ~ skip fi 

Here there is danger of deadlock for each of the components individually, 
and even for the two of them simultaneously - which is called Total 
Deadlock. We trust that the reader can construct computational scenarios 
that confirm these claims. 
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Example 1 

Pre: ,x A ,y 

A: if ,y --+ skip fi B: if ,x --+ skip fi 

; x:= true ; y:= true 

Here there is danger of individual deadlock for each of the components, but 
total deadlock is impossible. The reader may verify this in an operational 
fashion. 

Example 2 
In Example 0 and 1, neither component has the potential of effectively 
weakening the guard in the other component, and we recall that that is 
against the rules, viz. against the Ground Rule far Progress. Therefore, let 
us improve the situation and slightly extend the program of, say, Example 1. 

Pre: ,x A ,y 

A: if ,y --+ skip fi B: if ,x --+ skip fi 

; x:= true ; y:= true 

; x :=false ; y:=false 

By adding the assignments x:= false and y:= false we have saved the 
situation: both components are guaranteed to terminate. We can and shall 
formally prove this - see Example 4. 

Example 3 
We slightly extend the program of Example 2 by turning the components 
into cyclic ones: 

Pre: ,x A ,y 

A: * [ if 'y --+ skip fi B: * [ if ,x --+ skip fi 

; x:= true ; y:= true 

; x :=false ; y:= false 

1 1 

Any satisfaction that may have been evoked by the previous example will 
(should) now disappear immediatcly, because now the danger of individual 
starvation is lurking around the corner, for both components. The reader 
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can easily construct a scenario where component A only inspects its guard 
...,y in states where y equals true. 

End of Examples. 

And here we have seen in a nutshell what the indispensable synchroniza
tion primitives can have in store for uso We called the situation "frighten
ing', and this is not without justification. In the next chapter, however, we 
shall discuss a frequently recurring situation in which we can prove indi
vidual progress of components at a bargain, but be fore we can do so, we 
first have to discuss the phenomenon of Total Deadlock. 

8.3 Total Deadlock 

Among all our concerns about progress, there is one that need not bother 
us too much and that is Total Deadlock. The reason is that we can handle 
it within the scope of the Owicki/Gries theory. 

Total Deadlock refers to astate of the system in which each component 
has gotten stuck in a guarded statement, Le. astate in which each compo
nent is at an if-statement whose guard is false. It is the word "each" that 
expresses what is so distinctive about this state of affairs: because each 
component is blocked, the state of the system can no longer change. The 
system is as dead as a doornail; it has entered a quiescent state. 

Now consider astate of the system where each component is about to 
execute a guarded statement, say 

{Qd if Bi ~ Si fi 

in Component i - with Qi a correct assertion! Then the state of the 
system as a whole satisfies 

(Vj :: Qj ) 

If in this state all the B's are false, we have a total deadlock. But if, in 
this state, at least one B is true, the show can (and will) go on: one of the 
components with a true guard will make a move and execute its guarded 
statement. Hence, in order to prove that this configuration of if-statements 
does not give rise to total deadlock, we must prove 

(2) [ ( Vj :: Qj) :::} (3j:: B j ) 1 
And in order to prove that the multiprogram as a whole does not suffer 
from the danger of total deadlock, we have to prove (2) for each possible 
configuration of if-statements. In summary we have the 
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Rule of Absence of Total Deadlock 

In a multiprogram, a configuration of guarded statements con
taining one such statement per component, is deadlock free 
whenever it is possible to supply each guarded statement in 
the configuration with a ~ correct ~ pre-assertion in such a 
way that the conjunction of the pre-assertions implies the dis
junction of the guards. 
The multiprogram as a whole is free of total deadlock whenever 
all such configurations are deadlock free. 

End of Rule of Absence of Total Deadlock. 

It goes without saying that the more synchronization points ~ guarded 
statements, that is ~ the components have, the bigger the proof load 
of demonstrating the absence of total deadlock is: with N components 
each containing 2 guarded statements, the number of configurations to be 
considered equals 2N . Fortunately, we shall not encounter too many of 
such designs in this monograph. 

8.4 More examples 

We conclude this chapter with some examples in which we give or constmct 
proofs of the absence of total deadlock. In case we construct such a proof, 
the construction process will al ready be quite similar to the way we will be 
deriving multiprograms later on. 

Example 4 

For the program of Example 2 we prove that both components terminate. 
We copy the program text while adding a number of assertions. 

Pre: .x 1\ .y 

A: {.x} B: {.y} 

if .y ---+ skip fi if .x ---+ skip fi 

; x:= true ; y:= true 

; x :=false ; y:=false 

{.x} { .y} 

Because variable x is private to A, and y is private to B, the correctness 
of the assertions easily follows from the mies of sequential programming. 
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We added pre-assertions to the if-statements in order to show absence of 
total deadlock; and, indeed, we have 

[ -,x 1\ -'y => -,y V -,x 1 

Observe that, for this purpose, in fact only one of the pre-assertions is 
needed. 

Because there is no total deadlock, at least one of the components ter
minates. Since the situation is so symmetrie, we may say: let it be A. The 
final state of A satisfies -,x, which means that B could not possibly get 
stuck in its guarded skip. 
Observe that, thanks to the symmetry, here one of the post-assertions is 
superfluous. At later occasions we will usually be more frugal in our anno
tations. 

Example 5 

We will encounter the following two-component multiprogram a few more 
times later on: 

Pre: true 

A: y:=false B: x :=false 

; x:= true ; y:= true 

; if y -t skip fi ; if x -t skip fi 

; x:= true ; y:= true 

Here the situation is more complicated, because variables x and y are 
truly shared by A and B. We shall prove that both components terminate, 
but we do not ask the reader to give it a try for hirnself, since that would 
be too hard on hirn at this stage. 

The structure of the proof is the same as in the previous example. We first 
show the absence of total deadlock, from whieh we conclude that at least 
one component terminates, and then we show that x is a correct post
assertion of A, implying that B terminates whenever A does. Symmetry 
does the rest. 

• No total deadlock 

In order to show the absence of total deadlock we introduce pre-assertion 
RA to A's guarded skip and pre-assertion RB to B's guarded skip. Now 
we must see to it that 

(i) RA and RB are correct assertions, and 
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(ii) [ RA /\ RB =} y V x 1 

For reasons of symmetry, we can confine our attention to the construction 
of RA. 

By requirement (ii), RA had better be an expression in x or in y or 
in both. Because assertion RA is preceded by statement x:= true , 

x 

would be a good candidate for RA, because it is locally correct. This, how
ever, is too naive, because statement x:= Jalse in B falsifies it. Therefore, 
our next proposal is that RA have the shape 

RA: x V QA 
RB: y V QB 

and, symmetrically, 

where QA and QB will contain fresh variables only. 

Now let us investigate requirements (i) and (ii) for these choices of RA 
and RB. As for (i), we observe that 

- RA is locally correct 
- RA will be globally correct if we satisfy requirement (iii): 

(iii) Statement x:= Jalse in component B ought to 
be extended so as to truthify QA. 

This settles (i). As for (ii), we observe 

RA /\ RB 

{choices for RA and RB} 

(x V QA) /\ (y V QB) 

=} {by requirement (iv) bclow} 

yVx 

where requirement (iv) reads 

(iv) [ QA /\ QB =} Jalse 1 

and this settles (ii). We are left with (iii) and (iv). 

From requirement (iii) we see that the availability of an auxiliary vari
able would be very welcome, viz. for the truthification of an as yet un
known predicate QA. Requirement (iv) can be met in many ways. Because 
Ai- B, we meet (iv) by choosing 

QA: z=B QB: z=A, 

for a fresh variable z. With this choice, (iii) is met if we 

cxtend x := Jalse in B to x, z := Jalse, B. 
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This completes our proof of the absence of total deadlock. As a summary, 
we give the final program with the auxiliary variable and the relevant as
sertions 

Pre: true 

A: y, z := false, A B: x, z := false, B 

; x:= true ; y:= true 

;{xVz=B} ;{yVz=A} 

if y ~ skip fi if x ~ skip fi 

; x:= true ; y:= true 

Remark At the start of this example we tried to be kind to the reader by 
suggesting he not try the exercise for himself. Here we would like to ask hirn 
to do something in return, viz. to be a little impressed by the above little 
program. First of all, the demonstration that the annotation is eorreet and 
that there is no total deadloek is a walkover. Seeondly, the annotation is as 
erisp as it ean be: there are no unneeessary assertions hanging around. The 
reason for this is that we developed the proof, starting from the demon
strandum - the proof's specifieation!. And this now is typical of proof
and program development: they are demand-driven aetivities that, when 
earried out eautiously, will hardly ever yield something that is not strietly 
needed. 
End of Remark. 

Exercise In the above proof we eonstructed RA and RB that are 
symmetrie in the eomponents. This is by no means neeessary. The reader 
may try to design a proof based on the asymmetrie ehoice 

RA: xVyvb 
RB: ob 

End of Exercise . 

• Individual Progress 

As announeed earlier, we prove individual progress by proving that the 
posteondition of A implies x. This time we do invite the reader to design 
a proof for hirnself - still not an easy task!. There are quite a number 
of ways to obtain the result; this time we just give a solution at onee, Le. 
without diseussing heuristics. It uses an auxiliary boolean. 
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Pre: -,d 

A: y:=false B: { -,d} 

; {-,y V d} x :=false 

x:= true ; y, d := true, true 

; {-,y V d} ; if x --+ skip fi 

if y --+ skip fi ; y, d := true, true 

; {d} 

x:= true 

{x} {d} 

Proving the correctness of the annotation is an easy exercise - which, 
in fact, can be done by heart. Because A's postcondition x A d implies 
the intended postcondition x, the result follows (from the principle of 
Weakening the Annotation). 

Remark Most programming or verification problems come in the form 
of the request to establish or to prove a number of a-priori specified as
sertions. When dealing with such a problem, we mostly have to add code 
and assertions, thereby strengthening the originally demanded annotation. 
This process of adding and strengthening always ends in a situation where 
the design is correct according to the Core of Owicki and Gries. The orig
inally demanded annotation is then correct on account of the principle of 
Weakening the Annotation. We shall witness this pattern all the time, and 
in this example we saw an occurrence of it. 
End of Remark. 

The algorithm in this example is the so-called "Initialization Protocol" , 
to which we shall return later. 

End of Example 5. 

* * 
* 

To conclude this chapter we wish to report a little experiment that we 
did in a classroom, and which demonstrates how dangerously fickle the 
world of multiprogramming is and how poorly human intuition is equipped 
for it. We were considering the two-component multiprogram 

A: y:=false B: x:= false 

; if y --+ skip fi ; if x --+ skip fi 
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and we asked the dass to insert statements x:= true in A, wherever 
they wanted and as many as they liked. And similarly for insert ions of 
y:= true in B. The goal was, of course, to guarantee termination of both 
components. There was not much hesitation among the students and they 
quickly reached consensus: because B is waiting for x to become true, 
the best guarantee for progress would be to insert as many assignments 
x := true in A as possible. And similarly for B. Thus they arrived at 

A: x:= true 

; y:=false 

; x:= true 

; if y ---+ skip fi 

; x:= true 

B: y:= true 

; x:= false 

; y:= true 

; if x ---+ skip fi 

; y:= true 

But as soon as we started to prove termination, we quickly discovered that 
we could not succeed, and then we constructed a scenario in which one of 
the components got stuck forever. (It is the leading assignment that causes 
the trouble; compare Example 5.) 

The whole situation was feIt to be completely counterintuitive, but the 
moral was dear: 

In multiprogramming, never lean on intu
ition of any kind, but on rigorous proof in
stead. 



9 

Individual Progress and the 
Multibound 

In thc early decades of computing, when the speed of electronic circuitry 
had outgrown that of mechanical peripheral devices by some orders of mag
nitude, the demand for "parallelism" becamc louder and louder, because 
it was becoming more and more urgent for economic reasons. And, indeed, 
the excessively expensive circuitry of the time could, instead of being idle 
while waiting for the input of a slow card reader, much more beneficially 
be deployed for serving other customers of the computer installation. The 
idea of scveral programs running "simultaneously" on a single installation 
had been born. 

It was quickly discovered then that for an orderly management of pro
grams sharing a single installation, the concept of Mutual Exclusion was 
of utter importance. Thus the search for Mutual Exclusion Algorithms had 
begun. It was this search that brought into daylight a number of fundamen
tal, unforeseen and seriously complicating issues coming with parallelism. 
And of all the issues that emergcd, the problem of Individual Progress is 
perhaps the harshest of all. 

In order to support this claim, we offer a small glance behind the scenes 
by giving the historically first mutual exclusion algorithm for two compo
nents, designed in the early 1960s by the numerical mathematician Th. J. 
Dekker. 
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Remark The atomic statements prevailing in this kind of algorithm 
or rat her the ones that one has to make do with - are the so-called one
point-statements, Le. statements that contain at most one reference to at 
most one shared or private variable t. For this occasion, we indicate the 
grain of atomicity by surrounding the atomic statements or expressions 
with a pair of angular brackets. 
End of Remark. 

Pre: .x 1\ .y 1\ (v=X V v=Y) 

X: * [ncs.X 

; ( x:= true ) 

; if ( .y ) ~ skip 

~ (y) ~ if ( v = X ) ~ skip 

~ (vi=X)~ 

(x:=false) 

; if ( v = X ) ~ skip fi 

; ( x:= true ) 

fi 

; if ( .y ) ~ skip fi 

Ei 

; cs.X 

; (v:= Y) 

; ( x := false ) 

1 
Y: Component X with (x, X) and (y, Y) interchanged. 

Dekker's Algorithm 

We will not discuss Dekker's Algorithm in any detail; we just quote it to 
make several points. 

First of all, we wish to point out how little of the algorithm's code is 
actually concerned with the (partial) correctness - or safety - of the al
gorithm. Mutual exclusion requires that the components not be engaged in 
their "critical sections" - cs.X and cs.Y - simultaneously. Dekker's 

tMore precisely, statements that can be implemented by at most one memory acccss 
to at most one shared or private variable. 
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algorithm meets this requirement. In fact, as we will see in a later chapter, 
when the Safe Sluice Algorithm will be discussed, the safety is ensured by 
two pieces of code only, viz. by statement x:= true and guard ,y 
and their counterparts in Y - and by nothing else. Consequently, alt the 
rest of the code is there for the sake of Individual Progress, i.e. for the sake 
of seeing to it that a component that has terminated its noncritical section 
ncs will eventually enter its critical one. This discrepancy may start to give 
some idea of the complications brought about by progress requirements. 

Second, we would like to invite the reader to seriously try to set up an 
operational argument as to why (individual) progress is guaranteed. The 
argumentation should not be carried out superficially - which is what 
we usually observe - but carefully and meticulously; then we gather that 
long be fore the argument is completed, the reader will see the light: this is 
like all hell let loose. 

Third, we once more point out what a formal approach to progress may 
have in store for uso Earlier we referred to temporal logics and UNITY; 
here we wish to draw attention to works on "fairness". In [Fra86], one can 
find a formal treatment of Dekker's algorithm, which convincingly reveals 
that something very complicated is going on. 

* * 
* 

Thus, when we (i.e. the authors) considered embarking on concurrent 
programming we knew that, if we were to go through with it at all , we 
had to make adecision: we had to decide whether to take formal aspects of 
progress into account right from the beginning, or postpone them, or forget 
about them altogether. We decided for a mixt ure of thc last two options, 
for fear of otherwise not getting anywhere - at least not simply so. The 
price to be paid is that at some occasions in this monograph we will have 
to wave our operational hands for arguing about progress. 

This attitude towards concurrent programming may very well be rated 
as unscientific and not contributing to the field. However, we mayaiso find 
consolation in the fact that we all were able to do lots of integral calculations 
even though not every integral can be calculated analytically, and in the 
fact that we could master and use the calculus pretty well long before we 
were introduced to measure theory - if at all. And that is exactly the 
position we fee I to be in with our current treatise on multiprogramming. 
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The M ultibound 

There are some circumstances where we can handle all progress issues for
mally without the need to introduce new formalism, and in this section we 
discuss those circumstances. To that purpose we consider a multiprogram 
with an arbitrary number of components. Let variable Zi be private to 
component i and let component i, projected on the operations on Zi, 

have the form 

Comp.i: *[zi:=1+zi ] 

Furthermore assurne that the components are synchronized in such a way 
that, for some natural U, 

MB: (Vi,j:: Zi ~ U+zj ) 

is a system invariant. If now, for one reason or another, component j 
comes to a definitive halt, we conclude from the structure of the compo
nents and from invariant MB that then all components will get stuck: 
because Zj becomes constant, all other variables Zi will eventually be
come constant as weIl. As a result 

either all components get stuck 
or no component gets stuck. 

Because our components can only get stuck at guarded statements (or 
variations thereof), we conclude that 

with components of the right shape and in the presence of a 
multibound like MB : 

there is no danger of total deadlock 

individual progress for each component is guaranteed. 

In other words, we can prove individual progress by proving the absence of 
total deadlock, and this is completcly within the scope of Owicki/Gries. 

Remark A relation like MB has been named a "multibound" because 
it mutually bounds the values of the variables involved. 
End of Remark. 

Of course, such "multibound scenarios" may co me in many variations. 
The increment of Zi by 1, for instance, is just an example. Also, the 
invariant can take various shapes. For instance, we may have an invariant 
of the (more general) form 
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(Vi,j:: Zi ~ G.i.j+zj ) 

which implies MB with U:= ( i i,j :: G.i.j )+. Or, we may encounter 
MB in the equivalent form 

( i i :: Zi) ~ U + ( 1 i :: Zi ) 

We think that it is not very helpful (because too cumbersome) to charac
terize multibound scenarios in general. We just have to be a little bit alert 
so as not to overlook the situation when it arises. 

Whenever applicable, the multibound technique is most effective. An 
example is given below. We will encounter quite a few more occasions for 
using the technique in the remainder of this text. (And recently we leamt 
that the idea might also be valuable in the design of asynchronous electronic 
circuits. ) 

Example We consider the classical Producer/Consumer problem, i.e. we 
consider a multiprogram of the form 

Pre: in=O 1\ out=O 

Prod: * [ in := in + 1 ] 

Cons: * [out := out+l] 

Inv: ? P: o ~ in-out ~ G 

Here, variable in re cords the number of portions produced and added 
to, say, a buffer by Prod. Likewise, variable out records the number 
of portions taken from the buffer by Cons. Because the buffer has finite 
capacity C, 1:::; C, thc componcnts have to bc synchronized so as to 
maintain system invariant 

P: 0 ~ in - out:::; G 

or, equivalently, 

P: out ~ in 1\ in ~ G + out 

Before proceeding, we observe that in view of the structure of the com
ponents, P is a suitable multibound. As a result, individual progress is 
guaranteed whenever our ultimate solution is free from total deadlock 
no matter what that solution will look like. 

Meeting the synchronization requirements is extremely simple in this 
case. We leave it to the reader to verify or derive the solution given below. 

tidenotes the maximum, 1 the minimum 
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Pre: in=O 1\ out=O 

Prod: * [ if in < C + out ~ skip fi 

; {in<C+out} 

in := in+1 

1 
Cons: * [ if out< in ~ skip fi 

; {out< in} 

out := out+1 

1 
Inv: P: out::; in 1\ in::; C+out 

As for the absence of total deadlock we investigate the disjunction of the 
guards: 

in < C + out V out< in 

{{=: by transitivity; =} by P and transitivity} 

in< C+in 

{I::; C} 

true 

And as a result, there is no danger of total deadlock (so that individual 
progress is guaranteed on-the-fly!). 

End of Example. 

* * 
* 

We conclude this chapter with a variation on the theme, which pops up 
every so often, most notably in distributed algorithms. Our canonical form 
for the multibound is 

(0) jZ::; U+!Z 

where Z is the set of variables Zi, and j Z and ! Z denote the max
imum and the mirtimum of this set, respectively. Sometimes, however, the 
variables come in, say, two kinds, given by the sets X and Y for which 
we have the invariance of 

(1) jX::; F+!Y 

(2) jY::; G+!X 
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for some naturals Fand G. The quest ion is whether we can still prove 
(0) for some U. Translated into (X, Y)- nomenclature, relation (0) is 

(3) (j X) j (jY) ~ U + (!X)! (!Y) 

Due to the syrnmetry in X and Y, (3) follows if we can find some U 
satisfying 

(4) jX ~ U + (!X)! (!Y) 

In order to investigate this, we start calculating with j X : 

jX jX 

< { (I)} < { (I)} 

F+!Y F+!Y 

< {"!" ~ "j"} < {O~G} 

F+jY F+G+!Y 

< {(2)} 

F+G+!X 

Combining the two results, we see that (4) is satisfied for U: = F + G . This 
settles the question. 

The conclusion is that the weaker (1) and (2) still guarantee that we 
are dealing with a proper rnultibound scenario. It goes without saying that 
similar decomposition lemmata for the multibound exist when the various 
variables corne in three, or four, or five kinds. Thus with N variables Xi 

and appropriate program structure, a system invariant like 

Xo ~ Xl ~ ... ~ XN-l ~ l7+xo 

is readily recognized as a multibound. 

* * 
* 

As we said before, we do not know of any simple and universal technique 
for seeing to individual progress. We believe, however, that the technique 
that will eventually fill the gap, will be the overall application of vari
ant functions on well-founded sets. We can already get glirnpses of this 
technique in, for instance, [Dij71], and in [Dij86] - one of the first self
stabilizing systems -, and in other non-trivial designs such as thc Sliding 
Window Protocol [Sne95]. The rnultibound itself is an application of the 
use of variant functions as weil. 
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Ideally, one would - just as in sequential programming - start by 
choosing a variant function and then develop the program, adhering to this 
choice. We have done one experiment of this kind, namely we designed a 
two-component mutual exclusion algorithm starting from a specification 
expressing the progress requirements. Out came G. L. Peterson's Mutual 
Exclusion Algorithm [Pet81], which outperforms Dekker's in simplicity by 
at least one order of magnitude. And this is just encouraging. We will 
present the experiment in one of the later chapters of this monograph, and 
we hope that next generations of computing scientists will create much 
more evidence, so that, eventually, Individual Progress will become less of 
a problem than it is now. 
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Concurrent Vector Writing: A First 
Exercise in Program Development 

In the foregoing chapters we have seen a number of examples of how to 
use the technique of Strengthening the Annotation to show that a given, 
too-weakly annotated multiprogram is correct. There we strengthened the 
original annotation in a number of steps, until it became correct in the 
Core. Here, in this chapter, we will do exactly the same, be it not for a 
completed program, but for a program still to be completed. That is, along 
with a stronger annotation, new, additional code will see the light as weIl, 
and that is what we call program development. We have to admit, though, 
that in this first exercise not too much additional code will be developed, on 
the one hand because the current example is very simple and on the other 
hand because, in general, a devclopment that is carried out with caution 
does not introduce more than needed. 

Besides using the example to give a first performance of program develop
ment, we will also use it to explain more precisely our bookkeeping regime 
with the "Not es" and the "queries", which we have been using a number 
of times now without much ado. We will also be more explicit about the 
status of the intermediate versions that emerge during the approximation 
process, which starts at the specification and ends in the ultimate solution. 

* * 
* 
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The problem of Concurrent Vector Writing is thc following. We consider 
an array x[O .. N) , 0:::; N, and two components A and B. Component A 
writes zcroes into x, and component Bones. We wish to synchronize the 
components such that the multiprogram terminates and delivers a final 
state satisfying x = O. 

A more precise specification of this problem is given by the figure below. 

Pre: i=O 1\ j=O 

A: do ii-N ~ B: do ji-N ~ 

x.i := 0 x.j := 1 

;i:=i+1 ; j := j+1 

od od 

Post: ? (Vk:O:::;k<N:x.k=O) 

Version 0 

(The individual assignments are atomic.) 

This specification is more precise in that it reveals how the components 
write into x. We shall refer to the combination of the precondition Pre 
and the program texts for A and B as the Computation Proper. 

Remark The legal status of the computation proper is that it is owned 
by someonc else, who needs it for some purpose that is not of our concern. 
This implies that no matter how we proceed, we are not entitled to interfere 
with this computation in any other way than nceded for the purpose of 
synchronization. 
End of Remark. 

Version 0 also contains a notational device that we shall use all the time, 
namely the query. A query indicates that something remains to be done -
here, taking care of the correctness of the postcondition. As we go along, 
we will also encounter queried assertions and queried system invariants (as 
we did in earlier examples). 

Taking care of a queried item means accomplishing its correctness (in 
the Core). This will always be achieved by extending the program text -
be it with code, assertions, or invariants. However, these extensions are 
constrained by the rule that 

I the computation proper is not to be changed.1 
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This rule prohibits, for instance, that we replace the parallel composition 
of A and B with the sequential program B; A, which would trivially es
tablish the required postcondition. This would not do: the legal proprietor 
has handed in a parallel program. 
The rule also prohibits that we plug in furt her changes to x, i, or j. 
Inspections, however, of the variables of the computation proper will, in 
general, be allowed -- sometimes they are even unavoidable (for instance 
in termination detection algorithms). In many circumstances, though, the 
additional code will be phrased in terms of fresh (synchronization) vari
ables. 

Given the above conventions regarding the status of the computation 
proper and given our appreciation of queried items, Version 0 acts as the 
formal specification of the programming task ahead of uso 

Remark Admittedly, the repertoire of atomic statements that we may 
draw from to solve the problem has been left unspecified; in particular, 
nothing has been said ab out the grain of atomicity in the guards and in 
the assignments. Our general pursuit is for quite fine-grained solutions, but 
we do not want to commit ourselves in too early astage. We want to tackle 
the logic of the design first and see what kind of expressions emerge in 
the additional code. Only then will we be concerned with "implementa
tion issues" like making solutions more fine-grained ~ if necessary and 
technically feasible. 
End of Remark. 

* * 
* 

The simplest solution to our current problem is one that mzmzcs the 
behaviour of the sequential program B; A. This can be achieved at the 
expense of one fresh boolean, j say. A solution is 

Pre: i=O 1\ j=O 1\ ,j 

A: if j ~ skip fi B: do j -I- N ~ 

; do i -I- N ---> 

x.i := 0 

;i:=i+l 

od 

x.j := 1 

; j :=j+l 

od 

; j:= true 

It is a nice exercise to prove that this program, indeed, establishes the 
required postcondition. 
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Although there is no logical objection to this solution, there is a strate
gical one: all the potential parallelism has been killed. Component Astarts 
idling for f to become true, Le. it is denied progress until B has termi
nated, whereas there seems to be no good reason for this delay. This is 
not quite decent (towards the legal owner of the computation proper), and 
therefore we will always try to obey the rule that 

the computation proper is not to be ham
pered (Le. delayed) without good reasons. 

Sometimes there are good reasons for hampering the progress of the com
putation proper, and near the end of this chapter we will encounter one 
such reason, which is of a rat her quantitative nature. It stands to reason, 
however, that the best reason for hampering progress is when otherwise the 
required synchronization, Le. the (partial) correctness of the design, would 
be endangered. Safety first! 

* * 
* 

After these preliminaries, we now proceed with our problem by making 
a first design decision, namely the decision to rest riet our solution to a 
multiprogram of the form 

Pre: i=O 1\ j=O 

A: do i:j=.N-+ B: do j:j=.N-+ 

So To 

; x.i := 0 ; x.j := 1 

; SI ; Tl 

; i:= i+ 1 ; j :=j+1 

; S2 ; T2 

od od 

Post: ? ( Vk : 0 ~ k < N : x.k = 0 ) 

Version 1 

The S's and the T's serve as placeholders for the additional code: they 
indicate the only places where we (have decided to) allow synchronization 
code to be inserted. With the above choice of placeholders we have been 
quite generous, but not completely so: we have ruled out the "sequential" 
solution suggested earlier, by offering no placeholders before or after the 
repetitions. 
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Remark It is, in general, a good habit to be explicit in the matter of 
placeholders, and in our currcnt example we are - and will be until the 
very end. Drawing from experience, however, we know that they are mostly 
well-understood, so that we can afford to leave them implicit. But when in 
doubt, we had better not leave them out. 

In the rest of this monograph, we will only occasionally feel the need 
to introduce placeholders, and fortunately so because, in fact, they are a 
notational mistake. It would be far more efficient and elegant to have a 
notational device for indicating where no additional code may be insertcd, 
but we havc not been able to design a notation that would be plain enough 
to be adoptcd and put into practical use. 
End of Remark. 

* * 
* 

Version 1 contains one queried item, viz. the postcondition. From the 
Rule for the Postcondition we know that its correctness is guaranteed when
ever it follows from the conjunction of the postconditions of the individual 
components. Now observe that 

( 't/k : 05: k < N : x.k = 0 ) 

( 't/k : 05: k < i : x.k = 0) 1\ i = N 

From the structure of component A we see that i = N is a correct post
condition of A, variable i being private to A. So what remains is the 
correctness of 

P: ( 't/k : 05: k < i : x.k = 0 ) 

as a postcondition of A or B. We enforce it - and again this is a design 
decision - by demanding that P be a system invariant. With these 
choiccs it suffices to take true as a postcondition of B, and because true is 
a correct assertion anywhere in a multiprogram, we never write it down. 

Thus we arrive at our next version: 
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Pre: i=O 1\ j=O 

A: do ii=N-+ B: do j i=N-+ 

So To 

; x.i := 0 ; x.j := 1 

; Sl ; Tl 

;i:=i+l ; j :=j+l 

; S2 ; T2 

od od 

{i=N} 

Inv: ? P: (Vk: O:'S;k<i: x.k=O) 

Post: ( Vk : O:'S; k < N : x.k = 0 ) 

Version 2 

Observe that the postcondition has lost its query, because in passing from 
Version 1 to Version 2 we turned it into one that is correct in the Core, be 
it at the expense of a - here obviously correct - assertion i = N in A 
and a new queried item, viz. system invariant P. 

This is the place to draw attention to what we think is an important 
methodological issue. Version 2 teIls us in a very precise and compact way 
what has been achievcd - viz. the correctness of assertion i = N and 
of the posteondition - and what remains to be achieved - viz. the 
correctness of the queried items, here system invariant P. Thus the figure 
named Version 2 acts as the precise interface between the past and the 
future of the development process. As a result, Version 2 is the specification 
of the programming problem ahcad of us, and it is absolutely irrelevant how 
we arrived at it. This is important because, as the development evolves from 
one version to the next, we at any time only need to be concerned with the 
quest ion of how to transform the currcnt version into a next one. Thus the 
procedure is very similar to the method of stepwise rcfinement (and, in a 
way, very similar to calculation, where, at any time, we are - to a large 
extent - only concerned with how to transform the current expression 
into a next one). 

This, too, is the place to argue once more why such a transformation is 
correct in the light of the Owicki/Gries theory. In transforming Version 1 
into Version 2, we have clearly strengthened the annotation: the latter 
contains assertion i = N and - queried - system invariant P, which 
were both absent from the former. Now suppose that in the end wc succeed 
in removing the queries from Version 2 by appropriate choices for the S's 
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and the T's; then Version 2 will have turned into a correctly annotated 
multiprogram. But thanks to the postulate of Weakening the Annotation, 
Version 1 will have turned into a correctly annotated multiprogram as weIl, 
and that is what we were after! 

* * 
* 

After these intermediate remarks, the time has come to res urne our de
velopment. Version 2 requires that we take care of the invariance of P. 
To that end we have to investigate whether P holds initially and under 
what additional conditions it is maintained by the atomic statements of 
the multiprogram. We record these investigations as follows: 

Re lnv P "( Vk : 05: k < i : x.k = 0 )" 

lnit: correct, from i = 0 in Pre 

• { true} x. i : = 0 

• {? x.i=O} i:=i+l 

• {? i 5: j} x.j := 1 

End of Re. 

Because the situation is so simple, we have given the additional precon
ditions at once, Le. without giving the calculations leading to those precon
ditions. Observe that we tacitly used the Rule of Orthogonality by ignoring 
all statements that could not possibly affect P; these are j:= j + 1 and 
the S's and the T's, which were supposed to not change the computa
tion proper, Le. to not change x, i, or j. 

Remark During dass-room sessions on this example, students were asked 
what precondition ought to be supplied to x.j:= 1 in order that P not 
be violated. Quite a few came up with the answer i < j , and that is cor
reet. It is just a tiny little bit stronger than our i 5: j . However minor this 
difference may seem, it has major consequences: with condition i < j , (in
dividual) deadlock will become unavoidable. We urge the reader to check 
this after he has studied the rest of this chapter. The moral is that multi
programs are unusually delicate artefacts and that their design is a highly 
critical activity. When in our chapter on Strengthening the Annotation we 
said that we always wanted the weakest additional condition, we meant 
just that. The consequence is that weIl-versedness in the predicate calculus 
is indispensable for playing this game at aIl, and there is no escaping it. 
End of Remark. 

The incorporation of these new pre-assertions leads us to the next ver
sion. lt reads 



104 10. Concurrent Vector Writing 

Pre: i=O 1\ j=O 

A: do iiN-+ B: do jiN-+ 

80 To 

; x.i := 0 p.<. ; • 2 _1, Note O} 

; 81 x.j := 1 

; {? x.i = O} ; Tl 

i :=i+ 1 ; j :=j+1 

; 82 ; T2 

od od 

{i=N} 

lnv: P: ( Vk : 0 ~ k < i : x.k = 0 ) 

Post: ( Vk : 0 ~ k < N : x.k = 0 ) 

Version 3 

In moving to the next version we have to remove one or more queries. In 
general, the choice of how many and which ones to remove is completely 
free. We indicate the ones that are chosen by supplying them with a ref
erence to a Note. Thus, Version 3 expresses our intention to tackle i ~ j 
first, leaving x.i = 0 for later. 

Note 0 "i S. j " 

We ensure the correctness of i S. j by requiring it to be a system invariant. 

End of Note o. 
Why this design decision, which looks much stronger than necessary? The 
alternative would have been to ensure the local correctness of i ~ j in B 
through guarded skip if i ~ j -+ skip fi , but this would not accord with 
the Ground Rule for Progress: component A has no potential for truthifying 
i ~ j . Hence the "choice" of letting i ~ j be a system invariant is more 
or less imposed on uso 

Remark Here, the adoption of guarded skip if i ~ j -+ skip fi would 
nevertheless have led to a happyend, but that is just a stroke of very 
good luck. We would like to encourage the reader to trace that alternative 
derivation after he has studied this one. 
End of Remark. 

Now we should write down the next version, with " ? i S. j " appearing 
under the heading "Inv" , but in order to shorten our treatment a little 
bit, we skip this intermediate version and deal with the invariance of i ~ j 
right away. We will apply this form of cascading more often. 
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Re Inv" i:::;j " 

Init: correct, from Pre 

• {? i < j} i := i + 1 

End of Re. 

Thus we arrive at 

Pre: i=O 1\ j=O 

A: do i i= N-t 

80 

; x.i := 0 

; 81 

; {? x.i=O, Note O} {? i <j, 

i:= i+ 1 

; 82 

od 

{i=N} 

B: do j i= N-t 

To 

; {i:::; j} 

x.j := 1 

; Tl 

; j :=j+1 

; T2 

od 

Inv: P: ( Vk : 0:::; k < i : x.k = 0 ) 

i:::;j 

Post: ( Vk : 0:::; k < N : x.k = 0 ) 

Version 4 

Note 1} 

, 

We continue with the remaining obligations. 

Note 0 "x.i = 0", with co-assertion i < j 
L: Choose skip for 81. Then x.i = 0 follows from the textually pre

ceding x.i:= O. 

G: Only x.j := 1 in B can violatc x.i = O. Wc calculate 
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(X.j := l).(x.i = 0) 

{substitution} 

x.i = 0 1\ i=/: j 
= {i < j is a co-assertion of x.i = O} 

x.i=O 

Hence, x.i = 0 is not violated, thanks to its co-assertion i < j 
see Remark below. 

End of Note O. 

Remark Prom our earlier chapter on Strengthening the Annotation we 
recall that in showing the global correctness of an assertion we are allowed 
to use its co-assertions, and that is what happens in the abovc. Ncvertheless, 
the reader might feel somewhat uneasy about using a co-assertion - i < j 
- that still carries a query. But here we should not forget that in the end 
such a query (like all queries) will be gone. 
End of Remark. 

Note 1 "i < j ", with co-assertion x.i = 0 

L: Because we have chosen SI equal to skip (see Note 0), we ensure the 
local correctness of i < j by demanding 

{? i <j, Note 2} x.i := 0 

G: Widening. 

End of Note 1. 

Note 2 "i <j " 

L: Choose guarded skip if i < j ---+ skip fi for So. 

G: Widening. 

End of Note 2. 

Observe that, again, we used cascading, by handling the new assertion 
i < j emerging in Note l.L right away. 

Now we are done: all queries have been removed! Before writing down 
our solution, however, we have to admit that we played a tricky game 
with thc order in which the assertions x.i = 0 and i < j in Version 4 
were tackled. Had we first dealt with i < j and decided to establish its 
Iocal correctness by choosing if i < j ---+ skip fi for SI, the design would 
have become much more complicated. (The reason is that i < j is really 
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needed for the global correctness of x.i = 0.) We invite the reader to try 
this alternative. 

The final solution, in which the remaining placeholders are now omitted 
-- or rather: replaced by ski ps - is as follows: 

Pre: i=O 1\ j=O 

A: do i =I- N ---> B: do j =I- N ---> 

if i < j ---> skip fi {i ~j} 

; {i<j} x.j := 1 

x.i := 0 ; j:=j+1 

; {x.i=O} {i<j} od 

i:= i + 1 

od 

{i=N} 

Inv: ('ik: O~k<i: x.k=O) , 
i~j 

Post: ( 'ik : 0 ~ k < N : x.k = 0 ) 

Version 5 

Our only remaining task is to show that the multiprogram terminates. 
Component B surely does, thus establishing j = N . Then, guard i < j of 
A's guarded skip is stably true, because i < N is a correct precondition 
of the guarded skip. Hence, A terminates as weIl. 

* * 
* 

Herewith we conclude the formal development of an - admittedly -
very simple multiprogram. Our main purpose was 

~ to show in very small steps how such a development evolves, 
to show how the validity of such a development is carried by the theory 
of Owicki and Gries, 
to exhibit the similarity with "stepwise refinement" and its induced ben
efits: the stimulation of a better separation of concerns, and 
to present so me of the notational and clerical aids used in organizing 
such a development. 

A few final remarks are in order. 
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• Again, our final version is fully documented in that its annotation is 
correct in the Core. But this need no longer amaze us, because it is intrinsic 
to the game. Do observe, however, how crisp the annotation is; here we are 
reaping the fruits of a cautious development of the program: nothing is 
encountered that is not strictly needed. 

• In our presentation we proceeded from one version to the next in very 
small steps. We did so in order to explain the rules of the game. Sometimes, 
when the situation had become simple and transparent, we accelerated 
the design process a little by what we called "cascading", thus combining 
several successive vers ions into one. Such a combination of steps certainly 
shortens the presentation, but it mayaiso evoke oversights or mistakes. It is 
always a matter of good taste how coarse- or how fine-grained one chooses 
one's steps. In this respect we have one rule of thumb that we ourselves 
learned from sad experience: when one is on the verge of making mistakes 
or loosing one's grip, the advice is: Slow Down. 

• Presenting a development like this on the blackboard is much simpler 
and faster, because with a little orchestration and preparation there will be 
no need to copy the successive versions, as is necessitated here since paper 
is such a linear medium. On the blackboard we can begin by writing down 
the computation proper, leaving conspicuous space for the placeholders and 
for the assertions, and then fill up the space with code and assertions as 
the development evolves. As for the queries: instead of erasing a query from 
its item, we can extend it with its mirror image, thus [orming symbol c:?, 
to indicate that the item has become sound. Because in this way program 
texts can only grow, one never needs an eraser. This may be ni ce to know 
for the teacher reader. 

* * 
* 

And this concludes our first program derivation. 

Postscript (for the circuit designer) 

In our solution - Version 5 -, the synchronization runs under control of 
the originally given program variables i and j. In fact, only the difference 
j - i matters - see the guarded skip in component A. In the algorithm, 
this difference is an (N + 1)- valued entity, because 0:::; j - i :::; N is a 
system invariant. For circuit design, it could be advantageous if j - i were 
just 2-valued, because that would enable a transformation into the boolean 
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domain. For this (good) reason, we shall now "hamper" the computation 
proper by strengthening system invariant i:::; j to 

Q: i:::;j 1\ j:::;i+l 

This has an impact on the code of component B, which increments j. We 
give the adjusted B at once, leaving to the reader to check that relation 
Q has, indeed, become a system invariant. We also insert two obviously 
correct assertions for later usage. 

Pre: i=O 1\ j=O 

A: do i =1= N ---; B: do j =1= N ---; 

if i < j ---; skip fi if j :::; i ---; skip fi 

; x.i := 0 ; x.j := 1 

; {i<j} ; {j:::; i} 

i:= i + 1 j :=j +1 

od od 

Inv: Q: i:::;j 1\ j:::; i+1 

For reasons to become clear shortly, B has been given the same syntactic 
structure as A has. 

By inserting a guarded skip in B, we may have hampered progress, so 
the quest ion is: does this program still terminate? It does, because 

- at least one of the guards of the two guarded skips is true, so that 

~- i + j increases, and 

- since i:::; j :::; N is a system invariant, B will terminate in a state satis~ 
fying j = N , so that 

-- as bcfore, A will terminate as weil. 

Now we transform the program according to the coordinate transforma~ 
tion given by the eoupling invariant 

e == (i = j) ,or -- equivalently, see Q -
-,e == (i + 1 = j) 

Then we can eliminate the guards thanks to 

i < j == -,e and j :::; i == e 

Statement {i < j} i := i + 1 can now be replaced with 

{-,e} e,i := -,e, i+1 
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or - using pre-assertion -,c - by 

c,i := true, i+l . 

The raw program code thus becomes 

Pre: i=OAj=OAc 

A: do i::j:.N-t B: do j::j:.N-t 

if -,c -t skip fi if c -t skip fi 

; x.i := 0 ; x.j := 1 

;c,i:=true,i+l ; c,j := false, j + 1 

od od 

* * 
* 

And now the situation has become so symmetrie that if we want the 
above machinery to deliver x = r instead of x = Ö , we only need to flip 
c's initial value. And if we want x = Ö or x = r, Le. if we don't care, 
we simply leave c's initial value unspecified. It is with this regime that 
two individual processors can write a bit stream, bit by bit, into one and 
the same memory location, such that the result is as if they had done so 
in some unspecified order. 

* * 
* 

We conclude this postscript with two remarks. 

• We will discuss coordinate transformations like the one applied above 
with more precision in a later chapter . 

• We achieved the two-valuedness of j - i by strengthening the annota
tion via introduction of invariant Q, thus reducing the degree of paral
lelism that can be displayed by the program. We will encounter this trade
off more often and then discuss it at greater length. 
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More Theorems and More Examples 

This is the last chapter of the first half of this text. In the second half 
we will almost cxclusively be occupied with program derivation, using the 
vocabulary and the techniques introduced so far. There is, however, one 
final issue that we have hardly touched upon, viz. the problem of how to 
make programs more fine-grained. We already alluded to this issue when 
specifying the problem of Concurrent Vector Writing, but now the time has 
come to become a littlc more articulate about it. 

An important aspect of the theory of Owicki and Gries is that the 
coarser-grained the atomic statements, the smaller the proof load. This 
phenomenon has its match in program development: the coarser-grained 
the repertoire of atomic statements, the easier the task becomes. As said 
earlier, granularity issues are not our first concern when we develop a pro
gram: instead, we usually start by focusing on the logic of the design. How
ever, in many situations we will sooner or later have to be concerned with 
granularity, because the architccture of the executing machinery requires 
us to. Therefore it would be nice to have means or techniques for making 
programs more fine-grained without impairing their correctness. The main 
purpose of this chapter is to provide a number of theorems dealing with 
correctness-preserving program transformations, by which coarse-grained 
statements can sometimcs be turned into finer-grained ones. We shall illus
tratc this in a number of examples. 
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Remark Here we have to admit that, to our regret, we only have a very 
limited number of techniques for reducing the granularity of our programs. 
Additional - simple! - techniques are most welcome. 
End of Remark. 

* * 
* 

Our first two theorems are about substitution of equals for equals. Be
cause they are two sides of the same coin, they are both named Rule of 
Leibniz. Substitution of equals for equals being what it is, we present them 
without proof. 

Rule of Leibniz 

Program fragment {F = C} x := F may be replaced by 
{F = C} x:= C with impunity, Le. without affecting progress 
properties or correctness of the annotation. 

End of Rule of Leibniz. 

We already tacitly used this rule at the very end of our treatment of 
Concurrent Vector Writing, when we replaced {-,c} c, i := -'C, i + 1 by 
c,i := true, i+l. 

In the same vein we have 

Rule of Leibniz 

Program fragment {C == D} if C ~ S fi may be replaced by 
{C == D} if D ~ S fi with impunity. 

End of Rule of Leibniz. 

This rule, too, was used in our treatment of Concurrent Vector Writing, viz. 
when we replaced if i < j ~ skip fi by if -,c ~ skip fi , such on account 
of the coupling invariant i < j == -,c. 

Of course, the Rule of Leibniz comes in many forms. The transformations 
are so reasonable, that we shall usually apply them without much ado. 

* * 
* 

The next two theorems, though simple, happen to be very useful for 
unraveling too coarse-grained atomic statements. They are the two Guard 
Strengthening lemmata: 

First Guard Strengthening Lemma 

Program fragment 
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may be replaced by 
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{C:::} B} if C ---- S fi 

without impairing the correctness of the annotation, provided 
the added assertion C:::} B is correct. 

End of First Guard Strengthening Lemma. 

and 

Second Guard Strengthening Lemma 

Program fragment 

{C:::} B} if B ---- S fi 

may be replaced by 

{C :::} B} if C ---- S fi 

without impairing the correctness of the annotation. 

End of Second Guard Strengthening Lemma. 

Before we discuss these lemmata and use them in some examples, let us 
first prove them. 

Proof of First Each proof obligation involving the new fragment 
{C :::} B} if C ---- S fi has the form 

[ PA (C:::} B) :::} wlp.(if C ---- S fi).Q 1 

which equivales - definition of IF -

[ PA C AB:::} wlp.S.Q 1 

and this follows from the stronger 

[ PA B :::} wlp.S.Q 1 
wh ich is the corresponding proof obligation for the original fragment 
if B ---- S fi . 
End of Proof of First. 

Proof of Second The proviso of the First Lemma, viz. the correctness of 
assertion C:::} B , is fulfilled through the assertion C:::} B in the original 
fragment. 
End of Proof of Second. 

Remark So, in fact, the Second Lemma is just a corollary of the First, 
be it a useful one. In the beginning we ourselves only knew of the Second 
Lemma, and it was our former student Perry D. Moerland who discovered 
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that in particular applications it was insufficiently strong. He then designed 
the First Lemma: the difference is a very subtle one. 
End of Remark. 

Both lemmata tell us that the guard of a guarded statement can be 
strengthened without endangering the partial correctness of a design. We 
should be aware, however, that their application may have consequences 
for progress: the stronger a guard, the less probable it is that a component 
can find it true. And indeed, one may even introduce total deadlock, as we 
shall see in our next example. 

In most of our applications we shall use the Second Guard Strengthening 
Lemma rather than the First, and when doing so we will simply announce 
this by the phrase "Strengthening the Guard". Only when we appeal to 
the First Lemma we will say so explicitly. 

Example 0 (from "The Safe Sluice", Chapter 13) 

Consider the following two-component multiprogram 

Pre: -,x.p 1\ -,x.q 

Comp.p: * [ if -,x.q -+ x.p := true fi 

; x.p := false 

1 
Comp.q: * [ if -,x.p -+ x.q := true fi 

; x.q := false 

1 

(The guarded statements and the individual assignments x.p := false and 
x.q := false are atomic.) 

Exercise The reader may prove that there is no danger of total deadlock. 
He may also verify that individual progress is, however, not guaranteed. 
End of Exercise. 

There are quite a number of machine architectures in which an atomic 
statement like 

if -,x.q -+ x.p := true fi 

is not readily implemented, for instance those machines that only offer one
point statements as atomic statements. (Recall that a one-point statement 
is a statement that can be implemented by at most one access - for 
instance one read or one write - to a shared or private variable.) On 
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such installations, the inspection of --'X.q and the assignment x.p:= true 
cannot take place indivisibly, i.e. combined within one and the same atomic 
statement, and we, therefore, have to separate them: we have to eliminate 
the guarded statements from the above multiprogram and turn them into 
finer-grained ones, of course without affecting the correctness of the -
invisible - annotation. Here we can use the technique of Strengthening 
the Guard, which we shall now show in a number of small steps. 

We first introduce fresh, auxiliary variables y.p and y.q to "take 
over the röles of X.p and x.q", respectively, the intention being that in 
Comp.p guard --'X.q is to be replaced with --'y.q. Our Guard Strength
ening Lemmata tell us that this can be done safely if we can see to the 
correctness of --,y.q'* --'X.q ,or - equivalently - of 

x.q,* y.q 

as a precondition to the guarded statement. In our next intermediate ver
sion of the multiprogram we shall accomplish this by making it a system 
invariant. Likewise, 

X.p,* y.p 

will be a system invariant. 

Because we are aiming at areplacement of if --,x.q --t X.p := true fi by 
if --'y.q --t x.p := true fi , we should not try to maintain the invariance of 
x.p,* y.p by changing X.p:= true into X.p, y.p := true, true, because 
that would be begging the question: it would give rise to 

if --,y.q --t x.p, y.p := true, true fi 

a statement in wh ich the y's are just as entangled as the x's were before. 
So assignment y.p:= true had better occur in isolation. The topology of 
the program then hardly leaves us any choice: 

Pre: --'X.p 1\ --'X.q 1\ --'y.p 1\ --'y.q 

Comp.p: * [ y.p := true 

; if --'X.q --t X.p := true fi 

; X.p := false 

; y.p := false 

1 
Comp.q: Comp.p with p and q interchanged 

lnv: (x.p,* y.p) 1\ (x.q '* y.q) 

Now, thanks to lnv we can strengthen the guards and replace, in 
Comp.p, --,x.q with --'y.q. Then Comp.p becomes 
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Comp.p: * [ y.p := true 

; if ...,y.q ~ x.p := true fi 

; x.p := false 

; y.p := false 

and Comp.q likewise. And from this program text we see that execution 
no longer runs under control of the variables x but under control of the 
variables y instead: the originally auxiliary variables y have become 
genuine ones, and the originally genuine x's have become auxiliaries and 
can, therefore, be removed from the program text altogether: 

Pre: ...,y.p /\ ""y.q 

Comp.p: * [ y.p := true 

; if ""y.q ~ skip fi 

; y.p := false 

1 
Comp.q: * [ y.q := true 

; if ""y.p ~ skip fi 

j y.q := false 

1 

* * 
* 

We conclude this example with a few remarks. 

• The transformation of the original program into the above final one in
troduces the danger of total deadlock indeed, but that is aseparate 
concern and is not what the example was about. Moreover, the original 
program was not too fine a specimen either, because it lacks the property 
of individual progress. 

• Once the above program transformation has been grasped, it can be 
carried out in one or two steps at later occasions, and we will do so, 
because the transformation is a fairly standard one. 

• The original coarse-grained program serves some partial-correctness re
quirement unknown to uso The transformed finer-grained one satisfies 
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that same requirement. However, an a-posteriori proof that it does will, 
in general, be harder to find, because it will, at best, require areversal of 
the transformation process given above. For us, this particular example 
has, in fact, been the first indication that in multiprogramming verifica
tion might feasibly be exchanged for derivation. We will return to this 
observation in more detail in our chapter on the Safe Sluice. 

End of Example O. 

Example 1 (from "Phase Synchronization", Chapter 17) 

We consider the following two-component multiprogram 

Pre: x A y 

A: * [ if x -. skip fi B: * [ if y -. skip fi 

; x, y := ,y, true ; y, x := ,x, true 

1 1 

(The guarded skips and the multiple assignments are atomic.) 

Gur purpose is to eliminate the multiple assignments, exchanging them 
for simple assignments, without impairing the correctness of the invisible 
annotation. Again we can use the technique of Strengthening the Guard. 
The transformation is guided by the desire to replace guard x in A by 
a stronger f, and guard y in B by astronger g. We now give the 
intermediate, hybrid version at once 

Pre: xAyAfAg 

A: * [ if x -. skip fi 

; f :=false 

; x, y, 9 := ,y, true, true 

1 
B: * [ if y -. skip fi 

; 9 :=false 

; y, x, f := ,x, true, true 

1 
Inv: (f ~ x) A (g ~ y) 
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Exerdse 0 It is a - nice - exercise to prove that (J => x) 1\ (g => y) 
is, indeed, a system invariant. To that end one has to introduce an aux
iliary anrlotation, which can be found constructively by the technique of 
Strengthening the Annotation. 
End of Exercise O. 

Because of system invariant Inv, we can now replace guard x with / 
and guard y with g, after which variables x and y have become 
auxiliaries and can be eliminated from the program text. We thus obtain 

Pre: /I\g 

A: * [ if / -t skip fi B: * [ if 9 -t skip fi 

; / :=/alse ; 9 :=/alse 

; g:= true ; /:= true 

1 1 

Exercise 1 It is a - nice - exercise to prove that the above program 
does not suffer from the danger of total deadlock. 
End of Exercise 1. 

FinaIly, as an aside, we wish to inform the reader that the original pro
gram has an invisible multibound, expressed in invisible variables, associ
ated with it. Because the technique of Strengthening the Guard does not 
affect the partial correctness, that same invisible multibound has remained 
intact. As a result we can immediately conclude individual progress in the 
fine-gtained algorithm above from the absence of total deadlock. No oper
ational reasoning and no temporal logic are required. 

End of Example 1. 

* * 
* 

Our next theorem teIls us uncircumlocutorily ab out refinement. It is the 

Guard Conjunction Lemma 

For globaIly correct B, (atomic) program fragment 

ifBI\C-tSfi 

may be replaced by the composition 
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if B --+ skip fi 

; if C --+ S fi 

of the two finer-grained (atomic) statements, without impairing 
the total correctness of the design, Le. 

(i) without impairing the correctness of the annotation, and 
(ii) without introducing total deadlock, and 
(iii) without endangering individual progress. 

End of Guard Conjunction Lemma. 

Proof 

(ii) & (iii) Unfortunately, our formalism is not suited for proving this. For
tunately, Dr. Jozef Hooman proved it for us (when the Lemma was 
still a conjecture). He did so by considering the sets of all possible 
computations that can be evoked by the original and by the new sys
tem, respectively, and then showing that the two systems have the 
same properties as far as deadlock and individual progress are con
cerned. The proof is not for free and we are grateful to hirn for having 
designed it for us [Ho093]. 

(i) The proof of (i) is within the scope of our formalism. We will show 
that the original fragment can be transformed (indicated by " !;;; ") 
into the ncw one by exhibiting aseries of alrcady established trans
formations: 

if B 1\ C --+ skip fi 

C {adding a skip is harmless} 

if true --+ skip fi 

;ifBI\C--+Sfi 

C {strcngthening the guard} 

if B --+ skip fi 

; if B 1\ C --+ S fi 

C {introducing thc globally (and locally) correct 
intermediate assertion B} 

if B --+ skip fi 

; {B} 

if B 1\ C --+ S fi 

C {Leibniz} 
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if B -4 skip fi 

;{B} 

if C -48 fi 

c::: {weakening the annotation} 

if B -4 skip fi 

;ifC-48fi 

End of Proof. 

Examples in which the Guard Conjunction Lemma can be applied tend 
to be the more complicated ones, and therefore we refrain from illustrating 
its use here. 

* * 
* 

The last theorem of this chapter has not hing to do with program trans
formation. It is the 

Rule of Modus Ponens 

For globally correct C, the post-assertion in 

{B::::} C} if B -4 skip fi {Cl 

is correct whenever the pre-assertion iso 

End of Rule of Modus Ponens. 

One may justly wonder why this rule is worthy of a name: it is nothing 
more than the definition of the correctness of an assertion. However, the 
reason to introduce it nevertheless is that a bell should start ringing when
ever some stable (i.e. globally correct) state of a system has to be detected, 
the bell being the Rule of Modus Ponens. 

Consider, for instance, the following programming problem 

Pre: true 

X: 80 Y: To 

. {? , . To has terminated} ; Tl 

SI 

in which component X has to "detect" the stable state "To has terminated" . 
Now the intention is that in this situation we grab, without much hesitation, 
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the Modus Ponens, introduce a variable y and - for instance - system 
invariant 

y =? "To has terminated" 

and write down as our solution 

Pre: ,y 

X: 80 

; if y ~ skip fi 

; {To has terminated} 

81 

Y: 

Inv: y =? "To has terminated" 

To 

; y:= true 

; Tl 

The Modus Ponens captures what in more operationally inclined circles 
is commonly phrased as "If the component has observed the validity of B, 
we can be sure that event so-and-so (viz. the truthification of C) must have 
taken place" . 

In short: the Modus Ponens serves to signal stable states; and more 
importantly: when stable states are to be signalled remember the Modus 
Ponens. 

* * 
* 

And this concludes the last chapter of the first half of this book. 



12 

The Yellow Pages 

This chapter forms a true dividc in this monograph, in that the preceding 
part was mainly concerned with the description of multiprograms whereas 
the following part will deal with their construction. What wc did so far was 
introduce and discuss a body of concepts, techniques, and rules of thumb 
that together form the basic ingredients for our method of multiprogram
ming. Since these ingredients are rat her scattered over thc various chapters, 
it seems appropriate that, on this divide of the book, we give abrief and 
rough summary of them. And this, indeed, is the primary purpose of these 
"Yellow Pages". 

When we (the authors) conceived the flavour of this book, we decided 
it to become a (research) monograph rat her than a textbook. As a result 
no exercises were planned, apart from a few in the running text. When, 
in a late stage of writing, prof. David Grics heard ab out this, he strongly 
recommended to include exercise sections nevertheless. We then decided to 
(partly) follow his advice and to "misuse" the Yellow Pages for this other 
purpose as weIl. 
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12.0 A Summary 

This summary is arranged thematically. For most items quoted, we refer 
to a ehapter where it is diseussed more elaborately and precisely. 

12.0.0 Predicate Calculus 

The reader is assumed to be familiar with the mIes of the predieate ealculus. 
([DS90], for instanee, gives a fairly exhaustive treatment.) However, we 
adopted a few eonventions diverging from what is eommon. 

• Function applieation: 

Function applieation is denoted by an infix dot. Its distinetive property 
is Leibniz' Rule: for function f 

x = y =} f.x = f.y , for all x, y. 

• The "Everywhere" -operator: 

The Everywhere-operator is a unary operator on predieates, and it is 
denoted by a pair of square braekets. Its "semantics" is given by 

[ P 1 == (P yields value true for all states of the state space). 

The operator plays an important röle in treating the semanties of pro
gram notations. 

• Binding powers: 

- The logical operators in order of deereasing binding power are -', then 
1\ and V (with equal binding power), then =} and {::: (with equal 
binding power), and finally == and '1= (also with equal binding power). 

- The arithmetie operators and relators bind more strongly than the 
logicaiones. 

- Of all operators, function applieation binds strongest. 

• The equivalenee-operator: 

The equivalenee-operator, denoted ==, is an infix operator on predieates. 
Its most important properties are: 

- it is symmetrie (commutative) and associative; 

- it has true as its left and right identity; 



- disjunction distributes over it, Le. 

[ p V (X == Y) == P V X 

- it is related to negation by 

[ ,(P == Q) == ,P == Q] 

P V Y] 

- for predicate transformer f, it satisfies 

[ P == Q] => [f.P == f.Q ] 
which is an instance of Leibniz' Rule. 
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12.0.1 Our computational model (cf. Chapters 1 and 18) 

A multiprogram is a set of sequential programs -- called components. 
Execution of a single component results in a sequence of atomic actions, 
prescribed by the state and the program text. Execution of a multiprogram 
results in a sequence of atomic actions that is a fair interleaving of the 
sequences generated by the individual components. What "fair" boils down 
to is that each component that has not terminated will, within a finite 
number of steps of the rest of the system, contribute a next action to the 
interleaving, irrespective of whether this action is a guard evaluation or an 
assignment. 
Our use of the model is confined to produce scenarios for supporting or 
refuting progress claims. 

12.0.2 Annotation 

Its shape (cf. Chapters 2, 3, 5.1) 

A fully-annotated multiprogram is annotated with assertions such that 

- there is a precondition of the multiprogram as a whole; 

- there is a postcondition of the multiprogram as a whole, in case all com-
ponents terminate; 

- each individual atomic statement of each individual component carries a 
pre-assertion; 

- it mentions the (relevant) system invariants. 
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Its correctness (cf. Chapters 3, 4, 5.1) 

In principle, correctness of annotation can only be established via the Core 
rules of the Owicki/Gries theory, which require a fully annotated multipro
gram. 

Of course, there are also some correctness-preserving program transfor
mations, like Guard Strengthening (cf. Chapter 11), or special theorems 
stating correctness, like Topology Lemmata. 

Manipulating correct annotation (cf. Chapters 4, 5.1, 6) 

- Correctness of annotation is not affected by weakening an assertion, 
weakening an invariant, weakening the postcondition, or strengthening 
the precondition. By the weakening operations, the correctness according 
to the Core rules may, however, be lost. 

- Adding a correct conjunct to an assertion, an invariant or the postcon
dition preserves the correctness of the existing annotation. For proving 
the correctness of the added conjunct, the correctness of the existing 
annotation can be used (cf. Chapter 6). 

- An invariant may be added as a correct conjunct to each individual 
assertion. 

12.0.3 The Core of the Owicki/Gries theory (cf. Chapters 3, 6) 

Consider a fully annotated multiprogram. The annotation is correct (in the 
Core) whenever 

(i) each individual assertion is correct, and 
(ii) the postcondition is correct, if present, and 
(iii) the invariants are correct. 

Re (i) 
An assertion is correct whenever it is both locally and globally correct 
for definitions, see Chapter 3. 

What the correctness proof of an assertion P amounts to is proving the 
validity of a number of Hoare-triples {X} S {P}. We emphasize that, 
for this purpose, pre-assertions X may always be strengthened with the 
system invariants. 

Re (ii) 
The postcondition is correct whenever 
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-- it is implied by the eonjunction of the post-assertions of the individual 
eomponents, and 

- all eomponents are guaranteed to terminate. 

Re (iii) 
An invariant P is correct whenever 

- it is implied by the precondition, and 

- it is maintained by each atomic statement {Q} S of the multiprogram, Le. 
{P 1\ Q} S {P} is a correct Hoare-triple. We emphasize that in proving 
the correctness of these Hoare-triples, the pre-assertions may always be 
strengthened with other invariants. 

12.0.4 Variables 

There are two independent classifications for the variables we encounter, 
one that is related to their accessibility, and one that is related to their röle 
in the "flow of control" . 

- Auxiliary variables are those that have no influence on the flow of control. 
They usually enter the game in a-posteriori proofs and in program trans
formations. In the latter case they tend to switch röle with the "genuine" 
(Le. non-auxiliary) variables (cf. Chapters 10, 11). 

- Shared variables are those that can be changed by more than one com
ponent. 

- Private variables are those that can be changed by one component only, 
but ean be inspeeted by all. 

- Local variables are those that can be changed by one component only 
and cannot be inspected by the others. 

12.0.5 Atomicity 

Unless stated otherwise, our only atomic program fragments are 

- the (multiple) assignment statement 
- the guarded skip 
- the guard of arepetition. 

In the process of program development, we may, of course, temporarily use 
eoarser-grained fragments, but in the end they will have to be replaced 
with the above ones. 
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Our finest-grained atomic fragments are 

- the one-point-statements, and 
- the one-point-guards; 

they contain at most one reference to a shared or private variable. Many 
algorithms in this book are "one-point". 

12.0.6 Progress (cf. Chapters 8, 9) 

• Individual Progress: 

Statement {Q} if B ~ S fi in a component terminates 

if and only if 

the rest of the system, when constrained to (states satisfying) Q will, 
in a finite number of steps, converge to astate in which B is stably 
true. 

• (Absence of) Total Deadlock: 

- When all components are "at" a guarded statement, progress of the 
multiprogram is guarantecd 

if and only if 

in that state of the system at least one of the guards is true. 

- If in such astate all guards are false the multiprogram has (the Danger 
of) Total Deadlock (which is to be avoided). 

• The Multibound: 

If all componcnts havc thc shapc 

* [x.i := l+x.i 1 
and if 

MB: "the x- values are mutually bounded" 

is a system invariant, then 

individual progress for each component is guaranteed 
= 
there is no total deadlock. 



12.0.7 Rules and Lemmata 

• (Hoare-triple) Semantics (cf. Chapter 2): 

- {Q} skip {Q} 

- {(x:= E).Q} x:= E {Q} 

- {P} So; SI {Q} 
{= 

for some H: {P} So {H} 1\ {H} SI {Q} 

- {B =* Q} if B -t skip fi {Q} 

- {P}S{Q} == [P =* wlp.S.Q] 
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- the correctness of a Hoare-triple is preserved by strengthening the pre
assertion and by weakening the post-assertion. 

• Orthogonality (cf. Chapter 5): 

An assertion that doesn't depend on variable x is maintained by all 
assignments to x. 

• Disjointness (cf. Chapter 7): 

Assertion P is maintained by { Q} S if 

[ P 1\ Q =* false] 

• Widening (cf. Chapter 7): 

Assertion x s:: y is maintained by "descents" of x and by "ascents" of 
y. 

• (Second) Guard Strengthening Lemma (cf. Chapter 11): 

Program fragment 

{C =* B} if B -t S fi 

may be replaced with 

{C =* B} if C -t S fi 

without impairing the correctness of (all of) the annotation. 

• Guard Conjunction Lemma (cf. Chapter 11): 

For globally correct B, (atomic) program fragment 

if B 1\ C -t S fi 
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may be replaced by 

if B ~ skip fi 

; if C ~ S fi 

without impairing the (total) correctness of the program. 

• Gouda's Guard Disjunction Lemma (cf. Chapter 24): 

For globally correct B, the guard in (atomic) program fragment 

if B V C ~ skip fi 

may be evaluated disjunct-wise without impairing the (total) correctness 
of the program. 

• Modus Ponens (cf. Chapter 11): 

For globally correct C, the post-assertion in 

{B => C} if B ~ skip fi {C} 

is correct, whenever the pre-assertion iso 

• Topology Lemmata (cf. Chapters 5, 7) 

12.1 Exercises 

The exercises in this section pertain to the entire book. However, many 
of them can be done with the material discussed so far; they are the ones 
in which no program construction is demanded. For the other ones, we 
recommend that the reader has studied at least thc first half of the second 
part of this book. 

Where do the exercises come from? The majority is taken from our own 
own archives, but so me were borrowed from [Luk98] and from [Sch97]. How
ever, in Schneider's text, one can find a wealth of exercises that would not 
bc out of place here. Instead of copying those, we rather refer the inter
ested reader to that text, because, besides these exercises, it also contains 
an in-depth logical treatment of annotated multiprograms. 

Most instructive and rewarding of all however is, to consider sclf-made 
synchronization problems (for instance, variations on the ones we dealt 
with) or to revisit existing protocols or algorithms. Howcver instructive or 
rewarding this can be, it is not without danger either. From experience 
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we know that multiprogramming problems tend to be extremely simple or 
forbiddingly diffieult. The layer in between is just very thin. 

* * 
* 

Before the reader embarks on this series of exercises, he should be in
formed that they are not arranged in the order of inereasing diffieulty or 
laboriousness, and that they are not classified by theme either. This may 
at first seem emel, but we think it is more ehallenging, and more tmthfully 
refleeting real life as well. Our advice to the reader is that he not allow 
himself to get diseouraged too quiekly, sinee, after all, multiprogramming 
just isn't a simple activity. 

Exercise 0 Derive for which integers c and d 

x:Sy+c 1\ y:Sx+d 

is a system invariant of 

Pre: x=O 1\ y=O 

A: * [x:=y B: * [y:=x 

i X :=x+1 i y:=y+1 

1 1 

Exercise 1 Show the eorreetness of the posteondition in 

Pre: i=O 1\ j=O 

A: do i1' 47----> B: do j 1'47----> 

i := i + 1 x.j := i 

od i j :=j+1 

od 

Post: ( \/k : 1 :S k < 47 : x.(k -1) :S x.k ) 

(Rint: define auxiliary element x.(-1), such that x.(-1):S 0.) 
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Exercise 2 Show the correctness of the posteondition in 

Pre: true 

A: x := x+2 I B: x:= 0 

Post: x=O V x=2 

Exercise 3 Show the correctness of the posteondition in 

Pre: true 

A: if ( x "'.5. y ) ---+ ( m := x ) B: (m:=x) 

~ ( y "'.5. x ) ---+ ( m := y ) ; if ( m "'.5. y ) ---+ skip 

fi ~ ( y "'.5. m ) ---+ ( m := y ) 

fi 

Post: m=x 1 y 

in which 1 denotes the minimum operator. (The angular brackets indicate 
the intended atomicity.) 

Exercise 4 Show the correctness of the posteondition in 

Pre: i=O 1\ j=O 

A: do i i= 100 ---+ B: do j i= 100 ---+ 

i:= i+ 1 j :=j +1 

; x:=i ; x:=j 

od od 

Post: x= 100 

Exercise 5 Show the correctness of the posteondition in 

Pre: -,x 

A: x := true I B: if x ---> x := false fi 

Post: -,x 

If component A is changcd into 
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A: x:= true 

; x:= true 

posteondition -,x is no longer guaranteed. Check how this becomes man
ifest in the proof. 

Exercise 6 Consider two-component multiprogram 

Pre: x=O 1\ y=O 1\ -,p 1\ -'q 

A: p:= true 

; x :=x+1 

; if 1':5. y -+ y:= y -1 fi 

{q} 

B: q:= true 

; y:=y+1 

; if 1':5. x -+ x:= x -1 fi 

{p} 

Show 

a. the correctness of the given annotation; 

b. the absence of total deadlock; 

c. that both components terminate; 

d. the invariance of 0 S x ':5. 1 1\ 0 ':5. y ':5. 1 ; 
e. that x = 0 1\ Y = 0 is a correct posteondition; 

f. that, without loss of correctness, the guarded skip in A can be replaced 
with the finer-grained 

if 1 ':5. y -+ skip fi 

; y:=y-1 

Exercise 7 Consider 

Pre: x = 0 1\ Y = 0 

A: * [x:=x+1 

; if 0 < y -+ skip fi 

;y:=y-1 
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Show 

B: * [y:=y+1 

; if 0 < x -+ skip fi 

; x:=x-I 

a. the invariance of x ~ 2 . 

b. individual progress. 

Exercise 8 Show thc correctncss of thc postcondition in 

Pre: true 

A: do I~x-+ B: x:= I 

x:= x-I 

od 

Post: x=O V x=1 

In particular, show termination by constructing a suitable variant function. 

Exercise 9 

a. Show termination of 

Pre: true 

A: do x V y -+ x := false od 

B: do xVy -+ y:=false od 

b. Show that termination is no longer guaranteed if A and Bare changed 
into 

A: do y -+ x :=false od 

B: do x -+ y :=false od 

(This illustrates that strengthening the guard of arepetition or weakening 
the guard of a guarded statement can be detriment al to progress.) 

c. How is the situation if A and Bare changed into 



A: do y ~ x :=false od 

; x :=false 

B: do x ~ y :=false od 

; y:=false 
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Exercise 10 Show mutual exclusion of cs.A and cs.B in 

Pre: ,x 1\ ,y 

A: * [ do ,x ~ x := ,y od B: * [ do ,y ~ y := ,x od 

; cs.A ; cs.B 

; x:= false ; y:=false 

1 1 

Exercise 11 Show thc invariancc of x + y ~ z in 

Prc: x=O 1\ y=O 1\ z=O 

A: * [y :=y-l B: * [z:=z+l 

; x:=x+l ; y:=y+l 

1 1 

What if the multiprogram contains several components of the form A and 
of the form B? 

Exercise 12 Show thc invariance of x + y ~ Z2 in 

Pre: x=O 1\ y=O 1\ z=O 

A: *[y:=y-l B: * [d:=2*z+1 

; x:=x+l ;z:=z+l 

1 ; y:=y+d 

1 

Next, we change component B into 
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B: * [d:=2*z+1 

; z:=z+1 

; do di0-t 

d:=d-1 

; y:=y+1 

od 

Show that x + y ~ Z2 still is an invariant. 

Exercise 13 Show the invariance of 0 ~ 8 in 

Pre: 8=0 

A: * [8:=8+1] 

B: * [ if 2 ~ 8 -t skip fi 

; 8:=8-1 

] 
C: * [ if 2 ~ 8 -t skip fi 

; s:=8-1 

1 

Exercise 14 Consider a multiprogram with one component of type A 
and 47 components of type B. 

Pre: 8=0 

A: *[8:=8+1] B: * [ if K ~ 8 -t skip fi 

;8:=8-1 

] 

Derive for what values of K it will hold that 0 ~ 8 is a system invariant. 

Exercise 15 Show the correctness of the posteondition for each of the 
following multiprograms 
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a. 
Prc: x=O 

A: x := x+a I B: x := x+b 

Post: x=a+b 

b. 
Prc: x=O 

A: y:=x B: x := x+b 

;x:=x+a 

Post: x=a V x=a+b 

c. 
Pre: x=O 

A: r:=x B: s:=x 

; r:=r+a ; s:=s+b 

; x:=r ; x:=s 

Post: x=a V x=b V x=a+b 

Exercise 16 Let X be a component of some multiprogram. If the sys
tem without component X has system invariant P, then P is a correct 
pre-assertion of X. Prove this. 

(This is a very simple "composition" theorem, which can sometimes be used at 
great advantage. The reader may now wish to revisit the previous exercise.) 

Exercise 17 Consider the following two-component multiprogram: 

Pre: x=X 1\ y=Y 

A: !:=y B: g:=x 

; x:=! ; y:=g 

Synchronize, using one-point-statements only, the components such that 
the postcondition will imply 

a. x=Y 

b. x= Y 1\ y=X 

c. x=X 1\ y=X 

d. x=y 
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Exercise 18 Show that atomic statement 

if B ---+ 8 fi 

of some component can be replaced with the finer grained 

if B ---+ skip fi 

;8 

without affecting correctness, provided B is globally correct. 

(Rint: use the Guard Conjunction Lemma.) 

(In operational terms, this theorem tells us that execution of S can be post
poned, whenever B cannot be falsified by the rest of the system.) 

Exercise 19 Consider the following multiprogram: 

Pre: n=O /\ s=O 

A: * [n:=n+l 

; s:=s+1 

1 
B: * [ if 1 ~ s ---+ s := s - 1 fi 

; n:=n-l 

1 
C: * [ if 1 ~ s ---+ s := s -1 fi 

; n:=n-l 

1 

(Note that the operations on 8 mimic P- and V- operations.) 

Show the invariance of 0 ~ n. What if the guarded skips in Band C are 
replaced by the finer grained 

if 1 ~ s ---+ skip fi 

; s :=s-1 ? 

Next, we split "semaphore" s in the above algorithm into "semaphores" 
sb and sc via the co ordinate transformation 

o ~ sb /\ 0 ~ sc /\ s = sb + sc 

We may thus obtain 
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Prc: n = 0 1\ sb = 0 1\ sc = 0 

A: * [n:=n+l 

; if ( true ) ~ ( sb := sb + 1 ) 

~ ( true ) ~ ( sc : = sc + 1 ) 

fi 

J 

B: * [ if 1 '5. sb ~ sb := sb - 1 fi 

; n:=n-l 

1 
C: * [ if 1 '5. sc ~ sc : = sc - 1 fi 

; n:=n-l 

J 

(The angular brackets in A indicate the intended granularity of that if-statement.) 

Argue why 0'5. n still is a system invariant. Show that the guarded state
ment in B can be replaced with the finer grained 

if 1 '5. sb ~ skip fi 

; sb := sb-l 

Likewise for C. 

Exercise 20 Consider two-component multiprogram 

Pre: x = 0 1\ Y = 0 

A: *[x:=x+l] I B: *[y:=y+l] 

Synchronize the components ~ using guarded skips only ~ such that 
x '5. y will be a system invariant. How to do this if x or y are not 
allowed to occur in the synchronization protocol? What if there are several 
components of type A and several of type B? 

Exercise 21 Consider the following multiprogram, with 23 components 
of type A and 47 components of type B: 
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Pre: 8 =0 

A: *[8:=8+1J B: * [ 8:= 8 -1 J 

Synchronize the components --- using guarded skips only -- such that 
o ~ 8 ~ 100 will be a system invariant. 

Exercise 22 Show the invariance of lnv in 

Pre: x=O A y=O A z=O 

A: *[x:=x+1; y:= y-1] 

B: * [y:=y+1; z := z-l J 

C: * [z:=z+l; x := x-I J 

lnv: 0~x+y+z~3 

Next, synchronize the components such that they will maintain 

O~x A x~y A y~z 

Discuss individual progress. 

Exercise 23 Consider the following many-component multiprogram: 

Pre: ( Vq :: -'X.q ) 

Comp.p: * [ x.p := true 

; if ( Vq : q -I p : -,x.q ) --+ skip fi 

; S.p 

; x.p := false 

Show mutual exclusion of the S- fragments. 

(Rint: the easiest way of showing this is by deriving this program, which is just 
a generalization of the Safe Sluice for two components (cf. Chapter 13).) 
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Exercise 24 Consider the following N- component multiprogram 
(2 SN): 

Pre: true 

Comp.p: * [ v := p 

; if v i= p --; skip fi 

; S.p 

Show that the number of components engaged in their S- fragment is at 
most N -1. 

Show that the same holds for the following multiprogram 

Pre: ('t/q:: -'X.q ) 

Comp.p: * [x.p := true 

; if (3q: qi=P: -,x.q) --; skip fi 

; S.p 

; X.p := false 

How is the situation if the components are changed into 

Comp.p: * [x.p := true 

; v:=p 

; if v i= p V ( 3q : q i= p : -'X.q ) --; skip fi 

; S.p 

; X.p := false 
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Exercise 25 Consider the following multiprogram, in which variables e, 
d, x and y are fresh with respect to the fragments es and nes: 

Pre: -,e 1\ -,d 1\ x=O 1\ y=O 

A: B: 

* [nes.A * [nes.B 

; e:= true ; d:= true 

; x:= l+y ; y:= l+x 

; if -,d V x < Y ....... skip fi ; if -,e V y < x ....... skip fi 

; es.A ; cs.B 

; e:=false ; d:=false 

1 1 

Show 

a. Mutual exclusion of the fragments es.A and es.B. 

b. Absence of total deadlock. 

c. Individual progress, even if the disjuncts in the guards are evaluated 
disjunctwise. 

(Rint: in fact, the above algorithm admits a derivation that is very similar to the 
derivation of Peterson's mutual exclusion algorithm (cf. Chapter 14). Carrying 
out such a derivation is the easiest way to tackle this exercise.) 

Exercise 26 Consider the following three-component multiprogram: 

Pre: -,x 1\ -,y 1\ -,z 

X: * [nes.X 

; x:= true 

; u,W:= X,X 

; if (-,y V u#X) 1\ (-,z V w#X) ....... skip fi 

; es.X 

; x :=false 
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Y: * [ncs.Y 

; y:= true 

; V,U:= Y,Y 

; if (-.z v v i= Y) /\ (-.x V U i= Y) -t skip fi 

; cs.Y 

; y:=false 

Z: * [ncs.Z 

Show 

; z:= true 

; w,v := Z,Z 

; if (-.x V W i= Z) /\ (-.y v v i= Z) -t skip fi 

; cs.Z 

; z :=false 

a. Mutual exclusion between the cs- fragments. 

b. Absence of total deadlock. 

c. Individual progress. 

d. That the guards can be evaluated conjunctwise, and each conjunct dis-
junctwise. 

From (d) it follows that the algorithm is very fine-grained, almost one-point, 
except for the multiple assignments. Show that splitting of the multiple as
signments into two simple assignments inevitably introduces the danger of 
total deadlock. 

(Hint: in fact, the above algorithm was derived in exactly the same way as Pe
terson's (cf. Chapter 14).) 
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Exercise 27 Consider the following multiprogram for implementing mu
tual inclusion: 

Pre: a=b 1\ x 1\ y 

A: * [ if a ::; b -t skip fi 

;{a=b} 

x :=/alse 

; if -,y Va< b -t skip fi 

; x, a := true, a + 1 

J 

B: * [ if b::; a -t skip fi 

;{b=a} 

y:=/alse 

; if -,x Vb< a -t skip fi 

; y,b := true, b+l 

J 

a. Show the correctness of the two assertions. 

b. Make the program finer-grained by splitting the multiple assignment 
into two simple ones. 

c. For this refined program, show individual progress. 

d. From the proofin (a) it may become clear how the program was derived. 
Try to give such a derivation. 

Exercise 28 Show the invariance of 0::; x in the following many-com
ponent multiprogram: 

Pre: 1::; x 1\ (Vj:: -,d.j) 1\ c 

Comp.i: * [ do -,d.i -t d.i, c := c, d.i od 

; x :=x-l 

; x :=x+l 

; c, d.i := d.i, c 
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Exercise 29 Consider a multiprogram with two components of type A: 

Pre: x 

A: * [if x --t x :=Jalse fi 

; es 

; x:= true 

in which the fragments es don't mention x. 

a. Show mutual exclusion between the es- fragments. 

b. Show absence of total deadlock. 

c. What about individual progress? 

d. Extend the components, using fresh variables and guarded skips only, 
so as to achieve that the number of completed es- fragments in the one 
component differs by at most 7 from that in the other component. 

Exercise 30 Transform, through Guard Strengthening, the following 
multiprogram into one in which only variable x occurs: 

Pre: x /\ y 

A: * [ if ---,x --t skip fi B: * [x :=Jalse 

; x,y:= true,Jalse ; if ---'y --t skip fi 

1 ; y:= true 

J 

Exercise 31 Remove, through Guard Strengthening, the multiple as
signment from component C of the following multiprogram: 

Pre: ---,x /\ y 

A: * [ if x --t skip fi 

; x :=Jalse 

J 

B: * [y:=---,x J 

C: * [ if y --t skip fi 

; x,y:= true,Jalse 

1 
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Exercise 32 Remove, through Guard Strengthening, the multiple as
signments from: 

Pre: x 1\ 'y 1\ ,Z 

A: * [ if x -+ skip fi 

; x, y := false, true 

1 
B: * [ if y -+ skip fi 

; y, z := false, true 

1 
C: * [ if z -+ skip fi 

; z, x := false, true 

1 

Exercise 33 We consider the following multiprogram with arbitrary 
number of components: 

Pre: m = 0 1\ n = 0 

Comp.p: * [ ncs.p 

; x.p,m:= m,m+l 

; if x.p=n -+ skip fi 

; cs.p 

; n:=n+l 

Show mutual exclusion between the cs- fragments. Show absence of total 
deadlock. What about individual progress? 
(This is a very coarse-grained variation on Lamport's Bakery Algorithm [Lam74].) 
(Try to derive the algorithm, starting from x.p = nasa precondition of cs.p.) 

Exercise 34 Consider the following three-component multiprogram, in 
which the communication is realized through two pebbles (p and q) and 
one token (t): 
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Pre: p=A 1\ q=B 1\ t=C 

A: * [ncs.A 

jP:=C 

j if t = A -> skip fi 

; cs.A 

; t:=C 

1 
B: * [ncs.B 

; q:=C 

; if t = B -> skip fi 

; cs.B 

; t:=C 

1 
C: * [if (p= C ) 1\ ( t = C ) -> ( p, t := A, A ) 

~ (q=C) 1\ ( t = C ) -> ( q, t := B, B ) 

fi 

1 

(The if-statement in C is a guarded statement with two alternatives. The angular 
brackets indicate the intended atomicity.) 

a. Statement p:= C in component A symbolizes the sending of pebble 
p from A to C. However this is only "permissible" if A "owns" p, i.e. 
if p = A is a correct precondition of p:= C . Now show that aB pebble 
and token traflic in the above algorithm is "permissible". 

b. Show mutual exclusion between cs.A and cs.B. 

c. Show individual progress of A and B, if the selection in C is fair. 

d. Show that "permissibility", mutual exclusion, and individual progress 
are not affected if multiple assignment p, t := A, A is split into the 
finer-grained p:= A; t := A (and q, t := B, B into q:= B; t := B). 

e. What if, in this splitting, the assignments to p and t (or q and t) 
are reversed? 

Exercise 35 Given multiprogram 
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Pre: cl\dl\pl\q 

A: B: 

* [ if p -t skip fi * [ if q -t skip fi 

j c, d,p := -,d, true,Jalse j d, c, q := ""c, true,Jalse 

jq:=E jp:=E 

I I 

design E such that 

(p =? c) 1\ (q =? d) 

will be a system invariant (of course without introducing the danger of 
deadlock). 

Exercise 36 Consider two-component multiprogram 

Pre: x=O 1\ y=O 1\ c 

A: * [ if c -t skip fi B: * [ if -,c -t skip fi 

j x, c := x + l,Jalse j y,c := y+l, true 

I I 

a. Show that x::;: y 1\ y::;: x + 1 is a system invariant. 

b. Eliminate the multiple assignments through Guard Strengthening. 
(Hint: use the First Guard Strengthening Lemma, cf. Chapter 11.) 

c. Transform the algorithm such that it will be expressed in one-point
statements and private variables only (of course, without introducing 
deadlock). 

Exercise 37 

a. Given the following two-component multiprogram 

Pre: true 

A: x:=O B: x:=l 

j y:=O j y:=l 

synchronize the components such that the postcondition will imply 
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x=O 1\ y=l 

b. Next we consider multiprogram 

Pre true 

A: v:=O B: v:= 1 

, w:=O , w:=l 

, x:=O , x:= 1 

, y:=O , y:= 1 

Synchronize the components such that thc postcondition will imply 

v=O 1\ w=l 1\ x=O 1\ y=l 

Exercise 38 Given three-componcnt multiprogram 

Prc: true 

A: x:=O B: x:=l C: x:=2 

, y:=O , y:= 1 , y:=2 

, z:=O , z:= 1 , z:=2 

synchronize the components such that the postcondition will imply 

x=O 1\ y=l 1\ z=2 

Exercise 39 Given an array x[O ... N) ,OS: N, and multiprogram 

Pre: i=O 1\ j=O 

A: do i i= N-t B: do j i= N-t 

x.z := 0 x.j - 1 

; i:=i+1 ; j :=j+1 

od od 

synchronize the components such that the postcondition will imply 

( Vk : 0 s: k < N : x.k = k mod 2 ) 
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Exercise 40 Consider the following multiprogram with arbitrary number 
of components: 

Pre: f 
Comp.p: * [ ncs.p 

; x:=p 

; if f -+ skip fi 

; f:= false 

; if x = p -+ skip fi 

; cS.p 

; f:= true 

a. Show mutual exclusion between the cs- fragments. 

b. Show that there is danger of total deadlock. 

c. Show that Comp.p will make progress if all other components remain 
in their ncs- fragments. 

Exercise 41 Consider a sequential program of the form 

X: 80;(81,82,83);84 

in which (81,82,83) is an ad-hoc notation for expressing that the order in 
which to execute the three included program fragments is totally irrelevant. 
In order to speed up the computation we farm out some of these fragments 
to co-components (cf. Chapter 20). 

a. Farm out 82 to CO-X2 and 83 to Co-X3. 

b. Farm out (82,83) to CO-X23, which in turn farms out 83 to Co-Co
X3. 

c. How to do this for a program of the forin 

* [ 80; (81,82,83) ; 84] ? 

Exercise 42 Consider Solution II for the distributed computation of a 
spanning tree: 
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Pre: ( 'r:/q :: white.q ) 

Comp.p: if q :: q E N.p A red.q -t skip fi 

(p -1= R) ; f.p := q 

; red.p := true 

; S.p 

Comp.R: red.R := true 

; S.R 

Now synchronize the components in such a way that they only initiate their 
S when the entirc spanning tree has been computed, this subject to the 
constraint that components can only communicate with their neighbours. 

Exercise 43 Consider two-component multiprogram 

Pre: --,x A --'y 

A: * [x:= true B: * [y:= true 

; x:= false ; y:=false 

1 1 

a. Synchronize, using one-point operations on booleans only, the compo
nents such that 

--,x V --'y 

will be a system invariant. 

b. How to do this if wc add a third component 

C: * [ z := true; z := false 1 

strengthen the precondition with --,z, and strive for the invariance of 

--,x V --'y V --,z ? 
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The Safe Sluice: A Synthesis Emerging 

As a matter of fact, this chapter is not reaIly about the Safe Sluice. It has 
more of a methodological flavour, mainly because it teIls the story of how 
a method can emerge from a careful study of a judiciously chosen, sim
ple algorithm like the Safe Sluice. For us, authors, the exploration of this 
algorithm created the first evidence that the Owicki/Gries theory could, 
somehow, effectively be put at work for the formal derivation of multi
programs [Fei87]. The original theme of that exploration was to compare 
the various correctness proofs that, at the time, we could give for the Safe 
Sluice. Here, we are happy to have the opportunity to let the reader share 
in this experience, and to show how seemingly tiny little details can give 
rise to unforeseen developments. 

We first give the algorithm and explain what it is supposed to do. We 
then present three a-posteriori correctness proofs, commenting on them as 
we go along, and we conclude with two derivat ions of the algorithm. 

* * 
* 

The Safe Sluice is a stepping stone towards a two-component mutual 
exclusion algorithm. It is merely a stepping stone, because it lacks aIl sorts 
of progress properties. In particular, it suffers from the danger of total 
deadlock, but for the time bcing this should not bot her uso Its positive 
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feature is that it correctly implements the property of mutual exclusion. 
The program reads 

Pre: -'X.p 1\ -'X.q 

Comp.p: Comp.q: 

* [nes.p * [nes.q 

; X.p := true ; X.q:= true 

; if -,x.q --+ skip fi ; if -'x. p --+ skip fi 

; es.p ; eS.q 

; X.p := false ; X.q := false 

] ] 
The Safe Sluice 

Fragments nes are commonly called the "noncritical sections", and frag
ments es the "critical sections". Variables X.p and x.q do not occur 
in these fragments. We shall now give three proofs of the property that 

Component p and Component q are not engaged in their 
critical sections simultaneously. 

Proof 0 

This is a very old, yet nicely designed proof, which emerged shortly after 
the OwickijGries theory had become known. It is a slightly adapted version 
of the proof in EWD554 - "A Personal Summary of the Gries-Owicki 
Theory" - [Dij82]. Its main characteristic is that it is constructed via an 
operational understanding of the algorithm. In this respect it is typical of 
how the OwickijGries theory has mostly been used. 

The proof starts with the introduction of two (fresh) auxiliary boolean 
variables y.p and y.q, for the purpose of marking the beginning and the 
end of the critical sections. 
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Pre: ---,x.p 1\ ---,x.q 1\ ---,y.p 1\ ---'y.q 

Comp.p: * [ {Po} ncs.p 

; {Po} x.p := true 

; {Pl} if ---,x.q --; y.p := true fi 

; {P2} cS.p 

; {P2} x.p, y.p := false, false 

{Po} 

1 
Comp.q: Comp.p with p and q interchanged 

Because variables x.p and y.p are private to Comp.p, we can safely 
choose the Pi 's to be 

Po : ---'X.p 1\ ---,y.p 
Pl : X.p 1\ ---'y.p 
P2 : X.p 1\ y.p 

Indeed, their (local) correctness is obvious. 

Next, we observe that each Pi implies condition P given by 

P: X.p V ---,y.p 

Thus relation P is a system invariant. By symmetry, we also have that 

Q: X.q V ---,y.q 

is a system invariant. Wc are hcading für thc invariancc of 

R : ---,y.p V ---'y.q 

since, on account of the Program Topology, we have 

---'y.p =} Comp.p is outside cS.p 

The only statement that can falsify R is assignment y.p:= true (and, 
by symmetry, y.q:= true ). However, we see that 

wlp.(if ---,x.q --; y.p := true fi).R 

= {definition of wlp.IF} 

X.q V (y.p:= true).R 

{substitute in R} 

X.q V ---'y.q 

{definition of Q} 
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Q 

{Q is system invariant} 

true 

so that R is a system invariant as weIl. 

End of Proof O. 

There is no point in commenting on the details of the above proof, but 
we do wish to observe that it is totally "bottom-up": starting at the raw 
code, it first collects information as strong as possible ab out the individual 
components, in the form of the Pi'S , then it summarizes this information, 
by weakening it into P, and only at the very end does target relation R 
enter the picture. 

Proof 1 

This is a "top-down" proof, wh ich means that the very first thing we do 
is formalize what the algorithm has to achieve. For reasons of comparison, 
we choose the same auxiliary variables and the same program modification 
as in Proof O. For the time being, the annotation should be ignored. 

Pre: ---'X.p 1\ ---'X.q 1\ ---,y.p 1\ ---'y.q 

Comp.p: * [ {---,y.p} ncs.p 

; {---,y.p} X.p:= true 

; {x.p} if ---'X.q -> y.p := true fi 

; {x.p} cs.p 

; {x.p} X.p, y.p := false, false 

{---,y.p} 

1 
Comp.q: Comp.p with p and q interchanged 

Again, our proof obligation is the invariance of 

R : ---,y.p V ---'y.q 

To that end we observe that R can only be falsified by the assignments 
y.p := true and y.q:= true. We investigate one of them, y.q:= true 
in component q, say 

wlp.(if ---'X.p -> y.q := true fi).R 

{definition of wlp.IF and substitution in R} 
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x.p V 'y.p 

The variables mentioned in the resulting condition, x.p V .y.p, are pri
vate to component p, and therefore it suffices to demand this condition 
to be an invariant of that component in isolation. And, indeed, it is, on 
account of the obviously correct annotation, which we may consider now. 

End of Proof 1. 

Proof 1 is shorter than Proof 0, but this need not amaze uso By starting 
at target relation R we did not encounter the overspecific Pi'S that 
appear in Proof O. This is typical of a "top-down" approach, in which 
one usually encounters just what is needed. Proof 1 is an old proof, and 
by the standards of its day its annotation is quite sparse. By our current 
standards, however, one could even argue that the annotation can be left 
out altogether, because the emerging relation x.p V .y.p is a system 
invariant on account of the topology of the program. Given in this way, 
Proof 1 is, in fact, already quite dose to the structure of one of the formal 
derivations of thc Safe Sluice to be considered shortly. 

Proof 2 

This is a vcry short proof. Here it is, pulled out of the magic hat. We 
introduce (fresh) auxiliary variable z and modify the program as follows: 

Pre: 'x.p 1\ .x.q 

Comp.p: * [ncs.p 

; x.p := true 

j if .x.q ---? z := p fi 

j {x.p} {z = p} 

cs.p 

j x.p := false 

1 
Comp.q: Comp.p, with p and q interchanged 

The reader may care to prove the correctness of the assertions for hirnself. 
The annotation is effectivc for thc purpose of proving mutual exdusion, 
since we have 

(Comp.p in cs.p) 1\ (Comp.q in cs.q) 

=? {by the annotation} 
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z=p 1\ z=q 

{p#q} 

false 

End of Proof 2. 

Observe the erisp annotation in Proof 2: z = p is needed for the eonclu
sion and x.p for the (global) eorrectness of z = p. Proof 2 outperforms 
Proof 0 by at least one order of magnitude as far as simplicity and, in its 
wake, efficieney is eoneerned. How eome? We said that we pulled Proof 2 
out of the magie hat, but that is not true: Proof 2 was the outeome of our 
very first effort to derive the Safe Sluiee, a derivation that we shall briefly 
give now. 

Derivation 0 

In a derivation, the first thing that should always be done is to cast 
the specifieation into a formal setting (in order that formalism ean do the 
work). Here, we have to ensure that the two eomponents are not engaged in 
their eritieal seetions simultaneously. We ean formulate this, for instanee, 
by introducing a fresh variable z and requiring that z = p be a eorrect 
preeondition to cS.p (and z = q to cs.q). Thus, our eomponents get 
the shape 

;{?z=p} and ;{?z=q} 

cS.p CS.q 

Next, in order to ensure the loeal eorreetness of the assertions, we transform 
the eomponents into 

if C ---t Z := p fi 

;{?z=p} 

CS.p 

and if B ---t Z := q fi 

; {? z=q} 

CS.q 

Remark Embedding the assignments to z in a guarded statement is 
not far-fetehed at all: a eomponent will presumably not be able to enter its 
eritieal section uneonditionally. 
End of Remark. 
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For the global correctness of z = p in component p, we calculate 

wlp.(if ß -+ z:= q fi).(z = p) 

{definition of wlp.IF} 

-,ß V (z:= q).(z = p) 

{p;t: q} 

Recalling our regime of Strengthening the Annotation, we can 

~ either add -,ß as apre-assertion to if ß -+ z := q fi , which makes no 
sense, since this would guarantee deadlock for component q 

~ or add -,ß as a co-assertion to z = P , which does make sense and which 
results in the design of Proof 2, be it with a change in nomenclature, viz. 
x.p taken for -,ß. 

End of Derivation O. 

Derivation 1 

We will present this derivation in slightly more detail. We are given the 
following computation proper, which is a two-component multiprogram 

Pre: true 

Comp.p: Comp.q: 

* [ncs.p * [ncs.q 

; CS.p ; cS.q 

1 1 

Our task is to synchronize the components in such a way that 

Comp.p and Comp.q are not engaged in their cs- fragments 
simultaneously. 

Our first step is to introduce (fresh) auxiliary variables y.p and y.q 
such that these can be interpreted as 

y.p == (Comp.p is engaged in cs.p) 
y.q == (Comp.q is engaged in cs.q) 

This interpretation for y.p is valid whenever we surround cS.p with 
assignments y.p:= true and y.p:= false (and disallow any other as
signments to y.p). 
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In terms of these auxiliary variables, the synchronization requirement 
can now be rephrased as the required system invariance of 

R : ""y.p V ...,y.q 

We thus obtain as a first approximation 

Pre: ...,y.p 1\ ...,y.q 

Comp.p: * [ncs.p 

; y.p := true 

; cS.p 

; y.p := false 

1 
Comp.q: Comp.p with p and q interchanged 

Inv: ? R: ...,y.p V ...,y.q 

Next we deal with R. Because of the ubiquitous symmetries in the 
program and in R, we can confine oUf attention to Comp.p. 

- y.p:= false doesn't falsify R: Widening 
- y.p:= true requires precondition ""y.q, which we realize byembed-

ding y.p:= true in guarded statement 

if ""y.q -t y.p := true fi 

We thus obtain 

Pre: ...,y.p 1\ ""y.q 

Comp.p: * [ncs.p 

; if ""y.q -t y.p := true fi 

; cS.p 

; y.p := false 

1 
Comp.q: Comp.p with p and q interchanged 

Inv: R: ""y.p V ""y.q 

Coarse-grained Safe Sluice 

(Observe how little annotation has been introduced so far!) 
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As a last step, let us now eliminate the too coarse-grained guarded state
ments from the program. We do so by means of the technique of Guard 
Strengthening. We introduce variables X.p and X.q to take over the 
"röles" ofthe y's ,first seeing to it that ....,x.p :::} ....,y.p and ....,x.q :::} -'y.q 
become system invariants and then eliminating the y's. The moral of 
Example 0 in Chapter 11 was that we can now perform such a program 
transformation in one go. And thus we arrive at 

Pre: -,x.p /\ -,x.q 

Comp.p: * [ncs.p 

; x.p := true 

; if -,x.q -t skip fi 

; cs.p 

; X.p := false 

J 

Comp.q: Comp.p with p and q interchanged 

The Safe Sluice 

(Observe that there is no annotation attached.) 

Remark The phrase that variables x take over the röles of variables 
y should not be taken too literally: whereas the original y's satisfied 
-'y.p V -'y.q, variables x really don't satisfy -'X.p V -'X.q. By the elim
ination of the y's from the program we have lost sight of the still valid 
invariant R. 
End of Remark. 

And this concludes our second derivation of the Safe Sluice. We would 
like to emphasizc that its explanation, in a pub say, would not require more 
space than thc fringe of a beermat. 

End of Derivation 1. 

* * 
* 

The moral of the above was clear at the time the above experiments were 
carried out, and it is clear now: derivation of multiprograms with just the 
Owicki/Grics theory can, in principle, be done, it might become rewarding, 
and it might become great fun. 
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Peterson's Two-Component Mutual 
Exclusion Algorithm 

Ever since thc cmcrgencc of Dekker's mutual cxclusion algorithm for two 
componcnts and Dijkstra's for an arbitrary number of components [Dij65], 
the search for new, better or different such algorithms has continued. It 
took the computing community about twenty years to come up with a 
beautiful - because genuinely simple - mutual exclusion algorithm for 
two components. It is the onc invented by G. L. Peterson [Pet81], and we 
shall be glad to discuss it here, not only because of its compelling elegance 
but also because we think that cach cducated computing scientist should 
be familiar with all the ins and outs of this algorithm. 

In this chapter we present a derivation of thc algorithm, hopefully in such 
a way that we will enable thc reader to rapidly rcconstruct the algorithm 
whenever the necd arises. We first give the derivation and then discuss it. 

* * 
* 

As a starting point we take thc Safe Sluicc, developed in the preceding 
chapter: 
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Pre: -,x.p 1\ -,x.q 

Comp.p: * [nes.p 

; x.p := true 

; if -,x.q ~ skip fi 

; es.p 

; x.p := false 

1 
Comp.q: Comp.p with p and q interchanged 

Although the algorithm correct1y implements mutual exclusion for the es 
fragments, it is not acceptable, because it suffers from the danger of total 
deadlock. What we are after is an algorithm in which a component that 
has terminated its non-critical section is guaranteed to enter its critical 
section within a finite number of steps of the multiprogram. In the Safe 
Sluice algorithm, the guards are just too strong to meet this requirement. 
We therefore propose ~ and this is a design decision ~ to weaken the 
guards, with disjuncts still to be determined. This leads to the following 
version: 

Pre: -,x.p 1\ -,x.q 

Comp.p: * [ncs.p 

; x.p := true 

; if -'X.q V H.p.q ~ skip fi 

; {? R.p.q} cS.p 

; X.p := false 

1 
Comp.q: Comp.p with p and q interchanged 

Restoring Mutual Exclusion 

By weakening the guards, we have endangered safety, that is, mutual ex
clusion of the critical sections. We therefore have to re-address this issue, 
and that is why we plugged in the assertions R. Mutual exclusion is guar
anteed, if we can see to it that R satisfies the requirements 

(i) Assertion R.p.q in Comp.p is correct 
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(and so is R.q.p in Comp.q), and 

(ii) R.p.q 1\ R.q.p =} p = q (i.e.: =} false). 

Then, (i) expresses that the state of the system satisfies R.p.q when com
ponent p is in its critical section, and, given (i), (ii) expresses mutual 
exclusion of the critical sections. 

In view of (ii), it is advantageous to choose the R's as strong as possible. 
The strongest possible choice for R.p.q that we can justify on account of 
local considerations in Comp.p is 

R.p.q: x.p 1\ (-,x.q V H.p.q) 

the first conjunct follows from the topology of Comp.p, and the second 
conjunct is just its guard. But is this assertion giobally correct as weIl? 

Only x.q:= true in component q may falsify it. In order to preclude 
this we require that 

(iii) x.q := true in Comp.q is to be extended 
such that it truthifies H.p.q 

This then settles (i), at the investment of (iii). 

As for (ii), we observe 

R.p.q 1\ R.q.p 

{choice of R} 

x.p 1\ (-,x.q V H.p.q) 1\ x.q 1\ (-,x.p V H.q.p) 

{predicate calculus} 

x.p 1\ H.p.q 1\ x.q 1\ H.q.p 

=} {we don't know anything about the x's} 

H.p.q 1\ H.q.p 

=} {adopting (iv) below} 

p=q 

where the H's are required to satisfy 

(iv) H.p.q 1\ H.q.p =} p = q 

This then scttles (ii), at the investment of (iv). 

Remark One may very weIl wonder whether anything has been gained 
by exchanging (ii) for the very similar (iv). The difference, however, is that 
R, being an assertion, is very much constrained by the program structure, 
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while H is not. Thus, we have more freedom in choosing H than in 
choosing R. 
End of Remark. 

There are a number of ways to satisfy (iv). One of them is the following, 
which is strongly suggested by the transitivity of "=" : introduce a fresh 
variable v and choose, for instance, 

H.p.q: v=q 

Thus, (iv) is satisfied. And (iii) is met if we replace X.q:= true with the 
multiple assignment X.q, v := true, q. Summarizing, we have arrived at 

Pre: ""X.p 1\ ""X.q 

Comp.p: * [ ncs.p 

; X.p, v := true,p 

; if ""X.q V v = q --+ skip fi 

; cS.p 

; X.p := false 

1 
Comp.q: Comp.p with p and q interchanged 

* * 
* 

Now we are done with the derivation, except for the removal of the 
multiple assignments, which are commonly considered too coarse-grained in 
this kind of game. (There is a common preference for one-point statements.) 

We eliminate the multiple assignments by applying our technique of 
Strengthening the Guards. (Recall that this does not affect the partial cor
rectness of the design, here: the mutual exclusion.) We introduce boolean 
variables y to take over the röle of the x's , in such a way that the guards 
can be strengthened, Le. such that ...,y.p::::} ""X.p and ""y.q::::} ""X.q. 
This gives rise to the following intermediate, hybrid version: 
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Pre: --,x.p 1\ --,x.q 1\ --'y.p 1\ --,y.q 

Comp.p: * [ncs.p 

; y.p := true 

; x.p, v := true,p 

; if --,x.q V v = q -> skip fi 

; cs.p 

; x.p, y.p := false,Jalse 

1 
Comp.q: Comp.p with p and q interehanged 

Inv: (--,y.p * --,x.p) 1\ (--,y.q * --,x.q) 

Finally, we replaee guard --,x.q V v = q by the stronger --,y.q V v = q , 
so that the variables x turn into dummies and ean be removed from the 
program text. Thus we arrive at 

Pre: --'y.p 1\ --'y.q 

Comp.p: * [ncs.p 

; y.p:= true 

; v:=p 

; if --'y.q V v = q -> skip fi 

; cs.p 

; y.p := false 

1 
Comp.q: Comp.p with p and q interehanged 

Peterson's Mutual Exclusion Algorithm 

Remark In the above, we used the teehnique of Strengthening the Guard 
to split up the multiple assignment. The outcome was that first assigning 
to the boolean and then to variable v is safe. This outeome is, however, 
much more enforced than one might think, because reversing the order of 
the two assignments would yield an algorithm in which mutual exclusion is 
no longer guarantced. Wc invitc the reader to construct a scenario demon
strating this. The moral is twofold: first, the outcome of Guard Strengthen
ing is not to be ignored lightly, and second, this example onee more shows 
what a tricky sort of artefacts multiprograms are (in which seemingly harm
less transformations like swapping two independent assignments can kill an 
cntire design). 
End of Remark. 
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Progress 

Our development of the algorithm was prompted, but not guided by the 
requirement of individual progress. That is, the requirement of individual 
progress was not included in the specification; only mutual exclusion was. 
Therefore, we now have to investigate - as an afterthought - whether or 
not individual progress has been achieved. Because, at this point, we do not 
have a formalism to address this issue, we will have to resort to operational 
reasoning. Fortunately, this is quite feasible in the current example, thanks 
to the algorithm's simplicity. 

In showing individual progress we proceed as follows. 

• First, we observe that there is no total deadlock: both guarded skips have 
v = p V v = q as an obviously correct pre-assertion, and the conjunction 
of these pre-assertions implies the disjunction of the guards. 

• Second, we show that a component that has terminated its noncritical 
section will, within a finite number of steps of the rest of the system, be 
enabled to enter its critical section. We do so by showing that its guard, 
if not true, will be made stably true by the other component. 

To that end, let us assume that Comp.q is blocked in its guarded skip, 
which has guard 

-'y.p V v =p 

We show that, then, Comp.p converges to astate in which this guard is 
stably true. We observe that 

- Comp.p's guarded skip terminates, because of the absence of total 
deadlock 

- cs.p terminates (by assumption), 

so that the computation of Comp.p boils down to 

* [{-,y.p} ncs.p 

; y.p := true 

; v:=p 

; y.p := false 

From this we see that, within a finite number of steps, Comp.p will make 
v = p -- and hence Comp.q's guard - stably true, or it will become 
engaged in a non-terminating execution of ncs.p, in which case -'y.p 
- and hence Comp.q's guard - will become stably true. 



14. Peterson's Two-Component Mutual Exclusion Algorithm 169 

This settles individual progress, and herewith we conclude this treatment 
of Peterson's Mutual Exclusion Algorithm. However ... 

Final Remarks 

A final discussion is appropriate; it reaIly is, because one may very weIl 
wonder what kind of a derivation we have been presenting here. 

First of aIl, the derivation started from the defective Safe Sluice, which 
suffers from the danger of total deadlock, but it is by no means clear why 
the decision to weaken the guards - thereby potentiaIly violating the 
safety of the algorithm - should lead to a successful conclusion. It was 
just a guess, a try. That it worked out weIl surely was a stroke of good luck. 

Second, by another stroke of good luck we ended up with an algorithm 
that not only displays mutual exclusion (which is not amazing because the 
derivation was driven by this requirement), but also exhibits the desired 
progress properties. Progress requirements were not formaIly specified, so 
the development could not possibly be driven by them. Nevertheless things 
worked out weIl, and it is this phenomenon that we will encounter more 
often in the remaining chapters and to which we will return in more detail 
later. 

Even though the above treatment may be debatable from a formalistic 
and puristic point of view, it is a development of Peterson's - beautiful 
-- mutual exclusion algorithm and it is short enough to be remembered 
and reconstructed, should the need arise. Towards the end of this book we 
willlearn more about Peterson's algorithm, when a totaIly different devel
opment is given, viz. one that is primarily driven by progress requirements. 
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Re-inventing a Great Idea 

As mentioned before, the concept of mutual exclusion has, ever since the 
early days of computing, been recognized as a central issue in taming the 
complexity brought about by multiprograms run on a shared installation. 
The reason why it became a central issue is that the primitive statements 
provided by actual machinery often were - and are - far too fine
grained to make multiprogramming practically feasible. Thus, the mutual 
exclusion problem, Le. the problem of how to build (arbitrary) coarse
grained atomic statements out of finer-grained ones, did become an urgent 
one. In its canonical form, the problem is: 

Given a number of components, each of the form 

* [nes; es J 

synchronize them in such a way that at any moment in time, 
at most one component is engaged in its es- fragment. 

Thus the es- fragment, gene rally known as the "critical section", is the 
epitome of a coarse-grained atomic statement. 

* * 
* 

In a foregoing chapter we had a glimpse at Dekker's mutual exclusion 
algorithm, and we dealt with Peterson's in detail. However, these algo
rithms implement mutual exclusion for just two components. But what if 
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an arbitrary number of components are involved? Without going into any 
detail, we can say that solutions solving this general case with one-point 
statements only, invariably embody a great intellectual achievement and 
usually are forbiddingly complex from an operational point of view. Ever 
since the emergence of the first general mutual exclusion algorithm [Dij65], 
computing scientists have been attracted, fascinated, and challenged by the 
problem, and have submitted a nearly endless stream of bett er or different 
solutions. 

* * 
* 

Now, let us investigate what is really involved in solving this problem 
and let us try to take a first step towards its solution, ignoring the one
point requirement. In order to come to formal grips with the problem, we 
introduce a variable r to keep track of the number of components engaged 
in their critical section. In terms of this variable, the mutual exclusion 
problem can then be phrased as the required invariance of r::::; 1 . We thus 
obtain as a first approximation 

Pre: r=O 

Comp.i: * [ ncs.i 

i r :=r+1 

; cS.i 

; r:=r-1 

] 
lnv: ?r::::;1 

How can we enforce the invariance of r::::; 1? Statement r:= r -1 is 
harmless - Widening -, but statement r:= r + 1 requires precondition 
r ::::; O. Therefore, we propose to embed r:= r + 1 in an atomic guarded 
statement with r::::; 0 as its guard. We thus obtain 
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Pre: r=O 

Comp.i: * [ nC8.i 

; if r ~ 0 -; r := r + 1 fi 

; c8.i 

; r:=r-1 

1 
lnv: r~l 

And we would be done, if only the guarded statement and statement 
r:= r - 1 were one-point! We return to this in amoment, but first ask 
the reader to verify that this solution 

(i) is free from the danger of total deadlock, 
(ii) but does not guarantee individual progress. 

For historical reasons, we now subject the above solution to a coordinate 
transformation. We introduce variable 8, to be coupled to r by sys
tem invariant 8 = 1 - r . This enables us to eliminate r, and the solution 
phrased in terms of 8 becomes 

Pre: 8=1 

Comp.i: * [ nC8.i 

; if 1 ~ 8 -; 8:= 8 -1 fi 

; c8.i 

; 8:= 8+ 1 

1 
lnv: O~8 

And again: if only the guarded statement and assignment 8:= 8 + 1 were 
one-point! This forms a genuine problem here, indeed. 

Now let us, as a means towards an end, take a brave step and require OUf 

primitive repertoire to be extended with just these two atomic statements, 
while giving them a name: 

P(8): if1~8-;8:=8-1fi 

V(8): 8:= 8+1 
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Thus, the P- and V- operations on "semaphores" (s) have re-arisen, 
and in terms of them the mutual exclusion problem, which first was so 
difficult, has vanished into thin air: 

Pre: s=l 

Comp.i: * [ ncs.i 

; P(s) 

; cS.i 

; V(s) 

] 
Inv: o:::;s 

And apart from the issue of individual progress - to be addressed shortly 
- we see that the P- and V- operations are the synchronization prim
itives par excellence to implement general mutual exclusion. In fact, they 
were invented for this purpose in the early 1960s, by Edsger W. Dijkstra 
- [Dij68]. 

A little anecdote During the late 1960s and 1970s, Dijkstra taught fas
cinating courses on "Communication and Synchronization" at Eindhoven 
University of Technology. In such a course he would usually explain one of 
the general mutual exclusion algorithms. One year he explained Eisenberg 
and Mc Guire's [EM72] - thc historically first more or less explainable 
solution. When thereafter he presented the solution with P- and V - op
erations, a clearly flabbergasted and confused student addressed hirn after 
the lecture, wondering what miraculous things these P- and V - opera
tions were and why it was that by their use all complexity had vanished. 
One of us (WF) overheard the very short conversation, including Dijkstra's 
answer: "Because they were specially invented for this purpose." . The stu
dent left, fiHed with admiration, definitely impressed, but - quite likely 
- as flabbergasted as before. WF stood rooted to the spot as weH. We 
hope that this chapter gives some of the (calculational) rationale behind 
Dijkstra's answer. 
End of A little anecdote. 

* * 
* 

The above captures the mathematical essence of the P- and V- op
erations in their capacity of solving mutual exclusion, and the primary 
objective of this chapter has been to show how they can be re-invented (by 
calculation) precisely for this purpose. 
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But there was a little more to them when they were first introduced, and 
for reasons of completeness we wish to briefly make mention of it here. 

• First of all, there is the concern about progress. To that end the P- and 
V-operations came with a postulate stating that in the presence of a 
sufficiently large number of V-operations on a semaphore s, a compo
nent that has got stuck in a P- operation on s will eventually complete 
this P- operation. Through this postulate, which later became known 
as a "strong fairness requirement", the danger of individual starvation 
in the above mutual exclusion algorithm vanishes. Many years later, it 
was Alain J. Martin who weakened this postulate - to mathematical 
advantage. We refer the reader to the seminal paper [Mar81], and also 
to Martin and Burch [MB85]. 

• Second, by using P- and V- operations as the only synchronization 
primitives, it became possible to eliminate the so-called - and certainly 
at the time so undesirable - "busy form of waiting" . A component that 
has got stuck in a P- operation is guaranteed to remain stuck as long 
as the rest of the system does not perform a V-operation on the cor
responding semaphore - a very detectable eventL So there is an entire 
span of time in which it makes no sense at all for a blocked component 
to inspect the value of the semaphore, and thus consume precious pro
cessor time. A blocked component can thus, until furt her notice, be put 
"asleep" , Le. ignored as a candidate for processor time. Such an arrange
ment may offer great economic advantages when a lot of components are 
to be run on an installation with only a few processors. 

• Third, the P- and V- operations proved to be far more useful than just 
for implementing mutual exclusion. In fact, they acquired the status of 
universal synchronization primitives, general enough to solve any syn
chronization problem. (In this respect they compare with the Universal 
Turing Machine, capable of computing any computable function.) Due 
to their generality, they also acquired the status of canonical primitives. 
At many occasions later on, when new synchronization mechanisms were 
proposed, their designers 

- would check that the P- and V- operations could be implemented 
with these mechanisms, thus demonstrating the generality of the 
new proposal, and 

- they would check that their new mechanisms could be implemented 
by P- and V- operations, thus demonstrating the realizability of 
the proposal. 
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• Finally, a word must be spent on the implementability of the P- and 
V- operations. On installations where they do not belong to the primitive 
repertoire, embedding them in special-purpose critical sections is a viable 
implementation. This is, in principle, not begging the original mutual 
exclusion question, because the operations have a very specific, recogniz
able and uniform syntactic shape. Considering how useful the P- and 
V-operations are for program design, the programmer is greatly served 
if the hardware designer provides facilities for their implement at ion (if 
possible, of course). Fortunately, most computing installations nowadays 
possess these facilities. And this is in accordance with an old verdict of 
Dijkstra's: "It is not a program's purpose to instruct our computers, but 
the computer's purpose to execute our programs." . 

* * 
* 

In this monograph we will not pursue programming with P- and V
operations, because that has been done extensively elsewhere, most no
tably in the design of operating systems. Indeed, P- and V- operations 
and their variations and outgrowths have conquered the computing science 
world. And this is what happens to a great idea. 
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On Handshake Protocols 

A frequently recurring theme in the arca of communication is the transmis
sion of information from one place to another while there is no buffering 
facility in between. Such situations, for instance, occur in electronic circuits 
where wires must carry signals from one end to the other. The problem 
also pops up when synchronous communication has to be implemented by 
asynchronous means. The algorithms that take care of such a "bufferless" 
information transmission are known as handshake protocols, and they are 
at the hcart of the (physical) realization of communication and synchro
nization between otherwise autonomous computer installations. Also, they 
are nowadays beneficially used as a starting point for the construction of 
asynchronous circuitry [Mar96]. 

In this chapter we shall first derivc a skeleton solution for ahandshake 
protocol, and subsequently discuss various refinements. 

A skeleton solution 

As a starting point for our treatment we take the following, fairly general 
situation, viz. we consider the two-component multiprogram given by 
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Pre: P=Po 

A: * [p:= f.p 1 I B: * [print(p) 1 

The Computation Proper 

(Statements p:= j.p and print(p) are atomic.) 

Component A produces information. Starting from Po it generates the 
stream 

Po, f.Po, p.Po, j3.PO , 

Function j is just an abstraction: j.p can be the next portion produced 
by a producer or the next character or record extracted from a file owned 
by the environment, etc .. Neither the type of p nor the specific nature of 
j are relevant far our purpose. 

This purpose is to synchronize the two components in such a way that 
B prints exact1y the same sequence as is generated by A, Le. 

Po, j.po, p·Po, p'Po, 

In order to achieve this goal we must farmalize the problem statement, and 
this time we do so by a little trick, viz. by changing B in such a way that 
it mimics the behaviour of A, i.e. - for the time being - we act as if B 
were equipped with clairvoyance: 

Pre: P=Po /\ q=po 

A: * [p:= f.p 1 B: *[{?p=q} 

print(p) 

; q:=j.q 

1 

Now it should be beyond any doubt that B prints the required sequence 
whenever we can see to the correctness of pre-assertion p = q to state
ment print(p). Of course, we will ultimately have to eliminate j from 
B, because clairvoyance is not available in our toolbox. 

If j has to disappear from B's program, so has q. Considering this, 
it doesn't seem to be a bad idea to replace target assertion p = q with 
something that implies it, for otherwise q might sooner or later pop up 
in a guard. Because by construction q can - like p - be expressed 
as something of the form ji .Po , we introduce integers in order to be able 
to become more explicit about this. 
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Pre: P=Po /\ q=po /\ u=O /\ v=O 

A: * [p,u:= f.p, u+l] 

B: *[{?p=q} 

print(p) 

; q,v := f.q, v+l 

] 

lnv: p=jU·Po /\ q=jV·po 

(The multiple assignments are atomic.) 

Relation Inv is a system invariant by construction. In view of this 
invariant and in view of the fact that nothing is known ab out function 
f , the only safe way to cater for the correctness of assertion p = q is by 
replacing it with the stronger u = v (on account of Leibniz's Rule we have 
u = v => jU .Po = jV .Po ). Because by this replacement, q is eliminated 
from the target assertion, q and f can now be removed from B's text: 

Pre: P=Po /\ u=O /\ v=O 

A: * [ p, u := f.p, u + 1 ] 

B: * [ {? u = v} 

print(p) 

; v:=v+l 

] 

Our next move is to disentangle new target assertion u = v by rewrit
ing it into conjunction u ~ v /\ v ~ u, and to handle the two conjuncts 
separately. 

Remark It is a common - because usually beneficial - strategy to 
decompose an equality into two inequalities. It can be beneficial since the 
individual inequalities are each weaker than the original equality and, there
fore, mostly easier to handle - think of Widening -; but more impor
tantly, they sometimes cover entirely different aspects of the problem. As a 
consequence, treating the conjuncts of a conjunction separately may yield 
a better separation of concerns. (This holds for mathematics and program
ming alike.) 
End of Remark. 

So in component B we now ensure target assertion u = v by replacing 
it with 
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u:::;v 1\ v:::;u 

Of these two, only v:::; u is a suitable candidate for a guard ~ see 
the Ground Rule for Progress ~, and because its global correctness is 
for free (Widening), we can indeed see to its correctness by guarded skip 
if v :::; u ~ skip fi in B. 

For the other assertion, u:::; v, ~ it being stable in B ~ we have no 
choice but to make it a system invariant (cf. Concurrent Vector Writing), 
and we prevent statement u:= u+ 1 in component A from violating it by 
adding guarded skip if u+ 1:::; v ~ skip fi to A's code. Thus we arrive at 

Pre: P=Po 1\ u=O 1\ v=O 

A: * [ if u + 1 :::; v ~ skip fi 

; {u+l:::;v} 

p,U := f.p, u+l 

1 
B: * [ if v :::; u ~ skip fi 

; {u = v} {v:::; u} {u:::; v, from lnv } 

print(p) 

; v:=v+l 

1 
lnv: u:::;v 

Note that with the adoption of u:::; v as an invariant, we have on-the-fly 
created a multibound for the above system, because by the structure of the 
program, v:::; u + 1 is a system invariant as weH: 

- it holds initially; 
- A doesn't falsify it (Widening); 
- v := v + 1 in B doesn't falsify it, since this statement has (correct) pre-

condition v:::; u . 

So no matter what our ultimate solution will be, our task of proving prog
ress has been reduced to proving absence of total deadlock. 

* * 
* 

This completes our skeleton solution, except for the fact that we wish 
to eliminate the multiple assignment in A, since it might be undesirable to 
burden the computation proper ~ p:= f.p ~ with the task of indivis
ibly performing synchronization code. For the purpose of elimination, we 
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introduce a fresh variable x to take over the röle of u, and apply the 
technique of Strengthening the Guard. 

We can replace guard v::; u in B by v::; x if x::; u is a system in
variant. We see to this invariance by choosing x = 0 as a precondition and 
by post fixing statement u: = u + 1 in component A with x: = x + 1 (cf. 
Topology). Now both x and u are private to component A, and we see 
that x = u is a correct pre-assertion of guarded skip if u + 1 ::; v ~ skip fi. 
As a result, we can replace guard u + 1 ::; v by the equivalent x + 1 ::; v , 
thus turning u into a dummy that can now be eliminated. For cosmetic 
reasons we rename v into y, and thus we arrive at - temporarily ignore 
the annotation -

Pre: P=Po A x=O A y=O 

A: * [ if x + 1 ::; Y ~ skip fi 

; {x+l::;y} 

p:= f.p 

; x:=x+l 

1 
B: * [ if y ::; x ~ skip fi 

; {y::; x} 

print(p) 

; y:=y+l 

1 
Inv: x$.y A y$.x+l 

The Handshake Skeleton 

A few remarks are in order. 

• In our previous program, the one phrased in (u, v)- nomenclature, we 
had the invariance of u::; v A v::; u + 1 , i.e. the difference v - u was 
just 2-valued. It was not clear at the outset that the transition to the 
(x, y)- nomenclature would retain this property for the difference y - x, 
but the - obviously correct- annotation in the above skeleton shows 
that it did. We will use this property shortly to further transform the 
program, carrying it into the boolean domain. 

• The skeleton does not suffer from the danger of deadlock- for integers 
x and y, x + 1 ::; y V y::; x is just true -, so that individual progress 
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is guaranteed, thanks to our (original!) multibound u < v 1\ v ~ u+ 1 
(which hasn't been damaged by guard strengthening) . 

• Earlier we said that statement p:= f.p - the production of the infor
mation - was atomic, and the same holds for print(p) - the con
sumption of the information. Now we can see from the above skeleton 
solution that it is irrelevant whether these activities are atomic or not, be
cause thanks to their preconditions x + 1 ~ Y and y ~ x , respectively, 
they exclude each other in time. So their "atomicity" is "automatically" 
guaranteed by the Handshake Protocol. 

Refinements of the Handshake Skeleton 

In the remainder of this chapter we derive some well-known refinements 
of the skeleton, with the purpose of eliminating the ever-growing integers 
x and y, and of carrying the algorithm into the boolean domain (which 
might be appreciated by electrical engineers). 

Handshaking with one (common) boolean 

Because x ~ y 1\ Y ~ x + 1 is a system invariant, the difference y - x is 
just 2-valued, and from the guards x + 1 ~ Y and y ~ x in the compo
nents we see that it is only this difference that matters for the "control" 
of the program. We therefore try to rephrase the algorithm in terms of a 
single boolean b, coupled to x and y by (system invariant) 

b == (x = y) (and hence also by) 
...,b == (x+l =y) 

relations that show the two "flavours" for x - y . 

For guard y ~ x in componcnt B we now obtain 

y~x 

= {x ~ y, from invariant Inv} 

y=x 

{coupling b/(x,y)} 

b 
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So guard y ~ X can be rewritten into the equivalent guard b. Likewise, 
guard X + 1 ~ y in A can be rewritten into the equivalent guard -,b. 

Remark Unlike in the case of guard strengthening, there is no need to re
address the danger of deadlock when guards are rewritten equivalently. And 
since our skeleton does not suffer from deadlock, neither will our subsequent 
refinement. 
End of Remark. 

So much for the elimination of X and y from the guards. Next we 
deal with the assignments to x and y. Along with statement y:= y + 1 
in B, an adjustment of boolean b may be necessary. We therefore extend 
the statement to y, b := y + 1, E , and investigate for which express ions E 
the coupling between b, x, and y is maintained: 

(y,b:= y+1,E).(b == x=y) 

{substitution} 

E == (x=y+1) 

{by Inv, x = y + 1 false} 

E == false 

Likewise, we find that {x + 1 ~ y} x := x + 1 in A has to be replaced by 
x, b := x + 1, true. Thus, x and y are reduced to auxiliaries and can 
be removed altogether: 

Pre: P=Po 1\ b 

A: * [ if -.b -- skip fi 

; {-.b} 

p:= f.p 

; b:= true (or: b:= -.b ) 

1 
B: * [ if b -- skip fi 

; {b} 

print(p) 

; b :=false (or: b:= -.b ) 

1 
Single-Boolean Handshake Protocol 
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(The obviously correct assertions have been added to demonstrate that the 
assignments to b can both be replaced by "flippings" of b, thus making 
the components more alike.) 

Distributed Handshaking 

In the above protocol, the synchronization and communication between 
the two components runs under control of one single boolean. This is read
ily implemented on a shared-memory installation and also in electronic 
circuitry where the manipulation and inspection of the boolean can be re
alized through appropriate wiring. But in cases where the components are 
physically too far apart, say, one might prefer a more distributed solution, 
in which components can only manipulate private variables - and "private 
wires" for that matter. Such a distribution can be achieved by "distributing 
the value of boolean b" in our protocol over two booleans c and d, c 
private to A and d private to B. In view of the operations on b - viz. 
flippings of its value -, the couplingt 

b == c == d 

is highly attractive, because b's flipping in A can then be effected by a 
flipping of c. Thus we obtain 

Pre: P=Po 1\ (c == d) 

A: * [ if -,(c == d) ---> skip fi 

;p:=f.p 

; c:=-,c 

1 
B: * [ if c == d ---> skip fi 

; print(p) 

; d:=-,d 

1 
Distributed Handshake Protocol 

Remark Here we have presented the Distributed Handshake Protocol as 
a refinement ofthe Single-boolean Handshake. We could also have derived it 

tEquivalenee is symmetrie and associative, and it is related to negation by 
[ -.ce == d) == -,e == d]. 
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directly from the Handshake Skeleton, for instance by choosing the coupling 
c::::d::::(x=y). 
End of Remark. 

Four-phase Handshaking 

Each of the above two protocols is commonly called a "two-phase handshake 
protocol". The addendum "two-phase" sterns from the original operational 
appreciation of the algorithms. For our protocols, this is as follows: B starts 
printing, and then it "signals" A that it has finished doing so - tic! -; 
then A receives the signal, starts producing via p:= f.p, and then signals 
B that it has finished producing - tac! -, after which B can start printing 
again. So for B the rhythm is: 

print, tic, tac, print, tic, tac, print, 

and for A it is: 

tic, produce, tac, tic, produce, tac, tic, 

Thus, in each component there are two synchronization acts (tic and tac) 
in between any two successive activities of the computation proper; hence 
the name two-phase. 

For reasons to become clear in amoment, electrical engineers prefer the 
so-called "four-phase handshake protocol", which has four synchronization 
acts in between successive printings or productions. As a first step towards 
such an algorithm, we expand our distributed protocol using the rule 

* [ S 1 = * [ S; S 1 
For the initial state we arbitrarily choose to satisfy c:::: d by c 1\ d. We 
also plug in a number of trivially correct assertions about c and d for 
later use, and, on the fly, we use these assertions to simplify the guards and 
the statements. 

Pre: P=Pol\cl\d 

A: * [ {c} if ....,d -t skip fi B: * [ {d} if c -t skip fi 

@-t ; {cl p:=j.p @-t ; {d} print(p) 

, c := false , d := false 

; {....,c} if d -t skip fi ; {....,d} if ....,c -t skip fi 

(D-t ; {....,c} p:=f.p @-t ; {....,d} print (p) 

, c := true , d := true 

{cl {d} 

1 1 
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We transform the above program into a four-phase protocol by omitting 
one of the two printings at @ and @ and one of the productions at @ and 
CD. To see why, let us focus on, for instance, component B. It is quite likely 
that in B's wired version, the printing at @ is initiated upon detection 
of state e 1\ d, whereas the printing at @ is triggered by ---,e 1\ ---,d. As a 
result, the printing mechanism should be fired when on both "wires" e 
and d a tmnsition of the voltage level, say, has taken place. In general, 
however, electrical engineers prefer their circuitry to run under control of 
unambiguous states rather than transitions. Because at either of the places 
@ and @ the state is unambiguous, viz. e 1\ d and ---,e 1\ ---,d , respectively, 
we can satisfy the electrical engineer's preference by removing either the 
print statement at position @ or the one at @. And, similarly, in component 
A we can remove the production at @ or the one at CD. The quest ion is, 
which of the four possible combinations preserves the correctness of the 
algorithm. 

Gur multiprogram has a very sequential behaviour, viz. we have 

* [print @; prod @; print @; prod CD J 

What we need is * [ print; prod J , and because in our multiprogram the 
first printing activity precedes the first production, retaining the print op
eration at @ is always harmless. So, retaining the pairs @-@ and @-CD 
preserves the correctness. So does the pair @-CD. The only faulty combi
nation is @-@, which fails to print Po! 

All thrce correct combinations have received a name and have been the 
subject of study. Further elaboration on the matter, however, falls outside 
the scope of this monograph. Just for fun, we conclude this chapter with 
the raw code of one of the three four-phase handshake protocols. 

Pre: p=Po 1\ e 1\ d 

A: * [ if ---,d -+ skip fi B: * [ if e -+ skip fi 

; e:=/alse ; print(p) 

; if d -+ skip fi ; d:=/alse 

;p:=/.p ; if ---,e -+ skip fi 

; e:= true ; d:= true 

J J 

A Four-Phase Handshake Protocol 
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Phase Synchrünizatiün für Twü 
Machines 

This monograph emphasizes the construction of correct (multi)programs. 
However, along with every program comes the question of "performance", 
addressing such aspects as efficiency, demand on storage space, degree of 
parallelism, communication density, robustness, etc .. Although these issues 
definitcly fall outside the scope of this text, we nevertheless wish to include 
a very modest touch on them. 

One of the purposes of this chapter is to illustrate in a simple setting a 
number of such rather quantitative phenomena that can be displayed by a 
multiprogram under execution. More in particular, we will illustrate how 
the degree of parallelism can be enhanced by non-unique representation of 
data, and how storage space can be traded for parallelism and vice versa. 

Our setting is a highly simplified version of the problem of phase synchro
nization, which we learned about from Jayadev Misra [Mis91]. In a few later 
chapters we will re-address the problem, then taking into account several 
extensions and generalizations. Here we deal with the simplified version in 
isolation, because with this example alone, we can already illustrate some 
of the quantitative phenomena alluded to above. In addition, it provides a 
next simple example showing the design of multiprograms at work. So, all 
in all, the message of this chapter is largely of a methodological fiavour. 
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First approximation of the problem 

We consider the following two-component multiprogram 

Pre: true 

A: * [ B 1 I B: * [ T 1 

The computation proper 

Our task is to synchronize the components in such a way that, for all 
natural x, component A does not start the (x + 1 )st execution of its ~ 
phase ~ B before B has completed at least x executions of its T, and 
the other way around. In order to render this specification more formally, 
we introduce fresh variables x and y to record the number of completed 
phases in A and in B, respectively, and we also number the phases. Then 
a more formal specification of our problem is 

Pre: x=O 1\ y=O 

A: * [ {? RA} B: * [ {? RB} 

B.x T.y 

; x:=x+l ; y:=y+l 

J J 

where RA and RB are given by 

RA: (Vi: 0:':; i < x: T.i has terminated ) 

RB: ( Vi : 0:':; i < y: B.i has terminated ) 

However, we wish to formalize the specification a little further, because 
the phrase "has terminated" is still rat her verbal. To that end we observe 
that (by construction) we have the system invariants 

PA: (Vi: 0:':; i < x: B.i has terminated ) and 

PB: (Vi: 0:':; i < y: T. i has terminated ) 

so that 

RA {= PBl\x:':;y and 

RB {= PA 1\ y:':;x 
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As a consequence, target assertions RA and RB are satisfied whenever 
we replace them with x:::; y and y:::; x, respectively. Now our formal 
specification becomes - we remove the phase numbers again -

Pre: x=O 1\ y=O 

A: * [ {? x:::; y} B: * [ {? y:::; x} 

S T 

; x:=x+l ; y:=y+l 

1 1 
A Formal Specification 

Remark The specification would have been even more formal - and 
more correct for that matter - had we included place holders for the 
synchronization code to be added (cf. Concurrent Vector Writing). For 
reasons of simplicity they were omitted, on the understanding that the only 
constraint to be obeyed is that x:::; y is to become a correct pre-assertion 
to S (and y:::; x to T). 
End of Remark. 

From our formal specification we can already infer that by realizing the 
correctness of the target assertions x:::; y and y:::; x , we will automati
cally also realize system invariant 

x:::;y+l 1\ y:::;x+l 

which, in combination with the structure of the components, yields a perfect 
multibound for our system. Hence, as far as individual progress is concerned 
the only thing we need to prove of our ultimate solution is that it is free 
from the danger of total deadlock. 

* * 
* 

Before starting our development, we first perform a coordinate trans
formation, in order to simplify the formulae and to show more explicitly 
that for our problem only the difference x - y matters. To that end we 
introduce (fresh) variable d, coupled to x and y byt 

d = x-y+l 

In terms of d, the specification and the multibound are rephrased as 

t The "+ 1" in d == x - y + 1 is just cosmetic: it makcs d into a natural number. 
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Pre: d=l 

A: * [ {? d:'S I} B: * [ {? 1 :'S d} 

S T 

; d:=d+l ;d:=d-l 

1 1 
lnv: O:'Sd 1\ d:'S2 

* * 
* 

Now we proceed to our first approximation, focussing on target assertion 
d:'S 1 in A, which is globally correct - Widening. The structure of A 
shows that for its local correctness, we hardly have any choice but to make 
d:'S 1 a loop invariant of A, Le. an invariant of A's repetition. Because 
it holds as a precondition to component A, the only thing needed for its 
correctness is that it is a postcondition of A's loop body. And similarly for 
assertion 1:'S d in B. Thus, the specification is satisfied by the following 
approximation: 

Pre: d=l 

A: * [{d:'Sl} B: * [{l:'Sd} 
S T 

; d:=d+l ; d:=d-l 

{? d:'S I} {? 1 :'S d} 

1 1 
lnv: O:'Sd 1\ d:'S2 

Approximation 0 

It is this approximation that we shall take as our point of departure for 
developing three different solutions. 

Solution 0 

Our first solution starts with a straight forward move. Because the target 
assertions are globally correct (Widening), we only need to see to their 
local correctness, which we do by inserting appropriate guarded skips. We 
thus obtain 
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Pre: d=l 

A: * [{d~l} B: * [ {1 ~ d} 

S T 

; d:=d+l ;d:=d-l 

; if d ~ 1 --+ skip fi ; if 1 ~ d --+ skip fi 

{d~ I} {I ~ d} 

1 1 
Inv: O~d 1\ d~2 

Version 0.0 

There is no total deadlock, and, in principle, we are therefore done. 

* * 
* 

However, we wish to proceed a little furt her and transform the algo
rithm into the boolean domain, which is possible thanks to d's limited 
range. Since d is 3-valued, we need at least two booleans. Therefore, let 
us introduce fresh x and y coupled to d by 

Px: x 

Py : y 

d~l 

l~d 

and 

This choice is inspired by the shape of the guards: A's guarded skip, for 
instance, now simply translates into if x --+ skip fi. However, along with 
changes in d, both x and y may need adjustment in order for Px and 
Py to be maintained. Thus we have to investigate an altered statement 

d,x,y:= d+l,F,G 

in A, and find out for which Fand G relations Px and P y are 
maintained. 

Re Px We calculate 

(d,x,y:= d+l,F,G).Px 

{substitution in Px} 

F == d+l~l 

{ arithmetic } 

F == d~O 

{invariant P y } 
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Re P y We calculate 

(d,x,y:= d+1,F,G).Py 

{substitution in P y } 

G == 1:::;d+1 

{arithmetic} 

G == O:::;d 

{invariant 0:::; d} 

G == true 

End of Re's. 

As a result, A's assignment statement be comes 

d, x, y := d+ 1, ,y, true 

The corresponding adjustment in B follows by symmetry. Our program, 
from which d can now be eliminated, becomes 

Pre: xl\y 

A: * [ {x} B: * [ {y} 

S T 

; x, y := 'y, true ; y, x := ,x, true 

; if x -+ skip fi ; if y -+ skip fi 

{x} {y} 

J J 

Version 0.1 

Because in transforming the d- program into the (x, y) -program we have 
rewritten the guards equivalently, the latter program is as free from total 
deadlock as the former. 

* * 
* 

Next we wish to eliminate the multiple assignments from Version 0.1, 
with the purpose of making the program more fine-grained. We do so via 
the technique of Strengthening the Guard which in this example is carried 
out by introducing fresh booleans fand g, and maintaining the system 
invariants f =} x and 9 =} y. Apart from minor details, this is exactly 
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the program transformation that we dealt with in Example 1 of Chapter 11. 
The result is 

Pre: f 1\ 9 

A: * [S B: * [T 
; f:= false ; 9 :=false 

; g:= true ; f:= true 

; if f ---7 skip fi ; if 9 ---7 skip fi 

1 1 
Version 0.2 

Of course, we can no longer rely on the deadlock freedom of Version 0.2, 
because thc guards have been strengthened. Therefore, we have to re
investigate the danger of total deadlock. Its absence was dealt with in 
Examplc 1 of Chapter 11 also - by way of Exercise 1. So we are done. 

* * 
* 

Let us now have a look at the performance of the above algorithm. Our 
original specification is satisfied by each computation in which one of the 
components is one (complete) phase ahead of the other. Version 0.0 (and 
hence Version 0.1) can indeed display all computations that agree with 
the specification, i.e. all parallelism that is permitted in the computation 
proper can be exhibited. Through our guard strengthening, this situation 
has becomc different for the ultimate solution, Version 0.2. 

Consider the following interleaving: 

- first, A performs S; f:= false; g:= true ; then A is one phase 
ahead of B; 

- next, B performs T; g:= false; f:= true , thus falsifying its own 
guard. 

Now the only way in which B can proceed to its next phase is by finding 
its guard true, which can only happen after A has performed its next 
S; f:= false; g:= true. And from then onwards the story repeats. As a 
result, component B can never again get one phase ahead of A, although 
this would perfectly agree with the specification. 

Thus, under control of our algorithm the computation can degenerate 
- here to some sort of handshake protocol -, thus unnecessarily reducing 
the degree of parallelism permitted. Here the degeneration is a consequence 
of the guard strengthening in our last transformation, and we are lucky 
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that the reduction in parallelism has not turned out to be disastrous 
which would have been the case had we ended up with a solution exhibiting 
the danger of total deadlock. The message is that the technique of guard 
strengthening, no matter how valuable, should be used with some reluc
tance and with caution. Our overall strategy is to appeal to it when we 
can't think of anything else to be done anymore, which means that usually 
it is the last transformation step in a design process. 

Remark Our algorithm can exhibit degeneration in behaviour, but it 
need not do so. The latter is the case whenever f:= false and g:= false 
are executed in "lock-step". Or, to put it more precisely, whenever g:= true 
in A is not started before the corresponding g:= false in B has been 
completed, and vice versa for the assignments to f. This would require 
extra synchronization, and it is good to realize that sometimes it may be 
unavoidable to superimpose a protocol on a protocol in order to rule out 
misbehaviours of the latter. The reader is encouraged to carry out this 
superposition in the current example. 
End of Remark. 

Solution 1 

When Frans W. van der Sommen learned ab out the above solution and its 
degeneration phenomenon, he immediately spotted the place where we had 
gone astray. The first step - Version 0.0 - was still okay; so we copy it: 

Pre: d=l 

A: * [{d-::;l}S B: * [ {l-::; d} T 

; d:=d+l ;d:=d-l 

; if d -::; 1 ---+ skip fi ; if 1 -::; d ---+ skip fi 

{d -::; I} {l-::; d} 

1 1 
Version 1.0 

But then we made a "mistake" , by the unfortunate decision to represent 
d's value by two booleans through 

x == d -::; 1 and y == 1 -::; d 

The problem with this choice is that each value of d uniquely defines the 
values of x and y, and since d is 3-valued one of the four possible values 
for the pair (x, y) - viz. (false,Jalse) - cannot be utilized. Due to this 
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lack of slack, each alteration of d potentially necessitates alter at ions in 
both x and y, and that is where the, in retrospect troublesome, multiple 
assignments in our previous solutions ente red the picture. 

Van der Sommen then proposed a different coordinate transformation, 
viz. by coupling two booleans x and y to d via 

d = #[x,y] 

where #[x, y] counts how many of the two booleans x and y have 
value true. Then we have, for the guards, 

d::;1 -.x V -.y and 

l::;d xVy 

and statement { d ::; I} d: = d + 1 in A can then be translated into the as 
yet atomic 

{ -.x V -.y} 
if -.x --; x : = true 
~ -.y --; y := true 
fi 

We thus obtain for our program -- In (x, y)- terminology-

Pre: x t=. y 

A: * [ {-,x V -.y} S B: [{xVy}T 

; if -.x --; x : = true ; if x --; x := false 

~ -.y --; y := true ~ y --; y := false 

fi fi 

; if -.x V -.y --; skip fi ; if x V y --; skip fi 

{-.x V -'Y} {x Vy} 

] ] 
Version 1.1 

Remark We need not be bothered by the coarse-grained atomic alterna
tive constructs, because they need not be as coarse-grained as they look: 
the alternative construct in, for instance, component A can be correctly 
annotated as 

if -.x --; {-.x} x := true 
~ -.y --; {-.y} y:= true 
fi 
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which implies that in guarded command 

..,x ---+ x := true 

the inspection of the guard and the assignment need not take placc indi
visibly. 
End of Remark. 

* * 
* 

Because in transforming Version 1.0 into Version 1.1, we have rewritten 
the guards equivalently, no reduction in the potential degree of parallelism 
of the computation proper has crept in. This is in sharp contrast with the 
protocol of Solution O. It is the non-unique - the redundant - repre
sentation of d's value that opened the door to a larger manoeuvring space. 
This is not coincidental. It is a general phenomenon that non-unique rcpre
sentation of data creates an opportunity for more computational freedom, 
which may manifest itself in the form of more parallelism in the case of 
multiprograms. Frans van der Sommen surely was aware of this when he 
proposed thc above solution. 

Solution 2 

This little problem of Phase Synchronization is paradigmatic, indced: our 
third development serves to illustrate yet another quantitative phenomenon, 
viz. it shows how parallelism can be "traded" for storage space. This kind of 
trading may sometimes come in handy for economical or technical reasons. 
This time, the development starts from Approximation 0 again, which we, 
therefore, copy here: 

Pre: d=1 

A: * [{d:::;I}S B: * [ {I:::; d} T 

j d:=d+l jd:=d-l 

{? d:::; I} {? 1:::; d} 

1 1 
Inv: O:::;d A d:::;2 

Version 2.0 
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While we ourselves were foeussing on solutions symmetrie in the eompo
nents - Wh at a bias! -, it was our former student Toon Wijnands who 
was brave enough to investigate an asymmetrie solution. He observed that 
the alternative way to ensure the loeal eorrectness of assertion d:::; 1 in A 
would be to require d:::; 0 as a preeondition to d:= d+ 1. Following this 
suggestion we get: 

Pre: d=l 

A: * [{d:::;l}S B: * [ {I:::; d} T 

; {? d:::;O} ; d:=d-1 

d:=d+ 1 {? 1:::; d} 

{d:::; I} J 

J 

Inv: O:::;d 1\ d:::;2 

Version 2.1 

Thanks to the global eorreetness of the remaining queried assertions in A 
and B - Widening -, this speeifieation is readily implemented by 

Pre: d=l 

A: * [{d:::;l}S B: * [ {1:::; d} T 

; if d :::; 0 ---) skip fi ; d:=d-1 

; {d:::; O} ; if 1 :::; d ---) skip fi 

d:=d+l {I:::; d} 

{d:::; I} J 

J 

Inv: O:::;d 1\ d:::;2 

Version 2.2 

And there is no total deadloek. 

* * 
* 

We have included intermediate Version 2.1, beeause something notewor
thy happened in the transition from Version 2.0 to Version 2.1; any solution 
satisfying the latter will inevitably also satisfy the stronger system invari
ant 

O:::;dl\d:::;l 
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o ~ d is invariant like before and d ~ 1 is invariant thanks to (queried) 
pre-assertion d ~ 0 of d:= d+ 1 in A. As a result, d has become two
valued instead of three-valued, and can now possibly be represented by just 
one boolean instead of the two that were needed before. That is, we can 
make do with less storage space. How come? 

Comparing the annotations of Version 2.0 and Version 2.1, we observe 
that the latter is the stronger one: it requires d ~ 0 as apre-assertion to 
d := d + 1 , a requirement that is absent from Version 2.0. To understand 
what this signifies let us recall the operational interpretation of annota
tion, which is that when a component is "at" an assertion, the state of the 
system is supposed to satisfy that assertion. As a result, the stronger the 
annotation, the less computational freedom the system has, Le. the fewer 
computations can be exhibited by the program, or - in case of multipro
grams - the "less parallelism". It stands to reason that in case of such a 
reduction of computational freedom fewer states need to be distinguished, 
which might translate into a reduction of the storage space needed. And 
this is precisely what happened in the above transformation. 

We can push the phenomenon to a limit by doing the same to B as 
we did to A, viz. we can satisfy B's queried assertion in Version 2.1 by 
transforming B into 

B: * [ {1 ~ d} T 

; {? 2 ~ d} 

d:=d-1 

{1 ~d} 

1 
Then invariant 1 ~ d 1\ d ~ 1, Le. d = 1 , will be inevitable; assertions 
d ~ 0 in A and 2 ~ d in Bare therefore equivalent to false, and total 
deadlock will be the result. And indeed: total deadlock is readily imple
mented with zero storage space. 

* * 
* 

Next, we wish to investigate whether the reduction of parallelism has 
affected the computation proper in that it may lead to some sort of de
generation, as, for instance, occurred in Solution O. This time the potential 
parallelism for the computation proper is not affected: after completion of 
the phases {d ~ 1} Sand {1 ~ d} T , there is only one way in which 
the components can manoeuvre themselves through the synchronization 
protocol, viz. - the system state satisfying d = 1 - the only possible 
interleaving is 
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d := d - 1 (in B) 

if d ~ 0 --+ skip fi (in A) 

d := d+ 1 (in A) 

if 1 ~ d --+ skip fi (in B) 

after which both components are free again to start their next phase. So in 
this solution the reduction of parallelism is confined to the protocol. 

* * 
* 

Finally, for the sake of completeness, we transform our solution - Ver
sion 2.2 - to the boolean domain through coordinate transformation 

c == (d=O) 
-,c == (d = 1) 

, and hence - 0 ~ d ~ 1 -

Omitting all details, we obtain 

Pre: -,c 

A: * [S B: * [T 
; if c --+ skip fi ; c:= true (or: -,c) 

; c :=false (or: -,c) ; if -,c --+ skip fi 

J 1 
Version 2.3 

And this completes our treatment of the problem of phase synchronization 
for two machines. 

* * 
* 

One of the purposes of this chapter has been to illustrate so me elemen
tary techniques by which we can influence the degree of parallelism that a 
multiprogram under execution can exhibit. We have seen that non-unique 
representation of data is one way to enhance computational freedom, and 
that choosing the annotation as weak as possible is another. As for the latter 
technique, we recall that in the very last re mark of Chapter 6 on Strength
ening the Annotation, we already mentioned one reason why choosing our 
annotation as weak as possible would be our overall strategy. And here we 
have seen another reason: by choosing the annotation as weak as possible 
we opt for designs with a maximal degree of computational freedom, which 
often results in a minimal amount of blocking of individual components, 
and thus enhances the likelihood of individual progress. And that is why 
we can travel a long way without a formalism for dealing with progress. 
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The Parallel Linear Search 

The problem of the parallel linear search is a nice little paradigm that 
was first communicated to us in the mid 1980s by Ernst-Rüdiger Olderog. 
The problem can be used to illustrate a variety of phenomena that come 
with parallelism, and in this capacity it is one of the running examples in 
[A091]. In [Kna92] we can find a first formal derivation of the algorithm, 
a derivation that is carried out in the UNITY formalism [CM88]. 

* * 
* 

The problem is as folIows. We are given two boolean functions fand 
g , defined on the naturals. They are such that 

(0) ( 3i :: f.i) V ( 3i :: g.i ) 

holds, and we are required to construct a program computing naturals x 
and y such that 

R: f.x V g.y 

It so happens that we have at our disposal two machines, which are spe
cially geared towards computing fand computing g, respectively. Now 
the idea is to establish R by means of a terminating two-component mul
tiprogram, the one component searching far a position where f is true 
and the other one searching g. That is, we envisage a program of the 
following form 
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Pre: x=O 1\ y=O 

CompF: do .. . --+ CompG: do ... --+ 

x:= x+l y:= y+l 

od od 

Inv: O~x 1\ O~y 

Post: ? f.x V g.y 

Specification 

* * 
* 

Let us, for the time being, forget about the posteondition and focus on 
termination first. If we were given (3i:: f.i) , CompF could simply be 

do 'f.x --+ x:= x+ 1 od 

and its termination would be no problem. However, from given (0) we can
not condude thc existence of a true f- value, so that such a CompF might 
fail to terminate. Therefore, we must strengthen the guard and consider a 
CompF of the form 

do 'f.x 1\ ,b --+ x := x + 1 od 

Because the problem is so symmetrie in fand g, we choose CompG to 
have a similar shapej in particular, we propose CompG to be 

do 'g.y 1\ ,b --+ y:= y+ 1 od 

Remark As will become dear later, we can use exactly the same strength
ening - with conjunct ,b - for CompG's guard as was used in CompF. 
End of Remark. 

Now we first show in some detail that at least one of the components is 
guaranteed to terminate. To that end we note that CompF can be correctly 
annotated as follows: 

do 'f.x 1\ ,b --+ {'f.x} x := x + 1 od 

The assertion is correct because x is a private variable of CompF. As a 
result, the system maintains system invariant 

(Vi: O~i<x: ,f.i) 

and, by symmetry, also 

( Vi : 0 ~ i < Y : 'g.i ) 
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By (0), this implies that x is bounded from above or y is bounded from 
above. That is: at least one of the eomponents terminates, this by our 
postulate of weak fairness. 

* * 
* 

Next we eoneentrate on queried posteondition f.x V g.y, and we eon
sider the ease that CompF, say, terminates. Upon termination it has es
tablished the loeal eorrectness of 

f.x V b 

and if this eondition is globally eorrect as well, the required posteondition 
f.x V g.y is eorrect whenever 

f.x vb=> f.x V g.y 

or, equivalently, whenever 

P: b => f.x V g.y 

And, as we shall show, relation P is a system invariant (given that initially 
we have -,b). 

Summarizing, we have arrived at 

Pre: x = 0 1\ Y = 0 1\ -,b 

CompF: do -,f.x 1\ -,b -

{-,f.x} 

X := x+l 

od 

{? f.x V b} {f.x V g.y} 

CompG: CompF with (f,x) and (g,y) interehanged 

Inv: ? P: b => f.x V g.y 

Post: f.x V g.y 

and what is left is to deal with the queried items and to see to the termi
nation of CompG; all the rest follows from the symmetry . 

• The (global) eorreetness of post-assertion f.x V b of CompF is 
guaranteed whenever we see to it that CompG does not falsify b . 

• Thanks to post-assertion f.x V g.y of CompF, termination of 
CompG is permitted in this state, and it ean be enforced by post-



204 18. The Parallel Linear Search 

fixing CompF with an assignment b:= true , which makes CompG's 
guard stably false . 

• Note that such an assignment clearly maintains P, 
since {f.x V g.y} b:=true {P} is a valid Hoare-triple. Our final 
task is to show the invariance of P under x:= x + 1 - y:= y + 1 
is symmetry. I.e. we have to investigate (x:= x+ 1).P, which is 
b :::} J.(x + 1) V g.y, and we shall show that it is implied: 

J.(x+1) V g.y 

<= {not hing is known about f. (x + I)} 

g.y 

<= { P, i.e. b /\ -,J.x :::} g.y} 

b /\ -,f.x 

= {-,f.x is pre-assertion of x := x + 1} 

b 

And here is our final program for the problem of the parallel linear search 
- all annotation omitted -: 

Pre: x=O /\ y=O /\ -,b 

CompF: do -,f.x /\ -,b-+ CompG: do -'g.y /\ -,b -+ 

x := x+1 y := y+1 

od od 

; b:= true ; b:= true 

Post: J.x V g.y 

The Parallel Linear Search 

* * 
* 

There is a final transformation that may be worth carrying out, viz. the 
distribution of the operations on boolean b over the two components, 
with the aim of acquiring a fully distributed algorithm. Because the two 
components must, independently of each other, be able to set b equal to 
true, there is hardly any choice beyond representing b by 

b == cVd 

with c private to CompF and d private to CompG. With this change in 
coordinates we can replacc 
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in Pre 

b := true m CompF by c:= true 

-,b m CompF by -,d, because -,c is a loop invariant. 

The program then be comes 

Pre: x=O A y=O A -,c A -,d 

CompF: do -,f.x A -,d ....... CompG: do -'g.y A -,c ....... 

x:= x+l y := y+l 

od od 

; c:= true ; d:= true 

Post: f.x V g.y 

A Distributed Parallel Linear Search 

* * 
* 

Of course, there are many variations on the theme "parallel searching" , 
for instance searching in a bounded search space or searching with more 
than two components, but to all intents and purposes, they will all have 
the flavour of the above derivation and algorithm. 

A postscript 

In the very first chapter of this book we postulated that our computational 
model would adhere to the "weak fairness" property. What this boils down 
to is that in our model of interleaving no component is neglected forever. 
I.e. if a component is about to evaluate a guard or to execute the next 
assignment statement, it will do so within a finite number of steps of the 
system. 

In studies about fairness we mayaIso encounter the "minimal liveness" 
property. What this boils down to is that as long as something can happen 
something will happen; however, nothing is specified about what will hap
pen: each time the same component could be selected in the interleaving. 

The difference becomes manifest in the following little two-component 
multiprogram: 

* [ x := X + 1 J 11 * [y:= y + 1 J 
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Under the weak-fairness regime both x and y will eventually exceed 
any natural number, whereas under the minimal-liveness regime this can 
only be guaranteed for x + y: x:= x + 1 could, for instance, be neglected 
forever. 

In our solution of the parallel linear search we heavily rely on weak 
fairness: we used it in our proof that at least one component is guaranteed 
to terminate. Under minimal liveness, our solution is incorrect because 
termination is no longer guaranteed: if all g- values are false, CompG is 
always eligible for execution. To the best of our knowledge, the parallel 
linear search is the first algorithm in this monograph where minimalliveness 
does not suffice. 

The question is: can we save our parallel linear search if the computing 
machinery available does not provide weak fairness? The answer is: yes, we 
can, viz. by means of a multibound. Let us require the additional invariance 
of, say, 

Q: x::;y+l 1\ y::;x+l 

A program implementing this is 

Pre: x=O 1\ y=O 1\ .b 

CompF: CompG: 

do .f.x 1\ .b do .g.y 1\ .b 

-+ if x ::; y -+ x := x + 1 -+ if y::; x -+ y := y+ 1 

~ b -+ skip ~ b -+ skip 

fi fi 

od od 

; b:= true ; b:= true 

The partial correctness of the original algorithm is not affected, because 
we only added skips, but termination might be. However, we observe that 
when both components are engaged in their repetition, .b holds and, 
hence, x + y will increase: the only way in which x + y can remain con
stant is when the state satisfies b. Now Q all by itself admits the conclu
sion that both x and y will eventually increase when x + y does, and 
thus we have recreated the original scenario, this time without postulating 
weak fairness, And here we see - in a nutshell - how the multibound 
technique can provide a simple means to bend minimal liveness into weak 
fairness. 
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The Initialization Protocol 

Almost all of our multiprograms come with an initial state, as embodied by 
the precondition "Pre" in our schemes. In one way or another this initial 
state has to be established before any component can start executing its 
code. So here is a synchronization problem to be dealt with. 

One idea - or rather: Jayadev Misra's idea [Mis91] - is to distribute 
the initialization task over the various components, and let the components 
start on their computation proper only after all initialization tasks have 
been completed. To put it more precisely, the canonical multiprogram 

Pre: pre-state 

Comp.p: B.p 

will, for this purpose, be replaced with 
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where 

Pre: true 

Comp.p: Init.p 

; {? R.p} 

S.p 

Specification 

• Init.p is Comp.p's contribution to establishing the original precon
dition "pre-state", 

• for any p, R.p given by 

R.p: (Vq : q:f:. p : Init.q has terminated ) 

is to be established by proper synchronization of the components, 
subject to the constraint, however, that 

• no assumption is to be made about the initial value of the variables 
used for achieving this synchronization (otherwise we would be beg
ging the question). 

* * 
* 

At first sight, the problem very much looks like a simplified phase syn
chronization problem, with just two phases - Init and S - per 
component. However, due to the additional constraint, the situation has 
become rather more tricky. We first investigate the case of just two com
ponents, in order to get a feel for the difficulties involved. 

A solution for two components 

Let us call the two components X and Y respectively. Then target assertion 
RX in component X simplifies to 

RX: InitY has terminated. 

Because this is a stable condition - Le. it is globally correct - we can 
establish its correctness via Modus Ponens (see Chapter 11). We, therefore, 
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introduce two fresh booleans x and y, and transform our specification 
into 

Pre: true 

X: InitX Y: InitY 

; {? y => RX} ; {? x=> RY} 

if y -t skip fi if x -t skip fi 

; {RX} ; {RY} 

SX SY 

Version 0.0 

Assertion y => RX in component X would be locally correct if the pre
condition were to imply .y. However, we are not allowed to make any 
assumptions about y's initial value. So the only possible solution is to 
make X create state .y all by itself. This is realized by postfixing InitX 
with statement y:= false . 

In order for y => RX to be globally correct, we will see to it that any 
assignment y:= true in further refinements of component Y has precon
dition RX, i.e. "InitY has terminated". In order not to forget this 
constraint, we explicitly record it in our next refinement. 

Pre: true 

X: InitX Y: InitY 

; y:=false ; x:= false 

; if Y -t skip fi ; if x -t skip fi 

;SX ;SY 

Constraints: • x:= true in X only after InitX 

• symmetrically for Y 

Version 0.1 

* * 
* 

Although partially correct, the above program lacks all progress proper
ties whatsoever. (In particular, total deadlock is inevitable.) Fortunately, 
we still have the freedom to add statements x:= true and y:= true. To 
begin with, we try to remove the deadlock, by prefixing thc guardcd skip 
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in X with x:= true and the guarded skip in Y with y:= true , which 
is in agreement with the Constraints. This, indeed, does away with total 
deadlock, as we have shown in Example 5 of Chapter 8. We will not repeat 
the construction of that proof here; we just give the resulting annotated 
program, from which the absence of deadlock follows immediately. (In this 
program, variable h is an auxiliary variable.) 

Pre: true 

X: InitX Y: InitY 

; y, h := false, X ; x, h := false, Y 

; x:= true ; y:= true 

; {x V h=Y} ; {y V h=X} 

if y -+ skip fi if x -+ skip fi 

;SX ;SY 

Constraints: • x:= true in X only after InitX 

• symmetrically for Y 

Version 0.2 

* * 
* 

What about individual progress? At this point, the reader may construct 
a scenario showing that individual progress is not guaranteed: one of the 
components may get stuck in its guarded skip forever. In order to remove 
this danger we argue as follows. 

By the absence of total deadlock, at least one of the components ter
minates its protocol, Le. can start its S. Let this be component X. If 
we can now ensure - in one way or another - that x is a valid pre
assertion to SX, then termination of component Y is guaranteed as well, 
simply because then the guard in Y's guarded skip is stably true t. A simple 
way to ensure this is by prefixing SX with statement x:= true (which 
agrees with the Constraints). The proof that then, indeed, x is a correct 
pre-assertion to SX follows from the following annotated program (c. f. 
Example 5, Chapter 8). Note that auxiliary variables like c are allowed 
to have initial values. 

tWe owe this argument to Rob R. Hoogerwoord. 



19. The Initialization Protocol 211 

Pre: ·c 

X: InitX Y: InitY 

; Y:=false ; {.c} 

; {'Y V c} x:= false 

x:= true ; Y, c := true, true 

; {'Y V c} ; if x -7 skip fi 

if y -7 skip fi ; y, c := true, true 

; {c} ;SY 

x:= true 

; {x} {c} 

SX 

Version 0.3 

Eliminating all annotation, we thus obtain as our final solution. 

Pre: true 

X: InitX Y: InitY 

; y:=false ; x :=false 

; x:= true ; y:= true 

; if y -7 skip fi ; if x -7 skip fi 

; x:= true ; y:= true 

;SX ;SY 

Initialization Protocol for Two Components 

* * 
* 

We conclude this example with a few remarks, reflecting on how we 
managed to achieve individual progress. 

(i) The way in which we tried to achieve absence of total deadlock was 
not far-fetched at all: without the initial assignments x:= true in X 
and y:= true in Y, deadlock would be guaranteed to occur. 

(ii) The way in which we tried to achieve individual progress by inserting 
the final assignments x:= true in X and y:= true in Y may seem 
more of a surprise. But on closer inspection it isn't. First, Hooger
woord's suggestion to try to obtain x as a correct pre-assertion to 
SX is a legitimate one, because if it succeeds, the progress argument 
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becomes extremely simple. (This is also true from an operational point 
of view, since by requiring x to be a correct pre-assertion of SX, 
all potential interest in the (invisible) program counter of component 
Y vanishes: component Y is guaranteed to terminate, whether it has 
"passed" its guarded skip or not.) 

Second, Hoogerwoord's suggestion also is a viable one, because -
as the annotation in version 0.3 shows - the global correctness of 
assertion x is already guaranteed. So the only thing that remains is 
to establish its loeal correctness, and that is where the final x:= true 
comes from. 

Remark The correctness of x as apre-assertion to SX will also 
form a vital ingredient in our subsequent derivation of an initialization 
protocol for more than two components. 
End of Remark. 

(iii) Finally we have to admit that, no matter how crisp the final solution 
turned out to be, its derivation seems to be driven by hope and a 
kind of opportunism. For instance, it was not clear at all at the outset 
that the required progress properties can be achieved via insert ions 
of statements x:= true and y:= true - see the little experiment 
recorded at the very end of Chapter 8. The fact that things turned 
out weIl was probably just a matter of good luck+. 

A general solution 

In this section we deal with the initialization problem for an arbitrary 
number of components, and only now will it become clear how much luck 
we had in arriving at our solution for two components. In fact it was a 
narrow escape. We confine our attention to the case of three components, 
because it is general enough to reveal the trouble we are in but also general 
enough to show how we can get out of the trouble again. We invite and 
challenge the reader to stop here and first try to think of a solution for 
himself. 

* * 
* 

tIt is a common phenomenon that, in designing artefacts, one may have to retract a 
design decision, for instance because an induction hypothctis is too weak or a theorem 
has to be generalized to become amenable to proof. 
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We start our derivation in the same way as we did for two components. 
As a stepping stone we use the analogue of Version 0.1: 

Pre: true 

X: InitX 

; y:=false 

; z :=false 

; if y 1\ z -+ skip fi 

;SX 

Y and Z: symmetrie versions of X 

Constraints: • x:= true in X only after InitX 

• symmetrieally for Y and Z 

A (hopeless) stepping stone 

Remark As an exercise, the reader may prove that the correctness of the 
above multiprogram is not affected if guarded skip if y 1\ z -+ skip fi is re
placed by the sequential composition of if y -+ skip fi and if z -+ skip fi, 
in either order. 
End of Remark. 

In order to preclude deadlock we have to insert statements x:= true 
before the guarded skip in X. But no matter how many of these state
ments we insert, the situation cannot be saved, for we cannot preclude the 
following scenario: 

Let X and Y execute their prelude up to their guarded skips. 
Then -,z holds, and both X and Y are blocked. Next, let 
Z execute its prelude, thus making two out of three booleans 
equal to false, i.e. leaving at most one boolean true. Because 
each guard is a conjunction of two booleans, all guards are false, 
and total deadlock is the result. 

The diagnosties is becoming clear: in the deadlock state, when all three 
components are stuck in their guarded skips, the state no longer changes, 
whereas switching booleans from false to true is not only allowed but also 
badly needed. The mode of "waiting" in a guarded skip is just too "static". 
One way out is to resort to what is somctimes called "dynamic waiting", 
which refers to replacing 

if ß -+ skip fi with do -,ß -+ skip od 

and then replacing the latter with 
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do -,B --t something useful for progress od 

In our example, the "something useful for progress" will be "x:= true" in 
component X, and ~ exploiting the property referred to in the remark 
following the stepping-stone program ~ we will replace if y /\ z --t skip fi 
hy 

do -,y --t X : = true 
~ -,z --t X := true 

od 

Adding a final assignment x:= true ,just as we did in the two-component 
solution, we are thus led to consider a program of the form 

Pre: true 

X: InitX 

; y:=false 

; z :=false 

; do -'y --t X := true 

~ -,z --t X := true 

od 

; x:= true 

{ x, see later} 

;SX 

Y and Z: symmetrie versions of X 

Initialization Protocol for Three Components 

and below we shall show that this program has all the desired progress 
properties. 

Remark From Chapter 2, we recall the atomicity conventions regarding 
repetitive constructs: the evaluation of a guard is atomie, hut the corre
sponding guarded statement is not part of it. 
End of Remark. 

Just as in the two-component solution, the correctness of the final asser
tion x in X ~ to he shown later ~ will playavital röle in the progress 
argument. And just as in the two-component solution, the final assignment 
x := true is needed to establish it. (We invite the reader to construct a sce
nario showing that, if the final x:= true is omitted, individual progress 
is no longer guaranteed.) 
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* * 
* 

In order to show individual progress, we have to show that each com
ponent will, within a finite number of steps of the system, start on the 
execution of its S. To that end, we first observe that, within a finite num
ber of steps, all components will have completed their preludes, Le. all their 
assignments "bool:= false". In such astate it holds that component X 

- either has established the stable truth of x - this is the röle of asser
tion x in X-

- or will do so within a finite number of steps - this on account of the 
structure of X. 

Thus, all the booleans will eventually be stably true, so that all three 
repctitions are guaranteed to terminate. So much for progress. 

Remark As in the two-component solution, final assertion x has saved 
us from dragging thc program counters into thc argument, which in the 
current example would have complificd the argument dramatically. 
End of Remark. 

* * 
* 

Finally, we have to prove thc correctness of assertion x in component X. 
It is locally correct (by construction!). In order to prove that it is globally 
correct, we addrcss its global corrcctness under Y; then symmetry does the 
rest. 

We introduce an auxiliary boolean variable c and the following anno
tation for component pair (X,Y) (cf. Version 0.3): 
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Prc: -,c 

X: InitX 

Y: 

, y:=false 

;{-,y V c} z:=false 

; {loop inv : -'y V c} 

do -,y ~ {-,y V c} x:= true {-,y V c} 

~ -,z ~ {-,y V c} x:= true {-,y V c} 

od 

{cl x:= true 

{x} {cl sx 
InitY 

, z :=false 

; {-,c} x:= false 

do -,z ~ y, c := true, true 

~ -,x ~ y, c := true, true 

od 

y, c := true, true 

SY 

The global correctness of assertion x in X is ensured by thc Rule of Dis
jointness. The local correctness of its co-assertion c follows from loop 
invariant .y V c - or y => c - by Modus Ponens. The global cor
rectness of assertion .y V c in component X is guaranteed by extending 
assignments y:= true - which occur in Y only! - with c:= true. We 
trust that the reader can check thc rest of the annotation for himself. 

End of A general solution. 

* * 
* 

This chapter has been the first one in which, at least to some extent, 
we had to resort to some sort of operational reasoning. Here we definitely 
pay aprice for not having adopted a formalism for dealing with progress. 
Fortunately, the price is not too high, thanks to the special structure of the 
algorithm: from thc (static) topology of the program text it is clear that the 
oscillating behaviour of the guards comes to an end after a finite number 
of steps of the system. (Recall from Chapter 8 that a neccssary condition 



19. The Initialization Protocol 217 

for progress is that oscillation of a guard's value does not continue forever.) 
In a later chapter, we will encounter an example in which this finiteness of 
oscillation is not automatically guaranteed and where we have to enforcc 
it by incorporating it in thc problem specification. 

Finally, one may wonder whether we can make do with just the guarded 
skip as a synchronization primitive, for after all the above problem seemed 
to be unsolvable without using "dynamic waiting". To reassure the reader: 
guarded skips do suffice. Our resorting to dynamic waiting was just an 
ad-hoc solution. There is a fundamentally much bett er solution, which is 
bascd on thc tcchnique of introducing auxiliary components for special
purpose tasks. In the next chapter we will discuss the introduction of such 
auxiliary componcnts as an isolated topic, and subsequently wc will solvc 
the Initialization problem once again, this time using auxiliary components 
for thc task of truthifying the booleans. 
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Co-components 

There is a rule that says: "A void duplication of volatile information." t. 
Disobedience of this rule may have disastrous consequences for an organi
zation, whether it is just a computer system or a human society. Informa
tion - in the broadest sense of the word - that is widely diffused and 
then needs to be changed, may require a gigantic update operation, and 
- perhaps worse - may be unreliable or just wrong at all those places 
where the update operation has not been effectuated yet. (Changing all 
telephone numbers in the Netherlands, in the mid 1990s, was an enormous 
operation, wh ich took a whole year. The transition of a lot of European 
currencies to the euro is an almost frightening prospect. The millennium 
problem, caused by an untraceable diffusion of an erroneous date field, will 
cost society billions and bill ions of dollars.) 

Since the earliest days of computing, competent programmers have been 
aware of this rule and have recognized its importance. The concept of a 
subroutine and, in its wake, of a subroutine library is an early witness of 
this awareness. A little later, there was the independently running interrupt 
handler - an intermediary between a central processing unit and periph
eral devices - in which all decisions concerning the handling of interrupts 
were concentrated. Later still, there was the concept of the monitor, an 

tWe learned this rule from Edsger W. Dijkstra in his lecture series "Aspects of Im
plemcntation" [Dij79]. 
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independently running process in wh ich all logical and strategical issues 
for the harmonious co operation of sequential processes were embedded. 
Etcetera. (The current interest in object-oriented programming is an effort 
to do justice to the rule on a larger and more systematic scale.) 

The subroutines, the interrupt handler, the monitor, they all are a kind of 
aids to computations proper, and they serve a particular purpose, here to 
isolate potentially changing data and other separable concerns. If those 
aids are independently running processes, we will refer to them as co
components. 

Due to the advancement of electronic engineering, massive parallelism 
has become technically possible and economically feasible. This implies 
that, if for some reason or another, we wish to equip a computation with 
one or more co-components, we are always free to do so. 

Co-components may be introduced for a variety of reasons, for instance 
to isolate potentially changing strategies in a dedicated piece of hardware 
or software - as in the monitors mentioned above -, or to speed up 
computations, or to accommodate communication obligations with an out
side world that can hardly - or even impossibly - be combined with 
the computation proper (an alarm dock, for instance, is an indispensable 
co-component to enjoying a good night's rest). In some of the remaining 
chapters we will encounter opportunities to introduce co-components with 
advantage. The main purpose of this chapter is to show, through two ex
amples, how we may handle co-components. 

Speeding Up a computation 

In our first example, we consider a computation given by 

X: 80 

; 81,82 

; 83 

where 81,82 is an ad-hoc notation, expressing that 81 and 82 can be 
executed in some, irrelevant, order or even interleaved, for instance because 
they operate on disjoint state spaces. Now, if 81 and 82 each embody 
lengthy computations, it pays to have them run in parallel. So let us farm 
out 82 to a co-component Co-X of X. Then our programming task is 
specified by 
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Pre: true 

X: So 

; Sl 

; {? R2: S2 has terminated} 

S3 

Co-X: {? Ro: So has terminated} 

S2 

Now, because Ro and R2 are both stable, we resort to Modus Po
nens, introducing two (fresh) booleans x and y, together with system 
invariants 

x => Ro and y => R2 

Our solution then simply becomes 

Pre: --,x A -,y 

X: So Co-X: if x ---+ skip fi 

; x:= true ; S2 

; Sl ; y:= true 

; if y ---+ skip fi 

; S3 

The (simple) progress argument is left to the reader. 

The above handshake-like communication pattern is so standard that at 
future occasions we shall use it without much ado: the guarded skips can be 
interpreted as "wait-for-completion signals" and the assignments x:= true 
and y:= true as the completion signals themselves. 

* * 
* 

We can even save some storage space, since due to the rather sequential 
behaviour of the above system, we can implement the specification with 
just one boolean, say z. Thc solution is - verification left to the reader 
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Pre: -,z 

X: So Co-X: if z ~ skip fi 

; z:= true ; S2 

; SI ; z :=false 

; if -,z ~ skip fi 

; S3 

(The reader mayaIso prove that each of the two assignments to z can be 
replaced by z:= -,z .) 

Now the similarity with the handshake protocol has become perfect. 
This communication scheme, too, will be used without much ado, should 
the need arise. 

Alain J. Martin's Perpetuum Mobile 

In our second example of the use of co-components, we consider thc mutual 
exclusion problem for an arbitrary number of components that are arranged 
in a ring. The arrangement in the ring implies that a component can only 
communicate with its two neighbours in the ring. 

As a means towards achieving mutual exclusion among the critical sec
tions of the various components, we introduce a unique token that at any 
moment in time resides in one of the components. A component is allowed 
to execute its critical section if and only if it "owns" the token. More pre
cisely, if t = X captures that component X owns the token, then we are 
heading for an algorithm specified by: for each component X, 

X: * [nes 

; {? t=X} 

es 

For the sake of progress, the token will be propagated through the ring in, 
say, clockwise order. 

Token transmission by component A to component B will be described 
by 

{t=A} t:=B 
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I.e. t:= B is the actual transfer to B, but A may only do so providcd it 
owns the token, that is when t = A . 

With this regime, assertion t = X in component X above is stable under 
token transmission in different components - Rule of Disjointness. There
fore, we can satisfy t = X by establishing its local correctness. Thus, we 
get 

X: * [nes 

; if t = X -+ skip fi 

; {t=X} 

es 

This settles mutual exclusion, and what remains is individual progress. 

* * 
* 

Individual progress means that the synchronization protocol does not 
hamper the computation proper indefinitely. Here the computation proper 
consists of nes and es, and in mutual exclusion problems the assump
tion has always been that es terminates whereas nes may or may not 
terminate. It is the potentially nonterminating nes that causes a problem. 

While in its nes, component X will be "incommunicado"; more in par
ticular, it will be unable to transmit the token. (Recall: a general rule of 
the game is that we are not allowed to change the computation proper in 
any way: cf. Chapter 10.) So, a component that owns the token while in 
its ncs may give rise to total deadlock, viz. if the ncs happens to fail 
to terminate. As a result, we have to see to it that for each component X 

X in its ncs =} t # X 

which we shall make a system invariant. 

In order to record whether X is in its ncs or not, we introduce boolean 
hX and change component X into 
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X: {hX} 

* [nes 

; hX :=false 

; if t=X ~ skip fi {t=X} 

; es {t=X} 

; hX:= true 

, 
while requiring, for eaeh X, the invarianee of 

PX: hX => t=/=X 

As a result, eomponent X has to get rid of the token along with hX:= true , 
Le. before entering its nes. 

Let, for the remainder of this seetion, Y be the (cloekwise) ncighbour of 
X. Then X ean get rid of the token by hX, t := true, Y . However, this is 
a hopeless proposal, beeause Y eould be engaged in its nes, so that token 
transmission would violate the eorresponding PY. This is the plaec where 
- almost by ncecssity - eo-eomponents enter the picture. 

* * 
* 

We propose that eaeh eomponent X have its own eo-eomponent XX, and 
that the co-components are to take carc of thc token trafIic along thc ring. 
With thc introduction of XX, eomponent X ean now get rid of the token by 
t:= XX (which does not violate any of the P's). For X wc thus obtain 

X: {hX} 

* [nes 

; hX :=false 

; if t = X ~ skip fi {t = X} 

; es {t=X} 

; hX, t := true, XX 

As for eo-eomponent XX, like any other eomponcnt it ean get hold of 
the token through a guarded skip if t = XX ~ skip fi . Onee XX owns the 
token, it will propagate it - beeause this, we dccided, is its task. There are 
only two eomponents to pro pagate it to, viz. X and YY - thc (cloekwise) 
neighbour of XX. So XX gets thc shape 



XX: * [ if t = XX -+ skip fi 

; {t=XX} 

1 

if true -+ t := X 

I true -+ t := YY 

fi 
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and what remains is to strengthen the guards, if necessary, in such a way 
that both partial correctness and individual progress for all components 
are guaranteed. 

* * 
* 

We will first deal with thc partial correctness of component XX, Le. with 
the correctness of XX with respect to the P's. Assignment t:= YY is 
harmless, but assignment t:= X may violate P X . Therefore, wc require 
that it have precondition -.hX, which we establish locally by plugging a 
condition G into the guard such that 

Thus we arrivc at 

XX: * [ if t = XX -+ skip fi 

; {t=XX} 

if G -+ {t = XX} {-.hX, see below} 

t:= X 

fi 

1 

true -+ t:= YY 

Assertion -.hX is locally correct by construction (property (*)). For its 
global correctness we need co-assertion t = XX : statement hX:= true 
in X has pre-assertion t = X , so that, by the Rule of Disjointness, it does 
not falsify -.hX. 

This settles the partial correctness of XX. 

* * 
* 

With regard to progress, we are left with two problems. The first one 
is that we cannot prevent XX from always choosing alternative t:= YY . 
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This, however, is easily remedied by strengthening the second guard to 
-,G . Thus we get 

XX: * [ if t = XX ~ skip fi 

; {t=XX} 

if G ~ {t=XX} {-,hX} 

t:= X 

~ -,G ~ t:= YY 

fi 

Thc second problem is more subtle. The weakest G satisfying (*) is 
-,hX, but this choice is not good enough: it does not prevent the token 
from commuting bctwcen X and XX indefinitely, viz. if all invocations of 
X's ncs terminate, hX keeps oscillating so that XX, upon receipt of the 
token, may all the time find hX equal to false and rebounce the token 
via t :=X. 

Therefore, we now constrain the freedom of XX in such a way that from 
the new text of XX alone we can see that such unbounded commuting 
will be impossible. We do so by imposing a (constant) upperbound uX, 
1 ~ uX , on the number of times that XX can consecutively send the token 
to X. We introduce a variable cX, local to XX, which will act as a variant 
function, we choose G equal to 

-,hX 1\ cX < uX 

and we change XX into 

XX: {cX=O} {l~uX} 

* [ if t = X X ~ skip fi 

; if -,hX 1\ cX <uX ~ cX:= l+cX; t:= X 

hX V uX ~ cX ~ cX:= 0; t := YY 

fi 

1 

Thus we have, by construction, for any pair (X,XX) the invariance of 

o ~ cX 1\ cX ~ uX , and of 

QX: t '" X /\ t '" XX => cX = 0 

* * 
* 
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And now we are ready to provide the progress argument. For convenience, 
we first summarize what we have achieved so far, confining ourselves to one 
pair (X,XX) and the annotation relevant for it. 

Pre: hX 1\ eX=O 1\ l~uX 

( :JC:: t = CC) 

X: * [nes 

; hX := false 

; if t = X -+ skip fi 

; es 

; hX, t := true, XX 

1 
xx: * [ if t = xx -+ skip fi 

; if .hX 1\ eX<uX -+ eX := l+eX; t := X 

~ hX V uX~eX -+ eX := 0; t := YY 

fi 

1 
Inv: O~eX 1\ eX~uX 

PX: hX =} t =1= X 

QX: t =1= X 1\ t =1= xx =} eX=O 

Alain J. Martin's Perpetuum Mobile 

Our progress argument will use the lemma that 

(**) Token propagation along the ring is guaranteed. 

In other words: no co-component XX will be blocked forever in its guarded 
skip if t = XX -+ skip fi . We first prove this lemma. 

Proof of (** ) The token always resides in some (co-)component. Further
more, every (co-)component that owns the token will propagate it within a 
finite number of terminating steps, Le. the token keeps traveling. Now let 
the state be such that 

t=X V t=XX 

This state is not a stable state, because the token keeps traveling and 
because by construction, it does not commute indefinitely between X and 
XX. As a result, the token will be propagated to YY, i.e. the token will 
be propagated along the ring. 
End of Proof of (**). 
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Finally we show that component X will not be blocked forever in its 
guarded skip if t = X -t skip fi - our target proof obligation. If X is 
stuck in its guarded skip, the state satisfies -,hX - see structure of X. 
We now distinguish two cases 

(i) t =1= X /\ t =1= XX (the token is somewhere else) 

Then, from QX, we have cX = 0 and hence, since 1:S uX , 

cX<uX 

So from (**) we conclude that, within a finite number of steps, XX 
will terminate its guarded skip and then select the first alternative of 
the subsequent alternative construct, thus making t = X stably true. 
And X can proceed. 

(ii) t = X V t = XX (the token is somewhere here) 

If t = X , component X can proceed. If t = XX , component XX will 

(a) either select the first alternative and establish t = X 

(b) or select the second alternative and establish t =1= X /\ t =1= XX , 
which is covered by case (i). And this completes the progress ar
gument. 

* * 
* 

The Perpetuum Mobile is the simplest of a trilogy of algorithms for 
achieving mutual exclusion along a ring [Mar85]. Alain Martin called it 
"Perpetuum Mobile" because of the ongoing traveling of the token along 
the ring. Later on Jan L. A. van de Snepscheut generalized Martin's algo
rithms to the case of an arbitrary graph. (See his impressive "Hands-in
the-pockets" presentation in [Sne90].) 

End of Alain J. Martin's Perpetuum Mobile. 

* * 
* 

Herewith we conclude this introduction to co-components. In the liter
ature we may find them under thc name "slaves", which not only is an 
avoidable anthropomorphic nomenclaturc, but - worse - suggests a 
mathematical pecking order that just isn't there: co-components are fully
fiedged components that partake in thc co operation on equal footing with 
the original components. 
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The Initialization Protocol Revisited 

At the end of Chapter 19 we promised to return to the initialization problem 
after having dealt with eo-eomponents, and in this ehapter we will da so. We 
da not repeat the problem statement here, but resume our development at 
what we ealled "A (hopeless) stepping stone" j this time, however, we omit 
the "hopeless": 

Pre: true 

X: InitX 

j y:=/alse 

j z :=/alse 

j if y 1\ z -> skip fi 

jBX 

Yand Z: symmetrie vers ions of X 
Constraints: • x:= true onlyafter InitX 

• symmetrically for Y and Z 

A stepping stone 

Remark Wc reeall that eoarsc-grained guarded skip if y 1\ z -> skip fi 
ean bc split into the two fine-grained guarded skips if y -> skip fi and 
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if z --+ skip fi, and that their order is irrelevant. At the end of the present 
chapter we will return to this possibility. 
End of Remark. 

* * 
* 

As it stands, the algorithm lacks all progress properties whatsoever. In 
order to remedy this, it will be necessary to add statements x:= true , to be 
performed after InitX has terminated. In our earlier effort in Chapter 19 
we saw that accommodating such statements in the text of component X 
itself is hopeless, that is to say, if we wish to retain the guarded skip as our 
only synchronization construct. In that earlier effort we escaped through 
"dynamic waiting", but here we will solve the problem via the introduction 
of special-purpose co-components: co-component XX of component X will 
be given the dedicated task of establishing the stable truth of x. We are 
therefore led to consider an XX of the form - comments below -

XX: sx:= true 

; {? InitX has terminated} 

do sx --+ x:= true od 

Version 0 for XX 

• The assertion is there to do justice to the constraint that x:= true is 
only admitted after InitX has terminated. 

• When considered in isolation, the above program for XX is just equivalent 
to 

do true --+ x := true od 

However, we are anticipating opportunities to terminate XX, which, for 
instance, is allowed when x has become stably true. That is why we 
introduced a fresh variable sx. Termination of XX can then be effectuated 
by 

{x} sx := false 

* * 
* 

Along with the introduction of XX, we adjust component X - expla
nation below -
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X: InitX 

i y:= false 

i z :=false 

i {? sx} 

if y 1\ z -+ skip fi 

i if x -+ skip fi 

; {x} 

sx := false 

iSX 

Version 0 for X 

• Compared with the previous version ("A stepping stone"), the above 
program text for X differs in two places, viz. two statements have been 
added: guarded skip if x -+ skip fi and statement sx:= false . Neither 
of the two affects the partial correctness of the original multiprogram, sim
ply because variable sx is fresh and because a guarded skip is just a skip 
as far as partial correctness is concerned. 

• The global correctness of assertion x, under the operations of Y and 
Z, was discussed and proved in Chapter 19. This global correctness is not 
affected by the adjustments just made to Y and Z, since, again, these 
adjustments pertain to fresh variables. The same holds for the incorporation 
of the co-components: YY and ZZ do not change x, and XX only contains 
statement x:= true . 

As for the local correctness of assertion x, this time we prefixed it with 
guarded skip if x -+ skip fi, instead of with x:= true, simply on the 
(esthetic) grounds that we wish to concentrate all assignments x:= true 
in XX. 

• The text for X also contains queried assertion sx, which will be a vital 
ingredient for the progress argument, to be given in amoment. 

So much for the explanation of our choice for component X. 

* * 
* 

What remains - besides proving progress - is to establish the queried 
assertions in X and XX, but we postpone this for a moment because, given 
these assertions, we can already now show individual progress for each of the 
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components. So that is what we will do first, and we will do so by proving 
that, within a finite number of steps of the system, an three booleans x, 
y, and z become stably true. We concentrate on x. 

First of an we observe that the only way in which component XX can 
terminate is through sx:= false in component X, and we will keep it 
that way. Now we consider astate of the system in which all components 
have completed their prcludes. For component X this is fragment 

InitX; y := false; z := false; {? sx} 

From the annotation in X we conclude that then the state of the system 
satisfies sx or x. We distinguish two cases: 

- The state satisfies x. Then x is stably true, because an prcludes con
taining x:= false have terminated. 

- The state satisfies -,x, and hence -,x 1\ sx . In such astate, sx:= false 
will not be performed (Rule of Disjointness), so sx continues to hold 
and - see observation above - component XX has not terminated 
yet. As a result, XX will make x (stably) true within a finite number 
of steps of the system. 

Thus, boolean x, and by symmetry booleans y and z as well, will 
become stably true and, as a result, individual progress for each of the 
components is guaranteed. 

* * 
* 

Finally, we address the two queried assertions. We begin with sx in X. 
Since this assertion is globally correct, we only need to take care of its local 
correctness. This can be done in a variety of - standard - ways, but 
this time we establish it with the aid of component XX, by requiring that 
sx have as a co-assertion 

"sx := true in XX has terminated" 

Then, on account of the topology of XX, sx indeed holds. Now the situ
ation has become completely symmetrie for the couple (X, XX): it now has 
the shape 
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X: 1nitX 

; y:=false 

; z :=false 

;IPX 

; {? sx := true in XX has terminated} 

if y 1\ z ~ skip fi 

; if x ~ skip fi 

; sx := false 

;SX 

XX: sx:= true 

;IPXX 

; {? 1nitX has terminated} 

do sx ~ x : = true od 

Version 1 for (X, XX) 

Here, I P X and I P X X are program fragments that are to establish 
their respective post-assertions. From the topology of the above compo
nents, from the structure of the assertions and the still pending obligation 
that nothing may be assumed ab out the initial values of the variables, we 
see that the problem to be solved is "just" the initialization problem for 
two components; so we can satisfy the queried assertions by choosing for 
the pair (I P X, I P X X) the initialization protocol for two components. 
With fresh variables fx and gx, we thus obtain (cf. Chapter 19) 

1PX: gx := false 1PXX: fx:= false 

Remarks 

; fx := true 

; if gx ~ skip fi 

; fx := true 

; gx := true 

; if fx ~ skip fi 

; gx := true 

• In the above we superimposed one protocol, viz. the two-component ini
tialization protocol, onto another, viz. the three-component protocol. Su
perimposing protocols is not uncommon, but not without danger either. It 
can easily lead to deadlock. The simplest example of this is when a con
sumer has to extract a portion from a buffer under mutual exclusion. One 
protocol then prevents the consumer from taking a portion from an empty 
buffer, and another protocol takes care of the mutual exclusion. The su
perposition, however, had better be such that the test for emptiness is not 
embedded in the critical section. 
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The superposition in the above does not cause any of these problems, 
since the terminating pair (I P X, I P X X) is part of the "automatically" 
terminating preludes of the pair (X, XX) . 

• The order, in X, of the three statements 

y:=false; z:=false; IPX 

is completely irrelevant. If we want x:= true to be performed "earlier", 
the order had bett er be 

IPX; y := false; z := false 

In this text, however, quantitative behaviour is not a major concern - it 
is a legitimate but separable concern. 

End of Remarks. 

* * 
* 

Here is the raw code of our solution, a rat her inscrutable piece of text 
when viewed operationally: 

Pre: true 

X: InitX XX: sx := true 

; y:=lalse ; Ix := false 

; z :=false ; gx := true 

; gx := false ; if Ix -t skip fi 

; fx := true ; gx := true 

; if gx -t skip fi ; do sx -t x : = true od 

; Ix := true 

; if y /\ z -t skip fi 

; if x -t skip fi 

; sx := false 

;SX 

Symmetrie versions for (Y, YY) and (Z, ZZ) 

Initialization Protocol for Three Components 

And this completes our derivation of an initialization protocol for three 
components in whieh the only synchronization primitive used is the guarded 
skip. As in our earlier solution, the straightforward generalization to more 
than three components is left to thc reader. 
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* * 
* 

We conclude this chapter with two remarks and an observation. The re
marks concern a "small" variation on the algorithm derived in the above 
and the confrontation of our algorithm with a model checker; the observa
tion is made for later use. 

• In a previous solution to this problem, we equipped X not only with 
the feature sx:= false to "switch off" co-component XX, but also with 
sx := true to "switch XX on". The only -- really small - difference 
with our current solution was that a statement sx:= true occurred at a 
judiciously chosen place in the code of X instead of in XX. 

That algorithm was as correct as the current one, but its progress argu
ment became more complex by at least an order of magnitude. The techni
cal reason is that by the absence of statement sx:= true from XX , we 
could not easily draw conclusions from assertion sx in X as to how "far" 
XX had progressed in its protocol: it was considerably harder, for instance, 
to prove that the only way in which XX can terminate is through state
ment sx:= false in X. The danger of introducing the program counters 
was seriously lurking around the corner. 

The most likely reason why we fell into this trap in the first place 
is that we have not yet freed ourselves sufficiently rigorously from the 
component/co-component or rather the master/slave metaphor. Of eourse 
a master must switch on a slave, that is what these words mean, don't they? 
The moral is clear: we must forget about these metaphors and obey what 
the neutral formulae demand. It is the formulae that come up in the devel
opment that ought to guide the way, not our often biased (mis)conception 
of how programs and program parts are to be arranged . 

• As we mentioned in the beginning of this chapter, guarded skip 
if y 1\ z -+ skip fi may be split into the two independent guarded skips 
if y -+ skip fi and if z -+ skip fi, which may be executed in any or
der. In our program for component X there is also the final guarded skip 
if x -+ skip fi , and in a moment of lightheartedness we thought that even 
the order of all three guarded skips would be irrelevant. It was this "patched
up" program that we submitted to a model checker through the help of our 
colleague Dennis Dams. The model checker reported: "Individual Starva
tion!" . And then we sat back in our chairs and found out that the patched
up program was indeed wrong: guarded skip if x -+ skip fi must follow 
the other ones. One up for model checking! One down for us? Yes, indeed, 
because we changed a program without good reason; we should have known 
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better. Multiprograms are utterly vulnerable artefacts: everything has to 
be proved. 

Of course we went back to the checker, this time with our original, cor
rect program. The model checker reported: "Individual Starvation" ! We 
were shocked, and on the verge of retracing our whole method of multi
programming. But then the relieving message came that our program had 
unearthed an error in the model checker. After this error had been repaired, 
the checker accepted our program; but now this acceptance just meant a 
bit of information about which we could only shrug our shoulders . 

• Our final observation concerns guarded skip if x -t skip fi in compo
nent X. Its introduction, in Version 0 for X, did not affect partial correct
ness. The same would be true, had we used the weaker guard true in
stead of x. If, however, in our final version for component X, we replace 
guarded skip if x -t skip fi by if true -t skip fi , individual progress is 
no longer guaranteed. From this we observe, that 

weakening a guard may destroy progress. 

We will return to this subject in the last technical chapter of this mono
graph. 
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The Non-Blocking Write Protocol 

This examplc has been inspircd by a problem from thc field ofreal-time data 
processing. The rationale for that problem can be found in [Lam77, KR93J. 
Here we will only sketch it in brief. The problem conccrns thc following 
little two-component multiprogram 

Pre: true 

Writcr: * [WRITE ] 

Reader: do ... 

--> READ 

od 

The computation proper 

Thc Writer repeatedly writes (time-dependcnt) information into a data 
structure, which wc havc left anonymous. During the proccss of writing -
Le. during thc cxccution of WRITE - the data structure may be inconsis
tent. In betwcen two successive WRITEs the data structure is consistent. 
The Reader reads the data structure through READ. However, if the time 
interval over which a read activity extends overlaps with some write inter
val, the data read may be inconsistent and thc Reader has to read the data 
structure again. The problem is to synchronize the Writer and thc Reader 
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in such a way that the Reader terminates its repetition when it has read a 
consistent data structure. 

The problem is easily solved if we are allowed to embed writing and 
reading in critical sections, so that the two activities exclude each other in 
time. However, the specific nature of this problem is that the Writer should 
not be blocked. (For details, see [KR93].) One way to prevent the Writer 
from getting blocked on account of the state of the Reader is by disallowing 
the Writer to inspect any variable that can be changed by the Reader, and 
this is what we will do. 

* * 
* 

How can it be detected that during a READ no write activity has taken 
place? Since nothing is known about the speed ratio of Writer and Reader, 
the number of WRITEs that are initiated or completed during a READ 
can be anything. This observation prompts the introduction of two (fresh) 
integer variables to record these numbers. Thus the original multiprogram 
is changed into 

Pre: 1=0 1\ 9=0 

Writer: * [1:=1 +1 Reader: do ... 

; {g< f} ---+ READ 

WRITE od 

; 9:=9+ 1 

] 
Inv: 95:1 

Version 0 

The assertion and the invariant are correct by one of our Topology Lem
mata. 

The above annotation tells us that writing is characterized by the state 
9 < 1· We therefore conclude that no write activity takes place during a 
time interval whenever 1 5: 9 holds during that entire interval. Now we 
observe 

1 5: 9 during the entire interval 

<= { algebra} 

1's maximal value in the interval 
< g's minimal value in the interval, 
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and because both / and 9 ascend as time ascends, we now see that 
we are interested in f's value upon completion of a READ and in g's 
value upon initiation of the same READ. Let these values be x and y, 
respectively. We then have arrived at 

x::; y =} no write activity has taken place during READ, 

which justifies the correctness of the following and final program 

Pre: /=0 1\ g=O 1\ y<x 

Writer: * [/:=/+1 Reader: do ....,(x::; y) ---+ 

; WRITE y:=g 

; g:=g+1 ;READ 

1 ; x:=/ 

od 

The Non-Blocking Write Protocol 

Of course, there is no guarantee that the Reader will ever terminate. 
Whether it does depends on the distribution of WRITEs and READs over 
time, but if it does it has a consistent record of the data structure. 

Remark We wish to mention that the above algorithm is a mini-example 
of a so-called snapshot algorithm. Snapshot algorithms are (mostly dis
tributed) algorithms to detect whether a system has entered a stable state, 
in our example: whether the Reader has read a consistent data structure. 

Several general snapshot algorithms exist [CL85], but we will not ad
dress any of them in this monograph. We will, however, address one special 
instance, to wit a general termination detection algorithm; it is special in 
the sense that it detects whether a (distributed) computation has termi
nated (which, indeed, is a stable state). 

End of Remark. 

* * 
* 

An afterthought 

The way we developed the above algorithm is completely different from 
what we have done so far in this monograph. No specification in terms of 
required annotation was given, no global or local corrcctness of assertions 
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entered the game, and no use was made of the semantics of our program 
notation. What we did is interpret the computation proper as it evolves 
in time and translate the required result of the multiprogram into the 
requirement of certain non-overlapping time intervals. And then, by our 
analysis of the problem, we ran into the variables f, g, x ,and y. End of 
development! And we said: "which justifies the correctness of the program" . 

However, we didn't say that this proved the correctness. Indeed, the 
question can be raised whether our presentation belongs to the domain 
of derivation or just to the domain of heuristics. People exposed to this 
presentation were invariably convinced of the correctness of thc design, but 
whcn they were asked whether the correctness had been proven, hesitation 
crcpt in. And we think there is a point here. Therefore, we will now present 
a correctncss proof according to the rules of our game, but before we can 
do so we must first cast thc verbal problem statement into a form amenable 
to formal proof. 

We propose to model our problem as follows - see explanation below 

Pre: w 1\ -,r 

Writer: * [w :=/alse Reader: do ... ~ r:=w od 

; w:= true {? r} 

1 
A formal specification 

Variables wand rare auxiliary variables. Action WRITE happens in be
tween w:= /alse and w:= true . Thus the state w == true characterizes 
the consistency of the data structure. During each READ in the Reader, 
statement r:= w will be performed exactly once, and we introduce an 
aid, viz. a supervising daemon, which will see to it that r:= w is guar
anteed to be performed at a moment that a simultaneous WRITE is going 
on, if any such moment exists. So upon termination of a READ, the state 
r == true signifies that a consistent data structure has been read. (Note 
that, because r is a genuine thought variable - owned by the daemon 
- it is not allowed to recur as a program variable in our solution.) 

Once we have agreed that we thus correctly modeled and specified our 
problem, wc ean provc thc eorreetness of thc program dcvelopcd in thc 
previous section. We give the full annotation at onee, leaving most of the 
verifieation to the reader. 
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Pre: w 1\ -,r 1\ J = 0 1\ g = 0 1\ Y:S 0 1\ y < x 

Writer: Reader: 

* [ {y:S J, from lnv } 

J, W := J + l,false 

; {g< f} 

g, W : = g + 1, true 

lnv: g< J V w 

y:SJ , 

g:SJ 

{y< x V r, loop inv.} 

do -,(x:S y) --+ 

{g<J V w, from lnv} 

y:=g 

; {y< J V w} 

r:=w 

; {y< J V r} 

x:=J 

; {y < x V r} 

od 

{r} 

An assertional proof for the non-blocking write protocol 

• The loop invariant for the Reader 

x :S y => r , or equivalently 

y<x V r 

has been introduced in order to conclude r upon termination of the rep
etition. This loop invariant contains private variables (ofthe Reader) only. 

• The assertions in the loop body of the Reader emerged from applications 
of the Rule of Assignment. 

• Assertion y:S J in the Writer emerged from the requirement that as
sertion y < J V w in the Reader be globally correct. 

* * 
* 

And herewith we conclude this Afterthought and this chapter. 
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Mutual Inclusion and Synchronous 
Communication 

In the history of parallel computing, many synchronization primitives have 
been proposed, but only few have acquired a prominent position. A set 
of primitives that do have acquired such a position are C. A. R. Hoare's 
so-called CSP-constructs [Hoa78, Hoa85]. (CSP is an acronym for "Com
municating Sequential Processes" .) The constructs gracefully combine com
munication - Le. information transfer - and synchronization. Below we 
describe them, briefly and informally. 

To that end we consider a set of components connected by directed links 
- usually called uni-directional channels. There may be several distinct 
links between two components. On each link eh, two operations are de
fined, to wit 

eh!expr, which is only allowed at the source side of link eh, and 
eh?v ,which is only allowed at the target side of link eh. 

Argument expr is an expression, and argument v is a variable of the 
type of expr. 

The intention is that the component that performs eh!expr - the 
sender -, sends the value of expr along eh to the component that 
performs eh?v - the receiver -, where this value is stored in variable 
v . This is the communication part of the primitives. 
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The synchronization part is that each of the individual operations on 
eh gives rise to blocking as long as the partner operation has not been 
initiated. As so on as the partner operation has been initiated as well, an 
activity takes place with the same effect as 

v := expr 

after which both operations terminate. So the operations eh! and eh? 
have to "dick": their executions have to "mutually indude" eaeh other in 
time. 

There are always at least two aspects to a programming primitive: its 
use in program construction and its implementation. Because the use of the 
CSP-constructs falls outside the scope of this text - see the last section 
of this chapter -, we are left with their implementation, which constitutes 
a useful programming exercise in its own right. Before embarking on this 
exereise, however, we first try to construct a suitable specification for the 
CSP -constructs. 

* * 
* 

The most intriguing and interesting part of the cooperation between 
eh!expr and eh?v is the synchronization part, Le. the mutual indusion 
of their activities. Because this is what we shall foeus on, we forget about 
the parameters and thus about the information transfer. Projected on the 
eh -operations, one component then has thc form 

* [eh! 1 
and the other has the form 

* [eh? 1 

From our operational description we see that a component that is about 
to initiate a eh -operation is not allowed to proceed as long as the partner 
operation has not been initiated. We also see that if neither of the two 
components is engaged in a eh -operation, we have 

the total number of completed eh!- operations 

the total number of completed eh?- operations. 

We can now specify the synehronization behaviour through two variables 
x and y, where x:= x + 1 "announces" the initiation of the next eh!, 
and y:= y+ 1 the initiation of the ncxt eh? 



23. Mutual Inclusion and Synchronous Communication 245 

Pre: x=O 1\ y=O 

A: * [x:=x+l B: * [y:=y+l 

;{?x=y} ; {? y=x} 

eh! eh? 

1 1 
A specification for the CSP-constructs 

The original fragments eh! and eh? have been extended with the (termi
nating) assignments to x and y, respectively, for reasons of specification. 
Now our task is to superimpose synchronization code on the above program 
so as to guarantee the correctness of the two queried assertions. 

The Mutual Inclusion Problem 

The CSP-constructs form an important incentive for our interest in what 
has been called the mutual inclusion problem. This problem can be specified 
as follows. (The specification slightly differs from the above specification 
for the CSP-constructs, for a minor reason to be dealt with shortly. The 
two problems can, however, be solved in exactly the same way, and we 
encourage the reader to do so after he has studied this chapter.) 

Pre: x=O 1\ y=O 

A: * [ {? x = y} S B: * [ {? y=x} T 

; x:=x+l ;y:=y+l 

1 1 
A specification for Mutual Inclusion 

The reason for rendering the specification as we did is that in this way it 
very much resembles two problems we addressed earlier, viz. the Handshake 
Protocol and the problem of Phase Synchronization for two components. 
We recall their specifications. 
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Pre: x=O /\ y=O 

A: * [x:=x+1] B: * [ {? y=x} T 

; y:=y+1 

] 

A specification for the Handshake Protocol 

Pre: x=O /\ y=O 

A: * [ {? x::; y} S B: * [ {? y::; x} T 

; x :=x+1 ; y:=y+1 

] ] 
A specification for Phase Synchronization 

These three problems form a weird family, and the solutions we ourselves 
know for them all look alike but differ in delicate, as yet nonunderstood 
details. Therefore we kindly invite the reader who feels challenged, to create 
order in this "mess" and to present us with a derivation of the Mutual 
Inclusion Algorithm that is far more beautiful than the one we are ab out 
to deliver. 

There is, however, some order in the family. From the specifications we 
see that MI - the Mutual Inclusion problem - requires the strongest 
annotation, stronger than HP and stronger than PS. So each solution for 
MI is a solution for HP and PS as well, be it at the expense of a potential 
reduction of the parallelism (cf. Chapter 17). 

One more result with regard to this family is known to us, namely that 
any solution to PS can be used to solve MI (roughly by doing the syn
chronization in PS twice in succession). It is Perry D. Moerland to whom 
we owe this theorem [Moe93]. The algorithms for MI resulting from the 
application of this theorem are, however, a little more complicated than we 
would hope for. 

In Chapter 17 we explained how strengthening of the annotation may 
give rise to reduction of the storage space. In view of the circumstance that 
HP (and PS) can be solved at the expense of just one boolean variable, and 
that MI has the strongest annotation, the challenge is to derive a solution 
for MI that uses just a single, boolean variable. It was our student Frans 
W. van der Sommen who accepted this challenge and succeeded [Som94]. 
Here we present what is essentially his derivation. 
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Deriving a Mutual Inclusion Algorithm 

We first copy thc specification: 

Pre: x=o 1\ y=o 

A: *[{?x=y}S B: * [ {? y=x} T 

; x:=x+l ; y:=y+l 

1 1 

This time, we wish to be very explicit about wherc wc are allowed to 
superimposc synchronization code. We do so by the technique of using 
placeholders (cf. Chapter 10). Thus, our more cxplicit specification becomes 

Pre: x=o 1\ y=o 

A: * [So B: * [To 

; {? x=y} ; {? y = x} 

SI Tl 

; x:=x+l ; y:=y+l 

; S2 ; T2 

1 1 
Version 0 

The only thing that matters about Sand T is that they have pre
condition x = y , Le. that S precedes SI and that T precedes Tl. 
Bccause they do not play any röle in the derivation, we will from here 
onwards leave them out. 

* * 
* 

Right at the out set we can already see that it will be quite hopeless to 
strive for a symmetrie solution, at least if we wish to arrive at a solution 
with just one boolean. Namely, from the specification we conclude that 
MB , given by 

MB: x::;y+l 1\ y::;x+l 

will be a system invariant - and a multibound! - of any solution we 
may eome up with. A symmetrie solution is quite likely to display all three 
possible values for the differcnce x - y , so that we ean forget about the one-
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boolean solution. Within the freedom specified by MB, there is another 
symmetrie possibility, viz. 

x'5,y /\ y'5,x 

or: x = y , but a solution obeying this invariant is bound to suffer from total 
deadloek: eaeh of the individual assignments to x and y is guaranteed 
to falsify x = y. (See also our experienees with Phase Synehronization, 
Chapter 17.) 

So let us break the symmetry and head for an algorithm with system 
invariant, say, 

P: x '5, y /\ Y '5, x + 1 

This requires x + 1 = Y to be a eorrect pre-assertion of x:= x + 1 in 
eomponent A, and y = x to be a eorrect pre-assertion of y:= y+ 1 in B. 
As a result, ehoosing a skip for Sl is not an option, but ehoosing a skip 
for Tl is, and this is what we will try to do. Thus we arrive at 

Pre: x=O /\ y=O 

A: * [So B: * [To 

j {? x =y, Note} j {? y = x} 

Sl y:=y+1 

; {? x+1 =y} ; T2 

x:=x+1 1 
j S2 

1 
Inv: P: x'5,y /\ y'5,x+1 

Version 1 

* * 
* 

Aeeording to our eonvention for dealing with queried items, we now deal 
with assertion x = y in A, temporarily forgetting about the other queried 
items (cf. Chapter 10). 

Note "x=y" in A 
Sinee x = y holds initially, we decide to make it an invariant of A's rep
etition, Le. we ehoose So to be a skip and we ehoose für A 
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A: * [ {? X =y} 

81 

; {? x+l =y} 

x :=x+l 

; 82 

{? X = y} 

1 
We now handle the assertions x = y in one go. 

L: The first assertion x = y follows from Pre and the post-assertion of 
the loop body; for the second assertion x = y to be locally correct we 
choose 82 to be a skip. 

G: Since statement y:= y + 1 in component B will certainly falsify all 
three assertions in A, we resort to the Rule of Disjointness, giving the 
three assertions in A co-assertion c and providing y:= y + 1 in B 
with additional pre-assertion --,c. 

End of Note. 

Thus we obtain 

Pre: x=O /\ y=O 

A: B: 

* [{x=y} {? c, Note O} * [To 

81 ; {? Y = x} {? --,c, Note I} 

; {? x+l=y} {? c, Note O} y:=y+l 

x :=x+l ; T2 

; {x=y} {? c, Note O} 1 
1 

Inv: P: x~y /\ y~x+l 

Version 2 

* * 
* 

We handle the three assertions c in A simultaneously. 

Note 0 "assertions c" in A 

G: We handle the global correctness by the self-imposed constraint that 
statements c:= false are disallowed in B, Le. confined to A. 
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L: Apparently, c has to be an invariant of A's repetition. Therefore, we 
strengthen precondition Pre with c. As far as the assertions c in 
Aare concerned, 81 could now be chosen to be a skip. This, however, 
is not acceptable: in order to guarantee B's progress, we will have to 
add a statement c:= false somewhere. In view of our self-imposed 
constraint, such a statement can only be accommodated in A, i.e. in 
81. Thus, our only possible choice for 81 is a fragment of the form 

81 

; c:=false 

; if c ---t skip fi 

And this settles the local correctness of the assertions c in A. 

End of Note O. 

Note 1 "...,c" in B 

G: We see to it that statements c:= true will be confined to B. 

L: We prefix the assertion with guarded skip if...,c ---t skip fi , i.e. we 
choose To to be of the shape 

To 

; if ...,c ---t skip fi 

End of Note 1. 

Assembling all our decisions, we get 

Pre: x=O 1\ y=O 1\ c 

A: B: 

* [{x=y} {cl * [To 
81 ; if ...,c ---t skip fi 

; c :=false ; {? y=x, Note 1} {...,c} 

; if c ---t skip fi y:=y+l 

; {? x+l=y, Note O} {cl ; T2 

x:=x+l 1 
{x=y} {cl 

1 
Inv: P: x-:;'y 1\ y-:;'x+l 

Constraints: c := false confined to A 

c := true confined to B 

Version 3 
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* * 
* 

Note 0 "x + 1 = y" in A 

L: Prefix guarded skip if c -+ skip fi with -,c V x + 1 = y . 
G: Correct by the Rule of Disjointness. 

End of Note O. 

Note 1 "y=x" in B 

L: Prefix guarded skip if -,c -+ skip fi with c V y = x . 

G: Correct by the Rule of Disjointness. 

End of Note 1. 

Thus, our next version becomes 

Pre: x=O 1\ y=O 1\ c 

A: *[{x=y}{c} 

81 

; c :=false 

; {? -,c V x + 1 = y, Note O} 

if c -+ skip fi 

; {x+l=y} {cl 

x:=x+l 

;{x=y}{c} 

1 
B: * [Ta 

; {? c V y = x, Note I} 

if -,c -+ skip fi 

; {y =x} {-,c} 

y:=y+l 

; T2 

1 
Inv: P: x'5.y 1\ y'5.x+l 

Constraints: c:= false confined to A 

c:= true confined to B 

Version 4 
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* * 
* 

Note 0 "oe V x+l=y" in A 

L: Correct by the preceding e:= false . 

G: - {y = x 1\ oe} y := y + 1 in B does not falsify the target assertion. 
- e:= true in B will be constrained, viz. to 

{? x+l=y} c:=true 

End of Note O. 

Note 1 "e V y=x" in B 
Since c V y = x holds initially, we choose skip for To and make the 
target assertion an invariant of B's repetition, Le. we consider 

B: * [ {? e V y = x} 
if oe -> skip fi 

; {y = x} {oe} 

y:=y+l 

; T2 

{? e V y=x} 

1 
and we handle the two queried assertions in one go. 

L: Assertion e V y = x holds initially and T2 can establish it via 
c:= true - which accords with the Constraints as recorded in Ver
sion 4. 

G: - {c} x := x + 1 in A does not falsify e V y = x . 
- c:= false in A does not falsify e V y = x either, provided it has 

pre-assertion y = x . Therefore, we choose a skip for 81. 

End of Note 1. 

The only remaining question is whether choice e:= true for T2 satisfies 
the extra constraint introduced in Note 0, Le. does T2 have pre-assertion 
x + 1 = y? We leave to the reader the proof that, indeed, x + 1 = y is a 
correct pre-assertion to T2 - thanks to its having oe as a co-assertion. 

And this completes our derivation of a solution to the Mutual Inclusion 
problem. Assembling the choices made in Note 1 above, we arrive at the fol
lowing, fully annotated algorithm, in which we have re-inserted the original 
8 and T from the computation proper. 
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Pre: x=O 1\ y=O 1\ e 

A: *[{x=y}{e}S B: *[{e V y=x} 

; e :=false if --,e -+ skip fi 

; {--,e V x + 1 = y} ;{y=x}{--,e}T 

if e -+ skip fi ; y:=y+1 

;{x+1=y}{e} ; {x + 1 = y} {--,e} 

x:=x+1 e:= true 

{x=y} {e} {e V y=x} 

1 1 
Inv: P: xS:.y 1\ ys:'x+1 

A (fully annotated) Mutual Inclusion Algorithm 

Obviously, there is no danger of total deadlock, so that thanks to our multi
bound MB individual progress is guaranteed as well. And herewith we 
conclude our derivation. 

Three (in)comparable algorithms 

Earlier in this chapter, we confronted the specifications for Mutual Inclu
sion, the Handshake Protocol, and the problem of Phase Synchronization 
with each other, and we concluded that MI was thc most dcmanding spec
ification. The fact that MI is the hardest one becomes manifest in the 
derivation. In our earlier derivation for HP (cf. Chapter 16) and PS (cf. 
Chapter 17), wc werc able to carry out most of the development in terms 
of the variables x and y, only switching to the boolean domain at the 
very end, via a coordinate transformation. However, we did not succeed 
in replicating that pattern he re (and wc think wc never will). The Mutual 
Inclusion algorithm is a very delicate one, and its derivation hardly allows 
any manoeuvring space; we are led to believe that it is almost uniquely 
determined in all its details. This latter observation does not pertain to the 
other two problems, which permit various solutions, for instance ... the 
Mutual Inclusion algorithm. 

We conclude by displaying the raw code of the three algorithms as de
veloped in the course of this monograph. They all maintain 

xS:.y 1\ ys:'x+l 
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and satisfy their specification. They all look similar, but differ in all details, 
such as the order of statements, the occurrence of negation symbols. It is a 
weird family indeed, and we suggest the reader never try to remember one 
of these algorithms by heart but to focus on their development instead. 

Pre: x=O 1\ y=O 1\ c 

A: *[{x=y}S B: * [ if .....,c --t skip fi 

; c:=false ; {y=x} T 

; if c --t skip fi ; y:=y+l 

; x:=x+l ; c:= true 

1 1 
Mutual Inclusion 

Pre: x=O 1\ y=O 1\ .....,c 

A: * [ if c --t skip fi B: * [ if .....,c --t skip fi 

; x:=x+l ; {y=x} T 

; c:=false ; y:=y+l 

1 ; c:= true 

1 
Handshaking 

Pre: x=O 1\ y=O 1\ .....,c 

A: *[{x~y}S B: * [ {y ~ x} T 

; if c --t skip fi ; y:=y+l 

; x:=x+l ; c:= true 

; c :=false ; if .....,c --t skip fi 

1 1 
Phase Synchronization 

A few words on CSP-programming 

Just as has been the case with Dijkstra's P- and V- operations on sem
aphores, Hoare's CSP-constructs have, ever since their emergence, raised 
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a lot of interest in the computing community. They - and variations on 
them - are discussed in almost any foundational text on synchronization 
primitives, and they have been supplied with a variety of semantic rules: 
[Mar81, Hoa85, CM88, Mi189, A091, Sch97], to mentionjust a few. Also, we 
see them shown at work in programming, sometimes even impressively so 
[Hof94]. Unfortunately, however, and unlike with P- and V- operations, 
a simple and uniform discipline for program derivation based on these 
constructs has not been developed so far. And yet we believe that this 
should be possible. And we also believe that the Owicki/Gries theory can 
be an important formal ingredient of such a discipline. This may seem 
surprising. 

The Owicki/Gries theory has, from the very moment of its emergence, 
held the stigma of only being good enough for the a-posteriori verification 
of shared-memory programs. (We hope that this monograph will help in 
strongly refuting this point of view.) At the same time, synchronous com
munication as embodied by the CSP-constructs, almost by design finds its 
main application in distributed computing. This, in combination with the 
stigma, may provide a historical explanation for the lack of influence that 
the theory of Owicki and Gries has had on program derivation based on 
synchronous communication. And this is a pity, but at the same time a 
challenge for future research. 

Let us explain, in just a few words, where our optimism comes from. 
Many multiprograms, whether distributed or not, are to be mastered and 
understood through system invariants. System invariants usually induce re
quired preconditions for statements. These preconditions have to be (made) 
locally and globally correct, and thus the whole Owicki/Gries theory enters 
the picture. 

The CSP-constructs provide us with an additional, extremely simple way 
to establish the local correctness of an assertion: for instance, when ch!expr 
and ch?v click, we can infer the local correctness of the assertion in 

ch?v {v = expr} 

Of course, as in any multiprogram, the issue of progress remains. Here one 
must see to it that the communication patterns that can be displayed by 
a component, can be adequately matched by the rest of the system. Mild 
forms of trace theory or regularity calculus, and, last but far from least, 
the application of variant functions, might turn out to be helpful here. 



24 

A Simple Election Algorithm 

We consider a multiprogram with a positive and finite number of compo
nents. Component i has a private boolean variable y.i and it does just 
one thing, namely it performs one as yet unknown assignment to this vari
able. The problem is to synchronize the components in such a way that 
they all terminate and leave the system in a final state satisfyingt 

(0) ( #j :: y.j ) = 1 

However, the problem is to be solved subject to two more constraints, to 
wit 

- that the final algorithm be entirely expressed in one-point atomic state-
ments 

- that the solution be symmetrie in the components. 

(This last constraint excludes that some components can get preference to 
others in finding their final y- value equal to true.) 

This is not such a difficult problem, and the reader may try to invent 
or construct a solution for hirnself. We will give a derivation from scratch, 
completely according to the rules of the game and without pulling rabbits 
out of the hat. 

tDurnmies range over the component names and # stands for "the number of". 
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* * 
* 

The first thing we do is render the problem a little more formal in order 
to make it amenable to manipulation and calculation. To begin with, there 
is the assignment to y.i. Let it be 

y.i := B.i 

for some expression B.i still to be determined. Whether or not postcon
dition (0) is established by the assignments y.i:= B.i will depend on 
our choice of the expressions B.i. If we insist that component i have 
post-assertion y.i == B.i, we will be able to tackle (0) in terms of the ex
pressions B, which grant us more manipulative freedom. We thus propose 
to consider 

Pre: true 

Comp.i: y.i := B.i 
{? . . y.z - B.i} 

Post: ? ( #j :: y.j) = 1 

Version 0: A formal specification 

* * 
* 

Prom the post-assertions of the individual components we conclude that 
a postcondition of the multiprogram is 

( Vj :: y.j == B.j) 

so that required postcondition (0) can be rewritten into the equivalent 

(1) ( #j :: B.j) = 1 

Remark At this point many areader might just "see" a simple and 
elegant choice for the B's that satisfies (1). With full respect for these 
readers, we will nevertheless derive a suitable shape for the B's, for the 
benefit of the readers who don't "see". 
End of Remark. 

Formula (1) is rat her a packed formula. It is equivalent to the conjunction 
of 

(2a) 

(2b) 

( 3j :: B.j ) and 

(Vi,j:: B.i 1\ B.j => i=j) 
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Viewed as an equation in B, (2a) doesn't provide much of a clue. So let 
us focus on (2b). 

Choosing false for the B's solves (2b) irrespective of the consequent 
i = j. But this choice is no good for (2a). So the clue is in the consequent 
i = j. Both i and j are (arbitrary) component names, and the quest ion 
is how one can conclude the equality of two things taken from an arbitrary 
domain. To the best of our knowledge, the only mathematicallaw that can 
do this for us is the transitivity of the equality operator. This requires that 
a third element, v say, enter the picture; and this settles our choice for 
the B's: 

B.i == v=i 

Thus, (2b) is satisfied by construction. As for (2a), component i can es
tablish it by the assignment v:= i , which, in view of the required symme
try between the components, is the only choice possible. Once established, 
(2a) will not be falsified again. 

Thus, (2a) and (2b), and therefore (1), and therefore (0), have become 
correct posteonditions to the multiprogram, and this takes us to the next 
version, in which for caution's sake we include placeholders Sand T: 

Pre: true 

Comp.i: S.i 

; v:=i 

; T.i 

; y.i := v=z 
{? . . y.z - v =i} 

Post: ( #j :: y.j ) = 1 

Version 1 

* * 
* 

We are left with assertion y.i v = i , which is locally correct by con-
struction. Its global correctness is endangered by statement v:= j in 
Comp.j, j =I- i. We therefore investigate: 

(y.i == v=i) =} (v:=j).(y.i == v=i) 

{substitution, using i =I- j} 

(y.i == v = i) =} -,y.i 
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{predicate calculus} 

-,y.i V v i= i 
As a result, the global correctness of assertion y.i == v = i in Comp.i is 
not for free. We therefore strengthen the annotation (cf. Chapter 6) by 

- giving target assertion y.i == v = i co-assertion J.i, 
- giving v:= j pre-assertion g.j, for each j, j i= i , and 
- requiring that, for all i 

(3) ( Vj : j i= i : J.i 1\ g.j * -,y.i V v i= i ) 

be a system invariant. 
We will thus be considering a multiprogram of the form 

Pre: true 

Comp.i: B.i 

; {? g.i} 

v:=i 

; T.i 

; y.i := v=i 

{y.i - v = i} {? J.i} 

Inv: ? (3) for all i 

Post: ( #j :: y.j ) = 1 

Version 2 

* * 
* 

The most convenient way to make the rather awkward looking (3) into 
a system invariant is to bend it into a mathematical theorem, i.e. to make 
it just true. This is quite possible, because we can solve (3) for J.i: 

(3) 

{predicate calculus} 

( Vj : j i= i: j.i * -,g.j V -,y.i V v i= i ) 

{predicate calculus} 

j.i * (Vj: j i= i : -,g.j V -,y.i V v i= i ) 
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Because f.i was introduced as an assertion, we follow our standard rule 
of thumb and choose it as weak as possible, Le. we opt for an f.i defined 
by 

( Vj : j i i : --,g.j V 'y.i V vii) 

Taking furthermore into account that f.i has co-assertion y.i 
we can simplify it to 

f.i: ( Vj : j i i : --,g.j V vii) 

v=i, 

(thus eliminating its dependence on y.i). Having thus satisfied (3), we 
obtain 

Pre: true 

Comp.i: B.i 

; {? g.i} v := i 

; T.i 

; y.i := v=i 

{y.i - v = i} {? f.i} 

Post: ( #j :: y.j ) = 1 

Version 3 

* * 
* 

Now we are dose to the end. We represent g.i by a boolean variable pri
vate to Comp.i and give it initial value true. Then a skip for S.i suffices for 
the correctness of assertion g.i. As for f.i, Le. (Vj: j i i : 'g.j V vii) 
, its local correctness will be realized by a guarded skip in T.i, and its 
global correctness is for free, both under statements v:= j and under 
statements g.j:= false - to be included in T.j for reasons of prog
ress. The final, fully annotated program thus reads: 
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Pre: ( Vj :: g.j ) 

Comp.i: {g.i} 

v:=~ 

; g.i := false 

; if ( Vj : j i= i : -,g.j V v i= i ) 
--t skip fi 

; {( Vj : j i= i : -,g.j V v i= i )} 

y.i := v =i 

{y.i - v = i} {( Vj : j i= i : -,g.j V v i= i )} 

Post: ( #j :: y.j ) = 1 

A Simple Election Algorithm 

* * 
* 

Two issues remain, viz. progress and the grain of atomicity. We consider 
atomicity first. The only atomic statements in our solution that are not one
point are the guarded skips. However, since each ofthe individual conjuncts 
in the guards is globally correct, the Guard Conjunction Lemma tells us 
that the conjunction can be evaluated conjunctwise. So the guarded skip 
in Comp.i can be replaced with, for instance, 

for j : j i= i do 

if -,g.j V v i= i --t skip fi 

od 

Now the individual guarded skips are the only statements that are not 
one-point yet: their guards refer to both g.j and v. There is a theorem, 
however, that we owe to Mohamed G. Gouda and that has not been men
tioned in this monograph yet (Peccavimus!), which says that a disjunction 
may be evaluated disjunct-wise without impairing the total correctness of 
the algorithm, whenever one of the disjuncts is globally correct. Gouda's 
theorem clearly applies in this case. Thus our algorithm can be expressed 
in one-point atomic statements. 

Because these program transformations preserve progress properties, we 
can carry out the progress argument in terms of the coarse-grained algo
rithm - which is easier. We will prove that each individual component 
terminates. To that end we first observe that at most one component can 
be blocked in its guarded skip (this due to disjunct v i= i ). Now let Comp.i 
be blocked indefinitcly. Then all other components terminate and together 
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establish the ~ stable ~ corrcctness of (Vj: j -I- i : 'g.j ) , thus making 
Comp.i's guard stably true. As a result, Comp.i will terminatc. 

Rerewith we conclude the treatment of this algorithm. 

* * 
* 

There is one final remark we wish to make on our choice for f.i, which 
was 

(Vj: j -I-i: 'g.j V v-l-i) 

Because f.i occurred as an assertion, we chose it as weak as possible. Rad 
we not insisted on adhering to this rule of thumb, we could have selected 
the stronger 

( Vj : j -I- i : ,g.j ) 

or the other stronger 

( Vj : j -I- i : v -I- i ) 

The first choice would have given rise to a guarded skip 

(*) if (Vj: j-l-i: ,g.j) -> skip fi 

and the second to 

(**) if ( V j : j -I- i : v -I- i ) -> skip fi 

instead of the onc in our current algorithm. With (*) the algorithm would 
still enjoy all progress properties, albeit that thc amount of parallelism 
would reduce drastically: guarded skip (*) acts as a barrier that can only 
be passed when all components are about to executc it. With (**), however, 
thc program would become incorrect in its progress propertics, since one 
component would fail to terminate. 

So here we have another example illustrating why assertions should not 
lightheartedly be chosen too strong. During the development of the algo
rithm we were therefore kecn on finding the weakest f.i satisfying (3), 
and it goes without saying that in playing this game, well-versedness in the 
predicate calculus is of decisive importance. 
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Peterson's General Mutual Exclusion 
Algorithm 

As we already pointed out earlicr, the eoneept of mutual exclusion his tori
eally was one of the first eoneepts for dealing with the enormous eomplexity 
brought about by the eoneurrcnt cxceution of eooperating sequential pro
grams. Along with the emergenee of the eoneept, the quest for mutual 
cxclusion algorithms began, and a eontinuous stream of such algorithms 
has seen the light, ever sinee thc first general mutual exclusion algorithm 
was conceived [Dij65J. (For an overview, the reader may consult [Ray86J.) 

It ean be safely stated that all those designs cmbodied a great intellee
tual achicvement. One reason for their complexity is that they invariably 
had to be expressed in terms of one-point statements only, simply beeause 
that was required by the underlying machine arehiteeture. (A mitigating 
cireumstance is that, in this kind of game, one has always required solutions 
to be symmetrie in the eomponents, whieh helps bridling the eomplexity.) 

In eomposing a monograph like this, we feel it both aehallenge and a 
bounden duty to address the general mutual exclusion problem at least 
onee, simply to test our proposed method of multiprogramming on an ap
parently larger seale. In this ehapter we take up the challenge by present
ing a formal derivation of the simplest mutual exclusion algorithm that we 
know of, viz. Peterson's algorithm for N (2 ~ N) eomponents [Pet81]. 
We should mention right at the start, however, that while Peterson's algo
rithm for two components has conquered the world, this does not hold for 
his general solution. This general solution is outperformed in almost ev-
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ery quantitative respect by many of its predecessors, but that is irrelevant 
here. 

* * 
* 

Thus far, most of our derivations have been rat her "flat", taking place 
at one and the same level of abstraction. In our current example this is no 
longer convenient: it is the occurrence of the number N that may call 
for a more macroscopic investigation of the problem first, most notably for 
some sort of inductive argument. Of course, there is a huge variety of ways 
in which one may tackle the mutual exclusion problem via mathematical 
induction, but we will confine ourselves to just one very simple way. 

In each mutual exclusion algorithm, the components will have shape 

* [nes 

; In 

; es 

; Out 

Here, In and Out are placeholders for the protocol by which mutually 
exclusive access to the critical section es is to be realized. We observe 
that 

the number of components engaged in 
program fragment "In; es; Out" 

whereas it is required that 

the number of components engaged in 
program fragment "es" 

(**) < 
1 

Relation (*) is given and relation (**) is demanded. The important dif
ferences between the two are in the upperbounds N and 1, and in the 
program fragments specified. So why not replace these by variables k and 
Seetion.k respectively, and set ourselves the goal of decreasing k under 
invariance of 

the number of components engaged in 
program fragment "Section.k" 

< 
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k 

Thanks to (*), this relation holds far 

k, Seetion.k = N, "In; es; Out", 

whereas it yields the desired result (**) far 

k, Seetion.k = 1, "es". 

With ne.k short for "the number of components engaged in program 
fragment Seetion.k", the induction step is readily specified by 

Seetion.(k+ 1): entry.k 

; Seetion.k 

; exit.k 

Inv : ne. ( k + 1) ::; k + 1, 

? ne.k -:;. k 

Specification of Seetion.(k+ 1) ,for 1::; k 

Here, entry.k and exit.k are placeholders for the protocol by which the 
required invariant ne.k::; k is to be realized. 

In this terminology, our mutual exclusion algarithm can now be described 
by 

Comp.p: * [ nes 

; Seetion.N 

with for Seetion a recursive routine of the form 

Seetion.(k+ 1) : 
if k+ 1 = 1 ~ es 

k+1 > 1 ~ 

entry.k 

fi 

; Seetion.k 

; exit.k 

In order to stay closer to Peterson's original encoding of the algorithm, we 
eliminate S eetion from the program text by repeated unfolding and thus 
arrive at 
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Pre: true 

Comp.p: * [ nes 

; 1 [ var k : int; 

II 
1 

k:=N -1 

do k -I- 0 ~ 

entry.k 

; k:=k-1 

od 

es 

do k -I- N -1 ~ 

k:=k+1 

; exit.k 

od 

Macroscopic view on Peterson's algorithm 

* * 
* 

The only thing we are left with is the design of the entry- and exit
protocols as specified by Seetion, but before doing so we first discuss some 
notational issues. 

We did not bot her to write nes.p and es.p in Comp.p, although these 
fragments may very weH vary from component to component. Neither did 
we write entry.k.p and exit.k.p, although these pieces of code may vary 
from component to component as weH ~ be it only in a symmetrical 
fashion. We should keep in mind, though, that we shall be developing the 
entry- and exit- protocols as they will manifest themselves for arbitrary 
Comp.p. (With this strategy, symmetry will be guaranteed!) 

Also, we will design entry.k and exit.k for one particular, but arbi
trary value of k in thc range 1:S k < N . Since it is not clear whether the 
required synchronization can be achieved independent of k's value, we 
must be preparcd to let entry.k and exit.k depend on k. In particular 
we will, thcrefore, introduce distinct sets of ~ fresh ~ synchronization 
variables for distinct values of k. The advantage of this choice is that 
assertions pertaining to thc set for kare globaHy correct undcr manipu-
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lations on thc variables of the set for i, i i- k . This creates the freedom 
to notationally suppress the dependence on k. Thus we will, for instance, 
writc "1", but wc have to bear in mi nd that "f.k" is meant. 

With these notational conventions, we can now formalize the specification 
of Section.(k+1) as follows - explanation below--

Prc: /=0 
Section.(k + 1) /:=/+1 

(in Comp.p) ; Section.k 

; /:=/-1 
Inv: nc.(k+ 1) ::; k+1, 

?/::;k 

Version 0 

Variable / is introduced to record the value of nc.k, Le. the number of 
components engaged in Section.k. Statements /:= / + 1 and /:= /-1 
also serve as our first approximation to entry.k and exit.k, respectively. 

* * 
* 

The invariance of /::; k is taken care of right away by the following 
program 

Pre: /=0 

Section.(k + 1) if / < k -> / := / + 1 fi 
(in Comp.p) ; Section.k 

; / :=/-1 
Inv: nc.(k+ 1) ::; k+1, 

/::;k 

Version 1 

(Note that nothing of the given nc.(k+1) < k+1 has been taken into 
account yet.) 

The above program, however, suffers two shortcomings: 

• One -- easily seen -: the statements are far from one-point. In partic
ular the guarded statement is far too coarse-grained. 
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• Two - less easily seen -: the algorithm lacks the desired progress 
properties. In particular, individual starvation of a component is not 
excluded. This can be seen as follows. Since I::; k is an invariant, this 
is a correct pre-assertion to the guarded skip as weH, but not hing stronger 
than that can be inferred about this precondition. So the system state 
may satisfy 1 = k , in which case some component may become blocked 
in the guarded statement and then remain so, because by the cyclic 
character of the components it may be overtaken infinitely often by other 
components. 

We now focus on the first shortcoming, i.e. on unraveling the guarded 
statement, and address progress issues later. 

Remark This order of coping with the two shortcomings is not random 
at all. As we have seen a couple of times before, unraveling too coarse
grained statements is realized by Guard Strengthening. If in our current 
situation, we would try to remedy the lack of progress first - most likely 
by guard weakening! - we would still be left with the too coarse-grained 
guarded statement, the unraveling of which - via Guard Strengthening! 
- might undo the accomplished progress properties again, and thus ne
cessitate yet another guard weakening. Our general strategy therefore is to 
focus on progress only after everything else has been done. Gathering from 
experience we know that this usuaHy works out weIl. We will, however, 
return to this issue in the very last technical chapter of this monograph. 
End of Remark. 

For the purpose of unraveling the guarded statement, we introduce a 
fresh variable 9 (g.k) to take over the röle of I; it is related to 1 by 
1 ::; 9 - ins pi red by the shape of the guard. Our topology lemmata then 
dictate the next version. 

Pre: 1=0 1\ g=O 

Section.(k+ 1) g:=g+l 

(in Comp.p) ; {f < g} 

if 9 ::; k -t 1 := 1 + 1 fi 

; Section.k 

; I, 9 := 1 - 1, 9 - 1 

Inv: nc.(k+ 1) ::; k+l, 

I::; k, 

I::;g 

Version 2 
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(Note that, still, nothing of the given ne.(k+ 1) < k+ 1 has been taken 
into account yet, but this will change shortly.) 

Assertion f < 9 follows from the program topology, and because it is a 
correct pre-assertion for the guarded statement we have 

f<k {::: g5,k 

so that thc transition from Version 1 to Version 2 indced comprises a guard
strengthening, but only a cautiously designed minimal one t . We could now 
eliminate f, but we leave it in a little longer for furt her discussion. 

* * 
* 

By the above guard strengthening, progress has been damaged even more 
severely: now total deadlock is possible (viz. when all k + 1 components 
that can initiate Seetion.(k+1) first perform g:=g+1). So now thc 
time has come to weaken the guard. We propose to replacc the current 
guarded statement with 

if 9 5, k V H.p -+ f:= f + 1 fi 

Here H.p is an as yet unknown condition, which, howcver, we insist must 
not depend on f (because f is going to vanish from thc program text). 

By this weakening of the guard, the partial correctness, Le. the invariance 
of 

f5,k 

is no longer guaranteed, and here is the place where we finally use the given 
invariance of ne. (k + 1) 5, k + 1 . From the structure of the program we 
conclude the invariance of 9 5, ne. (k + 1) and, hence, of 9 5, k + 1 . By our 
last Topology Lemma in Chapter 7, 9 5, k therefore is a correct pre- and 
post-assertion to S eetion. (k + 1) . This causes us to consider the following 
version: 

tWe just mention that had we lightheartcdly rcplaccd guard f < k by g< k instead 
of the weakcr g:<::; k , thc whole design would have failed miserably. 
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Pre: 1=0 1\ g=O 

Section.(k+1) : {g::; k} 

(in Comp.p) g:=g+l 

; {J < g, hence 1 ::; k} 

if g::; k V H.p -t 1:= 1 + 1 fi 

; {? g::; k V H.p, see below} 

Section.k 

; {g::; k V H.p} 

I,g:= 1-1,g-1 

{g ::; k} 

Inv: g::;k+1, 

I::; g, 

?I::;k 

Version 3 

Assertion g::; k V H.p is the strongest relation we can assert as a post
condition of the guarded statement. (Recall: H.p does not depend on I.) 
Since we wish the current annotation to be helpful in concluding the po
tentially damaged invariant I::; k , we want the annotation to be as strong 
as possible, and that is why we will require that assertion 9 S; k V H.p be 
globally correct as well. Thus we insist that 

(i) Each Comp.q, q i= p , will truthify H.p along with g:= 9 + 1 . 

Next we analyze for which choice of H.p the invariance of 1 S; k can 
be inferred. From the annotation of Section.(k+ 1) we conclude that the 
system as a whole maintains 

P: ( 't:/p :: I::; k V g::; k V H.p ) 

which is the strongest statement we can make about the system state. Now 
the question is when and how we can infer 

P :::} I::;k ? 

To that end we calculate: 

P 

{definition of P} 

( 't:/p :: 1 ::; k V g::; k V H.p ) 

= {J ::; 9 is a system invariant, hence g::; k :::} 1 S; k} 
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( 't:/p :: f::; k V H.p ) 

{predicate calculus} 

( 't:/p : -,H.p : f ::; k ) 

:::} { (ii) below} 

f::;k 

where 

(ii) -,H.p does not describe an empty range. 

Remark Requirement (ii) on H is sharp: the implication in the above 
calculation just doesn't hold for an empty range. 
End of Remark. 

So provided (i) and (ii) are satisfied, we have saved the invariance of f::; k . 

Now, because H.p occurs as a disjunct in the guard, progress is served 
best by choosing H.p as as weak as possible, or, equivalently, by choosing 
-,H.p as strong as possible. The strongest -,Hp satisfying (ii) definitely 
is a one-point predicate+, and this causes us to introduce a fresh variable 
v (v.k) and choose 

-,H.p: v=p ,or 
H.p: v =/= p 

Thus (ii) is met, and in order to satisfy requirement (i) on H.p we shall 
expand g:=g+l in Comp.q, q=/=p, into 

g,v:= g+l,q 

This analysis, which constitutes the heart of the design, takes us to the 
following approximation, from which f has now been eliminated: 

Pre: g=O 

Section.(k+l) g,v := g+l,p 

(in Comp.p) ; if g ::; k V v =/= P -t skip fi 

; Section.k 

; g:=g-l 

Version 4 

* * 
* 

tThis is a prcdicate that yields valuc true in one point only. 
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We are getting elose to our final solution, albeit that we still have to 
eliminate the too coarse-grained assignments and guard. The unraveling of 
the multiple assignment is quite simple: we have seen it a few times before 
(cf. Chapters 11 and 14), but we first tackle the assignments to g, which 
are "two-point" ~ they inspect the old value and assign a new one. 

We shall eliminate 9 by coupling it to a set of N private booleans, 
X.p ( (x.p).k!) for Comp.p, as folIows: 

9 = ( #q :: X.q ) 

Then g:= 9 + 1 in Comp.p gets expanded into 

{-,x.p} g, x.p:= g+1, true 

and g: = 9 - 1 into 

{x.p} g, X.p:= g-1, false 

The translation of the guard has a little surprise in store: 

g5.kVv:f:.p 

{coupling for g} 

( #q :: X.q ) 5. k V V:f:. P 

{= {surprise, using 1 5. k} 

( #q :: X.q ) 5. 1 V V:f:. P 

{relation #1 'i and using that X.p is apre-assertion 
of the guarded skip} 

('iq: q:f:.p: -,x.q) V V:f:.p 

{predicate calculus} 

( 'iq : q:f:. p : -,x.q V V:f:. P ) 

Remark (on the surprise) 
It is absolutely against our general strategy to apply a strengthening as 
huge as in the above calculation, because it may cause great problems for 
progress. In this case the damage is not too big, because on eloser scrutiny 
our guarded skip is very "permeable", thanks to disjunct v:f:. p: at most 
one component can be blocked at it, irrespective of what the other disjunct 
iso As we shall see shortly, progress itself is not endangered. It is only the 
progress argument that will become just a little more complicated. 
End of Remark. 

So, thanks to the strengthening step in the above calculation, our guard 
has become 
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('iq: qoj=p: -,x.q V voj=p) 

and since the individual conjuncts are globally correct (under X.q:= false 
and x.q, v := true, q in Comp.q, q oj= p ), the conjunction may be evalu
ated conjunct-wise and in any order (cf. the Guard Conjunction Lemma). 
Hence 

if ('iq: qoj=p: -'X.q V voj=p) --+ skip fi 

can be replaced with, for instance, 

for q : q oj= p do 

if -'X.q V v oj= p --+ skip fi 

od 

Finally, because v oj= p is globally correct, Gouda's Guard Disjunction 
Lemma (see Chapter 24) tells us that the disjunction -'X.q V v oj= p may 
also be evaluated disjunct-wise. We will keep all this in mind, but we will 
not do notational justice to it. Thus having eliminated g, we get as our 
next approximation 

Pre: ( 'iq :: -,x.q ) 

Section.(k+ 1) x.p, v := true,p 

(in Comp.p) ; if ('iq: qoj=p: -'X.q V voj=p) 

--+ skip 

fi 

; Section.k 

; X.p := false 

Version 5 

* * 
* 

In our final massaging, we replace multiple assignment 

X.p, v := true, p 

by 

X.p := true 
; v:=p 

and do not even bot her to rename x. This transformation leads us to the 
final code for Section.(k + 1) : 



276 25. Peterson's General Mutual Exclusion Algorithm 

Pre: ( 'Vq :: -,x.q ) 

Seetion.(k+1): entry.k: x.p:= true 

(in Comp.p) ; v := p 

; Section.k 

; if ('Vq: q=l=P: -,x.q V v=l=p) 

~ skip 

fi 

; exit.k x.p := false 

Version 6: final code for Seetion.(k+1) 

* * 
* 

Before addressing progress, we first present the raw code for Peterson's 
algorithm. This time we do supply the indices k coming with Seetion.k. 

Pre: ( 'Vk : 1::; k < N : ( 'Vq :: -,x.q.k ) ) 

Comp.p: * [ nes 

; I [ var k : int; 

k:=N -1 

do k =1= 0 ~ 

II 
1 

x.p.k := true 

; v.k:= p 

; if ( 'Vq : q =1= p : -,x.q.k V v.k =1= p ) ~ skip fi 

; k:=k-1 

od 

es 

do k=l=N -1 ~ 

k:=k+1 

; x.p.k := false 

od 

G. L. Peterson's Mutual Exclusion Algorithm for N components 
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For completeness' sake we mention that in Peterson's original publication, 
the N * (N - 1) booleans are coded in a different more compact way. 
This is possible because of the monotonicities in x.p.k as a function of 
k. However, we do not carry out this last coordinate transformation here, 
because it no longer contributes to our purpose: the formal derivation of a 
non-trivial algorithm. 

* * 
* 

Finally we address progress, which means that we will show that a com
ponent that has terminated its nes will, within a finite number of steps 
of the system, enter its es (and vice versa, which is obvious from the 
program text). 

By (our) lack of a formalism for addressing progress, our argument will, 
of necessity, be informal. Fortunately that doesn't harm in our current 
example, because our informal argument, we believe, will be found to be 
simple and totally convincing. To the best of our knowledge, no formal 
progress argument has ever been published* (nor an informal one). The 
reason for this is unclear. Maybe computing scientists didn't care (because 
they didn't care ab out the algorithm?), or thcy didn't succeed because it 
was too difficult. We just don't know. 

As for the structure of our progress argument, it need not come as a 
surprise that the argument is as inductive as the development of the al
gorithm. We return to Version 6 to which we add two obviously correct 
assertions about private variable X.p: 

Prc: ( 't/q :: -'X.q ) 

Section.(k+ 1) {-,x.p} 

(in Comp.p) x.p := true 

; v:=p 

; if ('t/q: q-j-p: -'X.q V v-j-p) -+ skip fi 

; Seetion.k 

; x.p := false 

{ -,x.p} 

Version 6 

• After this text had been written, we found one in [Lyn96] 
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* * 
* 

Recalling that each component has the form * [nes; Seetion.N 1 ,where 
Seetion.1 is the es, we have met our demonstrandum whenever we have 
shown that for each k such that 1 ~ k ~ N, Seetion.k terminates far 
each component engaged in it. We do so by mathematical induction, with 
induction hypothesis 

(*) Seetion.k terminates far each component engaged in it . 

• Condition (*) certainly holds far k = 1 ,since Seetion.1 is es and, 
therefare, is supposed to terminate (for each component engaged in it). 

• At most one component can be blocked in the guarded skip of 
Seetion.(k+1) , thanks to disjunct vi-P. Now let Comp.p be blocked 
indefinitely in this guarded skip. We show that within a finite number of 
steps the guard will becoine stably true, after which Comp.p can engage 
in Seetion.k, which by (*) terminates, so that Seetion.(k+1) termi
nates for Comp.p. We distinguish two different computations that can 
be generated by the system: 

(i) Some Comp.q, q i- p, initiates Seetion.(k + 1) while Comp.p is 
blocked. It will make vi- p stably true through v:= q ~ and 
hence Comp.p's guard as weIl. 

(ii) No Comp.q, qi-P, initiates Seetion.(k+1) while Comp.p is 
blocked. We show that in this case the system will generate the sta
ble truth of ('t/q: q =f. p : ,x.q) , so that, again, Comp.p's guard 
becomes stably true. The argument is as follows. For components 
Comp.q, q i- p, that are outside Seetion.(k + 1) , we have the stable 
truth of ,x.q (see annotation). For components Comp.q, q i- p, 
inside Seetion.(k + 1) , we conclude from (*) that Seetion.k ter
minates. These components will also finish Seetion.(k + 1) through 
x.q := false and thus generate state 'x.q. 

This concludes our progress argument and our treatment of Peterson's 
general mutual exclusion algorithm. 

* * 
* 

When, many years ago, Lex Bijlsma and one of the authors (WF) man
aged to give an a-posteriari correctness proof for (the partial correctness of) 
Peterson's algorithm, they arrived at essentially the same two-Ievel struc
ture as presented he re [Fei90]. But that is the only similarity. That former 
treatise was completely upside down. It started at the raw code given by 
Peterson and tried to extract from it meaningful pieces of code that per
haps could be dealt with in isolation. Those were what we now identified 
as the entries and thc exits of the "Section"s. The "Section"s themselves 
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could not be found there, and consequently the induction was only present 
in the background of that treatment instead of in the foreground. 

It was during a classroom session that a student observed that we were 
doing things completely bot tom up, and threw down the gauntlet. Then 
Perry D. Moerland immediately picked it up, and it is essentially his deriva
tion that we have presented here. It was the experiment at ion with this al
gorithm that irrevocably taught us that verifying multiprograms is one or 
two orders of magnitude more complicated than developing them. 



26 

Monitored Phase Synchronization 

In Chapter 17 we addressed the problem of phase synchronization - also 
known as "barrier synchronization" - for the case of two components. The 
main purpose of that chapter was to show program derivation at work in a 
simple setting and to discuss various methodological issues. It should not 
be surprising that, as this text progresses, we become interested in more 
"scaled-up" problems, problems closer to everyday practice so to speak. 
Therefore in this chapter we will tackle, as an example, the problem of 
barrier synchronization for an arbitrary but fixed number of components, 
and show how it can be solved through an intermediary in the shape of a 
monitor or a bus. In the next chapter we will then develop an algorithm 
for barrier synchronization that is fully distributed, i.e. that is intended for 
an architecture where the components are located in the no des of a -
sparsely connected - network. The overall intention of these examples 
is to show program derivation at work in a less simple setting and on 
a variety of potential machine architectures. In addition, the problem of 
barrier synchronization all by itself has proved to be important enough, 
because of its applications in areas where components are to proceed in a 
"lock-step-like" fashion. 

* * 
* 

The specification of our problem is a straight forward generalization of 
the formal specification developed for two components in Chapter 17: 
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Pre: (Vq:: x.q=O) 

Comp.p: * [ {? Z.p} B.p 

; x.p:= l+x.p 

Specification of Barrier Synchronization 

where Z.p is given by 

Z.p: ( Vq :: x.p ~ x.q ) 

The computation proper for Comp.p is * [ B.p 1 . The x's have been 
introduced for specification purposes only. Assertion Z.p is the required 
precondition for B.p. It goes without saying that, in solving the problem, 
we are not to change the x's in any way. 

* * 
* 

Because Z.p is globally correct - Widening - we only need to see 
to its local correctness, which is readily established by guarded skip 

if Z.p ----+ skip fi 

And here the example would end if we were to implement the algorithm 
on a shared-memory installation. For the sake of the argument, however, 
let us assume that the components cannot directly communicate with one 
another, but that their information exchange has to take place via one 
dedicated additional component to be called the Monitor. In order to do 
justice to this constraint, we have to investigate how the local correctness of 
Z.p can be concluded without referring to the x.q's . Because Z.p states 
an upper bound on X.p (viz. (1 q :: x.q) ), we ask ourselves under which 
condition 

x.p ~ m :::} Z.p 

holds, where m is a fresh variable private to the Monitor. To that end we 
calculate 

x.p ~ m :::} Z.p 

{definition of Z.p} 

x.p~m :::} (Vq::x.p~x.q) 

= {predicate calculus} 

( Vq :: x.p ~ m :::} X.p ~ X.q ) 

~ {transitivity of ~} 
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( 'Vq :: m '5. x.q ) 

and now we sec that by adoption of system invariant 

Po: ( 'Vq :: m '5. X.q ) 

the correctness of assertion Z.p - recall thc Modus Ponens - can be 
established through guardcd skip 

if x.p '5. m -> skip fi {Z.p} 

Aside The above analysis can also be carried out by observing that Z.p 
can be rewritten as X.p '5. (1 q :: x.q) . This would result in the emcr
gence of invariant m '5. (1 q :: x.q) , which is equivalcnt to Po, but we 
prefer the above, more homogeneous symbol manipulation, simply because 
there is no compelling reason to introduce 1. This is a kind of "man
nerism", invoked by one of our calculational rulcs of thumb, which says: 
"Avoid manipulating a formula, unless there are good reasons to do so.". 
End of Asidc. 

Hercwith wc arrive at our first approximation to thc Monitorcd Barrier 
Synchronization: 

Prc: ('Vq:: x.q=O) 

Comp.p: * [ if X.p '5. m -> skip fi 

; {Z.p} B.p 

; X.p := 1 +x.p 

1 
Monitor: * [ manipulate m 1 

Inv: ? Po: ( 'Vq :: m '5. X.q ) 

Version 0 

* * 
* 

By the shape of the componcnts, a steady increase of m will be nec
essary, lest total deadlock is bound to occur. Therefore we investigate a 
Monitor of the form * [ m:= m + 1 1 . For m:= m + 1 to maintain Po, 
its precondition should imply 

('Vq:: m+l '5.x.q) 

Since this condition is globally correct under the increments of the x's, 
cstablishing its loeal eorreetness suffices. Thus we arrive at thc next (and 
final) version, in whieh we add assertion x.p'5. m in Comp.p for later use. 
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Pre: ( "i/q :: x.q = 0 ) 1\ m=O 

Comp.p: * [ if x.p "5. m -----t skip fi 

; {Z.p} {x.p "5. m} S.p 

; x.p := l+x.p 

1 
Monitor: * [ if ("i/q :: m+ 1"5. x.q ) -----t skip fi 

; m:=m+l 

1 
Inv: Po: ( "i/q :: m"5. x.q ) 

Version 1 

* * 
* 

What remains is the progress proof. The added assertion x.p"5. m in 
Comp.p is obviously correct, and from it we conclude the system invariance 
of 

PI: ("i/q :: x.q "5. m+ 1 ) 

The conjunction of Po and PI then forms an adequate multibound for 
our multiprogram, so that individual progress is guaranteed if there is no 
total deadlock. And there is no total deadlock, because the disjunction of 
aB the guards, viz. 

(:3q:: x.q"5.m) V ("i/q:: m+l "5.x.q) 

is just true. FinaBy, we observe that - by the Guard Conjunction Lemma 
- the Monitor's guard may be evaluated conjunct-wise. In principle, this 
concludes our derivation of the Monitored Barrier Synchronization. 

* * 
* 

However, in many practical situations it may be advantageous or even 
necessary to eliminate the ever-growing integers x, which, after aB, were 
introduced for specification purposes only, and along with them the induced 
m . This is possible bccause the multibound, Le. the conjunction of Po and 
PI, 

("i/q::m"5.x.q 1\ x.q"5.m+l) 

tells us that all differences x.q - mare two-valued, and it is only these 
differcnces that matter for the control of the algorithm -- sec the guards. 
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So let us apply a coordinate transformation to the boolean domain. We 
introduce booleans b.p, one for each p, coupled to the original coordinates 
by 

b.p x.p<5. m ,or - equivalently -

...,b.p m + 1 <5. X.p 

Because this kind of coordinate transformation has been discussed before 
(cf. Chapters 10 and 17), we now give the resulting program at once: 

Pre: ( Vq :: b.q ) 

Comp.p: * [ if b.p --> skip fi 

; S.p 

; b.p := false (or: b.p := ...,b.p) 

1 
Monitor: * [ if ( Vq :: ...,b.q ) --> skip fi 

; ( for q :: do b.q := true 

(or: b.q := ...,b.q ) 

od) 

1 
Version 2 

Here the atomic m:= m + 1 from Version 1 is translated, using an ad-hoc 
notation, into one big atomic flipping operation of all booleans b.q. And 
thus we have removed the ever-growing integers m and x.p. 

If the big atomic flipping is feIt to be too coarse-grained, it can be elim
inated by a next coordinate transformation, viz. by introducing booleans 
c.p - c.p private to Comp.p - and boolean d - private to the 
Monitor -, coupled to the b's by 

b.p == c.p == d 

Then the Monitor can flip all booleans b.q in one fell swoop by assignment 
d:=...,d. The corresponding program thus becomes 



286 26. Monitored Phase Synchronization 

Pre: ( Vq :: c.q == d) 

Comp.p: * [ if c.p == d ---; skip fi 

; B.p 

; c.p := ,c.p 

1 
Monitor: * [ if ( Vq :: c.q =f= d) ---; skip fi 

; d:= ,d 

1 
Monitored Barrier Synchronization with private booleans 

* * 
* 

Many more variations and divergences are possible; for instance there is 
the quest ion of how to transform the algorithm into a "four-phase" one, as 
we did with the handshake protocol, or how to realize the communication of 
d's value via a common bus. However, we rat her leave these elaborat ions 
to the engineers, who are better trained in these issues than we are. Our 
goal was to neatly derive a rat her fine-grained algorithm for this kind of 
problem and this kind of architecture, and we think that by now we have 
reached that goal. 
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Distributed Liberal Phase 
Synchronization 

There is a rather wide-spread belief that the design of distributed algo
rithms requires methods that are quite different from those used for the 
design of shared-variable algorithms. This is an unfortunate misunderstand
ing. In previous chapters we already showed the devclopment of a number 
of small distributed algorithms, and in this chapter we will try to dispcl 
the misunderstanding more rigorously by presenting the design of a non
trivial, fully distributed algorithm for phase synchronization (an algorithm 
which most likely is beyond what can operationally be conceived and com
prehended) . 

* * 
* 

The kind of phase synchronization we have in mind is more liberal than 
wc discussed before, in that for cach component a "slack" is given, which 
specifies how far the componcnt is allowed to run ahead of the other com
ponents, measured in terms of the number of completed phases. More pre
cisely, wc are givcn natural numbers M.p, one for each Comp.p, and we 
are requestcd to solve thc following problem, subject to the architectural 
constraints described below: 
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Pre: (Vq:: x.q=O) 

Comp.p: * [ {? Z.p: (Vq:: x.p < M.p+x.q)} 

B.p 

; x.p := l+x.p 

Specification of Liberal Phase Synchronization 

What the architectural constraints boil down to is that the components 
are located in the nodes of a - sparsely connected - network, and 
that a component can only communicate with its immediate neighbours. 
It goes without saying that our problem is unsolvable if the network is 
not connected. The sparsest connected network, in terms of the number 
of edges, is a tree, and we shall solve our problem for such an, a-priori 
given, rooted tree. We do not add this aspect of the problem to our formal 
specification, but rat her take it into account as we go along. 

Remark If we choose M.p = 0 for all p, the above formal specifica
tion reduces to a specification of barrier synchronization. When taking the 
architectural constraints into account, we then obtain an algorithm for dis
tributed barrier synchronization. We will return to this special case at the 
very end of this chapter. 
End of Remark. 

* * 
* 

Even before starting our development, we can already conclude from the 
specification, that any solution that we may end up with will inevitably 
have system invariant 

MB: (Vp:: (Vq:: X.p :S l+M.p+x.q) ) 

which is a multibound for our multiprogram, so that individual progress 
of the components follows from the absence of total deadlock. We wish to 
stress this right at the start, because the algorithm that we will ultimately 
arrive at is (operationally) so complicated that arguing about progress from 
the program text alone is all but undoable, let alone attractive. 

* * 
* 

The first step in our development is quite similar to what we did in the 
previous chapter on Monitored Barrier Synchronization. Because, due to 
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the restricted communication facilities, we cannot simply establish the local 
correctness of Z.p by means of guarded skip 

if Z.p -+ skip fi 

we must find a way to eliminate all references to the x.q's in Z.p. 

One advantage of a rooted tree is that it contains one special node, 
namely the root. Let us call it R. Then we can eliminate almost all of 
the x.q's in Z.p by observing that 

Z.p 
(*) ~ 

X.p ::; M.p+x.R A ('Vq:: x.R ::; x.q) 

Now, the correctness of Z.p is guaranteed if we strengthen the annotation 
into the antecedent of (*). Because conjunct ('Vq:: x.R::; x.q) is highly 
independent of p, it is bound to become a system invariant. We thus 
obtain 

Pre: ( 'Vq :: X.q = 0 ) 

Comp.p: * [ {Z.p} {? X.p < M.p+x.R} -
S.p 

; X.p := l+x.p 

1 
lnv: ? Po: ( 'Vq :: x.R::; X.q ) , 

to be dealt with next 

Version 0 

* * 
* 

If our tree were star-shaped with the root in the center of the star, 
we would obtain a monitor-like solution, with Comp.R besides being a 
component also acting as the monitor. The reader may wish to carry out 
this development, by way of exercise. However, our tree is supposed to be 
quite arbitrary. 

Ofthe two queried items that remain, assertion x.p ::; M.p+x.R is the 
harder one: it isn't straightly clear how we can deal with the occurrence 
of x.R. The required invariance of Po does, however, leave little room 
for choice, and for lack of the better we therefore concentrate on this item 
first. 
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Relation Po demands that the minimal x- value reside at the root, 
and we immediately comply with this demand by requiring that each path 
from anode to the root exhibit adescending sequence of x- values. More 
formally, with f.q denoting the father node of node q, q f=- R , we require 
the invariance of 

PI: ( Vq : q f=- R : x.(f.q) ~ x.q) 

Thus, projected on the x- values, the tree forms a so-called downheap. 

Remark As an aside, let us see why, in meeting Po, there is little choice 
beyond adopting PI. Comp.R will have to increase its x- value but can 
only communicate with its children. A necessary condition for this incre
ment to maintain Po is that x.R is smaller than the x- values of R's 
children, and far it to be sufficient it had better be the case that the x
values of these children are, in their turn, the minimum x- values in their 
respective subtrees. By unfolding this recursion we exactly arrive at PI. 
End of Remark. 

The next version of our program thus becomes 

Pre: (Vq:: x.q=O) 

Comp.p: * [ {Z.p} {? X.p < M.p+x.R, to be dealt with next} -
B.p 

j X.p:= l+x.p 

J 

Inv: Po: ( Vq :: x.R ~ x.q) 

? PI: ( Vq : q f=- R : x.(f.q) < x.q) -

Version 1 

* * 
* 

Realizing the invariance of PI will be a matter of routine, and therefore 
we first focus on handling assertion x.p ~ M.p+x.R. This will turn out 
to be the heart of the design. The only way in which we can eliminate x.R 
is by having an expression of the form 

something ~ x.R 

where, preferably, the "something" is expressed in terms of the states of 
Comp.p's immediate neighbourhood in the tree. Unfortunately, there isn't 
a formula as yet that provides a lower bound on x.R: Po doesn't and 
PI doesn't either because it excludes q = R. 
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Therefore, an essentially new ingredient has to enter the picture, and this 
new ingredient will consist in a set of fresh variables y.p, y.p private 
to Comp.p. We can then separate the x.p and the x.R in our target 
assertion by observing that 

X.p < M.p+x.R 
(**) {= 

X.p < M.p+y.p /\ y.p:::; y.R /\ y.R:::; x.R 

Now the correctness of x.p :::; M.p+x.R is guaranteed if we strengthen 
the annotation into the antecedent of (** ). Because the two final conjuncts 
in this antecedent are rather independent of p and p's neighbours in the 
tree, we will require them to become system invariants. As for y.p :::; y.R, 
we will satisfy this condition far all p by demanding that, prajected on 
the y- values, the tree farms a so-called upheap, Le. 

( Vq : q -1= R: y.q :::; y.(f.q) ) 

Because far Comp.p with p=R, target assertion x.p:::; M.p+x.R is 
automatically fulfilled - 0:::; M.p -, the above strengthening needs to 
be carried out for p -1= R only. Thus the program for the non-roots diverges 
from that of the raot. 

Pre: (Vq:: x.q=O) /\ ( Vq :: y.q = 0 ) 

Comp.p: * [ {Z.p} {x.p :::; M.p+x.R} 

(p -1= R) {? X.p :::; M.p+y.p} B.p 

; X.p:= l+x.p 

1 
Comp.R: * [ {Z.R} B.R 

; x.R:= l+x.R 

1 
Inv: Po: ( Vq :: x.R :::; x.q) 

? PI: ( Vq : q -1= R : x.(f.q) :::; x.q) 

? P2: ( Vq : q -1= R : y.q :::; y.(f.q) ) 

? P3: y.R:::; x.R 

Version 2 

* * 
* 

As far as PI thraugh P3 are concerned, the y's are allowed to be 
constant, but assertion X.p :S M.p+y.p demands increments of y.p, lest 
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the assertion beeomes stably jalse - with total deadloek as a result. We 
now deeide to equip eaeh eomponent with an independent eo-eomponent 
to take eare of the orderly inerements of the y's. Thus we introduee for 
eaeh p 

Co.p: * [ y.p := 1 +y.p J 

to reside, just like Comp.p, in node p of the tree. With this arrangement, 
all four queried items in Version 2 are readily implemented. 

Re X.p ~ M.p+y.p inComp.p, p=l-R 

L: Prefix the assertion with guarded skip if X.p ~ M.p+y.p ---- skip fi 

G: Widening. 

Re P3: y.R ~ x.R 

Init: Follows from Prc 

• y.R := 1 + y.R in Co.R: 

Prefix this statement with guarded skip if 1 +y.R ~ x.R ---- skip fi, 
the guard of whieh is globally eorreet - Widening. 

Re PI: (Vq: q=l-R: x.(J.q) ~ x.q) 

Init: Follows from Pre 

• X.p := l+x.p in Comp.p 

This statement requires additional preeondition 

(Vq: q=l-R 1\ p=j.q: l+x.(J.q) ~ x.q) 

Sinee p = j.q =} q =I- R, this ean be simplified to 

(Vq: p=j.q: l+x.p ~ x.q) 

Beeause this eondition is globally eorreet - Widening -, we only 
need to take eare of its loeal eorreetness. This time we ean do so with 
impunity by means of a guarded skip, viz. 

if (Vq: p=j.q: l+x.p ~ x.q) ---- skip fi 

sinee the evaluation of its guard in Comp.p requires eommunication 
with Comp.p's ehildren only. 

Re P2: (Vq: q=l-R: y.q ~ y.(J.q)) 

Init: Follows from Pre 

• y.p := 1 + y.p in Co.p, for p =I- R 

This statement requires additional preeondition 

(Vq: q=l-R 1\ p=q: l+y.q ~ y.(J.q)) 
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which equivales (since Pi- R ) 

1 +y.p S; y.(f.p) 

This condition is readily established by a guarded skip as weIl. 

End of Re's. 

Assembling all the above, we obtain 

Pre: ('t/q:: x.q=O) 1\ ('t/q:: y.q=O) 

Comp.p: * [ if x.p S; M.p+y.p ~ skip fi 

(p i- R) ; {Z.p} {x.p S; M.p+x.R} {x.p S; M.p+y.p} 

B.p 

; if ( 't/q : p = f.q : 1 +x.p S; x.q) ~ skip fi 

; x.p:= l+x.p 

1 
Co.p: * [ if 1 +y.p S; y.(f.p) ~ skip fi 

(p i- R) ; y.p := 1 +y.p 

1 
Comp.R: * [ {Z.R} B.R 

; if ( 't/q : R = f.q : 1 +x.R S; x.q) ~ skip fi 

; x.R := 1 +x.R 

1 
Co.R: * [ if 1 +y.R S; x.R ~ skip fi 

; y.R := 1 +y.R 

1 
Inv: Po: ( 't/q :: x.R S; x.q) , 

PI: ( 't/q : q i- R : x.(f.q) S; x.q) , 
P2 : ( 't/q : q i- R : y.q S; y.(f.q) ) , 
P3 : y.R S; x.R 

Distributed Liberal Phase Synchronization, fully annotated. 

By the Guard Conjunction Lemma, the conjunctive guards in the above 
may be evaluated conjunct-wise, and with this remark we conclude the 
development of our program. 

* * 
* 
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Of course a number of issues remain, the most important one of which 
is our obligation to prove individual progress. Because we want to do so 
by means of our multibound technique, wc first prove the absence of total 
deadlock. 

Wc do so by assuming that all components are blocked in a guarded skip 
and then proving the validity of false. Because most of the componcnts 
Comp.p have two guarded skips, we have to be a little careful. Let us 
concentrate on the co-components first, which have one guarded skip only. 
From their being blocked in the total-deadlock state, we infer (the stable 
truth of) 

(i) ( 't/q : q i= R : y.(J.q) ::; y.q) - the Co.q -, q i= R, are blocked 

(ii) x.R::; y.R - Co.R is blocked. 

Now we turn to the components Comp.p. Generalizing property (ii), we 
introduce not ion black.p, defined by 

black.p == x.p ::; y.p 

Thus we have that 

(iii) the root is black. 

We shall derivc the validity of false by showing that there is an infinite 
number of black nodes in the givcn, finite network. In particular, we shall 
provc that in thc deadlock state we have 

(iv) each black node has a black child, 

so that (iii) and (iv) together do thc job. 

As for a proof of (iv), we first observe that no black Comp.p is blocked 
in its first guardcd skip if X.p ::; M.p+y.p --t skip fi (which is absent in 
the root): 

x.p 

< {Comp.p is black} 

y.p 

< {O ::; M.p} 

M.p+y.p 

So, a black component is blockcd in its second guarded skip, which means 
- see thc program text - that a black Comp.p has a child q for which 

(v) p=f.q and 

(vi) x.q::; X.p 
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We now derive black.q, i.e. x.q :S y.q: 

x.q 

< {(vi)} 

X.p 

< {black.p} 

y.p 

{(v)} 

y.(J.q) 

< {(i), using q=f.R (from (v))) 

y.q 

And this completes our proof of the absence of total deadlock, a proof 
which we owe to Frans W. van der Sommen. 

Remark If all slacks M.p are equal, a simpler proof far the absence of 
total deadlock is possible [FvG97]. 
End of Remark. 

* * 
* 

Finally we address individual progress. We recall that we al ready have 
- from the specification - the invariance of 

MB: ('t:/p:: ('t:/q:: X.p :S l+M.p+x.q) ) 

which is a perfect multibound far the componcnts Comp.p. Howevcr, me an
while we have introduced the co-components, and for our multibound tech
nique to be applicable we need a multibound far the entire system. It is 
very weIl possible to construct such a universal multibound, which then 
guarantees individual progress for all components and all co-components, 
but we may also proceed in a different way, viz. we may confine ourselves 
to showing individual progress for just the Comp.p's which after all make 
up the computation proper. To that end we observe 

some Comp.p gets stuck 

:::} {MB} 

each Comp.p gets stuck (*) 

:::} {instantiate p = R} 

Comp.R gets stuck 

:::} {inv P3: y.R:Sx.R} 
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Co.R gets stuck 

=> {inv P2: the y's form an upheap} 

each Co.p gets stuck 

and from the lines marked (*) we conclude 

some Comp.p gets stuck 

total deadlock 

However, since we have shown the absence of the danger of total deadlock, 
we conclude that no Comp.p gets stuck - as demanded. And this concludes 
our treatment of the Distributed Liberal Phase Synchronization. 

Final Remarks 
• Without realizing it, we have developed an algorithm that belongs to the 
family of so-called wave algorithms [TeI94, Lyn96]. Here, waves of permis
sion signals diffuse - starting at the leaf no des - through the tree to 
the root, where they are reflected leafwards to grant new permissions to 
the components to execute their next phases. The waves come and go and 
interfere with each other in an almost chaotic fashion, and we had better 
not try to understand our algorithm using this metaphor. 

• There is one degree of freedom that we have not explored, namely the 
mapping of the components to the nodes of the tree. Prom our development 
we conclude that it is irrelevant from a correctness point of view. However, 
from a performance point of view it might matter, due to the different 
values of the slack M.p. Viable as such considerations may be in practice, 
they are beyond the scope of this monograph. 

• In practice, one might also wish to eliminate the ever-growing integers 
x and y. This is very weIl doable, because the entire program runs under 
control of differences between various x- and y- values, and because we 
can prove that all those differences are bounded. We do not carry out this 
coordinate transformation here, because it does not really contribute to our 
prime reason for dealing with this example: to give a formal derivation of 
a not too trivial distributed algorithm. 

• There is one special case that is very important in the everyday practice 
of building large-scale distributed systems, namely the case that M.p = 0 
for all p. Then the algorithm reduces to a distributed handshake-likc pro
tocol, called "barrier synchronization", to be used for simulatingjimplc
menting clocked systems by means of asynchronous building blocks. In this 
case the algorithm can also bc simplified so as to run under control of a few 
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private booleans per component, and the co-components can be eliminated 
altogether [BF96J. We believe that, at this point, developing an algorithm 
for this special case, right from scratch, would be an instructive, illuminat
ing, and rewarding exercise for the reader. 
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Distributed Computation of a 
Spanning Tree 

A typical architecture that one encounters is that of a number of computers 
located in the nodes of a sparsely connected, but otherwise arbitrary net
work. One of the difficulties with such an architecture is that the fiow of 
control and the information exchange between the various computers are 
not always easily orchestrated, simply because the network is so arbitrary. 
This brings about the so-called routing problem. There are, however, at 
least two general ways to reduce these difficulties. 

One way is to simply avoid such arbitrariness and confine oneself to 
more regularly shaped networks such as linear, cyclic, or tree-shaped ar
rangements of the machines, or regular grids, tori, hypercubes, etcetera. 
Such configurations have been studied extensively (and they still are), and 
they have shown to be very useful in many special-purpose applications. 
However, one cannot always make do with such special networks, and, in 
addition, the existence of arbitrary networks of computers is just a fact of 
life. 

For such arbitrary nets, the difficulties in managing the information ex
change can be reduced considerably by selecting a manageable subnetwork 
to which all information exchange is to be confined. One of the easiest to 
handle - because sparsest - such subnetworks is a spanning tree. Also, 
of all the manageable subnetworks that one can think of, the spanning tree 
is the only one that is guaranteed to exist, given that the original net
work is connected. And, finally, a tree has the advantage that it provides a 
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unique connection between any pair of nodes, and that the length of these 
connections is relatively small - if at least the tree is not too unbalanced. 

It is the distributed computation of such a spanning tree that we will be 
occupied with in this chapter. We will present two types of algorithm, but 
before doing so we first study the "mathematics" of a tree. 

* * 
* 

As a stepping stone, we consider the following highly nondeterministic 
sequential program for constructing a spanning tree in a connected network: 

{all nodes and edges of the network are white} 

"select an arbitrary node Rand redden it" 

; do "there exists an edge (p, q) with white p and red q" 

~ "redden node p and edge (p, q)" 

od 

An invariant of this repetition is that the red graph is a tree (and a sub
graph of the given network), Le. it is connected and contains no cycles. 
The connectedness is maintained by the body of the repetition because 
q is red, and the absence of cycles follows from p being white. Also, 
the program surely terminates, because the number of red nodes increases 
while the network is finite. And upon termination, the red tree is indeed a 
spanning tree, since the network is connected. 

In many applications it is advantageous to have a rooted spanning tree. 
The above algorithm grants us such a rooted tree at a bargain; the initially 
selected node R will be the root, and in the body of the repetition node 
q will be nominated p's father. 

Clearly, the freedom in selecting a white-red edge is so big and the order 
in which such edges are selected is so irrelevant, that it becomes tempting 
to distribute these activities over the components of the network. And this 
is what we shall do, in two different ways. 

In distributing these activities we encounter asnag. Let A and B be 
red nodes, each connected via a white edge to a white node C. If now A 
and B decide, independently of each other, to adopt C as a child, by 
reddening AC and BC, respectively, then a cycle is created in the red 
graph and the tree shape is destroyed. We preclude this danger by seeing 
to it that it will be C that nominates exactly one of the candidate fathers 
as its actual one. 
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Solution I 

In our first distributed solution, every eomponent Comp.p different from 
the root has a shared variable V.p of type eomponent name, aeeessible to 
its neighbours. Ignoring root eomponent R for a while, the first version 
of our algorithm beeomes 

Pre: all no des and edges are white 

Comp.p: {p is white } 

(p =1= R) {? V.p is a red neighbour of p } 

"redden p and edge (p, v.p) , 

selecting V.p as p's father" 

And, indeed, the tree shape is maintained, thanks to the preeonditions of 
the eolouring act. 

* * 
* 

We are left with the queried assertion. Sinee neighbourhood is eonstant 
and eolours (will) only turn red, its global eorreetness is guaranteed if eaeh 
assignment V.p:= q takes plaee in astate where q is a red neighbour 
of p. For the assertion's loeal eorrectness, we introduee guarded skip 

if B.p ~ skip fi 

whieh suffiees if we ean make 

P: ( Vq :: B.q =} V.q is a red neighbour of q ) 

a system invariant. 

In order to find out what we ean ehoose for the B's, let us now turn 
our attention to progress, whieh - by definition - requires that eaeh 
of the B's beeomes stably true. To that end, we must first investigate 
opportunities for truthifying P's eonsequents. Comp.p eontains only one 
statement ehanging the state, namely the eolouring. As a posteondition of 
that statement we have 

p is red 

whieh implies that for eaeh neighbour q of p 

p is a red neighbour of q 

A result is that in this state an assignment 

V.q:= p 
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truthifies the consequent in P, so that here we have an opportunity par 
excellence to make the corresponding B.q true without violating P. 
Nicest of all would be if statement v.q:= p all by itself would make B.q 
stably true. And this is possible indeed, if we introduce a jresh constant, 
..L say, different from all component names, and define B by 

B.q == V.q #-L 

We thus arrive at our next version of the program, which reads 

Pre: all nodes and edges are white, 

( 'Vq :: v.q = ..L ) 

Comp.p: {p is white } 

(p#R) if v.p #..L -t skip fi 

; { p is white } 

{ V.p is a red neighbour of p} 

"red den p and edge (p, v.p) , 

selecting V.p as p's father" 

; for q: q is a neighbour of p do 

{p is red} V.q := p 

od 

lnv: P : < Vq :: V.q i= ...L 

=> V.q is a red neighbour of q ) 

* * 
* 

The above design was partly prompted by progress requirements, but 
that doesn't mean we have shown progress. To do so, we have to show that 
each node will become red, and this we do by insisting that 

(i) some node becomes red 

and showing that 

(ii) some node becomes red =} each node will become red. 

It is for the accomplishment of (i) that we need the root component R; 
it will be similar to the regular components except that it is coloured red 
unconditionally and is not assigned a father: 
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Comp.R: "redden R" 

; for q : q is a neighbour of R do 

{R is red} V.q := R 

od 

This settles (i). We show (ii) by showing that far each p 

(iii) node p becomes red 
=> 
each neighbour of p will become red. 

Then (ii) folIows, because the network is connected. As for (iii), we observe 
from the program text that anode p upon turning red will, within a finite 
number of steps, perform V.q:= p for each neighbour q, thus making 
the guards of these neighbours stably true. As a result, they will become 
red as weil. And this completes our progress argument. 

* * 
* 

Finally, we can clean up the above program text, since control does 
not depend on colours. The colouring serves to record the computed tree 
(but has also been introduced for the purpose of reasoning). As for the 
administration, it suffices to record the father relation. When doing so, we 
can dispense with the colours, so as to arrive at the following raw code, in 
wh ich f.p records the father of p: 

Pre: ( \fq :: V.q =.1 ) 

Comp.p: if V.p =f.l -t skip fi 

(p i- R) ; f.p := V.p 

; for q : q is a neighbour of p 

do V.q := p od 

Comp.R: for q : q is a neighbour of R 

do V.q:= Rod 

Distributed Computation of a (rooted) Spanning Tree 

* * 
* 

We conclude the treatment of Solution I with a number of assorted re
marks. 
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• If it is inconvenient to have one component - the root - differ from all 
the others, we can make all components equal to each other by introducing 
an additional - dummy - component D that fires the algorithm by 
performing 

for so me (genuine) node q do v.q:= D od 

and thus makes itself the dummy root of the tree. 

• The choice of R is completely arbitrary. In particular applications and 
particular networks, some nodes might be preferred to others to become the 
root. Also, it may sometimes be beneficial to have a number of different 
spanning trees. Then one might run a number of instances of the above 
algorithm in parallel, of course each with its own v's, I's, and R. 

• If we retain the colours of the nodes, the efficiency of our algorithm might 
perhaps be improved by constraining the range of q in the for-clause to 
the white neighbours of p. (Whether this actually is an improvement very 
much depends on the kind of communication lines between two neighbours.) 

• The shape of the tree constructed by the algorithm is completely outside 
our control. For reasons of performance, however, one may prefer a tree 
that, for instance, is rat her balanced or has nodes of rat her small degree. 
If admitted by the original network at all, one may try to obtain such a 
tree by, for instance, pruning the permissible computations or by equipping 
no des with the means to redefine their father so as to obtain a "bett er" 
tree. We will explore the latter in our next solution, which will be more 
amenable to such a treatment. 

• In common parlance, our algorithm is said to be based on a "broad
casting" regime: anode that has become red "broadcasts" this event to 
all its neighbours via the assignments to the v's. Also, variable v.p is 
sometimes identified as a "mailbox" in which a candidate father drops its 
identity. Common as such metaphors may be, we prefer to avoid them 
whenever possible. We rather view the v's as variables, and not hing else. 

• In our algorithm, the reddening spreads over the network like a "wave". 
And indeed, our algorithm is about the simplest instance from a huge class 
of so-called "wave algorithms" [Tel94, Lyn96]. 

End of Solution I. 
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Solution II 

Our next solution will be quite different from the previous one, although 
at first sight the difference may seem minor. In our previous solution, the 
extension of the tree is triggered by the no des in the tree (through the 
assignments to the v's), whereas in our next solution the extension will 
take place "on the initiative" of the no des outside the tree. Re-introducing 
the colour metaphor for the nodcs, we can now state this solution without 
much ado. After what has been said before, the reader can easily check its 
correctness. In thc subsequent text, q E Np is used as a shorthand for "q 
is a network ncighbour of p" . 

Prc: all nodes are white 

Comp.p: tifq::qENp 1\ q is red --; skip fi 

(p t- R) , {p is white} 

{q ENp I\. q is red} 

f.p := q 

, redden p 

Comp.R: redden R 

* * 
* 

The above algorithm niccly computcs a spanning tree, but again the 
shape of that tree is completely beyond our control. This time, howevcr, 
we aim at an algorithm that can compute a "better" tree. To that end 
wc must be prepared to extcnd our components with an as yet unknown 
number of opportunities to redefine their father. This leads us to consider 
a program of the form 

tA guard of the form q:: B.q is short for (3q:: B.q ). When true it - on the 
fty - yields a witness q for B.q. 
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Pre: all nodes are white 

Comp.p: if q:: qENp 1\ q is red ~ skip fi 

(p:f. R) ; f.p := q 

; red den p 

; {p is red} 

* [if q :: q ENp 1\ q is red 1\ 

q is a "better" father 

~ skip fi 

; f.p := q 

J 

Comp.R: redden R 

The prelude of the repetition in Comp.p is as before and serves to compute 
some father for p. In the repetition the father is repeatedly replaced by 
a "better" one. (What is meant by "bett er" may depend on the particular 
application one has in mind.) Unfortunately, there are two severe problems 
with this algorithm. 

One problem is that, already now, we may wonder how these components 
are going to terminate. They clearly cannot terminate their repetition. All 
wc can hope for is that our not ion of "better" is such that the choice of a 
"better father" cannot go on forever. Then the components (:f. R) are guar
anteed to get stuck indefinitely in their guarded skips: the multiprogram 
as a whole is bound to "terminate" in astate of total dcadlock! We shall 
return to this problem at the end of this chapter. 

The second problem is that statement f.p:= q in the body of the 
repetition no longer has precondition "p is white". So how are we going 
to guarantee that the structure as recorded by f continues to be a tree? 
Here we interrupt our treatment with a very short intermezzo on the math
ematics of trees. 

Intermezzo We previously characterized a tree as a connected graph 
without cycles. An alternative characterization is that it is an acyclic graph 
on N + 1 no des that has N edges. The reader may show, using mathe
matical induction on N, that the two characterizations are equivalent. 
End of Intermezzo. 

By the redefinition of p's father through f.p:= q, one edge of the tree is 
replaced by another, so that the number of edges recorded by f does not 
change. According to the intermezzo, the tree shape will then be preserved 
if we can see to it that the rede finit ion of the father does not introduce 
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cycles. We know of only one simple way to avoid cycles, viz. by requiring 
that each !- chain exhibit a decreasing sequence of values coming with it; 
more specifically and more precisely, we introduce variables x, one per 
component, such that 

Q.p: (Vr: r E Np: f.p=r => x.r<x.p) 

will be a system invariant for all p. 

Relation Q will play a central röle in any furt her refinements of our 
algorithm, whatever the "better" trees they will be aiming at. We establish 
its initial validity by assuming that the !- values are so (un)defined that 
f.p -I- r for all nodes p, r . 

On the fly, we use the x- values for the minor purpose of removing the 
colours, viz. we adopt the convention that 

pis white 

pis red 

x.p= in! 

x.p< in! 

, and 

where in! is a very large number, e.g. 6.02 x 1023 . The other values to 
be assumed by the x's depend on the particular applications. We shall 
deal with two applications, one giving rise to the computation of a so-called 
"Breadth-First" spanning tree, and another one yielding "Shortest (root) 
paths". Both types of tree are very popular in practice. 

A Breadth-First Algorithm 

For a connected network with predetermined node R, the distance of a 
node is defined as the length of a shortest connection of that node to R, 
measured in terms of the number of edges on that connection. A Breadth
First spanning tree for this network is a tree in which for each node the 
distance in the tree equals the distance in the network. 

In our algorithm we will see to it that the value of X.p, which starts at 
in!, steadily shrinks towards p's distance dist.p in the network, which 
implies that, among other things, we will see to it that 

H: ( Vr :: dist.r ~ x.r) 

is a system invariant; and then we will show that, in the final state, X.p 
not only equals dist.p, i.e. p's distance to R in the network, but also 
equals p's distance to R in the tree. 
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In view of our target, viz. accomplishing X.p = dist.p, we investigate 
decrements of X.p (that maintain Hand Q). In this particular prob
lem, where distances are measurcd in terms of the number of edges, we 
propose for "q is a better father (for p)" condition 

l+x.q < X.p 

and we shall be heading for assignment 

X.p := l+x.q 

For guard 

q E Np 1\ q is red 1\ q is a better father 

we now choose 

q ENp 1\ 1 +x.q < X.p 

Note that, by our convention, the redness of q is implied since x.q< in! 
is implied by X.q < -1 +x.p. For the same reason, guard 

q E Np 1\ q is red 

in the prelude can be replaced by (the stronger) 

qENp 1\ l+x.q<x.p 

as well. Thus, the colours having been removed and the two guards iden
tified, we can gracefully combine (=fold) thc prclude and the repetition in 
Comp.p's text, so as to arrive at the following multiprogram (annotation 
discusscd below): 

Pre: ( 'Vp, r :: f.p i= r ) 

( 'Vr :: x.r = in!) 

Comp.p: * [ if q :: q E Np 1\ l+x.q < X.p 

(p i= R) ---> skip fi 

; {I +x.q < x.p} 

f.p := q 

; {l+x.q < x.p} {f.p=q} 

X.p := l+x.q 

J 

Comp.R: {x.R= in!} x.R := 0 

Inv: H: ( 'Vr :: dist.r ~ x.r ) 

Q.p: ('Vr: r E Np: f.p=r ::::} x.r < x.p) 

Distributed Computation of a Breadth-First Spanning Tree 
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- From the annotation it follows that each individual x decreases, and 
that is why the annotation in Comp.p is correct. 

- For the invariance of H under X.p:= 1 +x.q we need 

dist.p:S l+x.q 

as a precondition, the validity of which follows from dist.p :S 1 + dist.q 
- because p and q are neighbours - and dist.q :S X.q - from 
H. 

- The invariance of Q.p may be endangered by assignments f.p:= q 
and X.p:= 1 + x.q (but changes to other variables x.r are harmless, 
thanks to Widening). Assignment f.p:= q maintains Q.p, because its 
pre-assertion 1 +x.q < x.p implies required precondition X.q < X.p; 
and, finally, assignment x.p:= 1 +x.q has pre-assertion j.p = q and, 
as a result, maintaining Q.p only requires the trivially correct pre
assertion X.q < l+x.q. 

Because each x- value decreases and is bounded from below - see H 
- the system will indeed co me to a halt, viz. in the aforementioned total
deadlock state. In that state we have 

(i) x.R = 0 -- Comp.R has terminated -

(ii) (Vq: qEN'.p: X.p :S l+x.q), for p -=I- R 
- Comp.p is blocked in its guarded skip. 

We now prove that in this state it holds that, for any component q and 
for any k, 

dist.q = k =} x.q = k 

This we do by mathematical induction with respect to k . 

• Base k=O: 
There is only one node at distance 0 in the network, viz. R, and by 
(i) we indeed have x.R = 0 . 

• Step 
Let p be at distance 1 + k, Le. dist.p = 1 + k. Then there exists a 
neighbour qq of p at distance k, for which - by induction - we 
have X.qq = k. Now we observe 

x.p=l+k 

{l+k :S X.p, see H for r:=p} 

x.p:S l+k 

{x.qq=k} 

x.p:S l+x.qq 
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{(ii) for q:= qq} 

true 

And this completes our proof that X.p = dist.p for all p. 

* * 
* 

Finally we have to show that the tree computed is a Breadth-First tree 
- which was our overall target. That is, we have to prove that, in the final 
state, X.q equals the distance of q in the tree. Since x.R = 0, the result 
follows if, in the final state, with each single step along an f -chain the 
value decreases byexactly 1. Now, let p and q be such that f.p = q. 
Then p -I- R , and we conclude 

from (ii): X.p :::; 1 +x.q 

from Q: x.q < X.p or, equivalently 1 +x.q:::; x.p 

so that 1 +x.q = x.pt . 

This settles our final proof obligation and our treatment of the Breadth
First algorithm. 

A Shortest-Path Algorithm 

In a monograph like this, one cannot afford to include a chapter on the 
distributeo computation of spanning trees without making mention of the 
Shortest-Path problem. It is as follows. Given a connected network of com
puters with one predetermined node Rand with each edge having a 
positive integer length - len.p.q for neighbours p and q -, the problem 
is to design a distributed algorithm that computes for each node a shortest 
connection to R. 

We shall not deal with this design in any detail, because it is so very sim
ilar to the Breadth-First problem, which is, in fact, just a Shortest-Path 
problem where all edges have length 1. We simply state our solution, but 
not be fore having mentioned that it has very much of the flavour of Dijk
stra's sequential shortest-path algorithm [Dij59], while, remarkably enough, 
the algorithm is conceptually simpler when rendered as a multiprogram. 

~We owe this extremely simple argument to our colleague Gerard Zwaan. 
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Pre: ( 't:Ip, r :: f.p i= r ) 

( 't:Ir :: x.r = in!) 

Comp.p: * [ifq::qENp 1\ len.p.q+x.q < X.p 

(p i= R) --+ skip fi 

; f.p := q 

; X.p := len.p.q+x.q 

1 
Comp.R: x.R:= 0 

Distributed Computation of Shortest Paths 

The computed spanning tree provides a shartest path towards R, for each 
node. We leave aB the details to the reader. 

End of Solution 11. 

* * 
* 

We are left with one issue, viz. the unusual termination of a multiprogram 
in, far instance, the form of a total deadlock, as encountered above in the 
Breadth-First algarithm. In aB our examples so far, deadlock was unwanted. 
It referred to astate in which the computation had come to a grinding halt, 
whereas it should have continued. Here the situation is quite different, 
because here the deadlock state signifies that the computation need not 
continue any longer: the desired work has been done, the tree has been 
computed. How do we deal with this phenomenon? 

In one way or another, the components have to be extended with facili
ties to signal that they have terminated, whether in a usual or an unusual 
way. When via this signalling the conclusion can be drawn that aB com
ponents have terminated, we may - through proper adjustment of the 
component programs - see to it that then each component will terminate 
in the regular and usual way. (For a mini-example of this, see our treatise of 
the co-components in Chapter 21.) In general, the orderly processing of the 
signals in order to justly draw the conclusion of termination is delegated to 
a special-purpose algorithm, a so-caBed Termination Detection Algarithm, 
which operates concurrently with the computation proper whose termina
tion has to be detected. The design of one such Termination Detection 
Algorithm is the topic of our next chapter. 
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Shmuel Safra's Termination Detection 
Algorithm 

Along with the rise of large-scale distributed systems, a number of new 
problems and algorithmic paradigms saw the light. One of these was the 
problem of so-called quiescence detection, which led to the wider dass of 
so-called distributed snapshot algorithms. Roughly speaking, distributed 
snapshot algorithms have to detect, in a distributed fashion, whether a sys
tem has entered astate in which no relevant things will happen any more. 
What is relevant very much depends on the specifics of the problem. For 
instance, in a self-stabilizing system, i.e. a system that stabilizes towards 
some pre-specified state, one might be interested in whether that state has 
been reached. The so-called termination detection algorithms, which were 
the first algorithms of this dass to attract the attention of computing sci
entists, are to detect whether a distributed computation proper has arrived 
at a final state, i.e. has terminated. 

Since the emergence of the first termination detection algorithms [DS80, 
Fra80], computing science has produced dozens, perhaps even grosses of 
such algorithms. For an overview, the reader might consult [Tel94]. And, 
indeed, the problem has always been fascinating, intriguing and challenging, 
and it still iso This chapter is devoted to one such algorithm, viz. Shmuel 
Safra's, which is a beautiful and practical extension of the algorithm that 
was first reported in [DFvG83]. 

* * 
* 
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Before describing our problem, we first have to face a fact of life. Suppose 
we go to a shop where we buy a machine that generates an infinite sequence 
of bits that, as we are told by the shopkeeper, will be such that eventually 
only '1's will be produced. So eventually no relevant things will happen 
anymore. We go horne, plug our machine into the power supply, switch it 
on, wait until it has reached the final state in which only '1's are produced, 
and then switch it off. 

Now the reader may, in whatever way he likes, conclude that this exper
iment makes no sense at all: there is no moment in time at which we can 
safely conclude that the machine has entered its final state and will never 
produce a zero anymore. In short: not all termination detection problems 
are solvable. The fact of life is that we have to know something more about 
the computation proper than just that it terminates (if at all). An inves
tigation into what in general is needed in addition falls outside the scope 
of this text. We will consider only one, fairly general, kind of computation 
proper. 

Problem Description 

The kind of computation proper that we will address has the following 
characteristics: 

(i) The individual components are located in the nodes of a finite, con
nected network; 

(ii) Each component can be in just two, mutually exclusive states, viz. 
neutral and activej 

(iii) An active component can send a message to a neighbour in the net
work. Neutral components cannot send messages. Sending a message 
is aseparate atomic eventj 

(iv) A neutral component will only become active upon receipt of a mes
sage. Receiving a message together with becoming active is aseparate 
atomic eventj 

(v) An active component may unconditionally turn neutral; this also is 
aseparate atomic eventj 

(vi) Each message in transit was sent by some component. 
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Now, with M equal to the number of messages in transit, the final state 
of the eomputation proper is eharaeterized by 

Z : ( Vi :: neutr.i) 1\ M = 0 

The reader may verify that eondition Z is stable indeed. In passing we 
note that Mo, given by 

Mo: O~M 

is a system invariant. 

Remark No matter how obvious property (vi) above may seem, it will 
play an essential röle in the design of our algorithm: if the system were 
eapable of ereating traveling messages out of the blue, the stability of Z 
would no longer be guaranteed. 
End of Remark. 

The problem now is to design an algorithm that reports, within a finite 
number of steps, the validity of Z, onee the eomputation proper has es
tablished Z. Such an algorithm, to be superimposed on the eomputation 
proper, will be referred to as "the termination deteetion algorithm". 

The global structure 

The termination deteetion algorithm has to explore the state of the entire 
system, and it will do so by means of a sequenee of one or more probes. 
After initiation, a probe is propagated through the system to collect infor
mation about the state of the system. An important event in the algorithm 
is the termination of a probe. If the information colleeted permits the eon
clusion that Z holds, the termination detection algorithm can terminatej 
otherwise a next probe is started. For the termination detection algorithm 
to be effeetive, we will require that 

the deteetion algorithm terminates within a finite number of 
steps, onee Z holds. 

Given this global strueture of the algorithm, the next quest ion is how to 
propagate a probe. It should be clear that for the eonclusion that Z holds, 
the state of the entire system - components and links alike - matters: a 
message in transit can re-aetivate the entire system ((vi) and (iii)), and so 
ean eaeh single active eomponent ((iii)). So, our probe will have to diffuse 
through the entire networkj all eomponents will have to partake in it. 
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To that end, we assume available a graph that spans all the no des of the 
network. Far our considerations it is immaterial where this graph comes 
from, Le. whether its edges coincide with links of the original network or 
whether they are specially installed far the purpose. Of course there is a 
variety of spanning graphs that we can think of, but here we opt for a 
(unidirectional) cycle. 

Remark Choosing a cycle far the spanning graph is just a design decision. 
A subspanning tree would be another possibility. Different choices lead to 
different algorithms. One advantage of a cycle is that it provides a simple 
topology (and a simple algorithm in its wake). 
End of Remark. 

We choose the cycle to be directed in order to have a fixed direction in 
which to propagate the probe. Probe initiation will take place at one des
ignated component. "Return" of the probe at this component marks the 
termination of this probe. We will describe the propagation of the probe 
by means of a traveling token. 

The token 

We identify the components along the cycle with the natural numbers 
N - 1 through 0, in the directed cyclic order. Variable t re cords the 
place of the token. The designated component from which probes start is 
Comp.O. It initiates a probe by sending the token to Comp.(N -1), which 
is symbolized by t:= N -1. Token propagation to the next component on 
the cycle is symbolized by t:= t - 1 . Arrival of the token at Comp.O marks 
the end of a probe. It goes without saying that only the component that 
owns the token can send it. Token Initiation and Token Propagation are 
separate atomic events. 

Remark The choice of Comp.O as the designated component is as arbi
trary as the numbering of the components and the direction in which the 
token travels. The above choices just happen to yield the nicer formulae. 
End of Remark. 
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Detecting termination 

The main goal to be aehieved is that our algorithm will deteet the validity 
of 

Z: ( 'Vi :: neutr.i) 1\ M = 0 

onee this state has been established (by the eomputation proper). There
fore, let us first investigate what is involved in eoncluding Z upon return 
of the token to Comp.O. 

Upon the token's return, it should be possible for Comp.O to determine 
the validity of Z on aeeount of information loeally available to it. Beeause 
there is very little loeal information available, the bulk of the information 
had better be earried by a system invariant. In finding out what invariants 
are appropriate, let us eonsider the two eonjunets of Z separately. 

As for the first eonjunet, Comp.O ean only eontribute to it by its value of 
neutr.O. So upon arrival of the token (i.e. t = 0 ), the invariant had bett er 
imply ('Vi: 0< i < N : neutr.i) . This leads to the adoption of system 
invariant 

PoA: ( 'Vi : t < i < N : neutr. i ) 

Then, indeed, we have 

(OA) t = 0 1\ PoA 1\ neutr.O =} ('Vi:: neutr.i ) 

As for the second conjunct of Z, the value of M cannot be evaluated 
by any eomponent. As is not unusual in distributed systems, global data 
had better be represented in a distributed fashion. Beeause - see (vi) -

M = (#messages sent) - (#messages reeeived) 

we ean now easily distribute this "deficit" by reeording for eaeh Comp.i 
value d.i defined by 

d.i = (#messages sent by Comp.i) 
- (#messages reeeived by Comp.i) 

Then, by eonstruction, M 1 given by 

Ml: M=("L.i::d.i) 

is a system invariant. 

How ean Comp.O determine the validity of M = 0 upon return of the 
token? Comp.O ean only eontribute its own value of d.O. Therefore the 
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rest of M, Le. the value of (E i : 0 < i < N : d.i) , had better be carried 
by a system invariant. To that end we embellish the token with an integer 
attribute q, for which we propose system invariant 

PoB: q=( Ei: t<i<N: d.i) 

Then, indeed, we have 

(OB) t=O /\ PoB /\ q+d.O=O ::::} M=O 

Summarizing, we will try to see to the invariance of 

Po: PoA /\ PoB 

because then - combining (OA) and (OB) - we have 

(0) t=O /\ Po /\ neutr.O /\ q+d.O=O ::::} Z 

And here we emphasize that (0) will consti
tute the one and only way in which the va
lidity of Z can be inferred. 

Figure Star 

It stands to reason that, if upon return of the token at Comp.O the an
tecedent of (0) is not fulfilled, nothing can be concluded about Z and 
not hing else can be done but to initiate another probe. 

Token trafIic and Po 

After having decided how Z is to be detected, we now turn our attention 
to the invariance of Po, and we start by investigating the token trafiic. 

Initiation of the probe is realized by Comp.O injecting the token into 
the ring via t:= N -1 , wh ich establishes PoA. Along with it, statement 
q := 0 establishes PoB. We record this fact in the following guarded com
mand 
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Token Initiation: 

Comp.O: { true } 

t=O-+t,q:= N-1, 0 

{Po} 

It can be read as an atomic statement that is eligible for execution if the 
guard is true and which then establishes (the local correctness of) Po. 

Propagation of the probe, i.e. t:= t - 1 , is not unconditional. We have 

and 

(t:=t-1).PoA 

{substitution and predicate calculus} 

PoA 1\ neutr. t 

(t:= t -1).PoB 

{substitution and calculus} 

q = ( Ei: t < i < N : d.i ) + d.t 

which teIls us that q needs to be increased by d.t along with t:= t -1. 
Thus we get 

Token Propagation: 

Comp.i: {Po} 

(i ~ 0) t = i 1\ neutr.i 

-+ t,q := t-1, q+d.i 

{Po} 

The computation proper and Po 

Besides the atomic token operations, our system contains three more atomic 
statements, viz. Message Sending, Message Receipt and a component Turn
ing Neutral, and we have to investigate the effect of each of them on Po. 
We recaIl 

PoA: ( Vi : t < i < N : neutr.i ) 

PoB: q = (E i : t < i < N : d.i ) 
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• Turning Neutral does not violate PoA or Poß (Widening). 

• Sending a message by Comp.j is described by - see (iii) -

{act.j} d.j := 1 +d.j 

This statement does not violate PoA, and it can only violate Poß if j 
is in the range t < j < N . By pre-assertion act.j and PoA, however, 
we conclude that j isn't. So Message Sending is safe with respect to 
Po. We obtain 

Message Sending: 

Comp.i: {Po} {act.i} 

true -t d.i := 1 + d.i 

{Po} 

• Message Receipt by Comp.j is described by - see (iv) -

d.j := -1 +d.j {act.j} 

which, unfortunately, has a disastrous effect on both PoA and Poß, 
for each j in the range t < j < N . What can we do ab out it? 

* * 
* 

In this monograph we have seen two general techniques of how to proceed 
if the correctness of an assertion or invariant is endangered by some atomic 
statement. One technique was to strengthen the annotation so as to prevent 
the violation - mostly by an appeal to the Rule of Disjointness. The 
other technique was to weaken the threatened assertion or invariant (e.g. 
cf. Chapter 14 and Example 5 of Chapter 8). In the current example the first 
technique is ruled out because we cannot possibly impose apre-assertion 
on Message Receipt: (a) messages arrive outside our and the recipient's 
control and (b) Comp.j has no means of detecting whether t < j < N 
holds. 

As a result, we will have to resort to weakening the invariant, Le. to 
finding a PI such that 

Po V PI 

will be an invariant. However, this requires that we reconsider the termi
nation detection possibilities of Comp.O. 
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Saving the detection mechanism 

Beeause of the deeision laid down in Figure Star, the possibility to detect 
termination eompletely depends on the possibility to eonclude the validity 
of Po upon return of the token in Comp.O. Sinee our new invariant is 
the weaker Po V Pl, we ean only hope to ensure the validity of Po if 
by loeal information of Comp.O we can conclude the jalsity of Pl. This 
severely limits the potential shapes for Pl. 

In our example, d.j: = -1 + d.j may falsify PoB, i.e. 

PoB: q = (~i: t < i < N : d.i ) 

namely it does so for j in the range t < j < N . Thereby it then definitely 
establishes 

q 2 (~i: t < i < N : d.i ) 

and we might think that this condition is a good eandidate for Pl, but 
it is not! For t = 0, Comp.O has no means of establishing its falsity. The 
only quantified expressions that ean be nominated for Pl are express ions 
over - roughly - the complementary range, say 0::; i ::; t . 

Finding PI 

With the above in mind, what ean we ehoose for Pl? It was a message 
receipt that eaused the problem. Now we have to remember that our system 
does not spontaneously - out of the blue - ereate messages, but that 
eaeh message in transit was sent by a eomponent - see (vi). Recalling 
invariants 

Mo: 0::; M 

Ml: M=( ~i:: d.i) 

we eonclude that the preeondition of a reeeipt implies 0 < M . 

Now let us study the falsifieation of Po, in partieular of PoB, by 
statement 

{O< M 1\ Po 1\ t < j < N} d.j := -1 +d.j 

We have, from this statement's preeondition, 

o 
< {first conjunet} 
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M 

{Mi} 

( Ei: 0 ~ i < N : d. i ) 

{splitting the range} 

(Ei:t<i<N:d.i) + (Ei:O~i~t:d.i) 
{Paß} 

q + ( Ei: 0 ~ i ~ t : d.i ) 

So, 0 < q + ( Ei: 0 ~ i ~ t : d.i ) 

- is a precondition of the damaging statement, and 
- the damaging statement does not affect it - t < j < N -, and 
- it has the right shape. 

Therefore we try to get away with 

Pi: 0 < q+(Ei:O~i~t:d.i) 

Upon return of the token at Comp.O, its falsity can be concluded via 

(1) t=O 1\ q+d.O~O :::} ,Pi 

Remark The fact that the system cannot generate messages out of the 
blue is an essential given. If it could, termination detection would be im
possible. The explicit exploitation of this fact, as we did in the above, is 
Shmuel Safra's great and impressive addition to the algorithm reported in 
[DFvG83]. 
End of Remark. 

With the above, Message Receipt is described by 

Message Receipt: 

Comp.i: {Po} 

true ---+ d.i := -1 +d.i 

{Po V Pi} 

But how do we know that Po V Pi cannot be faisified? 
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An intermezzo 

As it stands, Token Initiation, Token Propagation and Message Sending 
are examples of statements S satisfying 

(*) [ Po /\ B :::::} wlp.S.Po 1 
each with its own B. Message Receipt satisfies a rule of the form 

(**) [ Po /\ B :::::} wlp.S.(Po V Pt) 1 
After having weakened the invariant into Po V Pt, however, we are no 
longer interested in (*) and (**), but rat her in whether our atomic state
ments S, for so me B, satisfy 

(***) [ (Po V Pt) /\ B :::::} wlp.S.(Po V Pt) 1 
Fortunately, our knowledge of (*) and (**) ean help us in dealing with 
(***). To that end we calculate 

(*** ) 

{predieate ealculus} 

[ Po /\ B :::::} wlp.S.(Po V Pt) 1 

/\ [PI/\ B :::::} wlp.S.(Po V PI) 1 , 

and we see that the first conjunet has already been catered for: for an S 
satisfying (**), the first conjunet just equals (**), and for an S satisfying 
(*), it is implied by (*) (by the monotonicity of wlp). So our only care 
coneerns the seeond conjunct: 

[ Pt/\ B :::::} wlp.S.(Po V PI) 1 

The result is that for the invariance of Po V PI it suffices to foeus on the 
effeet that our statements have on PI all by itself. 

Sometimes we ean even go one step furt her in our simplifieation: beeause 
we have that 

[ PI/\ B :::::} wlp.S.(Po V PI) 1 

follows from 

[ PI /\ B :::::} wlp.S.PI 1 
we may try to establish the latter; in that ease we only have to worry 
about the invariance of Pt. And if, for the benefit of maintaining PI, 
the preeondition B of S needs to be strengthened, this is fine beeause 
harmless to (***). 

We thus obtain a layered, disentangled pattern of reasoning: first deal 
with Po in isolation, then with Pt in isolation, then with P2 should 
the need arise, etcetera. And the need for P2 will arise, as we shall see 
shortly. 



324 29. Shmuel Safra's Termination Detection Algorithm 

Introduction of P2 (or: dealing with PI) 

Before proceeding, let us summarize what we have got. The envisaged in
variant is Po V PI , with 

Po: PoA A PoB 

PoA: 

PoB: 

( Vi : t < i < N : neutr.i ) 

q = ( Ei: t < i < N : d.i ) 

PI: 0< q+(Ei:O:Si:St:d.i) 

The components so far are 

Token Initiation: 

Comp.O: {true} 

, and 

t = 0 -t t, q := N -1,0 

{Po} 

Token Propagation: 

Comp.i: {Po} 

(i #0) t = i A neutr.i 

-t t, q := t-l, q+d.i 

{Po} 

Message Sending: 

Comp.i: {Po} {act.i} 

true -t d.i := 1 + d.i 

{Po} 

Message Receipt: 

Comp.i: {Po} 

true -t d.i := -1 + d.i {act.i} 

{Po V PI} 

Turning Neutral: 

Comp.i: {Po} 

true -t neutr.i := true 

{Po} 

Version 0 
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Now we investigate the effect of these statements on Po V PI , where, 
following the intermezzo, we just focus on PI. 

• Token Initiation correctly establishes Po, hence also Po V PI . 

• Token Propagation maintains PI: just apply the axiom of assignment, 
taking t = i into account. 

• Message Sending maintains PI: Widening. 

• Unfortunately, Message Receipt by a Comp.i with i in the range 
o :S i :S t may falsify PI. If along with this potential violation of PI 
relation Po were (re- )established, we would be done. But it isn't, and 
therefore we have to weaken our invariant once more, with a disjunct P2 
to be established along with any damaging Message Receipt. 

• Turning Neutral maintains PI: Orthogonality. 

In order to re cord that something nasty may happen by a Message Re
ceipt, we introduce the not ion of a coloured component, viz. a component 
will be black or white. The receipt of a message will be recorded by black
ening the component. With P2 defined by 

P2: (:Ji: O:Si:St: black.i) 

the above damaging receipt establishes P2 by the following program ad
justment - see Remark below-

Message Receipt: 

Comp.i: {Po V PI} 

true -+ black.i:= true 

; d.i := -1 +d.i 

{Po V PI V P2} 

Termination detection is still possible upon return of the token, because 
we have 

(2) t = 0 A white.O =} -,P2 

(where white == -,black ). 

Remark In more detail, the massaging we carried out to obtain the above 
extended Message Receipt is, in fact, a sequence of steps: 
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• first, we extended our previous Message Receipt with statement 
black.i := true , yielding 

{Po} 

Message Receipt 

{Po V Pl} 

which is correct because Po doesn't mention colours; 

• second, our extended Message Receipt was constructed so as to satisfy 

{Pl} 

Message Receipt 

{Pl V P2} 

• third, we combined these two Hoare tripIes into the one in the box above. 

For the other atomic events, similar combinations can be given. We will, 
however, omit these detailed manipulations. 
End of Remark. 

In summary, we have for our next version 

Token Initiation: 

Comp.O: {true} 

t = 0 -+ t, q := N - 1, 0 

{Po} 

Token Propagation: 

Comp.i: {Po V Pl} 

(i # 0) t = i A neutr.i 

-+ t,q:= t-1, q+d.i 

{Po V Pl} 

Message Sending: 

Comp.i: {Po V Pl} {act.i} 

true -+ d.i := 1 + d.i 

{Po V Pl} 
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where 

Message Reeeipt: 

Comp.i: {Po V PI} 

true -+ black.i:= true 

; d.i := -1 +d.i 

{Po V PI V P2} 

Turning Neutral: 

Comp.i: {Po V PI} 

true -+ neutr.i := true 

{Po V PI} 

Version 1 

Po: PoA 1\ PoB 

PoA: ( Vi : t < i < N : neutr.i ) 

PoB: q ( ~ i : t < i < N : d.i ) 

PI: o < q + ( I; i : 0 ::; i ::; t : d. i ) 

P2: ( 3i : 0::; i::; t : black.i ) 

, and 

Finally: introducing P3 (or dealing with P2) 

Next we investigate the effect of our statements on Po V PI V P2, where, 
aeeording to the intermezzo, it suffiees to foeus on just P2: 

P2: ( 3i : 0::; i ::; t : black.i ) 

• Neither Turning Neutral nor Message Sending affects eolours, so both 
are harmless to P2. 

• Message Reeeipt blaekens a eomponent, so that is Widening. 

• Token Initiation establishes Po, henee also Po V PI V P2. 

• However, Token Propagation may violate P2: Comp.t eould be the 
only black componcnt in the range 0::; i ::; t. We thcrcfore weaken our 
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invariant once more, with a disjunct P3 to be established along with 
token transmission. 

For this purpose, we introduce the notion of a coloured token. If the 
token is propagated by a black component, it will be propagated black. 
With ct a variable to record the colour of the token, we introduee 

P3: ct = black 

and adjust token transmission so as to establish P3 when P2 may be 
violated. (Note that, like q, ct is an attribute of the token.) 

Token Propagation: 

Comp.i: {Po V PI V P2} 

(i # 0) t = i 1\ neutr.i -+ 

if white.i -+ t,q:= t-l, q+d.i 

~ black.i -+ t, q, ct := t -1, q + d.i, black 

fi 

{Po V PI V P2 V P3} 

Termination deteetion has remained possible upon return of the token, 
beeause 

(3) ct = white =} -"P3 

* * 
* 

Beeause P3 is not falsified by any of our statements, we are done. Our 
system maintains invariant 

Po V PI V P2 V P3 

and termination detection by Comp.O is still possible because, combining 
(0) through (3), we have 

t = 0 1\ (Po V PI V P2 V P3) 1\ neutr.O 

1\ q + d.O = 0 1\ white.O 1\ ct = white 

z 

The only question that remains is whether Comp.O will actually report 
termination, onee Z has been established, i.e. whether - after termina
tion - the state 

t = 0 1\ neutr.O 1\ q + d.O = 0 1\ white.O 1\ ct = white 

will indeed be reached, in a finite number of steps. 
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Progress 

As its stands, the token is only blackened and never whitened. The same 
holds for the components. Without whitening operations, we cannot hope 
that termination will ever be reported by Comp.O. So we had better explore 
our program for whitening opportunities, of course without violating the 
invariant. 

The opportunity par excellence to whiten the token is Token Initiation, 
because that establishes Po (which does not mention colours at all). For 
the same reason, Comp.O may also whiten itself. So we propose to extend 
Token Initiation into 

Token Initiation: 

Comp.O: t = 0 ---7 t, q, ct := N - 1, 0, white 

; white.O := true 

The opportunity par excellence for a black Comp.i, i =1= 0, to whiten 
itself is Token Propagation, because for a black Comp.i, Token Propagation 
establishes P3. 

Incorporating this whitening, and collecting the pieces, we arrive at 

Token Initiation: 

Comp.O: t = 0 ---7 t, q, ct := N -1, 0, white 

; white.O := true 

{Po, hencc PP} 

Token Propagation: 

Comp.i: {PP} 

(i =1=0) t=i /\ neutr.i 

---7 if white.i ---7 t,q:= t-l, q+d.i 

~ black.i ---7 t,q,ct:=t-l,q+d.i,black 

; white.i := true 

fi 

{PP} 
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Message Sending: 

Comp.i: {PP} {act.i} 

true --t d.i := 1 + d.i 

{PP} 

Message Receipt: 

Comp.i: {PP} 

true --t black.i := true 

; d.i := -1 +d.i 

{PP} 

Thrning Neutral: 

Comp.i: {PP} 

true --t neutr.i := true 

{PP} 

Inv: PP: Po V Pi V P2 V P3 

Shmuel Safra's Termination Detection Algorithm 

* * 
* 

Now we finally show that termination will be reported (by Comp.O) 
within a finite number of steps after Z has been established. We recall 

Z: (Vi:: neutr.i) 1\ (Ei:: d.i) =0 

In astate satisfying Z, Message Sending and Receipt are no longer pos
sible, and as a result 

(a) the d's are constant, and 

(b) components don't turn black. 

Furthermore, since all components are neutral, the token will travel along 
the ring unhampered and return to Comp.O. So, if necessary, Comp.O will 
initiate a next probe. By the program text, that next probe will proceed 
under invariance of 

(c) (Vi: t< i < N : white.i) 1\ white.O , and 

(d) q=(Ei:t<i<N:d.i) 

relations that cannot be falsified thanks to (a) and (b). So upon return of 
the token in Comp.O we have 
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neutr.O 

q+d.O=O 

white.O 

- from first conjunct of Z -, 

- from (d) and the second conjunct of Z 

- from (c). 

The only conjunct that may be lacking for the conclusion of termination is 
ct = white . If it is, yet a next probe is to be initiated, which now proceeds 
under the additional invariance of 

( Vi :: white.i ) - thanks to (c) and (b). 

As a consequence - see the program text -

the token doesn't turn black, 

and because it is injected with colour white into the ring, it will return 
white as weIl. 

And herewith we conclude our progress argument and our treatment of 
Shmuel Safra's termination detection algorithm. 

Final Remarks 

Wc end this chapter with a number of loosely connected remarks. 

• We learned ab out Shmuel Safra's algorithm through [Dij87]. 

• Since in our derivation wc made no assumptions about the initial colours 
of the components and the token, they may be anything, be it black or 
white. 

• We have all the time assumed that the five guarded commands were 
atomic. But they can be made more fine-grained in many ways. We leavc 
such explorations to the reader. 

• An important and not too easy aspect of the problem is the descrip
tion of the precise interplay between a component's participation in the 
computation proper and in the termination detection algorithm. This 
interplay is arranged most smoothly by splitting the various activities of 
a componcnt over a number of weIl-chosen subcomponents. Important 
and interesting though this problem may be, we consider it aseparate 
concern. 

• The technique we used in designing our solution, viz. the steady weaken
ing of our target relation (Po) into a relation (PP) that is closed under 
the system operations, is not an uncommon one. We can already see it, 
in a very rudimentary form, in the development of sequential programs, 
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where target relation R is established by finding a weaker P and a 
condition ß such that [P 1\ -,ß ::::} R 1 , and by aiming at a program 
of the form 

{loop inv : P} 

do ß ---+ S {P} od 

{R} 

• In Shmuel Safra's design, the successive disjuncts added to the invariant 
were designed such that they could be dealt with in isolation, according 
to the rules of our Intermezzo. They thus allowed a "layered" design, a 
contribution to simplicity that is not to be ignored lightly. 
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The Alternating Bit Protocol 

The Alternating Bit Protocol is an algorithm for the correct transmission 
of a data stream from one place to another via so-called "faulty channels" . 
Here, a faulty channel is a kind of medium that can garble, duplicate or lose 
data in some well-specified ways. This protocol has raised a lot of interest 
ever since its emergence [BSW69]. It is discussed, specified, and provided 
with correctness proofs abundantly in the established literature. However, 
in spite of this reputation, the general understanding of the algorithm is at 
an oxtremely low level: most computing scientists "know" the Alternating 
Bit Protocol in the sense that they have heard of it, but only a few can 
explain it. This is a pity for such a fundamental algorithm. t 

One reason for this stato of affairs is, we believe, that the algorithm is 
mostly explained with too many irrelevant details, Le. it is not reduced to 
its most rudimentary form. Another, more important, reason might be that 
the algorithm is usually postulated rather than derived, and then - at 
best - provided with an a-posteriori proof of correctness. 

The main purpose of this chapter is to try to remedy the situation, by re
moving from the traditional specification evorything that soems irrelevant, 

tThe ABP shares this fate with many other elementary algorithms, e.g. the Binary 
Search and the Depth-First Search, and with some highly respectable mathematical 
theorems, e.g. Ramsey's Theorem from Combinatorial Mathematics. 
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and then deriving the algorithm from scratch. It will then turn out that 
the Alternating Bit Protocol is as simple as the handshake protocol, with 
just some minor adjustments to take the presence of "faulty channels" into 
account. We hope that thus we provide the reader with a new appreciation 
of this fundamental algorithm. 

Describing the problem 

At the most macroscopic level, the problem can be described by means of 
the following picture, in which thc contents of the rcctangular box are not 
revealcd as yet. 

In Out 

Figure 0 

An infinite stream of data is injected at the I n-side of the box and ejccted 
from thc Out-side. The intention is that the stream ejected be equal to 
the stream injected, possibly with some delay. If In and Out were 
(perfect) synchronous CSP -links (cf. Chapter 23), the intended behaviour 
of the box could be described by the little program 

(0) * [In?x; Out!x 1 

And if there were no constraints on the interior of the box, this program 
would cven be a simple and elegant implcmentation for our problem. 

Unfortunately, wc are not free to choose thc interior of the box. It so hap
pens that whcn we open it a little bit, wc see two completely independent 
components, specially designed to take care of the input and the output 
trafik, respectively. Their behaviour is described by the two-component 
multiprogram 

(1) 
A: * [In?x 1 

B: * [Out!y 1 
Fortunately, we are entitled to adjust the components, for instance we 
might synchronize them in such a way that their combined behaviour is as 
demanded, Le. like (0). Now we see m to be on familiar ground, because 
if we were able to idcntify y and x, program (1) would simplify to 

A: * [ In?x 1 
B: * [Out!x 1 
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and superposition of a simple handshake protocol would do the job (cf. 
Chapter 16). 

Unfortunately, we are not free to identify y and x, because we are 
not free to choose how A and B communicate. It so happens that A is 
equipped with a perfect synchronous link to some interior box F, some 
sort of channel, to which it can deliver a data item. And, symmetrically, B 
is equipped with such a link as well, by which it can extract a data item 
from F. So the situation inside the box of Figure 0 can be sketched by the 
following picture. 

Figure 1 

Component A may be modified so as to inject a data item into F via af!x. 
Similarly, B can extract such an item via fb?y. That is how the x and 
y in (1) are coupled, but to understand this fully we must now open F. 

Inside F we discover the following two-component multiprogram: 

(2) 
AF: * [ af?p 1 
FB: * [fb!p 1 

and it so happens that we are not allowed to modify this multiprogram in 
any sense whatsoever. 

* * 
* 

Now let us analyze the situation we are in. It is the intention that, via 
A, an infinite stream of data is transmitted to B. Because the only com
munication line available is via F, the implementation has to see to it 
that 

(3a) A performs operations af! with positive frequency, 

and, symmetrically, that 

(3b) B performs operations fb? with positive frequency. 

And what ab out F in this respect? Because we will not intervene in (2), 
- because that is not allowed! --, F will produce some fair interleaving of 
operations af? and fb!, and it can choose the interleaving autonomously. 
By "fair" we mean that at any moment during operation of F a next af? 
and a next fb! are guaranteed to occur. As a result, F will perform oper-
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at ions af? and fb! each with positive frequency, which nicely matches 
the requirements laid down in (3a) and (3b). 

* * 
* 

N ow, F can behave nicely, like 

* [af?p; fb!p] 

and then it is a perfect one-place channel, but it need not. It can misbehave 
in two different ways. One way is that it selects two successive af?'s in 
the interleaving. Thanks to (3a) these operations both terminate, but the 
data item communicated in the first operation is just lost. However, because 
of the fairness of the interleaving, F does not pers ist in losing. The other 
misbehaviour is that F selects two successive fb!'s, which corresponds 
to duplication of a data item: B extracts the same thing from F twice in 
succession. But again, F does not persist in duplicating. 

A piece of machinery like F is called a faulty channel. It is a realistic 
model for communication "facilities" as we may encounter them in practice, 
and the problem is how to correctly transmit a stream of data from one 
place to another when faulty channels are our only devices for information 
transfer. 

In the rest of this chapter we shall derive programs for A and B so that 
thc correct transmission bc achieved. But before doing so, we first simplify 
the problem statement by reducing it to its bare essentials. 

Simplifying the problem 

As yet, the input stream to be consumed by component A through state
ments In?x is completely arbitrary. Without losing the essence of the 
problem, we assurne that it is the sequence of natural numbers, which is 
the simplest sequence that enables us to distinguish between the individual 
items in the stream (cf. the Handshake Protocol, Chapter 16). With this as
sumption, statement In? x is just x: = x + 1 , so that the basic structure 
of component A now simplifies to 

A: * [x:= x+ 1] 
Likewise, we are not really interested in where B sends its output to via 
Out!y. Let us assurne that it just prints it via command print(y). Further
more, a value y printed by B is always extracted from F via the clicking 
pair (fb?y, fb!p) , which to all intents and purposes amounts to y:= p. 
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Thus, B always prints a value p to be read from F, so that the basic 
structure of component B now becomes 

B: * [ print(p) 1 

At the other end of the channel, A and F communicate via the clicking pair 
(af!x, af?p), which amounts to p:=x. Thus the structure of F can now 
be described as 

F: * [p:=x 1 

What about constraints (3a) and (3b)? The former says that the transfer 
of value x to p is to occur with positive frequency, and this is okay 
in our simplified version, since the F above proceeds with positive speed 
(cf. Chapter 1). The latter constraint demands that B inspect p with a 
positive frequency, and this will follow from the final progress argument -
to be given anyway -, which guarantees that B continues printing, and 
hence inspecting, p. 

So much for our simplified model of the problem, which in summary can 
now be phrased as follows. Given three-component multi-program 

Pre: x=O 

A: * [ x := x + 1 1 
F: * [p:=x 1 
B: * [ print(p) 1 

we are to synchronize the components in such a way that B prints the 
sequence of natural numbers, under the additional constraint that no syn
chronization code (i.e. blocking constructs) may be added to faulty chan
nel F. Moreover, if "feedback" is required in A from B, such information 
exchange may only be realized through the intermediary of another faulty 
channel (recall: no other communication media are allowed between A and 
B). 

Deriving a solution 

We will develop a solution in three steps. First we formally specify the 
problem and give a solution under the assumption that direct communi
cation between A and B is allowed. Then we plug in the faulty channel(s) 
and adjust the solution accordingly, and, finally, we transform the resulting 
program into one that uses boolean variables only, thereby arriving at the 
Alternating Bit Protocol. 
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A solution using direct communication 

Our starting point is multiprogram 

Pre: x=O 

A: * [x:=x+1] I B: * [print(x)] 

and our task is to synchronize the components in such a way that B prints 
the sequence of natural numbers. This is exactly the problem that led 
us to the Handshake Protocol (cf. Chapter 16), and we do not repeat that 
development here, but rat her give an annotated solution at once. The reader 
can easily check the correctness of the annotation in place. 

Pre: x=O 1\ y=O 

A: * [ if x + 1 :s; y ~ skip fi B: *[{x=y} 

; {x+1:S;y} print(x) 

x:=x+1 ; y:=y+1 

] ; if y :s; x ~ skip fi 

] 
Inv: Po: x :s; y 

PI: y :s: x+l 

Version 0 

From the text of B alone together with precondition y = 0 we can con
clude that B prints as demanded. But recall from Chapter 16 that y is 
a (clairvoyance) variable mimicking the behaviour of x in A, and that it 
has to be eliminated from the program text in the end. Also notice that 
Po 1\ PI is a proper multibound for the multiprogram. 

Introducing the faulty channels 

If we now disallow the direct communication between A and B, component 
B can no longer inspect variable x, and A is denied access to y. So, we 
plug in two faulty channels, viz. 

F: * [p:=x 1 
for transmitting the value of x from A to B, and 

G: * [q:=y] 
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for transmitting the value of y from B to A. Along with this change in 
architecturc, alt occurrences of x in B havc to be replaced by p, and alt 
occurrences of y in A by q. So we have to change guard y:S x and 
statement print(x) in B, and guard x+ 1 :S y in A. However, in doing 
so we wish to rctain the correctness of our solution. 

We deal with the replacement of the guards first. By the Rule of Guard 
Strengthening, (partial) correctness is preserved under guard strengthen
ing. So we can replace guard y:S x in B with y:S p, whenever we can 
rely on the validity of 

P2: p :S x 

and we will see to P2 by making it a system invariant. And this is for 
frce: both p:= x in Fand x:= x + 1 in A maintain P2, and we make 
it hold initially by adding p = 0 to the precondition. 

Similarly, we can replace guard x + 1 :S y in A by x + 1 < q, because 
with q = 0 initially, 

is a system invariant as well. 

Thus we arrive at the next version, in which print(x) still appears 
unchanged. On thc fly, we introduce a number of queried items to be used 
later on to trans form the algorithm to the boolean domain: 
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Pre: x=O 1\ y=O 1\ p=O 1\ q=O 

A: * [ if x + 1 :::; q -> skip fi 

; {?x+l:::;q} 

x:=x+l 

1 
F: * [p:=x 1 
B: * [{x=y} {? y:::;p} 

print(x) 

; y:=y+l 

; if y :::; p -> skip fi 

1 
G: * [q:=y 1 
Inv: Po: x :::; y 

PI: y :::; x+l 

P2 : p :::; X 

P3 : q :::; y 

? P4: X :::; q 

? P5: y :::; p+l 

Version 1 

Note that the queried assertions in A and Bare the strongest possible post
assertions for the guarded skips that one may come up with on account 
of the guards. Assertion X = Y in Band invariants Po and PI are 
inherited from Version O. 

As for expression print(x) observe, that Po 1\ P2 implies p:::; y, so 
that, in B, assertion y:::; p can be strengthened to y = p. Because of 
co-assertion x = y, we also have x = p, so that print(x) can now be 
replaced with print(p). 

As for the queried items we observe, that assertion y :::; p in B is a local 
loop invariant of Band that, thanks to P2, it is globally correct as weH: 
p:= x in F is a widening. For assertion x + 1 :::; q in B the argument is 
very similar. The invariance of P4 and P5 can now be left to the reader. 

Finally, we deal with progress. If both A and B are stuck in their guarded 
skips, the rest of the system - Fand G - will reach astate in which 
p = x 1\ q = y stably holds. In that state, one of the guards - x + 1 :::; q 
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and y ~ p- is stably true. So there is no deadlock, and since A and 
B are still coupled by their multibound Po 1\ PI , individual progress is 
guaranteed as weIl. 

Summarizing the above, retaining what will be needed later, we arrive 
at 

Pre: x=O 1\ y=O 1\ p=O 1\ q=O 

A: * [ if x + 1 ~ q ----f skip fi 

;{x+l~q} 

x :=x+l 

1 
F: * [p:=x 1 

B: * [ {y=p} 

print(p) 

; y:=y+l 

; if y ~ p ----f skip fi 

1 
G: * [q:=y 1 

Inv: p~x~q~y~p+l 

Version 2 

Remark Let us, just for amoment, entirely forget about our problem 
and carry out a syntactic comparison between Version 0 and Version 2. 
The only difference is that in B all occurrences of x are replaced by p, 
and similarly in A all y's by q. From Fand G we see that p is a 
potentially old value of x, and q for y. Apparently, in this example 
such delays in the arrival of information are harmless. 

We ourselves have been searching for simple theorems providing circum
stances under which such delays are permissible, but we have not even been 
able to find a single one, let alone useful ones. On the contrary, in many 
examples delays have a disastrous effect. Many multiprograms lack such 
monotonicity properties and exhibit a capricious behaviour under seem
ingly harmless modifications. 

End of Remark. 
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The Alternating Bit Protocol 

For the final transformation we observe, that the "control" of the program 
only depends on the differences x - q - in A's guard - and y - p 
- in B's guard. Invariant Inv shows that these differences are only two 
-valued, which means that by a suitable coordinate transformation we can 
achieve that the program runs under control of boolean variables only. For 
this coordinate transformation we propose coupling invariants 

Qo: c == 9 == x + 1 :::; q and 

Ql: d == f == y :::; p 

with c - like x - private to A, 

d - like y - private to B, 

f - like p - private to F, and 

9 -like q - private to G. 

For the invariance of Qo and Ql, we have to investigate - and pos
sibly adjust - all assignments to x, y, p, and q. (Note that each 
assignment affects only one of them.) 

Re "{x+l:::;q}x:=x+l" inA 

For the invariance of Qo, we propose to replace x:= x + 1 by 
c, x := C, x + 1 and we calculate a suitable expression C: 

= 

(c,x := C, x+l).Qo 

{substitution} 

C==g==x+2:::;q 

{from Inv: q :::; x + 1 } 

C == 9 == false 

{Qo} 

C == c == x + 1 :::; q == false 

{pre-assertion x + 1 :::; q of x:= x + I} 

C == -,c 

Hence - not too amazingly - a fiipping of c along with the increment 
of x does the job. 

Re "{y=p} y:=y+l" in B 

Very similarly, y:= y + 1 is replaced by d, y := -,d, y + 1 . 
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Re "p:=x" in F 

The invariance of Q1 under p:= x may require an adjustment of f. 
Just like p takes over the value of x, we try to let f take over the 
value of x's "ally" c. So we try 

(f,p:= C,X).Q1 

{substitution} 

d=c=y$.x 

{invariant Q2, introduced below} 

true 

Invariant Q2, given by 

Q2: d = c = y $. x 

will be dealt with shortly. 

Re "q :=y" in G 

Very similarly, Qo is maintained by g, q := ,d, y, since (g, q := ,d, y). Qo 
equivales Q2 as weIl. 

End of Re's. 

Remark When wc ourselves first encountered Q2, we did not think of 
it being an invariant. In our first efforts we tried to derive it from Qo 
and Ql, hut that so on turned out to he undoahle: there was no way to 
eliminate the channel variables p, f, q, and g from Qo and Q1, 
which would be nccessary because they don't occur in Q2. SO, it was the 
shape of these formulae that told us that we had better hope that Q2 
would be an "independent" invariant as weIl. 
End of Remark. 

Finally, we show the invariance of Q2. 
We need only consider c, x := ,c, x + 1 in A and d, y := ,d, y + 1 m 
B. As for the former, wc calculate 

(c,x:= ,c, x+l).Q2 

{substitution} 

d = ,c = y $. x + 1 

{from Inv: y $. x + 1 } 
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x<y 

{from Inv and pre-assertion x + 1 ::; q of c, x : = 'c, x + 1 : 

x+l ::; q ::; y} 

true 

Likewise, statement d, y := -,d, y+ 1 maintains Q2. 

In summary, we have arrived at 

Pre: x=O 1\ y=O 1\ p=O 1\ q=O 

1\ c 1\ ,g 1\ d 1\ f 

A: * [ if c == 9 --? skip fi 

; c, x := ,c, x + 1 

] 

F: * [f,p := c,x] 

B: * [print(p) 

; d, y := -,d, y + 1 

; if d == f --? skip fi 

] 
G: * [g,q := ,d,y] 

Version 3: The (Concurrent) Alternating Bit Protocol 

Finally, we can eliminate the (clairvoyance) variable y and its offspring 
q from the program text, since they no longer contribute to the compu
tation. The resulting algorithm is known as the (Concurrent) Alternating 
Bit Protocol - see e.g. [B8W69, CM88, Mil89, Br092, 8ne95, Lyn96]. 

Final Remarks 

The above treatment of the Alternating Bit Protocol is very similar to the 
one in [FvGS98] (not surprisingly so). There we experienced that the most 
tricky, debatable and debated part of this treatment concentrated on our 
model of faulty channels, not on the program derivation itself. In our first 
draft, we just had 
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* [p:=x] 

as our model for a faulty channel, and we would argue why. Some people 
around fully accepted it, but quite so me others opposed it, even vehemently 
so. Then it was our colleague Johan Lukkien who spotted the source of 
the opposition and told us that what these people wanted to see was an 
apparatus - Le. an implementation! - with which they could identify a 
faulty channel. This gave rise to our adoption of the more specific model 

* [ af?p], * [ fb!p ] 

wh ich we learned from [Sneg5]. We then could have gone furt her down 
the line by proposing potential strategies for component A to perform op
erations af!x with positive frequency, but we rcfrained from doing so, 
because we feIt that the more logically irrelevant detail we would bring in, 
the more we would obfuscate the essence of the Alternating Bit Protocol. 

In fact, all the above simplifications have taught us that the Alternating 
Bit Protocol is not a tricky algorithm at all , but just a simple adaptation 
of the two-phase handshake protocol (i.e. of the simplest protocol for data 
transmission available): the adaptation consists in inserting faulty channels 
between the sending and receiving component, and in equipping these com
ponents with facilities to regularly deposit data items into those channels. 
We hope that we have given, to at least some of our readers, a different 
view on this beautiful and fundamental algorithm. 



31 

Peterson's Mutual Exclusion 
Algorithm Revisited 

This last technical chapter is not really about Peterson's algorithm, al
though it may reinforce the beauty of that design. What this chapter re
ally is about, is a serious and fundamental criticism that one may have of 
the method of multiprogramming proposed in this book. The method is 
invariably driven by the requirement of partial correctness, thereby largely 
neglecting the aspect of individual progress, or "liveness". Of course, we do 
have some rules of thumb that prevent us from excluding progress before
hand, the most notable one being to choose the annotation and the induced 
guards as weak as possible. But how good is this? Is there a mathematical 
underpinning? The answer is simple: there isn't! 

The problem is this. First of all, guarded skips (or statements) are an es
sential and indispensable construct in multiprogramming. Then there is the 
Guard Strengthening Lemma, which says that partial correctness is pre
served under guard strengthening. So this is a nice monotonicity property. 
Unfortunately, there is no such thing as a Guard Weakening Lemma telling 
us that progress is preserved under guard weakening. In fact, progress can 
be endangered (and also achieved) both by guard strengthening and ... 
by guard weakening - see e.g. the very final observation of Chapter 21. 
So there is no clear-cut monotonicity with regard to progress properties. 
This may off er yet a.nother explanation why individual progress is such a 
nasty aspect. The cntire literat ure on multiprogramming, both formal and 
informal, witncsses this. 
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* * 
* 

In sequential programming we eneounter the two aspeets of partial eor
reetness and progress as well. In that area, the latter is ealled termination. 
The sequential programmer, however, does not deal with termination as 
a mere afterthought. On the eontrary: he guarantees termination right at 
the beginning of the design, by ehoosing a variant or bound function on a 
well-founded set (e.g. the naturals) together with operations that deerease 
it. Only then will he be bothered by partial eorreetness. The quest ion is 
whether the multiprogrammer should not follow the same strategy. 

In this ehapter we earry out an (eneouraging) experiment along these 
lines, viz. we eonstruet a two-eomponent mutual exclusion algarithm by a 
derivation that is entirely driven by formally stated progress requirements. 
It is a pleasant surprise that, along these lines also, Peterson's algorithm 
emerges again, and this indeed onee more explains the beauty of that de
sign. 

The problem of mutual exclusion 

We briefly reeall the problem statement, far reasons of eompleteness and 
as a stepping stone towards what follows. 

We are given two eomponents, Comp.p and Comp.q. They are engaged 
in a eomputation proper given by 

Comp.p: * [ nes.p; es.p 1 

Comp.q: * [ nes.q; es.q 1 

The two fragments es.p and es.q are given to always terminate; the two 
fragments nes.p and nes.q may or may not terminate. 

Now the problem is to superimpose, on thc eomputation proper, an ad
ditional algorithm - phrased in terms of fresh variables - with the effeet 
that 

ME: es.p and es.q are never cxeeuted simultaneously, and 

IP: a eomponent that has terminated its nes will start the execution 
of its es within a finite number of steps of the system, and vice 
versa with the röles of nes and es interehanged. 

Requiremcnt ME - whieh is the requirement of Mutual Exclusion -
potentially hampers the computation proper, in that a eomponent's tran-
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sition from its nes to its es is not unconditional. Requirement IP, 
however, - which is the requirement of Individual Progress - states 
that the computation proper should not be hampered indefinitely. 

Thus, after the superposition, the components may take the form 

Comp.p: * [ nes.p Comp.q: * [ nes.q 

; entry.p ; entry.q 

; if a ----> skip fi ; if ß ----> skip fi 

; es.p ; eS.q 

; exit.p ; exit.q 

Statement if a ----> skip fi captures the potential blocking üf Comp.p ne
cessitated by ME. Fragments entry and exit are placeholders for ad
ditional code. We emphasize that all the code added to the computation 
proper operates on a completely fresh state space. In particular, guards a 
and ß eannot be influenced by nes or es. 

Modeling Individual Progress 

This time we largely ignore the Mutual Exclusion requirement to begin 
with and focus on Individual Progress instead. We try to formalize, from 
our operational understanding, what Individual Progress means für the 
multiprogram given above. 

In order to keep the design as simple as possible, we will strive for a solu
tion in which the entry- and exit- fragments terminatc by construction. 
(They will, indeed, turn out to consist of a number of assignment state
ments only.) As a result, the only way in which Comp.p can then fail to 
make progress in its computation proper is by getting stuck in its guarded 
skip if a ----> skip fi. 

We now identify the (three) possible scenarios for which if a ----> skip fi 
can fail to terminatc. 

Remark Recall that termination of a guarded skip is only guaranteed 
if the rest of thc system converges to astate in which the corresponding 
guard is stably true. 
End of Remark. 

The three possible scenarios are 
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• Comp.q is also engaged in the execution of its guarded skip, while both 
a and ß are false. This is a situation of total deadlock. Using an ad-hoc 
notation, we preclude this danger by requiring that our solution satisfy 

(0) inifp 1\ inifq =} a V ß 

(Here, inifp stands far astate of the system where Comp.p is exe
cuting or ab out to execute its guarded skip.) 

• Comp.q is engaged in a nonterminating execution of its ncs while a 
has value false. (Recall that the value of a cannot be changed by the 
computation proper.) We preclude this danger by requiring 

(la) inifp 1\ inncs.q =} a 

(Here, inncs.q stands far astate of the system where Comp.q is ex
ecuting or about to execute its ncs.) For reasons of symmetry between 
the components, we also require 

(lb) inifq 1\ inncs.p =} ß 

• The remaining situation is that each of Comp.q's executions of ncs.q 
and if ß -7 skip fi does terminate, but Comp.q does not converge to a 
state in which a is stably true. This we preclude through the introduc
tion of a natural-valued variable t, operated upon by the components 
as follows 

Comp.p: 

* [ncs.p 

; t:=O 

; if a -7 skip fi 

; cS.p 

Comp.q: 

* [ncs.q 

; t:=t+l 

; if ß -7 skip fi 

; cS.q 

and by requiring that for some natural N 

(2a) inifp 1\ N < t =} a 

Then, oscillations on aare only possible as long as bound function 
t is not large enough, and when it is large enough, a is stably true. 
Note that, thanks to the introduction of bound function t, we can now 
completely forget about the phenomenon of an oscillating guard, a phe
nomenon that makes classic progress arguments so cumbersome. For rea
sons of symmetry, we also introduce variable sand natural M, which 
are required to satisfy 

(2b) inifq 1\ M< s =} ß 
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and we choose our components to have the form 

Comp.p: 

* [ncs.p 

; s,t:= s+I,O 

; if a ----. skip fi 

; cs.p 

* 

Comp.q: 

* 

* [ncs.q 

;t,s:=t+l,O 

; if ß ----. skip fi 

; CS.q 

* 

And here, our operational reasoning comes to an end. Its only purpose 
was to get across that (0), (1), and (2) are sweetly reasonable conditions 
for guaranteeing Individual Progress. They will now serve as the starting 
point for a formal derivation of an algorithm satisfying ME and IP. 

Of course, (0) through (2) are vacuously satisfied by taking a and ß 
both equal to true, but we have to bear in mind that Mutual Exclusion 
requirement ME demands strong values for a and ß (e.g. choosing 
both of them equal to false would be fine). So we have to be a little bit 
careful and find out a permissible spectrum far the guards a and ß. 

Towards an implementation 

Finding a permissible spectrum for a and ß means solving (0) through 
(2) for a and ß. We repeat these equations, combining (la) and (2a) 
into (3a), and (lb) and (2b) into (3b): 

(0) 

(3a) 

(3b) 

inifp 

inifp 

inifq 

A 

A 

A 

inifq =} aVß 

(inncs.q V N< t ) =} a 

(inncs.p V M< s) =} ß 

As we already alluded to before, the requiremcnt of Mutual Exclusion is 
best served with strong guards a and ß. Equation (3a) tells us what a 
can be at strongest, and (3b) does the same for ß. But what about (O)? 

We now try to prove (0) using (3), with thc purpose of finding out what 
else might be needed: 



352 31. Peterson's Mutual Exclusion Algorithm Revisited 

a:Vß 

{= {(3a) and (3b)} 

(inif.p 1\ (inncs.q V N<t)) 
V 
(inif.q 1\ (inncs.p V M < s)) 

{from the antecedent of (0): inif.p 1\ inif.q} 

inncs.q V N < t V inncs.p V M< s 

{from the antecedent of (0): inif.p ,and 
from the structure of Comp.p, thereforc, -,inncs.p; 
by symmetry, also -,inncs.q} 

N<t V M<s 

So, if in addition to (3), we can guarantee thc invariance of 

N<t V M<s 

then (0) is implied. And here is the place to remembcr that we are still free 
to choose values for the natural parameters M and N, and for reasons 
of simplicity we shall use that freedom. The multiprogram as is grants us, 
for suitablc initial values of sand t, the invariance of 

Po: 0 ~ s 1\ 0 ~ t 

and of 

Pi: 0< s =1= 0< t 

and, therefore, also of 

O<s V O<t 

So with choice M, N := 0,0 we have (the invariancc of) 

M<s V N<t 

so that, indeed, (0) is implied, and we are left with just (3). 

Equations (3) givc us the spectra for a: and ß that we were after. 
Now, if the current design is to lead to a correct solution of our mutual 
exclusion problem at all, we must investigate thc strongest possible choiccs 
for a: and ß. 
Remark This "must" is a direct consequence of the Guard Strengthen
ing Lemma: if ME cannot be guaranteed for the strongest a: and ß 
satisfying (3), thc same will hold for all othcr solutions of (3). 
End of Remark. 
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For a, thc strongcst possible choice is - see (3a) for N = 0 -

inifp 1\ (inncs.q V O<t) 

but because, by definition, inifp is a corrcct precondition of 
if a ---> skip fi , we can omit this conjunct. Thus we arrive at 

a == inncs.q V 0< t 

and, symmctrically, 

ß == inncs.p V 0< s 

And now thc only task lcft is to investigate whether this choice indecd 
guarantees Mutual Exclusion. 

Peterson's Algorithm emerges 

First, we introduce variables X.p and X.q so as to eliminate the auxiliary 
express ions inncs.p and inncs.q. We do so in thc usual way byadopting 
the encodings 

X.p == inncs.p and x.q == inncs.q 

and adjusting thc components accordingly. 

Second, we observe that, as far as control is concerned, the interest in 
the integers sand t is just binary - viz. we are only intercsted in 
their being positive or not. By PI, they are not positive simultaneously. 
Thereforc, we can replace the pair of them by a single two-valucd variable 
v. We propose coordinate transformation 

v = p == 0 < sand v = q == 0 < t 

And thus our final version of the multiprogram becomes 
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Pre: x.p /\ x.q /\ (v=p V v=q) 

Comp.p: * [ ncs.p 

; x.p := false 

; v:=p 

; if X.q V V = q -+ skip fi 

; cs.p 

; X.p := true 

Comp.q: * [ ncs.q 

; X.q := false 

; v:=q 

; if X.p V v=p -+ skip fi 

; CS.q 

; x.q := true 

Peterson's Mutual Exclusion Algorithm 

And ... this is Peterson's algorithm, and it is well-known that it correctly 
implements Mutual Exclusion ~ see Chapter 14 and an abundance of 
a-posteriori proofs in the established literature. 

In conclusion 

By definition, showing Individual Progress requires showing for each guard 
that, due to the rest of the system, its value does not oscillate forever and 
eventually becomes stably true. Temporallogics describe progress issues by 
means of temporal operators, but they tend to remain rat her descriptive. 
An alternative and more constructive approach towards progress is the 
introduction of variant functions on well-founded sets. They can serve to 
a-priori specify an upperbound on the number of oscillations, and when 
designing programs in adherence to these specifications, the need to care 
for progress vanishes as snow before the sun: progress is built into the 
design. In this chapter, we have seen a small example of this approach, 
the example we promised at the end of Chapter 8. At this moment, not 
many experiments of this kind have been carried out yet, but we very much 
hope they will be. And we hope they will be successful, because then the 
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harshest problem of multiprogramming, viz. the care for progress, might 
reduce to essentially smaller proportions. 

A se co nd observation with regard to thc foregoing derivation is that 
it makes crystal clear that thc method of multiprogramming that we cx
plained in this book is ~ to put it mildly ~ not free from optimism or 
even opportunism. It is the absence of something like a Guard Weakening 
Lemma that accounts for it. The above derivation, which was guided by 
progress requirements in the first place, left us no choice in how to inves
tigate partial correctness. All through the rest of this book, howcver, we 
designed our programs guidcd by the requirement of partial correctness, 
and in the end we could only hope that progress would be catered for as 
well. So, our design method is principally "flawed". Yct, in spite of this, we 
have managed to travel a long way and wc have ample evidence to believc 
that, even with this "flawcd" method, the end of this road is still far beyond 
thc horizon. 

* * 
* 

All in all , the firm methodological conclusion is that the design of mul
tiprograms is to be guided by progress requirements in the first placc, 
and that the incorporation of variant functions may make this practically 
doable. We gently leave this line of investigation as an cxercise to the next 
generation. 
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Epilogue 

Now that all the work has been done, in particular by the reader who trav
eled this far, we may start pondering on what has been achieved and what 
has not, and on what we explored and on what we ignored. Let us first dis
cuss two technical subjects that are intrinsically related to concurrency, but 
that we decided to leave alone. They pertain to speeding up computations 
and to aspects of communication. 

Indeed, one important incentive for considering concurrency is to speed 
up vast data processing jobs. Application areas for these abound. In mod
ern image processing, the amount of data to be manipulated is so huge 
that not a single computer - not even the fastest one available - can 
cope with this task within reasonable time limits. If in axial tomography, 
the (long) span of time in which a patient is not allowed to move is to be 
shortened, the introduction of more computing machinery for processing 
the information collected during the sc an is most welcome. The amount 
of data involved in reliable weather prediction is so gigantic that parallel 
processing is indispensable. Etcetera. In these application areas one of the 
problems is how to divide the data and the computational tasks over the 
various computers, so as to obtain optimal performance. Viable and im
portant as this type of problem is, we decided not to address it. It forms a 
subject of study in its own right. 

The other important aspect we ignored is the issue of communication 
and its implement at ion. We can safely state that in this book we addressed 
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just one type of problem, viz. given a computation proper in terms of a 
number of independent components, synchronize these components in such 
a way that their composite behaviour will be as specified. In achieving 
such a synchronization, (fresh) variables to record the state of the system 
invariably see the light. These variables carry information to be changed 
and inspected by the components in the system. The quest ion then is how 
this information is communicated and accessed. The simplest physical real
ization is, of course, a directly accessible common store, but this is only one 
possibility. Our abstract universe of variables can be implemented in a vari
ety of ways, depending on the application. The horne pages on the Internet 
can be accessed from all over the world and changed by all authorized peo
pIe. These variables are definitely not stored in a single physical memory 
device. The same holds for the amount of money on our bank accounts, 
which can be increased and decreased from almost any place on earth. And 
in electronic circuitry, the state is held by transistors, C-elements and simi
lar devices, and it is changed by controlled flow of current. In short, how to 
communicate is very dependent on the technology used. So no matter how 
important (and intriguing) an aspect of concurrency this is, we decided to 
leave it alone. It is aseparate and separable issue, and a subject of study 
in its own right. 

* * 
* 

Now, let us focus on what we explored and on what we think we achieved. 
For a better understanding of this, let us go back in time to trace the 
circumstances that gave rise to the work described in this monograph. 

When we started our explorations, there was an enormous gap between 
programmers' mastery of sequential programming and that of parallel pro
gramming. Whereas, thanks to the emergence of Hoare's Axiomatic Basis 
[Hoa69], sequential programming had matured to a well-understood formal 
discipline, parallel programming had largely remained a trial-and-error ac
tivity, carried out in inadequate operational parlance and in quite mislead
ing anthropomorphic terminology: 

when gun wants to enter his critical section, he first does gUY2 the 
courtesy of setting turn to 2 letting hirn through if he wants, and 
only then raises his own Hag to indicate his own desire to enter. 

Where did this discrepancy come from? 

In the 1960s, it dawned upon academia that the main source of trouble 
in coming to grips with (sequential) programming, was the prevalent at
titude to think of programs in terms of what happens during exccution. 
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Hoare's insight was that, if operational reasoning was to be abandoned, 
one should concentrate on the static program text instead and treat it as 
a mathematical formula with its own algebraic or logical laws. And this is 
precisely what Hoare's triples did: they did away with operational inter
pretation of programs in one fell swoop. As time went by, it became clear 
that Hoare's semantics could be used for more than just verification ~ for 
wh ich it seemed originally intended [Hoa71]. Indeed, it so on formed the ba
sis for program specification and program derivation [Dij76, Gri81]. Thus 
an entire discipline of sequential programming developed, and nowadays 
each professional programmer using this discipline will agree that he can 
construct his programs with an effectiveness, confidence and precision that 
outperforms the traditional approach by several orders of magnitude. 

The above development took place in the 1970s, when also the theory 
of Owicki and Gries saw the light [OG76]. But didn't that theory do for 
concurrent programming exactly what the Hoare-triples had done for se
quential programming? Apparently, it was not feit that way. After all, con
currency had brought about far more complicated problems with all its 
ill-understood, outlandish phenomena as, for instance, deadlock, liveness, 
fairness, and starvation, whereas the OwickijGries theory could deal with 
a-posteriori verification of partial correctness only. Thus, the theory got 
stigmatized for over ten years, and this in spite of its conceptual and tech
nical simplicity. 

When due to local circumstances, we ourselves became actively involved 
in concurrency, we had to decide on a formalism. Knowing that simplicity 
is not to be ignored lightly, we ventured t a leap in the dark and decided on 
the theory of Owicki and Gries. And then the unexpected happened. Our 
first experiments, described in Chapter 13, gave rise to results exceeding 
our wildest expectations: derivation of multiprograms actually seemed to 
be within reach. This was the beginning of a long series of experiments, 
which have ultimately led to the publication of this book. Gathering from 
our experiences, we can now safely state that, in principle, the design of 
multiprograms can, just like the design of sequential programs, be consid
ered a largely understood and technically feasible process, to be carried out 
along a number of well-defined design principles. Nevertheless, we may ask 
ourselves what remains to be done in order to further our abilities. 

* * 
* 

First of all, we have ample reason to believe that the li mi ted number of 
examples that we dealt with is just the tip of an iceberg, and that many 

tNothing ventured, nothing gained. 
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more (existing) synchronization algorithms can be derived and presented 
along the lines we sketched. And we know from experience that tackling 
more case studies is an appropriate way to mature a subject, because it 
may reveal oversights and disclose new design patterns. 

Second, therc is the problem of individual progress that we touched and 
discussed all the time. As we expressed before, we hope and believe that 
the overall application of variant functions, in one form or another, will 
in the end prove to be the simplest and most effective technique for han
dling individual progress. But we have not been able to explore this in full 
gencrality. The incorporation of multibounds was merely an (encouraging) 
stcp in this direction. As far as progress is conccrned, the experiments in 
Chapter 31 and at the end of Chapter 18 may serve as food for furt her 
thought. 

Third, one may ask whether our method sc ales up. We think that the an
swer is affirmative. The patterns of reasoning and the design principles that 
we laid down through our relatively small programming problems don't lose 
their validity when applied on a more intricate or grandiose scale. But in 
scaling up, a couple of intimately related higher-order considerations will 
be nearly inevitable, viz. the conception and installation of a body of sim
ple and useful theorems, and the incorporation of abstract ion and abstract 
thought. The body of theorems may comprise theorems for composition 
and decomposition of parallel systems, including superposition of proto
cols, and theorems about valid program transformations - of wh ich our 
Guard Conjunction Lemma is just one of the few specimens. The incor
poration of abstract ion means that we must be willing and able to grasp 
the behaviour of a system in terms of its specification. For multiprograms, 
system invariants and compositionality theorems are likely to play an im
portant röle in this. But all in all, the conclusion is that we must learn how 
to specify crisply and precisely, which - alas - is a quite underdevel
oped, though highly important field of interest to all of modern computing 
science. 

* * 
* 

And here we have reached the end of this book. We take our leave with 
one sincere request to the reader who feels like expanding this method of 
multiprogramming or filling in the gaps. May he be guided by the adagium: 

Simplicity is a major scientific concern 
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