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Preface

This book entitled “Random Vibration in Spacecraft Structures Design: The-
ory and Applications” is based on the lecture notes “Spacecraft structures”
and “Special topics about vibration in spacecraft structures”. The author is
lecturer to the graduate students at the Delft University of Technology, fac-
ulty of Aerospace Engineering, chair Aerospace Structures. Besides lecturing,
the author is employed at Dutch Space BV in The Netherlands, where he
gained practical experience applying random vibration analysis techniques in
spacecraft design. Both the scientific environment at the University and the
practical approach in the course of spacecraft related projects in industry
provide a good foundation to compile this book.

This book on low and high frequency mechanical, acoustic random vibra-
tions is of interest to graduate students and engineers working in aerospace
engineering, particularly in spacecraft and launch vehicle structures design.

I would like to express my admiration for the patient showed by my wife
Wil during the preparation of this manuscript.

Velserbroek, 2009 Jaap Wigker
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1

Introduction

1.1 General

The various mechanical loads are not all equally important and depend on
the type of the mechanical structure: i.e. does it concern a primary structure,
the spacecraft structure or other secondary structures (such as solar panels,
antennas, instruments and electronic boxes). Requirements are specified to
cover loads encountered by handling, testing, during the launch phase and
operations in transfer and final orbit, such as [167]:

e natural frequencies

e steady-state (semi-static) acceleration
e sine excitation

e random excitation
e acoustic noise

e transient loads

e shock loads

e temperatures

Natural frequencies: The location of natural frequencies is a primary design
requirement for all parts of the spacecraft. This requirement is imposed
in order to limit the dynamic coupling of the spacecraft with the launch
vehicle

Semi-static and low frequency sinusoidal loads: The design of the primary
structure is determined to a large extent by the semi-static and low fre-
quency sinusoidal loads (up to approximately 50 Hz)

Sinusoidal and random loads: To a large extent, the sinusoidal and random
loads determine the design of secondary structures (solar panels, antennas,
electronic boxes).

Acoustic loads: Light structural parts with relatively large surface areas (such
as solar panels and spacecraft antennas) are more sensitive to acoustic
loads than sinusoidal and random base excitation.

J. Wijker, Random Vibrations in Spacecraft Structures Design,
Solid Mechanics and Its Applications 165,
© Springer Science + Business Media B.V. 2009



2 1 Introduction

Shock loads: Deployable structures experience high shock loads; for example
during latch-up of hinges in the required final position of these mecha-
nisms. This is especially the case when the deployment speeds are too
high.

Temperatures: Temperature variations usually cause high thermal stresses in
structures. In general, the various coeflicients of expansion are accounted
for in the choice of the structural materials. Thermal deformations are
taken into account when working with structures that must be aligned
with each other.

Random Loads: The design of instruments and electronic boxes is determined
by the random base excitation.

All these different types of load are described in detail in [224, 225].

In this book the random mechanical and acoustical vibrations of determin-
istic and statistical dynamic systems, in the low and high frequency range,
are considered, and the following topics will be discussed in great detail:

e Vibrations of deterministic linear mechanical dynamic systems exposed to
mechanical random loads and or enforced motion (acceleration)

e Vibrations of deterministic linear mechanical dynamic systems exposed to
random acoustic loads (sound pressures)

e Random vibration of statistically defined mechanical systems and loads
using Statistical Energy Analysis (SEA)

e Non-linear structures excited to random (white noise) mechanical loads
analyzed by using the Fokker-Planck-Kolmogorov (FPK) equation

The theory of random vibration is strongly related to the design of space-
craft structures and will be illustrated with simple and more difficult worked
examples; each section are ends with posed problems; usually answers are
provided.

Figure 1.1 shows a cross section of a typical spacecraft. This may be a com-
munication, scientific or other spacecraft. For this spacecraft, the acoustic and
the mechanical random vibration environment outside and inside the space-
craft structure will be discussed. The spacecraft structure is an assembly of
structural elements: shells of revolution, panels, shear panels, struts, etc. The
spacecraft structure provides strength and stiffness properties to the space-
craft in order to survive test and launch loads.

Among other systems on the outside of the spacecraft there are the antenna
reflector and both solar wings, constituting the spacecraft solar array. Both
the antenna reflector and the solar array are in folded or stowed configuration,
because:

e the folded systems fit better under the fairing of the launch vehicle, and
e the folded systems can carry the launch loads better.

The central structure of the spacecraft is called the primary structure of the
structure, and forms the backbone (load path) of the structure. In general,
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Fig. 1.1. Complete spacecraft

fuel tanks are needed for propulsion. The attitude control systems and are
fixed to the central body. These tanks are relatively heavy.

Spacecraft quadrilateral sandwich platforms are supported by the central
body and side panels used to mount payload and equipment boxes. In Fig. 1.1
we see the top and lower platform. The antenna is mounted to the top plat-
form. The payload and equipment is distributed so as to fulfill center of gravity
requirements posed by the launch vehicle authority.

The spacecraft side panels will close the structure box. Solar wings and
part of the equipment are mounted to the side panels.

For launch, the spacecraft is placed on the launch vehicle payload adapter
structure.

In the liftoff phase of the launch, the exhaust streams of the engines and
solid rocket boosters will produce sound waves propagating to the launch
vehicle, and will impinge on the launch vehicle structure and fairing. The
sound pressures (acoustic load) will excite the launch vehicle structure, which
will transfer the vibrations to the interface spacecraft launch vehicle. The
acoustic loads are random in nature, hence the derived mechanical vibrations
are random too. In the ECSS! standard [56], general “Qualification” acoustic
loads are specified and given in Table 1.1.

The vibrating fairing transfers acoustic loads under the fairing. In general,
these have a reverberant nature; they are denoted sound pressure level (SPL)
and are given in decibels (dB) with a reference pressure pr = 2 X 10~° Pa,

! European Corporation of Space Standardization.
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Table 1.1. Acoustic qualification test levels and duration [56]

Center Frequency (Hz) Sound Pressure Level (SPL) (dB)
Octave band 0dB=2x10"" Pa
31.5 130

63 135.5

125 139

250 143

500 138

1000 132

2000 128

4000 124

8000 120

OASPL 147

Duration: 2 min

Soundpressure /

\ / vibrating panel

Enforced random VibratiOI\

Soundpressure

Fig. 1.2. Acoustic loads converted into random mechanical loads

which is ostensibly the audible limit of the human ear [133]. The sound pres-
sure is relatively low with respect to the static atmospheric pressure of 10°
Pa, 1 Bar, but large areal light weight structures are very sensitive to dynamic
sound pressures.

The sound pressure will excite the outside equipment and the outside
spacecraft structure, especially the external panels. The random mechani-
cal vibration of the external panels will (a) excite the fixed equipment (see
Fig. 1.2) and (b) will generate acoustic loads in the inside cavities of the space-
craft, which in turn will excite the internal load-carrying structures like the
central structure and the lower platform. Summarizing, it can be said that
the sound pressures will cause random mechanical vibrations in the space-
craft structure, creating a rather heavy random vibration environment for the
spacecraft payload, tanks, equipment, etc. Even the direct transfer of vibro-
acoustic energy to an unit (experiment, instrument, box, ... ) structure cannot
be neglected due to the large unit surfaces [196].

In the ECSS standard [56] “Qualification” mass dependent random en-
forced accelerations are specified and given in Tables 1.2 and 1.3.
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Table 1.2. Random vibration test levels and duration for equipment with mass
M < 50 kg [56]

Location Duration Frequency range (Hz) Levels (g*/Hz)
Equipment located on Vertical 20-100 3 dB/oct.
external panel or with 2.5 100-300 0.12 1;\1/11210
unknown location min/axis  300-2000 —5 dB/oct.
Lateral 20-100 3 dB/oct.
2.5 100-300 0.15 4220
min/axis 300-2000 —5 dB/oct.
Equipment not located All axes 20-100 3 dB/oct.
on external panel 2.5 100-300 0.05 47420
min/axis 300-2000 —5 dB/oct.

Table 1.3. Random vibration test levels and duration for equipment with mass
M > 50 kg [56]

Frequency range (Hz) Levels (g7/Hz) Remark
20-100 3 dB/oct.

100-300 0.09 11.12 Grns
300-2000 —3 dB/oct.

Duration: all axes 2.5 min/axis

1.2 Random Mechanical Vibration

In part I we discuss the aspects of random vibrations of deterministic me-
chanical structures. Predictions made about the random vibrations levels are
limited to the low frequency domain because the vibration theory is based
on simple single degree of freedom (SDOF) systems. These forms the basis
for the modal displacement method (MDM), which is frequently used in the
finite element applications.

1.3 Random Acoustic Vibration

Large-area light-weight mechanical structures are very sensitive to random
acoustic loads. The same procedures as discussed in part I are applied, how-
ever, now the applied loads are distributed over the surface of the mechanical
structure. The distributed load application is discussed in part II. Plane waves,
rain on the roof and reverberant (diffuse) sound fields are considered.

In the first part of the chapter 3 fluid structure interaction (FSI) is ignored.
The exposed pressure field cause structural responses, but the influence of the
vibrating structure on the pressure field is neglected. Later on, the full FSI
is discussed in detail, e.g. radiation, which will introduce radiation damping.
Both analytical and approximate methods will be discussed.
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1.4 Statistical Energy Analysis

Complementary to low frequency mechanical vibrations, the statistical energy
analysis(SEA) method is discussed in part III. The basis of the SEA method
is the power flow between oscillators or groups of oscillators. The structures
and loads are described in a statistical manner that in contrast with the
deterministic description of structures using the finite element method. The
number of modes per frequency dictates the application of the SEA method
in the higher frequency bands. Both random mechanical and acoustical loads
can be considered within the framework of the SEA method.

1.5 Fokker-Planck-Kolmogorov Equation

Part TV is more or less based on Gaussian, white noise processes, leading to a
Markoff process in which each event is dependent only on the event before it.
The Fokker-Planck-Kolmogorov (FPK) partial differential diffusion equation
is derived from the Markoff process. The unknown in this FPK equation is the
transition probability density function, and after integration, the joint prob-
ability function. Mean values and correlation functions (second moments),
up-crossings and first passage statistics can be obtained from the FPK equa-
tion.

The stochastic differential equations (SDE), either in Ité or Stratonovich
sense (definition of integration) are closely linked to the FPK equation.

To solve nonlinear random vibrational problems we can use the FPK equa-
tion; analytical and numerical methods are discussed.

Huge computer power is needed to solve the FPK equation numerically.
In general, the applications of the FPK equation is restricted to nonlinear
dynamic systems with a few DOF's.



Part I

Random Mechanical Vibration
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Linear Random Vibration Systems

2.1 Introduction

By random vibration of a linear dynamic system we mean the vibration of
a deterministic linear system exposed to random (stochastic) loads. Random
processes are characterized by the fact that their behavior cannot be pre-
dicted in advance and therefore can be treated only in a statistical manner.
An example of a micro-stochastic process is the “Brownian motion” of par-
ticles and molecules [218]. A macro-stochastic process example is the motion
of the earth during an earthquake. During the launch of a spacecraft, it will
be exposed to random loads of mechanical and acoustic nature. The random
mechanical loads are the base acceleration excitation at the interface between
the launch vehicle and the spacecraft. The random loads are caused by sev-
eral sources, e.g. the interaction between the launch-vehicle structure and the
engines, exhaust noise, combustion. Turbulent boundary layers will introduce
random loads. In this chapter we review the theory of random vibrations
of linear systems. For further study on the theory of random vibration see
[16, 115, 136, 154].

2.2 Probability

The cumulative probability function F(x), that z(t) < X, is (c.d.f.) given by

F(X)= /_ f(z)dx (2.1)

where

e f(x)isthe probability density function (p.d.f.) with the following properties
e f(z)>0
. ffooo flx)dz =1

J. Wijker, Random Vibrations in Spacecraft Structures Design,
Solid Mechanics and Its Applications 165,
© Springer Science + Business Media B.V. 2009
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o F(X+de)—F(X)=[g™ fa)de = f(X)de,X < a(t) < X +dz

The cumulative probability function has the following properties:
F(—c0) =0

F(oco) =1

0<F(z)<1

o f(z)=EW

Examples of probability density functions are:

e The constant distribution U(a, b); X is called equally distributed over the
interval [a,b], X ~ G(a,b), f(z) = 2, a < 2z < b, f(x) = 0 elsewhere.

b—a’
e The normally distribution! N(u, o), o > 0. X is normally distributed with

1 (z—p)2

the parameters p and o, X ~ N(u,0) when f(z) = v

e The log normal distribution LN (u,0), o > 0. X is log normal distrib-
uted with the parameters p and o, X ~ LN(u,0), > 0, when f(z) =

(n(z)—pm)?
1 e 202

oV 2m
e The Rayleigh distribution R(o), o > 0. X is Rayleigh distributed with the
.2
parameter o, X ~ R(c), z > 0, when f(z) = (2)e>7 .

o

For an ergodic random process, the term f(z)dz may be approximated by
. 1
f(z)dz ~ Th_)rr;o T Z ot;, (2.2)

where the dt; are the lingering periods of x(t) between o < x < (. This is
illustrated in Fig. 2.1.

The mode is defined as the peak of the p.d.f. f(x), and the mean value u
has an equal moment to the left and to the right of it

/00 (x — p) f(z)dz = 0. (2.3)

— 00

This means that the average value (mean value, mathematical expecta-
tion) of x can be calculated from

Joaf(@)de /°°

T f@de )

The definition of the n-th moment about the mean value is as follows

o= [ = (@) (2.5)

— 00

Ex)=p xf(z)dx. (2.4)

! The normal distribution was discussed in 1733 by De Moivre. It was afterwards
treated by Gauss and Laplace, and is often referred to as the Gauss or Gauss-Laplace
distribution [41].
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Fig. 2.1. Transient signal

The second moment is called the variance of a signal x(t)

f:ur:/w@—ufﬂﬂma (2.6)

— 00

and o is called the standard deviation.

Example. Suppose a sinusoidal signal x(t) = Asinwt. Over one period T the
signal z(t) will cross a certain level twice when X < z(t) < X + dz, with a
total time 25¢. The p.d.f. can be estimated from f(z)dz = 2t = 2% and with

bz = wAcoswtdt the p.d.f. becomes f(z) = —— = v 1( OIvild < A.
™ 1— %

The mean value is in accordance with (2.4)

2

and the variance o“ is in accordance with 2.6

o) 2
7 == [ o= WS =

— 00

In general, within the framework of linear vibrations we may assume that
the averaged (mean) value p, of the response of a linear systems exposed
to dynamic loads will be zero. So the second moment about the mean, the
variance o2, is equal to the mean square value E(z?) = 02 = foooo 22 f(z)dz.

Example. A random process x is randomly distributed between 0 < z <1

with a p.d.f.
fla) = 1 0<z<1,
Y7 0 z<0,z>1
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Calculate the mean value, the mean square value, the variance and the
standard deviation of x:

e The mean value E(z) = p= [~ af(z)ds =
e The mean square value E(2?) = [ _2?f(z)d

1

3
e The variance 0% = E(z?) — p? = [%_(z — p)?f(2)de = &
e The standard deviation o = % = 0.289

The definition of a cross probability function or second order probability
distribution function of two random processes z(t) and y(t) is given by

P(X,Y) = Problz(t) < X;y(t) <Y], (2.7)

or, in terms of the specific probability density function

X Y
P(X,Y) :/_ /_ f(z,y)dxdy. (2.8)

Therefore, we can conclude that
Xo Y
Prob[Xy < a(t) < Xo: V1 < y(t) < Ya] = / F(o,y)dzdy.  (2.9)
X1 Yy

The specific probability density function f(x,y) has the following proper-
ties

o flz,y)=0

o [T )7 fmy)dudy = 1.

The probability density function of the first order can be obtained from
the specific probability density function of the second order because

X2 o0
Prob[X; < z(t) < Xo; —o00 < y(t) < o0] = / [/ f(x,y)dy} dx
Xl — 00
X
= f(x)dz, (2.10)
X1
where -
@ = [ s (2.11)
In a similar manner it is found that
= [ ey (2.12)

The probability density functions f(z) and f(y) are also called marginal den-
sity functions, [140].
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If random variables x(t) and y(t) are statistically independent, then f(x,y)
satisfies

f(z,y) = f(z)f(y). (2.13)
The mean value or mathematical expectation of a continuous function
g(z,y) is given by

By} = [ h / " glery) flay)dedy. (2.14)

The mean values of x(t) and y(t) can be obtained as follows

E{z(t)} = /Z /Z zf(z,y)dxdy = /00 zf(z)de, (2.15)

— 00

E{y(t)} = /_OO /_OO yf(x,y)drdy = /OO yf(y)dy. (2.16)

The n-dimensional Gaussian probability density function with the random
variables z1(t), z2(t), ..., z,(t) is given by, [149],

1 n (g —my)(zg—my)
1 e 20 Zk,zzl{g’cl ROy 4

0109+ 0ny/(2m)"0

f(x1,1'27...,$n) =

b

(2.17)
where
mi:E{xi}, i=1,2,...,n

represents the mean value, and
o] = B{(zi(t) —m;)*}, i=1,2,...,n

is the variance. In addition, the standard deviation o is given by

1 012 -+ o1n
021 1 o 0oy
g = . . . )
On1 On2 1
where 5
Q/LJ = {(‘rl_’,zz)o,(x] _m])}7 i’j: 1)2?"')"7‘7
i0j

is the correlation coeflicient of the two random variables x; and ;.

Characteristic Function

The characteristic function of a random variable x is defined as the Fourier
transform of the probability density function [202]
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Table 2.1. Characteristic functions

Distribution flx) E(x) = o: M (0)
a b—a 2 . i0a
U(a,b) = e %b ( 12) je(z},@z(ejeb — )
N(p,0°) e 7 o 0=
M,(0) = E{e’%*} = / e f(x)da. (2.18)
—0o0

Expanding the exponential term 7% in power series will yield
o GO)" o n
M, (6) = 1+Z:ITE{96 1. (2.19)

The moments of the random variable can be calculated from the characteristic
function:

1 d"M,(6)
F{z"} = ————=
{=z"} T
The nth cumulant function can also be derived from the characteristic func-

tion

. (2.20)
0=0

1 d"1ln M,(0)
jn don 920'
The first cumulant function is the same as the first moment, and the second

and third cumulant functions are identical with the second and third central
moments m,,

kn(z) =

(2.21)

o=l = [ =) @ra,

—00
where my = p.
Table 2.1 shows two examples of the characteristic function.

Example. For a zero mean Gaussian random variable z, u = 0, the following
expression can be derived E{z*} = 3(F{2?})? = 30*. This can be proved
using (2.20)

1 d*M,(0)

_ 4
FW =30".

0=0,u=0

E{z*} =

A general recurrent expression for E{x"} is the subject of problem 2.5.
The cumulant functions can be calculated using (2.21)

ki=p=0, ky = o2, kn=0, n>2

Problems

2.1. The simply supported beam AB shown in Fig. 2.2 is carrying a load
of 1000 N that may be placed anywhere along the span of the beam. This
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1000V
A B

B o

Fig. 2.2. Simply supported beam AB

problem is taken from [5]. The reaction force at support A, R4, can be any
value between 0 and 1000 N depending on the position of the load on the
beam. What is the probability density function of the reaction force RA?
Calculate the probability that

e Prob(100 < R4 < 200),
o Prob(R4 > 600).

Answers: f(x) =1/1000, 0 < 2 < 1000, 0.10, 0.40

2.2. A random variable X is uniformly distributed over the interval (a,b,
a < b) and otherwise zero.

Define the probability density function f(x) such that ffooo flx)dx = 1.
Calculate E(X).

Calculate E(X?).

Calculate the variance Var(X).

Calculate the standard deviation ox, and

Calculate the distribution function F(z) = P(X < z) = [*_ f(z)dx
a<z<b.

Answers: f(z) = 7o) B(X) = %2, B(X?) = <04ab  ygp(X) = (70

ox = (Z\’/l—a and F(z) =

z—a
b—a-

2.3. A continuous random variable X is said to have gamma distribution if
the probability density function of X is

a—1 —% > 0:
T e Tr = U

1
fla,a,8) = { e ’

0, otherwise,

where the parameters a and [ satisfy a > 0, 8 > 0. Show that the mean and
variance of such a random variable X satisfy

E(X) = ap, Var(X) = af?.

The gamma function is defined by

I'(k) :/ e “uFdu.
0
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Show that
Ir'k)=(k-1)

for integer k.

2.4. Each front tire on a particular type of vehicle is supposed to be filled to
a pressure of 2.5 Bar. Suppose the actual pressure in each tire is a random
variable, X for the right tire and Y for the left tire, with joint p.d.f.

K(2?+y?), 20<z<30, 20<y<3.0;
fl@,y) =

0, otherwise.

What is the value of K?
What is the probability that both tires are underinflated?
What is the probability that the difference in air pressure between the two
tires is at most 0.2 Bar?
e Are X and Y independent random variables?

2.5. This problem is taken from [112]. Let X be a Gaussian random variable
with a characteristic function

o262

M,(0) = eI~ "2

Show that
E{X"} = uB{X" '} + (n — 1)0®E{X"?}.

2.6. The gamma probability density function is defined by

B AAp)k—le=Az
flz)= W’

where A and k are distribution parameters. The function I'(k) is the gamma
function, which is given by

(k) z/ e "uFLdu.
0

Show that the mean and the variance are as follows:

k
MI_)\v

k
2 _
O'I—p.

2.3 Random Process

A random process is random in time. The probability can be described with
the aid of probabilistic theory of random processes [146]. The mean and the
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a3(t)

time average

ensemble average

Fig. 2.3. Time history of a random process

mean square values are of great importance for random processes. We can
make a distinction between ensemble average and time average. In this section
we review the properties of random processes. The ensemble average F{} of

a collection of sampled records x;(¢;), j = 1,2,...,n at certain times t; is
defined as
1 n
Bt} = - (), i=0,1,2,.... 2.22
(el = 3 st o (222)

This is illustrated in Fig. 2.3.

A random or stochastic process x(t) is said to be stationary in the strict?
sense if the set of finite dimensional joint probability distributions of the
process is invariant under a linear translation ¢ — t + a.

Fp(z1,t1) = Fyp(z1,t1 + a),
Fo(z1,ti;520,t0) = Fo(x1,t1 + a; 22,62 + a), (2.23)

Fz(xlatl;antQ;"';xnvtn) = F:E(xlatl +a,.’E2;t2 +aaaxn7tn +a)

If (2.23) holds only for n =1 and n = 2 the process is stationary in the weak
sense or simply weakly stationary [203].

The time average (temporal mean) value of a record z(t), over a very long
sampling time T, is given by,

T
(xy = lim l/O x(t)dt. (2.24)

An ergodic process is a stationary process in which ensemble and time
averages are constant and equal to one another E{x} = (x).
In Table 2.2 a qualification of random processes is shown.

2 Also mentioned strictly stationary process or strongly stationary process.
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Table 2.2. Qualification of random process

Random process Stationary Ergodic
Stationary Non ergodic
Non stationary Non ergodic

For our purposes we will assume that all random processes are stationary
and ergodic.

For a stationary and ergodic random process z(t) there are the following
relations for the mean value:

o0 T
ey = (x) = E(x) = / zf(z)dr = lim l/ x(t)dt, (2.25)
— 00 T—oo T 0
and for the mean square value
oo 1 T
(x?) = E{2®} = / 22 f(x)de = Tlgr(l>O T /0 22 (t)dt = o2 + 2. (2.26)

The variance of stationary random process z(t) is given by
02 = B{(a(t) - jio)?} = B{a®} — 2, B} + 12 = B{a®} — p2.  (2.27)
This explains (2.26).
= E{(x(t ) — pz)*}
= lim —> / / E{x(t)a(ts) }dt dty — p2

= T]E};O W/ / ;cx — tl)dtldtg — [Li, (228)

where R, (to—t1) is the auto correlation function, which will be discussed later
in the next section. The autocorrelation function describes the correlation of
the random process z(t) at different points ¢; and ¢z in time.

To put this result in a simpler form, consider the change of variables ac-
cording to 71 =ty + t1 and 75 = to — t1. The Jacobian of this transformation

is
‘ A(ty,t2)
a(7—17 T2)

In terms of the new variables (2.28) becomes,

_ % (2.29)

2

T— T2
2 = lim —// Ryy(1o)dmidry — 113, (2.30)

9o = P10 472

where the domain of integration is a square shown in Fig. 2.4. It is seen that
the integrand is an even function of 75 and is not a function of 7;. Hence, the
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Fig. 2.4. Domain of integration

value of the integral is four times the value of the integral over the shaded
area. Thus

oT 27— &
Ui:TlL{I;oQTz// Ry (72)dmdry — ,ux
1
:Th—{%of/o Rzz(72)<1——>d72—um
i L [Rya(r2) — p2)d (2.31)
T o ) entT2) ™ HaldT2: '

lim + /:T <1 - %) [Ryo(7) — p2]dr = 0. (2.32)

Example. A random signal z(¢) with zero mean has the following correlation

function
R(r) = eI,

Show that this signal is ergodic in the mean using (2.32).

T“i%o%/oﬂ (1 - %)[R(T)]df

1 1—e T
= lim —(1- =0.
TEEOAT< 2AT ) 0

Normally, all vibration testing and analysis is carried out under the as-
sumption that the random vibration is Gaussian. The primary reasons for this
assumption are twofold [143]:
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. The Gaussian process is one of the few processes which have been math-

ematically defined, and

. Many physical processes have been found to be at least approximately

Gaussian (central limit theorem?).

2.3.1 Power Spectral Density

The autocorrelation function (auto variance function) of a stationary and
an ergodic random process z(t) is illustrated in Fig. 2.5. It expresses the
correlation of a function with itself (auto) at points separated by various
times 7. The autocorrelation function is defined by

1 T
Roolr) = Bla@)at +7)} = Jim oo [ a(oyatt+ )i

T
~ lim % /O 2Ot + ), (2.33)

T—o0

with the following properties:

lim, oo Ryz(7) = 2, 2(t) and x(t + 7) become independent [84]

R (7) is a real function

R, (7) is a symmetric function, Ry (7) = Ryx(—7), Rex(—7) = E{z(t —
T )w(t)}

R, ( ) > |Rm( )|, which can be proven Wlth the relation

im0 = T fo (t) £x(t+7))%dt = B{[z(t) £z(t+7)]?} > 0, B{[z(t)]*} +
E{lz(t + 7))} £ 2E{z(t)z(t + 7)} > 0, thus, 2R(0) £ 2R(7) > 0, finally,
R(0) > |R(7)|. It should be emphasized, however, that the equality may
hold, [209].

3 Let z1,22,...,Tn be a sequence of independent random variables with the means
i1, fi2, - - ., fn and the variances 03,02, ...,02. Let S, be the sum of the sequence

n n n

S _ _ 2 2

n = Ti, Hsn = iy Osn = ;-
i=1 =1 =1

As n — oo the normalized variable z,, with mean p, = 0 and o, = 1 is given by

Sn — Msn

Osn

Zn =

The variable z, has the following normalized distribution

fsn(2) = —We_ﬁz .

For any individual distribution of z;, the distribution of the sum converges to a
normalized Gaussian distribution.
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x(t1) x(ty +7)

Fig. 2.5. Autocorrelation

e The correlation between x(t) and z(t) is Ry:(7) + Rix(7) = 0, because
aRg—i(T) =0, and therefore R,;(0) = —R;,(0) =0

o Ifz(t) = ay(t)+B2(t) then R,y (7) = a?Ryy(7) + Ry (T) + afBR,, (T) +
BQRZZ (T) = 042Ryy (7_) + QQBRyz (T) + /62Rzz (T)

e The Fourier transform requirement is satisfied for the autocorrelation func-
tion when [%_|Ryq(7)|dr < o0.

e The normalized correlation coefficientis defined as r(7) = 1;::8 The nor-
malized correlation coefficient of many real physical stochastic processes
can be approximated by the formula [181] e=*!7l(cos Y7 +% siny|7|), where
« and y are constants.

e The correlation time 7. is defined as 7. = mfmem(TﬂdT =
f—o |r(T)|dT.
The cross-correlation function Rg, () is defined as
1 /7
Roy(7) = E{a(t)y(t +7)} = lim ~ / 2(O)y(t + 7)dt. (2.34)
T—oo T 0

It can be proven that |Ryy(0)] = 1[R..(0) + Ry, (0)], and |R.y(0)]* <
R (0) Ry (0).

Example. Calculate the autocorrelation function of the function x(t) =
Asinwt. In accordance with (2.33) the autocorrelation function becomes

Ro.(r) = 4 fo x(t + 7)dt = “’A fO“ sinwt sinw(t + 7)dt = “; COS WT.
The mean square Value of z(t) can be easﬂy calculated E{2?} = R,,(0) = A; .

The covariance function Cy,(7) is defined as

Cypz(T) = lim —/ {z(t) = pg H{z(t + 7) — py bdt, (2.35)

T—oo T
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and that function is related to the autocorrelation function as follows
Rya(r) = Cua(7) + 1. (2.36)
And if the average value of x(t) is p, = 0, then we see that
Ry (1) = Cu(7). (2.37)

It can be proved that
|Cor(T)] < 02 (2.38)

The Fourier transform of a function x(t) is defined in [89, 145] as

Fla()} = X(w) = / s(t)e=T#tdt, (2.39)
and the inverse of the Fourier transform
1 > .
z(t) = o [m X(w)e?*tdw, (2.40)

assuming that [~ |z(t)|dt < oo, and any discontinuities are finite.

Example. Calculate the Fourier transform of a rectangular pulse:

10 |t >T.
From (2.39) we have
o A T 24
F(w) :/ Ae 7t = [—.—B_J‘Ut] = — sinwT.
- Jw oW

The Fourier transform of the autocorrelation function R,,(7) is called the
power spectral density function Sy, (w) (also called auto spectral density)

Syz(w) :/ Rm(r)e*j‘”dT:Q/ R, (7) coswrdr, (2.41)
—o0 0
and
1 [ . 1 [
Ry (1) = —/ Sez(w)e? T dw = —/ Syz(w) coswrdw. (2.42)
27 J_ o T Jo

Use has been made of Euler’s identity, namely e/“! = coswt + j sinwt.

Table 2.3 contains the spectral densities S(w) for various correlation func-
tions R(T).

The power spectral density function S,,(w) quantifies the distribution of
power of signal z(t) with respect to the frequency. In the expression of the
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Table 2.3. Correlation function versus spectral density [181, 203]

R(r) S(w)
CH(7) C = constant
> on1 Cud™ (1) 2 Ci(Gw)”
Ce—a“' 329,
Ce=7 cos BT OzC(a2+([13+w)2 + a2+([13*w)2)
- « 3 u2
Ce a\Tl(COS BT — 3 sin 3| 7|) (w27a27%2)2+4a2w2
. &2 (1.)2
Ce= Il (cos BT + % sin B|7|) (w27i§£62§2+ia2w2
_ (w+B)? _(w=p)?
Ce=(e7)’ cos BT C—\/;[e{ a7 Y e a2 ]
n kmr wT sin w
Y poCrcos 522 for |7| < T 2T ( Ckm
0 for|r|>T
C(1—- ‘Tﬂ) for |7| <T CT(sin:TT )2

0 for|r|>T sk

-C 2?21 es;-;ﬂ B(sJ>B<( S])sz) B(s()]w:) b(osj’:;)+ bia™l 4ot b

Risp <0 T Al =a0s" fans™ ke dan = [T (5 5)
n > m, s; are roots of A(s) =0

power spectral density, spectral indicates a measure of the frequency content,
and the power is the quantity to which the various frequency components
contributes in the mean square value of the variable z(¢). Density tells us
that the frequencies are not discrete but continuously distributed, so we cannot
speak of the contribution of a single frequency w but only of the contribution
of a band of frequencies between w and w + dw.

Both the autocorrelation function R, (7) and the power spectral density
function S, (w) are symmetric functions about 7 = 0 and w = 0.

The pair of (2.41) and (2.42) is called the Wiener-Khintchine (in German
Wiener-Chintschin [81]) relationship. It is evident that for processes monoton-
ically decreasing the integral (2.42) exits. Therefore Sy, (w) is for large w of
the following order of magnitude

1
Spz(w) ~ O(WHE)’ where € > 0. (2.43)

If the range of frequency w, in which the spectral density does not vanish, is
much smaller than a certain frequency w, belonging to this range, this process
is called a narrow band process (Fig 2.6). Thus, a narrow band process is that
one that satisfies the condltlon = <« 1, where A is the band width at the half
power points. Otherwise the process is called a wide band process.

Example. The correlation function R,,(7) of a random binary wave is given
by:
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A
Spz(w)

[\

Wo w
Fig. 2.6. Narrow band process
18 <
wa(T):UQ € | | =&
0 [t| > e.

The power spectral density function S, (w) becomes

oo € 4 2
Spz(w) = 2/ R (7) coswrdr = 2/ R (7) coswrdr = % sin2(
0 0 €

The total energy E of the signal z(t) is given by [89]

o /_ o;{x(t)}2dt.

The (average) power P of the signal z(t) is given by [89]

. I 2
P=tm - /_T{x(t)} dt = Ry (0).

Using (2.40) we can rewrite (2.44) as

E—/Z{z(t)}zdt—/o:ox(t)dt{% /O;X(w)ej“’tdw}

By changing the order of the integration (2.46) becomes
E = —/ X(w) [/ m(t)e]“tdt] dw = — / X (w) X (w)dw,
21 J_ o oo 2r J_ o
hence,
oo 1 oo
E= / {x(t)}2dt = 2—/ X(w)X* (w)dw

oo T J oo
1 o0

= |X (w)]?dw.

2 ) o

we
D) .

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)
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The resulting equation (2.48) is called Parseval’s theorem [89], with | X (w)|?
the energy spectral density (ESD).* The ESD is an even function. Parseval’s
theorem describes how the energy in the signal is distributed along the fre-
quency axis by the function | X (w)|?.

Example. Consider the signal
z(t)=e " a,t>0.

Calculate the total energy E of the signal x(t) using both sides of Parseval’s
theorem (2.48). Start with the left hand side (LHS) of (2.48), thus

E = /O;{x(t)}2dt = /OOO e~2atgy — 1

2

The right hand side (RHS) of (2.48) is obtained. The Fourier transform of
x(t) is given by

1
X(w) = —.
a+ jw
The spectral density | X (w)|? becomes
1
2 _
X = s

The total energy of the signal x(t) is

1 [ 1 [ 1 1 [arctan £7°° 1
E=_— X(W)Pdw = — T o du=—|Ta - .
27 / X (@)l dw 21 o 02 + w2 YT o [ « ] 20

— o0 —o00

The definition of the energy of a signal relies on the time domain represen-
tation of the signal x(t). Parseval’s theorem gives a second way to compute
the total energy based on the Fourier transform of the signal. That means
the calculation of the total energy is done in the frequency domain. Parseval’s
theorem relates a time domain representation of the energy in a signal to the
frequency domain description.

Equation (2.45), using Parseval’s theorem, can be written as

N ) 1o~ 1 )
P—%ﬂoﬁLT{z(t)} dt = %/700 TILH;O ﬁ|X(w)| dw, (2.49)

where lim7 o 57 |X ()| is the power spectral density® (PSD) of x(t). Par-
seval’s theorem is a relation that states an equivalence between the power P
of a signal computed in the time domain and that computed in the frequency
domain.

Y If 2 = 2+ jy and 2* = x — jy then zz* = 2% +y* = |2]%.
5 Also called autospectral density or autospectrum.
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Equation (2.41) can be written, after multiplying by e/“te=7t  as follows

00 1 T - ‘
Sasw) = / Tlgr;o 2T |:/ T z(t)x(t + T)dt} eIwte=jw(t+7) g

o1 2
77“1220 ﬁ|X(w)| . (2.50)

The average power P, using (2.49) and (2.42), can be expressed as

1 o

P=_— lim LT|X( = —/ Sgz(w)dw = Ry (0),  (2.51)

271' —00 T—o0 2

hence

Sz (w) has the following properties:

o Sip(w) = Spz(—w)
e S.(w)>0.

The spectral moment m; of a stationary random process X (¢) is defined
as [154]

1o
mi =g /_OC |w]*Sze(w)dw. (2.53)

For a process z(t) with p1, = 0 we may use the Wiener-Khintchine relations
to find

1 (oo}
02 =my = Py /_Oo Sz (w)dw, (2.54)
and

1 oo
2=y = [ |2 Sua(w)de, (2.55)

2 J_ o

and 1
o2 =y = _/ w[4S,0 (w) deo. (2.56)

2 J_ o

A normalized moment with the dimension of circular frequency can be defined

as N
Yn = <%> na (257)

Mo

where ~; is the central frequency and has a geometrical meaning of being
the centroid of the spectral distribution S,,(w), and 2 has the geometrical
meaning of the radius of gyration of S,;(w) about the origin. A variance
parameter ¢ describing the dispersion of S, (w) around the central frequency
is defined as

(momg — m%) mopmsa

5= = -1 2.58
" oL (2.59)
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where the range of § is 0 < § < oo. For a harmonic process, m; = wgmg and
ma = wimg, § = 0, hence small values of § indicate a narrow band process.
Another bandwidth parameter v is defined by

m2
=4/1——2 =,/1—a2 2.59
v moma a2 ( )

where the irreqularity factor as is defined to be

ma2

Qo =

. 2.
o (2.60)

The PSD function Sy;(w) is two-sided. It is more practical to replace
w (rad/s) with f (Hz, cycles/s) and to replace the two-sided PSD func-
tion Syz(w) with a one-sided PSD function Wy, (f) and then (2.52) be-

comes

Rou(0) = B{a?} = (o) = ;1_: /0 " Spa(w)df = /O W pd (260)

where W, (f) = 252 (w).
In the narrow frequency band Af it is assumed that W, is constant and
therefore

1T,
WmAflegr;o?/o x*(t)dt, (2.62)
and
(&%)
Weo = lim / Af Af (2.63)

where T is the averaging time, x2(¢) the instantaneous square of the signal
within Af, (22) the mean square value, and Af — 0.
With use of (2.41) W, (f) becomes as follows

Wea(f) = 4/0Oo R, (7) coswrdr, (2.64)

and (2.50) can be written as

Waa(f) = lim =X (w)]*. (2.65)

We will apply (2.64) and (2.65) later in this book to estimate the PSD values
numerically.

The definition of the PSD function of x(¢) in relation with the Wiener-
Khintchine relations and the mean square value will be recapitulated hereafter
[142], because several definitions exist.
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First Definition of Auto Spectral Density Function
o Sip(w)=limp_ %|X(u})|2
Wiener-Khintchine theorem Ry, (7) <& Sga(w)

. Sm: _foo Rm )e JwrdT—QfO 2o (T) cos(wT)dT
o Ru(r) =570 w)elTdw = L [ Syq(w) cos(wT)dw

Relation between spectral density function and average energy (mean square
value, variance)

o [ Siz(w)dw = TRy (0) = 7 Var{z(t)} = no?
Second Definition of Auto Spectral Density Function
o Spp(w)=limr_ ﬁ\X(w)P
Wiener-Khintchine theorem R, (7) < Sp.(w)
. Sm =21 [% Ruw(r)e 97dr = 2 [ Ryu(7) cos(wr)dr
o Ruu(7) =3 [T Sea(w)e?*Tdw = [ Spa(w) cos(wr)dw

Relation between spectral density function and average energy (mean square
value, Variance)

o [ Sea(w)dw = Rye(0) = Var{az(t)} = o2
Third Definition of Auto Spectral Density Function
o Wao(f) =limr—oo 7| X (27f)[?
Wiener-Khintchine theorem R, (1) < W (f)
o Waolf) =2 [ Rou(r)e™97dr =4 [° Ryu(7) cos(wr)dr
o Ruy(7) =[5 Wau(f)e*™ Tdw = [° zw(f) cos(2m f7)df

Relation between spectral density function and average energy (mean square
value, Variance)

o[5S Waalf)dw = Rye(0) = Var{z(t)} = o2

x

White Noise

White noise contains equal amounts of energy at all frequencies. If the power
spectral density function of a signal x(t) is constant over the complete fre-
quency range, W, (f) = Wy, 0 < z(t) < oo we talk about white noise.

The power spectral density function S,,(w) = %, —00 < w < 0. The
autocorrelation function R, (7) can be calculated as follows

™

) ; Wo
jwT jwTt _
Ry (1) = 27r/ Sz (w)e?* T dw = I [m dw - o(7),
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where [ §(7)dr =1, and §(7) is the Dirac delta function. A random process
with a constant (white noise by analogy to white light in optics) PSD function
between two frequencies (band-limited) is considered. Calculate the associated
autocorrelation function R, (7) if

o W(f)=Wo, A<f< fa
W(f)=0, f< frand f > fo

The autocorrelation function Ry, (7) becomes

1 [ ) 1 [
Ry (T) = %/ Spx(w)e?Tdw = ﬁ/ Sz (w) cos wrdw,
—00 —o0

and
Ryo(T) ! /OOS (w) cos wTdw 1/00.5’ (w) cos wrdw
zx\T) = =~ Tx T = - Tx T .
2 J_ o ™ Jo
Hence
2m f2
Ryy(1) = Wo cos wrdw = %[sin 27 for — sin 27 f1 7], (2.66)
27 Jorf, 2T
so that

R, (0) = lim ;V—O[sin 27 for — sin 27 f17] = Wo[fe — fi]-

T—0 27T

Assume a very narrow bandwidth [fo — f1] = Af. Then (2.66) becomes

Ry (1) = Wo [sin 2 (f1 + Af)T — sin 2w fi7].

2rT

Using Taylor series

/(=)

flz+ Az) = f(z) + 51

Az + Ax® 4. (2.67)

f'(x)
1!

for a sinus expansion of sin(f + Af) we obtain

cos(2m f17)

sin{27(f1 + Af)T} ~sin(27f17) + T

2nAfT. (2.68)

The autocorrelation function R, (7), with (2.67, 2.68), can now be calculated
Wo

R (1) = Py [cos{2m(fi7)}2mAf7T] = WoAf cos(2m f17), (2.69)
T

and
R..(0) = Wy Af. (2.70)
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Table 2.4. Properties of autocorrelation and power spectral density function [146]

z(t) Rex(T) Szz(w)

T 2 T
=2 — w* S0 (w)
d"(;j’(Lt) (_1)n d2"$_mf(7—) anS;):x(w)
z(t)etwot Ry etwot Saz(w F wo)

Table 2.4 gives some useful relations between the autocorrelation func-
tion Ryz(7) and the power spectral density function Sy, (w). In addition to
Table 2.4, the n + m derivative of the correlation function R, (7) is given by

dm+n
Rymypm (T) = (—1 Py / Sye(w e]“”'dw (2.71)
dr
and
Spm)pm) (W) = (—1)m(jw)(m+")SM(w). (2.72)

2.3.2 Measurement of PSD

The PSD function is obtained by averaging the mean square value Z2 of the
signal z(t) in a narrow bandwidth Af over a finite period of time 7. The
approximation of the PSD value W, (fx) is

2(fr)
, k=1,2,...,n,
Afk

where Z?(fx) is the mean square value in the center frequency f; with band-
width Afy of the bandpass filter.

A schematic of the steps required for the PSD analysis (2.73) is presented
in Fig. 2.7. The input to the bandpass filter is the random signal z(¢) to be
analyzed. The bandpass filter allows selection of the desired filter bandwidth
Afy for the analysis. Also, the center frequency of the filter can be set at

We(fr) = (2.73)

X Bandpass Squaring Averaging X2
P ——— . — )
RandomInput | Filter Af Device Device
X2
Af | BW P
PSD Division

Fig. 2.7. Schematic flow for power spectral density analysis
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specific frequencies. The instantaneous pulses from the bandpass filter are
then squared, averaged and divided by the bandwidth of the filter. The value,
after division by the bandwidth, is the magnitude of the PSD function W, (fx)
at the specific center frequency fj of the bandpass filter.

The error e [143] in terms of the standard deviation ow of the true PSD
function W(f) and is given by

ow 1
e W AT (2.74)

where T is the averaging time and Af the analyzer bandwidth. Equation (2.74)
is valid for e < 0.2. Resolution is essentially a measure of the ability to re-
solve the true resonances and anti-resonances (peak and valleys) when plotting
the PSD spectrum. A small error could be produced by making the analyzer
bandwidth very large, however, this will lower the resolution!

Example. Calculate the error function e when the averaging time 7" = 2 s

and Af = 20 Hz.
100

]_ =
00e JAFT

= 15.8%.

2.3.3 Discrete Fourier Transform

For finite-duration, discrete-time signals, the discrete Fourier transform (DFT)
(197, 199] is given by

N—-1
Xop =Y ane ¥, m=0,1,2,...,N-1, (2.75)
n=0

where N is the number of samples in the time series, T is the span in seconds
of the time series, fs = ﬁ = 2fmas 18 the sample rate in samples/second (Hz)
(Shannon-Kotelnikov, Nyquist criterion [25]), Af is the frequency resolution
or spacing between consecutive points (Hz). The sampling frequency is usually
chosen as fs = (2.5...3.0) finaz- fmae is the maximum frequency in the process
being analyzed.

For N = 2™, a high speed algorithm that exploits the symmetry is used to
compute the DFT. This algorithm is called the Fast Fourier transform (FFT).

In (2.75) the following notation is used:

X, is at frequency fi,

¢ fm=2 m=01,... N—1 (H)
Cap=3tg

° AtZi

o 1, =2x(nAt) is at time nAt

o T=NAt

o j=+—1
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The vector | X | without a subscript represents the DFT vector with the com-
ponents | X| = |Xo, X1,...,Xn—1] which are the DFT of the components

\_I'J = on,xl, P ,.’L’N71J.
The inverse DFT is defined as follows

N-1
1 :
= 5 mE_OXme*ﬂfrn%’ n=0,1,...,N—1. (2.76)

For more information about the redundancy and periodicity of the DFT
the reader is advised to read [199].

Parseval’s theorem provides an important insight and link between the
time and frequency domains

N-1 1 N-—-1
y al= ~ > Xl (2.77)
n=0

m=0
The average power is given by

1 N-1 1 N-1
n=0 m=0

2.3.4 Evaluation of the Autocorrelation Function

The autocorrelation function R, (r) of a random process expresses a measure
of the relation of the ordinates to their mutual distance apart (time delay,
time lag). From the sampled discrete ordinates x; = z(iAt),i =0,1,2,...,m
the discrete autocorrelation function R, (r) is obtained from [25]

N-—r
1
R..(r) = N Z TiZTivr, T=0,1,2,... m, (2.79)

i=1

where m determines the number of correlation lag values in the products
LiLjdr
The total number of discrete samples x; is N. The total sampling time is
T = NAT. A good empirical rule therefore requires that the maximum lag
satisfy N
m < 0" (2.80)
The maximum time delay or lag is given by 7,4, = mAt.

2.3.5 Evaluation of the PSD

The PSD W,.(f) of a stationary random process may be obtained either
using the Wiener-Khintchine relationship, i.e. the Fourier transform of the
autocorrelation function R, (7) in the known form
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Woo(f) = 4 / Rou(r)cos(2nfr)dr, f>0,7>0,  (281)
0
or directly from the definition of the PSD
1 9
Wee(f) = Jim X () (282)

where X (w) is the Fourier transform of x(t).
The smoothed or weighted PSD estimate at harmonics k£ = 0,1,2,...,m
will have the form [25]

kfmaw _ 1
WIZ( m )_ fmaz

+ W(m)Rm(m)(—l)k] , k=0,1,2,....m, (2.83)

m—1

Facl0) +2 32 W) ) cos 2% )

where R, (r) is obtained from (2.79) and fya = 54 (the Shannon-Kotelni-
kov criterion At < 5 fl ) for a good reconstruction of W,,.

The possibilities of the time lag windows W (r) are [25]:

General lag window W (r) = (1 — |%\)e*(ﬁ)2
Hann window W (r) = 1(1 + cos Z1)

Barlett window W (r) =1 — | L]

Exponential window W (r) = e~ %/

Gaussian window W (r) = e ()?

Computation of the PSD directly from (2.82) meets considerably difficul-
ties, because the DFT computations cannot be realized in an economic time
by standard methods.

One of the methods is a procedure based on segmentation of a long process,
i.e. its division into shorter overlapping or non-overlapping parts. This is done
as follows. Consider a sufficiently large set of IV process ordinates which is di-
vided into K segments z(j),k = 1,2,..., K with an equal number of L
ordinates. Because these segments may overlap, beginning of the second seg-
ment starts with the Dth ordinate, the beginning of the third segment with
2Dth ordinate, etc. as illustrated in Fig. 2.8. In this way the set of K segments
becomes

x(j)7 j:1’27""L7
z2(j)=xz(j+ D), j=1,2,...,L

and finally
zp(j)=z(j+(K-1)D), j=1,2,...,L,
where (K —1)D = N.
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1 L z(4) _ N

1 I1(7)

- > L

302(1)

D """ o D+L

Fig. 2.8. Process segmentation for application of the Welsh method [25]

For each of these segment the modified Fourier transform Ay (n), A2(n),. ..,
Ap(n) are computed

L
1 Nrrr 2R L
Ag(n) = mZxk(j)W(])e T n=01,...,5 (2.84)
j=1

where W (j) is the modifying window. According to Welsh, the modifying
window W (j) may be taken either as

W(j)=1- (‘j — %)2 (2.85)

1+ L

or the Hann window .
2

W) =1

- ’j — 2| (2.86)

L
1+ %

From these functions Ay (n) we further compute modified periodograms®

(PSD)I)(fy) using (2.82)

L—-1
I(fn) = T|Ak(n)|2, k=1,2,... K, (2.87)
where I
n
[ = = 2.
f"'L L? n 0’ 17 b 27 ( 88)
and
1 L
= - 2 ] . 2'
U 71 jE:1W () (2.89)

The estimate of the resulting PSD W, (f,) of the process z(j) is then
obtained from the expression

6 A periodogram is an estimate of the spectral density of a signal.
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Waalfo) = 72 3 Tulh) = S S [Ak() (290)
k=1 k=1

or in other words W, (f,) is given the average of the partial PSD of each
segment.

2.3.6 Digital Simulation of a Random Process

In [25, 129, 170, 179, 180] methods are discussed to simulate a stationary ran-
dom process, expressed in a PSD function, in the time domain. Time domain
random processes are quite convenient for example for

e the numerical analysis of the dynamic response of non-linear structures to
random excitations,

e time domain analysis of the dynamic response of linear structures under
random excitations in order to obtain a kind of information that is not
obtainable from frequency domain analysis.

The signal f(t) can be simulated as follows

F#) =v2Y VW (fx) Af] cos(2m fit + ), (2.91)

where N is the number of frequency intervals and is chosen large enough to

simulate the random process which is approximately ergodic, fk ~ fr + %,

o1 is a random phase angle uniformly distributed between 0 and 27 with the

probability of occurrences % and fr = fiin + (k — %)Af, k=1,2,...,N.
Another simulation is discussed in [179, 180] and is given by

N
f) = O’\/%E cos(27 ft + o), (2.92)

where 02 = fooo W(f)df, ¢r is a random phase angle uniformly distributed
between 0 and 27 and fr = fmin+(k—3)Af,k =1,2,..., N. It can be shown
that for N — oo the process f(t) is normal and ergodic. It is suggested to use
At = m, where f,q. 18 the maximum frequency of the PSD. The number
of frequency intervals N is taken as 200 [231].

More background of the simulation of random time series is given in Ap-
pendix A.

Problems

2.7. Let a stationary, zero mean, Gaussian process X (t) denote a stress in a
particular structural member of a linear structure responding under a Gaussian
random load. The standard deviation of X (¢) is ox = 100 MPa.
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e Find Prob[| X (t)| > 100 MPa] at particular time ¢.
e Find Prob[|X ()| > 200 MPa] at particular time ¢.
e Find Prob[|X(t)| > 300 MPa| at particular time ¢.

Answers: 0.3174, 0.0456 and 0.0026.

t
t

2.8. The correlation coefficient p(7) is given by [109]

e Prove that [p(7)| <1
e Prove that Ry;(7 — 00) =

2.9. Calculate for the function

f(x)=ao+ Z sin(wgt + )
k=1

the autocorrelation function R(7).

Answer: R(1) =ad + > _, % coswy T [187].

2.10. Suppose that the autocorrelation function of the process x(t) is given
by

Ryo(7) = 4mar ™ sin(br).

Define the corresponding power spectral density function(s)?
Answer: S, (w) = a for w € [—b,b] and elsewhere Sy, (w) = 0.

2.11. Suppose that the autocorrelation function of the process x(t) is given
by

Ry (1) = oealml,

Define the corresponding power spectral density function?

Answer: Sy, (w) = 202ﬁ.

2.12. Consider an exponentially correlated noise of a scalar stationary process
x(t) with an autocorrelation function

—I7l

R (T) =gl ,

with 6 > 0. Apply the Fourier transformation to calculate the power spectral
density function Sy, (w).

. 2020
Answer: S, (w) = THooge-
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2.4 Deterministic Linear Dynamic Systems

A linear deterministic system with the load application F(t), F(w) and asso-
ciated response z(t), X (w) are illustrated in Fig. 2.9.

The system shows no random properties and the properties will not change
with time. The system is excited with a random load F(t) and the response
(output) of the system is denoted by z(t). The random responses x(t) are
very generalized and may be displacements, velocities, accelerations, forces,
stresses, etc. The linear system will be characterized using the impulse re-
sponse function. Linear means that doubling the loads F'(t) will lead to twice
as much response z(t). We may present the forces and responses in the time
domain or in the frequency domain.

A linear system may be represented either simply, as a single degree of
freedom system (SDOF), or multiple with degrees of freedom (MDOF), or even
as a continuum. But in the solution of the responses the modal superposition
will be applied many times and the problem will be reduced to solve many
uncoupled SDOF dynamic systems. The response z(t) of the linear system,
due to the force F(t), and the impulse response function h(t) is given by the
convolution of h(t) and F(t)

oo

z(t) = h(t) x F(t) = / h(T)F(t — 7)dr, (2.93)
— 00

where F(t) is the generalized force in the time domain, h(t) the damped

impulse response function.

e Sin(wn /1 = (¢?)

This damped impulse response function can be derived from the SDOF dy-
namic system

#(t) + 20w (t) +w2a(t) = 3(),

with ¢ the damping ratio, w, the natural frequency and §(¢) the Dirac delta
function.

The Fourier transform X (w) of the convolution of the two functions h(t)
and f(t) equals the product of the Fourier transforms H(w) and F'(w) of these
functions [145]. Thus

Fi1) " o)
Hw)
Flw) X(w)

Fig. 2.9. Deterministic dynamic system
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X(w) = /Oo e Iwt [/m h(T)f(t — T)dT] dt. (2.94)
Changing the order of integration X (w) becomes

X(w) = /OO h(T) {/OO eI (L — T)dt] dr.

From the time-shifting theorem [145] it can be concluded that the bracket
above equals F(w)e™7“7 therefore

X(w) = /_ M) F(w)e i dr = H(w)F(w). (2.95)

The pair of Fourier transforms between the impulse response function h(t)
and the frequency response function H(w) is given by

H(w) = / h(t)e /“tdt, h(t) = — / H(w)e' dw. (2.96)
The PSD function of x(t) is given by (2.50)

1 1
Sealw) = Jim X (@)X (@) = lm X ()P,

where X* = [*_x(t)e?*!dt, the conjugate of X (w). Equation (2.96) is very
important in analyzing the response characteristics of linear dynamic systems.

The PSD function of the random response z(t) can be expressed in terms
of the PSD function of the random loads, applying (2.95)

Spn(@) = Tim —= X (@) X" (@) = lim — H(w)H* (w)F(@)F* (@), (2.97)

T—oo 2T T—oo 2T
or )
Sea(w) = Jim | HW)[*|F(@)[* = [H(w)[*Spr(w)- (2.98)
The cross-power spectral density function Syr(w) is defined by
. 1 X
Ser(w) = Tlgnoo ﬁX(w)F (w), (2.99)
with
Sur(w) = Sp, (), (2.100)
where

e R{S,r(w)} the real part of the cross PSD function is called the co-spectral
density function (CSD).

o {S,r(w)} the imaginary part of the cross PSD function is called the
quad-spectral density function (QSD).
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Fig. 2.10. Dynamic system, loads F1 and F» applied

Further the following relationship can be derived:

Ser(w) = Jim o X(@)F* (@) = Jim o H(@)F(@)F () = H@)Srr(v).
(2.101)

The cross PSD function S, r(w) is generally a complex-valued function.

Suppose a linear dynamic system is loaded by two dynamic forces F; (¢) and
F5(t) and the interest is in the response z(t) at certain location. The response
x(t) of a linear system can be obtained by superposing the convolutions of the
impulse response function hi(t) and ho(t) with respectively the forces Fj(t)
and Fy(t)

= /00 hi(T)Fi(t — T)dT + /Oo ho(T)Fo(t — T)dr. (2.102)

—00 —00

The response of z(t) is illustrated in Fig. 2.10. In the frequency domain the
response X (w) can be expressed as follows

X(w) = Hi(w)F1(w) + Ho(w) Fa(w). (2.103)
The power spectral density of z(t) can now be written as follows

Sze(w) = [H1(w)|*Sk p, (w) + Hi(w)H3 (w) Sy py (w)
+ Ha(w)H (w)Spym (w) + [Ha (@) Spy iy (w). (2.104)

2.4.1 Force Loaded SDOF System

The mass-spring-damper system is loaded by the force F(t) at the mass m.
The mass is suspended by a linear spring with spring stiffness £ and a damper
with damping constant c¢. The SDOF system is illustrated in Fig. 2.11. More
about vibration of a SDOF system can be found in [208].

The equation of motion of the SDOF system is

mi(t) + ci(t) + kx(t) = F(t). (2.105)
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£(t)

m a(t)

Fixed base

Fig. 2.11. SDOF system loaded with a force F'(t)

Dividing (2.105) by the mass m we find the equation of motion of the damped
SDOF system:

(1) + 2w (t) + w2z (t) = % — ), (2.106)

where w,, = 4/ % is the natural frequency and ¢ = zx/Can the damping ratio.

The harmonic motion and force can be written

z(t) = X(w)e*t and  f(t) = f(w)el". (2.107)

A time derivative is equivalent to multiplying by jw in the frequency domain.”

Substituting (2.107) into (2.106) we obtain the equation of motion in the
frequency domain:

{(jw)? + 2j¢wwn, + w2 } X (w) = f(w), (2.108)
or (2.108) can be written as
X(w) = Hw)f (), (2.109)
where H(w) is the frequency response function (FRF) and is given by

1 1
H — = . 2.110
) = P Tz 7 2jComn ~ —” ¥ w2 % Zjcwmn (2.110)

The square of the modulus of the FRF H(w) is

7 j is the rotation operator, multiplying by j in the frequency domain is a rotation
of 5 radians in the complex plane.
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|H(w)|? = H(w)H*(w) = o2 _w2)21+ CETREL (2.111)

thus
1

V(@2 = w?)? + (2wwn)?

Equation (2.98) gives the mean square response of z(t), due to the random
load f(t) = 2% with the PSD function Sgp(w):

|H(w)| = (2.112)

B} = Ruwl0) = 5= [ HEPSy)d. (2113)

:% .

If the forcing function f(t) has a constant PSD function (white noise)
Spr(w) = M =S¢, then

E{2*(t)} = Rys(0) = j—; /:)o |H (w)|*dw. (2.114)
Remember that
Spr(w) = SF£§W)7 Wi (f) = W%Q(f) (2.115)

The integral in (2.114) has a closed-form solution [171] (see Appendix A).
We have the following coefficients for G2 (jw) and Hs(jw):

o bOZO

[ ] blzl

[ ] G,O:l

e a3 =2(wy,
o ay=uw?

The integral in (2.114) becomes

S, [ s s
B{a(1)} = Rua(0) = 5L /m WPl = 25 = P @1

The PSD function of the velocity #(t) is

E{i*(t)} = Rs:(0) = 5—; /jc (jw)?| H (w)|*dw. (2.117)

We have the following coefficients for G,,(jw) and H,,(jw):

L] b():].

[ ] b1:0

e qgqp=1

[ 0,122@4)71
° 2

ag = Wy,
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The integral (2.117) can now be obtained

S, Sp
4wy ACwpm?’

E{:c2(t)} = R;;(0) = 5_71; /_00 (jw)? | H (w)|*dw = (2.118)

The mean square of the acceleration i(t), E{#%(t)}, with a white noise
forcing does not exist, because

JRCEREIERE
has no solution.

Example. A SDOF system with a natural frequency f, = 25 Hz, a mass
m = 1 kg, a damping ratio { = 0.01 is applied by a force with constant PSD
value Wrp = 2Sp = 200 N? /Hz. The rms value of the displacement ., can
be calculated using (2.116)

Wrr
Zrms = VE{2?(8)} = \/4@)3”12 - — 0.00254 m.

6473¢ f2m?

The rms value of the velocity &,,s can be calculated using (2.118)

167 f,,m?2

W,
drms = VE{i2(t)} = \/4@} — = FE —0.390 m/s.

Example. A SDOF system is shown in Fig. 2.12 as well as the values of
the SDOF parameters. The white noise PSD function of the applied force
F(t) is Wr = 3000 N?/Hz. The mean value of the applied force is up = 0.
The applied load is stationary and Gaussian. The SDOF system is linear and
therefore the response x(t) is Gaussian too. Calculate the probability that the
displacement z(¢) < 0.0015 m and the probability that |z(¢)| < 0.0015 m.

l F(t)

m = 100kg

k= 2.467M N/m % HJ ¢ = 628N/(m/s)

Fig. 2.12. Random force applied to SDOF
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At first the natural frequency f,, will be calculated and after that the modal
damping ratio ¢. The mean value of the displacement x(t) is p, = 55 = 0.
The natural frequency of the SDOF system is

1 |k
fn=—1/— =25 Hgz,
2tV m

and the damping ratio ( is
c

= ——=0.02.
¢ 2vVkm

The standard deviation of the displacement x(¢) can be obtained from

[ wp »

The probability that the displacement z(t) < 0.0015 m can be obtained

. . ST . _ z()—ps _ _0.0015-0 _
using the standardized normal distribution with z = === = =552 =

2.157

1 2.157
Prob{z(t) < 0.0015} = 7 / e % /2dz = 0.5 + 0.4845 = 0.9845,
u — 00

and

1 2.157 R
Prob{|z(t)] < 0.0015} = — e > /2dz = 0.9690.
\/7_T —2.157

The probability Prob{z(t) > 0.0015} = 1 — 0.9846 = 0.0155 and the proba-
bility that Prob{|z(t)| > 0.0015} = 1 — 0.9690 = 0.0310.

We now study an example where a continuous beam loaded with a running
load ¢ will be converted to a SDOF system, using the assumed mode approach.

Example. A simply supported beam with bending stiffness EI, and length
L = 1.25 m, and mass m = 0.5 kg/m must have a minimum natural frequency
frn = 125 Hz. The beam is illustrated in Fig. 2.13. Calculate the required
bending stiffness EI. To do so the deflection w(x,t) of the beam will be
written as

w(z,t) = sin(%x>n(t),

where 7(t) is called the generalized coordinate or modal participation. Cal-
culate the generalized mass m, and stiffness k,. After that the associated
natural frequency can be expressed as

1 [k,
o= o\ g
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q (N/m)
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Fig. 2.13. Bending beam load with constant running load ¢

The generalized mass can be obtained with

L
L
mg zm/o sin2(%>dm = mT

and the generalized stiffness is

L 4 4
™ . of TT m E1

The natural frequency associated with the assumed mode sin(%*) will be

T | Bl
fo= T 0

2V mL*
The required minimum bending stiffness is EI = 7.73 x 103 Nm?2.
The bending beam is manufactured from an Al-alloy with a Young’s mod-
ulus E = 70 x 10° Pa.
The cross section of the beam is a square tube with a height (width) h and

a wall thickness ¢t = 2—%. Calculate the associated h and t from the required
second moment of area I. The second moment of area of the cross section is
h4
I =—.
30

From that it follows that the height and width of the square tube is h = 43 mm
and the wall thickness ¢ = 2.133 mm.

The constant running load ¢, has a white noise PSD W, = 20000 N2 /Hz
and has been derived from the acoustic loads. The generalized load is

With the structural damping coefficient g the equation of motion of the
SDOF system is

mgii(t) + kg(1 + jg)n(t) = Fy,

or
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\*EI 4q
it + (=] —(1+7 t) = —.
i(t) <L> —(L+gg)n(t) = —

The adapted PSD function of the running load becomes

The frequency response function

1
—w? +wi(l+79)’

H(w) =

peaks at the resonance frequency with a amplification factor @ = % with a low
structural damping g = 0.1. At resonance, the structural damping is twice the
modal damping ratio g = 2¢ [208]. The rms value of 7(¢) is (see Appendix A)

Wy

rms — —— =0.02 .
n 5273 f3 0.026 m

The bending moment M (z) = —ETw"”(x) so that

. (E EI( X : 1263 N
rms| & = - rms — m.
2 L) "

The bending resistance is given by

2I A3
= ——= — = .1 1 =7 3.
W 5 5.177 x 107" m
The maximum bending stress at the mid of the bending beam is

Mrms(%)

O bending,rms — T =244 x 108 Pa.

Problems

2.13. A circular simply supported plate, with radius r = a, is loaded by a
uniform random pressure p(t) with zero mean and an one-sided PSD W, (f) =
Wy Pa?/Hz. The undamped axi-symmetric equation of motion is given by

Do oo (), e
r Or T@r ror " or m ot2? A

where D is the bending stiffness, w(r,t) is the deflection, and m is the mass
per unit of area of the plate. The deflection w(t) is expressed as follows
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at 72\ 2
wlrt) =005 (1= ) =000

where 7(t) is the generalized coordinate, and ¢(r) the assumed mode. The
damped equation of motion for 7(t) is

mygij(t) + 2Cwomyn(t) + kgn(t) = 1p(t)-

Calculate the generalized mass mg, the generalized stiffness k,, the natural
frequency wy, and the participation factor ~.

Calculate the rms value generalized coordinate 7.

Calculate the rms displacement w,.,,s(0) at the center of the plate. The modal
radial bending moment in the center of the plate is given by

Mr(0,t) = nt) [a®(1+v)].

Calculate the rms value of M7,.,5(0).

Avswers: mq = 2mm [ r?(r)dr, ky = 27D [§ S Ar 513 5 (r 25

v =2r [ ré(r)dr = 2588wy = \/ky/my = 10.33,/ 2.
Hint: Theory of Plates and Shells [207].

)}o(r)dr,

2.4.2 SDOF with Enforced Acceleration

A SDOF system with a discrete mass m, damper element ¢ and spring ele-
ment k is placed on a moving base with an acceleration ii(t). The resulting
displacement of the mass is z(¢). A relative motion z(t) will be introduced
which is the displacement of the mass with respect to the base. The relative
displacement is

z(t) = x(t) — u(t). (2.119)

The equation of motion of the SDOF system, illustrated in Fig. 2.14, is
mi(t) + c{i — a(t)} + k{z(t) — u(t)} = 0. (2.120)

Using (2.119) we can write the equation of motion (2.120) of the SDOF
system as
3(t) + 2Cwn2(t) + w2 2(t) = —ii(t). (2.121)

The enforced acceleration of the SDOF system is transformed into an
external force.
The absolute displacement z(t) can be calculated from

B(t) = 2(t) +ii(t) = —2Cwn 2(t) — w22(t). (2.122)

The Fourier transform of (2.121) will leads to the following equation of
motion in the frequency domain
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m (t)

Moving base

u(t)
Fig. 2.14. Enforced acceleration of a damped SDOF system

[—w? + 2j¢ww, + W] Z(w) = —U(w), (2.123)

Zw)=—> +;Z(£H T —H(w)U(w). (2.124)

The PSD function of z(t) is given by

Sea(w) = Jim. %Z(w)Z* ), (2.125)

and the PSD function of i(t) is given by the following equation

N
Sii(w) = lim TU(LA})U (w). (2.126)
This is in accordance with (2.50).
Using (2.98) we can write the PSD function S,,(w) of the relative motion
z(t) as
S..(w) = [H(wW)|*Saa(w). (2.127)

We shall derive of the mean square values both in the time and frequency
domain starting from the autocorrelation function R,,(7). Using (2.42)

1 [ )
R..(1) = %/ Syz(w)e?*Tdw, (2.128)

— 00

and inserting (2.127) we find the following expression:

T o

R..(7) ! /OO |H (w)]?Sga(w)e?“ dw, (2.129)

— 00

or with a constant PSD function S
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R..(r)= 2 /oo |H (w)[*)e™  dw, (2.130)

:% .

Equation (2.124) gives

2 _ 1 . 1
[H(w)|* = @ =P+ Rwonl® A~ 2 ()] (2.131)

Finally the autocorrelation function R,.(7) is obtained (2.129) (see Appen-
dix B)

S e—Cwnlt ¢ )
R..(t) = “7{cos(wm/1 — () 4+ ———sin(wp/1— 42)}, t>0.
4wy, V1-C2
(2.132)

The mean square response of the relative displacement z(t) is

S Wy
= K = R (2.133)

Also, the autocorrelation functions of the velocity 2(t) and 2(¢) can be
calculated by differentiating the autocorrelation function of the relative dis-
placement z(t),

d’R,.(t)
iy = - 2.134
R;:(t) FIOR (2.134)
and d*R..(t)
zZZ t
2 (t) = —222 2 2.1
R::(t) o (2.135)

The derivation of the mean square calculation of z(¢) in the frequency do-
main is repeated. With reference to (2.129) the mean square response of z(t),
due to the random excitation i(t), with the PSD function Sj;(w), becomes

E{z(t)*} = R..(0) = % /Oo |H (w)]?Siii(w)dw. (2.136)

— 00

If the enforced acceleration (t) has a constant PSD function (white noise)
Sii(w) = Sz = %t then

E{=(t)} = R..(0) = O /Oo | H () 2dw. (2.137)

:% .

This integral (2.137) has a known solution (see (2.116))

:‘;—“/ |H (w)[2dw = S __Wa (2.138)
Y

E{z(t)*} = R..(0) N 4Cwd — 8C(2mfn)?
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Example. Suppose the system in Fig. 2.14 has a natural frequency f, =
30 Hz and a damping ratio ( = 0.01. It is desired to estimate the rms relative
displacement of z when the excitation is a stationary random acceleration
with a uniform spectral density W; = 0.10 g2?/Hz.

Wi 0.10 x 9.812

E{z(t)*} = = =17. 1076 m?.
O™ = 5e@r ) ~ 5% 001 x @m0y — X107 m

The square root of this is the rms value Zqms = 4.24 x 10~3 m. This example
is taken from [83], page 29.

The mean square value of the velocity 2(t) is given by

BL0?) = Rea0) = 3¢ [ (oPH()Pdo =
Wi
_ m (2.139)

Thus the relationship between the expectation of the velocity and the expec-
tation of the displacement is given by E{:?} = (2w f)2E{z?}.

To calculate the mean square value of the acceleration #(t) we use (2.122).
The autocorrelation function Rj;(t) for the acceleration is

Rii(t) = (26wn) “Rez (1) + wiRoo(t) + 203 R (8) + 2CwiRoc(t).  (2.140)
Differentiating (2.33) with respect to ¢ we find

ARy, (T)

a = sz(T) + Rmz(T) =0, (2.141)

thus
Rxx(T) = —Rm‘c(T). (2142)

Therefore (2.140) with 7 = 0 becomes
Ri3(0) = (2¢wn)*R::(0) + wiR..(0), (2.143)
and (2.143) can expressed using the mean square of Z(t)
E{# (1)} = (2(wn)*E{*(t)} + wh E{Z*(t)}. (2.144)
Substituting (2.138) and (2.139) in (2.144) we find the mean square of &(¢):

i A

Equation (2.145) can be approximated when 4¢? < 1% as follows

E{#t)} = (1+4¢%) = (1+4¢2). (2.145)

8 In spacecraft structures, the damping ratio ¢ ~ 0.01...0.05.
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B0} = i, = Tt ach) ~ T

where @ = % is the amplification factor (quality factor) and f,, the natural
frequency (Hz).

In general, the mean value of the acceleration Z(t) is zero, puz = 0. The
variance o; of the acceleration i(t) is

= SFQWa,  (2146)

03 = E{i*(t)} — p = i, (2.147)

where rms stands for root mean square.
The modulus of the frequency response function |H(w)|, (2.131)

Q
w2’

[H (wn)| =

The bandwidth Aw between the half power points, i.e. |H (w,)|? = Qs
Aw = 2w, Af =2(fn.

The mean square of the acceleration Z(t) is
E{&(t)} = i = 5F2QWa = ALQ*Wa. (2.148)

Most of the contribution of the power to the mean square value E{#?(t} is
stored in a very peaked area with bandwidth Af,, and a height §Q2. The
contribution to the power from outside the bandwidth Af,, is much less.

If the PSD function of the enforced acceleration Wy (f) is rather constant
in the bandwidth Af,, and E{#?(t)} may be than approximated by

E{i*(t)} = ganWﬁu(fn)- (2.149)

Equation (2.149) is called Miles’ equation [127] and is normally written when
the average value of the acceleration pz = 0 as

Oz = Trms = A/ ganWuu(fn) (2150)

The rms value of the acceleration #(¢) in (2.150) is in practice often de-
noted by Gp,s. Within the frame of spacecraft structures, instruments, equip-
ment, etc., an amplification factor @@ = 10 is frequently applied.

The equation of motion of the SDOF system as shown in Fig. 2.14 will
now be expressed in terms of the response x(t)

mi(t) + c{i(t) — u(t)} + k{z(t) — u(t)} = 0. (2.151)

Dividing (2.151) divided by the mass m gives
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E(t) + 2Cwnd(t) + w2a(t) = 2Cwnt(t) + wu(t) = F(t). (2.152)

The PSD function of the forcing function f(t) is defined as

Spp(w) = lim ~F(w)F* (w)

lim %|[2j§wan(w) +w2UW)|% (2.153)

or

Srr(w)

A 212 2
Jim 12 Cwnw + w2 PU(W)
= [(2¢wnw)? + wi] Suu(w). (2.154)
The PSD function of the response z(t) can now be written as follows;
Syz(w) = [H(W)[*Spp(w) = |HW)|*[(2waw)? + wit ] Suu(w). (2.155)

We assume a constant PSD function Sy, (w) = Sy; the autocorrelation func-
tion R, (t) is

R,.(t) ! / Sea (w)ej‘“tdw

“5 ]
Su > 2 4 2
=52 [(2Cwpw)? + wi ] |H (w) P dw. (2.156)

The solution of (2.156) is found in [14]:

Rzm(t) _ (Unsu(ic'i_ 4C2)6—Cwnt |:COS(wn 1— C2t)
(1 —4¢%)

sin(wp/1 — (216)}, t>0. (2.157)

! (14+4¢%)y/1-¢?

The PSD function of the acceleration Z(t) can be written as (2.155)
Sis(w) = |H(W)[*Spp(w) = |HW)|*[(2(ww)? + wit] Sia (w). (2.158)

The relations between the PSD and cross PSD functions for z(t), &(¢) and
Z(t) are given in Table 2.5.
The mean square of #(t) due to the random enforced acceleration i(t) with

a constant PSD function Sy (w) = S; = Vg“ is

E{#(t)} = Rua(0) = ‘5—; /_OO |H(w)*[(2wnw)” + wp]dw.  (2.159)

Using the results achieved in Appendix B we can extract the following con-
stants from (2.159):
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Table 2.5. PSD and cross PSD functions of z(t), (t) and Z(t)

o n=2

o qgg=-—1

o a1 = 2(wy,

o ay=w?

° bo = —4C2w%
o b =uw!

The integral (2.159) now becomes

BE{i?(t)} = Rsz(0) = g_; / 7 H(w)P[(2¢wnw)? + wp ] dw
WnSi _:Oﬂ'
T (1+4¢%) = 3 [, QWa. (2.160)

This is again Miles” equation (2.146).
From (2.155), the expectation of the mean square of the displacement x(t)
can be found:

B{2*(0)) = Rua(0) = 52"

The PSD function of the enforced acceleration (t) is given by Wiy (f) =
27 f)*Wouu(f), so that the expectation of the displacement x(t) may be ex-
pressed as

(1+4¢%) ~ ganWu. (2.161)

SN JE0)
E{z*(t)} = @nf) (2.162)
Example. A given SDOF system has a natural frequency f,, = 100 Hz and
a damping ratio ¢ = 0.05, @ = 10. The white noise PSD function of the base
excitation is Wy = 0.1 g2/Hz. Calculate the rms acceleration of the SDOF
system.
The rms acceleration response of the SDOF system can be calculated using
Miles’ equation (2.150)

Frms = \/%anWW(fn) - \/gmo % 10 X 0.1 = 12.53G rums.

2.4.3 Multi-Inputs and Single Output (MISO)

In Fig. 2.15 a SDOF system is shown with both an enforced acceleration i(t)
at the base and a direct force F(t). The PSD function of the response xz(t)
will be calculated.
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F(t)

m z(t)

Moving base

ii(t)

Fig. 2.15. Multi-inputs F(¢) and i(t), single output z(t)

The equation of motion of the SDOF is
mi(t) + c{z(t) — u(t)} + k{z(t) — u(t)} = F(t), (2.163)

F(t) + 2Cwn@(t) + w2a(t) = 2Cwnt(t) + w2u(t) + £) _ q(t). (2.164)

The PSD function of ¢(t) with f(¢) = % becomes

Sug(w) = [(%—”)+ (ﬁﬂsﬁa(w)wﬁ(w)+2(%)2Sfu<w>7 (2.165)

w w

where Syf(w) = W%Q(w) the PSD function of f(¢), Siu(w) the PSD function
of the enforced acceleration di(t) and Sg;(w) = Sj ;(w) the cross PSD function
of f(t) and u(t) and is in general a complex valued function.

2.4.4 Unit Load Random Vibration Responses

The random vibration in a structure, caused by a particular random load F'(t),
may be approximated by the response of that structure due a static unit load
representation F,; of the random load multiplied by a dynamic factor. This
approach will be demonstrated with the aid of the SDOF system shown in
Fig. 2.16. The static deformation caused by the unit load F},; must have about
the same deformation pattern as the mode shape {¢,} considered with the
natural frequency f,.

The PSD function of the random load F'(¢) is indicated by Wrp(f), and
the rms displacement x5 of the response z(t) is given by

| Wer(f)
Trms = \| Gamsc I (2.166)
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m a(t)

Fixed base

Fig. 2.16. Random and unit load application

The displacement z,,; of the SDOF system caused by the static unit load
F,; = 1 can be easily calculated
Fy 1 1

T 2.167
T T TR T m2nf,)? (2.167)

where the natural frequency f,, of the SDOF system is given by f, = 5=/ %

or

The term m(27f,)? is extracted from (2.166); 2,,s becomes

nW n 1
Tyms = m(Qifn)2 7f, 412F(f ) _ = CETAE ganWFF(fn) (2.168)

substituting (2.167) in (2.168) to obtain the following final expression for & ,:

LTrms = xul\/ %anWFF(fn) (2169)

Equation (2.169) can be written very generally, the displacements may for
example be replaced by stresses o

Lrms Orms '/T
Toms _ Trms [T OWer(f2): (2.170)
Tyl Oul 2

The approximate rms responses obtained from (2.170) will give conserva-
tive results!

Problems

2.14. Consider a weakly stationary random process with the PSD function of
order (m,n) = (0,2)
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Slw) = (wd — w?)? + (2wow)?’ ¢<L

Define the corresponding autocorrelation function R(7) using Table 2.3,
page 23.

Answer: R(T) = %e‘c“’om(cos(wdﬂ + \/147 sin(wq7)), wg = woy/1 — C2.
3 —

2.15. A damped SDOF linear system is excited by a random ergodic external
force F having a PSD function given by Wr(f) = Wy, f € (0, fo] elsewhere
Wg(f) = 0. The sdof system has a damping ratio ¢ = 0.05 and a natural
undamped frequency f, = J;—O (Hz). The spring stiffness is k. Find the PSD
function W, (f) of the displacement x as a function of %, f € (0, fo). Calcu-
late the PSD values of the displacement z, the velocity &, the acceleration &
and for the force Fpping in the spring at the natural frequency fi,.

Answers: W, (f,) = 100%2, Wi(f.) = 10002nf,)2%2, Wi(f,) =
10027 f, )4 Y2, Wi, . (fn) = 100Wo.

spring

2.16. A SDOF system has a natural frequency f,, = 40 Hz. The mass m =
5 kg. The damping ratio ( = 0.05. The base acceleration is specified in Ta-
ble 2.22.

e Calculate the PSD value Wy (fn),
e Calculate the rms reaction force Fpgse mms at the base (¢ = 9.81 m/SQ).

Answers:

Wuu(fn) =0.1024 g2/Hz
L4 Fbase,rms =3934 N

2.17. This problem in taken from [188]. A “band-limited” white noise enforced
acceleration i is one whose PSD S; has the form shown in Fig. 2.17. Let 4
be the enforced acceleration to the system

Z 4+ 2Cwpz + wgz = —ii,

where z is the relative displacement, and # = —w3z — 2Cw? the absolute
displacement. Derive analytical expressions for the rms response of %, Z, z

Si . ¢?/Rad/s

So

v
&

—W2 —Wwq w1 w2

Fig. 2.17. “Band-limited” white noise enforced acceleration Sy
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and &. Under what condition can the rms response of the Z be approximated
by one subject to an ideal white-noise excitation (Miles equation).

The mean square or the zero-lag correlation function R(0) can be obtained
from the following expression:

R(0) 1 /°° S(w)dw.

:% -

Calculate the numerical values of the rms responses when

the natural frequency is wyg = 27 fy, fo = 30 Hz,

the damping ratio is ¢ = 0.05,

the PSD function is So = 0.05 g?/rad/s (g = 9.81 m/s?) and
the radian frequencies are w; = 0.5wg and wy = 1.5wy.

Answers: s = 66.3571 m/s?, Z.ms = 0.3520 M/S, Zpms = 0.0019 M, & s =
65.9195 M/82, Zyms. prites = 67.3426 m /52,

2.5 Deterministic MDOF Linear Dynamic Systems

Multi degrees of freedom (MDOF) dynamic systems may be exposed to ran-
dom forces and or random enforced motions (i.e. acceleration at the base).
Both kinds of random loads will be discussed in the following sections. The
matrix equations of motions are provided by (general purpose) finite element
programs or otherwise.

2.5.1 Random Forces

In general, the matrix equations of motion of a discrete MDOF dynamic sys-
tem can be written as

[MI{E@)} + [CHz@)} + [Kz()} = {F (D)}, (2.171)
and consists of the following matrices and vectors:

the mass matrix [M]

the stiffness matrix [K]

the damping matrix [C]

the force vector {F(t)}

the displacement, velocity and acceleration vectors {z(t)}, {Z(t)} and

{&(6)}

For linear MDOF systems the mass, stiffness and damping matrix do not
vary with time and are deterministic, however, the displacement, velocity,
and acceleration and force vector do usually change with time and are ran-
dom.
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Using the modal displacement method® (MDM) [126, 208], we can express
the physical displacement vector {z(¢)} in terms of the independent set of
eigenvectors of the modal matriz [P]

{z(®)} = [2{n(®)}, (2.172)

where {n(t)} is the vector of generalized coordinates or modal participations.
The modal matrix [®] = [¢1, @2, ..., ¢n] has the following orthogonality
properties with respect to the mass and the stiffness matrix

[@]"[M][@] = [m],  [@]"[K][@] = [Am], (2.173)

where [m] is the diagonal matrix of generalized masses and [Am | the diagonal
matrix of the eigenvalues A multiplied by the generalized masses.

Using (2.172) and pre-multiplying by the transpose of the modal ma-
trix [@]7 we find

[@]" [M][2]{ii(t)} + [T [Cl[@1{n()} + (@] [K][@]{n(t)} = [¢]T{F(E)}. |
2.174
Making use of the orthogonality relation of the modal matrix [®], (2.173),
the equation of motions are expressed in generalized coordinates, generalized
masses, eigenvalues and generalized forces

[m]{ii(0)} + [el{n(®)} + [Am[{n(t)} = {q(t)}, (2.175)

where {q(t)} = [®]T{F(t)} is the vector of generalized forces, [c| the diagonal
matrix of the generalized damping. This means that the damping matrix [C]
consists of proportional damping'® [208], which is, in general, not the case.
The influence of modal coupling of non-classically damped linear systems is
discussed in [147]. Generally, the modal viscous damping will be added on
an ad hoc basis to the uncoupled equations of the generalized coordinates,
ci = {6} T[CH i} and 2= = 2¢w;, with w; = VAo m; = {¢i}T [M]{¢;} is the

generalized mass associated with the mode {¢;}, ¢; = 2\/% is the modal

damping ratio, k; = {¢;}T[K]{¢;} is the generalized stiffness and \; = w? is
the eigenvalue of the eigenvalue problem ([K] — \;[M]){¢;} = {0}.

In general, the modal damping ratio is taken to be ¢ = 0.05 when random
vibrations are involved. In [1] an alternative value for the modal damping
ratio has been given

1
10+ 0.05f;"
where f; (Hz) is the ith natural frequency.

Finally, the uncoupled equations of motion of the m generalized coordi-
nates with the generalized forces {q(t)} become

G (2.176)

9 Modal superposition, the orthogonal modal method, or the principal coordinate
method [111].
10 Proportional to the stiffness and mass matrix.
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7 (t) 4+ 2C;wini (t) + win;(t) = q”—(t)7 i=1,2,...,m. (2.177)

my;

To find the PSD of a structural response in the physical coordinates, all the
modal PSD (direct- and cross) should be summed. The modal cross PSD may
be neglected if, [47]:

e the system is lightly damped, and
e the eigenfrequencies of the system are well separated.

The conditions can be satisfied when
max(w; ¢, wrle) < |wi — wil. (2.178)

The PSD function of the external generalized forces ¢;(t) is defined as

Suray (@) = lim = Qi) Q% ()

T—oo 2T
1 «
= Jim o {di} {F (@) HFT (@) Hes b, (2.179)
or

SQin (w) = {(bi}T[SFL’Fj (W)]{d)]}’ (2'180)
The matrix of the PSD and cross PSD functions S, r, (w) can be written as

Ser (W) Skp (W) Sk r, (W)
(S ()] = | 270 ) Srary @) : . (2.181)

: . SFn—an (w)
Se.p (W) o Sep, (W) Skp, (W)

where n is the number of applied random forces.
If there is no correlation between the individual forces F; and F the cross
PSD function Sg,r,(w) =0, 4,5 =1,2,...,n.

In the frequency domain (2.177) can be written with 7(t) = IT(w)e’*" and
q(t) = Qw)e’*"
1 Qi(w) Qi(w)
1I; = = H;(w)—/—=. 2.182
i@ —w? 4+ w? + 2jCGww; m; i) m; ( )

The general cross PSD function S,,,,(w) of the generalized coordinates
7;(t) can be expressed as follows

Spons () = H;,Ef)SQiQJ (w)%(;)), (2.183)
or we can write using (2.180)
(W H*(w
Suny @) = T 61T @) 2 (2asy

m; m;
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The matrix of PSD and cross PSD functions of the generalized coordinates
[Sn,n, (w)] becomes
[Snmj (w)] =

{M (2.185)

m;

|

|or7sms 0101

The matrix [S,,,, (w)]' is the PSD and cross PSD function of m general-
ized coordinates 7;(t) given by

Spim (w) Snins (w) T Sninm (w)
[y ()] = Snzn} (w) Snznla (w) : . (2.186)
: : i S777n—1nm (C{))
Sﬁmm (w) T Snmr777n—1 ((.U) Srhn"?rn (w)

The matrix of PSD and cross PSD functions of the physical displacements
is {z(t)} = [®]{n(t)} with {n(t)} = I (w)el*" is

(S22, (W)] = lim lXi(w)X’-k(w)

T—oo T J
= Jim 8 (T ()T ()} 2] (2.187)
Sare,] = [y, ()] (2.188)
Finally, it ends with

S0, 0 = 181 [ 2275, )| 52 | T, (259

Equation (2.189) can also be written as

(27 Iiﬁ< Y

W, (] = 01| [ 2222 oyt (|22 [far. 200

The matrix of the mean square values of z(t) can now be calculated using
1 oo oo
(Bity)) = (Ravo, O] = 5 [ 8o, @ = [ Waur, (D). 2:191)
T J -0 0

Random enforced accelerations will be discussed in the following section.

2.5.2 MDOF System Loaded by Random Enforced Acceleration

A MDOF dynamic system will have an acceleration base excitation as illus-
trated in Fig. 2.18.

' The power spectral density matrix [S(w)] is in general a complex matrix that has
the following properties:

o [S(—w)] =[S(w)] for all w

o [S"(w)] =[S(w)] for all w.

The * denotes the complex conjugate transpose.
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i(t)

Fig. 2.18. Base excitation

The undamped equations of motion of the dynamic system can be written
as

[(M]{E()} + [K[{z(t)} = {0}. (2.192)
A relative motion {z(¢)} = {x(t)} — {T}u(t) is introduced and [K|{T}u(t) =
{0}, because {T'} is the rigid body mode in the direction of the enforced

displacement u(t). In fact there are six rigid body modes, three translational
and three rotational. Equation (2.192) becomes

[MI{Z(t)} + [KI{z(1)} = —[M{T}i(t). (2.193)

The PSD function of the relative motion {z(¢)} has the same structure as
(2.190), thus

W) = 01| | 2270 |, ()|

m;

H]’f‘(27rf)
mj

H @7,  (2.194)

where

o Wrr ()] = (=12 [MK{THT} [M]Wgu(f) the PSD function of the ap-
plied random loads (base excitation)

o H,(2nf)= (2w)2(ffff12+2j(iffi) the frequency response function (FRF)
e (; the modal damping ratio associated with mode {¢;}

o m; ={¢;}T[M]{¢;} the generalized mass

o [D] =[p1,02,...,¢P] the modal matrix and

o {(—2nfi)?[M]+ [K]}{¢:} = {0} the eigenvalue problem.

Equation (2.194) can be written as

(Weizy (D] = [Hza (NP Waa(f) = [Hea(DIHZ (O Waa (), (2.195)
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or

W, (01 = (101 | 2272 |y

(2

x (T} [M][2] {%jf)ﬂ [¢]T> Waa(f).  (2.196)
Thus, the FRF [H,;(f)] can now be written
Hea(f)] = (9] HHS””J @]T[M]{T}]~ (2.197)

The minus sign reflects the negative RHS of (2.193).
The FRF [H.,(w)] between the displacement U(w) and the relative dis-
placement vector {Z(w)} is given by

{Z(w)} = [Hau W)U (w) = —w?[Hei(w)]U (w), (2.198)
because U(w) = (jw)?U(w) = —w?U(w), thus the FRF [H., (w)] becomes

ol =l | P ey )

The absolute displacement vector {z(¢t)} = {z(t)} + {T}u(t). The PSD
function of the absolute displacement component {x(t)} is defined as
o1 .
[Seue, @) = Jim (X)X} @)}, (2.200)

Sty (@) = Jim o [(2(0)} + {TYU (W) [{2* @)} + {10 @), (2.201)
and further

(See, ()] = [ ()] + (T @]+ {THT Jim - U(@)0* (@), (2:202)

and, finally,
[Sesa, (@)] = (e (@)]HZ, (@) + {THHZ, (@)]" + [Heu(@){TH
H{THTY) Suu(w). (2.203)

The PSD function of the accelerations {i(¢)} can now be easily obtained,
because [Si;(w)] = wi[Szz(w)] and Sii(w) = WSy (w), and therefore

(S, ()] = ([Haw(@)][HZ, ()] +{THHZ, (@) + [Heu(@){TH

+{THT}) S (w). (2.204)
In the frequency (Hz) domain (2.204) can be written
(Wi, ()] = ([Hza )] HE; (20 ))F) Waa(f), (2.205)

where



62 2 Linear Random Vibration Systems

o [Hzi(2mf)] = [Hzu(2mf)] +{T}

o [H.u(2n))] = @rf)2[@)[[LED |[@]T (M| T)]

b ml = {¢1}T[ J{o:} L

* Hi(Crf) = o=

e (; the modal damping ratio associated with mode {¢;}, and

e {T} the rigid body vector in the excitation direction u(t) and (t)

The matrix of the mean square values of &(¢) can now be calculated using

ww@n:mmﬂm=ﬁwwmmmw (2.206)

The rigid body vector {T} can be extracted from the free-free stiffness
matrix [K] of an elastic system. Divide the degrees of freedom (DOF) into a
set of internal dofs, called the i-set and 6 external dofs in one node in the
external (boundary) set, b-set, and applying unit displacements and rotations
in the b-set, we can find the following static equilibrium equation

[flgb Ilgbﬂ {ib} - {lgb } (2.207)

From the first equation of (2.207) we can express {z;} in terms of {x}}

{z:} = —[Ku] ' [Kal{zp} = —[Ku] 7' [Ka)[1]
= —[Ku| K] = [, rigid)- (2.208)

The complete matrix of the six rigid body vectors [Prigiq| is given by

(D rigia] = ( [%ﬁj’id] ) : (2.209)

The six rigid body vectors are respectively translations in the z-, y-, z-
direction and rotations about the z- , y- and z-axis. The rigid body vector
{T'} is one of the rigid body vectors of [@,giq]-

2.5.3 Random Forces and Stresses

Besides the responses of the DOF's the internal forces and associated stresses
should be calculated to predict the strength characteristics of the linear struc-
ture itself.
The matrix of cross-PSD of the forces or stresses, say [Sy,o,(w)] can be
calculated
Sy (@) = [Bo][Sim, )] (2.210)

where [®,] is the matrix of force or stress modes associated with the modal
matrix [@] and [S,,,; (w)] the matrix of auto-PSD functions (main diagonal)
and cross-PSD functions of the generalised coordinates 7;(t).
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The stress modes [®,] can be calculated using the mode shapes [@] and
the so-called force or stress matriz'? [D,]. The stress modes are defined as

[25] = [D,][2]- (2.211)

When random loads are applied to a deterministic linear system (2.210)
can be written as

(Woio; ()] = [Hor 2n f)][Wrr(HIHzp (27 )], (2.212)

and when random base excitation is applied the matrix [Wo,,, (f)] (2.212) can
be written

(Weso; ()] = [Hoa(2m f))[Waa (F)][Hy (27 )], (2.:213)
where

[Wrr(f)] the PSD matrix of applied forces
[Wia(f)] the PSD matrix of enforced accelerations
[H,

[Hoii

P21 f)] = [Do][®][ 2271 |[4)T
@2 f)] = —[D ][s?][MJ[@]T[M]{T}

H(2nf) = Grpr=peraie)
¢; the modal damping ratio associated with mode {¢;}, and
{T} the rigid body vector in the excitation direction w(t) and i(t).

Example. A 3 mass-spring dynamic system, as shown in Fig. 2.19, is excited
at the base with a constant band limited random enforced acceleration W;; =
0.01 g2/Hz in a frequency range f € [5,500] Hz. The discrete masses are
m1 = 200 kg, mo = 250 kg and mgz = 300 kg. The spring stiffness of the
springs is given by k1 = 10® N/m, ky = 2 x 10® N/m and k3 = 3 x 10® N/m.
The modal damping ratio for all modes is { = 0.05 or the amplification factor
(transmissibility) @ = 10. Calculate the accelerations {Z} and the internal
loads.
The undamped equations of motion are

mi 0 0 ‘.1:‘1 kl 7]{51 0 T 0
0 meo 0 C.U.Q + —kl kl + kQ —kg ) = 0 5
0 0 mg 3 0 —ko ko + k3 xs3 0

or previous equation can be expressed in the relative motion {z(¢)} = {z(t)} —
{T}u(t), thus

mq 0 0 21 kl —kl 0 21
0 mo O Zo p+ | —k1 K14+ ko —ko 29
0 0 mg Z3 0 —ko ko + k3 23

mi 0 0 1
=—|0 mg O 1 pi(t),
0 0 ms 1

12 The stress matrix is the assembly of element force or stress matrices.
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ky

M

Mo Z2

ko

ks

M F P

Fig. 2.19. 3 mass-spring system, enforced acceleration

where

1
(ry=|1
1

The natural frequencies and associated mode shapes of the MDOF system are

69.5745 0.0560  0.0417  0.0111
{fu} ={153.7834 » Hz,  [#] = |0.0346 —0.0362 —0.0387
238.3038 0.0156 —0.0329  0.0448

The generalized mass matrix [m] is given by

1.0000  0.0000 0.0000
[m] = [®]T[M][®] = | 0.0000 1.0000 0.0000
0.0000 0.0000 1.0000

The modal effective mass associated with the vibration mode {¢;} with respect
to the base is defined as [224] (see also Appendix D)

My ({@}%HT})Q
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with [M] the mass matrix. The modal effective masses calculated for the
dynamic system are as follows

602.2987
{Myg}y =4 111.7754 } kg.
35.9259

The most important mode is that with the maximum modal effective mass.
The sum of the modal effective masses is equal to the total mass of the system
S Mg i = Moy = 750 kg.

The integrals of the 3 x 3 matrix of PSD values Wi s, (f) are the mean
square values. The matrix of the mean square (expected) values of the accel-
erations E{i;#;} (m/s?)? can be calculated by

500
5
2.4262 0.8029 — 0.1640;5 0.2655 — 0.08877
=10% | 0.8029 + 0.1640; 1.2838 0.4506 — 0.19255
0.2655 4 0.08875 0.4506 + 0.19255 0.7414

The integration of the previous equation is carried out by the trapezoidal rule
with a frequency increment Af = 0.2 Hz. The rms values of the accelerations
[g] on the main diagonal are

5.0211
VE{G:#:} = {ims} = { 3.6524 » g
2.7757

The internal force matrix Dy is set up as follows

ki —k 0
Dp= |0 ky —k
0 0 ks

The mean square values of internal force matrix E{F;F;} (N?) is established
with a Af = 0.2 Hz.

- 500
E{FiFj} = WO"iO'j (f)df
5
0.9672 1.3640 — 0.08145 1.5169 — 0.1321y5
=10% | 1.3640 + 0.08145 2.5564 3.0372 — 0.19235
1.5169 4+ 0.13215 3.0372 + 0.1923j5 4.1681

The rms values of the internal forces on the main diagonal are

0.9835

VE{F;F;} = {Fii yms} = 10* { 1.5989 5 N.
2.0416
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PSD Accelerations
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Fig. 2.20. PSD accelerations of masses

PSD Spring forces

10

10"
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PSD Spring forces N%/Hz

10 0 ‘1 ‘2 3
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Hz

Fig. 2.21. PSD forces in springs
The PSD values of the accelerations and spring forces are shown in

Figs. 2.20 and 2.21.

In the previous example we calculated the rms force in the spring k3. This
can also be done using the concept of modal effective masses [224] and the
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relation as derived in Appendix C to obtain the reaction force Fyus.(w) as a

consequence of the base excitation U(w) at a determinate interface.

n

{Foase @)} =D [Megr so(wr) (1 + w? Hi(w)) {U (w)}. (2.214)

k=1

The rms value of the reaction force Fp,se(w) is approximated by

n

Frms base ~= Z|: eff ,i 2f1Q1 (fz) s (2215)

i=1

where n is the number of modes taken into account. This result can be traced
n (2.160). This approach is called the mass participation method [30]. Equa-
tion (2.215) will be proven using (2.193)

[MI{z(0)} + [K){2(t)} = —[M{T}a(t).

The relative displacement vector {z(¢)} will be depicted on the modal
base [@], thus {z(t)} = [@]{n(t)}, where {n(t)} is the vector of generalized
coordinates.

The mean square value of the modal reaction force Fig rms base,
|Fik,rms,base|2 is giVeH by

| Fikrms pasel” = {60} IMU T TR} IMI{0 157 s
= M6ﬁ7ikmiﬁi7'7ns7 (2216)

or

2 2
‘Fik,7'ms,base| = Meff ikmini rms

eﬁlelel a(f), i=1,2...,n k=1,2,...,6.
(2.217)

The total mean square of the reaction force Fj ;s base is obtained by adding
the contribution of the modal mean square reaction forces | Fig rms pase|?, thus

n

2

Fk,ms,base = § |Fik,rms,base|
=1

_Z|:Meffzk2szz (fl)}, k=1,2,...,6. (2.218)

Finally the rms value of the reaction force Fj yyms base is found:

n

Fk,rms,base = Z |: eff ik B szz (fl):| k= 1, 2, ey 6. (2219)

=1
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Example. The previous example will be continued. The PSD function of
the base excitation is constant Wy = 0.01 g?/Hz. The constant amplification
factor is @ = 10.

The natural frequencies of the MDOF system as illustrated in Fig. 2.19
are

69.5745
{fa} =< 153.7834 § Hz,
238.3038

and the associated modal effective masses

602.2987
(Mg} ={ 1117754 § kg.
35.9259

The mean square value of the reaction force Fjqqe is
E{Fjse} = Rpy.. 7y, (0) = 41523 x 10° N2,

and the rms value of Fj,e is

Fbase,rms = E{Fanse} =\ RFbu,schasc (0) = 2.0377 x 104 N.

The approximation of the rms value of the reaction force Fjqse using Miles’
equation gives a somewhat lower value (0.2%) as calculated in the previous
example (2.0416 x 10* N), because the term 4¢2 in (1+4¢?) has been neglected.

Problems

2.18. A cantilevered beam is shown in Fig. 2.22. The length of the beam
is [. This cantilevered beam will be idealized by three Bernoulli-Euler beam
elements with constant mass and stiffness. The mass and stiffness matrix of
the beam element are as given below

156  22L 54  —13L
mL | 22,  4L2 13L —3L2

[M”]:@ 54  13L 156 —22L |’
~13L —3L% —22L 4L?
12 6L —12 6L
EI| 6L 4> —6L 2L?
(K] =

3| -12 —6L 12 —6L |’
6L 202 —6L 4L>

where L is the length of the beam element, m = Ap is the mass per unit of
length, p is the density, E is Young’s modulus and I is the second moment of
area.

The design parameters have the following values:
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Fig. 2.22. FEM cantilevered beam
Table 2.6. Random libration level
Frequency spectrum Wi (f)
(Hz) ¢/
20-50 5.5 dB/octave
50-800 0.053
800-2000 —5.5 dB/octave
G'V"!’VLS ? g
e FE =170 GPa,
e p=2700 kg/m?3,
e [ =0.3m,
e Hh=0.01m,
e b=0.006 m,

Calculate the three lowest natural frequencies (Hz) of the cantilevered
beam.

The beam is excited at the base by a random enforced acceleration i(t).
The random enforced acceleration PSD W (f) is specified in Table 2.6. The
modal damping ratio for all modes is ( = 0.05. Perform the following assign-
ments using the mode superposition method:

e Plot PSD of the acceleration responses of nodes 2, 3 and 4 versus frequency
(H7)
Calculate rms values of the acceleration responses of the nodes 2, 3 and 4.
Calculate the number of positive zero crossings associated with the accel-
erations of the nodes 2, 3 and 4.

Repeat the random response analysis applying a general purpose finite el-
ement software package. Try to validate your finite element random response
analysis by an analytical solution [19].

Answers (partly): MSC.Nastran SOL 111 analysis, frequency range
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20-2000 Hz, natural frequencies 91.34, 572.02 and 1605.2 Hz, rms transla-
tional (y-dir) acceleration node 4 is 25.1 g and associated number of positive
zero crossings node 4 is v = 731.6 Hz.

2.6 Complex Modal Analysis, Lyapunov’s Equation

2.6.1 State-Space Equation

Complex modal analysis had been developed by Fang and Wang in [61]. This
approach is valid for both the classical and nonclassical damping cases. It is a
time domain analysis which is most suitable to calculate correlation functions
and covariances of the random responses.

An MDOF linear dynamic system is considered with the following matrix
equations of damped motion

[M]{i} + [CHa} + [K{z} = {f(D)}, (2.220)

where [M], [C] and [K] are n x n symmetrical positive definite matrices and
{f(t)} is a stationary white noise excitation with following properties

BI{f®}] =1{0}, E{fOHfE+7}]= %[%]5(7), (2.221)

where [Wy] = 2[Sp] the single-sided white noise autospectrum matrix (PSD)
of {f(¢)} in the cyclic frequency domain. [Sp] is the constant PSD of the
double side spectrum in the rad/s domain. The equations of motion (2.220)
are transformed into a space-state

{9} = [AHy} + [BHf(D)}, (2.222)

where the state vector is given by {y}T = |y¥, 9T | = 27,27, [A] is the
time-invariant state matrix, [B] is the time-invariant input matrix and {f(¢)}
the excitation vector. The state matriz [A] is defined by

0 1
A= (s i) (2.223)
and the input matriz [B] is as follows
[B] = ([1\2}1> ; (2.224)
because we can write

{2} = =M [E){y1} — [M]7HCHye} + [M]TH{F(0)}-
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The solution of (2.222) is derived in [66]

t

{y(O} = T {y(r)} +/ OB F(¢)}d, (2.226)
where el = [1] + [A]t + [A]2L + [A]3L + - [10].

The state matrix [A] has 2n eigenvalues )\; and 2n corresponding eigen-
vectors ;. When the damping is below the critical damping, the A; and {«;}
appear in conjugate pairs. The real parts of the eigenvalues are negative,
R{A;} < 0. The complex modal base is given by

(W] = [1, 42, - . ., Wh2n]. (2.227)

The state matrix [A] can be expressed in the eigenvalues A; and associated
eigenvectors 1, if there are no repeating eigenvalues, in the following way [10,
198]

[A] = [@][A)[2] ", (2.228)
where [A] = diag(A1, A2, ..., Aap). This equation is known as a “similarity
transformation”. It is said that the matrices [A] and [¥] are “similar”. If the
following base transformation is applied {y} = [#]{v} and substituting (2.228)
in (2.222) the following state-space equation is obtained

{0} = [A[{v} + [~ [BH{f ()} (2.229)
The solution for {v(t)} is

{o(t)} = VD [o(r)} + / OB F(C)}d, (2.230)

T

and the stationary solution (when 7 =0 and ¢ — co0) becomes

win = | T IO B (0)}dC = / T AOBI (- O)dc. (2.231)

The correlation matrix [R,,(7)] of the state vector {v(¢)} can be written
as

[Ron(7)] = BT 0+ ) = fim 7 [ (0@} @+ b, (2232

where {v}7 is the transpose of the vector {v}.'® The correlation matrix of the
state vector {v(¢)} can now be obtained by

13 The transpose matrix or vector containing complex numbers is formed by inter-
changing its rows and columns and changing the complex numbers in its conjugate

values, (259" = |2 55,3 + 4j.
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/ / A [ BIELF(— Ot —n + 7))

x (BT[]~ el D dcdn, (2.233)

B ()] = /ooo /Ooo O W] B][So]8(r — 0 + O)BIT @]~ el M d¢dn,

(2.234)
thus finally
(Ronlr)] = [ N B[S0l 0] e+
_ / IO Gl (4 g (2.235)
0
The element (i, j) of the correlation matrix [R,,(7)] is as follows
Ry (7) (i, j) = Gi. ) /O T onerenge

S o e ) (2236)

where A is the conjugate of X\. The correlation function R,,(0)(i,5) becomes

L =G(i.j)
Ry (0)(i,5) = ~—=—- 2.237
O =375 (2.25)
The correlation function R,,(7) can be calculated as follows
[Ryy (7)] = [P][Ry (7)][¥]". (2.238)

Referring to (2.235), the correlation matrix [Ry, (7)] can be expressed as

[Ryy(T)] = /0 T A0 [B][So][B]T e+ . (2.239)

This equation will be used to derive the equation of “The stochastic dual of
the direct method of Lyapunov”'? [72]

[A[Ryy (0)] + [Ryy (0)][A]" = —[B][So][B]". (2.240)
The proof of (2.240) is given in [10]. If the expression

14" Aleksandr Lyapunov 1857-1918. Sometimes his name is also written as Ljapunov,
Liapunov or Ljapunow.
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o0
X] = — / A CelBlt gy, (2.241)
0

exists for all [C], it represents the unique solution of
[A][X] + [X][B] = [C]. (2.242)

The solution of Lyapunov’s equation (2.242) is discussed in [9]. If [B] = [A]T
and the matrix [C] is positive semi definite the matrix [X] is positive-definite

when the eigenvalues of matrix [A] are in the negative plane [66].
Example. A SDOF system defined by the following equation of motion is
F + 5@ + 2500z = £(t).

The white noise forcing function f(¢) had a double sided PSD Sy, =
1 N?/rad/s (Wss = 2 N?/Hz). Calculate the correlation function R, (0),
The state matrix [A] and the input vector {B} are

4] = (-2%80.0 —1500> {5} = ((1):8)’

and the eigenvalues A and corresponding eigenvectors become

] = (25 +49.9875)
- —2.5—49.9375;5 )

and
7] = —0.0010 — 0.02005 —0.0010 + 0.02003
o 0.9998 0.9998
The undamped natural frequency can be calculated from wyg = VA1 Ay =
50 rad/s and the modal damping ratio ¢ = 7%5‘2 = 0.05.

The PSD matrix [G] = [¥]~1[B][So][B]* [¥]~7 is

1G] = 0.2507 0.2495 + 0.02507
~10.2495 — 0.02505 0.2507

The correlation function [R,,(0)] is calculated and becomes

-G, —G(A2)
A1+ A1+A2

[0 (0)] = —G(21) -G(22)
A2+A1 A2+
_ 0.0501 —0.0001 + 0.00255
~ \ —0.0001 — 0.0025j 0.0501 ’

and finally [R,,(0)] is obtained
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Ry (0) = ][Ry (0)][¢]" = (0'0%004 o(.)1> ‘

That means that /(z?) = /Rgz(0)(1,1) = 0.0063 m and +/(i?) =
v/ R::(0)(2,2) = 0.3162 m/s. The displacement x and the velocity & are not
correlated. These results can be checked using (2.116) and (2.118).

Solving (2.240) the correlation matrix [Ry,(0)] becomes

_ .~—10 (400000 0.0
[Ryy(o)] =10 ( 0.0 109 ’

which had been expected.

Left Eigenvectors

The standard eigenvalue equation [A][¥] = [A][¥] involves the so-called “right
etgenvectors” or right modal matriz. The “left eigenvectors” or left modal
matriz is obtained from [A]T[®] = [A][®], [234]. [A] is the diagonal matrix of
eigenvalues. The right and left eigenvalue problems have the same eigenvalues.
The right and left eigenvectors are mutually orthogonal for distinct eigenvalues

{6:3T{w;} =0, X #\j;
{{@}T{wi} #0, A=)\ (2.243)

The consequence of (2.243) is that the product of left and right modal matrices
is a diagonal matrix

[@)]T[w] = [T)]. (2.244)
Equation (2.229) can be altered as follows using [A] = [¥][A][¥]~!
{0} = [A[{v} + [T @] [BI{f (1)}, (2.245)

which can be solved as showed before. There is no need to calculate [¥] 1. If
(2.244) is scaled such that [2] = [I] the left modal matrix

(@] = @]~ (2.246)

If the left eigenvectors are introduced there is no need to calculate all eigen-
values, e.g. Ap,p < 2n, which depends on the frequency range of interest.

2.6.2 Enforced Acceleration

The damped matrix equation of motion of a linear MDOF system excited at
the base by an enforced acceleration is

[M{E} + [CH{z} + [K]{z} = {0}, (2.247)
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where the relative displacement vector is {z} = {a} — {u}, {z} is the absolute
displacement vector and u is the displacement at the base associated with the
enforced acceleration 4. If {T'} is the rigid body vector in the direction of the
enforced acceleration ii, (2.247) can be rewritten as

[M{Z} + [C]{#} + [K{z} = —[M[{T}i. (2.248)

The absolute acceleration vector {Z} can be calculated from (2.247).
The state equation of the linear MDOF dynamic system can now be writ-
ten as

{o} = [A{y} +{B}i, (2.249)

{i} = [CHy} (2.250)

where the state matrix [A] is equal to (2.223), the input matrix [B] is given
by

(B} = {3} (2.251)
and the output matriz [C] is
Cl=[-M"'K -M~'C], (2.252)

and finally the state vector {y} is

{y} = { z } : (2.253)

The solution for {Z(t)} is derived in [66]

{&(t)} = [Cle T {y(r)} + / [ClelME= O BYii(¢)dC. (2.254)

T

The correlation matrix [R,,(7)] becomes
o0
[va(T)] = / e[/l](() [!’p]_l{B}Sa{B}T[EI/]_Te[A]T(T""C)dC
0

_ / QAT+ g (2.255)
0

The correlation function R,,(7) can be calculated as follows;
[Ryy(T)] = [!p] [va(T)] [W}Tv (2256)

and the correlation function R;z;(7) becomes

[Rii(7)] = [C] [Ryy(T)HC]T~ (2.257)
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The correlation matrix [Ry,(7)] can also be written as

[Ryy(7)] = /Oo O BLG {BYT el (0 g¢
0

_ / IO Gl (e, (2.258)
0
thus
[A][Ry, (0)] + [Ry, (0)][A]" = —[G], (2.259)
and finally
[Ri(0)] = [C][Ryy, (0)][C]". (2.260)

Example. A 3 mass-spring-damper dynamic system, as shown in Fig. 2.23,
is excited at the base with a white noise random enforced acceleration W =
2S; = 0.01 g?/Hz. The discrete masses are m; = 200 kg, mo = 250 kg and
ms3 = 300 kg. The spring stiffness are k1 = 108 N/m, ks = 2 x 10® N/m
and k3 = 3 x 10® N/m. The discrete dampers are defined by ¢; = 2¢\/kimy,
ca = 2Cv/kamo and c3 = 2(\/ksms and the damping ratio is ¢ = 0.05. Calcu-
late the rms accelerations {#} and the rms internal loads.
The damped equations of motion are

c1 Ljﬁ %kl
e
e

Fig. 2.23. 3 mass-spring-damper system, enforced acceleration
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mq 0 0 i‘l C1 —C1 0 .fl
0 mo 0 To p+ | —c1 c1+ceo —C2 To
0 0 ms fg 0 —C2 Ccy +c3 S'Cg
k‘l —kil 0 T 0
+ | —k1 ki1 + ko —ko T2 =<0
0 7]152 ]{52 + k’3 T3 0

The previous equation can be expressed in the relative motion {z(t)} =
{z(t)} — {T}u(t), thus

mi 0 0 21 C1 —C1 0 21
0 mo 0 Zo p+ | —c1 1+ —Co 29
0 0 mg Z3 0 —Co Co +C3 Z3
k1 —k1 0 21 m; 0 0 1
+ —kl k1 + kz _kQ Z92 = — 0 meo 0 1 ’i],(t),
0 —k‘g ]{?2 + ]{?3 zZ3 0 0 ms 1
where
1
{Ty=41
1

The damping ratios and undamped natural frequencies can be extracted
from the eigenvalues [A] of the state matrix [A]:

G 0.025
G| = (0061 |,
(s 0.084

and the undamped natural frequencies

fi 69.58
£ | = [ 153.80 | He.
fs 238.29

The auto correlation matrix [R,,(0)] can be calculated using
[Al[Ryy (0)] + [Ryy (0)][A]" = —[G],

and the positive-definite zero-lag correlation function [Rjzz(0)] of the absolute
accelerations is
[Ri:(0)] = [C[Ry, (0)][C]"
so that
4334.4 2131.6 846.6
[R::(0)] = | 2131.6 1896.6 823.06
846.6 823.06 753.76
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The rms accelerations (g) are the square root of the diagonal terms in [R;(0)],
divided by 9.81 m/s?

21 6.7111
rms | &2 | = | 44393 | (g).
T3 2.7986

The internal force matrix Dz is set up as follows

ki —k1 O
D=0 ke —ko
0 0 ks

If the output matrix is given by [C] = [Dp, 0], then the positive-definite
auto correlation function [Rz7(0)] is defined by

[Rrp(0)] = [Cl[Ry, (0)][C]"

and becomes
1.72 2.79 3.30

[Rpp(0)] =10 | 2.79 5.04 6.16
3.30 6.16 7.96

The rms values of the internal forces on the main diagonal are

1.31
R{EFI}(O) = {Ei,rms} = 104 2.24 N.
2.82

Modal Reduction

If the modal reduction method is applied the relative displacement vector
{z} (n DOFs) is expressed as follows {z} = [®|{n}, where [®] (n x m) is the
modal base of the undamped unloaded system in (2.248) and {n} (m DOFs)
the generalized, principal coordinates (also called participation factors). In
general, the number of reduced DOF's is much less than the number of original
DOFs, m < n.

When the damping is introduced by the ad-hoc damping coefficient 2¢;w;m;
(2.248) can be written as

[ma i} + [2Gwimi {3} + [wimi [ {m:} = —[@]" [M{T}, (2.261)

where the generalized mass m; = {¢;}T[M]{¢;} and w; is the natural fre-
quency associated with mode {¢;}.

The state-space equation of the (modal) reduced linear MDOF dynamic
system can now be written as
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{0} = [Al{v} + {B}i, (2.262)
{y} = [Cl{v}, (2.263)
{i} = [CHy}, (2.264)
where the state matrix [A] (2m x 2m) is given by
0 I
[A] = (—[wﬂ —[%‘%J : (2.265)
and the input matrix [B] is given by
0
B ={ o amanery | (2:260)
and the output matriz [C] (2n x 2m) is
[C] = rg g] : (2.267)

and finally the state vector {y} is composed by

v} = {Z} (2.268)
and

{y} = { i } : (2.269)

The accelerations {Z} can be obtained using the output matrix [C], derived
from (2.247) B

[C]=[-M'K,-M~'C], (2.270)

an (n x 2n) matrix. The damping matrix [C] may be reconstructed as follows
[51]

[C] = [M] [Z 2Gwimi{¢iH{ei}"

=1

[M], (2.271)

where [M] is the mass matrix. B

The internal stress of forces (generalized forces) { F'} can be directly related
to the generalized coordinate {n}. The general forces can be expressed as
follows

{F} = [Drl{z} = [DF][@{n} = [2]o{n} = [P, 0[{v}, (2.272)

where [P], are the so-called stress modes or is the stress modal matrix. Equa-
tion (2.262) can be extended with

{F} = [@,,0){v} = [C){v}. (2.273)
The auto correlation function of the generalized forces { F'} becomes

Rpp(0) = [C][Ryu(0)][C]". (2.274)
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Example. A 3 mass-spring dynamic system, as shown in Fig. 2.19, is excited
at the base with a white noise random enforced acceleration W; = 2S; =
0.01 g2/Hz. The discrete masses are m; = 200 kg, mo = 250 kg and m3 =
300 kg. The spring stiffnesses are k; = 10® N/m, ks = 2 x 10® N/m and
ks = 3 x 10® N/m. The modal damping ratio for all modes is ¢ = 0.05.
Calculate the accelerations {#} and the internal loads.

The undamped equations of motion are

mi 0 0 5(:'1 kl —]{31 0 X1 0
0 mo 0 To p+ | —k1 ki + ko —ko ) =<0 3,
0 0 ms .fg 0 —kg kz + k3 T3 0

or previous equation can be expressed in the relative motion {z(¢t)} = {z(t)} —
{T}u(t), thus

mi 0 0 21 ]fl —kl 0 Z1
0 me O Zo >+ | —k1 k14 ke —ko 29
0 0 mg Z3 0 —ko ko + ks 23

where

ry=4{1
1

The natural frequencies and associated mode shapes of the MDOF system are

69.5745 0.8277 —0.6490 0.1843
{fuy=|153.7834 | Hz, [#]= | 05114 0.5628 —0.6421
238.3038 0.2310 0.5119  0.7441

The responses will be calculated considering the first mode. The rms acceler-
ations and rms spring forces are respectively

i 4.5440
rms | 2 | = | 2.8073 | g,
i3 1.2683
0.8915
R{F;F;}(0) = {Fi; yms} = 10* { 1.5800 5 N.
1.9533

The responses will be now calculated considering the first and second mode.
The rms accelerations and rms spring forces are respectively



2.6 Complex Modal Analysis, Lyapunov’s Equation 81

i 5.0075
rms | 2 | = | 3.4000 | g,
i3 2.1428
_ ) 0.9825
R{F,F;}(0) = {Fi; yms} = 10* { 1.5809 » N.
2.0334

The responses will be finally calculated considering all modes. The rms accel-
erations and rms spring forces are respectively

i 5.0174
rms | &2 | = | 3.6437 | g,
i3 2.7527
0.9844
R{F;F;}(0) = {Fii rms} = 10* ¢ 1.6019 » N.
2.0485

The state matrix [A] (2.265) of the reduced system with a modal damping
ratio ¢; < 1, and the eigenvalues w? of the undamped system can be written

as
0 1
A] = .
A= (o) ot
The left eigenvalue problem of the state matrix is
[A][#] = [w][A], (2.275)

where the matrix of the left eigenvectors [¥] is

[¥] = (/{ /{) , (2.276)

where A, = 2[—(+j/1 - (2], Ac = 2[—( —j+/1 — (2] and [2]| = [w?]. The

diagonal matrix of the state matrix can be written

[A] = (1(1) /(I)> : (2.277)

-1

The inverse of the left eigenvectors [¥]~! is computed as follows

o — (I Jr[/[lAc—AA]C]llAC —[AAC_AA]C] 11>
_ ( [/Ic*Ac]ilAc [ACAC]1>

—[Ae— A A, [Ae—AT! (2.278)

By using (2.275) we show that the spectral decomposition of the state matrix
[A] is [182]

[A] = W)[AJ[w] 7! = (_AOCAC ACiAC) (2.279)
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2.6.3 Derivation of Miles’ Equation

Miles’s equation was derived in Sect. 2.4.2, and expressed in (2.145)
and (2.146). In this section Miles’ equation [127] will be derived with the aid
of the direct solution of Lyapunov’s equation (F.9), [A][M]+ [M][A]T = —[C],
discussed in detail in Appendix F, where the state matrix is denoted by [A],
the covariance or correlation matrix by [M]; the RHS of the equation, the
matrix [C] = {B}S,{B}* = [G], contains information about the white noise
spectrum of the enforced acceleration (2.258).

Both the correlation matrix [M] and the matrix [C] are symmetric. This
can be easily proven by taking the transpose of (2.258) and assuming the
time shift is 7 = 0. In general, for an n DOF system, there are n(2n + 1)
unknowns components of the M matrix. In fact, considering the steady-state
or stationary conditions, the elements

Min+i = E{yzyz} = E{yzyz} =Mpy =0, i=1,2,...,n, (2~280)
and
Mintj = E{yzyj} = 7E{ylyj} = —Mn+ij, i,j=1,2,...,n, (2281)

and the number of unknowns elements m;; is reduced from n(2n + 1) to
n(2n+1) —n = 2n2.

To generate the state-space equations, we use (2.119), (2.120), (2.121)
and (2.122) are used. The variables are illustrated in Fig. 2.24. The state-
space equations are

(O-(% 20 () e

where k = w2m, ¢ = 2(vVkm and with (2.122) the state equations become

m z(t)

Moving base

u(t)

Fig. 2.24. Enforced acceleration of a damped SDOF system
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{9} = [A{y} + {B}i,

# = [~w2, —2Cw,] (z) _ ). (2.283)

The covariance or correlation matrix [M] is given by (2.280) and (2.281)

(B2 HE) -5 ). e

and Lyapunov’s equation is

[A][M] + [M][A]" = —{B}Sa{B}" = -[G] = - (8 Sou> . (2.285)

The direct solution of (2.285) can be written as follows

(é 4<ﬁ> @Ez{):(g’u):(é) (2.286)

where W is the single sided PSD of the white noise enforced acceleration.
The solution of (2.286) is

Wi Wi

E{2?*} = R..(0) = Sl = S (2.287)
and

E{#*} = R::(0) Wa __Wa (2.288)

T 8w 8C(2nfn)
The expected value of the acceleration E{#%} can be solved as follows
E{i*} = [C]IM][C]" = wp E{z%} + (2(wn )’ E{#*}. (2.289)

Finally E{#?} becomes
) ™ 9 ™
E{#"} = R;:(0) = §anWu(1 +4¢7) & §anWu7 (2:290)

where the amplification factor Q) = & and ¢ < 1. Equation (2.290) is equal
to (2.145) and (2.146).

2.6.4 Power Transfer Between Two Oscillators

Consider two SDOF systems coupled by a single linear spring k.. Both systems
are loaded by two uncorrelated white noise random forces F; and F5. The

double sided PSD values of the forces are Sp, = W2F1 and Sp, = W2F2 (Wp, and

W, are the single sided PSD functions respectively). We seek the averaged
total energies'® stored in both SDOF systems (F;) = m;E{i?} and (E2) =

Y A(E) = $(mE{i*} + kE{2”}) = $(mE{i*} + mwiE{z?}) = mE{&*}.



84 2 Linear Random Vibration Systems

Fi(t) Fy(t)

nlt) % ke é (1)
k1 %ﬂ @) Cy HL k:

Fig. 2.25. Two coupled oscillators

moE{43} and the power transfer between both coupled oscillators IT;5. These
energies and the power transfer will be calculated using Lyapunov’s equation.
The equations of motion of the two SDOF systems, as shown in Fig. 2.25, are

mljil + Cli‘l + klxl + kc(xl - Ig) = Fl, (2291)

Moly + Codo + koxo + kc(.’lﬁg — :1?1) = F5. (2292)

The following parameters are introduced [118]:

o w = /kl',j{lkcv Wy = /kijl»ch’
° w%2: ﬂflcmz’

o \T{/L? = Al, \7/”? = AQ,

o = \/Zj;

Equations (2.291) and (2.292) can now be written

2
F;
1+ Az +wfa:1 — &332 = —1, (2293)
v my
. . 2 2 F2
Zo + Aodo + wixe — wiyyT1 = p (2.294)
2

The power IT15 going from system 1 to system 2 is given by [118]

Iy = —k E{xi1} = —wiy/mima E{xo:}, (2.295)
the averaged energy of the uncoupled system 1 is

Wg,

o L
(By) =miE{i7} = Ay

(2.296)

and the averaged energy of the uncoupled system 2 is
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W,

Ey) = moE{#2} = )
(Ea) = maE{i3} 1Ayms

(2.297)

Equations (2.293) and (2.294) are converted into a state-space equation

{9} = [Al{y} + [BI{F},

where the state-space is

1
=71, (2.298)
T
P
the state matrix [A] is given by
0 0 1 0
A 0 0 0 ! 2.299
= 2
A= s oa o | (2.209)
Wiy —wi 0 —A
the input matrix [B] is
0 0
0 0
Bl=| L ¢ |- (2.300)
ma 1
0 &
and finally the force vector {F'} can be expressed as
_ (5
{Fr}= (F2> : (2.301)

The white noise PSD matrix of the applied uncorrelated forces [Sr] be-

comes -
(Sr, O\ _[—=*+ O

The RHS of Lyapunov’s equation [C] = [G] (2.235) can be obtained by the
following matrix multiplication

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
[C1=[BISFIBI" = 0o o o0 [=lo o Ynoog
00 0 23z 00 0 Y
ms5 27712
(2.303)

The covariance or correlation matrix [M] is build up and reduced as follows
using (2.280) and (2.281)
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E{x%} E{l‘l.’L‘g} E{.’L‘li‘l} E{.Z‘lj,‘g}
E{xgxl} E{l‘%} E{.Z‘Qij} E{Jigj?g}

[M] =

Elz{x%}} E}éﬂ{h;ﬁi} E{O - E{Jf&i‘z}
| 0 —Bmi)  BE} Bliy |0 @50

There are 8 unknowns in (2.304), expressed in the elements m(i,j) of the
covariance or correlation matrix [M], m(1,1) = E{z?}, m(1,2) = E{z125},
m(1,4) = E{x1is}, m(2,2) = E{z3}, m(3,3) = E{i?}, m(3,4) = E{i1iz2}
and m(4,4) = B{i3}.

The state matrix [A4] (2.299) will be now written in a very general form

0 0 1 0
00 0 1
A= a b o a (2.305)

b1 by b3 by

Lyapunov equation
[A][M] + [M][A]" = —[C]

is transformed into 7 equations with unknowns m(1,1), m(1,2), m(1,4),
m(2,2), m(3,3), m(3,4) and m(4,4) as follows

a1 ao a4 0 1 0 0 m(1,1) 0
b1 bg b4 0 0 1 0 m(l, 2) 0
0 a —as az O 1 0 m(1,4) 0
0 b1 —bg bg 0 0 1 m(2, 2) = 0
0 0 720,2 0 20,3 2CL4 0 m(3, 3) 70(37 3
0 0 ay — bg 0 bg as + b4 a4 m(3, 4) 0
0 0 2b1 0 0 2b3 2b4 m(474) —0(47 )
(2.306)

and E{zed1} = m(2,3) = —m(1,4). The independent values of m; ; (2.306)
can now be solved. The total energy of coupled SDOF system 1 is

Wg, A
) = 4A1721D[( w4 (Ar+ Ay (w ?AészQwa(HAgﬂ
Wr, Ay
gD [w12(1 * Alﬂ (2.307)
and the total energy of the coupled SDOF system 2 is
W, A
(Ea) = m [( 2 w2)? 4 (AL + Ag)(WBA2 + wiAd) +wiy (1 + A_?)}

SRS 142 (2.308)
4A2m1D w12 AQ '
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where the denominator D is given by

A A
D = (w} — w})? + (A1 + D) (A3 + w3 A?) + wiy (2 + o+ A—z) (2.309)
2 1

The power transfer between SDOF 1 and SDOF 2, coupled by the spring k.,
becomes

H12 = —kcE{l‘Qil} = —wf2\/m1m2E{l‘Qi‘1}

_wh(A+A) [ Wr W,
o D 4A1m1 4A2m2
= Bi2[(Er) — (E2)]. (2.310)

The following remarks can be made with respect (2.310):

e The power flow IT;5 is proportional to the actual uncoupled vibration
energies of the system, SDOF 1 and SDOF 2, and the constant of propor-
tionality is [B1s.

e The constant of proportionality (12 is positive and symmetric in the system
parameters.

2.6.5 Augmented State-Space Equation under Non-White
Excitation

White noise can be used to predict the response of a dynamic system in
many practical solutions. However, when the PSD does not vary substantially
over the frequency range covered by the lowest natural frequencies, a formal
extension to the specified band-limited PSD spectrum case is needed. Any
PSD spectrum can be obtained as the output of some linear dynamic system
exposed to a white noise input. The actual PSD spectrum input can be ap-
proximated as accurately as desired. The cost depend on the complexity (i.e.
the number of states) of the filter model called the auxiliary system.

The spectral density function S(w) is approximated by meromorphic func-
tions'S [187]

_ bo + biw? + -+ + @ w™
Cagtariw? + -+ apw?

S(w)

= h(jw)h(—jw) = [h(@)P,  (2311)

where the order m of the numerator does not exceed the order n of the de-
nominator. This follows from the fact that

lim S(w) < co.

w—00

All coeflicients b;,% = 0...m and aj,j = 0...n of the PSD function are
real because the system parameters are real. Complex zeros and poles of the
transfer function h(s) = h(jw) must occur in conjugate pairs.

16 Rational function with non constant denominator.
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Input (Cause) Auxiliary System (Filter) Output (Action)
White Noise {9a} = [A{ya} + {Ba}wun Coloured Noise

fo= [Ca}{ya} .
o R{A} <0 o

Fig. 2.26. Auxiliary system (shape filter)

We assumed that the properties of the auxiliary system (subscript a) can
be found and described by the following state-space equations

{90} = [Ac{¥a} + {Ba}wuwn, (2.312)

where w,,, is the white noise input of the force and the output f, of the
auxiliary system is the filtered PSD spectrum is given by

fa = [Ca{ya}- (2.313)

The auxiliary system is illustrated in Fig. 2.26. The real parts of the complex
eigenvalues \; of the state matrix [A,] will be negative, thus R{\;} < 0.

The frequency response function h,(s) of the auxiliary system (Laplace
transform) is

_ fals) _ ST — -1 _ 1&
h(s) - wwn(s) [Ca]( [I} [AaD {Ba} q(s)’ (2314)

where p(s) and ¢(s) are real polynomials of the Laplace variable s. If the
PSD function of the white noise signal w,,, is Sy, = 1, then the output PSD
function of f, can be obtained as

Sj. = h(jw)h(—jw) = [h(jw)[*. (2.315)

When the output f, of the auxiliary system is injected as the input of the
main system

{u} = [A{y} + {Blu = [A{y} + {B}fa, {z} =[CHy}
the following augmented state-space equation will be obtained
{9:} = [A{ye} + {Bt}wun, (2.316)

and
{v} = [Cl{w}, (2.317)

where the total number of states is
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{w} = (i) (2.318)

then the state matrix [A;] is as follows

4] = (61 i€a> . (2.319)

The input matrix {B;} is
0
{Bi} = (Ba> ; (2.320)

and the output matrix is

[Cy]=[C 0]. (2.321)

In [137], random seismic excitation is modelled as a non-white Gaussian
process, and the excitation PSD is represented by the Kanai-Tajimi spectrum

1 +4¢G(2)?
[1— ()22 +4¢2(2)

B(w) = ~So. (2.322)

The Kanai-Tajimi spectrum can be obtained from a second order differential

system subjected to white-noise excitation. In this way, the ground accelera-
tion &, is produced by

fq = —w22q — 2(aWaZas (2.323)
and )
B 4 20aWate + Wiz, = =€, (2.324)

where 5 is the stationary Gaussian white noise with intensity Sy. z, is the
response of the filtering system, w, and (, are the natural frequency and
damping ratio of the filter. Equation (2.322) is illustrated in Fig. 2.27. The
state-space representation of the filter is

<2> - (—22awa iﬂ) (2) + (_01> 3 (2.325)

Fo= (—w2 —2(wa) (2“) : (2.326)

a

and

Equations (2.325) and (2.326) are similar to (2.312) and (2.313). The Laplace
response function h,(s) (2.314) now becomes
Za(s)

_ Zals) 1 _ wal(wa +2¢,5)
he) = T = [Cull) [ (B} = et e

(2.327)

and the frequency response function h,(jw) is
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D(w)/S,
10* ;
——— (=001
——¢=0.05
3| — (=0.1 |
10 =05
¢=1.0,
10° | E
(=]
[
g
© 1
10 ¢ 3
10° E
10_1 I Il Il
0 0.5 1 15 2
(x)/ooa

Fig. 2.27. Kanai-Tajimi spectrum

Wq (wa + 2j<aw)

ha(jw) = - )
() —w? + 2§ ww, + w2

(2.328)

That proves that the selected filtering system represents the filter as given

in (2.322).

The Laplace transfer function h(s) will be represented in the canonical

form (simplest) of the state-space.

First Companion Form

If the single input single output transfer function h(s) is given by

1
sk tashl 44y’

h(s)

the corresponding state-space representation (companion form) is [66]

0 1 0 0 0
0 0 1 0 0

A= : : o |, By=|9],
0 0 0 1 :
—ap  —Qk—1 —Ak—2 —aq 1

(2.329)

(2.330)



2.6 Complex Modal Analysis, Lyapunov’s Equation 91

or
—ap —a2 —Qp—1 —ag
1 0 0 0
[A] = 0 1 0 0 7
0 0 1 0
1 (2.331)
0
By =",
0
[C]=(0 0 0 --- 1).
If the single input single output transfer function h(s) is given by
bos™ + brs™ L4 ... 1 p
h(s) = 08+ 18_1 ot . m<n, (2.332)
s"+a1s" T+ tap
then

lim A(jw) < oo,
w—00
and the complex zeros ad poles of the Laplace transfer function h(s) occur in
conjugate pairs.
The output matrix [C] in (2.330) (right-to-left state variable numbering)
must be replaced by

[C} = |_bk — akbo, bk—l — ak_lbo, ey b1 — alboj, (2.333)

and the output matrix [C] in (2.331) (left-to-right state variable numbering)
must be replaced by

[C] = |_b1 —albo,bg —agbo,...,bk —akboj. (2334)

Example. A 2 DOF dynamic system is exposed to white noise enforced ac-
celeration i, with a PSD function S; = 1. The Laplace response function
between the enforced acceleration and the first DOF acceleration #; is calcu-
lated. The absolute displacement is {2} and the relative displacement vector
{2} = {2} — {T}u, where the rigid body mode is {T'} = |1,1]T. The damping

matrix is denoted by [C] instead of [C]. The output matrix is denoted by [C].
The following equations are applicable:

[M{z} + [CH2} + [K {2} = —[M{T}i,
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and

{#} = —[M]7[K]{z} — [M]7V[C]{z}.

The 2 DOF system has the following mass, damping and stiffness character-

istics:
100 O - 75 =50
[M]_< 0 15)’ [C]_<—5O 50 )’

76915  —14415
[K]_<14415 14415)'

The state-space matrix [A], the input matrix {B} and the output matrix [C]
of that system are given by

=
I
7N
|
=
1 O
=
i
=
"\«
S
SN—
—
Sy
——
I
_ -0 O

or

{2} = [A{z} +{B}i, i1 =[C]{z} = [C]

We will calculate the Laplace response function h(s) = ”;Ll((;)) = {B}s[I]—
[A])7L[C] of the state-space system.
The Laplace response transfer function is given by

b()S4 + b183 + b282 + b3s + by
h(s) = 4 3 2 J
S$*+a18° + a28° + aszs + ay

where the coefficients are listed in Table 2.7.
The following companion matrix [A.] is chosen

Table 2.7. Coefficients

k ax by

0 1.0000 0.0000

1 4.0833 0.2500

2 1731.0 625.8333
3 2323.6 2323.6

4 6.0063E5 6.0063E5
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Table 2.8. Eigenvalues of state-space matrix {A}

93

k [A4] [Ac]
1 —1.8079 4 35.2813; —1.8079 + 35.2813;
2 —1.8079 — 35.2813j —1.8079 — 35.28137
3 —0.2337 + 21.9363; —0.2337 4 21.9363;
4 —0.2337 — 21.93637 —0.2337 — 21.9363;
—a1 —Qa2 —az —a4
1 0 0 0
[Ac] = 0 1 0 0
0 0 1 0
—4.0833 —1731.0 —2323.6 —6.0063E5
B 1 0 0 0
B 0 1 0 0 ’
0 0 1 0

and the reconstructed input matrix {B.} is as expected (2.333)
{BC} = le 0,0, OJTv

and the reconstructed output matrix [C.] is calculated to be, with by = 0
(2.334)

[Cc] = [b1 — a1bo, by — azbo, bs — azbo, by — asbo]
= |0.2500, 625.8333, 2323.6,6.0063E5 .

The eigenvalues of the original state-space matrix [A] and the companion
matrix [A.] are listed in Table 2.8.

The damping ratio’s and natural frequencies corresponding with the pair
of eigenvalues are ¢ = |0.1024,0.0213] and w, = |35.3276,21.9375] rad/s
respectively.

The companion matrix [A,] is similar to the original state-space matrix [A]
with respect to the Laplace response function h(s) and the eigenvalues [4].
The calculated mean square values of % are exactly the same for both the
original state-space equations and the reconstructed state-space equations,
E{#?} = 351.2603.

The approximate frequency response function hgpproz(s) can be expressed
in terms of the elementary factors by using the minimum phase approach:'"

Constant term (gain) K, —K = |K|e/™
Pole at the origin h(s) = 1

Zero at the origin h(s) = s

Real pole in LHP h(s) = =&

s+wo

17 Poles and zeros are in the left half plane (LHP).
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e Real zero in LHP h(s) = =t
0
e Two complex poles h(s) = m, Il <1
e Two complex zeros h(s) = 42 swotwy ¢l <1,
0

where wy is the break frequency and ( is the tuning factor. The approximate
transfer function happros () can be generally expressed as follows [68]

(s +a1) [1;(s? + 2¢aiswa; + w3;)
(s + B [, (57 + 2ay sy + 2,)

happrox (s) = (2.335)

where the constants K, a1, 83, (2, (45, wo; and wy; are all positive.'® In
any case, the approximate PSD Sgpproz(w), for a unitary white noise PSD
function, is

Sapproz (W) = |Pappros (jw)|2. (2.336)

The magnitude of the approximate PSD function in (2.336) is, in general,
expressed in logarithmic form, in a so-called Bode plot

Magnitude = 1010g |happroz (jw)|? = 2010g |happroz (jw)| dB. (2.337)

The magnitude Bode plot is accompanied by the Bode phase plot, which is not
of interest for the PSD function. However, phase properties of the elementary
terms will be discussed too. The following elementary factors are discussed:

e Constant term, h(s) = K

— For a constant term, the magnitude plot is a straight line,

— the phase plot is also a straight line, 0° for a positive constant, £180°
for a negative constant.

e Real pole, h(s) = ;%

— For a simple real pole the piecewise linear asymptotic Bode plot for
magnitude is at 0 dB until the break frequency wg and then drops at
20 dB per decade (6 dB/oct) (i.e., the slope is —20 dB/decade). An
nth order plot has a slope of —20n dB/decade,

— the phase plot is 0° until one tenth of the break frequency wg and then
drops linearly to —90° at ten times the break frequency. An nth order
pole drops to —90n°.

e Real zero, h(s) = “’2}—:’5

— For a simple real zero the piecewise linear asymptotic Bode plot for
magnitude is at 0 dB until the break frequency wy and then rises at
+20 dB per decade (6 dB/oct) (i.e., the slope is 20 dB/decade). An
nth order plot has a slope of 20n dB/decade,

— the phase plot is 0° until one tenth of the break frequency wy and then
rises linearly to 90° at ten times the break frequency. An nth order
pole drops to 90n°.

18 1t is clear that, for a physical realizable system, the order of the denominator
polynomial must be greater or equal than that of the nominator.
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1
s

For a simple real pole at the origin draw a straight line with a slope
—20 dB per decade and going through 0 dB at 1 rad/s. When n poles
exist the phase plot has a slope of —20n dB/decade,

the phase plot is —90°. An nth order pole drops to —90n°.

e Zero at origin, h(s) = s

e Complex conjugate pair of poles, h(s) =

e Complex conjugate pair of zeros, h(s) =

For a simple real zero at the origin draw a straight line with a slope
+20 dB per decade and gong through 0 dB at 1 rad/s. When n zeros
exist the phase plot has a slope of +20n dB/decade,

The phase plot is +90°. An nth order zero is at +90n°.

wg
s2+2Cwos+w§
For the magnitude plot of complex conjugate pair of poles draw a 0 dB
at low frequencies, go through a peak of height

h(w,) = —201og(2¢+/1 — ¢2) =~ —201og(2()

at the resonant frequency w, =~ wg and then drop with a slope —40 dB
per decade (—12 dB/oct) (i.e., the slope is —40 dB/decade). The high
frequency asymptote goes through the break frequency. Note that the
peak exists only for

1
0<(< 5\/5.
To draw the phase plot, simply follow low frequency asymptote at 0°
until ,
o log(%)
= wo—y

then decrease linearly to meet the high frequency asymptote at —180°

at
2

= wyg——>—-
log(%)

If ¢ < 0.02 the approximation can be simply a vertical line at the break

frequency.
sz+2§wos+w3
wg
For the magnitude plot of a complex conjugate pair of zeros draw, a
0 dB at low frequencies, go through a dip of magnitude

h(w,) = 201log(2¢\/1 — ¢2) ~ 201og(2¢)

at the resonant frequency w, ~ wy and then rise at 40 dB per decade
(12 dB/oct) (i.e., the slope is 40 dB/decade). The high frequency as-
ymptote goes through the break frequency. Note that the peak exists
only for

1
0<C<§\/§.
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Table 2.9. PSD spectrum enforced acceleration (Grms = 9.75 g)

Frequency (Hz) PSD g?/Hz (single sided) Transfer function (—)
20-100 6 dB/oct (20 dB/dec) 6 dB/oct

100-400 0.2 V0.2

400-2000 —6 dB/oct —6 dB/oct
Frequency (rad/s) PSD g?/rad/s (double sided) Transfer function (—)
2m20-27100 6 dB/oct (20 dB/dec) 6 dB/oct
2710027400 0.1 V0.1

27400272000 —6 dB/oct —6 dB/oct

— To draw the phase plot, simply follow low frequency asymptote at 0°

until ,
log(Z)
Ww=w
)
then increase linearly to meet the high frequency asymptote at 180° at
2
W = Wy .
log(2)

Example. The single sided PSD acceleration spectrum W, (f) is given in
Table 2.9 and taken from [68]. This single sided PSD acceleration spectrum
W, (f) will be transformed into a double sided PSD acceleration spectrum
25, (w) = Wo(f), f < oo, |w| < oo. A first examination of the required
happroz () reveals that the this transfer function may be approximated with
a zero at w = 0 and poles at w = 27100 and w = 27400. Furthermore the
transfer function must decrease at large frequencies at a rate of 20 dB/dec,
that is as L. The resulting transfer function is

27100 x 27w400s
(s +27100) (s + 27400)’

happmm(S) =

where the value of the gain K is calculated as to give a value /0.1 at a
frequency of w = 2m/100 x 400, resulting in K = 6.2912 x 10~*. The approx-
imate Laplace transfer function becomes

bis 993.4588s

ha rox = = .
pp (5) s$2 4+ a5+ as s2 4+ 3141.5927s + 1579136.7

The Bode diagrams magnitude and phase are illustrated Fig. 2.28. The cor-
responding auxiliary state-space system, with state matrix [A4,], input matrix
{B.} and output matrix |C,], is

—3141.5927 —1579136.7 1
[Aa] - < 10 00 ) ) {BEL} - (0) ’

[C.] = 993.4588,0.0].
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Bode Diagram

1 | | |
EN @ n N
o o o o

Magnitude (dB)

I
@
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|
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Phase (deg)
o

_45

-90 &
2 3
10 10 10 10 10
Frequency (rad/sec)

Fig. 2.28. Bode diagram

wo=1% Auxiliary System
m m
c=2C(Vkm
23 =1
[ Si = |happroa(jw)[? W=1 ¢°/rad/s

Fig. 2.29. Dynamic system + auxiliary system

The SDOF system together with the auxiliary system to filter the white noise
W =1 g?/rad/s is shown in Fig. 2.29. The natural frequency of the SDOF

system fy = %\/% = 150 Hz. The amplification factor is @ = 10, then

¢ = 0.05. At first, the E{#?} of the SDOF will be calculated from Miles’
equation assuming white noise base excitation (Table 2.9)

B{i*} = gfoQWd(l +4¢%) ~ g x 150 x 10 x 0.2 = 245.0442 g2.

Secondly the mean square acceleration E{#?} of the SDOF will be calculated
using the auxiliary system excited by a unit white noise enforced acceleration.
The characteristics of the auxiliary system are

=0 o) ®=(0) = el

—Wo
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A

w1 [095) w3 wWq

Fig. 2.30. PSD specification

The total state-space system [A;], {B;} and [C}], the combination of the aux-
iliary system and the SDOF, can now be formed.

The mean square acceleration becomes E{#?} = 211.9628 g?. As expected,
the filtered response is somewhat lower than the white noise response, because
the real spectrum is band-limited. The main effort is to set-up the approximate
Laplace transfer function Agpproz(s) such that |Reppros (s)|? will represent the
specified PSD acceleration specification.

The following example is again a representation of a standard PSD accel-
eration specification.

Example. The PSD S,(w) of a random process is illustrated in Fig. 2.30 can
be approximated by a transfer function [66].
% s2(s? + 2¢,swp + w?)

(5 + a)(s? + 2Ca1swar + w3;) (82 + 2Ca2swaz + w3y)

happroz(s) = s (2338)

where all parameters o, (., (g1, Ca2, Wn, wq1 and wge are positive. We must
vary the parameters to find a good approximated for Agpproz(s).

Problems

2.19. Consider a two degrees of freedom nonclassically damped linear system
100 0 75 =50
[M] = ( 0 15) kg, [C] = (_50 50 ) Ns/m and

76915 —14415
K] = (14415 14415 ) N/m

The random load matrix is
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_ (1 0) 2
[S()] = (0 1) N /HZ

The state vector {y} is given by

-z}

Apply the complex mode approach:

the eigenvalues \; of the state matrix [A],

the eigenvectors [¥],

the natural frequencies w, from conjugate pair of eigenvalues \;,
the modal damping ratio’s (,

the damped natural frequencies

the correlation matrix Ry, (0),

the correlation matrix Ry, (7), 7 = 0.0-0.60 s.

This problem is taken from [61].

Answers:
21.9375 0.0107 21.9363
“n = (35.3276) radfs, (o = (0.0512) » Wa= (35.2813) rad/s,
4533.57  8045.51 0.0 3110.72
8045.51 19427.876  3110.72 0.0

_ —10
Ryy(0) =10 0.0 311072  2325680.3 3385340.0

3110.72 0.0 3385340.0 10948826.0

2.20. The equation of motion of a SDOF system excited at the base by an
enforced acceleration i is given by

mx+cz+ kz =0,

where z is the absolute motion and z = x —u is the motion with respect to the

base. The damping ratio is ( = 2\/Cm and the natural frequency is wy = %

The double sided white noise PSD function of the acceleration is given by
Su, and the single sided white noise PSD in the cyclic frequency domain is

Show the following expressions using the state space approach and ap-
plying “the stochastic dual of the direct method of Lyapunov”, (2.259) and
(2.260) and knowing that wg = 27 fp and Q = i:

o Ru(0) = () = g8 = 0

o R;.(0)=(22)=(22) = R,;(0) =0

e R:(0)= <22> = 4?50 = slgfj

o Ri(0) = (#%) = Fe(1+4¢) = 5 oQWa(1+4¢)
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T U
mo Mg
ko % %—‘ co kq % %:1 Ca
y=x—u Z=Uu—w
i ¢ = 2Gwim; @
k‘i = w?ml
Exited System Filtering System

Fig. 2.31. Excited and filtering system

2.21. The original excited SDOF system is indicated by “0” and the filtering
SDOF system is indicated by “a”. Both systems are illustrated in Fig. 2.31.

Derive the Laplace response function hzq;(s) and the PSD function Sz (w),
using the following steps:

e Derive equation i = i(z, 2)
e Derive equation & = Z(y, y)
e Derive equation Z = 2(z, 2, W)
e Derive equation § = §(y, ¥, 2, £)
Answers:

1. i = —2(waz — wiz

2. & = 2w — WAy
3. 5+ 20qwa? + w2z = —
4. 4 + 2(owo? + wiy = 2(qwa? + w2z
e Derive space-state equation {0} = [A]{v} + {B}w
e Derive output relation & = [C]{v}, {v} = |y, 9,2, 2|7

Answers:
0 1 0 0
2 2
| mwg 20w wi 2Cawa

L [A]= 0 0 0 1

0 0 —w?  —2Cw,
2. {B}=10,0,0,1|T
3.[C] = |~w§, —2¢owo, 0, 0]

e Derive the Laplace response function hzg(s) = [C](s[I] — [A])~{B}

Answer:

o _ wowa (wo+25¢0) (Wa+25Ca)
1. hxw(S) - (82+28Cowo+w§)(82+25Cawa+w3)
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T1 T2 €3 Ty
—_— — — —

b k2 2 . ks
o WA N
—— | in
C2 C3 Cq
Fy Iy
— —_—

Fig. 2.32. The four degrees of freedom dynamic system

o Derive the expression of the PSD function S;(w) assuming a white noise
PSD function of the enforced acceleration S

Answer:

2 2 2 2,2 2 2,2
L S5(w) = Su [ s
2.22. A dynamic system consists of four discrete masses my, ma, mg, My,
five spring elements ki, ko, 43, k4, ks, three viscous dampers cs, ¢z, and cs.
The system is loaded by two statistically independent white noise random
forces Fy and F3, and the spectral moments are (Fy) = (F3) = 0, (F»F3) = 0,
(FyFy) = Ry, (1) = 2226(7), and (F3F3) = Ry, (1) = 2256(7). The dynamic
system is shown in Fig. 2.32. The system is taken from [67].
Perform the following activities:

generate the equations of motion of the dynamic system,
set up the force matrix to calculate the forces in the springs {Fy} =
[SF] {1‘},
e set up the force matrix to calculate the forces in the dampers {Fy} =
Sp){i},
set up the space state equations.
set up the state space output matrix [Cr] for the spring forces.
set up the state space output matrix [Cp| for the damper forces.
calculate for kl = ]CQ = kg = k4 = k5 = 10000 1\1/1117 mip = Mg = M3z =
myg =10 kg, co = ¢35 = ¢4 = 10 Ns/m:
— damped natural frequencies wy rad/s.
— (undamped) natural frequencies w,, rad/s.
— modal damping ratio’s (.
e If the one-sided white noise power spectral densities of both forces Fy and
F3 are Wg, = Wg, = 10000 N2 /Hz, calculate
— The rms spring forces {F}rms-
— The rms damper forces {Fy}rms.

Answers:
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kl kQ kg k4

FQ F3

—

Fig. 2.33. The four degrees of freedom dynamic system

19.54 19.55 0.014
37.17 37.17 0.007
lwab = | gy q7 | vad/ss Hwnd = 57 | rad/s, {G =1 014 |
60.14 60.14 0.012
1275.3
998.4 43.2
{Fiboms = | 10025 | N and  {Fy}yms = | 434 | N.
1003.3 35.4
1275.0

2.23. This problem is about the same as stated in problem 2.22, however,
no discrete dampers are present. The system is loaded by two statistically
independent white noise random forces Fy and F3, and the spectral moments
are (Fy) = (F3) = 0, (FyF3) = 0, (FyFy) = Ry, (1) = 2228(7), and (FyF3) =
Rp, (1) = W2F3 0(7). The dynamic system is illustrated in Fig. 2.33. Calculate
for ky = ko = ks = k4 = ks = 10000 N/m, m; = mg = mg = mgq = 10 kg
the natural frequencies w,, rad/s. The one-sided white noise power spectral
densities of both forces Fy and F3 are Wg, = Wg, = 10000 N?/Hz. Using
the modal reduction method described in Sect. 2.6.2, p. 78, calculate the rms
spring forces {F}rms

the first mode considered,

the first two mode considered,
the first three mode considered,
all modes considered.

The modal damping ratio is ( = 0.015 for the modes considered. Compare
the results with the results of problem 2.22.
Answers:

19.54

37.17
{wn} = 5117 rad/s,

60.17

first mode
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1056.6

653.0
{Fk}rms = 0.0 N7

653.0

1056.6

two first modes

1130.7
670.9

{Fi}rms = | 497.8 | N,
670.9
1130.7

three first modes

1157.7
783.2

{Fi}rms = | 4978 | N
783.2
1157.7

and for all mode considered

1173.9
935.5

{Filems = | 806.9 | N.
935.5
1173.9

2.24. This problem is taken from [169]. Consider a two degrees of freedom
system governed by differential equations with the following matrices

- (3 o8) @- (U )
K] = <k(:r1;1) —23;6) (F(1)) = (Flo(t))7

where €1 and e are some nonnegative coefficients, 2e = €1 + 2 and F} (¢) is
an ideal white noise with intensity Wy /2.
Proof that the natural frequencies are:

k
W%z = %[2 +e1 EeT],

where 7 = (/1 + % Show that the corresponding mode shapes [@] are given
by:
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2A 2A
2= (Al(liT) )\2(1—11—7')>’
where

1
)\1 = %[2+5787—],

1
)\2:%[2+5+€T].

And proof that the modal damping ratio’s are given by
c

SER 4km

[2+81 :|:61T].

Calculate, using Lyapunov equation, the mean square values E(x?) and
E(23) and proof the following relations:

W,
E(a?) = k—co{[z ter+ear) 2246 —er]?

+ [2+€1 —617’]72[24-84-67'}72

—U(4+4ey —2e3e2)2(4+2¢) 71,
W

B(}) = {2+ e +ear] 2+ e —er] 21— 7]’
+24e —ar] *R+e+er] 1+ 1)
+ (44 4e) — 2622) 72 (4 4 2¢) 1Y,

where .
5 _
| e1(e +2)
v =2
clet (2e +2ee1 —€2)(e1 +2)|
and
2
C=—.
km

2.7 Limit Load Factors

2.7.1 Introduction

In spacecraft, the equipment is generally mounted to (sandwich) panels. This
is illustrated in Fig. 2.34. The design loads for these equipment have to be
established, estimated, before the spacecraft is built. The acoustic pressure
loads are transferred into random mechanical vibrations in the panel, exciting
the equipment at its base. This acceleration is indicated by . The equipment
panel plus equipment form SDOF system consisting of mass mq, spring k;
and damper ¢; (support structure). A piece of equipment (e.g. box) forms
the second SDOF system consisting of mass mso, spring ks and damper co
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Equipment

)

e

: .-I Ll—
Equipment panel ™M |
kr L‘_‘ ¢
i
T i

Fig. 2.34. Equipment panel

(component). In general, it is assumed that ms < my. The limit load factor
(LLF) is defined as the dynamic 30 rms acceleration response (Z3) of SDOF
2 increased with the quasi static loads (QSL). The QSL can be found in the
User’s manual of the selected launch vehicle.

LLF = 3(i3) + QSL. (2.339)

The QSL are the steady state accelerations increased by very low frequency
accelerations (see for details in the Launch Vehicle User’s Manual). The LLF
is dependent on the mass ms. The estimation of the LLF for the equipment
is discussed in the next sections. The theory of the LLF's is based on [28].

2.7.2 Equations of Motion 2 SDOF System

The 2DOF dynamic system is illustrated is Fig. 2.35. This system is excited at
the base by an enforced acceleration . The absolute displacements, velocities
and accelerations of the discrete masses are denoted by x(t), @(t) and &(t).
Further in this section variable ¢ will be skipped. The equations of motion of
the 2DOF dynamic system are given by

mq 0 i’l c1+ co —Co i?l kl + kg 7]62 I
.o+ . +
0 mo T2 —C2 C2 To —kz k2 T2
_ C1 - k‘l
= { 0 }u { 0 }u (2.340)
If the absolute displacements, velocities and displacements are replaced by

the relative ones;

ylle—u
Y2 = 1 — X2
1 =91 +t1u
Tog =1+ 21 =91 +¥2+1U
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T2
Y2 e
kQ% TLJ Cy
(a1
mi
Y1
k1%\—iﬁ C1

Fig. 2.35. Two SDOF systems

then the following equations of motion are obtained:
my 0 3 L(a —@ n n k1
ma Mg U2 0 ¢ Y2 0
{ml } .
=— .
ma

The following notation will be introduced

2 _ ki 2 _ ko
® W= W2 T g,
c1 = 21V kimy, ca = 2¢av/kama
L = 2w, o2 = 20w

o 2 = 20wy

mi
ky _ 2
- = 2wow;7y and

o Hm
7= o

Equation (2.341) can be written as

10 71 2Qiw1 —2Gaway 1 W%
(DR o e (

:_{1}u

—ky
ko

2
_wg,y
wa

)

1
Y2

i

}

(2.341)

U1
Y2

(2.342)

The solution of (2.342) will be in the frequency domain (harmonic solution),

then the variables are expressed as follows

o (1) = Xq(wr)e ¥ wo(t) = Xo(wy)e It

o yi(t) =Yi(wi)e ¥, yo(t) = Ya(wr)e 7" and
° ﬂl(t) = Ul(wl)e’wt,
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then (2.342) becomes

5 (1 0 [ 2Gw1 —2Cway wi  —wiy
[“’ (1 1)““’( 0 2w )T o W

__ { 1 } U(w). (2.343)

The relative displacements Y7 (w) and Y3(w) can be solved from (2.343)
using Cramer’s rule

U(w)

Yi(w) = (TW — jwCws (1 4+7) —w3(1+7)], (2.344)
and )
Ya(w) = —%mew% + Wi, (2.345)

where the determinant is D = (jw)*as + (jw)?az + (jw)?as + (jw)ai + ag and
the coefficients are
ag =1
asz = 2Gwy + 2w (1 +7) = wi1[2¢ + 2¢P(1 + )]
o ay=wi+wi(l+7)+4GGuwiws = Wil + ¢*(1 +7) + 4¢1 (9]
o a1 = 2Qw1w3 + 20owow? = w2142 + 2(2¢)]
o ap=wiwi =wi[¢?],

w2

where ¢ = =2,

The absolute accelerations X1 (w) and X,(w) can now be found

Xi(w) = @[(a‘w)%cwl + (jw)* (W] + 40 Gwiws)
+ jw(Gwiws + Guaw?) + wiws), (2.346)
and
Xo(w) = %[Uw)mﬁ@mm + jw(Gwiws + Gwaw?) + wiws].  (2.347)

2.7.3 Frequency Transfer Function

The frequency transfer functions between the absolute accelerations X; (w),

Xy (w) and the base excitation U(w) can now be calculated by Hy = );zf)“)}
and Hy i = )Ijif;‘)’ and are expressed in a general form
L — (jw)sbl,?) + (jCU)QbLQ + (jOJ)bl,l + b170 (2 348)

XU = (jw)tas + (jw)3az + (jw)2az + (jw)as + agp’
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o bi3=2Cwr =w[2(]
o b1y =wi+4GGwiws = wil + 4129
o b1 = Guwiws + CGwawi = wi[(1¢? + (2]
o bio=wiws = wi[¢?],
and
(jw)3ba 3 + (jw)?b22 + (jw)be1 + bao

Hy,p = : 2.349
XU (Gw)tay + (jw)3asz + (jw)2as + (jw)as + ag ( )

62’3 = 0
ba o = 41 Gwiws = w?4(1(29)
o by1 = (uiwsd + Qwrw? = wi[(16? + (2]

o byp=wiwi = wi[$?].

2.7.4 Random Responses

In this section we calculate the mean square and the root mean square (rms)
of the absolute accelerations i1 (t) and #2(t) due the random enforced acceler-
ation (t) with a PSD function Sj;(w). The mean square values of % (t) and
Zo(t) are

(@) = /°° |HXIVU|25uu(w)dw, (2.350)
and -
(i5) = / |Hy | Sui(w)dow. (2.351)

The PSD function of the enforced acceleration Sy;(w) is considered to be
constant over the frequency domain w, thus S;. The expressions for the mean
square values of %1 (t) and &5(¢) can now be written

(i2) = sﬁ/ \Hxlﬁfdw, (2.352)
and -
(#2) = Su/ |Hy,i| dw. (2.353)

In Wirsching, Paez and Ortiz [222], Appendix A, a solution of the definite
integral of the transfer function Hy p is provided

o 2
Iy =/ [H g, i (w)]

—00
/OO
— 00

The solution of the integral I, ; is given by

2

bio + (jw)bix 4 (jw)?bi2 + (jw) bis dw. (2.354)

ap + (jw)ar + (jw)?ag + (jw)3az + (jw)*as
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aobﬁg(aoag — alag) + a0a1a4(2bi71bi73 — bZQ,Q)]

141' = 7T|:
) 2 2
apas(apai + ajay — a1a2a3)

7(],0(13(14(@2)1 — Qbi’obi’g) —+ a4bf,0(a1a4 — a2a3)
apas(apa3 + atay — arazas)

]. (2.355)

2.7.5 Feedback Factor

The mean square values of the accelerations & (¢) and Z2(t) can be calculated
by (2.355). The feedback factor Qpis the ratio of the rms acceleration (&)
and (%), thus

(3] V)

_ [ 4@3)
Qp = @) (2.356)

The feedback factor Qs is dependent on the following parameters:

=N

the damping ratios (; and (o

the hard mounted natural frequency ratio (tuning factor) ¢ = z—f
the mass ratio factor v = z—f

In Fig. 2.36 a parametric study of the feedback factor Qg is illustrated
considering the following values for the parameters:

the tuning factor ¢ =0.0... to ...2.5,
the mass ratio v = 0.001,0.01,0.1, 1.0,
the damping ratios ¢; = 0.05 and (, = 0.05.

The following conclusions can be drawn:

Feedback Factor

| /
i

55
L
\\\
L

[ T T T T T
0.0 0.5 1.0 15
mass ratio=0.001

LI B e L — T
2.0 25 3.0

mass ratio=1

Frequency ratio

mass ratio=0.01
mass ratio=0.1

Fig. 2.36. Feedback factor Qp
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1. The feedback factor Qg has the most influence when ¢ = 1.0.

2. The ratio v = Z—f strongly influences the feedback factor Qg when ¢ =
1.0; it does not influence Qg when ¢ < 1.0, ¢ > 1.0.

3. When ¢ > 1.0, the two masses m; and mo tend to have the same accel-
eration, such that the Qg value is near unity, regardless of the values of
the damping ratios of (; and (5.

4. When ¢ < 1.0, Qp, is lower than unity.

5. Due to the dynamic impedance of the hard mounted dynamic system m;,
c1 and K, it can be stated that Qp, is always lower than the amplification

1

Qs = ﬁ in the hard mounted condition, Qp < Q2 = 365

Based on the previous results, the feedback factor Qs will be further
investigated for the worst condition, the “tuned case”, ¢ = 1. The parameters
v and @2 will be varied in the following ranges:

e the mass ratio v = 0.00001... to 1
e the amplification factor Qo = % = 2.5,5,10,20,40
e the damping ration {; = 0.05

The results of the calculation are shown in Fig. 2.37. From Fig. 2.37 it can be
interpreted that:

1. For v — 1 the Qp — 1.5.

2. The feedback factor Qy is very sensitive to a mass ratio y = 0.00001 ...0.1:
for the lower 7 values, the Qp, factor has an asymptotic value depending
on the damping ration (5, but always lower than Q.

3. Vibration loads for mass moy can be derived as a tuned case of the 2DOF
system, when at least the following parameters are known: Wy = 253, (1,

Feedback Factor

Qfo

-5 -4 -3 2 -1 0

10 10 10 10 10 10
Q=28 Mass ratio 1 Q2=20
Q25 T Q2=40
Q2-10

Fig. 2.37. Feedback factor Qp, ¢ =1
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rms accelerations

-4 -3 -2 -1 0
10 10 10 10 10

Xlaccrms Mass ratio

X2accrms

Fig. 2.38. rms accelerations (g) for z1 and z2 and ¢ = 1

(2, m1 and me. In general, both damping ratio’s (1, (2 are made equal
1= =¢(.

The rms values of the accelerations (i) and (is) are calculated using the
damping ratio’s (1 = (o = ¢ = 0.05 and the PSD of the enforced acceleration
is Wy = 0.02 g2/Hz. The ratio ¢ = 1, corresponds to the tuned case. The rms
accelerations are dependent on the mass ratio 4. The rms accelerations are
shown in Fig. 2.38. The rms acceleration response (%) is hardly influenced
by SDOF system 2 (mg).

2.7.6 Limit Load Factors

To calculate the limit load factors or the mass acceleration curve 3o values of
the rms acceleration (o) shall be considered and the quasi-static loads (QSL)
from the launch vehicle User’s manual added to that 3o values. Consider
further a mass m; = 500 kg and the QSL = 10 g the LLF is (2.339)

LLF = 3(i9 4—1) + QSL.

The limit load factors or the mass acceleration curve is shown in Fig. 2.39.

Another method to calculate the LLF is to calculate the rms acceleration
response of (#1) independent of x;. The rms response of the SDOF 1 system
can be obtained using Miles’ equation

(#1) =/ glelwu(fl)- (2.357)
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Limit Load Factor (LLF)

30

B20

10
Mass (kg)

Fig. 2.39. LLF (g) m1 = 500 kg and ¢ =1

This approach is regularly used because the definition of the SDOF 1 is not
always clear.
The limit load factor definition is now

™
LLF = 3be7¢:“ / ilelwu(fl) + QSL, (2.358)

where f; is the (assumed or specified) natural frequency (Hz) and @ is the
amplification factor (mostly taken as Q1 = 10) and Qg ¢—1 can be taken from
Fig. 2.37. Notice that the latest approach to calculate the LLFs is conservative.

2.8 Force-Limit Prediction Methods

2.8.1 Introduction

In conventional vibration testing of space hardware, the acceleration input to
the base (enforced acceleration) of the test item is controlled by the specifica-
tions, namely, the envelope of the acceleration peaks of the flight environment.
This conventional approach to testing has been known for decades to greatly
overtest the test item at its own resonant frequencies [189]. Space structures
are normally designed to survive vibration testing as well as the flight environ-
ment, thus this overtesting phenomenon normally leads directly in overdesign.

An improved vibration test approach was developed by T.D. Scharton [135,
174, 175]. This approach is called force-limiting vibration testing (FLVT). The
FLVT measures and limits the reaction forces between the test item and the
shaker through real-time notching of the input acceleration.
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To estimate the force limits and specification, two mathematical ap-
proaches and one empirical method were developed:

e Simple two coupled SDOF method
e Complex two coupled SDOF method
e Semi-empirical method

These mathematical and semi-empirical methods will be discussed in subse-
quent sections.

2.8.2 Simple Coupled 2DOF System

The source and the load are idealized as lumped masses connected to each
other by corresponding springs and dampers. The simple 2DOF source-load
system is shown in Fig. 2.40. The damped equations of motion can be derived
from Lagrange’s equations

m1%1 +ki(z1 —u) — kz(ﬂc.z - 58'1) + (21 —0) — ca(da — 41) =0, (2.359)
moXi + kg(.’L‘g — 331) + Cg(l‘g — 331) =0.

Equation (2.359) will be transformed into the frequency domain assuming
zi(t) = X;(w)ed*t and u(t) = U(w)el*!, thus

—w2m1 +jw(61 + CQ) + kl + kg —(ijQ + ]{72) Xl(W)
—(jwea + ko) —w?me + jwea + ko X (w)
k1 e\ L.
- (uﬂ EJ w > U(w) (2.360)

or when expressed in the accelerations by multiplying (2.360) with —w? will
yield

)
I Load
msy

Fiw)
kz% \—J]»_‘ 2 I Interface
I
\_rl

Source

Fig. 2.40. Simple coupled 2DOF Source-Load dynamic system
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—w?my + jw(er + c2) + k1 + ko —(jwea + k2) Xl (w)
—(jwe + k2) —w?mg + jwes + kg ) \ Xo(w)
_ (kl +ij01) U(w). (2.361)

The accelerations X (w) and X5(w) can be expressed in terms of U(w), and
can be written as follows

X1(w) = Hg, (@)U (w),

. . (2.362)
Xo(w) = Hy, (W)U (w),

where Hy (w) and Hy, (w) are the transmissibility functions. Solving (2.361),
we find the transmissibility functions

Hg (w)
B [—iw32Ciwr — w?(W? + 4¢ wiws) + jw(2Cw1w3 + 2Cwiws) + wiw?]
= 5 ,
[—w?4¢) Gwiws + jw(2Gwiw3 + 2Cwiws) + wiwd]
HX'Q (LL)) = D B}
(2.363)
where the determinant D of the matrix of (2.360) is given by
D= mlmg[w4 - jw3(2(1w1 +2(1 4 p)Cows)
—w? (Wi + (1 + p)ws +4¢ wiws)
+ jw(2Cwiw? + 2owaw?) + wiw?], (2.364)
and
o wi =+ /ki/my,
o wy = \/ky/my,
o U= mg/ml,
e 1 =20 Vkim,
® (o — 2(2\/ k‘gmg.
The interface load F;(w) (see Fig. 2.40) is given by
Fl(w) = ]{72(.’[72 — 56’1) + 02(1’2 — i)l)
- kg( X227 1)X1(w) + 02< 2L 1)X1(w)
Hy, @) Hy, @)
1 9 . HX (w) ..
= —ﬁ(u)2 + 2j(owws) (ij ®) —1)X1(w)
. H)'Q (w) .
= m2X1 (w)— = Mg(w)Xl (w)7 (2365)
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where My (w) is the dynamic mass of the “load” and #; the acceleration of
the “source”.

The PSD of the interface load W, , (f) can be calculated with the follow-
ing expression

Wrr, (f) = [Ma (27 )P Waya, (f), (2.366)

where Wy, ., (f) is the PSD of the interface acceleration x; dependent on the
cyclic frequency f (Hz).

In the case w1 = wy = wg, m1 = mg = k1 = ko = 1, U(w) =1 and
(1 = ¢ = 0.01 the magnitudes of the interface force F;(w), the interface
acceleration X1 (w) and the dynamic mass of the “load” My (w) will be calcu-
lated and shown in Figs. 2.41, 2.42 and 2.43. This example, shows that both
the interface force and interface acceleration peak at the resonant frequencies
(maximum responses) of the coupled source-load system. The load dynamic
mass, however, peaks at the resonant frequency of the load uncoupled from
the source, a point corresponding to the antiresonance frequency of the cou-
pled system. It is important to note that the load dynamic mass evaluated at
the system resonant frequencies can be considerably less than when evaluated
at the system antiresonance frequency.

The underlying basis of the frequency-shift method is now easily under-
stood. In a conventional vibration test, the high impedance shaker will deliver
a peak interface force equal to the product of the acceleration spectral enve-
lope and the peak value of the load dynamic mass; this occurs at the system
antiresonance frequency

|F'(W)lpeak = |Ma(w)peak|a(w)|pear, or

(2.367)
‘F(w)|peak = |MQ(W)‘antiresonance|a(w)‘resonant7

Interface force

o

- T T T T T T T T T T T T
10 00 0.5 1.0 15 2.0 25 3.0

Frequency ratio

Fig. 2.41. Interface force
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Interface acceleration

- T T T T T T T T T T T T
10 00 0.5 1.0 1.5 2.0 25 3.0

Frequency ratio
Fig. 2.42. Interface acceleration

Dynamic mass load

- T T T T T T T T T T T T
10 0,0 0.5 1.0 1.5 2,0 25 3.0

Frequency ratio

Fig. 2.43. Dynamic mass Mz (w)

where a(w) = &;(w) is the interface acceleration. In contract, for a force-
limited vibration test, the frequency-shift method, the shaker is limited to de-
livering a peak interface force equal to the product of the acceleration spectral
envelope and the frequency-shifted values of the load dynamic mass evaluated
at the system resonant frequencies

‘F(w”peak = |M2(w)‘frequency—shifted|a(w)|peaka or

N (2.368)
‘F(w)|peak = |M2(w)‘resonance|a(w)‘resonanta
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where the tildes denote different values for the peak force. This limiting
method can accomplish a significant reduction in the interface force.

Example. Applying (2.367) to the example Figs. 2.41, 2.42 and 2.43, we
find yields a peak interface force |F'| = 50 x 50 = 2500. Applying (2.368)
to the same example yields a peak interface force |I:"| = 1.6 x50 = 80, a
substantial reduction. This reduction in interface force corresponds to a notch
factor at the system resonant frequency of about 31 or 15 dB in the interface
acceleration spectrum.

Using the frequency-shift technique we assume that the control accelera-
tion spectrum |a.(w)| properly envelopes the interface accelerations |a(w)|peqk
seen in service. Consequently

|Fc(w)| = |M2(W)|resonance|ac(w)| or

: (2.369)
WFch (f) = |M2(2’/Tf) resonanceWacac (f)

Equation (2.366) will be rearranged such that

Wr,r,(f) Wrr (f)
o= = = =1 (2.370)

2 sz (27 f) ’
LD Wi (1) md| 2 Gl P Wosa, (F)
or )
WFiFi(f) _ ‘H)h (27Tf) (2 371)
m%Wﬂhﬂh (f) H}Q (27Tf)

For a lightly damped system, the undamped natural frequencies are about
the same as the damped natural frequencies. The undamped natural frequen-
cies will be calculated from (2.359) neglecting the damping. The characteristic
determinant can now be written

]{31 —+ kg — )\m1 *kQ _
ko Ky — Ay | = 0, (2.372)
so that the characteristic equation is
(k1 4 ko — Amy) (ko — Mmy) — k3 = 0. (2.373)

The roots of (2.373) are undamped eigenvalues A; 5. They can be written

1 1
Ma = S{wd 1+ n) +wf} £ Dol (+ ) +d)? — dofud, (237

where w? = k1 /m1, w3 = ka/mgy and the mass ratio is u = mq/m;.
The maximum interface for F;(w) is at the lowest undamped natural fre-
quency w = /A1 (see Fig. 2.41) when wy = woy = wy

2
A1=w§<1+g— u+%)- (2.375)
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. Maximum force limiting specification for simple 2 SDOF model
10 T T T T

— Q=50
——Q=25|
— Q=10
———Qs5

Normalized force spectral density

107 107 10
Mass ratio m2/m1

Fig. 2.44. Maximum force limiting specification for 2DOF model

The “load” will then act as a vibration absorber.
We now use (2.371) to find the lowest natural frequency VA, = wy, =
2w fy, for varying the mass ratio p and damping ratio 1 = (2 = ¢. Thus

2

WFiFi(f)\l) _ HX1(27rf)\1) ,U:OOOOllO

m3Wi, e, (fx,) | Hg, (27fx,)
¢ = 0.01,0.02,0.05,0.1.

(2.376)

Equation (2.376) is visualized in Fig. 2.44. For small values of p the nor-
malized force PSD approaches Q% = 1/4¢2. For very small mass ratios the
feedback of the load to the source via the wvibration absorber mechanism is
negligible or the source mass provides a high relative mechanical impedance
interface to the load mass. Consequently, the maximum response of the load
mass will approach its resonant response, or for random vibration, Wrp(f) =
m3Q*Wi, z, (f). At larger values of p, force limiting begins to occur because
the feedback of the load mass to the source mass via the vibration absorber
mechanism becomes greater the source mass provides a lower relative mechan-
ical impedance interface to the load mass.

The simple 2DOF system is a useful initial model for developing force
limiting criteria according to the frequency-shift method. Unfortunately, by
treating both the source and load as simple SDOF systems, this model is
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inherently unable to describe the modal behavior of more realistic distrib-
uted mass systems. For a given mode in such an MDOF system, there is
modal effective mass that participates in the motion, and a complementary
residual mass that does not. This more complex behavior can be imperfectly
incorporated into the existing 2DOF model by treating distributed masses as
frequency dependent lumped masses and using the smoothed dynamic mass
as an estimate of the residual mass. The lumped masses of the simple 2DOF
are not an accurate representation of either the modal effective or residual
masses for a MDOF system. A more sophisticated model able to account for
both resonant and antiresonance structural modes is required to more accu-
rately model a MDOF source-load vibratory system. This model is called the
complex 2DOF system.

Distributed structures exhibit several modes of vibration in the frequency
band of interest. To build the 2DOF system we have to select the modes for
both the source and the load in that frequency band, and that is not always
straightforward. The width of these frequency band is traditionally one-third
of an octave.

Example. This example is taken from [97]. The KOMPSAT-II earth ob-
servation satellite of 800 kg has a Multi-Spectral Camera (MSC) as a main
payload (P/L). The MSC has a mass of 76.7 kg. The force limit specification
had been established by applying the simple 2DOF model using Fig. 2.44
(Q = 5). The lateral modal effective masses for the source m; and the load
ms are calculated by the finite element method. The results of the calculation
are presented in Table 2.10.

Table 2.10. Modal effective masses of the satellite bus, and the MSC and force
limits
1/3-Oct. frequency Satellite Modal MSC Modal mo/m1  Normalized

band effective mass (kg) effective mass force spectrum
(Hz) ma (kg) ma (kg) (@=5)
31.5 0.18
40 0.62
50 1.77
63 338.80
80 2.29
100 126.14
125 120.66 0.48 0.004 25
160 3.98
200 4.96 1.74 0.35 16
250 2.29 23.03 10.05 1.1
315 1.67 28.02 16.78 1
400 0.42 13.74 32.34 1

500 0.11 0.91 8.45 1.2
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2.8.3 Complex Coupled Two-SDOF System

In Fig. 2.45 the two-SDOF system of the so-called source and the so-called
load are illustrated in Fig. 2.45. The capital M represents the residual mass,
and the small m* the represents the modal effective mass. The theory behind
the modal effective mass and the residual mass is discussed in Appendix D.
The dampers and the springs are denoted by ¢* and k* respectively, because
they represent mathematical, no physical, values. The following theoretical
discussion is based on [48]. The differential equations of motion can be derived
using Lagrange’s method. The external force Fi,; = 0 for the time being.

(M7 + M3)i — ki (x1 —x) — k3 (22 — ) — i (21 — &) — 5 (22 — ) =0,
mid + ki (zy — ) + (i — ) =0, (2.377)
miia + k(v —x) + (i — &) = 0.

The first equation of motion in (2.377) will be decomposed into symmetric
SDOF systems:

[MiiE — cj (i1 — &) — ky (21 — @)] + [Mad — k3 (z2 — @) — c3(d2 — @) = 0,
(2.378)
Fsource + Fload = Fi'nt - Fint = Oa

where F},; in the interface force between M7 and Ms. The interface force can
be expressed as follows using (2.377)

Fipy = Mo — k;(IQ - SC) - C;(l"g — J})’

.. o (2.379)
Fine = MoZ + MoX2.

Using the third Fourier transformed equation of motion in (2.377) we can
express the acceleration Xs(w) can in terms of X (w)

2 .
; W3+ 2Cwwa Y\ ¢
Xo(w) = e X (w), (2.380)
—w? + w5 + 2jCowws
xz
T — T2
> k} Interface k3
F, ext 4/\/\/L WL
— | m] M M- ma
1 2 2
j
(’* ck
1 E7Lf 2
B —
Source Source Load Load
modal effective mass  residual mass  residual mass modal effective mass

Fig. 2.45. Modal effective and residual mass two-SDOF source-load system
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where the natural frequency w3 = ko/m}, the viscous damping is ¢} = 2j(aws
and the damping ratio is (2 = ¢2/2/k3m3. Equation (2.379) gives the inter-
face force in the frequency domain F;(w):

(2.381)

2494 ..
Fin (o) = (Mg ol wj + 2jCawws >X o).

—w? + w2 + 2jCowws

The quantity between the brackets in (2.381) corresponds to the load dynamic
mass Ms(w):

(1= 59) + aaf? 4 Hlper
(1- 37+ 5
(1 58) + asl? + 43331 + )
-BFrigs

where a; = 7]&—11, Qg = A"}—i, b= B=2, Q1= 1/2¢; and Q2 = 1/2¢s.
Because of the symmetry in (2.378) the expression for the source dynamic mass
M; (w) will have exactly the same form as (2.382). Equation (2.382) must be
expressed in the systems natural frequencies to determine the general force
limits.

The governing equation of the dynamic system illustrated in Fig. 2.45 is

| Ma(w)[? = M3

= M3 (2.382)

My +M; O 0 z ci+c5 —cf —c3 T
0 m’{ 0 Zi’l + —CT CT 0 i?l
0 0 m3 T —c5 0 c5 )
kY +k5 —k7 —k5 x 0
+ —kI kY 0 z1 | =(0]. (2.383)
—k3 0 k3 ) 0

The characteristic undamped equation for the eigenvalue problem is

ki + ks —wi(My + Ma) =k} —k3
—k} ki — w?m? 0 =0, (2.384)
—k5 0 ki — w?m}

which yields
WA [(My + Ma) (ki — w®my) (k3 — w’m3)
+ kimb (kT — w?m?) + kimi (ks — w?m3)] = 0. (2.385)

Equation (2.385) has one root w = 0 corresponding to the rigid body motion.
The remaining two roots are given by

(1—2°63)(1 — 53) + ar (1 — 53)
+ (1 = Q2265)(1 = B3) + paz(l - 2253) = 0, (2.386)
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where {2 = wy/w; and p = My/M;. Equation (2.386) has two real roots,
B+ and [_, corresponding to the upper and lower natural frequencies. (2 is

called the tuning parameter. The natural frequencies (33 can be obtained as
follows [175]

1
Ba = 3 [-B++VB2-4C], (2.387)
where
B— —(L+p+a1)/2° — (14 p+ pas)
1+pu ’
oo (14 p+ oy + pag)
(L4 p)82?

At this point, the development of force limits for the complex two-SDOF
model becomes more involved than for the simple two-SDOF system. It was
shown that the interface force and the interface acceleration peak at the same
system natural frequencies (w; = ws). This condition does not always hold
for the complex two-SDOF system: the maximum interface force may occur
at upper natural frequency while the maximum interface acceleration may
occur at the lower natural frequency. Consequently, the natural frequencies at
which the respective maxima occur, must be identified. The bounding value
of the load dynamic mass will then be the ratio of the larger of the two
interface forces to the larger of the two interface accelerations. This task is
further complicated by the fact that the maximum magnitude of the interface
acceleration is dependent upon how the complex two-SDOF system is excited:

1. A constant free acceleration over the system frequency band applied to
the source modal effective mass mj.

2. A constant blocked force over the system frequency band applied to the
source modal effective mass mj.

3. A constant external force over the system frequency band applied to the
source modal effective mass mj.

Scharton [174] chose an external force F.,; that is constant over the system’s
frequency band applied to the source modal effective mass mj. Expressions for
the peak interface acceleration will now be derived based in constant source
excitation.

Thevenin’s theorem (Appendix E) is used to derive an expression relat-
ing the free acceleration to the interface acceleration for the source residual
mass M. It is convenient to replace the mechanical impedance Z(w) by the
dynamic mass M (w) and the free velocity vo(w) by the free acceleration Ay(w).
Applying Thevenin’s theorem to the residual masses, we find

Fy(w) = A(w) (M (w) + Mz (w)), (2.388)

keeping mind that
Fo(w) = Ao(w)Ml (UJ), (2389)
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where Ag(w) is the free acceleration of the source. The blocked force Fy(w)
can be eliminated from (2.388) and (2.389):

Aw) M (w)

Ao(w) ~ My(@) + Ma(w)’ (2.390)

The dynamic mass of (2.381) can be substituted in (2.390), leading to a rather
involved algebraic expression for the ratio of the interface to the free acceler-
ation, which will be simply denoted here as

2
:D(O‘17a27ﬂyﬁl7ﬁzaC1>C2)- (2391)

’ Aw)
Ap(w)

The dynamic masses M (w) and Ms(w) are given by

i 2 o
Mi(w) =M |1+« Wit 2w }

Tzt w? + 2j¢ ww
1+25Gi6
1— 67+ 2jC151]’
w3 + 25 Cowws }
—w? + w2 + 2jCowws
L +2jGf2
-3+ 2j<262]'
The equations of motion (2.377) can be used to derive an expression for

the free acceleration of the source residual mass M;. For an external force
applied at the source modal effective mass mj, (2.377) becomes

=M |1+ o
3} (2.392)

Mg(w) = M2 1+ (%)

:MQ 1—|—Oé

mfxl + Cl(i‘l — Z‘) —|— kl(Il — I) = Feact7 (2393)

where the parameters are shown in Fig. 2.45.

The free acceleration of the source residual mass will be the motion with
the load removed, thus the equation of equilibrium for the residual mass M
becomes

len'fcl(jcl 71’)7]{}1(1'1 71’) = 0. (2394)

Adding (2.393) and (2.394) we eliminate the damping and stiffness terms:

Fop(w) = M1 X (w) + mi X (w). (2.395)

The acceleration X (w) is in fact the free acceleration Ag(w). The acceleration
X can be expressed in terms of X, and (2.395) can be written as

—w?M) +2jGuw + Wi 5
Fepi(w) = |mj LM | X (w), 2.396
t(w) = |m] 2w 1 Wl + M| X (w) ( )

or
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Feu(w) [L B 2jG BT
R ranl Pl e v X (w). (2.397)
Using X (w) = Ag(w) we find
Ao(w) |* _ B +463¢3)
Sl 08D - ) -1 st )2
= G(O‘17617<1)~ (2398)

The acceleration Ay can be eliminated from (2.391) and (2.398), thus

2

A(w) — D(a17a2alhﬁlaﬁQaChCQ)G(al?ﬁhCl)' (2399)

Fczt(w)
my

The external force F.:(w) will be held constant over the frequency band
of interest, thus (2.399) can be evaluated from (2.386) at the upper and lower
system natural frequencies 34 and _ to yield the ratio of the corresponding
system acceleration peaks

All?

A_

_ D(Oél, a2, U, ﬁ1+a ﬁ2+a C17 C?)G(al’ ﬁ1+’ Cl) (2400)

D(a17a2nu‘7ﬂl—aﬂ2—7clv CQ)G(o‘laﬂl—7 Cl) '

The damping ratio of the source and the load are equal, (; = (s = (. (1
will be eliminated, and 2 = 2 = % We will write (2.400) as

w1

2

A
_+ = H(a15a27ua Qaﬂ2i)€)' (2401)

A_

The purpose of deriving the ratio of the resonant interface accelerations is
to properly identify the locations of the force and accelerations maxima; the
proper “load” dynamic mass will be the ratio of the larger of the two interface
forces to the larger of the two interface accelerations. This is illustrated by
the following equations

A
Fo =My Ay = M2+A—+A—,
- (2.402)

A
Fo=My_ A =M_"—A,.
+

Table 2.11 summarizes the possible outcomes of this ratio for all combina-
tions of natural frequency locations of the force and the acceleration maxima,
where the + and the — denote the higher and lower natural frequencies respec-
tively. The last row in Table 2.11 shows the proper force to acceleration ratio
will be the maximum of the load dynamic mass Ma(w) evaluated at either
the higher acceleration peak or the lower acceleration peak scaled by the ratio
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Table 2.11. Possible ratios of the maximum force to maximum acceleration

Position Amaz, Fraz A,, F_ A,, F+ A+, F_ A+, F+
Frnaz My A_ Moy AL My A_ My Ay

. Foas My A_ Moy A My_A_ Moy Ay
Ratio e == =M o T a = Moy

of the lower to higher acceleration. Symbolically, this logic can be expressed as

if [Ay| > |A_| then

| M5 (8)] = max{| Mo (84|, |Ma(5-)|| 5=}
else if |A4| < |A_| then

| Mo (8)] = max{|Ma(B-)], | Ma(B1)]| 52}

end if

My (3) is the scaled apparent or dynamic mass. It is clear that both 31 and A
depend on the tuning parameter (2. In the simple two-SDOF, the tuning para-
meter {2 = 1 always yields the maximum value for the “load” dynamic mass,
unfortunately, this is not generally true for the complex coupled two-SDOF
system. Consequently, |M(w)|, in the algorithm above must be maximized
by numerically tuning {2 for all possible combinations of mass, stiffness, and
damping for the complex two-SDOF system. This process is summarized as
follows

1. Start procedure

2. Pick g = mj /My, aa = m3/Ms and p = My /M,
3. Solve characteristic equation for fa1 (82 = w/wa)
4. For a given 2, determine 14 (61 = w/w1)
5. Evaluate the dynamic masses M (31 ), Ma2(5+)
6. Evaluate |A;/A_],
7. Determine F,,,; from Ay and scaled My(B+)
8. if Fmaz,new < Fmaz,old then
Pick new (2, goto 4
else
Save Fiaz new, goto 2
end if

9. End of procedure

The relation between interface force PSD and interface acceleration PSD
is given by (2.366). The magnitude squared of the load dynamic mass Ms(w)
is given by (2.382). We can calculate the normalized force limit PSD Wgg(f)
normalized by the “load” mass Ms and acceleration PSD W44 (f):

Wrr(f)
MZWaa(f)

Analysis results of the maximum normalized interface force PSD are discussed
and reported in [175]. The results are shown in Table 2.12. £2? is varied in
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Wrer(f)
MZWaal(f)’
by load residual mass squared and acceleration spectral density

Table 2.12. Maximum force spectral density for @ = 20, normalized

I
o1 2 0.001 0.003 0.01 0.03 0.1 0.3 1 3 10

8.0 8.0 932 933 936 948 1001 1180 1240 1234 1238
8.0 4.0 233 233 233 235 239 256 294 265 250
8.0 2.0 58 58 58 58 59 60 68 73 68
8.0 1.0 15 15 15 15 15 15 17 23 22
8.0 0.5 4 4 4 4 4 4 4 7 6
8.0 0.25 1 1 1 1 1 1 1 2 5
8.0 0.125 1 1 1 1 1 1 1 1 3
4.0 80 871 867 858 849 904 1042 1067 1110 1229
4.0 4.0 218 218 217 216 220 250 254 250 252
4.0 20 55 55 55 55 56 61 72 68 67
4.0 1.0 14 14 14 14 14 16 21 23 22
4.0 0.5 3 3 4 4 4 4 6 10 10
4.0 0.25 1 1 1 1 1 1 2 5 5
4.0 0.125 1 1 1 1 1 1 1 3 3
2.0 8.0 1586 1478 1260 1061 990 946 982 1099 1201
2.0 4.0 406 391 355 305 272 259 238 236 254
2.0 20 103 101 97 88 79 82 70 63 62
2.0 1.0 26 26 26 25 24 25 25 23 22
2.0 0.5 7 7 7 7 7 9 10 10 10
2.0 0.25 2 2 2 2 2 3 5 5 6
2.0 0.125 1 1 1 1 1 1 3 3 4
1.0 8.0 11041 5731 2714 1486 967 901 984 1095 1181
1.0 4.0 3869 2206 1105 567 332 247 233 238 248
1.0 2.0 1228 826 432 226 125 83 71 66 64
1.0 1.0 359 283 166 100 50 34 26 23 23
1.0 0.5 100 89 63 42 24 15 12 11 11
1.0 0.25 28 27 23 17 11 8 6 6 6
1.0 0.125 8 8 8 7 5 5 4 4 4
0.5 8.0 13889 7720 3501 1726 1023 880 974 1093 1171
0.5 4.0 4516 2895 1417 695 357 247 225 240 244
0.5 20 1346 1003 561 283 136 89 70 64 65
0.5 1.0 377 319 211 117 59 39 27 24 22
0.5 0.5 102 95 74 48 27 17 12 11 10
0.5 0.25 28 27 25 19 13 8 7 6 6
0.5 0.125 8 8 8 8 6 5 4 4 4
0.25 8.0 17378 9978 4092 1944 1017 833 936 1092 1166
0.25 4.0 5194 3725 1805 812 380 249 225 241 242
0.25 2.0 1455 1205 741 359 173 93 71 66 65
0.25 1.0 391 354 269 160 74 43 28 23 22
0.25 0.5 103 99 86 63 38 22 14 12 11
0.25 0.25 28 28 27 23 16 10 8 7 7

0.25 0.125 8 8 8 8 7 5 5 4 4
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steps of 1/16 from 8/16 to 32/16. In general, the relationship between the
normalized force PSD Wgp(f) and its controlling input parameters is more
complicated for the complex two-SDOF system model than for the simple two-
SDOF model. At smaller values of u, the complex two-SDOF model predicted
force limits are larger for a3 = as = 1 and smaller at @y = ag = 0.25 than are
their simple two-SDOF counterparts. At larger values for i, the complex two-
SDOF model predicted force limits are larger than their simple two-SDOF
model counterparts.

In the limiting case of the load modal effective mass equal to zero, that is
as = 0, the normalized force PSD reduces to 1.

In practice, the modal effective mass and residual mass for both the source
and the load must be known as a function of frequency to implement the above
force limits.

Selection Modal Effective Mass and Residual Mass

The ratio between the interface load F(w) and the enforced acceleration U (w)

is apparent mass, and can be described using the asparagus patch model

(Appendix D) as follows, [39]
Lower modes

Flexible mode Higher —modes

v—1 —_——~
#—;Meﬁ,iH<%>+Meﬁu < ) Z Mg, H( ) (2.403)

w) i=v—+1

where the frequency transfer function H (%) is

o(5) -

and Mg ; is the modal effective mass, w; is the natural frequency, correspond-
ing with mode ¢, and w is the circular frequency.
We can make the following observations from (2.403):

e For lower modes, % tends to zero because the excitation frequency is
higher than the natural frequencies of the modes. This means that the
transfer function H tends to zero, and so does the contribution of the
lower modes to the interface force.

e For higher modes, ! tends to infinity and the transfer function H tends
to one. Therefore, the higher modes tend to behave like a rigid body.

e For a mode with a natural frequency near the excitation frequency
(24 ~ 1), the contribution depends on the amplification factor @ = 1/2¢
as the function H tends to 1 — jQ (or the modulus is very close to Q).
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The complex two-SDOF method used the trends of the transfer function
H to derive the approximation. It assumes that the lower modes do not con-
tribute and that the higher modes behave like a rigid body. The approxi-
mations of modal effective mass and the residual mass become m* = M. ,,
and M = My — >_7_, Mg ;. The approximation is good for low- and high-
frequency ratio “t. However, as the frequency ratio approaches unity, the
approximation becomes less accurate. That is why when a mode has its nat-
ural frequency in the frequency band of interest, no approximation is made
and the mode is considered fully.

A step by step procedure is given to determine the interface force specifi-
cation [39]:

1. Divide the frequency spectrum into frequency bands (usually one-third

octave band)

Select the next frequency band

Create a simple model of the Source

Create a simple model of the Load

Couple both models

Excite the coupled model and get the worst case ratio of the interface

force to the interface acceleration

7. Multiply the interface force/acceleration ratio by the specified accelera-
tion, in relevant frequency band, to obtain the interface force specification

8. Are all frequency band covered, if not go to step 2

9. The complete interface force specification has been obtained

OO N

Example. For simplicity, the mathematical models of “source” and “load”
are similar and illustrated in Fig. 2.46. The complex two-SDOF models will
be generated in the octave band. Calculate the bandwidth Af, the upper
band fy,4; and lower band frequency f..,. Both the “source” and “load” are
fixed in m;. The characteristics of both are shown in Table 2.13. The dynamic
properties of the “source” and the “load” are given Tables 2.14 and 2.15.
The generated complex two-SDOF models are presented in Table 2.16. In
the 63 Hz octave band the modal effective mass of the source is mj = 0,
however, the residual mass of the source is M; = 285.26 kg, the same as for
the 31.5 Hz frequency band. The source acts like a rigid body. In the 250 Hz
octave band the load is partly present, because ms = 0 and M, = 50 kg.

k ko k3 ky
my /\N ma /V\f ms /\N my /\N ms
Source/Load

Fig. 2.46. Source/load
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Table 2.13. Properties “source” and “load”
Mass (kg) Source Load Stiffness (N/m) Source Load
my 200 50 k1 10° 107
ma 200 50 k2 108 107
ms 200 50 ks 10® 107
ma 200 50 ka4 108 107
ms 200 50
Table 2.14. Dynamic properties “source”
Natural Modal Residual mass a1
frequency  (Hz) effective mass  (kg) (kg)
fi 39.08 mj 714.74 M, 285.26  2.51
f2 112.54  mj 66.67 M, 218.59  0.31
f3 172.42  mj 15.65 My 202.94  0.07
fa 211.51  m] 2.94 M, 200.00 0.01
Table 2.15. Dynamic properties “load”
Natural Modal Residual mass 1o %
frequency  (Hz) effective mass  (kg) (kg)
f 24.72  mj} 178.69 M, 71.31 2.51
fo 71.18  ms3 16.67 Mo 54.64  0.31
I3 109.05  ms3 3.91 Mo 50.73 0.07
fa 133.77 mj} 0.74 Mo, 50.00 0.01
Table 2.16. Complex two-SDOF models
Octave band Source Load (o1 Qi "
Hz
31.5 S S 2.51 2.51 0.25
63 f2 0.00 0.31 0.19
125 f2 g 0.31  0.07 023
fo fa 0.31 0.01 0.23
f3 f3 0.07  0.07 0.25
f3 fa 0.07 0.01 0.25
250 fa 0.01 0.00 0.25

2.8.4 Semi-Empirical Method

The semi-empirical force-limit approach is a method to establish force-limits
based on the extrapolation of interface force data for similar mounting struc-

tures, [135].

Wrer(f) = C*M*Wao(f)  f < fo,
Jo

2
Wer(f) = CEM2Woa(f) (—) > fo

f

(2.404)
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Moving base
i(t)

Fig. 2.47. Enforced acceleration of a damped SDOF system

where Wgr(f) is the force spectral density, W, (f) is the acceleration spectral
density, M is the total mass of the test item and C'is a dimensionless constant
which depends on the configuration. f (Hz) is the frequency and fy is the
frequency of the primary mode with a significant modal effective mass. In [190]
some recommendation for C? are given, however, based on limited number of
flight data. It has been observed that in normal conditions C? = 2 might be
chosen for complete spacecraft or strut mounted heavier equipment. C? = 5
might be considered for directly mounted lightweight test items.

Example. The base excited SDOF system is shown in Fig. 2.47. The reaction
force F'(w) at the base caused by the enforced acceleration is given by

o B Wi + 2jCwow ]
Fw) =mX(w) = m<w(2) —w?+ QjCWO‘*’) v

142jC2 .
s
— &2 +2j0E
wd wo

B ( 1+25¢L
o _ 2 it
RS

Joens,

where wy = \/k/m, fo = 5=+/k/m, ( = ¢/2v/km. The excitation and the re-
sponses are in the frequency domain. The PSD of the reaction force Wgp(f)
will be represented in the cyclic frequency domain and expressed in the prop-
erties of the SDOF system and the PSD of the enforced acceleration W4 (f).
The normalized force becomes

1+ 2j¢+
2 .
~ & +2i¢f

1+ ()
(1— )2+ (20 £)

Wer(f) _
m2Wia (f)

The semi-empirical equations to define the force limiting have already been
given by (2.404)
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Table 2.17. Random vibration acceleration loads

Frequency (Hz) Acceleration power spectral density W (f) (g°/Hz)
2050 3 dB/oct.
50 0.05
300 0.05
300-2000 —3 dB/oct.
Overall 6.48 Grms
Wrr(f) 2
_EEVT o <
m2Wuu(f) f—an
Wrr(f) 2 ( fo ) ?
———=C" = > fo.
m?* Wi (f) f
We take the following values for the parameters are assumed:
e (=0.05
L] f(] = 150 HZ,
e m =25 kg,
e ¢g=9.81m/s?,
o (C?=5.

The PSD of the enforced acceleration is defined in Table 2.17.

The objective of the calculations is to obtain the notch-curve. The notch-
curve will be applied to the PSD of the enforced acceleration Wy (f) in such a
way that the specification of the force limiting will be met. In that framework
the following calculations and visualizations (Fig. 2.48) are carried out:

Visualization of the PSD of the enforced acceleration Wi (f).
Calculation and visualization of the PSD of the force limited interface
force. Maximum PSD interface force is 15036 N2 /Hz.

e (alculation and visualization of the PSD of the dynamic interface force.
Maximum PSD dynamic interface force is 303 484 N2 /Hz.

e Calculation and visualization of the notch curve. Depth of the notch (notch
curve) is 0.0495 at f = 150 Hz. The minimum PSD of the notched enforced
acceleration is 0.0495 x 0.05 = 0.0000257 g2 /Hz.

Problems

2.25. For a simple 2DOF system (Fig. 2.40), the ratio of the interface force
spectrum Wrp(f) to the interface acceleration spectrum Woo(f) (@ = 1)
given by [174]

Wrr(f) _ 1+HAGH)

miWaa(£) {1 = (£)212 +4G3(£)*
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T T T T T T
2

4
10 PSD Enforced accelgr%tion Frequecy (Hz) Notgf?curve 10
PSD Dynamic reaction force
PSD Force limited specification
Fig. 2.48. Calculation of notch curve
Table 2.18. Random vibration acceleration loads
Frequency (Hz) Acceleration spectral density W,o(f) (g°/Hz)
20 0.0104
? dB/oct.
50 0.0637
800 0.0637
? dB/oct.
2000 0.0104
Overall ? G'rms

where (o = Mﬁ7 fo= %, /E2 and ms is the mass of the load. Prove this

mo
relation. Hint: think about the expression for the modal effective mass of a

base excited SDOF system.

2.26. The qualification random accelerations are specified in Table 2.18. Cal-
culate the slopes between 20-50 Hz, 800-2000 Hz and the Grms value of
the spectrum. The test item placed on the shaker table has a mass M =
50 kg, and during the low level sine sweep test the first significant resonance
frequency measured is fy = 125 Hz. Establish the force-limit specification
Wrr(f) (N?/Hz), between 20-2000 Hz, for that test item, by applying the
following relations:
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Force-limit specifcation

WEF (NA2/Hz)

1 T 1T T T T L
10 1 2 3 4
10 10 10 10

Frequency (Hz)

Fig. 2.49. Force limits

Wrer(f) = CPM*Woo(f) £ < fo,

2
Wer(f) = CPM*Wau(f) <J;?> f> fo,

where C' = 2 and W, (f) must be converted into (m/s?)?/Hz (g = 9.81 m/s?).
Answers: £5.95 dB/oct., 8.9 G s, Fig. 2.49.

2.27. This problem is based on information given in [97]. The KOMPSAT-
IT earth observation satellite of 800 kg has a Multi-Spectral Camera (MSC)
as a main payload (P/L). The MSC has a mass of 76.7 kg. The force limit
specification was established by applying the simple 2DOF model in Fig. 2.44
(Q = 5). The lateral modal effective masses for the source m; and the load
my are calculated by the finite element method. The results of the calculation
are presented in Table 2.10. The semi-empirical force-limit method will be
applied to establish the force limit specification (2.404). Define the following
parameters fo and C? (Q = 10).

Answers: 250 Hz, 1.1.

2.9 Analysis of Narrow-Band Processes

In this section some interesting properties of narrow-band stationary random
processes will be discussed:
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We(f) Time histories

Power Spectra E(t)

k t

A R

VIRVIRVS

Harmonic

Wy (f) = [H(OPWe(S) | ()

AU
VIR

Narrow band

fo T=

1
fo

Fig. 2.50. The relationship between spectrum of input and spectrum of output

e Number of crossings per unit of time through a certain level [13]
e Fatigue damage due to random loads.

Besides the rms value of the response of deterministic structures exposed
to random forces, these properties are important for further investigation of
strength characteristics.

Narrow band responses represent the filtered response of a few modes,
sometimes only one dominant mode. This illustrated in Fig. 2.50. The system
shows dominant response characteristics at one natural frequency fy, which
means the FRF H(jw) peaks around that natural frequency. The systems acts
like a filter and lets pass only responses around the natural frequency fy pass;
the response is called narrow banded.

2.9.1 Crossings

Consider the event that is a stationary process x(t) crosses the level « from
below with a certain positive velocity @(t) = wv(t). This is called a crossing
with a positive slope. This is illustrated in Fig. 2.51.

N, (7) is the number of expected crossings for a time period of 7. The
random process z(t) is stationary, so the number of expected crossings does
not depend on the time at which the process starts. The sum of the number
of crossings at level a (with positive and negative velocity) will be a linear
function of time, hence

Nao(r1 + 72) = No(71) + Na(72). (2.405)
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x(t)

a+dao |-
a l

Fig. 2.51. Positive crossings

The number v of positive crossings per unit of time, that the signal x(t)
will cross the level a with a positive slope (positive velocity), is defined by

Ni(r)=vlr (2.406)

The joint probability that the values z(t) and v(¢) are between certain
values, for all times ¢, is defined as

fla, B)dadp = Prob(a < z(t) < a+da, B <v(t) < 8+ dpF). (2.407)

The cumulative joint probability is defined by

atda ﬁ—i—dﬁ
F(a+da,f+dp) — / / f(z, &)dzdi, (2.408)

or

0*F (o, )

Fla+da,f+dB) — F(a,B) = 9000

———2dadp = f(a, B)dadB, (2.409)
where f(«, () is the joint probability density function and F'(«, 8) the cumu-
lative joint probability function.

Equations (2.407), (2.408) and (2.409) define the time dr the signal z(t)
is in the interval [a a + da] with a velocity &(t) = v(t) ~ .

The number v} of expected positive crossings per unit of time through
the interval [o, @ + da] with a velocity v(t) = (3 is estimated by dividing the
amount of time spent inside this interval by the time required to pass this
interval. The time dr to pass (up or down) the interval [o, a + da] is

da
dr = = (2.410)
J&]

The amount of time the signal z(¢) is in the interval [a, o + da] with a
velocity in the interval [3, 5 + df] is f(«, B)dadB. The expected number of
crossings (up and down) v, (8) per unit of time through the level a with the
velocity v(t) = || is

1.V _ 51, 5)a (2.41)
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The expected number of crossings (up and down) v, per unit of time through
level oo with all possible velocities is

vo= [ Iolsa. )5, (2.412)

If we assume the velocity v, (3) > 0, then the expected number of positive
zero crossings v is (2.412)

W=y 0; 81, B)dB. (2.413)

The Gaussian distribution can be used in (2.407), i.e. the joint probability
density function is
2 -2
1 6(— 307 " 307)

2004

Substituting (2.414) in (2.413), and performing the integration, we find

(2.414)

1 [ 1 (-2 25 o5 -2
= 78 275 g3 = 28 ¢ 202 2.415
Ya 2 /_OOBQ’ITO'QO'ﬁe Z 27r0ae ’ ( )

In general, we take zero mean values for both the z(t) and @(t). The process
x(t) may be any kind of response in the structure due to random loads, i.e.
internal forces, stresses, etc.

The number of zero positive crossings (zero up crossings, apparent fre-
quency, characteristic frequency) vy can be obtained from (2.415) with

x(t) = 0 and the spectral moments (2.53)

+_ & M2 fooo fQWz(f)df
Y T oo, Nme WL (hdr (2.416)

Equation (2.415) can also be written as

o _a? _a”
2’; = —me 202 'U(J)re 202 . (2417)

v
2m0,;

The probability density function f(x) =e 277 is a Rayleigh distribution.

Example. For a SDOF system as shown in Fig. 2.14 the variance of the
relative displacement z(t) = z(t) — u(t) given by o, and that of the relative
velocity o; had been obtained in (2.138) and (2.139). The mean square of the
relative displacement z(t) is given by
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Wi
E{z(t)*} =02 = SO

The mean square of the relative velocity 2(t) is given by

E{:(t)*} =0% = %

Again we assume zero average values.
With the aid of (2.416) the number of positive zero crossings per unit of
time (frequency) vy (Hz) can be obtained:

8((27\'fn)

= Jn-

8¢(2mfn)3

The number of positive zero crossings vy is equal to the natural frequency f,,
of the SDOF system, as illustrated in Fig. 2.14.

The following example is illustrated in Fig. 2.19.

Example. Calculate the number of positive zero crossings of the acceleration
of the dofs x1, o and x3 and the spring force in the springs k1, k2 and k3.
The natural frequencies calculated were

69.5745
{fa} ={ 153.7834 3 Hz.
238.3038

The positive zero crossings {vg } of the acceleration of the dofs 7, x5 and
T3 become

92.2923
{vf} =1 1305300  Hz,
173.9503

and for the positive zero crossings {vg } of the spring force of the springs k1,
ko and k3 we get

92.4567
{vf} =< 79.3611 » Hz.
81.3201

The zero positive crossings of the spring forces are of the same order, however,
the zero positive crossings of the acceleration show a deviation of a factor
for two. The integration to obtain the positive zero crossings is done by the
trapezoidal rule with a frequency increment Af = 0.2 Hz.
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2.9.2 Peaks

Consider a stationary Gaussian process, x(t), having a zero mean u, = 0 and
a standard deviation o,. The p.d.f of its peaks (including both positive and
negative maxima) at any time instant is given by [59, 114]

N e VA D I VAT L
fo(n) = e ¥+ P e 2%, —oo <1< oo,
OxV 2 (o )\UI
(2.418)
where
o P(u) = erf(u) = %ﬂ . e~ % dz. A numerical approximate method to

calculate erf(u) is given in Appendix B
e m, is the n-th moment of a one-sided PSD function m,, = fooo W (f)df
m2
V= Troma

e )\ is the spectral width parameter, A = /1 — 2

The cumulative probability function (c.p.f.) Fj,(n) of the peaks correspond-
ing to (2.418) can be derived in closed form:

Fy(n) —@( il >— mQS(@){_ (2.419)

pYo -

For a narrow band random process A — 0, and the c.p.f. reduces to a
Rayleigh density (distribution) function

2

_n_
Fp(n) =1—e *7%, (2.420)

and for a very wide random process A — 1 the c.d.f. reduces to a Gaussian
density function

F,(n) = qs(i). (2.421)
Oy
For a sequence of random variables 71, 12, . . . , Ny representing peaks, which

are assumed to be uniformly distributed and statistically independent, the
c.p.f. of the largest peak becomes

Fppon () = Plmax(ny, a2, - .. ,nn) < ] = [Fy(n)]Y, (2.422)

where max is added to P to denote that it is the maximum peak in a sequence
of N peaks.
The c.p.f. of the maximum of a zero mean stationary Gaussian narrow

band random process with a given time interval T is approximated by
2

n

Fy,. () = el Tle 250}, (2.423)
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Peak distribution, mean value (mv), standard deviation (sd)

T T T T

JE— mV/Sx

e Sd/SX

10° 10° 10°* 10° 10° 107 10°

N

Fig. 2.52. Peak distribution

The corresponding mean value 7,4, and the standard deviation o, of the
peaks were found to be

Tmez . [otn(vi T (2.424)

21n I/S_T

and
O Nmaz m 1

S — (2.425)
Oz V6 21n(y0+T)

where the rate of positive zero crossings is v5 = 1/%, and the FEuler con-

stant!® is e = 0.577216. Equations (2. 424) and (2.425) are illustrated in
Fig. 2.52. The number of cycles is N = 1/0

It is well known that the expected number of positive zero crossings is very
close to the expected number of peaks per unit of time for a narrow band
process. If the parameter A of a process become larger and larger, the results
of (2.424) and (2.425) become less accurate. The following approximation can
be used

_ 0 [ee]
maz _ / Fy ()] Ny + / 1~ Fy(m)] N, (2.426)

Oy — o

where 1 — F,(n) can be approximated as follows

19 The Euler constant ¢ is given by € = limnaw[zzzl
[53].

+ —In(n +1)] = 0.577216,
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_ o3
2 2,2
1-F,(n)~V1—-Xe 22 + [n—ie 22 "T} (2.427)

The mean number of up-crossings meqn is given by [47]

Timean = VS_T 1-— )\2, (2428)
where the spectral width factor is A = /1 — 42, and the irregularity factor is
2 .
¥ = mygﬁu, and the spectral moments are m; = fuﬂS(w)dw.

2.9.3 Fatigue Damage due to Random Loads

There are quite a number of failure modes, one of them is the failure of
a structure due to fatigue behavior of materials. Fatigue appears when the
structure is exposed to oscillating loads (stresses). The material will crack
and failure occurs. Fatigue damage is caused by micro plastic deformations
(strains) that will damage the structure of the material locally and accumulate
to micro cracks and ultimately to failure of the structure.

With the Palmgren-Miner rule, one is able to predict the fatigue life of
a structure or part of the structure caused by cumulative damage when the
structure is exposed to oscillating loads or stresses.

At a certain stress level s; (for random vibration the one-sigma value of the
stress) one can take the allowable number of oscillations N; from a so-called
s-N curve. In general, the relation between the stress level and the allowable
number of oscillations, the s-N, or Wéehler fatigue curve, is

N(s)s" = a, (2.429)

where a and b are constants.
In the model of cumulative damage, as formulated by Palmgren and Miner,
the Palmgren-Miner damage function D(t) is

N(t)
D(t)= > AD;. (2.430)
=1

The damage function D(¢) is a nondecreasing function of time that starts at
zero for a new structure and is normalized to unity when failure occur, the
instant of time tq;pure at which D(tfqiure) = 1.

The Palmgren-Miner rule can be formulated as follows: if the i-th cycle
occurs at the stress level s; at which, in accordance with the s-IN curve, N;
causes failure, then the i-th increment of damage is

AD 1 2.431

=N (2.431)
Grouping the cycles of approximately equal amplitude together, we find a
situation in which n; cycles at the stress level s; can be identified. Then each
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ng

N;

n;
D= Z N 1. (2.432)

one of the groups ¢ will produce
becomes

incremental damage. The failure condition

Nothing is stated about the sequence of the stress levels. The number of
positive crossings at the level z(t) = a is given by (2.417)

(o _i _(“_2
v = —e 2% =yfe 2%,
210,

With (2.417) it is possible to calculate the number of peaks n,(a) per unit of
time of z(¢) in the range o < z(t) < a + da:

+
+ oy

np(a)da = v —vl ., ~ —d—o‘da, (2.433)
«

thus the Rayleigh distribution of peaks is given by

np(a) «Q —QTz‘z
fpla) = oF :U—%e 2oz a>0. (2.434)

If one mode is dominant in the responses, the number of peaks n,(«) is about
the same as the number of positive zero crossings n,(a) ~ vy . The total num-
ber of peaks during the time period T is given by n,(a)T. Substitute (2.434)
into (2.432) and replace summation by integration. The expectation of the
failure E{D(T)} becomes

L

da. (2.435)

i

Substituting (2.429), we find the number of allowable oscillations at stress
level s = o is
N(a) =aa™". (2.436)

If both equations (2.434) and (2.436) are substituted into (2.435) we get

o + [e%¢] _ a2
E{D(T)} =T mp(c) do = 20 T / abtle 297 da
o N(a) ao? Jo
+
=L (30,)r <1 + g) (2.437)

a

Equation (2.437) was derived by Miles [127] and is called Miles single degree
of freedom formula. The standard deviation of the occurring stress is denoted
by o, = 0s.

If failure occurs at time 7', so that E{D(T")} = 1, the time to failure can

be calculated: “

L (VAo 1 By

(2.438)
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Table 2.19. Some values I'(z) function

T I'(z) x I'(z)

1.0 1.000 3.5 3.323
1.5 0.886 4.0 6.000
2.0 1.000 4.5 11.632
2.5 1.329 5.0 24.000
3.0 2.000 5.5 52.343

Table 2.20. Value of 91 (b) as a function of the fatigue law exponent b [43, 202]

b 1 3 5 7
0) 0.0414 0.369 1.280 3.72
b 9 11 13 15
) 10.7 315 96.7 308

where the Gamma function I'(z) is defined by [3]

I'(2) z/ t*~tetdt.
0

Some values of the Gamma function are given in Table 2.19.
The expression for the standard deviation op ) is given in [43, 202]

UD(t
E{D(T \/TT’ / (2.439)

where 11 (b) is a function of b that is tabulated in Table 2.20, and ¢ is the
damping ratio of the structure.
The standard deviation o of the fatigue life is derived by [202]

_ hay/hs + Al (2.440)

6z

or

where

hy = I/S_WF(Z) +1),

a 2

o = 32001 r(b )

(2.441)

Example. Given an s-N curve
N(s)s® = a,

where
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o a=156x10%
e b=4

The natural frequency of a SDOF system is f, = 100 Hz, the mass m =
100 kg and the damping ratio is ¢ = 0.05. The cross section of the spring
is A = 107* m2. In the frequency range from 50-500 Hz the PSD of the
base excitation is Wy = 0.1 g?/Hz. Predict the fatigue life of the spring
using the Palgren-Miner cumulative damage rule. The spring constant k is
k = (2nf,)?m = (2r100)? x 100 = 3.948 x 107 N/m. The rms value of
displacement z(t) is about

. M 2
Wi (fn) _\/ 0.1-9.81 = 7.958 x 1073,

Trms ZALRC@nf)? | 8% 0.05 x (27100)3
The rms stress in the spring is

kZrms 3.948 x 107 x 2.469 x 1073
Srms = A = 10-4 = 3.142 x 10® Pa.

The number of positive zero crossings v = f,, = 100 Hz. The time to failure
T, the fatigue lifetime, is

a 1.56 x 103
T=— — = =200 s.
vy (V20,)PT(1+ %) 100 x (V2 x 3.142 x 108)4I°(3)

In general, the predicted fatigue life T' can be expressed as (2.435)

1
B E{D(T)} [~ O‘)da E{D(T }fo np(a)abda’

(2.442)

In (2.442) we can use a probability density function n,(«) of peaks, other
than Rayleigh one, may be substituted.

Problems

2.28. To survive the launch loads a solar array sandwich panel is supported
at 6 hold down points, in particular the steady state accelerations and the
acoustic sound pressure. A circular reinforcement (insert) is built in the sand-
wich panel to transfer the shear loads to the spacecraft at the location of the
hold down points. The insert is bonded to an Al-alloy honeycomb core with
an allowable shear stress Taowasie = 2.3 X 10° Pa. The measured s-N curve
Nsb = q is Ns®>97 = 1.385 x 10%%. The predicted average rms shear stress
Trms along the circumference of the insert due to the acoustic sound pressures
is Tpms = 5.0 x 10* Pa. The number of associated positive zero crossings is
vy = 130 Hz.
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e Predict the fatigue life of the bonded insert/honeycomb core construction.
e Use the 30 approach to calculate the margin of safety (MS) against the
allowable shear stress of the honeycomb core.

Answers: T = 617 s, MS = 0.53.

2.29. The output PSD function Wy of a response is constant in a frequency
band f € [fi, f2] and zero otherwise.

Calculate the number of positive zero crossings v .

Calculate the number of positive zero crossings VO if fo = fi +AF,

Af
i < 1

. /3 -
Answers: 1/ 35212 7 f1 f

2.30. This problem is taken from [14].
Assume a record z(t) from an ergodic random process has a one-sided PSD
function given by

1

0712 5< f <30 otherwise zero.

Define the average number of positive zero crossings Vgr per second in the
record z(t).
Answer: 1/0+ = 13.122 Hz.

2.31. z(t) is a stationary random variable in time with properties shown in
Fig. 2.53. Estimate the mean value of peaks 7,4, of 2(t) and the standard
deviation of peaks 0,4, of x(t) within a time interval T' = 3600 s.

Answers: N0 = 3.3915 m, 0,4, = 0.2301 m.

2.32. A Sea-launch platform is exposed to a storm with waves of standard
deviation, o = 2.5 m and an average wave period Ty = 10 s. Design a platform
height h, so that the deck is flooded only once per T, = 15 minutes. The
diffraction of the waves a neglected, thus the incoming waves are not affected
by the presence of the platform.

Gaussian probability density function Power spectral density

f(x) Wo(f) § m/= x(t)

1/m

f(Hz)

ey =—04m 0 x(m) 1 2 3 4

Fig. 2.53. Properties random process z(t)
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e Calculate the number of positive zero crossings v .

e (Calculate the number of positive crossing at h, V;Lr.

e Calculate h.

. +_ L —
Answers: vy = 15 Hz, v = 555 Hz, h = 7.50 m.

2.33. A 3 mass-spring dynamic system, as shown in Fig. 2.54, is excited at
the base with a constant band limited random enforced acceleration W; =
0.05 g2/Hz in a frequency range f € [5,750] Hz. The discrete masses are
my1 = 150 kg, ma = 200 kg and ms3 = 250 kg. The spring stiffnesses of the
springs are k; = 10® N/m, ko = 2 x 10® N/m and k3 = 3 x 10® N/m. The
modal damping ratio for each mode is ¢ = 0.025 (the amplification factor,
the transmissibility @ = 20). Calculate the rms values (diagonal terms) of the
accelerations {Z}, the rms values (diagonal terms) of the internal loads and
associated positive zero crossings.

Answers with 6 f = 0.2 Hz:

17.3652
{#ms} = { 12.3362 } g.
8.9667

2.5542
{Fiirms} = 10*{ 4.2544 3 N.
5.5106
106.4830

(v} ={ 89.5507 » Hz.
91.8656

Fig. 2.54. 3 mass-spring system, enforced acceleration
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2.34. This problem is taken from [202]. The bending stress response at the
critical point of a structural element under random vibration turns out to be
a stationary narrow-band process with a resonant frequency of 25 Hz and a
rms value og = 5.4 x 10® psi?® (0g = 3.72 x 107 Pa). This element is made of
75S-T6 Al-alloy whose s-N curve is given by

N(S)SG.OQ — (2 x 105)6.09’

where b = 6.09 and a = (2 x 10°)%%. The damping ratio of this element is
¢ = 0.01. Determine the mean and standard deviation of fatigue life, 7" and
o p(t) respectively, for this structural element.

Answer: T' = 757.35 hr, op(;) = 1.39 hr.

2.10 Wide-Band Fatigue Damage

In this section the fatigue life prediction is based on [12, 50, 109]. Dirlik devel-
oped an empirical closed form expression for the p.d.f. of rainflow amplitude
fs(s), based on extensive Monte Carlo simulations of the stress amplitude.
Dirlik’s solutions were successfully verified in theory. Dirlik’s damage model
for a time period T is as follows

E{D(T)} = % /OOO " fo(s)ds, (2.443)

where the s-N curve is given by Ns® = a and the p.d.f. of the stress amplitudes
fs(s) is given by Dirlik and is approximated as a sum of one Exponential and
two Rayleigh densities

D Dy7 2 DiZ g2
L 64 222 o Fm 225 (2.444)

fS(S):Q—\/m_Oe RQ\/m_o \/m_O )

where
e my, is the n-th moment of a one-sided PSD function m,, = [;° f"W,(f)df
e vy is the expected rate of peaks vy, = /774

e v is the irreqularity factor v = i A/ m3
Vp momy
e )\ is the spectral width parameter, A\ = /1 —~2, and is introduced to
classify whether the random process is narrow-banded or wide-banded.
If ¥ — 1 the random process is narrow-banded (NB) and if v — 0 the
random process is broad-banded (BB).

oZ:\/fTO

o X, =1u jm2
m mo \/ ma

20 1 psi = 6894.75729 Pa.
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D1 — 2(XWL_72)

1+~2
_ y—Xwm—D?
e R= T—7—Dy1D?
1—y—Dy+D?
o Dy= R

[ ] l)g =1- 1)1 - 1)2

.« 0= 1.25(A/7DD317D2><R)

Dirlik’s method is widely accepted for fatigue damage calculations. The nar-
row band fatigue damage method (2.437) is conservative. The closed form
solution of (Dirlik’s p.d.f.) (2.444) is given by [12]

vyl b

E{D(T)} = ~=m{ {DlQbF(l +0)
- <\/§>”F(1 + g) (D|R" + D3>]- (2:445)

The equivalent stress range under random loading can be expressed as
[114]

1
3

Sy, = [/OOO(QS)bfs(S)dS} ) (2.446)

Numerical methods to approximate the equivalent stress range are discussed
in [114].

Example. The PSD of a stress response is a constant spectrum W, =
100 MPa?/Hz between 20-120 Hz. Outside that frequency range W, = 0.
The s-N curve is given by N(s)s>%¢ = 1.02 x 10'7 (s in MPa).

e Calculate E{D(T = 1)} and Typ applying (2.437), the narrow-band ap-

proach

e Calculate E{D(T = 1)} and Twp applying (2.445), the wide-band ap-
proach

The spectral moments m,, = fooc f"We(f)df, n =0,1,2,4 become:

o mo= fo " Wo(f)df =10000

o mi= [0 fW,(f)df = 700000

120

o mo= [0 FPW,(f)df = 5.7333 x 107
o my= [0 FW,(f)df = 4.9760 x 10"

From the spectral moments m,, the positive zero crossings 1/3— , the rate of
peaks v, the irregularity factor v and the spectral width parameter can be
derived:

o v =,/m =757188
o v,= /M4 =0931615
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A+
° fy—,%:\/mom = 0.8128
e A=,/1—~2=0.5826

The constants to be substituted in (2.444) are:

o X, =0.7514
e D;=0.1093
o Dy =0.1997
o D3 =0.6909
e Q=0.1367
e R=0.5502

The narrow-band cumulative damage prediction becomes [E{D(T = 1)} =

%(\/ﬁaz)bf(l + £) = 0.0031 and the associated fatigue life becomes Typ =
318.2370 s. The visualization of Dirlik s p.d.f. fs( ) is shown in Fig. 2.55. The
cumulative probability function F'(co fo fs(s) = 1, as expected. The wide-

band fatigue life prediction now becomes E{D( =1)}= %mé [D1Q°I(1 +
b) + (V2)'T'(1 + 2)(D2|R|® + D3)] = 0.0027 and the associated fatigue life
becomes Tpp = 370.4843 s. The narrow-band approach is more conservative
than Dirlik’s wide-band approach.

In [202, 221] a wide band random stresses fatigue damage prediction
method had been proposed based on the narrow band random process fa-
tigue damage prediction as calculated by (2.437), denoted by E{Dnp(T)}.
The wide band fatigue damage is given by

x 107 Dirliks pdf

)

Fig. 2.55. Dirlik’s probability density function fs(s)
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E{Dpp(T)} = ¢(\,b)E{Dn5(T)}, (2.447)

where (), b) is a modification factor which is a function of A and b (N (s)s =
a), A is the spectral width parameter. The modification factor is derived
in [221] and is a mix of spectral shapes and the rainflow method of measure
the magnitudes

p(X,b) = K1 (b) + [1 — K1 (b)](1 = A", (2.448)
where

K1(b) = 0.926 — 0.033b,

2.449
K (b) = 1.587b — 2.323. (2.449)

The standard deviation of the cumulative damage of the wide band process
OBB,D(T) is given by [202]
opB,n(T) = PN\ b)oNE, D(T); (2.450)

where oyp p(r) can be calculated using (2.439).
For a wide-band process, having a spectral width parameter A = 1, the
expected maximum peak is given by [232]

maz _Inln(pg T) + In(4n
ez [otn(vi T nin(vy 7) + In (2.451)
2In(vd T) 24/2In(viT)

This is an extension to (2.424) and the Euler constant is ¢ = 0.577216.

Problems

2.35. Calculate the spectral width parameter A for the following two spectra
as illustrated in Fig. 2.56

e Spectrum 1 is a unimodal spectrum which approaches the narrow band
case when a — b, Wy = 0.04 g?/Hz, a = 50 Hz and b = 75 Hz.

e Spectrum 2 is a bimodal spectrum, W; = 0.03 g?/Hz, a = 50 Hz and
b =75 Hz, Wy = 0.01 g2/Hz, ¢ = 100 Hz and d = 200 Hz.

g*/Hz g*/Hz
Spectrum 1 Spectrum 2
W,
! "

W,

f f

R
a b a b ¢ d

Fig. 2.56. Spectral density models
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2.36. The equivalent stress range is defined as Sj, = [fooo(Zs)bfs(s)ds]%. Two
peak distributions are defined:

e Rayleigh peak distribution (irregularity factor v = 1, spectral band with
2

parameter A = 0, NB process) fq(s) = %67;7,0 < s < 00, and
e Gaussian peak distribution (irregularity factor v = 0, spectral band with
2
1

2mo

parameter A = 1, BB process) fs(s) = e 27, —00 < § < 00.

Calculate the equivalent stress range Sy for each peak distribution.
1

Answers: w =2V2[I'(1+ %)), @ = 2\/§[ﬁf(1 + 5e.
2.37. The equivalent stress amplitude is defined as S, = [[;~(s)" fs(s)ds]b
and the s-N curve is given by N(s)? = a. The expected number of peaks per
unit of time is v, and the duration is 7T'.

Prove that cumulative damage (Palgren-Miner method) E{D(T)} becomes

E{D(T)} = L8ue,

2.38. Consider a stationary random process with a one-sided PSD function

SO7 Wq <w< Wh;
W =
(@) { 0, elsewhere.

e Define the spectral moments mg, my, mo and my.
e Define the bandwidth parameters ¢ and ~.
e Show that when (w, — w,) < %(wp + w,), the process is narrow band.

This problem is taken from [203].

2.11 Practical Aspects Enforced Acceleration

In most cases the random mechanical loads for spacecraft and subsystems
of spacecraft are specified in a very special manner. The PSD values of the
acceleration depend on the frequency (Hz). In general, the frequency range
is between 20-2000 Hz. The specification must be accompanied by the G
value of the random acceleration in the frequency range. An example of a
typical acceleration specification is given below.

20-150 Hz 6 dB/oct

150-700 Hz W; = 0.04 g2/Hz
700-2000 Hz —3 dB/oct
Grms = 7.3 g.

The graphical representation of the random acceleration specification is
shown in Fig. 2.57.
The octave band is between fs and f1 defined by
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Random Vibration Specification

PSD Acceleration glez

Frequency (Hz)

Fig. 2.57. Specification PSD acceleration Gypms = 7.3 g

f2r o (2.452)
f1
The power of 1 denotes the octave band. The number z is the number of
octaves between two frequencies f and the reference frequency fr.f can be
obtained using

f .
= l' .4
i 2% (2.453)

this yields

In(:£)  log(+L)
frg” I (2.454)
In2 log 2
The relation between the PSD values depends on the number of dBs per oc-
tave n (dB/oct) and the number of octaves between two frequencies f and fe.

The relation in dB between W (f) and Wy (frer) is given by

n 10, !
Wi (f) } _ o Moe(zr) (2.455)

101°g{wu<fref> log2

or
n

{%} - (fif) e (fff) (2:456)

If both the frequency f axis and the axis of the PSD function W (f) have
a log scale than the angle m (dB/freq) can be obtained by

Wi (f)
_ log Wi (f) — log Wi (fref) _ log{wu(f,gf)} _n (2.457)
logf - log fref lOg(f‘if> 3

Finally the derivation of the following expression is obtained, a relation
between the PSD functions and the frequencies
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Walh) = Walhr) (1) C Walhey) (- f)m. (2.458)

The total root mean square (rms) value (magnitude) of i(t) is equal to
the square root of the area bounded by the PSD function between frequency
limits f; and f5. This can be written as

f2

The integral (2.459) is in accordance with (2.61). Substituting (2.458) into
(2.459) to obtain the following expression:

Upms = E{UZ

Walf) AL\
\// Wa(f1) f1 Ty = Vel KE) —1}, fi< b

o (£ o= (BB G e

(2.460)

Example. Use (2.460) to calculate the rms value of ii(t) of a typical random
specification. Assume that the test specifies the following values:

e f1=20Hz, f, =150 Hz
o Wu(fg) =0.02 gz/HZ

° m:%:Z.

The PSD value at f; = 20 Hz can be calculated using (2.458)

Wa(f1) = (fg(?) =0.02 <12500> =3.556 x 107* g?/Hz.

The rms value of the base acceleration (t) becomes

. Wa(f2)f2 AN
= P (5) ]

241
0.02 x 150 20
=R (2 = 1.000 g.
\/2+1 [ (150> } 0008

The parameters needed to calculate the G,.,s value of the random accel-
eration spectrum are illustrated in Fig. 2.58.

The specification of the PSD (sometimes called acceleration spectral den-
sity (ASD)) of the enforced acceleration or base excitation can be divided into
three regions:

e Spectrum with a positive slope ny (rising)
e Flat spectrum (slope is zero)
e Spectrum with negative slope ny (falling)
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Spectrum with a Positive Slope

Figure 2.58 shows a rising spectrum with a constant slope n; > 0 between f;
and fy. The constant slope is expressed in decibels per octave. The area A;
can be calculated as follows

T O

where m; = n;/3 and n; > 0 is the increase of the PSD value in decibels per
octave.

Flat Spectrum

For a flat spectrum with a zero slope between fo and f3 with m; = 0 in
(2.461) the area Az becomes

Ay =W (f2)[f3 — fa, (2.462)

as shown in Fig. 2.58.

Spectrum with a Negative Slope

For a falling spectrum of a constant slope ny < 0 between f3 and fy the con-
stant slope is expressed in decibels per octave. The area A3z can be calculated

as follows
W(fs)fs [ (S
Ay = 233 ()4 — 1 mg £ -1, 2.463
o= (R . # (2.463)
where mg = ny/3, and na(< 0) is the decrease of the PSD value in decibels
per octave. Equation (2.463) is not applicable if mg = —1. In that case we

have to calculate the value of Az when lim,,,_,_;. This limit can be found
g*/Hz &

log{W(N)} | ...
11 (dB/ogt)

fi f2 f3 fa

Fig. 2.58. Calculation of G
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Table 2.21. Power spectral density enforced acceleration

Frequency (Hz) PSD (g?/Hz)
10 0.005
100 0.05
500 0.05
2000 0.0125

using L’Hépital’s Rule?! [100]. If u(mg) = (%)m2+1 —1 and v(mg) = mg +1,
then L’Hopital’s rule gives

I3 I3
The G,,s of the enforced random acceleration specification can be ob-
tained, as illustrated in Fig. 2.58, by the following expression

Grms = VAL + As + As. (2.465)

Example. Consider the PSD values of a specification of enforced accelera-
tions as shown in Table 2.21. The G,,,s value of that spectrum is calculated.
The slopes my and my are now calculated

log (0:05 log ( 0:0125
my = g(+%%5) = 1.00, mo = g(+£%) = —1.00.
log(290) log(%507)

The areas Ay, A and A3z become

W (f2)fo AN
n={TERN-(R) e
Ay = W(f2)[fs — fa] = 20.00 g2,

Az = 2.30W(f3)f3 log<%) = 34.62 g%
3

The G,ms value of the enforced acceleration spectrum as shown in Ta-
ble 2.21 can now be obtained using (2.465)

Grms = VA1 + Ay + A3 = 7.56 g.

2 Tet u(a) = v(a) = 0. If there exists a neighborhood of * = a such that (1)
v(z) # 0, except for z = a, and (2) u’(z) and v'(z) exist and do not vanish simul-
taneously, then
u) )
r—a ’U(.’E) T—a U/(.’E)

whenever the limit on the right exists.
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Problems

2.39. The random vibration levels for a certain component are given in Ta-
ble 2.22. Calculate the G,.,s of that specification?
Answer: 14.1 g.

2.40. A PSD spectrum for the enforced acceleration is given in Table 2.23.
Calculate the PSD values of the enforced acceleration at 20 and 2000 Hz and
calculate G,

Answers: W (20) = 0.0833 g2/Hz, W (2000) = 0.0875 g%/Hz, G ms = 18.5 g.

2.41. A spectrum for the random enforced acceleration is given in Table 2.24.
Calculate the slopes (dB/oct) and calculate G
Answers: 6 dB/oct, —3 dB/oct, Grms = 14.7 g.

2.42. Both ESA?? and NASA?3 enforced acceleration specifications are spec-
ified (see Table 2.25). Investigate the severity of both specifications when
exposed to a SDOF system with a mass M = 5 kg and a natural frequency
fn = 140 Hz.

Calculate for both specifications G,
The value of M both specifications have equal G ;.
The value of M for which both specifications have equal maximum PSD
values (g?/Hz).

e Find the worst case random enforced acceleration specification for the
given unit. Explain your choice.

Table 2.22. Power spectral density enforced acceleration

Frequency (Hz) PSD (g°/Hz)
20 0.026

20-50 +6 dB/oct
50-800 0.16
800-2000 —6 dB/oct
2000 0.026

Table 2.23. Random vibration test specification

Frequency range (Hz) PSD (g%/Hz) Grms (8)
20 ?

20-60 3 dB/oct

60-700 0.25 ?
700-2000 —3 dB/oct

2000 ?

22 Buropean Space Agency.
23 National Aeronautics and Space Administration.
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Table 2.24. Random vibration test specification

Frequency range (Hz) PSD (g/Hz) Grms (8)
20 0.0027

20-150 ? dB/oct

150-800 0.15 ?
800-2000 ? dB/oct

2000 0.06

Table 2.25. ESA and NASA random enforced acceleration specifications

ESA ESA NASA NASA
/ (Hz) PSD (g*/Hz) / (Hz) PSD (g”/Hz)
20-100 3 dB/oct 20-50 6 dB/oct
100-400 0.05 522 50-800 0.16
400-2000 —3 dB/oct 8002000 —6 dB/oct

e What is the 30 reaction force for both specifications for the given unit, if
Q =10 and g = 9.81 m/s??

Answers:

o ESA Grps = 31.5,/0.058E2 g NASA Gy = 14.1 g
e M =153kg

e M=176kg

e ESA

e ESA Freuction = 3150 N, NASA Firepction = 2760 N

2.43. In a structural mechanical test plan for the CanX-1 satellite (Space
Flight Laboratory, SFL, University of Toronto Institute of Aerospace Studies,
UTTAS) the following random vibration load were specified (see Table 2.26,
log-log scale), however, the G,,s was missing. Calculate the G ;.

Answer: 6.8 g.

2.12 3-Sigma Strength Verification

In this section the following items about the 3-sigma approach will be dis-
cussed

Strength verification

Estimation of payload random vibration load for structure design
Random vibration reduction on the basis of design loads

Shock response spectrum (SRS) random enforced acceleration
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Table 2.26. Random vibration spectrum

Frequency (Hz) Power Spectral Density (g”/Hz)
20-46 0.000312
52-98 0.019656
102-140 0.22776
144-180 0.00156
185-250 0.2808
256-464 0.00156
472-535 0.156
537-866 0.00156
972-1020 0.0702
1030-1940 0.00156
1940-2000 0.00156
Overall Grns 7 (g)

2.12.1 Strength Verification

When fatigue and fracture are ignored it is very common to use the 3-sigma
(30) values of the responses (displacements, acceleration, stresses, forces, etc.)
for verification against the more or less static requirements like a maximum
excursion at a certain location, maximum design loads (load factors), buckling
loads, etc., [222, 132]. However, Gumbel in [76] stated the following about the
“Three-sigma fallacy”:

“The founders of the calculus of probabilities were too occupied with the
general behavior of statistical masses to be interested in the extremes. The
oldest remarks about such values seem to be due to Fourier who stated that,
for a normal distribution, the probability to exceed 3v/2 times the standard
deviation is about 1 in 50000, and could therefore be neglected. From this
small probability, the erroneous conclusion was drawn that about three times
the standard deviation should be considered as the maximum for any statis-
tical variate, for any number of observations. Helmert (1877) stated, on the
contrary, that the probability of surpassing a values depends upon the num-
ber of observations. The idea that three times the standard deviation should
be considered as maximume-irrespective of the number of observations and the
distribution-still prevails among most “practical” people. It is even advocated,
although in vague form in the classical books by Charlier (1920) and by Yule
(1937). However, the fallacy of this “kitchen” rule is obvious. If the initial
variate is unlimited, the largest value is unlimited too, and if the sample size
is increased, the largest value encountered will likewise increase. The question
is HOW MUCH? For very small sample sizes, the three sigma condition is
too strong; for the very large sample sizes, it is too weak.”

The calculated rms value is equal to the 1o value if the average or mean
value is u = 0, then, for the signal x(¢) the covariance function C,,(7) is equal
to the autocorrelation function R, (7), thus
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Crz(0) = Ry (0) = Uz + .Ui = 0320 = x?‘ms'

The probability that the Gaussian signal z(t) < 30, with the normalized

variable z = £=£= is given by
Tx

Lo e
Prob{z(t) < 30} = NG /_OO e 2 dz = 0.99865, (2.466)
thus
1 2
Prob{z(t) > 30} = —/ e dz = 1—0.99865 = 0.00135.  (2.467)
VT 3

The probability that the Gaussian signal is |x(t)| > 30,, with the normal-
ized variable z = =£2 is given by

or

13 .2
Prob{|x(t)| < 30} = —/ e dz =0.99730, (2.468)
7wl
thus

2 .2
Prob{|z(t)| > 30} = 7/ e 2 dz=1-0.99730 = 0.00270. (2.469)
™ J3

Example. The strength analysis of a 30 worst-case design will be traced in
this example.

A mass M = 40 kg is mounted to the free end of a fixed-free beam.
The beam has a bending stiffness EI and a length L = 1 m. The fixed-
free beam with attached mass is excited at the base with a constant random
acceleration with a PSD W; = 0.40 g2/Hz (1 g = 9.81 m/s?). The lowest
natural frequency of the is f,, = 25 Hz. The fixed-free beam with attached
mass is illustrated in Fig. 2.59. The cross section of the beam is an I-section
with the height of the profile i, a width b = % and a constant thickness in
web and flanges 4=. The material of the beam (Al-alloy) has an allowable
yield stress F, = 250 MPa, and Young’s modulus & = 70 GPa. The dynamic
amplification factor @ = 10 (¢ = 0.05). The 3-sigma approach will be applied

cross — section

al A EI v . )
’ >|le h % 321
v
L 5 i
-

Fig. 2.59. Fixed-free bending beam with tip mass
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to verify the strength capability of the fixed beam at A, the point where
the maximum bending moment Mye,q is expected. The fixed-free beam is
represented by a SDOF system with mass M, the associated stiffness can be
obtained applying an unit load a the tip and using the Myosotis equations
[80]. The deflection of the beam due to unit load at the free end is § = SLTSI;
the stiffness of the spring is

The second moment of area of the I-section is given by
h3t AN

The fundamental natural frequency of the fixed-free beam with attached mass
at the free end can be calculated by

1 k 1 3ET
= —/— = —/ == Hz.
=5V a1 = 2V 2
The required second moment of area I can now be calculated

, ML?

R 4.7 % 1079 m?.

1> (27 fn)

This gives a section height h = 154 mm, the section width b = 77 mm and the
thickness of flanges and web is ¢ = 3.85 mm. The resistance against bending

1S

2  h3
= =_—=61x10""m".
b 60 "
We obtain the rms acceleration of the attached mass using Miles’ equation

Arms = 981“ ganW =122.95 m/sQ.

The bending moment at A is given by

Myena = MaymsL = 4.917 x 10> Nm.

The bending stress at A at the extreme fibre distance % is

Mbend

CTbend = = 6.0475 x 107 Pa.

With the 3-sigma approach the margin of safety (MS) of the bending stress
Opend With respect to the allowable yield stress
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T p—

= ———1=0.034.
3 X Obend

The design is acceptable. The 3-sigma bending stress 30pe,q is used as “static”
stress at point A and is compared with an allowable yield stress F,. The MS
value tells us about the margin which is left with respect to the allowable
stress.

2.12.2 Estimation of Payload Random Vibration Load Factors for
Structure Design

In their paper [30] Chung et al. discussed six estimation methods to determine
30 vibration load factors related to random enforced vibration for designing
secondary structures:

Miles’ equation,

Vibration specifications,

PSD integration over the full bandwidth, 20 — 2000 Hz,
Half power point approach (derived from measured data),
Mass participation approach,

PSD integration over a reduced bandwidth, 20 — 300 Hz.

XA

Miles’ Equation

This approach assumes the system has a dominant natural frequency (with
respect to structural response) and the 30 peak random vibration load factor
X can be obtained using Miles’ equation (2.149)

(2.470)

where ; is the amplification factor, normally for random response analysis
Q; = 10 is taken, f; (Hz) is the dominant natural frequency and Wy (f;) g?/Hz
is the value of the enforced vibration acceleration PSD at the frequency f;.
The dominant frequency can be determined with the aid of the principle of
the modal effective mass (see Appendix D).

Vibration Specifications

This approach uses the Gns value of the design specification directly. The
load factor X can be obtained from the following equation

X =3Gms. (2.471)

This method is very conservative because it assumes all the energy within the
frequency band contributes to the random vibration loads.
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PSD integration over the Full Bandwidth

This approach uses the analytical or measured PSD data Wi, (f) to derive
the random vibration load factor X. It is assumed that all modes op to 2000 Hz
contribute to the random vibration loads.

2000
X=3 / Wresp (f)df - (2.472)
20

This method is less conservative than the vibration specification method in
predicting the random vibration load factor because it uses the responses
(stress, acceleration) of the structure instead of the enforced acceleration to
which the structure is exposed. However, it still assumes that the high fre-
quency modes contribute to the structural random vibration load.

Half Power Point Approach

The half power point bandwidth A fgp is used to calculate the random vibra-
tion load factor from test data. The fundamental frequency f, and the PSD
amplitude Wyesp maez at that fundamental frequency can be easily extracted
from the test data. This is illustrated in Fig. 2.60. The random vibration load

factor X is
O W’resp mazx
X=3 #Af}[p = 3\/ Wresp,HPAfHP~ (2473)

Mass Participation Approach
The mass participation approach is based on (2.219), however, the 3o philos-
ophy will be applied, thus

Wiesp(f) g/ Hz

w respmart - - - - —-—----

WTES])J?I{Z:I‘

R ERRREEE -t Weesprip

[ (Hz)

Afup

Fig. 2.60. Half Power (HP) approach
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Fk,3o’,base =3 Zl|: eff, 1k2szz uk(fz) :Mtot,ka:a k=1,2,...,6,
(2.474)
where F; rms.base is the interface force caused by the enforced acceleration iig,
k=1,2,...,6 with PSD values Wy 1(fi), fi, ¢ = 1,2,...,n are the natural

frequencies, Mot 1, kK = 1,2,...,6 are the total mass or second moments of
mass, Meg ik, @ = 1,2,...,n, k = 1,2,...,6 are the modal effective masses,
n is the number of modes considered, @);, ¢ = 1,2, ...,n are the amplification

factors and X , are the design load factors. It will be assumed that the inertia
loads Mot s Xk, k= 1,2,...,6 will lead to the same interface forces. The load
factors can now easily be calculated using (2.474):

n

2
O Z[gMeﬁ’ik = £iQ; uk(fz)}7 k=1,2,...,6. (2.475)

Mtot,k —
i=1

The process of estimating the random vibration load factors X, is as fol-
lows:

1. Determine the modal effective masses of each mode within the bandwidth
of interest, in general, from the finite element modal analysis.

2. Determine the corresponding random vibration level of each mode from
the specification.

3. Compute the peak load associated with the random level obtained in 2
for each mode by using Miles’ equation.

4. Multiply the peak load obtained in 3 by the modal effective mass deter-
mined in 1 for each mode.

5. The composite random vibration loaf factor is determined by the root-
sum-square (RSS) of the mass weighted peak load of each mode computed
in 4, and normalized by the total mass using (2.475).

PSD Integration over a Reduced Bandwidth

This approach uses the analytical or measured PSD data Wi, (f) to derive
the random vibration load factor X. It is assumed that all modes up to 300 Hz
contribute to the random vibration loads. The random vibration load factor

is defined as follows
300
=3 / Wiesp (f (2.476)
20

From several acoustic tests it has been noticed that the accumulated strain
generally stabilizes below 300 Hz, while the rms acceleration is still building

up
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Example. Figure 2.61 shows a simple NDOF dynamic system, to which the
3-sigma approaches is applied. This system is exposed to an enforced ran-
dom acceleration, for which spectrum is given in Table 2.27 and visualized in
Fig. 2.62. The number of discrete masses m = 1 kg and the number of spring
elements k = 107 N/m is set to N = 50. The total mass is My,; = 50 kg. The
modal damping ratio ¢ = 0.05 is constant for all N modes.

The modal effective mass is plotted against the natural frequency in
Fig. 2.63. The five lowest natural frequencies and associated modal effective
masses are listed in Table 2.28. The PSD values of the responses, and ac-
celerations (g?/Hz) of the first discrete mass and Nth spring force (N?/Hz),
respectively, are shown in Fig. 2.64. The increase of the rms values vs the
frequency are shown in Fig. 2.65. Notice that the convergence of the rms
acceleration is slower than the convergence of the spring force.

The rms acceleration per discrete mass (1 — N) and the rms force in the
spring elements (1 — N) are shown in Fig. 2.66. This completes the response

|

=
I

Enforced random acceleration

Fig. 2.61. NDOF dynamic system

Table 2.27. Random vibration specification [30]

Frequency (Hz) PSD ¢*/Hz
20 0.018

20-125 1.68 dB/oct
125 0.05

300 0.05
300-2000 —3.12 dB/oct
2000 0.007

Overall 6.33 Grms
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Random Vibration Specification

|
®
T

PSD Acceleration gz/Hz
5

10' i i
10’ 10° 10° 10*
Frequency (Hz)

Fig. 2.62. Random vibration specification, Table 2.27

Modal Effective Masses

Modal effective mass (kg)

0 1000 2000 3000 4000 5000 6000 7000
Natural frequency (Hz)

Fig. 2.63. Modal effective mass vs natural frequency (Hz)

Table 2.28. Modal effective mass vs natural frequency

Mode # Natural frequency (Hz) Modal effective mass (kg)
1 85.1598 34.9278
2 195.4970 6.6277
3 306.5329 2.6958
4 417.7903 1.4512
5 529.2051 0.9045

analysis of the N-SDOF system, as illustrated in Fig. 2.61, excited by enforced
random acceleration.

The complete response analysis will be compared to the approximate 3o
calculation of the load factors X. This is shown in Table 2.29.
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PSD acceleration first mass x10° PSD force in N spring element
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(a) PSD acceleration (b) PSD force
Fig. 2.64. PSD responses
Increase rms acceleration in first mass Increase rms force in N spring element
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Fig. 2.65. Rms responses
Rms acceleration discrete masses, 1-N Rms force in spring element, 1-N
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(a) Rms acceleration discrete masses  (b) Rms force spring elements

Fig. 2.66. Rms responses, discrete masses, and spring elements

Observations

Miles’ equation. As expected, Miles’ approach gave a conservative estima-
tion of the random vibration load factors with the assumption of constant
damping for all modes and one dominant mode containing most of the
energy of the system.
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Table 2.29. Approximate 30 approaches
Method rms X (30) rms force
acceleration (g) Nth spring element (N)
masses (g)
Miles’s equation
1 mode 22.04
Specification 18.96
Complete solution (20-2000 Hz) 6.35-21.64 2632.2
(all modes) Fig. 2.66(a) Fig. 2.66(b)
Half power
1 mode 19.65
Mass Participation (all modes) 16.45  2689.4
(14 2+ 3 modes) 16.35
Complete solution (20-300 Hz) 3.59-17.78 2602.1
(all modes)
White noise (0 — co Hz) Fig. 2.67(a) 3017.9
Lyapunov equation page 78 Fig. 2.67(b)

(0.05 g*/Hz, all modes)

Rms acceleration discrete masses 1-N, white noise Rms force spring elements 1-N, white noise

22 3000
20 2500

z
18 5 2000

Rms acceleration (g)

s
i

16 2 1500
&

14 : 1000

12 . 500

o 10 20 30 40 50 0 10 20 30 40 50
Number # discrete mass Number # spring element

(a) Rms acceleration discrete masses  (b) Rms force spring elements

Fig. 2.67. Rms responses discrete masses, spring elements, white noise

Vibration specification approach. This is the most straightforward ap-
proach for estimating the random vibration load factors.

Half power approach. This is similar to Miles’ equation, however, instead of
using the spectrum and the amplification factor @), the half power method
uses the response power spectrum density function and the bandwidth cor-
responding to the half power points to estimate the random vibration load
factors. To compute the load factors, apply this approach to every mode
below 300 Hz. To obtain the composite random vibration load factors,
the root-sum-square can be applied. The random vibration load factors
may be weighted by the relative modal effective mass (Mg /M,:) of each
mode.

Mass participation approach. This approach provides a reasonable way
to estimate the random vibration load factors if a mathematical (finite
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Table 2.30. Derived random vibration load factors for MTSAS [30]

Directions Miles’ Spec 0-2000 Hz 0-300 Hz Half power Mass
equation bandwidth bandwidth point participation

X-load factor (g) 29.1 19.0 26.3 14.5 8.5 15.7

Y-load factor (g) 23.0 19.0 42.1 17.7 6.9 14.7

Z-load factor (g) 18.9 19.0 38.8 12.0 3.0 9.4

element) model is available. This method takes into account the dynamic
behavior of each mode, and the significance of each mode. To compute
the composite random vibration load factors we use the individual modes
below 300 Hz.

e Complete solution (20-300 Hz). This approach is a modification of the
complete solution over 20-2000 Hz bandwidth for the estimation of rea-
sonable random vibration load factors. The modification is based on the
assessments of the strain gauge data measured from several cargo element
level acoustic tests. This approach can be employed to either analytical or
test derived PSDs. In general, the random vibration load factors estimated
from this approach is about 50% of those derived from the full bandwidth
approach.

e The white noise (max. PSD) enforced acceleration will of course give en-
velope response characteristics.

In summary, we recommend the employment of the 300 Hz cut-off bandwidth
to estimate the random vibration load factors for structural design. The gen-
eral procedure is to obtain either analytical or measured PSD functions first,
then estimate the random vibration load factors based on integration of the
PSD functions using the 300 Hz cut-off frequency.

Reference [30] describes a case study about Module and Truss Structure
Attachment System (MTSAS). The random vibration specification levels for
MTSAS are given in Table 2.27. The final results of the several approaches
and methods are presented in Table 2.30.

2.12.3 Random Vibration Input Reduction

The quasi-static design limit load applied for the design of equipment and
instruments is mostly based on experience from previous spacecraft projects
and is defined, in general, using the mass acceleration curve (MAC). Such
a curve can be derived from analytical and flight data, and includes the ef-
fects of both transient and mechanically transmitted random vibration [132].
The design loads (factors) are dependent on the mass of the equipment or
instrument. The load factors (inertia loads) v (g) define the interface loads
between the equipment, instruments and the spacecraft to which the boxes are
mounted. The maximum random interface loads will occur at the resonance
frequencies or approximately at the natural frequencies. If the random inter-
face load is higher than the interface loads caused by the design limit load the
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input acceleration levels may be reduced (notched) at resonant frequencies.

However, it must be pointed out that notching of vibration input must be

always negotiated with the customer. The notch philosophy is based on [110].
The notch criteria with regard to the design limit loads is defined as

fmr(lfc
3\/ WFmtcrfacc (f)df S Mtotal’}’a (2477)
fmm,

where Wr

interface

(f) the PSD function of the random interface loads, f, the
minimum frequency and f,,.,; the maximum frequency of interest in the fre-
quency band, My, the total mass of the equipment or instrument and -~y
the load factor. Equation (2.477) means that the 3¢ (3 x rms) value of the
interface force must be less than or equal to the interface load caused by the
design loads.

The expected 30 peak value of the interface force Fipierface is based on the
mass participation method (2.215)

n

m
Finterface =3 Z |:M§ﬁk§fk:QkWu(fk:)
k=1

S Mtotal’% (2478)

where n is the number of modes taken into account. The sum of all modal
effective masses Mg 1 is equal to the total mass Myq of the system. If m
(m < n) modes are considered, residual mass M esiduar must be taken into
account

m
Mresidual = Mtotul - Z Meﬁ,k- (2479)
k=1

Equation (2.478) must be adapted as follows:

m Frmas
™
Finterface = 3,| Y [M;"ﬁkakaW;(fk)] M2 e | WD
k=1 Fmin
< Mtotal’}/a (2480)

where W} (fi) and Wi (f) are the adapted enforced acceleration PSD, Wy (fx)
the original PSD function, and fj are the natural frequencies. The random
enforced acceleration spectrum may be reduced (notched) when the 30 ran-
dom interface loads are higher than the quasi-static interface loads based on
the design loads.

The modal power contribution per mode with natural frequency fj is
related to the original PSD value of the enforced random acceleration Wy (fx).
The power is defined by the force Mg 1&rms,i times the velocity &g k. The
modal power contribution is given by
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Meﬁ,kirms,kirms,k = OWu(fk)a (2481)

where &5 1, is the rms acceleration at the interface, &5 1 the rms velocity
at the interface, C' is a constant and Wj(fx) the original PSD function of the
enforced acceleration at the natural frequency fi. Rewrite (2.481) as follows
..2
Mg sk — oW f) (2.482)
eff ,k 27Tfk; u\Jk)- .
By introducing of Miles’ equation for the rms acceleration Z(t), we obtain the
following expression:
5RQEWi(fr)  Meg i .
Mgy 2 = —LEQuW (fr) = CWalfr)- (2.483)
27Tfk 4
The constant C' is the same for all modes in the frequency range of interest
and can be written as

Mg 1 QW5 (f) ~
’ illk) _yo—¢ k=12 m 2.484

If all n modes are considered, the residual mass M esiguq = 0 and (2.480)
becomes

n

3 Z |: eff .k 9 kakW (fk):| < Mtotal')/- (2485)

k=1
After substituting (2.484) into (2.485)we obtain the following relation:

8\ 5| 2o Mgy e fiWa (fo)] < Miotar (2.486)

k=1

Equation (2.486) gives the constant C as

(M~y)*
S (Mg e fr-Wa(fr)]
If the residual mass is not negligible (say Mesiduar > 0.2Mtotar) (2.480)
must be applied to obtain the reduced PSD of W (fi) at the natural frequen-
cies fr. This is an iterative process.
The width of the notch around fj (if needed) is dependent on the ampli-
fication factor Qy:

C= (2.487)

Afk:% k=1,2,...,m, (2.488)
Qk
and the slopes p; of the reduced PSD function W} around f; are approxi-
mately

pr = FQ dB/oct. (2.489)

That is three times the half power band width.
The resonant frequencies and associated amplification factors may be ex-
tracted from a low level sine sweep test with a low sweep rate.
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Example. A little unit has a mass M = 30 kg. The three resonant fre-
quencies (/ the natural frequency) with significant modal effective mass are
fn = 120,180, 250 Hz respectively. The associated modal effective masses are
Mg = 20, 8, 2 kg. The amplification factor for all modes is ¢) = 30. The
design load factor v = 25 g. The specified PSD of the enforced acceleration
is Wi = 0.2 g2/Hz. Define the notch levels at the resonant frequencies such
that no over-testing with respect to the static design load factor + will oc-
cur.
The constant C (2.487) becomes

(M~)?
O S et Mgy i W (fi)]

Using (2.484) we can calculate the new notched value of the PSD;

_ CWi(fr)
Mg 1 Qr’

Thus the notched values of the PSD can be obtained and are as follows
Wi (120) = 0.0153, W;(180) = 0.0382 and W;(250) = 0.1528 g2 /Hz.

The bandwidths at the resonant frequencies will be in accordance with
(2.488):

C = = 45.8396.

Wi () =123

Af =12,18,25 Hz

respectively.

2.12.4 Acceleration Response Curve

Power Spectral Density input specification W (f)(g?/Hz) (levels) are some-
times converted to response acceleration plots to be establish the input loads
to each of the assemblies (subsystems). The conversion from PSD to acceler-
ation response plots is based on the following assumptions:

e Single degree of freedom system
e Amplification factor @ = 10 (¢ = 0.05), for all units

o Acceleration is defined by a(f) = /5 fQWa(f)(g)

In order to apply the acceleration curve, the natural frequencies of each sub-
system must be determined. Corresponding accelerations levels are estab-
lished and applied as a static (inertia) load to determine the stress distri-
bution.

Example. A random enforced acceleration requirement is given in Table 2.31.
The corresponding acceleration response curve (RAC) is illustrated in
Fig. 2.68.
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Table 2.31. Component “Random vibration levels”, M < 22.7 kg [73]

Frequency (Hz) Wi (f) ¢*/Hz
20-50 6 dB/oct
50 0.16
800 0.16
800-2000 —6.0 dB/oct
Overall 14.12 G s
Acceleration Response Curve

10

101

10

10 1 2 3 4

10 10 0 10

Frequency (Hz)

Fig. 2.68. Acceleration response curve

2.12.5 Random Response Spectrum

The relative response z(t) = z(t) — u(t) of an SDOF system exposed to an
enforced acceleration ii(t), with zero initial conditions, is given by

t

2(t) = — / i(r)(t — 7)dr, (2.490)

— 00

where h(t) = e=J«t % is the damped impulse response function with damp-
ing ratio ¢, #(t) = —2Cwoz(t) — wd2(t), is the absolute acceleration, wy the
natural frequency of the SDOF system and wg = wg+/1 — (2 the damped nat-
ural frequency. The maximum absolute responses |z(t)|, |(t)| and |Z(¢)| of the
SDOF system at a natural frequency fo = 52 (Hz) are the values of the shock
response spectrum (SRS) at the frequency fy for the displacements, velocity
and acceleration, respectively. Varying the values of the natural frequencies
fo in a frequency range between a minimum frequency f.;, and a maximum
frequency fmae Will give the relevant SRS functions of response. In general,
within the framework of the design of spacecraft structures, instruments, etc.
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the SRS of absolute accelerations is of the most interest, because this type of
SRS is specified in the user’s manual of the launch vehicle.

The SRS functions describe the maximum responses of the structure, ex-
posed to base excitation. However, the structure has been replaced by a series
of SDOF systems with natural frequencies in the frequency range of interest.

The 30 peak values of the acceleration of an SDOF system, enforced by
random base acceleration W (f) (g2/Hz) with an amplification factor Q = i
and a natural frequency fj is given by Miles’ equation

pear (f0) = 34/ 5 JoQWalfo). (2.491)

with the assumption that the average acceleration is puz = 0.

Varying the natural frequencies fy, and the characteristics of the SDOF
system, will give a random response spectrum (RRS) function of the 30 peak
accelerations.

Example. With constant random enforced acceleration W (f) = 0.1 g?/Hz
in a frequency range 20 < f < 1000 Hz and a constant amplification factor
@ = 10, the RRS based on the 30 approach becomes

SRS(f) = 3,/ngWﬁ(f) —3.760\/f ¢ 20 < f < 1000.

2.12.6 Relating Random to Sinusoidal Vibration

This section discusses a method to relate two testing methods, and is based on
the equivalent damage theory, for example of electronic boxes [217]. Sinusoidal
vibrating testing is mostly done in a single excitation frequency changed with
time. The upper fo and lower limit f; of the frequency, the duration of the
sweep, and the amplitude of the sine vibration will affect the severity of the
vibration.

During random vibration, multiple random frequency vibrations are gen-
erated. The duration of the testing t,,4, the PSD level W;(f) of the enforced
acceleration and the upper and lower frequency will determine the severity of
the vibration.

The proposed method to relate random and sinusoidal vibration is based
on the equal effective damage theory.

A simple supported printed circuit board (PCB) generally has one major
resonant frequency. The relation of random to sinusoidal vibration is moni-
tored around the resonant frequency of the PCB.

The calculations are simplified to a SDOF dynamic system

mZ 4+ cz + kz = —mii, (2.492)

where m is the discrete mass, k is the stiffness of the spring element, c is the
damping constant, % is the enforced acceleration, the relative displacement is
z =1x — u and x is the absolute displacement.
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If PSD of the random enforced acceleration is denoted by Wy (f), the rms
acceleration i ,,s (g2/Hz) is given by Miles equation

where the natural frequency is f, = %@ / %, the amplification factor is QQ =
i, (¢ is the damping ratio and the damping constant ¢ = 2{v'km.

The acceleration response Z(t) in the frequency domain Z(jw) of the SDOF
system (2.492) caused by the enforced acceleration U (jw) is; calculated

; —w2U (jw)
Z(jw) = . 2.494
() —w? + w2 + 2jCww, (2.494)
The response at the natural frequency w, = 27 f, is
. U(f) .
the rms value of | Z(f,)| is given by
: Z(f2)]
A n)lrms — 5 2.496
1Z(fn)] o (2.496)
and the rms value of the absolute sinusoidal response is
; ; QIU(f)|
| X (fr)lrms = (Q + D Z(f)lrms ® ——F— (2.497)

V2

An example of a typical random enforced vibration test specification is
shown in Table 2.32. Besides the PSD spectrum, the G,.,,s value and the time
duration t,,q are mentioned.

If both random and sinusoidal vibration levels generate the same deflec-
tions, the equivalence can be established. For comparing the sinusoidal vibra-
tion and the random vibration

|X(fn)|rms = j7"m37 (2498)

Table 2.32. Random vibration test specification

Frequency range (Hz) PSD (g?/Hz) Grms (8)
2060 6 dB/oct

60-700 0.2 16.6
700-2000 —3 dB/oct

Time duration t,,q 120 s
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thus

jrms\/5 N oW, (fn)
Q Q

Two types of sinusoidal test are proposed to simulate the random vibration

environment [224]:

U (fa)l =

(2.499)

e Sinusoidal dwell test
e Sinusoidal (logarithmic) sweep test

During a sinusoidal dwell test the excitation frequency dwells at the nat-
ural frequency f,,. The total number of cycles is

Ndwell = trnd * fn (2500)

In case of a sinusoidal sweep test the dimension of sweep rate n is Oc-
taves/min. The total time to sweep through a frequency band f; — fs is

given by [224]
60
tsweep =tlrna = nin 2 ln<%) (2501)

The frequencies f1 and f5 are selected to be the half power frequencies. The
damping ratio ( can be expressed in terms of the natural frequency f, and
the half power frequencies

fo—fi 1
2 = —_— 2.502
R (2502)
where
fi=fa(l=¢) = fn(l - @)
(2.503)
fo= 1+ 0 = fa(14 55):
The required sweep rate n can be calculated using (2.501)
60 fa 86.61n(1 + 2{)
" trnd In2 (fl ) trnd ( %0 )
The number of cycles is given by
86.6
nan(fz - fi)= (f2 - f1). (2.505)

Example. The specification of the random enforced vibration in given in
Table 2.32. The natural frequency of the SDOF system is f, = 120 Hz and
the damping ration ¢ = 0.05, which means the amplification factor is @ = 10.
The rms acceleration of the SDOF system becomes
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Frms = \/ganWﬂ(fn) - \/glzo x 10 % 0.2 = 19.4 (g),

and the associated sinusoidal enforced vibration amplitude yields

Q

The number of cycles during the sinusoidal dwell test is

U(fn) = =2.7 (g).

Ni = fotrma = 120 x 120 = 14400 cycles.

The sweep rate n can be calculated by the following expression:

60 f2 60 fQ .
= In{ == | = In{ == | =0.072
n P o n<f1> 13013 n<f1) 0.072 Oct/min,

where f; =114 Hz and f; = 126 Hz. The number of cycles during the sweep
from f; — fo can be calculated as follows:

60
N, = (f2 — f1) = 14382 cycles.

nln?2

The number of cycles for both the sinusoidal dwell and sweep test are com-
parable.

The auto correlation function R(7) of the enforced sinusoidal vibration
ii(t) = U sin(wt) can be obtained using

27 o

Ri(r) = - /0 ()it + T)dt = % cos(wT), (2.506)

T o

and the corresponding PSD function

2m 2m
w

’ o o
Sa(w) = / Ri(7) cos(wr)dr = % cos?(wr)dr = %1 (2.507)
0 0 w

In the frequency domain (Hz)

UZ

(2.508)

2.12.7 Method for Calculating rms Von Mises Stress

In this section we discuss the calculation of the von Mises stress in a random
vibration environment [173]. The transient von Mises stress, for a general
tridimensional stress tensor



176 2 Linear Random Vibration Systems

Ozx Toy Txz
[U(t)]: Tyx Oyy Tyz | (2.509)

Tzx Tzy Ozz
is expressed as
OuM (t)

= \/ + ng + 02, — 0pp0yy — Opa0sz — Oyy0zs + 3(7’2 +712, + ng)
(2.510)

The square o2,,(t) can be expressed in a quadratic form on the stress vec-

tor {o}

{o) = [0se Oyy Ooz Toy Tez Tyzl (2.511)
and is given by
oo (t) = {o()} [Al{o (1)}, (2.512)
where [A] is the symmetric, positive-definite matrix
1 -3 -2 000
-3 1 -3 000
1 1
A=|"3 =z 1 000 (2.513)
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

In general, the undamped modal characteristics are the following: natural
frequencies, vibration modes, modal effective masses. Associated with the vi-
bration modes are the stress modes [®,]. The stress mode reflects the modal
stress tensor at a certain location a. The physical stress tensor [0®(t)] has 6
independent stress components and can be expressed as follows

B} =Y me(O{25 4}, (2.514)

k=1

where 7y, (t) is the generalized coordinate, {®7 ; } is the column vector of the
stress tensor at location a, and IV is the number of vibration modes considered.

Substituting (2.514) into (2.512) the square of the von Mises stress at
location a becomes

o’ () = {0} Ao ()} = ZZU )i ({25} AN DG ;). (2.515)

The zero-time lag auto correlation function of the von Mises stress Ra (0)
is given by

N N
'UIM ZZRWWJ z}T[ ]{Q’i,j}- (2516)

%
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The PSD function S, (w) is related to the auto correlation function
R, (1) by the so-called Wiener-Khintchine relations (page 22)

Sy @] = [ Dy, (e,

1*°° - (2.517)
Ry (= 5= [ Sy )}
This means that the zero-lag auto correlation matrix [R,,,;(0)] becomes
1 oo
Runs O = 57 [ [Syny @)l (2518)

The CSD matrix of the generalized coordinates [S,,,, (w)] is related to the
input CSD matrix of generalized forces Stf(w) (e.g. forces, enforced acceler-
ation) by the frequency response diagonal matrix [H,, f(jw)] as follows

(St (W) = [Hy, 1 (3w) [[Sy s () H ¢(—jw)]
= [|Hy, £ (jw) P 1[Ss 1,0y (@)]
= [1Hy, 1, (mm) (G0) P [@)T [SFF,n) ()], (2.519)

where m,n are running indices m,n = 1,2,..., N, [P] is the of the vibration
modes and [Sgp (,)(w)] is the PSD/CSD matrix of the physical forces and or
enforced excitation.

The mean square of the von Mises stress can be evaluated by

N N o oo
@at s = B, 0 = 05 o0 [ Sy, ()@ ) (4125}

= % _Oo [Hy 4 (j0) |[@)7 [Spr(W)][@][H] f(—jw)]dw(®2]T [A][#2]
= % /O ) [Hy, 1 (jw) ][ @] [Spr(W)][@[Hy 1(—jw)|dw[@s] [A][@%].
(2.520)
The integral in (2.520) may be approximated by a discrete sum:
N
(CTgM,T’ms)2 = % (Hnyf(ka)J [Q]T[SFF (wk)] [@] [H;;f(*]Wk)J [@g]T[A} [@g},
- (2.521)

where N is the number of discrete frequency steps, Aw = (Winaz — Wmnin ) /N
and wi = wWpin + kAw. In the frequency domain (2.521) can be written

(5rroms)® = D ASTHy £ (727 fi) 19T [Wrp (f)) (9]
k=0

x [Hy ;(=j2m fi) |[@5]" [Al[@5), (2.522)



178 2 Linear Random Vibration Systems

where Af = (fmaz — fmin)/N and fi = frin +kAf.
In [153], Preumont presented an alternative for calculating the rms von

Mises stress. The alternative definition to (2.512) is

oo (t) = {o ()} [A{o ()} = Trace([A|{o(t) {o ()} 7). (2.523)

The location indicator a had been deleted. The auto correlation function
R,z (0) can be written

Rz (0) = Elogy] = Trace([A]E[{o(t)H{o (t)})

= /OO Trace([A]Soq(w)dw)

— 00

= [m Sy2 (w)dw. (2.524)
Equation (2.524) is exact and does not involve any assumption. A Gaussian
random process of zero mean is defined by the PSD of the equivalent von
Mises stress

Sy2 (w) = Trace([A]Syq(w)). (2.525)

The same procedures can be applied for the Tsai-Hill failure criterion
for multi-axial stress states (plane stress) in composite structures. Tsai and
Hill have established a suitable fracture criterion based on maximum strain
energy. The Tsai-Hill theory is related to strength of the 1-direction (direction
of fibers) [93]

2 2 2
02y = (%) I (%) _ <%) + (%) =1, (2.526)

where X is the axial strength, Y is the transverse strength and S the shear
strength, of the lamina.

Example. A cantilevered massless beam with a tip mass M is loaded by a
random force F with a PSD function Wrpr(f) in the frequency range f1—fo.
The length of the beam is L and the bending stiffness E1. The cross-section
of the beam is H-shaped with a constant thickness ¢ = h/20. The width of
the flanges and the height of the shear web is h. The cantilevered beam is
illustrated in Fig. 2.69.

The deflection w(x,t) will be expressed as an assumed mode @(z) multi-
plied by the generalized coordinate 7(t)

wlety = = [3(2) - 1(2) Joto,

where 7(t) has the dimension of (m). Rayleigh’s quotient gives the natural
frequency of the cantilevered beam with tip mass can be obtained
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Fig. 2.69. Cantilevered beam

Ly BI(w")ds _ 3E1
I Muw?(L) ML3

R(?) = wg =

The bending moment and the shear force at the root (x = 0) are given by

The second moment of area of the H-shaped cross-section is approximated by

7
I=—nt
240

and the first moment of area S at h/2 is

h k3
S t x 7= 10
The modal bending stress o, at the root can be calculated as follows

M(0)2 3Eh
omp(t) = 7 2 = —§§77(t)7

and the modal shear stress at h/2 can be calculated in accordance with
Jourawki D(0)S B2
0
rnt) = =2 0(t) = ~30n(t).

The damped equation of motion of the cantilevered beam with tip mass is

i) + 26wt + () = T2



180 2 Linear Random Vibration Systems

where ¢ is the damping ratio. The frequency transfer function H (jw) is

1
—w? 4w + 2jCwow’

H(jw) =

and
1

—w? + wd — 2jCwow’

The PSD function of the ratio F(t)/M is Wea(f) = Wer(f)/M? and the
constant matrix [A] can be written as

1 0
because the von Mises stress for this case is o, = \/Uf 4+ 372. The modal

stress vector is
_3Eh
212
b, = . |-
—30E&R-
L3

The assumed mode at = L is &(L) = 1. Thus (2.522) can be simplified and
yields

H*(jw) =

2
OuvM,rms

N
=Y AFH(G2m f) (L)W (f1) (L) H* (=527 fi) {8, } ' [A{ 25 }
k=0

N
=Y AfIHG27 i) PWen (f){Ps} T [A{Po}
k=0
Wrr(fo) T
P, } [A{ Dy},
The approximation will be proven using Lyapunov’s equation as discusses
in Sect. 2.6. The SDOF damped equation of motion representing the can-
tilevered beam with tip mass M and loaded by the force F', will be expressed
in terms of the generalized coordinate n(t) as
iy : F(t)
ii(t) + 2Cwon(t) + won(t) = — 7
where ¢ is the damping ratio. This equation can be transformed into space-
state variables 1 = n and x2 = n(¢):

(2)= (2 o) ()4 (2)

{2} = [A{z} + {B}F.
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The auto correlation function of the applied force F' is

Wrr
2

RFF(T): 5(7‘),

where Wrp(N2/Hz) is the white noise PSD in the frequency domain. The
correlation matrix of z1, x5 is given by

(RO = [Rep = ((o200) () = () 0 ),

(z2z1) (T2T2) (x272)

where (z;z;) are the expected values. The process is assumed stationary, thus

4 (x121) = (v221) + (2122) = 0. This means that (voz1) = —(z122) = 0.

Lyapunov equation becomes

(AN R ] + (R AT = —(BY 2 (BYT

[_Sjg _21@’0} [<x10x1> <:v20x2>} i [<$10x1> <x20x2>} [(1) —22}510]

_{0 0 }
0 ]

The solution of this equation is

Wer Wer
() = BUCY = Geoane = Gamdg fiare
Wi Wer

(w2z2) = E{i’} = 8CwoM? ~ 16mCfoM?’

The state-space equation can be expanded as follows

{2} = [Al{z} + {B}F,
{o} = [C){z},

where the output matrix [C] is given by

c1= 7" o).

Tm 0

where o,,,; is the modal bending stress, 7, the modal shear stress and

- ()

The expectation of {¢}, E[{c}{c}*], can be obtained from
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El{0}{0}7] = [O)[Ruy ][O = (12) ( Tt "’"‘fm) .

OmbTm T
The mean square of the von Mises stress becomes

1%
O-UM,TT‘VLSQ - Trace([A]E[{a}{g}T]) — m(afnb + 37'31).

The following numerical values for the design parameters are taken:

e Young’s modulus F = 70 GPa,

e the length of the cantilevered beam L = 500 mm,

e the tip mass M = 100 kg,

e the width of the flange and the height of the shear web h = 150 mm
(t = 7.5 mm),

e the white noise PSD of the force F is Wrp(f) = 105 N2 /Hz,

e the band limited PSD is Wrr =0, f < f1, Wpp = 106 NQ/I{Z7 < f<

fg, Wrr =0, f > fg, fl =20 Hz and f2 = 500 Hz.

The natural frequency fo = 79.3 Hz and for white noise force excitation the
rms value of oyps rms = 1.01 x 10% Pa. For band-limited PSD force excitation,
with N = 1000 steps, Af = 0.48 Hz, the rms value of oyps rms = 1.00 x
10® Pa. The PSD of the 2, is shown in Fig. 2.70. The PSD of the von Mises
is highly peaked around the natural frequency fy, therefore the white noise
approximation is rather good.

PSD von Mises Stress

9e+014

8e+014

7e+014—

6e+014

5e+014

4e+014—

PSD von Mises stress Pa2/Hz

3e+014—

2e+014

1e+014-

0e+000 : :
0 50 100 150 200 250

Frequency (Hz)

Fig. 2.70. PSD von Mises stress o2, (Pa?/Hz)
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Problems

2.44. A massless bending beam with total length 2. = 1 m and constant
bending stiffness EI Nm? is clamped at A and simply supported at C. The
beam is deflecting in the z-y plane in the y direction. A mass M = 50 kg
is attached at the midpoint B. The required minimum natural frequency is
fn = 50 Hz. The beam is simultaneously base excited at both ends in the point
A and C by a random enforced acceleration i(t) with a constant PSD function
Wy = 0.3 g2/Hz (g = 9.81 m/s?) in a frequency range 20 < f < 250 Hz. The
Young’s modulus of the material is £ = 70 GPa and the allowable yield stress
F, = 250 MPa. The bending beam is made of a tube with a diameter 2R and
a wall thickness t = 1—}‘8. The fixed hinged beam is illustrated in Fig. 2.71.

1. Apply an unit force F' = 1 N in the y direction and calculate the associated
displacement §.

2. Calculate the reaction forces Ry, M4 and R¢ caused by the unit force
F =1 N acting at point B.

3. Calculate the stiffness k at point B in the direction of the force F' and the
displacement §.

4. Define the radius R and wall thickness t of the tube (I = 7R3t) knowing
that the lowest natural frequency f,, = 50 Hz.

5. Set up an equivalent sdof system with damping ratio ¢ = 0.05.

6. Calculate the 8,5 acceleration of the mass M in the y direction by ap-
plying Miles’ equation.

7. Calculate the reaction forces Ra, Ma, Mp and Rc caused by the inertia
force acting on the mass Fipertia = M rms-

8. Calculate the bending and shear stress at point A with opending = @,
Tmes = =73 75:“, and D is the shear force. The maximum bending and

shear stress occur at different locations of the cross section!

Yy
T F=1
RA <L—><;>
Re
y B
My A El o El C
—_—

i

Fig. 2.71. Fixed hinged bending beam
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9. Calculate margin of safety against the yielding stress using the ideal stress

(0ia = Vo2 +372, MS = 30 ”

—1).
Answers: (1) 6 = 9—76115—?, (2) k = L& (3) Ra = 1t, Re = &,
—-2L, Mp = —%L, ()I—6426><10 m* R = 38 mm, t = 3.8 mm,
(6) Orms = 150.583 m/s2, Finertia = 7529 N, (7) Ra = 2353 N, R¢ = 5176 N,
My = —1412 Nm, (8) Gpending = 8.309 x 107 Pa, 70 = 7.921 x 10° Pa,

(9) MS pending = 0.003, MS gpoqr = 5.074.

2.45. A solar array sandwich panel is supported at 6 hold down points to
survive the launch loads, especially the steady state accelerations and the
acoustic sound pressures. A circular reinforcement (insert) is built in the sand-
wich panel to transfer the shear loads to the spacecraft at the location of the
hold down points. The insert is bonded to an Al-alloy honeycomb core with
an allowable shear stress Tgiowapie = 2.3 X 10° Pa. The measured s-N curve
Nsb = ¢ is Ns>967 = 1.385 x 1034, The predicted average rms shear stress
Trms along the circumference of the insert due to the acoustic sound pressures
is Trms = 5.0x 10* Pa. The associated positive zero crossings are I/S_ = 130 Hz.

e Predict the fatigue life of the bonded insert/honeycomb core construction.
e Calculate the margin of safety (MS) against the allowable shear stress of
the honeycomb core using the 30 approach.

Answers: T = 617 s, MS = 0.53.

2.46. The piping system of a cooler is mounted on a light weight radiator
plate. The predicted radiator random vibration input to the pipes is surpris-
ingly high:

e 20-200 Hz, 3 dB/oct
e 200-300 Hz, 70.0 g?/Hz
e 300-1000 Hz, —12 dB/oct

Calculate the G5 of the given PSD of the enforced accelerations and generate
the RRS(f), f € [20,1000], based on the 30 peak values with @ = 20.
Answers: G s = 144.0 g, for example RRS(200) = 1.99 x 103 g.

2.47. Repeat the finite element analysis of the example on page 163 with the
finite element programme which is frequently used at your school, university,
laboratory or company.

2.48. The stress tensor (plane stress) is given by
{0} = 04a Oyy  Tayl-

The Tsai-Hill expression is as follows

2 2 2
2 _ [ Oz Oyy OzaOyy Tay
“TH—(T) *(7) ‘(T)*(?)'

Derive the constant matrix [A] which gives

o7 = Trace([Al{oH{o}") = {o}"[A]{o}.
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2.12.8 Random Vibration Component Test Specification

In general, the purpose of performing a random vibration analysis is to create
a component test level specification. With a finite element model, a random
vibration analysis can be performed to predict acceleration responses from
20-2000 Hz. This response is in turn used as a template to derive a test level
specification. NASA GFSC?* proposed the following guideline to create the
random vibration specification.

1. From a finite element random vibration response analysis create a log-log
plot of the acceleration PSD response (g?/Hz) versus the frequency (Hz).

2. Add in Flight Limit random vibration level specification for the compo-
nents to the plot.

3. Enclose response curve inside test spec curve using the following rules:

e Slopes should be less than 25 dB/oct. or greater than —25 dB/oct
(this depends on the performance of the shaker table. Consult the test
engineer (test house) for exact slope limits),

Frequency bands should be greater than 10 Hz,

Don’t plot specification below Flight Limit levels,

Sharp peaks can be cut off at about 1/2 their height (-3 dB) e.g., a
sharp peak of 0.4 g?/Hz can be cut off at >0.2 g2/Hz,

Drop specification curve into valleys that are large,

Try to keep the overall G,.,,s level of the specification to be no more
than 1.25 times the overall G..,,s level of the response curve.

The plot in Fig. 2.72 is an example of a specification to be used for component
random vibration testing.

2.13 Random Responses Analysis in the Time Domain

2.13.1 Introduction

In this section the discrete sampled or digitized signals at equally space
(equidistant) intervals At are discussed. The sampling is generally done by
an analog-to digital (A/D) converter. The sampling interval At must be in
accordance with the maximum frequency fp,., in the process analyzed. The
sampling frequency fs = 1/At is chosen according the Nyquist (Shannon-
Kotelnikow) criterion

1 Wmax
s = T — 2 maxr — .
/ At / us

The random process sampling in equidistant intervals At is illustrated in
Fig. 2.73.

The simulated random time series can eventually being applied for re-
sponse analysis of non-linear (e.g. geometrical) structures.

(2.527)

24 NASA Goddard Space and Flight Center, Greenbelt, Maryland, USA.
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PSD 4 Cut off sharp peaks [} 3 Drop into deep valleys

i

g*/Hz

/A KON AV Stay above
: / : flight limit level

Frequency (Hz)

Fig. 2.72. Random vibration specification

z(t)

VoW

Fig. 2.73. The random process sampling in equidistant intervals At

At At At

2.13.2 Simulation of the Random Time Series

Details of the simulation of random vibration specification spectra in random
time series are discussed in Appendix A.
The simulated time series can be calculated using the following expression:

zy = z(kAt) = V2R[FFT(a,)], k=0,1,2,...,2N —1, (2.528)
where At can be calculated (Nyquist criterion) by

s 1

Wmazx meax

At <

(2.529)

The term a,, is
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an = [W(f)Afe 7 0<n<N -1
0, nzN, (2.530)

where the angles ¢,, are uniformly distributed random numbers on the interval
(0-27) and f, = nAf and Af = frae/N. fimae is the maximum frequency in
the power spectrum density W (f), and N is the total number of terms in the
frequency range (0—faz) Hz.

The PSD function W (f) can be reconstructed using the following expres-
sion:

" . |IFFT (2)
A = = 27
k=0,1,2,....2N -1, n=0,1,2,...,N — 1, (2.531)

where the PSD function is in the cyclic frequency domain, and f is the cyclic
frequency (Hz).

The estimated mean value of the simulated random time series x,, can be
calculated using the following expression

2N—-1

1
Tmean = IN g T, (2532)
n=0

and the mean square value 22, . can be calculated by

S

2N—-1

2 = % ; 22, (2.533)
The variance can be calculated by
] 2N )
Var(z) = SN 2 (Tn, — Tomean)
] 2N 1 2N 2
=N 7;) [xn ~ N kzzo xk] , (2.534)

and the estimated standard deviation s, becomes

8z =/ Var(zx). (2.535)
The autocorrelation function or mean lagged product can be calculated by
applying the following expression [197]

2N—m—1
> wntaim, m=0,1,2,...,M, (2.536)

n=0

1
Ty = ———
™ ON —m

where, in general, M < 2N/10 to prevent too lengthy calculations.
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Table 2.33. Component “Random vibration levels”, M < 22.7 kg [73]

Frequency (Hz) Wa(f) g°/Hz
20-50 6 dB/oct

50 0.16

800 0.16
800-2000 —6.0 dB/oct
Overall 14.12 G s

Simulated random time series (N=500, f_max=2000Hz)

Time (s)

Fig. 2.74. Simulated random time series iy,

Example. A typical random vibration specification for components (M <
22.7 kg, equipment, boxes, ... ) is given in [73] and shown in Table 2.33. The
simulated random time series ii,, from Table 2.33 is shown in Fig. 2.74. The
number of samples N = 500 is taken to get a random time series which is not
too dense. The maximum time on the ordinate is NAt = N/2f 0 = 0.25 8
and the maximum considered frequency fi,q; = 2000 Hz. The reconstructed
PSD enforced acceleration Wy (f) is shown in Fig. 2.75. This Fig. 2.74 reflects
the PSD spectrum as given in Table 2.33. The estimated mean value of the
simulated time series i, is

1 2N-1
mean aNT n — 0 0011 ,
" oN nz:% " &

and the rms value
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PSD enforced acceleration (N=1000, f_max=2000Hz)

10 10

10
Frequency (Hz)

Fig. 2.75. Reconstructed PSD enforced acceleration Wy (f)

2N-—-1

1
= Y 02 =141173 g,
2N~

Upms =
and the estimated standard deviation sy = 14.1173 g. The auto correlation
function is or mean lagged products r,, are illustrated in Fig. 2.76. The auto
correlation function shows a white noise characteristic of the simulated ran-
dom time series.

In the following, a response analysis on a simple structure will be per-
formed. This simple structure may represent a antennae boom. In Fig. 2.77
a cantilevered beam is shown. The beam is excited by a random enforced
acceleration i(t). The PSD of the enforced acceleration Wy(f) is given in
Table 2.33. The random time series is shown in Fig. 2.74. The discrete mass
at the tip of the beam is M = 50 kg. The bending stiffness is given by ETI
and the mass per unit of length of the beam is m kg/m. The length of the
beam is L = 0.4 m. The cross-section is a thin-walled square tube b x b and
the wall-thickness is ¢. The beam is made of Al-alloy, £ = 70 GPa, and the
density is p = 2700 kg/m®. The beam must be designed such that the lowest
natural frequency f; = 30 Hz. The assumed mode ¢(z) is the analog of the
static deformation corresponding to a unit force at the tip. The assumed mode

taken is o) - g<%)2 B %<%>3 (2.537)
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Auto correlation function r_m (N=1000, M=40)

-20 T f
0.000 0.001

I I I I I I I I
0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010

Time (s_

Fig. 2.76. Auto correlation function or mean lagged products

Tii(t)
u(t)
x A M
| ™ ELLm D 1 n(t)
w(z) wp
L
View A-A
i» e I b
<L>
Fig. 2.77. Cantilevered beam
The deflection w(z,t) will now be expressed as follows
w(z,t) = ¢(z)n(t), (2.538)

where 7(t) is the generalized coordinate. The equation of motion will be de-
rived using the Lagrange equations. First the strain energy U and the kinetic
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T have to be obtained

EI [*(02w(z,t)\>
U= TA (—axz ) da:,

m

0 (2.539)
. 12 1 . 12
T 5/0 [, 1) 4 ie) *d+ ML) + (1))

The undamped equation of motion is expressed in terms of the generalized
coordinate 7(t), and becomes

ii(t) + win(t) = —Ii(t), (2.540)

where the natural frequency w? and the modal participation factor I" are

e 420E1
17 L3(33mL + 140M)’ (2.541)
r_ 35(3mL + 8M) '

© 2(33mL + 140M)

The equivalent SDOF system is shown in Fig. 2.77. The damped equation of
motion is obtained by adding the modal damping term 2¢ws7(¢), thus (2.540)
becomes

7i(t) + 2Cwn(t) + win(t) = —Ii(t), (2.542)

where ( is the modal damping ratio. The wall-thickness of the beam cross-
section is t = b/50. The second moment of area I = 3b%, the area is A =
4bt and the bending resistance is W = 3b%t. The bending moment in the
cantilevered beam at M (x), is given by

M(z,t) = EIw" (z) = EI¢" (z)n(t). (2.543)

Thus at the root of the beam, x = 0, M(0,t) = ¢"(0)n(t) = %Z(t) The
bending stress o, = |%“)| The lowest natural frequency f; = 30 Hz can be
achieved when b = 0.08 m and ¢ = 0.0016 m. The mass m = 1.3824 kg/m.
The lowest natural frequency fi is

1 420E1
= =30.091 H
h=o \/L3(33mL + 1400M) “

and the modal participation I" becomes

5 35(3mL + 8M)

- = 1.002.
2(33mL + 140M)

When the beam is taken massless m = 0, and I = 1. In [223] the single-step
three-stage Newmark algorithm is discussed, and can be written
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{ X1} = [A{Xn} +{F0}, (2.544)
where the vector {X,,} is

Tn
{Xn}=| Atvn |, (2.545)
At?a,

Z, is the displacement, v,, is the velocity and a,, the acceleration, all at step n.
The matrix [A] is the amplification matriz. The equation of motion to be solved
is

mi(t) + ci(t) + kx(t) = f(¢). (2.546)
The amplification matrix [A] = [A;;] is given by
Ay = (m+~yAte)/D,
Arp ={m+ (v - p)Atc}/D,
s = {(05 — Bym + (057 — B)Ate} /D,
Agq = —yAPk/D,
Ag o ={m+ (8 —1)A’k}/D,

2.547
Agz = {(1—y)m+ (8 — 0.5v)At*k}/D, ( )
A3y = —At’k/D,
Az o = —At(c+ Atk)/D,
Azz = {(1—7)Atc+ (0.5 - B)At?k}/D,
D = m 4 yAtc + BAL?E.
The vector {F,} is
r_ At T
{Fn} = T{ﬂfn+1,7fn+17fn+1} . (2.548)

The solution of (2.545) is stable if 23 > v > 0.5. To solve the transients the
following values for the parameters 8 = 0.25 and v = 0.5 are taken. The
initial conditions are 1(0) = 7(0) = 0 and #(0) = —I"i(0). The damping ratio
is ¢ = 0.01. The solution for the generalized coordinate 7(t), its velocity 7(t)
and acceleration 7j(t) are shown in Figs. 2.78, 2.79 and 2.80 respectively. The
bending stress op(t) at the root of the beam is shown in Fig. 2.81 and the
normalized auto-correlation function in Fig. 2.82. It can be concluded that
the bending stress o (¢) is narrow-banded. The auto-correlation function of
the bending stress shows a narrow-banded process. The bending acts like a
mechanical filter at a natural frequency f; = 30.09 Hz. This natural frequency
is clearly seen in Fig. 2.82.

In the next example the Duffing oscillator will be solved in the time do-
main. The internal force in the spring of the Duffing oscillator is a combination
of linear and cubic restoring forces.
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Generalized coordinate (N=1000, f_max=2000 Hz)

Time (s)

Fig. 2.78. Generalized coordinate n(t)

Velocity generalized coordinate (N=1000, f_max=2000Hz)

Time (s)

Fig. 2.79. Generalized coordinate 7(t)
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Acceleration generalized coordinate (N=1000, f_max=2000Hz)

600

e i S e S e e e T

f m m | w.mw. | m H, l,m wm I | hhl M A‘

o

Time (s)

Fig. 2.80. Generalized coordinate 7j(t)

Bending stress (N=1000, f_max=2000Hz)

5e+007

T R i

R At O R B e I

e | e B S A L A

1e+007 -

L

D S L T {1 A S

801007

—4e+007 T i T i T i T i T i T i T i T i T i T

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Time (s)

Fig. 2.81. Bending stress os(t)
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Normalized auto-correlation function (N=1000, f_max=2000Hz)

-1.0 T \ T T T T T T T T T
0.000 0.005

I I I I I
0.025 0.030 0.035 0.040 0.045 0.050

Time (s)

I I I
0.010 0.015 0.020

Fig. 2.82. Normalized auto-correlation function

Example. The damped equation of motion of the Duffing oscillator is
3(t) 4+ 2Cwoz(t) + wi (2 + 2°) = —ii(t), (2.549)

where z(t) is the relative displacement, 2(t) is the relative velocity, Z(t) is the
relative acceleration, all with respect to the base; ¢ is the damping ratio, ¢ is
a scaling parameter and (t) is the random enforced acceleration specified in
Table 2.33. This PSD spectrum will be simulated by random time series as
shown in Fig. 2.74. The numerical solution of the nonlinear Duffing oscillator
(2.549) in the time domain is based on the Newmark method and is discussed
in detail in [223]. The approximation of the acceleration Z(¢) at time (n+1)At
is denoted by a1, the velocity £(t) is denoted by v,4+1 and the displacement
2(t) is denoted by z,41. The enforced acceleration i(t) is denoted by iy 1.
The acceleration a,4+1 and velocity v,41 are expressed as

= e (na = 20) = g = (5 =1
an+17ﬁAt2 Zn+1 Zn ﬁAt 2@ Ap,

-0 oy (2 _ T
Un+1 = ﬁAt (Zn—i-l Zn) (,8 1) Un At<2,8 1) Q-

If the approximate values of the solution are substituted in (2.549) the fol-
lowing equation is obtained

(2.550)

Tnt1 = Qg1 + 2(Wovnt1 + Wi (Zng1 + €20 1) + ding1 = 0. (2.551)
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The initial condition can be calculated using ¢ (t = 0)
o = ap + 2Cwovg + Wi (2o + £23) + g = 0.
If vg = ap = 0 then
ap = —2Cwovo — wp (20 + £25) — g = —ilo. (2.552)
The value of r,,4.1 can be approximated by a first order Taylor series expansion;

dry,
Pkt & o+ 0 Az = 1o + K(20) Azy = 1 + AB, (2.553)

where K (z,) is the tangent stiffness or the Jacobian at z,. The solution for
Az, can be obtained by Az, = —K(z,) ' (rn11 — rn). Substituting (2.550)
in (2.553) will leads to

1 2wy .
Tn+l = (ﬁAﬁ + GAt Zn+1 +Wg (Zn+1 + EZ?LH) — Fint,n + ting1

=0, (2.554)

where the force Fjn: , is given by

- 1 2¢wory 1 0
Fintin = <5At2 T BA )Z y [Mt ! 24“"0(6 - 1””"
1 gl

The Jacobian or tangent stiffness K(z,) = dry,/dz, becomes

K(z,) = (Mth + 222?) +w2(1 + 3e22). (2.556)

The solution procedure discussed in [206] is as follows. The increment Az is

Tnil — Tn = Aay + 2CwoAvy, + Wi (2n41 + Ezi+1) — Wa(zp +e23) + Aily, = 0
~ Aap + 2CwoAvy, + Ki(2n) Az + Atiy, = 0, (2.557)
where Aa,, = apt1 — Gny AUy = Vpg1 — U, Adlyy = Gipy1 — Uy, and the tangent

stiffness is Ky(2,,) = w3(1+3e22). The increment of the acceleration Aa,, and
the velocity Awv,, can be derived from (2.550) and are given by

1 At?
n — W Azy — Atv, — Tan ,

Av,, = yAtAa, + Atay,.

Aa
(2.558)

Substituting (2.558) in (2.557) will give
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K(zp)Az, = (ﬂlAt + 2Cwoﬂ> [2ﬂ + 2Cw0<72—?3t — At)}an — Aty
= AF,,. (2.559)

The next step solutions for the acceleration, velocity and displacement are

Ap+1 = Gp + Aay,
Un41 = Un + A'Un, (2560)
Zntl = Zn + Azy.

The Newmark-B method is called an implicit method?® to solve the tran-
sient response problem, however, without equilibrium iterations. The error
introduced into the approximation can be minimized if a sufficiently small in-
tegration step At is employed in the analysis. In general, for an conditionally
stable Newmark method v = 1/2 and 8 = 1/4 are taken.

For highly nonlinear cases the implicit numerical scheme can be improved
doing equilibrium iterations every time step n — n + 1. Equation (2.554) will
be rewritten as follows

1 2Cwoy
<5At2 * At

)zn+1 + wi (Zn41 + €23 1) = Fppa. (2.561)

Within a time step, the following iteration procedure is proposed:

. Az’“ = AR’“/K (#zn) (modified Newton-Raphson method, Fig. 2.83),
o =z + Az,

A
F, n+1 1 2 3 r=20
A
Ay AR}
2
\ AR?
AF,
| ar
Kn(2n)
Y
F,
Az} Az Az
z
Zn Zn+1

Fig. 2.83. Modified Newton-Raphson iteration [206]

25 Explicit methods calculate the state of a system at a later time from the state
of the system at the current time, while an implicit method finds it by solving an
equation involving both the current state of the system and the later one.
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2 3 k—13
* Apvlf = (/3A1t2 + g?f’y)Asz + w(zJ [AZS + 6(Z£€L+1 - Zn+% )]7

o ARFH = ARE — APF.

The procedure starts at k& = 1 with the initial values 20,, = z, and
ARl = AF,. The iterations are continued until convergence, that is, until
the incremental displacement Az¥ have become sufficiently small in compar-
ison to the current estimate Azl. Thus the total incremental displacement
after m iterations is given by

Azy = Azf. (2.562)
k=1
The iteration process may be terminated at iteration m when
Az?
AN ) 2.563
< (2:563)

where 0 is the specified tolerance. The design parameters of Duffing’s equation
have the following values:

e The linear natural frequency wg = 27 fy, fo = 30 Hz.
e The tuning factor € = 0.2.
e The damping ratio ¢ = 0.01.

The displacement z(t) and the non linear restoring force F,,; = w3(z+¢€2?) are
calculated using the equilibrium iterations. The displacement z(t) is shown in
Fig. 2.84 and the nonlinear restoring force Fy,(t) in Fig. 2.85.

Displacement z(t) (N=1000, f_max=2000Hz)

0.004

0.003-

0.002

0.001

0.000

-0.001

2(t) (m)
L
-
—
-

-0.002

B0 s -

—-0.004 T T T \ T T T \ T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Time (s)

Fig. 2.84. Displacement z(t)
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Restoring force F_nl (N=1000 f_max=2000Hz)

(N)
L

F_nl
1

Time (s)F_nl

Fig. 2.85. Non linear restoring force F;(t)

Problems

Table 2.34. Power spectrum densities shapes

Spectrum  fi (Hz) fo (Hz) W(f) fs (Hz) fo(Hz) W(f) w5 vy
1 5 55 Wo f?

2 10 70 Wo

3 20 100 Wo/ f2

4 40 100 Wo/ f?

5 29 35 Wo f2

6 9 11 Wo 29 35 Wo

7 16 40 Wo

8 9 11 Wo 29 35 Wo /20

9 5 30 Wo/ 2

2.49. This problem is based on the theory discussed in [128, 177]. The PSD
W (f)(1/Hz) in Table 2.34 is non zero between the specified frequency ranges
(fi—f2) and (fs—f4). Perform the following assignments:

e Calculate for all spectra the constant Wy such that fooo W (f)df = 1.
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e Calculate for all spectra the number of positive zero crossing ua'

\/’/712/7’)10.26

e Calculate for all spectra the average number of maximum peaks v

Vmy/ma.

e Generate for all spectra the random time series.

26 The spectral moment is m, = fooo fTW(f)df.
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Acoustic Random Vibration



3

Low Frequency Acoustic Loads

3.1 Introduction

Acoustic vibration is the structural response of structures exposed to an
acoustic sound field. In this chapter low-frequency acoustic vibrations are dis-
cussed using the modal displacement method (MDM). In the higher-frequency
bands, statistical energy analysis (SEA) is a good substitute for the classical
modal approach.

Lightweight and large antenna structures and solar arrays, of spacecraft
(see Fig. 3.1) are very sensitive to acoustic loads during the launch phase.
Spacecraft external structures are severely exposed to acoustic loads.

In general, the modal characteristics of the dynamic system are calculated
with the aid of the finite element method. The accuracy is determined by the
detail of the finite element model and the complexity of the structure. As
stated above, the equations of motion will be solved using the classical modal
approach and therefore linear structural behavior is assumed.

The structure is deterministic, however, the acoustic loads have a random
nature.

3.2 Acoustic Loads

Acoustic loads appear as design specifications for spacecraft and spacecraft
attachments such as solar arrays and antennae. Acoustic loads are generated
during launch, or in acoustic facilities for test purposes. It is very common to
specify a reverberant sound field, which means that the intensity of the sound
is the same for all directions.

In general, the acoustic loads are described as sound pressure levels (SPL)
and specified in decibels (dB). The SPL is defined by

2
SPLlelog( P ) , (3.1)
DPref

J. Wijker, Random Vibrations in Spacecraft Structures Design,
Solid Mechanics and Its Applications 165,
(© Springer Science + Business Media B.V. 2009
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Solar wing ' D Solar wing
- Tanks -
@&
Soundpressure Interface launch vehicle

Sound pressure
g

t

Enforced acceleration

Fig. 3.1. Typical spacecraft

where p is the rms pressure in a certain frequency band with frequency band
width Af, mostly one octave or one third octave band, and ps is the reference
pressure 2 x 107° Pa.

The z-th octave band of two sequential frequencies f; and fs is given by

oo
hoE

where x = 1 for the octave, and 2 = £ when the one-third-octave band; then

3
2 =23 = 1.260.
The center frequency f. (Hz) is defined by

fc =V fminfmaza (33)

where frin (fmaz) 18 the minimum (maximum) frequency (Hz).
The frequency bandwidth Af (Hz) is given by

(3.2)

Af = fmax - fmin~ (34)

With % = 2% the bandwidth Af can be expressed in terms of the center
frequency f. as follows

Af = (22 —27)f.. (3.5)

When
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The PSD of the pressure field W, (f.) (Pa?/Hz) in the frequency band with
center frequency f., bandwidth Af and rms pressure p(f.) is defined as

- pZ(fc)
Wp(fc) - Af(fc) (3.6)

The mean square value p?, . of the sound pressure level is given by

oo k k
P = /0 LEOTED SIATAEVED STA) (3.7)

where k is the number of one octave or one third octave bands.
The overall sound pressure level (OASPL) in dB is defined as

2
OASPL = 101log (172—m> (3.8)
pref

Example. In Table 3.1 the center frequency f. (Hz) and the corresponding
SPL levels (dB) are specified in the octave band. We will calculate the corre-
sponding bandwidths Af(f.) (Hz), the mean square values p?(f.) (Pa?), the
PSD values W, (f.) (Pa?/Hz) and finally the OASPL.

The following relation determines the conversion of a one-third- octave-
band to a one-octave-band;

3 SPL
5 ~octave

SPL1-petave = 1010g [Z 10 o 1 (3.9)
k=1

and the following relation determines the conversion of the a one-octave band
to the a one-third-octave-band

Afi.
SPL%_OCmUe = SPL1-octave + 101og [Afjimzm] . (3.10)
—octave
Table 3.1. SPL specification

J.(z)  SPL(B) A (Hs) 5" (Pa)) W, (J2) (Pa?/TTz)
31.5 124 22.27 1004.75 45.11
63 130 44.55 4000.00 89.79
125 135 88.39 12649.11 143.11
250 139 176.78 31773.13 179.74
500 134 353.55 10047.55 28.42
1000 128 707.11 2523.83 3.57
2000 124 1414.21 1004.75 0.71
4000 120 2828.43 400.00 0.14
8000 116 5656.85 159.24 0.03

OASPL 142.01 dB
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Table 3.2. Conversion calculation one octave to one third octave band

Octave band (Hz) SPLi-octave (dB) A fi-octave (Hz)
125 135 88.4
T octave band (2) A3 i (12)  SPLy_, (4D)
100 23.2 129.2
125 28.9 130.1
160 37.1 131.2

Table 3.3. Conversion calculation one third octave to octave band

1 SPL1_ otave
5 octave band (Hz) SPL1_ petave (dB) —
100 129.2 12.92

125 130.1 13.01

160 131.2 13.12
Octave band (Hz) SPL1-octave (dB)
125 135

Example. The conversion of the octave band to the one-third-octave band
is shown in Table 3.2. The reverse conversion is shown in Table 3.3.

Problems

3.1. Prove the following relations:

e The conversion of the SPL of one third octave band to the one octave

band;
3 SPL7 _ ‘|
3 octave

SPL1- petave = 101log [Z 103w
k=1

e The conversion of the SPL of the one octave band to the one third octave

band
A F-octave
SPL: féit] .

3-octave

= SPL1-octave + 10 log Af
1-octave

3.2. The following typical specification of the SPL is taken from [133]. Cal-
culate the OASPL of the spectrum given in Table 3.4. Convert the one third
octave SPL spectrum given in Table 3.4 to an octave band spectrum and re-
calculate the OASPL.

Answer: OASPL = 144.9 dB.

3.3. The power spectral density in ‘pink noise’ is proportional to the inverse

of the frequency f, and is given by W,(f) = ‘/EfAQ. Show that the rms value
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Table 3.4. 1/3 Octave band specification

Center frequency (Hz)  SPL (dB) pry = 2 x 107° Pa

31.5 122.0
40.0 124.0
50.0 126.0
63.0 127.5
80.0 129.5
100.0 130.5
125.0 132.0
160.0 133.0
200.0 133.5
250.0 134.0
315.0 134.5
400.0 134.5
500.0 134.0
630.0 133.5
800.0 133.0
1000.0 132.0
1250.0 131.5
1600.0 130.0
2000.0 129.0
2500.0 128.0
3150.0 126.5
4000.0 125.0
5000.0 124.0
6300.0 122.5
8000.0 121.0
10000.0 120.0

of the sound pressure p in the octave frequency band is independent of the
center frequency.
Answer: p = A.

3.4. The SPL’s given in Table 3.1 are specified in the octave band. Convert
the SPL values ¢ the one-third-octave-band and recalculate the OASPL.

3.3 Response Analysis

The undamped equations of motion of a discrete number of coupled mass-
spring systems with mass matrix [M], stiffness matrix [K], dynamic force
vector {F(t)}, displacement vector {x(¢)} and acceleration vector {#(t)} can

be written as
[M{{E@)} + [K{z(t)} = {F(t)}. (3.11)

The damping will be introduced later.
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p(t)A;

Fig. 3.2. Node 7 with associated nodal area A;

In general, the discrete system is a finite element representation of a real
structure.

The component Fy(t) of the force vector {F(t)} consists of a pressure or
pressure difference p(t) applied normal to the area associated with node i.
One force applied to the node i is

Fi(t) = /A DA~ p(B) A k=1,2.3, (3.12)

where A;j, is the area associated with node 4 in the direction of DOF k. This
is illustrated in Fig. 3.2. The pressure p(t) is normal to the area A;.
The associated nodal area in one finite element can be obtained from [155]

{Ai}:/A{LDn}TdA, i=1,2,3, (3.13)

where n is the number of nodes in one finite element and {¥} the set of
shape functions relating the internal displacement field to the nodal displace-
ments. For a diffuse sound field, a correlation exists between the nodal forces.
Radiation effects are not taken into account.

Example. A rod with a length L has two nodes. The displacement shape
functions {¥(x)} are

((2)} = {1 - % %J

The representative lengths {L;} become

{Li}Z/L{W}TdL:L/OL(1_%%>d<%> _ @)

The associated lengths L; of the two nodes are half of the length L of the rod.

The displacement vector {z(t)} will be projected onto the independent
mode shapes (eigenvectors), the modal base [@], multiplied by the generalized
coordinates {n(t)}
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{z(®)} = [@{n(1)} (3.14)

The orthogonality properties of the mode shapes with respect to the mass
matrix [M] and the stiffness matrix [K] yields in diagonal matrices

(@] [M][@] = [dimi], (D] [K][D] = [0imqw} ], (3.15)

where d;; is the Kronecker Delta function, m; are the generalized masses and
w? the eigenvalues of the dynamic system.

The coupled equations of motion are decoupled and expressed in terms
of the generalized coordinates 7;(t). We will now introduce the modal damp-
ing ratio ¢; and the modal viscous damping term 2¢;w;7;(t). The decoupled
damped equations of motion become

_ w = fi(t), i=1,2,....n, (3.16)

i (t) + 2Gwini (t) + wing(t) -

where n is the number of generalized coordinates.
The solution in the time domain with zero initial conditions (displacement
and velocity) is

ni(t) = /°° e_CW”Mfi(t —T)dr = /°° hi(T)fi(t —7)dr,  (3.17)

— 0 wq —o0

where h;(7) is the impulse response function and the damped natural (circu-
lar) frequency wq is defined as

Wi :wiﬂl—c,?. (318)

In the frequency domain, with IT;(w) = [0 n;(t)e 7*'dt
II;(w) = H(w) fi(w), (3.19)

where H;(w) = m is the frequency response function and f;(w) =
[ fit)e™3*!dt is the Fourier transform of the force function f;(t).
The cross correlation function R, ,, (7) of the generalized coordinates 7;(t)

and n;(¢) for an ergodic stationary process is given by

Ry, (1) = lim —/_T n;i(t)n;(t — 7)dt. (3.20)

The relation between the cross PSD function S,,,,,(w) and the cross cor-
relation function R, (7) is given by the Wiener-Khintchine relationships,
namely

(o)
Spim; (W) :/ Ry, (T)e 79t 0,5 =1,2,...,n, (3.21)
— 00

where n is the number of modes considered and
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Ry, (1) = 27T/ Spiny W)t dw i, =1,2,...,n. (3.22)

The matrix of cross correlation functions [Ry, s, (7)] for an ergodic station-
ary forces f;(t) and f;(¢) is given by

[Ry.5,(T)] = hngo%/ i)t —=Ddt i,5=1,2,...,n.  (3.23)

Equation (3.23) can be rewritten using (3.16) in matrix form

[Ryf, ()] = lim / {0 (B}t - )} (o5},

T—oo 2T m;m;
i, i=1,2,....n, k,1,=1,2,...,m, (3.24)
[Ryp, ()] = yT1A] [hm L / (o)} it — 7)) Tat| 14) (6}

iji=1,2,....,n, k1,=1,2,....m (3.25)

where [A] is the diagonal matrix of areas associated with the m DOFs of the
finite element model as illustrated in Fig. 3.2.

Finally, the cross correlation function Ry, s, can be related to the cross
correlation matrix of pressures all over the surface of the structure

Ry, ()] = (0 TAN B (DT AL )
iji=1,2,....n k1,=12,...,m, (3.26)

where the matrix [R,,p, (7)] is the matrix of correlation functions of pressures
over the surface of the structure, k& and [ denote the sequential numbers of
DOFs and n the number of modes that are considered.

The matrix of cross PSD functions becomes

11, ] = om0 TANSpen (T AL {0}
ii=1,2,....n, k1,=1,2,....m, (3.27)

where the matrix [Sp,p, (w)] is the matrix of PSD functions of pressures over
the surface of the structure.
The matrix of cross PSD functions [Spkpl (w)] of the pressures all over the

surface and related to the DOFs i =1,2,...,m is as follows
Splpl Ew§ Plpz Ewg e Splpm Ewg
szpl w p2p2 w e szpm w
[Spip (@)] = : N : : (3.28)

Spmpl(w) Spmm(w) Spmpm(w)
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Equation 3.21 can be written as

bt [ ([ -

X </°° hi(B—7)f;(t— (8- T))dﬁ) e ITdrdt, (3.29)

— 00
and

Sy () = / Ry (1 — a4 B =0—atB) gy

XOE/O;hZ ewada></ h( eﬂwﬁdﬁ> (3.30)

where H;(w) = [*_ hi(r

Ye=7“Tdr. The PSD function matrix for the general-
ized coordinates [Sy,,; (w)]

can be obtained by the following matrix equation

[Snmj (w)] _ Hz( ){fﬁz}T[AJ[ Pkpl( )l[AJ{qﬁJ}HJ*(w)

mimw;w;
ii=1,2....n kil,=1,2,...,m, (3.31)
2
where H;(w) = uﬂ—uﬂim the frequency response function and H}(w) =

2
w5
w?—wZ—QjCjUJjw

H;(w)H} (w) = |H;(w)|?. The matrix of the cross spectral density functions of
the generalized coordinates n; and 7; is

called the conjugate frequency response function with

S0 0 = [ 240 T Syl A 25 | @)
where [P] is the modal base.
In general, (3.28) is expressed as follows
CAAR R R
[Sprp (W)] = Sp(w) : : : ., (3.33)
Cornn (@) Copa(@) - Cpp(©)

where S,(w) is the reference PSD function of the applied pressures. This

reference PSD of the pressure is, in general, related to the sound pressure

levels (SPL) of the sound field exposed to the surface of the structure. Cy, . (w)

is the correlation (coherence) function between pressures at the nodes i and j.
Some typical pressure fields can be described [220]:

1. If the dimension of the surface is less than a quarter of the wave length
A the correlation function C,,, (w) = 1.0. The wave length is A = 2%
with the wave numberis £ = ¢ and c is the speed of sound. At room

temperature the speed of sound under 1 Bar is ¢ = 340 m/s.
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2. If the sound pressure field is completely random (rain on the roof) the off-
diagonal terms of (3.33) are zero and the diagonal terms Cj,,, (w) = 1.0.
The correlation matrix [Cp,,, (w)] = [I].

3. A three dimensional wave field with uniform intensity I = % in all di-
rections is commonly called a reverberant sound field, with p the density
of the air, p ~ 1.2 kg/m?3. The coherence function Cp,,, (w) = %

and |7; — 7;| the distance between node ¢ and j. The correlation function

sin(k|ﬁ—f7' |)

®F=2;1) in the z-y plane is often replaced by sin(k|7i—7y])

~
~

(k7 —7;1)
sin(k|Az|) sin(k|Ay|)
(K[Ax]) — (k[Ay]) ~
Equation (3.31) can be written as
Hi(w)J5H ()
[Snin, (w)] = Sp(w)W
=120 ki,=1,2"...m, (3.34)
where ij is called the joint acceptance
% = {0} TAJ[Cpup (WA {05} (3.35)
Thus (3.32) can be rewritten as
S ) = 5500|131 27| (3.36)
with the matrix of joint acceptances [J7]
[75] = [2]"TA][Cpup (W) [A][2]. (3.37)

Example. The joint acceptance function will be calculated at a frequency
f = 54.113 Hz and a speed of sound ¢ = 340 m/s?. The wave number becomes
k = 27/c = 1. The mode shape ¢(x,y) = sin 3 sin 5, the first mode shape
of a simply supported rectangular plate with length a = 1 and width b = 1.
The joint acceptance functions Jizj are calculated using integrals instead of

matrix multiplications:

1. Rigid body mode and a plane wave (complete correlation C,,, = 1)
2. Elastic mode ¢(z,y) and a plane wave (complete correlation Cy,,. = 1)
3. Rigid body mode and a reverberant sound field with
sin(kAx) sin(kAy)
Cpipj =
kAzkAy

4. Elastic mode ¢(x,y) and a reverberant sound field with

o sin(kAx) sin(kAy)
pibs = kAzkAy
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The solution of the first joint acceptance function J3, (index 0 stands for rigid
body mode) is

Jgy = / 1/ / / dzdydudv = 16

The second joint acceptance function J# (index 1 stands for the first elastic
mode) is

b=1
J11 = /_71 / / / sin % sin % sin % sin —da:dydudv = 2.628.

This result is conform [55]. The third joint acceptance function J3, becomes

JZ, = / / / / sinfo =yl sinfu = vl o dude = 12,883,
=1 =1 -1 |z =yl lu — vl

and the fourth joint acceptance function JZ becomes

72 / / / / sin |z — y| sin |u — v|
H =1 -1 |$—y| lu — v

— sin — sin — sin — = 2.321.
X sm g sm 5% sm 90 sm 5% dxdydudv 3

The joint acceptance function ij is a measure for the coupling with the sound
field.

The matrix of the cross PSD [S,,,,(w)] of the physical displacements {x}
can be obtained by

[Seia; ()] = [@][Shon, (@)][@]", (3.38)
the matrix of cross PSD [S;,:,] of the velocities {} becomes
[Siia; (w)] = w?[@][Shun, (@)][P]T, (3.39)
and the matrix of cross PSD [Sj,z,; (w)] of the accelerations {#}
[Si., ()] = W @] [Sp,n, (W)][B]T (3.40)

The matrix of cross PSD of the stresses Sy, ., (w) of the internal stresses
can be expressed as follows

[Soiaj (‘JJ)] = [@0] [Snmj (w)][éa]Tv (3.41)

where [®,] is the matrix of stress modes.



214 3 Low Frequency Acoustic Loads

Zy

m

T2

k
I

Fig. 3.3. 2 mass-spring system

Example. A two mass-spring system is illustrated in Fig. 3.3. The stress
modes [@,] will be calculated. The stress modes are defined as follows

[QSU] = [DU] [@]7

where [D,] is the stress matrix (the stress matrix times the displacement
vector {a} will yield the static stresses)

D) =% (é 11),

with A the cross section of the springs.
The mode shapes are

1 —0.8507 —0.5257
- o (o ),

Vm \ —0.5257  0.8507

with the generalized masses [®]7[M][®] = [I]. The stress modes now become

~ k [-03249 -1.3764
T Aym \ —0.5257  0.8507 )°

The PSD is symmetric with respect to w = 0 and, if the circular frequency
w is replaced by the number of cycles per second f, the PSD function S(w)
can be replaced by

[@5] = [D,][2]

W(f) = 2S(w). (3.42)

In all equations the PSD function S(w) can be replaced by W(f) and w
by w=2nf.

Example. The purpose of the example is the show the procedure to calculate
the response of a simply supported beam caused by an acoustic field.
A simple supported beam with length 4L is mathematically represented by
a finite element model consisting of 5 nodes and 4 bar elements. The beam has
a width b. The mass per unit of length of the beam is m. The finite element
model is illustrated in Fig. 3.4. The total area of the beam is 4bL. The natural
nmx

frequencies of the simply supported beam with mode shapes ¢(x) = sin %52,
n=1,2,... are given by
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5

, —

Fig. 3.4. Finite element model simply supported beam

(nm)? EI
=) P =12,
In= "\ "

The damping ratio for all modes is ¢ = 0.05. The beam is exposed to a random
pressure field with the coherence matrix [C,p; (f)]-

The modal matrix [@] of the first two modes, the lumped mass matrix [M]
and the diagonal matrix of areas | A| are

0 0 $ 0000
ive 1 01000
@ =] 1 0|, [M=mL|0 010 0],
_%2_1 00 0 1 0
0 0 0000 3
1000 0
01000
|[A]=Lb|0 0 1 0 0
00010
0000 3

The generalized mass matrix becomes

@ﬁmm:%wB?}

The following coherence matrices are considered:

1. Rain on the roof sound field

1 0 0 0 O
01 0 0 O
Copy (D=0 0 1 0 0
000 1 o0
00 0 0 1]
2. Plane wave sound field
(11 1 1 17
1 1 1 1 1
Copy (=1 1 1 1 1
1 11 1 1
|11 1 1 1)
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3. Reverberant sound field

(Cpip; ()= (02 61 1 61 0O2],

where 6,, = sin(nkl)/nkl, the wave number is k = @, and the speed of
soundis ¢ ~ 340 m/s. Assume kL = 1 then

1 0.8415 0.4546 0.0470 —0.1892
0.8415 1 08415 0.4546  0.0470
[Cpop, (/)] = | 04546 0.8415 1  0.8415 0.4546
0.0470  0.4546 0.8415 1 0.8415
—0.1892  0.0470 0.4546 0.8415 1

The response of the beam exposed to a rain on the roof type of sound
field will be worked out. The joint acceptance matrix can be obtained us-
ing (3.37)

2] = ()7 [A) [Cpup (][ A][#] = 2(Lb)* [é ﬂ :

The PSD of the two generalized coordinates, associated with the two modes,
can be now calculated using (3.36)

CACA P O

[Wmnj (f)] = Wp(f) [

mi(2m fi)2 |77 | my(2m f;)?
H, 2
_ W |0 WP [ 0
2m?2(2m)4 0 |H2f(—f)‘2 2m2(2m)* | 0 ho|’

where |H;(f)|? = B ¢; is the modal damping ratio and f; is

1
1-(F)P+2¢ ()
the natural frequency for ¢ = 1,2. The PSD of physical displacements {z} can
be calculated with the aid of (3.38)

Wa,a, ()] = [@][Wa., (F)][@]"
0 0 0 0 0
5 |0 0.5k 4+he 0.7071h; 0.5h; —hs 0
:% 0  0.7071h, hy 0.7071h; 0
m2(2m)t 1 0.5h1 — hy 0.7071h; 0.5h; +hy 0
0 0 0 0 0

After the calculations of the PSD of the displacements {x}, the accelera-
tions, forces, stresses, etc. and associated rms values can be numerically ob-
tained. The lowest two natural frequencies of the simply supported beam are
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- PSD Displacements x,, X
x107° P 273
6
X5
X3
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Hz

Fig. 3.5. PSD displacements

f1 =60 Hz, and fo = %fl = 377.0 Hz. The modal damping ratio is con-
stant for both modes ¢ = 0.05. The PSD of the pressure field W), is constant in
a frequency band f = 20-500 Hz and zero otherwise. The PSD of the pressure

2
is normalized, e.g. % = 1. The PSD of the normalized displacements

and accelerations and associated positive zero crossings of the nodes 2 and 3 (4
is the same as 2) are calculated. The responses are shown in Figs. 3.5 and 3.6.
The rms values of the normalized displacements and positive zero crossings

are
z2 )| _ [ 0.0060 Vis _ [68.4615
xz3 [ 10.0071 [~ V0+,3 s © ] 60.4381 [
and the rms values of the normalized accelerations and positive zero crossings
are
i _ f3.1084 x 103 vgo | _ J370.1744
#3 f | 1.2504 x 10° [’ Vos | 184.8545 [~

The integration had been done with a frequency increment Af = 0.1 Hz.

Problems

3.5. Calculate the modal bending stress at point A near the fixation of the
bending beam with bending stiffness EI, length L and a bending resistance W.
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4 PSD Accelerations x_, x
16 x 10 2773

PSD
©

Dl

0 100 200 300 400 500
Hz

Fig. 3.6. PSD accelerations

Fs

EI, L
M

Fig. 3.7. Calculation modal stress

At the free end of the beam a mass M has been connected. The bending beam
is massless. The bending beam is illustrated in Fig. 3.7.

Calculate the natural frequency.

Calculate the mode shape ¢ at the location of the mass M. The generalized
mass M¢? = 1.

Calculate the force Fy—1.

Calculate the bending stress o, at A due to Fs—;.

Calculate the modal bending stress oy, at A.

p _ 1 [3EI 4, _ 1 _3EI _ _ 3EI _ 3EI
Answers: fn = 520/ 4775, ¢ = 50 Fos=1 = 755 00 = 12, Obm = Ay
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Fig. 3.8. Acoustic load applied to supported rigid plate

3.6. A rigid square plate with length and width a has a mass m. This system
is illustrated in Fig. 3.8. The plate is supported in the center by a spring with
spring stiffness k£ and cross section A. The amplification factor Q = %, with
¢ the damping ratio. The PSD of the pressure W,(f) = W,. The wavelength
is A > a. Perform the following operations:

Calculate the natural frequency fy of the system.

Define the normalized mode ¢ with ¢?m = 1 and § = ¢n.

Define the stress mode ¢, .

Calculate the joint acceptance Jg,.

Calculate the PSD response W, (fo) of the modal participation 7.
Calculate the PSD response W;(fo) of the displacement ¢ of the mass m
at the natural frequency fp.

e Calculate the PSD stress Wy (fo) in the spring at the natural frequency fy.

Answers: fo = %\/%, ¢ = ﬁv ¢a = %ﬁ’ J(?o = a4, Wnn(fo) =
2 4 2 4 2 4
Tyt Wos Wos(fo) = ey sz W Woo (fo) = (5)? mepyr mz Wo-

3.7. Repeat the example given on page 214 of the response analysis of a simply
supported beam (Fig. 3.4), however, now exposed to an acoustic field in the
form of a plane wave. All the terms in the coherence matrix [C),,, (f)] are
equal to one. All other parameters are the same.

Calculate the joint acceptance matrix [J7].

Calculate the matrix of response of the two generalized coordinates
W, (D).

Calculate the matrix of physical displacements [W, ., (f)].

Calculate numerically with Af = 0.2 Hz the normalized diagonal terms of
the matrix of PSD values Wy, (f)], 2 and x3, and associated numbers
of upward crossings vy .
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e (alculate numerically with Af = 0.2 Hz the normalized diagonal terms of
the matrix of PSD values [Wj, i, (f]) = (27 f)*[Wa,a, (f)], &2 and &3, and
associated numbers of upward crossings vy .

3.8. The wavelength of acoustic waves propagating in air and flexural waves
propagating in large bending plates are as follows [18]
Aacoustic = ?7

Et3 2T 2
Aptate = (12m<1 _,,2)> (7) :

where c is the speed of sound ¢ = 340 m/s?, m the mass per unit of area
m = 2 kg/m?, t the thickness of the plate ¢ = 2 mm, E is the Young’s
modulus £ = 70 GPa, the Poisson’s ratio v = 0.3, and f is the frequency in
Hz.

C

N

e At which frequency (critical or coincidence frequency) do the two waves
coincide?

e For lower frequencies, is the flexural wavelength greater than or less than
the acoustic wavelength?

e Evaluate the numerical values of the coincidence frequency and the asso-
ciated wavelength.

e The compressional wave velocity is given by ¢, = [m(ffﬂ)](w. Express the

coincidence frequency feoincidence il Cp-

c2

Aplate
) f < fcomcidence - /\L < 1, f >

acoustic

Answers: fcoincidence = 243
27 T2m(1—02)

- Dplate_ > 1, fcoincidence = 3633 HZ; )\plate = Aacoustic = 0.094 m,

Aacoustic

o _ /122
fcoznczdence - 2nt /Cp

fcoincidence

3.4 Modal Damping

Table 3.5 shows the NASA recommended modal damping ratio profile for
vibroacoustic analysis. The modal damping is expressed as percent of the
critical damping.

Table 3.5. Recommended modal damping ratio [31]

Frequency (Hz) Modal damping ratio ¢
0.0-10.0 0.01
10.0-35.0 0.02
75.0 0.03
130.0 0.04

200.0 0.05
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3.5 Simplified Acoustic Response Analysis

3.5.1 Introduction

In the early stage, structures must be dimensioned before more detailed
strength and stiffness analyzes can be made. For that simple analysis tech-
nique may applied very fruitful. A few of this methods will be discussed and
illustrated with examples.

3.5.2 Acoustic Loads Transformed into Mechanical Random
Vibrations

Large (sandwich) panels, with all kinds of instruments, electronic boxes, etc.
mounted onto them, are fairly sensitive to acoustic loads. The acoustic loads
are transformed into mechanical random vibrations by the panel. These me-
chanical random vibrations vibrate in tune with the mounted instruments,
electronic boxes, etc. In this section we determine the applied mechanical
vibrations due to the acoustic loads.

The SPL is expressed with respect to a reference pressure p,.f = 2 X
10~? Pa and is given by

p2
pref

The SPL are usually specified in the 1/1 octave band or 1/3 octave band. The
center frequency f. (Hz) can be associated with the bandwidth Af:

e 1/1 octave band Af = 0.7071f,
e 1/3 octave band Af = 0.2316f,

The PSD function W,(f) (Pa?/Hz), where p is the rms sound pressure for a
specific center frequency f. with bandwidth Af can be obtained as follows

p2

Wolf) = A7

(3.43)

The power spectral density of the acceleration of the box, due to the
acoustic pressure (Fig. 3.9), is determined as follows [191]

2
Wa(f) = ﬁ%f(giM) Wo(f). (3.44)

where W, (f) is the PSD of the accelerations (g2/Hz) of the box and the
supporting structures, S = 2.5 is the effectiveness wvibro acoustic factor, Q =
4.5 is the amplification factor, A is the area of the side of the box (m?) mounted
to the panel, M is the total mass of the box and the supporting structure (kg)
and g is the gravitational acceleration (9.81 m/s?).
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Box

Structure

i iRNNANARiAAd

Acoustic loading pAS

Fig. 3.9. Model for evaluation of the effects of acoustic pressure

Table 3.6. Calculation of wave length A , ¢ = 340 m/s

Center frequency f. Wave length A = ? (m)
31.5 10.79
63 5.40
125 2.72
250 1.36
500 0.68
1000 0.34

If the wave length A\ = % > /A, where /A is the characteristic length or
width of the panel, the sound wave may be considered as a plane wave. The
speed of sound is ¢ = 340 m/s. The wave length A in the one octave band is
illustrated in Table 3.6.

The expression (3.44) can be easily derived from the undamped equation
of motion for an isotropic plate with a deflection w, bending stiffness D, mass

per unit of area m and exposed to a uniform pressure p
D 0*w 49 o*w N 0*w 0*w
i Z = 4= me—
Ozt 0x20y? Oyt ot?
where z and y are rectangular coordinates.
The deflection w can be expressed

=p, (3.45)

w(wy) =Y > mii ()i (@,y), (3.46)

i=1 j=1

where ¢;;(x,y) is the ¢jth mode shape and 7;;(t) the ijth generalized coordi-
nate. The mode shapes are orthogonal, so

b a
m/ / bij(x,y)or (2, y)dxdy = my;ij0ixkdji, (3.47)
0 0

where a and b are the length and width of the rectangular bending plate.
The mode shapes can be approximated, e.g.
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(a) First mode i = j =1 (b) Second mode 1 =2,j =1

Fig. 3.10. Vibration modes simply supported plate ¢;;(z,y) = (sin ? sin %)

e simply supported plate, ¢;;(z,y) = (sin % sin j%), 1,7 =1,2,...,n and
e clamped supported plate, ¢;;(z,y) = sinZZ(1 — cos 2Z%)sin j%(l -

COSQ%)7 1,7 =1,2,...,n.

The natural frequency of the supported plate is w;;, 7,5 = 1,2,...,n. The
uncoupled damped equations of motions for 7;; can now be obtained when
the orthogonality relations for the mode shapes ¢;; and the modal damping
ratio (;; are introduced

b ra
g + 2Cijwignig + wiinig = 2Jo Jo diidady i,j=1,2,...,n.  (3.48)

mfob foa ?jdxdy,

The equations of motion (3.48) are Fourier transformed in the frequency do-
main. With 7;; = II;;(w)e’“" and p = P(w)e’*" the equations for II;; become

b ra
e oy e
Y\ - @+ 25Gwiw ) [ [ g2 dady
b ra
= () A Sty o
b ra ’ |
m [y [y 9% dxdy
and for the acceleration of the generalized coordinates ﬁij = —w?II;;, thus
b ra
ij %‘2]‘ —w? + 25jwizw ) m fob foa ?jdxdy
b ra
P ijdrd
_ H, W) M . (3.50)
mfo fo ¢?jd$dy

The PSD function of the displacement and the acceleration for the gener-
alized coordinates can now be expressed by

Sp(w)(fob foa ¢ijdxdy)2
(m f(f foa %jdmdyP

Sy (@) = [Hyy ()2 (3.51)
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and

fo fo pijdrdy)?
mfo fo ¢22Jda:dy)

The rms value of the displacement of the generalized coordinate (nfj> is given
by

iy (@) = Wil Hyy ()2 (3.52)

b ra
n2) = 1 p(wig)(Jo Jo ¢ijdady)®
7, 2 .
J 4 17 ZJ mfo fO d.Tdy

The rms of the acceleration of the generalized coordinate (7 J> does not exist.
The PSD function of the acceleration of the deflection w(z,y) is

= ZZ i ( ” (z,y), (3.54)

(3.53)

or

Wilf) =D D> Wi, ()6 (.y), (3.55)

where Wy (f) = 2S4(w). To keep it simple, only the first mode ¢1; will be
considered, and the contribution of all other modes neglected. The integrals
for the simply supported plate are calculated:

b a
4
/ / sin % gin 7Y dxdy = Lb, (3.56)
0 Jo a b (m)?
b ra 2
b
/0 /0 <sin % sin ?) dxdy = az' (3.57)

The expressions for the clamped plate modes are too lengthly and are not given
here, but may obtained numerically or by using special purpose software (e.g.
Maple®).

The rms value of the deflection of the first generalized coordinate 77 is

() = m(lﬁ) <fu>(A)2, (3.59)

where the area of the plate is A = ab and the total mass is M = mab.
The PSD function of the acceleration of the first generalized coordinate
711 at the first natural frequency fi11, associated with simply supported plate

mode ¢y, is
Wiy, (f11) = ﬁ(m) (f11)(A>27 (3.59)

and the PSD function of the acceleration of the deflection w(x,y) at the first
natural frequency fi11, neglecting all other modes, can now be calculated, and
becomes
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Walo o fi) = o5 (16) <fu>(A>2(sm§sm”—,f’). (3.60)

Equation (3.60) is very similar to (3.44). If (;; = 5% = Q_ then (Q%,3°%) =
16.2112 = 262.8, which is somewhat higher than that in (3.4 )

3.5.3 The Stress in an Acoustically Loaded Panel

Based on the NASA guidelines, [134], the following steps can be followed for
establishing acoustic loads of the planar components:

1. Estimate the panel fundamental natural frequency f,.

2. Convert the sound pressure levels to sound pressure PSD (3.44).

3. Based on a damping ratio ¢, determine the amplification factor @ for the
panel.

4. Use Miles’ equation to determine the rms equivalent static pressure p,m,s
USing Prms = %anWp(fn)

5. The equivalent static pressure is given by the 30 value ppeqr = 3prms. This
assumes the panel fundamental mode is the same as the deflection of the
panel exposed to a uniform static pressure and the spatial correlation of
the acoustic pressure field over the panel is uniform too.

This approach is conservative.

Example. The maximum bending stress o; at the center of a circular simply
supported plate with a radius R = 0.5 m, a thickness ¢ = 2 mm, a Poisson’s
ratio v = 0.33 and an uniform pressure p is given by [207]:

3(3 +v)pR?

g, =
b 8¢2

Assume a fundamental frequency f,, = 100 Hz a SPL = 135 dB at a center
frequency f. = 125 Hz in 1/1 octave band. The reference pressure prs =
2.0 x 107® Pa. The amplification factor @ = 10. The bandwidth Af at a
center frequency f. is given by Af = \J;— = 88.35 Hz. The rms pressure

SPL

P = preflo 10 = 1.265 x 10* Pa2. The PSD value of the pressure at the

center frequency f. = 125 Hz becomes W,(125) = p”"i = 88.4 Pa?/Hz. The

30 or the peak value of the pressure Ppeqr = 3 ganW (125) = 1422 Pa.
The bending stress o;, at the center of the circular plate is the same in all
directions:

3(3 + V)ppear R 3(3+0.33) x 1422 x 0.5

— 8
2 = S % 0,002 =1.11 x 10° Pa.

gp =

In [17, 18] Blevins discussed a method to calculate rms stresses in plates
exposed to random pressures.



226 3 Low Frequency Acoustic Loads
The modal pressure p (inertia load) is defined as follows
p = (2nfo)*mls], (3.61)

where m (kg/m?) is the mass per unit area of the plate, fo (Hz) is the funda-
mental natural frequency of the plate and |d] is the maximum modal displace-
ment of ¢(x,y) which is the mode shape or vibration mode. The rms stress
orms(T,y) at a certain point (z,y) in the plate can be determined from the
following equation

Orms (l’, y) =

N (3.62)

where @ is the amplification factor, W,(fo) is the power spectral density of
the pressure, and o5(z, y) is the stress at the location (z,y) corresponding to
the modal pressure p.

The calculated bending stress in plates exposed to a random acoustic pres-
sure calculated either with the approximate method proposed in [134] or that
proposed by Blevins [17, 18] are identical. The Blevins approximate method
is discussed in more detail in Appendix H.

3.5.4 Acoustic and Random Vibration Test Tailoring

When developing a qualification test program for spacecraft, it is necessary to
determine whether there should be an acoustic or random vibration test for
each component (instrument, box, ...). Several criteria must be considered
when making such a decision.

First, frequency sensitivity of the component must be established, While
many subsystems are not sensitive to frequencies above 2000 Hz, those that
do respond above this threshold cannot be tested by random vibration, but
must instead be tested with acoustic noise. In these cases, decisions must be
made regarding precisely how to conduct the acoustic test. The problem is
easy for high area-to-mass components, which can be simply suspended with
bungee cords within a reverberant acoustic chamber and directly “hit” with
the acoustic source.

Low area-to-mass components are somewhat more problematic, as the vi-
bration energy input should come through the base or mounting structure
in the same manner as random vibration. This is because, when incident
acoustic energy excites a spacecraft structure, high frequency random vibra-
tion is passed through the structure to mounted components.

To simulate this in an acoustic test, the component should be mounted on
a plate. The area distribution and dynamic properties of the plate must be
similar to the spacecraft structure, so that a “flight-like” vibration environ-
ment is imparted to the unit under test. The plate should then be excited by
acoustic energy, which will be passed along to the component in the form of
high frequency random vibration.
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Below 2000 Hz, low area/mass components can be tested with random
vibration only. The random vibration input specification should be a com-
bination of acoustic and random response of the spacecraft structure at the
component interface.

The “break even” area/mass ratio, representing the regime in which both
acoustic and random vibration tests induce equal stochastic acceleration re-
sponses, can be calculated analytically for a SDOF system. A schematic of an
example component is shown in Fig. 3.11. The example component is a SDOF
system having a natural frequency fy (Hz), a mass m and a modal damping .
From the two simple SDOF systems the “break even” area/mass ration can be
calculated. The area/mass ratio A/m will be derived by applying Lyapunov’s
equation. The damped equations of motion of both SDOF systems (left and
right Fig. 3.11) can be written as follows

B(t) + 2Cwoz(t) + wiz(t) = —ii,

' )4 2l — AP F(D) (3.63)

(1) + 20w (1) +wha(e) = 2 = 20,
where the relative motion of the left SDOF system is z = z — u, the enforced
acceleration is 4(t), A is the surface area of the right SDOF and p(¢) the plane
wave pressure field exposed to the surface area of the SDOF systems. The
natural frequency of both SDOF system is w3 = k/m, the damping is ¢/m =
2¢wg and the damping ratio is ¢ (¢ = 2¢ \/ﬁ) The enforced acceleration and
the exposed pressure have a random nature with PSD’s W (f) and W, (f)
respectively. The PSD of the equivalent force F'(t) is given by Wrpr(f). The
left SDOF in Fig. 3.11 will be denoted by “Base Excited SDOF System” and
the right SDOF by “Pressure Loaded SDOF System”.

Acoustic source

Acoustic input at surface area A

Random enforced acceleration
Random vibration Acoustic vibration

Fig. 3.11. Simple component under acoustic and random vibration [63, 64]
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The random responses for z and x for both equations of motion (3.63) will
be found applying Lyapunov’s equation, as discussed in Sect. 2.6. The same
solution procedure is followed on page 172.

Base Excited SDOF System

The SDOF damped equation of motion with the enforced acceleration ii(t)
will be expressed in terms of the relative displacement z(t) = z(t) — u(t)

B(t) + 2Cwoz(t) + wiz(t) = —il. (3.64)

Equation (3.64) will be transformed into space-state variables y; = z(t) and
y2 = Z(t). The state-space equation is

()= (2 o) ()= (5)e
{9} = [Al{y} + {B}ii.

The spring force F} and the force in the damper F, are considered to be
the output variables

= ()= (8 ) ()~ (F ) (2) -
(3.65)

The auto correlation function of the enforced acceleration i is given by

Ry (7) = 5

5(7), (3.66)

where Wy (g?/Hz) is the white noise PSD in the cyclic frequency domain.
The correlation matrix of y;,y2 is given by

_ _ (wyn) (nye) \ _ (i) 0
Ry (00 = ] = () el ) — () 0 ) aan

where (y;y;) are the expected values. The process is assumed to be stationary,

thus %(ylyﬁ = (y2y1) + (y1y2) = 0. This means that (yoy1) = —(y1y2) = 0.
The Lyapunov equation becomes

2

[?ug 21@0} {<y10y1> <y2(1:2>]+[<y10y1> <y20y2>] [(1) _Q?EO} (3.65)

_ {0 0 }
- Waa | -
0 -

The solution of (3.68) is

[Al[Ry, 5] + [Rys][A)]T = —{B}—~{B},
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_ 2 _ uu _ u
() = E{=") = 8Cwd  64m3Cf3
W W (3.69)

(yoyo) = B{2%} = 8Cwo  167Cfo’

The expected value of the spring force and the damper force {Fp},
E[{Fo}{Fy}7], can be obtained from

BUENENT = Clrgler = (P50 o0 ) = (Y L)
_ <W3m2éy1y1> 4C2w3£2<y2y2>>
:gfonma(é Qﬁ) (3.70)

where @ = 1/2¢.
The rms values of the spring force and the damper force are respectively

™
Fk,rms = m\/ §f0QWuU7
m T
Fc rms — ~A/ & Wuu
: QWQEQ

The rms damper force is very small compared to the rms spring force.

(3.71)

Pressure Loaded SDOF System

The SDOF damped equation of motion representing the pressure loaded SDOF
and loaded by the force F' = Ap(t), is be expressed in terms of the absolute
displacement z(t) is

B(t) + 2Cwod(t) + wiz(t) = % (3.72)

Equation (3.72) will be transformed into space-state variables y; = x(t) and

yo = &(t):
(32) - (—?u% —22%) @;)*(%)F (3.73)
(i} = [Al{y} + (B}F.

The spring force Fj and the force in the damper F, are considered to be
the output variables

()4 () ~(F ae) (z) -
3.

74)
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The auto correlation function of the applied force F' is

Wrr
2

Rpp(T) = o(7), (3.75)
where Wrp (N2/Hz) is the white noise PSD in the cyclic frequency domain.
The correlation matrix of y1, ¥ is given by

_ _ (wyn) (nye)\ _ (i) 0
R0 = [yl = (0] ) — (o) 0 ) (o)

where (y;y;) are the expected values. The process is assumed to be stationary,

thus %(ylyﬁ = (y2y1) + (y1y2) = 0. This means that (yoy1) = —(y1y2) = 0.
The Lyapunov equation becomes

W
AN Ryy] + (R[4 = —{B} (B}
0 1 (yiy1) 0 (yipi) 0 0 —wj
3.77
{—w% —QCWO][ 0 (y22) o (y2y2) | |1 —2C¢wo (3.77)
0 0
“lo gl
The solution of (3.77) is
Wrr Wrr AW,
(yiyn) {=7} 8Cwim?  64m3(fEm2  64w3( fEm2’ (3.78)
Wrp Wrr A2W,, '

. .27 _
{yoy2) = E{27} = 8Cwom? 16w fom?  167(fom?’

The expected value of the spring force and the damper force {Fp},
E[{Fo}{Fy}7], can be obtained from

E[{Fo{Fo}"] = [C][Ry,4,][C]" = (E[SV ¢ E[%‘f]) - (<Fk0Fk> <FCOFC>>
(w3m2<y1y1> 0 )

0 ACwgm?® (y2y2)
T 1 0
= §f0QA2pr <0 L) 5 (379)
Q2

where @ = 1/2¢.
The rms values of the spring force and the damper force are respectively

™

Fk,rms = AH §f0Qpr7
A In

Fc,rms = 6 EfOQWp;D'

The rms damper force is very small compared to the rms spring force.

(3.80)
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Synthesis

The internal spring forces Fy in both SDOF systems will be equated to ob-
tain the “break even” area/mass ratio (A/m). The area/mass ratio can be
calculated using (3.71) and (3.80)

A Wiiii Wi
== ~ (o) (3.81)
m Wp W (fo)
To calculate a possible “break even” a the following SDOF system will be
considered:

e The discrete mass is m = 50 kg.
e The natural frequency fy = 125 Hz.

In the ECSS standard “Testing” [56] qualification levels for the random en-
forced vibration and acoustic SPL’s are recommended. The random vibration
specification is shown in Table 3.7 and the SPL in Table 3.8. The PSD of the
pressure field at 125 Hz is

o (20X 10720767 (201070210 Pa?
pp Af 07071 x 125 T Hz

The PSD of the random enforced acceleration is

2 m\2
mA20 _ 1080420 68 ssg )
Hz Hz

Wia = 0.12 .
m+1 50 +1

Table 3.7. Random Vibration test levels

Frequency (Hz) levels Wi (g7 /Hz)
20-100 +3 dB/octave

100-300 0.12 x (m + 20)/(m + 1)
300-2000 —5 dB/octave

Table 3.8. Acoustic qualification test levels

Center frequency SPL (dB)
(Hz) 0dB =2x 107" (Pa)
31.5 130
63 135.5
125 139
250 143
500 138
1000 132
2000 128
4000 124
8000 120

OASPL 147
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The area/mass ratio becomes

A . 2
A_ [ Waalho) _ [1555 _ g1 07
m Wop(fo) 332.88 kg
In [63, 64] a typical “break even” of A/m = 0.215 & —2 is given.
The area/mass ratio of a test object is 1mportant in the selection of a
vibration test method. Acoustic testing is more effective for high area/mass

components, while random vibration is more effective for low area/mass com-
ponents.

Problems

3.9. Consider a simply supported plate made of an Al-alloy with the following
properties; the Young’s modulus E = 70. x 10° Pa, the Poisson’s ratio v = 0.3,
the density of the material p = 2700 kg/m3, the thickness of the plate ¢t =
1.25 mm, the length of the plate is b = 1 m, the width is a = 0.5 m. The plate
is exposed to a random pressure field, uniform over the surface, with an overall
sound pressure OASPL = 150 dB. The random pressure field has a constant
power spectral density over the frequency range from 20-1020 Hz. The modal
damping ratio ¢ = 0.05. The maximum bending stress at the center of the

plate, exposed to a uniform pressure p, is given by oy m [207].
6

Calculate the PSD W, of the pressure field.

What is the first (fundamental) natural frequency fo (Hz) with the mode
shape ¢(r,y) = sin % sin 327

What is the maxnnum deflection at the center of the plate.

Calculate the modal pressure p.

What is the maximum bending stress at the center of the plate exposed
to the modal pressure p?

Calculate the peak stress p, = /5 foQW,.

What is the maximum rms bending stress at center of the plate applying
the Blevins approximation method?

Answers: 400 Pa? /Hz, fo = 60.5 Hz, § = 1, p = 1.951 x 10° Pa, 1.191x 1019 Pa,
pp = 616.6 Pa, 3.76 x 10° Pa.

3.10. An equipment mounting panel (1 x 1 m?) is made of a sandwich con-
struction with Al-alloy face sheets with a thickness ¢ = 0.3 mm and the core
height h = 25 mm. The Young’s modulus of the face sheets is = 70 GPa. The
mass per unit of area of the sandwich panel is m = 3.7 kg/m?. A number of
boxes are randomly placed on the panel and the total mass of the boxes is
M = 75 kg. Calculate the lowest natural frequency of the simply supported
sandwich panel inclusive the total mass of the boxes. The panel is exposed to
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Table 3.9. SPL specification
Octave band (Hz) SPL (dB), 0 dB =2 x 107° W,(f) Pa?

32.5 128 ?
63 134 ?
125 139 ?
250 143 ?
500 138 ?
1000 132 ?
2000 128 ?
OASPL ? ?

sound pressure field as specified in Table 3.9. Calculate the OASPL and the
PSD function Wp,(f).

Specify the mechanical random acceleration test environment W, (f) g?/Hz
in the octave band to be applied by an electro-dynamic shaker system testing
one of the boxes. Visualize the acceleration specification in a x-y plot.

3.6 Fluid Structure Interaction

3.6.1 Introduction

In Sect. 3.3 no dynamic interaction between vibrating structure and acoustic
loads had been considered. The dynamic response of the structure did not
influence the acoustic pressure field.

In this section the dynamic interaction between the vibrating structure
and the acoustic field will be discussed. This fluid structure interaction is
illustrated in Fig. 3.12.

The following topics will be discussed:

the derivation of the wave equation
the principle of fluid structure interaction
structural response analysis

Examples will be worked out to illustrate the theory.

3.6.2 Wave Equation

At first the static position of the air pressure will be defined. That means the
absence of sound pressures. The physical state is given by:

e pressure Py (Pa) and
e density pg (kg/m?).

The physical state in the presence of sound is given by:

e total pressure Py + p(z,y, z,t) (Pa),
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Elastic problem Acoustic problem
| |
| |
Forces applied to v Structural response v Radiation loa‘ding. for
. prescribed velocities
structure to prescribed forces A
of boundary

Fluid structure feedback loop

Fig. 3.12. Dynamic interaction of an elastic structure and an ambient fluid [94]

I # Particle displacement vector | ,
: No shear strain

i (1 F %j) dz

@ VY NS B

Y / (1 + %) dy
dx

/‘ dy Displaced position
z
Static position

Fig. 3.13. Deformed fluid particle

e density po + p(z,y, 2,1) (kg/m?) and
e displacement Xy + &(z,y, 2,t) (m),

where p(z,y, z,t) is the sound pressure and £(z, v, 2,t) is the displacement of

the particle.

The deformation of the particle is shown in Fig. 3.13. The shear deforma-
tion is not considered thus the particle remains cubic after deformation. The

change in volume is as follows

V+dV = 1+% 1+8£y 1+6§Z dxdydz
oz dy 0z

98 | 08 0%
~ (1 Sy Bz
< + o + By + 5% dxdydz,

thus the ratio dV/V becomes

AV _ (0 08 | 0%\ _ i i
V<8m+6y+8z>dw€v€£“’

where i = x,y, 2.
The mass balance at constant temperature (Boyle’s Law) is

poV = (po + p)(V +dV) = poV + pV + podV + pdV,

(3.82)

(3.83)

(3.84)
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which yields neglecting the second order term pdV

v —p
— =L, 3.85
V" (3.85)
Combining (3.83) and (3.85) will result in the following relation
agz agy agz = -
- 9y — —pofss = —po div(é). 3.86
o po( e S ) =@ (356)

The sound pressure increase p can be calculated using the Hooke’s law
related to the compressibility of the fluid (air) by the following expression
dv P 2
p=—-B— = B— = ¢“p, 3.87
v p” p (3.87)
where ¢ is the speed of sound (m/s), B is the bulk modulus of the fluid. The
minus sign has been applied because a decrease in the volume V will give an
increase in the sound pressure p. For an adiabatic! gas applies that

PV7? = constant, (3.88)

where the total pressure is P = Py+p and v = é—‘p/ is ratio of the specific heats
at constant pressure and volume. This ratio is v = 1.66 for an ideal gas and
is v = 1.4 for air. Differentiation (3.88) will give the following expression

dPV7 4 ~yPV771dV ~ dPV" + yP, VY 1aV, (3.89)
thus yielding
av av
dP =p=—vF =—-B—. .
p=—R = B (3.90)

The definition of the speed of sound in air ¢ (m/s) is defined by

’yPO /1.4 x 10°
c= =342 m/s 3.91
\/ o \/ Po 12 /s (3:91)

where the density of the air py = 1.2 kg/m? at sea level and at 20°C.
The acceleration of the mass particle Apgdx can be obtained from d’Alem-
bert’s equation of equilibrium, shown in Fig. 3.14

d
A(Po+p) — A(PO +p+ ﬁ) dx — Apodxii = 0, (3.92)
or in the form of Newton’s law
dp ..
— = —pou. 3.93
dor Pot ( )

! An adiabatic process is one in which no heat is gained or lost by the system.
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A(Py+ p) APy + p+ 2dz)

Po =
A = Area

% = Pressure gradient
dx

x dz

Apodxr = Mass particle

Fig. 3.14. Acceleration of particle

A generalization of (3.93) will give the expression

d d d
£e1 + d—];ez + d—zezz = —po (il + ¥ + W),

j—iei = _POEj,ja (3.94)
grad(p) = —Poé
Following physical relations were derived:
grad(p) = —pos,
p= —dev = Bp% = c?p,
e p=—podiv(§).
Combining these equations we derive the wave equation
div(grad(p)) = c%p (3.95)
or
v 0 P P 1 (3.96)

= da? dy? = dz? 2P
The Fourier transform in the frequency domain of (3.96) is called the Helmholtz

equation
?p 0%  0%p 9
dz?  dy? + dz? Fp=0, (3:97)

where k = w/c is called the wave number.
In the z-direction the Helmholtz equation can be written

op

T+ E2p = 0. (3.98)
(

For z-variation, the solution of (3.95) has the form

p(z,t) = p(x)g(t). (3.99)

Then
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. L
P (@)g(t) = Zp(=)i(?), (3.100)
p'(x) _ 1 §(t) >
~ = — =< = constant = —k~, 3.101
5o) g0 (100
p(z) = Ae?*® 4 Be Ik,
. N (3.102)
g(t) = Ce?*et 4 Bem ket
The solution of p(z) can be expressed as follows
p(x) = Ae?*® + Be 9% = C'sin(kx) + D cos(kx). (3.103)

If the sound wave p(z) travels one period, one wavelength further, than
kX = 27. The wave length becomes

(3.104)

where f is the cyclic frequency (Hz).

Example. An infinite rigid plate moves sinusoidally (harmonically) with a
velocity amplitude v,, = 0,,/“*. This is illustrated in Fig. 3.15. Calculate the
pressures p(z), p(0) and the radiated energy IT,,q = l%(ﬁ'f)w) per unit of area.
Only the sound wave travelling in the poswlve z-direction is considered. At
the plate x = 0 the pressure gradient 5 p = —wpoly, 50 that p(x) = Be ke,
Hence, at z =0

dﬁ . jkax . . ~
— = {—Bjke’"*}|p=0 = —Bjk = —jwpoly,-
=0

It follows that the constant is
W A
B = Epovw = PoCUy-
The sound pressure p(x,t) can now be written as

p(x,t) = poci,el*t =%,

p — 5 wt
Vi = V€’

()

>

Plane wave

—_

Moving rigid plate

Fig. 3.15. Sound waves caused by a moving rigid plate
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If z and t are allowed to vary simultaneously, the pressure will remain constant
oo dp _ d(kx)
if % = =& >
0 becomes p(0) = poclUy,, and the absolute value of the impedance (ratio
is |52

—w =0, or ‘é—f = £ = c. The sound pressure p(0) at = =

= poc, the so-called specific acoustic impedance. In
general, the impedance @ = poce’®.

The radiated energy II,,q4 per unit of area at z = 0 can be calculated as
follows

force/velocity)

1. . . . 1 .
g = 5%{])( ) w} = pOCUw = EPOCUIQW

where %%{ﬁ(()){)w} = limop_ o fiTp(O,t)uw(t)dt = (p(0,t)0,(t)), and
Uy () = vy, €%t

Spherical Radiator

In a spherical coordinate system with the radius r as the only variable, the
Helmholtz equation (3.97) can be written as

?p  2dp

2A_
T3t ot (3.105)

Equation (3.105) describes the radiation of a sound wave from a spherical
source (radiator) as shown in Fig. 3.16. The general solution of the pressure
wave p(r) for an outgoing sound wave is

B—jkr
Pr) = ——, (3.106)

where B is a constant of integration. Using the boundary condition

dp 1 ik . . N
h_ _AKT2 L ) —W] — —jwpota, (3.107)

Vg = Vgelt

Poc

\J

Fig. 3.16. Spherical radiator
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the general solution can be obtained, where 9, is the pulsation velocity of the
spherical radiator of the surface at r = a. After introducing the boundary
condition (3.107), the solution (3.106) becomes

; 2
D) = 5L E it

“14 jka r

, T>a. (3.108)

Equation (3.108) shows that the sound pressure p(r) ~ 1, which is called the
%—law of spherical sources. The (point) source strength of the spherical source
is defined by

Qs = ﬁaAsphere,r:a = ﬁa4ﬂ_a27 (3109)

thus (3.108) can be rewritten as follows

~ Qs ijo 1 r—a
(7") = EW;@ 7k ), T 2 a. (3110)

For a < r and ka = 27% < 1 (3.110) becomes

QS —jkr

— 3.111
47r7“e ( )

p(r) = jwpo

Figure 3.17 shows half a radiating sphere, connected to a rigid wall (baffle).

The source strength of the half radiating sphere, with radius r = a and velocity
0(a) is given by K

Qs = 2ma’*i,, (3.112)

thus the radiated sound pressure expressed in (3.111) is modified, and the
radiated sound pressure p(r) from the half spherical radiated becomes

. Qs gy
p(r) = Jjwpog ¢ gkr (3.113)

Rigid wall

Fig. 3.17. Spherical radiator in rigid wall
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p(z,y, 2)

1
T

Y N
2 N wn(xa y)
QD] de o
Q2

d@ = zz)n(xv y)dxdy

Fig. 3.18. Plane radiator as an array of point sources

Figure 3.18 shows a number of one-sided point sources in the z-direction.
The total sound pressure p(x,y,z2), the sum of the sound pressures p;(r;)
radiated by the individual point sources with source strength @;, becomes

R ]wl)o Qz ok
= i 3.114
p(x,y,2) E p (3.114)

For a vibrating plate, the infinitesimal source is given by
dQ = iy (z, y)dwdy = (2, y)dA, (3.115)

where w(x,y) = W, (x,y) = Wy (z,y)e?t is the velocity normal to the xy-
plane. Equation (3.114) can be rewritten as Rayleigh’s® equation

it [f B0 gy @10

3.6.3 Pressure Structure Interaction

The actual sound pressure p = pel“! existing at any point in the fluid (air) is
the sum of two components [184]

D = Pvi + Drads (3.117)

where the pressure py; is defined as the pressure that would be observed
with the sound sources turned on but with the flexible structure (transpon-
der, [184]) replaced by a rigid body (i.e. its motion is blocked), the pressure
Prad 18 defined as the radiated pressure that would be observed with the sound
sources turned off but the flexible structure vibrating.

2 Lord Rayleigh 1842-1919.
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3.6.4 Structural Responses

The matrix equation of motion for a linear structural system can be written
as follows

M) + (1) + KMo} = { - [ panih = 1), (3.115)

where the force vector {F'} represents the equivalent pressure loads at the
nodes. The pressure p is normal to the surface of the structure and directed
into the structure. The node sequence number is indicated by the index i. The
area A; represents the node equivalent area.

The physical displacement vector {«} will be projected onto the vibration
modes multiplied by the generalized coordinates (weight factors)

{z} = [2]{n(t)}, (3.119)

where [@] is the modal matrix of undamped vibration modes and {n} is the
vector of generalized coordinates.

The coupled equations of motion (3.118) can be uncoupled using the or-
thogonality properties of the vibration (normal) modes

meiik + 2Ckwkmkﬁk + wimknk = {(bk}T{F}, k=1,2,..., M, (3120)

where M is the number of kept vibration modes, the generalized mass is
my = {¢r}T [M]{dr}, the generalized stiffness ki = {¢x}T [K]{ox} = wimy
and the generalized damping cp = {¢1}7 [C]{ér} = 2(xwrmy. In general, the
generalized damping or modal damping will be introduced later on after the
undamped equations of motion are uncoupled. The damping matrix [C] is
normally not known. Finally the uncoupled damped equations of motion can
be expressed as follows

{61)T{F}y  Aou}"{= [, pdAi}
mg B mi ’
k:1,2,...,M,7;:1,2,...,N7 (3121)

ik + 2CewrTk + Wienk =

or substituting (3.117) in (3.121) we obtain the following equations are ob-
tained

. . {66} {= [4 (Pt + Praa)dA;}
ik 4 2CewWrnk + wing = Ai - ,

k=1,2,...,M, i=1,2,...,N. (3.122)

The radiation pressure Prad can be calculated with (3.116), however, the nor-
mal velocity w, will be projected on to the modal base [§] weighted by the
generalized coordinates {n} as follows

{tin} = [@all{n}- (3.123)
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The radiated pressure p..q becomes
e—Jkri

N w
prad(xvyaz) = PO ZA wn -Tzayhzz)
i

w?po al
=g A

where 7(t) = e/“t, r; the distance between the node and the position (z,y, 2)
and [¢;] are the modal properties in relation with the normal displacement w; ,
of the node ¢ on the surface of the vibrating structure. The equivalent nodal
load vector {— [ A, PraddA} can now obtained by the following expression

{—/AipmddA} w N (ZA (Gal (7} ])
:W Po ZA (ZA 6l }{coskn ]smkrn})

im=1,2,...,N, (3.125)

T

(3.124)

where all nodes 7 and n are located on the surface of the vibrating structure,
as is the point (z,y, z) where the radiated pressure is measured. In fact this
location is a node.

The distance between nodes i and k, Ar;, = |r; — rg|. This is illustrated
in Fig. 3.19. Equation (3.125) is now completely written in vector and matrix
notation

([ postay < -t b ssnbieal]

w? cos kAr;, — jsinkAr;,
— oy | e TSRS gy,

in=1,2...,N. (3.126)

Surface of structure

Fig. 3.19. Surface nodes
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The generalized force associated with vibration mode v¥; becomes

{¢1}T{ / ipmddA}
_ “’S}{m}T ;(MZJ [ feonhr SIS 14, b )
= jw > (Rim + j& M),

l
in=1,2,...,N, lLm=1,2,..., M, (3.127)

where Ry; is called the modal resistance and My; the modal inertia and are
given by
9P T A | ST Cn
Rim = < {1} [4] { Ar } [Al{¢m}, i,n=1,2,...,N,

3.128
cos kAr;y, ( )

ATm
and where N is the number of nodes and M the number of modes.

In case i = n, thus Ar;, = 0, the following expressions can be derived
using L’Hopital’s rule

My, = g—i{qﬁl}TfAj [ } [A{pm}, I,m=1,2,...,M,

. sin kAr;,
P e Ry e
Tin — Tin
. cos kAr;y, (3.129)
lim —— =0.

Aripn—0 Arin
Equation (3.122) is the basis for further evaluation the equations of motion.

{st}T{* fAi (pbl + prad)dAi}

mg

ik + 2CewrTk + wienk = E=1,2,..., M,

and can be written as follows, where n(t) is the Fourier transform 7(t) =
i(w)el!

M, R

{wi —w? <1 + ﬂ) + jw <2Ckwk + ﬂ)]ﬁk(“)
My mg

N
M . Rjr]. 1
+ w27 4 w—J} (W) =—— T{/ dAl},
3 | i i) = o { [ o
k=1,2,..., M. (3.130)

The coupling terms in (3.130) will be neglected assuming M}y, < My, and
Ry < Ry, hence

{WI% - w? (1 + Ai—’:“) + jw (2Ckwk + %)]ﬁk(w)
- _mik{m}T{/Ai pbldAi} = _mik{(bk}T[AiJ{pbl,iL k=1,2,...N.
(3.131)
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The joint acceptance function Jj,, had been defined in (3.37), page 212. For
a diffuse sound field, the joint acceptance is

[Ap{dm}, in=1,2,...,N.  (3.132)

— (o0 [T

The modal inertia M, and the modal resistance R;,, can be related to the
joint acceptance J,,;. The following expressions can be derived

k
Mlm - Po Jlm7
(3.133)
w k w?
le - 50 Jlm - o Po Jlm

The cross PSD of the generalized coordinates 7);, S4,4, (w) can be calculated

as follows H () B ()]
i(w)il; (w) s
Shin; (W) = W

where S, (w) is the PSD of the blocked pressure field. The FRF H;(w) is given
by

Sp(w), (3.134)

w?

Hi(w) = d . 3.135
) 1= (14 50 + Lg (2wiG + (3.135)

)

The PSD of the physical displacement {x} can be calculated

where the displacement vector {z(t)} = {#(¢)}e’*t. The matrix of the cross
PSD [S;,s,(w)] of the physical displacements {Z} can be obtained by (3.38)

[Sz.2; ()] = [@][Shur; (@)][2]T,

the matrix of cross PSD [S; : | of the velocities {2} can be calculated by

(3.39) o
[S;,5,(W)] = W?[@)[S5.0, (W)] )7,

and the matrix of cross PSD [S;

504, (w)] of the accelerations {#} is in accor-
dance with (3.40)

[S5.3, ()] = w*[@][Sh.a, (W)][P]".

The matrix of cross PSD of the stresses Ss,5, (w) of the internal stress field
& can be expressed as follows (3.41)

[Se.5, (w)] = [@6][Shen, (@)][Ps]",

where [@,] is the matrix of stress modes.
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The single sided PSD functions given in the cyclic frequency domain are
in general (2.61)
W(f)=2S(w). (3.137)

The relation between the blocked pressure and the incidence (free-free)
pressure, specified by the usual SPL levels (dB) (see (3.1)) is roughly

Wa (f) = Wy(H(T?), (3.138)

where

b <F2>_1f_27
<F2>_2 f>2a7

where a is the characteristic dimension of the plate and shell structure, e.g.
a = \/Apiate. A more detailed discussion can be read in [184, 185].

Example. A simply supported bending beam has bending stiffness E1(Nm?),
and m (kg/m) mass per unit of length of the beam. The width of the beam
is b (m), and L (m) is the length of the beam. Only the first vibration mode
¢(x) = sin ZZ is taken into account to calculate the response characteristics
of the beam when it is exposed to a reverberant sound field with PSD W, (f)
(Pa%/Hz).

The deflection w(z, t) of the beam is given by w(x,t) = ¢(z)n(t). The nat-
ural frequency f; associated with the vibration mode ¢(x) can be calculated
using Rayleigh’s quotient R(¢)

0.5 [ BI(%$)2de , [EI
=T .
0.5 [ m¢2dx mIL*

w1 = 27Tf1 = R(d)) =

The generalized mass m; becomes

L
1
mi :/ m sin? Ed:c = —mL.
0 L 2

The joint acceptance function for an unidirectional reverberant sound field
can be calculated as follows

= b2/ / sin =% sin 7ry dedy,
k(z —y)

where the wave number k£ = w/c.
The modal inertia M7; and the modal resistance Ri; can be obtained by
the following expression
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2
My = —— Ob / / sin =2 g 7ry ded%
(z—y)
b2
anwpo / / sm—' 7ry dedy.
o Jo (v —y)

The equation of motion for the generalized coordinated 7 (t) = 7y (w)e/*?
yields

L
. . T
[—w?(mq + M11) + jw(2Gwimy + Ri1)]i = —b/ sin fpbzd%
0

where the blocked pressure is py (t) = pyi(t)e’*t. The PSD of the reverberant
blocked pressure is given by

sin k(Ax) _ Wi (f) sin k(Ax) _ W, (f) sin k(Azx)
kAx 2 kAx 2 kAz

Spi(z,w) = Spi(w)

The PSD function S, (w) is defined by S, (w) = lim7r_ @1%2 and the

PSD function of the blocked pressure S,, (w) is defined by S, (w) =

limp_, o0 |pr1\ . The PSD function the PSD function S, (w) can be expressed
as follovvs

H 2 L
S (w) = sz/ sin? ESI,M (z,w)dz

m2wi L
|H1( . 7Ty51nk( Y)
m%w‘f b2 pbl Sln—S I3 k(mf ) — “dx dy
|H1(w)]* 11 (w)

= Wspu(w)a

where the FRF H; (w) is given by

1
L= (14 30 + Lo (2Gwn + 22)

Hl(w) =

The bending beam has a length L = 1.0 m and the mass per unit of length
m = 1.866 kg/m. The lowest natural frequency is f; = 50 Hz and the width
of the beam is b = 0.5 m. The speed of sound in air is ¢ = 342 m/s (the wave
number is k = wy/c = 0.919). The modal damping ratio ¢ = 0.02.

The joint acceptance Ji; for the unidirectional diffuse sound field can now
be calculated.

Ji1(wr *52/ / Sm—s' Ty Mda:dy:().l.
k(z —y)

The modal added mass
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pok
Mg (wi) = §J11(w1) = 0.018,

and the modal resistance

wpok
Rii(wr) = 50 Ji1(w1) = 5.511.
T
The mass ratio
My
—— =0.019,
m1
and the damping ratio
VR
2m1w1C
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mean that the added mass is relatively low with respect to the generalized

mass and the modal resistance is 47% of the modal damping.
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Statistical Energy Analysis
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Statistical Energy Analysis

4.1 Introduction

Statistical energy analysis (SEA) originated in the aerospace industry in the
early 1960s. Today, SEA is applied to a large variety of products, from cars
and trucks to aircraft, spacecraft, electronic equipment, buildings, consumer
products and more. SEA is based on the principle of energy conservation.
All the energy input to a system, through mechanical or acoustic excitation,
must leave the system through structural damping or acoustic radiation. The
method is fast and is applicable over a wide frequency range. SEA is very
good for problems that combine many different sources of excitation, whether
mechanical or acoustic. In SEA the structural vibrational behavior of elements
(subsystems) is described statistically. For high-frequencies a deterministic
modal description of the dynamic behavior of structures is not very useful.
The modes (oscillators) are grouped statistically and the energy transfer from
one group of modes to another group of modes is statistically proportional
to the difference in the subsystem total energies. Readers who are interested
in a more detailed description of the SEA method are encouraged to read
the following interesting literature [116, 214, 229]. A very clear discussion
and explanation of the SEA can be found in [138]. SEA is attractive for
high-frequency regions where a deterministic analysis of all resonant modes
of vibration is not practical.

In [120] Richard Lyon explained his motivation for calculating the power
flow between modes of vibration excited by random noise sources.

4.2 Some Basics about Averaged Quantities

The average power of the product of the displacement x;(t) and xzo(¢) is
defined as [185, 96]

T
(r122) = Tlggo %/o x1(t)zo(t)dt = %?R[Xl(w)X;(w)], (4.1)

J. Wijker, Random Vibrations in Spacecraft Structures Design,
Solid Mechanics and Its Applications 165,
© Springer Science + Business Media B.V. 2009
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where the star * denote the complex conjugate. The displacement x1 2(t) can
be written, using Euler’ identity [53], as follows

z1.9(t) = R[X 1 2(w)e?"] = R(X1 2) cos(wt) — (X 2) sin(wt). (4.2)
The average power (x122) of 1(t) and x2(t) now becomes

(w122) = [R{X1 () }R{X2(w) }(cos® (wi))
+ [S{X1 ()} { X (w) }(sin® (wi))
— R{ X (w) }S{ X2 (w) }{sin(wt) cos(wt))
— R{ X5 (w) }S{ X1 (w) }{sin(wt) cos(wt)). (4.3)

The time average values of (sin®(wt)), (cos?(wt)) and (sin(wt) cos(wt)) are

ey

T
(sin?(wt)) = lim %/0 sin?(wt)dt = ;)T/ sin? (wt)dt = %, (4.4)

T— o0

T—o0

T
(cos?(wt)) = lim l/ cos? (wt)dt = i/ cos? (wt)dt = 1, (4.5)

and

T—o0

T
(sin(wt) cos(wt)) = lim %/0 sin(wt) cos(wt)dt

27
w w

=5 ; sin(wt) cos(wt)dt = 0. (4.6)

Equation (4.3) can be rewritten as follows
(r122) = 5 [{RX @)IR{Xa(w)} + 31 ()} {Xalw))]
= SR () X5 () (4.7)
As a consequence of (4.7) the average of z2(t), namely (2), is
() = ZRIX (@)X ()] = X (@) (48)

With the aid of (4.7)we can write the following combinations of time av-
erage values (z1&2), (Tad1), (Z142) and (Zad1):

(rata) = SR () XE () = SR (@)X ()
= SIRIX @) X)) - ROG@ISX W)Y, (49)

and
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(21} = SR KT () = FR{WXa(0)X] ()
= %W{Xz(w)}g{Xl (@)} = R{X (@)} X (w)}]. (4.10)
From (4.9) and (4.10) we can conclude that (z1&2) and (za@;) are skew-

symmetric, thus
<Ili:2> = —<I2i71>. (411)

If x1 = 29 =, (4.11) will give
(xz) = —(xx) = 0. (4.12)

It can be proven that the average value of (Z1i2) can be expressed in terms
of <$1i‘2>
(#1d9) = —w* (1), (4.13)

and therefore (#1&2) is skew-symmetric too

(E122) = —(E2d1), (4.14)
from which, it follows that

(#z) = —(2&) = 0. (4.15)

The equation of motion of a SDOF dynamic system with a discrete mass
m, a spring stiffness k and damper ¢ and external force F(t) is given by

m& + ¢t + kx = F(t). (4.16)

The average input power I1;, is expressed by
1 .
I, = (Fi) = §§R{F(w)X(w)}, (4.17)

where z(t) = X (w)e/*t and F(t) = F(w)e/“!. If the averages are applied to
(4.16) the following relation is obtained

m(ix) + c(@?) + k{zd) = (F(t)&) = ;. (4.18)

In accordance with (4.12) and (4.15) the average values of (%) = (zd) = 0
and therefore (4.18) becomes

Hin = C<£-E2> = Hdism (419)

where I14;ss is the dissipated energy in the damper c¢. The interpretation of
(4.19), is that the average power IT;, introduced in the SDOF system is equal
to the power I1 ;s dissipated by the damper. The dissipated power I1;;ss can
be rewritten and expressed in terms of the mass m, modal damping ratio ¢,
the natural frequency w, and X (w)
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M yies = c(@%) = 20VEkm(i?) = m¢wn| X ()%, (4.20)

where 2v/km is the critical damping. The loss factor n is the ratio of the dissi-
pated energy per cycle divided by the peak strain energy per cycle. Normally
the loss factor n = 2¢. Thus the average dissipated power can be rewritten as

. 1 -
Miies = mpon (i) = S X @)% (4.21)

The mobility function Y (w) is the ratio of the velocity X (w) and the
applied force F(w)
X(w)
Y = ——= 4.22
@) = Fr (422)
where R{Y (w)} is called the conductance and S{Y (w)} the susceptance. For
a SDOF system, the mobility function Y (w) is

Jjw
Y = . 4.23
() m{w2 — w? + jnwwy } (423)

The average of i2(t), (#2), can be expressed as follows

() = S1X2(w)] = (¥ (@) F@)F (@)Y (@)}

1 *
V(@) G{F @) F* (@)} = [V* (@) (F?). (4.24)
The average power input II;, = (Fi) can now be expressed as follows

M = (Fi) = SRF@)X @)} = 3| F@PRY @)

1 1
5 [ F (@)Y (W)[2 = Smmnewn|X ()|, (4.25)

Example. A SDOF system has a natural frequency w,, = 27 f,, = 208.2 rad/s.
The discrete mass is m = 150 kg. A steady-state oscillation force with an
amplitude F = 100 N produces a steady-state velocity v = X = 0.2 m/s.
Estimate the loss factor 7.

The average input power is given by Il;, = %FX and the average dissi-
pated power is Il ;s = %mnwnX 2, These are equal IT;, = IT4s. The loss
factor 1 can be calculated from

P 100
mw, X 150 x 208.2 x 0.2

= 0.0016.

For a stationary and ergodic random process, the average power of the
velocity #(t) can be expressed as

() = /O S Waa(F)df, (4.26)
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and the average power of F(t) is given by

(F?) = /OOO Wer(f)df, (4.27)

where W (f) is the PSD of the velocity %(t), and Wgg(f) is the PSD of the
external force F'(t).

In a narrow frequency band with the center frequency f and bandwidth
Af, the average power of the velocity 4(t) and external force F'(t) can obtained
using (4.26) and (4.27):

(@%) A = Was(f)Af, (4.28)
and
(F?)ap = Wrr(f)AS. (4.29)

The PSD of the velocity @(t) can be expressed in terms of the PSD of the
external force F'(t) using (4.24), thus

Wis(f) = [Y (HPWrr(f),

2 (4.30)
Sii(w) = Y (w)|*Srr(w),

where W(f) = 2S(w). W(f) is the single-sided PSD function dependent upon
the frequency (Hz, cps) and S(w) is the double-sided PSD function in the
frequency domain (rad/s).

The average power or mean square of &(t) can now be obtained

() = / Wa(f)df = / Y ()P W (f)df
1 o0

= . Y (w)|*Spr(w)dw, (4.31)
where Y (w) is already given in (4.23)

The integral 5= [* |V (w)[*dw has a closed form solution (see Appen-
dix B) and with

e aqy=m

® a3 = mnwy

o ay=mw?

[ ] bo = —].

[ bl = 0

it is .
— IV (w)Pdw = -2 = . (4.32)
21 J_o 2apa; 2mnwn,

The integral (4.31) can be further approximated because |Y (w,)|? is very
peaked and the PSD Wgr(f) = 2Spr(w) is smooth and constant near w,, or
fn, therefore (4.31) may be written as follows
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= [ Wt = o [ v)Pser
~ Wer(fn) /OO |Y(w)|2dw _ Wrr(fn)  Wrr(fa)

4 am2nw,  8m2mnf,’

(4.33)

The total average energy (F) is the average of the sum of the kinetic energy
T and the strain energy U

(Ey=(T+U)= <%m¢2(t) + %ka(t)>

1( (%) + ﬁ( 2>> = m(z?), (4.34)

2 w?

where (i?) = w2(z?) and k = mw?2. With (4.33) the average energy (E) of the
SDOF system with mass m and average power of the velocity (i) is, becomes
Wer(fn)  Wrr(fn)

(B) = m{i) = 8man fn B dmnw, (4.35)

The average dissipated energy I14s can now expressed in terms of the
average energy (E) as follows:

I giss = mnwy, (2%) = nw, (E). (4.36)
Furthermore the average power (#2?) of the acceleration can be derived
with the knowledge that (#?) = w2 (i?)

nW n ™
() = %géf) = FQWir(fa), (4.37)

which is Miles’ equation, where the amplification factor is Q = % = %
The average input power IT;, of the external force F(t) is equal to the

average dissipated power I ;ss:

WFF(fn).

o (4.38)

I, = mnwy (%) = nw, (E) =

4.3 Two Coupled Oscillators

Consider a simple two-SDOF system as shown in Fig. 4.1. The coupling ele-
ment between the two SDOFs is a linear spring and is non dissipative. The
quantities of interest in this section are the average energies of each oscillator
and the average energy flow between them.

The 2DOF systems, as shown Fig. 4.1 are coupled with a linear spring kis.
The equations of motion of the two coupled oscillators are

mid1 + c1d1 + kizy + kiz(x1 — x2) = I, (4.39)
Mol + coda + koo + ki2(xe — 21) = Fh, (4.40)

where
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Fi(t) Fy(t)

L= ]{712

o —I "

1(t) ; 2o(t)
k1 QH c1 Co HL ko

Coupling FElement L

Fig. 4.1. Two coupled oscillators [214]

— [k — k2 — k1o
o wr= /B =i e = R
o ¢ =20 Vkim, ca = 202y koama

C _ — C: — —
e = 2w = 1w, 5 = 20w = Naws.

The mass and gyroscopic coupling in the coupling element L is not considered
because these coupling elements are discussed in detail in [116]. Adding mass
and gyroscopic coupling complicates the analysis unnecessarily. Dividing the
equations motion of the coupled system by m; and mg respectively we find

F1 4 2C w121 + wiry + mowiy (2 — 12) = —ml , (4.41)
1

.. . 2 2 F2

Zo + 20wads + wixs + Miwis(xe — x1) = g (4.42)
2

In this mathematical model of the two coupled oscillators the applied forces
Fy and Fy are not correlated and therefore (Fy Fy) = 0.

The average power supplied by the force F is (Fi#1) and the average
power supplied by Fy is (Fhde). The modified equations of motion (4.41)
become

<{'L"1.Z"1> + 2§1w1 <l‘%> + w%<$1j:1>

+ mowiy (21 — @2)d1) = <Fnl;j1>, (4.43)

and

(Boida) + 2Cows (3 + w3 (Tads)

+ mlw%2<($2 — xl)j}2> = <F;L—3;2> (444)
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The averages (Z;&;) = 0 and (x;&;) = 0 and (z;4;) = —(z;&;) and therefore
(Friy) + (Faia) = 2myQwr (#7) 4 2malows (i3), (4.45)

which means that the average powers supplied to the two coupled SDOFs
is dissipated by the dampers and no energy is dissipated in the coupling
element L. This coupling element is called conservative.

The average power flow from oscillator 1 to oscillator 2 is defined as

My = —(k1axody) = —mimowiy(zeiy)

1 .
= —imlmgwﬂ?)‘E{Xng}. (446)

The negative sign introduced to be consistent with average damping energy
because the power flow from system 1 to system 2 is extracted from the energy
of system 1. The power flow IT15 will be evaluated and expressed in terms of
the PSD functions of the applied forces W, , (f) and Wg, g, (f). We will show
that the average power flow II15 can be written as

H12 = 512[<E1> - <E2>}7 (447)

where (12 is the coupling factor and (E;) is taken from (4.35). The coupling
factor 812 will now be calculated.
The displacement 1 and x5 are harmonic and can be written

xl(t) _ X1 (w) Jwt __ X1 jwt
<x2(t)> = (Xg(w) eIt = X, elvr, (4.48)
The introduction of (4.48) into the equations of motion of the coupled SDOF
systems in (4.41) leads to

—w? + 2jCww + wi + mawi, —maw?, X1
—mywi, —w? + 2jCowws + w2 + miw?, X9

Fan
(%) o
ma

The unknown displacement X; and X, will be expressed in terms of F and F5.
The determinant D(w) of the matrix in (4.49) is

D(w) = apw* — jarw® — asw? + jasw + ag
= ag(jw)* + a1(jw)® + az(jw)? + asjw + as, (4.50)

where

e ap=1
o a1 =2(Gwi + Cows)
® Gz = {W% + wg + W%Q(TTM + mg) + 4C1C2w1w2}
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® a3 = 2(C1w1w§ + Cg&)gw% + Clmlw%QQ)l + CngWQw%Q)
o ay = (Wiwd + miwiwi + mowiw)).

Use Cramer’s rule to solve for X; and Xs:

1 .
X1 = m[{m2F1(—w2 + 2jCowws + w3 + miwis)}

+m1m2wf2F2], (451)

and
1 ‘
Xy = m[{mlFZ(_WQ + 25C1wwy + Wi + mawiy)}
+ mymow?, Fi]. (4.52)
The displacements X; and X5 in (4.51) and (4.52) can be expressed in a more
straight forward manner:

Xl(w) = Hll(w)Fl(w) + H12(w)F2(w), (453)
XQ(W) = Hgl(w)Fl(w) + HQQ(U})FQ(U})7 (454)
where H;j(w) are the receptances
[ Hll(w) = m(7w2 + 2j<2(.d(4]2 + w% + mlwfz)
2
[ ) ng(w) = Hgl(w) = 5(15)
o Ho(w)= mzllj(w) (—w? + 2§ Cww; + w? + mawi,).

The velocities X; and X, in the frequency domain, are also expressed in
terms of the applied forces F; and F, and the mobility functions Y;; = jwH;;

):(1((,0) = Yll(w)Fl(w) -+ Y12(W)FQ(W), (455)
Xg(w) = Ygl(w)Fl(w) + }/QQ(W)FQ(W). (456)

The average power flow from SDOF 1 to SDOF 2 is calculated using (4.46)
. 1 -
ITy = —mymow?y (xody) = —§m1m2wf23?{X2(w)X1 (w)}.

The average power flow IT;; when the expressions for X;(w) and X3 (w) are
substituted in (4.46) becomes

1 )

1 * * * * * *
- §§R{H21Y11\F1|2 + Hoo Y| Fa|* + Ho Yy FIFy + Hyo Y FoFr )
(4.57)

The external forces Fy and F5 are not correlated, hence (Fy Fy) = %%{Fng*} =
IR{F,F;} = 0 and therefore (4.57) can simplified as follows
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. 1 -
<J)2$1> = §§R{X2Xl }

1
§§R{H21Y1*1|F1|2 + Hao Y75 | Fo|?}. (4.58)

Equation (4.58) will elaborated term by term

« w . .
Hoy Y7, = m{]w‘?’ — 20wow® — jw(wi +miwiy)},  (4.59)
2
% w . .
Hy Yy = Wm{JwS + 2Cwiw? — ]w(w% + mgw%Q)}. (4.60)

The average of (z231) = SR{X>X;} will be further worked out and the fol-
lowing expressions obtained

wwi, wrw?
Pp) = — 22 P2 - —12 Fi|? 4.61
(z21) m2|D(w)|2{Clw1}| 2| m1|D(w)|2{<2w2}| 1%, (4.61)
2
Sy Wi 2 2 2 2
(zodn) = W{mlw Qui|F2|® — maw”Guao|F1 [}, (4.62)
21 |2 217 |2
: 2 w? |1 | w? |1y
= — — . (4.63
<(E2.’171> <1C2(U1LU2(4)12{ |D(w)|2m1C1w1 |D(W)|2m2<2CAJ2 ( )
The average power flow II;5 now becomes
wz\Fl\z w2\F2|2
Iy = 1 - . (4.64
o = it e o i (49
The loss factor n = 2¢ will be introduced in (4.64), thus
4 2 F 2 2 F 2
Iy, = mlQOT’Q“l”le?{ el |2 e |2 2 } (4.65)
2 [D(w)[Pmimwr  [D(w)[Pmansws
The time average (zo@1) can also written as
. o0 1 o0
<$2l‘1> = W$2i1 (f)df = % Sx2i1 (w)dw' (466)
0 —0o0

The PSD functions Wg, , (f) and Wg, g, (f) of the external forces Fiy(w)
and Fy(w) are assumed to be smooth and constant functions in the neighbor-
hood of the natural frequencies w; and ws respectively. The integral
IS Wep(f)df = 5= |7, Srr(w)dw, where Wpp(f) = 25pr(w). Equa-
tion (4.65) in conjunction with (4.66) can be rewritten and the average cross
power I15 expressed in terms of the PSD functions of the external forces:

I = —

MMM w1 wWawiy /Oo (jw)de{ Wrp Wk, (4.67)

2m o D)2 [4mimwr  dmamows |
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From (4.67) we can conclude that the cross power flow II15 is proportional
to the difference of the total energies (E;) of the SDOF systems 1 and 2
respectively, which accords with (4.47),

Iz = Br2[(E1) — (E2)].
It is easy to prove that (4.47) can be reversed and the cross power ITo; is
Iy = B [(Es) — (En)l, (4.68)

where 12 = (21.

If two conservatively coupled oscillators are identical and excited by inde-
pendent random forces, the spectrum of power flow between them is propor-
tional to the difference in the spectra of their energies. For oscillators that are
not identical, the total energy flow will be proportional to the difference in
energies, provided the excitation spectra are relatively flat near the resonance
frequencies [8].

What is left now is the calculation of the coupling factor 3is:

4 oS} . 2d
By = _ M1MmoinTjaWiWaliy / (Jw) ‘;J (4.69)
2 —oo [D(W)]
The (standard) integral is (see Appendix B)
1 [ (jw)?dw
21 J oo [D(W)[?
_ bo(—a1a4 + azaz) — agasby + apar by + 90 (aga3 — ayaz)
B 20,0(@0(1% + CL%(I4 — a1a2a3) ’
where
o ap=1
® a1 =Mwi+ 12w
o ay = {w? +wi+wih(mi +ma) +mnewiws}
o a3 = WiWs + Nawowi + MMIWIWiy + NaMowow?is
o a4 = w%w% + mlwfw%Q + mzwgwfz,
and
o bo = 0
[ ] bl = 0
o b2 =1
L4 b3 = 07
thus o e s
1 (jw)?*dw _ a1bs (4.70)

2 J_o D)2 2(agd? + a2ay — arazas)’

Finally after many manipulations the coupling factor 512 becomes
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4
512 _ W12m1m2(%w1 + 772('02)’ (471)

where the denominator D is as follows

2
D = [(w} + wiyma) — (w3 +wiym)]

w w
+ mymaw?s (2 4 L % 2)
Tlaw2 Twi
+ Nnewiws [w% + w% + wiwo (77_1 + @)]
T2 m
w w
+ M Newiwe [mlw%Q (1 +n 1) + mawiy (1 + 2)] . (4.72)
T2w2 mwi

The coupling factor (15 is positive definite and symmetric with respect to
both SDOF systems.

If SDOF 2 is blocked, i.e. (E3) = 0, then Iy = B12(E1). That means
the spring kq2 in the coupling element is grounded. Like to the average dis-
sipated damping energy I1 4 = wn(E), the power transferred from SDOF 1
to SDOF 2 blocking SDOF 2 can be expressed as

Iy = B12(E1) = mowy (E1). (4.73)
If SDOF 1 is blocked the power transferred from SDOF 2 to SDOF 1 can be
written as in (4.73):
IIy1 = P21 (E2) = nawa(Es). (4.74)
The average power I115 transferred from SDOF 1 to SDOF 2 becomes
Iy = Il — ITy1 = mawi (E1) — naiwz(Ea), (4.75)

where 7;; are called the coupling loss factors, w; are the circular frequencies
and (E;) = m;{x?) the total energies.

From the symmetry of the coupling factor B2 = [21 the reciprocity rela-
tion of the coupling loss factors can be derived

N2w1 = N21w2. (4.76)

Figure 4.2 shows two (water) subsystems (tanks), system 1 and 2. Both tanks
contain water (energy) (F4) and (E,). Water is supplied to tank 1 IT; ;, and
water leaves the tanks directly as Iy g5 and Il gis,. Water streams from
tank 1 to tank 2, as IT15. The power balance equations for the tanks are

11y 4, = 111 giss + 1112,
1115 = II gjss,
Hl,m = mwi <E1> + 7712w1<E1> - 77210J2<E2>,
mow1 (E1) — na1wa(Es) = nawa(Ey).
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Hl.m

<E > < By >

Hlﬁd?ﬁss HQ«,d?ﬁss

Fig. 4.2. Power flow analogy (Courtesy R.G. Dejong, Calvin College, USA)

H’Lm
Ty H23
< E| > 9 < By > 3 < E;g >
Hl.diss HQ.(MSS HB.([MS

Fig. 4.3. Three coupled subsystems

Equations (4.79) and (4.80) written in matrix notation

e )

The second equation in (4.81) gives the ratio between the energies:

(E2) 721

= 4.82
(E1) 121+ m2 (482)

and from both equations (4.81) the following known result is obtained
I in = 1} giss + 2, diss = w1 (E1) + nowa(Eo). (4.83)

The average power supplied is dissipated.

Example. Figure 4.3 shows a system, which consists of three coupled sub-
systems. Only subsystem 2 receives an external power Is ;,. Set-up the power
balance equations for the subsystems.

Subsystem 1: nyw1(E1) + niow1(E1) — najwe(Es) =0
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Subsystem 2: T2w2 <E2> —+ T21W2 <E2> —+ T23W2 <E2> — N12W1 <E1> — N32W3 <E3> =
HZ,in
Subsystem 3: nsws(E3) + ngews(Es) — naswa(Es) =0

In matrix notation

(m + ma2)wr —T21W2 0 (En) 0
—N12w1 (M2 + M21 + 123)w2 —1)32W3 (E2) p =< Iz n
0 —T23W2 (03 + n32)ws (E3) 0

It can be seen that the matrix is symmetric. The diagonal terms represent the
outgoing power (the sum of the loss factor and coupling loss factors is called
the total loss factor) and the off diagonal terms represent the incoming power
internal to the system. The right hand vector represents the external power
supplied to the system. The total vibrational energies (E;) must be found.

4.4 Multimode Systems

Two linear multimode elastic structural systems, subsystem 1 and subsys-
tem 2, are coupled via their common junction, as shown in Fig. 4.4. In a
frequency band Aw, each subsystem has a number of active modes Ny (w) and
Ny(w). The term modal density n (number of modes per unit of frequency,
(modes/rad/s) is now introduced. The number of modes in the frequency band
Aw can be written as

Ny (Aw) = ny (w) Aw,

Noy(Aw) = ng(w)Aw. (484)

The modes N (Aw) for subsystem 1 are denoted by «, 1 < a < Ny (Aw), and
the modes No(Aw) for subsystem 2 are denoted by o, 1 < 0 < No(Aw). There
are N1 N» interacting modal pairs a and o, as shown in Fig. 4.5. This modal
pair will be considered as two coupled oscillators (SDOF). The power flow
115 between subsystem 1 and subsystem 2 will be derived from the following
rules:

Subsystem Subsystem

1 2

Junction

Fig. 4.4. Two coupled subsystems
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< B > <EB>

Fig. 4.5. Power flow in multimode systems

e Each mode of each subsystem has a (circular) natural frequency uniformly
distributed in the frequency range Aw (rad/s)

e Each mode in a subsystem has equal time average energy (E,) or (E,),
hence <E1> = N1 <Ea> and <E2> = N2<EU>

e Fach mode in a subsystem has an equal loss factor 7, or 7,; all modes
have equal band width nw

e The response is determined by resonant modes, with the responses of non
resonant modes being neglected

The average inter modal power flow I1,, between mode o and mode o, in
a frequency band Aw, is

Hom = ﬂaa[<Ea,Aw> - <E07Aw>}- (485)

The total power flow II;, from all modes of subsystem 1 to mode ¢ in the
frequency band dw is given by

Hla = ﬂaaN1[<Ea,Aw> - <E0,Aw>]~ (486)

The total power flow IT15 between subsystem 1 and subsystem 2 in terms of
the frequency band Aw now becomes

H12 = ﬁaUN1N2[<Ea7Aw> - <E074w>]' (487>

The total power flow II12 can be expressed in subsystem total energies (F1)
and (E»), in the frequency band Aw, using (4.87)

HIQ = ﬂaoNlNQ [% - %] . (488)

The coupling loss factor n1o is defined, when subsystem 2 is blocked, as

(E1)

13 = Boy N1 N:
12 ﬂa 1 2N1

= ﬂaaN2<E1> = wn12<E1>, (489)
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and the coupling loss factor 777 is defined, when subsystem 1 is blocked, as

(E2)
Nay

151 = Bao N1 N> = BaocN1({E2) = wnz1(Ea). (4.90)

The total power flow II15 can now be written as follows
IIio = IT15 — T3 = wn2(Ey) — wnor (Es). (4.91)

The reciprocity law (also called consistency) for the coupling loss factors 712
and 721 can be easily derived, because

o N1 N
Mma2N2 = 121N, = Pag 1Nz wl 2 (4.92)
The dissipated power I1; 4;ss per subsystem i is defined as follows
IT; giss = wni(E;), (4.93)

where n; is the dissipated loss factor of subsystem ¢, and w the center frequency
of the frequency band with bandwidth Aw. The center frequencies may be
defined in the octave or one-third octave bands.

The modal density n; of subsystem i is the average number of modes N;
in the frequency band Aw, and is defined as in (4.84):

T Aw’

ni (4.94)
The reciprocity law (consistency) of the coupling loss factors (4.92) can be
written (no summation)

Substituting (4.95) into (4.91), we obtain the following expression for the
power exchange Il1s:

- %<EQ>}, (4.96)

I = wny2 {<E1> ;

or

I3 = wnong | —+ — ——
nq no

Figure 4.6 shows two coupled multi-mode subsystems. The power balance
equations are

Iy = Ig + Hgiss,1, (4.98)

Ip 0 = oy + I giss 2. (4.99)

When rewritten using the modal densities of both subsystems 1 and 2 these
equations become
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Hm‘l Hini

< B> < Ep>

1?\]1 ]\‘TQ

J Hdiss.l l Hdiss.?

Fig. 4.6. Two interacting subsystems

E E
Hin,l = whh2n1 |:<—1> - <—2>:| + wm <E1>, (4100)
1 No
E E
I 2 = wnaing {<2> - <1>} + wno(Ka). (4.101)
) nq
In matrix notation these can be written as
1+ M2 W){(Eﬁ} 1{Hm1}
n n2 = — N 4.102
( —BE2 o+ (E2) w | Hing ( )
Using the consistency of the modal densities (4.95), we can write (4.102) as
follows ) )
m+mz N2 Ey Iin 1
= — o 4.103
( —M2 772+7721> {<E2>} w {Hm,z} ( )

The loss factor matriz in (4.103) is not symmetric. The matrix can be made
symmetrical multiplying and dividing with the appropriate model densities

E
(m + m2)n1 —N12M1 <n11> _ l 10 (4.104)
—121M2 (m2 + 121)n2 (E2) w | ina |- '

no

The power flow equations for a structure made up of N subsystems is ex-
pressed in the following matrix form:

(m + Zi\;l Mi)n1 —11211 e —1NT
N
—121M2 (n2 + 2#2 N2i)N2 ... —12NT2
' N
—NNINN . oo (v + N vi)nN
(E1)
n1 I 1
<E2> 1 Hin,Q
xq "or=— . (4.105)
: o :
(En) Il N
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The following example is taken from [139] problem 6.1.

Example. As a first approximation, a spacecraft structure can be modelled as
a flat aluminium platform coupled to a large aluminium cylinder, as illustrated
in Fig. 4.7. The density of Al-alloy p = 2700 kg/m?. The Al-alloy plate is 5 mm
thick and its area is 3.53 m?. The cylinder is 2 m long, has a mean diameter
of 1.5 m, and a 3 mm wall thickness. The following information is available
about the structure in the range 500 Hz octave band: the platform is driven
directly and the cylinder is driven only via the coupling joints; the internal loss
factor of the platform (subsystem 1) 7, = 4.4 x 1073, the internal loss factor
of the cylinder (subsystem 2), 7o = 2.4 x 10~3; the platform rms vibrational
velocity is (v1) = 27.2 mm/s; and the cylinder rms velocity (ve) = 13.2 mm/s.
Estimate the coupling loss factors 7;2 and 72;, and the input power II;, ;.

The energies for the subsystems 1 and 2, the platform and cylinder respec-
tively, are given in Table 4.1.

The total input power is dissipated in both subsystems 1 and 2, thus

Hin,l = w’l]1<E1> —|—w771<E1> = 1.3060 I\II’H/S7

and the power balance equations (4.104) of the platform and the cylinder are

E
(m + mz2)n —N12M1 <n—11> _ l 10
—Tj21M2 (2 + m21)n2 {E2) w 0 '
na
The second equation gives

(B1) _ _mm1
(E2)  m21 +m2

= 0.1525,

and with the power balance equation for the platform

Hin 1
(mz +m)(E1) — n21(Ba) = —.
ina
Subsystem Subsystem
1 2
Platform Cylinder

Fig. 4.7. Simple spacecraft structure

Table 4.1. Spacecraft properties

Structural part ~ Mass (kg) Velocity (rms) (m/s)  Energy (Nm, J)
Platform M; =117.8935  {(v1) =27.2x 1077 (E1) =8.71222 x 107
Cylinder My = 763407 (v5) =13.2x 107° (By) = 1.3302 x 1072
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The coupling loss factors can now be calculated from the last two equations,
N2 = 4.26 % 10~* and 721 = 3.92 X 10~

4.5 SEA Parameters

To generate the SEA power balance equations, we need the following parame-
ters:

Dissipation loss factors n;
Coupling Loss factors n;;
Modal densities n;
Subsystem energies (E;)
Source Power inputs I1;,

4.5.1 Dissipation Loss Factor

For one system the power balance equation tells us that the input power I1;, s
is dissipated by the system, ITg;ss,s = wns{Es). That means that the dissipated
(intrinsic) loss factor ns for that system is

o Hin,s

ST (4.106)

where (E;) is the total energy.
The power input II;, ; of one SDOF ¢ due to an applied force F;(w) has
already been derived in (4.38), but is rewritten as follows

_ (FD
~AAfimg]

I, i (4.107)

where (F?) = W;Af; is the mean square applied load, and m; is the mass of
SDOF i. Af; is the bandwidth.

For a multi mode system there are Ny modes (oscillators) in the frequency
band Af;, equally mass and force distributed in Af; and the forces F; are like
rain on the roof and are spatially not correlated (spatially delta-correlated),

thus (F;F;) = §;;F?. For a multi mode system s the total input power I1;, s
is written with the use of (4.107)

= , (4.108)

Ny o ) ,
7 i=1 7 4Af2mz 4AfZMS 4M,

where the system has a total mass My = Nym;, (F2) = Ng(F?) and a modal

density ns(f) (ns(f) = 2mng(w)). The total input power I, can be ex-
pressed in terms of the mean square of the applied force Fy multiplied by
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the real part of the mobility of the system at the location, where the force is

applied
ns(f)(F2)
aM,

From (4.109) it follows that the modal density ns(f) of the system can be
expressed as follows

i = (FAR{Y" ()} = (4.109)

ns(f) = 4AMR{Y™(w)}. (4.110)

The modal density ns(f) of the system can be averaged over the frequency
band Aw = ws — wy with a center frequency w it can be calculated using the
following expression

ns(f) = Zﬂfj - R{Y™*(w) }dw = ‘Z\fj /wz a%{ Z*l(w) }dw, (4.111)

w1 1

where Z*(w) is the impedance function.

Example. For a thin bending plate with bending stiffness D, density p and

plate thickness ¢, and area A,, the real part of the driving point mobility

function can be approximated by that of an infinite thin bending plate Y., =
1 . . . . .

sv/Dn" The modal density n,(f) of the infinite bending plate is

8
) = VRO () = 22 7

or
np(w) = % %
The total energy (E;) of the system can be written as
(Bs) = M,(03), (4.112)
where (v?) is the spatial average of the mean square velocity squared at a

center circular frequency w.

The modal density n(f) = %:r’) and (4.106) can now be written as follows

P mF)
= drwM?2(v2)  8wfM2(v2)’ (4.113)

Equation (4.113) is given in [163].
Equation (4.113) can be expressed in terms of the input power II,, s:
H’Ln,s Hin,SZﬂ-f

T S FALGE) | M (a2) (4.114)

where (a?) is the spatially average acceleration. In [158], a band average loss

factor is defined
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1 P2 [T, 2 f
fa=fi )y, M(a2)
In the following sections some typical values for the dissipated loss factor
associated with structural elements will be given. Still it is considered essential
to determine the dissipation loss factor of the system experimentally.

The dissipation loss factor 7 is often expressed in dB, denoted by 7, us-
ing [40]

s df. (4.115)

7= 1Olog(T7212> dB. (4.116)

Plates
The dissipation loss factor 7 for a plate as reported in the literature [55, 163]
can be obtained from the following expression
0.050, up to f =80 Hg;
n=19 o5 80 < f < fpivor Hes (4.117)
0.002, above fpivor Hz,

where the pivot frequency fpivor = 2500 Hz.

Sandwich Panels

For structures in sandwich design without equipment the dissipation loss fac-
tor can be obtained from [212]

0.3

n= W. (4.118)

Here 1) decreases as frequency increases.
The built-up (sandwich) panel structure dissipation loss factor is estimated

to be
0050, f < fpivot HZ;
0.050(L22)05 > e Ha,

where fpivor is the pivot frequency. In [37] the pivot frequency is fpivor =
500 Hz.

In [37] the attached resonant equipment has an estimated average loss
factor to be n = 0.06. The loss factor is twice the (critical) damping ratio
n = 2C.

The Jet Propulsion Laboratory (JPL) used the following expressions for
the loss factor in the vibro acoustic high frequency SEA response analysis of
stowed solar arrays (solar panels) of their spacecraft Magellan, Mars Observer

and TOPEX:
0050, f S fpivot HZ;
/]7 =
0050(%)7 f > fpivot HZ?
where the pivot frequency is fpivor = 250 Hz.

(4.119)

(4.120)
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Table 4.2. Structural properties and dimensions spacecraft solar panels

Structural parameters Magellan Mars Observer TOPEX
Length (m) 2.520 2.268 3.287
Width (m) 2.494 1.829 1.925
Face sheet thickness (mm) 0.381 0.254 0.305
Core thickness (mm) 12.7 25.4 34.29
Mass per unit of area (kg/m?) 4.66 3.72 5.42

Face sheet material Aluminum Kevlar Aluminum
Core material Aluminum Aluminum Aluminum

The general structural properties of the JPL spacecraft solar panels are
given in Table 4.2.

Cylinders

The loss factor of cylinders can vary from 0.002-0.03 for unstiffened cylinders
and from 0.001-0.03 for stiffened cylinders. Above 3000 Hz, the loss factor
is almost constant, 0.004 and 0.006 for unstiffened and stiffened cylinders,
respectively. Several tests [157, 158] gave the average loss factor of a uniform
open-ended cylinder as 0.00219. Radiation damping was neglected.

Acoustic Room

In acoustics, damping is measured from reverberation time T, the time re-
quired for the vibration energy to decrease by a factor 10~°; see [118]. Thus

e 2T — 1076, (4.121)
which gives
2.2 13.816
— =2 4.122

where f is the center frequency.

4.5.2 Coupling Loss Factor

This section summarizes the coupling loss factors associated with some of the
more common coupling joints, [24].
There are two approaches for deriving coupling loss factors for structures:

e The modal approach. In the modal approach, the couplings between indi-
vidual modes are computed and an average taken over the modes in each
frequency band, e.g. [42].

e The wave approach. In this approach, the coupling loss factor is related
to the power transmissibility for semi-infinite structures, which is often
easier to estimate than the average of couplings between modes of finite
structures.
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The power transmitted from the first to the second structure through the
junction is then the energy lost by the first structure via the coupling. The
coupling loss factor 712 has been defined as the energy lost per radian of mo-
tion relative to the total energy of the subsystem n12w(E1), and the source of
energy loss is the transmission through the junction at the boundary of the
first subsystem. The coupling loss factor n;; is related to the power transmis-
sion coefficient T;; as follows

P — Htrans _ wnij<Ei> _ wnzglf
" Iy, Cqg <E1>/lf Cg 7

(4.123)

where 114y is the power transmitted through the junction, I7;,. is the power
incident on the junction , [; is the mean free path length between the incidents
on the junction, and ¢4 is the group velocity as discussed in Appendix K. For
a beam, the mean free length is the length of the source beam l; = L, and

for a plate Iy = E—AA,, where L;; is the length of the junction. The power per
ij

length normal to the boundary Il;,. = % for a reverberant field [96].

L-beam Structures Coupling Loss Factors

Theoretical estimates to determine the coupling loss factors 7;; for beams
assembled at a right angle, so-called L-beam structures, are available in [2].
They are given as functions of the transmission coefficients 7;; between the
two subsystems. The coupling loss factors 7;; may be calculated using the
following expression

4.124
o, (4124)

Mij =
where cp; = /w / % is the sound speed of the flexural waves, E; is Young’s
modulus, I; is the second moment of area, p; is the density, A; is the cross-
section, L; is the length of beam 7 and 7; is the transmission coefficient
across the joint relating the incident waves in subsystem ¢ to be transmitted in
subsystem j. The transmission coefficient for each wave type may be calculated
as follows

268% +1
= - 4.125
Uy 9ﬁ2+6ﬁ+27 ( )
8% + 53
= = 7 4.126
Tol = Tib 9 165 +2 ( )
52
= - 4.127
il 9ﬁ2+6ﬁ+27 ( )

where § = Z—*,”, with the longitudinal wave speed c¢;; = ,/% and the index b

stands for bending and the index [ for longitudinal respectively.
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Coupling Loss Factors L-Beam
10 T T

10 10 10 10
Frequency (Hz)

Fig. 4.8. Coupling loss factors L-beam structure

Example. A L-beam structure consists of two beams with the same prop-
erties: a length L = 1 m, a cross-section 4 = b x h = 0.03 x 0.05 m?, a
second moment of area I = % = 1.25 x 1077 m*. The beams are made of
an Al-alloy with £ = 70 GPa and a density p = 2700 kg/m3. Calculate the
coupling loss factors 7;; for “bb”, “bl” and “1I” respectively in the octave band
f =31.5-8000 Hz. The coupling loss factors are given in Fig. 4.8.

Plate-to-Plate Coupling Loss Factors

The most commonly encountered structure-to-structure coupling is a line
junction between two plate structures. The coupling loss factor for a line
junction is given in terms of the wave transmission coefficient for the line
junction [15]. The coupling loss factor of a line junction from plate 1 to plate
2 is given by

263[1’7‘12 2 L
WwAp)l - s k’lAp)l

T = T12, (4.128)

where the following properties of plate 1 are of importance:

L 0.25 1
j— - . J— t -
CB—\/J{ t} = Clw“12

is the bending wave (phase) velocity (or phase velocity), ¢ is the thickness of
the plate, D is the bending stiffness of the plate, p is the density of plate,
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L is the length of the junction of the two plates, w is the radian frequency,
Ap.1 is the area of plate 1 and 72 the wave transmission coefficient. The

speed of sound in plane of the plate 1 ¢; = ,/ ﬁ, the wave number is

k1 = Jwy/ % and v is Poisson’s ratio. The transmission coefficient 75 for

random incidence vibrational energy of two L-shape plates can be calculated
using the approximate formula, [15],

2.754X
T12 = 7'12(0)( (4.129)

143.24X)

where X = f—; The normal transmission coefficient 112(0) for thin plates may
be calculated as follows

T12(0) = 2[¢)%5 4 470572, (4.130)
where
3,3
C
p =200 (4.131)
p2ciats

When both plates are made of the same sheet material, (4.130) becomes
T12(0) = 2[X % + X572, (4.132)

Example. Two identical Al-alloy square plates are firmly connected in a L-
shape form (right angle). The Young’s modulus is F = 70 GPa, the Poisson’s
ratio is v = 0.3, the density is p = 2700 kg/m?, the length is equal to the
width a = b = 1 m and the thickness of the plates is t = 5 mm. Calculate the
coupling loss factor n12(f) in the octave band with center frequencies in the
range f = 31.5-8000 Hz.

The speed of the flexural waves ¢, = 622.2972 m/s, the longitudinal speed in
the plates is ¢; = 5091.8 m/s. The normal transmission coefficient 72(0) = 0.5.
The coupling loss factors n12(f) are shown in Fig. 4.9.

Acoustic Radiation
General
The radiated power is given by
I 0q = Rmd(zﬁ} = pcAp<v12,>amd = nsapr(vfj), (4.133)

where 7, is the coupling loss factor from the structure to the acoustic room,
R4 is the radiation resistance, pc is the acoustic impedance, A, is the area
of the panel, p is the density of surrounding fluid (air), ¢ the speed of sound
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Coupling loss factors L-Plate structure
10 T T
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Fig. 4.9. Coupling loss factors L-shape plates

in the surrounding fluid, 0,44 is the radiation efficiency, M, the total mass
of the panel and w the radian frequency. The coupling loss factor of a panel,
for a structure acoustic volume coupling, can now be obtained

Rra,d o ApPCUmd

- Mpyw Myw

Nsa (4.134)

Using the reciprocity law for coupling loss factors, we can obtain the following
expression for the coupling factor from the acoustic space to the structure:

Rrad Ng o Ap/JCCde Nng

Nas = (4.135)

Mpw Nas o Mpw nas7
where ng is the modal density of the panel and n,s is the modal density of the
acoustic space. The dimension of the radiation resistance R,qq is W/(m/s)?
(W =Nm/s).

Plates

The panel radiation of a plate to half space is given by [46, 121, 161]
22090 g1 (4£) + Bega (L), < ferska kb > 2
4

P

4B (L)3, F < forska kb < 2:

Rrad :ApC f “b ) (4136)
()2 + ()2, = fors
(1_%)_%a f>fcr7

where a and b are the length and width of the panel and further
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Ay the panel surface area of one side of the panel

¢ the speed of sound

¢y the wave speed of bending in the panel

f the frequency

fer the critical frequency of the panel

k = % is the wave number

P the perimeter of the panel

A = £ the acoustic wavelength

Ae = % the critical wavelength of the panel at the critical frequency f,

o is the density of the air (fluid)

and gl(%) and gg( ") are defined as follows

gl(i) :{(%)a;%—; < $fer

fer 0, F> 4
< f ) 1 {(1—a®) I[{2] +2a}
fcr (277) (1 — CM2)3 ’

where a = ,/(ff ).
In the book of Craik [40] Leppington has been cited for expressions of the
radiation efficiency o

47"2\/ ffcI:Zp\/oﬂi—[ {1+O‘} + o¢2 1} f < fcr;
o =19 ay/ZL0.5-0.159), F=fur,a<b (4.137)
(1 - ffL)_%a f > fcr-

With respect to (4.136) g1 = 0 and the radiation efficiency had been corrected
at f = fer.

Example. A sandwich panel has dimensions a = 2.5 m and b = 2.5 m. The
critical frequency is f.. = 500 Hz. Calculate the radiation resistance in the
octave band, 32.5-8000 Hz, using Leppington’s equations. The speed of sound
in air is ¢ = 340 m/s. The radiation efficiency is illustrated in Fig. 4.10.

The subcritical baflled plate radiation efficiency ovef = Ocorner + Tedge
when f < fo in which 0corner and oegge are the modal average radiation
efficiency for the so-called corner and edge modes [141]. The o corper is

)\5) {(%)%a f < %fcr

_ 1
UCO"‘neT - (
T\ 4,

> (4.138)
0, f > §fcr

and oeqge is given by
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Radiation efficiency, Leppington
3 T T

251

Radiation efficiency
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Fig. 4.10. Radiation efficiency

— a?)In[ite o
%@642<P%){“ )IM*J+2}. (4.139)

4 - a2

P

The subcritical unbaffled plate radiation efficiency is given by [141]

Ounb = Fplate(Fcz)Tnaracorner + Fedgeo—edge)a f < fcr- (4140)

Here Fpjq:e is a plate correction that accounts for the effect of inertial flows
that surround the plate at low frequencies where the acoustic wavelength ex-
ceeds the dimensions of the plate. The local corrections Fiorper and Fegge
account for the effect on radiation from corner and edge modes at higher fre-
quencies due to localized inertial flows near the plate perimeter. The correction
factors are

5342
Fplate == #TAQ, (4141)
1+53f4¢
1 13-L
Fcorner = 3 |:¢:| 5 (4142)
2l1+134
and
F 7 (4.143)
edge—§|:1+49%:|~ .

Conlon in his paper [37] presented a very simple equation for the radiation
efficiency 0,44 of a baffled complex sandwich panel, loaded and unloaded
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0.47(k=)224 . K, < 1.5k,;
Orad = r

(4.144)
1.0, kq > 1.5k,

where k, is the acoustic wave number and k, is the unloaded panel wave
number.

Stiffened Panels

The radiation resistance of a stiffened panel is discussed in [60, 121] and is
given by

Rrud = R'md,panel + Rrad,m'ba (4145)
where Ryq4,paner is the radiation resistance of the panel as discussed in the
previous section and R,qq, - is the radiation resistance per unit length of the
rib (stiffener) and is given by

Rrad,'r'ib = QCAcg?) <fi) . (4146)

The function g3 is given by a complicated expression which includes an elliptic
integral and is given in [121].

s = (%)2{(2—a2)1n[1i—3] - %a3(1+2a2)}

x(1—a%)7 + [2\/5(1 +a2)F(%,¢) +V2(2 + aQ)E(L,¢>]

V2
1 e
X <1 - §a4) (1+ a2)75, (4.147)
where a = -L- and ¢ = Cos_l[}jrgz]% and F and E are Legrendre’s elliptic

integrals of the first and second kind, respectively. The elliptic integral of the
first type is [90]

[}
Flko) = [ ——2— (4.148)
0 v/1—k2sin%0

and the elliptic integral of the second type is given by
@
E(k,¢) = / V1 — kZsin?0do, (4.149)
0

with 0 < k? < 1. Quite often in numeric tables the modulus k is replaced by
sin 6.

The approximation of g3 is as follows [60]
at+bx (L),  001<E <03

(4.150)
c+d x ln(%), 0.3 < fi < 0.9,

10log g3 = {

where a = —6.15, b = 2.33, ¢ = 2.91 and d = 11.87.
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Unstiffened Cylinder

In [205] the average radiation efficiency of modes in frequency bands contain-
ing some acoustically fast (AF) modes of an unstiffened cylinder is derived.
The average radiation efficiency o,4q is

VS/QfR/fc
Orad = M(l — Voy/ 1- Vg(fR/fc)Q)

1 1
x L/l/F — -~ = UO] 12(1 — 12), (4.151)

27R
R is the radius of the cylinder, E is Young’s modulus, p,, is density of
the applied material, v is Poisson’s ratio and the critical frequency is f. =

20—; v/ MEI_”Q) The frequency bandwidth factor F is

e the upper frequency limit f, = fF and
e the lower frequency limit f, = f/F

where vy = fiR7 f is the center frequency, the ring frequency is fr = 527/ pE ,

The frequency bandwidth factor is F' = 1.122 for the one-third octave band
and F' = 1.414 for the octave band. The modal density function B is given in
Table 4.3. Equation (4.151) is always valid when:

1. vy < 1/F and vy < 0.651og(3f./fr)
2. fR/fc > 1.5 and vy < fc/fR~

For small values of vy and fr/f. (4.151) simplifies to

Vo fr/ f. [FW — (1/F)!/?
Orad =

- 1T } 12(1— v2), (4.152)

and if only one-third octave band or narrower bands are considered

[FW - (1/F)1/2} 1

F-1/F A
we obtain 3/2
vy fr/ e VA=)
Orad =~ ———"—"—+/12(1 — v2). 4.153
rad 4B ( ) ( )
Table 4.3. Factor B (modal density) unstiffened cylinder

Factor B Applicable frequency range 1o
B =25 vo < 0.48
B = 3.6v 0.48 < 19 <£0.83

B=2+ Fof‘; [F cos },2732) -+ cos(—1'73§F2 )] vp > 0.83
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In [205] it is discussed that the internal radiation may taken equal to the
external radiation which had been derived in this section.
Some cylinder characteristic parameters for aluminium cylinders are:

v =10.33

E =70 GPa

p = 2700 kg/m?
fr ~ 810/R(m) Hz
fr/f. ~ 68.6(t/R)
fer11.8/t(m) Hz

with the associated parameters for air at normal temperature and pressure

e ¢=340 m/s
e p~12kg/m?
e pc~~ 408 kgs/m?

Critical Frequency

The derivation of the critical frequency fe is discussed in detail in [159].
When an infinite plate is excited, the frequency at which the speed of the free
bending wave becomes equal to the speed of the acoustic wave in air is called
the critical frequency. The derivation of the critical frequency for a isotropic
thin plate will be summarized. The critical frequencies for thick isotropic thick
plates, thin and thick composite panels are given Table 4.4, where

o= %, see Appendix J

c speed of sound in the fluid (i.e. air)
D = D1y = Do, is the bending stiffness in x- and y-direction respectively
for a balanced lay-up of layers see Appendix J

_ Et(h+t)® : R :
e D= Sa=2y for a sandwich panel with isotropic face sheets
3 . .
e D= % for a isotropic plate
FE is Young’s modulus
G is the shear modulus (isotropic assumed)
Table 4.4. Critical frequencies [159]
Type of panels Critical Frequency wer Critical Frequency f.. (Hz)
Thin isotropic plate Wer = C2 4 /% fer = % \/ %
2/ 2/
Thick isotropic plate Wer = —=XLL2 for = —XL2
1 2my/1-
c21 /7 021 /e
Thin composite panel Wer = %+D for = 75
VA 2w/ =g
2 T 2 m
. . _ c 5 o c /E
Thick composite panel Wer = — fer = M—aﬂm
- ™ Ti st
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h is the core height

m is the mass per unit of area

S = Gh is the shear stiffness for a thick plate

S = Gh(1 + £)? is the shear stiffness for a sandwich panel

t is thickness of plate or the face sheet thickness (both face sheets equal
thickness)

c2m

3 . .
o > % for a composite sandwich panel

('2m

e <% >1 for a thick isotropic plate sandwich panel

The free vibration equation of motion for a thin isotropic plate is given by

m 0w
Viw+ 555 =0, (4.154)

where the plate is assumed to be in the z-y plane and V4 = a £ —|—2 amQayz +-25 61/
The solution for the infinite plate may be written

w = el Wi—kaz—kyy) (4.155)

where k; and k, are the wave number components. They are related by the
expression k2 + k; = k2, where k is the wave number. The wave number can
be written as k = %. For a thin plate the wave number components can be
expressed as follows by substituting (4.155) in (4.154)

mw2

4 212 | 14 4
ky +2kky + Kk, = k" = o (4.156)
The speed of the bending wave (phase velocity) ¢, = ¥ becomes
2
, w°D
= . 4.157
Cp m ( )
At the critical frequency ¢, = c¢. The critical frequency w,, for the thin
isotropic plate is given by
4
c
Wi = - (4.158)
or
fo= O (4.159)
2\ D '

Example. A sandwich panel with dimensions a = 2.5 m and b = 2.25 m has
a mass per unit of area m = 2.5 kg/m?. The core height h = 20 mm and both
face sheets have a thickness ¢ = 0.2 mm. The flexural bending stiffness of the
composite sandwich panel is D = Dq; = Day = 5000 Nm, D12 = 70 Nm and
Dgs = 165 Nm. The shear modulus of the core is G = 8.2 x 107 N/m?. The
shear stiffness is S = Gh(1 + £)? = 16.7 x 10° N/m. The speed of sound in
air ¢ = 340 m/s. Calculate the critical frequency f., for
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e the composite sandwich panel
e the sandwich panel in case the face sheets are made of an isotropic Al-alloy
with £ =70 GPa and v = 0.3.

For the composite sandwich panel the critical frequency is given by

2 /m
cC R
for = —==-E—— =1532.3 Hz,
3
21T -Zoc _ cS’m
where a = MBQDJ = 0.08 and for the sandwich panel with isotropic face

sheets the critical frequency is

for = — 22— =570.9 Hy,
o2my /1 — Em

where D = 205 — 3139 N,

4.5.3 Modal Densities
General

The modal density n(w) is the number of modes per radian frequency (rad/s)
and the modal density n(f) is the number of modes per cyclic frequency (Hz).
The relation between n(w) and n(f) is given by

N _ N )
n(w)_E_QWAf_ o’

(4.160)

where N is the mode count in the frequency band Aw and Af.
A compendium of modal densities for typical structural elements of engi-
neering importance is given in [79].

Composite Structure

A composite structure consists of a number of structural elements for which
the modal density n;(w) is known. In [79] it is postulated that the modal
density of the composite structure is the sum of the modal densities of its
components. The modal density of the composite consisting of m basic struc-
tural elements at a center frequency w is given by

w) = an(w) (4.161)
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General Structure

The expression for the modal density n(f) of a general structure is given
in [33] as
1 f2
n(f) = 7/ AMR(Y)df, (4.162)
(fa—f1) Jp
where R(Y) is the real part of the point mobility, and M is the mass of the
structure. The point mobility is the ratio between the velocity response of
the structure measured at the excitation location and the force input to the
structure.

Bending Beam

The natural frequencies of a simply supported bending beam are given by

2
pm EI

== — =1,2... 4.163

= () Vo p=120m, (1163

with associated vibration modes ¢,(z) = sin 7%. Here ET is the bending

stiffness, m is the mass per unit of length, L is the length of the beam. Equa-
tion (4.163) can be rewritten such that mode count N(w), is dependent on
the maximum frequency w:

L m 1 m 1
Nw) = 2veil 2 oo = g, 4.164
W)= ver g1 = VeV B = Ak (4.164)

Here Ak = %, and ky = \/w /£ is the wave number of the bending beam.
The equation of motion of the bending beam is ET ‘giﬁ” + m%i”‘;’ = 0. Substi-

tuting the solution w(z,t) = /(“*~%%) we can obtain the expression for the
wave number k. The modal density of the bending beam n(w) now becomes

_dNw) 1 dky L 1 [m
"W =T T Ahde o ve \ B (4.165)

The modal density n(f) = 27n(w) can be easily obtained

n(f) = Lﬁ i/g (4.166)

where f in (4.166) is the cyclic frequency (Hz). The modal n(f) is inversely
proportional to the square root of the frequency.
The speed of sound (phase velocity) in the bending beam is defined by [52]

cp = kib =wy/ % and the group speed is given by ¢, = j—,‘:b = 2cp.



4.5 SEA Parameters 285

3
Constant frequency  w(ky, ky) = Q

Wavenumber plane

ky

Fig. 4.11. The wave number plane [159]

Plates

After [21, 219] the number of modes N({2) can be calculated as follows as-
suming that the boundary conditions do not much effect the higher frequency
range (asymptotic solution)

1
N(2)~ — 4.1
(D~ 5 //Sdkzldkg, (1.167)

where S is the region in the first quadrant of the k; and ko plane bounded by
the curve w(ky, k2) = §2. This is illustrated in Fig. 4.11. The wave numbers
k1 and ko can be estimated by

mym moTm

k1: a s kgz b s ml,m2:1,2,..., (4168)
where a and b are the sides of the rectangular area, and Ak; and Aksy are
T T
Aky = 2 Aky = = 4.169
1 a7 2 b ( )

For a simply supported plate the natural frequency w(ky, k2) is given by

D D
—k2 k22:—4
m(1+ 2) o

w2(k1, kz) =

where D is the bending stiffness, m is the mass per unit of area and r2 =
k3 + k3. If ﬁ—f = tan#, (4.167) can be written as follows

ab [Z[" ab [%
N()~ = dndf = — 2dg 4.170
@~ [ nanao = 35 [ 120, (1170)
where r is the maximum value for r for any given 6. The modal density n(w)

can derived using (4.170)

N(w) _ ab 2 d(r?)
dw 272 J, dw

n(w) = de. (4.171)
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Example. The natural frequency of a simply supported plate is given by

D D
w? (k1 ko) = — (k3 + k3)* = —r*.
m

m

The radius r will be expressed in terms of the natural frequency w as follows

1
2 _ m\?
, _w<D).

The modal density n(w) can be obtained using (4.171)
s 1 T 1
ab [z d(r?) ab (m\? [2 ab (m\?
_ =2 (2 do="(20)"
n(w) 2772/0 dw 272 (D) /0 iy <D) ’
the modal density n(f) is
ab (m\
n(f) = 9 (5) .

In the following example the modal density n(f) for a plate will be illus-
trated numerically.

Example. A plate is made of an Al-alloy having dimensions of a x b =
2.19x1.22 m and thickness ¢t = 4.95 mm. The Young’s modulus of the material
is E = 72 GPa, the Poisson’s ratio v = 0.3 and the density is p = 2800 kg/m?.
The modal density n(f) is calculated using equation

n(f) = g(g) = 0.176 modes/Hz,

where the area A = a x b and the bending stiffness (flexural rigidity) of the

Et3y2). The modal density of an isotropic plate is also

plate is given by D = B9
called Courant’s density [57].
The medium surrounding the plate is air with a speed of sound ¢ =

346 m/s. The critical frequency of the plate f., is calculated using the equation

c? t 3
for =5 (%) — 2508 Hz.

In a paper of Xie et al. [230], the modal density of rectangular plates is
presented accounting for the boundary conditions. For a simply supported
plate the modal density is given by
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Modal density of rectangular plate

0.04 ‘ ‘ ‘
n(f) infinite plate
B : n(f) simply supported plate| |
0.035 | — - — - n(f) free plate
\ — — —n(f) fully clamped plate
0.03 b
\
Py \
T 0.025[ - e b
= T~ie o
@ T T T e — o]
o 0.02F i
©
5 . B S S A
-8 . e = — _— —
S 00157 -7 b
//
/
0.01} |
!
0.005 —r’ .
0 Il Il Il Il
0 2000 4000 6000 8000 10000

Frequency (Hz)

Fig. 4.12. Modal density rectangular plate

27r\/7 \/Ra“’ (4.172)

the modal density of a free plate is given by

27r\/7 \/R‘“rb (4.173)

and the modal density of a fully clamped plate is

27T\/7 \/Haer (4.174)

where A = ab, a and b are the length and the width of the plate, respectively.
Remember that the modal density in the cyclic frequency domain is n(f) =
2n(w).

Example. The modal density for an Al-alloy rectangular plate, with a length
a = 0.4 m, width b = 0.3 m and a thickness t = 2 mm with different boundary
conditions is calculated. Young’s modulus is £ = 70 GPa, Poisson’s ratio is
v = 0.33 and the density is p = 2700 kg/m?. In Fig. 4.12 modal densities are
shown.

Sandwich Panels

The modal densities of sandwich panels with identical isotropic face sheets
and isotropic core are given in Table 4.5. The variables in the expressions for
the modal densities are explained later:
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Table 4.5. Modal density sandwich panels (isotropic face sheets and core)

Reference  Modal density n modes/Hz

R (5+%17%
[37] n(f) = 21— —t—m—)

cb,e[f 23b,eﬁcb b

T m mpw _1 2
[159] n(f) = T2l (1 4 (miwt + 2 50)E (myw? + 257}

[33] n(f) = gl
1
x {1+ [m2w* + 4myw?g® B(1 — v*)] " 2 [mpw? + 2¢° B(1 — v°)]}

e A, is the panel surface area
2 2
. B — E(h—‘y—;f) ty ~ Eh2 tr

e ¢ is the bending wave speed ¢, = \/J[mﬁ]i

P
] 1
e ¢, is the shear wave speed ¢, = [€1]2
mp

. . . 1 17—41
o ¢y o is the effective bending wave speed ¢, = [3 + f] 3
Etf(h+tf)2 ~ Ethf

e D is the section bending stiffness D = Sa—p?) ¥ "3

f is the cyclic frequency (Hz)
_Gr.2
9= W[E_tf]
G is the shear modulus G = VG Gw
h is the core height (thickness)
my, is the build-up panel mass/area

n(f) is the modal density in the cyclic frequency domain

n(w) is the modal density in the radian frequency domain n(w) = nf)

f
2m
S is the shear stiffness S = Gh(1 + %)2 ~ Gh
t¢ is the face sheet thickness
v is the Poisson’s ratio of the face sheet material
w is the radian frequency (rad/s) w = 2x f

Example. A square sandwich panel with a surface area 4, = 2.5 x 2.5 m?
has identical face sheets with a thickness ¢ty = 0.3 mm, the core height is
h = 20 mm and the mass per unit of area is m, = 2.5 kg/m?. The face
sheets are made of an Al-alloy with a Young’s modulus E = 70 GPa, and
the Poisson’s ratio is ¥ = 0.3. The shear modulus of the core G = 100 MPa.
Calculate the modal density n(f) modes/Hz using the equations written in
Table 4.5 from [33, 37, 159]. The results of the modal density calculations, in
the octave band f = 31.5-8000 Hz, for all methods are about the same, and
shown in Fig. 4.13.

The modal density for a composite sandwich panel had been derived
in [159] and is recapitulated in Appendix J.

Unstiffened Cylinders

The ratio vp = == is the ratio between the center frequency w and the ring
frequency w, = %(%)%, where R is the radius of the cylinder, F is Young’s
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Fig. 4.13. Modal density sandwich panel [33, 37, 159]

Table 4.6. Factor B (modal density) unstiffened cylinder

Factor B Applicable frequency range vg
B=25,% 7o < 0.48
B = 3.6 0.48 < vp < 0.83
B=2+ ISEi [F cos(;'gig) -+ cos(—1‘7ng2 )] vo > 0.83
jal Q Q

modulus, and p the density of the structural material. The modal density of
an unstiffened cylinder is taken from [55, 205] and can be calculated using a
factor B

mn()tf,  n(f)ntC 2BL 4AB

B=—r—=—"1 n(f)=m=m7 (4.175)

where ¢ is the wall thickness, L is the length of the cylinder, C; = ,/% is

the longitudinal wave speed, A is the surface area of the cylinder and n(f) is
the modal density of the unstiffened cylinder. In Table 4.6 the approximate
factors B are given in the following references [34, 55, 205]. The parameters
used are listed below:

F=2%
x = 1 for the octave band width with f,,.. = fF and finin = % becomes
F =23 =1.414 and

o I = % for the third octave band width f,., = fF and fp, = % becomes
F=2
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Modal densities cylinder (One-third octave band)
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0 ‘ ‘ ‘
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1

Fig. 4.14. Factor B calculated in the one-third octave band

The B factor for the one-third octave band is shown in Fig. 4.14.

Acoustic Chamber

The total number of modes (eigenfrequencies) from 0 to an upper limit fre-
quency f in a rectangular room is given by [104]

N(f) = %V(i)3+%A(i>2+g<i), (4.176)

C c Cc

where V' = L, L, L, is the real geometrical volume of the room, A = 2(L, L, +
L,L.+ L,L,) is the area of all walls and L = 4(L, + L, + L) is the sum of
all edge lengths. The modal density of the acoustic room can now be easily
derived from (4.176)

n(p) = L) _ %V(if + EA<i> L (4.177)

c 2c c 8c’

Modal Overlap

The modal overlap Mj;, of two modes is the ratio of the bandwidth A = nw
and the modal spacing |w; — wg|

A

|wj — wi|”

My, = (4.178)
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Modal overlap sandwich panel
10 T T

Renji modal density ‘

10* b

Modal overlap
-
o_‘
T

10’ 10° 10° 10*

Frequency (Hz)

Fig. 4.15. Modal overlap of sandwich panel

The modal overlap of a system as a whole is given by
M =n(w)A = n(w)nw = n(f)nf, (4.179)

where 7 is the loss factor, w (f) is the center frequency and n(f) is the modal
density.

For M < 1 deterministic methods can be used, e.g., the finite element or
boundary element methods, but if M > 1 then statistical methods are more
suitable.

Example. From the previous example of the modal densities for a sandwich
panel with identical isotropic face sheets and core, the modal overlap will
be calculated assuming 1 = 0.05 in the octave band f = 31.5-8000 Hz. The
modal overlap, using the description of [159], is shown in Fig. 4.15. The modal
overlap M =1 at f ~ 250 Hz.

4.5.4 Subsystem Energies
Mechanical Subsystem

The total energy of a beam, plate or shell subsystem can be expressed in terms
of the total mass M and the spatial average of the velocity response (v?)

M(v2>:/Am|v(x)|2d9:, (4.180)
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where m is the mass per unit of length or area, v(x) is the spatial velocity
and z denotes the spatial location, one or two dimensional.

The velocity response v(x) normal to the neutral line or plane can be
expressed in a modal expansion of modes ¢, (z)

v(@) = vadn(®), (4.181)

n

where the mode functions are orthogonal, i.e.

[mon@eiie =100 127 (4.152)
A 0, i#7,

where A; is the generalized mass (normalization constant) for the mode func-
tion 7.
For a single localized source, p(z) is modelled by

p(x) = Fod(x — xp), (4.183)

where §(z — xg) is the Dirac delta function. The modal participation (gener-
alized coordinate) v, (z) becomes

JwFopn(zo)
Un(w) = P E— (4.184)
The average velocity v? can be evaluated using (4.180), thus
G2F242
wFy ¢y, (20)
4.185
M Z 2 —w2)2 4 202w, ( )

where the mode function originality was applied.
Uniformly distributed point sources (“rain on the roof”) are spatially av-
eraged over the area A.

2F2m¢2 (l’())dl’()
4.1
AmM/ Z 2 —w?)? + n2wwlA,’ (4.186)

assuming a uniformly distributed mass per unit of length or area m. Again
the mode function orthogonality property, we can express (4.186) as follows:

2
FO
4.1
2 TR (4.187)

Equation (4.187) shows that, for independent localized forces (or random
broadband excitation), the input energy to all modes is uniform and indi-
cates that the response of a subsystem to random broadband excitation is
dominant at natural frequencies w,.
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Averaging over the frequency band Aw = w; — ws which contain N =
ng — ny modes, we can find the following expression for (4.186):

n2

FAw w?dw
%) pw > Aw/A R (4.188)

2
= )2 + n2wiw2]’

where Fiw is the mean square of the forces within the frequency band Aw.
If w, =~ w, the range of natural frequencies is small compared to the center
frequency w, and the loss factor 7, is small so that n,w, < w. Equation (4.188)
becomes (see also Appendix I)
Fiw 2 s
3 .
AwM = 2N Wn,

(V) aw = (4.189)

Assuming a constant loss factor 7 in the frequency band w and w,, =~ w for all
modes n, we can evaluate (4.189) as follows:
F2,  « N  Fi;n(f)
2 Aw Af
P L Y LA P 4.190
(v7)a M? 2nw Aw  M? 8mnf ( )
The derivation of (4.190) is discussed in [24] and is in accordance with [102]
where the asymptotic modal analysis (AMA) had been applied.
For one resonant mode ¢, () (SDOF system) the average energy is given
by (4.35)
£y 1
M 8mnf,’

M%) =

Acoustic Room

The temporally averaged energy of an acoustic volume (room) is known
through its relationship to the mean square spatial average pressure

(4.191)

where I is called the acoustic potential energy density [185], (p %) is the mean
square sound pressure averaged in space and time, which can be calculated

with (p?(f)) = prefl() , and pres = 2.0 x 1075 Pa. Zy = pc is the specific
acoustic impedance or chamctemstzc impedance' and M = Vp is the total
mass: SPL(f) is the sound pressure level, SPL(f) = 10 log( ) dB, V is the

volume of the acoustic room, p is the density of the fluid in the acoustic room
(air p &~ 1.2 kg/m?) and c is the ambient speed of sound in the fluid (air
¢ =~ 340 m/s). The energy of an acoustic room can also be derived as follows.

! For air at normal condition pc = 414 kg/(m?s).
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The energy of a subsystem is given by (E) = M (v?). The relation between
the pressure variation p and the velocity v in the fluid is given by p = pcv.

Thus
(Ban) = M2y = Vp Py P

(pc)? pc?

(4.192)

What is the dimension of (Eq,)?

Example. Calculate the PSD of the pressure and the average energy in an
acoustic room with a volume V = 1600 m>. The sound pressure level in
the room is SPL = 140 dB (p.s = 2 x 1075 Pa) at the center frequency
fe =250 Hz in the octave band. The speed of sound in the air is ¢ = 340 m/s,
and the density of air p = 1.2 kg/m3.

The mean square of the pressure (p?) = (2 x 107°)2 x 100" = 4.0 x 10* Pa2.

The PSD of the pressure W, = % = 226.274 Pa%/Hz. The average energy

in the acoustic room (Eq,) = %V = 461.361 Nm(W).

4.5.5 Source Power Inputs

The average input power I1;, of a mechanical load to a subsystem is given by

1 1 n
I, = §F3f§R{Y(w} =5 jf%, (4.193)

where F3 s 1s the mean square force in the frequency band Af, n(f) is the
modal density and M is to the total mass of the subsystem. The spatial
average of the mobility function Re{Y (w)} is derived in Appendix I.

Some examples of source power inputs I/;, s of some infinite mechanical
systems are given in Table 4.7.

The symbols used in Table 4.7 are given below:

Cross-section area of beam
Bending stiffness of plate
Young’s modulus

Force

Shear modulus

Second moment of area of beam
Torsion constant of beam
V-1

Bending moment

Torque

Thickness of plate
Velocity

Angular velocity

Density

TEeSTHESSSQOR O
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Table 4.7. Properties of infinite systems

295

System Driving point mobility =~ Power flow into system
YOO H’in,s
Beam longitudinal v__ 1 (F7)
. F o 2A/E 14,/E
wave motion; s P
force excitation
4] 2
Beam torsional b _ 1 (r7)
. T 2,/GJ 4,/GJ
wave motion; P P
torque excitation
v o izl (Apyg (F?) (Apyi
Beam ﬂgxural = 4Ap\/5( £)i 4Ap\/a( £)i
wave motion;
force excitation
v _ (+i)Vve EI\: (M%) V@ (EI\L
Beam ﬂgxural = = W(A_p)4 T (A_p)4
wave motion;
bending moment excitation
2
Plate flexural »=_1 (F)
F o 8/Dpt 16+/Dpt

wave motion;
force excitation

4.5.6 Stresses and Strains

The strain energy per unit of volume U* in an elastic body can be expressed
in the principal stresses and strains:

U*

1
5[0’161 + 092€92 + 0'262].

(4.194)

For thin plate and shell structures the stress perpendicular to the neutral
plane is o3 = 0, hence U* becomes

1
U* = 5[0’181 —|—0’282] ~ [O’E].

For isotropic materials, U* can be expressed as follows

U* =

m|q[\3

where F is the Young’s modulus.
In pure bending, the stress can be expressed in terms of the stress in the
extreme fiber z = e (see Fig. 4.16)

2
o(z) = 7'20;” .

The strain energy per unit of area U is now

(4.195)

(4.196)

(4.197)
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Fig. 4.16. Plate, beam

% 1 (% 402 s o2
U= [ Ude= = [ o(x)dz = Egm [i(z)gdz = % (4.198)
The average strain energy U is equal to the average kinetic energy per unit of
area of the plate, thus
H0hae) _ Mp(v?)

sE - A, (4.199)
For 0,4, the following relation can be obtained
3EM,(v?
<U$nax> = & (4200)
tA,

This is in accordance with [176].
For a sandwich plate with a face sheet thickness ty, (4.198) becomes

Sty 1[5+t 2% ro2
- *dy — — 24, — 2 %maz
U—/% U*dz = E/% o(z)%dz 7 (4.201)

thus (4.200) changes into

_ EM, (v?)

<0371ax> - (4202)
2thp

2

We can now estimate the average stresses (o7, .,

of the plate or sandwich panel.
The average value for the maximum strain (2 ,) can be derived
from (4.200) and (4.202) by dividing both equations by E?2.

) from the average energy

Example. A sandwich panel, with CFRP face sheets t = 0.2 mm, Young’s
modulus E = 100 GPa, an area A, = 6.25 m? and a mass m = 2.5 kg/m?, is
exposed to an acoustic excitation in the octave band at 250 Hz, and responds
with an average velocity (v) = 0.05 m/s. Calculate the average stress (omaz)
and average strain (€,,4,). The average stress (0mq4z) 1S

EM,(v?
(Oman) = | ML) 624 x 106 Pa,
2, A,

and the average stain (g4, is

<Umaz>

(Emaz) = =0.624 x 107° m/m.
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Fig. 4.17. (a) Full plate with clamped or free edges; (b) Plate with clamped square
hole

In [176], Shankar mentioned the “stress doubling rule”. For the prediction
of spatial variation of stresses, consistent with the simplicity of the SEA ap-
proach, a doubling of the mean square stress for every constrained boundary
is recommended. For example, at a rigidly clamped boundary (having both
rotations and translations constrained) the mean square peak stress must be
four times the spatially averaged stress, and at a clamped corner (the junction
of two edges) there is a further doubling, i.e. a total factor of 8. The respective
stress concentrations are given by the square roots, i.e. 2 and 2.8. The edges
and corners are illustrated in Fig. 4.17.

4.5.7 Non-resonant Response

The theory discussed in this section comes from papers [46, 162]. For a limp
panel the non-resonant response is given by

(4.203)

where (v2) is the mean square of the average velocity, (p?) is the mean square
acoustic pressure, and m the mass per unit of area.

Consider two reverberant rooms separated by a panel. The transmission
room is denoted by system 1, the receiving room by system 3 and the panel
by system 2. This is illustrated in Fig. 4.18. The power flow balance equations
for the three systems are:

Iy = win (Er) + wmang <% a @>

no
(Er)  (E3)

+winang (— - —), (4.204)
niy ns
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Fig. 4.18. Transmission suite

1Ty = wna(E2) + wnaing (% - %)

o ( % B % ) (4.205)
I3 = wn3(E3) +wnzing (% a %)

+wn32n3<% . %) (4.206)

In [162] the following expression for the indirect CLF 7,3, for non-resonant
response, is given

TAc

= 4.207
113 AoV ( )
where sound power transmission coefficient T is given by
8p?c?

and A is the area of the panel, ¢ is the speed of sound in air and p is the
density of the air. The coupling loss factor 73; is given by

2pc
N31 = =, (4.209)
mw
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4.6 Applications

4.6.1 Panel in an Acoustic Field

For a panel with a given radiation efficiency 0,44 and dissipation loss factor n,.
the ratio of the panel average energy (E,) to the acoustic average field energy
(Ey) is proportional to the ratio of the respective modal densities

<Ep> Ny MNrad

op . 4.210
(Ey)  nf Nrad +np ( )

Here 1,44 is the radiation coupling loss factor, n, is the modal density of the
panel and n; is the modal density of the acoustic field.

Equation (4.210) states that a decrease of the panel modal density implies a
decrease in its response. The modal density of a panel is inversely proportional
to the stiffness of the panel because n,(f) o \/% . That means that an increase
in the panel natural frequency f,, which is proportional to the stiffness f,,

\/g , will cause a lower modal density and an increase in the distance between
consecutive modes.

Decreasing the radiation coupling loss factor 7,,4 and increasing the dissi-
pation loss factor 1, of the panel will lead to lower average structural responses
of that panel. If the internal loss factor of the panel structure is small com-
pared to the radiation coupling loss factor, 1, < nrq, the value of 7,4 is of
no importance anymore and the ratio of average energies is proportional to
the ratio of modal densities, thus

4.6.2 Sandwich Panels

In this vibro-acoustic application we discuss the response characteristics of a
sandwich panel in a spacecraft structure, carrying equipment, and exposed to
sound pressures.

If the spacecraft is placed in the acoustic room or under the fairing of
a launch vehicle the sandwich panels (side panels) full with equipment and
instruments will be exposed to sound pressure. The response PSD of the
acceleration is used to specify the random vibration (test) environment for
the equipment and instruments as illustrated in Fig. 4.19.

The analysis procedure is taken from [168]. There it is shown in that the
power flow between sandwich panels is negligible when a typical honeycomb
sandwich panels are exposed to vibro-acoustic reverberant pressure loads. This
is shown in Fig. 4.20. The sandwich panel will be considered unconnected from
adjacent structures.

The acoustic input power to sandwich panel or panel element 7 is Il;, ;
and equals the dissipated power of that sandwich panel:
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Fig. 4.19. Typical random response of spacecraft panel
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] -
Fig. 4.20. Comparison of the vibration response of a panel either separated from
or to the spacecraft [4]

(af)
(27 f)*

where (E;) is the energy of element 4, w is the center frequency of either an
octave or third octave band, 7; is the dissipation loss factor, M; is the total
mass of the bare sandwich panel without any equipment mounted to it, <vf)
is the spatial average mean square velocity, and (a?) the spatial average mean
square acceleration of the panel.

For sandwich panels with an honeycomb core, the following frequency de-
pendent dissipation loss factor 7; is recommended in [168]

Hz‘n,i = mw(Ez) = 77in¢<1}1'2> = niWMi (4.211)

m=f°, (4.212)
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Fig. 4.21. Loss factor n = f~°7

where f is the center frequency (Hz). The values of the loss factor are shown

in Fig. 4.21.
The acoustic input power is given by
in,T 47Tf2M1' ) .

where c is the speed of sound, (p?) is the mean square sound pressure, o; is
the radiation efficiency, n;(f) is the modal density, f is the center frequency
(Hz) and M; is the mass of the bare sandwich panel i.

The NASA Lewis empirical radiation efficiency o for a flat baffled panel
is given by [36]

2 .
o= { i3 ;ij} (4.214)

where f is the center frequency and f., is the critical frequency of the panel.
The modal density of a sandwich panel with isotropic face sheets is taken
from [159] and is expressed as follows.

A Amyw?§?\ T2 252
n(f) = %{1 + (mf,w‘* + m%) (mpw2 + ?> } (4.215)

where the parameters can be found in Sect. 4.5. Note that m, is the sur-
face mass of the bare sandwich panel. If the material properties of the face
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sheets are not isotropic, equivalent isotropic material properties can be ap-
plied. The modal density n(f) for composite honeycomb sandwich panels with
orthotropic properties is discussed in [159].

The critical frequency w., = 27 f., is that frequency at which the sandwich
panel has the same wave speed (speed of sound) as the surrounding medium,
in general, air with a speed of sound ¢ a2 340 m/s. The critical frequency of a
sandwich panel with isotropic face sheets is given by [160]

c4m,p
wi=—2L (4.216)

c?mp1’
[1-=—5*]

where the parameters can be found in Sect. 4.5. The critical frequency we,

2
does not exists if <52 > 1.
The spatial average mean square acceleration (a?(f)) in the band with

center frequency f can now be obtained using (4.211):

27,2
2 c(p*)oiAini(f)
2 = 4.217
The mass loaded sandwich panel response (instrumentation and equipment

mounted to the panel) can be obtained by two methods discussed in [168].

e The mass ratio method to calculate the mean square spatial averaged
acceleration response (aZ(f)) is based on the total mass of the mounted
equipment and instruments M} with respect to the total panel mass M; +
Mbt M

2 2 %

(@) = N3 5r

e The mass area density ratio method to calculate the mean square
spatial averaged acceleration response (aZ(f)) is based on distributed mas-
sses of the box my, = JX—% with respect to the total distributed mass per unit
of area m,, +myp, where A is total area of the foot prints of the equipment

or instruments.
(ai(f)) = (ai (1))

The use of the mass ratio method leads to a more conservative acceleration
PSD compared with the mass density ratio method. PSD values obtained,
using the mass density ratio method agree well with test results.

In general, the equipment’s random acceleration vibration test specifica-
tion is a PSD function W,(f) (g?/Hz). The spatial average mean square of
the acceleration (a?(f)) in the frequency band with center frequency f is
calculated using the expression

(@®(f)) = Wa(f)AS,

where W, (f) is the constant acceleration PSD value in the frequency band
f with associated band width Af. In [168] it is proposed to calculate peak

(4.218)

L -~ (4.219)
myp + Mp
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Table 4.8. Specified SPL, OASPL =777 dB
One octave frequency band ~ SPL (dB)

(Hz) 0dB=20x10"" Pa
315 124
63 130
125 135
250 139
500 134
1000 128
2000 124
4000 120
8000 116

PSD values W, ,(f) from the constant W,(f) in the frequency band f as

follows
_ eyt 1
WorlD=ar gy = Dy Y

where nf is the half power band width, and nfn(f) is the modal over-
lap.

Example. A sandwich panel with isotropic face sheets has the following
geometry and material properties; the length is a = 1.82 m, the width b =
0.91 m and the total height A = 25 mm. The two identical isotropic face
sheets have a thickness ¢ = 0.3 mm. The face sheet are made of an Al-alloy
with a Young’s modulus £ = 71.6 GPa and the Poisson’s ratio is v = 0.3.
The isotropic shear modulus of the honeycomb core is G = 134 MPa. The
mass per unit of area of the sandwich panel is m,, = 4.5 kg/m?. The sandwich
panel is excited by a diffuse sound field as given in Table 4.8. The mean square
pressures can be calculated by (p?) = pfeflo% and pres = 27° Pa. The speed
of sound in air is ¢ = 340 m/s.

Calculate the OASPL of the SPL levels given in Table 4.8. The answer to
the previous question is OASPL = 142 dB.

The total mass of the equipment and instrumentation is M, = 30 kg, and
the total area of the footprint is 40% of sandwich panel area A; = ab m?.
The mathematical model for the loss factor is 7; = f~°7, and the radiation
efficiency will be approximated using o; = 1 if f > f.. and 0; = ){% if f < fer.
Calculate the acceleration responses W, (f) and W, ,(f) for the bare panel
and the acceleration responses Wy (f) and W, ,(f) for the mass loaded panel
when this panel is exposed to acoustic pressures.

To calculate the radiation efficiency, we need the critical frequency f.,.
The critical frequency of the bare sandwich panel is f.. = 487.5 Hz.

The PSD accelerations W, (f) and peaked PSD accelerations W, ,(f) of
the bare sandwich panel are shown in Fig. 4.22. The PSD accelerations W, (f)
and peaked PSD accelerations W, ,(f) of the mass loaded honeycomb sand-
wich panel are shown in Fig. 4.23.
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Fig. 4.22. PSD accelerations bare sandwich panel
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Fig. 4.23. PSD accelerations mass loaded sandwich panel

4.7 Test-Based SEA Equations

Statistical Energy Analysis is used to predict wide-band noise and vibration.
That prediction may rely on parameters derived from theory or from test.
The latest is called test-based SEA [32].
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The power flow equations for a structure made up of N subsystems are
given in (4.105).

For a system composed of N subsystems, N2 unknowns must be estimated:
N damping loss factors and N(N — 1) coupling loss factors.

Getting enough test data to generate N2 equations is achieved by applying
input power on one subsystem only and measuring the response of all sub-
systems to that specific excitation. This generates N equations and therefore
this operation must be repeated for all subsystems in order to generate N2
equations. If N = 2 (4.103) can be rearranged. Equation (4.103) is given by

m—+n2  —N2 (Eq) _ L [ Ilina
-2 M2+ M2 (E9) w | Hina2 [
The space averaged energy of subsystem i is denoted by (E;;) when sub-
system j is excited. Equation (4.103) can be written as

(E11) égni —égmi <2‘> m i
0 - - n . 0
CEw) (B (Ew) 0 | Yam [T} 0 (0 (2D
0 —(E12)  (Ba2)  (Ea2) 12 I, 2

In [122] it is shown that the condition number of the energy matrix
in (4.221) is even acceptable in case the coupling between subsystems be-
come stronger (see also problem 4.17), however, the energy matriz (4.221)
may be ill-conditioned and errors in the calculation get larger with an in-
creasing number of subsystems [71]. Therefore it is proposed to break down
the N x N matrix into N sets of (N —1) x (N —1) matrices giving the coupling
loss factors and N equations giving the damping loss factors. For the coupling
loss factors related to subsystem 4 the following expression is used [71], with
j=1,2,....N

i
IN© ) i
E Eui E Eni -1
- (5 - =) (B - B 1
= —<g.’f> : : L. (4.222)
I () )y (Exm) (B |
(Bin)  (Bu)/ 770 N (Ein) (Bii) 7/ i

This matrix is usually well conditioned since the diagonal terms are large.
The damping loss factor of subsystem i is then obtained as [71]
Hm,i N
=t = = (Ejamge — (Eii)nij)ljri

0 = B : (4.223)

or directly using
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Uil . (E11) ... (Ein) ;0

: o : : :
N (En1) ... (Enn) Iy N

Under certain assumptions the problem can be greatly simplified

vl e

The following assumptions must be considered:

1. The modal energy % (N is the number of modes per band) of a di-

rectly driven subsystem is greater than that of a subsystem connected

to it. This assumption is not valid for strong coupled subsystems, where

2. The expression calculates the coupling loss factor between two subsystems
from measurements on these subsystems only. The underlying assumption
is that most of the power flows directly between the two subsystems, not
through a third one.

In [156] Radcliffe proposed the following expression to identify the damping
loss factors from measurements of the subsystem energies (E;), i =1,2... N

S e (ex — e),
+ ch\;i nemik(er —e;), 1=2...N—1; (4.226)
Sy mwi(en — ), =N,

1

ni€;

ni =

where e; = fj) and n; is the modal density of subsystem 4.

It is assumed that the responses from all subsystems in the SEA model are
measurable at each band center frequency of interest, and that all coupling loss
factors and modal densities are known at these frequencies. For convenience
it is assumed that power is input to subsystem 1.

The internal loss factor for the powered subsystem with unknown input
power cannot be identified from measured subsystem energies and other meth-
ods must be used to estimate it.

In acoustics the damping is measured from the reverberation time Tg [118],
the time required for the vibration energy to decrease by a factor 1076, Thus

e 2mInTr — 1076, (4.227)

which leads to 59
=== 4.298
n(f) TTr ( )

where f is the center frequency.
_ In [156], Radcliffe proposed a least square error fit to a reverberation time
Tr from the identified damping loss factor n(f;) as follows
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M 1
Tp = 22T (4.229)
BTOSM ah) '

=177,

where M is the number of center frequencies in the frequency band. Equa-
tion (4.229) can obtained by applying the method of Least Squares [226] to

2
the series of equation, Tg,; = 22;//]}-‘

The new computed damping loss factor 7; using the fitted reverberation

time TR is 9.9
T ALC 4.230
i) = = (4.230)

Example. This simple example is illustrated in Fig. 4.24 and is taken
from [156]. An SEA model consists of two identical cubic spaces, separated
by an Al-alloy panel. Acoustic powers are input to Space 1 and the working
medium is air. Space 1 is designated as subsystem 1, the panel as subsystem 2

and space 2 as subsystem 3. The properties of all subsystems are given in
Table 4.9.

Space 1 Space 2

Panel

Fig. 4.24. Space panel space

Table 4.9. Geometry, material properties, assumed measurements at 5000 Hz

Panel length x width 0.5 x 0.5 m?
Thickness ¢ 0.007 m
Young’s modulus E 70 GPa
Poisson’s ratio v 0.3
Density p 2700 kg/m?
Velocity v 0.000885 m/s

Air Density p 1.244 kg/m?
Speed of sound ¢ 344 m/s?

Space 1 Volume V 0.5 x 0.5 x 0.5 m?3
Pressure p 39 Pa

Space 2 Volume V 0.5 x 0.5 x 0.5 m>

Pressure p 19 Pa
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Properties of Subsystem 2 (Panel)

The bending stiffness of the panel is given by

Et3

D=——"_.
12(1 — 12)

The modal density of the panel is constant over the frequency band is

given by
A, [pt
ng = 7”,/% = 0.0116 modes/Hz.

The energy F5 can be calculated as follows:
By = M{(v?) = 3.7007 x 10~° Joules,
and the modal energy es is

E
ey = n—2 =3.1932 x 10~* Joules/mode.
2

The critical frequency f., of the panel is

62 m

— = 1746 Hz.

fcrzg D

Subsystems 1 and 3, Space 1 and Space 2

The modal densities of subsystem 1 and 3 are

Arf2V  wfAy L
-3 902 +§ = 1.0664 modes/Hz.

ny = ns

The energies of the subsystem 1 and 3, (E;) and (Ej3), are

Vv 2
(By) = “2L = 0.0013 Joules,
p

2
and V2
(Bs) = —22 = 31991 x 10~* Joules.
pc
The modal energies are
E
e = <n1> = 0.0012 Joules/mode,
1
and .
e = (Bs) = 2.9998 x 10~* Joules/mode.

ns
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Coupling Loss Factors

Expressions for the coupling loss factors 721 and 723 are taken from [156]

pCAp 277);0125 Sin*1(%)ﬁ? f < fcr;
2rfMy | (1 - L)z, f> fer,

where p is the fluid density, ¢ is the speed of sound in the fluid, A, is the
area of the panel, P is the perimeter of the panel, M, is the total mass of the
panel, f.. is the critical frequency of the panel, .. = ﬁ is the wavelength
at f.. and 0 is

7121 = 123 =

1, for simply supported edge supports;
8 =1 2, for clamped edge supports;
V2, for typical mounting conditions.

The coupling loss factors ne; = 123 can be calculated (f > for), f =
5000 Hz

21 = 723 =

pcA, 1 &
2w f M, f

The coupling loss factor 712 and 132 can now be computed:

—3
) = 8.9342 x 1074,

M2 = @7721 =9.7092 x 1079,
ni

and "
N3z = —1a3 = 9.7092 x 1076,
ns

The coupling loss factor for the flanking path between subsystems 1 and 3

is assumed constant for this example, i.e. 113 = 0.0001, thus Il;3 =
(E1) _ (Es)
wnzn (4 ).

Loss Factor

The damping loss factor of subsystem 1 cannot be independently computed
because the measured energy in that element is considered as input.
The damping loss factors of subsystem 2 and 3 will be computed us-
ing (4.226)
Ny = 2.4 %1073,

and
ng = 3.0434 x 1074,

Experimental Determination of the Radiation Efficiency

Let us assume that the structure, the cylinder is system 1, and the surrounding
acoustic volume, the reverberant chamber is system 2. The power balance
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equations of the two systems are, [157]

Hl = w(771 + 7712)<E1> - wn21<E2>,

4.231
Iy = —wni2(Er) +w(nz + n21)(E2), ( )

where 17, and 7y are the loss factors (dissipation loss factor, DLF) of the
cylinder and acoustic volume, 712 is the coupling loss factor (CLF) between
the cylinder and the acoustic volume, (E;) and (FEs) are the energies stored
in the cylinder and acoustic volume, and II; and Il5 are the power inputs to
these systems. The CLF 75, between the acoustic volume and the cylinder
can be written as

n
o1 =Th2—, (4.232)
no

where n; and no are the modal densities of the cylinder and acoustic volume,
respectively. Only the cylinder will be mechanically excited, thus the second
part of (4.231) can be written

n2772<E2>
= , 4.233
2 <E1>TL2 — <E2>TL1 ( )
and the radiation efficiency 0,44 is calculated using
OradPC
— _rear” 4.234
T2 27Tfﬂs ) ( )

where p is the density of air, ¢ the speed of sound in air and ps the surface
mass density of the structure.
The modal density ny of the acoustic volume is given by

arf?Vy wfA P
_ f32+f2+_27

2 c

ny (4.235)

c c
where Py, Ao, Vo are the total edge length, surface area and volume of the
reverberation chamber, respectively. It can be seen that the modal density of
the acoustic volume increases rapidly with frequency, and hence ny < no for
the frequency f > 100 Hz. Hence (4.233) can be simplified to

%) <E2>
= . 4.236
M2 (B ( )
The DLF of the chamber 7, is given by
13.816
= 4.2
2 27TfTr ; ( 37)

where T, is the reverberation time of the chamber.
The energy of the cylinder (E;) is given by

(Ey) = M), (4.238)
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Fig. 4.25. Experimental setup

where (v?) is the space averaged square of the velocity and M is the total

mass of the cylinder. The energy of the acoustic volume is given by

(p3)Va
pct

(Ey) = (4.239)

where (p3) is the space average square of the sound pressure in the acoustic
chamber.

To measure the radiation efficiency of the cylinder, it is suspended using
bungee ropes in a reverberant chamber, as shown in Fig. 4.25, and excited
laterally using an electromagnetic shaker on the outer surface of the cylinder.
A small force transducer is kept in between the shaker and the cylinder to
measure the input excitation level. A miniature accelerometer with built-in
preamplifier is placed on the inner surface of the cylinder exactly at the loca-
tion of excitation to measure the point mobility. A few number of miniature
accelerometers are mounted on the cylinder at random locations. Four mi-
crophones are suspended at different locations to measure the sound pressure
level (SPL) in the reverberation chamber. The cylinder is excited at a limited
number of randomly selected locations by a random noise generator in the fre-
quency range of interest. The signals from the force transducer, accelerometers
and microphones are recorded on a PC or laptop using a multichannel data
acquisition system. The data is analyzed for point mobility, average cylinder
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velocity and average sound pressure level in the chamber for each excitation
location. Then the spatial average values of these parameters at all excitation
locations are considered for calculation e.g. the radiation efficiency.

4.8 SEA Strategy

The SEA prediction procedure can be divided into the four following steps:

1. Modelling of the dynamic system into subsystems and junctions (coupling)
2. Determination of SEA parameters for the SEA model

3. Calculation of subsystem energies

4. Calculation of average response levels for the systems

Example. Calculate the responses of a plate placed in a reverberant chamber
with the aid of the SEA.

e Two subsystems:

1. Subsystem 1 is the acoustic chamber

2. Subsystem 2 is the plate or panel placed (hung) in the acoustic chamber
e Coupling

1. Radiation
e Space-time average energies

1. Acoustic chamber (E;) = Vip?)

pc?

2. Plate/panel (Ey) = M‘§‘§2>
e Modal densities

1. Acoustic chamber n; = Vc“f

2. Plate/panel ny = 4,/(%)
e Loss factors

1. Acoustic chamber 7; not considered

2. Plate/panel 7

3. One sided radiation loss factor 791
e Energy balance

1, $82) _ na 2121 ]
© (E1) ny tna+2n21
e Result
1 (a?) — c [ 2m21 ]
T {p?) 2pv'mD ' n12+2n21

where

A is the surface area of the plate/panel

a is the acceleration of the plate/panel

¢ is the speed of sound in air

D is the bending stiffness of the plate/panel
p is the density of the air

p is the pressure in the acoustic chamber

V' is the volume of the acoustic chamber

w is the radian frequency



4.8 SEA Strategy 313

Problems

4.1. A spring-mounted rigid body with a m = 100 kg mass can be modelled as
an oscillator with a spring stiffness k = 6.25106 N/m. A steady-state applied
force of F = 75 N produces a velocity of v = 0.15 m/s. Estimate the damping
ratio ¢, the loss factor 7 and the amplification factor @ (quality factor).
Answers: ( = 0.0125, n = 0.025 and @ = 40.

4.2. The dynamic response of a SDOF system
T+ 2Cwox + ng =0,

with, certain initial conditions, is given by

z(t) = Ae™ % sin(wo/1 — (2),

where z(t) is the decaying oscillating displacement, ¢ is the damping ratio and
wp is the natural frequency. The mass of the SDOF system is m and stiffness
is k = mw?. Prove that the average total energy

(E) = (PE) + (KE) = %kAQe*Q“’OCt.

4.3. Prove that (#?) = w?2(z?).
Hint: Use (2?) = W%;f”) J75 [H(w)Pdw and Y (w) = jwH (w) and compare
that with (4.33).

4.4. Prove that (i) = w2 (i?).
Hint: Use (i?) = W%ﬁf") [7 w?H(w)|?dw and compare that with (4.33).

4.5. The power flow between to SDOF system is given by IT1o = B12[(E1) —
<E2>] Prove that 512 = 521.
Hint: Use (4.46).

4.6. A SEA model consists of two subsystems and is illustrated in Fig. 4.26.
The power transfer 115 is given by
Iy = wma(E1) — wnai(Ea).

JIED)
I 1

Show that the power ratio is

115 _ 1N127)2
iy mamane + neam +mne

4.7. Set up the power balance equations four the system with for subsystems
as shown in Fig. 4.27. The coupling loss factors n;; and the loss factors are
n;, with 4,7 =1,2,3,4.

Answers: [wni; [{(Ei)} = {Iliin}, ni =i + Zj,#i Mg -
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Hm,l
IIyo
< E; > < Ey >
OJ771<E1> W772<E2>

Fig. 4.26. SEA model

< By >, I < Ey >
1 2
113 / l
I 1SS
l \ - E3 > 2,dis:
111 giss Ila3
3
II: diss l
3,d H34 H24
< By >
4

I H4,dz’ss

Fig. 4.27. Four coupled subsystems

4.8. The dimensions of the Large European Acoustic Facility (LEAF) are
9.0 x 11.0 x 16.4 (width, length, height) m? and filled with air. Calculate the
modal densities of the LEAF in the one octave frequency band from 31.5-
8000 Hz. The speed of sound in air is ¢ = 340 m/s.

Answers: V = 1624 m3 A = 854 m? P = 145.6 m, e.g. n(250) =
16.70 modes/Hz.

4.9. The dimensions of the Large European Acoustic Facility (LEAF) are
9.0 x 11.0 x 16.4 (width, length, height) m® and filled with air. Calculate the
OASPL and the average energies (Ergpar) of the LEAF in the one octave
frequency band from 31.5-8000 Hz. The speed of sound in air is ¢ = 340 m/s
and the density of air is p = 1.2 kg/m3. The SPLs are given in Table 4.10.
Answers: e.g. OASPL = 154.0 dB, (Erpar(250)) = 1.592 x 106 Nm.
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Table 4.10. SPL in LEAF

One octave frequency band SPL (dB)
(Hz) 0dB =2.0x 107" Pa
31.5 136
63 141
125 147
250 150
500 147
1000 144
2000 137
4000 131
8000 125

vacuum

Fig. 4.28. Plate excited by random force

4.10. A square plate (in vacuum) made of Al-alloy with the following prop-
erties; the Young’s modulus is £ = 70 GPa, the Poisson’s ratio is v = 0.3 and
the density is p = 2800 kg/m? is excited by a random force F. The PSD of
the force F' is constant over the octave band f; = 31.5-1000 Hz, i =1,2,...,6
and is given by Wr = 100 N?/Hz. The total area of the plate is A, = 4 m?
and the thickness is ¢ = 5 mm. The dissipated loss factor is constant n = 0.02.
The plate is illustrated in Fig. 4.28.

Calculate (F?)
Calculate the overall rms value Fi,,
Derive the expression for the mean square of the acceleration (a?) in the
center frequency (f;)
Derive the expression for the overall rms value of the acceleration (a)
Calculate the mean square acceleration (a?) in the octave band in the
center frequency (f;) 1=1,2...6

e Calculate the rms value of the acceleration (a) over the complete band
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Answers: (F?) = WrAf;, 373.09 N, (a?) = %, (a) = /30 (a2) =
52.7942 m/s?.

4.11. A rectangular steel plate has been supported horizontally. The physical
properties of the plate are: length [ = 0.9 m, width b = 0.6 m, thickness
t = 0.00115 m, density p = 6956 kg/m3, Young’s modulus E = 210.0 GPa,
shear modulus G = 80.77 GPa and the Poisson’s ratio v = 0.3. The shear
rigidity is defined by S = Gt. The speed of sound in air ¢ = 340 m/s.

Calculate mass of plate M), kg.

Calculate modal density n,(f) modes/Hz.

Calculate critical frequency of plate f..;; Hz.

Calculate critical frequency of plate fer¢,s Hz, taking into account
the shear rigidity S N/m and use following expression ferrs =

2 [1— <L Hz [160].

crit S

Answers: M, = 4.32 kg, n,(f) = 0.141 modes/Hz, f.;;y = 9622 Hz and
ferit,s = 9574 Hz.

4.12. Calculate the modal densities n(f) and n(w) of a bending beam with
bending stiffness FI, length L, cross section A, and density p, using the ex-
pression R{Y (w)} = %. The complex mobility function Y (w) is given by

Y(w) = 42;\1/5 Y % and the total mass is M = ApL.

Answers: n(f) =

L 4]/ Ap L a/Ap

2 f EI’ n(w) = 2my/w EI"

4.13. Calculate the modal densities n(f) of a unstiffened cylinder with the
following geometrical and material properties; the radius is R = 0.302 m,
the length L = 0.75 m, the wall thickness ¢ = 0.00146 m, the total mass is
M = 5.55 kg, the Young’s modulus £ = 70 x 10° N/m? and the Poisson’s
ratio v = 0.3. This problem is taken from [34].

Calculate the ring frequency f, Hz.
Calculate the wave speed C; m/s.
Calculate the modal density n(f) in the octave band. Create a plot %
versus n(f).

e Calculate the modal density n(f) in the one-third octave band.Create a
plot fir versus n(f).

Answers: f,. = 2698 Hz, C; = 5119 m/s, n(f) in the octave band is given in
Fig. 4.29.

4.14. This problem is taken from [159]. A sandwich panel has dimensions
a =2.15m and b = 1.80 m. The total mass is M = 13.8 kg. The core height is
h = 18 mm, the face sheet thickness t = 0.2 mm. The face sheet is a laminate
of two layers (0/90) of CFRP. Each CFRP layer has the following properties:
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Modal densities cylinder (One octave band)
0.4 T

0.35

0.3

0.25

0.15

0.1

0.05

f/f
P

Fig. 4.29. Modal densities problem 4.13

Young’s modulus along the fiber direction E = 30 x 10'° Pa
Young’s modulus along the transverse direction F = 0.607 x 10'° Pa
Poisson’s ratio v = 0.346

Shear modulus G = 0.50 x 10'° Pa

The shear modulus of the honeycomb core is 6.32 x 107, 10.53 x 107 Pa.

Calculate the [D] matrix, assuming that the layers of both face sheets
are balanced, and calculate the shear rigidity S. Further calculate the modal
density n(f) of the sandwich panel in the octave band (32.5-8000 Hz).
Answers: D11 = 5135.3 Nm, Dyy; = 5028.0 Nm, Do = 69.7 Nm, Dgg =
165.6 Nm, S = 15.0 N/m, n(32.5) = 0.061, n(8000) = 0.634.

4.15. Consider a panel kept in an acoustic chamber and excited mechanically.
For SEA modelling, the acoustic chamber field is taken as subsystem 1 and the
panel is taken as subsystem 2. The energy of acoustic chamber, subsystem 1,
is given by (Fp) = ’:)20‘2/
by (Es) = M {v?), where p is the rms pressure field, V is the volume of the
acoustic chamber, p is the density of the air in the chamber, ¢ is the speed of
sound in the air, M is the total mass of the panel and (v) is the velocity of
the panel averaged of the surface.

Prove the relation

(Er) = —2—(E,)

o+

where 151 and 715 are the coupling loss factors and 7; is the loss factor of the
acoustic chamber given by 7, = where S is the surface of the acoustic

and the energy of the panel, subsystem 2, is given

Sa
8 fVv>
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Table 4.11. Identified damping loss factors

Third octave band f; (Hz) n(f:)
500 0.010
630 0.030
800 0.010

1000 0.008

1250 0.006

1600 0.010

2000 0.008

2500 0.006

3150 0.004

4000 0.003

5000 0.001

chamber and & is the sound power absorption coefficient and f is the central
cyclic frequency.
Prove that the radiation resistance R4 of the panel can be expressed by [161]

p2Sa

[apel?) - 2577

Rrad =

using the reciprocity relation 112 = 121 Z—f The modal density of the acoustic

chamber is given by n; = 4”532‘/ and nso is the modal density of the panel.

What is the dimension of R,qq7 [%]

4.16. The identified damping loss factor n(f;) in the third octave frequency
band are given in Table 4.11. Compute the Least Squared error fit of the
reverberation time Tk (4.229) and calculate the damping loss factors 7(f;) in
the third octave frequency band.

Answers: Tr = 0.25 s, see Fig. 4.30.

4.17. Consider a three subsystems model which is subjected sequentially to
power Il 1, Il;, o and II;;, 3 respectively. The loss factors of each of the sub-
systems are 71, 72 and 713, the coupling loss factors between the subsystems
are 112, 721, 713, 131, 723 and 733. Subsystem 1 is first subjected to an input
power II;, 1 and the energies of all subsystems are measured and are respec-
tively (E11), (F21) and (F31). The first index denotes the subsystem number
and the second index the subsystem subjected to power input. Similarly, the
subsystem 2 will be injected by the power II;, » and the measured energies
are respectively (E12), (Ea2) and (Esz). Finally subsystem 3 will powered
by II,,,3 and the measured subsystem energies are respectively (Eis), (Eas)
and <E33>.

Generate the 9 x 9 energy matrix [(F;;)], 4,57 = 1,2,3. The sequence of
loss and coupling loss factors is 71, 12 and 13, 712, 721, M3, 731, 23 and 732.

The subsystem energy are related as follows (E;;) = e(E;;), ¢ = 0.05, 0.10,
0.30, 0.50, 0.80.
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Damping loss factors
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Fig. 4.30. Damping loss factors

Table 4.12. Condition number of the energy matrix

No. Energy ratio ¢ Condition number
1 0.05 5.3826
2 0.10 5.8944
3 0.30 9.5020
4 0.50 16.5558
5 0.80 54.4306

Perform the following numerical experiments:

1. Subsystem 1 is driven first and its energy is assumed to be (E1) = 1.0.
The energy of subsystems 2 and 3 are (E2;) = e(E11) and (E31) = e(E11).
2. Subsystem 2 is driven first and its energy is assumed to be (E22) = 1.0.
The energy of subsystems 1 and 3 are (Eq2) = €(FE29) and (Es32) = e(E99).
3. Subsystem 3 is driven first and its energy is assumed to be (Es3) = 1.0.
The energy of subsystems 1 and 2 are (E13) = (FE33) and (Fa3) = e(FE33).

The above energy ratio € corresponds to weak coupling to strong coupling.
Compute the condition number of the energy matrix (the ratio biggest
eigenvalue to lowest eigenvalue).
Answer: See Table 4.12.
This problem is taken from [122].

4.18. There are two sinusoidal waves:

1. The first wave has a wave number k; = 2 rad/m and an angular frequency
w1 = 2 rad/s.
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2. The second wave has a wave number ks = 2.2 rad/s and an angular
frequency we = 8 rad/s.

Calculate the phase velocities v; and wvs.

The third sinusoidal wave is the summation of the waves 1 and 2. Calculate
the wave number k3, the angular frequency ws of the carrier wave and Aks
and Aws of the modulation impressed on the carrier.

Calculate the phase velocity vs of the carrier wave and the group velocity
Vg3-

Answers: v1 = 1 m/s, vo = 3.636 m/s, k3 = 2.1 rad/m, ws = 5 rad/s,
Aks = 0,1 rad/m, Aws = 3 rad/s, vs = 2.381 m/s and vy3 = 30 m/s.

4.19. Calculate the group velocity ¢, of an infinite isotropic bending plate
described by (4.154), (4.155) and (4.156).

5 . _ 3 1/ D
Answer: ¢y = 5/wq/ =

4.20. The natural frequencies of a simply supported, rectangular plate can be

computed by
o2 D\ (T
e m |\ Ly L,) |

where D = ﬁtjﬂ) is the bending stiffness, m = pt is the mass per unit
of area, F is Young’s modulus, v is Poisson’s ratio, p is the density of the
plate material, ¢ is the thickness of the plate, m is the mode number in the x
direction, n the mode number in y direction, L, the length of the x direction
and L, the width of the plate in y direction. The wave number in = direction
is k; = 77 and the wave number in y direction is ky = z—z

Derive the group speed cg; in x direction and the group speed c4y in y
direction.

Show numerically that the group speed in the x direction can be approxi-
mated by cg = aaTu;‘wm,n = % and the group speed in the y direc-
tion can be approximated by cg, = g_lsﬁwm.n = %Z%m
The properties of the plate are given in Table 4.13. Plot the group speed

cgz and cgy as a function of the frequency f (frequency range 0-5000 Hz).

Table 4.13. Properties of single plate

Parameter Unit Dimension
L, m 1

L, m 0.7

t m 0.003

E Pa 200 x 10**
v 0.3

p kg/m? 7800
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Fokker-Planck-Kolmogorov Method
or Diffusion Equation Method

5.1 Introduction

In the previous parts, random vibration of linear dynamic systems are dis-
cussed. In general, spacecraft structures are considered to behave linearly and
the modal characteristics play an important role in the design and verifica-
tion process. In this part, random vibrations of nonlinear dynamic systems
where modal properties do not exist will be briefly discussed. Many solution
methods exist to solve nonlinear systems exposed to random loads. In [123] an
overview of several solution methods is given. In this chapter one particular
method based on the Fokker-Planck-Kolmogorov (FPK) equation is applied
to predict the response characteristics. Wang and Uhlenbeck’s paper enti-
tled: “On the Theory of the Brownian Motion II”, published in [218] was the
starting point to study the derivation and applications of the FPK equation.
This paper was originally published in Reviews of Modern Physics in 1945.
In [26] Caughey repeated and extended the derivation of the FPK equation
for a Markoff vector process and showed the steady state solution of the FPK
equation for the nonlinear Duffing equation with a Gaussian white noise load.
Risken’s book [165], is completely dedicated to the FPK equation, methods
of solution and applications, however, it has little to do with the mechani-
cal engineering problems. Ibrahim [84] describes in his book the parametric
random vibrations and Roberts and Spanos [166] discuss in their book the
solution of random vibrations of nonlinear dynamic systems using statistical
linearization. To’s book, [210], is more or less an union of the topics described
in [84, 166].

In this chapter, the derivation of the FPK equation, in conjunction with
the Markoff process, will be discussed and, Miles’ equation is obtained as
example of a linear SDOF system, [127], by solving the stationary probability
density function, and the related first and second moments of the random
response.

In general, no closed form solution of the conditional or transition and
joint probability density function from the FPK equation can be obtained

J. Wijker, Random Vibrations in Spacecraft Structures Design,
Solid Mechanics and Its Applications 165,
© Springer Science + Business Media B.V. 2009
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for nonlinear random vibration problems and therefore the finite element and
finite difference methods are discussed to numerically solve the FPK equa-
tion. In a paper of Kumar and Narayanan, [103], the numerical solution of the
FPK equation by the finite element method, and the finite difference method,
for nonlinear systems is summarized and examples presented. The numerical
solution of the FPK equation demands significant computer resources to cal-
culate both the stationary and transient (non-stationary) probability density
functions.

The FPK equation is strongly related to the Ité and Stratonovich sto-
chastic differential equation (SDE). The difference between both SDEs will
be explained.

This chapter includes many examples and problems.

5.2 Probability Theory

The following set of probability density functions completely defines a random
function [26, 218]:

fi(z, t)dz is the probability of finding « in the range = to x + dx at time ¢.
fa(x1,t1, 2, te)dr1dxs is the probability of finding x in the range z; to
x1 + dxp at time t; and x5 in the range xo to xs + dxo at time ts.

o [f3(x1,t1,x9,t2, X3, t3)dr1drads is the probability of finding x in the range
1 to x1 + dzy at time ¢p, in the range x5 to x2 + dro at time to and in
the range x3 to x3 + dxs at time t3.

The higher probability density functions f,(z1,t1,...,2n,t,) are defined in a
similar manner, however, each f, must satisfy the following criteria:

e fn>0

e f, is symmetric in the pairs x1,t1,x2,t2,...,Zn,tn
oo mn—k (oo
[ fk :ffoo ffoo fnd$k+1"'d$n.

The last equation determines a marginal probability. The probability function
fn can be used as a means classifying a purely random function, which means
that the value of x at some time ¢; does not depend upon, or is not correlated
with, the value of z at any other time ¢5. The probability f(x,t)dx completely
describes the function in this case, since the higher probability density function
fn are found from the following equation

n

ful@r by, o, ta, ., ) = [ fr (i ta). (5.1)

=1

It becomes more complicated when the probability density fo completely
describes the random functions. This is a so-called Markoff process.! To

! Also called a Markov process or a Markovian process [149)].
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define a Markoff process more precisely the conditional probability will be
introduced. The conditional (transition) probability density function is de-
fined by f.,(z1,t1|x2,t2)dxs as the probability that, for a given x = z; at
t = ty, the value of = is in the range from x5 to zo + dzrs at a time to
later.

fa(z1,t1, 20, t2) = fi(z1, t1) fe, (1|22, t2 — t1). (5.2)

The function f,, must satisfy the following conditions:

. fcgo(flilat1|fﬂ2at2) > 0
S feo (1, ta]ma, to)dry = 1;
o filwa,te) = [7 fi(we, t1) fe, (@1]aa, to — t1)day.

For Brownian motion

tli)rgofcz(xl‘x%t) :fl(xZ)' (53)

5.3 Markoff Process

A Markoff process is defined such that the conditional probability that x lies
in the interval, from 1 to x1 + dxy at t1, from x5 to xo + dxo at to, ... from
Tp_1 to x,_1+dzr,_1 at t,_1 depends only on the values of x at ¢, and t,,_.
Thus for a Markoff process

fcn (-T17t17x27t27 ey mnfhtnfl‘xnatn) = f02 (xnflatnfllxnatn)' (54)

It is possible to derive f3, f4, ... from fo and (5.2), e.g

fa(z1,t1, 22, t2, @3, t3) = fa(@1,t1, 22, t2) fo, (T2, ta|xs, t3)

_ fo(ze,t1, x2,t2) fa(z2, t2, x3, t3)
fi(za,t2) ’

(5.5)
and

Ja(wy,ty, o, ta, 23, t3, 24, t4) = fo(w1,t1, 72,12, 23,13) fe, (23, t3]24, t4)
_ Ja(x1,t1, w2, t2) fo(22, o, 23, 3)
fi(w2,t2)
Ja(ws, t3, w4,t4)
fi(xs, t3)

using (5.2) and (5.5). The conditional probability density function must also

satisfy the Smoluchowski or the Chapman-Kolmogorov equation, which will
be discussed in the next section.

(5.6)
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5.4 Smoluchowki or Chapman-Kolmogorov Equation

The Smoluchowki or Chapman-Kolmogorov equation [165, 218] is
fC2(l'1,t1|l'2,t2) :/ fc2(fE1,tl‘x,t)f52(x,t|x27t2 _t)dl. (57)

If t; = 0, the time homogeneity equation (5.7) can be written

feo(x1]22,12) = / feo(@1|2, 7) fo, (2, T|T2, o — T)dx, (5.8)

as illustrated in Fig. 5.1.
The joint probability density function fs is obtained from f3 by integrating
over one coordinate:

o0
f2($1,t17$27t2)=/ fa(@1,t1, @, t, 22, to)dx (5.9)
— 00

The joint probability function fs is written as follows:

folz,t1, xa,t2) = fi(x1,t1) fe, (@1, t1 |22, t2), (5.10)

thus

oo
o, ) fon (1, 1 02, £2) = / oy t0) oy (@1, 1], ) fon (s g, £ — £)der.
— 00

(5.11)
Because fi(x1,t1) is arbitrary, the Smoluchowski or Chapman-Kolmogorov
equation is obtained:

fCQ(xl,t1|x2,t2):/ For (@1, 0122 8) fo (2 2, £ — ) (5.12)

Equation (5.12) is interpreted as follows. The transition probability density
from x7 at time t; to xo at time to is the same as the transition probability

T ty—T

. o
AM\/ \/m /\\/\ \j/\\T g

Fig. 5.1. Illustration of the Smoluchowski or Chapman-Kolmogorov equation
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density from z; at time ¢; to x at time ¢ times the transition probability
density from x at time ¢t to x5 at time ¢y for all possible z and t; < t < t5.
Equation (5.12) may also be expressed in terms of the probability function P:

P(I’l,t1|1'2,t2) = / P(xl,t1|x,t)P(x,t|m2,t2 — t)dlC (513)

— 00

For two random variables y and z, (5.12) can be written

oo o
feo (Y121, t1|y222,t2) = / / Jeo (121, t1]yz,t) fe, (Y2, tlyoza, to — t)dydz,
— 00 — 00

(5.14)
and for an N-dimensional state-space {z} (5.12) and (5.14) becomes

fes ({21}, tal{z2}, t2)
= /_oo /_OO HfCZ({x1}7t1|{x},t)f02({x},t|{a?2},t2 —t)dx;.  (5.15)

5.5 Derivation of the Fokker-Planck-Kolmogorov
Equation

The derivation of the Fokker?-Planck-Kolmogorov (FPK) equation is based on
the work of Wang and Uhlenbeck presented in [26, 218]. From the elementary
theory of probability in random processes, the nth order moment of a random
process x is given by

oo
E{a2"} = (") = / 2" f(x)dx. (5.16)
— 00

For a Markoff process, the transitional behavior is of concern, in particular
the change of various moments of the process with time. A random process
has a certain value z; at time ¢ and which changes by a small amount to the
a value x at time t 4 dt as illustrated in Fig. 5.2. The moments of change in
the process in time dt, analogous to (5.16) are defined and assumed to exist
for one-dimensional state-space as follows

ap(x,dt) = / (2 — )" fe, (|22, dt)das, n=1,2,.... (5.17)

The rate of changes of the first and second moments of the increments in
xo are

{A@) = limg—o glar (e, dt)], n=1; (5.18)

B(z) = limg; o %[GQ(w,dt)], n=2.

2 Adriaan Daniél Fokker 1887-1972.
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t dt

\j/\VN\T\/ /MWA\/\}A\ i

z1 x

Fig. 5.2. Illustration Smoluchowski or Chapman-Kolmogorov equation

Only the first and second moments are assumed non zero in the limit as
dt — 0.

The Smoluchowki or Chapman-Kolmogorov equation of the Markoff pro-
cess in one-dimensional form is written

feo (z1|Ta, t +dt) = /OO feo (1|2, t) fo, (x, t| o, dt)dx. (5.19)

Consider an infinitely differentiable and arbitrary function R(z) such that
d"R
lim (z)

z—+oo dx™

=0, foranyn>0. (5.20)

For example R(z) could be a decaying exponential function. Multiplying (5.19)
by R(z) and integrating over all phase space x yields

/ R(22) fe, (21|22, t + dt)dxs

:/oo Rlzs)ds /m o (1|2, 6) fon (@, s, dt)dz. (5.21)

To describe the variation of f, (x1|z2, t+dt) with time, we write W =

liHldt*)()[fc2 (.’L‘l |$2, t+ dt) - fc2 (.%'1 |.Z’27 t)]/dt Thus
hm — / R(x2) fe, (x1|22,t + dt)dzo

= lim —/ R(z4 dxg/ feo (1|2, ) feo (z, t]aa, dt)dz. (5.22)

dt—0 dt

Since z2 and z are close together, R(z2) can be developed in a Taylor series
expansion about the point =

R(z3) = R(x) + (w2 — z)R/(x) + %(372 —2)*R"(x) +---, (5.23)

where higher order terms are ignored. Equation (5.23) is now inserted in (5.22)
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dt Odt/ R arg)fc,‘,(xﬂa:g,t—i—dt)da:g

= lim i/ feo (x|, t)

dt—0 dt

X /OO {R(z) + (22 — )R (z) + %(xz —2)2R"(2) | fo, (x, t|xa, dt)dzdxs.

o (5.24)
If dt — 0 and x2 — z then (5.24) becomes after substituting (5.18)
° Ofec, (21|, 1)
————d
/ R et
—tim L[ R L+ dt)— f ]d
= lm 5 [ R@Ua@fet+d0) = foofo.)ds
> 1
[ ke [A@R @) + 3R @] an 625)

The conditional probability density function f.,(x1|z,t) will be abbreviated
by fc,. Integrating (5.25) twice by parts yields

/ R(x 8f°2d = fo, A()R(x)|> / R(z (2) fe,)de

b 2R (@)B <>_W—R<x>§[ (@) el

+ / R(@) 2 (B () o (5.26)

Recalling (5.20) and rearranging terms in (5.26), we find that

> Ofc, O 1 62
| {4 @] - @l fir =0 G20
Let R(x) be an arbitrary function, (5.27) must hold for any R(x), thus the
expression between the braces must be zero. The FPK equation or Kolmogorov
forward equation, for a one-dimensional case, becomes

Ofe, 0 1 0?
5 395[ () feo] + 2@[3(36)&2] (5.28)

The term containing A(x) is known as the drift term with deterministic be-
havior of the system, while the term B(z) is known as the diffusion term due
to the stochastic nature of the excitation or load.

The Pawula theorem states [164, 165] that the generalized Fokker-Planck
equation with finite derivatives greater than two leads to a contradiction to
the positivity of the distribution function.
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If + — x; and t — 0 the conditional probability density function f.,
approaches unity. For the value if 21 in (5.28) ast — 0

}in(l) feo (1|2, t) — 0(x — 21), (5.29)

where §(x — x1) is the Dirac delta function. Equation (5.29) implies that no
transition from one state to another can take place in zero time. The solution
of (5.28) must satisfy the initial conditions (5.29) and boundary conditions

lim fc2 (z1]z,t) — 0, (5.30)

x| —+

For an N-dimensional state-space system the FPK equation is a parabolic
partial differential equation® (PDE) [26], which can be written as follows

e _ Z LEVRTSTE 3) g e CHC S CE

21]*

The required solution of (5.31) is the positive solution satisfying the initial
conditions

lim fo, ({21} [{z},1) — Ha —x14), (5.32)

where z1 ; is the initial value of x;. Thus, the conditional probability density
function approaches unity when the time approaches zero (for ¢ > 0). The
boundary conditions have to fulfill

" 1|hm feo({z1 {2}, ) =0, i=1,2,...,N. (5.33)

Stationary Solution

If the conditional probability density function f.,(z1]x,t) is independent of
the time, the joint probability function will become a stationary probability
density function, thus

fc2 (x1|x,t) = f(m)v (534>
and of
%o . (5.35)

The stationary solution is often called the steady-state solution.

3 A parabolic partial differential equation is a type of second-order partial differen-
tial equation, describing a wide family of problem in science including heat diffusion
and stock option pricing. These problems, also known as evolution problems, de-
scribe physical or mathematical systems with a time variable, and which behave
essentially like heat diffusing through a medium like a metal plate.
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The N-dimensional FPK equation (5.31) can be written

1 9?2 N oy
5 >0 S50 i) f(2)] = > 5, [Ai(@)f(2)] = 0. (5.36)
J J i=1

In [27] solution techniques are provided for solving the steady-state re-
sponse of systems exposed to stochastic excitation applying by the FPK equa-
tion.

Example. The following example of a SDOF nonlinear system is taken from
[26, 98]. The system is defined by

F + 2wni + F(z) = (1), (5.37)

where £(t) is a stationary Gaussian exciting force per unit of mass having
a white noise spectrum, and the non-linearity is present only in the spring
stiffness component, ¢ is the damping ratio and w,, is natural frequency of
the linearized spring stiffness (e.g. F(x) = % + kQTTz +o=wir 4, m
is the mass of the system). If the nonlinear oscillator is fixed, then z(t) is the
absolute displacement response of the mass of the oscillator, and £(t) is the
ratio of the exciting force to the mass. On the other hand , if the nonlinear
oscillator is attached to an oscillating base (e.g. enforced acceleration), then
x(t) is the displacement response of the mass relative to the base and £(t) is
the negative of the enforced random acceleration at the base. Equation (5.37)
will be written in the state-space form, writing y; =« and yo, = ¢

U= y2,
5.38
{yg = —2Cwny2 — F(y1) +£(1). (5.38)

The state-space equation is two dimensional corresponding to the dimensions
of y; and ys. Deriving the FPK equation (5.31), N=2 and 4,5 = 1,2. The first
step is evaluating the average values of the first and second order moments
for N =2

ai(z,dt) = [ (yi — 2i) fe, (yl2, dt)dzy d2s, (5.39)
bij(Z,dt) = foooo(yl - ZZ)(y] - Zj)fCQ(y|Z,dt)d2’1dZ2, Zv] = 172 .

Ay (z) = 1i.deO difi [ai(z, dt)], z = 1,2; (5.40)
Bij(w) = limgs o g [bij(z,dt)], 4,5 =1,2.

In the limit as dt — 0 and y; — z; f., — 0. Noting that y; — z; = dy;,

then
ar = (dy1)
az = (dy2)
b = (dyi) (5.41)
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thus .
A= limgs o { dytl> =Y2 = z,
A2 = hmdt_,o <dft2> = —2Cwnx — f‘—‘(l‘)7
B = limg—o <d§> — 0, (5.42)

. dyyd
Bia = By = limg, o {%2du2) yjity2> =0,

Bay = limgy o S2) = (20w, )2i2dt + Sy = .

The following remarks must be made. The term By; — 0 because it is of sec-
ond order. The term By is evaluated using (5.38). To determine the averaged
value of As and Bag, (dys) will be integrated over a short time dt

t+dt
<@g=—xw@w~uwmm+[ () ds, (5.43)

however, since (£(t)) = 0, (dy2) = —2Cwpddt — F(x)dt and Ay = —2(w,& —
F(x). To determine Bas, the term (dy3) must be evaluated.

<@9=<wmm—ﬂmwf[ME@«>

x <(wn9'cdt — F(z)dt + /t t+dt§(n)dn>. (5.44)

Now F(y1) is the nonlinear force/unit of mass expressed in the characteristic
form
F(y1) = kw1 + kayi + ksyi + -+ . (5.45)

For a small nonlinearity in stiffness it s assumed that the response to a
stationary random excitation is also stationary. In that case the correlation
(> a™) =0.

Furthermore, for stationary white noise force £(t), the autocorrelation
function of the process is given by

(€O + 7)) = Ry(1) = So(7), (5.46)

where Sy is the constant PSD function for the white noise force, and §(7) is
the delta function. The autocorrelation function becomes

R =0, 0;
s(7) , s (5.47)
Ry (0) = (£(t)°) =Sy, 7=0.
The second moment Bss can now obtained:
d 2
Bsy = lim (dys) = (2¢wn)?y3dt + Sp = S. (5.48)
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Equation (5.48) states that the time rate of change of the mean square accel-
eration is constant. Substituting the first moments A; and second moments
Bij, i,j = 1,2, we find that (5.31) becomes

Ofec, 6 8 1 0%
aft = [ 1f('2] - [AQf(‘z] 2 a 2 [BQQfCQ] (549)
or 5 5 s &
f co
—a—yl[lmfcz] + a—yQ[@Cwnyz + ) fel + = o = 0. (5.50)

This is the stationary form of Kramer’s equation and will be solved in accor-
dance with [26]. Equation (5.50) can be factorized as follows

0 8]"02} [ Sy 0 } 0 [ Sy Ofec,
2 na co + =~ + a (;2F + - ~ | = 0
(W 0yo 0y1 Jesy2 4Cw,, Oyo 0yo (fe, F'(1n)) 4w, Oy

(5.51)

We see that f., = fa(y1,vy2) = f(y1)f(y2) = f(@)f(x) is a function of the
displacement and velocity. One way to solve (5.51) is to take

Sy 0f(y2)
= 5.52
f(y2)y2 + oo Oy (5.52)
and g 8f
f 1
F = 5.53
fy)F(y1) + 4Cwr, 81/1 ( )
The solutions of (5.52) and (5.53) are respectively
_Awn (Y1
F) = A~ 57 o0, (5.54)
and
_ 4Cwn ﬁ
f(y2) = Be °r *. (5.55)
The probability density function fa(y1,y2) becomes
_ACwn (Y3 1 F(n)d
Falyase) = F)f ) = Ce™ o7 RTINS (5 56)
Equation (5.56) can also be written
_4ACwnH
folw, &) =Ce =1, (5.57)
where H = y2 + f 7)dn, the total energy of the system per unit of mass.

As already notlced the probablhty density function of the displacement and
the velocity are statistically independent. The probability density function
f(x) is non Gaussian if the nonlinear spring stiffness is present.

The spring stiffness per unit of mass is given by
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F(p)=>_ k', (5.58)

representing a hardening spring, then (5.57) yields

_dgwy yOn it
f(z)=Ae 71 2 . (5.59)

The hardening spring stiffness reduces the large displacement peaks in a ran-
dom process, thereby reducing the rms response. The presence of such non-
linearities in structures subject to random excitation is beneficial and there is
a case for introducing them at the design stage wherever possible.

The probability density function of the displacement of a SDOF linear

t
&+ 2Cwnd + wie = )
m
system can be written as
 acupm? wla?
flx)y=A4e 57 2 | (5.60)

and the probability function of the velocity is

_ 4Cwn m?2 ﬁ

f@)=Be % 7, (5.61)

The probability density functions f(z) and f(&) are symmetric with respect
to z = 0 and & = 0, because the average values of x and & are equal to zero
(z) = [Z af(x)dz =0 and (i) = [_if(i)di = 0), thus

/_O; f(z)dz =2 /OOO f(z)dz =1, /_O; f(@)de = 2/000 f(@)di =1,
(

5.62)
Thus the constants A and B can now being calculated using (see also Appen-

dix B)
> _ax? o 1 m
/0 e dx = 5\/; (5.63)

Thus both constants A and B become

2¢w3 m? 2¢wnm?

R =

The variance of x and & can now obtained using the following standard integral

A (5.64)

o
. 1
/ 2o dy = — [T (5.65)
0

da\ o

Thus
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Var{z) = B{z2} = (2?) = 02 = 2 /Oo 22 f () dz = 4{(57%2 (5.66)
0 n
and
Var{i} = E{i?} = (i®) = 02 =2 /OO i f(#)de = %jﬁ. (5.67)
0 n

Equations (5.66) and (5.67) were derived in Sect. 2.4.1 by using the spectral
approach.

5.5.1 Calculation of FPK Equation Coefficients

The coefficients A, and B, (5.18) in (5.28), can be calculated for several typical
cases of space-state differential equations given by [149]

by = il wa w6 (1), 60, 6] i=12, 0, (5.68)

where 1; are linear or nonlinear functions of the state variables z;, i =

1,2,...,n, and the white noise random stationary functions &,7=1,2,...,n.
The auto and cross correlation of &;(t) and &;(t) is of the ¢ type with a PSD
Sij, so that

Ree, (1) = Sijo(1), 4,5 =1,2,...,n. (5.69)

The output from the system (5.68) will be a Markoff' process.
The following state-space system of equations will be examined

i’i:’(/)1'(1'1,1'2,...,.%”)-’-51‘(15), i:1,2,...,n, (570)

The external forces &;(t) are stationary, statistically independent white noise
with the following characteristics

E{&(t)} = (&(t) =0,

5.71
B (t+ 7)) = Ree, = S,0,0(), ij=12...m, 7V

where S; are constant spectral densities of the jth process, and §;; is the
Kronecker delta.

Equation (5.70) denotes the Markoff process [X(t), X2(t),..., X, (t)] for
its probability density, provided z;(t), ¢ = 1,2,...,n for ¢t <ty depends only
on the value z;(¢o) since

¢ ¢
zi(t) = xi(to) + | vi(z1,22,...,20)dr+ [ &(T)dr (5.72)
to

to

does not depend on time up to tg. From (5.70) the increments can be calcu-
lated:

t+ At
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When (5.73) is substituted in (5.17), the term a; becomes

t+At
a; = Yi[r1(t), z2(t), ..., xn(t)] At + / (& (m))dr; (5.74)
t
equation (5.18) gives the coefficients A;:

A; = [z (8), 2a(t), - .. 2n (). (5.75)

The same procedure will be followed to obtain the coefficients B;;. Equa-
tion (5.73) yields

t+ At

t+ At
Az Ary = {%Aﬂr/ &(Tl)dﬁ} {%‘A“r/ fj(Tz)de]
t t

t+At t+ At
— ity (AL + At / &(m)dr1 + o, At / &4(r1)drs
t t

t+ AL it At
+/t /t i (1) (12)dT1dTo. (5.76)

The terms b;; are given by (5.17)
bij = (Ax; Axy)
AL ptt A
v+ [ [ ) rhdndn
= i (A)? + Si6i;At, (5.77)
and, applying (5.18), we can obtain the coefficients B;; knowing At — 0
Bi; = S;d;j. (5.78)
If the loads w;(t) are statistically dependent so that
(§i&j) = Ree; (1) = Sij0(7), (5.79)
then the coefficient B;; becomes
Bij = Sij, i,j=12,...,n. (5.80)

Example. A nonlinear Duffing’s oscillator is described by the following equa-
tion of motion
&+ 2Cwoi + wi(x? +ex®) = (1), (5.81)

where 2¢wq is the damping ratio, wg the natural frequency, ¢ is the ratio of
nonlinearity and £(t) is a Gaussian white noise excitation with the statistical
properties

E{¢} = (€(t) =0, E{&()E(t+7)} = Ree(7) = 2D5(7).
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Letting z; = = and zo = &, we can write (5.81) the space-state form

(2> - (—QCWOZz —ng(zl +sz§”)) + (g?ﬂ) : (5.82)

The coefficients of drift and diffusion are

Ay = 29,

Ay = —2woza — wi(z1 +€23),
B =0,

Byy = 2D.

Substituting the coefficients in (5.31) we find the FPK equation becomes

8fc2 afc? afc2 fc2
6t = — a + 2Cw0f02 + [QCQJOZQ + Wy (Zl +ez )] a + D 323

(5.83)

where f.o is the abbreviation of the conditional density function

fe2({z0}{2},1)-

If the space-state system of equations has a more general form
n
&; = V¥i(x1, z2,. .. ,mn)+z vik(T1, T2, ., xn)&k(t), 1=1,2,...,n, (5.84)

where £ (t) also satisfy (5.71). The coefficients of FPK equation are now
written, the drift terms A;

Ai(z1, .o o) = Yi(21,. .2 ZZS g(p”gokl i=1,2,...,n,
2o
(5.85)
and the diffusion coefficients B;; for the space-state system (5.84)
Bij(x1, .. wn) = > Skpinpr; i=1,2,...,n, (5.86)
k=1

or, in the more general case

n

Bij(‘rla""xn) :Z Z Skm@lk@m] i= 132a"'an' (587)
k=1m=1

If the functions 1); in (5.84) depend on time, the diffusion coefficient B;; remain
unchanged, however, the drift terms A;[z1,22,...,2n,t] =5, i =1,2,...,n
are functions of time.
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Example. This example is taken from [178]. The governing equation of a
nonlinear oscillator under one random external excitation and two random
parametric excitations is given by

2
Z+ 201 + n(t)] + {x + } + Q2%x[1+ £(1)] = C(t), (5.88)

where a, 31, {2 are constants and 7(t),£&(t),((¢t) are independent zero mean
physical Gaussian white noise processes with covariances

E{n(t)n(s)} = Dyd(t - s),
E{E(t)E(s)} = Ded(t — s),
E{C()C(s)} = Dco(t — s).

Letting 21 = = and 2o = &, we can write (5.88) in state-space form

251 o z2
2:2 - —20&2’2 — ﬂle[Z% + %] — .922:1

0 0 0 ’7
+<_2a22 o2 _1> g . (5.89)

Equations (5.85) and (5.86) give the coefficients
Al = 22,
Ay = —20iz0 — P29 [zl 92} 2%,

Bi1 = Bia = By =0,
Bay = 40’ ngn + 2*22D¢ + De.

Substituting the coefficients in (5.31), we find the FPK equation

8f02 _ 8f02 2 8fc2
o - o A,
9 2 2 Z%
+ 9% (20 — 20°Dyy) 20 + Brzo| 27 + 02 fe2
19° 2 4.2
+ = 2922 =~ [(40? 25Dy 4+ 2°27 D¢ + D¢ ) fea], (5.90)

where f.o is an abbreviation for the conditional density function

fer({z0}{z},1)-

5.5.2 Exact Stationary Response Solutions of Nonlinear Dynamic
Systems

The theory described in this section is based on a paper written by Wang
et al. [215].
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Consider the following general nonlinear SDOF system

B(t) + gl (t), x(t)] = £(1), (5.91)

where g[#(t), z(¢)] is a mass normalized nonlinear restoring force, and £(t) is a
mass normalized zero-mean Gaussian white noise with a delta-type correlation
function E{{(t)¢(t+7)} = 2D4(7). By the introduction of the state variables
y1 = z(t) and yo = &(t) the space-state representation of (5.91) becomes

Y1 = y2,

U2 = —g(y1,y2) + £(2). (5.92)

The stationary probability density function f(y1,y2) of the system re-
sponse is governed by the reduced (stationary) FPK equation

or Ayl | p2I (5.93)

—qy e I I
Y oy Y2 5y2
Assume a solution for the probability density function as follows

2]

fy1,y2) = Cexp {— D (5.94)

where C' is the normalization constant ([;° [~ f(y1,y2)dyidy2 = 1) and
p(y1,y2) is an arbitrary nonlinear function. The probability density func-
tion (5.94) must be nonnegative and normalized for p(yi,y2) in order to
achieve a valid probability density.

Substituting (5.94) in (5.93), and deleting arguments, we find

op 1 8;0 1 <8p >2 1 9yg 82p]
— = —+ | = + = —-—=1=0. 5.95
Fin oYy D 8y2 Oya) D Odys  Oy3 ( )

Since f(y1,y2) # 0, (5.95) implies

dg Bp 1 8]3 1 (8}9) *p
— + ——— =0 5.96
dy2) D Oy3 ( )

0ya 5:92 8y1

Equation (5.96) express dg/0y> as a implicit function of p(yi,y2) with the
solution

vy Oplyi,
91, y2) = 91(y1)e[p ol R Op(y1,y2)

0y
1 PlY1.,Y Y2 a Plyl1,Y
_ 1 e ”1/ gy P B2) [y, g g
Y1 ay
where (0.0)
5 _ p(¥1,0)
g1(y1) = [g(yl,O)—l%}e Do (5.98)
Y2
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The known function g¢1(y;) in (5.98) may be arbitrarily selected under the
name p(y1,y2). We have demonstrated that ¢(y1,y2) and g(y1,y2) +

g1(y1)e [PU522] fulfill (5.96) and possess the same probability density f(y1,yz)-
Namely

i+ g(d,2) =€(1),
and

[P(i’z)

F=¢(),

have the same stationary probability density function

) = Coxp| -5

i+ g(z,x) + g1(x)e

D
Example. The function p(y1,y2) is given by
P(y1, y2) = ay? + byi"ys. (5.99)

Substituting (5.99) in (5.97) yields

i 1 _ bymy2
9y, 52) = |gi(yr)e ™ — by (anyit =1+ Dmby* ') |e =P
yz —m—1 Dm
+ 2bytye + —= o 2b y? meh 4 %ymH, (5.100)

and with a choice of g1 (y1), such that the function p(y1,y2) can be simplified
to

2
m mys an ., m—1 Dm
=2b —= 4+ — 5.101
9(y1,y2) Y1 Y2 + % op 1 + 2bym+1 ( )
Finally the nonlinear SDOF system is
. . miz an Dm

Thus according to (5.94), the exact stationary joint probability density func-
tion f(xz, %) of the nonlinear SDOF system as defined by (5.99) is given by

(5.103)

az™ + bx™i?
D .

i) = Coxp| -
This probability density function satisfies (5.96) in two regions (—oo,0) and
(0, +00).
If the function p(yi,y2) satisfies the following condition

’p 9y
-2 =0, 5.104
3?4% Y2 ( )
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equation (5.96) becomes

op op ( Op )2
L/ (R Y 5.105
98y2 n e 7 ( )

and p(y1,y2) can satisty (5.96).
Integrating (5.104), we can obtain the following expression with integration

constants
Ip(y1,92) 9p(y1,0)
Y2 dya
Further integration of (5.106) and the introduction of an appropriate integra-
tion constant yields

=91, y2) —9(y1,0) + (5.106)

- 9p(y1,0
p(yl,m):/ g(yhyg)dyz—yzg(y1,0)+y2% +p(y1,0).  (5.107)
0

Differentiation of (5.107) with respect to y; gives

(Y1, y2) / Y2 g(y1, y2) dg(y1,0) *p(y1,0)  Op(y1,0)
I Y2) [ S Y2) g + + .
o1 0 oy y2 2 oy b2 0y2011 32/%5 108)

The results of (5.106) and (5.107) substituted in (5.105) will give
Yz , 09(y1,0 9*p(y1,0)  9p(y1,0
" [/ 9wye) o 99W,0) . 9°p(1,0) | Op(n )]
0

o 2R oy vz 0y20y1 oy1

ap(ylv 0)

_ |:g(y170) - Tyz] [g(yuyg) —9(y1,0) + 9p(y1,0)

—0, (5.109
0y } ( )

and if
ap(yh 0)

Y2
equation (5.109) can be expressed

%;1’0) = ig(yho)[g(yl,yz) — 91(y1,0)]

dg(y1,0) /” g(y1,y2)
NIPPRLCASL Lt CACAILLY 5.110
b2 oy1 0 oy b2 ( )

:0,

When the right-hand side of (5.110) is only a function of the function y;, then
the following equation can also be established by integrating (5.110):

Yz ap(ylvo)
p(y1,0 =/ ———dy
(1 ) 0 6yl !

kS / " 001, 0) g 92) — 91 (41, 0)ldn + g1, 0) — 9(0,0)]
Y2 Jo

~ [t — (0.2 (5.111)
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Substituting (5.111) in (5.107) yields

(Y1, vy2) = /f 9(y1,y2)dy2 + y—t /Oy1 9(y1,0)[9(y1, y2) — g1(y1,0)]dy1
= [ latn2) = (0.2 = 12000.0), (5.112)

Example. The function g(y1,y2) is given by g(y1,y2) = By2 + ¢1(y1). The
first check is to find out if the right-hand side of (5.110) is a function of y;
only. The right-hand side of (5.110) becomes

p(y1,0)
Oy1

1 dg1(y1) /y2 dgi(y1)
_ ) [T anly) 5.113
91(y1)By2 " + Y2 dun ; dur Y2 = Bg1(y1), ( )

which is only a function of y.
Equation (5.111) will give an expression for the function p(yi,y2), namely

Y1
P =50+ [ o). (5114)

It is easily to verify that (5.104) is satisfied.
When
3o
91, y2) = By2 + 9(y1) + g2(y1)e 7,

the exact probability density is also the same function as in (5.114).

5.5.3 Stationary Solution FPK Equation of Conservative Systems

In [69] for a number of SDOF and MDOF conservative dynamic systems
exposed to random excitation the stationary solution of the FPK equation
had been obtained. The following conservative dynamic systems are discus-
sed:

e Second-order system (SDOF)
e High-order system (MDOF)

Second-Order System (SDOF)

The nonlinear SDOF dynamic system is given by

oUu
mz + cx + — = &(t), 5.115
+ed 4 - =E(t) (5.115)
where m is the discrete mass, ¢ the viscous damping, %—g represents a conser-
vative elastic restoring force and £(t) is the Gaussian white noise excitation
with zero mean and (£(¢)¢(t + 7)) = 2Dd(7). The state-space equations can
be written, with y = ma
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U e (5.116)

ZJ:*% - Eerf(t)'

Retaining the symbol H for the sum of the potential and kinetic energy, so
that

y2

H = — A1
U@+ L (5.117)
and (5.116) can be written as It6 SDEs
0H
Ar = — At
x oy b

(5.118)

where W (t) is the standard Wiener process. The stationary FPK equation for
the system (5.118) becomes

0 (0H 0 (0H 0 ( O0H 0 f
-\ = — | = — | c—= D— =0. 5.119
{ 833(331 >+3y(3x >]+3y(06y >+ dy? (5:119)
The terms in the square brackets are the terms which remain if the damping
and white noise are removed from the system, i.e. if the system is conservative.

Find a function f(H) which makes the remaining two terms in (5.119) cancel
and a solution of (5.119) is found. Substitute in (5.119) the function

f(z,y) = f(H(z,y)), (5.120)
which becomes 5/ oH 52 F (1)
— | c—=—f(H D =0. 5.121
Ay (C dy A )) o (5-121)
Integration of (5.121) with respect to y yields
0H Of(H)
—f(H)+ D————==1L 122
G H0)+ DL — 1(a). (5122)
where L(z) is an arbitrary function.
In view limy_,o f(H) = 0 and lim,_, %;I) = 0 than the arbitrary
function becomes
L(z) =0, (5.123)
and (5.122) simplifies to
OH Of(H) OH
—fH)+ D——F— = 124
Gy H) + DED T~ (5121)

Assume that 0H /0y is not identically zero, otherwise H is independent of y
and hence so is f, then
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df B
5+ Df 0. (5.125)

The general solution of (5.125) is
f(H) = Cel= 51, (5.126)

where C' is a constant, which is to be chosen to normalize the solution.
The result is that for the second-order system

Ax = 3 At,
Y
(5.127)
Ay = |2 1 Ny aDaw ),
or 8y

with D = constant and C' = constant, thus the steady-state probability func-
tion f(x,y) is

fx,y) = Cel=BHE@VI (5.128)
Example. The nonlinear term in (5.115) will be denoted by g(z), thus
ou
= —. 5.129
glz) = (5.129)
Then from (5.117)
2
Y
H = 0)do —. 5.130
| a0yt + 9000+ 2 (5.130)
Thus for the dynamic system
mi + ck + g(x) = £(t), (5.131)

where (£(t)¢(t+7)) = 2D4(7), results (5.128) for the steady-state probability
density function

x y2
Fla,y) = CelmB Uy 905351 (5.132)

where y = ma and C' is the normalizing constant. This solution is well known.

5.5.4 High-Order System (MDOF)

Following MDOF dynamic system is illustrated in Fig. 5.3. The discrete
masses m;, 1 =1,2,...n are connected by linear or nonlinear springs (nonlin-
ear restoring forces). The discrete mass m,, is connected to the ground with a
nonlinear spring and in parallel a viscous damping characterized by c¢,. The
total strain energy stored in the springs is denoted by U(x;). The equations
of motion of the MDOF dynamic system are given by:

mleJra—U =0, i=1,2,...n—1,

Oz (5.133)

. U .
Mp Ty + + Ccnp = fn(t)a

Oz,
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M

ms
3

AR AR

Fig. 5.3. MDOF dynamic system

where £(t) is a Gaussian white noise force with zero-mean and E{&, (t)&, (t +
T} =& ()& (t+ 7)) = 2D4(7). To set up the state-space equations the state-
space variables &; = y;/m;, i = 1,2,...,n is introduced, thus the equations
of motion (5.133) can be transferred into the space-state form

. OH
=2 =20 19, ..,
m; y;
OH
.i _ ; — 1,27 . 1’ 5134
] oz, (5.134)
OH OH
=g Ty +&n(t),
where the total energy function H(x;,y;) is given by
1 T
H(z;,yi) = SN ke 5.135
(o) =Ule) + 53 28 (5.135)

The stationary FPK equation for the joint probability density function
f(xi,y:) = f(H) becomes

- o (0H o (0H 0 OH >Pf
[;{—axi (ayi f) - 8% <3$zf> }1 * @(Cna—ynf) +D@ =0

(5.136)

The terms in between the square brackets cancel out if f is a function of H,
thus 0 OH O%f(H)

— N\ cn=—f(H D =0. 5.137

oo (v st ) + D7 (5.137)



346 5 Fokker-Planck-Kolmogorov Method or Diffusion Equation Method
A similar solution as for (5.121) is found
Flzy. . Ty Yn) = Ae[f%nH(Il‘.wIn’yl~~1yn)]’ (5.138)

where A is the normalization constant.

5.6 Ito-Stratonovich Dilemma in Stochastic Processes

White noise is the formal time derivative of the standard Wiener process,
W (t), t > 0. This stochastic process is also discussed in Appendix N. The
Wiener process and white noise are related with each other in the following
way:

(W(tz) — W(t1) 1 (W(t3) — W(tg)), t] <2 <ts,

E{W(t) - W(r)} =0,

wa(t7 ’7') = 2Dmin(t, 7')7

€(t) = W(t+AA)_W(t)’

Rgg(t—T) = 2D(5‘t—7’|,

(5.139)

where the symbol 1 means perpendicular to. For a standard Wiener process,
2D = 1. The last property is the cause of the dilemma, because it causes the
inclusion of a second order term in the noise in equations that contain first
order terms of time.

Consider the following one dimensional noise driven dynamical system,
represented by the Langevin equation

@ = fx,t) + g(a, DE®). (5.140)

This equation can be written as a stochastic differential equation (SDE), and
It6 differential equation becomes

Az = f(z,t) At + g(z,t) AW, (5.141)

where AW = £At is the increment of the Wiener process. Equation (5.141)
represents a Markoff process . The SDE form of system dynamics is consid-
ered to be a more accurate description of the stochastic process, because of
the difficulties in taking time derivatives of the Wiener process W(t). Now
consider the integral form of the SDE (5.141)

x(t) = z(to) + t f(z, t)dt + /tg(ac,t)dVV. (5.142)

t() tO
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The problem of differing interpretations comes from the second integral (which
is a stochastic integral) in (5.142). It is not possible to write the standard
Riemann sum form for this integral, nor the Riemann-Stieltjes’ form, since
the process W (t) is not of bounded variation. Then, depending upon the way
the equations is discretized (forward/central) we can get two interpretations of
this integral, known as the It6 and Stratonovich interpretations respectively.
Consider the stochastic integral of the function h(t)

I

- / t h(W (t), t)dW (t). (5.143)

then, the It6 and Stratonovich interpretation of = are given as (see also Ap-
pendix N)

N-1
Eno = lim ; h(W (t:), ) [W (tig1) — W (t:)], (5.144)
and
= (W) + W(tin) i+t
— Strat — ilmO h( i 2 A= 9 : 9 Z+1> [W(tlJrl) - W(tZ)]a

(5.145)
where A = max(¢t;41 —¢;) and 0 < tg < t; < --- <ty = t. There is no reason
to prefer one discretization scheme over the other, and both are equally valid.
From (5.144) and (5.145) it follows directly that if h(W(¢),t) = h(t), h(t) is
independent of the noise term, and the two interpretations match. However,
when this is not the case, two different results are obtained. To illustrate this,
take h(t) = W(t). The stochastic integral (5.143) will be evaluated in the It
and Stratonovich senses. The It6 interpretation becomes

N—-1
E{Zn,} = E{ S W)W (tisa) — W(ti)]}
1=0

N-1
=Y E{W(t:)W(tiy1) — W ()W (t:)}
=0

2

(2Dt; — 2Dt;)

Il
o

i

0. (5.146)

On the other hand, with the Stratonovich interpretation, the stochastic inte-
gral becomes
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E{EStat} = E{ z_: |:W(tz) + W(ti-i-l) [W(ti+l) _ W(tz)]}

, 2
1=0
N—-1
1
=3 > E{W(E)W (i) + W (tip) W (ti)}
1=0
— BE{W (t;)W (t;) — W (t;)W (t;i+1)}
1 N—-1
= 5 > (2Dt; + 2Dty — 2Dt; — 2Dt;)
Ni—l
=D (ti-‘rl - tz)
t=0
= Dt. (5.147)

Clearly, the results are different. Later it will be shown how these different
interpretations lead to different results for the FPK diffusion equation.

The FPK equation will now be derived from the stochastic differential
equation (SDE)

&= f(z,t) + g(z,1)E(t), (5.148)
where z is a Markoff process and is completely characterized by its transition
density function feo(y, 7|z,t). A function R(z) > 0 will be considered which
is a twice differentiable function and

lim R(z) =0, lim R'(z) =0, lim R"(z) = 0. (5.149)

x| —o0 |z|—o0 |z|—o0

Further it is assumed that f.o can be expanded in a power series about ¢

/Oo oy, 7|, t+ dt) — Foo(y, 7|, )] R(2)dx

— 00

ot

And according to the Chapman-Kolmogorov equation

:/"O [wﬂﬁomﬁ) R(z)dz. (5.150)
fcg(y,7|$,t+dt) = /Oo fc2(yaT|th)f62(z7t‘mat+dt)dz’ (5151)

equation (5.150) becomes

/ h {—af 02(%’;“””’ t At] R(x)da

— 00

:/Oo /OO fea(y, 7|2, t) feo (@, ]2, t + dt)R(2)dzdx
_/ fea(y, 7|z, t) R(z)dx

= /_‘X’ fe2(y, 7|z, 1) {/_00 fe2(m,t|z,t + dt)R(2)dz — R(z)|dz. (5.152)
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The function R(z) is expanded about x:

R() = R(z) + R (2)( — ) + 2%

(z =) +0(|]z —z*). (5.153)

Substituting (5.153) in (5.152) yields

[ 0; {—af CQ(%’[‘I’ ) dt] R(z)dx

= /_Z fe2(y, 7|z, ) [/: feo(x,t|z,t + dt)R(2)dz — R(x)|dx
= /O; fea(y, 7]z, ) [R(2) /O:O For(w, t]z,t + dt)dz
+ R'(z) /o;(z — ) fea(z,t]2,t + dt)dz
+ R (2) /Z(z )2 fon (@t t 4 db)dz
RN (@ / O(z — 2)* fun(, t|2,t + dt)dz — R(z)]dz
= /m fe2(y, 7|z, t)[R' (x) /C:(z — ) feo(z,t]2,t + dt)dz

+ R'(2) /°° (z — ) fea(z, t]|2,t + dt)dz

+ R () /Oo (= — 22 fua (@, ]2, £ + dt)d2

RN / O — ) fua(a, 1|2, + db)d=]dz. (5.154)
Now, looking at the integrals, we find
/C><J (z — )" fea(x, t|z, t + dt)dz = /OO (z — )" fea(, t|z — 2, t + dt)dz
- = Ei{o(oz —z)", x,t}. (5.155)

Equation (5.154) becomes
/ [78f02(%;|x .t dt| R(z)dz

R// (./L')
2

/ fe2(y, 7|2, t) - R'(z)E{(z — z),x,t} + ——E{(z — ) ,x,t}]dm

R/l (.T)

=/_ fcz(y,T|$7t)- R(z)E{(Az,z,t} + — "2 E{Az? }]daz, (5.156)

where third order terms are neglected.
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It6 and Stratonovich Approach for Integration
To calculate the moments of (5.156), (5.141) can be written
E{(Az,z,t} = E{f(x,t)At + g(z,t)dW (t)}. (5.157)

Two possible integration schemes for integration of a discretized variable can
be applied, the Itd6 and Stratonovich approaches.

It6 Approach

In the It6 approach the integration scheme used is forward integration, that
is
N-1

/ P d@)dr = 3 B {(tien) — o(t:))]. (5.158)

1 =0

The first moment E{(z — z),z,t} becomes

E{(z —2),z,t} = E{f(z,t) At + g(x,t) AW ()}
= E{f(z,t)At} + E{g(z,t) AW (1)}
= f(z, ) At + BE{g(z, t) }E{AW (1)}
= f(z,t) At + E{g(z,t)} x 0
= f(z,t)At, (5.159)

and the second moment E{(z — x)?,z,t} is
B{(z —z)?, z,t} = B{[f(x,t) At + g(x,t) AW (1)]*}
= E{[f(z,t) At]*} + B{[g(x,t) AW (¢)}]?
+ 2E{f(x,tAtg(x,t) AW (t)}
= O(At)* + g(x, t)* E{AW (1)} + 2f (z, t)g(z, ) E{AW (1)}
= g(z,t)*2D At. (5.160)

Higher order moments E{(z — x)?,z,t}, n > 2 have terms in O(At)?.

Stratonovich Approach

In the Stratonovich approach, the integration scheme used is the middle point
integration, that is

/:2 - Xf@(—ml)){w(tm) —xz(ti)} (5.161)

1 =0

The first moment E{(z — z), z,t} becomes
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Bi(e - ) = B p(ELE 20

9(W>AW()§)}. (5.162)

In this case f (%) is not a deterministic function, and g(%)

is not independent of AW (t). The functions, f and g can be expanded about
x(t) as follows

p(HEEEON oty + G wl0) + 32 al0) 4
Y . A | Ag? (5.163)
(TS — gtate) + G o) + 5 5o 0+
E{(z —z),x,t}
1 Ax?

= E{f(z,t)At} + E{%f/(m(t))At} + E{5 1 f”(x(t))At}

+ E{g(x, ) AW (t)} + E{ %g'(z(t))AW(t)}

22
+ E{;Aélg"(x(t))AW(t)} +e (5.164)
Using (5.141) and (5.163) in (5.164) will give

E{(z — x),z,t}

= E{fAt} +E 5

Az rr Az 7
+E{%f,,([f+7fmt+[29+Tg](AWy)At}

{f,([f + 55 fA + g+ %g’]AW(t))At}

Az ¢/ Az 1
+E{gAW}+E{g’<[f+2 ]At+2[g+ 2 gMW)AW}

+E{%g,,<[f+%f’]AtJr[Qng%g/](AW)Q)AW}+..., (5.165)

The term with E{AW} = 0 vanish and the terms E{AW }?At = 2D At* and
higher order are O(At)2. Thus only terms remaining are

E{(z —z),x,t} = E{fAt} + E{;g’gAWz} + O(At?)
= f(z,t) At + %g’(m,t)g(m,t)ZDAt, (5.166)

and the second moment E{(z — x)? z,t}
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B{(z — 2)%, 2,1}
_ E{ [f(:z:(t+At)+z(t)>At
n

. x(t+A;)ix(t)>AW(t)r}

(e )
{[ ( x(t + At) +:1:())g(m(t—kA;)—i—x(t)ﬂAtAW}

+E{P(W>Awr}. (5.167)

Using (5.141) and (5.163) in (5.167) will give

E{(z —x)% z,t}
= E{f?At*} + E{ (M) At}

Ax g1 2
+ E{%f”(“f i T4f ]At}2> AtQ} + 2E{fgAtAW}

A A
+ 2E{fg’7xAtAW}2E{f’gT$AtAW} + E{g?AW?}

" E{Q(W)AW}

+ E{ig”g (“f i ATZf/]At}2>2AW2} b (5.168)

And in this case the only terms remaining with order O(At)? are
E{(z — x)%,z,t} = E{g?AW?} = g(z,t)?*2D At. (5.169)

For this term, the result of the integration is the same as found using Ito
integration scheme.

Fokker-Planck-Kolmogorov Equation

Use the results of the previous sections and substitute the derived moment
terms in the Itd sense in (5.156):

/ h [7(” 02(%;‘% ) At] R(z)dw

/ fea(y, |z, %) [ "(z)f (m,t)At—i—@g(w,t)QQDAt dzr. (5.170)
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Dividing all terms in (5.170) by A¢, and making At — 0 will yield

[ [letre]

g(x,t)*2D|dz. (5.171)

— /_oo fea(y, 7|z, t) {R’(m)f(x,t) + RNQ(J;)

Integrating the right hand side of (5.171) by parts (twice the second therm
and applying (5.149) we find

[ [t ) oy

__ / ~ R(x)a%[fcz(y,TlLt)f(%f)]

T
+ R(Qx) %[fcz(%le»t)g(x,t)Z]QDd% (5.172)

then

/_‘: {3fc2(y6;t7|$at)}R(x)d$

--f O:O{a%[fcz(yﬁlx»t)f(%t)]

+D o [fcg(y,7'|a: t)g (x,t)Q]}R(x)dx. (5.173)

Since this has to hold for every R(z) the FPK equation becomes

0 c , T| T, 0
Oalvoriest) _ 8 1p (y rle ) (o)
2
+ aaQ[fcz(y,T\x t)g(x, )% (5.174)

Now use the results of the previous sections and substitute the derived
moment terms in the Stratonovich sense in (5.156):

/OO [afcz(?gtﬂfat)At} R(z)d

/ Fealy, 7l ) [ (@) (f(2.) + (. g 2, 1) D) At

2(5”) (z, )ZDAt}d;z: (5.175)

Dividing all terms of (5.175) and making At — 0 we find
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/°° {6f52(zgtTlx’t)}R(x)dx

— 00

= [ fatrlen [R’(x)(f@c,t) T g/, (e, H)D)

/!
+ RT(x)g(x,t)%D} dz. (5.176)
Integrating the right hand side of (5.171) by parts (twice the second term)
and applying (5.149) then

[ [2atrted)

— 00

— 7/700 R(x)a% {fcz(ymlx,t){f(x,t) + %g/(x,t)g(x,t)QDH
+ R(;) aa—;g[fd(%T\x,t)g(x,t)2]2Dda:, (5.177)

Since this has to hold for every R(x) the FPK equation becomes

%ﬂx’t) = —% [fd(yﬁlx,t){f(%t) + %gl(ffat)g(x,t)QDH
2
n D%[fd(y,ﬂx,t)g(x,t)?]- (5.178)

Rearranging (5.178) will yield
ach(yaT|xvt) 8

ot Ox

—i—D% g(xvt)%{fcz(y,ﬂa:,t)g(m,t} . (5.179)

[ch(ya T|I‘, t)f(xv t)]

Notice the difference between (5.174) and (5.179) achieved with two equally
valid schemes of integration.
The most important usages of both approaches are:

e Stratonovich in physics and engineering
e [t6 in mathematical analysis, financial mathematics

In [152] a number of It6 and Stratonovich SDEs are given and repeated in
Table 5.1.

MDOF Stochastic Differential Equations

Consider the following stochastic differential equation written in the Strato-
novich form [200]

{9} =fs({y}, 1) + e{y}, D{@D)}, (5.180)
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Table 5.1. 1t6 and Stratonovich SDEs

SDE Definition

Itd AX = —aX At + o AW

Stratonovich AX = —a XAt + c AW

It AX = (aX +b)At + c AW

Stratonovich AX = (aX +b) At + c AW

Ito AX = (aX — 0% /2) At + 0 AW

Stratonovich AX = (aX — 0% /2) At + 0 AW

It6 AX = aX At +bXAW

Stratonovich AX = (aX — {1/2}0° X At + bX AW

Ito6 AX = (aX + b)At + (bX + d) AW

Stratonovich AX = [(a —{1/2}b) X + c — {1/2}bd] At + (bX + d)AW
It6 AX = [{1/2}a(a — 1) X =29 At 4+ a X V2 AW
Stratonovich AX = aX Ve AW

Itd AX = [{1/2}a®X]At + av/1 — X2ZAW
Stratonovich AX = aV1 - X2AW

It AX = [a®>X (1 + XAt +a(1 + X AW
Stratonovich AX =a(1+ X)) AW

Ito AX = a(b— X)At + oV X AW

Stratonovich AX = [a(b— X) — 0% /4] At + oV X AW

where {y} is the 2n-vector of state variables; fs({y},t) and g({y},t) are, re-
spectively, and n-vector and n X j matrix, whose elements are deterministic
functions depending nonlinearly on {y}. {£(t)} is the j-vector of stationary,
zero-mean white noise processes. As already mentioned the Stratonovich ap-
proach is quite often applied in engineering problems. Equation (5.180) can
be rewritten in the following Itd standard form [200]

{Ay} = f1({y}. ) At + g({y}, )/ {AW (1)}, (5.181)

where f7({y},t) is the vector of drift coefficients, which accounts for the pres-
ence of the Wong-Zakai or Stratonovich correction term. {AW(¢)} is the
j-vector of the Wiener processes, whose increments satisfy the following rela-
tions

E{AW(®)} = {0}, a2
E{AW (t1) AW (t2)} = [2D]d(t1 — t2) Aty Aty = [2D] At, '
In Appendix N it is stated that the Wiener process, denoted by W (¢), is also
called Brownian motion, and denoted by B(t). In this section the notation
W (t) will be used to indicate a Wiener process. A Wiener process is called a
standard (or unit) Wiener process if 2D = 1. Equation (5.181) can be written



356 5 Fokker-Planck-Kolmogorov Method or Diffusion Equation Method

(a0} = [fs(th.0+ ottor o 2D st s gy o gawioy, sas

where the second term inside the brackets on the right hand side of (5.183)
is the Wong-Zakai or Stratonovich correction term. Partial differentiation,
%j’t) should be used in accordance with the rules of matrix operations.
One can write

2n m
fsit Zzakﬂa At""ZgwAW
k=1 j=1
= fridt+ ZgijAWj7 (5.184)
j=1

where m is the number of stochastic excitations AW; and o;; = gi+/2D;,
l=1,2,....m

Example. This example is taken from [210]. An SDOF system is disturbed
by parametric (multiplicative) and external (additive) Gaussian white noise
excitations. The equation of motion of the SDOF system is

i+ all + (1)) + B[+ &0z = £(), (5.185)

where x is the stochastic displacement, «,3 are constants and £(t) is the
Gaussian white noise excitation. The second order ordinary differential equa-
tion is transformed into two first order differential equations, the so-called two
space-state, with y; = x and y; =«

(5) = ooy o) (2)+ (5 9) (50) a0

Equation (5.186) can be rewritten as an Stratonovich stochastic differential
equation

Ay _ Y2 0 0 AW
(Ayz>_<5y10!y2)At+<0 lﬂylay2> (AW> (5.187)

{Ay} = fs({y}, t) At + g({y}, 1) AW, (5.188)

where AW = £(t) At is the Wiener process. In accordance with (5.184), the
Wong-Zakai or Stratonovich correction terms can be calculated

or

Ayl = fS’L ZZ k]a At+ZQZJAW
k 175=1
= fLiAt—Fqu;jAWj, i=1,2, (5.189)

J=1
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where [o] = [g]V2D is given by

o] = (8 (1 -8y —anz)m) ’ (5.190)
and the autocorrelation function R, (7) is given by
R, (1) = E{W;(t)W;(t + 7)} = 2DJ(1) = SW0(T).
Thus the It6 form of the SDE becomes

{Ay} = {fi}At + [G{AW}
_ fsa
B (fs,z — a8, (1 — By — ﬂyz)) Al

" (8 a —ﬁy?—ﬂyz)) (ﬁ%)

_ ( Y2 > At
—fy1 — ayz — a8y (1 = Byr — Bys)
0 0 AW
. 5.191
+(O (153/1592)) (AW) ( )
The associated FPK equation is

afC2 o f] zch 2 2 G-DG mfcz]

o= ; o g g 3000, , (5.192)

where the conditional probability density function is feo = fea({y0}, tol{y},?)

and f({y},t) = [T -+ [T feal{wo}, tol{y}, ) F({yo}, to)d{wo}-

5.7 Behavior of Linear Systems with Random Parametric
Excitation

In this section, we discuss the behavior of linear systems with parametric
parameters varying as white noise, and is based on a paper of Gray [75]. The
general associated FPK equation is given and moment equations are derived.
In the previous section an example of a parametric system was given. As a
starting point Gray considered an (n + 1)th order linear differential equation
given by
n+1 k
i Z w60 T = )+ (), (5.193)

where the ay, are constants, f(¢) is a known signal possessing a PSD spectrum,
and the £ () are the stationary random variables that are ergodic, Gaussian
and white. The mean or expectation of &(t) is
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E{&k(t)} = (&(1)) =0,
E{& ()& (t + 1)} = (& (t)&(t + 7)) = 2Dpid(7).
The process in (5.193) defines a continuous Markoff process of n + 1 di-
mensions. Due to the presence of f(¢) in the equation, this process may not be

stationary, however, it still possesses a transition probability. Let the variables
Y0, Y1, - - -, Yn be defined by

(5.194)

d*x
g
Then, if f({y},t) = f is the joint probability density function in the variable
yr for k=0,1,...,n, f will satisfy the FPK equation given by

n—1 n
% _ oy Awenf) 0 { [f(t) D= > e — an)ykl f}

Yk = (5.195)

k=0 ayk ayn k=0
82 n n n
o D> Drithti =23 D + Dosingr | f o (5:196)
k=0 i=0 k=0
Example. Consider the following equation of motion:
d?x(t dz(t
dtg ) + [2wo¢ + 51(&]% + [wf + &o(t)]z = & (1)
The following variable transformations are made in comparison with (5.193)
® ap = wgv
* a1 = 2w,
e F{&(t)}=0,k=0,1,2,
° E{fz(t)fj(t + T)} = QDij(Sij(S(T) 1,7 =0,1,2,
e f(H)=0,
®* Yo =2,
o Yy = ‘fl—f, and
e n=1.

Equation (5.196) becomes

0 1
% oy a(zfaki;;f) _ 8%1{ lpmazl ~ 3 (ar - leélk)yk] f}

k=0 k=0
82 1 1 1
+ 8—y%{ [Z Z Dyilkiyiyi — 2 Y Dorboxyn + D22522] f}v
k=0 i=0 k=0
or
of _ owf) , 0 2
o= o + || 0% + (2Cwo — Du)yr | f

2

0
+ 8—1/2{ [Dooyg + Dlly% + ng]f}.
1
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5.7.1 Moments and Autocorrelation

Let M be a well-behaved function of the functions yi, so that the stochastic
mean or expectation of M exists and is defined by the integral

E{M} = (M) :/_O; /_Z---/_ZMfdyodyl---dyn. (5.197)

If the FPK equation (5.196) is multiplied by M, integrated over all yj, then
integrated by parts, it yields the result

k=0
- Z(ak - an)< > ZZDkz<ykyz 2 >
k=0 k=0 i=0
O*M *M
—_ 2]§Dn+1,k<yk—a—y%> + Dn+17n+1<@>. (5198)

This equation (5.198) can now be used for the finding the means moments
and the autocorrelation function.

Mean

By setting M = y;, in (5.198), we can obtain the following result:

d<dytk> :<yk+1>7 k:071727"'7n_1’

i 5.199)
d(yn) (
)~ o0 = Dua)) + )~ D

Combining these equations and using the definition y, = 4"z e obtain the

X
ko
equation for the mean of z, given by

dn+1 dk T
dtn-‘il + Z ak — "k) d§k> = f(t) - Dn+1,n~ (5200)

Example. Consider a dynamic system defined by the differential equation
d*z dx 9
e+ R + &0 + [ + &) = &(0)

where &o(t), &1(t) and &;(t) are zero-mean Gaussian white noises and

This is identical to the general case with n + 1 = 2, a; = 2{wy, ap = w3 and

f(t) = 0. The mean will satisfy the differential equation

d*(z) d{z)
dt? dt

+ (2¢wo — D11) —* + (wg — D1o){z) = —Day.
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Autocorrelation Function

In an analogous manner used for finding the equation for the mean, the equa-
tion for the autocorrelation E{xz(t)z(s)} = (x(t)z(s)) is given by

A a(t)a(s)) | i Dtz (s))
dn+1 dt*
k=0
= [f(t) = Dus1,n)(2(5)), (5.201)

which will be valid for ¢ > s.

Second Moments and the Variance

We obtain by using (5.198), with M defined by the relation M = yry; —
(yx){y;), the differential equations for Cy;, where

Cir = Cir. = (Ynyi) — (yr) (Yi)- (5.202)
This leads to the following set of equations:
dch
Tk: i,k+l+ck,i+17 i7k20a17"'n_17i7én7k7én7
g’t :Cn,i+1 71620((1]67an)0“€’ 2:0317"'72717 7’7&”7
5.203)
1dCy & (
> g Z(ak = Dyk)Crk + ZZDmCm
k=0 k=0 i=0
Z > Dinlys) — 22 Di1,6(yk) + Drt1nt1-
=0 i=0 k=0

The first equation of (5.203) represents n(n+1) equations (since Cj; = Cy).
The second equation of (5.203) represent n equations, and added to the third
equation of (5.203), gives a total of 1(n 4 1)(n + 2) equations for the same
number of unknowns Cjr = Cj;. In principle, once the means are found, the
second moments found also.

Example. Consider a dynamic system defined by the differential equation

d’z

e +[wh + o))z = &(1),

+ (26w + &1 ()2

where & (¢), &1(t) and & (t) are zero-mean Gaussian white noises and

<£1(t)€j(t+7')> = 2Dij5(7—)a i,j,:0,1,2.

This is identical to the general case with n + 1 = 2, a; = 2wy, ap = wi and
f(t) = 0. The mean will satisfy the differential equation
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dd1<,§> + (QCOJ() — Dll)% + (Wg - D10)<$> = —Da.

The mean will be stable if and only if 2(wy > D11 and wg > Djg. The
equations for the covariance function Cj; are given by

dCoo

=2
dt COlv
dC
dfl = C11 — (w§ — D10)Coo — (2¢wo — D11)Cox,
1dC
3 dtn = —(wg — 3D10)Co1 — (2¢wo — 2D11)C11 + DooCoo

+ D00<y0>2 +2D10{yo) (1) + D11<y1>2
—2D20(yo) — 2D11{y1) + Daa.

Consider the following simplified linear equation of motion:

A2z dx
2 i
+ CWO dt

then for a stationary process the following equations are obtained:

I + ng =& (t),

2001 = 0,
C11 — w§Cop — 2¢woCo1 = 0,
7(4)86'01 — 24&)0011 + D22 =0.

Solving the set of algebraic equations we find the covariances become

Do

<$.’E> = COI = CIO = 0, <.%‘J}> = 011 = <.’1?J)> = COO = m,

because the mean values are (x) = (&) = 0.
The space state of the previous equation of motion is given by

()= (2 ) (1) + ()&

A1 () + (Gren.

U1

The stationary correlation matrix is [R] = [C] + [(y:)(y;)], 4, = 0,1 and can
be obtained by solving the Lyapunov equation (see Sect. 2.6)

[A][R] + R[A]" = —{G}2D4|G].
As before, we find

2¢wo

ﬁ 0
[R]Z[C]=D22<C0 1 )
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5.8 Generation FPK Equation for MDOF Systems

The equations of motion for a lumped-parameter systems with MDOF can
be, in general, written as follows [210]:

.i‘i—|—hi(3}1,$2,...,Jﬁn,i‘hi‘g,.. $n) f (5204)
ZI;A:fir(.’l,‘l,l‘27...,$n,.’l'71,.’l',‘2,..., ) () (5205)

and with {y1} = |21, 22,...] and {y2} = |21,22,...,2,)] the equations can
be written in matrix form

{2} +h({ya} {y2}) = { o, (5.206)

and

{Pnx1 = [flnxm{&®) bmxa- (5.207)

{y} = (gi)

the set of equations can be expressed in a state space

0= on) 60 m) (g) 6o

where {£} is the vector of delta correlated white noise processes.
The corresponding Ité equation can be written

) = (Lt o +0) 24 (0 ) ((B)
= {m}At + [G]AW, (5.209)

With

where & is the Wong-Zakai or Stratonovich correction term, { AW} = {£} At
which is a Brownian motion or Wiener process, and

E{W @)W (t +7)}] = [2D]é(7), (5.210)
The FPK equation can be easily derived from (5.209) and (5.210)

2n 2n

afcz . o mzfcz 82 GDG zjfcz]
T ; ZZ Dy, . (5.211)

where the conditional probability density function is given by

fea = fea({y1(0)}, {92(0) {1 (1)}, ({w2(8)})-

In terms of the first and second moments A; and B;; the FPK equation (5.211)
can be written as follows
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Xy — 12
- F — Iy
kq ke
J\/L mp va mo
— Ky —

Fig. 5.4. Two degrees of freedom system (four state-space system)

2n 2n

8f02 A sz l]fCQ
= - 212
Z ZZ T (5.212)
where

Example. A MDOF linear dynamic system is illustrated in Fig. 5.4. The
state-space variables of that dynamic system are given by

Y1 x1
Y2 X2
= = . 5.214
w=nl=s (5.214)
Ya €2

The state matrix [A] of the dynamic system showed now becomes

0 0 1 0
0 0 0 1
[Al= | “Gatk) b2 —a g | (5.215)
my mi mi
k —(k1+k2) —c
s 0w

and the input state matrix denoted by B is
(5.216)

The forces are denoted by {£}

{& = (Z) : (5.217)

where {£(¢)} is a Gaussian and white noise process, with the following statis-
tical properties
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E{¢(t)} = {0},
Se, 0
Blewe+ ) =20l = (g ) o,

where S¢, are the constant PSD functions. The following notations are now
introduced and substituted in (5.215)

° 912 _ (kitks)

o 2= (klr:zr:2)
[ ] w% = 7’:74—21
[ ] w% = 71:1—22
° wi = %
° wih= %

o ¢ =20Vkim
® (o — 242\/ k?gmg
* 2Guwr = -
* 20wy ==

thus (5.215) becomes

0 0 1 0
0 0 0 1
[A] o 79% wfl 72C1w1 O (5218)
wiy % 0 —2Gows

The It6 and Stratonovich stochastic differential equations can be generated
{Ay} = {1 At + [g{AW} = {m} At + [g{ AW}, (5.219)

where {f} = {m} = [A]{y}, because the matrix [g] = [G] is not dependent on
the state variables {y}, but

00 0 O

00 0 O
[G]: 0o 0 L 0 ,

mi
00 0 i
and

00 0 0
. 00 0 0
[GID]IG]" =109 o 257; 0

1
00 0 3%

The FPK equation for this linear system, using (5.192), with f., =
fes ({yo}{y},t) is given in the following expression
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asz _ ‘951 62f02 sz 82f€2 6f62 y af02

ot 2m? Oy?  2m3 Oy? SOy, Tt oy
0

- 3—%[(—9591 + wiyo — 2C1w1Y3) fo,]
0
- 8_y4[(w§2y1 — Q7ys — 2Coways) fe, ). (5.220)

Problems

5.1. When z is a Markoff process prove the following equation

t T to, t
f3($1,t1,$2,t2,.’£3,t3) _ fz(xh 1,22 2)f2($2, 2,3, 3).
J1(wa, t2)

5.2. Derive Miles’ equation of a SDOF linear system with enforced acceler-
ation 4 at the base using the FPK equation. The equation governing the
relative motion z is given by

54 20wt +wiz = —ii.

Prove that the expected value of the square of the absolute acceleration #2 is

B{i®} = (—20wn)*E{2%} + (-wy) E{z"}.

The white noise PSD function is Sy = WT, wy =27 f, and Q =
Answer: E{i} = Z f,QW;(1 + 4¢?).

1
2¢"

5.3. This problem is taken from [101]; parametric excitation is combined with
nonparametric excitation. The equation of motion of a SDOF system is given
by

F 4 wol20 + &(1)]F + will + & ()7 = & ().

Here &y(t), &1(t) and &»(t) are white noise processes with spectral densities

Soo 0 0
[2D] = 0 S11 Si2
0  So1 Sa

e Set up the nonlinear Stratonovich equation {dy} = { f}dt + [G]{dW} with
y1=xand yo =T
Derive It6’s equation {dy} = {m}dt + [G][{dW} with y; =z and y, = &
Derive from Itd’s equation the FPK equation for f.,({yo}|{y},1t)
Solve the stationary FPK equation for fi({y})

5.4. This problem is taken from [92]. A hardening Duffing oscillator subjected
to additive and multiplicative (parametric) white noise is given by
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i 420+ [1 — & ()]r +ex® = & (1),

where the noise terms are independent, and

Ru(r) = B HE( +7)}T] = [2D]é(r) = <% §2> :

Generate the corresponding FPK equation.
Answer:

8fc2 _ 8[(2<y2 + Y1+ Eyif)]f@ _ 8[y2f02] 82[(513/% + SQ)fcz]

ot Oy O 20y3

5.5. This problem is taken from [183]. Solve the following parabolic partial
differential equation

ou_ o

ot 0xz%’

with the finite difference approximation. Perform the following assignments:

e Set up an explicit finite difference scheme
Answer: u; g11 = U1k + (1 — 27wk + Tuiz1p, v = At/Az? x =
Tonin + 1Az, t = kAL, i,k =0,1,2,....

e Solve the partial differential equation, using the finite difference explicit
scheme, with given initial and boundary conditions for ¢ = 0.02:

Initial condition t = 0 u = 2z for 0 < z < 0.5, u = 2(1 — z) for

0.5 <x < 1.0.

Boundary conditions u =0 at x =0 and x = 1 for all ¢.

Az = 0.1 and At = 0.001

Answer: t = 0.02, (z,u) = (0.0,0.0),(0.1,0.1939), (0.2,0.3781),

(0.3,0.5373), (0.4,0.6486), (0.5,0.6891), (0.6,0.6486), (0.7,0.5373),

(0.8,0.3781), (0.9,0.1939), (1.0, 0.0).

5.6. A linear mass spring system is coupled with a Duffing-like oscillator,
expressed by the following set of equations of motion

{Mfc'+)\1j:+k1r+7(xy)f1(t)’ (5.221)

mij+ Ay + Cy* +v(y — ) = f2(2),

where f;(t) and f2(t) are two white non-correlated noises whose diffusion
coefficients are respectively Wy; and Wos:

(fi(t)) =0,
(f2(t)) =0
(filte) f(t1)) = Y2650t — t).

Write down Ité equations (4 DOFs), expressed in terms of y1 = x, yo = 4,
ys =y and y4 = 9.

(5.222)
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Answer:
1 Y2 0
y 1 fi(t)
Y2 | _ _W[)‘lyQ + kiyr + 7('5/1 - y3)] + i
U3 Y4 ’
Ya —L\ys + Cy3 +v(ys — 1)) (8
or
Ay Y2 0
VWoi
Ayz | _ —arMiy2 + ks (- us)] At + NGIT] AW,
Ays Ya 0 ’
Ays — s Psya + Oy +(ys — 1) s AW,

where W; are standard Wiener processes with dW (t) = W (t+dt) — W (t) and
E{AW (t) AW (t)} = At.

The transition probability density function fi.(yoly,t) = f. Derive the
Fokker-Planck equation expressed in terms of f.

Answer:
8]" af WOl 82f
= = gyt aun 4+ s M[{)\lyQ + ki v —y3) L+ AN2 dy%
af 1 Woz 0% f
- y4d_ma[{Asy4 +0y3 +(ys — yi) ] + Am? dyd”

5.7. This problem is taken from [6, 7, 78]. Consider the stochastic ordinary
differential equation
Az = (x — 23) At + 0 AW,

where W (t) is the standard Wiener process. Write down the FPK equation
and solve the stationary FPK equation for the probability density function
f(x) = f. Calculate the first and second moment (x), (z?) as function of
o =0.2...1.0, respectively.

Answers: %—t =-Z2z-23fl+% %{, flz) = Cel@®=052Y)/0* o o 5 =02,
C =0.7312 x 1075, (2%) = 0.9785.

5.8. This problem is taken from [6]. The following set of equations is given
& = pox + pir(t) + [1 = (2 +y°)](2® + y*)x — wy — b(a® + y*)y + & (2),
¥ = oy + pr(t)y + [1= (@ +y))(@” + 9%y + wz + b(a® + %)z + &, (1),
where the additive noise terms are considered uncorrelated with p,.(t). The
correlation functions for p,.(t), & (¢) and &, (¢) are given as
= ()t + 7)) = 2Dm6(7),
= (&a()€(t + 7)) = 2D4(7),
= (&(B)&(t + 7)) = 2Dd(7),
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where D,,, and D are the spectral densities. Expressing the white noise proces-
ses as formal derivatives of the Wiener processes W,,,, W, and W,,, set-up the
It6-type of SDEs taking into account the Wong-Zakai correction. Write down
the FPK equation when f(x,y) = f is the joint probability density function.
Answers:

Az = {pox + [1 — (2% + y*)|(2* + y*)x — wy — b(2® + y*)y + Dypa} At
+ V2DAW,(t) + /2D, z AW, (1),

Ay = {poy + [1 = (2 + y°)|(=* + y*)y + wz + b(z? + y*)z + Dy} At
+ V2DAW, (1) + /2Dy AW, (1),

O e gt 02+ 11— (2 4202 4 9P oy — b + 4y
+ V2D }f]
- % {roy + mr(t)y + [1 = (2 +y*)(2® + y*)y + wa = b(a? + y*)z
+V2Dpy} f]
2 2 2
+ D+ D)+ 2L (D)) + S LD+ D)),

5.9. A nonlinear vibration is described by the following equation of motion
(Duffing’s equation)

(1) + 2Cwoi (1) + wla(t) + kaa® () = (1),

where E{{(t)&(t + 1)} = 2Do(7).
The following assignments are required:

Derive the FPK equation, for the non stationary and stationary problem
Derive the joint probability function fy(x, ) for the stationary problem
Derive the number of up-crossings at level a, given that v (a) = v} =
I~ @ fa(a, @)di.

e Try to derive an approximation of v*(a) for a large |x|, by using (5.338)

(248 ety Dt 1
. [ — T 952\ 2 2 4 — —
Answers: fo(z, ) = Ce™ 2 , O oy Vi (a) v TR
2 2 4
wir? | kzx

e—%%[foa(ng—&-kng)dm]/ffoooe—ﬁ( L—+ =231 )d.’E

5.10. Let a vector process {z(t)} = | z1(t), 22(t)|T be defined by 2z, (t) = x(t)
and z3(t) = &(t). we can write It6 SDE

Alz(0)) = {f({z(O)}} AL + {g} AW (1),

with
B (1)
{f{z()}} = _QCZ%(t) — i)zg(t) —z1(t) |’
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and

@ = 55)-

The Wiener process is given by AW (t) = £(t) At, where £(¢) is white noise with
the properties E{£(t)} = 0 and E{£(t)&(t + 7)} = 2Dd(7). Write down the
original equation of motion (van der Pol). The transition probability density
function is given by fe2({20},0,{z2},t) = f. What is the corresponding FPK
equation and what are the initial and boundary conditions for f?

Answers: #(t) + 2¢[x(t)? — 1)@(t) + z(t) = £(¢), % =20z - 1)f - 225—2{ +

2
[2(22 — )22 + 2195 + D5

5.11. The nonlinear SDOF dynamic system (Duffing) is excited by a filtered
white noise, [87]. The governing equations are

&+ 2Cwod 4 awda® = f(t),
A2+ X =¢),

where £(t) is a white noise with zero mean and autocorrelation

E{E(1)E(t + 7)) = (€()E(t + 7)) = 2Dd(7).

We can control the input bandwidth + and center frequency A.

Write down the FPK equation when the following state variables are in-
troduced; zy = x, 29 = &, 23 = f and z4 = f First set up the system of Ito
stochastic differential equations.

5.12. This problem is based on the paper of Dunne and Gandbari [54]. A gen-
eral SDOF system is given by

&+ 20wt + arix? + and|d| + w2 + ks = £(1),

where o1 and ao are constants, ¢ is the damping ratio, w, is the natural
frequency of the linear dynamic system, k3 is a constant and £(t) is Gaussian
white noise with zero mean and E{£(t)&(t + 1)} = (E(@)E(t + 7)) = 2D4 (7).
Write the two-state (21 = x, 20 = &) equations described by the Ito6 SDE,
the corresponding stationary FPK equation for the joint probability density

function f(z1,22) = f and solve the stationary FPK equation with o7 =
ag = 0. Generate an expression for the mean up-crossings vt (a) of level a,
V+(a) = fooo zof(a, z2)dzs. The following parameters are to be used; { =
0.0138, a1 = ap = 0, w,, = 144.34, k3 = 3021 and v2D = 200. Calculate
vT(a).

Answers:

— 1

AZl 0
(AZQ) o {—QCw”zl — 12927 — anza|za| — w221 — kng] At+ [\/ QD} AW (D),
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8 92
[sz] [QCwnzl + 12227 + aazolza| + wizy + ki) + Da J;
2wn [25 | wpzi | kst
f(z1,22) = Cexp{_ Cg {%2 n erQ'Zl n 3431} }’

=0,

where C' is normalization constant,

vt(a) = ¢ D ex [— 200n

a
o 5 / (wWlz + k3zf)dzl] .
n 0

5.13. This problem is based on an contribution of Scheurkogel and Elishakoff
in the proceedings [233], entitled: “An Exact Solution of the Fokker-Planck
Equation for Nonlinear Random Vibration of a Two-Degrees-of-Freedom Sys-
tem”.

Consider the system of random differential equations

mid1 + a11d1 + a12d2 + — = &1(8),

(91'1

Mmoo + a2121 + agds + Fr &2(1),
€2
where &;(t) and & (t) are stationary white Gaussian processes with zero mean
and auto and cross correlation function

E{&G)E(t+ 1)} = (&) (t + 7)) =2D;;0(7), 4,5 =1,2.

The two differential equations describe a coupled two-degrees-of-freedom sys-
tem with linear damping and nonlinear stiffness, the latter derivable from
potential function U(z1, 22)

— (w1 — x2)4,

X —$2)2+ 1

k
R Wi

Ulzy,22) = 3 5 (

where k, o are positive and 3 is a small and positive nonlinearity parameter.
The spectral density matrix 2D;; is proportional to the damping matrix

Qij + aj;

2Dij = ———

where A is a constant.
Prove that the stationary solution of the FPK equation is given by

. - A -2 -2
f($1,$2,$171'2) =ne * [m1x1+m2$2+2U($17z2)]7

where v follows from the normalization condition

oo oo oo o)
/ / / / f(SL‘l,LL'27.i‘l,ﬂbg)dxldxgdildig =1.
—o00 J —o0 J—o0 J—00
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Introduce two new variables
U =21+ o2, V=2 — Iy.

and prove that the following marginal densities are given by

/ /\mla:
2T
I\ m Am2z
)

Ak

flu) = e,
Aﬁu A(k+2a)v2]

flo) = Ce T+,

where C' is the normalization constant. Show that

f(z1, 22,81, 22) = f(d1, 22, u,v) = f(@1) f(d2) f(w) f(v).
Further prove that
E{i1} = E{#2} = E{z1} = E{x2} = E{u} = E{v} =0,
1 1

. . 2
E{il} = g E{i3} = g E{u®} = VA E{z]} = E{x3}.

and prove, knowing that E{z}} = E{z3} = w, and E{riz2} =

w, the following relations

2y 2 1273 9
E{v }—m(lm)JrO(ﬂ ), B—0,

1 2 123
E{z]} = E{a3} = IV N+ 20) (1 - m) +0(8*), B—0,

1 2 128 ) _
Elmea} = o3p = X 00) (1 )\(k+2a)2) +0(F), B0

hints:

/OO .’Ezneingdl' _ F(TL+1/2)

B - pn+1/2 )

E{(:Q’”} = B(k + 2a)] 7m0m (ﬁ%)

om(2) = (2m)! [“%—TZ;”Z] +O(:?), z]o.

5.14. This problem is inspired on a paper of Dimentberg [49]. Consider the
following second-order system
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i + 201+ ()] + fri(a? +32/0%) + QL+ (1) = (1), B >0,

where n(t), £(t) and ((t) are independent zero-mean Gaussian white noise
processes or white noise in the Stratonovich sense with intensities D,,, D¢ and
D¢ respectively.

Write down the stationary the stationary joint of probability function f =
f(z,v) of the coordinates z(t) and velocity v(t) = &.

The intensities D¢ and D,, satisfy the following condition

2?D¢ = 40°D,,.
Prove that the following solution of f

Ce— B +v?/2%)
(R + 22 + v2/22)5—RG”

f@,v) =

where
NZD(/DEQ47 5:2Q/D§‘923 /Bz/Bl/DEQ27

c = /_0; /_0; f(z,v)dzdv.

For the further calculations assume that 5; = 0. Calculate the normalization
constant C, f(z) = [*_ f(z,v)dv, (°"), (z°v?) and the positive crossings at
level a, v (a) = [° vf(z,v)dv.

and

Answers:
v% = sz% + %{[(204 —20°Dy)o + Bro((a® +v°/2%) f]}
2
C = (72)~1 (5 — 1RO,
B NO-I(§ —1/2) 2\ (5-1/2)
flz) = W(N + %) ;
oy N'T(n+1)I'(0—n—1)
(@) = JiT(6 —1) ’
o oy N292
(z7v*) = ma
o) = 2 !

27 (1 4 a2 /R)o-1"

5.15. This problem is taken from [216]. Consider the following non-linear
oscillator

Bi: 14+42/2
L+42/2  1+a2/2
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where the white noise £(t) has e zero-mean and a second moment (£(¢)£(t +
7)) = 2D4§(7). Show that the stationary joint probability function f(z,%) is
given by

fla, @) = In[(1+2?/2)"P(1+4%/2)],

where 8 > 2D.

5.9 Numerical Solution of the FPK Equation

5.9.1 Solution of the FPK Equation by the Finite Element Method

Many papers have been published about the numerical solution of the FPK
equation using the finite element method. In 1985 Langley published a paper
[107] using the finite element method to analyze the statistics of nonlinear ran-
dom vibration, but only for stationary problems. In 1991 Langtangen [108],
discussed the application of the finite element method for stationary struc-
tural reliability problems. In 1991 Spencer and Bergman published a paper
[194] about the numerical solution of the transient FPK equation for nonlin-
ear stochastic systems. In [170] the finite element method was applied to the
transient Duffing oscillator. In 2006 [103] both the finite element method and
the finite difference method were applied to solve two-dimensional (two state
variables, SDOF system) nonlinear systems and a four-dimensional linear sys-
tem consisting of two coupled mass-spring systems. In [178] Shiau introduced
adaptive finite element meshes to solve stationary stochastic systems, and [54]
gives overview of some contributors of the development and use of numerical
method for solving the FPK equation. The following methods are discussed:

o Finite Element method
e Finite Difference method

The Finite Element Method (FEM) which uses simple piece-wise shape
functions defined over a finite, rather than an infinite region, thus allowing
greater flexibility in satisfying complicated boundary conditions.

The Finite Difference method is amongst others the earliest used to solve
parabolic partial differential equations, but they have not widely applied to
the FPK equation.

5.9.2 General Finite Element Approach

The derivation of the finite element matrices will be in accordance with the
theory proposed by Langley [107]. We use Langley’s notation. The FPK equa-
tion can be applied to any dynamical system whose equations of motion can
be written in the form

{2} = {9(2)} + [A{w}, (5.223)
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where {z} represents displacements and velocities of the system, [A] is a square
matrix and {w} is a vector of uncorrelated Gaussian white noise processes,
each having a spectral density of unity. {g(z)} is a general vector function of
the variables {z}. The vector {z} is a Markov process and the corresponding
FPK equation is

of  ~~0f Il &
T —i:1 a—zl(gz(z)f)+ 52]; 9207 [BijfL (5.224)

where fac({20},0/{z},¢) = f is the transition or conditional probability den-
sity function and matrix [B] = [A][A]7.

Example. The equation of motion of a Duffing oscillator excited by a Gaus-
sian white noise random force f(t) is given by

&+ 2Cwot + wi (1 4+ ex?®)x = f(2).

The state equation can now be written by putting z; = x and 25 = &

(2> N (—QCwozz —223(1+ez%)z1> + (8 ¢8*D) (58)),

where (f()) = 0, (£()) = 0, {(f () f(t+7)) = 2D4(7) and (§()E(t+T)) = 6(7).

The stochastic differential equations (SDEs) can now be written

(32) - <—2<w0zQ —j§{1+ez$}zl> At+ (8 ¢8—D> (Amg(t)) :

where AW (t) = £(t) At.
The SDEs lead to the following FPK equation for the transition probability
density function fa.({z0},0/{z},t) = f.

of _ _9f
8t o 6Z1

O f

(22f) + aa_z];[{+2cw022 + Wg(l + GZ%)Zl}f] + Da_'Z%.

Equation (5.224) can be rewritten as

of _

o = Li[f] + La[f], (5.225)

where the differential operators L; and L, are given by

== o) (5.226)
L —lifja—Z[B»»] (5.227)
) 9202 " 7 ‘

i=1j=1
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For any weighting or test function ¢(2), the weak form of (5.225) (see Appen-
dix M) implies that

af B
[ o0Grir— [ omlnir— [ s ~o. (5.228)

where [ p lepresents the integration over the whole domain and dr =
dz1dzy -+ dzp,. The second and third term in (5.228) will be integrated by
parts, thus

n

o)L [fldr = -3 /R 0(2) g l(2)ldr

R i=1

-y /R 6(2)gi(2) fllz2d7

+3 [ w@g-loElan 6.2

and

[ otaliiar = 333" [ o558 s1dn
S AUCECVI

dt
i=1 j=1

- %ZZ/R/R%[QS(Z)]%[BMW, (5.230)

i=1 j=1

where R and df refer to the reduced region in which z; does not appear, and
zi2 and z;1 are the upper and lower limits of z; respectively. In many problems
the region R will represent an infinite domain in which f(z) tends to zero as
z; becomes large. In such cases f(z) and its derivatives will become zero at
infinity, thus (5.228) becomes

of % 0
J oG =3 [ arg o

T %ZZ/R aﬁzi [¢(Z)]aizj[3ijf]d7 =0. (5.231)

i=1j=1

Since (5.231) involves only the first derivatives of f(z) it is sufficient for the
shape functions to have Cy continuity.

In his paper [107] Langley discussed three possible methods of approximat-
ing the solution of transition probability density function f(z) by applying the
finite element method:
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1. The interior region of the domain is divided into finite elements and sur-
rounded by “infinite elements” which extend to infinity.

2. The interior region of the domain is divided into finite elements, while the
outer region is modelled using boundary elements or series solutions.

3. The interior region, which is considered to be sufficiently large, is divided
into finite elements while the outer region is neglected.

Approach 3 will be adopted because f(z) tends to zero in the outer regions of
the domain. With this approach, the question arises: “How large an interior
region and the density of finite elements must be considered?” Convergence
studies are of great importance.

The interior region is divided into a number of n-dimensional finite el-
ements (n is number of state variables), which have straight parallel sides,
e.g.

n = 1 line elements,

n = 2 rectangular elements,

n = 3 cuboid elements.

To solve (5.231) by the weighted residual method (WRM) (Galerkin), it
is assumed that f can be represented as a sum of shape functions H;(z). The
shape functions are chosen such that the value of f. within the finite element
can be expressed in terms of the nodal values

m

ZH )i, (5.232)

where f; is the value of f at node i, H;(z) is the corresponding shape function
and m is the number of nodes in one finite element. The shape function H;(z)
is chosen to give unity at node 7 and zero at all other nodes. It is convenient
to describe the shape functions in global coordinates because g; and B;; are
in general functions of z.

For the 1-dimensional problem, the shape functions Hy;(2x), i = 1,2,
k=1,2,...,n are [178]

7 = —2 + 25
Hy i(2k) = Hy,1(2x) = ﬁ»
. i o (5.233)
Hyj(2) = Hro(2k) = ————,
Zhyi — 2k,

where i, represents two nodes and k is the number of state variables, e.g.
z1 = x and zo = 4. In general, the shape function H;(zj) can be written to be

Hi({z}) = H (5.234)

The shape functions H;(z), z = 21, in the 1-D element with two nodes
i=1and j =i =2 can be written
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1

3

— —z+z
Hy(z) = | | Hia(2x) = 27227
- 2 — 21
- (5.235)
- - —z+z
Hy(z) = ka(zn) = ——,
P 2y — 21

For two variables, n = 2, the finite element to be used is rectangular with
four nodes, m = 4. The four shape functions H; are illustrated in Fig. 5.5.
The shape functions H;({z}), {z} = |21, 22/, in the 2-D rectangular element
with four nodes ¢ = 1,2, 3,4 can be written

—z1+ 21,3 —Z2 + 222
e - - (2222 (2222)

21,3 — 21,1 22,2 — 221

—21+ 214 —22 + 221
Ha({=)) = IIH;Q% ( ,

21,4 — 21,2 22,1 — 222

—z1 210\ [ 2t 2 (5.236)
Hj({z}) = H Hi3(2) = .

21,1 — 21,3 224 — 223

—z1+ 21,2 —22 + 223
{Z} H Hk 4 Zk <

21,2 — 21,4 22,3 — 22,4

21,4 = 21,3, 224 = 22,2-

Example. This example is taken from [103]. For the two-dimensional prob-

lem, the shape functions for a bilinear 4-node element (Fig. 5.6) are given
by

(r = r2)(s = 51) (r=r1)(s = 59)
H(r,s) = (r1—r2)(s1 — s4)” Halre) = (r2 = r1)(s2 = 53)° (5.237)

(r—ra)(s —s2) (r—r3)(s = s1) .
Hs(r,s) = (r3 —74)(s3 — 52)’ Halris) = (ra—73)(sa—s1)

In general, both g; and B;; in general, are functions of z; so that it is convenient
to describe the shape functions in a global coordinate system [178].
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4

3(r3, 53) ‘ 4(ry, 84)

1(ry, s1) 2(rg, 2)

Four-node bilinear finite element

Fig. 5.6. Bilinear 4-nod element

(1)

Velocity

x(t)

Displacement

Fig. 5.7. Finite element mesh for two-dimensional system

A finite element mesh used for a two-dimensional (state-variables) dynamic
system is illustrated in Fig. 5.7.

Replacing the integral (5.231) over the region with the sum of the integrals
over each finite element, we find

Z{ JECEE >/ (). e 9(Ndr

>y %[a:(z)%[&jfew} —0. (2m)

where )" represents the sum over all finite elements, fe represents the integral
over an element, and f, the transition probability density function within an
element. ¢(z) is now chosen to be zero except over those elements which
contain a particular node, say global node g. Over these finite elements, the
weighting or test function ¢(z) is chosen to be one of the shape functions
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corresponding to this node. For one finite element with m nodes and n state
variables, (5.238) can rewritten as follows

Z{Zl Ve{Hi}a(g;fS)dT ) 2 / 9i<Z><Hsfs>a%[{Hi}]dT

+ %ZZ/G%[{H&]%[BUHJSWT] } =0, (5.239)

i=1 j=1
ze:{/e{HiHHinT{fi} - ;/egi(z){Hi}%HH,-j]dr{fi}
<3203 [ Gty LHiJ]dT{fi}} 0. (200

> Almel{fi} + kel{fi}} =0, (5.241)

e

where {f;} are the time derivatives and the {f;} are nodal values at m nodal
values, [m.] the so-called mass matrix and [k.] the so-called stiffness matrix
given by

[me] = /{Hi}LHinT, (5.242)

e

and

ke] = —Z/gi(z){Hi}%[HinT

+ %Z;/ ai_{Hi}a%[Bij LH;|]dr. (5.243)

All the element matrices should be assembled in the overall “mass” matrix
[M] and “stiffness” matrix [K] and the finite element representation of the
FPK equation can be expressed by

[MI{f} + [K){f} = {0}, (5.244)

where {f({z},t)} is the vector of nodal transition probability density func-
tions. The finite difference method (5.244) can be written as follows

ft+At) - f(t)

o | BT 0 w003 = o, (5.245)

Rearrangement of the vector terms using the 8 method will give a recurrence
relation
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(M — (1— 0)AtK]{f(t + At)} = [M + 0AtK){f(t)}, (5.246)

where 0 < 6 < 1 and At is the time step. The Crank-Nicholson scheme is
applied with 8 = 0.5 for stability:

[M— %K} {f(t+ At)} = [M+ %K] {f(0)}. (5.247)

The initial condition of (5.247) is

tim ({20}, 0{z} 1) = 8({z} — {z0}), (5.248)
and the normalization condition is
/ngc({zo},()\{z},t)dT =1 (5.249)
The theorem of total probability can then be applied, yielding
AR = [ a0} 040 (20 (5.250)
Equation (5.247) can now be written as follows, [194]
[M—%K] {filt+ At)} = {M—F%K} {f1(®)}, (5.251)
subject to the initial condition
f1(0) = f1({z0})- (5.252)

Solution 1-D Problem

In [85], the diffusion of bistable potential was investigated with the aid of the
FPK equation. The bistable potential is represented by the nonlinear Langevin
equation (NLE)

d
T =T gz® 4+ n(t), (5.253)

where z is the driven random variable, v is a positive friction coefficient, and
g is the nonlinearity parameter. The driving random force 7n(t) is to be a
Gaussian white noise obeying

{n®)} = n®) =0, E{nt+7)n(t)} = Wt +7)n(t)) = 2€6(r),

where ¢ is the diffusion coefficient. The equivalent FPK equation for the prob-
ability density (distribution) function f(x,t) = f is

2
U D ia gty 40 (5.250)
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fl f2
Hy(x) Hy(x)
H(0) =1 Hy(L) =1

r— T

Fig. 5.8. Illustration of linear 1-D element

The initial probability density function f(x,0) = f(z) is a Gaussian distribu-
tion
1 —(m—z,l,)2
x) = e 0 . 5.255
f(x) g (5.255)

The stationary solution of (5.254) is given by [35]

2'yz2 gx‘,s

flz)=Ae = ~"=, (5.256)

where A is an constant coefficient, derived from [*_ f(z)dz = 1.

Equation (5.254) will be solved by the finite element method using linear
1-D elements as shown in Fig. 5.8. Equation (5.254) is transformed into the
weak form

b

009/ } v — 02t (5.257)

’r.of o
[ 0%+ gl - a1+ <5 5 ao = 203!

a

The natural boundary conditions g—£|a = %h) = 0 apply. We also have

[Z flxty=1or fff(ac,t) =1.
For one linear 1-D element (5.257) can be written
8¢ 8f] xz =0,

(5.258)

/xl [¢—f+¢ [(ve — g2®)f] + ¢ 209

were 21 and x4 are the coordinates of the nodes 1 and 2, respectively (Fig. 5.8).
The “mass” matrix and “stiffness” matrix for the two-node linear 1-D element
will be derived from (5.258).

The probability density function f(z) will be approximated by two shape

functions Hy(x) =1 — ((f:;ll)) = 3252 and Hy(z) = ((;621211)) = 5 in the
following way
f(@) = Hi(z) f1 + Ha(z) f2, (5.259)

where fi; and fo are the unknown nodal values of the probability density
function at node 1 and node 2 respectively (see Fig. 5.8). Both shape functions
H;(z) apply in 21 < z < .

The two weighting functions are in accordance with Galerkin’s method,
thus
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The approximate function for f(z) in (5.259) and the weighting func-
tions in (5.260) are substituted in (5.258) and further evaluated to get the
“mass” and “stiffness” matrices for the 1-D linear finite element. The weak
form (5.258) will be evaluated term by term.

[ema=- [T (50) tner e (3 a
= [me] (2) , (5.261)

where [m.] is the element “mass” matrix. Now the “stiffness” matrices [k. ],
t=1,...,3 will be derived.

[ o= ]

1) s ()

2
= Y[l <£) ) (5.262)
/ oo s - 9/ (5;81%) [ (B(w) Ho(a))] (jﬁ;) 2
= glkz.c] (}Z ) (5.263)

and

[ == [ g (hate)) g (o) 1) (4, ) e

. _ E[k;e] ( g) . (5.264)

Further evaluation of the integrals in (5.261), (5.262), (5.263) and (5.264)
will lead to the “mass” and “stiffness” matrices. The length of the 1-D linear
element is [; = xo2 — x1. The matrices entries are:

X9 X

e 1a 1)=— - 5 0

me(172) = % - %7
- (5.265)

e 2a 1)=—- a0

T2 X1

me(2,2) = 2 - 2
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x
k e 171 = Y
Le(l: 1) Ty — X1
kl,e(172) = - 56_2 ;
e (5.266)
kl,e(27 1) = - P
To — T
T2
k1.(2,2) = )
1e(2,2) To —T1
3
x
koo(1,1) = L
2¢(1,1) Ty — 1
3
ko e(1,2) = ——2
ram (5.267)
x
koe(2,1) = ——1—
2¢(2,1) To — X1
koe(2,2) = i
2,e\4, - Ty — X1
and
1
k3.e 1,1)= s
3e(L,1) To — X1
1
k5,e(172) = - — 3
T2 . e (5.268)
ks e(2,1) = — ,
2e(21) To — X1
k3(2,2) = !
3,e\4 - Ty — x1~
The total “stiffness” matrix [k.]| is
[ke] = vIk1,e] + glka,e] + €lks,e]- (5.269)

All the element matrices should be assembled into the overall “mass” matrix
[M] and “stiffness” matrix [K]; is the finite element representation of the FPK
equation can be expressed by

[MI{F(6)} + [K){f (1)} = {0}, (5.270)

where {f} is the vector of nodal probability density functions. Applying the
finite difference method, we can write (5.270) as follows:

ft+At) - f(t)

[M] A

+ [K{f (1)} = {0} (5.271)

Rearrangement of the vector terms using the # method will give the recurrence
relation
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M — (1 0)AtK]{f(z,t + At)} = [M + 0ALK]{ f(z, 1)}, (5.272)

where 0 < 6 < 1 and At is the time step. The Crank-Nicholson scheme is
applied with § = 0.5 for stability:

[M - %K] {fla,t+ At)} = {M + %K} {f(z, 1)} (5.273)

The probability density function f(z,t) has to fulfill the normalization rule

%) b N Ti2
/ f(z,t)dx = flz, t)dx = Z/ f(z,t)dx
- i=1YTi1

T~

(2 —2in)(fin + fi2)

I
'MZ
DN | =

<
Il
—

Li(fin + fi2) =1, (5.274)

Il
VMZ
DN | =

i=1

where N is the number of linear finite elements, [; is the length of the element
and f; 1 and f; o are the values of the probability density function a the nodes
1 and 2 (see Fig. 5.8).

The first moment becomes

/OO xf(z,t)dx = i/jz xf(x,t)dx

— 0 i—1

and the second moment is given by

/OO 22 f(x, t)dr = zN:/xQ 22 f(x, t)dx

— 0 i—1

Problems

5.16. This problem is based on an example given in [58]. Consider a stochastic
dynamic system
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A.’El _ ail 0 T At + C11 0 AWl 7

Axg 0 a9 X9 0 C29 AW2
with [21(0),22(0)] being Gaussian with mean |[mi,mo], and covariance di-
agonal matrix

0 o03)°

and AWy, AW, are the standard Wiener processes.
The FPK equation is

af o af 3f 1 9 82f ) 62f
o Sl allxlaixl - QQQIQTZUQ * 2 6118735% + 02287,7:% ;
with the probability density function f(z,t) at ¢t = 0 is given by
F.0) = — L HEgm ey
2mo01002

The system is linear and its exact solution is known to be Gaussian and
is given by

1 sy (22522
r,t) = ez a1 o2 ;
f(@.t) 2mwo 09
where
2 2
2 2 C11 2a11t _ €11
oi(t) = (001 + 2a11>€ ot — 2a1,”
2 2 32\ 2amt 32
a
o3(t) = (002+@>6 == Yy’
and

B1(t) = mpe™t

JAZQ(t) = mge‘mt.
The following numerical values for the parameters are taken:
a11 = —0.5, a99 = —1, mp = mo = 057

001 = 0p2 = 1, c11 =c2 = 1.
The domain £2(x1,x2) is given by
2 ={mq — 3001,m1 + 3001}, {ma — 3002, m2 + 3002}

Write in MATLAB® or SCILAB® or Octave® or other package a finite
element program to solve the FPK equation of the given dynamic system.
Apply a mesh of 60 x 60 divisions of linear quadrilateral elements and a time
step 6t = 0.1 s, for t = 0.1-8.0 s.
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5.9.3 Solution of the FPK Equation by the Finite Difference
Method

The numerical solution the FPK equation by the Finite Difference Method
(FDM) will be illustrated by working out an example is taken from [194].
Consider the SDOF system with a non-linear spring g(x), given as

i+ 2¢wot + g(x) = £(1), (5.277)

where £(t) is Gaussian white noise with a autocorrelation function E{&(t)&(t+
7)} = 2D4(7). Equation (5.277) will be transformed into state-space variables
x1 = x and zo = & as follows:

T1 = Ta,

5.278
By = —2Cwors — g(1) +&(1). ( )
The corresponding FPK equation is given by
of _ O2f) | O{2€wows + g(z1)}f] *f
- = D—= 2
ot 0z, + 0z + 0z’ (5.279)

where f = f.o is the transition or conditional probability density function.
The following initial and boundary conditions will be applied:

%in(l) fea(X0|x,t) = 0(x — x0), (5.280)

and
Hm  fua(xolx,t) = 0. (5.281)

|z1,x2]—00

The normalization condition is given by
/ fCQ(Xo|X, t)dX = ]., (5282)
R2

where x = {2} = |z1,22]7. The joint probability function fo(x,t) can be
obtained as follows

fa(x,t) = /jc /jo fea(xo0lx,t) f1(x0)dxo, (5.283)
so that
}i_r)r(l) fa(x,t) = /_Z /_Z tlgr(l) fea(x0]x,t) f1(x0)dxo = f1(x0). (5.284)
The probability density function is given by

(o]
f2($173327t)=/ fe2(21,0, Z20|21, 2, ) fo(21, X2, 0)d2 1 ds.
— 00



5.9 Numerical Solution of the FPK Equation 387

fi,j+3,k
Axg I
fi.,j+2,k
A3U1 fi,jJrl.,k
fi,j,ls:

) )
fims i fi2gk fiovjn| fivrgn fivagn firsjn

fij—1k
fij—ok

fij-3k

fijk = F(@1min + 1AZ1, Tomin + JATo, kKAL)

Fig. 5.9. Finite difference discretization

The initial condition is
1 —(z1—p1)? 1 —(za—po)?

— e e 2“%
o1V 2w oo\ 2T
The FPK equation (5.279), when f = fa and g(x) = w3(x+ex?), becomes

o5, of e OO
o = g + 2Cwo f + {2¢woxa + wi(x1 + Exl)}axz + D@a:%’ (5.285)

202

fa(21,22,0)

Let f; ;1 denote the probability density function at discrete locations rel-
ative to a candidate point as shown in Fig. 5.9 and is given by

fi,j,k - f(xl,min + iAzla x2,min + ijQa kAt)a ivja k= 0, ]-7 23 e (5286)

The probability density function at f; 11, and f; j_1 5 may be expressed in
a Taylor series [92] (limited to two terms for simplicity)
1
fi,j-i-l,k = fi,ja kE+ f/iaja kAxQ + §f"i7ja kAiEg + O(AIC%),
1
fugovk = Fisgik— /i, kAws + 5 10,5 kA + O(Aad),  (287)
fi,j,k+1 = fivjv k+ fliajv kAt + O(Atz)v

Solving for the derivative terms at the candidate point f; ;1 gives
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af(lj,l‘g,t) f1+1jk fz 1,5,k —I—O(Al‘%),

Oxy 2Axq
3f(x81;:2’t) f”“;AxJ;” 2R 4 O(Ax}),
32f(2:;2,t) _ Jiv1gk — QZ;%’“ + ik | O(Az?), (5.288)
32f(9§:§$2,t) _ Jigrrk — QQ;%IC + fij-1k +0(A22),
8f($gt$2,t) _ fi,j,k+1At— fijk O(AY).

By substituting (5.288) into (5.285), we may formulate one equation for
the nodal probability density function (TPDF):

Jigher = figre _ [ fivrgk = fic1g
At 2 2A1;

} + 2Cwo fi 5,k

+ (2¢wom2 + wiT1 + 5371){ fig+1, ;Axlj‘,jﬂ,k }

4D figre — 2fijn + fij—1k
Az}

= Fi . (5.289)

)

The operator Fi, j, k is given by

2D
Fijr= {QCWO - Q}fi,j,k

T2
2A fz+1,jk 2A fz 1,5,k

[QCWOJ:Q +wi(x1 + ax?)] D
+ { 2Axs + Az3 ISR
[2Cwoze + Wi (21 + €x3)) D
— ik (5.290
x { 2Ax + Az3 URRE ( )

Equation (5.290) multiplied by At can be written as follows:

FijiwAt = ok fijn + qiv1 gk fiv1je + o1k fio1,5k

+ ik figeie i1k fijo1k, (5.291)
where:
o ;i =2CwoAt —2D-At
Qi 4k = 2CWo Aa?
_ At
® Q41,5 = TT23a,,;
At

L4 ai*l,j,k =T25 5, 2Az,
— 2 3 At At
® O jt1k = [QCwaQ + wo(xl + 61‘1)]2Aw2 =+ DAx%
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o i1k = —[2wors + i +erd)] AL + DAk

T1 = T1,min +iAI1, 1= O, 1,2,. ..
T2 = Tomin + jAT2, 7 =0,1,2,...

A more general finite difference approximation for (5.289) is the weighted
average approximation [183]

Puatr 2 Ik g, 4 (L 0)Fi (5.292)

where, in practice 0 < 6 < 1. § = 0 will give the explicit scheme, § = 0.5
is the Crank-Nicolson scheme and 6 = 1 is the fully implicit backward time-
difference method. The equations are unconditionally stable and convergent
for % <6<1.

Equation (5.292) can be transformed into an explicit finite difference iter-
ation scheme using 6 = 0

figerr = U+ aijr) figr + divrjpfivr e + cim1 gk fi-1,k
+ i1k fijrik + Q16 fi g1k (5.293)
Equation (5.293) is illustrated in Fig. 5.10.
Equation (5.292) will be rewritten to bring the terms “k 4 1”7 to the LHS,
and the terms “k” all at the RHS of the equation
Bijk+1fi g k+1 T Bit1,jk+1 it 15, k+1 + Bic1,jk+1fim1,5,k+1
+ Bijt1,k+1fij+1,k41 + Bij—1,k+1fij—1,k+1
= Bijrfige + Bivijrfivigr + Bicijrfi—ihk
+ Bij+1kfijrik + Bij—1kfij—1h 6,5, k=0,1,2,...  (5.294)

where

Bijk+r =1 — 01

* Bitrjk+1 = =01 k1
1
fijrs
P i
Qi jtlk :
LA
i1k 1+ ik Jigeik :
ai+1.j.kL
frfl-v/-k fu.l,k fis 1,j.k :
Qijo1k N
ftj—l,k'

Fig. 5.10. Finite difference explicit scheme
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o Bi—tjk+1 = 001 k1
o Bijrik+1 = —0iji1 k11
o [Bij—1k+1 = =01 kt1
o Bijr=1+1-0)

o Bitrk =1 —0)aitijn

L4 @:—1,] k= (1 9)% 1,5,k
o Bijtie=1—0)a; r1k
o Gijmin=1-0)a;;-1

5.9.4 Boundary Conditions Numerical Solution FPK Equation

Consider the SDE describing a time-depending discrete SDOF dynamic sys-
tem subjected to external (additive) Gaussian white noise given by

&y g1(z1,2) 0 }
) = 5.295
<CC2> [92(5101,%2)} * Lﬁ) ’ ( )
where the white noise excitation is fully defined by its first two moments
E{E(t)} =0, E{&(@t),&(t+ 1)} = 2D4(r). (5.296)

The discussion is partly based on [194]. The transition probability density
function feo(x1,xa,0|z1,22,t) = feo gives the probability, being differential
elements (x1,x2,21 + dx1,x2 + dxs) in the phase plane at time ¢, having
started from (z1(0),22(0)) at time ¢t = 0, satisfying the FPK equation

Ofa _ Olgi(w1,72) fea] — Olga(w1, 72) fe2] +D82f02
ot 0x1 Ox9 03’

(5.297)

with the initial condition
}er[l) fcg(l‘l, o, O|$1, o, t) = (5{1‘1(75) — l‘l(O)}é{l‘Q(t) — .132(0)}, (5298)

and the normalization condition
/ / fCQ(I'l,$2,0|$1,$2,t)d$1dx2 = 17 (5299)

together with
fea(x1,w2,0]z1, 22,t) = 0. (5.300)

|z1],|z2|—00

The theorem of the total probability can be obtained by using the following
equation:

f(xl,xz,t)zf_oo /_Oo F{21(0), 22(0)} foa (21, 29, 0|1, 3, £)dz1 (0)dra (0).
o (5.301)
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The stationary probability density function f(x1,x2) is
f(xl,xg) = t1i>Holo fcg(l‘l,l‘g,t). (5302)

When the finite element method is applied, all element matrices should be
assembled in the overall “mass” matrix [M] and “stiffness” matrix [K] and
the finite element representation of the FPK equation can be expressed

[M{f} + [K]{f} = {0}, (5.303)

where {f(z;,t)} is the vector of nodal probability density functions, with the
initial conditions f(x1,x2,0).

Example. Random initial conditions can be prescribed, for example as a
binormal probability density function

f(z1,22,0) = ¢<x1,0 - M1,0>¢<x2’0 - H2,o>’

01,0 02,0

where ¢() is the standard normal density function, p; o is the expected values
of the initial condition of x; and o; ¢ is the corresponding standard deviation.

The boundary condition for the stationary solution of (5.303) is discussed
in [103]. The system of n homogeneous equations is given by

K1} = {0}, (5.304)

where n also is the number of nodes in the computational mesh. The matrix
[K] has n x n and vector {f} has n elements. This system admits both the
trivial solution {f} = {0} and a nontrivial solution through enforcement of
the normalization condition.

The nontrivial solution is obtained by first fixing the probability density
function at the node corresponding to the origin as unity f. = 1. This degree
of freedom f. becomes constrained and is treated as an additional boundary
condition. The matrix [K] will be partitioned into set u, the unknowns, and

e = e R (2)=6) o

and (5.305) can be rewritten using the first set of equations

(Kuul{fu} = —[Kuclfe = —[Kuel; (5.306)

where the matrix [K,,] is obtained by removing the cth row and column
from the matrix [K] and we obtain matrix [K,.] from the cth column after
removing the cth component. The solution of the stationary FPK equation is
obtained by enforcing the normalization condition given in (5.299).
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An alternative method to solve the homogeneous set of (5.304) with the
constraining condition f. = 1 is by the introduction of the Lagrange’s multi-
plier A\ connected to the constraining condition as follows

0 1 0 A 1

The sets v and ¢ are extended by the Lagrange multiplier A, thus the total
number of degrees of freedom (unknowns) becomes n + 1. Afterwards the
normalization condition shall be applied.

In [108] a generalized Lagrange multiplier method is introduced and the
normalization condition (5.299) is now written as

le{f} =1, (5.308)

where |c| is vector of weighting elements. The system of n + 1 coupled equa-
tions (5.307) can now being written as

SO0 e

We eliminate of {f} from (5.309), and obtain the following two expressions

D) = TR

5.310
{F} = AK] " e, ( )

or ) »
{f= m[K] le]. (5.311)

The computational algorithm becomes

1. Solve [K|{f} = {c}.
2. Compute ¥ = |c|{f}.
3. Set {f} = {f}/¢.

Most of the computational effort spent, is solving the system [K]{f} = {c},
where [K] is nonsymmetric.

Problems

5.17. This problem concerns the diffusion in a bistable potential [85]. The
diffusion of in a bistable potential is represented by the nonlinear Langevin
equation (NLE)

& =z — ga® +£(t),
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where x(t) is the driven random variable, v = 1 is the positive friction coef-
ficient, g = 1 the parameter of nonlinearity. The driven random force £(t) is
assumed to be a Gaussian white noise obeying

(€) =0, (&B)E(t+ 7)) = 2¢8(),

where e = 0.5 x 107% is the diffusion coefficient.

The transition density function fei(xo|z,t) = fo will be calculated by
using the weighted average finite difference method, with 6 = 1 (fully implicit
backward time difference method and unconditional stable). The discrete tran-
sition density function in the z,¢ grid is given by

fer(@min + (0 — 1) Az, (k — 1)At), i,k=1,2,...,

where T, = —1, Tmaes = 1, representing zero transition density function
lim| ;| —oo fe2(zolz,t) = 0, and ty,0, = 10 s.

The probability density function f;(z,t) can be obtained from the follow-
ing equation

fi(z,t) = /_‘X’ fer(zol|z,t) f1(zo)dxo,

and the mean value of the variable x(¢) can be obtained from
(x) = / xfi(z,t)dz.
Carry out the following assignments:

e Show that the FPK equation of the NLE is given by

afcl _ 8 3 aQ.fcl

(9t - 7%[(71179‘% )fCl] +€ 81)2
and that also of 5 5
i _ Y P gJ1

9% 5o (1T — 98 ) fi] + e,

where lim;_.g fea(zo|z,t) = §(x — x0) thus f1(z,0) = f1(xo).
e The implicit backward time difference scheme, with f; x = f1(@min + (i —
Az, (k—1)At), i,k =1,2,...is given by

a1 fi—1,k+1 + a2 fik+1 + asfivip4+1 + fix =0,

Derive the coefficients a1, as and as.
.3
- o= [I5E0 + a2 lA
— ag = [~y +3g2?% — AQ;]At -1
.3
- = [+ A
- T = XT.
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e Solve the time difference scheme

a1 fim1 k41 + @2 fi k1 + a3 fixi k1 = —fik,

— fort=0-:tmaz, timaz = 4,5,6 and 10 s,
- Az =0.005 and At = 0.001, T = —1 and zpee = 1,

_ (wo—m)? 9
202 pu=0and 0 =1 x

— with initial condition fi(z¢) =
1076,
— and boundary conditions f(@min,t) =0 and f(Zmas,t) = 0.
e Calculate (x(t)) for ¢4, = 10,15 s using

o2

fi(z,t) = /_"0 fer(zolz,t) f1(wo)dxo,

and

(z(t)) = / T fi(z, t)da.

— 00

5.10 Applications

5.10.1 Vibrating Thin Plates Exposed to Acoustic Loads

Introduction

In this section we discuss the nonlinear dynamic behavior of a membrane
type structure, exposed to random acoustic loads. The deformation of the pre-
stress membrane will be represented using one assumed mode. The resulting
nonlinear SDOF equation of motion becomes a Duffing’s equation.

Vibration Theory Thin Plates

The partial differential equation of motion for a thin pre-stressed plate is given
by [77]

2
%}f;y,t) + DVV2w(z,y,t)
Pw(z,y, t) *w(z,y,t)
= p(2,y,1) + No =557 + Nay 900y
2
+n, e nt) (5.312)

y? ’
where

o w(x,y,t) is the deflection of the thin plate
e D= 12(5—5’/)2) is the bending stiffness

e F is Young’s modulus

[ ]

t is thickness of plate



5.10 Applications 395

v is Poisson’s ratio )
VIV, y, 1) = (gt 4 Sy
m mass per unit of area

p(z,y,t) is the random pressure field

N, is the normal pre-stress in z-direction
N, is the normal pre-stress in y-direction
Ngy is the shear pre-stress in z-direction

If the defection w(z,y,t) is a function of x,¢ only, than
w(z,y,t) = w(z,t). (5.313)

Equation (5.312) becomes the partial differential equation of motion of a bend-
ing beam
0?w(x,t) *w(z,y,t)
ot2 Ox?

w(z,y,t)
Oz? ’

=p(z,y,t) + N, (5.314)

where m is now defined to be the mass per unit of length. Due to the deflection
w(z,t) of the thin plate, a pre-stress will be built up [150]

- 1Et [*(ow(z,t))?

where 2L is the length of the plate. Substituting (5.315) in (5.314) yields

2
m@ w(z,t) D

8410(33,%75) A\ 82UJ($,y,t)
ot2 Ox?t ’

:p(x,y,t) +(Nx+Nac) ER)

(5.316)

The deflection w(x, t) will projected on one assumed mode ¢(z, t) as follows

w(z, t) = n(t)b(t) = n(t) sin(%), (5.317)

where 7(t) is the generalized coordinate. The sinusoidal function reflects more
or less the motion of a very thin (hinged-hinged) plate.
The following partial derivatives can be obtained:

ow(x,t) ([ m L
ar  \2r)“®\ar )
Pula,t) __(w\* (7w
ar2  \2x) "™\ar )
Pw(z,t) (T 8 T
ars \20) “®\a2r )

0*w(x,t) \' . (7
—= == sin|{ == |,
Ozt 2L 2L

(5.318)
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and the following integrals can be established
2L 52 2 2L 2
0*w(z,t) ™ x L . (7 ™
/0 ozz " <2L> {2+27TSIH<2L>}O <2L> ’
2L 2 2L
T xr L T
in( == dr ={= — —sin| — =1L 5.319
JoAm () e (e ()}, o 6319
/2L sin( 2% dac——%cos e QL_g
0 2L oo 2L), 7

The assumed mode (5.317) will be substituted in (5.316), (5.318) yields
the following ordinary differential equation of motion:

mii(t) sin(%) +n(t)D(%>4sin<%>
= pla,t) — n(t) (N, + N,) (%) : sin<£>. (5.320)

Multiplying (5.320) with sin(37) and integrating f02L all terms in (5.320) will

yield
2L 4 2L

. .92 T m .92 T

klad DL klad
mn(t)/o sin (2L)dx+ <2L) n(t)/o sin (2L>dm
2L

. [Tz

—p(xﬂf)/o &n(i)d:ﬁ

2 2L
- 77 T
— )Nz + No) | == sin® (= ) da. 321
n(t)(Na + I)(QL) /0 sin <2L)da: (5.321)
Using the results of (5.319) and dividing by L, (5.321) becomes

™

4 2
mii() + D(ﬁ) w0 = Lple.t) - (V. + K) (%) 0. (5.322)

Introducing (5.315) into (5.322) and using (5.319), we find in the following
nonlinear equation of motion

mil(t) + D(%)4n<t>

= %p(a?,t) - [Nx + % (%)QnQ(t)] (%)277(15), (5.323)

however, after further evaluation, the nonlinear equation of motion becomes

= %p(a’;, t). (5.324)
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Damping will be introduced in (5.324), (5.324) will give Duffing’s oscillator

.. . 4 p(x,t
i)+ 20woi(0) + R n(t) + e’ ) = TPED ey (5.305)
where
o wy=+k/m
3 s s
o k= 12(?,,2)(7) + N, (—L) and
c= Bz
E{wt)w(t+7)} =2Di(r).
The uniform membrane stress o, is given by
N, N, N, E/=\",
=—4+—==—+—=| = t). .32
O t+t t+4<2L)n() (5.326)

Random Pressure Load

The random white noise acoustic pressure p(t) has a constant double-sided
PSD function in the radian frequency domain S,(w) = S, or can be ex-
pressed as a single-sided constant PSD function in the cyclic frequency do-
main W,(f) = W, = 25,. The amplitude of the correlation function 2D can

be written ) )
T\~ Sp T Wp

Equation (5.325) has the general form

i+ g(@,x) =7+ B+ g1(x) = w(t), (5.328)

where g1(r) = w2 (z + ex?®) and 3 = 2(wy. Introduce the state-variables y; =
x =1 and yo = @ = 1. The solution of the joint probability density function
f(y1,y2) of the FPK equation of (5.328) is

p(y1,y2)

fyr,92) =Ce™ 0, (5.329)

where

Y1
P(y1,y2) = §y§+6/0 g1(s)ds

Finally the function p(y,y2) can be written as

p(y1,y2) = Cwoys + (w <?J1 + %) (5.330)

The joint probability density function f(y1,y2) can be expressed as follows

Fy,y2) = fi(yr) f2(y2), (5.331)
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where
o o vt
fi(y1) = Cre~ D Wit=), (5.332)
falys) = Coe™B*%3. (5.333)

The constants Cy and Cs can be derived from the relations ffooo filyi)dy; =1,
i = 1,2. To obtain the constants C; and C5 reference is made to Appendix B.
The following relations are defined

— .334
Oy 4(&)0’[712 ) (5 33 )
and ()25
2 _ \4/)%p
%= Ao (5.335)
Equations (5.332) and (5.333) become
4
2 — g Wi+
fily) = lLe AR (5.336)
0'25
e Ky (gm)
1 -5y}
fa(y2) = e 2% (5.337)

OV 2T ’

where K, (z) is the modified Bessel function of the second kind of order v
[125]. The function K, (z) is defined as

smM{I-v(2) — 1,(2)}

Kl, = ’
(2) sinvz
and o (%Z),,_,_QT
I, = _
(2) ZT!F(U+T+1)

=0

where I,(z) is a modified Bessel function of the first kind and order v.
When |z| is large enough and —n < phase (2) <7

™ 42 — 12 (4% —12)(4% - 3?)
K (2) =] e *|1
V() =/ { LT 21(82)2 +

(W2 =13 (w2 —{2r -3}
(r— 1)I(82)" 1 " }

T 4% — 12
K, ()= — 14+ ———7-+- ). .
e Ky(z)~ 4/ P < + 13> + > (5.338)

The frequency of positive zero-crossings vy (cycles) is given by [106]

then
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vy = fi(y1 =0) /00o Y2 fa(y2)dys. (5.339)

Applying (5.338), we can approximate the number of positive zero crossing v
vt = (1 + §a§s). (5.340)

The expected value of 1, E(n?), can be calculated with the following ap-
proximation

En?) = (n?) = /OO 22 fi(z)dr =~ o5 (1 + %aﬁa). (5.341)

— 00

A SDOF Vibro-Impact System

A SDOF vibration system is considered [91]. An elastic amplitude constraint
is placed under the mass as shown in Fig. 5.11. When the system is vibrating,
the mass m can move with limited amplitude as in a simple linear system
with a damper ¢ and spring stiffness k, but for a finite amplitude, the elastic
constraint will make its contribution. For simplicity, the constraint is modeled
by a non-linear spring ng(z) according to the Hertz contact law and the inertial
effect is neglected. The system is excited by a stationary random force &(t)
with a zero mean and correlation (£(t)&(t+ 7)) = 2m2D§(7). The equation of
motion is given by

mi + ck + kx + ng(z) = £(t), (5.342)
where s
zz x>0
x) = - 5.343
e {O " (5.3

k

x

% ng(x)

Fig. 5.11. SDOF vibro-impact system [91]
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and 7 is the contact stiffness, which is a function of the elastic properties of
the two contacting bodies.

The joint probability density function fo(x,z) = f, with & = v, ¢/m =
2(wp and k/m = w?, satisfies the time-independent FPK equation

of 2 N of . O*f

Vo = 2Cwo f + |2¢wo + wiz + Eg(x) 50 + DW. (5.344)

The resulting joint probability density function fo(x,v) is

_ w2 w2 n T du
folir,v) = Ce 7433 g Jy ot (5.345)

where o is given by
D
2

=— 5.346
00 2<w8 ? ( )

and the normalization constant can be determined by the normalization con-
dition

/_O:o /_: fo(, v)dwdo = 1. (5.347)

The normalization constant becomes
z+2i (=" i¢7(4n+2)/51ﬂ dn +2
2 5 o n! 27 5

where the non-dimensional contact stiffness, or non-linearity parameter 1 is
given by

C~! = V2rowy ., (5.348)

= 2V (5.349)

5 -
dSmwy

The exact stationary solution of the FPK equation for the vibro-impact prob-
lem is then

2 22 £5/2
o T5e2oZ 202 VA -0
€ o, T2V
ol v) = (5.350)
T 202w2 202
Ce 83 2% z < 0.

From preceding analysis, the separated first order probability density func-
tions for the displacement x and the velocity v are

22 £5/2
T3 VAR <0
fla) = CVEmoooe T w20 (5.351)
C\/ZWUOwoe_Q, x <0,
and
1 3%
f(v) 2700 . (5.352)

= —€
vV 27‘1’0’00)0
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Mean value
0 T T

/co

2 4 6 8 10

Fig. 5.12. Normalized expected number of positive zero-crossing f of stationary
response

The mean value of the displacement x, u,, is as follows

1y 3 4
P L DD e L U )
xr —1)n _ *
VB + § T S ey O (2]
When the stiffness of the constraint is reduced to zero, i.e. the system is linear,
it can be proved that u, equals to zero. The normalized mean value u, versus
1 is plotted in Fig. 5.12. When the stiffness becomes very large the mean
value approaches a finite value

2
lm p, = —\/jao. (5.354)
Pp—00 ™

2
T

2500 (=D" 1 . —(4n+6)/5 o 4n+6
2—0—2\/§+3Zn20 n! 271/’(”+)/F( n5 )
x — Y0 —_1)n _

VE+ 0 S g ()
If ¢ approaches to zero, the variance o, — 0. The normalized variance versus

1 is plotted in Fig. 5.13. When 1 approaches infinity, o2 approaches a finite
value

(5.353)

The variance of the displacement x, o2 can also be found exactly

— uZ. (5.355)

g

2
lim o2 = of <1 - W). (5.356)

P—00
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Variance

0.8f v : 1

2
0

051 b

0.4 i i i i
0

Fig. 5.13. Normalized expected number of positive zero-crossing f0+ of stationary
response

Let Vg' be the expected number of positive zero-crossings per unit (ex-
pected frequency) of time

(o)
VSL:/ v f2(0,v)dv. (5.357)
0
Then
U wo V2T
D R S g R/ (i)

When v approaches zero, it can be proved that 1/0 — ‘2"—73
positive zero-crossings per unit of time is defined by fo 27r1/0 /wo. The
normalized expected frequency fo+ versus 1 is plotted in Fig. 5.14. When v
approaches zero, it can be proved that the normalized expected frequency
f(;" approaches 1. As 1) increases, fa' also increases since the system is now
becoming more rigid. The limiting normalized expected frequency is found to
be 2 simply by taking the limiting value of (5.358). The positive crossings at
a level x = a can be obtained as follows

(5.358)

The normalized

—a?

+ _ Wo V2rme? o
Vo = 5= —n :
VRS PINRE o A
An increase in the spectral density 2D of the excitation corresponds to an

increase of the input energy, i.e. amplitude in some sense, and the non-linearity
parameter ¢ will increase.

(5.359)
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Normalized positive zero—crossings (expected frequency)
1.7 T T T T

Fig. 5.14. Normalized expected number of positive zero-crossing f of stationary
response

The impact oscillator can also be viewed as a limiting case of a vibration
system with bilinear spring, a spring with different stiffnesses for positive and
negative displacements. If one of the stiffnesses approaches infinity, the system
becomes an impact oscillator.



A

Simulation of the Random Time Series

The simulation of random time series is discussed in [25, 129, 170, 179, 180].
In this appendix we discuss the efficiency of fast computation of the random
time series. The analysis is based on [128, 129]. If 1 (w) is the one-sided PSD
of the desired signal z(t), then x(¢) may approximated by

=2 Z (wn)Aw] e os(wnt — Pn), (A1)

where ¢,, are uniformly distributed random numbers on the interval (0 — 27)
and w, = nAw and Aw = wpes/N. Wiae is the maximum frequency in the
power spectrum @1 (w), and N is the total number of terms in the summation.

A considerable improvement in the computational effort can be obtained
by recasting (A.1) to allow the use of the Fast Fourier Transform (FTT). To
accomplish this, (A.1) may be written as

[\[ Z (wn) Aw] 3l (wnt= ‘b")]. (A.2)

If the simulated time series x(t), is needed only at discrete values of time ¢,
let @, = x(ty) = x(kAt), where the time duration between the equally spaced
samples is At. Evaluation of (A.2) at time t = ¢} gives

N-1
a(ty) = w(kAt) = R [\/5 > [@i(wn)Aw}%ej(‘”“km_‘b")] . (A.3)

n=0

To satisfy the Nyquist sampling criterion, the time series, z:(t), must be
sampled at a high enough rate to obtain two samples during one period of
the highest frequency component w,y,,, of interest in the original PSD &4 (w).

Hence, At is chosen to be
T

At <

wmaz

(A4)
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The term w, kAt in (A.3) can be rewritten as follows

Winaz T nk2w
wnkAt = nAwkAt =n N kwmw = SN (A.5)

Thus (A.3) can expressed in the following form

x(kAt) = \/_Z [®L(w BemitnelaNT | (A.6)

Equation (A.6) may be evaluated using the FFT algorithm. given a discrete
sequence a.,, the FFT provides an efficient means of computing Ay, where

A=Y 4,5, k=0,1,2,...,N 1. (A7)

Equation (A.6) may be evaluated using the FFT by defining a sequence

= [0l (w)Aw]Ze %" n < N —1,

A.8
=0, n>N. ( )

Equation (A.6) may then be written as

2N-1

z = 2(kAt) = [\/_Zane Rt ] k=0,1,2,....,2N —1.  (A.9)
In finding the real part of (A.9) we may use the complex conjugate! of the
right side of (A.9) to give

2N—-1

= 2(kAt) = [\/_Zan @52"] k=0,1,2,....2N — 1. (A.10)

This is equivalent to
zr = V2R[FFT (ay)]. (A.11)
Note that the length of the sequence a,, is 2N.

The PSD function ¢! (w) can be reconstructed using the following expres-
sion

\IFFT () ?

1
=2
" Aw

k=0,1,2,....2N—1, n=0,1,2,...,N—1, (A.12)

where IFFT is the inverse Fast Fourier Transform.

b cosu = R[] = Rle™7].
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Table A.1. Random vibration specification [30]

Frequency (Hz) W(f) ¢*/Hz
20 0.018

20-125 1.68 dB/oct
125 0.05

300 0.05
300-2000 —3.12 dB/oct
2000 0.007

Overall 6.33 Grms

Simulated random time series (N=500, f_max=2000Hz)

Acceleration (g)

Time (s)

Fig. A.1. Simulated random time series from Table A.1

If the product ¢l (w)Aw is replaced by Wl(f)Af, (A.12) can be written
as follows

IFFT 2
WFFT () k=0,1,2,...,2N-1, n=0,1,2,...,N—1, (A.13)

where W(f) is the PSD function in the cyclic frequency domain and f is the
cyclic frequency (Hz).

Example. The enforced random acceleration spectrum is specified in Ta-
ble A.1. This random acceleration spectrum will be simulated by a random
time series. The number of terms in the time series is N = 500, and the max-
imum frequency of interest is f,4; = 2000 Hz. The simulated random time
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PSD function

W () gh2/Hz
o
o
b

I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency (Hz)

Fig. A.2. Reconstructed PSD W (f) from Fig. A.1

series is shown in Fig. A.1. The reconstructed PSD function W(f) from the
random time series in Fig. A.1 is shown in Fig. A.2.

Problems

A.1. This problem is taken from [180]. The PSD function is given by

«
Wolf) = Wo—sr ) 0< f< fu,
O(f) 0042—|-f27 _f_f
where
1
Wo=—
[arctan%}

where f, =40 Hz and o = 4 Hz.
Carry out the following assignments:

e Simulate the random time series
e Reconstruct the original PSD function from the random time series.
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Tables of Integrals

The solution of the type of integral

BN NTE R,
= o /_oo Hy (o) Hy (=) B

with the Hurwitz polynomial

H,(jw) = ao(jw)" + a1 (jw)" "' + -+ ay (B.2)
and
G (jw) = bo(jw)* ™Y + by (jw)> ™= 4 by (B.3)
is given by [43, 74, 171]:
d Il = 2ab00a1
agby _p
i I2 = ;Zoal -
boaeraOZlbz —aopby
¢ 13 = 2a0(a1a23—a0a3)
bo(—a1a4+a2a3)—a0a3b1+aoa1b2+ﬂa)ﬂi(agag—alag)
o [y= 4

2a0(a0a§+afa4fa1a2a3)

The solutions of (B.1) will be used to solve integrals of this type in the
course of the book.
The integral

° 1
———dw, (B.4)
/_oo [ Hy (jw)|?
with the frequency response function
Hy(w) = —w® +wi(1+jg), (B.5)

cannot be evaluated using (B.1) if n = 2, I is not defined because a; = 0.
The integral (B.4) can be obtained using the residue theorem [195].
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Table B.1. Accuracy of (B.7)

<1+g2)0,25
g _cos(0.5g)
0.01 1.000
0.05 1.001
0.10 1.004
0.50 1.091

- . (B.6)

/OO 1 o 7 cos(0.59)
oo [Hg(jw)[? 29w (14 g2)0-2

When the term g < 1 (structural damping coefficient) then

/OO L4 T (B.7)
- BES . .
oo [Hy(j0)[? 29098

The accuracy of (B.7) is illustrated in Table B.1.

Some Definite Integrals
The following definite integral is of interest [17] for the calculation of the
mean square response:

w2 dw
o= TP + B
{w2+2w2m+1 [W? —2wi/1—(2+ ]}
8\/1——C2 (w2 — 2w2+/T — 2+ 1][w? + 2w /1 - (2 +1]
2Qws 2Qwy

— arctan . B.8
— w3 1—w? (B.8)

{arctan

%

Error Function erf(z)
A numerical approximate procedure for calculating the erf(z) is discussed

n [113, 114]. The error function erf(z) is given by erf(z) = % [ eV dy.
The numerical approximation is as follows
ko 2k+1
__T EkoQk YT 0<z <2
erf(;c):{l_e C52—(1(2 +11 Y 2<g<on (B.9)
N 222 /) .

where ()!! is the double factorial defined as follows

" 1, n=0orn=1; B.10
()t = nn—2)1, n>2. (B-10)

Some identities of double factorials are

(2n)!l = 2"n!; (B.11)
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and
(2n 4+ 1)!
2nn|
The maximum absolute error of (B.9) is 0.0047% and the maximum relative
error is 0.470% [113], which is satisfactory for engineering purposes.
Another approximation of the error function is discussed in [231] and given
by

(2n + Il = (B.12)

0.30121 + 0.4916122 + 0.9181123 — 2.3534 1%
erf(z) ={  —3.330712° + 15.652412° — 10.7846a7, 0.13 < 2 < 0.96;

L, 0.96 < z.
(B.13)
In [192] more details about calculating random vibration integrals are dis-
cussed.

B.1 Approximations of Inverse Transform of the
Standard Normal

If X = \/LQ—ﬂ ffoo e_yzdy is expressed by X = F(x) then the inverse value
= F~!(X) for the standard normal can be approximated as follows [20]

o po + 12t 4 paz? + p3zd + pazt

o , B.14
qo + q12' + q22% + q32® + quz? (B4
where z = y/—log([1 — X]?), and
po = —0.322232431088

p1=—1

po = —0.342242088547

ps = —0.0204231210245

pg = —0.0000453642210148
qo = 0.099348462606

q1 = 0.588581570495

q2 = 0.531103462366

q3 = 0.10353775285

q4 = 0.0038560700634

This approximation has a relative accuracy of about six decimal digits and is
valid for 0.5 < X < 1. The symmetry of the normal allows us to extend it to
0.0 < X < 0.5 by the transformation X =1 — X and z = —x.

B.2 Integrals of Probability Density Functions

Solutions of the joint probability functions from the FPK equation are in
general exponential expression. Integral for of these exponential functions are
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given.

- e dy = 2 /00 e dy = g, (B.15)

—o0 0
/OO ze " dy = 2/00 ze™ " dy = 2, (B.16)

—oo 0
/OO 22" dy = 2/00 22e™" dy = i g, (B.17)

—o0 0
/_OO alem dy = 2/000 glem dy = 43? g, (B.18)

o 1
/ sy 2/ R a—%(n+1)p{§(n + 1)}. (B.19)
—00 0

When z is real number and n is an integer, than

ra) =1, F(%) =/, I'(z+1) =zI(2), I'(n) =n! (B.20)

0o e} 4/Q 5 a
/ e—al@®+bz) g0 2/ e—alz®+bat) go M (B.21)

0 2% ’

where K, (z) is a Bessel function of the second kind and v order [125].

/oo xe—a(az2+bw4)dx — 2/00 xe—a(a:2-i-ln:4)d:r
oo 0
s otV
= 1—erf — ). B.22
2ab I (B.22)

> 2 4 > 2 4
/ $26—a(x +bx )d.”L' — 2/ xQe—a(x +bx )d,’E
0

Sl (@) - () oo

— 00

— 00

° 2 4
/ x4e—a(;c +bx )d.’I}
—o0

_ 2/oo glema@beh) g

0
4%657' a a 2b a

=2 __Ks|—)|—-Ki|—|—-—K:—]]. B.24
16b2\/4ab[ %<8b> Z<8b> a Z<8b)] (B.24)
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Some Fourier Transforms

The following Fourier transforms are to be solved

h(t) = % /_OO H(jw)e’ dw, (C.1)
and | oo
R(t) = o [ H (jo) 267" dw, (C.2)
with 1
H(jw) = (C.3)

w2 — w? 4+ 2jCwwy,

The integrals (C.1)and (C.2) will be evaluated by using the theory of complex
functions [195]. Apply the residue theorem to evaluate the integrals. Let f(z)
be single-valued and analytic inside and on a simple closed curve C except
at the singularities a, b, c, ... inside C' which have residues a_1,b_1,c_1,....
Then the residue theorem states that

fcf(z)dz =2mj(a_1 +b_1+c_1+--), (C.4)

i.e. the integral of f(z) around C is 27 times the sum of the residues of f(z)
at the singularities enclosed by C.

To obtain the residue of a function f(z) at z = a the following equation
with a pole of order k can be applied.

1 dk—l

a-1 = lim mm{(z—a)kﬂ@}. (C.5)

If K =1 (simple pole) the result of the residue is
a_1 = lim(z —a)f(z). (C.6)

z—a

The poles of (C.3) are
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Wl—wnJC V]-_Cz
w2:wn]<+\/1_<2'

Calculate two residues associated with the poles w; and ws. The first residue
a_1 can be calculated as follows

(C.7)

it eiwn (iC—/1-C21)
a_1 = lim (w—wp) = (C.8)

o, (W—w)w=-ws)  —2w,/1—-C

and the second residue b_; becomes

ej“"t ejwn(.jc+ V 17<2t)
b1 = lim (w—ws) = . (C.9)

w—wsy (CL) - W1)(UJ - ("')2) 2wn V 1- 42

Solve the definite integral of the type ffooo f(x)dx. The contour integral
(C.4) can be written as follows

]if(z 2= lim [/ o dx+/f } (C.10)

where z = z + jy, I' the semi-circle with radius R. If |f(z)| < Rk for
z = Rel? Where k > 1 and M is a constant then it can be proved that
limp oo [~ f(2)dz = 0 [195].

The 1ntegral (C.1) can be solved

h(t) = i/m = j(atb), (C.11)

21 J_oo w2 — w2 + 2jCwwn
The sum of the residues a_; + b_1 becomes
efwn(t ) ‘
a1 +b = ————=[-eV 1-¢%t ern\/lcht}
2wn/1- 2

e_wn Ct

= ————jsin(w,/1 — ¢21). C.12
Integral (C.11) becomes finally
1 [ edwt

h(t) = —
®) 27 J_ oo w2 — w? + 2j5Cwwy,

efw"(t
= ——————sin(w, /1 — (%1). (C.13)

wny/1—¢?

The result of integral (C.13) was expected because it is the impulse re-
sponse function of a damped sdof system.
Now the integral (C.2) is solved. The FRF |H (w)|? can be written as
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|H(w)]* = H(w)H (-w), (C.14)
and the four poles of |H (w)|? are:

(C.15)
w3 = wp(—j¢ —/1— C 2)
Wy = Wnp _.7(+ Vl_CQ .
The contour integral 390 z)dz is only applicable for the positive side of
the imaginary axis and therefore the solution of (C.2) will be
1 [~ -
<Mﬂ:§—/,|H@M%W%w:jw1+h) (C.16)
7(- — 00
The residues a_; and b_; can be calculated as follows
fin (1) c17)
a_1 = lim (w—w , .
TS ! (w—w)(w—w)(w—ws)(w— wy)
and
ejwt
b_1 = lim (w—ws) (C.18)

wow (W—w)(w—w)(w —w3)(w —wa)

Substituting the poles w; and wy of (C.15) in (C.17) and (C.18) the residues
become

eiwnli¢—y/1=C?t

a_1 = (019)
(_2wn V 1- Cz)@anC 2"‘)71 ]C V 1- CQ
and
donliCHy/T-Ct
b_1 = - - . (C.20)
(—2wn /1 = (2)(2jwn () (2wnliC + /1 = ¢?])
The sum of the residues a_; + b_; can now be obtained
b e—wn(t
a_1+0-1 = -
(2wn /1 — ¢?)(2jwn()(2w2)
X [2wn /1 = (2 cos(wp\/1 — (3t)
+ 2w, sin(wy /1 — 3t)]. (C.21)
The final solution of (C.2) becomes
R(t) = j(a,1 +b_1), (C.22)

and substituting (C.21) into (C.22) the following expression can be obtained

e—wnlt

- — 2
T, cos(wn 1 Ct)—l—

R(t) = sin(wn /1 — Cgt)] t>0.

(C.23)

¢
1-¢2
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Problems

C.1. Find the Fourier transform F'(w) of the function

!
R

ft)

using contour integration.
Answer: F(w) = [T f(t)e *tdt = Felvl.
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Modal Effective Mass

A flexible linear structure is idealized as a finite element system with N degrees
of freedom (DOF). The undamped equations of motion of the MDOF dynamic

system are
[MI{E(t)} + [K{x(t)} = {F(t)}, (D.1)
where

[M] the mass matrix

[K] the stiffness matrix

{Z(t)} the acceleration vector
{z(t)} the displacement vector and
{F(t)} the external force vector.

The interface DOF'S are denoted by {z,(t)} (r-set) and the internal DOFS
by {x;(t)} (i-set). The interface DOFS describe the six motions as a rigid
body: three translations and three rotations. The six rigid body motions may
be introduced in one node with six DOFS. The interface DOFS constitute
a determinate interface. Partitioning the equations of motion (D.1) into the
r-set and i-set we find in the following equations

MT’I‘ Mri j}7‘ (t) + Krr Kri -Tr(t) _ FT (t) (D 2)
M. My | | Zi(t) Ky K| \@@) )\ F@®) [ '
The physical displacements are expressed as a superposition of rigid body

modes [®,] and elastic modes [@.] multiplied by the associated generalized
coordinates x,(t) (r-set) and 7, (t) (n-set) respectively

(ol = 2, 0} + B0} = { DL 0

We can obtain the matrix of rigid body motions @, from the stiffness
matrix (D.2), ignoring the inertia terms and F;(t), from the second equation

[Kyil{z, } + [Kiul{z:} = 0. (D.4)

J. Wijker, Random Vibrations in Spacecraft Structures Design,
Solid Mechanics and Its Applications 165,
© Springer Science + Business Media B.V. 2009
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From (D.4) we can derive a relation between the internal and external DOF's
if there is no load applied to the internal DOF's, hence {F;} = {0}

{23} = —[Ku] MKril{a,} = =[Ku] K] [1) = = [Kul 7 K] = [60].
(D.5)
The complete rigid body modes [®,.] become

] = [ ﬂ - (D.6)

If the r-set DOF's are constrained {z,} = {0} the elastic vibration modes
can be obtained with respect to the external DOF's from the eigenvalue prob-
lem

(—wi[Mii] + [Ki]) {ow} = {0}, (D.7)

where w? is the k-th eigenvalue with the associated eigenvector {¢y}.
The matrix of the elastic vibration modes [®.] is

2= o]~ [on an T on) 03

The introduction of the modal matrix [¥] of (D.3) into (D.2) leads to the
following equations of motion expressed in terms of the external and general-
ized DOFs, {z,(t)} and {n,(¢)}

el O {0 e

where

o [My] = [®,]T[M][®,] the rigid body mass matrix with respect to the r-set
o [K][®,] = [0] the rigid body force vector

o [L]T =[®,]T[M][®.] the modal participation factors

o [m] = [¢;]T[M][$;] the generalized masses

o [k| =[¢:]T[K][¢:] the generalized stiffness.

o {F(t)}=I[o]"{F(t)}

Introduce the modal damping ratioin the uncoupled equations of motion
of the generalized coordinated 7y (¢) then the second part of equations of (D.9)
will become

.. . - Lk ir t

ik () + 2Cpwrni (t) + wink(t) = %}c()}, k=1,2,...,n. (D.10)
The number of modes {¢x}, k¥ = 1,2,...,n is in general much less than
the number if internal dofs i. The Fourier transform of (D.10), using n(t) =
II(w)e’“t, can be written as

(—w® + 2w + wi) i (w) = —_{Lk};if’“(“)}, k=1,2,...,n, (D.11)
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and if IT;(w) is made explicit then

Hk(w):Hk(w)M, k=1,2,...,n. (D.12)
my

where Hy(w) = (—w? + 2jCrwi + w?) L. Use the following expression II), =
*WQHk-
The first part of equation in (D.9), an equation applicable for the external
dofs z,.(t) is
[Mo]{ir} + [L]7{ii(t)} = {Fr(1)}- (D.13)
If (D.11) is substituted in the Fourier transform of (D.13) with I, =
—w?II}, then

([Mo] +w? ) Hi(@){ L) {Lk}>X,.(w)} = F.(w), (D.14)

m
k=1 k

([MO] +wQZHk(w)[Meﬁ7k]>X,«(w)} = F(w), (D.15)
k=1

where the 6 x 6 modal effective mass Mg ), is defined as

(Mg ) = AL (D.16)

my

The mass matrix [My] can be expanded as the sum of the modal effective
masses Mg

i

[Mo] =) [Megyi]

k=1
(@17 [M][@]([e]" [M][e]) ™ (D] [M][&]
= [,]"[M][®,]. (D.17)
The inverse of the modal matrix [@.] exists, if all modes {¢x}, k =1,2,...,1

are calculated!

The modal effective mass matrix [Mecg 1] of mode k is the fraction of the
total static mass [My] that can be attributed to this mode.

The residual mass matrix [M,s] is defined by

[Mres] = [MO] - Z[Meﬁ,k]v (D18)

where n is the number of kept modes n < i, where 7 is the total number of
degrees of freedom.
Finally (D.15) can now be written
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n

Y AIMeg ] (1 + & Hyy () HX (@)} = {Fr (@)}, (D.19)

k=1

Equation (D.19) shows the relation between the reaction forces { F,-(w)} at the
location of the determinate supported structure excited by enforced accelera-
tion {X,(w)}. This equation will be used in combination with Miles’ equation
to calculate the rms reaction forces of an elastic structure exposed to random
dynamic enforced acceleration. The term between the curly brackets is called
the dynamic mass matrix

[Mag(w)] =Y [Meg i) (1 + w?Hy(w)). (D.20)

M=

e
Il

1

Using the concept of modal effective mass we can decompose a MDOF
structure into a series of SDOF systems. The discrete mass reflects the modal
effective mass meg,, with corresponding angular natural frequency wy,, spring
constant k, = w%meﬁm, modal damping ratio ¢, and the damping constant
cn = 2CuwnMmep n. The representing series of SDOF systems is called the
asparagus model of the structure [39]. This is illustrated in Fig. D.1.

More about the modal effective masses can be read in [151, 172].

Example. This example is taken from [86]. Consider the two degrees of free-
dom dynamic system shown on Fig. D.2. The parameters have the following
values, the discrete masses are m; = 2 kg and mo = 1 kg, the spring constants
are k1 = 1000 N/m, k2 = 2000 N/m and k3 = 3000 N/m. Calculate the modal
effective masses.

The homogeneous equations of motion are

mq 0 T I k1 + k3 —ks T\ 0
0 mo To —k3 ko + k3 o) \O)"°
The eigenvalue problem will yield the natural frequencies (Hz), f; = 4.78 Hz
and fo = 12.43 Hz. The corresponding vibration modes [®.] are

Meff,1 Meff2 Meff,3 Meffn

2 5503

I =T F]
Interface Interface

Asparagus model of structure

Fig. D.1. Asparagus patch model [39]
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Z9

‘ ma

ko

e

e
my

ki

Fig. D.2. Two degree of freedom system

(@] = 0.6280 —0.3251
7104597 0.8881 /°

The generalized (diagonal) mass matrix is expressed by

fma = "M = (7).

where [M] is the mass matrix. The vibration modes have been scaled so that
the generalized mass matrix becomes the identity matrix.
The rigid body vector {&,.} can be easily generated

(@} = G)

The modal participation factors are given by

L= {¢e,k}[M]{¢r}a k=1,2.

thus Ly = 1.7157 and Ly = —0.2379. A modal participation factor represents
the coupling of the vibration mode with the motion as a rigid body.
The modal effective mass is given by

2
Meff k= Lk
© o my(k, k)
The results are presented in Table D.1. The sum of the modal effective masses
equals the total system mass.

The absolute value of the dynamic mass |md| is presented in Fig. D.3.
Notice that, at the first natural frequency, the dynamic mass is very high.

k=1,2.

Problems

D.1. Calculate modal effective masses for the dynamic system shown in
Fig. D.4 shall be calculated. The discrete mass parameter m (kg) and spring
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Table D.1. Modal effective and residual mass

Mode Natural frequency Modal effective mass Residual mass
(Hz) (kg) (kg)

1 4.78 2.944 0.056

2 12.43 0.056 0

Total mass 3

Dynamic mass

Frequency (Hz)

Fig. D.3. Dynamic mass, modal damping ratio ¢ = 0.05

8

Fig. D.4. Dynamic system 8 DOFs



D Modal Effective Mass 423

Table D.2. Calculation of the modal effective mass

Mode shape Natural Modal Generalized Modal effective
#* frequency Participation mass mass
(Hz) Ly my, megr (kg)

1 24.5422 5.5874 1.5746 19.8271
2 31.1052 0.0000 1.0000 0.0000
3 36.6716 2.7421 1.9255 3.9048
4 64.4657 3.7104 5.0429 2.7300
5 81.4344 0.0000 1.0000 0.0000
6 82.0637 0.7400 1.0989 0.4983
7 95.9164 3.8552 7.2863 2.0398
Total mass (without mg = 10) 29.0000

stiffness parameters k¥ (N/m) are m = 1 and k = 100000 respectively. The
constrained degree of freedom is xg = 0. The answers are shown in Table D.2.

D.2. During s sine qualification vibration test of a complete spacecraft, with
a total mass M = 6100 kg, the constant enforced acceleration is U (f) =
12.5 m/s? in the frequency range between 20-100 Hz. The most significant
vibration mode (mode 1) in the axial direction has the following properties:

The natural frequency is f; = 36 Hz.

The modal effective mass is meg,1 = 2000 kg.

The generalize mass is m; = {®1}T [M]{®,} = 1. [M] is the mass matrix
and {&;} is the vibration mode.

Modal damping ratio ¢(; = 0.02

Maximum modal displacement {&;} is 0.05.

Perform the following assignments:

Calculate the modal participation factor L.

Set up the two equations of motion expressed in terms of the enforced accel-
eration ii(t) = U(w)e’* and the generalized coordinate 7, () = IT(w)el*t.
Calculate the acceleration of the generalized coordinate IT(2736).
Calculate maximum physical acceleration apqqz,1-

Calculate dynamic mass |mq(2736)|.

Calculate reaction force |F,.(2736)| = |mg((2736)) * U(2736)| or (D.19).

Answers (partly): Ly = 44.7214 kg, I1(2w36) = —1.3975 x 10%), |amaz1| =
6.9877 x 102 m/s2.
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Thevenin’s and Norton’s Theorems
for Equivalent Linear Mechanical Systems

The theory discussed in this appendix is based on [48, 193]. In Fig. E.1 the
configuration of a load on its mount (source or foundation) can be idealized
as a simple 2DOF harmonic oscillator. Here mq and msy are the source and
load masses, respectively, and Z; and Z, are the source and load impedances,
respectively. When using a mechanical impedance formulation, it is convenient
to analyze the idealized 2DOF system using Thevenin’s and Norton’s theorems
about equivalent linear mechanical systems.

Thevenin’s theorem states: At a given frequency, any linear system of
loads and sources may be reduced to a simpler system consisting of a single
constant-force source in parallel with a single impedance connected to the load.
Rephrased, Thevenin’s theorem stated that insofar as the load is concerned,
the source can be considered as an equivalent force driving an equivalent
source impedance in parallel with a single impedance of the load, (see Fig. E.2).
The equivalent force is given by the force at the interface when the source is
driving an infinite load (blocked force). The source equivalent impedance is
the source impedance measured with the forces removed.

Norton’s theorem states: At a given frequency, any linear system of
loads and sources may be reduced to a simpler system consisting of a single

Z .
Substructure 2 Load

ms

n
| Interface
rucs > Z ~ .

Structure ! Source (Foundation)

my

y!

Fig. E.1. Idealized 2DOF system

J. Wijker, Random Vibrations in Spacecraft Structures Design,
Solid Mechanics and Its Applications 165,
© Springer Science + Business Media B.V. 2009
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Load impedance

Equivalent Source Impedance

4@7

Blocked Force

Fig. E.2. Thevenin’s equivalent system

Load impedance

Equivalent

Source Impedance

m

Free Velocity

Table E.1. Impedance definitions

Fig. E.3. Norton’s equivalent system

Name Symbol Definition Alternative names
Dynamic stiffness K F/x Dynamic modulus
Mechanical impedance Z F/v

Dynamic mass m F/a Apparent mass
Flexibility «@ z/F Receptance compliance
Mobility Y v/F Admittance
Accelerance A a/F Inertance

constant-velocity source in series with a single impedance connected to the

load.

Rephrased, Norton’s theorem states that insofar as the load is concerned, the
source can be considered as an equivalent velocity (motion) driving an equiv-
alent source impedance in series with the load (see Fig. E.3). The equivalent
velocity-source is the interface velocity when the load is removed (in the free
velocity). The source equivalent impedance is the source impedance measured
with the motions removed.

Investigations in vibration mechanics are often described in terms of me-
chanical impedances. In Table E.1 the definitions of impedances are summa-

rized.
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The 2DOF system illustrated in Fig. E.1 is transformed into a equivalent
mechanical system using Thevenin’s theorem. All parameters are defined in
the frequency domain. This equivalent mechanical system is shown in Fig. E.2.
From this equivalent system it follows that

Fo = U(Zl + Zg), (El)

where Fy is the blocked force, v is the interface velocity with the load at-
tached, and Z; and Z, are the source and load impedances, respectively.
The associated acceleration is given by a = jwv. Furthermore, if no load is at-
tached to the interface, the free velocity vy and the associated free acceleration
ag = jwuy, are related to the blocked force by

Foy = Zivg (E.2)

All parameters are in the frequency domain. Thus the following relation
can be written 0 a
- =2 jw. (E.3)
v Vo

Combining (E.1) and (E.2) yields the following important relation
a= 1‘17022 (E.4)
Tz
where « is the interface acceleration and ag is the free acceleration (accel-
eration resulting from no restraining forces at the interface). Equation (E.4)
shows that the interface acceleration a is a function of the source and load
impedances, Z; and Zs, respectively.

During a vibration test on a shaker the shaker provides an input acceler-
ation that is largely independent of the dynamic characteristics of the source
and the load, an input corresponding to the free acceleration to the free ac-
celeration ag. That means that the impedance of the source Z; — oo. The
shaker acts as an infinite impedance source.

The 2DOF system (Fig. E.1) can be reduced to Norton’s equivalent me-
chanical system (Fig. E.3). Applying Norton’s theorem yield

1 1
w=r(5+5) (£.5)

where vg is the free velocity and F' is the interface force.
From the previous equations (E.1), (E.3) and (E.5) the impedances can
be eliminated and the following relation can be derived
v F
—+ =—=1. E.6
Vo + FQ ( )
The ratio of the interface to free velocity can be replaced by the corresponding
ratio interface to free acceleration in (E.6) to derive
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a F

. + B 1, (E.7)
where a and F' are the interface acceleration and force, respectively, and ag is
the free acceleration and Fj the blocked force.

Equation (E.7) provides the basis for exact dual control of the source load
vibratory system shown in Fig. E.1. It appears that dual-control vibration
test, which involves limiting force levels as well as acceleration levels at the
input to the test item, is a viable solution for improve overtest conditions on
a variety of hardware as applied in the force-limiting vibration testing.

Problems

E.1. A SDOF system has a discrete mass m, a natural frequency wy and a
damping ratio ¢. The SDOF is loaded by a harmonic force F(w). The harmonic
displacement of the mass is denoted by X (w). Derive the impedance Z(w) of
the SDOF system.

Answer: Z(w) = —j(—w? + 2jCwow + w3) /mw.

E.2. Derive the following relation, [29]

2

WFF(f) = A (f)MQ(f) Wagao (f)7

I M(f) + Ma(f)

where M1 (f) and Ms(f) are the apparent masses of source and load, respec-
tively, Wrp(f) is the interface force spectrum and W, ., (f) is the accelera-
tion spectrum at the interface of the unloaded structures (free acceleration,
the acceleration resulting from no restraining forces in the interface).
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Lyapunov’s Equation

Let [A] be an 2n x 2n matrix of real or complex terms a;; and suppose that all
eigenvalues of [A] lie in the left half-plane. f(¢) is an 2n-component column-
vector with the following property

B{fH [t~} = [Bfi(thf;(t — )] = [Cla(7), (F.1)

where §(7) is the delta-function and the Hermitian matrix [C] is positive
semi-definite.
x(t) is a stationary stochastic process defined by

{2(0)} = [A{=z@)} + {f(®)}. (F.2)
Then the expected value of z(t) is [65]
El{z(tH{a(t — m}7] = lT[M], (F.3)

where the 2n x 2n covariance matrix [M] is uniquely determined by the system

of (2n)? unknowns
[A][M] + [M][A]" = ~[C]. (F.4)

The steady-state solution of (F.2) is given by
t 00
)= [ NGO = [N - ()
oo 0
Therefore,
El{z(tH{a(t - 1}7]
5| [ [ N = N 7= T ara
/ / AINC)5(r + i — A)elA Hdrdp
_ / A+ (el gy, — (M)l (F.6)
0
J. Wijker, Random Vibrations in Spacecraft Structures Design,
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where
(M) = BHa(t} (o)) = [ liciel (F.7)
The integrand of (F.7) is called [Z(u)] = e[A]”[C]e[A]T“. Differentiation gives
A2 Atz + (ZAT” (F5)

Since the matrix [A] has all its eigenvalues in the left half-plane, the matrix
[Z(w)] tends exponentially to 0 as pr — oo. Therefore, integration of (F.8)
from 0 to co will obtain

[A][M] + [M][A]" = —[C]. (F.9)

This is the classical Lyapunov equation of stability-theory. The covariance
matrix [M] is unique for any fixed [C] [65].
For convenience (F.2) is written as

{2(t)} = [A{z®O} + {7 ()} = [A{=(8)} + {B}w(?), (F.10)

where the input vector {B} is a 2n x 1 vector, and w(t) is a scalar white noise
with E{w?(t)} = S,. The Lyapunov equation (F.9) can be written as [72]

[A)[M] + [M][A]" = —{B}Su{B}" = -Su,{B}{B}". (F.11)

The equation (F.11) will be transformed to a “phase canonical form” by
the transformation

{z(0)} = [K]{s()}, (F.12)
where [K] is the state transformation matrix; (F.10) becomes
{3(0)} = [2H{s()} + {G}w(?), (F.13)
with
0 1 0 0 0
0 0 1 0 0
o @) =KAKE =] " 0 LR Y
0 0 0 0 1
_d2n _d2n—1 _d2n—2 o _d2 _dl
0
0
0
.« (G} =[KIYB}=| .
0
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The elements dy,ds,...,ds, are the coefficients of the characteristic polyno-
mial of [A]
X()\) = )\21’7, —|— dl)\2n_1 + dg)\2n_2 + e + d2n71)\ + d2n7 (F14)

and the matrix [@] is recognized as the companion matriz.

The state variables of the realization (F.13) are called the “phase vari-
ables”.

The steady-state solution of (F.11) is given by (F.5)

()} = / (=) { B (t)dr. (F.15)

Now, because a convergent infinite series of the 2n x 2n matrix [A] can be
expressed as an unique polynomial of degree 2n — 1 (2n is the degree of the
minimum polynomial x(A) = 0 of [4]), hence

2n—1

A=) = Z a;(t —7)[A]% (F.16)

=0

Substituting (F.16) into (F.15) will result in
@Oy = [ (Bl

:%1 {B}/ it = T)w(r)dr

2n—1

= > [A{B}Bi(t) = [Casl{B}, (F.17)

=0

where the observability matriz [Ca, g| is

[Cas] = [[AP"H{B}, [A"~{B},..., [A{B}. {B}]. (F.18)

An analogous solution can be obtained for (F.13). The steady-state solu-
tion of (F.13) is given by (F.5)

{s(t)} = /000 P I G w (t)dr. (F.19)

The 2n x 2n matrix [@] can be expressed as an unique polynomial of degree
2n — 1 (2n is the degree of the minimum polynomial x(\) = 0 of [®]), hence

2n—1

P10 = N it — ) (@] (F.20)

=0

Substituting (F.20) into (F.19) will result in
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(s(t)} = /O " P Gyt

2n—1 4 o
- e / as(t — Tyw(r)dr
= ST @G = [Coal{B), (F.21)

where the matrix [Cg ¢] is
[Ca,c] = [[@"HG}, [@" G}, [PH{G}. {G}]. (F.22)

The matrix [Cg ] is called the controllability matriz.
The phase canonical transformation (F.12) is

{z(t)} = [Casl{B} = [KI{s()} = [K][Ca.cl{5}, (F.23)

which means that

{[Ca.B] - [K][Ca,c]HB} = {0}, (F.24)
thus
[K] = [Ca,B][Cac] " (F.25)
The inverse of the controllability matrix [Cp ] ™" can be verified to be [72]
1 0 -0 0
dq 1 -0 0
[Coc)™ =] do d . 0 0 (F.26)
: - 10
dop—1 dop—2 -+ di 1

Writing the observability matrix [C4 p] and the controllability matrix
[C_’gsg] in an opposite sequence will have no influence on the state transfor-
mation matrix [K]. The inverse of the controllability matrix [Ce c]™! can be
verified to be

di dg -+ dopo1 1
ds ds --- 1 0
[Coc]™ = ; - (F.27)
dop—1 1 - 0 0
1 o --- 0 0

The covariance matrix [M] can now calculated using the following expression
[M] = [K][QIIK], (F.28)
where the covariance matrix [Q] is obtained from

[@][Q] + [QI[@]" = — S, {GHG}". (F.29)
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Example. Two coupled oscillators illustrate the details of the computation.
The system is

0 0 1 0 0
0 0 0 1 0
=13 ; —0.02 0.02 |’ {By=1,
1 -2 002 -004 0

Calculate the state transformation matrix [K| to obtain the second realization
[@] and {G}.
The coefficients d; of the characteristic polynomial x()\) are

dy =006, dy=30004, d3s=004, dy=10
The observability matrix [C4 p] is

—0.9992 —0.02 1.0 0.0

0.9988 0.02 0.0 0.0

0.07996  —0.9992 -0.02 1.0 |’
—0.119936  0.9988  0.02 0.0

[Ca,B] =

and the controllability matrix [Co ] is

1.0 0.0 0.0 0.0

—0.06 1.0 0.0 0.0
—2.9968 —0.06 1.0 0.0 |’

0.319832 —-2.9968 —0.06 1.0

[Co.cl =

and the inverse of the controllability matrix [Cp g] 7" is

1.0 0.0 0.0 0.0
0.06 1.0 0.0 0.0

717
Cocl™ = 30004 006 1.0 00
0.04 3.0004 0.06 1.0
Finally the state transformation matrix [K] = [Ca p][Cs.c]! can be ob-
tained:
20 004 1.0 0.0
1.0 0.02 0.0 0.0
(K] =

0.0 20 0.04 1.0
0.0 1.0 0.04 0.0

Lyapunov’s equation
[2][Q) + [Q)[#]" = -{GHG} = —C, (¥.30)

can be solved more explicitly [65], where the RHS of (F.30) is given by
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0 0 0
0 -~ 0 0
ci=1. . . .1, (F.31)
0 0 1
and the transformed state matrix [@] and the transformed input vector {G}
are given in (F.13). The covariance matrix is [Q] = [E{s;s;}]. The expected
values are expressed in terms the matrix [Q], i,7 = 1,2,...,2n, [65]
0, i+ j odd;
FEis;s;} = i F.32
{ ]} (71)%11741:, i+ j even, ( )
2
where the numbers ¢1, g2, ..., ¢, are uniquely determined by the 2n linear
equations
( 1) Z%ﬁ S ( 1)Sd2n*25+kq5+1 = Oa kzovla"'v2n_2; (F 33)
(—1)k Dlkcsc ( 1)%don—asirlss1 = 3, k=2n—1, '

where dg = 1.

Example. For 2n = 6 equations (F.32) and (F.33) states that

q1 0 —q2 0 g3 0
0 G2 0 —-g O q4
—q2 0 qs 0 —(4 0
E{s;s;}] =
[B{sisi}] 0 —g O q4 0 —gs
q3 0 —q4 0 gs 0
0 qa 0 —-¢g O g6

i

where q1,q2, - . ., g2 are determined by the linear equations
d6 7d4 dQ 1 0 0 q1 0
0 d5 —d3 d1 0 0 q2 0
0 —d4 d4 —dg 1 0 o qs3 . 0
0 0 —d5 d3 —dl 0 o qa o 0
0 0 dﬁ —d4 dg -1 as 0
0 0 0 d5 7d3 d1 d6 %
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Correlation Coefficients

The 3D wave equation is derived in [185] and is given by

vip—L —, (G.1)

c2

where p is the fluctuation in pressure or sound pressure, the Laplacian V? =
> 6‘2—;, j =123 and ¢ = ,/*y% ~ 340 m/s the speed of sound with
J

Py = 10° Pa the ambient pressure, pg = 1.21 kg/m? and v = 1.4 is the ratio
of the specific heats of the gas.

Using the Fourier transform we can transform the sound pressure into the
frequency domain, p(t) = p(w)e’“! and the Helmholtz equation [185] will be
obtained

V2p(z,y, z,w) + E*p(x,y, z,w) = 0, (G.2)

where k = % is the wave number. The Helmholtz equation in for example

only in the z-direction can be written as follows

d?p(z,w

L) | kp(ar) =0, (G.3)
with the general solution

p(x,w) = Ae™Ik 1 Bedh®, (G.4)

where A and B are arbitrary constants and can be solved using the boundary
conditions. The term Ae/(“t*=%%) is a wave travelling in the positive x-direction
and the term Bel(“t5%) is a wave travelling in —z-direction. The waves are
periodic and the pressures repeat after wt — kx = 2nm and wt + kx = 2nm,
respectively, where n is an integer. At a given time, the pressure repeats after
a distance of A = 2pi/k. The quantity \ is called the wave-length.

We define a vectorial wave number {k} = k{i} propagating in the positive
direction of {k} with modulus k. We define also a position vector {r}.

J. Wijker, Random Vibrations in Spacecraft Structures Design,
Solid Mechanics and Its Applications 165,
(© Springer Science + Business Media B.V. 2009
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wave front

B {T}

A

py = (t—hwcos) pL= &

Fig. G.1. Correlation in a plane wave

Any sound wave travelling in the direction of the vector {k} gives a sound
pressure at the position vector {r}

p(r,t) = Aej(wtf{k}T{r})’ (G.5)

where {k}T{r} = k1o + koy + k3z, and k? = k? + k3 + k2.

Suppose a plane wave of wavelength A passes from the point A to B, and
0 let be the angle between the vector {k} of the wave fronts and the vector
{r} (the line AB with a length 7). This is illustrated in Fig. G.1.

The inner product {k}T{r} = krcos@. Then the pressure at point B is
given by Py = ej(wt—kr cos )

We define the correlation coefficient between the sound pressure at two
points A and B in a sound field as [38]

R— <p1p2>av - (GG)
[<p%>av<p§>av]§

where p1(t) and po(¢) are the respective instantaneous sound pressures at time
t at the two points, and the angular brackets denote long time average. That
means that

(P1P2)av = / p1(t)pa2(t (G.7)
Cancelling out the common factor - we obtain the correlation coefficient
T
_ o mOpat)dt (G.8)
o p1 t)dt f

Following the Cauchy-Schwarz inequality [100]

‘/OTpl(t)m(t)dt 2 < ‘/OTpf(t)dt i /OTpg(t)dt

We see that the correlation coefficient is |R|? < 1; that means —1 < R < 1.

2

(G.9)
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In the following calculation of the correlation coefficients we will make use
of the relations given below [100]

sin(a £ ) = sinacos B £ cos asin 3, (G.10)
cos(a = 3) = cosacos 3 F sinasin 3, (G.11)
x : 2
/0 sin? aydy = % — suilaax’ (G.12)
o, x  sin2ax
dy = — . G.13
/o cos” aydy 5 + 10 ( )

If p1(t) and po(t) are both sinusoidal of the same frequency, but differ in
phase by ¢, so that p(t) = coswt and py = cos(wt — ¢), then the correlation
coefficient R = cos ¢. The integration is done over the period T' = %’T

The correlation coefficient R between the point A and B in Fig. G.1 be-
comes R = cos(kr cos ). The real parts of the pressures p; and ps respectively
in the points A and B are given by

p1(t) = cos(wt), (G.14)
pa(t) = cos(wt — krcos6). (G.15)

To obtain the correlation coeflicient R the following integrals has to be eval-
uated with T' = 27”:

/w p1(t)p2(t)dt = T cos(kr cos ), (G.16)
0 w
/“ PA(t)dt = =, (G.17)
0 w
/“ PR(t)dt = = (G.18)
0 w

The value of R for a random sound field can now be obtained from the
definition of such field as having equal weights to all directions of the incident
sound: a the correlation coefficient R is the average for all directions. This
average R is

™ 27
R= L / / cos(kr cos 0) sin 0dpdd
2 0 0

sin(kr)
_ 7 G.19
o (G.19)
which is the cross-correlation coefficient for the sound pressure at two points,
distance r apart, in a random sound field of wave number k.
The derivation of the correlation coefficient R can also be found in Henrich
Kuttruff’s book [104] about room acoustics.
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Approximations for the Joint Acceptance and
Acoustic Response Analysis

H.1 Theory

The theory discussed in this appendix is based on [17, 18]. The method is
applied to calculate structural response of sandwich panels of the Herschel
spacecraft service module (SVM) exposed to acoustic pressures [211].

A linear elastic plate or shell is exposed to acoustic pressures over large
portions of its surface. The undamped equation of motion of the continuous
structure is 52

ma—téu + L(w) = p, (H.1)
where w(x,y, z,t) is the displacement field, z, y, z are the spatial coordinates,
p(z,y, z,t) is the pressure field on the exposed surface and ¢ is the time,
m(x,y, z) is the mass per unit of area and L() is a linear operator representing
the load-deflection relationship of the structure.

Example. The linear operator for the out-of-plane bending of a thin flat
plate is given for w(z,y,t)

3 4 4 4
L(w) = Et (310 o0*w aw)

20— \ ot T 2a202 T ot

where F is the Young’s modulus, ¢ is the plate thickness, v is Poisson’s ratio,
and x,y are the rectangular coordinates.

If the operator L(w) is self-adjoint, then the eigenvalue problem associated
with (H.1) can be written as follows

wma; — L(w;) = 0, (H.2)

where w? is the eigenvalue (w; is the natural frequency) for the ith vibra-
tion mode (eigenfunction) w;. The vibration modes are orthogonal over the
structure

J. Wijker, Random Vibrations in Spacecraft Structures Design,
Solid Mechanics and Its Applications 165,
© Springer Science + Business Media B.V. 2009
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/ wymw;ds =0, 1 # 7, / W L(w;)ds =0, 1#j, (H.3)
A A

assuming no repeated eigenvalues, thus w? # w]2-. A is the domain of the
structure and ds is an element of that domain.

The physical displacement function w(w, y, z,t) will be expressed in terms
of time dependent generalized coordinates 7;(t) and spatial linear independent
eigenfunctions w;(z,y, z) as follows

w(z,y,z,t) Zm Wi (x,y, 2). (H.4)

Substitute the series (H.4) in (H.1), apply the orthogonality relations of
(H.3) and (H.2), and subsequently introduce the ad hoc (uncoupled) modal
viscous damping. The equation of motion of the continuous structural sys-
tem can be expressed in terms the generalized coordinates 7;(t), to give the
following uncoupled equations of motion;

ipds
fA wlmds

Those are the well known N equations of motion of a viscously damped SDOF
systems.

It is reasonable to decompose the spatial physical pressure field p(x, y, 2, t)
in the same manner as the displacement field, thus

:C y Y, T, t Zd}z pz Z, Y,z ) (HG)

In the following analysis we consider the modal structural response 7; in
the vicinity of the natural frequency w;. It is reasonable to consider each
element p; as representing the behavior of the plate in the neighborhood of
the ith vibration mode ;. Then equations (H.5) become

[y Witbipids

— Jibs, i=1,2,....N, H.7
S wimds Vo (H.7)

il + 2Gwin; + win; =

where J; is the modal joint acceptance given by

fA u@ﬁlds

Ji = S, wimds’

i=1,2,...,N. (H.8)

The following approximations for the modal joint acceptance J; is proposed
by Blevins in [17]. They give approximations for the shape of the surface
pressure distributions:
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1. pi(z,y,2) = 1. The surface pressure distribution can be approximated as
a constant pressure over the surface. This approximation is very simple.
It can be expected to be applicable when the acoustic half wavelength
exceeds the lateral dimensions of the structure, as is often the case for
fundamental modes of plate structures. This method cannot be applied
for anti-symmetric modes.

2. pi(z,y,2) = Sign[w;(z,y,2)]. The surface pressure distribution can be
approximated by Sign(;), a function whose value is either +1 and —1
corresponding to the sign of w;. The disadvantage is that the square wave
form of Sign(w@;) is not a realistic representation of a pressure field, and
numerical integration is required to determine the joint acceptance.

3. pi(z,y, z) = [sinkx, cos kz]. The surface pressure distribution can be sim-
ulated by a sinusoidal dependence of a travelling wave. This more complex
representation requires numerical evaluation of the joint acceptance.

4. pi(x,y,z) = m(x,y,2)W;(x,y,z). The surface pressure distribution can
be approximated by the mass-weighted structural mode shape. For the
fundamental mode of a panel, the estimate is similar to the assumption
of uniform pressure. The advantage of the approach is that it tends to
produce a conservative estimate for each mode is exactly the modal joint
acceptance J; = 1. The validity of the approximation depends on the
degree of which the sound field conforms to the vibration mode.

The mass-weighted mode shape will be used for the shape of the pressure
field on the surface of the structure, thus

p~’i = mw% (H9)
and the associated joint acceptance (H.8)
Ji=1. (H.10)

The modal approximation of the generalized response (H.7) can now be
written as
il + 2Gwin; + win =y, i=1,2,...,N, (H.11)

For a stationary random pressure loading, the single-sided pressure PSD
function is W,(f) (Pa?/Hz), thus

f2
37”5 = Wp(f)df’ (H12)

1

where 1,5 is the root mean square pressure over the frequency band f; to
f2. As the integration limits are spread to encompass the full frequency range
f1 =0 to fo — oo the mean square of the generalized coordinate 7); is given

by

- = = ..., N. H.13
nz,rms 8<1(27Tf1)3? » = Y ( )
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The dynamic response of plates and shells to surface pressures is assembled
on a mode by mode basis, using the single mode relation

w;
where w; is the physical deflection of the ith mode (H.4). The procedure for
calculating the displacement for any mode of the plate or shell exposed to the
acoustic loading can be carried out in four steps [17]:

1. Identify the rms acoustic pressure applied to the surface of the structure in
the frequency range of interest. In general, the sound pressure level (SPL)
are expressed in dB. The rms of the pressure can be calculated using

pims = pieflo%v

where the reference pressure is p,of = 2 x 1075 Pa. The single-sided PSD
of the pressure is

W () = L

p - Af

(Pa%/Hz), where Af (Hz) is the bandwidth in e.g. the octave or one-third
octave band. For the octave band, the band width is Af; = 1.414f,; for
the one-third octave band, the band width is Af% =0.232f. and f. (Hz)
is the center frequency.

2. Perform the modal analysis to calculate the natural frequencies f; = 5%,
vibration modes w;, and associated modal stresses &; in the frequency
range of interest. Estimate a modal damping ratio (;.

3. Select a characteristic point on the structure which will be matched to the
acoustic pressure. The applied pressure field in approximated by the mass-
weighted mode shape p; = mw;. Ordinarily this reference point is a point
of maximum response in the mode of interest. Calculate a characteristic
modal pressure

Di = m(Tp, Yy 20) [W0i (T, Yprs 20)

where z,, y,. and 2z, are the coordinates of the reference point and
m(xy, Yr, 2,) is the mass per unit of area of the thin-walled structure at
the reference point.

4. The response to the acoustic pressure field is scaled relative to the modal
response using the solution of (H.13). If the pressure field has a random
broadband spectrum W, (f), then

w; rms(xrayrvzrat) gj rms(xrayrvzrat) 1 Wp(fz)
i _ T Sy L R )
w; (l‘r, Yr, Zr) 0; (xrv Yr, Zr) Di 8<l(27'('f1)

This is a very useful equation for estimating the structural response of
plate and shell structures exposed to random pressure fields.
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Example. Consider an Al-alloy simply supported rectangular thin plate a =

210 mm by b = 140 mm and thick ¢ = 1.2 mm. The Young’s modulus is

E = 70 GPa, the density is p = 2770 kg/m? and the modal damping ratio is

¢ =0.017. The SPL is 145.7 dB (pref = 2.0 % 10~° Pa) in the one-third octave

band about the a center frequency f. = 200 Hz (f, = 224 Hz, f; = 178 Hz).
The PSD of the pressure can be calculated

2
Prms

W, = = 3202.9 Pa’/Hz.
P~ 0.232f. o /Hz

The natural frequencies (Hz) of the simply supported plate are given by

r [DI/i\> [5)\°
TPt J L i=1.2....
fl_] 2 m|:(a> +<b> :|7 1,] ) <y 9

and the corresponding vibration modes are

Wi (z,y) = sin ——sin o0 i j=1,2,...,
a b
where the bending stiffness of the plate is D = #ﬁﬂ) (Nm?) and m = ph

is the mass per unit of area (kg/m?).
The corresponding modal stresses are
27 (5212 22 2\ (i i in 47Y
_ 672D(i%b* + vja®) sin “2F sin 23
B a?b?h? ’

ii=1,2,...,

Ox

and . ,
672 D(j%a* 4 vi®b?) sin 2= sin 7%
g. =
Y a?b?h? ’

The mass-weighted pressure field is

ij=1,2,....

- . imx | jmy
P =msin — sin =—=.
a b
Fori=1,j=1L2=35,y= g and v = 0.33 the following results can be

calculated:

f11 = 213.6 Hz

Fp = 1.8380 x 100 Pa
&, = 2.7215 x 10'° Pa
p = 3.3240 kg/m

The stress at the center of the simply supported plate can now being
calculated using

W

— 7
m = 1.7265 x 10 Pa,

Ox,rms =

'Uz‘&z
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Ty Wy -
Oyrms = = Al S7e 7 a2 — 2.5564 x 10" Pa.
’ P\ 8¢(2mfi1)?

The rms acceleration at the center of the simply supported plate is

- (27Tf11>2’d}(0,0) Wp o 1[1(0,0) 7Tf11Wp o
Arms = ]3 ’[ 8((27Tf11)3 = f) 4< =1724 g.

This is a rather high acceleration, however, the SPL is very severe.

and

The bending structural wave length A, of uniform panels is given by

J Et3 27
=\ —/— H.1
Ao 12myV f’ (H.16)

the shear structural wave length of the uniform panel is

1 Et
Ay = ?,/m, (H.17)

and the acoustic wave length is
Ay = L ==, (H.18)

The coincidence frequency is the frequency at which the acoustic wave
length is equal to the bending structural (or shear structural) wave length,

Aa = Ap, thus
2 [12m
coincidence = . H.19
feoincia ont \ Et (H.19)

Example. An Al-alloy uniform plate is thick ¢ = 1.25 mm, the density is
p = 2800 kg/m?, the Young’s modulus is £ = 70 GPa and the Poisson’s ratio
v = 0.33. The speed of sound in air is ¢ = 340 m/s.

The bending structural wave length at f = 200 Hz is A\, = 0.2381 m,
the shear structural wave length at f = 200 Hz is Ay = 17.6777 m and
the coincidence frequency for bending of the uniform plate is fcoincidence =
10197 Hz. The wave length at fcoincidence 18 A = 0.0333 m

Below the coincidence frequency the wave length of the sound field exceeds
the wave length of the bending waves of the plate.

Blevins proposed an improvement of the approximation of structural re-
sponse of plates and shells exposed to an acoustic pressure field by using
one-dimensional sinusoidal acoustic and vibration modes, thus for the pres-
sure field

p(z) = msin(kz + ¢), (H.20)
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and for the vibration mode
i =sin| — H.21
() sm( i ) (11.21)

where ¢ is the phase angle, k& the acoustical wave number k = i—”, L is the

characteristic length of the panel (length or width) and the modal index i = 2

by
is called the number of half waves. ’
The corresponding joint acceptance J,(¢) can be calculated and becomes

B fL w(z)p(x)dx

[, m(x)2de
sin(kL —im + ¢) —sing  sin(kL + im + ¢) —sin o
kL —in - kL + im '

J2(9)

(H.22)

A sound pressure field is the sum of standing and travelling waves. A simple
travelling wave in z-direction can be written as follows

P(z,t) = Pysin(kz — wt) = Py sin kx coswt — Py cos kx sin wt, (H.23)

where the pressure field is decomposed into two standing waves. This is the
solution of the one dimensional wave equation (see Appendix G (G.4)).

The travelling wave is thus the sum of two components, 90 degrees out
of phase; the response is also the sum of two phase-shifted components. The
magnitude of the response can be calculated by using the magnitude of the
joint acceptance as the vector sum of two components

Towave = VJ2 (¢ = 0) + J2(¢ = 7/2). (H.24)

In general, the acoustic and structural waves will travel in both orthogonal

directions for plates and shells. The 2-D joint acceptance can be approximated
by

J2D = Jw,waveJy,wave- (H25)

Blevins proved that if the acoustic wavelength is equal to the structural wave-
length A\, = Ay, the joint acceptance Jop = 1. If there is a mismatch between
the acoustic and structural wave length by 20% or more, the joint acceptance
decays rapidly for the higher modes (large vales of 7).

If the acoustic wavelength of a panel exceeds the structural wavelength
in a fundamental mode, the maximum value of the two-dimensional joint
acceptance is 16/72 = 1.621. This can be easily proved, see [211]. The spatial
pressure field is assumed as follow:

D1 ('I’ y) =m, (H26)

and the mode shapes in the x- and y-direction are respectively

@ (z) = sin %x @ (y) = sin % (H.27)
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where a is the length and b is the width of the panel. The two-dimensional
joint acceptance Jj; can be written

[ [aprin ()i (y)dA [ [, d1(x)dy(y)dA

Ji1 = -

U [ Lymid ()it (y)dA [ [, a7 (x)et (y)dA
iwal dfo 1(y Q:X%biﬁ (H28)
o fAﬁ)l dfow%(y %xg o2 '

Equation (H.15) can be corrected by introducing the two-dimensional joint
acceptance factor Jyp as follows

wi,rms(xmymzrat) O—i,rms(mmyrazmt) Jap Wp(fz)
— = YN AE (H29>

Wi (Tr, Yr, 2r) Gi(Zr, Yrs 2r) D\ 8Gi(27fi)

An approximate analytical method is discussed for the dynamic response of
panels to surface sound pressures. The method is most applicable to relatively
uniform flat and curved panels which respond out of plane to the pressures.
The method requires the natural frequencies and mode shapes of the panels.
The method also requires that the relationship between modal deformation
and modal stress be known if stress predictions are wanted. Damping and the
PSD of the applied pressure are also required inputs.

The method does not require exact knowledge of the distribution of the
applied surface pressures. Corrections are then applied to allow for the in-
fluence of the acoustic wavelength relative to the wavelength of the panel
modes. The method can be applied for both fundamental and higher modes.
This Appendix is based on a paper of Blevins [17].

Problems

H.1. Consider a thin simply supported rectangular plate of length a, width
b, thickness ¢t and a constant mass per unit of area m, which is exposed to a
sound pressure field. The Young’s modulus is F and the Poison’s ratio is v.
The vibration modes @;(x,y), the natural frequencies f;;(Hz) and the modal
stress ;;(x,y) distribution are given by

Wi - -2 L.
. f¢j=2—7ﬁ=§[’—+i—g} ﬁfsyg)(Hz) ih,j=1,2...
o W;(x,y) =sin L sm— =1,2.

o Gij(z,y) = 2(11275”2)[(1;;) —l—u(”) }sln blIlj— ,j=1,2.

Evaluate the modal joint acceptance J;; for the given modes and the var-
ious approximations of the pressure field distribution p;;(x, y):

1. pij(x,y, z) = m, constant
2. pij(x,y,z) = m Sign[w;;(x,y, z)], square wave
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3. pij(x,y, z) = msin kz, sinusoidal wave
4. pi;j(x,y, z) = mcos kx, cosine wave
5. pij(x,y, 2) = mw;j(x,y, z), mass-weighted mode shape
Answers:
4[— cosi][1—cos j
1. Jz'j _ 4] cosz;rl[ij cosyr]'
2. Jij = 25
. sin(ka—1 sin(ka+1
3. Jij = ]%r[l — cos j[2 k(afi:r) == k(aii;ﬂ)}
L e A o
4. J;j = ]%r[l — cos jr][4 CZZ(JF?IW) . sz(:;w )]

Calculate the natural frequencies f;;, modal joint acceptances J;; and
modal stresses &;;(x, y) in the middle of the plate (z,y = §, %) fori,7=1,2,3
for a simply supported rectangular Al-alloy plate, a = 200 mm, b = 125 mm,
t = 1.25 mm, the density is p = 2700 kg/m?, the Young’s modulus is E =
70 GPa and the Poisson’s ratio is v = 0.33. The speed of sound in air is
¢ =340 m/s and the wave number is given by k = <<

Answers: f11 = 272.1 Hz, wave number k£ = 5.03, wave length \ = =

1.25 m, the modal stress 7, = 1.8380 x 10'° Pa, G, = 2.7215 x 10'° Pa, and
the joint acceptances become:

LJu=2%

2. J11 =%

3. Ji1 = 0.3814
4. Jy; = 0.6934
5. Jll =1

H.2. The deflection of an simply supported circular plate uniformly loaded
by unit pressure is given by [207]

w(r) = agu_fﬁ) (? :[ ZRQ N Tz) ’

and the maximum corresponding stresses (radial, tangential) at the center of

the plate are

3384 v)R?

Op =0t = T’

and the mass per unit of area is m, where the bending stiffness is D = ﬁiz),

R is the radius of the plate, E is Young’s modulus, v is the Poisson’s ratio

and t the constant thickness of the plate. The deflection w(r) of plate loaded

by an unit static pressure is considered to be the vibration mode w(r).
Calculate the natural frequency of the simply supported plate with the aid

of Rayleigh’s quotient R(w) ~ w? = £, inserting v = 0.33, where

. . 2 2(1— 2
e the strain energy is U = £ [ D[(4% + 24uw)2 _ %’Z—f%]rdrd&,
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e the kinetic energy is 7* = 1 [ [ 'mw?rdrdd.

Answer: f, = %= = 0.2429/-Z2; (Hz). This answer had been obtained using

the software programme MAPLE®, V9.5.

The modal damping ratio is ¢ and the constant single-sided PSD of the
pressure is given W,, (Pa?/Hz).

Calculate the rms stresses o, ,;ms and oy rms at the center of the simply
supported circular plate applying Blevins approximation method assuming a
mass-weighted pressure field distribution and an associated joint acceptance
J=1
Answers:

o 5(0),, = 2CHIR _ | o4gg
o j=m|d(0)] = m|w(0)| = 0.6696 7L

o fu=0.2429,/ L

R4

5(0),. W,
. 0(0)r7t,rms = U(p“) . 8((2#?%)3

H.3. The mode shape of a one-dimensional structure is given by

and the one-dimensional pressure field is defined as
p(z) = msin(kz + ¢),

where ¢ is the phase angle, k the acoustical wave number k£ = i—”, L is the

length and the modal index is ¢ = % or also called the number of half waves.

The corresponding joint acceptance J,(¢) becomes

sin(kL —im + ¢) —sing  sin(kL +im + ¢) —sing

Jo() = kL —im kL + i

The joint acceptance is the vector sum of two components, thus

Jw,wave = \/J%((b = 0) + J3(¢ = 71—/2)

Calculate Jy yqve for % =1lfori=1,2,....

Answer: Jy yave = 1.3066 for all i.
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Simplification of Conductance

An elastic 2-D body is excited by a force F(w) at (xo,yo) and the velocity
v(w) is observed at location (z,y). Generally the mobility function Y (z,y,w)
can be written as follows

jiw ¢r(xay)¢r(m0ay0)
M:D - [(UJ% - w2) + jnrwrwr

Y(z,y,w) = (L.1)

where ¢,.(x,y) is a vibration mode (mode shape) normalized for a uniform
mass per unit of area m,, and the total mass M, = A, x m, such that

1
— [ moteoseaia= o [ otepoenia=s. @)
Apmy pJA
and w, is the radian natural frequency and 7, the loss factor associated with
mode 7. The point mobility at location (zg,yo) can be easily derived from
(I.1) and is as follows

Jw 92 (0, Yo)
Y W)=Y . 1.3
(1'03 Yo W) Mp - [(UJE — wg) + jnrw'rw] ( )
The real part of the mobility ®{Y (2o, yo,w)} can be written
NrWrw ¢ (x07y0)
R{Y . 14
{ (‘Tan07 M Z w2 — w2 (77 Wrw )2] ( )

The average of the real part of the mobility ${Y (¢, yo,w)} can be calculated
over all driving points (xg,yo) on the plate

(R{Y (w0, yo, w)}) /Z 0 67 (20, o) dA,  (L5)

F—w?)? £ (nrwrw)?]

with Aip J4 2(20,y0)dA = 1 the average value (R{Y (zo,y0,w)})a becomes
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(R{Y (20, yo,w)})a = o, Z 7w727rwr )]’ (L6)

Equation (I.6) describes the average conductance of a structure over all the
driving points (xg,yo). An average over the frequency band Aw will also be
taken, thus

<%{Y(J)O, Yo, w)}>AAUJ = M Aw /A Z — wgrwrW(nerw)2] dw. (I?)

The integral
2

w 7r
dw = ) I.8
IO e e e s
because (see Appendix B)

/ h W do=—"—. (1.9)

oo [(WF = w?)? + (rwrw)?] MWy

The evaluation of (I.7) will result in

RLY (20, 40, 0)}) 4y = — "0(AW) _ i) (L.10)

M, 2Aw 2M,,’

where N is the number of modes in the frequency band width Aw and when

introducing for the modal density n(f) = %::)

will be obtained and (I1.10) becomes

, the following known equation

n(f)

(R{Y (w0, 90,w)}) a0 = 4Mp'

(L11)

This means that if the average conductance of all driving points as well as
over the frequency band Aw = 27Af is measured the modal density n(f)
can be computed directly using the total mass M), of the test structure under
investigation. The natural frequencies should be lie close to each other in the
frequency band.



J

Modal Density of Composite Sandwich Panels

This appendix J is based on an article of Renji [159].

J.1 Equation of Motion

The vertical equilibrium of an element in a rectangular plate is given by [213]

0Q, | 0Qy
ox + dy

—p=0, (J.1)

where @, is the shear force in a plane x-z, ), is the shear force in the y-z
plane and p is the uniform pressure load. The equilibrium of the moment

about the y-axis is
OM, = OMyy

— — R =0, J.2
o T oy Q (J.2)
and the equilibrium of the moment about the z-axis is
oM, OM,y,
— =0 J.3

where My, My, My, and M,, are the moment resultants. From the equa-
tions (J.2), (J.3) and (J.1) the following equilibrium equation can be derived
0*M,  OM,, OM,, O*M,
+ + -
Ox? Oxdy  Oxdy Oy?

p=0. (J.4)

The twisting moments M, and M,, are equal because

t
My, = / Toy2dz = / C ryezdz = My, (J.5)

t t
2 2
thus (J.4) can be written as follows

[N
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0% M, N OMy, N 9?M,
Ox? Ox0y Oy

—p=0. (J.6)

The relation between the moment resultants and the curvatures for a sym-
metric laminate (balanced lay-up)® is [93]

a¢x
M, Dyy Dz O 5
M, $=|Dy Dy 0 |= % 7 (1.7)
Mmy 0 0 D66 %+ ag:/

where ¢, and ¢, are the rotations of the transverse plane due to bending.
To include the effect of transverse shear the Mindlin’s theory is used. The
average shear angle is taken to be the rotation of the transverse plane. For
a sandwich panel, this theory gives accurate results. Hence, if v, and v, are
the average rotations of the transverse plane due to shear, ¢, = g—g’ — v, and
Py = %—Z — 7. Equation (J.6) will now rewritten and becomes

o*w otw otw
Dyy— +2(D 2D¢6) 77— + Dao——
1ga +2(D12 + 66)ax28y2 + D22 oy
03 0? 104 03y
=D ud D 2Dg6) = | =—— D Y . (J.
1753 + (D12 + 66)axay (8x+ o7y 81/) + Do By +p. (J.8)

The shear rigidities are defined by

t\? £\ 2
Sx:th<1+E> , Sy:Gyh(1+E) , (J.9)

where G, and Gy are the shear moduli, i the height of the core and ¢ is the
thickness of the face sheet (equal face sheets). In general the “isotropic” shear
modulus G = /G, G, is taken, S = S, =5, = Gh(1 + £)2.

The average shear angles can be expressed in terms of the shear force
divided by the shear rigidity

Qz Qy
L= T J.10
When (J.10) is substituted in (J.1) the following expression is obtained
M | Oy _
S(ax + o +p=0, (J.11)
. 03 ok 0?
Ya Yy p
R 12
S( 028 © 8x28y) e 0 (J.12)

L For an isotropic plate with thickness ¢, Young’s modulus E and the Poisson’s

ratio v the bending stiffness matrix becomes D11 = D2y = D, Dis = D21 = vD,
3

D(}(j = %D(l — l/) and D = %
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e Py | Py d’p
S(a—yg+w> + 5,7 =0 (J.13)
When equations (J.12) and (J.13) are used, (J.8) becomes now
Dllgl% +2(D12 + 2D66)%;]y2 + Dzz%
= —% (Dllg + Dzz%) +p
+ (D12 + 2Dgs — Dll)aig’y + (D1 + 2Dgg — D22);;—g;2. (J.14)

Terms with the third order of derivatives of the shear angles are now ne-
2

glected and the pressure is replaced by the inertia force p = —m%Té”, thus the

simplified equation (J.14) becomes [159]

O*w O*w O*w
D”@ +2(D12 + 2D66)W + D228—y4
m 02 9w 0w 8w
= "9 (p, 2% p,,TY) _p2Y 1
S o2 ( Hogz T2 8y2) o (3-15)

where m the mass of the panel per unit of area. Equation (J.15) reflects the
equation of motion of a balanced composite sandwich plate, however, some
shear effects are neglected because Di; and Doy are much larger than Dqo
and D@G.

J.2 Modal Density

The area below a constant w curve in the wave number plane is a measure
of the number of modes N(w), [21, 219]. For a plate with dimensions a and b
the mode count is given by

ab [% ,

Nw) = 5 [ s (.16)
where for each value of 6, r is the maximum distance to the curve with a
constant w (see Fig. 4.11). The modal density n(w) can be derived from (J.16)
and becomes - )
_dN(w) ab [7Zd(r?)
n(w) = do — 2m2 o dw

and r? can be obtained from (J.15).
The solution of a finite plate is assumed to be

do (J.17)

W(z,y,w) = CelWiker—kyy) (J.18)
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where C'is a constant and k, and k, are the wave numbers in x and y direction
respectively. When (J.18) is substituted into (J.15) the undamped equation of
motion of the plate will be transformed into the frequency and wave number
domain. And when the deflected W is deleted the following expression is
obtained

w2

D1kt +2(Dis + 2Dg6) k2K + Daokt — 2 (D11 k2 + Dagk?) = mew?. (3.19)

The following wave number space k, = /D1 k, and Ey = V' Dazk, will be
constructed. The radius r is related to the wave numbers as follows r cos 6 = k,
and rsinf =k, or r? = k2 + kz Then the mode count become

N(w) (J.20)

a
~ 272y/Dy1 Doy /0

where 72 can be obtained from (J.19) by using the relationships rcosf =
V/Di1ky and rsin@ = /Dask,. Hence

—D12 +2Dss sin® 29)
2v/D11Daa

2
—rzm: (\/Dll c0s? 0 + /Doy sin? 9) —mw? =0, (J.21)

rt (sin4 0+ cos* 0 +

and with

2 _ 1 D1242Dgs
o i=3{l- vDiDa VBl )

o fi(f)=1—~7sin?20
o fo(0) = ¢/ g;; cos? 0 + { D22 sin? 0,

equation (J.21) can be written as follows

—
)

f1 T —_ \4/ D11D22f2 T‘ - mw2 =0. (J22)

The solution of (J.22) can be easily extracted

7"2 = —1
1,2 2f1(9)

2
X [% v/ D11Das f2(6)

. \/ (" mf2<e>)2 vapOm]. )

The function f1(6) > 0 thus
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mew? 2 mw?
\/(s mﬁ@) +4f1(O)mw? > ==/ DD fo(6), - (J:24)

hence the positive root 72 = 72 is only applicable. The mode count can be

calculated by substituting (J.23) into (J.20)

~abmw? [ [ f2(0) 1 ) 452 f1(0)
N(w) = s ), {fl(e) +f1(0)\/[f2(9)+m} }de. (1.25)

To calculate the modal density Ccli—’j (J.17) needs to be evaluated
dr? 1 2mw ,
— = ————+/ D11 D 0
do ~ 2f1(6) S H ZQ[fQ( )
4f1(0)S?
1o g
2 2 dmw? f1(0)52 |
\/m2w4f2 (0) + \/D111D22
The modal density n(w) can be derived from (J.20):

(J.26)

n(w) = (J.27)

a 2
212+3/D11 D2y /0

Equation (J.26) will be substituted in (J.27) and the expression for the modal
density n(w) becomes

x 2£1(0)S
abmw [?2 fg(@ 1 mw? f3(0) + \/%
n(w) =5 3¢ 0 S n g, (J.28)
i 2 mw 1
1 \/m2w4f VD11 D22
or
0)S?
2abmf { 5 (6) m(2mf)2 f3(0) + SR }do
o) W S F30) + LTS
(J.29)
If no shear is considered (J.22) can be simplified assuming S — oo
f1(0)r* — mw? = 0. (J.30)
The root r? of interest is
1
2
re = ——/4dmw? f1(0). J.31
7 VA ) (7.31)
The derivative ‘Z—T: can be easily obtained

der 1 Amwfi(0)
dw — f1(0) /Amw? f,(0) (1-32)
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We can calculate the modal density n(w) by substituting (J.32) into (J.17)

1 2ymfi(0)
\/D11D22/ f1(0) f1(9) a6

- ab D11 /72r d
2\ D11 V Doy \/fl

- ab [ m 4/D11 m

o 27T2 D11 D22F<’Yl’ 4)’

is the elliptic integral of the first kind, with 7§ = {1 —

n(w) =

—~

J.33)

where F(v1, %)
Dipt2Desy - f () = 1 — 47 sin? 26, is defined by [90]

vV D11D22
¢ d
F(k,¢) = / S — (1.34)
0 1—k2sin’z

The modal density n(f) becomes

o ab m 4 D11 s
f)ﬂ\/Du\/DQ?F(%%). (J.35)

In [22] the following approximate expression for the modal density of an
orthotropic plate is given

YmA [ 1 1
n(f) =~ (m+@>, (J.36)

where A is the area of the plate.

Example. A sandwich panel has dimensions ¢ = 2.5 m and b = 2.0 m. The
total mass is M = 15 kg. The flexural and shear rigidities of the sandwich
panel are Dy; = Dss = 5000 Nm, D13 = 70 Nm, Dgg = 165 Nm and
S = 15 N/m. Calculate the modal densities of the sandwich panel in the
octave band (32.5-8000 Hz). Calculate the modal densities of the same plate,
however, S — oo, again in the octave band. The calculated modal densities
are plotted in Fig. J.1.
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Modal density sandwich panel
10 T T

—*— shear
—&— no shear

-2 ; ;
10’ 10° 10° 10"

frequency [Hz]

Fig. J.1. Modal densities sandwich panel



K

Wave Propagation and Group Velocity

The theory about phase velocity and group velocity is based on the book of
Brillouin [23] and [124].

The usual phase velocity c, of waves is defined as the phase difference
between the vibrations observed at two different locations in a free plane
wave. In a wave

1 = Acos(wt — kx) = Acos[w(t— E)], (K.1)
Cp
where the phase velocity ¢, is
cp = % (K.2)

Another velocity can be defined considering the propagation of a train of
waves with a changing amplitude. This is called the modulation impressed on
a carrier. The modulation results in building up some “groups” (wave-packets)
of large amplitude which moves along with the group velocity c,. A simple
combination of groups obtains when two waves

w1 =w+ Aw, ki1 = k+ Ak, (K.3)
and
wo = w — Aw, k1 =k — Ak, (K.4)

are superimposed resulting in

Y = Acos(wit — k1x) + Acos(wat — kax)
= 2A cos(wt — kx) cos(Awt — Akzx). (K.5)

The wave in (K.5) represents a carrier with frequency w and a modulation
with frequency Aw. This wave may be described as a succession of moving
beats (or groups, or wave-packets). The carrier’s phase velocity is ¢, = ¥
while the group velocity ¢4 is given by

J. Wijker, Random Vibrations in Spacecraft Structures Design,
Solid Mechanics and Its Applications 165,
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Fig. K.1. Series of wavelets
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Fig. K.2. k-w diagram [23]
Aw  Ow
=—=—, Ak —0. K.6
9T Ak T ok - (K-6)

The situation is represented in Fig. K.1 where is shown the series of wavelets
(w, k) with variable amplitude (Aw, Ak). A very useful graphical representa-
tion is created when the frequency w is plotted against the wave number k as
shown Fig. K.2. The slope of the chord OP gives the phase velocity c,, while
the slope of the tangent at point P yields the group velocity c,.
The frequency w can be expressed in terms of the wave number k£ and the
phase velocity ¢,
w = kcp, (K.7)

hence
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dc dc

cg:cp—&—k:a—kp :cp—)\a—;,

where the wave length A\ = k27. A medium exhibiting a phase velocity is
called a dispersive medium.

(K.8)

Example. The homogeneous undamped equation of motion of a bending
beam is given by
0*w 0%w
EFlI— =0, K.9
ot " o (K-9)
where ET is the bending stiffness, w is the deflection and m is the mass per
unit of length.

The assumed solution for the deflection is
w(z,t) = Ae=IWi=ke) (K.10)

and will be substituted in the undamped equation of motion. This equation

becomes ‘
(EIE* — w?m)Ae@t=hka) — ¢,

The wave number k becomes

k= \/u_ui‘/g (K.11)

The phase speed ¢, in the bending beam can now calculated

EI
¢ == = Vil —, (K.12)

and the groups velocity becomes

Oow

% = 2 (K.13)

Cg =
Summary of Wave Relations [52]
The following is a collection of terms often used in wave analysis:

w angular frequency (rad/s)

f cyclic frequency [ = 5= (Hz)

T period T = 4 = 2¢ (s)

k wave number k=2 = = (1/m)

A wave length \ = 2™ — 21 (m)

¢ phase of wave ¢ = ka: —wt = 22 (z — cpt) = 2 (z — ¢pt) (rad)
¢, phase velocity ¢, = £ = £2 (m/s)

¢g group velocity ¢, = Z‘Z (m/s)
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The vibration of a bending beam is considered to show the relation between
power and energy [96].

The undamped equation of motion of a bending beam is given by (K.9)
and the assumed solution of the infinite long beam is given by (K.10)

w(z,t) = WeI(kz=wt),

The velocity w(z,t) is

0 t ;
w(z,t) = wg ) _ JwWeitka=—wt), (K.14)
and the angular velocity %I’t) becomes
- ‘
—w(;g; ) _ putwerithe—n, (K.15)

The bending moment M (z) in the bending beam is defined as

2
M(z) = —EI% = K2 EIWe i (ka—wt), (K.16)
The shear force D(z) becomes
D(z) = —aﬂgf”) = K3 EIWe i (ke=wt), (K.17)

The average power I applied to the beam

1T = SR{D(, )i (r)} + ;%{M (2,0 22 } (K.18)

or
II = wk3EIW?, (K.19)

The power input I is independent of x and t.
The total energy E},; in the beam per unit of length is given by

1, 1 (02w(x,t)\>
Etot = §mw (.T/',t) + §E1<W 5 (KQO)
or
1 1., . .
Eior = §m§%{w(aj,w)w*(m,w)}
11 [0%w(x,w) d*w*(z,w)
+ §EI§§R{ 97 5.7 } (K.21)

The total energy per unit of length of the beam FE;,; becomes

1 1
Eior = me2W2 + ZEI;#WQ. (K.22)
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The wave number k is given by (K.11)

m
k‘.:\/b—uﬁﬁa

thus the total energy E;,; can now be written as follows
1
Eior = §EI/<;4W2. (K.23)

Rewriting (K.23) the following expression is obtained

k 1 1
Bt = — (BIwE*W?) = —(wETK3W?) = —1I, (K.24)
2w 2¢p Cg
or
I = cgEtot- (K25)

The power II flows at group velocity.

The term energy density = will now being introduced, energy per unit of
length, area, or volume and the energy density is the sum of the kinetic and
strain energy and can be written as

== () e (K.26)

E=pl =] =pw , .
P\ 5 P

where p is the density. The power intensity $ is the power per unit width or

area as the waves propagates. The power intensity can be expressed as follows

$=c,=. (K.27)

The undamped equation of motion of a general continuous structure (beam,
plate, etc.) can be written as follows

O*w(z,t
m@ T8 | A@w(z. 0 = o, (K.28)
where T is the position vector, w(Z,t) the deflection, m(Z) is the mass per
unit of length, area or volume and A(Z) a differential operator. Substituting
(K.10) in (K.28) the following expression will be obtained

—m(Z)w?* W + A(—jk)W =0, (K.29)
thus the frequency
A(—jk)
= . K.
v m(T) (K-30)

The group velocity ¢4 can be expressed into the differential operator A
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dw 1] 1 A
1 {m(x) Ak, (K.31)

O dk T 2
where /1(— jk) is derivative op the differential operator with respect to —jk.
Substituting (K.30) into (K.31) will give

A(jk)}

—j .
0 = Sy AP (K.32)

Example. For a bending beam A(Z) = EIE?—;, A(—jk) = FEI(—jk)*,
A(—jk) = 4EI(—jk)® and m(z) = m. The frequency is w = y/EZL and

m

the group velocity becomes ¢, = %A(jk’) =2/wy %

Relationship Modal Energy and Energy Striking the Boundary

The vibration field that results from the repeated reflections of the outgoing
waves from the boundaries of a plate is called a reverberant field [96]. It is
comprised of modal response. Let’s find the relationship between the modal
energy and the energy striking the boundary of a plate. Suppose the mean
square velocity of the reverberant field is (v?). The intensity $ over the differ-
ential angle df is

do
27’
where p is the density of the plate, ¢4 is the group velocity and W, (f) is
the PSD of the velocity. The normal component of the intensity d$,, into the
boundary is illustrated in Fig. K.3 and is given by

d$ = pegW,(f) (K.33)

d$,, = d$ cos@. (K.34)

The total power per length $,, normal to the boundary is obtained integrating
between —5 <0 < 3 < 0:

$n = /5 pegWo(f) Coseg_e B M. e

s s

[ME]

The modal energy e,,04q; is given by

o M@ MWL)
T a(NAf T )

where M is the total mass, (v?) is the average mean square velocity, n(f) is
the modal density and Af the bandwidth. Introduction of expressions for the
modal density n(f), the group velocity ¢, and bending waves k of the plate
in (K.35) and (K.36) one can show that the bending and modes of the plate
are related to each other as follows

(K.36)
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0

/\ $

d$,, = d$cos

Boundary

Fig. K.3. Intensity into boundary

k
$n = —€modal- <K37>
™

This expression will be applied deriving the coupling loss factor of two or more
connected plates.



L

Finite Difference Approximations for Various

Orders

By using higher-order Taylor series expansion and more discretization points,
high-order accuracy finite difference schemes are derived by Wojtkiewicz

in [227).

L.1 Introduction

Let

flx +iAx,

y+3iAy) = fij,

"= firmyg + ficmag
> = fijrk+ fiion
e

673;1 = fi+m7j - fi—mJ’

and

80 = fijrk — fij—k-

L.2 Second Order Approximation

2f, Sy 0
0x2 Ax?2

T

Oy? Ay?
fi; _ 5% — &%
Ox 2Ax
Ofij &y — &y
oy 24y
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(L.6)
(L.7)
(L.8)

(L.9)
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L.3 Fourth Order Approximation

0fiy _ 165" -3 153" (L.10)
Ox? 12Ax2 ’ '
82fi7j _ 1621 - 22 —15 ZO (L 11)
0y? 12A92 ’ '
Ofi; 807 — 05
dr 124z (L.12)
Ofij 867 — &3
oy~ 124y (L.13)

L.4 Sixth Order Approximation

fi; 270 =275 42570 245577

_ L.14
9 180 Az ’ -
0%fij _ 27030, =273, +23 5 —2453, (L.15)

o2 180Ay?2 , .

Ofi;  ABOT — 96% 4 6%
J_ L.1
o 60Az ’ (10
Ofiy _ 4567 — 904 4 64
J_ _ L.17
L.5 Eighth Order Approximation
2 1 2 8 ! ’

0fi; _ 80643 —1008%°+1283° 93  — 7175 3 (L.18)

3 5040 A2 o
O fi; _ 806450, — 10085, +128 Y, 9, — 71755, (L.19)

% 504022 o

dfi; 67207 — 16883 + 3263 — 36%
i_ L.2

9 840 Az ’ (120
8fi; 67267 — 1685Y + 320Y — 364 (L.21)

oy 840Ay ' '

L.5.1 Tenth Order Approximation

&2fi;  420003" —6000 3% +1000 % —125 " +83" — 36883 %"

dx? 25200 A2 ’
(L.22)
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02fi; 420003, —60003 ), +10003, — 1255, +83 . — 368833,

- L.23
ay? 25200 Ay? , (L.23)
dfiy 210007 — 60083 + 15065 — 2507 + 20%
o= : (L.24)
ox 2520 Az
Ofi; 210007 — 60003 + 15004 — 2507 + 20¢ (L.25)
dy 2520 Ay : :

L.5.2 Stability

The simple convection-diffusion equation will be considered to discuss the
stability of the explicit two-level finite difference scheme. The simple FKP
equation is denoted by

or _ o por
5 u8x+D8x2' (L.26)

The corresponding finite difference scheme is

fik+1 — fik fiv1,6 — fi—1k fivr e —2f50 + fic1k
J +At pk _ _,,lit QAx] k4 pdi A;Z j : (L.27)
or
fivre — fi—1k Jfivre = 2f50 + fic1k
fiks1 = fju — B 2A$J +at A;Q It (L.28)

where k =t, k+1=t+At,j =2, j+1 =2+ Ax, j—1 = x — Ax and further

B = ;‘TA; is the Courant-Friedrichs-Lewy (CFL) number and the coefficient

a= ’Zﬁ}, both are typical measures for the advection (bringing) and diffusion

velocities relative to the characteristic propagation %.
It can be proven that the explicit two-dimensional finite difference scheme

is numerically stable when, [201],

DAt 1 uAt

*= 2 <y PTga <t (L.29)
or Aa Ag?
2Ax Az
At in| —, —|. L.
< m1n< —3D ) (L.30)
Jain in [88] derived the following stability criteria
At At
U2 g, oo (L.31)

Ar D
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Problems

L.1. The following nonlinear problem is given by the Duffing’s equation
&4 20T 4y + ex® = w(t),

where the white noise excitation is fully defined by the first and second mo-
ments

E{w(t)} =0, E{w(t)w(t+71)} = 2D4(7).
The state-space variables are defined by

T =2, To = I.
The space state equation is as follows

{x} = [m(x)] + {G(x) yw(?),

where |x]| = |21, 22].
Generate the drift matrix [m(x)] and the diffusion coefficients {G(x)}.

Answers: [m(x)] = (_2@2_{?11_”?), {G(x)} = ((1))

Derive the associated FPK equation and initial, boundary and normaliza-
tion conditions. ,
Answers: 8(:;;‘2 = aa—mg[DfCQ] - a%l[argfcg] + %[{2{@ + yx1 + ex3} feal,
limg o fea(Xo|x,t) = 0(x0 — %), lim|g, | |25|—o0 fe2(X0|X, 1) =0,
ff_ ch X0|X t)dX = 1 f2 X t ff_ fc? X0|X t)fQ(XQ)dXO and
limg o fa(x, 1) ff_ fe2(%0|x, 1) fo(x0)dxo = f2(x0).

Solve the probablhty density function fa(x,t) of the parabolic partial dif-
ferential FPK equation, given the following parameters and initial and bound-
ary conditions:

o Tyin = —10, T4, = —10, Lomin = —15, Tonaz = —15

o tiar=1,4,810s

e (=02,y=1e=0.1

e D=2(=04

e Initial condition ¢ = 0 is an Gaussian binormal distribution, u, = 0,

pe = 10, U&w = 08@ =1/2

Solve the stationary solution of f3(x) from the FPK equation, 8—{ =0:

e Analytically. Stationary solution of the FPK equation of the following
equation of motion &+ Sz + g(x) = w(t), with E{w(t)} =0, E{w(t)w(t+
7)} = 2Di(7), is given by fo(w, &) = 1, /22D~ 9@l [o7).

e Numerically with the initial condition fao(z = 0,2 = 0) = fa(z; = 0,
x9 = 0) = 1, applying the second order, fourth order and sixth order finite
difference approximation.
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The Galerkin Method

Galerkin® developed in 1915 an series expansion to approximate the solution
of differential equations [186]. A brief description of the method is as follows.
The differential equation of the problem is written in the form

L{u(z,t)} =0, (M.1)

where L is the differential operator and u represents the physical quanti-
ties, e.g. displacement, velocity, acceleration. The governing partial differen-
tial equations with the boundary conditions is called the “strong form” of the
problem.

The approximate solution is expressed in series as follows

N
u= Zm(t)aﬁi(w% (M.2)

where ¢;(x) represents a sequence of kinematically admissible functions only
dependent on the space coordinate x, and 7); are the generalized coordinates
only dependent on the time ¢t. Galerkin’s method is based on the fact that
some measure of the error in L{u(z,t)} = 0 is minimized for any fixed value
of N satisfying simultaneously, for ¢ = 1..IV the conditions

N
/‘/L{u(x,t)}@dvz/VL{;nj(t)apj(x)}@dV:o, i=1,2,...,N.

(M.3)
The problem is now reformulated in the “weak form”.

Example. Given a simply supported beam with constant properties. The
bending stiffness is E1, the mass per unit length is m and dynamic load is
q(t) and the length is L. The undamped partial differential equation of motion
is given by

! Boris G. Galerkin 1871-1945.
J. Wijker, Random Vibrations in Spacecraft Structures Design,

Solid Mechanics and Its Applications 165,
© Springer Science + Business Media B.V. 2009
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*w 9w

Elgatmy,

where w is the deflection of the beam.
The deflection w(zx,t) will be expressed as follows

T

(e ) =)o) = n(oysin 7).

In accordance with Galerkin’s method the following integral equation should
be solved

L 0*w &%w
or
L O*sin(T2) . (T 9*n(t) . [ 7
/0 {Eln(t)TLLL + m&n(T) proae q(t)} sm(f)dx =0,
or

4
EI(%) n(0% +mZie) - gy = 0.

Finally the approximate equation of motion expressed in the generalized co-
ordinate 7(t) becomes

EI(%)Z@) +mit) = Sq(t),

4
i+ o (1) o =340

™ m

or

The natural frequency w can now being obtained

_7T2EI
w_L m’

and the generalized force is

Thus,
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This is the well known equation of motion for an undamped SDOF sys-
tem.

The first term of the LHS of (M.4) will be integrated by parts twice?
(assuming ET constant)

oPuw |- L 93w de
/ a4¢d (%T) R
oPw\ " d¢ 9*w Ow d%¢
:( %) deaxz) -, Wﬁd] (M.5)

The test function ¢ shall obey the boundary conditions, thus:

e ¢(0) =0 at the fixation of the beam,
. %b = 0 at the fixation of the beam,

Pw

° W'L = 0, no shear force at the tip of the beam,

° 312 2| = 0, no bending moment at the tip of the beam.

Equation (M.4) can be expressed as follows

w5
/0 [Efa - ma—;v—q(t)}qﬁdx

9%w d? o?
/O [Efa—;gd—x‘f + ma—;ugb - q(t)qﬁ} dz = 0. (M.6)

The approximate functions for w(z) in (M.6) may be of lower order than in
(M.4), Cp continuous instead of C; continuous.

The following example concerns the solution of ordinary differential equa-
tion using the finite element method. The “stiffness” and the “load vector”
will be derived. Galerkin’s method will be applied to obtain the finite element
stiffness matrix and external load vector.

Example. This example is taken from [105]. The ordinary differential equa-
tion to be solved is

2
a%—kbj—z +eu=f(z), 0<z<lL, (M.7)

with boundary conditions
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' H(x) Hy(z)
o) =1 (L) =1
1 © 2

Fig. M.1. Linear finite element

The weak formulation of the equation is

L L L
du dw du du
_ b 2 dr = dr — law—] .
/0 [ a + W Jrcwu} x /0 wf(x)dx {awdxh

The natural boundary conditions at z = 0 and x = L shall be j—;‘ lo = % | =0,
and w(x) is the test function.

Within one linear finite element as illustrated in Fig. M.1 the shape H;(z)
and test functions w are the same. Thus for one element the weak formulation

becomes . .
/0 [_&Z_;Z_Zj + bw% + cwu} dx = /0 wf(z)de.

The shape functions of internal the linear finite element are defined as
follows (see also Fig. M.1):

o Hi(z)=(1-z/l),
o Hy(z)=2a/l;.

The internal unknown u(x) can be expressed into the shape functions H;(x)
and Hz(x) in combination with the nodal properties (0) = uy and u(l1) = ug,
hence

u@mum+mwwWWﬂﬂm($»

o () = Z—Z = [Hi(x), Hy(x)] (Z;) - {_ ll H <Z;> '

The test or weighting functions w are defined by Galerkin’smethod
wi(z)\ _ (Hi(z)
wa () Hy(x) )’
) (H@)) (-
) " \mw) ~\ 4

The stiffness matrix [K;] if the ith element can be obtained using the weak
form and the selected shape and test functions for u(z) and w(x)

and



M The Galerkin Method 475

l’.
: Hj H H
[Ki] = /O [a <Hz> |H{,H5| +b (H;> |H{, H| + ¢ <H;) LH1,H2J}dx.
Evaluation of the integral gives
a1 -1 b/-1 1 ci {12 1
[K”]__E<—1 1 )+§(—1 1>+F<—1 2)'
The element generalized load vector

w= [ () s

For a constant uniform load f(x) = fo the element load vector becomes

ry =2 (})

The differential equation (M.7) and associated boundary conditions will
be solved assigning the following values for the parameters:

o a=1,

o b=-3,

o c=2,

o fo=1,

o L=1,

o u(0)=0,

e u(l)=0,

e Number of linear elements N = 1000.

The results of the finite element analysis are shown in Fig. M.2 and correlate
very good with the numerical solution using Maple®.

Problems

M.1. A beam has a constant thickness ¢ but a width which varies linearly
from by at the root to by/2 at the tip as shown in Fig. M.3. The density of the
material is p and the Young’s modulus is E. The flexural vibration w(z,t) of
the beam is approximated by the following expression

T

w(z,t) = n(t) Sin(i)

Applying the Galerkin’s method yields the undamped equation of motion ex-
pressed in the generalized coordinate 7(t). Estimate the fundamental natural
frequency.

Answers: moij + 6.0881EIyn = 0, w? = 6.0881:2er, f = 0.3927, /B (Hz),
moy = botp, EIO = b0t3/12.
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u”(x)-3u’(x)+2u(x)=1, u(0)=0, u(1)=0
0 T T

-0.02 - : i
-0.04 b

-0.06 b

u(x)

-0.08 b

-0.12 : . i

_0.14 i i i i
0 0.2 0.4 0.6 0.8 1

X

Fig. M.2. Solution ‘;273 —3% 4+ 2u=f(z),0<2<1,u(0)=u(l)=0

Fig. M.3. Tapered beam

M.2. Derive the stiffness matrix, mass matrix and force vector for a beam
element with two nodes; 1 and 2. In node 1 there are two unknown degrees
of freedom; the deflection w; and the rotation ¢;. At node 2 there are two
degrees of freedom too; the deflection ws and the rotation ¢. The bending
stiffness ET is constant over the beam element with length L. The constant
mass per unit of length is given by m and the constant load per unit of length
is ¢. The beam element is illustrated in Fig. M.4.

The following weak form of the equation of motion for the beam shall be
used to derive the mass and stiffness matrices and the force vector

/ L [ 0w d%¢ 0%w
0
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Y

Wg

N
8
o

(L),

L

2

Fig. M.4. Beam element

The approximate deflection shape w(z) is given by

w(x) = ag + a1z + azx? + azx®

and shall be expressed in the unknown degrees of freedom wy, ¢1, we and ¢o
as follows

w(zr) = Hi(r)wy + Ha(x)p1 + H3(x)wy + Hy(x)ds.

Define the shape functions Hy(z), Ha(x), Hs(x), and Hy(z) and perform the
following assignments:

Derive the stiffness matrix [k] from fOL EI ?91‘2” Z%dx with the aid of Galer-
kin’s method.

Derive the mass matrix [m] from fOL m%i";“ ¢dx with the aid of Galerkin’s
method.

Derive the force vector [f] from fOL q(t)ddx with the aid of Galerkin’s
method.

The lowest natural frequency of a fixed-free beam is given by f, =

0.560/-ZL (Hz) (verify). Calculate the lowest natural frequency f; (Hz)

mL*4
with a finite element model (FEM) consisting of 10 beam elements and
11 nodes. The DOF’s in node 1 are constrained, wq = ¢; = 0 (hint: set
El=m=L=1).

Answers:

Hi(r)=1-3(2) +2(2)°
Hy(x) = & — 2(2) + 2(%2),
Hy(x) = 3(2)% - 2(2)?,
Hy(z) = —(%) + (&),

12 6L —12 6L

4L? —6L 2L?
L3 12 —6L |’
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13 1L 9 _ 13L
35 210 70 420
L? 13L L?

o [m]=mL 105 420 140

13 _ 1110 ’
35 210
2
sym. 105
1
2
L
_ 12
2
_L
12
EI

e Finite element analysis f; = 0.5594/ =~ Hz.

M.3. The axial deformation u(x) of a bar subjected to an uniform load ¢(x)
(1-D Poisson equation) is given by
d*u
EFA— =
dz? q,

where E' is Young’s modulus and A the constant cross-section of the bar.
The following boundary conditions apply

{u(O) =0,
EAZ| =0.

The weak form of the problem is expressed as

L 2
d“u
EFA— — =
/0 |: dx? q] v =0,

where v is the test function and obeys the boundary conditions.
Derive from the weak form the following equation

L L
du dv
EA ——dr = — dx.

/0 dz dz " /0 qoar

M.4. Solve the following ordinary differential equation
¥ — —3rx— —du=2° 10 <z <20, (M.8)
i x

with the boundary conditions «(10) = 0 and «(20) = 100, with the aid of the
finite element method using linear elements as illustrated in Fig. M.1, [105].
Perform the assignments:

1. Set up the weak form of (M.8)
2. Derive the stiffness matrix for the linear element based on the weak form
and using Galerkin’s method
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10 12 14 16 18 20

Fig. M..5. Solution 2 % — 304 _ 4y = 2,10 < z < 20, u(10) = 0 and u(20) = 100

3. Derive the force vector of the linear element based on the weak form and
using Galerkin’s method

4. Solve numerically (M.8) and associated boundary conditions using 10, 50
and 100 elements.

Answers:
200 dw du du 0 5 du 20
/ (Zl? ——+4xw—+4wu>dm/ wT da:Jr{x w—} ,
10 dr dx dzx 10 dz |,
A 1 ( 4xq123 — 6232y — 23 + 323 22103 — a3 — 23
[ e] - l_2 —2x 2 3 3 2 _ 4 2 _ 3 3 )
i 2x] + x5 + Ty 6331.’172 T{T2 3,’1,‘2 + x3

{Fe}:

1 —4x233:1" + x% + 3:17‘11
120; \ —4my23 + 325 + 21 |7

where [; is the length of the linear element and z; and x5 are the coordinates
of respectively nodes 1 and 2 (Fig. M.1). The solution of (M.8) for x = 15 is
u = 19.7816. In Fig. M.5 the numerical solution, using Maple®, is shown.



N

Wiener Process, Stochastic Integrals,
Stochastic Differential Equations

N.1 Wiener Process

A Wiener process (notation W(t), ¢ > 0) is named in the honor of Nor-
bert Wiener.! Another name is the Brownian motion (notation B(t), t > 0).
The Wiener process is a Gaussian process and is completely described by its
expectation and correlation function and is probably the simplest stochas-
tic process and can be taken the prototype of all stochastic processes. The
standard Wiener process has the following main properties [81]:

1.

U LN

7.

8.

W(0)=0

Paths (trajectories are continuous functions of te[0, co])

Expectation E{W (t)} =0

Correlation (Covariance) function E{W (t)W(s)} = min(¢, s)

For any t1,t2,...,t, the random vector |[W(ty), W (t2),...,W(t,)] is
Gaussian

For any s,t

E{W2(t)} =t,
E{W(t) = W(s)} =0,
E{W(t) = W(s)]*} = [t — 5.
Increments of Wiener process on non overlapping intervals are indepen-

dent, i.e. W(te) — W(sa), W(t1) — W(sy1) are independent
Paths of Wiener process are not differentiable functions

The properties 1-5 are nothing but the definition of the Wiener process. Prop-
erty 6 is implied in 3 and 4. Property 4 provides the orthogonality of incre-
ments, that is for s1 < s9 < 83 < s4

E{[W(s4) = W(s3)][W(s2) = W(s1)]} = (52 — 81) — (52 — 51) = 0.

1 Norbert Wiener 1894-1964.

J. Wijker, Random Vibrations in Spacecraft Structures Design,
Solid Mechanics and Its Applications 165,
© Springer Science + Business Media B.V. 2009
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To verify the validity of 8, with h > 0 let define

W(s+h) — W(s)
h

Ah) =

and show that limj,_,g A(h) does not exists. Assume that this limit exists

then the limit for the Fourier transform limy_q E{e/*?()} exists and is a

continuous function of A. Hence, since the random variable A(h) is non zero
2

mean Gaussian with the variance E{W} = 4, thus

B0y = —o= {0 220} =00,

Since the Heaviside step function U(A) is discontinuous the assumed differen-
tiability is not valid.

Let X (t) be a standard Wiener process, from property 6 the probability
density function f;(z) can be derived

fi(z) = \/;_ﬂte*'z, t>0. (N.1)

For the differential dW (¢) apply the following properties [204]:

1. dW (t) = &dt, where & is white noise

2. Expectation E{dW (t)} =0

3. Correlation (Covariance) function E{dW (t)dW(s)} =0
4. E{dW?(t)} = dt

NG
o

The practical importance of the Wiener process is in the relation property 1.

Simulation of White Noise

The simulation of the white noise is described in [204]. In the case of simulation
of stochastic processes an important question is the reproducibility of the
results. For this purpose, random numbers are computed using deterministic
algorithms. The numerical simulation of stochastic process requires a random
number generator which produces uniformly distributed numbers independent
from each other using certain initial values from the interval (0, 1]. There are
several ways to produce such random numbers from a uniformly distributed
sequence.

Let R,, be a sequence of numbers with standard normal distribution from
the interval [0, 1]

E{R,} =0,

E{R2} =1. (N-2)

Thus, the equation
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AW = R, VAL, (N.3)

fulfills the requirements of the Wiener process
E{AW} = E{R,VAt} = E{R,}\E{VAt} = E{R,}VAt =0,  (N.4)
and
E{AW?} = B{[R,VAl]*} = E{R2}E{V A2} = E{R2}At = At. (N.5)

Such a sequence of R,, that satisfies (N.2), can be constructed from to uni-
formly distributed, statistically independent sequences U,, and V,, using the
Boz-Miiller transformation. This sequences can be obtained by applying a
linear generator with arbitrary initial values 0 < Up, Vp < 1 (Uy # Vp). The
algorithm reads

Up=03, Vo=07, a=09821.0, b=0211322, (N.6)
U, = frac(aUp—1 + b), (N.7)
Vi = frac(aV,—1 +b), (N.8)

where the function frac? limits the number to the interval [0, 1] by cutting the
integer digits off. Finally, the Box-Miiller transformation, which yields the
sequences R,, and R,, with standard normal distribution from the evenly
distributed sequences U,, and V,,

R,, = v —2InU,sin(27V,,),
R, =/ —2InU, cos(27V,,).

Example. Generate a Wiener process within a time interval [0,1] with a
number of simulations n = 10000 (At = 1/n) using the Box-Miiller transfor-
mation to simulate a white noise, normal Gaussian N(0,1) distributed. The
distribution of the simulation of the Gaussian process in shown in Fig. N.1.
The simulation of the Wiener process is illustrated in Fig. N.2.

(N.9)

More examples are given in [82].

N.2 It versus Stratonovich

In this section a not to formal discussion on the differences between It6 and
Stratonovich interpretation of stochastic differential equation (SDE). The dis-
cussion is taken from [148].

The interpretation question arises when dealing with the multiplicative
stochastic (parametric excitation) equation

2 frac(z) = = — fiz(z).
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Fig. N.1. Distribution of R,, (10" iterations)

Standard Wiener process
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Fig. N.2. Simulated standard Wiener process

X(t) = F(X (1) + g(X()E), (N.10)

where f and g are given functions, and £(t) is a Gaussian white noise, that is,
Gaussian and stationary random process with zero mean and delta correlated.
Alternatively, (N.10) can be written in terms of the Wiener process W (t) as
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AX(t) = F(X() At + g(X (1) AW (2), (N.11)

where AW (t) = £(t)At. When g depends on X (¢), (N.10) and (N.11) have
no meaning, unless an interpretation of the multiplicative term g(X (¢))&(t) is
provided. These different interpretations of the multiplicative term must be
given because, due to extreme randomness of the white noise, it is not clear
what X should be used even during an infinitesimal time step At. According
to Itd, that value of X (¢) is one before the beginning of the time step, i.e.
X = X(t), whereas Stratonovich uses the value of X at the middle of the
time step: X = X (¢t + At/2) = X (t) + AX (¢)/2.

Before proceeding further with the consequences of the above discussion
a more precise meaning of the differential of random processes driven by
Gaussian white noise and its implications will be given. The differential of
any random process X (t) is defined by

AX(t) = X(t + At) — X(b). (N.12)

It can be proven that AX (t) = O(V/At).

The differential of the product of two random processes will be investigated
since the differential adopts a different expression depending on the interpre-
tation (Itd or Statonovich) chosen. In accordance with (N.12) the following
expression becomes

A(XY) = [(X + AX)(Y + AY)] — XY (N.13)

This expression can be rewritten in many different ways. One possibility is
AX AY
AXY) = (X—&—T)dY—i- (Y—FT)dX, (N.14)

but it is also allowed to write the product as
A(XY) = XAY + YAX + AXAY. (N.15)
Therefore, (N.14) reads in the Stratonovich interpretation when
AXY) = XgAY + Y AX, (N.16)

where

Xs(t) = X(t + At/2) = X(t) + AX(1)/2, (N.17)

and the same for Yg(t). The differential of the product follows the It6 inter-
pretation when
A(XY) = X[AY + YIAX + AXAY, (N.18)

where
Xi(t) = X(t), (N.19)
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and Y;(t) = Y (t). Note that (N.16) formally agrees with the rules of calculus
while (N.18) does not. Previous equations (N.16) and (N.18) can be general-
ized to the product of two function U(X) and V(X), of the random process
X = X (t). Thus

A(UV) = U(Xs)AV(X) + V(Xs)AU(X), (N.20)

where X, is given by (N.17) and AV(X) = V(X 4+ AX) — V(X) with an
analogous expression for AU(X). Within Ité convention it becomes

AUV) = U(X))AV(X) + V(X)) AU (X) + AU(X)AV(X).  (N.21)

The expected value of the multiplicative therm in (N.10), g(X)&(t), de-
pends on the interpretation given. In the It6 interpretation it is clear that
E{g(X)¢(t)} = 0, because the value X and the value g(X) anticipates the
jump in the noise. In other words, g(X) is independent of £(¢). On the other
hand, it can be proved that within the Stratonovich framework the average
of the multiplicative term reads ¢g(X)g'(X)/2 where the prime denotes the
derivative. The zero value of E{g(X)&(t)} makes Itd very appealing because
then the deterministic equation for the mean value of X only depends on
the drift term f(X). In this sense, note that any multiplicative stochastic
differential equation has different expression for the function f(X) and g(X)
depending the interpretation is chosen. In the Stratonovich framework, the
SDE of type (N.11) can be written

AX = f(Xg) At + g™ (X5) AW (1), (N.22)
where Xg = X + dX/2. In the It6 sense the SDE becomes
AX = fD(Xp)dt + gD (X)) AW (1), (N.23)

where X; = X. The function f%) and f!) are not only evaluated at different
values of X but are also different functions depending in the interpretation
given. The same applies for ¢¢%) and ¢(*). From (N.17), (N.22) and (N.23) it

can be shown, keeping terms up to order At, the relation between f%) and
U s

1 g9 (X)
D (x) = FO (X)) — 2 (x)29_\2) N.24
D) = 1K) - 5990, (N.24)

while the multiplicative functions ¢®) and ¢(!) are equal
gV (X) = ¢ (X). (N.25)

Conversely, it is possible to pass from the Stratonovich SDE to an equivalent
Ito SDE. The difference between both interpretations only effects the drift
term given by function f while the function g remains unaffected. For an
additive SDE, i.e. when g is independent of X, the interpretation question is
irrelevant.
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A crucial difference between It6 and Stratonovich interpretations appears
when a change of variables is performed on the original equation. Then it can
be proved that, Stratonovich convention, the standard rules of calculus hold,
but new rules appear when the equation is understood in It6 sense. From the
point of view of this property, the Stratonovich criterion seems to convenient.
For the sake of completeness, the rules to change of variables will be repeated
in each interpretation. Let h(X,t) be an arbitrary function of X and ¢. In the
It6 sense, the differential of h(X,t) reads

Oh(X,t) Oh(X,t) 1 O2h(X, 1)

o -2
Ah = =2 FFAX 4 [ 4 g (X )

e o ] At, (N.26)

whereas in the Stratonovich sense, the usual expression will be obtained

_ Oh(Xg,t) AX 4+ Oh(Xg,t)

Ah 0Xs ot

At, (N.27)

where
Oh(Xs,t) B Oh(X,t)

X, 00X ‘X_XS’

(N.28)

and Xg is given by (N.17). Equation (N.26) is known as the It6’s lemma and
it extensively used.
If the SDE for X is given by

AX = f(X)At + g(X)AW,
the It6 SDE for h(X,t) can be written as follows
Ah = L°h(X)ot + L*h(X)dW, (N.29)

where the operators L? and L' are given by

0 o 1 0?
L0 = o+ f(X) 5 + 563 (X) 5
1_ P

Example. The following SDE will be considered to derive It6 formula
AX = (o — X)dt + VX AW.
The change in variable is given by
V(X)=VX.
It6’s formula can be written as

AV = LOV(X)At + L'V (X) AW,
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and with

oV (X)
ot

:O, = = —

then

da—0> V 1)
AV = — — |At+ = AW.
1% ( o 2) t G AW

If « =2, 8 =1, the total time T' = 1s and the number of steps N = 200.

The increment of the Wiener process is AW = £/ At, where £ ~ N(0,1). The
graphical representation of V(X) is given in Fig. N.3.

N.3 Stochastic Integrals

The theory about the stochastic integrals is taken from [82] will be discussed
in a simple engineering way. A more mathematical derivation of the stochastic
integrals (It6 and Stratonovich) can be read in [200].

Given a suitable function h(t), the integral

/0 e

may be approximated by the Riemann sum



N.3 Stochastic Integrals 489

N

—

= Bt (e — 1), (N.31)
j=0

where the discrete points are defined by t; = jAt, 7 = 0,1,...,N — 1. The
integral may be defined by taking A — 0 in (N.31).
In a similar way the following sum may be considered

N-1

D ()W (1) = W), (N.32)

=0

which, is similar with (N.31), may be regarded as an approximation to a
stochastic integral with respect to the Brownian motion

T
/ h(t)dW (1).

Equation (N.32) is known as the [t6 integral.
An alternative way to (N.31) is given by

N-1

> h(%) (i1 — 1)), (N.33)

J=0

which is also a Riemann sum approximation to the integral fOT h(t)dt. The
corresponding alternative of (N.32) is

N-1

> (B ) 0v e - W), (N.34)

=0

which is indicated by the Stratonovich integral.

It is possible to evaluate exactly the stochastic integrals that are approx-
imated when the deterministic function h(t) will be replaced by the Wiener
process W (t). The Itd version is the limiting case of

N-1
W(t;)[W(tj11) — W(t;)]
=0
1 N—-1
=3 (W (tj1)? = W(t;)* = {W(tj41) — W(t;)}"]
7=0
1 ) ) N-—1 )
=5 |W(T)” = W(0)" — > AW (1) = W(t;)}
=0
1,1
= SW(T)? - ST, (N.35)



490 N Wiener Process, Stochastic Integrals, Stochastic Differential Equations

The It6 integral can be written to be

/T 1 , 1
W ()dW (1) = SW(T)* = ST (N.36)
0

The Stratonovich integral is the limiting case of

N—-1
1
> S W () + Wt )W (tj41) = W(25)]
j=0
1Nl
= 5 2 [Wlt) = W(ty)?]
7=0
1
= W2 - W]
1
= §W(T)2. (N.37)
Thus in place of (N.36) the Stratonovich integral is given by

/ ' W(t)dW (t) = %W(T)? (N.38)
0

It can be shown that forming [W (¢;) + W (t;4+1)] and adding an independent
§Z;, N(0,A/4), gives an value for W (3{t; +t;11}).

It6 and Stratonovich integrals both have their uses in mathematical mod-
eling. A simple transformation converts It6 to Stratonovich. This is explained
in more mathematical detail in [200].

Applying It6 formula it can be verified that [70]

b
[ WO ) = ) - )
‘ b
- / WL ()W (2). (N.39)

N.4 Correlation Function

The derivation of the correlation function R is taken from an introductional
lecture about stochastic differential equation given by Chris Williams, Insti-
tute for Adaptive and Neural Computations, School of Informatics, University
of Edinburgh, UK. Given the set of SDE’s

Afx(t)} = —[A{z(t)} At + [GI{ AW (¢)}. (N.40)

The solution is
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GO} = M) + [ Ay vy
The Wiener have with zero means and expectation given
BUWWOHW ()] = ((WOHW () = RDmin(r,5),  (N42)
and the expectation of the standard Wiener process AW (t) is
E{AW () AW ()} = dt. (N.43)
For the stationary solution the {z(0)} dependency will be removed
El{a®)Ha()}] = Ruslt = ) = Rou(r)
- /O e e~ A= [G)2D)[G] e AT~ ds. (N.44)

For autocorrelation function [R,(7)] stationary processes and zero lag 7 = 0
Roa(0) = / e~ A=) [G12D][G]T e~ AT (=) g, (N.45)
0

Equation (N.45) is the solution of the following Lyapunov equation [10, 66]
[A][R22(0)] + [Ruw (0)][A]" = —[G][2D][G]". (N.46)

Problems

N.1. Describe in detail the Polar-Marsaglia algorithm for generating random
variates, X, from a standard normal density X ~ N(0,1).

N.2. Prove that for a standard Wiener process the following relation applies
[99]
E{W(t) — W (s)[*} = 3|t — s>, forall s,t>0.

N.3. The Wiener process is defined such that W(0) = 0, E{W?2(t;)} = t; and
E{W?2(ty)} = to. Prove that the expected value of the Ito stochastic integral

E{/tt W (t)dW (t) = 0}.

This problem is taken from [130].
N.4. Let X be the solution of the It6 SDE
b2
AX = EXAt-F bXdW.
Derive that the same process X is also the solution of the Stratonovich equa-

tion

AX =bXdW.
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N.5. The formal scalar linear SDE is given by
AX = A(t) X At + B(t)) X AW.
Prove that the solution of the SDE is in case of the
e Stratonovich equation

A(s)ds+f:0 B(s)dW)

)

X = Ce(fto

e Itd equation

t Py t
x — 0o A@ =B/ Adst [, Bls)dW)

N.6. Prove that
[Raw(t — 8)] = e A7) [Ryp (0)]  for t > s,

and
[Raz(t — 8)] = [Rya(s — t)]T-

N.7. This problem is taken from [228]. The equations of motion for the four-
dimensional linear system are

T 0 1 0 0 1 0 0

a| _ | —(kit+ke) —a ks 0 N 1 0| (&()
.13'3 0 0 0 1 T3 0 0 fg(t) ’
Ty ko 0 —(k‘z + k3) —Co T4 0 1

where & (t) and &2(t) are Gaussian white noise stochastic processes, such that

E{&i()} =0, E{&(t)} =0, E{&#)&(t + 1)} = 2D;;j0;;6(7).

The system parameters are: k1 = ko = k3 = 1, ¢ = co = 0.4, and D11 =
Doy = 0.2.

Reconstruct the MDOF dynamic system and calculate the correlation ma-
trix [Ry,] and covariance matrix [Cyy].
Answer:

0.3333 0 0.1667 O
0 0.5 0 0
0.1667 0 0.3333 O
0 0 0 0.5

[R:m] = [wa] =
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Glossary

Adjoint operator—An operator is self-adjoint if LT (wy,ws) = [[waL(w1) —
wy L(wq)]dz = 0 applies.

Autocorrelation function—The autocorrelation function of a signal is the
average of the product of the value of the signal at time ¢ with the value at
time t + 7.

Apparent Mass—Complex frequency response function which is the ratio
of force to acceleration.

Brownian motion—Is the seemingly random movement of particles sus-
pended in a liquid or gas or the mathematical model used to describe such
random movements, often called a particle theory (named after the Scottish
botanist Robert Brown).

Coupling loss factor—The coupling loss factor (CLF) gives the loss rate
when power transmits from one subsystem to another.

Convolution—The process in which one function h())is convolved or folded
back along another function f(t). If the result of the convolution is ¢(t) we
define the process as follows

oft) = /_ T OROVF(E = A

Critical Frequency—When an infinite plate is excited, the frequency at
which the speed of the free bending wave becomes equal to the speed of the
acoustic wave in air is called the critical frequency.

Diffuse Sound Field—A diffuse sound field consists of an infinite number
of statistically uncorrelated plane progressive waves. A sound field in which
the time average of the mean square sound pressure is everywhere the same
and the flow of acoustic energy in all directions is equally probable.
Ergodic Process—The mean and the variance of a stationary ergodic process
can be computed using temporal averaging instead of ensemble averaging

T
Bla(®) = (0(0) = s = 7 [ alt)ar

J. Wijker, Random Vibrations in Spacecraft Structures Design,
Solid Mechanics and Its Applications 165,
(© Springer Science + Business Media B.V. 2009
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Excitation—Excitation is an external force (or other input) applied to a sys-
tem causing it to respond.

Fokker-Planck-Kolmogorov equation—Represents the evolution in time
and space of the probability density function of the states of a stochastic dy-
namical system.

Force limited vibration test—Any vibration test in which the force be-
tween the test item and shaker is measured and controlled.
Frequency—The frequency of a periodic function is the reciprocal of the pe-
riod . The unit of frequency is Hertz (Hz).

Frequency Response Function—The frequency response function for a
linear system is the Fourier transform of the unit impulse function h(7) which
describes this system. In equation form

H(w) = /_ O; h(r)e=i*tdr.

Gaussian Random Vibration—Gaussian random vibration is vibration
which has instantaneous magnitudes that occur according to the Gaussian
distribution.

Group velocity—The group velocity ¢4 is the velocity of energy propaga-
tion.

Linear System—A system is linear when the principle of linear superposition
holds: if the output of z1(t) for the input Fy(t) and z2(t) for an input F5(t)
then in the input Fi(t) + Fy(t) would for a linear system yield x1(t) + x2(t)
as an output.

Loss factor—The loss factor of a subsystem represents the loss percentage
when the input power to the subsystem from an external excitation source
is converted to the dynamical energy of the subsystem. (Also called damping
loss factor, intrinsic loss factor.)

Markov (Markoff) process—A simple stochastic process in which the dis-
tribution of future states depends only on the present state and not on how
it arrived in the present state.

Mechanical Impedance—Is a measure of how much a structure resists mo-
tion when subjected to a given force. It relates forces with velocities acting
on a mechanical system.

Modal Effective Mass—Masses in de model consisting of SDOF systems
connected in parallel to a common base, so as to represent the apparent mass
of a base-driven dynamic system. the sum of the modal effective masses equals
the total mass.

Modal Energy—The average energy per mode in the subsystem.

Modal Overlap—The modal overlap is the ratio of the average damping
bandwidth for an individual mode to the average spacing between resonance
frequencies.

Mode count—The mode count represents the number of resonance modes
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available in the band of interest for the subsystem to receive and store dy-
namical energy.

Narrow Band—A process whose spectral density function is narrow, encom-
passing a small finite set of frequencies which are adjacent.

Norton’s equivalent system—At a given, any linear system of loads and
sources may be reduced to a simpler system consisting of a single constant
velocity source in series with a single impedance connected to the load.
Notching—Reduction of acceleration input spectrum in narrow frequency
bands, usually where items have resonances.

Parametric Vibration—Parametric vibration refers to the oscillatory mo-
tion that occurs in a structure or mechanical system as a result of time-
dependent variation of such parameters as inertia, damping, or stiffness.
Power Spectral density—Measures how a signal is distributed in the fre-
quency domain.

Probability distribution function—The probability density function F(x)
defines the probability that z(t) < x at any value of ¢. In terms of the prob-
ability density function f(x),

Fa) = [ s,

where v is a dummy variable of integration.

Radiation efficiency—Radiation efficiency o is defined as the proportion-
ality between radiated sound power I and the square of the surface normal
velocity (v?) averaged over time and radiating surface A.

Random Process (Stochastic Process)—A random process is a set (en-
semble) of time functions that can be characterized through statistical prop-
erties.

Random Vibration—Random vibration is vibration whose instantaneous
magnitude is not specified for any given instant of time. Random Vibration
may be broad-band, covering a wide and continuous range of frequencies,
narrow-band, covering a relatively narrow range of frequencies.

Resonant Frequency—In physics, resonance is the tendency of a system to
oscillate at maximum amplitude at certain frequencies, known as the system’s
resonant (or resonance) frequencies.

Response—The response of a system is the motion (or other output) result-
ing from an excitation.

Single Degree of Freedom System (SDOF)—Vibration model with one
mass attached to a base with a spring and optional a damper.

Standard Deviation ¢c—The standard deviation is equal to the root mean
square (rms) value of the deviation of a function (or a set of numbers) from
the mean value. In vibration theory, the mean value is zero, therefore, the
standard deviation is equal to the rms value.

Stationary process—A stationary process is a collection of time-history
records having statistical properties that are invariant with respect to trans-
lations in time.
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Statistical Energy Analysis—The Statistical Energy Analysis (SEA) is a
technique to analyze and predict the vibro-acoustic response of a complex
system by calculating the energy flow between subsystems.

Strict Stationarity—All statistical properties are invariant with time.
Subsystem—A subsystem can be seen as a part or physical element of the
structure (“the system”) that is to be analyzed. Subsystems are structural or
acoustical entities that have modes which are similar in nature and have equal
modal energies.

Thevenin’s equivalent system—At a given, any linear system of loads and
sources may be reduced to a simpler system consisting of a single constant
force source in parallel with a single impedance connected to the load.
Total Energy—The total time averaged vibrational energy stored in the res-
onant modes of the subsystem.

Transition probability density function—Transition probability density
function feo(zg|z,t) gives the probability of being in a differential element
(z,x+dz) of the phase plane at time ¢, having started at xg at time zero, and
satisfies the Fokker-Planck equation.

Variance 02—The variance is equal to the square of the standard deviation,
where the mean value is zero, it is the mean square value of a variable which
represents the magnitude of a vibration.

Wavelength—The wavelength is the distance between repeating units of a
wave pattern.

Wave Number—The wave number is the number of wavelengths in a dis-

tance 27
_ 2

k T
Weak form—The weak form is a variational statement of the problem in
which the residual is integrated against a test function. This has the effect
of relaxing the problem; instead of finding an exact solution everywhere, the
solution is found satisfying the strong form on average over the domain. This
is illustrated by the following example:

Strong form % = Do,

Residual form R = ‘j—“ —po =0,

$2
Weak form fOL Rvdx = 0, v is test function.

Weak Stationarity—The mean and the autocorrelation are invariant with
time.

Wide Band—A process whose spectral density function is wide, encompass-
ing a large finite set of frequencies which are adjacent.

Wiener Process—A Wiener process W (t) starting at the origin at time zero
is a Gaussian stochastic process with independent increments which are tem-
porally homogeneous.

White Noise—A noise with a § correlation is called a white noise, because
the spectral distribution is independent of the frequency.



O Glossary 497

White Random Vibration—White random vibration has a constant accel-
eration spectral density over the frequency spectrum of interest. It is a form
of white noise.
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