MONOGRAPHS IN COMPUTER SCIENCE

ON A METHOD
OF MULTI-
PROGRAMMING

W.H.J. Feijen
A.J.M. van Gasteren

®): Springer

Monographs in Computer Science

Editors

David Gries
Fred B. Schneider

Springer Science+Business Media, LLC

Monographs in Computer Science

Abadi and Cardelli, A Theory of Objects

Brzozowski and Seger, Asynchronous Circuits

Selig, Geometrical Methods in Robotics

Nielson [editor], ML with Concurrency

Castillo, Gutiérrez, and Hadi, Expert Systems and Probabilistic Network Models
Paton [editor], Active Rules in Database Systems

Downey and Fellows, Parameterized Complexity

Leiss, Language Equations

Feijen and van Gasteren, On a Method of Multiprogramming

W.H.J. Feijen
A.J.M. van Gasteren

On a Method of
Multiprogramming

Foreword by David Gries

Springer

W.H.J. Feijen

A.J.M. van Gasteren

Department of Computing Science
Eindhoven University of Technology
5600 MB Eindhoven

The Netherlands

Series Editors

David Gries Fred B. Schneider

Department of Computer Science Department of Computer Science
Cornell University Cornell University

Upson Hall Upson Hall

Ithaca, NY 14853-7501 Ithaca, NY 14853-7501

USA USA

Library of Congress Cataloging-in-Publication Data
Feijen, W. H. J.
On a method of multiprogramming / W.H.J. Feijen, A.J.M. Van
Gasteren.
. cm. — (Monographs in computer science)
Includes index and bibliographical references.

1. Multiprogramming (Electronic computers) |. Van Gasteren,
AJ.M. Il Title. Ill. Series.
QA76.6.F43 1999
005.4°34—dc21 99-15370

Printed on acid-free paper.

ISBN 978-1-4419-3179-5 ISBN 978-1-4757-3126-2 (eBook)
DOI 10.1007/978-1-4757-3126-2

© 1999 Springer Science+Business Media New York

Originally published by Springer-Verlag New York in 1999.

Softcover reprint of the hardcover 1st edition 1999

All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher Springer Science+Business Media, LLC
except for brief excerpts in connection with reviews or scholarly analysis.

Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or here-

after developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication,
even if the former are not especially identified, is not to be taken as a sign that such names,
as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used

freely by anyone.

Production managed by Steven Pisano; manufacturing supervised by Jacqui Ashri.

Camera-ready copy prepared from the authors’ LaTeX files.

987654321

To Edsger W. Digkstra
and

Ria Dijkstra-Debets

Foreword

Just over 25 years ago, Susan Owicki started working on the problem of
proving the correctness of concurrent programs (called multiprograms in
this book) for her Ph.D. thesis. At the time, there was little work on the
subject, and my attempts to teach that little work in a summer course had
led to dissatisfaction and to my asking her to work on the topic. Susan did
a great job, coming up with the idea of interference freeness, which, in one
form or another, is at the core of most work on correctness of concurrent
programs. Interference freeness is quite simple to state.

Consider two processes P and Q, which communicate using
shared variables. If execution of P doesn’t interfere with the
proof of correctness of Q, and if execution of Q doesn’t inter-
fere with the proof of correctness of P, then P and Q can be
executed properly together —their correctness proofs are con-
sistent with their concurrent execution. P and Q are said to be
interference free.

Thus was born the first complete programming logic for partial correctness
of multiprograms, now called the “Owicki/Gries Theory”. By concentrating
on a process not interfering with the proof of another process, instead of
with execution of that other process, the task of proving correctness of
multiprograms became tractable.

viii Foreword

But it is difficult to prove a program correct after it has been written.
It is far easier to develop the proof and program hand in hand —with the
proof ideas leading the way. A methodology for developing programs, which
is based on a theory of correctness, is quite necessary.

In 1969, Tony Hoare gave us the first partial correctness logic for se-
quential programs in his famous paper “On an axiomatic basis for com-
puter programming”. It took five more years for Edsger W. Dijkstra to
present us with a methodology for developing programs, in his 1974 paper
“Guarded commands, nondeterminacy and formal derivation of programs”
and his 1976 book “A Discipline of Programming”.

However, a useful methodology for developing multiprograms has eluded
us. There have been attempts in the past 25 years, but, as far as I can see,
nothing emerged that was really simple, teachable, usable. Until this book!

Wim Feijen and Netty van Gasteren have done a marvelous job of dis-
cussing the formal development of multiprograms. First, they keep the core
theory simple, allowing one to focus on the problem instead of the tool be-
ing used to solve it. So much in the literature is encumbered by awkward,
complex theory!

Second, they develop just a few manageable techniques for reducing the
workload required for proving correctness, like orthogonality, system in-
variants, mutual exclusion, exploitation of symmetry, the construction of a
body of useful theorems, and abstraction.

Third, they create a nice notation for remembering what remains to be
accomplished in developing a proof and program. In science and engineer-
ing, so much depends on the notations we use!

Fourth, they carefully craft strategies and principles to be used in guiding
the development of a multiprogram, keeping them to a manageable few. So
much depends on the guidelines we can give others and the way they are
presented, and Wim and Netty have done a superb job in this regard.

Fifth, they illustrate their methodology on many real multiprograms —
from concurrent vector writing to the safe sluice to Peterson’s mutual ex-
clusion example to handshaking protocols. The reader has no choice but to
be convinced that the ideas in this book are useful!

Finally, the writing is impeccable! Simple. Clear. Economical. Terse, but
not to a fault. The care that went into writing this book exudes from every

page.

Foreword ix

The formal development of programs has not caught on in the world
of computer science as much as some of us had expected it would. Not
that every program should be constructed formally —but the ideas should
filter into one’s everyday programming. For example, it just made sense,
we thought, for every beginning programming course to teach about loop
invariants when discussing loops. And yet, today, in most computing de-
partments, majors can go through four years of study without learning
these basic concepts!

The reason for this may lie in the fact that teaching a methodology
implies teaching people how to think, and most people have an aversion to
changing how they think. Their motto might be, ”We know how to think;
just give us the facts.” All of us have this tendency in us to some degree,
as we can see from Mark Twain’s, ” Nothing needs changing so much as the
habits of others.”

Therefore, this fine book that Wim and Netty have produced may not
have the impact that it could (or should). But those who revel in economy
of thought, who delight in seeing how powerful clear thought can be, who
like to see guiding principles and strategies at work, who are interested
in clarifying their own thought processes concerning the development of
multiprograms —all these people are in for a treat when they pick up this
book.

David Gries

William L. Lewis Professor Of Engineering and
Cornell Weiss Presidential Fellow

Computer Science Department

Cornell University

3 February 1999

Preface

It was around 1960 that parallel processing became an economic necessity
and — fortunately — a technically feasible option as well. Ever since,
interest in this field of computing has been booming. By now, thousands
of papers and hundreds of books inform us about a huge variety of topics
related to parallelism, such as operating systems, machine architectures,
communication networks, circuit design, synchrony and asynchrony, sys-
tolics, protocols for communication and synchronization, distributed algo-
rithms, massive parallelism, logics for concurrency, automatic verification,
model checking, and so on, and so forth. So why add yet another book to
the field? The answer is simple: something is missing.

Among all the interests in parallelism, there is an essential and funda-
mental one that has remained largely unexplored, namely the question of
how to design parallel programs from their specification. And that is what
this book is about. It proposes a method for the formal development of
parallel programs — multiprograms as we have preferred to call them —,
and it does so with a minimum of formal gear, viz. with the predicate cal-
culus and with the meanwhile well-established theory of Owicki and Gries.
The fact that one can get away with just this theory will probably not
convey anything to the uninitiated, but it may all the more come as a sur-
prise to those who were exposed earlier to correctness of multiprograms.
Contrary to common belief, the Owicki/Gries theory can indeed be effec-
tively put to work for the formal development of multiprograms, regardless

xii Preface

of whether these algorithms are distributed or not. That is what we intend
to exemplify with this book.

We wish to state, right at the start, that the uninitiated reader may have
an advantage in coming to grips with our text. He has no choice but to read
from Chapter 1 onwards, chapter after chapter, and that is precisely what
we would like every reader to do. The more experienced reader may perhaps
start browsing, recognizing all sorts of familiar things, and then conceive
them in the way he is used to. For instance, he may dive into Chapter 8
where the guarded skip is discussed, and then conclude that it is nothing
but the usual await-statement. But then he is on the verge of missing our
point.

We understand and construct our multiprograms in a purely static way,
i.e. without recourse to any form of understanding of what may possibly
happen during execution. Indeed, we deal with them via the relationship
between the program text and the corresponding proof obligations. When
developing multiprograms we will always be guided by the specification
and by the proof rules of Owicki and Gries, which then lead the way in
how to proceed with the design. So, readers who are inclined to hold an
operational view of multiprograms will most likely have to make a U-turn in
their appreciation of the subject matter. In our writing, we have anticipated
this, and we have tried to implant this different feel for the subject in a
stepwise fashion, building up our concepts and nomenclature, chapter after
chapter, at a leisurely pace.

However, it is not true that we can dispense with the computational
model entirely, because there are a few occasions where we need it for
arguing about progress or “liveness” properties. Since our method is driven
solely by the requirement of partial correctness, be it enhanced with a
number of strategic rules to not exclude progress beforehand, each of our
developments will, by necessity, end with the obligation to demonstrate
progress for each of the components of the multiprogram. Because we will
not introduce a formalism for dealing with progress, we will every now and
then have to resort to the operational interpretation of our program texts.
We say “every now and then” because there is a huge class of algorithms
that run under control of what we have called a multibound, and for such
algorithms progress for the individual components follows from the absence
of total system deadlock. And demonstrating the latter is completely within
the scope of the Owicki/Gries theory.

* *

Preface xiii

We now briefly sketch the structure of the book and the prerequisites for
recading it.

For just reading it, not much is required: a passive familiarity with the
predicate calculus suffices, and prior exposure to Hoare-triple-like semantics
of (sequential) programming is an advantage. However, for an active partak-
ing in the development of multiprograms, well-versedness in the predicate
calculus is indispensable; but what is more, it requires a nearly undefinable
mathematical discipline, aiming at simplicity and at not taking premature
or hasty design decisions. The reader who embarks on the exercises will
definitely notice this. So although technically speaking, the material can
be taught to freshmen, it factually belongs to the computing major and to
graduate studies, in which we have given classes on it for many years.

The book consists essentially of two parts, separated by Chapter 12 —
the Yellow Pages, which contain a summary of the foregoing. The first part
sets out the ingredients, vocabulary, techniques and attitudes to be used in
the second part. In particular, Chapter 10 explains our mode of derivation
of multiprograms in all relevant detail. The second part contains the true
subject matter: it presents a long series of examples of program derivation.
In the first half of this series — say up to and including Chapter 21 — |
general strategies, heuristics and rules of thumb guiding the design process
are discussed along with the examples. Thercupon, they are freely used in
the second half of the series. The last technical chapter — Chapter 31 —
signals a fundamental shortcoming of our method — one that is related
to progress issues — and it provides a constructive proposal for how to
overcome it.

The book was written as a research monograph, not as a textbook. On
urgent request of David Gries we included a collection of exercises, which
can be found in the Yellow Pages. Other exercises are scattered through
the text, and they can be traced via the index.

Finally we wish to confess that, no matter how cumbersome the process
of publication is, we are glad to have undertaken it. Through the compo-
sition of this text we have gained a much better understanding of parallel
programming, and we hope that our readers can now have a share in this
experience.

*

In a research project like this, many people get involved, some a little
more and some a little less, some consciously and some without knowing

xiv Preface

it. And therefore here is the place where it is our pleasure to give credit
where credit is due.

The last two people who got involved were Michael Streichsbier (CS-
major at the Technical University of Munich), who — on our behalf —
had to fight the LaTeX-standards, and Dr. William R. Sanders (Sr Editor
Computer Science, Springer-Verlag, California), who conducted the publi-
cation process. We very much appreciate their help.

Among the first people involved were Krzysztof R. Apt and Ernst-Riidiger
Olderog, without them knowing it. Their monograph [AO91] taught us that
what we were doing was not essentially wrong, which was a reassuring ob-
servation.

Then, when we had almost finished our text, Fred B. Schneider’s text-
book [Sch97] was published, and that was exactly what we needed. In it,
one can find, through his Proof Outline Logic, the mathematical and logical
underpinning of the kind of objects that we are dealing with here. We are
glad that next to our engineering-flavoured approach to multiprogramming,
he managed to present a more fundamental study on the subject.

Next we wish to thank our colleague Rob R. Hoogerwoord, who eagerly
followed and supported our experiments. He also made a number of tech-
nical contributions, some of which we were happy to record in this book.

The ETAC (Eindhoven Tuesday Afternoon Club) — with Lex Bijlsma,
Ronald W. Bulterman, Carel S. Scholten, and Frans W. van der Sommen
as the (other) core members over the last five years — had an enormous
influence on our thinking, not just on multiprogramming but on mathemat-
ical design in general. It is hard to envision our own scientific development
without this forum and its members.

When at some point, due to a number of local circumstances, our project
had gone into a dip, two very devoted students applied for doing their mas-
ter’s with us. They were Perry. D. Moerland and Frans W. van der Sommen.
Their dedication to the subject was so heartwarming and their results were
so respectable that we soon got out of our dip. Without them, we would
never have written this book, and they will recognize their contributions
and influence all over the place.

Another student, Dana S. Buhiceanu, taught us about distributed bar-
rier synchronization [BF96], of which Chapter 27 is a variation. We are
very grateful for her lessons.

Preface XV

Once we had decided to embark on our monograph, we felt the need and
obligation to have the outcome judged by people with different educational
and cultural backgrounds. We then asked four colleagues, each of them
active computing scientists, whether they would be willing to do this for
us; they were Lex Bijlsma (Dutch, Eindhoven University of Technology),
Carroll C. Morgan (Australian/British, Oxford University, UK), Greg Nel-
son (American, Digital Equipment Corporation, now Compagq, Palo Alto),
and Birgit Schieder (German, Technical University of Munich), and they
all agreed. Sadly enough, Greg Nelson had to give up, due to serious health
problems. We thank him for his willingness to participate. The others gave
us their comments and criticisms and they did so in an impeccable way,
going far beyond what we could reasonably expect from any of them. We
have been happy to incorporate their many suggestions.

Then there is a man who calls himself “the Gries”. Of course, we realize
that our manuscript is entirely based on the theory of Susan S. Owicki and
David Gries, a theory for which they both deserve our greatest respect,
but there is more to the man whom by now we have known for twenty
years. He was and still is our American teacher (sometimes pretending to
be our pupil!), our advisor and collaborator in many enterprises, scientific
and otherwise, and ... he is a friend. We owe him a lot.

And finally, there is Edsger W. Dijkstra, who guided our first steps into
the discipline of programming and who has been teaching us, up to this
very day, what computing and mathematics are really about. To him, and
to Mrs. M.C. Dijkstra-Debets — who always took care of all the rest! —
we express our warmest gratitude. Without them, we would never have
developed into what we are now, and it is to both of them that we dedicate
this monograph.

W.H.J. Feijen

A.J.M. van Gasteren
Eindhoven, The Netherlands
24 February 1999

Contents

Foreword
Preface
1 On Our Computational Model

2 Our Program Notation and Its Semantics
2.0 Thenotation
2.1 Hoare-triplesand thewlp
2.2 Properties of Hoare-triples and the wlp.
2.3 Definition of the wlp’s
2.3.0 The skip, the assignment, and the composition . . .

2.3.1 The alternative construct

vii

xi

10

11

12

xviii Contents
2.3.2 The repetitive construct

2.4 Onour choice of formalism

3 The Core of the Owicki/Gries Theory
3.0 Annotating a multiprogram
31 Twoexamples.

3.2 Postconditions

4 Two Disturbing Divergences

5 Bridling the Complexity
5.0 Private variables and orthogonality
51 System Invariants

52 Mutual Exclusion

6 Co-assertions and Strengthening the Annotation

7 Three Theorems and Two Examples

8 Synchronization and Total Deadlock
8.0 Guarded Statements
8.1 Progressissues
82 Someexamples
8.3 Total Deadlock

84 Moreexamples,

9 Individual Progress and the Multibound

23

24

28

32

35

41

42

45

50

55

61

75

76

77

80

82

83

89

10 Concurrent Vector Writing

11 More Theorems and More Examples

12 The Yellow Pages

120 ASummary
12.0.0 Predicate Calculus
12.0.1 Our computational model

12.0.2 Annotation

12.0.3 The Core of the Owicki/Gries theory

12.0.4 Variables
12.0.5 Atomicity
12.0.6 Progress
12.0.7 Rules and Lemmata

12.1 Exercises

13 The Safe Sluice

Contents xix

97

153

14 Peterson’s Two-Component Mutual Exclusion Algorithm 163

15 Re-inventing a Great Idea

16 On Handshake Protocols

17 Phase Synchronization for Two Machines

18 The Parallel Linear Search

171

177

187

201

XX Contents

19 The Initialization Protocol

20 Co-components

21 The Initialization Protocol Revisited

22 The Non-Blocking Write Protocol

23 Mutual Inclusion and Synchronous Communication

24 A Simple Election Algorithm

25 Peterson’s General Mutual Exclusion Algorithm

26 Monitored Phase Synchronization

27 Distributed Liberal Phase Synchronization

28 Distributed Computation of a Spanning Tree

29 Shmuel Safra’s Termination Detection Algorithm

30 The Alternating Bit Protocol

31 Peterson’s Mutual Exclusion Algorithm Revisited

32 Epilogue

References

Index

207

219

229

237

243

257

265

281

287

299

313

333

347

357

361

367

1

On Our Computational Model

In this monograph we investigate scts of sequential programs that are ex-
ecuted concurrently. Therefore we shall start with an elaboration of the
two key elements in this description of our subject, viz. “execution of a
sequential program” and “concurrent execution (of programs)”.

Of these two notions, we first investigate the one of a sequential program
and its execution, because it is the simplest and most familiar one. A se-
quential program is a recipe under control of which some mechanism, e.g.
an automatic computer, generates a sequential process, that is: a sequence
of primitive actions — to be called actions, for short. The precise details
of these actions do not concern us now, but it is important to know that
they take place one after another. That is to say, an action does not begin
until the preceding one has ended.

There are two fundamental constraints, however, that we wish to impose
on the sequential processes to be considered. These are

- any constituent action will take a finite period of time;

— if upon termination of an action the recipe — the program — prescribes
a next action to take place, then this next action will begin within a finite
period of time after the preceding action has terminated.

To put it differently, we will confine our attention to recipes and execution
mechanisms that can only produce sequences of terminating actions with
terminating pauses in betwcen the actions. Such sequences can be finite

2 1. On Our Computational Model

or infinite. The only way in which a sequence can be finite is because the
recipe demands it, and not because there is an eternal last action or pause.
In short, the show goes on as long as necessary.

Here is an example. Consider sequential program
|[var z : int;
z:=0
; do true - z:=z+1 od

[

with the usual interpretation of the statements. Our constraints now imply
that the value of x will eventually exceed any natural number. So execu-
tion mechanisms that at some moment can halt indefinitely, for instance
because being irreparably out-of-order, fall outside the scope of our current
interest.

Also, if some mechanism has been designated to execute the above pro-
gram and, in addition to that, program

[var y : int;
y:=0
; do true — y:=y+1 od

I

our constraints imply that the values of both z and y will eventually
exceed any natural number. More specifically, if a number of sequential
programs are, for instance, to be run “simultaneously” on a one-processor
installation, the underlying scheduling mechanism for granting computa-
tion time to the various programs has to be designed in such a way that
our “progress” constraints are met.

The usual jargon would say that, by our constraints, we have adopted a
“weak fairness” regime for our system. True as this may be, however, we
have ample reason to avoid the notion “fairness”, one reason being that it
tends to invite overwhelming complexity — see, for instance, [Fra86].

* *
%

Now we turn our attention to the concurrent execution of sequential
programs. By concurrent execution we just mean that the various sequential
processes take place simultaneously. But what if two actions of different
processes overlap each other in time? Usually, actions change the state of
affairs, so the critical question now is what happens if the two overlapping
actions change the same state of affairs in a conflicting manner.

1. On Our Computational Model 3

Consider, for instance, the “simultaneous” activities of putting a high
voltage level on a wire and putting a low voltage level on that same wire. It
is very likely then, that neither of the two activities will have the intended
cffect. Short circuit could be the result, or worse. If we really want the two
activities to yield their intended cffect, the only safe way out seems to be
to see to it that these conflicting actions do not overlap but take place one
after the other: they have to mutually exclude each other in time.

Many mechanisms provide protection against unwanted interference.
Most toilet pots can, by construction, be used by only one person at a
time, and most cars have only one steering wheel. On many a computer
installation simultaneous access to one and the same memory location is im-
possible. The presence of some of such built-in, indivisible, non-interferable
activities — to be called atomic activities — is vital for the organization
of concurrently executed sequential programs.

So our concept of sequential processes now needs to be constrained one
further step, to the extent that in our computational model all primitive
actions will be considered atomic. This means that if our programs are to
be run by a particular mechanism, it had better provide “atomic implemen-
tations” of these actions. And if it does, conflicting actions no longer are a
problem: if, in the concurrent execution of a number of sequential programs,
an attempt is made to execute two conflicting activities simultaneously, the
result will be as if the two activities take place in some order.

What about the concurrent execution of two non-conflicting actions?
There is nothing wrong if at one and the same time one flip-flop is forced to
become flip and a different flip-flop is forced to become flop; simultaneity
is harmless in such cases. But we can still think of the result as if the
two non-conflicting activities take place in some order, and for reasons of
homogeneity we shall do so.

As a result, our final understanding of the concurrent execution of a
number of sequential programs is that the execution mechanism generates,
under control of the various programs, a huge sequence of atomic actions
that is an interleaving of the individual sequential processes.

Note that time plays no réle in our understanding of sequential processes
and concurrency. Nothing is known about the relative speeds of processes,
and as far as we are concerned, the duration of atomic actions can be
anything, as long as it is finite. The only thing that matters is the order of
the atomic actions in the interleaving.

* *

4 1. On Our Computational Model

As far as the description of our computational model is concerned, we
could leave it at this. It is quite instructive, however, to illustrate some
of the many phenomena that concurrency can lead to. Here is an example
that we learned from [Sne93).

Consider the statements z:=1 and z:=2, taken from two different
sequential programs. If the execution mechanism provides an atomic im-
plementation of such assignments, the concurrent execution of x:=1 and
z:=2 yields =1V z=2. But suppose that we have a different orga-
nization. Suppose that z:=1 is implemented by writing bit string (0, 1)
into a two-bit memory location, bit by bit and from left to right, and that,
similarly, z:=2 isimplemented by writing (1,0) into that same memory
location. Now even if writing a single bit is atomic, the composite result of
the concurrent execution of z:=1 and z:=2 can yield any of the final
values 0,1, 2 or 3 for z,rather than the values 1 and 2 only. This
is due to the six interleavings, i.e. orderings, in which 2+2 individual bit
assignments can take place. If, with such an organization, we nevertheless
wish to achieve z=1 V =2, we have to do something about it. What
we have to do is to superimpose, on the bit string writing, an additional
algorithm that precludes the generation of the faulty answers 0 and 3,
and we shall do so in a later chapter. One of the conclusions to be drawn
from this example is that our programming task essentially depends on
which statements are considered atomic.

Here is another example of what concurrency has in store for us. Consider
the following very simple, meaningless program

T:=y+1
s xi=y2
iT=T—y

It consists of just three assignment statements, each of which we consider
atomic. Now if we start it in an initial state such that z=7 A y=3, it
will deliver =6 A y=3 as a final answer.

Also consider the equally simple and meaningless program

y:=z+1
s yi=a?
Yy =y—z

When started in the same initial state =7 A y=3,
it yields z=7 A y=42.

1. On Our Computational Model 5

Now let us run these programs concurrently. Our advice to the reader
is not to waste time on finding out what the result is. The possible final
values for z and y are listed below.

Ty
—4032 8128
—-3968 4032
—600 1225
—575 600
~72 153
-63 72
-1 2
-1
6 30
20 380
56 3080
132 12
240 —224
496 —240
1722 42
2352 —2303
4753 —2352
5112 72
6480 —6399
13041 —6480

The moral of the story of course is, that while each of the individual
programs is of an extreme simplicity, their parallel composition has become
a horrendous beast.

2

Our Program Notation and Its
Semantics

Since in this monograph we will be studying the design of concurrently
executed sequential programs, we need a notation for sequential programs
in the first place. At this point we have made a very traditional choice by
adopting Dijkstra’s Guarded Command Language, which was first defined
in [Dij76]. Its distinguishing features are notational and mathematical aus-
terity, and the incorporation of nondeterminacy in sequential programs. In
our study of multiprogramming, nondeterminacy will hardly play a rdle,
but mathematical austerity will do so all the more. We will briefly describe
this program notation, which we expect to offer no problem to anyone fa-
miliar with ALGOL60, Pascal, or even C. We will discuss its semantics in
more detail, anticipating in our discussion that in later chapters sequential
programs will be considered in cooperation with other ones rather than in
isolation.

2.0 The notation

The elementary statements are

e skip % which does nothing

8

and

2. Our Program Notation and Its Semantics

z:=FK % which evaluates cxpression E and then as-
signs its value to variable z.

The first statement is just called “the skip”, and the second is “an as-
signment (statement)”. Assignment statements can also take the form of
so-called “multiple assignments”

e z,y:= E,F % which evaluates E and F and then as-

signs their valuesto = and y respectively.

Out of existing statements, one can construct new statements. The Guar-

ded Command Language provides three possibilities for construction. They
are — with So and S1 existing statements —

e So; 51 % first So is executed, and then Si1.

This is the so-called “sequential composition (of So and S1)”.

e if Bo— So % executes So if Bo evaluates to true, or

| Bi— S S1 if Bi evaluates to true, and otherwise

q we don’t know yet — see much later.

This is the so-called “Alternative Construct”. It consists of the two
guarded commands Bo— So and Bi — Si. An alternative con-
struct may consist of any number of guarded commands, even zero.
The B’s are called “the guards” and the S’s are the “guarded
statements”.

do Bo— So % this is just a loop, which keeps executing
| Bi—S1 So or S1 as long as the corresponding
guard evaluates to true. When both guards

od are false the loop terminates.

This is the so-called “Repetitive Construct” or the “Loop”. Like the
alternative construct, it may contain any number of guarded com-
mands.

So much for our notation.

2.1 Hoare-triples and the wip 9

2.1 Hoare-triples and the wip

In view of the operational complexity that we are faced with when sequen-
tial programs evolve concurrently, the operational description given of the
semantics of our program notation is all but completely useless. Instead,
we will resort to a formalism that not only preciscly describes what we
can expect of a program when it is executed on a machine, but — most
importantly — departs from computational associations as rigorously as
possible. The formalism that we have chosen is the so-called “predicate
transformer semantics”, and more in particular the predicate transformer
semantics as given by “the weakest liberal precondition”, wip for short.

The first stepping stone towards explaining the wip-semantics is the no-
tion of a “Hoare-triple”, so named in honour of C.A.R. Hoarc. A Hoare-
triple [Hoa69] consists of a pair of predicates — P, @ — and a state-
ment — S . It is denoted

{P}5{Q}

Its operational interpretation is as follows:

{P} S{Q} is a boolean that has the value true if and only
if each terminating exccution of S that starts from an initial
state satisfying P is guaranteed to end up in a final state
satisfying @ .

So if {P} S{Q} holds and S is started in a state satisfying P, we
can be sure that S either terminates in a state satisfying @ or does
not terminate at all. We wish to draw attention to the fact that nonter-
minating executions arc considered as well. The jargon therefore says that
{P} S{Q} only models “partial correctness”, or that {P}S{Q} is just
a “safety property” or expresses — as Leslie Lamport once phrased it —
that “no bad thing can happen”.

Remark In many texts on sequential programming, {P} S {Q} denotes
the stronger property that S when started in P is guaranteed to ter-
minate in () . The semantics corresponding to this notion is the predicate
transformer semantics that is based on weakest preconditions (wp’s) rather
than weakest liberal preconditions (wlp’s). It requires what is called “total
correctness” instead of just “partial correctness”. This wp-semantics is okay
for sequential programs in isolation, but far too demanding for handling
sequential programs in cooperation.

End of Remark.

10 2. Our Program Notation and Its Semantics

Now we can explain the notion of “weakest liberal precondition”. For
statement S and predicate @, wip.S.Q is the weakest precondition P
such that

{P}s{Q}
holds. This state of affairs is covered quite succinctly by what, by postulate,
will be the relationship between Hoare-triples and wip’s:

0) {P}s{Q} = [P>wip.5.Q]
(The square brackets are a shorthand for “for all states” [DS90].)

In words, wip.S.QQ is a predicate that is true in precisely those states —
i.e. no more and no fewer — from which each terminating execution of S
is guaranteed to end up in a final state satisfying Q.

2.2 Properties of Hoare-triples and the wip

We shall define predicate transformer wlip.S for each statement S of our
program notation. It so happens that all the wip.S’s so obtained share
the mathematical property of being “universally conjunctive”, i.e. for X
ranging over an arbitrary set of predicates, they all satisfy (see [DS90])

(1) [wp.S(VX X) = (VX :wlpS.X)]

From (1) we can derive — proofs omitted — that
e wlp.S is “finitely conjunctive”, i.e.

(2) [wp.S(XAY) = wlp.S.X AN wlp.SY] foral XY

o wlp.S is “monotonic”, i.e.

@) [X=Y] = [wpSX=uwlpSY] forall X,V

o wip.S is “top-strict”, i.e.

(4) [wlp.S.true = true] .

From these properties of wlp combined with (0), we can derive a wealth
of properties of Hoare-triples. (In his seminal paper [Hoa69], C.A.R. Hoare

2.3 Definition of the wip’s 11

has cast these properties in the form of inference rules, but now, a quarter
of a century later, we have come to prefer algebraic calculation to logical
reasoning.) Here, we list some of them

(3)
(6)

(7)

{P}S{Q} is universally conjunctive in @, i.e.
{P}S{{(VX =X)} = (VX {P}S{X})

{P}S{Q} is finitely conjunctive in @, i.e.
{P}S{XAY} = {P}S{X} A{P}S{Y}

{P} S {Q} is monotonicin Q,i.e.

[(X=Y] = ({P}S{X} = {P}S{Y})

“one can always weaken a postcondition without falsifying an estab-
lished Hoare-triple”, or in a formulation geared to program construc-
tion rather than verification: “one can always establish a Hoare-triple
by establishing a Hoare-triple with a stronger postcondition — and
the same precondition”.

The anonymous property

{XvY}S{Q} = {X}S{Q} A {Y}S{Q}

{P} S {Q} is antimonotonic in P, i..
[(X=Y] = ({X}5{Q} « {Y}5{@})

“one can always strengthen a precondition without falsifying an es-
tablished Hoare-triple”, or formulated constructively: “one can always
establish a Hoare-triple by establishing a Hoare-triple with a weaker
precondition — and the same postcondition”.

And finally

(10) {P} S{true} .

2.3

Definition of the wip’s

Now the moment has come to define the wip for each statement of our
program notation. This we do by defining wip first for the elementary ones
directly, and then for the composites in terms of their components.

12 2. Our Program Notation and Its Semantics

2.3.0 The skip, the assignment, and the composition
The skip

By definition,
[wlp.skip.R = R] forall R.

There is little useful to be said about this. The most prominent use that
we make of this definition of skip is that we have

{P}skip{Q} = [P=Q]

The assignment

By definition,

[wlp.(z:=E).R = (z:=F).R] ;
here (z:=FE).R stands for a textual copy of expression R in which each
free occurrence of z is replaced with E'.

For the multiple assignment we have, by definition,
[wlp.(z,y := E,F).R = (z,y:=FE,F).R] ;

here (z,y := E,F).R stands for a textual copy of expression R in which
all free occurrences of z and y are replaced with E and F respec-
tively.

In what follows, we refer to this definition of the assignment by phrases
like “rule of assignment”, “axiom of assignment”, or “substitution”.

We will not elaborate the axiom of assignment here, because nowadays it
is widely known, accepted, and appreciated by the scientific-programming
community.

The most prominent use that we make of this definition of the assignment
is that we now have

{P}z:=E{Q} = [P = (z:=E).Q]

The sequential composition

For statements So and St we have, by definition,
[wlp.(So; S1).R = wlp.So.(wlp.S1.R) |

2.3 Definition of the wip’s 13

From this, one can easily prove that semi “;” is associative. We shall grate-
fully use this fact by omitting parentheses in program fragments like

So; S1; S2

There is a little theorem on sequential composition that we heavily rely
on in practice. It reads: for any Q@

{P} So; S1{R}

P
{P}So{Q} A {Q} S1{R}
Here is a proof:
{P} So; S1{R}
{definition of Hoare-triples}
[P = wlp.(So; S1).R|
{definition of sequential composition}
[P = wlp.So.(wlp.S1.R)]
& {wlp.So is monotonic}
[P= wip.Se.Q] A [Q@= wilp.S1.R |
{definition of Hoare-triples}

{P}So{Q} A {Q}S1{R}

(1

i

The typical way in which we use this theorem is by explicitly including the
intermediate condition ¢ in the program text, in the following way:
{P}
So
; {Q, see Note 1}
51
{R, see Note 0}

Here Note 0 is supposed to contain a proof of correctness for Hoare-triple
{Q} S1{R} , and Note 1 for {P} So{Q} . In such a way our programs
will, on-the-fly, become fully documented. Which is nice.

When we are looking for a correctness proof of {P} So;S1{R} or de-
signing a program of the form So; S1 that should establish R, the ques-
tion is: what intermediate assertion) should we choose? The recom-
mendation almost always is to choose wip.S1.R for Q. This choice has
multiple advantages. One advantage is that now {Q} S1{R} holds by
definition. And sccondly, because wip.S1.R is the weakest possible choice

14 2. Our Program Notation and Its Semantics

for @, it generates the weakest possible proof obligation {P} So{Q} —
thanks to the monotonicity of Hoare-triples in their second argument. Here
we see a clear-cut advantage of having a notion like the weakest (liberal)
precondition at our disposal. This is just one advantage, however, out of
many more.

Finally we mention that conditions between braces, as they occur in our
program texts, are, in this context, called “assertions” , and programs that
contain assertions are said to be “annotated” (with these assertions).

2.3.1 The alternative construct

For statements So and S1, boolean expressions Bo and Bi,and IF
short for

if Bo— So
| Bi— 5
i,
we have, by definition,
[wlp.IF.R = (Bo= wlp.So.R) A (B1=> wip.S1.R) |

Because conjunction is symmetric, we see from this that the order in which
the guarded commands occur in an alternative construct is of no signifi-
cance.

Here also, there is a little theorem concerning if-statements (i.e. alter-
native constructs) that is of great practical value. It reads (simple proof
omitted)

{P} IF {R)}

{PABo}So{R} A {PAB1}Si1{R}
We typically use the theorem by annotating an if-statement as follows
{P}
if Bo — So{R, see Note 0}
| B1— Si{R, see Note 1}
fi
{R} .
Here Note 0 is supposed to contain a proof of {P A Bo} So{R} , and
Note 1 of {P A Bi1}S1{R} .

2.3 Definition of the wlip’s 15

We have to spend some words on the operational interpretation of an if-
statement. In a state in which Bo holds, IF can establish R via So,
if wip.So.R holds in that state -— see definition of IF . Likewise, if B1
holds, S1 can establish R.Andif both Bo and B1 hold, either of So
and S1 can be selected to establish R ; which of the two will be chosen
(by an implementation) is entirely beyond our influence, and we couldn’t
care less, our only care being that R be established.

It is the alternative construct that introduces nondeterminacy into se-
quential programs. This introduction has been a giant leap forward in the
study of the semantics of programs and of the behaviour of systems. How-
ever, as alluded to before, nondeterminacy will hardly play a réle for our
subject of study, which is program construction. And indeed, if we take a
closer look at how to handle the “nondeterministic” if-statement, we see
that it faces us with just a number of independent proof obligations —
{P A Bo} So{R} and {P A Bi}Si1{R} in the above —, and that’s it.
Nondeterminacy has faded and theorem proving is left. Nondeterminacy
has become a phenomenon that only pops up in relation to executions. It
has become an artefact of a particular implementation chosen, and it does
not belong to the world of program construction. Because in this mono-
graph we will be concerned with the formal design of programs, not with
their implementation, we will, therefore, never be bothered by the potential
complications caused by nondeterminacy (which has always been consid-
ered the main source of complexity in handling multiprograms).

Not all has been said yet about our operational interpretation of the if-
statement. For instance, what about a state in which both Be and B1
are false? In such a state each of the alternatives So and S1 may fail
to establish the desired postcondition R. So neither So nor S1 can
be selected for execution, and in one way or another the execution of IF
gets stuck. But now recall our operational interpretation of wlp’s, which
tells us that the execution of a statement should cither terminate in a state
satisfying R or not terminate at all. So a very viable implementation of
IF in case both guards are false is “wait” (i.e. keep evaluating the guards)
until one of them becomes ¢rue . For a sequential process in isolation this
boils down to waiting forever, i.e. to nontermination, and that was one
of the options. This implementation — to which we shall stick — does
not make much sense for a program in isolation, but it does make a lot of
sense for a program cooperating with other programs, because through the
activities of these other programs the false guards may very well become
true, in which case continuation of the “delayed” IF may again become
possible.

16 2. Our Program Notation and Its Semantics

In our description of the computational model we have promised to see
to it that the execution of a sequential program should result in a sequence
of finite atomic actions. For the finite atomic actions that result from an
execution of the IF we propose

e the evaluation of a guard to false

e the evaluation of a guard to true followed by the execution of the
corresponding guarded statement. This guarded statement, however,
has to be such that it is guaranteed to terminate in isolation, i.e.
without interference from outside 1.

Finally, it goes without saying that during the process of evaluating the
guards it should not be the case that one of the alternatives is ignored
forever: the evaluation of the guards ought to take place on a fair basis.

* *
*

The above choice for an implementation of the if-statement has a number
of severe consequences for what is called “progress”, or “liveness”, or the
circumstance — as Leslie Lamport once phrased it — “that eventually
some good thing will happen”. We illustrate this by a number of examples.

Because
wip.(if BVC — S fi).R
= {definition wip if}
BvC = wilp.S.R
{predicate calculus}
(B = wlp.S.R) N (C = wlp.S.R)
{definition wlp if}
whp(f B-S|] C—-Sfi)R |,

the two program fragments
if BvC—-Sfi
and

ifBoS|C—SHf

tBecause of this constraint, having a different notation for the if-statement would be
preferable, since we do not want to impose such a constraint on the regular alternative
construct as used in sequential programs. However, in this text no confusion will arise.

2.3 Definition of the wlp’s 17

cannot be distinguished by looking at their wip’s. This is only to be ex-
pected, because wlp’s address partial correctness only. However, if it comes
to termination, the two program fragments may very well differ in their
behaviours, in particular so when run concurrently with other programs.
Consider, for instance, a second program that all the time changes B and
C, but does so in such a way that it maintains C = —-B. In that case
fragment

ifBvC— Sfi

is guaranteed to terminate, because the atomic evaluation of guard BV C
will yield the value true. However, for fragment

fB-S)|C-Sfi

each evaluation of B and each evaluation of C' may yield the value false,
because such an atomic evaluation may always take place in a state where
the other guard happens to be true.

Since in this text we will hardly offer a formalism for discussing progress,
the incorporation of if-statements with more than one alternative would
present us with severe additional problems in arguing about progress. This
is one of our most compelling reasons for sticking to if-statements with just
one guarded command. Fortunately, we can travel a long, long way with
these.

There is one case, however, in which we can live with the above two
program fragments alike. That is the case where one of the expressions
B or C is stable under the operations of the rest of the system (stable
means: cannot be falsified). Once the stable expression has become true

— if it does so at all —, both program fragments can and will terminate,
thanks to our postulate that no guard remains unevaluated forever.

* *
*

We conclude this discussion of the alternative construct with a special
instance, which will be used very frequently. It is

if B — skip fi ,
which we call the guarded skip. One of its possible implementations is
do —-B — skip od
The semantics of the guarded skip is given by
[wlp.(if B — skip fi)R = B=R| ,
or by Hoare-triple
{B = R}if B — skip fi {R}

18 2. Our Program Notation and Its Semantics

2.3.2 The repetitive construct

It is possible to give a definition of the wip of the repetitive construct,
viz. as the weakest solution of a fixpoint equation — see [DS90]. Beau-
tiful, however, as such a definition may be, it is of little or no relevance
to the construction of programs. Instead, we shall come to grips with the
repetition via the so-called Invariance Theorem for Repetitive Constructs.
It reads as follows. For statements So and S1, boolean expressions Bo
and Bi,and DO short for

do Bo— So | Bi1— S10d ,
we have, for any P,

{P} DO {P A -Bo A =B1}
{<;/\ Bo} So{P} AN {PAB1}S1{P}

A relation P satisfying the antecedent is called an “invariant of the rep-
etition”. This theorem, which is sometimes called the “Main Theorem of
Computing Science”, was first formulated by C.A.R. Hoare in [Hoa69].
Thanks to its simplicity and its utmost usefulness, it has attained a world-
wide reputation. More about this later.

In order to get an operational appreciation of the repetitive construct (or
“loop”), consider a state satisfying condition P . According to the conse-
quent of the invariance theorem, an implementation can only terminate the
execution of DO in a state in which P holds and both guards Bo and
B1 are false. This implies that in states where at least one of the guards
equals true, the show should go on. If Bo is true, So can maintain P
— and will, if it terminates —, and if B1 is true, S1 can do the job.
If both Bo and Bi are true, either of So and S1 can be selected for
execution. In any of these cases the selected guarded statement will end
up, if it terminates at all, in a state satisfying P, bringing us back to the
beginning, from which the story can be repeated.

In states where both guards are false, the implementation not only has
the permission to terminate the execution of DO, it even has the obli-
gation to do so, since the antecedent of the invariance theorem offers no
opportunity to maintain P in case the guard is false. Thus, the invariance
theorem acts as a very compelling specification towards an implementor.

Finally, we postulate which of the actions generated by the execution
of a repetitive construct are to be considered atomic. These are just the
evaluations of the individual guards. In case of a true guard, the subsequent
guarded statement to be executed is not a part of the atomic activity of
evaluating the guard to true.

2.4 On our choice of formalism 19

In what follows we will almost exclusively use repetitive constructs with
just one guard:

do B— S od ,

in which case the invariance theorem reads

{P}do B— S od {P A-B}
&=
{PAB}S{P}

(Isn’t this impressively simple?)
The typical way in which we annotate this program fragment is
{Inv : P}
do B — {P A B} S{P, see Note} od
{P A-B } ,

where the Note is supposed to contain a proof of {P A B} S {P} .

An even more special instance of the repetitive construct is
do true — S od

It is the prototype of a so-called cyclic program, and it will crop up so
frequently that we introduce a special notation for it, viz.

*[5]

So much for the repetitive construct.

2.4 On our choice of formalism

We conclude this chapter with some remarks on what we consider the
great merits of predicate transformer semantics and Hoare-triples for the
construction of and the reasoning about programs, be they sequential or
concurrent.

One very important advantage of the predicate transformer semantics
— if not the most important one — is that it does away with operational
reasoning.

Operational reasoning refers to understanding a program by taking into
account the individual computations — all computations — that can be
evoked under control of the program. In order to illustrate what this can
lead to, we consider the following example.

An operationalist needs at least three steps to check program fragment

20 2. Our Program Notation and Its Semantics

{P} So; S1{R}
first he executes So, second he retains the result, and, third, uses this to
execute S1. (We have not counted that he should check that the answer
satisfies R.)
Given our semantics for the semicolon, we have to do three things as well,
viz. formulate an intermediate assertion @ and then prove {P} So{Q}

and {Q} S1{R} .

Next let us consider an alternative construct IF, with p alterna-
tives. The operationalist has to do at least p things in order to check
{P} IF, {Q} , viz. execute all alternatives. Given our semantics for the if-
statement, we have to do p things as well, viz. fulfil the proof obligation
for each alternative.

But now consider
{P}IF,; IF, {R}
Here, for each alternative of IF, the operationalist has to execute it,

retain the result, and then consider all ¢ continuations of it as provided
by IF,. Hence his total amount of work adds up to at least

p-(1+1+9q)
Given our semantics, proving {P} IF,; IF, {R} means that we are forced
to come up with an intermediate state ¢ in the first place — this is one

step — and then we prove {P}IF,{Q} and {Q}IF,{R} . This adds
up to a total amount of work

p+1l+gq
The difference has become dramatic (except for p=1 A ¢=1). How come?

It is the intermediate state @, which we were forced to introduce, that
accounts for the difference. The operational interpretation of such an asser-
tion @ is that when “program execution has reached that assertion”, the
state satisfies @ . Thanks to the validity, in our example, of {Q} IF, {R},
execution of IF,; can do the job and establish R. But for this purpose
it is absolutely irrelevant how the preceding computation has reached a
state satisfying @, be it via an extremely simple or a terribly complicated
computational history. Thus, the intermediate assertion is a very effective
history disposal; it erases everything that is irrelevant for the future and
retains just what does matter, viz. that the state satisfies Q.

The difference with operational reasoning becomes highly dramatic in
the case of the repetitive construct, which is the main producer of compu-
tational history — and which, for this very reason, is indispensable for the
exploitation of the speed of electronic computers. A program like

2.4 On our choice of formalism 21

do B — IF2 od

can, with just 100 iterations, generate over 2!%° different computations.
Here, the operationalist is definitely losing the game. With our semantics
for the repetitive construct, we only need to do three things, viz. come up
with an invariant P and prove {P A B} IF2{P} . Here we see in a nut-
shell how important the Theorem of Invariance is for coming to grips with
sequential programs and why calling it “The Main Theorem [of Computing
Science]” is not without justification.

So much for the quality of predicate transformer semantics in its capacity
of providing us with a water-tight protection against operational reasoning.

There is one more point regarding our semantics that we would like to
discuss. By definition we have

{P}S{Q} = [P=>wlp.S.Q]
The question then arises, why we retain two different concepts, viz. Hoare-
triples and wip’s for expressing the same thing. We have good reasons for
doing so, however.

As we have alluded to before, it is a good habit to annotate programs
so that the annotation exactly reflects the proof obligations as originating
from the proof rules. In such a way programs become fully documented on-
the-fly. But the way we annotate programs is by the Hoare-triple notation,
and that is one reason why we retain the latter.

Besides documenting a completed program, annotation also is a good
thing to have for programs under construction. Halfway through its de-
velopment, a program for printing the cubes of the first hundred natural
numbers will, typically, have the shape

n:=0; z:=0
; {Inv : z=n3}
do n#100 —
print(z)
i {x=n3 A n#100}
w
i {z=(n-+1)%)
n:=n+1l
fo=n3)

od

22 2. Our Program Notation and Its Semantics

Now the annotation provides a complete specification of what remains to
be done, viz. designing program fragment W so that

{r=n3 A n#£100} W {z=(n+1)3}
In what follows we shall heavily exploit this specification potential of an-
notated programs.

Why do we retain wip’s? The reason is that expression | P = wip.5.Q |
contains subexpression wlp.S.Q, an expression that by no means can be
found in {P} S {Q}. Moreover, wip.S.QQ is an expression that we can
calculate with for each particular S. What is more, wip.S.Q) is a subex-
pression of a predicate, so that in dealing with | P = wilp.5.Q | we have,
at one fell swoop, the full-fledged predicate calculus at our disposal. Thus,
expression | P = wip.S.Q | offers far more manipulative freedom than its
equivalent {P}S{Q}. The embedding of the Hoare-triple into an alge-
braic framework like the predicate calculus has been a major breakthrough
in our potential for formal program derivation — see [Dij76] and [Gri81].

Finally, we wish to emphasize that, by the above, program correctness
can now be handled by just the predicate calculus. And this is an additional
advantage, because the predicate calculus is a universal tool for the compact
and very precise rendering of mathematical reasoning in general — which
should, therefore, be mastered anyway, by anyone who takes mathematical
thought seriously.

*

This concludes our treatment of the notation for sequential programs and
of their semantics when they are executed in isolation. In our operational
descriptions of the various program constructs we have already anticipated
the circumstance that in the subsequent chapters sequential programs will
no longer be considered in isolation but in cooperation (concurrent execu-
tion) with other programs.

3
The Core of the Owicki/Gries Theory

In the previous chapter, the notion of an assertion in a sequential program
has been introduced, and we have seen how sequential programs can be an-
notated with assertions in such a way that the annotation precisely reflects
our proof obligations. We have also seen how this effectively protects us
against operational reasoning, and how it aids in coming to firm grips with
sequential programs. All these virtues become even more important now
that we are on the verge of taking multiprograms into account, i.e. entire
sets of cooperating sequential programs to be executed simultaneously.

In this chapter we shall create the basis for coming to firm, nonoper-
ational grips with multiprograms as well. The theory employed for that
purpose is the theory of Owicki and Gries, which was launched by Susan
Speer Owicki and David Gries — see [OG76], but also [Dij82]. One of
the nice things about this theory is that it introduces no new concepts for
handling multiprograms, i.e. we can come away with just Hoare-triples and
wlp-semantics, which have proven to be so useful for handling sequential
programs in isolation. And as a result we stay within the realm of just the
predicate calculus. As will become apparent in the rest of this text, the
simple formal entourage of the predicate calculus and the Owicki/Gries
theory will allow us to travel a long, long way into the battlefield of multi-
programming. This need not amaze us, because it is the very simplicity of
the formalism that accounts for it.

24 3. The Core of the Owicki/Gries Theory

3.0 Annotating a multiprogram

A multiprogram consists of a bunch of ordinary sequential programs, to
which we will usually refer as the components of the multiprogram. Before
we dive into the Owicki/Gries theory, we briefly recall the computational
model that we have in mind for the simultaneous execution of such a bunch
of components. Each individual component will, under control of its pro-
gram text and under control of the state, evoke a sequence of terminating
atomic actions. If such a component evolves in isolation, nothing happens
between two successive actions. However, if other components are executed
simultaneously, an arbitrary but finite number of atomic actions of these
other components can take place in between. The net effect is that the
execution of a multiprogram generates an unknown (but fair) interleaving
of the sequences generated by the individual components.

In order to demonstrate, in a nutshell, what this brings about, we con-
sider the following mini-example. Suppose one component contains program
fragment

cz:=0{0<z}; ...)

in which z:=0 is considered atomic. Were this component to be run in
isolation, we could safely assert 0<z between the completion of atomic
statement z:=0 and the beginning of the component’s next atomic state-
ment. In the presence of other components, however, assertion 0 <z need
no longer be correct: due to the interleaving, such other components may, in
between, change the value of z, for instance by statements like z:=z—1,
and thus may violate 0<z. It seems as if we have to abandon our earlier
interpretation and appreciation of assertions, which was that the state of
the computation satisfies the assertion when execution of a component has
reached that assertion. But we don’t want to do so, and fortunately we
don’t have to either, as we shall explain next.

We don’t want to abandon our interpretation of assertions first of all,
because we badly need it for the purpose of specification. For instance, when
a consumer is about to consume a portion from a buffer, the buffer had
better contain at least 1 portion. We formally specify this by demanding
the correctness of assertion “buffer nonempty” as a pre-assertion of the
consumption.

Second, we wish to retain the assertion in its capacity of effective history-
disposal, even more so in the case of multiprograms: while a component
resides at an assertion @, lots of computations can take place due to the
activities of the other components, but we can ignore them all, if we can

3.0 Annotating a multiprogram 25

insist that the state of the system as a whole will always satisfy @ . Thus
we would eliminate all interest in individual computations.

Fortunately we don’t have to abandon our interpretation of assertions.
To see why, let us return to our mini-example. By requiring the correctness
of 0<z in

.z:=0{0<z}; ... ,
we demand that the other components do not violate the assertion. If,
for instance, a different component contains a statement x:=xz—1, the

situation would be safe if this statement were equipped with —- correct!
— pre-assertion 1<zx:

{1z} ri=2-1 .0

We could then argue as follows. If the original component is at assertion
0 <z, and the other component is about to execute z:=z—1,then — by
our appreciation of the correctness of assertions — the state of the system
satisfies both 0<z and 1<z, ie. 1<z.In this state execution of
z:=1r—1 is harmless to the validity of our target assertion 0<xz. We
phrase this as “0 <z is globally correct under {1<z}z:=z-1".

The moral of the above story is that in dealing with the global correctness
of an assertion — 0<z in our example — we will usually need to take
other assertions into account — 1<z in our example. That is, the price
to be paid is that now we also have to take care of the correctness of these
other assertions. The general state of affairs that we must be willing to
consider is that a multiprogram ought to be annotated in such a way that
each atomic statement in each of the components carries a pre-assertion.
Then we can formulate the

Rule of Global Correctness

Assertion P in a component is globally correct whenever for

each {Q} S — i.e. for each atomic statement S with pre-
assertion @ — taken from a different component,
{PAQ} S {P}

is a correct Hoare-triple.
End of Rule of Global Correctness.

Note that with the above convention for the annotation , i.e. each atomic
statement carrying a pre-assertion, we created a one-to-one correspondence
between atomic statements and assertions: from the given annotation we
can conclude what the atomic statements are and from the choice of atomic
statements we know where to plug in the assertions.

26 3. The Core of the Owicki/Gries Theory

Intermission As an illustration, let us calculate the weakest @ such
that assertion 0<z is globally correct under {Q} z:=z—1 . To that
end, we have to calculate the weakest () such that

{0<zAQ}z:=2-1{0<z}
is a correct Hoare-triple. In wip-notation this is
[0<zAQ = (z:=2-1).(0<2z)] ,
or — equivalently —
(@ = (0<z = (z:=2-1).(0<z))] ,
and from the latter expression we see that the weakest €} is
0<z = (r:=z-1).(0<z). Let us simplify it:
0<z = (z:=z2-1).(0<2)
{substitution}
0<z = 0<z-1

= {predicate calculus and arithmetic}
<0V 1<z
= {z is integer}
z#0
So 0<«z is globally correct under {z#0}z:=z—1.

Earlier we launched 1<z asa pre-assertionto z:=x—1, which by be-
ing stronger than the x#0 calculated above is an adequate pre-assertion
indeed. As will become apparent in the rest of this monograph, the weaker
z#0 is, in general, to be preferred to the stronger 1<z, because —
in view of our operational appreciation of an assertion — the stronger an
assertion is, the less manoeuvring space the system has. The moral of this
intermission is, that careful calculation, rather than “intelligent guessing”,
will be indispensable for the art of constructing multiprograms.

End of Intermission.

*

The global correctness of an assertion P in a component tells us that
the rest of the system, does not falsify P, i.e. does not flip the state of
the system from P to —P.(We find this property commonly phrased as
“ P is stable”.) But we want more than just P’s stability. We want the
state of the system to actually satisfy P. This, now, will be the task of
the component in which assertion P occurs. In our mini-example

3.0 Annotating a multiprogram 27

.z:=0{0<z} ... ,
assertion 0<z is clearly established by the preceding atomic statement

z:=0. But if the preceding atomic statement were z:=y, say, it would
require a pre-assertion, for instance 0<y:

s {0<y} z:=y {02} ...

With this pre-assertion for z:=y, assertion 0<z has become what we
phrase locally correct.

As a result, dealing with the local correctness of an assertion — here
0<z — will usually require one other assertion — here 0<y . For
the benefit of locally establishing a component’s initial assertion , i.e. the
assertion without preceding statement, we equip the multiprogram as a
whole with a precondition (which characterizes the initial state from which
the execution of the multiprogram starts). We can now formulate the

Rule of Local Correctness

For the local correctness of an assertion P in a component,
we distinguish two cases.

~ If P is the (one and only) initial assertion of the component,
it is locally correct whenever it is implied by the precondition
of the multiprogram as a whole.

- If P is textually preceded by {Q} S, i.e. by atomic state-
ment S with pre-assertion @, it is locally correct whenever

{Qrs{r}

is a correct Hoare-triple.
End of Rule of Local Correctness.

Thus, checking the local correctness of annotation is just what we are used
to for stand-alone sequential programs. We emphasize that the annotation
should be such that it is always clear which is the textually preceding
atomic statement of an assertion. The standard annotation schemes for
the composition, the alternative construct, and the repetition have been
designed the way they are for this purpose. (For repetitions, the evaluation
of the guard counts as an atomic statement.) We will return to this issue
at a later stage.

*

Now we are ready to formulate what we call the Core of the Owicki/Gries
theory. We consider a multiprogram annotated in such a way that the anno-
tation provides a precondition for the multiprogram as a whole and a pre-
assertion for each atomic statement in each individual component. Then,

28 3. The Core of the Owicki/Gries Theory

by Owicki and Gries, this annotation is correct whenever each individual
assertion is correct, i.e.

e locally correct according to the Rule of Local Correctness, and
e globally correct according to the Rule of Global Correctness.

This is the Core of the Owicki/Gries theory. It can be summarized and
memorized quite succinctly by

the annotation of a multiprogram is correct

each assertion is established by the compo-
nent in which it occurs and it is maintained
by all atomic statements of all other compo-
nents

The reason why we are calling it the Core is, that later on we will have to
face a distressing relaxation.

3.1 Two examples

Now the time has come to consider some examples.

Example 0 We consider the following annotated two-component multi-
program

Pre: z=0
A: {z=0Vz=2} B: {z=0V z=1}
=z+1 T:=z+2
{z=1v z=3} {z=2vVv z=3}

Component A consists of just one statement, viz. z:=z+1, and com-
ponent B of just z:=z+2. Both statements are considered atomic, and
both are equipped with a pre-assertion — as required. In this cxample,
each of the components has a post-assertion as well. We now show that the
annotation provided is correct. We do so for the assertions in A.

3.1 Two examples 29

We first consider z=0 V x =2. Because this is A’s initial assertion, its
local correctness should follow from the precondition of the multiprogram
as a whole. And indeed we have

r=0Vz=2 & =0

As for its global corrcctness, we have to show that it is not falsified by
{z=0Vz=1}z:=2+2

of component B. That is, we have to show the correctness of Hoare-triple
{z=0Vz=2)A(z=0V z=1)}

T:=z+2
{z=0V z=2}
— the Rule of Global Correctness with z=0V z=2 for P,
z=0Vz=1 for Q,and z:=z+2 for S.
Rendered in wip-nomenclature, this Hoare-triple reads
(z=0VvVz=2)A(z=0Vz=1) = (z:=z+2).(z=0V z=2) ,
or — simplifying the antecedent —
z=0 = (z:=z+2)(z=0V z=2) ,
and the validity of this follows from the following little calculation
(z:=2+2).(z=0V z=2)
{substitution}
z+2=0V z4+2=2

& {arithmetic and predicate calculus}

z=0

Next we consider A’s assertion z=1 V £=3. Because it is textually
preceded by

{r=0V z=2}z:=2+1

its local correctness ought to follow from

{z=0vV z=2}
T:=z+1
{z=1V =3} ,

which — by the axiom of assignment — it does.
For the global correctness of x=1V z=3 we have to prove — in wip-
nomenclature at once —

(z=1Vz=3)A(z=0Vz=1) = (z:=24+2).(z=1V z=3)
or — simplifying the antecedent —
z=1 = (z:=z+2).(zx=1V £=3)

30 3. The Core of the Owicki/Gries Theory

and by a similar little calculation as before, this is correct as well.
End of Example 0.

Because the above reasoning pattern — demonstrating the local and
global correctness of assertions — is, by definition, so intrinsically related
to the proof obligations of the Owicki/Gries theory, we wish to give it a
more conspicuous shape when rendered on paper. When dealing with an
assertion P, we will supply it with a reference to a Note, like this

... {P, Note} ...)
and the Note will get the shape
Note “P”

L: explaining why P is locally correct

G: explaining why P is globally correct.

End of Note.

Observe that the header of the Note repeats P.

Small Intermezzo The above convention may come across as a naive
clerical device. However, in our experience, it is much more than that.
Some of our readers will meanwhile have surmised that the Owicki/Gries
theory will potentially saddle us with a prohibitively large number of proof
obligations. And, indeed: taking care of the global correctness of one single
assertion forces us to “visit” all atomic statements of all components. (To
reassure the reader: the situation will improve in the next chapters.) In the
presence of such a multitude of obligations, a clear-cut organization of the
bookkeeping is a prime prerequisite, lest chaos result.

When, in one of our classes, we introduced the regime with the Notes,
students started to perform significantly better.

End of Small Intermezzo.

Whereas Example 0 was purely an exercise in verification, the next ex-
ample already has a more constructive flavour.

Example 1 Consider the following two-component multiprogram -—
comments below —:

Pre: true

A: x[z:=Ezx] | B: x[y:=z

j2i=1

{? y <z, Note 0}
|

3.1 Two examples 31

where FE.z is an integer expression that may depend on integer z, but
not on integers y and =z.

First we observe that the precondition of the multiprogram is just true
— some would say: it has no precondition! —By this we mean that the
initial values of variables z, y, and z can by anything. Secondly we
observe that the components’ annotation is far from complete; so what are
the atomic statements? Let us assume that the individual assignments are
atomic. Now we can meaningfully ask the following question:

On what condition is queried assertion y <z correct?

In order to investigate this, we address the correctness of y <z in Note 0,
as already announced in the text of component B.
Note 0 “y<z”
L: The textually preceding atomic statement of y<z is z:=z, and it
had better have
wlp.(z:=x).(y < 2) ,
ie. y<z,
as a correct pre-assertion.

We shall insert this in B’s program text as a new assertion, to be dealt
with later on.

G: {y<z} z:=E.xz {y<z} isa correct Hoare-triple, and vacuously so:
y <z does not depend on z . We will return to this phenomenon in a
next chapter under the heading “Orthogonality”.

End of Note 0.

By the above findings, component B now has obtained the following anno-
tated shape
B: x[y:=zx
; {? y<z, Note 1}
2=z
{y<z}
|

and what remains is to investigate queried assertion y<z:

Notel “y<z”

L: The local correctness is immediate from the preceding assignment
yi=z.

G: We have to investigate y <z under A’s statement z:=FE.x. We cal-
culate

32 3. The Core of the Owicki/Gries Theory

y<z = (z:=E.x).(y<z)
{substitution}

i

y<zr = y<Ex
= {transitivity of <}
z<E.zx,
and as a result the global correctness of y <z follows whenever we
choose E suchthat z<FE.x.
End of Note 1.

This completes the example. We suppose that someone who had an oper-
ational flirt with the original component B, will probably have guessed
the answer: z is not allowed to decrease. Indeed, if the first inspection of
z’s value — y — is to be at most the (later) second inspection — z —,
then z had better never be decreased in between.

End of Example 1.

3.2 Postconditions

Before we can conclude this chapter, there is one more issue to be dealt
with, namely the “terminating multiprogram”. In most examples that we
will encounter, the components will be cyclic programs, i.e. programs of the
form *[S]. But sometimes we will also have to address multiprograms
in which all components terminate or ought to terminate, so as to establish
a desired postcondition. In those cases, the multiprogram as a whole not
only has a precondition but it also has a postcondition. For the correctness
of the latter we have the

Rule of the Postcondition
Postcondition R of a multiprogram is correct whenever

— all components are guaranteed to terminate, and
- R is implied by the conjunction of the post-assertions of
the individual components.

End of Rule of the Postcondition.

As an example of a terminating multiprogram, reconsider the multipro-
gram in Example 0, with components

A: zi=z+1{z=1V z=3}
B: z:=z+2{z=2Vz=3}

3.2 Postconditions 33

Both components surely terminate, and therefore they establish
(z=1Vz=3)A{z=2V z=3) ,
i.e. £=3, as a postcondition of the multiprogram as a whole.

* *

Herewith we conclude our explanation of the Core of the Owicki/Gries
theory. There is, however, more to it, because with the rules given so far,
we are unable to prove that the little terminating multiprogram

Pre: z=0
A zi=z+1
B: zi=zx+1

establishes postcondition x =2. The reader might care to give it a try.

4

Two Disturbing Divergences

At the end of the previous chapter, we charged the reader with an impos-
sible task, viz. to prove, with the Core rules of the Owicki/Gries theory,
that the little multiprogram

Pre: z=0
A: z:=z+1
B: r:=x+1

establishes postcondition z =2. This impossibility, which we shall prove
in a moment, is really disturbing, first, because from an operational point
of view it is absolutely obvious that the final state satisfies =2, and,
second, because it makes us wonder how many other surprises there are in
store for us. (To reassure the reader, things will turn out reasonably well.)

Remark A phenomenon like the above may raise one’s interest in the
logic and nature of proof systems, for instance to find out their potential
and their limitations. Valid and useful as, we think, such theoretical, in-
depth investigations are, we ourselves are rather more interested in methods
for constructing multiprograms, but we are glad to observe that others are
more inclined to address more fundamental issues — such as, for instance,
Krzysztof R. Apt and Ernst-Riidiger Olderog in their monograph [AO91].
End of Remark.

36 4. Two Disturbing Divergences

We now prove that with the Core rules of the Owicki/Gries theory we
cannot possibly demonstrate the correctness of postcondition =2 in our
little culprit program. We annotate it as follows

Pre: z=0

A: {P} B: {P}
z:=z+1 z:=z+1
{Q} {Q}

Post: R

Because of the symmetry in the components we can, without loss of gener-
ality, confine our attention to a symmetric annotation. In order to find out
what postconditions we can conclude, we calculate the strongest R that
can possibly follow from the Core.

According to the Core rules, the correctness of the above annotation
means

0) [z=0 = P] for the local correctness
of the two assertions P
1) [P = (z:=z+1).P] for the global correctness
of the two assertions P
(2 [P = (r:=x+1).Q] for the local correctness
of the two assertions @
3 [PAQ = (z:=z+1).Q] for the global correctness
of the two assertions @
4 [Q@ = R] for the correctness

of postcondition R.

First observe that (3) is implied by (2), so that we can forget about (3).
Secondly, observe from (4) that the strongest R equivales the strongest
Q . And thus we are left with finding the strongest @ that is admitted by
(0), (1), and (2).

Since @ now only occurs in (2), the strongest @ equivales the strongest
(z:=z—1).P — for a detailed proof see the Appendix of this chapter.
We leave it to the reader to prove, by mathematical induction, that the
strongest (z:=z—1).P with P satisfying (0) and (1) equivales 1<z.
As a result, the strongest R that we can conclude from the Core of Owicki
and Gries is

1<z

4. Two Disturbing Divergences 37

(which is definitely weaker than the intended z=2).

Acknowledgement We owe the above proof to our colleague Rob R.
Hoogerwoord.
End of Acknowledgement.

As will become apparent later, it is not the Core that is to be blamed,
but the fact that in the above example the value of 2 — which is the only
variable in the game — cannot fully describe the states that the system
can reside in. The remedy will be the introduction of auxiliary variables
— not an uncommon phenomenon in proving mathematical theorems. We
relegate this subject to the next chapter.

* *
*

A second disturbing observation is exemplified by the following. In the
previous chapter we have shown the correctness of the annotation in

Pre: =0

A: {z=0V z=2} B: {z=0V z=1}
z:=z+1 T:=x+2
{z=1vVv z=3} {z=2v z=3}

Let us recall our interpretation and appreciation of a correct assertion P.
It says that the state of the system satisfies P whenever execution of
a component has reached that assertion. But then we must be willing to
accept that an assertion weaker than P is correct as well, because the
state of the system also satisfies this weaker assertion.

This means, for instance, that we must be willing to accept that the
annotation in

Pre: z=0

A: {£<2} B: {z<1}
z:=z+1 T:=z+2
{z <3} {x<3}

is correct: each assertion in it is a weakening of the corresponding assertion
in the earlier program. However, the problem is that we can no longer

38 4. Two Disturbing Divergences

show the correctness of this annotation using just the Core. For instance,
the global correctness of £ <1 in B would require a proof of

([z<1Az<2 = (z:=z+1).(z<1)] ,

ie.of [z<1 = z<0],
which just isn’t a theorem.

The result is that we will have to loosen the reins and face a relaxation
of our conception of correct annotation. We do so by adding to the Core of
the Owicki/Gries theory the postulate of

Weakening the Annotation

Correct annotation remains correct by weakening an assertion
or weakening the postcondition. .

End of Weakening the Annotation.

This addendum to the rules is annoying indeed, in fact almost frighten-
ing, because the question now has become how to proceed in proving the
correctness of annotation. Somehow we have to invent, find, or construct,
perhaps with the aid of auxiliary variables, a stronger annotation, viz. one
that is correct on account of the Core rules. Then the correctness of the
original — weaker — annotation follows from the postulate of “Weak-
ening the Annotation”. Finding such a stronger annotation is, in general,
quite a nasty task and will often require a firm operational understanding
of the multiprogram. Or, to quote Leslie Lamport in [Lam88]: “Finding the
proper annotation to prove a property of a concurrent program is a difficult
art; anything that makes the task easier should be welcome.”.

X *
*

However annoying the observations in this chapter may seem, we need not
be too pessimistic, because there is a way to avoid the problem: we shall
be developing correct programs rather than inventing a-posteriori proofs
for programs that to all intents and purposes could just have appeared out
of thin air. And from sequential programming we know — paraphrasing
Dijkstra [Dij76] — that the development of a program and its correctness
proof — i.e. the appropriate annotation — go hand in hand, with the
correctness proof being slightly ahead. Thus the development of programs
and of correctness proofs have become two activities of a kind, and as we
shall see this will hold for multiprograms as well.

4. Two Disturbing Divergences 39

Appendix

In this appendix we prove that (z:=z—1).P is the strongest solution of
the equation in @

Q: [P = (z:=2+1).Q]

[P = (z:=2+1).Q]
{substitution z :=x —1 is monotonic and invertible}
[(z:=2z—-1).P = (z:=2-1).((z:=2+1).Q)]
{z:=z—-1 and z:=z+1 are inverses}

[(z:=2-1).P = Q]

Ml

If

And this completes our proof.

5

Bridling the Complexity

Let us consider a multiprogram with N components, each containing M
atomic statements and, hence, M assertions, and let us count how much
work is involved in proving the correctness of the annotation of such a mul-
tiprogram. First of all, there are M x N assertions in the game. Secondly,
for each individual assertion we have to check its local correctness — count-
ing for 1 — and its global correctness — counting for M x (N—1).
As a result, the total amount of proof obligations to be fulfilled equals

Mx N x(1+M x (N-1)) ,
which is quadratic in the size — i.e. the number of atomic statements —

of the multiprogram. Even for a modestly sized program with M =7 and
N =5, the workload already consists of

1.015

proofs to be carried out. This is definitely far beyond what can be expected
from a human being. Even an automatic proof system would quickly be
defeated by such a quadratic explosion. The main cause of this explosion
is the necessity to prove the global correctness of assertions.

Remark Nevertheless, we once more would like to point out how much
has been gained by the Owicki/Gries theory. For our modestly sized mul-
tiprogram with M =7 and N =5, the number of possible interleavings,
i.e. the number of different computations that can be generated by it, is
closer to infinity than to 1.015, viz. it is

42 5. Bridling the Complexity

3.177.459.078.523.411.968.0001
End of Remark.

Because the main purpose of this monograph is to investigate how mul-
tiprograms can be formally derived, we must find out how the complex-
ity of this gigantic proof load can be effectively bridled, lest we have to
give up the whole enterprise. The main means towards that end comprise
“orthogonality”, the use of “system invariants”, the technique of “mutual
exclusion”, exploitation of symmetry, the construction of a body of useful
theorems, and abstraction. In this chapter we will discuss the first three
issues, largely leaving the others for later. Each of the techniques discussed
will, in its own way, reduce the workload, and in particular the proof load
required for global correctness.

5.0 Private variables and orthogonality

Most multiprograms are constructed with the aim that the components
cooperate on a common, global task. For proper cooperation, information
exchange will be necessary. We wish to abstract from the various technolo-
gies for information exchange, choosing as our “communication medium”
the rather neutral, unbiased universe of common variables.

Remark This does not mean that we have adopted the traditional archi-
tecture of a physical common store. Of course it is a possible implementa-
tion for keeping the values of common variables, but it isn’t the only one.
In this text we shall hardly deal with the question of how the information
as carried by the common variables is to be represented on actual physical
machinery, because for the purpose of our investigations this would be too

specific a concern.
End of Remark.

Highly typical of a variable is that its value gets changed. We distinguish
two cases

¢ avariable that is changed by just one component; this we call a private
variable of that component

e a variable that is changed by more than one component; this we call
a shared variable of the system.

tThis is (7 x 5)!1/(7!)° , courtesy Tom Verhoeff and Mathematica.

5.0 Private variables and orthogonality 43

Of course the values of common variables, whether private or sh