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Preface

This book entitled “Random Vibration in Spacecraft Structures Design: The-
ory and Applications” is based on the lecture notes “Spacecraft structures”
and “Special topics about vibration in spacecraft structures”. The author is
lecturer to the graduate students at the Delft University of Technology, fac-
ulty of Aerospace Engineering, chair Aerospace Structures. Besides lecturing,
the author is employed at Dutch Space BV in The Netherlands, where he
gained practical experience applying random vibration analysis techniques in
spacecraft design. Both the scientific environment at the University and the
practical approach in the course of spacecraft related projects in industry
provide a good foundation to compile this book.

This book on low and high frequency mechanical, acoustic random vibra-
tions is of interest to graduate students and engineers working in aerospace
engineering, particularly in spacecraft and launch vehicle structures design.

I would like to express my admiration for the patient showed by my wife
Wil during the preparation of this manuscript.

Velserbroek, 2009 Jaap Wijker
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1

Introduction

1.1 General

The various mechanical loads are not all equally important and depend on
the type of the mechanical structure: i.e. does it concern a primary structure,
the spacecraft structure or other secondary structures (such as solar panels,
antennas, instruments and electronic boxes). Requirements are specified to
cover loads encountered by handling, testing, during the launch phase and
operations in transfer and final orbit, such as [167]:

• natural frequencies
• steady-state (semi-static) acceleration
• sine excitation
• random excitation
• acoustic noise
• transient loads
• shock loads
• temperatures

Natural frequencies: The location of natural frequencies is a primary design
requirement for all parts of the spacecraft. This requirement is imposed
in order to limit the dynamic coupling of the spacecraft with the launch
vehicle

Semi-static and low frequency sinusoidal loads: The design of the primary
structure is determined to a large extent by the semi-static and low fre-
quency sinusoidal loads (up to approximately 50 Hz)

Sinusoidal and random loads: To a large extent, the sinusoidal and random
loads determine the design of secondary structures (solar panels, antennas,
electronic boxes).

Acoustic loads: Light structural parts with relatively large surface areas (such
as solar panels and spacecraft antennas) are more sensitive to acoustic
loads than sinusoidal and random base excitation.

J. Wijker, Random Vibrations in Spacecraft Structures Design,
Solid Mechanics and Its Applications 165,
c© Springer Science + Business Media B.V. 2009
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Shock loads: Deployable structures experience high shock loads; for example
during latch-up of hinges in the required final position of these mecha-
nisms. This is especially the case when the deployment speeds are too
high.

Temperatures: Temperature variations usually cause high thermal stresses in
structures. In general, the various coefficients of expansion are accounted
for in the choice of the structural materials. Thermal deformations are
taken into account when working with structures that must be aligned
with each other.

Random Loads: The design of instruments and electronic boxes is determined
by the random base excitation.

All these different types of load are described in detail in [224, 225].
In this book the random mechanical and acoustical vibrations of determin-

istic and statistical dynamic systems, in the low and high frequency range,
are considered, and the following topics will be discussed in great detail:

• Vibrations of deterministic linear mechanical dynamic systems exposed to
mechanical random loads and or enforced motion (acceleration)

• Vibrations of deterministic linear mechanical dynamic systems exposed to
random acoustic loads (sound pressures)

• Random vibration of statistically defined mechanical systems and loads
using Statistical Energy Analysis (SEA)

• Non-linear structures excited to random (white noise) mechanical loads
analyzed by using the Fokker-Planck-Kolmogorov (FPK) equation

The theory of random vibration is strongly related to the design of space-
craft structures and will be illustrated with simple and more difficult worked
examples; each section are ends with posed problems; usually answers are
provided.

Figure 1.1 shows a cross section of a typical spacecraft. This may be a com-
munication, scientific or other spacecraft. For this spacecraft, the acoustic and
the mechanical random vibration environment outside and inside the space-
craft structure will be discussed. The spacecraft structure is an assembly of
structural elements: shells of revolution, panels, shear panels, struts, etc. The
spacecraft structure provides strength and stiffness properties to the space-
craft in order to survive test and launch loads.

Among other systems on the outside of the spacecraft there are the antenna
reflector and both solar wings, constituting the spacecraft solar array. Both
the antenna reflector and the solar array are in folded or stowed configuration,
because:

• the folded systems fit better under the fairing of the launch vehicle, and
• the folded systems can carry the launch loads better.

The central structure of the spacecraft is called the primary structure of the
structure, and forms the backbone (load path) of the structure. In general,
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Fig. 1.1. Complete spacecraft

fuel tanks are needed for propulsion. The attitude control systems and are
fixed to the central body. These tanks are relatively heavy.

Spacecraft quadrilateral sandwich platforms are supported by the central
body and side panels used to mount payload and equipment boxes. In Fig. 1.1
we see the top and lower platform. The antenna is mounted to the top plat-
form. The payload and equipment is distributed so as to fulfill center of gravity
requirements posed by the launch vehicle authority.

The spacecraft side panels will close the structure box. Solar wings and
part of the equipment are mounted to the side panels.

For launch, the spacecraft is placed on the launch vehicle payload adapter
structure.

In the liftoff phase of the launch, the exhaust streams of the engines and
solid rocket boosters will produce sound waves propagating to the launch
vehicle, and will impinge on the launch vehicle structure and fairing. The
sound pressures (acoustic load) will excite the launch vehicle structure, which
will transfer the vibrations to the interface spacecraft launch vehicle. The
acoustic loads are random in nature, hence the derived mechanical vibrations
are random too. In the ECSS1 standard [56], general “Qualification” acoustic
loads are specified and given in Table 1.1.

The vibrating fairing transfers acoustic loads under the fairing. In general,
these have a reverberant nature; they are denoted sound pressure level (SPL)
and are given in decibels (dB) with a reference pressure pref = 2 × 10−5 Pa,

1 European Corporation of Space Standardization.
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Table 1.1. Acoustic qualification test levels and duration [56]

Center Frequency (Hz) Sound Pressure Level (SPL) (dB)
Octave band 0 dB = 2 × 10−5 Pa

31.5 130
63 135.5
125 139
250 143
500 138
1000 132
2000 128
4000 124
8000 120

OASPL 147
Duration: 2 min

Fig. 1.2. Acoustic loads converted into random mechanical loads

which is ostensibly the audible limit of the human ear [133]. The sound pres-
sure is relatively low with respect to the static atmospheric pressure of 105

Pa, 1 Bar, but large areal light weight structures are very sensitive to dynamic
sound pressures.

The sound pressure will excite the outside equipment and the outside
spacecraft structure, especially the external panels. The random mechani-
cal vibration of the external panels will (a) excite the fixed equipment (see
Fig. 1.2) and (b) will generate acoustic loads in the inside cavities of the space-
craft, which in turn will excite the internal load-carrying structures like the
central structure and the lower platform. Summarizing, it can be said that
the sound pressures will cause random mechanical vibrations in the space-
craft structure, creating a rather heavy random vibration environment for the
spacecraft payload, tanks, equipment, etc. Even the direct transfer of vibro-
acoustic energy to an unit (experiment, instrument, box, . . . ) structure cannot
be neglected due to the large unit surfaces [196].

In the ECSS standard [56] “Qualification” mass dependent random en-
forced accelerations are specified and given in Tables 1.2 and 1.3.
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Table 1.2. Random vibration test levels and duration for equipment with mass
M ≤ 50 kg [56]

Location Duration Frequency range (Hz) Levels (g2/Hz)

Equipment located on
external panel or with
unknown location

Vertical 20–100 3 dB/oct.

2.5 100–300 0.12M+20
M+1

min/axis 300–2000 −5 dB/oct.
Lateral 20–100 3 dB/oct.

2.5 100–300 0.15M+20
M+1

min/axis 300–2000 −5 dB/oct.

Equipment not located
on external panel

All axes 20–100 3 dB/oct.

2.5 100–300 0.05M+20
M+1

min/axis 300–2000 −5 dB/oct.

Table 1.3. Random vibration test levels and duration for equipment with mass
M > 50 kg [56]

Frequency range (Hz) Levels (g2/Hz) Remark

20–100 3 dB/oct.
100–300 0.09 11.12 Grms

300–2000 −3 dB/oct.

Duration: all axes 2.5 min/axis

1.2 Random Mechanical Vibration

In part I we discuss the aspects of random vibrations of deterministic me-
chanical structures. Predictions made about the random vibrations levels are
limited to the low frequency domain because the vibration theory is based
on simple single degree of freedom (SDOF) systems. These forms the basis
for the modal displacement method (MDM), which is frequently used in the
finite element applications.

1.3 Random Acoustic Vibration

Large-area light-weight mechanical structures are very sensitive to random
acoustic loads. The same procedures as discussed in part I are applied, how-
ever, now the applied loads are distributed over the surface of the mechanical
structure. The distributed load application is discussed in part II. Plane waves,
rain on the roof and reverberant (diffuse) sound fields are considered.

In the first part of the chapter 3 fluid structure interaction (FSI) is ignored.
The exposed pressure field cause structural responses, but the influence of the
vibrating structure on the pressure field is neglected. Later on, the full FSI
is discussed in detail, e.g. radiation, which will introduce radiation damping.
Both analytical and approximate methods will be discussed.
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1.4 Statistical Energy Analysis

Complementary to low frequency mechanical vibrations, the statistical energy
analysis(SEA) method is discussed in part III. The basis of the SEA method
is the power flow between oscillators or groups of oscillators. The structures
and loads are described in a statistical manner that in contrast with the
deterministic description of structures using the finite element method. The
number of modes per frequency dictates the application of the SEA method
in the higher frequency bands. Both random mechanical and acoustical loads
can be considered within the framework of the SEA method.

1.5 Fokker-Planck-Kolmogorov Equation

Part IV is more or less based on Gaussian, white noise processes, leading to a
Markoff process in which each event is dependent only on the event before it.
The Fokker-Planck-Kolmogorov (FPK) partial differential diffusion equation
is derived from the Markoff process. The unknown in this FPK equation is the
transition probability density function, and after integration, the joint prob-
ability function. Mean values and correlation functions (second moments),
up-crossings and first passage statistics can be obtained from the FPK equa-
tion.

The stochastic differential equations (SDE), either in Itô or Stratonovich
sense (definition of integration) are closely linked to the FPK equation.

To solve nonlinear random vibrational problems we can use the FPK equa-
tion; analytical and numerical methods are discussed.

Huge computer power is needed to solve the FPK equation numerically.
In general, the applications of the FPK equation is restricted to nonlinear
dynamic systems with a few DOFs.



Part I

Random Mechanical Vibration



2

Linear Random Vibration Systems

2.1 Introduction

By random vibration of a linear dynamic system we mean the vibration of
a deterministic linear system exposed to random (stochastic) loads. Random
processes are characterized by the fact that their behavior cannot be pre-
dicted in advance and therefore can be treated only in a statistical manner.
An example of a micro-stochastic process is the “Brownian motion” of par-
ticles and molecules [218]. A macro-stochastic process example is the motion
of the earth during an earthquake. During the launch of a spacecraft, it will
be exposed to random loads of mechanical and acoustic nature. The random
mechanical loads are the base acceleration excitation at the interface between
the launch vehicle and the spacecraft. The random loads are caused by sev-
eral sources, e.g. the interaction between the launch-vehicle structure and the
engines, exhaust noise, combustion. Turbulent boundary layers will introduce
random loads. In this chapter we review the theory of random vibrations
of linear systems. For further study on the theory of random vibration see
[16, 115, 136, 154].

2.2 Probability

The cumulative probability function F (x), that x(t) ≤ X, is (c.d.f.) given by

F (X) =
∫ X

− ∞
f(x)dx (2.1)

where

• f(x) is the probability density function (p.d.f.) with the following properties
• f(x) ≥ 0
•

∫ ∞
− ∞ f(x)dx = 1

J. Wijker, Random Vibrations in Spacecraft Structures Design,
Solid Mechanics and Its Applications 165,
c© Springer Science + Business Media B.V. 2009
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• F (X + dx) − F (X) =
∫X+dx

X
f(x)dx = f(X)dx, X ≤ x(t) ≤ X + dx

The cumulative probability function has the following properties:

• F (−∞) = 0
• F (∞) = 1
• 0 ≤ F (x) ≤ 1
• f(x) = dF (x)

dx

Examples of probability density functions are:

• The constant distribution U(a, b); X is called equally distributed over the
interval [a, b], X ∼ G(a, b), f(x) = 1

b−a , a ≤ x ≤ b, f(x) = 0 elsewhere.
• The normally distribution1 N(μ, σ), σ > 0. X is normally distributed with

the parameters μ and σ, X ∼ N(μ, σ) when f(x) = 1
σ

√
2π

e
(x−μ)2

2σ2 .
• The log normal distribution LN (μ, σ), σ > 0. X is log normal distrib-

uted with the parameters μ and σ, X ∼ LN (μ, σ), x > 0, when f(x) =
1

σ
√

2π
e

(ln(x)−μ)2

2σ2 .
• The Rayleigh distribution R(σ), σ > 0. X is Rayleigh distributed with the

parameter σ, X ∼ R(σ), x > 0, when f(x) = ( 2x
σ2 )e

−x2

σ2 .

For an ergodic random process, the term f(x)dx may be approximated by

f(x)dx ≈ lim
T →∞

1
T

∑
i

δti, (2.2)

where the δti are the lingering periods of x(t) between α ≤ x ≤ β. This is
illustrated in Fig. 2.1.

The mode is defined as the peak of the p.d.f. f(x), and the mean value μ
has an equal moment to the left and to the right of it

∫ ∞

− ∞
(x − μ)f(x)dx = 0. (2.3)

This means that the average value (mean value, mathematical expecta-
tion) of x can be calculated from

E(x) = μ =

∫ ∞
− ∞ xf(x)dx∫ ∞

− ∞ f(x)dx
=
∫ ∞

− ∞
xf(x)dx. (2.4)

The definition of the n-th moment about the mean value is as follows

μn =
∫ ∞

− ∞
(x − μ)nf(x)dx. (2.5)

1 The normal distribution was discussed in 1733 by De Moivre. It was afterwards
treated by Gauss and Laplace, and is often referred to as the Gauss or Gauss-Laplace
distribution [41].
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Fig. 2.1. Transient signal

The second moment is called the variance of a signal x(t)

σ2 = μ2 =
∫ ∞

− ∞
(x − μ)2f(x)dx, (2.6)

and σ is called the standard deviation.

Example. Suppose a sinusoidal signal x(t) = A sin ωt. Over one period T the
signal x(t) will cross a certain level twice when X ≤ x(t) ≤ X + dx, with a
total time 2δt. The p.d.f. can be estimated from f(x)dx = 2δt

T = ωδt
π and with

δx = ωA cosωtδt the p.d.f. becomes f(x) = 1
πA cos ωt = 1

πA
√

1−(
x(t)

A )2
, x < A.

The mean value is in accordance with (2.4)

E(x) = μ =
∫ ∞

− ∞
xf(x)dx = 0,

and the variance σ2 is in accordance with 2.6

σ2 = μ2 =
∫ ∞

− ∞
(x − μ)2f(x)dx =

A2

2
.

In general, within the framework of linear vibrations we may assume that
the averaged (mean) value μ, of the response of a linear systems exposed
to dynamic loads will be zero. So the second moment about the mean, the
variance σ2, is equal to the mean square value E(x2) = σ2 =

∫ ∞
− ∞ x2f(x)dx.

Example. A random process x is randomly distributed between 0 ≤ x ≤ 1
with a p.d.f.

f(x) =

{
1 0 ≤ x ≤ 1,

0 x < 0, x > 1.
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Calculate the mean value, the mean square value, the variance and the
standard deviation of x:

• The mean value E(x) = μ =
∫ ∞

− ∞ xf(x)dx = 1
2

• The mean square value E(x2) =
∫ ∞

− ∞ x2f(x)dx = 1
3

• The variance σ2 = E(x2) − μ2 =
∫ ∞

− ∞(x − μ)2f(x)dx = 1
12

• The standard deviation σ =
√

1
12 = 0.289

The definition of a cross probability function or second order probability
distribution function of two random processes x(t) and y(t) is given by

P (X, Y ) = Prob[x(t) ≤ X; y(t) ≤ Y ], (2.7)

or, in terms of the specific probability density function

P (X, Y ) =
∫ X

− ∞

∫ Y

− ∞
f(x, y)dxdy. (2.8)

Therefore, we can conclude that

Prob[X1 ≤ x(t) ≤ X2; Y1 ≤ y(t) ≤ Y2] =
∫ X2

X1

∫ Y2

Y1

f(x, y)dxdy. (2.9)

The specific probability density function f(x, y) has the following proper-
ties

• f(x, y) ≥ 0
•

∫ ∞
− ∞

∫ ∞
− ∞ f(x, y)dxdy = 1.

The probability density function of the first order can be obtained from
the specific probability density function of the second order because

Prob[X1 ≤ x(t) ≤ X2; −∞ ≤ y(t) ≤ ∞] =
∫ X2

X1

[∫ ∞

− ∞
f(x, y)dy

]
dx

=
∫ X2

X1

f(x)dx, (2.10)

where
f(x) =

∫ ∞

− ∞
f(x, y)dy. (2.11)

In a similar manner it is found that

f(y) =
∫ ∞

− ∞
f(x, y)dx. (2.12)

The probability density functions f(x) and f(y) are also called marginal den-
sity functions, [140].
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If random variables x(t) and y(t) are statistically independent, then f(x, y)
satisfies

f(x, y) = f(x)f(y). (2.13)

The mean value or mathematical expectation of a continuous function
g(x, y) is given by

E{g(x, y)} =
∫ ∞

− ∞

∫ ∞

− ∞
g(x, y)f(x, y)dxdy. (2.14)

The mean values of x(t) and y(t) can be obtained as follows

E{x(t)} =
∫ ∞

− ∞

∫ ∞

− ∞
xf(x, y)dxdy =

∫ ∞

− ∞
xf(x)dx, (2.15)

E{y(t)} =
∫ ∞

− ∞

∫ ∞

− ∞
yf(x, y)dxdy =

∫ ∞

− ∞
yf(y)dy. (2.16)

The n-dimensional Gaussian probability density function with the random
variables x1(t), x2(t), . . . , xn(t) is given by, [149],

f(x1, x2, . . . , xn) =
1

σ1σ2 · · · σn

√
(2π)nσ

e
− 1

2σ

∑n

k,l=1
{σkl

(xk −mk)(xl −ml)
σkσl

}
,

(2.17)
where

mi = E{xi}, i = 1, 2, . . . , n

represents the mean value, and

σ2
i = E{(xi(t) − mi)2}, i = 1, 2, . . . , n

is the variance. In addition, the standard deviation σ is given by

σ =

∣∣∣∣∣∣∣∣∣

1 �12 · · · �1n

�21 1 · · · �2n

...
...

. . .
...

�n1 �n2 · · · 1

∣∣∣∣∣∣∣∣∣
,

where

�ij =
E{(xi − mi)(xj − mj)}

σiσj
, i, j = 1, 2, . . . , n,

is the correlation coefficient of the two random variables xi and xj .

Characteristic Function

The characteristic function of a random variable x is defined as the Fourier
transform of the probability density function [202]
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Table 2.1. Characteristic functions

Distribution f(x) E(x) = μx σ2
x Mx(θ)

U(a, b) 1
b−a

a+b
2

(b−a)2

12
1

jθ(b−a)
(ejθb − ejθa)

N(μ, σ2) 1√
2πσ

e
− (x−μ)2

2σ2 μ σ ejμθ− σ2θ2
2

Mx(θ) = E{ejθx} =
∫ ∞

− ∞
ejθxf(x)dx. (2.18)

Expanding the exponential term ejθx in power series will yield

Mx(θ) = 1 +
∞∑

n=1

(jθ)n

n!
E{xn}. (2.19)

The moments of the random variable can be calculated from the characteristic
function:

E{xn} =
1
jn

dnMx(θ)
dθn

∣∣∣∣
θ=0

. (2.20)

The nth cumulant function can also be derived from the characteristic func-
tion

kn(x) =
1
jn

dn ln Mx(θ)
dθn

∣∣∣∣
θ=0

. (2.21)

The first cumulant function is the same as the first moment, and the second
and third cumulant functions are identical with the second and third central
moments mn

mn = kn(x) =
∫ ∞

− ∞
(x − μ)nf(x)dx,

where m1 = μ.
Table 2.1 shows two examples of the characteristic function.

Example. For a zero mean Gaussian random variable x, μ = 0, the following
expression can be derived E{x4} = 3(E{x2})2 = 3σ4. This can be proved
using (2.20)

E{x4} =
1
j4

d4Mx(θ)
dθ4

∣∣∣∣
θ=0,μ=0

= 3σ4.

A general recurrent expression for E{xn} is the subject of problem 2.5.
The cumulant functions can be calculated using (2.21)

k1 = μ = 0, k2 = σ2, kn = 0, n > 2.

Problems

2.1. The simply supported beam AB shown in Fig. 2.2 is carrying a load
of 1000 N that may be placed anywhere along the span of the beam. This
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Fig. 2.2. Simply supported beam AB

problem is taken from [5]. The reaction force at support A, RA, can be any
value between 0 and 1000 N depending on the position of the load on the
beam. What is the probability density function of the reaction force RA?
Calculate the probability that

• Prob(100 ≤ RA ≤ 200),
• Prob(RA ≥ 600).

Answers: f(x) = 1/1000, 0 ≤ x ≤ 1000, 0.10, 0.40

2.2. A random variable X is uniformly distributed over the interval (a, b,
a < b) and otherwise zero.

• Define the probability density function f(x) such that
∫ ∞

− ∞ f(x)dx = 1.
• Calculate E(X).
• Calculate E(X2).

• Calculate the variance Var(X).
• Calculate the standard deviation σX , and
• Calculate the distribution function F (x) = P (X ≤ x) =

∫ x

− ∞ f(x)dx,
a < x < b.

Answers: f(x) = 1
b−a , E(X) = a+b

2 , E(X2) = a2+b2+ab
3 , Var(X) = (b−a)2

12 ,

σX = (b−a)√
12

, and F (x) = x−a
b−a .

2.3. A continuous random variable X is said to have gamma distribution if
the probability density function of X is

f(x, α, β) =

{
1

βαΓ (α)x
α−1e− x

β , x ≥ 0;

0, otherwise,

where the parameters α and β satisfy α > 0, β > 0. Show that the mean and
variance of such a random variable X satisfy

E(X) = αβ, Var(X) = αβ2.

The gamma function is defined by

Γ (k) =
∫ ∞

0

e−uuk−1du.
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Show that
Γ (k) = (k − 1)!

for integer k.

2.4. Each front tire on a particular type of vehicle is supposed to be filled to
a pressure of 2.5 Bar. Suppose the actual pressure in each tire is a random
variable, X for the right tire and Y for the left tire, with joint p.d.f.

f(x, y) =

{
K(x2 + y2), 2.0 ≤ x ≤ 3.0, 2.0 ≤ y ≤ 3.0;
0, otherwise.

• What is the value of K?
• What is the probability that both tires are underinflated?
• What is the probability that the difference in air pressure between the two

tires is at most 0.2 Bar?
• Are X and Y independent random variables?

2.5. This problem is taken from [112]. Let X be a Gaussian random variable
with a characteristic function

Mx(θ) = ejμθ− σ2θ2
2 .

Show that
E{Xn} = μE{Xn−1} + (n − 1)σ2E{Xn−2}.

2.6. The gamma probability density function is defined by

f(x) =
λ(λx)k−1e−λx

Γ (k)
,

where λ and k are distribution parameters. The function Γ (k) is the gamma
function, which is given by

Γ (k) =
∫ ∞

0

e−uuk−1du.

Show that the mean and the variance are as follows:

μx =
k

λ
,

σ2
x =

k

λ2
.

2.3 Random Process

A random process is random in time. The probability can be described with
the aid of probabilistic theory of random processes [146]. The mean and the
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Fig. 2.3. Time history of a random process

mean square values are of great importance for random processes. We can
make a distinction between ensemble average and time average. In this section
we review the properties of random processes. The ensemble average E{} of
a collection of sampled records xj(ti), j = 1, 2, . . . , n at certain times ti is
defined as

E{x(ti} =
1
n

n∑
j=1

xj(ti), i = 0, 1, 2, . . . . (2.22)

This is illustrated in Fig. 2.3.
A random or stochastic process x(t) is said to be stationary in the strict2

sense if the set of finite dimensional joint probability distributions of the
process is invariant under a linear translation t → t + a.

Fx(x1, t1) = Fx(x1, t1 + a),
Fx(x1, t1; x2, t2) = Fx(x1, t1 + a; x2, t2 + a), (2.23)...

Fx(x1, t1; x2, t2; . . . ; xn, tn) = Fx(x1, t1 + a, x2; t2 + a; . . . ; xn, tn + a).

If (2.23) holds only for n = 1 and n = 2 the process is stationary in the weak
sense or simply weakly stationary [203].

The time average (temporal mean) value of a record x(t), over a very long
sampling time T , is given by,

〈x〉 = lim
T →∞

1
T

∫ T

0

x(t)dt. (2.24)

An ergodic process is a stationary process in which ensemble and time
averages are constant and equal to one another E{x} = 〈x〉.

In Table 2.2 a qualification of random processes is shown.
2 Also mentioned strictly stationary process or strongly stationary process.
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Table 2.2. Qualification of random process

Random process Stationary Ergodic
Stationary Non ergodic
Non stationary Non ergodic

For our purposes we will assume that all random processes are stationary
and ergodic.

For a stationary and ergodic random process x(t) there are the following
relations for the mean value:

μx = 〈x〉 = E(x) =
∫ ∞

− ∞
xf(x)dx = lim

T →∞

1
T

∫ T

0

x(t)dt, (2.25)

and for the mean square value

〈x2〉 = E{x2} =
∫ ∞

− ∞
x2f(x)dx = lim

T →∞

1
T

∫ T

0

x2(t)dt = σ2
x + μ2

x. (2.26)

The variance of stationary random process x(t) is given by

σ2
x = E{(x(t) − μx)2} = E{x2} − 2μxE{x} + μ2

x = E{x2} − μ2
x. (2.27)

This explains (2.26).

σ2
x = E{(x(t) − μx)2}

= lim
T →∞

1
4T 2

∫ T

−T

∫ T

−T

E{x(t1)x(t2)}dt1dt2 − μ2
x

= lim
T →∞

1
4T 2

∫ T

−T

∫ T

−T

Rxx(t2 − t1)dt1dt2 − μ2
x, (2.28)

where Rxx(t2−t1) is the auto correlation function, which will be discussed later
in the next section. The autocorrelation function describes the correlation of
the random process x(t) at different points t1 and t2 in time.

To put this result in a simpler form, consider the change of variables ac-
cording to τ1 = t2 + t1 and τ2 = t2 − t1. The Jacobian of this transformation
is ∣∣∣∣ ∂(t1, t2)

∂(τ1, τ2)

∣∣∣∣ =
1
2
. (2.29)

In terms of the new variables (2.28) becomes,

σ2
x = lim

T →∞

1
4T 2

∫ T

0

∫ T −τ2

0

1
2
Rxx(τ2)dτ1dτ2 − μ2

x, (2.30)

where the domain of integration is a square shown in Fig. 2.4. It is seen that
the integrand is an even function of τ2 and is not a function of τ1. Hence, the
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Fig. 2.4. Domain of integration

value of the integral is four times the value of the integral over the shaded
area. Thus

σ2
x = lim

T →∞

1
2T 2

∫ 2T

0

∫ 2T −τ2

0

Rxx(τ2)dτ1dτ2 − μ2
x

= lim
T →∞

1
T

∫ 2T

0

Rxx(τ2)
(

1 − τ2

2T

)
dτ2 − μ2

x

= lim
T →∞

1
T

∫ 2T

0

(
1 − τ2

2T

)
[Rxx(τ2) − μ2

x]dτ2. (2.31)

The random variable x(t) is ergodic in the mean if and only if [188]

lim
T →∞

1
T

∫ 2T

0

(
1 − τ

2T

)
[Rxx(τ) − μ2

x]dτ = 0. (2.32)

Example. A random signal x(t) with zero mean has the following correlation
function

R(τ) = e−λ|τ |.

Show that this signal is ergodic in the mean using (2.32).

lim
T →∞

1
T

∫ 2T

0

(
1 − τ

2T

)
[R(τ)]dτ

= lim
T →∞

1
λT

(
1 − 1 − e−λT

2λT

)
= 0.

Normally, all vibration testing and analysis is carried out under the as-
sumption that the random vibration is Gaussian. The primary reasons for this
assumption are twofold [143]:
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1. The Gaussian process is one of the few processes which have been math-
ematically defined, and

2. Many physical processes have been found to be at least approximately
Gaussian (central limit theorem3).

2.3.1 Power Spectral Density

The autocorrelation function (auto variance function) of a stationary and
an ergodic random process x(t) is illustrated in Fig. 2.5. It expresses the
correlation of a function with itself (auto) at points separated by various
times τ . The autocorrelation function is defined by

Rxx(τ) = E{x(t)x(t + τ)} = lim
T →∞

1
2T

∫ T

−T

x(t)x(t + τ)dt

= lim
T →∞

1
T

∫ T

0

x(t)x(t + τ)dt, (2.33)

with the following properties:

• limτ →∞ Rxx(τ) = μ2
x, x(t) and x(t + τ) become independent [84]

• Rxx(τ) is a real function
• Rxx(τ) is a symmetric function, Rxx(τ) = Rxx(−τ), Rxx(−τ) = E{x(t −

τ)x(t)}
• Rxx(0) = E(x2) = limT →∞

1
T

∫ T

0
x2(t)dt = σ2

x + μ2
x

• Rxx(0) ≥ |Rxx(τ)|, which can be proven with the relation
limT →∞

1
T

∫ T

0
[x(t) ± x(t+ τ)]2dt = E{[x(t) ± x(t+ τ)]2} ≥ 0, E{[x(t)]2} +

E{[x(t + τ)]2} ± 2E{x(t)x(t + τ)} ≥ 0, thus, 2R(0) ± 2R(τ) ≥ 0, finally,
R(0) ≥ |R(τ)|. It should be emphasized, however, that the equality may
hold, [209].

3 Let x1, x2, . . . , xn be a sequence of independent random variables with the means
μ1, μ2, . . . , μn and the variances σ2

1 , σ2
2 , . . . , σ2

n. Let Sn be the sum of the sequence

Sn =

n∑
i=1

xi, μsn =

n∑
i=1

μi, σ2
sn =

n∑
i=1

σ2
i .

As n → ∞ the normalized variable zn, with mean μz = 0 and σz = 1 is given by

zn =
sn − μsn

σsn
.

The variable zn has the following normalized distribution

fsn(z) =
1

2π
e− 1

2 z2
.

For any individual distribution of xi, the distribution of the sum converges to a
normalized Gaussian distribution.
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Fig. 2.5. Autocorrelation

• The correlation between x(t) and ẋ(t) is Rxẋ(τ) + Rẋx(τ) = 0, because
∂Rxx(τ)

∂t = 0, and therefore Rxẋ(0) = −Rẋx(0) = 0
• If x(t) = αy(t)+βz(t) then Rxx(τ) = α2Ryy(τ)+αβRyz(τ)+αβRzy(τ)+

β2Rzz(τ) = α2Ryy(τ) + 2αβRyz(τ) + β2Rzz(τ)
• The Fourier transform requirement is satisfied for the autocorrelation func-

tion when
∫ ∞

− ∞ |Rxx(τ)|dτ < ∞.

• The normalized correlation coefficient is defined as r(τ) = Rxx(τ)
Rxx(0) . The nor-

malized correlation coefficient of many real physical stochastic processes
can be approximated by the formula [181] e−α|τ |(cos γτ + α

γ sin γ|τ |), where
α and γ are constants.

• The correlation time τc is defined as τc = 1
Rxx(0)

∫ ∞
−0

|Rxx(τ)|dτ =∫ ∞
−0

|r(τ)|dτ .

The cross-correlation function Rxy(τ) is defined as

Rxy(τ) = E{x(t)y(t + τ)} = lim
T →∞

1
T

∫ T

0

x(t)y(t + τ)dt. (2.34)

It can be proven that |Rxy(0)| = 1
2 [Rxx(0) + Ryy(0)], and |Rxy(0)|2 ≤

Rxx(0)Ryy(0).

Example. Calculate the autocorrelation function of the function x(t) =
A sin ωt. In accordance with (2.33) the autocorrelation function becomes
Rxx(τ) = 1

T

∫ T

0
x(t)x(t + τ)dt = ωA2

2π

∫ 2π
ω

0
sinωt sin ω(t + τ)dt = A2

2 cosωτ .
The mean square value of x(t) can be easily calculated E{x2} = Rxx(0) = A2

2 .

The covariance function Cxx(τ) is defined as

Cxx(τ) = lim
T →∞

1
T

∫ T

0

{x(t) − μx} {x(t + τ) − μx}dt, (2.35)
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and that function is related to the autocorrelation function as follows

Rxx(τ) = Cxx(τ) + μ2
x. (2.36)

And if the average value of x(t) is μx = 0, then we see that

Rxx(τ) = Cxx(τ). (2.37)

It can be proved that
|Cxx(τ)| ≤ σ2

x. (2.38)

The Fourier transform of a function x(t) is defined in [89, 145] as

F {x(t)} = X(ω) =
∫ ∞

− ∞
x(t)e−jωtdt, (2.39)

and the inverse of the Fourier transform

x(t) =
1
2π

∫ ∞

− ∞
X(ω)ejωtdω, (2.40)

assuming that
∫ ∞

− ∞ |x(t)|dt < ∞, and any discontinuities are finite.

Example. Calculate the Fourier transform of a rectangular pulse:

f(t) =

{
A |t| ≤ T,

0 |t| > T.

From (2.39) we have

F (ω) =
∫ T

−T

Ae−jωtdt =
[

− A

jω
e−jωt

]T

T

=
2A

ω
sin ωT.

The Fourier transform of the autocorrelation function Rxx(τ) is called the
power spectral density function Sxx(ω) (also called auto spectral density)

Sxx(ω) =
∫ ∞

− ∞
Rxx(τ)e−jωτdτ = 2

∫ ∞

0

Rxx(τ) cosωτdτ, (2.41)

and

Rxx(τ) =
1
2π

∫ ∞

− ∞
Sxx(ω)ejωτdω =

1
π

∫ ∞

0

Sxx(ω) cos ωτdω. (2.42)

Use has been made of Euler’s identity, namely ejωt = cos ωt + j sin ωt.
Table 2.3 contains the spectral densities S(ω) for various correlation func-

tions R(τ).
The power spectral density function Sxx(ω) quantifies the distribution of

power of signal x(t) with respect to the frequency. In the expression of the



2.3 Random Process 23

Table 2.3. Correlation function versus spectral density [181, 203]

R(τ) S(ω)

Cδ(τ) C = constant∑n

k=1
Ckδ(k)(τ)

∑n

k=1
Ck(jω)k

Ce−α|τ | 2αC
α2+ω2

Ce−α|τ | cos βτ αC( 1
α2+(β+ω)2

+ 1
α2+(β−ω)2

)

Ce−α|τ |(cos βτ − α
β

sin β|τ |) Cω2

(ω2−α2−β2)2+4α2ω2

Ce−α|τ |(cos βτ + α
β

sin β|τ |) 4C(α2+ω2)

(ω2−α2−β2)2+4α2ω2

Ce−(ατ)2 cos βτ C
√

π
2α

[e
{− (ω+β)2

4α2 }
+ e

− (ω−β)2

4α2 ]∑n

k=0
Ck cos kπτ

T
for |τ | ≤ T

0 for |τ | > T

2T
∑n

k=0
(−1)kCk

ωT sin ωT
(ωT )2−(kπ)2

C(1 − |τ |
T

) for |τ | ≤ T

0 for |τ | > T
CT (

sin ωT
2

ωT
2

)2

−C
∑n

j=1
e

sj |τ |

sj

B(sj)B(−sj)∏n

k=1,k �=j
(s2

k
−s2

j
)

� {sj } < 0

C B(jω)B(−jω)
A(jω)A(−jω)

B(s) = b0s
m + b1s

m−1 + · · · + bm

A(s) = a0s
n + a1s

n−1 + · · · + an =
∏n

j=1
(s − sj)

n > m, sj are roots of A(s) = 0

power spectral density, spectral indicates a measure of the frequency content,
and the power is the quantity to which the various frequency components
contributes in the mean square value of the variable x(t). Density tells us
that the frequencies are not discrete but continuously distributed, so we cannot
speak of the contribution of a single frequency ω but only of the contribution
of a band of frequencies between ω and ω + dω.

Both the autocorrelation function Rxx(τ) and the power spectral density
function Sxx(ω) are symmetric functions about τ = 0 and ω = 0.

The pair of (2.41) and (2.42) is called the Wiener-Khintchine (in German
Wiener-Chintschin [81]) relationship. It is evident that for processes monoton-
ically decreasing the integral (2.42) exits. Therefore Sxx(ω) is for large ω of
the following order of magnitude

Sxx(ω) ∼ O

(
1

ω1+ε

)
, where ε > 0. (2.43)

If the range of frequency ω, in which the spectral density does not vanish, is
much smaller than a certain frequency ωo belonging to this range, this process
is called a narrow band process (Fig. 2.6). Thus, a narrow band process is that
one that satisfies the condition Δ

ωo

 1, where Δ is the band width at the half

power points. Otherwise the process is called a wide band process.

Example. The correlation function Rxx(τ) of a random binary wave is given
by:
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Fig. 2.6. Narrow band process

Rxx(τ) = σ2

{
1 − |t|

ε |t| ≤ ε,

0 |t| > ε.

The power spectral density function Sxx(ω) becomes

Sxx(ω) = 2
∫ ∞

0

Rxx(τ) cos ωτdτ = 2
∫ ε

0

Rxx(τ) cos ωτdτ =
4σ2

εω2
sin2

(
ωε

2

)
.

The total energy E of the signal x(t) is given by [89]

E =
∫ ∞

− ∞
{x(t)}2dt. (2.44)

The (average) power P of the signal x(t) is given by [89]

P = lim
T →∞

1
2T

∫ T

−T

{x(t)}2dt = Rxx(0). (2.45)

Using (2.40) we can rewrite (2.44) as

E =
∫ ∞

− ∞
{x(t)}2dt =

∫ ∞

− ∞
x(t)dt

[
1
2π

∫ ∞

− ∞
X(ω)ejωtdω

]
. (2.46)

By changing the order of the integration (2.46) becomes

E =
1
2π

∫ ∞

− ∞
X(ω)

[∫ ∞

− ∞
x(t)ejωtdt

]
dω =

1
2π

∫ ∞

− ∞
X(ω)X∗(ω)dω, (2.47)

hence,

E =
∫ ∞

− ∞
{x(t)}2dt =

1
2π

∫ ∞

− ∞
X(ω)X∗(ω)dω

=
1
2π

∫ ∞

− ∞
|X(ω)|2dω. (2.48)
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The resulting equation (2.48) is called Parseval’s theorem [89], with |X(ω)|2
the energy spectral density (ESD).4 The ESD is an even function. Parseval’s
theorem describes how the energy in the signal is distributed along the fre-
quency axis by the function |X(ω)|2.

Example. Consider the signal

x(t) = e−αt, α, t ≥ 0.

Calculate the total energy E of the signal x(t) using both sides of Parseval’s
theorem (2.48). Start with the left hand side (LHS) of (2.48), thus

E =
∫ ∞

− ∞
{x(t)}2dt =

∫ ∞

0

e−2αtdt =
1
2α

.

The right hand side (RHS) of (2.48) is obtained. The Fourier transform of
x(t) is given by

X(ω) =
1

α + jω
.

The spectral density |X(ω)|2 becomes

|X(ω)|2 =
1

α2 + ω2
.

The total energy of the signal x(t) is

E =
1
2π

∫ ∞

− ∞
|X(ω)|2dω =

1
2π

∫ ∞

− ∞

1
α2 + ω2

dω =
1
2π

[
arctan ω

α

α

]∞

− ∞
=

1
2α

.

The definition of the energy of a signal relies on the time domain represen-
tation of the signal x(t). Parseval’s theorem gives a second way to compute
the total energy based on the Fourier transform of the signal. That means
the calculation of the total energy is done in the frequency domain. Parseval’s
theorem relates a time domain representation of the energy in a signal to the
frequency domain description.

Equation (2.45), using Parseval’s theorem, can be written as

P = lim
T →∞

1
2T

∫ T

−T

{x(t)}2dt =
1
2π

∫ ∞

− ∞
lim

T →∞

1
2T

|X(ω)|2dω, (2.49)

where limT →∞
1

2T |X(ω)|2 is the power spectral density5 (PSD) of x(t). Par-
seval’s theorem is a relation that states an equivalence between the power P
of a signal computed in the time domain and that computed in the frequency
domain.
4 If z = x + jy and z∗ = x − jy then zz∗ = x2 + y2 = |z|2.
5 Also called autospectral density or autospectrum.
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Equation (2.41) can be written, after multiplying by ejωte−jωt, as follows

Sxx(ω) =
∫ ∞

− ∞
lim

T →∞

1
2T

[∫ T

−T

x(t)x(t + τ)dt

]
ejωte−jω(t+τ)dτ

= lim
T →∞

1
2T

|X(ω)|2. (2.50)

The average power P , using (2.49) and (2.42), can be expressed as

P =
1
2π

∫ ∞

− ∞
lim

T →∞

1
2T

|X(ω)|2dω =
1
2π

∫ ∞

− ∞
Sxx(ω)dω = Rxx(0), (2.51)

hence
Rxx(0) = E{x2} = 〈x2〉 =

1
2π

∫ ∞

− ∞
Sxx(ω)dω. (2.52)

Sxx(ω) has the following properties:

• Sxx(ω) = Sxx(−ω)
• Sxx(ω) ≥ 0.

The spectral moment mi of a stationary random process X(t) is defined
as [154]

mi =
1
2π

∫ ∞

− ∞
|ω|iSxx(ω)dω. (2.53)

For a process x(t) with μx = 0 we may use the Wiener-Khintchine relations
to find

σ2
x = m0 =

1
2π

∫ ∞

− ∞
Sxx(ω)dω, (2.54)

and
σ2

ẋ = m2 =
1
2π

∫ ∞

− ∞
|ω|2Sxx(ω)dω, (2.55)

and
σ2

ẍ = m4 =
1
2π

∫ ∞

− ∞
|ω|4Sxx(ω)dω. (2.56)

A normalized moment with the dimension of circular frequency can be defined
as

γn =
(

mn

m0

) 1
n

, (2.57)

where γ1 is the central frequency and has a geometrical meaning of being
the centroid of the spectral distribution Sxx(ω), and γ2 has the geometrical
meaning of the radius of gyration of Sxx(ω) about the origin. A variance
parameter δ describing the dispersion of Sxx(ω) around the central frequency
is defined as

δ =

√
(m0m2 − m2

1)
m1

=
√

m0m2

m2
1

− 1, (2.58)
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where the range of δ is 0 ≤ δ < ∞. For a harmonic process, m1 = ω0m0 and
m2 = ω2

0m0, δ = 0, hence small values of δ indicate a narrow band process.
Another bandwidth parameter γ is defined by

γ =

√
1 − m2

2

m0m4
=
√

1 − α2
2, (2.59)

where the irregularity factor α2 is defined to be

α2 =
m2√
m0m4

. (2.60)

The PSD function Sxx(ω) is two-sided. It is more practical to replace
ω (rad/s) with f (Hz, cycles/s) and to replace the two-sided PSD func-
tion Sxx(ω) with a one-sided PSD function Wxx(f) and then (2.52) be-
comes

Rxx(0) = E{x2} = 〈x2〉 =
4π

2π

∫ ∞

0

Sxx(ω)df =
∫ ∞

0

Wxx(f)df, (2.61)

where Wxx(f) = 2Sxx(ω).
In the narrow frequency band Δf it is assumed that Wxx is constant and

therefore

WxxΔf = lim
T →∞

1
T

∫ T

0

x2(t)dt, (2.62)

and

Wxx = lim
T →∞

1
T

∫ T

0

x2(t)
Δf

dt =
〈x2〉
Δf

, (2.63)

where T is the averaging time, x2(t) the instantaneous square of the signal
within Δf , 〈x2〉 the mean square value, and Δf → 0.

With use of (2.41) Wxx(f) becomes as follows

Wxx(f) = 4
∫ ∞

0

Rxx(τ) cos ωτdτ, (2.64)

and (2.50) can be written as

Wxx(f) = lim
T →∞

1
T

|X(ω)|2. (2.65)

We will apply (2.64) and (2.65) later in this book to estimate the PSD values
numerically.

The definition of the PSD function of x(t) in relation with the Wiener-
Khintchine relations and the mean square value will be recapitulated hereafter
[142], because several definitions exist.
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First Definition of Auto Spectral Density Function

• Sxx(ω) = limT →∞
1

2T |X(ω)|2

Wiener-Khintchine theorem Rxx(τ) ↔ Sxx(ω)

• Sxx(ω) =
∫ ∞

− ∞ Rxx(τ)e−jωτdτ = 2
∫ ∞
0

Rxx(τ) cos(ωτ)dτ

• Rxx(τ) = 1
2π

∫ ∞
− ∞ Sxx(ω)ejωτdω = 1

π

∫ ∞
0

Sxx(ω) cos(ωτ)dω

Relation between spectral density function and average energy (mean square
value, variance)

•
∫ ∞
0

Sxx(ω)dω = πRxx(0) = πVar {x(t)} = πσ2
x

Second Definition of Auto Spectral Density Function

• Sxx(ω) = limT →∞
1

2πT |X(ω)|2

Wiener-Khintchine theorem Rxx(τ) ↔ Sxx(ω)

• Sxx(ω) = 1
π

∫ ∞
− ∞ Rxx(τ)e−jωτdτ = 2

π

∫ ∞
0

Rxx(τ) cos(ωτ)dτ

• Rxx(τ) = 1
2

∫ ∞
− ∞ Sxx(ω)ejωτdω =

∫ ∞
0

Sxx(ω) cos(ωτ)dω

Relation between spectral density function and average energy (mean square
value, variance)

•
∫ ∞
0

Sxx(ω)dω = Rxx(0) = Var {x(t)} = σ2
x

Third Definition of Auto Spectral Density Function

• Wxx(f) = limT →∞
1
T |X(2πf)|2

Wiener-Khintchine theorem Rxx(τ) ↔ Wxx(f)

• Wxx(f) = 2
∫ ∞

− ∞ Rxx(τ)e−jωτdτ = 4
∫ ∞
0

Rxx(τ) cos(ωτ)dτ

• Rxx(τ) =
∫ ∞
0

Wxx(f)ej2πfτdω =
∫ ∞
0

Wxx(f) cos(2πfτ)df

Relation between spectral density function and average energy (mean square
value, variance)

•
∫ ∞
0

Wxx(f)dω = Rxx(0) = Var {x(t)} = σ2
x

White Noise

White noise contains equal amounts of energy at all frequencies. If the power
spectral density function of a signal x(t) is constant over the complete fre-
quency range, Wxx(f) = W0, 0 ≤ x(t) ≤ ∞ we talk about white noise.

The power spectral density function Sxx(ω) = W0
2 , −∞ ≤ ω ≤ ∞. The

autocorrelation function Rxx(τ) can be calculated as follows

Rxx(τ) =
1
2π

∫ ∞

− ∞
Sxx(ω)ejωτdω =

W0

4π

∫ ∞

− ∞
ejωτdω =

W0

2
δ(τ),
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where
∫ ∞

− ∞ δ(τ)dτ = 1, and δ(τ) is the Dirac delta function. A random process
with a constant (white noise by analogy to white light in optics) PSD function
between two frequencies (band-limited) is considered. Calculate the associated
autocorrelation function Rxx(τ) if

• W (f) = W0, f1 ≤ f ≤ f2

• W (f) = 0, f < f1 and f > f2

The autocorrelation function Rxx(τ) becomes

Rxx(τ) =
1
2π

∫ ∞

− ∞
Sxx(ω)ejωτdω =

1
2π

∫ ∞

− ∞
Sxx(ω) cos ωτdω,

and

Rxx(τ) =
1
2π

∫ ∞

− ∞
Sxx(ω) cos ωτdω =

1
π

∫ ∞

0

Sxx(ω) cos ωτdω.

Hence

Rxx(τ) =
W0

2π

∫ 2πf2

2πf1

cosωτdω =
W0

2πτ
[sin 2πf2τ − sin 2πf1τ ], (2.66)

so that

Rxx(0) = lim
τ →0

W0

2πτ
[sin 2πf2τ − sin 2πf1τ ] = W0[f2 − f1].

Assume a very narrow bandwidth [f2 − f1] = Δf . Then (2.66) becomes

Rxx(τ) =
W0

2πτ

[
sin 2π(f1 + Δf)τ − sin 2πf1τ

]
.

Using Taylor series

f(x + Δx) = f(x) +
f ′(x)

1!
Δx +

f ′ ′(x)
2!

Δx2 + · · · , (2.67)

for a sinus expansion of sin(f + Δf) we obtain

sin{2π(f1 + Δf)τ } ≈ sin(2πf1τ) +
cos(2πf1τ)

1!
2πΔfτ. (2.68)

The autocorrelation function Rxx(τ), with (2.67, 2.68), can now be calculated

Rxx(τ) =
W0

2πτ

[
cos

{
2π(f1τ)

}
2πΔfτ

]
= W0Δf cos(2πf1τ), (2.69)

and
Rxx(0) = W0Δf. (2.70)
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Table 2.4. Properties of autocorrelation and power spectral density function [146]

x(t) Rxx(τ) Sxx(ω)

dx(t)
dt

− d2Rxx(τ)

dτ2 ω2Sxx(ω)

dnx(t)
dtn (−1)n d2nRxx(τ)

dτn ω2nSxx(ω)

x(t)e±ω0t Rxxe±ω0t Sxx(ω ∓ ω0)

Table 2.4 gives some useful relations between the autocorrelation func-
tion Rxx(τ) and the power spectral density function Sxx(ω). In addition to
Table 2.4, the n + m derivative of the correlation function Rxx(τ) is given by

Rx(m)x(n)(τ) = (−1)m dm+n

dτm+n

∫ ∞

− ∞
Sxx(ω)ejωτdω, (2.71)

and
Sx(m)x(n)(ω) = (−1)m(jω)(m+n)Sxx(ω). (2.72)

2.3.2 Measurement of PSD

The PSD function is obtained by averaging the mean square value x̄2 of the
signal x(t) in a narrow bandwidth Δf over a finite period of time T . The
approximation of the PSD value Wx(fk) is

Wx(fk) =
x̄2(fk)
Δfk

, k = 1, 2, . . . , n, (2.73)

where x̄2(fk) is the mean square value in the center frequency fk with band-
width Δfk of the bandpass filter.

A schematic of the steps required for the PSD analysis (2.73) is presented
in Fig. 2.7. The input to the bandpass filter is the random signal x(t) to be
analyzed. The bandpass filter allows selection of the desired filter bandwidth
Δfk for the analysis. Also, the center frequency of the filter can be set at

Fig. 2.7. Schematic flow for power spectral density analysis
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specific frequencies. The instantaneous pulses from the bandpass filter are
then squared, averaged and divided by the bandwidth of the filter. The value,
after division by the bandwidth, is the magnitude of the PSD function Wx(fk)
at the specific center frequency fk of the bandpass filter.

The error e [143] in terms of the standard deviation σW of the true PSD
function W (f) and is given by

e =
σW

W (f)
=

1√
ΔfT

, (2.74)

where T is the averaging time and Δf the analyzer bandwidth. Equation (2.74)
is valid for e ≤ 0.2. Resolution is essentially a measure of the ability to re-
solve the true resonances and anti-resonances (peak and valleys) when plotting
the PSD spectrum. A small error could be produced by making the analyzer
bandwidth very large, however, this will lower the resolution!

Example. Calculate the error function e when the averaging time T = 2 s
and Δf = 20 Hz.

100e =
100√
ΔfT

= 15.8%.

2.3.3 Discrete Fourier Transform

For finite-duration, discrete-time signals, the discrete Fourier transform (DFT)
[197, 199] is given by

Xm =
N −1∑
n=0

xne−j2πn m
N , m = 0, 1, 2, . . . , N − 1, (2.75)

where N is the number of samples in the time series, T is the span in seconds
of the time series, fs = 1

Δt = 2fmax is the sample rate in samples/second (Hz)
(Shannon-Kotelnikov, Nyquist criterion [25]), Δf is the frequency resolution
or spacing between consecutive points (Hz). The sampling frequency is usually
chosen as fs = (2.5 . . . 3.0)fmax . fmax is the maximum frequency in the process
being analyzed.

For N = 2m, a high speed algorithm that exploits the symmetry is used to
compute the DFT. This algorithm is called the Fast Fourier transform (FFT).

In (2.75) the following notation is used:

• Xm is at frequency fm

• fm = m
NT , m = 0, 1, . . . , N − 1 (Hz)

• Δf = 1
T = fs

N

• Δt = 1
fs

• xn = x(nΔt) is at time nΔt
• T = NΔt
• j =

√
−1
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The vector 
X� without a subscript represents the DFT vector with the com-
ponents 
X� = 
X0, X1, . . . , XN −1� which are the DFT of the components

x� = 
x0, x1, . . . , xN −1�.

The inverse DFT is defined as follows

xn =
1
N

N −1∑
m=0

Xme−j2πn k
N , n = 0, 1, . . . , N − 1. (2.76)

For more information about the redundancy and periodicity of the DFT
the reader is advised to read [199].

Parseval’s theorem provides an important insight and link between the
time and frequency domains

N −1∑
n=0

x2
n =

1
N

N −1∑
m=0

|Xm|2. (2.77)

The average power is given by

1
N

N −1∑
n=0

x2
n =

1
N2

N −1∑
m=0

|Xm|2. (2.78)

2.3.4 Evaluation of the Autocorrelation Function

The autocorrelation function Rxx(r) of a random process expresses a measure
of the relation of the ordinates to their mutual distance apart (time delay,
time lag). From the sampled discrete ordinates xi = x(iΔt), i = 0, 1, 2, . . . , m
the discrete autocorrelation function Rxx(r) is obtained from [25]

Rxx(r) =
1

N − r

N −r∑
i=1

xixi+r, r = 0, 1, 2, . . . , m, (2.79)

where m determines the number of correlation lag values in the products
xixi+r.

The total number of discrete samples xi is N . The total sampling time is
T = NΔT . A good empirical rule therefore requires that the maximum lag
satisfy

m <
N

10
. (2.80)

The maximum time delay or lag is given by τmax = mΔt.

2.3.5 Evaluation of the PSD

The PSD Wxx(f) of a stationary random process may be obtained either
using the Wiener-Khintchine relationship, i.e. the Fourier transform of the
autocorrelation function Rxx(τ) in the known form
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Wxx(f) = 4
∫ ∞

0

Rxx(τ) cos(2πfτ)dτ, f ≥ 0, τ ≥ 0, (2.81)

or directly from the definition of the PSD

Wxx(f) = lim
T →∞

1
T

|X(ω)|2, (2.82)

where X(ω) is the Fourier transform of x(t).
The smoothed or weighted PSD estimate at harmonics k = 0, 1, 2, . . . , m

will have the form [25]

Wxx

(
kfmax

m

)
=

1
fmax

[
Rxx(0) + 2

m−1∑
r=1

W (r)Rxx(r) cos
(

πrk

m

)

+ W (m)Rxx(m)(−1)k

]
, k = 0, 1, 2, . . . , m, (2.83)

where Rxx(r) is obtained from (2.79) and fmax = 1
2Δt (the Shannon-Kotelni-

kov criterion Δt ≤ 1
2fmax

) for a good reconstruction of Wxx.
The possibilities of the time lag windows W (r) are [25]:

• General lag window W (r) = (1 − | r
m |)e−( r

m )2

• Hann window W (r) = 1
2 (1 + cos πr

m l)
• Barlett window W (r) = 1 − | r

m |
• Exponential window W (r) = e− | r

m |

• Gaussian window W (r) = e−( r
m )2

Computation of the PSD directly from (2.82) meets considerably difficul-
ties, because the DFT computations cannot be realized in an economic time
by standard methods.

One of the methods is a procedure based on segmentation of a long process,
i.e. its division into shorter overlapping or non-overlapping parts. This is done
as follows. Consider a sufficiently large set of N process ordinates which is di-
vided into K segments xk(j), k = 1, 2, . . . , K with an equal number of L
ordinates. Because these segments may overlap, beginning of the second seg-
ment starts with the Dth ordinate, the beginning of the third segment with
2Dth ordinate, etc. as illustrated in Fig. 2.8. In this way the set of K segments
becomes

x1(j) = x(j), j = 1, 2, . . . , L,

x2(j) = x(j + D), j = 1, 2, . . . , L

and finally

xk(j) = x(j + (K − 1)D), j = 1, 2, . . . , L,

where (K − 1)D = N .
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Fig. 2.8. Process segmentation for application of the Welsh method [25]

For each of these segment the modified Fourier transform A1(n), A2(n), . . . ,
Ak(n) are computed

Ak(n) =
1

L − 1

L∑
j=1

xk(j)W (j)e−2πj n
L , n = 0, 1, . . . ,

L

2
(2.84)

where W (j) is the modifying window. According to Welsh, the modifying
window W (j) may be taken either as

W (j) = 1 −
(

j − L
2

1 + L
2

)2

(2.85)

or the Hann window

W (j) = 1 −
∣∣∣∣ j − L

2

1 + L
2

∣∣∣∣. (2.86)

From these functions Ak(n) we further compute modified periodograms6

(PSD)Ik(fn) using (2.82)

Ik(fn) =
L − 1

U
|Ak(n)|2, k = 1, 2, . . . , K, (2.87)

where
fn =

n

L
, n = 0, 1, . . . ,

L

2
, (2.88)

and

U =
1

L − 1

L∑
j=1

W 2(j). (2.89)

The estimate of the resulting PSD Wxx(fn) of the process x(j) is then
obtained from the expression
6 A periodogram is an estimate of the spectral density of a signal.
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Wxx(fn) =
1
K

K∑
k=1

Ik(fn) =
L − 1
UK

K∑
k=1

|Ak(n)|2, (2.90)

or in other words Wxx(fn) is given the average of the partial PSD of each
segment.

2.3.6 Digital Simulation of a Random Process

In [25, 129, 170, 179, 180] methods are discussed to simulate a stationary ran-
dom process, expressed in a PSD function, in the time domain. Time domain
random processes are quite convenient for example for

• the numerical analysis of the dynamic response of non-linear structures to
random excitations,

• time domain analysis of the dynamic response of linear structures under
random excitations in order to obtain a kind of information that is not
obtainable from frequency domain analysis.

The signal f(t) can be simulated as follows

f(t) =
√

2
N∑

k=1

√
[W (fk)Δf ] cos(2πf́kt + φk), (2.91)

where N is the number of frequency intervals and is chosen large enough to
simulate the random process which is approximately ergodic, f́k ≈ fk + Δf

20 ,
φk is a random phase angle uniformly distributed between 0 and 2π with the
probability of occurrences 1

2π and fk = fmin + (k − 1
2 )Δf , k = 1, 2, . . . , N .

Another simulation is discussed in [179, 180] and is given by

f(t) = σ

√
2
N

N∑
k=1

cos(2πfkt + φk), (2.92)

where σ2 =
∫ ∞
0

W (f)df , φk is a random phase angle uniformly distributed
between 0 and 2π and fk = fmin +(k − 1

2 )Δf, k = 1, 2, . . . , N . It can be shown
that for N → ∞ the process f(t) is normal and ergodic. It is suggested to use
Δt = 1

10fmax
, where fmax is the maximum frequency of the PSD. The number

of frequency intervals N is taken as 200 [231].
More background of the simulation of random time series is given in Ap-

pendix A.

Problems

2.7. Let a stationary, zero mean, Gaussian process X(t) denote a stress in a
particular structural member of a linear structure responding under a Gaussian
random load. The standard deviation of X(t) is σX = 100 MPa.
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• Find Prob[|X(t)| ≥ 100 MPa] at particular time t.
• Find Prob[|X(t)| ≥ 200 MPa] at particular time t.
• Find Prob[|X(t)| ≥ 300 MPa] at particular time t.

Answers: 0.3174, 0.0456 and 0.0026.

2.8. The correlation coefficient ρ(τ) is given by [109]

ρ(τ) =
Rxx(τ) − μ2

x

σ2
x

=
Cxx(τ)

σ2
x

.

• Prove that |ρ(τ)| ≤ 1
• Prove that Rxx(τ → ∞) = μ2

x

2.9. Calculate for the function

f(x) = a0 +
n∑

k=1

sin(ωkt + ϕk)

the autocorrelation function R(τ).
Answer: R(τ) = a2

0 +
∑n

k=1
a2

k

2 cos ωkτ [187].

2.10. Suppose that the autocorrelation function of the process x(t) is given
by

Rxx(τ) = 4πaτ −1 sin(bτ).

Define the corresponding power spectral density function(s)?
Answer: Sxx(ω) = a for ω ∈ [−b, b] and elsewhere Sxx(ω) = 0.

2.11. Suppose that the autocorrelation function of the process x(t) is given
by

Rxx(τ) = σ2e−α|τ |.

Define the corresponding power spectral density function?
Answer: Sxx(ω) = 2σ2 α

α2+ω2 .

2.12. Consider an exponentially correlated noise of a scalar stationary process
x(t) with an autocorrelation function

Rxx(τ) = σ2e
− |τ |

θ ,

with θ > 0. Apply the Fourier transformation to calculate the power spectral
density function Sxx(ω).
Answer: Sxx(ω) = 2σ2θ

1+ω2θ2 .
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2.4 Deterministic Linear Dynamic Systems

A linear deterministic system with the load application F (t), F (ω) and asso-
ciated response x(t), X(ω) are illustrated in Fig. 2.9.

The system shows no random properties and the properties will not change
with time. The system is excited with a random load F (t) and the response
(output) of the system is denoted by x(t). The random responses x(t) are
very generalized and may be displacements, velocities, accelerations, forces,
stresses, etc. The linear system will be characterized using the impulse re-
sponse function. Linear means that doubling the loads F (t) will lead to twice
as much response x(t). We may present the forces and responses in the time
domain or in the frequency domain.

A linear system may be represented either simply, as a single degree of
freedom system (SDOF), or multiple with degrees of freedom (MDOF), or even
as a continuum. But in the solution of the responses the modal superposition
will be applied many times and the problem will be reduced to solve many
uncoupled SDOF dynamic systems. The response x(t) of the linear system,
due to the force F (t), and the impulse response function h(t) is given by the
convolution of h(t) and F (t)

x(t) = h(t) ∗ F (t) =
∫ ∞

− ∞
h(τ)F (t − τ)dτ, (2.93)

where F (t) is the generalized force in the time domain, h(t) the damped
impulse response function.

h(t) = e−ζωnt sin(ωn

√
1 − ζ2)

ωn

√
1 − ζ2

t ≥ 0.

This damped impulse response function can be derived from the SDOF dy-
namic system

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) = δ(t),

with ζ the damping ratio, ωn the natural frequency and δ(t) the Dirac delta
function.

The Fourier transform X(ω) of the convolution of the two functions h(t)
and f(t) equals the product of the Fourier transforms H(ω) and F (ω) of these
functions [145]. Thus

Fig. 2.9. Deterministic dynamic system
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X(ω) =
∫ ∞

− ∞
e−jωt

[∫ ∞

− ∞
h(τ)f(t − τ)dτ

]
dt. (2.94)

Changing the order of integration X(ω) becomes

X(ω) =
∫ ∞

− ∞
h(τ)

[∫ ∞

− ∞
e−jωtf(t − τ)dt

]
dτ.

From the time-shifting theorem [145] it can be concluded that the bracket
above equals F (ω)e−jωτ , therefore

X(ω) =
∫ ∞

− ∞
h(τ)F (ω)e−jωτdτ = H(ω)F (ω). (2.95)

The pair of Fourier transforms between the impulse response function h(t)
and the frequency response function H(ω) is given by

H(ω) =
∫ ∞

− ∞
h(t)e−jωtdt, h(t) =

1
2π

∫ ∞

− ∞
H(ω)ejωtdω. (2.96)

The PSD function of x(t) is given by (2.50)

Sxx(ω) = lim
T →∞

1
2T

X(ω)X∗(ω) = lim
T →∞

1
2T

|X(ω)|2,

where X∗ =
∫ ∞

− ∞ x(t)ejωtdt, the conjugate of X(ω). Equation (2.96) is very
important in analyzing the response characteristics of linear dynamic systems.

The PSD function of the random response x(t) can be expressed in terms
of the PSD function of the random loads, applying (2.95)

Sxx(ω) = lim
T →∞

1
2T

X(ω)X∗(ω) = lim
T →∞

1
2T

H(ω)H∗(ω)F (ω)F ∗(ω), (2.97)

or
Sxx(ω) = lim

T →∞

1
2T

|H(ω)|2|F (ω)|2 = |H(ω)|2SFF (ω). (2.98)

The cross-power spectral density function SxF (ω) is defined by

SxF (ω) = lim
T →∞

1
2T

X(ω)F ∗(ω), (2.99)

with
SxF (ω) = S∗

Fx(ω), (2.100)

where

• � {SxF (ω)} the real part of the cross PSD function is called the co-spectral
density function (CSD).

• � {SxF (ω)} the imaginary part of the cross PSD function is called the
quad-spectral density function (QSD).
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Fig. 2.10. Dynamic system, loads F1 and F2 applied

Further the following relationship can be derived:

SxF (ω) = lim
T →∞

1
2T

X(ω)F ∗(ω) = lim
T →∞

1
2T

H(ω)F (ω)F ∗(ω) = H(ω)SFF (ω).

(2.101)
The cross PSD function SxF (ω) is generally a complex-valued function.

Suppose a linear dynamic system is loaded by two dynamic forces F1(t) and
F2(t) and the interest is in the response x(t) at certain location. The response
x(t) of a linear system can be obtained by superposing the convolutions of the
impulse response function h1(t) and h2(t) with respectively the forces F1(t)
and F2(t)

x(t) = h1(t) ∗ F1(t) + h2(t) ∗ F2(t)

=
∫ ∞

− ∞
h1(τ)F1(t − τ)dτ +

∫ ∞

− ∞
h2(τ)F2(t − τ)dτ. (2.102)

The response of x(t) is illustrated in Fig. 2.10. In the frequency domain the
response X(ω) can be expressed as follows

X(ω) = H1(ω)F1(ω) + H2(ω)F2(ω). (2.103)

The power spectral density of x(t) can now be written as follows

Sxx(ω) = |H1(ω)|2SF1F1(ω) + H1(ω)H∗
2 (ω)SF1F2(ω)

+ H2(ω)H∗
1 (ω)SF2F1(ω) + |H2(ω)|2SF2F2(ω). (2.104)

2.4.1 Force Loaded SDOF System

The mass-spring-damper system is loaded by the force F (t) at the mass m.
The mass is suspended by a linear spring with spring stiffness k and a damper
with damping constant c. The SDOF system is illustrated in Fig. 2.11. More
about vibration of a SDOF system can be found in [208].

The equation of motion of the SDOF system is

mẍ(t) + cẋ(t) + kx(t) = F (t). (2.105)
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Fig. 2.11. SDOF system loaded with a force F (t)

Dividing (2.105) by the mass m we find the equation of motion of the damped
SDOF system:

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) =

F (t)
m

= f(t), (2.106)

where ωn =
√

k
m is the natural frequency and ζ = c

2
√

km
the damping ratio.

The harmonic motion and force can be written

x(t) = X(ω)ejωt and f(t) = f(ω)ejωt. (2.107)

A time derivative is equivalent to multiplying by jω in the frequency domain.7

Substituting (2.107) into (2.106) we obtain the equation of motion in the
frequency domain:

{
(jω)2 + 2jζωωn + ω2

n

}
X(ω) = f(ω), (2.108)

or (2.108) can be written as

X(ω) = H(ω)f(ω), (2.109)

where H(ω) is the frequency response function (FRF) and is given by

H(ω) =
1

(jω)2 + ω2
n + 2jζωωn

=
1

−ω2 + ω2
n + 2jζωωn

. (2.110)

The square of the modulus of the FRF H(ω) is

7 j is the rotation operator, multiplying by j in the frequency domain is a rotation
of π

2
radians in the complex plane.
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|H(ω)|2 = H(ω)H∗(ω) =
1

(ω2
n − ω2)2 + (2ζωωn)2

, (2.111)

thus
|H(ω)| =

1√
(ω2

n − ω2)2 + (2ζωωn)2
. (2.112)

Equation (2.98) gives the mean square response of x(t), due to the random
load f(t) = F (t)

m with the PSD function SFF (ω):

E
{
x2(t)

}
= Rxx(0) =

1
2π

∫ ∞

− ∞
|H(ω)|2Sff (ω)dω. (2.113)

If the forcing function f(t) has a constant PSD function (white noise)
Sff (ω) = Wff (f)

2 = Sf , then

E
{
x2(t)

}
= Rxx(0) =

Sf

2π

∫ ∞

− ∞
|H(ω)|2dω. (2.114)

Remember that

Sff (ω) =
SFF (ω)

m2
, Wff (f) =

WFF (f)
m2

. (2.115)

The integral in (2.114) has a closed-form solution [171] (see Appendix A).
We have the following coefficients for G2(jω) and H2(jω):

• b0 = 0
• b1 = 1
• a0 = 1
• a1 = 2ζωn

• a2 = ω2
n

The integral in (2.114) becomes

E
{
x2(t)

}
= Rxx(0) =

Sf

2π

∫ ∞

− ∞
|H(ω)|2dω =

Sf

4ζω3
n

=
SF

4ζω3
nm2

. (2.116)

The PSD function of the velocity ẋ(t) is

E
{
ẋ2(t)

}
= Rẋẋ(0) =

Sf

2π

∫ ∞

− ∞
(jω)2|H(ω)|2dω. (2.117)

We have the following coefficients for Gn(jω) and Hn(jω):

• b0 = 1
• b1 = 0
• a0 = 1
• a1 = 2ζωn

• a2 = ω2
n
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The integral (2.117) can now be obtained

E
{
ẋ2(t)

}
= Rẋẋ(0) =

Sf

2π

∫ ∞

− ∞
(jω)2|H(ω)|2dω =

Sf

4ζωn
=

SF

4ζωnm2
. (2.118)

The mean square of the acceleration ẍ(t), E{ẍ2(t)}, with a white noise
forcing does not exist, because

∫ ∞

− ∞
(jω)4|H(ω)|2dω

has no solution.

Example. A SDOF system with a natural frequency fn = 25 Hz, a mass
m = 1 kg, a damping ratio ζ = 0.01 is applied by a force with constant PSD
value WFF = 2SF = 200 N2/Hz. The rms value of the displacement xrms can
be calculated using (2.116)

xrms =
√

E{x2(t)} =

√
SF

4ζω3
nm2

=

√
WFF

64π3ζf3
nm2

= 0.00254 m.

The rms value of the velocity ẋrms can be calculated using (2.118)

ẋrms =
√

E{ẋ2(t)} =

√
SF

4ζωnm2
=

√
WFF

16πζfnm2
= 0.390 m/s.

Example. A SDOF system is shown in Fig. 2.12 as well as the values of
the SDOF parameters. The white noise PSD function of the applied force
F (t) is WF = 3000 N2/Hz. The mean value of the applied force is μF = 0.
The applied load is stationary and Gaussian. The SDOF system is linear and
therefore the response x(t) is Gaussian too. Calculate the probability that the
displacement x(t) ≤ 0.0015 m and the probability that |x(t)| ≤ 0.0015 m.

Fig. 2.12. Random force applied to SDOF
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At first the natural frequency fn will be calculated and after that the modal
damping ratio ζ. The mean value of the displacement x(t) is μx = μF

k = 0.
The natural frequency of the SDOF system is

fn =
1
2π

√
k

m
= 25 Hz,

and the damping ratio ζ is

ζ =
c

2
√

km
= 0.02.

The standard deviation of the displacement x(t) can be obtained from

σx =

√
WF

64π3ζf3
nm2

= 6.955 × 10−4 m.

The probability that the displacement x(t) ≤ 0.0015 m can be obtained
using the standardized normal distribution with z = x(t)−μx

σx
= 0.0015−0

6.955×10−4 =
2.157

Prob{x(t) ≤ 0.0015} =
1√
π

∫ 2.157

− ∞
e−z2/2dz = 0.5 + 0.4845 = 0.9845,

and

Prob{|x(t)| ≤ 0.0015} =
1√
π

∫ 2.157

−2.157

e−z2/2dz = 0.9690.

The probability Prob{x(t) > 0.0015} = 1 − 0.9846 = 0.0155 and the proba-
bility that Prob{|x(t)| > 0.0015} = 1 − 0.9690 = 0.0310.

We now study an example where a continuous beam loaded with a running
load q will be converted to a SDOF system, using the assumed mode approach.

Example. A simply supported beam with bending stiffness EI, and length
L = 1.25 m, and mass m = 0.5 kg/m must have a minimum natural frequency
fn = 125 Hz. The beam is illustrated in Fig. 2.13. Calculate the required
bending stiffness EI. To do so the deflection w(x, t) of the beam will be
written as

w(x, t) = sin
(

πx

L

)
η(t),

where η(t) is called the generalized coordinate or modal participation. Cal-
culate the generalized mass mg and stiffness kg. After that the associated
natural frequency can be expressed as

fn =
1
2π

√
kg

mg
.
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Fig. 2.13. Bending beam load with constant running load q

The generalized mass can be obtained with

mg = m

∫ L

0

sin2

(
πx

L

)
dx =

mL

2

and the generalized stiffness is

kg =
∫ L

0

EI

(
π

L

)4

sin2

(
πx

L

)
dx =

π4

2
EI

L3
.

The natural frequency associated with the assumed mode sin(πx
L ) will be

fn =
π

2

√
EI

mL4
.

The required minimum bending stiffness is EI = 7.73 × 103 Nm2.
The bending beam is manufactured from an Al-alloy with a Young’s mod-

ulus E = 70 × 109 Pa.
The cross section of the beam is a square tube with a height (width) h and

a wall thickness t = h
20 . Calculate the associated h and t from the required

second moment of area I. The second moment of area of the cross section is

I =
h4

30
.

From that it follows that the height and width of the square tube is h = 43 mm
and the wall thickness t = 2.133 mm.

The constant running load q, has a white noise PSD Wq = 20 000 N2/Hz
and has been derived from the acoustic loads. The generalized load is

Fg =
∫ L

0

q sin
(

πx

L

)
dx =

2L

π
q.

With the structural damping coefficient g the equation of motion of the
SDOF system is

mg η̈(t) + kg(1 + jg)η(t) = Fg,

or
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η̈(t) +
(

π

L

)4
EI

m
(1 + jg)η(t) =

4q

πm
.

The adapted PSD function of the running load becomes

W̄q =
(

4
πm

)2

Wq.

The frequency response function

H(ω) =
1

−ω2 + ω2
n(1 + jg)

,

peaks at the resonance frequency with a amplification factor Q = 1
g with a low

structural damping g = 0.1. At resonance, the structural damping is twice the
modal damping ratio g = 2ζ [208]. The rms value of η(t) is (see Appendix A)

ηrms =

√
W̄q

32π3gf3
n

= 0.026 m.

The bending moment M(x) = −EIw′ ′(x) so that
∣∣∣∣Mrms

(
L

2

)∣∣∣∣ = EI

(
π

L

)2

ηrms = 1263 Nm.

The bending resistance is given by

W =
2I

h
=

h3

15
= 5.177 × 10−7 m3.

The maximum bending stress at the mid of the bending beam is

σbending,rms =
Mrms

(
L
2

)
W

= 2.44 × 108 Pa.

Problems

2.13. A circular simply supported plate, with radius r = a, is loaded by a
uniform random pressure p(t) with zero mean and an one-sided PSD Wp(f) =
W0 Pa2/Hz. The undamped axi-symmetric equation of motion is given by

D

r

∂

∂r

{
r

∂

∂r

[
1
r

∂

∂r

(
r
∂w(r, t)

∂r

)]}
+ m

∂2w(r, t)
∂t2

= p(t),

where D is the bending stiffness, w(r, t) is the deflection, and m is the mass
per unit of area of the plate. The deflection w(t) is expressed as follows
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w(r, t) = η(t)
a4

64D

(
1 − r2

a2

)2

= η(t)φ(r),

where η(t) is the generalized coordinate, and φ(r) the assumed mode. The
damped equation of motion for η(t) is

mg η̈(t) + 2ζω0mg η̇(t) + kgη(t) = γp(t).

Calculate the generalized mass mg, the generalized stiffness kg, the natural
frequency ω0, and the participation factor γ.
Calculate the rms value generalized coordinate ηrms .
Calculate the rms displacement wrms(0) at the center of the plate. The modal
radial bending moment in the center of the plate is given by

Mr(0, t) =
η(t)
16

[
a2(1 + ν)

]
.

Calculate the rms value of Mrrms(0).
Answers: mg = 2πm

∫ a

0
rφ2(r)dr, kg = 2πD

∫ a

0
∂
∂r {r ∂

∂r [ 1r
∂
∂r (r ∂φ(r)

∂r )]}φ(r)dr,

γ = 2π
∫ a

0
rφ(r)dr = 106.67D

a4m , ω0 =
√

kg/mg = 10.33
√

D
a4m .

Hint: Theory of Plates and Shells [207].

2.4.2 SDOF with Enforced Acceleration

A SDOF system with a discrete mass m, damper element c and spring ele-
ment k is placed on a moving base with an acceleration ü(t). The resulting
displacement of the mass is x(t). A relative motion z(t) will be introduced
which is the displacement of the mass with respect to the base. The relative
displacement is

z(t) = x(t) − u(t). (2.119)

The equation of motion of the SDOF system, illustrated in Fig. 2.14, is

mẍ(t) + c{ẋ − u̇(t)} + k{x(t) − u(t)} = 0. (2.120)

Using (2.119) we can write the equation of motion (2.120) of the SDOF
system as

z̈(t) + 2ζωnż(t) + ω2
nz(t) = −ü(t). (2.121)

The enforced acceleration of the SDOF system is transformed into an
external force.

The absolute displacement x(t) can be calculated from

ẍ(t) = z̈(t) + ü(t) = −2ζωnż(t) − ω2
nz(t). (2.122)

The Fourier transform of (2.121) will leads to the following equation of
motion in the frequency domain
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Fig. 2.14. Enforced acceleration of a damped SDOF system

[
−ω2 + 2jζωωn + ω2

n

]
Z(ω) = −Ü(ω), (2.123)

or

Z(ω) =
−Ü(ω)

−ω2 + 2jζωωn + ω2
n

= −H(ω)Ü(ω). (2.124)

The PSD function of z(t) is given by

Szz(ω) = lim
T →∞

1
T

Z(ω)Z∗(ω), (2.125)

and the PSD function of ü(t) is given by the following equation

Süü(ω) = lim
T →∞

1
T

Ü(ω)Ü ∗(ω). (2.126)

This is in accordance with (2.50).
Using (2.98) we can write the PSD function Szz(ω) of the relative motion

z(t) as
Szz(ω) = |H(ω)|2Süü(ω). (2.127)

We shall derive of the mean square values both in the time and frequency
domain starting from the autocorrelation function Rzz(τ). Using (2.42)

Rzz(τ) =
1
2π

∫ ∞

− ∞
Szz(ω)ejωτdω, (2.128)

and inserting (2.127) we find the following expression:

Rzz(τ) =
1
2π

∫ ∞

− ∞
|H(ω)|2Süü(ω)ejωτdω, (2.129)

or with a constant PSD function Sü
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Rzz(τ) =
Sü

2π

∫ ∞

− ∞
|H(ω)|2)ejωτdω, (2.130)

Equation (2.124) gives

|H(ω)|2 =
1

(ω2
n − ω2)2 + (2ζωωn)2

=
1

ω4
n[(1 − ω2

ω2
n
)2 + (2ζ ω

ωn
)2]

. (2.131)

Finally the autocorrelation function Rzz(τ) is obtained (2.129) (see Appen-
dix B)

Rzz(t) =
Süe−ζωnt

4ζω3
n

{
cos(ωn

√
1 − ζ2) +

ζ√
1 − ζ2

sin(ωn

√
1 − ζ2)

}
, t ≥ 0.

(2.132)
The mean square response of the relative displacement z(t) is

E
{
z(t)2

}
= Rzz(0) =

Sü

4ζω3
n

=
Wü

8ζ(2πfn)3
. (2.133)

Also, the autocorrelation functions of the velocity ż(t) and z̈(t) can be
calculated by differentiating the autocorrelation function of the relative dis-
placement z(t),

Rżż(t) = − d2Rzz(t)
dt2

, (2.134)

and

Rz̈z̈(t) =
d4Rzz(t)

dt4
. (2.135)

The derivation of the mean square calculation of z(t) in the frequency do-
main is repeated. With reference to (2.129) the mean square response of z(t),
due to the random excitation ü(t), with the PSD function Süü(ω), becomes

E
{
z(t)2

}
= Rzz(0) =

1
2π

∫ ∞

− ∞
|H(ω)|2Süü(ω)dω. (2.136)

If the enforced acceleration ü(t) has a constant PSD function (white noise)
Süü(ω) = Sü = Wü

2 , then

E
{
z(t)2

}
= Rzz(0) =

Sü

2π

∫ ∞

− ∞
|H(ω)|2dω. (2.137)

This integral (2.137) has a known solution (see (2.116))

E
{
z(t)2

}
= Rzz(0) =

Sü

2π

∫ ∞

− ∞
|H(ω)|2dω =

Sü

4ζω3
n

=
Wü

8ζ(2πfn)3
. (2.138)
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Example. Suppose the system in Fig. 2.14 has a natural frequency fn =
30 Hz and a damping ratio ζ = 0.01. It is desired to estimate the rms relative
displacement of z when the excitation is a stationary random acceleration
with a uniform spectral density Wü = 0.10 g2/Hz.

E
{
z(t)2

}
=

Wü

8ζ(2πfn)3
=

0.10 × 9.812

8 × 0.01 × (2π30)3
= 17.96 × 10−6 m2.

The square root of this is the rms value zrms = 4.24 × 10−3 m. This example
is taken from [83], page 29.

The mean square value of the velocity ż(t) is given by

E
{
ż(t)2

}
= Rżż(0) =

Sü

2π

∫ ∞

− ∞
(jω)2|H(ω)|2dω =

Sü

4ζωn

=
Wü

8ζ(2πfn)
. (2.139)

Thus the relationship between the expectation of the velocity and the expec-
tation of the displacement is given by E{ż2} = (2πf)2E{z2}.

To calculate the mean square value of the acceleration ẍ(t) we use (2.122).
The autocorrelation function Rẍẍ(t) for the acceleration is

Rẍẍ(t) =
(
2ζωn

)2
Rżż(t) + ω4

nRzz(t) + 2ζω3
nRżz(t) + 2ζω3

nRzż(t). (2.140)

Differentiating (2.33) with respect to t we find

dRxx(τ)
dt

= Rẋx(τ) + Rxẋ(τ) = 0, (2.141)

thus
Rẋx(τ) = −Rxẋ(τ). (2.142)

Therefore (2.140) with τ = 0 becomes

Rẍẍ(0) = (2ζωn)2Rżż(0) + ω4
nRzz(0), (2.143)

and (2.143) can expressed using the mean square of ẍ(t)

E
{
ẍ2(t)

}
= (2ζωn)2E

{
ż2(t)

}
+ ω4

nE
{
z2(t)

}
. (2.144)

Substituting (2.138) and (2.139) in (2.144) we find the mean square of ẍ(t):

E
{
ẍ2(t)

}
=

ωnSü

4ζ
(1 + 4ζ2) =

πfnWü

4ζ
(1 + 4ζ2). (2.145)

Equation (2.145) can be approximated when 4ζ2 
 18 as follows
8 In spacecraft structures, the damping ratio ζ ≈ 0.01 . . . 0.05.
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E
{
ẍ2(t)

}
= ẍ2

rms =
πfnWü

4ζ
(1 + 4ζ2) ≈ πfnWü

4ζ
=

π

2
fnQWü, (2.146)

where Q = 1
2ζ is the amplification factor (quality factor) and fn the natural

frequency (Hz).
In general, the mean value of the acceleration ẍ(t) is zero, μẍ = 0. The

variance σẍ of the acceleration ẍ(t) is

σẍ = E
{
ẍ2(t)

}
− μ2

ẍ = ẍ2
rms , (2.147)

where rms stands for root mean square.
The modulus of the frequency response function |H(ω)|, (2.131)

|H(ωn)| =
Q

ω2
n

.

The bandwidth Δω between the half power points, i.e. |H(ωn)|2 = Q2

2ω4
n
, is

Δω = 2ζωn Δf = 2ζfn.

The mean square of the acceleration ẍ(t) is

E
{
ẍ2(t)

}
= ẍ2

rms ≈ π

2
fnQWü =

π

2
ΔfnQ2Wü. (2.148)

Most of the contribution of the power to the mean square value E{ẍ2(t} is
stored in a very peaked area with bandwidth Δfn and a height π

2 Q2. The
contribution to the power from outside the bandwidth Δfn is much less.

If the PSD function of the enforced acceleration Wüü(f) is rather constant
in the bandwidth Δfn and E{ẍ2(t)} may be than approximated by

E
{
ẍ2(t)

}
=

π

2
fnQWüü(fn). (2.149)

Equation (2.149) is called Miles’ equation [127] and is normally written when
the average value of the acceleration μẍ = 0 as

σẍ = ẍrms =
√

π

2
fnQWüü(fn). (2.150)

The rms value of the acceleration ẍ(t) in (2.150) is in practice often de-
noted by Grms . Within the frame of spacecraft structures, instruments, equip-
ment, etc., an amplification factor Q = 10 is frequently applied.

The equation of motion of the SDOF system as shown in Fig. 2.14 will
now be expressed in terms of the response x(t)

mẍ(t) + c{ẋ(t) − u̇(t)} + k{x(t) − u(t)} = 0. (2.151)

Dividing (2.151) divided by the mass m gives
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ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) = 2ζωnu̇(t) + ω2

nu(t) = F (t). (2.152)

The PSD function of the forcing function f(t) is defined as

SFF (ω) = lim
T →∞

1
T

F (ω)F ∗(ω)

= lim
T →∞

1
T

∣∣[2jζωnωU(ω) + ω2
nU(ω)]

∣∣2, (2.153)

or

SFF (ω) = lim
T →∞

1
T

|2jζωnω + ω2
n|2|U(ω)|2

=
[
(2ζωnω)2 + ω4

n

]
Suu(ω). (2.154)

The PSD function of the response x(t) can now be written as follows;

Sxx(ω) = |H(ω)|2SFF (ω) = |H(ω)|2
[
(2ζωnω)2 + ω4

n

]
Suu(ω). (2.155)

We assume a constant PSD function Suu(ω) = Su; the autocorrelation func-
tion Rxx(t) is

Rxx(t) =
1
2π

∫ ∞

− ∞
Sxx(ω)ejωtdω

=
Su

2π

∫ ∞

− ∞

[
(2ζωnω)2 + ω4

n

]
|H(ω)|2dω. (2.156)

The solution of (2.156) is found in [14]:

Rxx(t) =
ωnSu(1 + 4ζ2)

4ζ
e−ζωnt

[
cos(ωn

√
1 − ζ2t)

+
ζ(1 − 4ζ2)

(1 + 4ζ2)
√

1 − ζ2
sin(ωn

√
1 − ζ2t)

]
, t ≥ 0. (2.157)

The PSD function of the acceleration ẍ(t) can be written as (2.155)

Sẍẍ(ω) = |H(ω)|2SFF (ω) = |H(ω)|2
[
(2ζωnω)2 + ω4

n

]
Süü(ω). (2.158)

The relations between the PSD and cross PSD functions for x(t), ẋ(t) and
ẍ(t) are given in Table 2.5.

The mean square of ẍ(t) due to the random enforced acceleration ü(t) with
a constant PSD function Süü(ω) = Sü = Wü

2 is

E{ẍ2(t)} = Rüü(0) =
Sü

2π

∫ ∞

− ∞
|H(ω)|2

[
(2ζωnω)2 + ω4

n

]
dω. (2.159)

Using the results achieved in Appendix B we can extract the following con-
stants from (2.159):
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Table 2.5. PSD and cross PSD functions of x(t), ẋ(t) and ẍ(t)

x(t) ẋ(t) ẍ(t)

x(t) Sxx(ω) Sxẋ(ω) = jωSxx(ω) Sxẍ(ω) = (jω)2Sxx(ω)

ẋ(t) Sẋx(ω) = −jωSxx(ω) Sẋẋ(ω) = ω2Sxx(ω) Sẋẍ(ω) = jω3Sxx(ω)

ẍ(t) Sẍx(ω) = (−jω)2Sxx(ω) Sẍẋ(ω) = jω3Sxx(ω) Sẍẍ(ω) = ω4Sxx(ω)

• n = 2
• a0 = −1
• a1 = 2ζωn

• a2 = ω2
n

• b0 = −4ζ2ω2
n

• b1 = ω4
n

The integral (2.159) now becomes

E{ẍ2(t)} = Rẍẍ(0) =
Sü

2π

∫ ∞

− ∞
|H(ω)|2

[
(2ζωnω)2 + ω4

n

]
dω

=
ωnSü

4ζ
(1 + 4ζ2) ≈ π

2
fnQWü. (2.160)

This is again Miles’ equation (2.146).
From (2.155), the expectation of the mean square of the displacement x(t)

can be found:

E{x2(t)} = Rxx(0) =
ωnSu

4ζ
(1 + 4ζ2) ≈ π

2
fnQWu. (2.161)

The PSD function of the enforced acceleration ü(t) is given by Wüü(f) =
(2πf)4Wuu(f), so that the expectation of the displacement x(t) may be ex-
pressed as

E{x2(t)} =
E{ẍ2(t)}
(2πf)4

. (2.162)

Example. A given SDOF system has a natural frequency fn = 100 Hz and
a damping ratio ζ = 0.05, Q = 10. The white noise PSD function of the base
excitation is Wü = 0.1 g2/Hz. Calculate the rms acceleration of the SDOF
system.

The rms acceleration response of the SDOF system can be calculated using
Miles’ equation (2.150)

ẍrms =
√

π

2
fnQWüü(fn) =

√
π

2
100 × 10 × 0.1 = 12.53Grms .

2.4.3 Multi-Inputs and Single Output (MISO)

In Fig. 2.15 a SDOF system is shown with both an enforced acceleration ü(t)
at the base and a direct force F (t). The PSD function of the response x(t)
will be calculated.
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Fig. 2.15. Multi-inputs F (t) and ü(t), single output x(t)

The equation of motion of the SDOF is

mẍ(t) + c{ẋ(t) − u̇(t)} + k{x(t) − u(t)} = F (t), (2.163)

or

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) = 2ζωnu̇(t) + ω2

nu(t) +
F (t)
m

= q(t). (2.164)

The PSD function of q(t) with f(t) = F (t)
m becomes

Sqq(ω) =
[(

2ζωn

ω

)2

+
(

ωn

ω

)2]
Süü(ω) + Sff (ω) + 2

(
ωn

ω

)2

Sfü(ω), (2.165)

where Sff (ω) = WF F (ω)
m2 the PSD function of f(t), Süü(ω) the PSD function

of the enforced acceleration ü(t) and Sfü(ω) = S∗
üf (ω) the cross PSD function

of f(t) and ü(t) and is in general a complex valued function.

2.4.4 Unit Load Random Vibration Responses

The random vibration in a structure, caused by a particular random load F (t),
may be approximated by the response of that structure due a static unit load
representation Ful of the random load multiplied by a dynamic factor. This
approach will be demonstrated with the aid of the SDOF system shown in
Fig. 2.16. The static deformation caused by the unit load Ful must have about
the same deformation pattern as the mode shape {φn} considered with the
natural frequency fn.

The PSD function of the random load F (t) is indicated by WFF (f), and
the rms displacement xrms of the response x(t) is given by

xrms =

√
WFF (fn)

64π3ζf3
nm2

. (2.166)
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Fig. 2.16. Random and unit load application

The displacement xul of the SDOF system caused by the static unit load
Ful = 1 can be easily calculated

xul =
Ful

k
=

1
k

=
1

m(2πfn)2
, (2.167)

where the natural frequency fn of the SDOF system is given by fn = 1
2π

√
k
m .

The term m(2πfn)2 is extracted from (2.166); xrms becomes

xrms =
1

m(2πfn)2

√
πfnWFF (fn)

4ζ
=

1
m(2πfn)2

√
π

2
fnQWFF (fn) (2.168)

substituting (2.167) in (2.168) to obtain the following final expression for xrms :

xrms = xul

√
π

2
fnQWFF (fn). (2.169)

Equation (2.169) can be written very generally, the displacements may for
example be replaced by stresses σ

xrms

xul
=

σrms

σul
=
√

π

2
fnQWFF (fn). (2.170)

The approximate rms responses obtained from (2.170) will give conserva-
tive results!

Problems

2.14. Consider a weakly stationary random process with the PSD function of
order (m, n) = (0, 2)
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S(ω) =
S0

(ω2
0 − ω2)2 + (2ζω0ω)2

, ζ < 1.

Define the corresponding autocorrelation function R(τ) using Table 2.3,
page 23.
Answer: R(τ) = S0

2ζω3
0
e−ζω0|τ |(cos(ωdτ) + ζ√

1−ζ2
sin(ωdτ)), ωd = ω0

√
1 − ζ2.

2.15. A damped SDOF linear system is excited by a random ergodic external
force F having a PSD function given by WF (f) = W0, f ∈ (0, f0] elsewhere
WF (f) = 0. The sdof system has a damping ratio ζ = 0.05 and a natural
undamped frequency fn = f0

2 (Hz). The spring stiffness is k. Find the PSD
function Wx(f) of the displacement x as a function of f

f0
, f ∈ (0, f0). Calcu-

late the PSD values of the displacement x, the velocity ẋ, the acceleration ẍ
and for the force Fspring in the spring at the natural frequency fn.
Answers: Wx(fn) = 100W0

k2 , Wẋ(fn) = 100(2πfn)2 W0
k2 , Wẍ(fn) =

100(2πfn)4 W0
k2 , WFspring (fn) = 100W0.

2.16. A SDOF system has a natural frequency fn = 40 Hz. The mass m =
5 kg. The damping ratio ζ = 0.05. The base acceleration is specified in Ta-
ble 2.22.

• Calculate the PSD value Wüü(fn),
• Calculate the rms reaction force Fbase,rms at the base (g = 9.81 m/s2).

Answers:

• Wüü(fn) = 0.1024 g2/Hz
• Fbase,rms = 393.4 N

2.17. This problem in taken from [188]. A “band-limited” white noise enforced
acceleration ü is one whose PSD Sü has the form shown in Fig. 2.17. Let ü
be the enforced acceleration to the system

z̈ + 2ζω0ż + ω2
0z = −ü,

where z is the relative displacement, and ẍ = −ω2
0z − 2ζω0ż the absolute

displacement. Derive analytical expressions for the rms response of z̈, ż, z

Fig. 2.17. “Band-limited” white noise enforced acceleration Sü
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and ẍ. Under what condition can the rms response of the z̈ be approximated
by one subject to an ideal white-noise excitation (Miles equation).

The mean square or the zero-lag correlation function R(0) can be obtained
from the following expression:

R(0) =
1
2π

∫ ∞

− ∞
S(ω)dω.

Calculate the numerical values of the rms responses when

• the natural frequency is ω0 = 2πf0, f0 = 30 Hz,
• the damping ratio is ζ = 0.05,
• the PSD function is S0 = 0.05 g2/rad/s (g = 9.81 m/s2) and
• the radian frequencies are ω1 = 0.5ω0 and ω2 = 1.5ω0.

Answers: z̈rms = 66.3571 m/s2, żrms = 0.3520 m/s, zrms = 0.0019 m, ẍrms =
65.9195 m/s2, z̈rms,Miles = 67.3426 m/s2.

2.5 Deterministic MDOF Linear Dynamic Systems

Multi degrees of freedom (MDOF) dynamic systems may be exposed to ran-
dom forces and or random enforced motions (i.e. acceleration at the base).
Both kinds of random loads will be discussed in the following sections. The
matrix equations of motions are provided by (general purpose) finite element
programs or otherwise.

2.5.1 Random Forces

In general, the matrix equations of motion of a discrete MDOF dynamic sys-
tem can be written as

[M ]{ẍ(t)} + [C]{ẋ(t)} + [K]{x(t)} = {F (t)}, (2.171)

and consists of the following matrices and vectors:

• the mass matrix [M ]
• the stiffness matrix [K]
• the damping matrix [C]
• the force vector {F (t)}
• the displacement, velocity and acceleration vectors {x(t)}, {ẋ(t)} and

{ẍ(t)}

For linear MDOF systems the mass, stiffness and damping matrix do not
vary with time and are deterministic, however, the displacement, velocity,
and acceleration and force vector do usually change with time and are ran-
dom.
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Using the modal displacement method9 (MDM) [126, 208], we can express
the physical displacement vector {x(t)} in terms of the independent set of
eigenvectors of the modal matrix [Φ]

{x(t)} = [Φ]{η(t)}, (2.172)

where {η(t)} is the vector of generalized coordinates or modal participations.
The modal matrix [Φ] = [φ1, φ2, . . . , φn] has the following orthogonality

properties with respect to the mass and the stiffness matrix

[Φ]T [M ][Φ] = �m�, [Φ]T [K][Φ] = �Λm�, (2.173)

where �m� is the diagonal matrix of generalized masses and �Λm� the diagonal
matrix of the eigenvalues Λ multiplied by the generalized masses.

Using (2.172) and pre-multiplying by the transpose of the modal ma-
trix [Φ]T we find

[Φ]T [M ][Φ]{η̈(t)} + [Φ]T [C][Φ]{η̇(t)} + [Φ]T [K][Φ]{η(t)} = [Φ]T {F (t)}.
(2.174)

Making use of the orthogonality relation of the modal matrix [Φ], (2.173),
the equation of motions are expressed in generalized coordinates, generalized
masses, eigenvalues and generalized forces

�m�{η̈(t)} + �c�{η̇(t)} + �Λm�{η(t)} = {q(t)}, (2.175)

where {q(t)} = [Φ]T {F (t)} is the vector of generalized forces, �c� the diagonal
matrix of the generalized damping. This means that the damping matrix [C]
consists of proportional damping10 [208], which is, in general, not the case.
The influence of modal coupling of non-classically damped linear systems is
discussed in [147]. Generally, the modal viscous damping will be added on
an ad hoc basis to the uncoupled equations of the generalized coordinates,
ci = {φi}T [C]{φi} and ci

mi
= 2ζiωi, with ωi =

√
λi. mi = {φi}T [M ]{φi} is the

generalized mass associated with the mode {φi}, ζi = ci

2
√

kimi
is the modal

damping ratio, ki = {φi}T [K]{φi} is the generalized stiffness and λi = ω2
i is

the eigenvalue of the eigenvalue problem ([K] − λi[M ]){φi} = {0}.
In general, the modal damping ratio is taken to be ζ = 0.05 when random

vibrations are involved. In [1] an alternative value for the modal damping
ratio has been given

ζi =
1

10 + 0.05fi
, (2.176)

where fi (Hz) is the ith natural frequency.
Finally, the uncoupled equations of motion of the m generalized coordi-

nates with the generalized forces {q(t)} become
9 Modal superposition, the orthogonal modal method, or the principal coordinate
method [111].
10 Proportional to the stiffness and mass matrix.
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η̈i(t) + 2ζiωiη̇i(t) + ω2
i ηi(t) =

qi(t)
mi

, i = 1, 2, . . . , m. (2.177)

To find the PSD of a structural response in the physical coordinates, all the
modal PSD (direct- and cross) should be summed. The modal cross PSD may
be neglected if, [47]:

• the system is lightly damped, and
• the eigenfrequencies of the system are well separated.

The conditions can be satisfied when

max(ωjζj , ωkζk) 
 |ω2
j − ω2

k |. (2.178)

The PSD function of the external generalized forces qi(t) is defined as

Sqiqj (ω) = lim
T →∞

1
2T

Qi(ω)Q∗
j (ω)

= lim
T →∞

1
2T

{φi}T {Fi(ω)}{F ∗
j (ω)}{φj }, (2.179)

or
Sqiqj (ω) = {φi}T [SFiFj (ω)]{φj }. (2.180)

The matrix of the PSD and cross PSD functions SFiFj (ω) can be written as

[SFiFj (ω)] =

⎡
⎢⎢⎢⎢⎣

SF1F1(ω) SF1F2(ω) · · · SF1Fn(ω)

SF2F1(ω) SF2F2(ω) · · ·
...

...
...

. . . SFn−1Fn(ω)
SFnF1(ω) · · · SFnFn−1(ω) SFnFn(ω)

⎤
⎥⎥⎥⎥⎦ , (2.181)

where n is the number of applied random forces.
If there is no correlation between the individual forces Fi and Fj the cross

PSD function SFiFj (ω) = 0, i, j = 1, 2, . . . , n.
In the frequency domain (2.177) can be written with η(t) = Π(ω)ejωt and

q(t) = Q(ω)ejωt

Πi(ω) =
1

−ω2 + ω2
i + 2jζiωωi

Qi(ω)
mi

= Hi(ω)
Qi(ω)

mi
. (2.182)

The general cross PSD function Sηiηj (ω) of the generalized coordinates
ηi(t) can be expressed as follows

Sηiηj (ω) =
Hi(ω)

mi
SQiQj (ω)

H∗
j (ω)
mj

, (2.183)

or we can write using (2.180)

Sηiηj (ω) =
Hi(ω)

mi
{φi}T [SFiFj (ω)]{φj }

H∗
j (ω)
mj

. (2.184)
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The matrix of PSD and cross PSD functions of the generalized coordinates
[Sηiηj (ω)] becomes

[Sηiηj (ω)] =
⌈

Hi(ω)
mi

⌋
[Φ]T [SFiFj ](ω)[Φ]

⌈
H∗

j (ω)
mj

⌋
. (2.185)

The matrix [Sηiηj (ω)]11 is the PSD and cross PSD function of m general-
ized coordinates ηi(t) given by

[Sηiηj (ω)] =

⎡
⎢⎢⎢⎢⎣

Sη1η1(ω) Sη1η2(ω) · · · Sη1ηm(ω)

Sη2η1(ω) Sη2η2(ω) · · ·
...

...
...

. . . Sηm−1ηm(ω)
Sηmη1(ω) · · · Sηmηm−1(ω) Sηmηm(ω)

⎤
⎥⎥⎥⎥⎦ . (2.186)

The matrix of PSD and cross PSD functions of the physical displacements
is {x(t)} = [Φ]{η(t)} with {η(t)} = Π(ω)ejωt is

[Sxixj (ω)] = lim
T →∞

1
T

Xi(ω)X∗
j (ω)

= lim
T →∞

1
T

[Φi]{Πi(ω)}{Π∗
j (ω)}[Φi]T , (2.187)

or
[Sxixj ] = [Φ]Sηiηj (ω)[Φ]T . (2.188)

Finally, it ends with

[Sxixj (ω)] = [Φ]
[⌈

Hi(ω)
mi

⌋
[Φ]T [SFiFj (ω)][Φ]

⌈
H∗

j (ω)
mj

⌋]
[Φ]T . (2.189)

Equation (2.189) can also be written as

[Wxixj (f)] = [Φ]
[⌈

Hi(2πf)
mi

⌋
[Φ]T [WFiFj (f)][Φ]

⌈
H∗

j (2πf)
mj

⌋]
[Φ]T . (2.190)

The matrix of the mean square values of x(t) can now be calculated using

[E(xixj)] = [Rxixj (0)] =
1
2π

∫ ∞

− ∞
[Sxixj (ω)]dω =

∫ ∞

0

[Wxixj (f)]df. (2.191)

Random enforced accelerations will be discussed in the following section.

2.5.2 MDOF System Loaded by Random Enforced Acceleration

A MDOF dynamic system will have an acceleration base excitation as illus-
trated in Fig. 2.18.
11 The power spectral density matrix [S(ω)] is in general a complex matrix that has
the following properties:

• [S(−ω)] = [S(ω)] for all ω
• [S∗(ω)] = [S(ω)] for all ω.

The ∗ denotes the complex conjugate transpose.
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Fig. 2.18. Base excitation

The undamped equations of motion of the dynamic system can be written
as

[M ] {ẍ(t)} + [K]{x(t)} = {0}. (2.192)

A relative motion {z(t)} = {x(t)} − {T }u(t) is introduced and [K]{T }u(t) =
{0}, because {T } is the rigid body mode in the direction of the enforced
displacement u(t). In fact there are six rigid body modes, three translational
and three rotational. Equation (2.192) becomes

[M ]{z̈(t)} + [K]{z(t)} = −[M ]{T }ü(t). (2.193)

The PSD function of the relative motion {z(t)} has the same structure as
(2.190), thus

[Wzizj ] = [Φ]
[⌈

Hi(2πf)
mi

⌋
[Φ]T [WFiFj (f)][Φ]

⌈
H∗

j (2πf)
mj

⌋]
[Φ]T , (2.194)

where

• [WFiFj (f)] = (−1)2[M ]{T } {T }T [M ]Wüü(f) the PSD function of the ap-
plied random loads (base excitation)

• Hi(2πf) = 1
(2π)2(f2

i
−f2+2jζiffi)

the frequency response function (FRF)
• ζi the modal damping ratio associated with mode {φi}
• mi = {φi}T [M ]{φi} the generalized mass
• [Φ] = [φ1, φ2, . . . , φn] the modal matrix and
• {(−2πfi)2[M ] + [K]} {φi} = {0} the eigenvalue problem.

Equation (2.194) can be written as

[Wzizj (f)] = |[Hzü(f)]|2Wüü(f) = [Hzü(f)][H∗
zü(f)]T Wüü(f), (2.195)
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or

[Wzizj (f)] =
(

[Φ]
[⌈

Hi(2πf)
mi

⌋
[Φ]T [M ]{T }

× {T }T [M ][Φ]
⌈

H∗
j (2πf)
mj

⌋]
[Φ]T

)
Wüü(f). (2.196)

Thus, the FRF [Hzü(f)] can now be written

[Hzü(f)] = −[Φ]
[⌈

Hi(2πf)
mi

⌋
[Φ]T [M ]{T }

]
. (2.197)

The minus sign reflects the negative RHS of (2.193).
The FRF [Hzu(ω)] between the displacement U(ω) and the relative dis-

placement vector {Z(ω)} is given by

{Z(ω)} = [Hzu(ω)]U(ω) = −ω2[Hzü(ω)]U(ω), (2.198)

because Ü(ω) = (jω)2U(ω) = −ω2U(ω), thus the FRF [Hzu(ω)] becomes

[Hzu(ω)] = ω2[Φ]
[⌈

Hi(2πf)
mi

⌋
[Φ]T [M ]{T }

]
. (2.199)

The absolute displacement vector {x(t)} = {z(t)} + {T }u(t). The PSD
function of the absolute displacement component {x(t)} is defined as

[Sxixj (ω)] = lim
T →∞

1
2T

{Xi(ω)}{X∗
j (ω)}T , (2.200)

or

[Sxixj (ω)] = lim
T →∞

1
2T

[
{Z(ω)} + {T }U(ω)

][
{Z∗(ω)} + {T }U ∗(ω)

]T
, (2.201)

and further

[Sxixj (ω)] = [[Hzu(ω)]+ {T }][[H∗
zu(ω)]+ {T }]T lim

T →∞

1
2T

U(ω)U ∗(ω), (2.202)

and, finally,

[Sxixj (ω)] = ([Hzu(ω)][H∗
zu(ω)]T + {T }[H∗

zu(ω)]T + [Hzu(ω)]{T }T

+ {T } {T }T )Suu(ω). (2.203)

The PSD function of the accelerations {ẍ(t)} can now be easily obtained,
because [Sẍẍ(ω)] = ω4[Sxx(ω)] and Süü(ω) = ω4Suu(ω), and therefore

[Sẍiẍj (ω)] = ([Hzu(ω)][H∗
zu(ω)]T + {T }[H∗

zu(ω)]T + [Hzu(ω)]{T }T

+ {T } {T }T )Süü(ω). (2.204)

In the frequency (Hz) domain (2.204) can be written

[Wẍiẍj (f)] =
(
[Hz̈ü(2πf)][H∗

z̈ü(2πf)]T
)
Wüü(f), (2.205)

where
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• [Hz̈ü(2πf)] = [Hzu(2πf)] + {T }
• [Hzu(2πf)] = (2πf)2[Φ][� Hi(2πf)

mi
�[Φ]T [M ]{T }]

• mi = {φi}T [M ]{φi}
• Hi(2πf) = 1

(2π)2(f2
i

−f2+2jζiffi)

• ζi the modal damping ratio associated with mode {φi}, and
• {T } the rigid body vector in the excitation direction u(t) and ü(t)

The matrix of the mean square values of ẍ(t) can now be calculated using

[E(ẍiẍj)] = [Rẍiẍj (0)] =
∫ ∞

0

[Wẍiẍj (f)]df. (2.206)

The rigid body vector {T } can be extracted from the free-free stiffness
matrix [K] of an elastic system. Divide the degrees of freedom (DOF) into a
set of internal dofs, called the i-set and 6 external dofs in one node in the
external (boundary) set, b-set, and applying unit displacements and rotations
in the b-set, we can find the following static equilibrium equation

[
Kii Kib

Kbi Kbb

]{
xi

xb

}
=
{

0
Fb

}
. (2.207)

From the first equation of (2.207) we can express {xi} in terms of {xb}

{xi} = −[Kii]−1[Kib]{xb} = −[Kii]−1[Kib]�I�
= −[Kii]−1[Kib] = [Ψi,rigid ]. (2.208)

The complete matrix of the six rigid body vectors [Φrigid ] is given by

[Φrigid ] =
(

[Ψi,rigid ]
�I�

)
. (2.209)

The six rigid body vectors are respectively translations in the x-, y-, z-
direction and rotations about the x- , y- and z-axis. The rigid body vector
{T } is one of the rigid body vectors of [Φrigid ].

2.5.3 Random Forces and Stresses

Besides the responses of the DOFs the internal forces and associated stresses
should be calculated to predict the strength characteristics of the linear struc-
ture itself.

The matrix of cross-PSD of the forces or stresses, say [Sσiσj (ω)] can be
calculated

[Sσiσj (ω)] = [Φσ][Sηiηj (ω)][Φσ]T , (2.210)

where [Φσ] is the matrix of force or stress modes associated with the modal
matrix [Φ] and [Sηiηj (ω)] the matrix of auto-PSD functions (main diagonal)
and cross-PSD functions of the generalised coordinates ηi(t).
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The stress modes [Φσ] can be calculated using the mode shapes [Φ] and
the so-called force or stress matrix 12 [Dσ]. The stress modes are defined as

[Φσ] = [Dσ][Φ]. (2.211)

When random loads are applied to a deterministic linear system (2.210)
can be written as

[Wσiσj (f)] = [HσF (2πf)][WFF (f)][H∗
σF (2πf)]T , (2.212)

and when random base excitation is applied the matrix [Wσiσj (f)] (2.212) can
be written

[Wσiσj (f)] = [Hσü(2πf)][Wüü(f)][H∗
σü(2πf)]T , (2.213)

where

• [WFF (f)] the PSD matrix of applied forces
• [Wüü(f)] the PSD matrix of enforced accelerations
• [HσF (2πf)] = [Dσ][Φ]� Hi(2πf)

mi
�[Φ]T

• [Hσü(2πf)] = −[Dσ][Φ]� Hi(2πf)
mi

�[Φ]T [M ]{T }
• Hi(2πf) = 1

(2π)2(f2
i

−f2+2jζiffi)

• ζi the modal damping ratio associated with mode {φi}, and
• {T } the rigid body vector in the excitation direction u(t) and ü(t).

Example. A 3 mass-spring dynamic system, as shown in Fig. 2.19, is excited
at the base with a constant band limited random enforced acceleration Wü =
0.01 g2/Hz in a frequency range f ∈ [5, 500] Hz. The discrete masses are
m1 = 200 kg, m2 = 250 kg and m3 = 300 kg. The spring stiffness of the
springs is given by k1 = 108 N/m, k2 = 2 × 108 N/m and k3 = 3 × 108 N/m.
The modal damping ratio for all modes is ζ = 0.05 or the amplification factor
(transmissibility) Q = 10. Calculate the accelerations {ẍ} and the internal
loads.

The undamped equations of motion are⎡
⎣m1 0 0

0 m2 0
0 0 m3

⎤
⎦
⎧⎨
⎩

ẍ1

ẍ2

ẍ3

⎫⎬
⎭+

⎡
⎣ k1 −k1 0

−k1 k1 + k2 −k2

0 −k2 k2 + k3

⎤
⎦
⎧⎨
⎩

x1

x2

x3

⎫⎬
⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ ,

or previous equation can be expressed in the relative motion {z(t)} = {x(t)} −
{T }u(t), thus⎡

⎣m1 0 0
0 m2 0
0 0 m3

⎤
⎦
⎧⎨
⎩

z̈1

z̈2

z̈3

⎫⎬
⎭+

⎡
⎣ k1 −k1 0

−k1 k1 + k2 −k2

0 −k2 k2 + k3

⎤
⎦
⎧⎨
⎩

z1

z2

z3

⎫⎬
⎭

= −

⎡
⎣m1 0 0

0 m2 0
0 0 m3

⎤
⎦
⎧⎨
⎩

1
1
1

⎫⎬
⎭ ü(t),

12 The stress matrix is the assembly of element force or stress matrices.
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Fig. 2.19. 3 mass-spring system, enforced acceleration

where

{T } =

⎡
⎣ 1

1
1

⎤
⎦ .

The natural frequencies and associated mode shapes of the MDOF system are

{fn} =

⎧⎨
⎩

69.5745
153.7834
238.3038

⎫⎬
⎭ Hz, [Φ] =

⎡
⎣ 0.0560 0.0417 0.0111

0.0346 −0.0362 −0.0387
0.0156 −0.0329 0.0448

⎤
⎦ .

The generalized mass matrix [m] is given by

[m] = [Φ]T [M ][Φ] =

⎡
⎣ 1.0000 0.0000 0.0000

0.0000 1.0000 0.0000
0.0000 0.0000 1.0000

⎤
⎦ .

The modal effective mass associated with the vibration mode {φi} with respect
to the base is defined as [224] (see also Appendix D)

Meff ,i =
(

{φi}T [M ]{T }
√

mi

)2
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with [M ] the mass matrix. The modal effective masses calculated for the
dynamic system are as follows

{Meff } =

⎧⎨
⎩

602.2987
111.7754
35.9259

⎫⎬
⎭ kg.

The most important mode is that with the maximum modal effective mass.
The sum of the modal effective masses is equal to the total mass of the system∑3

i=1 Meff ,i = Mtot = 750 kg.
The integrals of the 3 × 3 matrix of PSD values Wẍiẍj (f) are the mean

square values. The matrix of the mean square (expected) values of the accel-
erations E{ẍiẍj } (m/s2)2 can be calculated by

E{ẍiẍj } =
∫ 500

5

Wẍiẍj (f)df

= 103

⎡
⎣ 2.4262 0.8029 − 0.1640j 0.2655 − 0.0887j

0.8029 + 0.1640j 1.2838 0.4506 − 0.1925j
0.2655 + 0.0887j 0.4506 + 0.1925j 0.7414

⎤
⎦ .

The integration of the previous equation is carried out by the trapezoidal rule
with a frequency increment Δf = 0.2 Hz. The rms values of the accelerations
[g] on the main diagonal are

√
E{ẍiẍi} = {ẍrms } =

⎧⎨
⎩

5.0211
3.6524
2.7757

⎫⎬
⎭ g.

The internal force matrix DF̄ is set up as follows

DF̄ =

⎡
⎣k1 −k1 0

0 k2 −k2

0 0 k3

⎤
⎦ .

The mean square values of internal force matrix E{F̄iF̄j } (N2) is established
with a Δf = 0.2 Hz.

E{F̄iF̄j } =
∫ 500

5

Wσiσj (f)df

= 108

⎡
⎣ 0.9672 1.3640 − 0.0814j 1.5169 − 0.1321j

1.3640 + 0.0814j 2.5564 3.0372 − 0.1923j
1.5169 + 0.1321j 3.0372 + 0.1923j 4.1681

⎤
⎦ .

The rms values of the internal forces on the main diagonal are

√
E{FiFi} = {Fii,rms } = 104

⎧⎨
⎩

0.9835
1.5989
2.0416

⎫⎬
⎭ N.
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Fig. 2.20. PSD accelerations of masses

Fig. 2.21. PSD forces in springs

The PSD values of the accelerations and spring forces are shown in
Figs. 2.20 and 2.21.

In the previous example we calculated the rms force in the spring k3. This
can also be done using the concept of modal effective masses [224] and the
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relation as derived in Appendix C to obtain the reaction force Fbase(ω) as a
consequence of the base excitation Ü(ω) at a determinate interface.

{Fbase(ω)} =
n∑

k=1

[
Meff ,k(ωk)

(
1 + ω2Hk(ω)

)]
{Ü(ω)}. (2.214)

The rms value of the reaction force Fbase(ω) is approximated by

F 2
rms,base ≈

√√√√ n∑
i=1

[
M2

eff ,i

π

2
fiQiWü(fi)

]
, (2.215)

where n is the number of modes taken into account. This result can be traced
in (2.160). This approach is called the mass participation method [30]. Equa-
tion (2.215) will be proven using (2.193)

[M ]{z̈(t)} + [K]{z(t)} = −[M ]{T }ü(t).

The relative displacement vector {z(t)} will be depicted on the modal
base [Φ], thus {z(t)} = [Φ]{η(t)}, where {η(t)} is the vector of generalized
coordinates.

The mean square value of the modal reaction force Fik,rms,base,
|Fik,rms,base|2 is given by

|Fik,rms,base |2 = {φi}T [M ]{Tk } {Tk }T [M ]{φi}η̈2
i,rms

= Meff ,ikmiη̈
2
i,rms , (2.216)

or

|Fik,rms,base |2 = Meff ,ikmiη̈
2
i,rms

= M2
eff ,ik

π

2
fiQiWü(fi), i = 1, 2, . . . , n, k = 1, 2, . . . , 6.

(2.217)

The total mean square of the reaction force Fk,ms,base is obtained by adding
the contribution of the modal mean square reaction forces |Fik,rms,base|2, thus

Fk,ms,base =
n∑

i=1

|Fik,rms,base |2

=
n∑

i=1

[
M2

eff ,ik

π

2
fiQiWü(fi)

]
, k = 1, 2, . . . , 6. (2.218)

Finally the rms value of the reaction force Fk,rms,base is found:

Fk,rms,base =

√√√√ n∑
i=1

[
M2

eff ,ik

π

2
fiQiWü(fi)

]
, k = 1, 2, . . . , 6. (2.219)
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Example. The previous example will be continued. The PSD function of
the base excitation is constant Wü = 0.01 g2/Hz. The constant amplification
factor is Q = 10.

The natural frequencies of the MDOF system as illustrated in Fig. 2.19
are

{fn} =

⎧⎨
⎩

69.5745
153.7834
238.3038

⎫⎬
⎭ Hz,

and the associated modal effective masses

{Meff } =

⎧⎨
⎩

602.2987
111.7754
35.9259

⎫⎬
⎭ kg.

The mean square value of the reaction force Fbase is

E{F 2
base } = RFbaseFbase

(0) = 4.1523 × 108 N2,

and the rms value of Fbase is

Fbase,rms =
√

E{F 2
base } =

√
RFbaseFbase

(0) = 2.0377 × 104 N.

The approximation of the rms value of the reaction force Fbase using Miles’
equation gives a somewhat lower value (0.2%) as calculated in the previous
example (2.0416×104 N), because the term 4ζ2 in (1+4ζ2) has been neglected.

Problems

2.18. A cantilevered beam is shown in Fig. 2.22. The length of the beam
is l. This cantilevered beam will be idealized by three Bernoulli-Euler beam
elements with constant mass and stiffness. The mass and stiffness matrix of
the beam element are as given below

[Mb] =
mL

420

⎛
⎜⎜⎝

156 22L 54 −13L
22L 4L2 13L −3L2

54 13L 156 −22L
−13L −3L2 −22L 4L2

⎞
⎟⎟⎠ ,

[Kb] =
EI

L3

⎛
⎜⎜⎝

12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

⎞
⎟⎟⎠ ,

where L is the length of the beam element, m = Aρ is the mass per unit of
length, ρ is the density, E is Young’s modulus and I is the second moment of
area.

The design parameters have the following values:
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Fig. 2.22. FEM cantilevered beam

Table 2.6. Random libration level

Frequency spectrum Wüü(f)
(Hz) g2/Hz

20–50 5.5 dB/octave
50–800 0.053
800–2000 −5.5 dB/octave
Grms ? g

• E = 70 GPa,
• ρ = 2700 kg/m3,
• l = 0.3 m,
• h = 0.01 m,
• b = 0.006 m,

Calculate the three lowest natural frequencies (Hz) of the cantilevered
beam.

The beam is excited at the base by a random enforced acceleration ü(t).
The random enforced acceleration PSD Wüü(f) is specified in Table 2.6. The
modal damping ratio for all modes is ζ = 0.05. Perform the following assign-
ments using the mode superposition method:

• Plot PSD of the acceleration responses of nodes 2, 3 and 4 versus frequency
(Hz)

• Calculate rms values of the acceleration responses of the nodes 2, 3 and 4.
• Calculate the number of positive zero crossings associated with the accel-

erations of the nodes 2, 3 and 4.

Repeat the random response analysis applying a general purpose finite el-
ement software package. Try to validate your finite element random response
analysis by an analytical solution [19].
Answers (partly): MSC.Nastran SOL 111 analysis, frequency range
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20–2000 Hz, natural frequencies 91.34, 572.02 and 1605.2 Hz, rms transla-
tional (y-dir) acceleration node 4 is 25.1 g and associated number of positive
zero crossings node 4 is ν+

0 = 731.6 Hz.

2.6 Complex Modal Analysis, Lyapunov’s Equation

2.6.1 State-Space Equation

Complex modal analysis had been developed by Fang and Wang in [61]. This
approach is valid for both the classical and nonclassical damping cases. It is a
time domain analysis which is most suitable to calculate correlation functions
and covariances of the random responses.

An MDOF linear dynamic system is considered with the following matrix
equations of damped motion

[M ]{ẍ} + [C]{ẋ} + [K]{x} = {f(t)}, (2.220)

where [M ], [C] and [K] are n × n symmetrical positive definite matrices and
{f(t)} is a stationary white noise excitation with following properties

E[{f(t)}] = {0}, E[{f(t)} {f(t + τ)}T ] =
1
2
[W0]δ(τ), (2.221)

where [W0] = 2[S0] the single-sided white noise autospectrum matrix (PSD)
of {f(t)} in the cyclic frequency domain. [S0] is the constant PSD of the
double side spectrum in the rad/s domain. The equations of motion (2.220)
are transformed into a space-state

{ẏ} = [A]{y} + [B]{f(t)}, (2.222)

where the state vector is given by {y}T = 
yT
1 , yT

2 � = 
xT , ẋT �, [A] is the
time-invariant state matrix, [B] is the time-invariant input matrix and {f(t)}
the excitation vector. The state matrix [A] is defined by

[A] =
(

0 I
−[M ]−1[K] −[M ]−1[C]

)
, (2.223)

and the input matrix [B] is as follows

[B] =
(

0
−[M ]−1

)
, (2.224)

because we can write

{ẏ1} = {y2}, (2.225){ẏ2} = −[M ]−1[K]{y1} − [M ]−1[C]{y2} + [M ]−1{f(t)}.
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The solution of (2.222) is derived in [66]

{y(t)} = e[A](t−τ){y(τ)} +
∫ t

τ

e[A](t−ζ)[B]{f(ζ)}dζ, (2.226)

where e[A](t) = [I] + [A]t + [A]2 t2

2 + [A]3 t3

3! + · · · [10].
The state matrix [A] has 2n eigenvalues λi and 2n corresponding eigen-

vectors ψi. When the damping is below the critical damping, the λi and {ψi}
appear in conjugate pairs. The real parts of the eigenvalues are negative,
� {λi} < 0. The complex modal base is given by

[Ψ ] = [ψ1, ψ2, . . . , ψ2n]. (2.227)

The state matrix [A] can be expressed in the eigenvalues λi and associated
eigenvectors ψi, if there are no repeating eigenvalues, in the following way [10,
198]

[A] = [Ψ ][Λ][Ψ ]−1, (2.228)

where [Λ] = diag(λ1, λ2, . . . , λ2n). This equation is known as a “similarity
transformation”. It is said that the matrices [A] and [Ψ ] are “similar”. If the
following base transformation is applied {y} = [Ψ ]{v} and substituting (2.228)
in (2.222) the following state-space equation is obtained

{v̇} = �Λ�{v} + [Ψ ]−1[B]{f(t)}. (2.229)

The solution for {v(t)} is

{v(t)} = e�Λ�(t−τ){v(τ)} +
∫ t

τ

e�Λ�(t−ζ)[B]{f(ζ)}dζ, (2.230)

and the stationary solution (when τ = 0 and t → ∞) becomes

{v(t)} =
∫ ∞

0

e�Λ�(t−ζ)[B]{f(ζ)}dζ =
∫ ∞

0

e�Λ�(ζ)[B]{f(t − ζ)}dζ. (2.231)

The correlation matrix [Rvv(τ)] of the state vector {v(t)} can be written
as

[Rvv(τ)] = E[{v(t)} {vT (t + τ)}] = lim
T →∞

1
T

∫ ∞

0

{v(t)}{vT (t + τ)}dt, (2.232)

where {v}T is the transpose of the vector {v}.13 The correlation matrix of the
state vector {v(t)} can now be obtained by

13 The transpose matrix or vector containing complex numbers is formed by inter-
changing its rows and columns and changing the complex numbers in its conjugate

values,
(

2+5j

3−4j

)T
= 
2 − 5j, 3 + 4j�.
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[Rvv(τ)] =
∫ ∞

0

∫ ∞

0

e[Λ](ζ)[Ψ ]−1[B]E[{f(t − ζ)}{f(t − η + τ)}T ]

× [B]T [Ψ ]−T e[Λ]T (η)dζdη, (2.233)

or

[Rvv(τ)] =
∫ ∞

0

∫ ∞

0

e[Λ](ζ)[Ψ ]−1[B][S0]δ(τ − η + ζ)[B]T [Ψ ]−T e[Λ]T (η)dζdη,

(2.234)

thus finally

[Rvv(τ)] =
∫ ∞

0

e[Λ](ζ)[Ψ ]−1[B][S0][B]T [Ψ ]−T e[Λ]T (τ+ζ)dζ

=
∫ ∞

0

e[Λ](ζ)[G]e[Λ]T (τ+ζ)dζ. (2.235)

The element (i, j) of the correlation matrix [Rvv(τ)] is as follows

Rvv(τ)(i, j) = G(i, j)
∫ ∞

0

eλiζ+λ̄j(ζ+τ)dζ

=
−G(i, j)eλ̄jτ

λi + λ̄j
= Rvv(−τ)(j, i), (2.236)

where λ̄ is the conjugate of λ. The correlation function Rvv(0)(i, j) becomes

Rvv(0)(i, j) =
−G(i, j)
λi + λ̄j

. (2.237)

The correlation function Ryy(τ) can be calculated as follows

[Ryy(τ)] = [Ψ ][Rvv(τ)][Ψ ]T . (2.238)

Referring to (2.235), the correlation matrix [Ryy(τ)] can be expressed as

[Ryy(τ)] =
∫ ∞

0

e[A](ζ)[B][S0][B]T e[A]T (τ+ζ)dζ. (2.239)

This equation will be used to derive the equation of “The stochastic dual of
the direct method of Lyapunov”14 [72]

[A][Ryy(0)] + [Ryy(0)][A]T = −[B][S0][B]T . (2.240)

The proof of (2.240) is given in [10]. If the expression

14 Aleksandr Lyapunov 1857–1918. Sometimes his name is also written as Ljapunov,
Liapunov or Ljapunow.
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[X] = −
∫ ∞

0

e[A]t[C]e[B]tdt, (2.241)

exists for all [C], it represents the unique solution of

[A][X] + [X][B] = [C]. (2.242)

The solution of Lyapunov’s equation (2.242) is discussed in [9]. If [B] = [A]T

and the matrix [C] is positive semi definite the matrix [X] is positive-definite
when the eigenvalues of matrix [A] are in the negative plane [66].

Example. A SDOF system defined by the following equation of motion is

ẍ + 5ẋ + 2500x = f(t).

The white noise forcing function f(t) had a double sided PSD Sff =
1 N2/rad/s (Wff = 2 N2/Hz). Calculate the correlation function Rxx(0),
Rxẋ(0), Rẋx(0) and Rẋẋ(0).

The state matrix [A] and the input vector {B} are

[A] =
(

0.0 1.0
−2500.0 −5.0

)
, {B} =

(
0.0
1.0

)
,

and the eigenvalues Λ and corresponding eigenvectors become

[Λ] =
(

−2.5 + 49.9375j
−2.5 − 49.9375j

)
,

and

[Ψ ] =
(

−0.0010 − 0.0200j −0.0010 + 0.0200j
0.9998 0.9998

)
.

The undamped natural frequency can be calculated from ω0 =
√

λ1λ2 =
50 rad/s and the modal damping ratio ζ = − λ1+λ2

2ω0
= 0.05.

The PSD matrix [G] = [Ψ ]−1[B][S0][B]T [Ψ ]−T is

[G] =
(

0.2507 0.2495 + 0.0250j
0.2495 − 0.0250j 0.2507

)
.

The correlation function [Rvv(0)] is calculated and becomes

[Rvv(0)] =

⎛
⎝

−G(1,1)

λ1+λ̄1

−G(1,2)

λ1+λ̄2

−G(2,1)

λ2+λ̄1

−G(2,2)

λ2+λ̄2

⎞
⎠

=
(

0.0501 −0.0001 + 0.0025j
−0.0001 − 0.0025j 0.0501

)
,

and finally [Ryy(0)] is obtained
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Ryy(0) = [Ψ ][Rvv(0)][Ψ ]T =
(

0.00004 0
0 0.1

)
.

That means that
√

〈x2〉 =
√

Rxx(0)(1, 1) = 0.0063 m and
√

〈ẋ2〉 =√
Rẋẋ(0)(2, 2) = 0.3162 m/s. The displacement x and the velocity ẋ are not

correlated. These results can be checked using (2.116) and (2.118).
Solving (2.240) the correlation matrix [Ryy(0)] becomes

[Ryy(0)] = 10−10

(
400 000 0.0

0.0 109

)
,

which had been expected.

Left Eigenvectors

The standard eigenvalue equation [A][Ψ ] = �Λ�[Ψ ] involves the so-called “right
eigenvectors” or right modal matrix. The “left eigenvectors” or left modal
matrix is obtained from [A]T [Φ] = �Λ�[Φ], [234]. �Λ� is the diagonal matrix of
eigenvalues. The right and left eigenvalue problems have the same eigenvalues.
The right and left eigenvectors are mutually orthogonal for distinct eigenvalues

{
{φi}T {ψj } = 0, λi �= λj ;

{φi}T {ψi} �= 0, λi = λj .
(2.243)

The consequence of (2.243) is that the product of left and right modal matrices
is a diagonal matrix

[Φ]T [Ψ ] = �Υ �. (2.244)

Equation (2.229) can be altered as follows using [A] = [Ψ ][Λ][Ψ ]−1

{v̇} = �Λ�{v} + �Υ � −1[Φ]T [B]{f(t)}, (2.245)

which can be solved as showed before. There is no need to calculate [Ψ ]−1. If
(2.244) is scaled such that �Υ � = [I] the left modal matrix

[Φ]T = [Ψ ]−1. (2.246)

If the left eigenvectors are introduced there is no need to calculate all eigen-
values, e.g. λp, p < 2n, which depends on the frequency range of interest.

2.6.2 Enforced Acceleration

The damped matrix equation of motion of a linear MDOF system excited at
the base by an enforced acceleration is

[M ]{ẍ} + [C]{ż} + [K]{z} = {0}, (2.247)
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where the relative displacement vector is {z} = {x} − {u}, {x} is the absolute
displacement vector and u is the displacement at the base associated with the
enforced acceleration ü. If {T } is the rigid body vector in the direction of the
enforced acceleration ü, (2.247) can be rewritten as

[M ]{z̈} + [C]{ż} + [K]{z} = −[M ]{T }ü. (2.248)

The absolute acceleration vector {ẍ} can be calculated from (2.247).
The state equation of the linear MDOF dynamic system can now be writ-

ten as

{ẏ} = [A]{y} + {B}ü, (2.249)
{ẍ} = [C̄]{y}, (2.250)

where the state matrix [A] is equal to (2.223), the input matrix [B] is given
by

{B} =
{

0
T

}
, (2.251)

and the output matrix [C̄] is

[C̄] =
[

−M −1K −M −1C
]
, (2.252)

and finally the state vector {y} is

{y} =
{

z
ż

}
. (2.253)

The solution for {ẍ(t)} is derived in [66]

{ẍ(t)} = [C̄]e[A](t−τ){y(τ)} +
∫ t

τ

[C̄]e[A](t−ζ){B}ü(ζ)dζ. (2.254)

The correlation matrix [Rvv(τ)] becomes

[Rvv(τ)] =
∫ ∞

0

e[Λ](ζ)[Ψ ]−1{B}Sü{B}T [Ψ ]−T e[Λ]T (τ+ζ)dζ

=
∫ ∞

0

e[Λ](ζ)[G]e[Λ]T (τ+ζ)dζ. (2.255)

The correlation function Ryy(τ) can be calculated as follows;

[Ryy(τ)] = [Ψ ][Rvv(τ)][Ψ ]T , (2.256)

and the correlation function Rẍẍ(τ) becomes

[Rẍẍ(τ)] = [C̄][Ryy(τ)][C̄]T . (2.257)
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The correlation matrix [Ryy(τ)] can also be written as

[Ryy(τ)] =
∫ ∞

0

e[A](ζ){B}Sü{B}T e[A]T (τ+ζ)dζ

=
∫ ∞

0

e[A](ζ)[G]e[A]T (τ+ζ)dζ, (2.258)

thus
[A][Ryy(0)] + [Ryy(0)][A]T = −[G], (2.259)

and finally
[Rẍẍ(0)] = [C̄][Ryy(0)][C̄]T . (2.260)

Example. A 3 mass-spring-damper dynamic system, as shown in Fig. 2.23,
is excited at the base with a white noise random enforced acceleration Wü =
2Sü = 0.01 g2/Hz. The discrete masses are m1 = 200 kg, m2 = 250 kg and
m3 = 300 kg. The spring stiffness are k1 = 108 N/m, k2 = 2 × 108 N/m
and k3 = 3 × 108 N/m. The discrete dampers are defined by c1 = 2ζ

√
k1m1,

c2 = 2ζ
√

k2m2 and c3 = 2ζ
√

k3m3 and the damping ratio is ζ = 0.05. Calcu-
late the rms accelerations {ẍ} and the rms internal loads.

The damped equations of motion are

Fig. 2.23. 3 mass-spring-damper system, enforced acceleration
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⎡
⎣m1 0 0

0 m2 0
0 0 m3

⎤
⎦
⎧⎨
⎩

ẍ1

ẍ2

ẍ3

⎫⎬
⎭+

⎡
⎣ c1 −c1 0

−c1 c1 + c2 −c2

0 −c2 c2 + c3

⎤
⎦
⎧⎨
⎩

ẋ1

ẋ2

ẋ3

⎫⎬
⎭

+

⎡
⎣ k1 −k1 0

−k1 k1 + k2 −k2

0 −k2 k2 + k3

⎤
⎦
⎧⎨
⎩

x1

x2

x3

⎫⎬
⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ .

The previous equation can be expressed in the relative motion {z(t)} =
{x(t)} − {T }u(t), thus
⎡
⎣m1 0 0

0 m2 0
0 0 m3

⎤
⎦
⎧⎨
⎩

z̈1

z̈2

z̈3

⎫⎬
⎭+

⎡
⎣ c1 −c1 0

−c1 c1 + c2 −c2

0 −c2 c2 + c3

⎤
⎦
⎧⎨
⎩

ż1

ż2

ż3

⎫⎬
⎭

+

⎡
⎣ k1 −k1 0

−k1 k1 + k2 −k2

0 −k2 k2 + k3

⎤
⎦
⎧⎨
⎩

z1

z2

z3

⎫⎬
⎭ = −

⎡
⎣m1 0 0

0 m2 0
0 0 m3

⎤
⎦
⎧⎨
⎩

1
1
1

⎫⎬
⎭ ü(t),

where

{T } =

⎧⎨
⎩

1
1
1

⎫⎬
⎭ .

The damping ratios and undamped natural frequencies can be extracted
from the eigenvalues �Λ� of the state matrix [A]:

⎛
⎝ ζ1

ζ2

ζ3

⎞
⎠ =

⎛
⎝0.025

0.061
0.084

⎞
⎠ ,

and the undamped natural frequencies
⎛
⎝ f1

f2

f3

⎞
⎠ =

⎛
⎝ 69.58

153.80
238.29

⎞
⎠ Hz.

The auto correlation matrix [Ryy(0)] can be calculated using

[A][Ryy(0)] + [Ryy(0)][A]T = −[G],

and the positive-definite zero-lag correlation function [Rẍẍ(0)] of the absolute
accelerations is

[Rẍẍ(0)] = [C̄][Ryy(0)][C̄]T

so that

[Rẍẍ(0)] =

⎡
⎣ 4334.4 2131.6 846.6

2131.6 1896.6 823.06
846.6 823.06 753.76

⎤
⎦ .
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The rms accelerations (g) are the square root of the diagonal terms in [Rẍẍ(0)],
divided by 9.81 m/s2

rms

⎛
⎝ ẍ1

ẍ2

ẍ3

⎞
⎠ =

⎛
⎝ 6.7111

4.4393
2.7986

⎞
⎠ (g).

The internal force matrix DF̄ is set up as follows

[DF̄ ] =

⎡
⎣k1 −k1 0

0 k2 −k2

0 0 k3

⎤
⎦ .

If the output matrix is given by [C̄] = [DF̄ , 0], then the positive-definite
auto correlation function [RF̄ F̄ (0)] is defined by

[RF̄ F̄ (0)] = [C̄][Ryy(0)][C̄]T

and becomes

[RF̄ F̄ (0)] = 108

⎡
⎣ 1.72 2.79 3.30

2.79 5.04 6.16
3.30 6.16 7.96

⎤
⎦ .

The rms values of the internal forces on the main diagonal are

√
R{F̄iF̄i }(0) = {F̄ii,rms } = 104

⎧⎨
⎩

1.31
2.24
2.82

⎫⎬
⎭ N.

Modal Reduction

If the modal reduction method is applied the relative displacement vector
{z} (n DOFs) is expressed as follows {z} = [Φ]{η}, where [Φ] (n × m) is the
modal base of the undamped unloaded system in (2.248) and {η} (m DOFs)
the generalized, principal coordinates (also called participation factors). In
general, the number of reduced DOFs is much less than the number of original
DOFs, m 
 n.

When the damping is introduced by the ad-hoc damping coefficient 2ζiωimi

(2.248) can be written as

�mi�{η̈i} + �2ζiωimi�{η̇i} + �ω2
i mi�{ηi} = −[Φ]T [M ]{T }ü, (2.261)

where the generalized mass mi = {φi}T [M ]{φi} and ωi is the natural fre-
quency associated with mode {φi}.

The state-space equation of the (modal) reduced linear MDOF dynamic
system can now be written as
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{v̇} = [A]{v} + {B}ü, (2.262)
{y} = [C̃]{v}, (2.263)

{ẍ} = [C̄]{y}, (2.264)

where the state matrix [A] (2m × 2m) is given by

[A] =
(

0 I
−�ω2

i � −�2ζiωi�

)
, (2.265)

and the input matrix [B] is given by

{B} =
{

0
−�mi� −1[Φ]T [M ]{T }

}
, (2.266)

and the output matrix [C̃] (2n × 2m) is

[C̃] =
[

Φ 0
0 Φ

]
, (2.267)

and finally the state vector {y} is composed by

{v} =
{

η
η̇

}
, (2.268)

and

{y} =
{

z
ż

}
. (2.269)

The accelerations {ẍ} can be obtained using the output matrix [C̄], derived
from (2.247)

[C̄] = [−M −1K, −M −1C], (2.270)

an (n × 2n) matrix. The damping matrix [C] may be reconstructed as follows
[51]

[C] = [M ]

[
m∑

i=1

2ζiωimi{φi} {φi}T

]
[M ], (2.271)

where [M ] is the mass matrix.
The internal stress of forces (generalized forces) {F̄ } can be directly related

to the generalized coordinate {η}. The general forces can be expressed as
follows

{F̄ } = [DF ]{z} = [DF ][Φ]{η} = [Φ]σ {η} = [Φσ, 0]{v}, (2.272)

where [Φ]σ are the so-called stress modes or is the stress modal matrix. Equa-
tion (2.262) can be extended with

{F̄ } = [Φσ, 0]{v} = [Ĉ]{v}. (2.273)

The auto correlation function of the generalized forces {F̄ } becomes

RF̄ F̄ (0) = [Ĉ][Rvv(0)][Ĉ]T . (2.274)
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Example. A 3 mass-spring dynamic system, as shown in Fig. 2.19, is excited
at the base with a white noise random enforced acceleration Wü = 2Sü =
0.01 g2/Hz. The discrete masses are m1 = 200 kg, m2 = 250 kg and m3 =
300 kg. The spring stiffnesses are k1 = 108 N/m, k2 = 2 × 108 N/m and
k3 = 3 × 108 N/m. The modal damping ratio for all modes is ζ = 0.05.
Calculate the accelerations {ẍ} and the internal loads.

The undamped equations of motion are
⎡
⎣m1 0 0

0 m2 0
0 0 m3

⎤
⎦
⎧⎨
⎩

ẍ1

ẍ2

ẍ3

⎫⎬
⎭+

⎡
⎣ k1 −k1 0

−k1 k1 + k2 −k2

0 −k2 k2 + k3

⎤
⎦
⎧⎨
⎩

x1

x2

x3

⎫⎬
⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ ,

or previous equation can be expressed in the relative motion {z(t)} = {x(t)} −
{T }u(t), thus

⎡
⎣m1 0 0

0 m2 0
0 0 m3

⎤
⎦
⎧⎨
⎩

z̈1

z̈2

z̈3

⎫⎬
⎭+

⎡
⎣ k1 −k1 0

−k1 k1 + k2 −k2

0 −k2 k2 + k3

⎤
⎦
⎧⎨
⎩

z1

z2

z3

⎫⎬
⎭

= −

⎡
⎣m1 0 0

0 m2 0
0 0 m3

⎤
⎦
⎧⎨
⎩

1
1
1

⎫⎬
⎭ ü(t),

where

{T } =

⎧⎨
⎩

1
1
1

⎫⎬
⎭ .

The natural frequencies and associated mode shapes of the MDOF system are

{fn} =

⎛
⎝ 69.5745

153.7834
238.3038

⎞
⎠ Hz, [Φ] =

⎛
⎝0.8277 −0.6490 0.1843

0.5114 0.5628 −0.6421
0.2310 0.5119 0.7441

⎞
⎠ .

The responses will be calculated considering the first mode. The rms acceler-
ations and rms spring forces are respectively

rms

⎛
⎝ ẍ1

ẍ2

ẍ3

⎞
⎠ =

⎛
⎝ 4.5440

2.8073
1.2683

⎞
⎠ g,

√
R{F̄iF̄i}(0) = {F̄ii,rms } = 104

⎧⎨
⎩

0.8915
1.5800
1.9533

⎫⎬
⎭ N.

The responses will be now calculated considering the first and second mode.
The rms accelerations and rms spring forces are respectively
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rms

⎛
⎝ ẍ1

ẍ2

ẍ3

⎞
⎠ =

⎛
⎝ 5.0075

3.4000
2.1428

⎞
⎠ g,

√
R{F̄iF̄i}(0) = {F̄ii,rms } = 104

⎧⎨
⎩

0.9825
1.5809
2.0334

⎫⎬
⎭ N.

The responses will be finally calculated considering all modes. The rms accel-
erations and rms spring forces are respectively

rms

⎛
⎝ ẍ1

ẍ2

ẍ3

⎞
⎠ =

⎛
⎝ 5.0174

3.6437
2.7527

⎞
⎠ g,

√
R{F̄iF̄i}(0) = {F̄ii,rms } = 104

⎧⎨
⎩

0.9844
1.6019
2.0485

⎫⎬
⎭ N.

The state matrix [A] (2.265) of the reduced system with a modal damping
ratio ζi < 1, and the eigenvalues ω2

i of the undamped system can be written
as

[A] =
(

0 I
−�ω2

i � −�2ζiωi�

)
.

The left eigenvalue problem of the state matrix is

[A][Ψ ] = [Ψ ]�Λ�, (2.275)

where the matrix of the left eigenvectors [Ψ ] is

[Ψ ] =
(

I I
Λc Λ̄c

)
, (2.276)

where Λc = Ω[−ζ + j
√

1 − ζ2], Λ̄c = Ω[−ζ − j
√

1 − ζ2] and �Ω� = �ω2
i �. The

diagonal matrix of the state matrix can be written

�Λ� =
(

Λc 0
0 Λ̄c

)
. (2.277)

The inverse of the left eigenvectors [Ψ ]−1 is computed as follows

[Ψ ]−1 =

(
I + [Λ̄c − Λc]−1Λc −[Λ̄c − Λc]−1

−[Λ̄c − Λc]−1Λc [Λ̄c − Λc]−1

)

=

(
[Λ̄c − Λc]−1Λc −[Λ̄c − Λc]−1

−[Λ̄c − Λc]−1Λc [Λ̄c − Λc]−1

)
. (2.278)

By using (2.275) we show that the spectral decomposition of the state matrix
[A] is [182]

[A] = [Ψ ]�Λ�[Ψ ]−1 =
(

0 I
−Λ̄cΛc Λc + Λ̄c

)
. (2.279)
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2.6.3 Derivation of Miles’ Equation

Miles’s equation was derived in Sect. 2.4.2, and expressed in (2.145)
and (2.146). In this section Miles’ equation [127] will be derived with the aid
of the direct solution of Lyapunov’s equation (F.9), [A][M ]+[M ][A]T = −[C],
discussed in detail in Appendix F, where the state matrix is denoted by [A],
the covariance or correlation matrix by [M ]; the RHS of the equation, the
matrix [C] = {B}Su{B}T = [G], contains information about the white noise
spectrum of the enforced acceleration (2.258).

Both the correlation matrix [M ] and the matrix [C] are symmetric. This
can be easily proven by taking the transpose of (2.258) and assuming the
time shift is τ = 0. In general, for an n DOF system, there are n(2n + 1)
unknowns components of the M matrix. In fact, considering the steady-state
or stationary conditions, the elements

mi,n+i = E{yiẏi} = E{ẏiyi} = mn+i,i = 0, i = 1, 2, . . . , n, (2.280)

and

mi,n+j = E{yiẏj } = −E{ẏiyj } = −mn+i,j , i, j = 1, 2, . . . , n, (2.281)

and the number of unknowns elements mij is reduced from n(2n + 1) to
n(2n + 1) − n = 2n2.

To generate the state-space equations, we use (2.119), (2.120), (2.121)
and (2.122) are used. The variables are illustrated in Fig. 2.24. The state-
space equations are

(
ż
z̈

)
=
(

0 1
−ω2

n −2ζωn

)(
z
ż

)
+
(

0
−1

)
ü, (2.282)

where k = ω2
nm, c = 2ζ

√
km and with (2.122) the state equations become

Fig. 2.24. Enforced acceleration of a damped SDOF system
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{ẏ} = [A]{y} + {B}ü,

ẍ = [−ω2
n, −2ζωn]

(
z
ż

)
= [C]{y}.

(2.283)

The covariance or correlation matrix [M ] is given by (2.280) and (2.281)

[M ] =
(

E{z2} E{zż}
E{żz} E{ż2}

)
=
(

E{z2} 0
0 E{ż2}

)
, (2.284)

and Lyapunov’s equation is

[A][M ] + [M ][A]T = −{B}Sü{B}T = −[G] = −
(

0 0
0 Sü

)
. (2.285)

The direct solution of (2.285) can be written as follows
(

1 −ω2
n

0 4ζωn

)(
E{z2}
E{ż2}

)
=
(

0
Sü

)
=
(

0
Wü

2

)
, (2.286)

where Wü is the single sided PSD of the white noise enforced acceleration.
The solution of (2.286) is

E{z2} = Rzz(0) =
Wü

8ζω3
n

=
Wü

8ζ(2πfn)3
, (2.287)

and
E{ż2} = Rżż(0) =

Wü

8ζωn
=

Wü

8ζ(2πfn)
. (2.288)

The expected value of the acceleration E{ẍ2} can be solved as follows

E{ẍ2} = [C][M ][C]T = ω4
nE{z2} + (2ζωn)2E{ż2}. (2.289)

Finally E{ẍ2} becomes

E{ẍ2} = Rẍẍ(0) =
π

2
fnQWü(1 + 4ζ2) ≈ π

2
fnQWü, (2.290)

where the amplification factor Q = 1
2ζ and ζ 
 1. Equation (2.290) is equal

to (2.145) and (2.146).

2.6.4 Power Transfer Between Two Oscillators

Consider two SDOF systems coupled by a single linear spring kc. Both systems
are loaded by two uncorrelated white noise random forces F1 and F2. The
double sided PSD values of the forces are SF1 = WF1

2 and SF2 = WF2
2 (WF1 and

WF1 are the single sided PSD functions respectively). We seek the averaged
total energies15 stored in both SDOF systems 〈E1〉 = m1E{ẋ2

1} and 〈E2〉 =
15 〈E〉 = 1

2
(mE{ẋ2} + kE{x2}) = 1

2
(mE{ẋ2} + mω2

0E{x2}) = mE{ẋ2}.
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Fig. 2.25. Two coupled oscillators

m2E{ẋ2
2} and the power transfer between both coupled oscillators Π12. These

energies and the power transfer will be calculated using Lyapunov’s equation.
The equations of motion of the two SDOF systems, as shown in Fig. 2.25, are

m1ẍ1 + c1ẋ1 + k1x1 + kc(x1 − x2) = F1, (2.291)

m2ẍ2 + c2ẋ2 + k2x2 + kc(x2 − x1) = F2. (2.292)

The following parameters are introduced [118]:

• ω1 =
√

k1+kc

m1
, ω2 =

√
k2+kc

m2
,

• ω2
12 = kc√

m1m2
,

•
√

c1

m1
= Δ1,

√
c2

m2
= Δ2,

• γ =
√

m1
m2

.

Equations (2.291) and (2.292) can now be written

ẍ1 + Δ1ẋ1 + ω2
1x1 − ω2

12

γ
x2 =

F1

m1
, (2.293)

ẍ2 + Δ2ẋ2 + ω2
2x2 − ω2

12γx1 =
F2

m2
. (2.294)

The power Π12 going from system 1 to system 2 is given by [118]

Π12 = −kcE{x2ẋ1} = −ω2
12

√
m1m2E{x2ẋ1}, (2.295)

the averaged energy of the uncoupled system 1 is

〈Ē1〉 = m1E{ẋ2
1} =

WF1

4Δ1m1
, (2.296)

and the averaged energy of the uncoupled system 2 is
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〈Ē2〉 = m2E{ẋ2
2} =

WF2

4Δ2m2
. (2.297)

Equations (2.293) and (2.294) are converted into a state-space equation

{ẏ} = [A]{y} + [B]{F },

where the state-space is

{y} =

⎛
⎜⎜⎝

x1

x2

ẋ1

ẋ2

⎞
⎟⎟⎠ , (2.298)

the state matrix [A] is given by

[A] =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−ω2
1

ω2
12
γ −Δ1 0

ω2
12γ −ω2

2 0 −Δ2

⎞
⎟⎟⎠ , (2.299)

the input matrix [B] is

[B] =

⎛
⎜⎜⎝

0 0
0 0
1

m1
0

0 1
m2

⎞
⎟⎟⎠ , (2.300)

and finally the force vector {F } can be expressed as

{F } =
(

F1

F2

)
. (2.301)

The white noise PSD matrix of the applied uncorrelated forces [SF ] be-
comes

[SF ] =
(

SF1 0
0 SF2

)
=

(
WF1

2 0
0 WF2

2

)
. (2.302)

The RHS of Lyapunov’s equation [C] = [G] (2.235) can be obtained by the
following matrix multiplication

[C] = [B][SF ][B]T =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 SF1

m2
1

0

0 0 0 SF2
m2

2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 WF1

2m2
1

0

0 0 0 WF2
2m2

2

⎞
⎟⎟⎟⎠ .

(2.303)
The covariance or correlation matrix [M ] is build up and reduced as follows
using (2.280) and (2.281)
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[M ] =

⎛
⎜⎜⎝

E{x2
1} E{x1x2} E{x1ẋ1} E{x1ẋ2}

E{x2x1} E{x2
2} E{x2ẋ1} E{x2ẋ2}

E{ẋ1x1} E{ẋ1x2} E{ẋ2
1} E{ẋ1ẋ2}

E{ẋ2x1} E{ẋ2x2} E{ẋ2ẋ1} E{ẋ2
2}

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

E{x2
1} E{x1x2} 0 E{x1ẋ2}

E{x1x2} E{x2
2} −E{x1ẋ2} 0

0 −E{x1ẋ2} E{ẋ2
1} E{ẋ1ẋ2}

E{x1ẋ2} 0 E{ẋ1ẋ2} E{ẋ2
2}

⎞
⎟⎟⎠ . (2.304)

There are 8 unknowns in (2.304), expressed in the elements m(i, j) of the
covariance or correlation matrix [M ], m(1, 1) = E{x2

1}, m(1, 2) = E{x1x2},
m(1, 4) = E{x1ẋ2}, m(2, 2) = E{x2

2}, m(3, 3) = E{ẋ2
1}, m(3, 4) = E{ẋ1ẋ2}

and m(4, 4) = E{ẋ2
2}.

The state matrix [A] (2.299) will be now written in a very general form

[A] =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
a1 b2 a3 a4

b1 b2 b3 b4

⎞
⎟⎟⎠ . (2.305)

Lyapunov equation
[A][M ] + [M ][A]T = −[C]

is transformed into 7 equations with unknowns m(1, 1), m(1, 2), m(1, 4),
m(2, 2), m(3, 3), m(3, 4) and m(4, 4) as follows⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 a2 a4 0 1 0 0
b1 b2 b4 0 0 1 0
0 a1 −a3 a2 0 1 0
0 b1 −b3 b2 0 0 1
0 0 −2a2 0 2a3 2a4 0
0 0 a1 − b2 0 b3 a3 + b4 a4
0 0 2b1 0 0 2b3 2b4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

m(1, 1)
m(1, 2)
m(1, 4)
m(2, 2)
m(3, 3)
m(3, 4)
m(4, 4)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

−c(3, 3)
0

−c(4, 4)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(2.306)
and E{x2ẋ1} = m(2, 3) = −m(1, 4). The independent values of mi,j (2.306)
can now be solved. The total energy of coupled SDOF system 1 is

〈E1〉 =
WF1

4Δ1m1D

[
(ω2

1 − ω2
2)

2 + (Δ1 + Δ2)(ω2
1Δ2

2 + ω2
2Δ2

1) + ω4
12

(
1 +

Δ1

Δ2

)]

+
WF2

4Δ2m2D

[
ω4

12

(
1 +

Δ2

Δ1

)]
, (2.307)

and the total energy of the coupled SDOF system 2 is

〈E2〉 =
WF2

4Δ1m2D

[
(ω2

1 − ω2
2)

2 + (Δ1 + Δ2)(ω2
1Δ2

2 + ω2
2Δ2

1) + ω4
12

(
1 +

Δ2

Δ1

)]

+
WF1

4Δ2m1D

[
ω4

12

(
1 +

Δ1

Δ2

)]
, (2.308)
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where the denominator D is given by

D = (ω2
1 − ω2

1)
2 + (Δ1 + Δ2)(ω2

1Δ2
2 + ω2

2Δ
2
1) + ω4

12

(
2 +

Δ1

Δ2
+

Δ2

Δ1

)
. (2.309)

The power transfer between SDOF 1 and SDOF 2, coupled by the spring kc,
becomes

Π12 = −kcE{x2ẋ1} = −ω2
12

√
m1m2E{x2ẋ1}

=
ω4

12(Δ1 + Δ2)
D

[
WF1

4Δ1m1
− WF2

4Δ2m2

]

= β12

[
〈Ē1〉 − 〈Ē2〉

]
. (2.310)

The following remarks can be made with respect (2.310):

• The power flow Π12 is proportional to the actual uncoupled vibration
energies of the system, SDOF 1 and SDOF 2, and the constant of propor-
tionality is β12.

• The constant of proportionality β12 is positive and symmetric in the system
parameters.

2.6.5 Augmented State-Space Equation under Non-White
Excitation

White noise can be used to predict the response of a dynamic system in
many practical solutions. However, when the PSD does not vary substantially
over the frequency range covered by the lowest natural frequencies, a formal
extension to the specified band-limited PSD spectrum case is needed. Any
PSD spectrum can be obtained as the output of some linear dynamic system
exposed to a white noise input. The actual PSD spectrum input can be ap-
proximated as accurately as desired. The cost depend on the complexity (i.e.
the number of states) of the filter model called the auxiliary system.

The spectral density function S(ω) is approximated by meromorphic func-
tions16 [187]

S(ω) =
b0 + b1ω

2 + · · · + amω2m

a0 + a1ω2 + · · · + anω2n
= h(jω)h(−jω) = |h(ω)|2, (2.311)

where the order m of the numerator does not exceed the order n of the de-
nominator. This follows from the fact that

lim
ω→∞

S(ω) < ∞.

All coefficients bi, i = 0 . . . m and aj , j = 0 . . . n of the PSD function are
real because the system parameters are real. Complex zeros and poles of the
transfer function h(s) = h(jω) must occur in conjugate pairs.
16 Rational function with non constant denominator.
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Fig. 2.26. Auxiliary system (shape filter)

We assumed that the properties of the auxiliary system (subscript a) can
be found and described by the following state-space equations

{ẏa} = [Aa]{ya} + {Ba}wwn, (2.312)

where wwn is the white noise input of the force and the output fa of the
auxiliary system is the filtered PSD spectrum is given by

fa = [Ca]{ya}. (2.313)

The auxiliary system is illustrated in Fig. 2.26. The real parts of the complex
eigenvalues λi of the state matrix [Aa] will be negative, thus � {λi} < 0.

The frequency response function ha(s) of the auxiliary system (Laplace
transform) is

h(s) =
fa(s)

wwn(s)
= [Ca](s[I] − [Aa])−1{Ba} =

p(s)
q(s)

, (2.314)

where p(s) and q(s) are real polynomials of the Laplace variable s. If the
PSD function of the white noise signal wwn is Sw = 1, then the output PSD
function of fa can be obtained as

Sfa = h(jω)h(−jω) = |h(jω)|2. (2.315)

When the output fa of the auxiliary system is injected as the input of the
main system

{ẏ} = [A]{y} + {B}u = [A]{y} + {B}fa, {x} = [C]{y},

the following augmented state-space equation will be obtained

{ẏt} = [At]{yt} + {Bt}wwn, (2.316)

and
{y} = [Ct]{yt}, (2.317)

where the total number of states is
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{yt} =
(

y
ya

)
, (2.318)

then the state matrix [At] is as follows

[At] =
(

A BCa

0 Aa

)
. (2.319)

The input matrix {Bt} is

{Bt} =
(

0
Ba

)
, (2.320)

and the output matrix is
[Ct] =

[
C 0

]
. (2.321)

In [137], random seismic excitation is modelled as a non-white Gaussian
process, and the excitation PSD is represented by the Kanai-Tajimi spectrum

Φ(ω) =
1 + 4ζ2

a( ω
ωa

)2

[1 − ( ω
ωa

)2]2 + 4ζ2
a( ω

ωa
)2

S0. (2.322)

The Kanai-Tajimi spectrum can be obtained from a second order differential
system subjected to white-noise excitation. In this way, the ground accelera-
tion ẍa is produced by

ẍa = −ω2
aza − 2ζaωaża, (2.323)

and
z̈a + 2ζaωaża + ω2

aza = −ξ̈, (2.324)

where ξ̈ is the stationary Gaussian white noise with intensity S0. za is the
response of the filtering system, ωa and ζa are the natural frequency and
damping ratio of the filter. Equation (2.322) is illustrated in Fig. 2.27. The
state-space representation of the filter is

(
ża

z̈a

)
=
(

0 1
−2ζaωa −ω2

a

)(
za

ża

)
+
(

0
−1

)
ξ̈, (2.325)

and

ẍa =
(

−ω2
a −2ζaωa

)( za

ża

)
. (2.326)

Equations (2.325) and (2.326) are similar to (2.312) and (2.313). The Laplace
response function ha(s) (2.314) now becomes

h(s) =
ẍa(s)
ξ̈(s)

= [Ca](s[I] − [Aa])−1{Ba} =
ωa(ωa + 2ζas)

s2 + 2ζasωa + ω2
a

, (2.327)

and the frequency response function ha(jω) is
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Fig. 2.27. Kanai-Tajimi spectrum

ha(jω) =
ωa(ωa + 2jζaω)

−ω2 + 2jζaωωa + ω2
a

. (2.328)

That proves that the selected filtering system represents the filter as given
in (2.322).

The Laplace transfer function h(s) will be represented in the canonical
form (simplest) of the state-space.

First Companion Form

If the single input single output transfer function h(s) is given by

h(s) =
1

sk + a1sk−1 + · · · + ak
, (2.329)

the corresponding state-space representation (companion form) is [66]

[A] =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−ak −ak−1 −ak−2 · · · −a1

⎞
⎟⎟⎟⎟⎟⎠

, {B} =

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
...
1

⎞
⎟⎟⎟⎟⎟⎠

,

[C] =
(
1 0 0 · · · 0

)
,

(2.330)
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or

[A] =

⎛
⎜⎜⎜⎜⎜⎝

−a1 −a2 · · · −ak−1 −ak

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠

,

{B} =

⎛
⎜⎜⎜⎜⎜⎝

1
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎠

,

[C] =
(
0 0 0 · · · 1

)
.

(2.331)

If the single input single output transfer function h(s) is given by

h(s) =
b0s

m + b1s
m−1 + · · · + bm

sn + a1sn−1 + · · · + an
, m ≤ n, (2.332)

then
lim

ω→∞
h(jω) < ∞,

and the complex zeros ad poles of the Laplace transfer function h(s) occur in
conjugate pairs.

The output matrix [C] in (2.330) (right-to-left state variable numbering)
must be replaced by

[C] = 
bk − akb0, bk−1 − ak−1b0, . . . , b1 − a1b0�, (2.333)

and the output matrix [C] in (2.331) (left-to-right state variable numbering)
must be replaced by

[C] = 
b1 − a1b0, b2 − a2b0, . . . , bk − akb0�. (2.334)

Example. A 2 DOF dynamic system is exposed to white noise enforced ac-
celeration ü, with a PSD function Sü = 1. The Laplace response function
between the enforced acceleration and the first DOF acceleration ẍ1 is calcu-
lated. The absolute displacement is {x} and the relative displacement vector
{z} = {x} − {T }u, where the rigid body mode is {T } = 
1, 1�T . The damping
matrix is denoted by [C̄] instead of [C]. The output matrix is denoted by [C].
The following equations are applicable:

[M ]{z̈} + [C̄]{ż} + [K]{z} = −[M ]{T }ü,
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and
{ẍ} = −[M ]−1[K]{z} − [M ]−1[C̄]{ż}.

The 2 DOF system has the following mass, damping and stiffness character-
istics:

[M ] =
(

100 0
0 15

)
, [C̄] =

(
75 −50

−50 50

)
,

[K] =
(

76 915 −14 415
−14 415 14 415

)
.

The state-space matrix [A], the input matrix {B} and the output matrix [C]
of that system are given by

[A] =
(

O I
−[M ]−1[K] −[M ]−1[C̄]

)
{B} =

⎛
⎜⎜⎝

0
0
1
1

⎞
⎟⎟⎠ ,

[C] =
(

1 0
0 0

)(
−[M ]−1[K] −[M ]−1[C̄]

)
,

or

{ż} = [A]{z} + {B}ü, ẍ1 = [C]{z} = [C]

⎛
⎜⎜⎝

z1

z2

ż1

ż2

⎞
⎟⎟⎠ .

We will calculate the Laplace response function h(s) = ẍ1(s)
ü(s) = {B}(s[I] −

[A])−1[C] of the state-space system.
The Laplace response transfer function is given by

h(s) =
b0s

4 + b1s
3 + b2s

2 + b3s + b4

s4 + a1s3 + a2s2 + a3s + a4
,

where the coefficients are listed in Table 2.7.
The following companion matrix [Ac] is chosen

Table 2.7. Coefficients

k ak bk

0 1.0000 0.0000
1 4.0833 0.2500
2 1731.0 625.8333
3 2323.6 2323.6
4 6.0063E5 6.0063E5
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Table 2.8. Eigenvalues of state-space matrix {Λ}

k [A] [Ac]

1 −1.8079 + 35.2813j −1.8079 + 35.2813j
2 −1.8079 − 35.2813j −1.8079 − 35.2813j
3 −0.2337 + 21.9363j −0.2337 + 21.9363j
4 −0.2337 − 21.9363j −0.2337 − 21.9363j

[Ac] =

⎛
⎜⎜⎝

−a1 −a2 −a3 −a4

1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

−4.0833 −1731.0 −2323.6 −6.0063E5
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ ,

and the reconstructed input matrix {Bc} is as expected (2.333)

{Bc} = 
1, 0, 0, 0�T ,

and the reconstructed output matrix [Cc] is calculated to be, with b0 = 0
(2.334)

[Cc] = 
b1 − a1b0, b2 − a2b0, b3 − a3b0, b4 − a4b0�
= 
0.2500, 625.8333, 2323.6, 6.0063E5�.

The eigenvalues of the original state-space matrix [A] and the companion
matrix [Ac] are listed in Table 2.8.

The damping ratio’s and natural frequencies corresponding with the pair
of eigenvalues are ζ = 
0.1024, 0.0213� and ωn = 
35.3276, 21.9375� rad/s
respectively.

The companion matrix [Ac] is similar to the original state-space matrix [A]
with respect to the Laplace response function h(s) and the eigenvalues �Λ�.
The calculated mean square values of ẍ1 are exactly the same for both the
original state-space equations and the reconstructed state-space equations,
E{ẍ2

1} = 351.2603.

The approximate frequency response function happrox (s) can be expressed
in terms of the elementary factors by using the minimum phase approach:17

• Constant term (gain) K, −K = |K|ejπ

• Pole at the origin h(s) = 1
s

• Zero at the origin h(s) = s
• Real pole in LHP h(s) = ω0

s+ω0

17 Poles and zeros are in the left half plane (LHP).
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• Real zero in LHP h(s) = s+ω0
ω0

• Two complex poles h(s) = ω2
0

s2+2ζsω0+ω2
0
, |ζ| < 1

• Two complex zeros h(s) = s2+2ζsω0+ω2
0

ω2
0

, |ζ| < 1,

where ω0 is the break frequency and ζ is the tuning factor. The approximate
transfer function happrox (s) can be generally expressed as follows [68]

happrox (s) = K
(s + α1)

∏
i(s

2 + 2ζ2isω2i + ω2
2i)

(s + β3)
∏

j(s2 + 2ζ4jsω4j + ω2
4j)

, (2.335)

where the constants K, α1, β3, ζ2i, ζ4j , ω2i and ω4j are all positive.18 In
any case, the approximate PSD Sapprox (ω), for a unitary white noise PSD
function, is

Sapprox (ω) = |happrox (jω)|2. (2.336)

The magnitude of the approximate PSD function in (2.336) is, in general,
expressed in logarithmic form, in a so-called Bode plot

Magnitude = 10 log |happrox (jω)|2 = 20 log |happrox (jω)| dB. (2.337)

The magnitude Bode plot is accompanied by the Bode phase plot, which is not
of interest for the PSD function. However, phase properties of the elementary
terms will be discussed too. The following elementary factors are discussed:

• Constant term, h(s) = K
– For a constant term, the magnitude plot is a straight line,
– the phase plot is also a straight line, 0◦ for a positive constant, ±180◦

for a negative constant.
• Real pole, h(s) = ω0

ω0+s
– For a simple real pole the piecewise linear asymptotic Bode plot for

magnitude is at 0 dB until the break frequency ω0 and then drops at
20 dB per decade (6 dB/oct) (i.e., the slope is −20 dB/decade). An
nth order plot has a slope of −20n dB/decade,

– the phase plot is 0◦ until one tenth of the break frequency ω0 and then
drops linearly to −90◦ at ten times the break frequency. An nth order
pole drops to −90n◦.

• Real zero, h(s) = ω0+s
ω0

– For a simple real zero the piecewise linear asymptotic Bode plot for
magnitude is at 0 dB until the break frequency ω0 and then rises at
+20 dB per decade (6 dB/oct) (i.e., the slope is 20 dB/decade). An
nth order plot has a slope of 20n dB/decade,

– the phase plot is 0◦ until one tenth of the break frequency ω0 and then
rises linearly to 90◦ at ten times the break frequency. An nth order
pole drops to 90n◦.

18 It is clear that, for a physical realizable system, the order of the denominator
polynomial must be greater or equal than that of the nominator.
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• Pole at origin, h(s) = 1
s

– For a simple real pole at the origin draw a straight line with a slope
−20 dB per decade and going through 0 dB at 1 rad/s. When n poles
exist the phase plot has a slope of −20n dB/decade,

– the phase plot is −90◦. An nth order pole drops to −90n◦.
• Zero at origin, h(s) = s

– For a simple real zero at the origin draw a straight line with a slope
+20 dB per decade and gong through 0 dB at 1 rad/s. When n zeros
exist the phase plot has a slope of +20n dB/decade,

– The phase plot is +90◦. An nth order zero is at +90n◦.
• Complex conjugate pair of poles, h(s) = ω2

0
s2+2ζω0s+ω2

0

– For the magnitude plot of complex conjugate pair of poles draw a 0 dB
at low frequencies, go through a peak of height

h(jωr) = −20 log(2ζ
√

1 − ζ2) ≈ −20 log(2ζ)

at the resonant frequency ωr ≈ ω0 and then drop with a slope −40 dB
per decade (−12 dB/oct) (i.e., the slope is −40 dB/decade). The high
frequency asymptote goes through the break frequency. Note that the
peak exists only for

0 < ζ <
1
2

√
2.

– To draw the phase plot, simply follow low frequency asymptote at 0◦

until

ω = ω0

log( 2
ζ )

2
then decrease linearly to meet the high frequency asymptote at −180◦

at
ω = ω0

2
log( 2

ζ )
.

If ζ < 0.02 the approximation can be simply a vertical line at the break
frequency.

• Complex conjugate pair of zeros, h(s) = s2+2ζω0s+ω2
0

ω2
0

– For the magnitude plot of a complex conjugate pair of zeros draw, a
0 dB at low frequencies, go through a dip of magnitude

h(jωr) = 20 log(2ζ
√

1 − ζ2) ≈ 20 log(2ζ)

at the resonant frequency ωr ≈ ω0 and then rise at 40 dB per decade
(12 dB/oct) (i.e., the slope is 40 dB/decade). The high frequency as-
ymptote goes through the break frequency. Note that the peak exists
only for

0 < ζ <
1
2

√
2.
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Table 2.9. PSD spectrum enforced acceleration (Grms = 9.75 g)

Frequency (Hz) PSD g2/Hz (single sided) Transfer function (−)

20–100 6 dB/oct (20 dB/dec) 6 dB/oct

100–400 0.2
√

0.2
400–2000 −6 dB/oct −6 dB/oct

Frequency (rad/s) PSD g2/rad/s (double sided) Transfer function (−)

2π20–2π100 6 dB/oct (20 dB/dec) 6 dB/oct

2π100–2π400 0.1
√

0.1
2π400–2π2000 −6 dB/oct −6 dB/oct

– To draw the phase plot, simply follow low frequency asymptote at 0◦

until

ω = ω0

log( 2
ζ )

2
then increase linearly to meet the high frequency asymptote at 180◦ at

ω = ω0
2

log( 2
ζ )

.

Example. The single sided PSD acceleration spectrum Wa(f) is given in
Table 2.9 and taken from [68]. This single sided PSD acceleration spectrum
Wa(f) will be transformed into a double sided PSD acceleration spectrum
2Sa(ω) = Wa(f), f ≤ ∞, |ω| ≤ ∞. A first examination of the required
happrox (s) reveals that the this transfer function may be approximated with
a zero at ω = 0 and poles at ω = 2π100 and ω = 2π400. Furthermore the
transfer function must decrease at large frequencies at a rate of 20 dB/dec,
that is as 1

s . The resulting transfer function is

happrox (s) = K
2π100 × 2π400s

(s + 2π100)(s + 2π400)
,

where the value of the gain K is calculated as to give a value
√

0.1 at a
frequency of ω = 2π

√
100 × 400, resulting in K = 6.2912 × 10−4. The approx-

imate Laplace transfer function becomes

happrox (s) =
b1s

s2 + a1s + a2
=

993.4588s

s2 + 3141.5927s + 1579136.7
.

The Bode diagrams magnitude and phase are illustrated Fig. 2.28. The cor-
responding auxiliary state-space system, with state matrix [Aa], input matrix
{Ba} and output matrix 
Ca�, is

[Aa] =
(

−3141.5927 −1579136.7
1.0 0.0

)
, {Ba} =

(
1
0

)
,

[Ca] = 
993.4588, 0.0�.



2.6 Complex Modal Analysis, Lyapunov’s Equation 97

Fig. 2.28. Bode diagram

Fig. 2.29. Dynamic system + auxiliary system

The SDOF system together with the auxiliary system to filter the white noise
W = 1 g2/rad/s is shown in Fig. 2.29. The natural frequency of the SDOF

system f0 = 1
2π

√
k
m = 150 Hz. The amplification factor is Q = 10, then

ζ = 0.05. At first, the E{ẍ2} of the SDOF will be calculated from Miles’
equation assuming white noise base excitation (Table 2.9)

E{ẍ2} =
π

2
f0QWü(1 + 4ζ2) ≈ π

2
× 150 × 10 × 0.2 = 245.0442 g2.

Secondly the mean square acceleration E{ẍ2} of the SDOF will be calculated
using the auxiliary system excited by a unit white noise enforced acceleration.
The characteristics of the auxiliary system are

[A] =
(

0 1
−ω2

0 −2ζω0

)
, {B} =

(
0

−1

)
, [C] = 
−ω2

0 , −2ζω0�.
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Fig. 2.30. PSD specification

The total state-space system [At], {Bt} and [Ct], the combination of the aux-
iliary system and the SDOF, can now be formed.

The mean square acceleration becomes E{ẍ2} = 211.9628 g2. As expected,
the filtered response is somewhat lower than the white noise response, because
the real spectrum is band-limited. The main effort is to set-up the approximate
Laplace transfer function happrox (s) such that |happrox (s)|2 will represent the
specified PSD acceleration specification.

The following example is again a representation of a standard PSD accel-
eration specification.

Example. The PSD Sa(ω) of a random process is illustrated in Fig. 2.30 can
be approximated by a transfer function [66].

happrox (s) = K
s2(s2 + 2ζnsωn + ω2

n)
(s + α)(s2 + 2ζd1sωd1 + ω2

d1)(s2 + 2ζd2sωd2 + ω2
d2)

, (2.338)

where all parameters α, ζn, ζd1, ζd2, ωn, ωd1 and ωd2 are positive. We must
vary the parameters to find a good approximated for happrox (s).

Problems

2.19. Consider a two degrees of freedom nonclassically damped linear system

[M ] =
(

100 0
0 15

)
kg, [C] =

(
75 −50

−50 50

)
N s/m and

[K] =
(

76915 −14415
−14415 14415

)
N/m.

The random load matrix is
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[S0] =
(

1 0
0 1

)
N2/Hz.

The state vector {y} is given by

{y} =
{

x
ẋ

}
.

Apply the complex mode approach:

• the eigenvalues λi of the state matrix [A],
• the eigenvectors [Ψ ],
• the natural frequencies ωn from conjugate pair of eigenvalues λi,
• the modal damping ratio’s ζn

• the damped natural frequencies
• the correlation matrix Ryy(0),
• the correlation matrix Ryy(τ), τ = 0.0–0.60 s.

This problem is taken from [61].
Answers:

ωn =
(

21.9375
35.3276

)
rad/s, ζn =

(
0.0107
0.0512

)
, ωd =

(
21.9363
35.2813

)
rad/s,

Ryy(0) = 10−10

⎛
⎜⎜⎝

4533.57 8045.51 0.0 3110.72
8045.51 19427.876 3110.72 0.0

0.0 3110.72 2325680.3 3385340.0
3110.72 0.0 3385340.0 10948826.0

⎞
⎟⎟⎠ .

2.20. The equation of motion of a SDOF system excited at the base by an
enforced acceleration ü is given by

mẍ + cż + kz = 0,

where x is the absolute motion and z = x − u is the motion with respect to the

base. The damping ratio is ζ = c
2

√
km

and the natural frequency is ω0 =
√

k
m .

The double sided white noise PSD function of the acceleration is given by
Sü, and the single sided white noise PSD in the cyclic frequency domain is
Wü = 2Sü.

Show the following expressions using the state space approach and ap-
plying “the stochastic dual of the direct method of Lyapunov”, (2.259) and
(2.260) and knowing that ω0 = 2πf0 and Q = 1

2ζ :

• Rzz(0) = 〈z2〉 = Sü

4ζω3
0

= Wü

8ζω3
0

• Rżz(0) = 〈żz〉 = 〈zż〉 = Rzż(0) = 0
• Rżż(0) = 〈ż2〉 = Sü

4ζω0
= Wü

8ζω0

• Rẍẍ(0) = 〈ẍ2〉 = Süω0
4ζ (1 + 4ζ2) = π

2 f0QWü(1 + 4ζ2)



100 2 Linear Random Vibration Systems

Fig. 2.31. Excited and filtering system

2.21. The original excited SDOF system is indicated by “0” and the filtering
SDOF system is indicated by “a”. Both systems are illustrated in Fig. 2.31.

Derive the Laplace response function hẍẅ(s) and the PSD function Sẍ(ω),
using the following steps:

• Derive equation ü = ü(z, ż)
• Derive equation ẍ = ẍ(y, ẏ)
• Derive equation z̈ = z̈(z, ż, ẅ)
• Derive equation ÿ = ÿ(y, ẏ, z, ż)

Answers:

1. ü = −2ζaωaż − ω2
az

2. ẍ = −2ζ0ω0ẏ − ω2
0y

3. z̈ + 2ζaωaż + ω2
az = −ẅ

4. ÿ + 2ζ0ω0ż + ω2
0y = 2ζaωaż + ω2

az

• Derive space-state equation {v̇} = [A]{v} + {B}ẅ
• Derive output relation ẍ = [C]{v}, {v} = 
y, ẏ, z, ż�T

Answers:

1. [A] =

⎛
⎜⎜⎝

0 1 0 0
−ω2

0 −2ζ0ω0 ω2
a 2ζaωa

0 0 0 1
0 0 −ω2

a −2ζaωa

⎞
⎟⎟⎠

2. {B} = 
0, 0, 0, 1�T

3. [C] = 
−ω2
0 , −2ζ0ω0, 0, 0�

• Derive the Laplace response function hẍẅ(s) = [C](s[I] − [A])−1{B}

Answer:

1. hẍẅ(s) = ω0ωa(ω0+2sζ0)(ωa+2sζa)
(s2+2sζ0ω0+ω2

0)(s2+2sζaωa+ω2
a)
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Fig. 2.32. The four degrees of freedom dynamic system

• Derive the expression of the PSD function Sẍ(ω) assuming a white noise
PSD function of the enforced acceleration Sẅ

Answer:

1. Sẍ(ω) = Sẅ
ω2

0ω2
a(ω2

0+4ω2ζ2
0 )(ω2

a+4ω2ζ2
a)

[(ω2
0 −ω2)2+4ω2ζ2

0ω2
0 ][(ω2

a −ω2)2+4ω2ζ2
aω2

a]

2.22. A dynamic system consists of four discrete masses m1, m2, m3, m4,
five spring elements k1, k2, 43, k4, k5, three viscous dampers c2, c2, and c2.
The system is loaded by two statistically independent white noise random
forces F2 and F3, and the spectral moments are 〈F2〉 = 〈F3〉 = 0, 〈F2F3〉 = 0,
〈F2F2〉 = RF2(τ) = WF2

2 δ(τ), and 〈F3F3〉 = RF3(τ) = WF3
2 δ(τ). The dynamic

system is shown in Fig. 2.32. The system is taken from [67].
Perform the following activities:

• generate the equations of motion of the dynamic system,
• set up the force matrix to calculate the forces in the springs {Fk } =

[SF ]{x},
• set up the force matrix to calculate the forces in the dampers {Fd} =

[SD]{ẋ},
• set up the space state equations.
• set up the state space output matrix [CF ] for the spring forces.
• set up the state space output matrix [CD] for the damper forces.
• calculate for k1 = k2 = k3 = k4 = k5 = 10 000 N/m, m1 = m2 = m3 =

m4 = 10 kg, c2 = c3 = c4 = 10 N s/m:
– damped natural frequencies ωd rad/s.
– (undamped) natural frequencies ωn rad/s.
– modal damping ratio’s ζ.

• If the one-sided white noise power spectral densities of both forces F2 and
F3 are WF2 = WF3 = 10 000 N2/Hz, calculate
– The rms spring forces {Fk }rms .
– The rms damper forces {Fd}rms .

Answers:
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Fig. 2.33. The four degrees of freedom dynamic system

{ωd} =

⎛
⎜⎜⎝

19.54
37.17
51.17
60.14

⎞
⎟⎟⎠ rad/s, {ωn} =

⎛
⎜⎜⎝

19.55
37.17
51.17
60.14

⎞
⎟⎟⎠ rad/s, {ζ} =

⎛
⎜⎜⎝

0.014
0.007
0.014
0.012

⎞
⎟⎟⎠,

{Fk }rms =

⎛
⎜⎜⎜⎜⎝

1275.3
998.4
1002.5
1003.3
1275.0

⎞
⎟⎟⎟⎟⎠ N and {Fd}rms =

⎛
⎝ 43.2

43.4
35.4

⎞
⎠ N.

2.23. This problem is about the same as stated in problem 2.22, however,
no discrete dampers are present. The system is loaded by two statistically
independent white noise random forces F2 and F3, and the spectral moments
are 〈F2〉 = 〈F3〉 = 0, 〈F2F3〉 = 0, 〈F2F2〉 = RF2(τ) = WF2

2 δ(τ), and 〈F3F3〉 =
RF3(τ) = WF3

2 δ(τ). The dynamic system is illustrated in Fig. 2.33. Calculate
for k1 = k2 = k3 = k4 = k5 = 10 000 N/m, m1 = m2 = m3 = m4 = 10 kg
the natural frequencies ωn rad/s. The one-sided white noise power spectral
densities of both forces F2 and F3 are WF2 = WF3 = 10 000 N2/Hz. Using
the modal reduction method described in Sect. 2.6.2, p. 78, calculate the rms
spring forces {Fk }rms

• the first mode considered,
• the first two mode considered,
• the first three mode considered,
• all modes considered.

The modal damping ratio is ζ = 0.015 for the modes considered. Compare
the results with the results of problem 2.22.
Answers:

{ωn} =

⎛
⎜⎜⎝

19.54
37.17
51.17
60.17

⎞
⎟⎟⎠ rad/s,

first mode
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{Fk }rms =

⎛
⎜⎜⎜⎜⎝

1056.6
653.0
0.0

653.0
1056.6

⎞
⎟⎟⎟⎟⎠ N,

two first modes

{Fk }rms =

⎛
⎜⎜⎜⎜⎝

1130.7
670.9
497.8
670.9
1130.7

⎞
⎟⎟⎟⎟⎠ N,

three first modes

{Fk }rms =

⎛
⎜⎜⎜⎜⎝

1157.7
783.2
497.8
783.2
1157.7

⎞
⎟⎟⎟⎟⎠ N

and for all mode considered

{Fk }rms =

⎛
⎜⎜⎜⎜⎝

1173.9
935.5
806.9
935.5
1173.9

⎞
⎟⎟⎟⎟⎠ N.

2.24. This problem is taken from [169]. Consider a two degrees of freedom
system governed by differential equations with the following matrices

[M ] =
(

m 0
0 2εm

)
, [C] =

(
c(1 + ε1) −ε1c

−ε1c 2εc

)
,

[K] =
(

k(1 + ε1) −ε1k
−ε1k 2εk

)
, {F (t)} =

(
F1(t)

0

)
,

where ε1 and ε2 are some nonnegative coefficients, 2ε = ε1 + ε2 and F1(t) is
an ideal white noise with intensity W0/2.
Proof that the natural frequencies are:

ω2
1,2 =

k

2m
[2 + ε1 ± ε1τ ],

where τ =
√

1 + 2
ε . Show that the corresponding mode shapes [Φ] are given

by:
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[Φ] =
(

2λ1 2λ1

λ1(1 − τ) λ2(1 + τ)

)
,

where

λ1 =
1

2m
[2 + ε − ετ ],

λ2 =
1

2m
[2 + ε + ετ ].

And proof that the modal damping ratio’s are given by

ζ1,2 =
c

4km
[2 + ε1 ± ε1τ ].

Calculate, using Lyapunov equation, the mean square values E(x2
1) and

E(x2
2) and proof the following relations:

E(x2
1) =

W0

kc
{[2 + ε1 + ε1τ ]−2[2 + ε − ετ ]−2

+ [2 + ε1 − ε1τ ]−2[2 + ε + ετ ]−2

− Ψ(4 + 4ε1 − 2ε2
1ε

2
2)

−2(4 + 2ε)−1},

E(x2
2) =

W0

4kc
{[2 + ε1 + ε1τ ]−2[2 + ε − ετ ]−2[1 − τ ]2

+ [2 + ε1 − ε1τ ]−2[2 + ε + ετ ]−2[1 + τ ]2

+ Ψ(4 + 4ε1 − 2ε2
1ε

2
2)

−2(4 + 2ε)−1},

where

Ψ = 2c̄

[
c̄ +

ε2
1(ε + 2)

(2ε + 2εε1 − ε2
1)(ε1 + 2)

]−1

,

and

c̄ =
c2

km
.

2.7 Limit Load Factors

2.7.1 Introduction

In spacecraft, the equipment is generally mounted to (sandwich) panels. This
is illustrated in Fig. 2.34. The design loads for these equipment have to be
established, estimated, before the spacecraft is built. The acoustic pressure
loads are transferred into random mechanical vibrations in the panel, exciting
the equipment at its base. This acceleration is indicated by ü. The equipment
panel plus equipment form SDOF system consisting of mass m1, spring k1

and damper c1 (support structure). A piece of equipment (e.g. box) forms
the second SDOF system consisting of mass m2, spring k2 and damper c2
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Fig. 2.34. Equipment panel

(component). In general, it is assumed that m2 < m1. The limit load factor
(LLF) is defined as the dynamic 3σ rms acceleration response 〈ẍ2〉 of SDOF
2 increased with the quasi static loads (QSL). The QSL can be found in the
User’s manual of the selected launch vehicle.

LLF = 3〈ẍ2〉 + QSL. (2.339)

The QSL are the steady state accelerations increased by very low frequency
accelerations (see for details in the Launch Vehicle User’s Manual). The LLF
is dependent on the mass m2. The estimation of the LLF for the equipment
is discussed in the next sections. The theory of the LLFs is based on [28].

2.7.2 Equations of Motion 2 SDOF System

The 2DOF dynamic system is illustrated is Fig. 2.35. This system is excited at
the base by an enforced acceleration ü. The absolute displacements, velocities
and accelerations of the discrete masses are denoted by x(t), ẋ(t) and ẍ(t).
Further in this section variable t will be skipped. The equations of motion of
the 2DOF dynamic system are given by
(

m1 0
0 m2

){
ẍ1

ẍ2

}
+
(

c1 + c2 −c2

−c2 c2

){
ẋ1

ẋ2

}
+
(

k1 + k2 −k2

−k2 k2

){
x1

x2

}

= −
{

c1

0

}
u̇ −

{
k1

0

}
u. (2.340)

If the absolute displacements, velocities and displacements are replaced by
the relative ones;

• y1 = x1 − u
• y2 = x1 − x2

• ẍ1 = ÿ1 + ü
• ẍ2 = ÿ2 + ẍ1 = ÿ1 + ÿ2 + ü



106 2 Linear Random Vibration Systems

Fig. 2.35. Two SDOF systems

then the following equations of motion are obtained:
(

m1 0
m2 m2

){
ÿ1

ÿ2

}
+
(

c1 −c2

0 c2

){
ẏ1

ẏ2

}
+
(

k1 −k2

0 k2

){
y1

y2

}

= −
{

m1

m2

}
ü. (2.341)

The following notation will be introduced

• ω2
1 = k1

m1
, ω2

2 = k2
m2

• c1 = 2ζ1

√
k1m1, c2 = 2ζ2

√
k2m2

• c1
m1

= 2ζ1ω1, c2
m2

= 2ζ2ω2

• c2
m1

= 2ζ2ω2γ

• k2
m1

= 2ω2ω
2
2γ and

• γ = m2
m1

Equation (2.341) can be written as
(

1 0
1 1

){
ÿ1

ÿ2

}
+
(

2ζ1ω1 −2ζ2ω2γ
0 2ζ2ω2

){
ẏ1

ẏ2

}
+
(

ω2
1 −ω2

2γ
0 ω2

2

){
y1

y2

}

= −
{

1
1

}
ü. (2.342)

The solution of (2.342) will be in the frequency domain (harmonic solution),
then the variables are expressed as follows

• x1(t) = X1(ω1)e−jωt, x2(t) = X2(ω1)e−jωt

• y1(t) = Y1(ω1)e−jωt, y2(t) = Y2(ω1)e−jωt and
• ü1(t) = Ü1(ω1)e−jωt,
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then (2.342) becomes
[

−ω2

(
1 0
1 1

)
+ jω

(
2ζ1ω1 −2ζ2ω2γ

0 2ζ2ω2

)
+

(
ω2

1 −ω2
2γ

0 ω2
2

)]{
Y1(ω)
Y2(ω)

}

= −
{

1
1

}
Ü(ω). (2.343)

The relative displacements Y1(ω) and Y2(ω) can be solved from (2.343)
using Cramer’s rule

Y1(ω) =
Ü(ω)

D
[ω2 − jωζ2ω2(1 + γ) − ω2

2(1 + γ)], (2.344)

and

Y2(ω) = − Ü(ω)
D

[jω1ζ1ω
2
1 + ω2

1 ], (2.345)

where the determinant is D = (jω)4a4 + (jω)3a3 + (jω)2a2 + (jω)a1 + a0 and
the coefficients are

• a4 = 1
• a3 = 2ζ1ω1 + 2ζ2ω2(1 + γ) = ω1[2ζ1 + 2ζ2φ(1 + γ)]
• a2 = ω2

1 + ω2
2(1 + γ) + 4ζ1ζ2ω1ω2 = ω2

1 [1 + φ2(1 + γ) + 4ζ1ζ2φ]
• a1 = 2ζ1ω1ω

2
2 + 2ζ2ω2ω

2
1 = ω3

1 [2ζ1φ
2 + 2ζ2φ]

• a0 = ω2
1ω

2
2 = ω4

1 [φ2],

where φ = ω2
ω1

.
The absolute accelerations Ẍ1(ω) and Ẍ2(ω) can now be found

Ẍ1(ω) =
Ü(ω)

D
[(jω)32ζ1ω1 + (jω)2(ω2

1 + 4ζ1ζ2ω1ω2)

+ jω(ζ1ω1ω
2
2 + ζ2ω2ω

2
1) + ω2

1ω
2
2 ], (2.346)

and

Ẍ2(ω) =
Ü(ω)

D
[(jω)24ζ1ζ2ω1ω2 + jω(ζ1ω1ω

2
2 + ζ2ω2ω

2
1) + ω2

1ω
2
2 ]. (2.347)

2.7.3 Frequency Transfer Function

The frequency transfer functions between the absolute accelerations Ẍ1(ω),
Ẍ2(ω) and the base excitation Ü(ω) can now be calculated by HẌ1Ü = Ẍ1(ω

Ü(ω)

and HẌ2Ü = Ẍ2(ω

Ü(ω)
and are expressed in a general form

HẌ1Ü =
(jω)3b1,3 + (jω)2b1,2 + (jω)b1,1 + b1,0

(jω)4a4 + (jω)3a3 + (jω)2a2 + (jω)a1 + a0
, (2.348)



108 2 Linear Random Vibration Systems

• b1,3 = 2ζ1ω1 = ω1[2ζ1]
• b1,2 = ω2

1 + 4ζ1ζ2ω1ω2 = ω2
1 [1 + 4ζ1ζ2φ]

• b1,1 = ζ1ω1ω
2
2 + ζ2ω2ω

2
1 = ω3

1 [ζ1φ
2 + ζ2φ]

• b1,0 = ω2
1ω2

2 = ω4
1 [φ2],

and

HẌ2Ü =
(jω)3b2,3 + (jω)2b2,2 + (jω)b2,1 + b2,0

(jω)4a4 + (jω)3a3 + (jω)2a2 + (jω)a1 + a0
, (2.349)

• b2,3 = 0
• b2,2 = 4ζ1ζ2ω1ω2 = ω2

1 [4ζ1ζ2φ]
• b2,1 = ζ1ω1ω

2
2 + ζ2ω2ω

2
1 = ω3

1 [ζ1φ
2 + ζ2φ]

• b2,0 = ω2
1ω2

2 = ω4
1 [φ2].

2.7.4 Random Responses

In this section we calculate the mean square and the root mean square (rms)
of the absolute accelerations ẍ1(t) and ẍ2(t) due the random enforced acceler-
ation ü(t) with a PSD function Süü(ω). The mean square values of ẍ1(t) and
ẍ2(t) are

〈ẍ2
1〉 =

∫ ∞

∞

∣∣HẌ1,Ü

∣∣2Süü(ω)dω, (2.350)

and
〈ẍ2

2〉 =
∫ ∞

∞

∣∣HẌ2Ü

∣∣2Süü(ω)dω. (2.351)

The PSD function of the enforced acceleration Süü(ω) is considered to be
constant over the frequency domain ω, thus Sü. The expressions for the mean
square values of ẍ1(t) and ẍ2(t) can now be written

〈ẍ2
1〉 = Sü

∫ ∞

∞

∣∣HẌ1Ü

∣∣2dω, (2.352)

and
〈ẍ2

2〉 = Sü

∫ ∞

∞

∣∣HẌ2Ü

∣∣2dω. (2.353)

In Wirsching, Paez and Ortiz [222], Appendix A, a solution of the definite
integral of the transfer function HẌ1Ü is provided

I4,i =
∫ ∞

− ∞
|HẌiÜ

(ω)|2

=
∫ ∞

− ∞

∣∣∣∣ bi,0 + (jω)bi,1 + (jω)2bi,2 + (jω)3bi,3

a0 + (jω)a1 + (jω)2a2 + (jω)3a3 + (jω)4a4

∣∣∣∣
2

dω. (2.354)

The solution of the integral I4,i is given by
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I4,i = π

[
a0b

2
i,3(a0a3 − a1a2) + a0a1a4(2bi,1bi,3 − b2

i,2)
a0a4(a0a2

3 + a2
1a4 − a1a2a3)

]

+ π

[−a0a3a4(b2
i,1 − 2bi,0bi,2) + a4b

2
i,0(a1a4 − a2a3)

a0a4(a0a2
3 + a2

1a4 − a1a2a3)

]
. (2.355)

2.7.5 Feedback Factor

The mean square values of the accelerations ẍ1(t) and ẍ2(t) can be calculated
by (2.355). The feedback factor Qfb is the ratio of the rms acceleration 〈ẍ1〉
and 〈ẍ2〉, thus

Qfb =

√
〈ẍ2

2〉
〈ẍ2

1〉 . (2.356)

The feedback factor Qfb is dependent on the following parameters:

• the damping ratios ζ1 and ζ2

• the hard mounted natural frequency ratio (tuning factor) φ = ω2
ω1

• the mass ratio factor γ = m2
m1

In Fig. 2.36 a parametric study of the feedback factor Qfb is illustrated
considering the following values for the parameters:

• the tuning factor φ = 0.0 . . . to . . . 2.5,
• the mass ratio γ = 0.001, 0.01, 0.1, 1.0,
• the damping ratios ζ1 = 0.05 and ζ2 = 0.05.

The following conclusions can be drawn:

Fig. 2.36. Feedback factor Qfb
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1. The feedback factor Qfb has the most influence when φ = 1.0.
2. The ratio γ = m2

m1
strongly influences the feedback factor Qfb when φ =

1.0; it does not influence Qfb when φ 
 1.0, φ � 1.0.
3. When φ � 1.0, the two masses m1 and m2 tend to have the same accel-

eration, such that the Qfb value is near unity, regardless of the values of
the damping ratios of ζ1 and ζ2.

4. When φ 
 1.0, Qfb is lower than unity.
5. Due to the dynamic impedance of the hard mounted dynamic system m1,

c1 and k1, it can be stated that Qfb is always lower than the amplification
Q2 = 1

2ζ2
in the hard mounted condition, Qfb < Q2 = 1

2ζ2
.

Based on the previous results, the feedback factor Qfb will be further
investigated for the worst condition, the “tuned case”, φ = 1. The parameters
γ and Q2 will be varied in the following ranges:

• the mass ratio γ = 0.00001 . . . to 1
• the amplification factor Q2 = 1

2ζ2
= 2.5, 5, 10, 20, 40

• the damping ration ζ1 = 0.05

The results of the calculation are shown in Fig. 2.37. From Fig. 2.37 it can be
interpreted that:

1. For γ → 1 the Qfb → 1.5.
2. The feedback factor Qfb is very sensitive to a mass ratio γ = 0.00001 . . . 0.1:

for the lower γ values, the Qfb factor has an asymptotic value depending
on the damping ration ζ2, but always lower than Q2.

3. Vibration loads for mass m2 can be derived as a tuned case of the 2DOF
system, when at least the following parameters are known: Wü = 2Sü, ζ1,

Fig. 2.37. Feedback factor Qfb , φ = 1
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Fig. 2.38. rms accelerations (g) for x1 and x2 and φ = 1

ζ2, m1 and m2. In general, both damping ratio’s ζ1, ζ2 are made equal
ζ1 = ζ2 = ζ.

The rms values of the accelerations 〈ẍ1〉 and 〈ẍ2〉 are calculated using the
damping ratio’s ζ1 = ζ2 = ζ = 0.05 and the PSD of the enforced acceleration
is Wü = 0.02 g2/Hz. The ratio φ = 1, corresponds to the tuned case. The rms
accelerations are dependent on the mass ratio γ. The rms accelerations are
shown in Fig. 2.38. The rms acceleration response 〈ẍ1〉 is hardly influenced
by SDOF system 2 (m2).

2.7.6 Limit Load Factors

To calculate the limit load factors or the mass acceleration curve 3σ values of
the rms acceleration 〈ẍ2〉 shall be considered and the quasi-static loads (QSL)
from the launch vehicle User’s manual added to that 3σ values. Consider
further a mass m1 = 500 kg and the QSL = 10 g the LLF is (2.339)

LLF = 3〈ẍ2,φ=1〉 + QSL.

The limit load factors or the mass acceleration curve is shown in Fig. 2.39.
Another method to calculate the LLF is to calculate the rms acceleration

response of 〈ẍ1〉 independent of x1. The rms response of the SDOF 1 system
can be obtained using Miles’ equation

〈ẍ1〉 =
√

π

2
f1Q1Wü(f1). (2.357)
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Fig. 2.39. LLF (g) m1 = 500 kg and φ = 1

This approach is regularly used because the definition of the SDOF 1 is not
always clear.

The limit load factor definition is now

LLF = 3Qfb,φ=1

√
π

2
f1Q1Wü(f1) + QSL, (2.358)

where f1 is the (assumed or specified) natural frequency (Hz) and Q1 is the
amplification factor (mostly taken as Q1 = 10) and Qfb,φ=1 can be taken from
Fig. 2.37. Notice that the latest approach to calculate the LLFs is conservative.

2.8 Force-Limit Prediction Methods

2.8.1 Introduction

In conventional vibration testing of space hardware, the acceleration input to
the base (enforced acceleration) of the test item is controlled by the specifica-
tions, namely, the envelope of the acceleration peaks of the flight environment.
This conventional approach to testing has been known for decades to greatly
overtest the test item at its own resonant frequencies [189]. Space structures
are normally designed to survive vibration testing as well as the flight environ-
ment, thus this overtesting phenomenon normally leads directly in overdesign.

An improved vibration test approach was developed by T.D. Scharton [135,
174, 175]. This approach is called force-limiting vibration testing (FLVT). The
FLVT measures and limits the reaction forces between the test item and the
shaker through real-time notching of the input acceleration.
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To estimate the force limits and specification, two mathematical ap-
proaches and one empirical method were developed:

• Simple two coupled SDOF method
• Complex two coupled SDOF method
• Semi-empirical method

These mathematical and semi-empirical methods will be discussed in subse-
quent sections.

2.8.2 Simple Coupled 2DOF System

The source and the load are idealized as lumped masses connected to each
other by corresponding springs and dampers. The simple 2DOF source-load
system is shown in Fig. 2.40. The damped equations of motion can be derived
from Lagrange’s equations

m1ẍ1 + k1(x1 − u) − k2(x2 − x1) + c1(ẋ1 − u̇) − c2(ẋ2 − ẋ1) = 0,
(2.359)

m2ẍ1 + k2(x2 − x1) + c2(ẋ2 − ẋ1) = 0.

Equation (2.359) will be transformed into the frequency domain assuming
xi(t) = Xi(ω)ejωt and u(t) = U(ω)ejωt, thus

(
−ω2m1 + jω(c1 + c2) + k1 + k2 −(jωc2 + k2)

−(jωc2 + k2) −ω2m2 + jωc2 + k2

)(
X1(ω)
X2(ω)

)

= −
(

k1
ω2 + j c1

ω
0

)
Ü(ω) (2.360)

or when expressed in the accelerations by multiplying (2.360) with −ω2 will
yield

Fig. 2.40. Simple coupled 2DOF Source-Load dynamic system



114 2 Linear Random Vibration Systems

(
−ω2m1 + jω(c1 + c2) + k1 + k2 −(jωc2 + k2)

−(jωc2 + k2) −ω2m2 + jωc2 + k2

)(
Ẍ1(ω)
Ẍ2(ω)

)

=
(

k1 + jωc1

0

)
Ü(ω). (2.361)

The accelerations Ẍ1(ω) and Ẍ2(ω) can be expressed in terms of Ü(ω), and
can be written as follows

Ẍ1(ω) = HẌ1
(ω)Ü(ω),

Ẍ2(ω) = HẌ2
(ω)Ü(ω),

(2.362)

where HẌ1
(ω) and HẌ2

(ω) are the transmissibility functions. Solving (2.361),
we find the transmissibility functions

HẌ1
(ω)

=
[−jω32ζ1ω1 − ω2(ω2

1 + 4ζ1ζ2ω1ω2) + jω(2ζ1ω1ω
2
2 + 2ζ2ω

2
1ω2) + ω2

1ω
2
2 ]

D
,

HẌ2
(ω) =

[−ω24ζ1ζ2ω1ω2 + jω(2ζ1ω1ω
2
2 + 2ζ2ω

2
1ω2) + ω2

1ω2
2 ]

D
,

(2.363)

where the determinant D of the matrix of (2.360) is given by

D = m1m2[ω4 − jω3(2ζ1ω1 + 2(1 + μ)ζ2ω2)
− ω2(ω2

1 + (1 + μ)ω2
2 + 4ζ1ζ2ω1ω2)

+ jω(2ζ1ω1ω
2
2 + 2ζ2ω2ω

2
1) + ω2

1ω
2
2 ], (2.364)

and

• ω1 =
√

k1/m1,
• ω2 =

√
k2/m2,

• μ = m2/m1,
• c1 = 2ζ1

√
k1m1,

• c2 = 2ζ2

√
k2m2.

The interface load Fi(ω) (see Fig. 2.40) is given by

Fi(ω) = k2(x2 − x1) + c2(ẋ2 − ẋ1)

= k2

(
HẌ2

(ω)
HẌ1

(ω)
− 1

)
X1(ω) + c2

(
HẌ2

(ω)
HẌ1

(ω)
− 1

)
Ẋ1(ω)

= − 1
ω2

(ω2
2 + 2jζ2ωω2)

(
HẌ2

(ω)
HẌ1

(ω)
− 1

)
Ẍ1(ω)

= m2Ẍ1(ω)
HẌ2

(ω)
HẌ1

(ω)
= M2(ω)Ẍ1(ω), (2.365)
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where M2(ω) is the dynamic mass of the “load” and ẍ1 the acceleration of
the “source”.

The PSD of the interface load WFiFi(f) can be calculated with the follow-
ing expression

WFiFi(f) = |M2(2πf)|2Wx1x1(f), (2.366)

where Wx1x1(f) is the PSD of the interface acceleration x1 dependent on the
cyclic frequency f (Hz).

In the case ω1 = ω2 = ω0, m1 = m2 = k1 = k2 = 1, Ü(ω) = 1 and
ζ1 = ζ2 = 0.01 the magnitudes of the interface force Fi(ω), the interface
acceleration Ẍ1(ω) and the dynamic mass of the “load” M2(ω) will be calcu-
lated and shown in Figs. 2.41, 2.42 and 2.43. This example, shows that both
the interface force and interface acceleration peak at the resonant frequencies
(maximum responses) of the coupled source-load system. The load dynamic
mass, however, peaks at the resonant frequency of the load uncoupled from
the source, a point corresponding to the antiresonance frequency of the cou-
pled system. It is important to note that the load dynamic mass evaluated at
the system resonant frequencies can be considerably less than when evaluated
at the system antiresonance frequency.

The underlying basis of the frequency-shift method is now easily under-
stood. In a conventional vibration test, the high impedance shaker will deliver
a peak interface force equal to the product of the acceleration spectral enve-
lope and the peak value of the load dynamic mass; this occurs at the system
antiresonance frequency

|F (ω)|peak = |M2(ω)|peak |a(ω)|peak , or
|F (ω)|peak = |M2(ω)|antiresonance |a(ω)|resonant ,

(2.367)

Fig. 2.41. Interface force



116 2 Linear Random Vibration Systems

Fig. 2.42. Interface acceleration

Fig. 2.43. Dynamic mass M2(ω)

where a(ω) = ẍ1(ω) is the interface acceleration. In contract, for a force-
limited vibration test, the frequency-shift method, the shaker is limited to de-
livering a peak interface force equal to the product of the acceleration spectral
envelope and the frequency-shifted values of the load dynamic mass evaluated
at the system resonant frequencies

|F̃ (ω)|peak = |M2(ω)|frequency-shifted |a(ω)|peak , or

|F̃ (ω)|peak = |M2(ω)|resonance |a(ω)|resonant ,
(2.368)
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where the tildes denote different values for the peak force. This limiting
method can accomplish a significant reduction in the interface force.

Example. Applying (2.367) to the example Figs. 2.41, 2.42 and 2.43, we
find yields a peak interface force |F | = 50 × 50 = 2500. Applying (2.368)
to the same example yields a peak interface force |F̃ | = 1.6 × 50 = 80, a
substantial reduction. This reduction in interface force corresponds to a notch
factor at the system resonant frequency of about 31 or 15 dB in the interface
acceleration spectrum.

Using the frequency-shift technique we assume that the control accelera-
tion spectrum |ac(ω)| properly envelopes the interface accelerations |a(ω)|peak
seen in service. Consequently

|Fc(ω)| = |M2(ω)|resonance |ac(ω)| or

WFcFc(f) = |M2(2πf)|2resonanceWacac(f).
(2.369)

Equation (2.366) will be rearranged such that

WFiFi(f)
|M2(2πf)|2Wx1x1(f)

=
WFiFi(f)

m2
2| HẌ2

(2πf)

HẌ1
(2πf) |2Wx1x1(f)

= 1, (2.370)

or
WFiFi(f)

m2
2Wx1x1(f)

=
∣∣∣∣
HẌ1

(2πf)
HẌ2

(2πf)

∣∣∣∣
2

. (2.371)

For a lightly damped system, the undamped natural frequencies are about
the same as the damped natural frequencies. The undamped natural frequen-
cies will be calculated from (2.359) neglecting the damping. The characteristic
determinant can now be written∣∣∣∣k1 + k2 − λm1 −k2

−k2 k2 − λm2

∣∣∣∣ = 0, (2.372)

so that the characteristic equation is

(k1 + k2 − λm1)(k2 − λm2) − k2
2 = 0. (2.373)

The roots of (2.373) are undamped eigenvalues λ1,2. They can be written

λ1,2 =
1
2

{ω2
1(1 + μ) + ω2

2 } ± 1
2

√
{ω2

1(1 + μ) + ω2
2 }2 − 4ω4

1ω
4
2 , (2.374)

where ω2
1 = k1/m1, ω2

2 = k2/m2 and the mass ratio is μ = m2/m1.
The maximum interface for Fi(ω) is at the lowest undamped natural fre-

quency ω =
√

λ1 (see Fig. 2.41) when ω1 = ω2 = ω0

λ1 = ω2
0

(
1 +

μ

2
−
√

μ +
μ2

4

)
. (2.375)
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Fig. 2.44. Maximum force limiting specification for 2DOF model

The “load” will then act as a vibration absorber.
We now use (2.371) to find the lowest natural frequency

√
λ1 = ωλ1 =

2πfλ1 for varying the mass ratio μ and damping ratio ζ1 = ζ2 = ζ. Thus

WFiFi(fλ1)
m2

2Wẍ1ẍ1(fλ1)
=
∣∣∣∣
HẌ1

(2πfλ1)
HẌ2

(2πfλ1)

∣∣∣∣
2

, μ = 0.0001..10,
(2.376)

ζ = 0.01, 0.02, 0.05, 0.1.

Equation (2.376) is visualized in Fig. 2.44. For small values of μ the nor-
malized force PSD approaches Q2 = 1/4ζ2. For very small mass ratios the
feedback of the load to the source via the vibration absorber mechanism is
negligible or the source mass provides a high relative mechanical impedance
interface to the load mass. Consequently, the maximum response of the load
mass will approach its resonant response, or for random vibration, WFF (f) =
m2

2Q
2Wẍ1ẍ1(f). At larger values of μ, force limiting begins to occur because

the feedback of the load mass to the source mass via the vibration absorber
mechanism becomes greater the source mass provides a lower relative mechan-
ical impedance interface to the load mass.

The simple 2DOF system is a useful initial model for developing force
limiting criteria according to the frequency-shift method. Unfortunately, by
treating both the source and load as simple SDOF systems, this model is
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inherently unable to describe the modal behavior of more realistic distrib-
uted mass systems. For a given mode in such an MDOF system, there is
modal effective mass that participates in the motion, and a complementary
residual mass that does not. This more complex behavior can be imperfectly
incorporated into the existing 2DOF model by treating distributed masses as
frequency dependent lumped masses and using the smoothed dynamic mass
as an estimate of the residual mass. The lumped masses of the simple 2DOF
are not an accurate representation of either the modal effective or residual
masses for a MDOF system. A more sophisticated model able to account for
both resonant and antiresonance structural modes is required to more accu-
rately model a MDOF source-load vibratory system. This model is called the
complex 2DOF system.

Distributed structures exhibit several modes of vibration in the frequency
band of interest. To build the 2DOF system we have to select the modes for
both the source and the load in that frequency band, and that is not always
straightforward. The width of these frequency band is traditionally one-third
of an octave.

Example. This example is taken from [97]. The KOMPSAT-II earth ob-
servation satellite of 800 kg has a Multi-Spectral Camera (MSC) as a main
payload (P/L). The MSC has a mass of 76.7 kg. The force limit specification
had been established by applying the simple 2DOF model using Fig. 2.44
(Q = 5). The lateral modal effective masses for the source m1 and the load
m2 are calculated by the finite element method. The results of the calculation
are presented in Table 2.10.

Table 2.10. Modal effective masses of the satellite bus, and the MSC and force
limits

1/3-Oct. frequency Satellite Modal MSC Modal m2/m1 Normalized
band effective mass (kg) effective mass force spectrum
(Hz) m1 (kg) m2 (kg) (Q = 5)

31.5 0.18
40 0.62
50 1.77
63 338.80
80 2.29

100 126.14
125 120.66 0.48 0.004 25
160 3.98
200 4.96 1.74 0.35 16
250 2.29 23.03 10.05 1.1
315 1.67 28.02 16.78 1
400 0.42 13.74 32.34 1
500 0.11 0.91 8.45 1.2



120 2 Linear Random Vibration Systems

2.8.3 Complex Coupled Two-SDOF System

In Fig. 2.45 the two-SDOF system of the so-called source and the so-called
load are illustrated in Fig. 2.45. The capital M represents the residual mass,
and the small m∗ the represents the modal effective mass. The theory behind
the modal effective mass and the residual mass is discussed in Appendix D.
The dampers and the springs are denoted by c∗ and k∗ respectively, because
they represent mathematical, no physical, values. The following theoretical
discussion is based on [48]. The differential equations of motion can be derived
using Lagrange’s method. The external force Fext = 0 for the time being.

(M1 + M2)ẍ − k∗
1(x1 − x) − k∗

2(x2 − x) − c∗
1(ẋ1 − ẋ) − c∗

2(ẋ2 − ẋ) = 0,

m∗
1ẍ1 + k∗

1(x1 − x) + c∗
1(ẋ1 − ẋ) = 0, (2.377)

m∗
2ẍ2 + k∗

2(x2 − x) + c∗
2(ẋ2 − ẋ) = 0.

The first equation of motion in (2.377) will be decomposed into symmetric
SDOF systems:

[M1ẍ − c∗
1(ẋ1 − ẋ) − k∗

1(x1 − x)] + [M2ẍ − k∗
2(x2 − x) − c∗

2(ẋ2 − ẋ)] = 0,
(2.378)

Fsource + Fload = Fint − Fint = 0,

where Fint in the interface force between M1 and M2. The interface force can
be expressed as follows using (2.377)

Fint = M2ẍ − k∗
2(x2 − x) − c∗

2(ẋ2 − ẋ),
Fint = M2ẍ + m∗

2ẍ2.
(2.379)

Using the third Fourier transformed equation of motion in (2.377) we can
express the acceleration Ẍ2(ω) can in terms of Ẍ(ω)

Ẍ2(ω) =
(

ω2
2 + 2jζ2ωω2

−ω2 + ω2
2 + 2jζ2ωω2

)
Ẍ(ω), (2.380)

Fig. 2.45. Modal effective and residual mass two-SDOF source-load system
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where the natural frequency ω2
2 = k2/m∗

2, the viscous damping is c∗
2 = 2jζ2ω2

and the damping ratio is ζ2 = c2/2
√

k∗
2m∗

2. Equation (2.379) gives the inter-
face force in the frequency domain Fint(ω):

Fint(ω) =
(

M2 + m∗
2

ω2
2 + 2jζ2ωω2

−ω2 + ω2
2 + 2jζ2ωω2

)
Ẍ(ω). (2.381)

The quantity between the brackets in (2.381) corresponds to the load dynamic
mass M2(ω):

|M2(ω)|2 = M2
2

[(1 − β2
2) + α2]2 + β2

2(1+α2)
2

Q2
2

(1 − β2
2)2 + β2

2
Q2

2

= M2
2

[(1 − β2
2) + α2]2 + 4ζ2

2β2
2(1 + α2)2

(1 − β2
2)2 + 4ζ2

2β2
2

, (2.382)

where α1 = m∗
1

M1
, α2 = m∗

2
M2

, β1 = ω
ω1

, β2 = ω
ω2

, Q1 = 1/2ζ1 and Q2 = 1/2ζ2.
Because of the symmetry in (2.378) the expression for the source dynamic mass
M1(ω) will have exactly the same form as (2.382). Equation (2.382) must be
expressed in the systems natural frequencies to determine the general force
limits.

The governing equation of the dynamic system illustrated in Fig. 2.45 is
⎛
⎝M1 + M2 0 0

0 m∗
1 0

0 0 m∗
2

⎞
⎠
⎛
⎝ ẍ

ẍ1

ẍ2

⎞
⎠+

⎛
⎝ c∗

1 + c∗
2 −c∗

1 −c∗
2

−c∗
1 c∗

1 0
−c∗

2 0 c∗
2

⎞
⎠
⎛
⎝ ẋ

ẋ1

ẋ2

⎞
⎠

+

⎛
⎝k∗

1 + k∗
2 −k∗

1 −k∗
2

−k∗
1 k∗

1 0
−k∗

2 0 k∗
2

⎞
⎠
⎛
⎝ x

x1

x2

⎞
⎠ =

⎛
⎝0

0
0

⎞
⎠ . (2.383)

The characteristic undamped equation for the eigenvalue problem is
∣∣∣∣∣∣∣
k∗
1 + k∗

2 − ω2(M1 + M2) −k∗
1 −k∗

2

−k∗
1 k∗

1 − ω2m∗
1 0

−k∗
2 0 k∗

2 − ω2m∗
2

∣∣∣∣∣∣∣
= 0, (2.384)

which yields

ω2[(M1 + M2)(k∗
1 − ω2m∗

1)(k
∗
2 − ω2m∗

2)
+ k∗

2m∗
2(k

∗
1 − ω2m∗

1) + k∗
1m∗

1(k
∗
2 − ω2m∗

2)] = 0. (2.385)

Equation (2.385) has one root ω = 0 corresponding to the rigid body motion.
The remaining two roots are given by

(1 − Ω2β2
2)(1 − β2

2) + α1(1 − β2
2)

+ μ(1 − Ω2β2
2)(1 − β2

2) + μα2(1 − Ω2β2
2) = 0, (2.386)
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where Ω = ω2/ω1 and μ = M2/M1. Equation (2.386) has two real roots,
β+ and β−, corresponding to the upper and lower natural frequencies. Ω is
called the tuning parameter. The natural frequencies β2

2 can be obtained as
follows [175]

β2
2 =

1
2
[

−B ±
√

B2 − 4C
]
, (2.387)

where

B =
−(1 + μ + α1)/Ω2 − (1 + μ + μα2)

1 + μ
,

C =
(1 + μ + α1 + μα2)

(1 + μ)Ω2
.

At this point, the development of force limits for the complex two-SDOF
model becomes more involved than for the simple two-SDOF system. It was
shown that the interface force and the interface acceleration peak at the same
system natural frequencies (ω1 = ω2). This condition does not always hold
for the complex two-SDOF system: the maximum interface force may occur
at upper natural frequency while the maximum interface acceleration may
occur at the lower natural frequency. Consequently, the natural frequencies at
which the respective maxima occur, must be identified. The bounding value
of the load dynamic mass will then be the ratio of the larger of the two
interface forces to the larger of the two interface accelerations. This task is
further complicated by the fact that the maximum magnitude of the interface
acceleration is dependent upon how the complex two-SDOF system is excited:

1. A constant free acceleration over the system frequency band applied to
the source modal effective mass m∗

1.
2. A constant blocked force over the system frequency band applied to the

source modal effective mass m∗
1.

3. A constant external force over the system frequency band applied to the
source modal effective mass m∗

1.

Scharton [174] chose an external force Fext that is constant over the system’s
frequency band applied to the source modal effective mass m∗

1. Expressions for
the peak interface acceleration will now be derived based in constant source
excitation.

Thevenin’s theorem (Appendix E) is used to derive an expression relat-
ing the free acceleration to the interface acceleration for the source residual
mass M1. It is convenient to replace the mechanical impedance Z(ω) by the
dynamic mass M(ω) and the free velocity v0(ω) by the free acceleration A0(ω).
Applying Thevenin’s theorem to the residual masses, we find

F0(ω) = A(ω)(M1(ω) + M2(ω)), (2.388)

keeping mind that
F0(ω) = A0(ω)M1(ω), (2.389)
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where A0(ω) is the free acceleration of the source. The blocked force F0(ω)
can be eliminated from (2.388) and (2.389):

A(ω)
A0(ω)

=
M1(ω)

M1(ω) + M2(ω)
. (2.390)

The dynamic mass of (2.381) can be substituted in (2.390), leading to a rather
involved algebraic expression for the ratio of the interface to the free acceler-
ation, which will be simply denoted here as

∣∣∣∣ A(ω)
A0(ω)

∣∣∣∣
2

= D(α1, α2, μ, β1, β2, ζ1, ζ2). (2.391)

The dynamic masses M1(ω) and M2(ω) are given by

M1(ω) = M1

[
1 + α1

ω2
1 + 2jζ1ωω1

−ω2 + ω2
1 + 2jζ1ωω1

]

= M1

[
1 + α1

1 + 2jζ1β1

1 − β2
1 + 2jζ1β1

]
,

(2.392)

M2(ω) = M2

[
1 + α2

ω2
2 + 2jζ2ωω2

−ω2 + ω2
2 + 2jζ2ωω2

]

= M2

[
1 + α2

1 + 2jζ2β2

1 − β2
2 + 2jζ2β2

]
.

The equations of motion (2.377) can be used to derive an expression for
the free acceleration of the source residual mass M1. For an external force
applied at the source modal effective mass m∗

1, (2.377) becomes

m∗
1ẍ1 + c1(ẋ1 − ẋ) + k1(x1 − x) = Fext , (2.393)

where the parameters are shown in Fig. 2.45.
The free acceleration of the source residual mass will be the motion with

the load removed, thus the equation of equilibrium for the residual mass M1

becomes
M1ẍ − c1(ẋ1 − ẋ) − k1(x1 − x) = 0. (2.394)

Adding (2.393) and (2.394) we eliminate the damping and stiffness terms:

Fext(ω) = M1Ẍ(ω) + m∗
1Ẍ1(ω). (2.395)

The acceleration Ẍ(ω) is in fact the free acceleration A0(ω). The acceleration
Ẍ1 can be expressed in terms of Ẍ, and (2.395) can be written as

Fext(ω) =
[
m∗

1

−ω2M1 + 2jζ1ω1ω + ω2
1

2jζ1ω1ω + ω2
1

+ M1

]
Ẍ(ω), (2.396)

or
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Fext(ω)
m∗

1

=
[

1
α1

+
1−β2

1
α1

+ 2jζ1β1

1 + 2jζ1β1

]
Ẍ(ω). (2.397)

Using Ẍ(ω) = A0(ω) we find

∣∣∣∣A0(ω)
Fext (ω)

m∗
1

∣∣∣∣
2

=
β4

1(1 + 4β2
1ζ2

1 )

[(1 − β2
1)(1 − β2

1
α1

) − 1]2 + 4β6
1ζ2

1 (1 + 1
α1

)2

= G(α1, β1, ζ1). (2.398)

The acceleration A0 can be eliminated from (2.391) and (2.398), thus

∣∣∣∣ A(ω)
Fext (ω)

m∗
1

∣∣∣∣
2

= D(α1, α2, μ, β1, β2, ζ1, ζ2)G(α1, β1, ζ1). (2.399)

The external force Fext(ω) will be held constant over the frequency band
of interest, thus (2.399) can be evaluated from (2.386) at the upper and lower
system natural frequencies β+ and β− to yield the ratio of the corresponding
system acceleration peaks

∣∣∣∣A+

A−

∣∣∣∣
2

=
D(α1, α2, μ, β1+, β2+, ζ1, ζ2)G(α1, β1+, ζ1)
D(α1, α2, μ, β1−, β2−, ζ1, ζ2)G(α1, β1−, ζ1)

. (2.400)

The damping ratio of the source and the load are equal, ζ1 = ζ2 = ζ. β1

will be eliminated, and Ω = ω2
ω1

= β1
β2

. We will write (2.400) as

∣∣∣∣A+

A−

∣∣∣∣
2

= H(α1, α2, μ, Ω, β2±, ζ). (2.401)

The purpose of deriving the ratio of the resonant interface accelerations is
to properly identify the locations of the force and accelerations maxima; the
proper “load” dynamic mass will be the ratio of the larger of the two interface
forces to the larger of the two interface accelerations. This is illustrated by
the following equations

F+ = M2+A+ = M2+
A+

A−
A−,

F− = M2−A− = M2−
A−
A+

A+.

(2.402)

Table 2.11 summarizes the possible outcomes of this ratio for all combina-
tions of natural frequency locations of the force and the acceleration maxima,
where the + and the − denote the higher and lower natural frequencies respec-
tively. The last row in Table 2.11 shows the proper force to acceleration ratio
will be the maximum of the load dynamic mass M2(ω) evaluated at either
the higher acceleration peak or the lower acceleration peak scaled by the ratio
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Table 2.11. Possible ratios of the maximum force to maximum acceleration

Position Amax , Fmax A−, F− A−, F+ A+, F− A+, F+

Fmax M2−A− M2+A+ M2−A− M2+A+

Ratio Fmax
Amax

M2− A−
A−

= M2−
M2+A+

A−

M2−A−
A+

M2+A+
A+

= M2+

of the lower to higher acceleration. Symbolically, this logic can be expressed as

if |A+| > |A− | then
|M̄2(β)| = max{ |M2(β+)|, |M2(β−)| | A−

A+
| }

else if |A+| < |A− | then
|M̄2(β)| = max{ |M2(β−)|, |M2(β+)| | A+

A−
| }

end if

M̄2(β) is the scaled apparent or dynamic mass. It is clear that both β± and A±
depend on the tuning parameter Ω. In the simple two-SDOF, the tuning para-
meter Ω = 1 always yields the maximum value for the “load” dynamic mass,
unfortunately, this is not generally true for the complex coupled two-SDOF
system. Consequently, |M̄2(ω)|, in the algorithm above must be maximized
by numerically tuning Ω for all possible combinations of mass, stiffness, and
damping for the complex two-SDOF system. This process is summarized as
follows

1. Start procedure
2. Pick α1 = m∗

1/M1, α2 = m∗
2/M2 and μ = M2/M1

3. Solve characteristic equation for β2± (β2 = ω/ω2)
4. For a given Ω, determine β1± (β1 = ω/ω1)
5. Evaluate the dynamic masses M1(β±), M2(β±)
6. Evaluate |A+/A− |,
7. Determine Fmax from A± and scaled M2(β±)
8. if Fmax ,new < Fmax ,old then

Pick new Ω, goto 4
else
Save Fmax ,new , goto 2
end if

9. End of procedure

The relation between interface force PSD and interface acceleration PSD
is given by (2.366). The magnitude squared of the load dynamic mass M2(ω)
is given by (2.382). We can calculate the normalized force limit PSD WFF (f)
normalized by the “load” mass M2 and acceleration PSD WAA(f):

WFF (f)
M2

2 WAA(f)
.

Analysis results of the maximum normalized interface force PSD are discussed
and reported in [175]. The results are shown in Table 2.12. Ω2 is varied in
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Table 2.12. Maximum force spectral density WF F (f)

M2
2 WAA(f)

, for Q = 20, normalized

by load residual mass squared and acceleration spectral density

μ

α1 α2 0.001 0.003 0.01 0.03 0.1 0.3 1 3 10

8.0 8.0 932 933 936 948 1001 1180 1240 1234 1238
8.0 4.0 233 233 233 235 239 256 294 265 250
8.0 2.0 58 58 58 58 59 60 68 73 68
8.0 1.0 15 15 15 15 15 15 17 23 22
8.0 0.5 4 4 4 4 4 4 4 7 6
8.0 0.25 1 1 1 1 1 1 1 2 5
8.0 0.125 1 1 1 1 1 1 1 1 3

4.0 8.0 871 867 858 849 904 1042 1067 1110 1229
4.0 4.0 218 218 217 216 220 250 254 250 252
4.0 2.0 55 55 55 55 56 61 72 68 67
4.0 1.0 14 14 14 14 14 16 21 23 22
4.0 0.5 3 3 4 4 4 4 6 10 10
4.0 0.25 1 1 1 1 1 1 2 5 5
4.0 0.125 1 1 1 1 1 1 1 3 3

2.0 8.0 1586 1478 1260 1061 990 946 982 1099 1201
2.0 4.0 406 391 355 305 272 259 238 236 254
2.0 2.0 103 101 97 88 79 82 70 63 62
2.0 1.0 26 26 26 25 24 25 25 23 22
2.0 0.5 7 7 7 7 7 9 10 10 10
2.0 0.25 2 2 2 2 2 3 5 5 6
2.0 0.125 1 1 1 1 1 1 3 3 4

1.0 8.0 11 041 5731 2714 1486 967 901 984 1095 1181
1.0 4.0 3869 2206 1105 567 332 247 233 238 248
1.0 2.0 1228 826 432 226 125 83 71 66 64
1.0 1.0 359 283 166 100 50 34 26 23 23
1.0 0.5 100 89 63 42 24 15 12 11 11
1.0 0.25 28 27 23 17 11 8 6 6 6
1.0 0.125 8 8 8 7 5 5 4 4 4

0.5 8.0 13 889 7720 3501 1726 1023 880 974 1093 1171
0.5 4.0 4516 2895 1417 695 357 247 225 240 244
0.5 2.0 1346 1003 561 283 136 89 70 64 65
0.5 1.0 377 319 211 117 59 39 27 24 22
0.5 0.5 102 95 74 48 27 17 12 11 10
0.5 0.25 28 27 25 19 13 8 7 6 6
0.5 0.125 8 8 8 8 6 5 4 4 4

0.25 8.0 17 378 9978 4092 1944 1017 833 936 1092 1166
0.25 4.0 5194 3725 1805 812 380 249 225 241 242
0.25 2.0 1455 1205 741 359 173 93 71 66 65
0.25 1.0 391 354 269 160 74 43 28 23 22
0.25 0.5 103 99 86 63 38 22 14 12 11
0.25 0.25 28 28 27 23 16 10 8 7 7
0.25 0.125 8 8 8 8 7 5 5 4 4



2.8 Force-Limit Prediction Methods 127

steps of 1/16 from 8/16 to 32/16. In general, the relationship between the
normalized force PSD WFF (f) and its controlling input parameters is more
complicated for the complex two-SDOF system model than for the simple two-
SDOF model. At smaller values of μ, the complex two-SDOF model predicted
force limits are larger for α1 = α2 = 1 and smaller at α1 = α2 = 0.25 than are
their simple two-SDOF counterparts. At larger values for μ, the complex two-
SDOF model predicted force limits are larger than their simple two-SDOF
model counterparts.

In the limiting case of the load modal effective mass equal to zero, that is
α2 = 0, the normalized force PSD reduces to 1.

In practice, the modal effective mass and residual mass for both the source
and the load must be known as a function of frequency to implement the above
force limits.

Selection Modal Effective Mass and Residual Mass

The ratio between the interface load F (ω) and the enforced acceleration Ü(ω)
is apparent mass, and can be described using the asparagus patch model
(Appendix D) as follows, [39]

F (ω)
Ü(ω)

=

Lower modes︷ ︸︸ ︷
ν−1∑
i=1

Meff ,iH

(
ωi

ω

)
+

Flexible mode︷ ︸︸ ︷
Meff ,νH

(
ων

ω

)
+

Higher modes︷ ︸︸ ︷
∞∑

i=ν+1

Meff ,iH

(
ωi

ω

)
, (2.403)

where the frequency transfer function H(ωi

ω ) is

H

(
ωi

ω

)
=

(ωi

ω )2 + 2jζi(ωi

ω )
(ωi

ω )2 − 1 + 2jζi(ωi

ω )
,

and Meff ,i is the modal effective mass, ωi is the natural frequency, correspond-
ing with mode i, and ω is the circular frequency.

We can make the following observations from (2.403):

• For lower modes, ωi

ω tends to zero because the excitation frequency is
higher than the natural frequencies of the modes. This means that the
transfer function H tends to zero, and so does the contribution of the
lower modes to the interface force.

• For higher modes, ωi

ω tends to infinity and the transfer function H tends
to one. Therefore, the higher modes tend to behave like a rigid body.

• For a mode with a natural frequency near the excitation frequency
(ωi

ω ≈ 1), the contribution depends on the amplification factor Q = 1/2ζ
as the function H tends to 1 − jQ (or the modulus is very close to Q).
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The complex two-SDOF method used the trends of the transfer function
H to derive the approximation. It assumes that the lower modes do not con-
tribute and that the higher modes behave like a rigid body. The approxi-
mations of modal effective mass and the residual mass become m∗ = Meff ,ν

and M = M0 −
∑ν

i=1 Meff ,i. The approximation is good for low- and high-
frequency ratio ωi

ω . However, as the frequency ratio approaches unity, the
approximation becomes less accurate. That is why when a mode has its nat-
ural frequency in the frequency band of interest, no approximation is made
and the mode is considered fully.

A step by step procedure is given to determine the interface force specifi-
cation [39]:

1. Divide the frequency spectrum into frequency bands (usually one-third
octave band)

2. Select the next frequency band
3. Create a simple model of the Source
4. Create a simple model of the Load
5. Couple both models
6. Excite the coupled model and get the worst case ratio of the interface

force to the interface acceleration
7. Multiply the interface force/acceleration ratio by the specified accelera-

tion, in relevant frequency band, to obtain the interface force specification
8. Are all frequency band covered, if not go to step 2
9. The complete interface force specification has been obtained

Example. For simplicity, the mathematical models of “source” and “load”
are similar and illustrated in Fig. 2.46. The complex two-SDOF models will
be generated in the octave band. Calculate the bandwidth Δf , the upper
band fmax and lower band frequency fmin . Both the “source” and “load” are
fixed in m1. The characteristics of both are shown in Table 2.13. The dynamic
properties of the “source” and the “load” are given Tables 2.14 and 2.15.

The generated complex two-SDOF models are presented in Table 2.16. In
the 63 Hz octave band the modal effective mass of the source is m∗

1 = 0,
however, the residual mass of the source is M1 = 285.26 kg, the same as for
the 31.5 Hz frequency band. The source acts like a rigid body. In the 250 Hz
octave band the load is partly present, because m∗

2 = 0 and M2 = 50 kg.

Fig. 2.46. Source/load
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Table 2.13. Properties “source” and “load”

Mass (kg) Source Load Stiffness (N/m) Source Load

m1 200 50 k1 108 107

m2 200 50 k2 108 107

m3 200 50 k3 108 107

m4 200 50 k4 108 107

m5 200 50

Table 2.14. Dynamic properties “source”

Natural Modal Residual mass α1

frequency (Hz) effective mass (kg) (kg)

f1 39.08 m∗
1 714.74 M1 285.26 2.51

f2 112.54 m∗
1 66.67 M1 218.59 0.31

f3 172.42 m∗
1 15.65 M1 202.94 0.07

f4 211.51 m∗
1 2.94 M1 200.00 0.01

Table 2.15. Dynamic properties “load”

Natural Modal Residual mass α2

frequency (Hz) effective mass (kg) (kg)

f1 24.72 m∗
2 178.69 M2 71.31 2.51

f2 71.18 m∗
2 16.67 M2 54.64 0.31

f3 109.05 m∗
2 3.91 M2 50.73 0.07

f4 133.77 m∗
2 0.74 M2 50.00 0.01

Table 2.16. Complex two-SDOF models

Octave band Source Load α1 α2 μ
Hz

31.5 f1 f1 2.51 2.51 0.25
63 f2 0.00 0.31 0.19

125 f2 f3 0.31 0.07 0.23
f2 f4 0.31 0.01 0.23
f3 f3 0.07 0.07 0.25
f3 f4 0.07 0.01 0.25

250 f4 0.01 0.00 0.25

2.8.4 Semi-Empirical Method

The semi-empirical force-limit approach is a method to establish force-limits
based on the extrapolation of interface force data for similar mounting struc-
tures, [135].

WFF (f) = C2M2Waa(f) f ≤ f0,

WFF (f) = C2M2Waa(f)
(

f0

f

)2

f > f0,
(2.404)
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Fig. 2.47. Enforced acceleration of a damped SDOF system

where WFF (f) is the force spectral density, Waa(f) is the acceleration spectral
density, M is the total mass of the test item and C is a dimensionless constant
which depends on the configuration. f (Hz) is the frequency and f0 is the
frequency of the primary mode with a significant modal effective mass. In [190]
some recommendation for C2 are given, however, based on limited number of
flight data. It has been observed that in normal conditions C2 = 2 might be
chosen for complete spacecraft or strut mounted heavier equipment. C2 = 5
might be considered for directly mounted lightweight test items.

Example. The base excited SDOF system is shown in Fig. 2.47. The reaction
force F (ω) at the base caused by the enforced acceleration is given by

F (ω) = mẌ(ω) = m

(
ω2

0 + 2jζω0ω

ω2
0 − ω2 + 2jζω0ω

)
Ü(ω)

= m

( 1 + 2jζ ω
ω0

1 − ω2

ω2
0

+ 2jζ ω
ω0

)
Ü(ω)

= m

( 1 + 2jζ f
f0

1 − f2

f2
0

+ 2jζ f
f0

)
Ü(2πf),

where ω0 =
√

k/m, f0 = 1
2π

√
k/m, ζ = c/2

√
km. The excitation and the re-

sponses are in the frequency domain. The PSD of the reaction force WFF (f)
will be represented in the cyclic frequency domain and expressed in the prop-
erties of the SDOF system and the PSD of the enforced acceleration Wüü(f).
The normalized force becomes

WFF (f)
m2Wüü(f)

=

∣∣∣∣∣
1 + 2jζ f

f0

1 − f2

f2
0

+ 2jζ f
f0

∣∣∣∣∣
2

=
1 + (2ζ f

f0
)2

(1 − f2

f2
0
)2 + (2ζ f

f0
)2

.

The semi-empirical equations to define the force limiting have already been
given by (2.404)
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Table 2.17. Random vibration acceleration loads

Frequency (Hz) Acceleration power spectral density Wüü(f) (g2/Hz)

20–50 3 dB/oct.
50 0.05
300 0.05
300–2000 −3 dB/oct.

Overall 6.48 Grms

WFF (f)
m2Wüü(f)

= C2 f ≤ f0,

WFF (f)
m2Wüü(f)

= C2

(
f0

f

)2

f > f0.

We take the following values for the parameters are assumed:

• ζ = 0.05,
• f0 = 150 Hz,

• m = 25 kg,
• g = 9.81 m/s2,
• C2 = 5.

The PSD of the enforced acceleration is defined in Table 2.17.
The objective of the calculations is to obtain the notch-curve. The notch-

curve will be applied to the PSD of the enforced acceleration Wüü(f) in such a
way that the specification of the force limiting will be met. In that framework
the following calculations and visualizations (Fig. 2.48) are carried out:

• Visualization of the PSD of the enforced acceleration Wüü(f).
• Calculation and visualization of the PSD of the force limited interface

force. Maximum PSD interface force is 15 036 N2/Hz.
• Calculation and visualization of the PSD of the dynamic interface force.

Maximum PSD dynamic interface force is 303 484 N2/Hz.
• Calculation and visualization of the notch curve. Depth of the notch (notch

curve) is 0.0495 at f = 150 Hz. The minimum PSD of the notched enforced
acceleration is 0.0495 × 0.05 = 0.0000257 g2/Hz.

Problems

2.25. For a simple 2DOF system (Fig. 2.40), the ratio of the interface force
spectrum WFF (f) to the interface acceleration spectrum Waa(f) (a = ẍ1)
given by [174]

WFF (f)
m2

2Waa(f)
=

1 + 4ζ2
2 ( f

f2
)2

{1 − ( f
f2

)2}2 + 4ζ2
2 ( f

f2
)2

,
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Fig. 2.48. Calculation of notch curve

Table 2.18. Random vibration acceleration loads

Frequency (Hz) Acceleration spectral density Waa(f) (g2/Hz)

20 0.0104
? dB/oct.

50 0.0637
800 0.0637

? dB/oct.
2000 0.0104

Overall ? Grms

where ζ2 = c2
2

√
k2m2

, f2 = 1
2π

√
k2
m2

and m2 is the mass of the load. Prove this
relation. Hint: think about the expression for the modal effective mass of a
base excited SDOF system.

2.26. The qualification random accelerations are specified in Table 2.18. Cal-
culate the slopes between 20–50 Hz, 800–2000 Hz and the Grms value of
the spectrum. The test item placed on the shaker table has a mass M =
50 kg, and during the low level sine sweep test the first significant resonance
frequency measured is f0 = 125 Hz. Establish the force-limit specification
WFF (f) (N2/Hz), between 20–2000 Hz, for that test item, by applying the
following relations:
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Fig. 2.49. Force limits

WFF (f) = C2M2Waa(f) f ≤ f0,

WFF (f) = C2M2Waa(f)
(

f0

f

)2

f > f0,

where C = 2 and Waa(f) must be converted into (m/s2)2/Hz (g = 9.81 m/s2).
Answers: ±5.95 dB/oct., 8.9 Grms , Fig. 2.49.

2.27. This problem is based on information given in [97]. The KOMPSAT-
II earth observation satellite of 800 kg has a Multi-Spectral Camera (MSC)
as a main payload (P/L). The MSC has a mass of 76.7 kg. The force limit
specification was established by applying the simple 2DOF model in Fig. 2.44
(Q = 5). The lateral modal effective masses for the source m1 and the load
m2 are calculated by the finite element method. The results of the calculation
are presented in Table 2.10. The semi-empirical force-limit method will be
applied to establish the force limit specification (2.404). Define the following
parameters f0 and C2 (Q = 10).
Answers: 250 Hz, 1.1.

2.9 Analysis of Narrow-Band Processes

In this section some interesting properties of narrow-band stationary random
processes will be discussed:
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Fig. 2.50. The relationship between spectrum of input and spectrum of output

• Number of crossings per unit of time through a certain level [13]
• Fatigue damage due to random loads.

Besides the rms value of the response of deterministic structures exposed
to random forces, these properties are important for further investigation of
strength characteristics.

Narrow band responses represent the filtered response of a few modes,
sometimes only one dominant mode. This illustrated in Fig. 2.50. The system
shows dominant response characteristics at one natural frequency f0, which
means the FRF H(jω) peaks around that natural frequency. The systems acts
like a filter and lets pass only responses around the natural frequency f0 pass;
the response is called narrow banded.

2.9.1 Crossings

Consider the event that is a stationary process x(t) crosses the level α from
below with a certain positive velocity ẋ(t) = v(t). This is called a crossing
with a positive slope. This is illustrated in Fig. 2.51.

Nα(τ) is the number of expected crossings for a time period of τ . The
random process x(t) is stationary, so the number of expected crossings does
not depend on the time at which the process starts. The sum of the number
of crossings at level α (with positive and negative velocity) will be a linear
function of time, hence

Nα(τ1 + τ2) = Nα(τ1) + Nα(τ2). (2.405)
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Fig. 2.51. Positive crossings

The number ν+
α of positive crossings per unit of time, that the signal x(t)

will cross the level α with a positive slope (positive velocity), is defined by

N+
α (τ) = ν+

α τ. (2.406)

The joint probability that the values x(t) and v(t) are between certain
values, for all times t, is defined as

f(α, β)dαdβ = Prob(α ≤ x(t) ≤ α + dα, β ≤ v(t) ≤ β + dβ). (2.407)

The cumulative joint probability is defined by

F (α + dα, β + dβ) − F (α, β) =
∫ α+dα

α

∫ β+dβ

β

f(x, ẋ)dxdẋ, (2.408)

or

F (α + dα, β + dβ) − F (α, β) =
∂2F (α, β)

∂α∂β
dαdβ = f(α, β)dαdβ, (2.409)

where f(α, β) is the joint probability density function and F (α, β) the cumu-
lative joint probability function.

Equations (2.407), (2.408) and (2.409) define the time dτ the signal x(t)
is in the interval [α, α + dα] with a velocity ẋ(t) = v(t) ≈ β.

The number ν+
α of expected positive crossings per unit of time through

the interval [α, α + dα] with a velocity v(t) = β is estimated by dividing the
amount of time spent inside this interval by the time required to pass this
interval. The time dτ to pass (up or down) the interval [α, α + dα] is

dτ =
dα

|β| . (2.410)

The amount of time the signal x(t) is in the interval [α, α + dα] with a
velocity in the interval [β, β + dβ] is f(α, β)dαdβ. The expected number of
crossings (up and down) vα(β) per unit of time through the level α with the
velocity v(t) = |β| is

f(α, β)dαdβ

dτ
= |β|f(α, β)dβ. (2.411)
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The expected number of crossings (up and down) να per unit of time through
level α with all possible velocities is

vα =
∫ ∞

− ∞
|β|f(α, β)dβ. (2.412)

If we assume the velocity vα(β) ≥ 0, then the expected number of positive
zero crossings ν+

α is (2.412)

v+
α =

1
2

∫ ∞

− ∞
βf(α, β)dβ. (2.413)

The Gaussian distribution can be used in (2.407), i.e. the joint probability
density function is

f(x, ẋ) =
1

2πσxσẋ
e
(− x2

2σ2
x

− ẋ2

2σ2
ẋ

)
. (2.414)

Substituting (2.414) in (2.413), and performing the integration, we find

v+
α =

1
2

∫ ∞

− ∞
β

1
2πσασβ

e
(− α2

2σ2
α

− β2

2σ2
β

)

dβ =
σβ

2πσα
e

− α2

2σ2
α , (2.415)

with

• σ2
x = σ2

α = E{x2(t)} − (E{x(t)})2 = E{x2(t)} =
∫ ∞
0

Wx(f)df
• σ2

ẋ = σ2
β = E{ẋ2(t)} − (E{ẋ(t)})2 = E{ẋ2(t)} =

∫ ∞
0

(2πf)2Wx(f)df

In general, we take zero mean values for both the x(t) and ẋ(t). The process
x(t) may be any kind of response in the structure due to random loads, i.e.
internal forces, stresses, etc.

The number of zero positive crossings (zero up crossings, apparent fre-
quency, characteristic frequency) ν+

0 can be obtained from (2.415) with
x(t) = 0 and the spectral moments (2.53)

v+
0 =

σẋ

2πσx
=
√

m2

m0
=

√∫ ∞
0

f2Wx(f)df∫ ∞
0

Wx(f)df
. (2.416)

Equation (2.415) can also be written as

v+
α =

σẋ

2πσx
e

− α2

2σ2
x = v+

0 e
− α2

2σ2
x . (2.417)

The probability density function f(x) = e
− x2

2σ2
x is a Rayleigh distribution.

Example. For a SDOF system as shown in Fig. 2.14 the variance of the
relative displacement z(t) = x(t) − u(t) given by σz and that of the relative
velocity σż had been obtained in (2.138) and (2.139). The mean square of the
relative displacement z(t) is given by
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E
{
z(t)2

}
= σ2

z =
Wü

8ζ(2πfn)3
.

The mean square of the relative velocity ż(t) is given by

E
{
ż(t)2

}
= σ2

ż =
Wü

8ζ(2πfn)
.

Again we assume zero average values.
With the aid of (2.416) the number of positive zero crossings per unit of

time (frequency) ν+
0 (Hz) can be obtained:

ν+
0 =

σẋ

2πσx
=

1
2π

√√√√ Wü

8ζ(2πfn)

Wü

8ζ(2πfn)3

= fn.

The number of positive zero crossings ν+
0 is equal to the natural frequency fn

of the SDOF system, as illustrated in Fig. 2.14.

The following example is illustrated in Fig. 2.19.

Example. Calculate the number of positive zero crossings of the acceleration
of the dofs x1, x2 and x3 and the spring force in the springs k1, k2 and k3.

The natural frequencies calculated were

{fn} =

⎧⎨
⎩

69.5745
153.7834
238.3038

⎫⎬
⎭ Hz.

The positive zero crossings {ν+
0 } of the acceleration of the dofs x1, x2 and

x3 become

{ν+
0 } =

⎧⎨
⎩

92.2923
130.5300
173.9503

⎫⎬
⎭ Hz,

and for the positive zero crossings {ν+
0 } of the spring force of the springs k1,

k2 and k3 we get

{ν+
0 } =

⎧⎨
⎩

92.4567
79.3611
81.3201

⎫⎬
⎭ Hz.

The zero positive crossings of the spring forces are of the same order, however,
the zero positive crossings of the acceleration show a deviation of a factor
for two. The integration to obtain the positive zero crossings is done by the
trapezoidal rule with a frequency increment Δf = 0.2 Hz.
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2.9.2 Peaks

Consider a stationary Gaussian process, x(t), having a zero mean μx = 0 and
a standard deviation σx. The p.d.f of its peaks (including both positive and
negative maxima) at any time instant is given by [59, 114]

fp(η) =
λ

σx

√
2π

e
− η2

2λ2σ2
x +

η
√

1 − λ2

σ2
x

Φ

(
η

√
1 − λ2

λσx

)
e

− η2

2σ2
x , −∞ < η < ∞,

(2.418)
where

• Φ(u) = erf(u) = 1√
2π

∫ u

− ∞ e− x2
2 dx. A numerical approximate method to

calculate erf(u) is given in Appendix B
• mn is the n-th moment of a one-sided PSD function mn =

∫ ∞
0

fnWs(f)df

• γ = m2
2

m0m4

• λ is the spectral width parameter, λ =
√

1 − γ2

The cumulative probability function (c.p.f.) Fp(η) of the peaks correspond-
ing to (2.418) can be derived in closed form:

Fp(η) = Φ

(
η

λσx

)
−
√

1 − λ2Φ

(
η

√
1 − λ2

λσx

)
e

− 2η2

2σ2
x . (2.419)

For a narrow band random process λ → 0, and the c.p.f. reduces to a
Rayleigh density (distribution) function

Fp(η) = 1 − e
− η2

2σ2
x , (2.420)

and for a very wide random process λ → 1 the c.d.f. reduces to a Gaussian
density function

Fp(η) = Φ

(
η

σx

)
. (2.421)

For a sequence of random variables η1, η2, . . . , ηN representing peaks, which
are assumed to be uniformly distributed and statistically independent, the
c.p.f. of the largest peak becomes

Fpmax (η) = P [max(η1, η2, . . . , ηN ) ≤ η] = [Fp(η)]N , (2.422)

where max is added to P to denote that it is the maximum peak in a sequence
of N peaks.

The c.p.f. of the maximum of a zero mean stationary Gaussian narrow
band random process with a given time interval T is approximated by

Fpmax (η) = e{ −ν+
0 T [e

− η2

2σ2
x ]}. (2.423)
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Fig. 2.52. Peak distribution

The corresponding mean value η̄max and the standard deviation σηmax of the
peaks were found to be

η̄max

σx
=
√

2 ln(ν+
0 T ) +

ε√
2 ln(ν+

0 T )
, (2.424)

and
σηmax

σx
=

π√
6

1√
2 ln(ν+

0 T )
, (2.425)

where the rate of positive zero crossings is ν+
0 =

√
m2
m0

, and the Euler con-

stant19 is ε = 0.577216. Equations (2.424) and (2.425) are illustrated in
Fig. 2.52. The number of cycles is N = ν+

0 T .
It is well known that the expected number of positive zero crossings is very

close to the expected number of peaks per unit of time for a narrow band
process. If the parameter λ of a process become larger and larger, the results
of (2.424) and (2.425) become less accurate. The following approximation can
be used

η̄max

σx
=
∫ 0

− ∞
[Fp(η)]Ndη +

∫ ∞

0

[1 − Fp(η)]Ndη, (2.426)

where 1 − Fp(η) can be approximated as follows

19 The Euler constant ε is given by ε = limn→∞[
∑n

k=1
1
k

− ln(n + 1)] = 0.577216,
[53].
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1 − Fp(η) ≈
√

1 − λ2e
− η2

2σ2
x +

[
σ3

x

η3
e

− η2

2λ2σ2
x

]
. (2.427)

The mean number of up-crossings ηmean is given by [47]

ηmean = ν+
0 T

√
1 − λ2, (2.428)

where the spectral width factor is λ =
√

1 − γ2, and the irregularity factor is
γ = m2

2
m0m4

, and the spectral moments are mi =
∫

ωiS(ω)dω.

2.9.3 Fatigue Damage due to Random Loads

There are quite a number of failure modes, one of them is the failure of
a structure due to fatigue behavior of materials. Fatigue appears when the
structure is exposed to oscillating loads (stresses). The material will crack
and failure occurs. Fatigue damage is caused by micro plastic deformations
(strains) that will damage the structure of the material locally and accumulate
to micro cracks and ultimately to failure of the structure.

With the Palmgren-Miner rule, one is able to predict the fatigue life of
a structure or part of the structure caused by cumulative damage when the
structure is exposed to oscillating loads or stresses.

At a certain stress level si (for random vibration the one-sigma value of the
stress) one can take the allowable number of oscillations Ni from a so-called
s-N curve. In general, the relation between the stress level and the allowable
number of oscillations, the s-N , or Wöehler fatigue curve, is

N(s)sb = a, (2.429)

where a and b are constants.
In the model of cumulative damage, as formulated by Palmgren and Miner,

the Palmgren-Miner damage function D(t) is

D(t) =
N(t)∑
i=1

ΔDi. (2.430)

The damage function D(t) is a nondecreasing function of time that starts at
zero for a new structure and is normalized to unity when failure occur, the
instant of time tfailure at which D(tfailure) = 1.

The Palmgren-Miner rule can be formulated as follows: if the i-th cycle
occurs at the stress level si at which, in accordance with the s-N curve, Ni

causes failure, then the i-th increment of damage is

ΔDi =
1
Ni

. (2.431)

Grouping the cycles of approximately equal amplitude together, we find a
situation in which ni cycles at the stress level si can be identified. Then each
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one of the groups i will produce ni

Ni
incremental damage. The failure condition

becomes
D =

∑
i

ni

Ni
= 1. (2.432)

Nothing is stated about the sequence of the stress levels. The number of
positive crossings at the level x(t) = α is given by (2.417)

v+
α =

σẋ

2πσx
e

− α2

2σ2
x = v+

0 e
− α2

2σ2
x .

With (2.417) it is possible to calculate the number of peaks np(α) per unit of
time of x(t) in the range α ≤ x(t) ≤ α + dα:

np(α)dα = ν+
α − ν+

α+dα ≈ − dν+
α

dα
dα, (2.433)

thus the Rayleigh distribution of peaks is given by

fp(α) =
np(α)
v+
0

=
α

σ2
x

e
− α2

2σ2
x , α ≥ 0. (2.434)

If one mode is dominant in the responses, the number of peaks np(α) is about
the same as the number of positive zero crossings np(α) ≈ ν+

0 . The total num-
ber of peaks during the time period T is given by np(α)T . Substitute (2.434)
into (2.432) and replace summation by integration. The expectation of the
failure E{D(T )} becomes

E{D(T )} =
∑

i

ni

Ni
= T

∫ ∞

0

np(α)
N(α)

dα. (2.435)

Substituting (2.429), we find the number of allowable oscillations at stress
level s = α is

N(α) = aα−b. (2.436)

If both equations (2.434) and (2.436) are substituted into (2.435) we get

E{D(T )} = T

∫ ∞

0

np(α)
N(α)

dα =
ν+
0 T

aσ2
x

∫ ∞

0

αb+1e
− α2

2σ2
x dα

=
ν+
0 T

a

(√
2σx

)b
Γ

(
1 +

b

2

)
. (2.437)

Equation (2.437) was derived by Miles [127] and is called Miles single degree
of freedom formula. The standard deviation of the occurring stress is denoted
by σx = σs.

If failure occurs at time T , so that E{D(T )} = 1, the time to failure can
be calculated:

T =
a

ν+
0 (

√
2σx)bΓ (1 + b

2 )
, (2.438)
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Table 2.19. Some values Γ (x) function

x Γ (x) x Γ (x)

1.0 1.000 3.5 3.323
1.5 0.886 4.0 6.000
2.0 1.000 4.5 11.632
2.5 1.329 5.0 24.000
3.0 2.000 5.5 52.343

Table 2.20. Value of ψ1(b) as a function of the fatigue law exponent b [43, 202]

b 1 3 5 7

ψ1(b) 0.0414 0.369 1.280 3.72
b 9 11 13 15
ψ1(b) 10.7 31.5 96.7 308

where the Gamma function Γ (z) is defined by [3]

Γ (z) =
∫ ∞

0

tz−1e−tdt.

Some values of the Gamma function are given in Table 2.19.
The expression for the standard deviation σD(t) is given in [43, 202]

σD(t)

E{D(T )} ≈ 1√
ν+
0 T

√
ψ1(b)

ζ
, (2.439)

where ψ1(b) is a function of b that is tabulated in Table 2.20, and ζ is the
damping ratio of the structure.

The standard deviation σT of the fatigue life is derived by [202]

σT =
h2

√
h2

2 + 4h1

6h2
1

, (2.440)

where

h1 = ν+
0

(
√

2σx)b

a
Γ

(
b

2
+ 1

)
,

h2 =
3(

√
2σx)b

a
Γ

(
b

2
+ 1

)√
ν+
0

ψ1(b)
ζ

.

(2.441)

Example. Given an s-N curve

N(s)sb = a,

where
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• a = 1.56 × 1039

• b = 4.

The natural frequency of a SDOF system is fn = 100 Hz, the mass m =
100 kg and the damping ratio is ζ = 0.05. The cross section of the spring
is A = 10−4 m2. In the frequency range from 50–500 Hz the PSD of the
base excitation is Wü = 0.1 g2/Hz. Predict the fatigue life of the spring
using the Palgren-Miner cumulative damage rule. The spring constant k is
k = (2πfn)2m = (2π100)2 × 100 = 3.948 × 107 N/m. The rms value of
displacement x(t) is about

xrms =

√
Wü(fn)

8ζ(2πfn)2
=

√
0.1 · 9.812

8 × 0.05 × (2π100)3
= 7.958 × 10−3.

The rms stress in the spring is

srms =
kzrms

A
=

3.948 × 107 × 2.469 × 10−3

10−4
= 3.142 × 108 Pa.

The number of positive zero crossings ν+
0 = fn = 100 Hz. The time to failure

T , the fatigue lifetime, is

T =
a

ν+
0 (

√
2σx)bΓ (1 + b

2 )
=

1.56 × 1039

100 × (
√

2 × 3.142 × 108)4Γ (3)
= 200 s.

In general, the predicted fatigue life T can be expressed as (2.435)

T =
1

E{D(T )}
∫ ∞
0

np(α)
N(α) dα

=
a

E{D(T )}
∫ ∞
0

np(α)αbdα
. (2.442)

In (2.442) we can use a probability density function np(α) of peaks, other
than Rayleigh one, may be substituted.

Problems

2.28. To survive the launch loads a solar array sandwich panel is supported
at 6 hold down points, in particular the steady state accelerations and the
acoustic sound pressure. A circular reinforcement (insert) is built in the sand-
wich panel to transfer the shear loads to the spacecraft at the location of the
hold down points. The insert is bonded to an Al-alloy honeycomb core with
an allowable shear stress τallowable = 2.3 × 105 Pa. The measured s-N curve
Nsb = a is Ns5.967 = 1.385 × 1034. The predicted average rms shear stress
τrms along the circumference of the insert due to the acoustic sound pressures
is τrms = 5.0 × 104 Pa. The number of associated positive zero crossings is
ν+
0 = 130 Hz.
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• Predict the fatigue life of the bonded insert/honeycomb core construction.
• Use the 3σ approach to calculate the margin of safety (MS) against the

allowable shear stress of the honeycomb core.

Answers: T = 617 s, MS = 0.53.

2.29. The output PSD function W0 of a response is constant in a frequency
band f ∈ [f1, f2] and zero otherwise.

• Calculate the number of positive zero crossings ν+
0 .

• Calculate the number of positive zero crossings ν+
0 if f2 = f1 + ΔF ,

Δf
f1


 1.

Answers:
√

1
3 (f3

2 −f3
1 )

f2−f1
, f1.

2.30. This problem is taken from [14].
Assume a record x(t) from an ergodic random process has a one-sided PSD

function given by

Wxx(f) =
1

20 + f2
5 ≤ f ≤ 30 otherwise zero.

Define the average number of positive zero crossings ν+
0 per second in the

record x(t).
Answer: ν+

0 = 13.122 Hz.

2.31. x(t) is a stationary random variable in time with properties shown in
Fig. 2.53. Estimate the mean value of peaks ηmax of x(t) and the standard
deviation of peaks σmax of x(t) within a time interval T = 3600 s.
Answers: ηmax = 3.3915 m, σmax = 0.2301 m.

2.32. A Sea-launch platform is exposed to a storm with waves of standard
deviation, σ = 2.5 m and an average wave period T̄0 = 10 s. Design a platform
height h, so that the deck is flooded only once per T̄h = 15 minutes. The
diffraction of the waves a neglected, thus the incoming waves are not affected
by the presence of the platform.

Fig. 2.53. Properties random process x(t)
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• Calculate the number of positive zero crossings ν+
0 .

• Calculate the number of positive crossing at h, ν+
h .

• Calculate h.

Answers: ν+
0 = 1

10 Hz, ν+
h = 1

900 Hz, h = 7.50 m.

2.33. A 3 mass-spring dynamic system, as shown in Fig. 2.54, is excited at
the base with a constant band limited random enforced acceleration Wü =
0.05 g2/Hz in a frequency range f ∈ [5, 750] Hz. The discrete masses are
m1 = 150 kg, m2 = 200 kg and m3 = 250 kg. The spring stiffnesses of the
springs are k1 = 108 N/m, k2 = 2 × 108 N/m and k3 = 3 × 108 N/m. The
modal damping ratio for each mode is ζ = 0.025 (the amplification factor,
the transmissibility Q = 20). Calculate the rms values (diagonal terms) of the
accelerations {ẍ}, the rms values (diagonal terms) of the internal loads and
associated positive zero crossings.
Answers with δf = 0.2 Hz:

{ẍrms } =

⎧⎨
⎩

17.3652
12.3362
8.9667

⎫⎬
⎭ g.

{Fii,rms } = 104

⎧⎨
⎩

2.5542
4.2544
5.5106

⎫⎬
⎭ N.

{ν+
0 } =

⎧⎨
⎩

106.4830
89.5507
91.8656

⎫⎬
⎭ Hz.

Fig. 2.54. 3 mass-spring system, enforced acceleration
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2.34. This problem is taken from [202]. The bending stress response at the
critical point of a structural element under random vibration turns out to be
a stationary narrow-band process with a resonant frequency of 25 Hz and a
rms value σS = 5.4 × 103 psi20 (σS = 3.72 × 107 Pa). This element is made of
75S-T6 Al-alloy whose s-N curve is given by

N(s)s6.09 = (2 × 105)6.09,

where b = 6.09 and a = (2 × 105)6.09. The damping ratio of this element is
ζ = 0.01. Determine the mean and standard deviation of fatigue life, T and
σD(t) respectively, for this structural element.
Answer: T = 757.35 hr, σD(t) = 1.39 hr.

2.10 Wide-Band Fatigue Damage

In this section the fatigue life prediction is based on [12, 50, 109]. Dirlik devel-
oped an empirical closed form expression for the p.d.f. of rainflow amplitude
fs(s), based on extensive Monte Carlo simulations of the stress amplitude.
Dirlik’s solutions were successfully verified in theory. Dirlik’s damage model
for a time period T is as follows

E{D(T )} =
νpT

a

∫ ∞

0

sbfs(s)ds, (2.443)

where the s-N curve is given by Nsb = a and the p.d.f. of the stress amplitudes
fs(s) is given by Dirlik and is approximated as a sum of one Exponential and
two Rayleigh densities

fs(s) =
D1

Q
√

m0
e− Z

Q +
D2Z

R2
√

m0
e− Z2

2R2 +
D3Z√

m0
e− Z2

2 , (2.444)

where

• mn is the n-th moment of a one-sided PSD function mn =
∫ ∞
0

fnWs(f)df

• νp is the expected rate of peaks νp =
√

m4
m2

• γ is the irregularity factor γ = ν+
0

vp
=
√

m2
2

m0m4

• λ is the spectral width parameter , λ =
√

1 − γ2, and is introduced to
classify whether the random process is narrow-banded or wide-banded.
If γ → 1 the random process is narrow-banded (NB) and if γ → 0 the
random process is broad-banded (BB).

• Z = s√
m0

• Xm = m1
m0

√
m2
m4

20 1 psi = 6894.75729 Pa.
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• D1 = 2(Xm −γ2)
1+γ2

• R = γ−Xm −D2
1

1−γ−D1+D2
1

• D2 = 1−γ−D1+D2
1

1−R

• D3 = 1 − D1 − D2

• Q = 1.25(γ−D3−D2×R)
D1

Dirlik’s method is widely accepted for fatigue damage calculations. The nar-
row band fatigue damage method (2.437) is conservative. The closed form
solution of (Dirlik’s p.d.f.) (2.444) is given by [12]

E{D(T )} =
νpT

a
m

b
2
0

[
D1Q

bΓ (1 + b)

+ (
√

2)bΓ

(
1 +

b

2

)
(D2|R|b + D3)

]
. (2.445)

The equivalent stress range under random loading can be expressed as
[114]

Sh =
[∫ ∞

0

(2s)bfs(s)ds

] 1
b

. (2.446)

Numerical methods to approximate the equivalent stress range are discussed
in [114].

Example. The PSD of a stress response is a constant spectrum Wσ =
100 MPa2/Hz between 20–120 Hz. Outside that frequency range Wσ = 0.
The s-N curve is given by N(s)s5.56 = 1.02 × 1017 (s in MPa).

• Calculate E{D(T = 1)} and TNB applying (2.437), the narrow-band ap-
proach

• Calculate E{D(T = 1)} and TWB applying (2.445), the wide-band ap-
proach

The spectral moments mn =
∫ ∞
0

fnWσ(f)df , n = 0, 1, 2, 4 become:

• m0 =
∫ 120

20
Wσ(f)df = 10 000

• m1 =
∫ 120

20
fWσ(f)df = 700 000

• m2 =
∫ 120

20
f2Wσ(f)df = 5.7333 × 107

• m4 =
∫ 120

20
f4Wσ(f)df = 4.9760 × 1011

From the spectral moments mn the positive zero crossings ν+
0 , the rate of

peaks νp, the irregularity factor γ and the spectral width parameter can be
derived:

• ν+
0 =

√
m2
m0

= 75.7188

• νp =
√

m4
m2

= 93.1615
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• γ = ν+
0

νp
=
√

m2
2

m0m4
= 0.8128

• λ =
√

1 − γ2 = 0.5826

The constants to be substituted in (2.444) are:

• Xm = 0.7514
• D1 = 0.1093
• D2 = 0.1997
• D3 = 0.6909
• Q = 0.1367
• R = 0.5502

The narrow-band cumulative damage prediction becomes [E{D(T = 1)} =
ν+
0
a (

√
2σx)bΓ (1 + b

2 ) = 0.0031 and the associated fatigue life becomes TNB =
318.2370 s. The visualization of Dirlik’s p.d.f. fs(s) is shown in Fig. 2.55. The
cumulative probability function F (∞) =

∫ ∞
0

fs(s) = 1, as expected. The wide-

band fatigue life prediction now becomes E{D(T = 1)} = νp

a m
b
2
0 [D1Q

bΓ (1 +
b) + (

√
2)bΓ (1 + b

2 )(D2|R|b + D3)] = 0.0027 and the associated fatigue life
becomes TBB = 370.4843 s. The narrow-band approach is more conservative
than Dirlik’s wide-band approach.

In [202, 221] a wide band random stresses fatigue damage prediction
method had been proposed based on the narrow band random process fa-
tigue damage prediction as calculated by (2.437), denoted by E{DNB (T )}.
The wide band fatigue damage is given by

Fig. 2.55. Dirlik’s probability density function fs(s)
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E{DBB (T )} = ϕ(λ, b)E{DNB (T )}, (2.447)

where ϕ(λ, b) is a modification factor which is a function of λ and b (N(s)s =
a), λ is the spectral width parameter. The modification factor is derived
in [221] and is a mix of spectral shapes and the rainflow method of measure
the magnitudes

ϕ(λ, b) = K1(b) + [1 − K1(b)](1 − λ)k2(b), (2.448)

where

K1(b) = 0.926 − 0.033b,

K2(b) = 1.587b − 2.323.
(2.449)

The standard deviation of the cumulative damage of the wide band process
σBB,D(T ) is given by [202]

σBB,D(T ) = ϕ(λ, b)σNB ,D(T ), (2.450)

where σNB ,D(T ) can be calculated using (2.439).
For a wide-band process, having a spectral width parameter λ = 1, the

expected maximum peak is given by [232]

η̄max

σx
=
√

2 ln(ν+
0 T ) +

ε√
2 ln(ν+

0 T )
− ln ln(ν+

0 T ) + ln(4π)

2
√

2 ln(ν+
0 T )

. (2.451)

This is an extension to (2.424) and the Euler constant is ε = 0.577216.

Problems

2.35. Calculate the spectral width parameter λ for the following two spectra
as illustrated in Fig. 2.56

• Spectrum 1 is a unimodal spectrum which approaches the narrow band
case when a → b, W0 = 0.04 g2/Hz, a = 50 Hz and b = 75 Hz.

• Spectrum 2 is a bimodal spectrum, W1 = 0.03 g2/Hz, a = 50 Hz and
b = 75 Hz, W2 = 0.01 g2/Hz, c = 100 Hz and d = 200 Hz.

Fig. 2.56. Spectral density models
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2.36. The equivalent stress range is defined as Sh = [
∫ ∞
0

(2s)bfs(s)ds]
1
b . Two

peak distributions are defined:

• Rayleigh peak distribution (irregularity factor γ = 1, spectral band with

parameter λ = 0, NB process) fs(s) = s
σ2 e− s2

2σ2 , 0 ≤ s < ∞, and
• Gaussian peak distribution (irregularity factor γ = 0, spectral band with

parameter λ = 1, BB process) fs(s) = 1√
2πσ

e− s2

2σ2 , −∞ < s < ∞.

Calculate the equivalent stress range Sh for each peak distribution.
Answers: Sh[NB ]

σ = 2
√

2[Γ (1 + b
2 )]

1
b , Sh[BB ]

σ = 2
√

2[ 1
2

√
π
Γ (1 + b

2 )]
1
b .

2.37. The equivalent stress amplitude is defined as S̄h = [
∫ ∞
0

(s)bfs(s)ds]
1
b

and the s-N curve is given by N(s)b = a. The expected number of peaks per
unit of time is νp and the duration is T .

Prove that cumulative damage (Palgren-Miner method) E{D(T )} becomes
E{D(T )} = T S̄hνp

a .

2.38. Consider a stationary random process with a one-sided PSD function

W (ω) =

{
S0, ωa ≤ ω ≤ ωb;
0, elsewhere.

• Define the spectral moments m0, m1, m2 and m4.
• Define the bandwidth parameters δ and γ.
• Show that when (ωb − ωa) 
 1

2 (ωb + ωa), the process is narrow band.

This problem is taken from [203].

2.11 Practical Aspects Enforced Acceleration

In most cases the random mechanical loads for spacecraft and subsystems
of spacecraft are specified in a very special manner. The PSD values of the
acceleration depend on the frequency (Hz). In general, the frequency range
is between 20–2000 Hz. The specification must be accompanied by the Grms

value of the random acceleration in the frequency range. An example of a
typical acceleration specification is given below.

• 20–150 Hz 6 dB/oct
• 150–700 Hz Wü = 0.04 g2/Hz

• 700–2000 Hz −3 dB/oct
• Grms = 7.3 g.

The graphical representation of the random acceleration specification is
shown in Fig. 2.57.

The octave band is between f2 and f1 defined by
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Fig. 2.57. Specification PSD acceleration Grms = 7.3 g

f2

f1
= 21. (2.452)

The power of 1 denotes the octave band. The number x is the number of
octaves between two frequencies f and the reference frequency fref can be
obtained using

f

fref
= 2x; (2.453)

this yields

x =
ln( f

fref
)

ln 2
=

log( f
fref

)

log 2
. (2.454)

The relation between the PSD values depends on the number of dBs per oc-
tave n (dB/oct) and the number of octaves between two frequencies f and fref .
The relation in dB between Wü(f) and Wü(fref ) is given by

10 log
{

Wü(f)
Wü(fref )

}
= nx =

n log( f
fref

)

log 2
, (2.455)

or {
Wü(f)

Wü(fref )

}
=
(

f

fref

) n
10 log 2

≈
(

f

fref

)n
3

. (2.456)

If both the frequency f axis and the axis of the PSD function W (f) have
a log scale than the angle m (dB/freq) can be obtained by

m =
log Wü(f) − log Wü(fref )

log f − log fref
=

log{ Wü(f)
Wü(fref )

}
log( f

fref
)

=
n

3
. (2.457)

Finally the derivation of the following expression is obtained, a relation
between the PSD functions and the frequencies
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Wü(f) = Wü(fref )
(

f

fref

)n
3

= Wü(fref )
(

f

fref

)m

. (2.458)

The total root mean square (rms) value (magnitude) of ü(t) is equal to
the square root of the area bounded by the PSD function between frequency
limits f1 and f2. This can be written as

ürms =
√

E{ü2(t)} =
∫ f2

f1

Wü(f)df. (2.459)

The integral (2.459) is in accordance with (2.61). Substituting (2.458) into
(2.459) to obtain the following expression:

ürms =
√

E{ü2(t)}

=

√∫ f2

f1

Wü(f1)
(

f

f1

)m

df =

√
Wü(f1)f1

m + 1

[(
f2

f1

)m+1

− 1
]
, f1 < f2

=

√
−
∫ f1

f2

Wü(f2)
(

f

f2

)m

df =

√
Wü(f2)f2

m + 1

[
1 −

(
f1

f2

)m+1]
, f1 < f2.

(2.460)

Example. Use (2.460) to calculate the rms value of ü(t) of a typical random
specification. Assume that the test specifies the following values:

• f1 = 20 Hz, f2 = 150 Hz
• Wü(f2) = 0.02 g2/Hz
• m = n

3 = 2.

The PSD value at f1 = 20 Hz can be calculated using (2.458)

Wü(f1) = Wü(f2)
(

f1

f2

)m

= 0.02
(

20
150

)2

= 3.556 × 10−4 g2/Hz.

The rms value of the base acceleration ü(t) becomes

ürms =

√
Wü(f2)f2

m + 1

[
1 −

(
f1

f2

)m+1]

=

√
0.02 × 150

2 + 1

[
1 −

(
20
150

)2+1]
= 1.000 g.

The parameters needed to calculate the Grms value of the random accel-
eration spectrum are illustrated in Fig. 2.58.

The specification of the PSD (sometimes called acceleration spectral den-
sity (ASD)) of the enforced acceleration or base excitation can be divided into
three regions:

• Spectrum with a positive slope n1 (rising)
• Flat spectrum (slope is zero)
• Spectrum with negative slope n2 (falling)
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Spectrum with a Positive Slope

Figure 2.58 shows a rising spectrum with a constant slope n1 > 0 between f1

and f2. The constant slope is expressed in decibels per octave. The area A1

can be calculated as follows

A1 =
{

W (f2)f2

m1 + 1

[
1 −

(
f1

f2

)m1+1]}
, (2.461)

where m1 = n1/3 and n1 > 0 is the increase of the PSD value in decibels per
octave.

Flat Spectrum

For a flat spectrum with a zero slope between f2 and f3 with m1 = 0 in
(2.461) the area A2 becomes

A2 = W (f2)[f3 − f2], (2.462)

as shown in Fig. 2.58.

Spectrum with a Negative Slope

For a falling spectrum of a constant slope n2 < 0 between f3 and f4 the con-
stant slope is expressed in decibels per octave. The area A3 can be calculated
as follows

A3 =
{

W (f3)f3

m2 + 1

[(
f4

f3

)m2+1

− 1
]}

, m2 �= −1, (2.463)

where m2 = n2/3, and n2(< 0) is the decrease of the PSD value in decibels
per octave. Equation (2.463) is not applicable if m2 = −1. In that case we
have to calculate the value of A3 when limm2→−1. This limit can be found

Fig. 2.58. Calculation of Grms
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Table 2.21. Power spectral density enforced acceleration

Frequency (Hz) PSD (g2/Hz)

10 0.005
100 0.05
500 0.05

2000 0.0125

using L’Hôpital’s Rule21 [100]. If u(m2) = ( f4
f3

)m2+1 − 1 and v(m2) = m2 + 1,
then L’Hôpital’s rule gives

A3 = W (f3)f3 ln
(

f4

f3

)
= 2.30W (f3)f3 log

(
f4

f3

)
, m2 = −1. (2.464)

The Grms of the enforced random acceleration specification can be ob-
tained, as illustrated in Fig. 2.58, by the following expression

Grms =
√

A1 + A2 + A3. (2.465)

Example. Consider the PSD values of a specification of enforced accelera-
tions as shown in Table 2.21. The Grms value of that spectrum is calculated.

The slopes m1 and m2 are now calculated

m1 =
log( 0.05

0.005 )
log( 100

10 )
= 1.00, m2 =

log( 0.0125
0.05 )

log( 2000
500 )

= −1.00.

The areas A1, A2 and A3 become

A1 =
{

W (f2)f2

m1 + 1

[
1 −

(
f1

f2

)m1+1]}
= 2.48 g2,

A2 = W (f2)[f3 − f2] = 20.00 g2,

A3 = 2.30W (f3)f3 log
(

f4

f3

)
= 34.62 g2.

The Grms value of the enforced acceleration spectrum as shown in Ta-
ble 2.21 can now be obtained using (2.465)

Grms =
√

A1 + A2 + A3 = 7.56 g.

21 Let u(a) = v(a) = 0. If there exists a neighborhood of x = a such that (1)
v(x) �= 0, except for x = a, and (2) u′(x) and v′(x) exist and do not vanish simul-
taneously, then

lim
x→a

u(x)

v(x)
= lim

x→a

u′(x)

v′(x)

whenever the limit on the right exists.
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Problems

2.39. The random vibration levels for a certain component are given in Ta-
ble 2.22. Calculate the Grms of that specification?
Answer: 14.1 g.

2.40. A PSD spectrum for the enforced acceleration is given in Table 2.23.
Calculate the PSD values of the enforced acceleration at 20 and 2000 Hz and
calculate Grms

Answers: W (20) = 0.0833 g2/Hz, W (2000) = 0.0875 g2/Hz, Grms = 18.5 g.

2.41. A spectrum for the random enforced acceleration is given in Table 2.24.
Calculate the slopes (dB/oct) and calculate Grms

Answers: 6 dB/oct, −3 dB/oct, Grms = 14.7 g.

2.42. Both ESA22 and NASA23 enforced acceleration specifications are spec-
ified (see Table 2.25). Investigate the severity of both specifications when
exposed to a SDOF system with a mass M = 5 kg and a natural frequency
fn = 140 Hz.

• Calculate for both specifications Grms

• The value of M both specifications have equal Grms .
• The value of M for which both specifications have equal maximum PSD

values (g2/Hz).
• Find the worst case random enforced acceleration specification for the

given unit. Explain your choice.

Table 2.22. Power spectral density enforced acceleration

Frequency (Hz) PSD (g2/Hz)

20 0.026
20–50 +6 dB/oct
50–800 0.16
800–2000 −6 dB/oct
2000 0.026

Table 2.23. Random vibration test specification

Frequency range (Hz) PSD (g2/Hz) Grms (g)

20 ?
20–60 3 dB/oct
60–700 0.25 ?
700–2000 −3 dB/oct
2000 ?

22 European Space Agency.
23 National Aeronautics and Space Administration.
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Table 2.24. Random vibration test specification

Frequency range (Hz) PSD (g2/Hz) Grms (g)

20 0.0027
20–150 ? dB/oct
150–800 0.15 ?
800–2000 ? dB/oct
2000 0.06

Table 2.25. ESA and NASA random enforced acceleration specifications

ESA ESA NASA NASA
f (Hz) PSD (g2/Hz) f (Hz) PSD (g2/Hz)

20–100 3 dB/oct 20–50 6 dB/oct

100–400 0.05M+20
M+1

50–800 0.16

400–2000 −3 dB/oct 800–2000 −6 dB/oct

• What is the 3σ reaction force for both specifications for the given unit, if
Q = 10 and g = 9.81 m/s2?

Answers:

• ESA Grms = 31.5
√

0.05M+20
M+1 g, NASA Grms = 14.1 g

• M = 5.3 kg
• M = 7.6 kg
• ESA
• ESA Freaction = 3150 N, NASA Freaction = 2760 N

2.43. In a structural mechanical test plan for the CanX-1 satellite (Space
Flight Laboratory, SFL, University of Toronto Institute of Aerospace Studies,
UTIAS) the following random vibration load were specified (see Table 2.26,
log-log scale), however, the Grms was missing. Calculate the Grms .
Answer: 6.8 g.

2.12 3-Sigma Strength Verification

In this section the following items about the 3-sigma approach will be dis-
cussed

• Strength verification
• Estimation of payload random vibration load for structure design
• Random vibration reduction on the basis of design loads
• Shock response spectrum (SRS) random enforced acceleration
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Table 2.26. Random vibration spectrum

Frequency (Hz) Power Spectral Density (g2/Hz)

20–46 0.000312
52–98 0.019656
102–140 0.22776
144–180 0.00156
185–250 0.2808
256–464 0.00156
472–535 0.156
537–866 0.00156
972–1020 0.0702
1030–1940 0.00156
1940–2000 0.00156

Overall Grms ? (g)

2.12.1 Strength Verification

When fatigue and fracture are ignored it is very common to use the 3-sigma
(3σ) values of the responses (displacements, acceleration, stresses, forces, etc.)
for verification against the more or less static requirements like a maximum
excursion at a certain location, maximum design loads (load factors), buckling
loads, etc., [222, 132]. However, Gumbel in [76] stated the following about the
“Three-sigma fallacy”:

“The founders of the calculus of probabilities were too occupied with the
general behavior of statistical masses to be interested in the extremes. The
oldest remarks about such values seem to be due to Fourier who stated that,
for a normal distribution, the probability to exceed 3

√
2 times the standard

deviation is about 1 in 50 000, and could therefore be neglected. From this
small probability, the erroneous conclusion was drawn that about three times
the standard deviation should be considered as the maximum for any statis-
tical variate, for any number of observations. Helmert (1877) stated, on the
contrary, that the probability of surpassing a values depends upon the num-
ber of observations. The idea that three times the standard deviation should
be considered as maximum-irrespective of the number of observations and the
distribution-still prevails among most “practical” people. It is even advocated,
although in vague form in the classical books by Charlier (1920) and by Yule
(1937). However, the fallacy of this “kitchen” rule is obvious. If the initial
variate is unlimited, the largest value is unlimited too, and if the sample size
is increased, the largest value encountered will likewise increase. The question
is HOW MUCH ? For very small sample sizes, the three sigma condition is
too strong ; for the very large sample sizes, it is too weak.”

The calculated rms value is equal to the 1σ value if the average or mean
value is μ = 0, then, for the signal x(t) the covariance function Cxx(τ) is equal
to the autocorrelation function Rxx(τ), thus
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Cxx(0) = Rxx(0) = σ2
x + μ2

x = σ2
x = x2

rms .

The probability that the Gaussian signal x(t) ≤ 3σx, with the normalized
variable z = x−μx

σx
, is given by

Prob{x(t) ≤ 3σ} =
1√
π

∫ 3

− ∞
e

−z2

2 dz = 0.99865, (2.466)

thus

Prob{x(t) ≥ 3σ} =
1√
π

∫ ∞

3

e
−z2

2 dz = 1 − 0.99865 = 0.00135. (2.467)

The probability that the Gaussian signal is |x(t)| ≥ 3σx, with the normal-
ized variable z = x−μx

σx
, is given by

Prob{ |x(t)| ≤ 3σ} =
1√
π

∫ 3

−3

e
−z2

2 dz = 0.99730, (2.468)

thus

Prob{|x(t)| ≥ 3σ} =
2√
π

∫ ∞

3

e
−z2

2 dz = 1 − 0.99730 = 0.00270. (2.469)

Example. The strength analysis of a 3σ worst-case design will be traced in
this example.

A mass M = 40 kg is mounted to the free end of a fixed-free beam.
The beam has a bending stiffness EI and a length L = 1 m. The fixed-
free beam with attached mass is excited at the base with a constant random
acceleration with a PSD Wü = 0.40 g2/Hz (1 g = 9.81 m/s2). The lowest
natural frequency of the is fn = 25 Hz. The fixed-free beam with attached
mass is illustrated in Fig. 2.59. The cross section of the beam is an I-section
with the height of the profile h, a width b = h

2 and a constant thickness in
web and flanges h

40 . The material of the beam (Al-alloy) has an allowable
yield stress Fy = 250 MPa, and Young’s modulus E = 70 GPa. The dynamic
amplification factor Q = 10 (ζ = 0.05). The 3-sigma approach will be applied

Fig. 2.59. Fixed-free bending beam with tip mass
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to verify the strength capability of the fixed beam at A, the point where
the maximum bending moment Mbend is expected. The fixed-free beam is
represented by a SDOF system with mass M , the associated stiffness can be
obtained applying an unit load a the tip and using the Myosotis equations
[80]. The deflection of the beam due to unit load at the free end is δ = L3

3EI ;
the stiffness of the spring is

k =
1
δ

=
3EI

L3
.

The second moment of area of the I-section is given by

I =
h3t

12
+ 2(bt) ×

(
h

2

)2

=
h4

120
.

The fundamental natural frequency of the fixed-free beam with attached mass
at the free end can be calculated by

fn =
1
2π

√
k

M
=

1
2π

√
3EI

ML3
Hz.

The required second moment of area I can now be calculated

I ≥ (2πfn)2
ML3

3E
= 4.7 × 10−6 m4.

This gives a section height h = 154 mm, the section width b = 77 mm and the
thickness of flanges and web is t = 3.85 mm. The resistance against bending
is

W =
2I

h
=

h3

60
= 6.1 × 10−5 m3.

We obtain the rms acceleration of the attached mass using Miles’ equation

arms = 9.81
√

π

2
fnQWü = 122.95 m/s2.

The bending moment at A is given by

Mbend = MarmsL = 4.917 × 103 Nm.

The bending stress at A at the extreme fibre distance h
2 is

σbend =
Mbend

W
= 6.0475 × 107 Pa.

With the 3-sigma approach the margin of safety (MS) of the bending stress
σbend with respect to the allowable yield stress



160 2 Linear Random Vibration Systems

MS =
Fy

3 × σbend
− 1 = 0.034.

The design is acceptable. The 3-sigma bending stress 3σbend is used as “static”
stress at point A and is compared with an allowable yield stress Fy. The MS
value tells us about the margin which is left with respect to the allowable
stress.

2.12.2 Estimation of Payload Random Vibration Load Factors for
Structure Design

In their paper [30] Chung et al. discussed six estimation methods to determine
3σ vibration load factors related to random enforced vibration for designing
secondary structures:

1. Miles’ equation,
2. Vibration specifications,
3. PSD integration over the full bandwidth, 20 → 2000 Hz,
4. Half power point approach (derived from measured data),
5. Mass participation approach,
6. PSD integration over a reduced bandwidth, 20 → 300 Hz.

Miles’ Equation

This approach assumes the system has a dominant natural frequency (with
respect to structural response) and the 3σ peak random vibration load factor
Ẍ can be obtained using Miles’ equation (2.149)

Ẍ = 3
√

π

2
fiQiWü(fi), (2.470)

where Qi is the amplification factor, normally for random response analysis
Qi = 10 is taken, fi (Hz) is the dominant natural frequency and Wü(fi) g2/Hz
is the value of the enforced vibration acceleration PSD at the frequency fi.
The dominant frequency can be determined with the aid of the principle of
the modal effective mass (see Appendix D).

Vibration Specifications

This approach uses the Grms value of the design specification directly. The
load factor Ẍ can be obtained from the following equation

Ẍ = 3Grms . (2.471)

This method is very conservative because it assumes all the energy within the
frequency band contributes to the random vibration loads.
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PSD integration over the Full Bandwidth

This approach uses the analytical or measured PSD data Wresp(f) to derive
the random vibration load factor Ẍ. It is assumed that all modes op to 2000 Hz
contribute to the random vibration loads.

Ẍ = 3

√∫ 2000

20

Wresp(f)df. (2.472)

This method is less conservative than the vibration specification method in
predicting the random vibration load factor because it uses the responses
(stress, acceleration) of the structure instead of the enforced acceleration to
which the structure is exposed. However, it still assumes that the high fre-
quency modes contribute to the structural random vibration load.

Half Power Point Approach

The half power point bandwidth ΔfHP is used to calculate the random vibra-
tion load factor from test data. The fundamental frequency fn and the PSD
amplitude Wresp,max at that fundamental frequency can be easily extracted
from the test data. This is illustrated in Fig. 2.60. The random vibration load
factor Ẍ is

Ẍ = 3

√
Wresp,max

2
ΔfHP = 3

√
Wresp,HPΔfHP . (2.473)

Mass Participation Approach

The mass participation approach is based on (2.219), however, the 3σ philos-
ophy will be applied, thus

Fig. 2.60. Half Power (HP) approach
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Fk,3σ,base = 3

√√√√ n∑
i=1

[
M2

eff ,ik

π

2
fiQiWü,k(fi)

]
= Mtot,kẌk, k = 1, 2, . . . , 6,

(2.474)
where Fk,rms,base is the interface force caused by the enforced acceleration ük,
k = 1, 2, . . . , 6 with PSD values Wü,k(fi), fi, i = 1, 2, . . . , n are the natural
frequencies, Mtot,k, k = 1, 2, . . . , 6 are the total mass or second moments of
mass, Meff ,ik, i = 1, 2, . . . , n, k = 1, 2, . . . , 6 are the modal effective masses,
n is the number of modes considered, Qi, i = 1, 2, . . . , n are the amplification
factors and Ẍk are the design load factors. It will be assumed that the inertia
loads Mtot,kẌk, k = 1, 2, . . . , 6 will lead to the same interface forces. The load
factors can now easily be calculated using (2.474):

Ẍk =
1

Mtot,k

√√√√ n∑
i=1

[
3Meff ,ik

√
π

2
fiQiWü,k(fi)

]2

, k = 1, 2, . . . , 6. (2.475)

The process of estimating the random vibration load factors Ẍk is as fol-
lows:

1. Determine the modal effective masses of each mode within the bandwidth
of interest, in general, from the finite element modal analysis.

2. Determine the corresponding random vibration level of each mode from
the specification.

3. Compute the peak load associated with the random level obtained in 2
for each mode by using Miles’ equation.

4. Multiply the peak load obtained in 3 by the modal effective mass deter-
mined in 1 for each mode.

5. The composite random vibration loaf factor is determined by the root-
sum-square (RSS) of the mass weighted peak load of each mode computed
in 4, and normalized by the total mass using (2.475).

PSD Integration over a Reduced Bandwidth

This approach uses the analytical or measured PSD data Wresp(f) to derive
the random vibration load factor Ẍ. It is assumed that all modes up to 300 Hz
contribute to the random vibration loads. The random vibration load factor
is defined as follows

Ẍ = 3

√∫ 300

20

Wresp(f)df. (2.476)

From several acoustic tests it has been noticed that the accumulated strain
generally stabilizes below 300 Hz, while the rms acceleration is still building
up
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Example. Figure 2.61 shows a simple NDOF dynamic system, to which the
3-sigma approaches is applied. This system is exposed to an enforced ran-
dom acceleration, for which spectrum is given in Table 2.27 and visualized in
Fig. 2.62. The number of discrete masses m = 1 kg and the number of spring
elements k = 107 N/m is set to N = 50. The total mass is Mtot = 50 kg. The
modal damping ratio ζ = 0.05 is constant for all N modes.

The modal effective mass is plotted against the natural frequency in
Fig. 2.63. The five lowest natural frequencies and associated modal effective
masses are listed in Table 2.28. The PSD values of the responses, and ac-
celerations (g2/Hz) of the first discrete mass and Nth spring force (N2/Hz),
respectively, are shown in Fig. 2.64. The increase of the rms values vs the
frequency are shown in Fig. 2.65. Notice that the convergence of the rms
acceleration is slower than the convergence of the spring force.

The rms acceleration per discrete mass (1 − N) and the rms force in the
spring elements (1 − N) are shown in Fig. 2.66. This completes the response

Fig. 2.61. NDOF dynamic system

Table 2.27. Random vibration specification [30]

Frequency (Hz) PSD g2/Hz

20 0.018
20–125 1.68 dB/oct
125 0.05
300 0.05
300–2000 −3.12 dB/oct
2000 0.007

Overall 6.33 Grms
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Fig. 2.62. Random vibration specification, Table 2.27

Fig. 2.63. Modal effective mass vs natural frequency (Hz)

Table 2.28. Modal effective mass vs natural frequency

Mode �= Natural frequency (Hz) Modal effective mass (kg)

1 85.1598 34.9278
2 195.4970 6.6277
3 306.5329 2.6958
4 417.7903 1.4512
5 529.2051 0.9045

analysis of the N-SDOF system, as illustrated in Fig. 2.61, excited by enforced
random acceleration.

The complete response analysis will be compared to the approximate 3σ
calculation of the load factors Ẍ. This is shown in Table 2.29.
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Fig. 2.64. PSD responses

Fig. 2.65. Rms responses

Fig. 2.66. Rms responses, discrete masses, and spring elements

Observations

• Miles’ equation. As expected, Miles’ approach gave a conservative estima-
tion of the random vibration load factors with the assumption of constant
damping for all modes and one dominant mode containing most of the
energy of the system.
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Table 2.29. Approximate 3σ approaches

Method rms Ẍ (3σ) rms force
acceleration (g) Nth spring element (N)
masses (g)

Miles’s equation
1 mode 22.04
Specification 18.96
Complete solution (20–2000 Hz) 6.35–21.64 2632.2
(all modes) Fig. 2.66(a) Fig. 2.66(b)
Half power
1 mode 19.65
Mass Participation (all modes) 16.45 2689.4
(1 + 2 + 3 modes) 16.35
Complete solution (20–300 Hz) 3.59–17.78 2602.1
(all modes)
White noise (0 → ∞ Hz) Fig. 2.67(a) 3017.9
Lyapunov equation page 78 Fig. 2.67(b)
(0.05 g2/Hz, all modes)

Fig. 2.67. Rms responses discrete masses, spring elements, white noise

• Vibration specification approach. This is the most straightforward ap-
proach for estimating the random vibration load factors.

• Half power approach. This is similar to Miles’ equation, however, instead of
using the spectrum and the amplification factor Q, the half power method
uses the response power spectrum density function and the bandwidth cor-
responding to the half power points to estimate the random vibration load
factors. To compute the load factors, apply this approach to every mode
below 300 Hz. To obtain the composite random vibration load factors,
the root-sum-square can be applied. The random vibration load factors
may be weighted by the relative modal effective mass (Meff /Mtot) of each
mode.

• Mass participation approach. This approach provides a reasonable way
to estimate the random vibration load factors if a mathematical (finite
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Table 2.30. Derived random vibration load factors for MTSAS [30]

Directions Miles’ Spec 0–2000 Hz 0–300 Hz Half power Mass
equation bandwidth bandwidth point participation

X-load factor (g) 29.1 19.0 26.3 14.5 8.5 15.7
Y-load factor (g) 23.0 19.0 42.1 17.7 6.9 14.7
Z-load factor (g) 18.9 19.0 38.8 12.0 3.0 9.4

element) model is available. This method takes into account the dynamic
behavior of each mode, and the significance of each mode. To compute
the composite random vibration load factors we use the individual modes
below 300 Hz.

• Complete solution (20–300 Hz). This approach is a modification of the
complete solution over 20–2000 Hz bandwidth for the estimation of rea-
sonable random vibration load factors. The modification is based on the
assessments of the strain gauge data measured from several cargo element
level acoustic tests. This approach can be employed to either analytical or
test derived PSDs. In general, the random vibration load factors estimated
from this approach is about 50% of those derived from the full bandwidth
approach.

• The white noise (max. PSD) enforced acceleration will of course give en-
velope response characteristics.

In summary, we recommend the employment of the 300 Hz cut-off bandwidth
to estimate the random vibration load factors for structural design. The gen-
eral procedure is to obtain either analytical or measured PSD functions first,
then estimate the random vibration load factors based on integration of the
PSD functions using the 300 Hz cut-off frequency.

Reference [30] describes a case study about Module and Truss Structure
Attachment System (MTSAS). The random vibration specification levels for
MTSAS are given in Table 2.27. The final results of the several approaches
and methods are presented in Table 2.30.

2.12.3 Random Vibration Input Reduction

The quasi-static design limit load applied for the design of equipment and
instruments is mostly based on experience from previous spacecraft projects
and is defined, in general, using the mass acceleration curve (MAC). Such
a curve can be derived from analytical and flight data, and includes the ef-
fects of both transient and mechanically transmitted random vibration [132].
The design loads (factors) are dependent on the mass of the equipment or
instrument. The load factors (inertia loads) γ (g) define the interface loads
between the equipment, instruments and the spacecraft to which the boxes are
mounted. The maximum random interface loads will occur at the resonance
frequencies or approximately at the natural frequencies. If the random inter-
face load is higher than the interface loads caused by the design limit load the
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input acceleration levels may be reduced (notched) at resonant frequencies.
However, it must be pointed out that notching of vibration input must be
always negotiated with the customer. The notch philosophy is based on [110].

The notch criteria with regard to the design limit loads is defined as

3

√∫ fmax

fmin

WFinterface
(f)df ≤ Mtotalγ, (2.477)

where WFinterface
(f) the PSD function of the random interface loads, fmin the

minimum frequency and fmax the maximum frequency of interest in the fre-
quency band, Mtotal the total mass of the equipment or instrument and γ
the load factor. Equation (2.477) means that the 3σ (3 × rms) value of the
interface force must be less than or equal to the interface load caused by the
design loads.

The expected 3σ peak value of the interface force Finterface is based on the
mass participation method (2.215)

Finterface = 3

√√√√ n∑
k=1

[
M2

eff ,k

π

2
fkQkWü(fk)

]

≤ Mtotalγ, (2.478)

where n is the number of modes taken into account. The sum of all modal
effective masses Meff ,k is equal to the total mass Mtotal of the system. If m
(m < n) modes are considered, residual mass Mresidual must be taken into
account

Mresidual = Mtotal −
m∑

k=1

Meff ,k. (2.479)

Equation (2.478) must be adapted as follows:

Finterface = 3

√√√√ m∑
k=1

[
M2

eff ,k

π

2
fkQkW ∗

ü (fk)
]

+ M2
residual

∫ fmax

fmin

W ∗
ü (f)df

≤ Mtotalγ, (2.480)

where W ∗
ü (fk) and W ∗

ü (f) are the adapted enforced acceleration PSD, Wü(fk)
the original PSD function, and fk are the natural frequencies. The random
enforced acceleration spectrum may be reduced (notched) when the 3σ ran-
dom interface loads are higher than the quasi-static interface loads based on
the design loads.

The modal power contribution per mode with natural frequency fk is
related to the original PSD value of the enforced random acceleration Wü(fk).
The power is defined by the force Meff ,kẍrms,k times the velocity ẋrms,k. The
modal power contribution is given by
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Meff ,kẍrms,kẋrms,k = CWü(fk), (2.481)

where ẍrms,k is the rms acceleration at the interface, ẋrms,k the rms velocity
at the interface, C is a constant and Wü(fk) the original PSD function of the
enforced acceleration at the natural frequency fk. Rewrite (2.481) as follows

Meff ,k

ẍ2
rms,k

2πfk
= CWü(fk). (2.482)

By introducing of Miles’ equation for the rms acceleration ẍ(t), we obtain the
following expression:

Meff ,k

π
2 fkQkW ∗

ü (fk)
2πfk

=
Meff ,k

4
QkW ∗

ü (fk) = CWü(fk). (2.483)

The constant C is the same for all modes in the frequency range of interest
and can be written as

Meff ,kQkW ∗
ü (fk)

Wü(fk)
= 4C = C̄ k = 1, 2, . . . , m. (2.484)

If all n modes are considered, the residual mass Mresidual = 0 and (2.480)
becomes

3

√√√√ n∑
k=1

[
M2

eff ,k

π

2
fkQkW ∗

ü (fk)
]

≤ Mtotalγ. (2.485)

After substituting (2.484) into (2.485)we obtain the following relation:

3
√

π

2
C̄

√√√√ n∑
k=1

[Meff ,kfkWü(fk)] ≤ Mtotalγ. (2.486)

Equation (2.486) gives the constant C̄ as

C̄ =
(Mγ)2

9π
2

∑n
k=1[Meff ,kfkWü(fk)]

. (2.487)

If the residual mass is not negligible (say Mresidual > 0.2Mtotal) (2.480)
must be applied to obtain the reduced PSD of W ∗

ü (fk) at the natural frequen-
cies fk. This is an iterative process.

The width of the notch around fk (if needed) is dependent on the ampli-
fication factor Qk:

Δfk =
3fk

Qk
k = 1, 2, . . . , m, (2.488)

and the slopes pk of the reduced PSD function W ∗
ü around fk are approxi-

mately
pk = ∓Qk dB/oct. (2.489)

That is three times the half power band width.
The resonant frequencies and associated amplification factors may be ex-

tracted from a low level sine sweep test with a low sweep rate.
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Example. A little unit has a mass M = 30 kg. The three resonant fre-
quencies (≈ the natural frequency) with significant modal effective mass are
fn = 120, 180, 250 Hz respectively. The associated modal effective masses are
Meff = 20, 8, 2 kg. The amplification factor for all modes is Q = 30. The
design load factor γ = 25 g. The specified PSD of the enforced acceleration
is Wü = 0.2 g2/Hz. Define the notch levels at the resonant frequencies such
that no over-testing with respect to the static design load factor γ will oc-
cur.

The constant C̄ (2.487) becomes

C̄ =
(Mγ)2

9π
2

∑n
k=1[Meff ,kfkWü(fk)]

= 45.8396.

Using (2.484) we can calculate the new notched value of the PSD;

W ∗
ü (fk) =

C̄Wü(fk)
Meff ,kQk

, k = 1, 2, 3.

Thus the notched values of the PSD can be obtained and are as follows
Wü(120) = 0.0153, Wü(180) = 0.0382 and Wü(250) = 0.1528 g2/Hz.

The bandwidths at the resonant frequencies will be in accordance with
(2.488):

Δf = 12, 18, 25 Hz

respectively.

2.12.4 Acceleration Response Curve

Power Spectral Density input specification Wü(f)(g2/Hz) (levels) are some-
times converted to response acceleration plots to be establish the input loads
to each of the assemblies (subsystems). The conversion from PSD to acceler-
ation response plots is based on the following assumptions:

• Single degree of freedom system
• Amplification factor Q = 10 (ζ = 0.05), for all units
• Acceleration is defined by a(f) =

√
π
2 fQWü(f)(g)

In order to apply the acceleration curve, the natural frequencies of each sub-
system must be determined. Corresponding accelerations levels are estab-
lished and applied as a static (inertia) load to determine the stress distri-
bution.

Example. A random enforced acceleration requirement is given in Table 2.31.
The corresponding acceleration response curve (RAC) is illustrated in
Fig. 2.68.
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Table 2.31. Component “Random vibration levels”, M ≤ 22.7 kg [73]

Frequency (Hz) Wü(f) g2/Hz

20–50 6 dB/oct
50 0.16
800 0.16
800–2000 −6.0 dB/oct

Overall 14.12 Grms

Fig. 2.68. Acceleration response curve

2.12.5 Random Response Spectrum

The relative response z(t) = x(t) − u(t) of an SDOF system exposed to an
enforced acceleration ü(t), with zero initial conditions, is given by

z(t) = −
∫ t

− ∞
ü(τ)h(t − τ)dτ, (2.490)

where h(t) = e−jωt sin ωdt
ωd

is the damped impulse response function with damp-
ing ratio ζ, ẍ(t) = −2ζω0ż(t) − ω2

0 z̈(t), is the absolute acceleration, ω0 the
natural frequency of the SDOF system and ωd = ω0

√
1 − ζ2 the damped nat-

ural frequency. The maximum absolute responses |x(t)|, |ẋ(t)| and |ẍ(t)| of the
SDOF system at a natural frequency f0 = ω0

2π (Hz) are the values of the shock
response spectrum (SRS) at the frequency f0 for the displacements, velocity
and acceleration, respectively. Varying the values of the natural frequencies
f0 in a frequency range between a minimum frequency fmin and a maximum
frequency fmax will give the relevant SRS functions of response. In general,
within the framework of the design of spacecraft structures, instruments, etc.
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the SRS of absolute accelerations is of the most interest, because this type of
SRS is specified in the user’s manual of the launch vehicle.

The SRS functions describe the maximum responses of the structure, ex-
posed to base excitation. However, the structure has been replaced by a series
of SDOF systems with natural frequencies in the frequency range of interest.

The 3σ peak values of the acceleration of an SDOF system, enforced by
random base acceleration Wü(f) (g2/Hz) with an amplification factor Q = 1

2ζ
and a natural frequency f0 is given by Miles’ equation

ẍpeak (f0) = 3
√

π

2
f0QWü(f0), (2.491)

with the assumption that the average acceleration is μẍ = 0.
Varying the natural frequencies f0, and the characteristics of the SDOF

system, will give a random response spectrum (RRS) function of the 3σ peak
accelerations.

Example. With constant random enforced acceleration Wü(f) = 0.1 g2/Hz
in a frequency range 20 ≤ f ≤ 1000 Hz and a constant amplification factor
Q = 10, the RRS based on the 3σ approach becomes

SRS (f) = 3
√

π

2
fQWü(f) = 3.760

√
f g 20 ≤ f ≤ 1000.

2.12.6 Relating Random to Sinusoidal Vibration

This section discusses a method to relate two testing methods, and is based on
the equivalent damage theory, for example of electronic boxes [217]. Sinusoidal
vibrating testing is mostly done in a single excitation frequency changed with
time. The upper f2 and lower limit f1 of the frequency, the duration of the
sweep, and the amplitude of the sine vibration will affect the severity of the
vibration.

During random vibration, multiple random frequency vibrations are gen-
erated. The duration of the testing trnd , the PSD level Wü(f) of the enforced
acceleration and the upper and lower frequency will determine the severity of
the vibration.

The proposed method to relate random and sinusoidal vibration is based
on the equal effective damage theory.

A simple supported printed circuit board (PCB) generally has one major
resonant frequency. The relation of random to sinusoidal vibration is moni-
tored around the resonant frequency of the PCB.

The calculations are simplified to a SDOF dynamic system

mz̈ + cż + kz = −mü, (2.492)

where m is the discrete mass, k is the stiffness of the spring element, c is the
damping constant, ü is the enforced acceleration, the relative displacement is
z = x − u and x is the absolute displacement.
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If PSD of the random enforced acceleration is denoted by Wü(f), the rms
acceleration ẍrms (g2/Hz) is given by Miles equation

ẍrms ≈ z̈rms =
√

π

2
fnQWü(fn) (g), (2.493)

where the natural frequency is fn = 1
2π

√
k
m , the amplification factor is Q =

1
2ζ , ζ is the damping ratio and the damping constant c = 2ζ

√
km.

The acceleration response z̈(t) in the frequency domain Z̈(jω) of the SDOF
system (2.492) caused by the enforced acceleration Ü(jω) is; calculated

Z̈(jω) =
−ω2Ü(jω)

−ω2 + ω2
n + 2jζωωn

. (2.494)

The response at the natural frequency ωn = 2πfn is

|Z̈(fn)| =
Ü(fn)

2ζ
= Q|Ü(fn)|, (2.495)

the rms value of |Z̈(fn)| is given by

|Z̈(fn)|rms =
|Z̈(fn)|√

2
, (2.496)

and the rms value of the absolute sinusoidal response is

|Ẍ(fn)|rms = (Q + 1)|Z̈(fn)|rms ≈ Q|Ü(fn)|√
2

. (2.497)

An example of a typical random enforced vibration test specification is
shown in Table 2.32. Besides the PSD spectrum, the Grms value and the time
duration trnd are mentioned.

If both random and sinusoidal vibration levels generate the same deflec-
tions, the equivalence can be established. For comparing the sinusoidal vibra-
tion and the random vibration

|Ẍ(fn)|rms = ẍrms , (2.498)

Table 2.32. Random vibration test specification

Frequency range (Hz) PSD (g2/Hz) Grms (g)

20–60 6 dB/oct
60–700 0.2 16.6
700–2000 −3 dB/oct

Time duration trnd 120 s
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thus

|Ü(fn)| =
ẍrms

√
2

Q
=

√
πfnWü(fn)

Q
. (2.499)

Two types of sinusoidal test are proposed to simulate the random vibration
environment [224]:

• Sinusoidal dwell test
• Sinusoidal (logarithmic) sweep test

During a sinusoidal dwell test the excitation frequency dwells at the nat-
ural frequency fn. The total number of cycles is

Ndwell = trnd ∗ fn. (2.500)

In case of a sinusoidal sweep test the dimension of sweep rate n is Oc-
taves/min. The total time to sweep through a frequency band f1 → f2 is
given by [224]

tsweep = trnd =
60

n ln 2
ln
(

f2

f1

)
. (2.501)

The frequencies f1 and f2 are selected to be the half power frequencies. The
damping ratio ζ can be expressed in terms of the natural frequency fn and
the half power frequencies

2ζ =
f2 − f1

fn
=

1
Q

, (2.502)

where

f1 = fn(1 − ζ) = fn

(
1 − 1

2Q

)
,

f2 = fn(1 + ζ) = fn

(
1 +

1
2Q

)
.

(2.503)

The required sweep rate n can be calculated using (2.501)

n =
60

trnd ln 2
ln
(

f2

f1

)
≈ 86.6 ln(1 + 2ζ)

trnd
. (2.504)

The number of cycles is given by

N =
60

n ln 2
(f2 − f1) =

86.6
n

(f2 − f1). (2.505)

Example. The specification of the random enforced vibration in given in
Table 2.32. The natural frequency of the SDOF system is fn = 120 Hz and
the damping ration ζ = 0.05, which means the amplification factor is Q = 10.
The rms acceleration of the SDOF system becomes
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ẍrms =
√

π

2
fnQWü(fn) =

√
π

2
120 × 10 × 0.2 = 19.4 (g),

and the associated sinusoidal enforced vibration amplitude yields

Ü(fn) =

√
πfnWü(fn)

Q
= 2.7 (g).

The number of cycles during the sinusoidal dwell test is

Nd = fntrnd = 120 × 120 = 14 400 cycles.

The sweep rate n can be calculated by the following expression:

n =
60

trnd ln 2
ln
(

f2

f1

)
=

60
120 ln 2

ln
(

f2

f1

)
= 0.072 Oct/min,

where f1 = 114 Hz and f2 = 126 Hz. The number of cycles during the sweep
from f1 → f2 can be calculated as follows:

Ns =
60

n ln 2
(f2 − f1) = 14 382 cycles.

The number of cycles for both the sinusoidal dwell and sweep test are com-
parable.

The auto correlation function R(τ) of the enforced sinusoidal vibration
ü(t) = Ü sin(ωt) can be obtained using

Rü(τ) =
ω

2π

∫ 2π
ω

0

ü(t)ü(t + τ)dt =
Ü2

2
cos(ωτ), (2.506)

and the corresponding PSD function

Sü(ω) =
∫ 2π

ω

0

Rü(τ) cos(ωτ)dτ =
Ü2

2

∫ 2π
ω

0

cos2(ωτ)dτ =
Ü2

2
π

ω
. (2.507)

In the frequency domain (Hz)

Wü(f) = 2Sü(ω) =
Ü2

2f
. (2.508)

2.12.7 Method for Calculating rms Von Mises Stress

In this section we discuss the calculation of the von Mises stress in a random
vibration environment [173]. The transient von Mises stress, for a general
tridimensional stress tensor
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[σ(t)] =

⎛
⎝σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

⎞
⎠ , (2.509)

is expressed as

σvM (t)

=
√

σ2
xx + σ2

yy + σ2
zz − σxxσyy − σxxσzz − σyyσzz + 3(τ2

xy + τ2
xz + τ2

yz).
(2.510)

The square σ2
vM (t) can be expressed in a quadratic form on the stress vec-

tor {σ}
{σ(t)}T = 
σxx σyy σzz τxy τxz τyz � , (2.511)

and is given by
σ2
vM (t) = {σ(t)}T [A]{σ(t)}, (2.512)

where [A] is the symmetric, positive-definite matrix

[A] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 − 1
2 − 1

2 0 0 0
− 1

2 1 − 1
2 0 0 0

− 1
2 − 1

2 1 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2.513)

In general, the undamped modal characteristics are the following: natural
frequencies, vibration modes, modal effective masses. Associated with the vi-
bration modes are the stress modes [Φσ]. The stress mode reflects the modal
stress tensor at a certain location a. The physical stress tensor [σa(t)] has 6
independent stress components and can be expressed as follows

{σa(t)} =
N∑

k=1

ηk(t){Φa
σ,k }, (2.514)

where ηk(t) is the generalized coordinate, {Φa
σ,k } is the column vector of the

stress tensor at location a, and N is the number of vibration modes considered.
Substituting (2.514) into (2.512) the square of the von Mises stress at

location a becomes

σa
vM

2(t) = {σa(t)}T [A]{σa(t)} =
N∑
i

N∑
j

ηi(t)ηj(t){Φa
σ,i}T [A]{Φa

σ,j }. (2.515)

The zero-time lag auto correlation function of the von Mises stress Rσa
vM

(0)
is given by

Rσa
vM

(0) =
N∑
i

N∑
j

Rηiηj (0){Φa
σ,i}T [A]{Φa

σ,j }. (2.516)
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The PSD function Sηiηj (ω) is related to the auto correlation function
Rηiηj (τ) by the so-called Wiener-Khintchine relations (page 22)

[Sηiηj (ω)] =
∫ ∞

− ∞
[Rηiηj (τ)]e−jωtdt,

[Rηiηj (τ)] =
1
2π

∫ ∞

− ∞
[Sηiηj (ω)]ejωtdω.

(2.517)

This means that the zero-lag auto correlation matrix [Rηiηj (0)] becomes

[Rηiηj (0)] =
1
2π

∫ ∞

− ∞
[Sηiηj (ω)]dω. (2.518)

The CSD matrix of the generalized coordinates [Sηiηj (ω)] is related to the
input CSD matrix of generalized forces Sff (ω) (e.g. forces, enforced acceler-
ation) by the frequency response diagonal matrix �Hη,f (jω)� as follows

[Sηmηn(ω)] = �Hη,f (jω)�[Sff (ω)]�H∗
η,f (−jω)�

= �|Hη,f (jω)|2�[Sff,(n)(ω)]

= �|Hη,f,(m,n)(jω)|2�[Φ]T [SFF,(n)(ω)][Φ], (2.519)

where m, n are running indices m, n = 1, 2, . . . , N , [Φ] is the of the vibration
modes and [SFF,(n)(ω)] is the PSD/CSD matrix of the physical forces and or
enforced excitation.

The mean square of the von Mises stress can be evaluated by

(σa
vM,rms)

2 = Rσa
vM

(0) =
N∑
i

N∑
j

1
2π

∫ ∞

− ∞
Sηiηj (ω)dω{Φa

σ,i}T [A]{Φa
σ,j }

=
1
2π

∫ ∞

− ∞
�Hη,f (jω)�[Φ]T [SFF (ω)][Φ]�H∗

η,f (−jω)�dω[Φa
σ]T [A][Φa

σ]

=
1
π

∫ ∞

0

�Hη,f (jω)�[Φ]T [SFF (ω)][Φ]�H∗
η,f (−jω)�dω[Φa

σ]T [A][Φa
σ].

(2.520)

The integral in (2.520) may be approximated by a discrete sum:

(σa
vM,rms)

2 =
N∑

k=0

Δω

π
�Hη,f (jωk)�[Φ]T [SFF (ωk)][Φ]�H∗

η,f (−jωk)�[Φa
σ]T [A][Φa

σ],

(2.521)
where N is the number of discrete frequency steps, Δω = (ωmax − ωmin)/N
and ωk = ωmin + kΔω. In the frequency domain (2.521) can be written

(σa
vM,rms)

2 =
N∑

k=0

Δf �Hη,f (j2πfk)�[Φ]T [WFF (fk)][Φ]

× �H∗
η,f (−j2πfk)�[Φa

σ]T [A][Φa
σ], (2.522)
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where Δf = (fmax − fmin)/N and fk = fmin + kΔf .
In [153], Preumont presented an alternative for calculating the rms von

Mises stress. The alternative definition to (2.512) is

σ2
vM (t) = {σ(t)}T [A]{σ(t)} = Trace([A]{σ(t)}{σ(t)}T ). (2.523)

The location indicator a had been deleted. The auto correlation function
Rσ2

vM
(0) can be written

Rσ2
vM

(0) = E[σ2
vM ] = Trace([A]E[{σ(t)}{σ(t)}T ])

=
∫ ∞

− ∞
Trace([A]Sσσ(ω)dω)

=
∫ ∞

− ∞
Sσ2

vM
(ω)dω. (2.524)

Equation (2.524) is exact and does not involve any assumption. A Gaussian
random process of zero mean is defined by the PSD of the equivalent von
Mises stress

Sσ2
vM

(ω) = Trace([A]Sσσ(ω)). (2.525)

The same procedures can be applied for the Tsai-Hill failure criterion
for multi-axial stress states (plane stress) in composite structures. Tsai and
Hill have established a suitable fracture criterion based on maximum strain
energy. The Tsai-Hill theory is related to strength of the 1-direction (direction
of fibers) [93]

σ2
TH =

(
σxx

X

)2

+
(

σyy

Y

)2

−
(

σxxσyy

X2

)
+
(

τxy

S

)2

= 1, (2.526)

where X is the axial strength, Y is the transverse strength and S the shear
strength, of the lamina.

Example. A cantilevered massless beam with a tip mass M is loaded by a
random force F with a PSD function WFF (f) in the frequency range f1–f2.
The length of the beam is L and the bending stiffness EI. The cross-section
of the beam is H-shaped with a constant thickness t = h/20. The width of
the flanges and the height of the shear web is h. The cantilevered beam is
illustrated in Fig. 2.69.

The deflection w(x, t) will be expressed as an assumed mode Φ(x) multi-
plied by the generalized coordinate η(t)

w(x, t) = Φ(x)η(t) =
[
3
2

(
x

L

)2

− 1
2

(
x

L

)3]
η(t),

where η(t) has the dimension of (m). Rayleigh’s quotient gives the natural
frequency of the cantilevered beam with tip mass can be obtained
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Fig. 2.69. Cantilevered beam

R(Φ) ≈ ω2
0 =

1
2

∫ L

0
EI(w′ ′)2dx

1
2Mw2(L)

=
3EI

ML3
.

The bending moment and the shear force at the root (x = 0) are given by

M(0) = −EIw′ ′(0) = − 3EI

L2
η(t),

D(0) = EIw′ ′ ′(0) = − 3EI

L3
η(t).

The second moment of area of the H-shaped cross-section is approximated by

I =
7

240
h4,

and the first moment of area S at h/2 is

S = ht × h

2
=

h3

40
.

The modal bending stress σb at the root can be calculated as follows

σmb(t) =
M(0)h

2

I
= − 3

2
Eh

L2
η(t),

and the modal shear stress at h/2 can be calculated in accordance with
Jourawki

τm(t) =
D(0)S

It
η(t) = −30

Eh2

L3
η(t).

The damped equation of motion of the cantilevered beam with tip mass is

η̈(t) + 2ζω0η̇(t) + ω2
0η(t) =

F (t)
M

,
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where ζ is the damping ratio. The frequency transfer function H(jω) is

H(jω) =
1

−ω2 + ω2
0 + 2jζω0ω

,

and
H∗(jω) =

1
−ω2 + ω2

0 − 2jζω0ω
.

The PSD function of the ratio F (t)/M is WFM (f) = WFF (f)/M2 and the
constant matrix [A] can be written as

[A] =
(

1 0
0 3

)
,

because the von Mises stress for this case is σvM =
√

σ2
b + 3τ2. The modal

stress vector is

Φσ =

(
− 3

2
Eh
L2

−30Eh2

L3

)
.

The assumed mode at x = L is Φ(L) = 1. Thus (2.522) can be simplified and
yields

σvM,rms
2

=
N∑

k=0

ΔfH(j2πfk)Φ(L)WFM (fk)Φ(L)H∗(−j2πfk){Φσ }T [A]{Φσ }

=
N∑

k=0

Δf |H(j2πfk)|2WFM (fk){Φσ }T [A]{Φσ }

≈ WFF (f0)
64π3ζf3

0 M2
{Φσ }T [A]{Φσ },

where fk = fmin + k (fmax −fmin )
N = fmin + kΔf .

The approximation will be proven using Lyapunov’s equation as discusses
in Sect. 2.6. The SDOF damped equation of motion representing the can-
tilevered beam with tip mass M and loaded by the force F , will be expressed
in terms of the generalized coordinate η(t) as

η̈(t) + 2ζω0η̇(t) + ω2
0η(t) =

F (t)
M

,

where ζ is the damping ratio. This equation can be transformed into space-
state variables x1 = η and x2 = η̇(t):

(
ẋ1

ẋ2

)
=
(

0 1
−ω2

0 −2ζω0

)(
x1

x2

)
+
(

0
1
M

)
F,

{ẋ} = [A]{x} + {B}F.
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The auto correlation function of the applied force F is

RFF (τ) =
WFF

2
δ(τ),

where WFF (N2/Hz) is the white noise PSD in the frequency domain. The
correlation matrix of x1, x2 is given by

[Rx1x2(0)] = [Rx1x2 ] =
(

〈x1x1〉 〈x1x2〉
〈x2x1〉 〈x2x2〉

)
=
(

〈x1x1〉 0
0 〈x2x2〉

)
,

where 〈xixj 〉 are the expected values. The process is assumed stationary, thus
d
dt 〈x1x1〉 = 〈x2x1〉 + 〈x1x2〉 = 0. This means that 〈x2x1〉 = −〈x1x2〉 = 0.
Lyapunov equation becomes

[A][Rx1x2 ] + [Rx1x2 ][A]T = −{B} WFF

2
{B}T

or
[

0 1
−ω2

0 −2ζω0

] [
〈x1x1〉 0

0 〈x2x2〉

]
+
[

〈x1x1〉 0
0 〈x2x2〉

] [
0 −ω2

0

1 −2ζω0

]

=
[

0 0
0 − WF F

2M2

]
.

The solution of this equation is

〈x1x1〉 = E{η2} =
WFF

8ζω3
0M

2
=

WFF

64π3ζf3
0 M2

,

〈x2x2〉 = E{η̇2} =
WFF

8ζω0M2
=

WFF

16πζf0M2
.

The state-space equation can be expanded as follows

{ẋ} = [A]{x} + {B}F,

{σ} = [C]{x},

where the output matrix [C] is given by

[C] =
[

σmb 0
τm 0

]
,

where σmb is the modal bending stress, τm the modal shear stress and

{σ} =
(

σb

τ

)
.

The expectation of {σ}, E[{σ} {σ}T ], can be obtained from
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E[{σ}{σ}T ] = [C][Rx1x2 ][C]T = 〈x1x1〉
(

σ2
mb σmbτm

σmbτm τ2

)
.

The mean square of the von Mises stress becomes

σvM ,rms
2 = Trace([A]E[{σ} {σ}T ]) =

WFF

64π3ζf3
0 M2

(σ2
mb + 3τ2

m).

The following numerical values for the design parameters are taken:

• Young’s modulus E = 70 GPa,
• the length of the cantilevered beam L = 500 mm,
• the tip mass M = 100 kg,
• the width of the flange and the height of the shear web h = 150 mm

(t = 7.5 mm),
• the white noise PSD of the force F is WFF (f) = 106 N2/Hz,
• the band limited PSD is WFF = 0, f < f1, WFF = 106 N2/Hz, f1 ≤ f ≤

f2, WFF = 0, f > f2, f1 = 20 Hz and f2 = 500 Hz.

The natural frequency f0 = 79.3 Hz and for white noise force excitation the
rms value of σvM ,rms = 1.01 × 108 Pa. For band-limited PSD force excitation,
with N = 1000 steps, Δf = 0.48 Hz, the rms value of σvM ,rms = 1.00 ×
108 Pa. The PSD of the σ2

vM is shown in Fig. 2.70. The PSD of the von Mises
is highly peaked around the natural frequency f0, therefore the white noise
approximation is rather good.

Fig. 2.70. PSD von Mises stress σ2
vM (Pa2/Hz)
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Problems

2.44. A massless bending beam with total length 2L = 1 m and constant
bending stiffness EI N m2 is clamped at A and simply supported at C. The
beam is deflecting in the x-y plane in the y direction. A mass M = 50 kg
is attached at the midpoint B. The required minimum natural frequency is
fn = 50 Hz. The beam is simultaneously base excited at both ends in the point
A and C by a random enforced acceleration ü(t) with a constant PSD function
Wü = 0.3 g2/Hz (g = 9.81 m/s2) in a frequency range 20 ≤ f ≤ 250 Hz. The
Young’s modulus of the material is E = 70 GPa and the allowable yield stress
Fy = 250 MPa. The bending beam is made of a tube with a diameter 2R and
a wall thickness t = R

10 . The fixed hinged beam is illustrated in Fig. 2.71.

1. Apply an unit force F = 1 N in the y direction and calculate the associated
displacement δ.

2. Calculate the reaction forces RA, MA and RC caused by the unit force
F = 1 N acting at point B.

3. Calculate the stiffness k at point B in the direction of the force F and the
displacement δ.

4. Define the radius R and wall thickness t of the tube (I = πR3t) knowing
that the lowest natural frequency fn = 50 Hz.

5. Set up an equivalent sdof system with damping ratio ζ = 0.05.
6. Calculate the δ̈rms acceleration of the mass M in the y direction by ap-

plying Miles’ equation.
7. Calculate the reaction forces RA, MA, MB and RC caused by the inertia

force acting on the mass Finertia = Mδ̈rms .
8. Calculate the bending and shear stress at point A with σbending = MR

I ,
τmax = 11

8
D

2πRt , and D is the shear force. The maximum bending and
shear stress occur at different locations of the cross section!

Fig. 2.71. Fixed hinged bending beam
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9. Calculate margin of safety against the yielding stress using the ideal stress
(σid =

√
σ2 + 3τ2, MS = Fy

3σid
− 1).

Answers: (1) δ = 7
96

L3

EI , (2) k = 96
7

EI
L3 , (3) RA = 11

16 , RC = 5
16 , MA =

− 3
8L, MB = − 5

16L, (4) I = 6.426 × 10−7 m4, R = 38 mm, t = 3.8 mm,
(6) δ̈rms = 150.583 m/s2, Finertia = 7529 N, (7) RA = 2353 N, RC = 5176 N,
MA = −1412 Nm, (8) σbending = 8.309 × 107 Pa, τmax = 7.921 × 106 Pa,
(9) MS bending = 0.003, MS shear = 5.074.

2.45. A solar array sandwich panel is supported at 6 hold down points to
survive the launch loads, especially the steady state accelerations and the
acoustic sound pressures. A circular reinforcement (insert) is built in the sand-
wich panel to transfer the shear loads to the spacecraft at the location of the
hold down points. The insert is bonded to an Al-alloy honeycomb core with
an allowable shear stress τallowable = 2.3 × 105 Pa. The measured s-N curve
Nsb = c is Ns5.967 = 1.385 × 1034. The predicted average rms shear stress
τrms along the circumference of the insert due to the acoustic sound pressures
is τrms = 5.0×104 Pa. The associated positive zero crossings are ν+

0 = 130 Hz.

• Predict the fatigue life of the bonded insert/honeycomb core construction.
• Calculate the margin of safety (MS) against the allowable shear stress of

the honeycomb core using the 3σ approach.

Answers: T = 617 s, MS = 0.53.

2.46. The piping system of a cooler is mounted on a light weight radiator
plate. The predicted radiator random vibration input to the pipes is surpris-
ingly high:

• 20–200 Hz, 3 dB/oct
• 200–300 Hz, 70.0 g2/Hz
• 300–1000 Hz, −12 dB/oct

Calculate the Grms of the given PSD of the enforced accelerations and generate
the RRS(f), f ∈ [20, 1000], based on the 3σ peak values with Q = 20.
Answers: Grms = 144.0 g, for example RRS (200) = 1.99 × 103 g.

2.47. Repeat the finite element analysis of the example on page 163 with the
finite element programme which is frequently used at your school, university,
laboratory or company.

2.48. The stress tensor (plane stress) is given by

{σ}T = 
σxx σyy τxy � .

The Tsai-Hill expression is as follows

σ2
TH =

(
σxx

X

)2

+
(

σyy

Y

)2

−
(

σxxσyy

X2

)
+
(

τxy

S

)2

.

Derive the constant matrix [A] which gives

σ2
TH = Trace([A]{σ} {σ}T ) = {σ}T [A]{σ}.
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2.12.8 Random Vibration Component Test Specification

In general, the purpose of performing a random vibration analysis is to create
a component test level specification. With a finite element model, a random
vibration analysis can be performed to predict acceleration responses from
20–2000 Hz. This response is in turn used as a template to derive a test level
specification. NASA GFSC24 proposed the following guideline to create the
random vibration specification.

1. From a finite element random vibration response analysis create a log-log
plot of the acceleration PSD response (g2/Hz) versus the frequency (Hz).

2. Add in Flight Limit random vibration level specification for the compo-
nents to the plot.

3. Enclose response curve inside test spec curve using the following rules:
• Slopes should be less than 25 dB/oct. or greater than −25 dB/oct

(this depends on the performance of the shaker table. Consult the test
engineer (test house) for exact slope limits),

• Frequency bands should be greater than 10 Hz,
• Don’t plot specification below Flight Limit levels,
• Sharp peaks can be cut off at about 1/2 their height (−3 dB) e.g., a

sharp peak of 0.4 g2/Hz can be cut off at >0.2 g2/Hz,
• Drop specification curve into valleys that are large,
• Try to keep the overall Grms level of the specification to be no more

than 1.25 times the overall Grms level of the response curve.

The plot in Fig. 2.72 is an example of a specification to be used for component
random vibration testing.

2.13 Random Responses Analysis in the Time Domain

2.13.1 Introduction

In this section the discrete sampled or digitized signals at equally space
(equidistant) intervals Δt are discussed. The sampling is generally done by
an analog-to digital (A/D) converter. The sampling interval Δt must be in
accordance with the maximum frequency fmax in the process analyzed. The
sampling frequency fs = 1/Δt is chosen according the Nyquist (Shannon-
Kotelnikow) criterion

fs =
1

Δt
= 2fmax =

ωmax

π
. (2.527)

The random process sampling in equidistant intervals Δt is illustrated in
Fig. 2.73.

The simulated random time series can eventually being applied for re-
sponse analysis of non-linear (e.g. geometrical) structures.
24 NASA Goddard Space and Flight Center, Greenbelt, Maryland, USA.
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Fig. 2.72. Random vibration specification

Fig. 2.73. The random process sampling in equidistant intervals Δt

2.13.2 Simulation of the Random Time Series

Details of the simulation of random vibration specification spectra in random
time series are discussed in Appendix A.

The simulated time series can be calculated using the following expression:

xk = x(kΔt) =
√

2�[FFT (an)], k = 0, 1, 2, . . . , 2N − 1, (2.528)

where Δt can be calculated (Nyquist criterion) by

Δt ≤ π

ωmax
=

1
2fmax

. (2.529)

The term an is
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an = [W (fn)Δf ]
1
2 e−jφn 0 ≤ n ≤ N − 1

= 0, n ≥ N, (2.530)

where the angles φn are uniformly distributed random numbers on the interval
(0–2π) and fn = nΔf and Δf = fmax/N . fmax is the maximum frequency in
the power spectrum density W (f), and N is the total number of terms in the
frequency range (0–fmax ) Hz.

The PSD function W (f) can be reconstructed using the following expres-
sion:

W (nΔf) = W (fn) = 2
|IFFT (xk)|2

Δf
,

k = 0, 1, 2, . . . , 2N − 1, n = 0, 1, 2, . . . , N − 1, (2.531)

where the PSD function is in the cyclic frequency domain, and f is the cyclic
frequency (Hz).

The estimated mean value of the simulated random time series xn can be
calculated using the following expression

xmean =
1

2N

2N −1∑
n=0

xn, (2.532)

and the mean square value x2
rms can be calculated by

x2
rms =

1
2N

2N −1∑
n=0

x2
n. (2.533)

The variance can be calculated by

Var(x) =
1

2N

2N −1∑
n=0

(xn − xmean)2

=
1

2N

2N −1∑
n=0

[
xn − 1

2N

2N −1∑
k=0

xk

]2

, (2.534)

and the estimated standard deviation sx becomes

sx =
√

Var(x). (2.535)

The autocorrelation function or mean lagged product can be calculated by
applying the following expression [197]

rm =
1

2N − m

2N −m−1∑
n=0

xnxn+m, m = 0, 1, 2, . . . , M, (2.536)

where, in general, M < 2N/10 to prevent too lengthy calculations.
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Table 2.33. Component “Random vibration levels”, M ≤ 22.7 kg [73]

Frequency (Hz) Wü(f) g2/Hz

20–50 6 dB/oct
50 0.16
800 0.16
800–2000 −6.0 dB/oct

Overall 14.12 Grms

Fig. 2.74. Simulated random time series ün

Example. A typical random vibration specification for components (M ≤
22.7 kg, equipment, boxes, . . . ) is given in [73] and shown in Table 2.33. The
simulated random time series ün from Table 2.33 is shown in Fig. 2.74. The
number of samples N = 500 is taken to get a random time series which is not
too dense. The maximum time on the ordinate is NΔt = N/2fmax = 0.25 s
and the maximum considered frequency fmax = 2000 Hz. The reconstructed
PSD enforced acceleration Wü(f) is shown in Fig. 2.75. This Fig. 2.74 reflects
the PSD spectrum as given in Table 2.33. The estimated mean value of the
simulated time series ün is

ümean =
1

2N

2N −1∑
n=0

ün = −0.0011 g,

and the rms value
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Fig. 2.75. Reconstructed PSD enforced acceleration Wü(f)

ürms =

√√√√ 1
2N

2N −1∑
n=0

ü2
n = 14.1173 g,

and the estimated standard deviation sü = 14.1173 g. The auto correlation
function is or mean lagged products rm are illustrated in Fig. 2.76. The auto
correlation function shows a white noise characteristic of the simulated ran-
dom time series.

In the following, a response analysis on a simple structure will be per-
formed. This simple structure may represent a antennae boom. In Fig. 2.77
a cantilevered beam is shown. The beam is excited by a random enforced
acceleration ü(t). The PSD of the enforced acceleration Wü(f) is given in
Table 2.33. The random time series is shown in Fig. 2.74. The discrete mass
at the tip of the beam is M = 50 kg. The bending stiffness is given by EI
and the mass per unit of length of the beam is m kg/m. The length of the
beam is L = 0.4 m. The cross-section is a thin-walled square tube b × b and
the wall-thickness is t. The beam is made of Al-alloy, E = 70 GPa, and the
density is ρ = 2700 kg/m3. The beam must be designed such that the lowest
natural frequency f1 = 30 Hz. The assumed mode φ(x) is the analog of the
static deformation corresponding to a unit force at the tip. The assumed mode
taken is

φ(x) =
3
2

(
x

L

)2

− 1
2

(
x

L

)3

. (2.537)
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Fig. 2.76. Auto correlation function or mean lagged products

Fig. 2.77. Cantilevered beam

The deflection w(x, t) will now be expressed as follows

w(x, t) = φ(x)η(t), (2.538)

where η(t) is the generalized coordinate. The equation of motion will be de-
rived using the Lagrange equations. First the strain energy U and the kinetic
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T have to be obtained

U =
EI

2

∫ L

0

(
∂2w(x, t)

∂x2

)2

dx,

T =
m

2

∫ L

0

[
ẇ(x, t) + u̇(t)

]2
dx +

1
2
M
[
ẇ(L, t) + u̇(t)

]2
.

(2.539)

The undamped equation of motion is expressed in terms of the generalized
coordinate η(t), and becomes

η̈(t) + ω2
1η(t) = −Γ ü(t), (2.540)

where the natural frequency ω2
1 and the modal participation factor Γ are

ω2
1 =

420EI

L3(33mL + 140M)
,

Γ =
35(3mL + 8M)

2(33mL + 140M)
.

(2.541)

The equivalent SDOF system is shown in Fig. 2.77. The damped equation of
motion is obtained by adding the modal damping term 2ζω1η̇(t), thus (2.540)
becomes

η̈(t) + 2ζω1η̇(t) + ω2
1η(t) = −Γ ü(t), (2.542)

where ζ is the modal damping ratio. The wall-thickness of the beam cross-
section is t = b/50. The second moment of area I = 2

3b3t, the area is A =
4bt and the bending resistance is W = 4

3b2t. The bending moment in the
cantilevered beam at M(x), is given by

M(x, t) = EIw′ ′(x) = EIφ′ ′(x)η(t). (2.543)

Thus at the root of the beam, x = 0, M(0, t) = φ′ ′(0)η(t) = 3EIη(t)
L2 . The

bending stress σb = | M(x.t)
W |. The lowest natural frequency f1 = 30 Hz can be

achieved when b = 0.08 m and t = 0.0016 m. The mass m = 1.3824 kg/m.
The lowest natural frequency f1 is

f1 =
1
2π

√
420EI

L3(33mL + 140M)
= 30.091 Hz,

and the modal participation Γ becomes

Γ =
35(3mL + 8M)

2(33mL + 140M)
= 1.002.

When the beam is taken massless m = 0, and Γ = 1. In [223] the single-step
three-stage Newmark algorithm is discussed, and can be written
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{Xn+1} = [A]{Xn} + {Fn}, (2.544)

where the vector {Xn} is

{Xn} =

⎛
⎝ xn

Δtvn

Δt2an

⎞
⎠ , (2.545)

xn is the displacement, vn is the velocity and an the acceleration, all at step n.
The matrix [A] is the amplification matrix. The equation of motion to be solved
is

mẍ(t) + cẋ(t) + kx(t) = f(t). (2.546)

The amplification matrix [A] = [Aij ] is given by

A1,1 = (m + γΔtc)/D,

A1,2 = {m + (γ − β)Δtc}/D,

A1,3 = {(0.5 − β)m + (0.5γ − β)Δtc}/D,

A2,1 = −γΔt2k/D,

A2,2 = {m + (β − γ)Δt2k}/D,

A2,3 = {(1 − γ)m + (β − 0.5γ)Δt2k}/D,

A3,1 = −Δt2k/D,

A3,2 = −Δt(c + Δtk)/D,

A3,3 = {(1 − γ)Δtc + (0.5 − β)Δt2k}/D,

D = m + γΔtc + βΔt2k.

(2.547)

The vector {Fn} is

{Fn}T =
Δt2

D
{βfn+1, γfn+1, fn+1}T . (2.548)

The solution of (2.545) is stable if 2β ≥ γ ≥ 0.5. To solve the transients the
following values for the parameters β = 0.25 and γ = 0.5 are taken. The
initial conditions are η(0) = η̇(0) = 0 and η̈(0) = −Γ ü(0). The damping ratio
is ζ = 0.01. The solution for the generalized coordinate η(t), its velocity η̇(t)
and acceleration η̈(t) are shown in Figs. 2.78, 2.79 and 2.80 respectively. The
bending stress σb(t) at the root of the beam is shown in Fig. 2.81 and the
normalized auto-correlation function in Fig. 2.82. It can be concluded that
the bending stress σb(t) is narrow-banded. The auto-correlation function of
the bending stress shows a narrow-banded process. The bending acts like a
mechanical filter at a natural frequency f1 = 30.09 Hz. This natural frequency
is clearly seen in Fig. 2.82.

In the next example the Duffing oscillator will be solved in the time do-
main. The internal force in the spring of the Duffing oscillator is a combination
of linear and cubic restoring forces.
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Fig. 2.78. Generalized coordinate η(t)

Fig. 2.79. Generalized coordinate η̇(t)
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Fig. 2.80. Generalized coordinate η̈(t)

Fig. 2.81. Bending stress σb(t)
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Fig. 2.82. Normalized auto-correlation function

Example. The damped equation of motion of the Duffing oscillator is

z̈(t) + 2ζω0ż(t) + ω2
0(z + εz3) = −ü(t), (2.549)

where z(t) is the relative displacement, ż(t) is the relative velocity, z̈(t) is the
relative acceleration, all with respect to the base; ζ is the damping ratio, ε is
a scaling parameter and ü(t) is the random enforced acceleration specified in
Table 2.33. This PSD spectrum will be simulated by random time series as
shown in Fig. 2.74. The numerical solution of the nonlinear Duffing oscillator
(2.549) in the time domain is based on the Newmark method and is discussed
in detail in [223]. The approximation of the acceleration z̈(t) at time (n+1)Δt
is denoted by an+1, the velocity ż(t) is denoted by vn+1 and the displacement
z(t) is denoted by zn+1. The enforced acceleration ü(t) is denoted by ün+1.

The acceleration an+1 and velocity vn+1 are expressed as

an+1 =
1

βΔt2
(zn+1 − zn) − vn

βΔt
−
(

1
2β

− 1
)

an,

vn+1 =
γ

βΔt
(zn+1 − zn) −

(
γ

β
− 1

)
vn − Δt

(
γ

2β
− 1

)
an.

(2.550)

If the approximate values of the solution are substituted in (2.549) the fol-
lowing equation is obtained

rn+1 = an+1 + 2ζω0vn+1 + ω2
0(zn+1 + εz3

n+1) + ün+1 = 0. (2.551)



196 2 Linear Random Vibration Systems

The initial condition can be calculated using r0 (t = 0)

r0 = a0 + 2ζω0v0 + ω2
0(z0 + εz3

0) + ü0 = 0.

If v0 = a0 = 0 then

a0 = −2ζω0v0 − ω2
0(z0 + εz3

0) − ü0 = −ü0. (2.552)

The value of rn+1 can be approximated by a first order Taylor series expansion;

rn+1 ≈ rn +
drn

dzn
Δzn = rn + K(zn)Δzn = rn + ΔFn, (2.553)

where K(zn) is the tangent stiffness or the Jacobian at zn. The solution for
Δzn can be obtained by Δzn = −K(zn)−1(rn+1 − rn). Substituting (2.550)
in (2.553) will leads to

rn+1 =
(

1
βΔt2

+
2ζω0γ

βΔt

)
zn+1 + ω2

0

(
zn+1 + εz3

n+1

)
− Fint,n + ün+1

= 0, (2.554)

where the force Fint,n is given by

Fint,n =
(

1
βΔt2

+
2ζω0γ

βΔt

)
zn +

[
1

βΔt
+ 2ζω0

(
γ

β
− 1

)]
vn

+
[(

1
2β

− 1
)

− 2ζω0Δt

(
γ

2β
− 1

)]
an. (2.555)

The Jacobian or tangent stiffness K(zn) = drn/dzn becomes

K(zn) =
(

1
βΔt2

+
2ζω0γ

βΔt

)
+ ω2

0(1 + 3εz2
n). (2.556)

The solution procedure discussed in [206] is as follows. The increment Δz is

rn+1 − rn = Δan + 2ζω0Δvn + ω2
0(zn+1 + εz3

n+1) − ω2
0(zn + εz3

n) + Δün = 0
≈ Δan + 2ζω0Δvn + Kt(zn)Δzn + Δün = 0, (2.557)

where Δan = an+1 − an, Δvn = vn+1 − vn, Δün = ün+1 − ün and the tangent
stiffness is Kt(zn) = ω2

0(1+3εz2
n). The increment of the acceleration Δan and

the velocity Δvn can be derived from (2.550) and are given by

Δan =
1

βΔt2

[
Δzn − Δtvn − Δt2

2
an

]
,

Δvn = γΔtΔan + Δtan.

(2.558)

Substituting (2.558) in (2.557) will give
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K(zn)Δzn =
(

1
βΔt

+ 2ζω0
γ

β

)
vn +

[
1
2β

+ 2ζω0

(
γΔt

2β
− Δt

)]
an − Δün

= ΔFn. (2.559)

The next step solutions for the acceleration, velocity and displacement are

an+1 = an + Δan,

vn+1 = vn + Δvn,

zn+1 = zn + Δzn.

(2.560)

The Newmark-β method is called an implicit method25 to solve the tran-
sient response problem, however, without equilibrium iterations. The error
introduced into the approximation can be minimized if a sufficiently small in-
tegration step Δt is employed in the analysis. In general, for an conditionally
stable Newmark method γ = 1/2 and β = 1/4 are taken.

For highly nonlinear cases the implicit numerical scheme can be improved
doing equilibrium iterations every time step n → n + 1. Equation (2.554) will
be rewritten as follows

(
1

βΔt2
+

2ζω0γ

βΔt

)
zn+1 + ω2

0

(
zn+1 + εz3

n+1

)
= Fn+1. (2.561)

Within a time step, the following iteration procedure is proposed:

• Δzk
n = ΔRk

n/Kn(zn) (modified Newton-Raphson method, Fig. 2.83),
• zk

n+1 = zk−1
n+1 + Δzk

n,

Fig. 2.83. Modified Newton-Raphson iteration [206]

25 Explicit methods calculate the state of a system at a later time from the state
of the system at the current time, while an implicit method finds it by solving an
equation involving both the current state of the system and the later one.
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• ΔP k
n = ( 1

βΔt2 + 2ζω0γ
βΔt )Δzk

n + ω2
0 [Δzk

n + ε(zk
n+1

3 − zk−1
n+1

3
)],

• ΔRk+1
n = ΔRk

n − ΔP k
n .

The procedure starts at k = 1 with the initial values z0
n+1 = zn and

ΔR1
n = ΔFn. The iterations are continued until convergence, that is, until

the incremental displacement Δzk
n have become sufficiently small in compar-

ison to the current estimate Δz1
n. Thus the total incremental displacement

after m iterations is given by

Δzn =
m∑

k=1

Δzk
n. (2.562)

The iteration process may be terminated at iteration m when

Δzm
n

Δz1
n

≤ δ, (2.563)

where δ is the specified tolerance. The design parameters of Duffing’s equation
have the following values:

• The linear natural frequency ω0 = 2πf0, f0 = 30 Hz.
• The tuning factor ε = 0.2.
• The damping ratio ζ = 0.01.

The displacement z(t) and the non linear restoring force Fnl = ω2
0(z+εz3) are

calculated using the equilibrium iterations. The displacement z(t) is shown in
Fig. 2.84 and the nonlinear restoring force Fnl(t) in Fig. 2.85.

Fig. 2.84. Displacement z(t)
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Fig. 2.85. Non linear restoring force Fnl(t)

Problems

Table 2.34. Power spectrum densities shapes

Spectrum f1 (Hz) f2 (Hz) W (f) f3 (Hz) f4 (Hz) W (f) ν+
0 ν+

p

1 5 55 W0f
2

2 10 70 W0

3 20 100 W0/f2

4 40 100 W0/f2

5 29 35 W0f
2

6 9 11 W0 29 35 W0

7 16 40 W0

8 9 11 W0 29 35 W0/20
9 5 30 W0/f2

2.49. This problem is based on the theory discussed in [128, 177]. The PSD
W (f)(1/Hz) in Table 2.34 is non zero between the specified frequency ranges
(f1–f2) and (f3–f4). Perform the following assignments:

• Calculate for all spectra the constant W0 such that
∫ ∞
0

W (f)df = 1.
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• Calculate for all spectra the number of positive zero crossing ν+
0 =√

m2/m0.26

• Calculate for all spectra the average number of maximum peaks ν+
p =√

m4/m2.
• Generate for all spectra the random time series.

26 The spectral moment is mn =
∫ ∞
0

fnW (f)df .
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Acoustic Random Vibration



3

Low Frequency Acoustic Loads

3.1 Introduction

Acoustic vibration is the structural response of structures exposed to an
acoustic sound field. In this chapter low-frequency acoustic vibrations are dis-
cussed using the modal displacement method (MDM). In the higher-frequency
bands, statistical energy analysis (SEA) is a good substitute for the classical
modal approach.

Lightweight and large antenna structures and solar arrays, of spacecraft
(see Fig. 3.1) are very sensitive to acoustic loads during the launch phase.
Spacecraft external structures are severely exposed to acoustic loads.

In general, the modal characteristics of the dynamic system are calculated
with the aid of the finite element method. The accuracy is determined by the
detail of the finite element model and the complexity of the structure. As
stated above, the equations of motion will be solved using the classical modal
approach and therefore linear structural behavior is assumed.

The structure is deterministic, however, the acoustic loads have a random
nature.

3.2 Acoustic Loads

Acoustic loads appear as design specifications for spacecraft and spacecraft
attachments such as solar arrays and antennae. Acoustic loads are generated
during launch, or in acoustic facilities for test purposes. It is very common to
specify a reverberant sound field, which means that the intensity of the sound
is the same for all directions.

In general, the acoustic loads are described as sound pressure levels (SPL)
and specified in decibels (dB). The SPL is defined by

SPL = 10 log
(

p

pref

)2

, (3.1)

J. Wijker, Random Vibrations in Spacecraft Structures Design,
Solid Mechanics and Its Applications 165,
c© Springer Science + Business Media B.V. 2009
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Fig. 3.1. Typical spacecraft

where p is the rms pressure in a certain frequency band with frequency band
width Δf , mostly one octave or one third octave band , and pref is the reference
pressure 2 × 10−5 Pa.

The x-th octave band of two sequential frequencies f1 and f2 is given by

f2

f1
= 2x, (3.2)

where x = 1 for the octave, and x = 1
3 when the one-third-octave band; then

f2
f1

= 2
1
3 = 1.260.

The center frequency fc (Hz) is defined by

fc =
√

fminfmax , (3.3)

where fmin (fmax ) is the minimum (maximum) frequency (Hz).
The frequency bandwidth Δf (Hz) is given by

Δf = fmax − fmin . (3.4)

With fmax

fmin
= 2x the bandwidth Δf can be expressed in terms of the center

frequency fc as follows
Δf =

(
2

x
2 − 2

−x
2
)
fc. (3.5)

When

• x = 1, the one octave band width is Δf = 0.7071fc

• x = 1
3 the one-third octave band width is Δf = 0.2316fc
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The PSD of the pressure field Wp(fc) (Pa2/Hz) in the frequency band with
center frequency fc, bandwidth Δf and rms pressure p(fc) is defined as

Wp(fc) =
p2(fc)
Δf(fc)

. (3.6)

The mean square value p2
rms of the sound pressure level is given by

p2
rms =

∫ ∞

0

W (f)df =
k∑

i=1

Wi(fc)Δf =
k∑

i=1

p2
i (fc), (3.7)

where k is the number of one octave or one third octave bands.
The overall sound pressure level (OASPL) in dB is defined as

OASPL = 10 log
(

p2
rms

p2
ref

)
. (3.8)

Example. In Table 3.1 the center frequency fc (Hz) and the corresponding
SPL levels (dB) are specified in the octave band. We will calculate the corre-
sponding bandwidths Δf(fc) (Hz), the mean square values p2(fc) (Pa2), the
PSD values Wp(fc) (Pa2/Hz) and finally the OASPL.

The following relation determines the conversion of a one-third- octave-
band to a one-octave-band;

SPL1-octave = 10 log

[
3∑

k=1

10
SPL 1

3 -octave
10

]
, (3.9)

and the following relation determines the conversion of the a one-octave band
to the a one-third-octave-band

SPL 1
3 -octave = SPL1-octave + 10 log

[
Δf 1

3 -octave
Δf1-octave

]
. (3.10)

Table 3.1. SPL specification

fc (Hz) SPL (dB) Δfc (Hz) p2 (Pa2) Wp(fc) (Pa2/Hz)

31.5 124 22.27 1004.75 45.11
63 130 44.55 4000.00 89.79

125 135 88.39 12649.11 143.11
250 139 176.78 31773.13 179.74
500 134 353.55 10047.55 28.42

1000 128 707.11 2523.83 3.57
2000 124 1414.21 1004.75 0.71
4000 120 2828.43 400.00 0.14
8000 116 5656.85 159.24 0.03

OASPL 142.01 dB
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Table 3.2. Conversion calculation one octave to one third octave band

Octave band (Hz) SPL1-octave (dB) Δf1-octave (Hz)

125 135 88.4
1
3

octave band (Hz) Δf 1
3 -octave (Hz) SPL 1

3 -octave (dB)

100 23.2 129.2
125 28.9 130.1
160 37.1 131.2

Table 3.3. Conversion calculation one third octave to octave band

1
3

octave band (Hz) SPL 1
3 -octave (dB)

SPL 1
3 -octave
10

100 129.2 12.92
125 130.1 13.01
160 131.2 13.12

Octave band (Hz) SPL1-octave (dB)

125 135

Example. The conversion of the octave band to the one-third-octave band
is shown in Table 3.2. The reverse conversion is shown in Table 3.3.

Problems

3.1. Prove the following relations:

• The conversion of the SPL of one third octave band to the one octave
band;

SPL1-octave = 10 log

[
3∑

k=1

10
SPL 1

3 -octave
10

]
.

• The conversion of the SPL of the one octave band to the one third octave
band

SPL 1
3 -octave = SPL1-octave + 10 log

[
Δf 1

3 -octave
Δf1-octave

]
.

3.2. The following typical specification of the SPL is taken from [133]. Cal-
culate the OASPL of the spectrum given in Table 3.4. Convert the one third
octave SPL spectrum given in Table 3.4 to an octave band spectrum and re-
calculate the OASPL.
Answer: OASPL = 144.9 dB.

3.3. The power spectral density in ‘pink noise’ is proportional to the inverse
of the frequency f , and is given by Wp(f) =

√
2A2

f . Show that the rms value
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Table 3.4. 1/3 Octave band specification

Center frequency (Hz) SPL (dB) pref = 2 × 10−5 Pa

31.5 122.0
40.0 124.0
50.0 126.0
63.0 127.5
80.0 129.5

100.0 130.5
125.0 132.0
160.0 133.0
200.0 133.5
250.0 134.0
315.0 134.5
400.0 134.5
500.0 134.0
630.0 133.5
800.0 133.0

1000.0 132.0
1250.0 131.5
1600.0 130.0
2000.0 129.0
2500.0 128.0
3150.0 126.5
4000.0 125.0
5000.0 124.0
6300.0 122.5
8000.0 121.0

10000.0 120.0

of the sound pressure p in the octave frequency band is independent of the
center frequency.
Answer: p = A.

3.4. The SPL’s given in Table 3.1 are specified in the octave band. Convert
the SPL values i the one-third-octave-band and recalculate the OASPL.

3.3 Response Analysis

The undamped equations of motion of a discrete number of coupled mass-
spring systems with mass matrix [M ], stiffness matrix [K], dynamic force
vector {F (t)}, displacement vector {x(t)} and acceleration vector {ẍ(t)} can
be written as

[M ]{ẍ(t)} + [K]{x(t)} = {F (t)}. (3.11)

The damping will be introduced later.
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Fig. 3.2. Node i with associated nodal area Ai

In general, the discrete system is a finite element representation of a real
structure.

The component Fik(t) of the force vector {F (t)} consists of a pressure or
pressure difference p(t) applied normal to the area associated with node i.
One force applied to the node i is

Fik(t) =
∫

Ai

p(t)dA ≈ p(t)Aik k = 1, 2, 3, (3.12)

where Aik is the area associated with node i in the direction of DOF k. This
is illustrated in Fig. 3.2. The pressure p(t) is normal to the area Ai.

The associated nodal area in one finite element can be obtained from [155]

{Ai} =
∫

A

{Ψn}T dA, i = 1, 2, 3, (3.13)

where n is the number of nodes in one finite element and {Ψ } the set of
shape functions relating the internal displacement field to the nodal displace-
ments. For a diffuse sound field, a correlation exists between the nodal forces.
Radiation effects are not taken into account.

Example. A rod with a length L has two nodes. The displacement shape
functions {Ψ(x)} are

{Ψ(x)} =
⌊
1 − x

L
,
x

L

⌋
.

The representative lengths {Li} become

{Li} =
∫

L

{Ψ }T dL = L

∫ L

0

(
1 − x

L
x
L

)
d

(
x

L

)
=

(
L
2
L
2

)
.

The associated lengths Li of the two nodes are half of the length L of the rod.

The displacement vector {x(t)} will be projected onto the independent
mode shapes (eigenvectors), the modal base [Φ], multiplied by the generalized
coordinates {η(t)}
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{x(t)} = [Φ]{η(t)}. (3.14)

The orthogonality properties of the mode shapes with respect to the mass
matrix [M ] and the stiffness matrix [K] yields in diagonal matrices

[Φ]T [M ][Φ] = �δijmi�, [Φ]T [K][Φ] = �δijmiω
2
i �, (3.15)

where δij is the Kronecker Delta function, mi are the generalized masses and
ω2

i the eigenvalues of the dynamic system.
The coupled equations of motion are decoupled and expressed in terms

of the generalized coordinates ηi(t). We will now introduce the modal damp-
ing ratio ζi and the modal viscous damping term 2ζiωiη̇i(t). The decoupled
damped equations of motion become

η̈i(t) + 2ζiωiη̇i(t) + ω2
i ηi(t) =

{φ}T {F (t)}
mi

= fi(t), i = 1, 2, . . . , n, (3.16)

where n is the number of generalized coordinates.
The solution in the time domain with zero initial conditions (displacement

and velocity) is

ηi(t) =
∫ ∞

− ∞
e−ζiωiτ

sin(ωdt)
ωd

fi(t − τ)dτ =
∫ ∞

− ∞
hi(τ)fi(t − τ)dτ, (3.17)

where hi(τ) is the impulse response function and the damped natural (circu-
lar) frequency ωd is defined as

ωdi = ωi

√
1 − ζ2

i . (3.18)

In the frequency domain, with Πi(ω) =
∫ ∞

− ∞ ηi(t)e−jωtdt

Πi(ω) = Hi(ω)fi(ω), (3.19)

where Hi(ω) = 1
ω2

i −ω2+2jζiωiω
is the frequency response function and fi(ω) =∫ ∞

− ∞ fi(t)e−jωtdt is the Fourier transform of the force function fi(t).
The cross correlation function Rηiηj (τ) of the generalized coordinates ηi(t)

and ηj(t) for an ergodic stationary process is given by

Rηiηj (τ) = lim
T →∞

1
2T

∫ T

−T

ηi(t)ηj(t − τ)dt. (3.20)

The relation between the cross PSD function Sηiηj (ω) and the cross cor-
relation function Rηiηj (τ) is given by the Wiener-Khintchine relationships,
namely

Sηiηj (ω) =
∫ ∞

− ∞
Rηiηj (τ)e−jωtdt i, j = 1, 2, . . . , n, (3.21)

where n is the number of modes considered and
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Rηiηj (τ) =
1
2π

∫ ∞

− ∞
Sηiηj (ω)ejωtdω i, j = 1, 2, . . . , n. (3.22)

The matrix of cross correlation functions [Rfifj (τ)] for an ergodic station-
ary forces fi(t) and fj(t) is given by

[Rfifj (τ)] = lim
T →∞

1
2T

∫ T

−T

[fi(t)fj(t − τ)]dt i, j = 1, 2, . . . , n. (3.23)

Equation (3.23) can be rewritten using (3.16) in matrix form

[Rfifj (τ)] = lim
T →∞

1
2T

∫ T

−T

{φi}T {Fk(t)}{Fl(t − τ)}T {φj }
mimj

dt

i, j = 1, 2, . . . , n, k, l, = 1, 2, . . . , m, (3.24)

or

[Rfifj (τ)] =
1

mimj
{φi}T �A�

[
lim

T →∞

1
2T

∫ T

−T

{pk(t)}{pl(t − τ)}T dt

]
�A�{φj }

i, j = 1, 2, . . . , n, k, l, = 1, 2, . . . , m (3.25)

where �A� is the diagonal matrix of areas associated with the m DOFs of the
finite element model as illustrated in Fig. 3.2.

Finally, the cross correlation function Rfifj can be related to the cross
correlation matrix of pressures all over the surface of the structure

[Rfifj (τ)] =
1

mimj
{φi}T �A�[Rpkpl

(τ)]�A�{φj }

i, j = 1, 2, . . . , n, k, l, = 1, 2, . . . , m, (3.26)

where the matrix [Rpkpl
(τ)] is the matrix of correlation functions of pressures

over the surface of the structure, k and l denote the sequential numbers of
DOFs and n the number of modes that are considered.

The matrix of cross PSD functions becomes

[Sfifj (ω)] =
1

mimj
{φi}T �A�[Spkpl

(ω)]�A�{φj }

i, j = 1, 2, . . . , n, k, l, = 1, 2, . . . , m, (3.27)

where the matrix [Spkpl
(ω)] is the matrix of PSD functions of pressures over

the surface of the structure.
The matrix of cross PSD functions [Spkpl

(ω)] of the pressures all over the
surface and related to the DOFs i = 1, 2, . . . , m is as follows

[Spkpl
(ω)] =

⎛
⎜⎜⎜⎝

Sp1p1(ω) Sp1p2(ω) · · · Sp1pm(ω)
Sp2p1(ω) Sp2p2(ω) · · · Sp2pm(ω)

...
...

. . .
...

Spmp1(ω) Spmp2(ω) · · · Spmpm(ω)

⎞
⎟⎟⎟⎠ . (3.28)
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Equation 3.21 can be written as

Sηiηj (ω) =
∫ ∞

− ∞
lim

T →∞

1
2T

∫ T

−T

(∫ ∞

− ∞
hi(α)fi(t − α)dα

)

×
(∫ ∞

− ∞
hj(β − τ)fj(t − (β − τ))dβ

)
e−jωτdτdt, (3.29)

and

Sηiηj (ω) =
∫ ∞

− ∞
Rfifj (τ − α + β)e−jω(τ −α+β)dτ

×
(∫ ∞

− ∞
hi(α)e−jωαdα

)(∫ ∞

− ∞
hj(β)ejωβdβ

)
, (3.30)

where Hi(ω) =
∫ ∞

− ∞ hi(τ)e−jωτdτ . The PSD function matrix for the general-
ized coordinates [Sηiηj (ω)] can be obtained by the following matrix equation

[Sηiηj (ω)] =
Hi(ω){φi}T �A�[Spkpl

(ω)]�A�{φj }H∗
j (ω)

mimjω2
i ω2

j

i, j = 1, 2, . . . , n, k, l, = 1, 2, . . . , m, (3.31)

where Hi(ω) = ω2
i

ω2
i −ω2+2jζiωiω

the frequency response function and H∗
j (ω) =

ω2
j

ω2
j −ω2−2jζjωjω

called the conjugate frequency response function with

Hi(ω)H∗
i (ω) = |Hi(ω)|2. The matrix of the cross spectral density functions of

the generalized coordinates ηi and ηj is

[Sηiηj (ω)] =
⌈

Hi(ω)
miω2

i

⌋
[Φ]T �A�[Spkpl

(ω)]�A�[Φ]
⌈

H∗
j (ω)

mjω2
j

⌋
, (3.32)

where [Φ] is the modal base.
In general, (3.28) is expressed as follows

[Spkpl
(ω)] = Sp(ω)

⎛
⎜⎜⎜⎝

Cp1p1(ω) Cp1p2(ω) · · · Cp1pm(ω)
Cp2p1(ω) Cp2p2(ω) · · · Cp2pm(ω)

...
...

. . .
...

Cpmp1(ω) Cpmp2(ω) · · · Cpmpm(ω)

⎞
⎟⎟⎟⎠ , (3.33)

where Sp(ω) is the reference PSD function of the applied pressures. This
reference PSD of the pressure is, in general, related to the sound pressure
levels (SPL) of the sound field exposed to the surface of the structure. Cpipj (ω)
is the correlation (coherence) function between pressures at the nodes i and j.

Some typical pressure fields can be described [220]:

1. If the dimension of the surface is less than a quarter of the wave length
λ the correlation function Cpipj (ω) = 1.0. The wave length is λ = 2π

k
with the wave numberis k = ω

c and c is the speed of sound. At room
temperature the speed of sound under 1 Bar is c = 340 m/s.
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2. If the sound pressure field is completely random (rain on the roof) the off-
diagonal terms of (3.33) are zero and the diagonal terms Cpipi(ω) = 1.0.
The correlation matrix [Cpipj (ω)] = [I].

3. A three dimensional wave field with uniform intensity I = p2

ρc in all di-
rections is commonly called a reverberant sound field, with ρ the density
of the air, ρ ≈ 1.2 kg/m3. The coherence function Cpipj (ω) = sin(k|r̄i −r̄j |)

(k|r̄i −x̄j |)
and |r̄i − r̄j | the distance between node i and j. The correlation function
sin(k|r̄i −r̄j |)
(k|r̄i −x̄j |) in the x-y plane is often replaced by sin(k|r̄i −r̄j |)

(k|r̄i −x̄j |) ≈
sin(k|Δx|)
(k|Δx|)

sin(k|Δy|)
(k|Δy|) .

Equation (3.31) can be written as

[Sηiηj (ω)] = Sp(ω)
Hi(ω)J2

ijH
∗
j (ω)

mimjω2
i ω2

j

i, j = 1, 2, . . . , n, k, l, = 1, 2, . . . , m, (3.34)

where J2
ij is called the joint acceptance

J2
ij = {φi}T �A�[Cpkpl

(ω)]�A�{φj }. (3.35)

Thus (3.32) can be rewritten as

[Sηiηj (ω)] = Sp(ω)
⌈

Hi(ω)
miω2

i

⌋
[J2

ij ]
⌈

H∗
j (ω)

mjω2
j

⌋
, (3.36)

with the matrix of joint acceptances [J2
ij ]

[J2
ij ] = [Φ]T �A�[Cpkpl

(ω)]�A�[Φ]. (3.37)

Example. The joint acceptance function will be calculated at a frequency
f = 54.113 Hz and a speed of sound c = 340 m/s2. The wave number becomes
k = 2π/c = 1. The mode shape φ(x, y) = sin πx

2a sin πy
2b , the first mode shape

of a simply supported rectangular plate with length a = 1 and width b = 1.
The joint acceptance functions J2

ij are calculated using integrals instead of
matrix multiplications:

1. Rigid body mode and a plane wave (complete correlation Cpipj = 1)
2. Elastic mode φ(x, y) and a plane wave (complete correlation Cpipj = 1)
3. Rigid body mode and a reverberant sound field with

Cpipj =
sin(kΔx) sin(kΔy)

kΔxkΔy

4. Elastic mode φ(x, y) and a reverberant sound field with

Cpipj =
sin(kΔx) sin(kΔy)

kΔxkΔy
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The solution of the first joint acceptance function J2
00 (index 0 stands for rigid

body mode) is

J2
00 =

∫ a=1

a=−1

∫ b=1

b=−1

∫ a=1

a=−1

∫ b=1

b=−1

dxdydudv = 16

The second joint acceptance function J2
11 (index 1 stands for the first elastic

mode) is

J2
11 =

∫ a=1

a=−1

∫ b=1

b=−1

∫ a=1

a=−1

∫ b=1

b=−1

sin
πx

2a
sin

πy

2b
sin

πu

2a
sin

πv

2b
dxdydudv = 2.628.

This result is conform [55]. The third joint acceptance function J2
00 becomes

J2
00 =

∫ a=1

a=−1

∫ b=1

b=−1

∫ a=1

a=−1

∫ b=1

b=−1

sin |x − y|
|x − y|

sin |u − v|
|u − v| dxdydudv = 12.883,

and the fourth joint acceptance function J2
11 becomes

J2
11 =

∫ a=1

a=−1

∫ b=1

b=−1

∫ a=1

a=−1

∫ b=1

b=−1

sin |x − y|
|x − y|

sin |u − v|
|u − v|

× sin
πx

2a
sin

πy

2b
sin

πu

2a
sin

πv

2b
dxdydudv = 2.321.

The joint acceptance function J2
ij is a measure for the coupling with the sound

field.

The matrix of the cross PSD [Sxixj (ω)] of the physical displacements {x}
can be obtained by

[Sxixj (ω)] = [Φ][Sηiηj (ω)][Φ]T , (3.38)

the matrix of cross PSD [Sẋiẋj ] of the velocities {ẋ} becomes

[Sẋiẋj (ω)] = ω2[Φ][Sηiηj (ω)][Φ]T , (3.39)

and the matrix of cross PSD [Sẍiẍj (ω)] of the accelerations {ẍ}

[Sẍiẍj (ω)] = ω4[Φ][Sηiηj (ω)][Φ]T . (3.40)

The matrix of cross PSD of the stresses Sσiσj (ω) of the internal stresses σ
can be expressed as follows

[Sσiσj (ω)] = [Φσ][Sηiηj (ω)][Φσ]T , (3.41)

where [Φσ] is the matrix of stress modes.
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Fig. 3.3. 2 mass-spring system

Example. A two mass-spring system is illustrated in Fig. 3.3. The stress
modes [Φσ] will be calculated. The stress modes are defined as follows

[Φσ] = [Dσ][Φ],

where [Dσ] is the stress matrix (the stress matrix times the displacement
vector {x} will yield the static stresses)

[Dσ] =
k

A

(
1 −1
0 1

)
,

with A the cross section of the springs.
The mode shapes are

[Φ] =
1√
m

(
−0.8507 −0.5257
−0.5257 0.8507

)
,

with the generalized masses [Φ]T [M ][Φ] = [I]. The stress modes now become

[Φσ] = [Dσ][Φ] =
k

A
√

m

(
−0.3249 −1.3764
−0.5257 0.8507

)
.

The PSD is symmetric with respect to ω = 0 and, if the circular frequency
ω is replaced by the number of cycles per second f , the PSD function S(ω)
can be replaced by

W (f) = 2S(ω). (3.42)

In all equations the PSD function S(ω) can be replaced by W (f) and ω
by ω = 2πf .

Example. The purpose of the example is the show the procedure to calculate
the response of a simply supported beam caused by an acoustic field.

A simple supported beam with length 4L is mathematically represented by
a finite element model consisting of 5 nodes and 4 bar elements. The beam has
a width b. The mass per unit of length of the beam is m. The finite element
model is illustrated in Fig. 3.4. The total area of the beam is 4bL. The natural
frequencies of the simply supported beam with mode shapes φ(x) = sin nπx

4L ,
n = 1, 2, . . . are given by
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Fig. 3.4. Finite element model simply supported beam

fn =
(nπ)2

2π

√
EI

m(4L)4
, n = 1, 2, . . . .

The damping ratio for all modes is ζ = 0.05. The beam is exposed to a random
pressure field with the coherence matrix [Cpipj (f)].

The modal matrix [Φ] of the first two modes, the lumped mass matrix [M ]
and the diagonal matrix of areas �A� are

[Φ] =

⎡
⎢⎢⎢⎢⎣

0 0
1
2

√
2 1

1 0
− 1

2

√
2 −1

0 0

⎤
⎥⎥⎥⎥⎦ , [M ] = mL

⎡
⎢⎢⎢⎢⎣

1
2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

2

⎤
⎥⎥⎥⎥⎦ ,

�A� = Lb

⎡
⎢⎢⎢⎢⎣

1
2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

2

⎤
⎥⎥⎥⎥⎦ .

The generalized mass matrix becomes

[Φ]T [M ][Φ] = 2mL

[
1 0
0 1

]
.

The following coherence matrices are considered:

1. Rain on the roof sound field

[Cpipj (f)] =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

2. Plane wave sound field

[Cpipj (f)] =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤
⎥⎥⎥⎥⎦ .
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3. Reverberant sound field

[Cpipj (f)] =

⎡
⎢⎢⎢⎢⎣

1 θ1 θ2 θ3 θ4

θ1 1 θ1 θ2 θ3

θ2 θ1 1 θ1 θ2

θ3 θ2 θ1 1 θ1

θ4 θ3 θ2 θ1 1

⎤
⎥⎥⎥⎥⎦ ,

where θn = sin(nkl)/nkl, the wave number is k = 2πf
c , and the speed of

soundis c ≈ 340 m/s. Assume kL = 1 then

[Cpipj (f)] =

⎡
⎢⎢⎢⎢⎣

1 0.8415 0.4546 0.0470 −0.1892
0.8415 1 0.8415 0.4546 0.0470
0.4546 0.8415 1 0.8415 0.4546
0.0470 0.4546 0.8415 1 0.8415

−0.1892 0.0470 0.4546 0.8415 1

⎤
⎥⎥⎥⎥⎦ .

The response of the beam exposed to a rain on the roof type of sound
field will be worked out. The joint acceptance matrix can be obtained us-
ing (3.37)

[J2
ij ] = [Φ]T �A�[Cpkpl

(ω)]�A�[Φ] = 2(Lb)2
[

1 0
0 1

]
.

The PSD of the two generalized coordinates, associated with the two modes,
can be now calculated using (3.36)

[Wηiηj (f)] = Wp(f)
⌈

Hi(f)
mi(2πfi)2

⌋
[J2

ij ]
⌈

H∗
j (ω)

mj(2πfj)2

⌋

=
Wp(f)b2

2m2(2π)4

⎡
⎣ |H1(f)|2

f4
1

0

0 |H2(f)|2
f4
2

⎤
⎦ =

Wp(f)b2

2m2(2π)4

[
h1 0
0 h2

]
,

where |Hi(f)|2 = 1
[1−( f

fi
)2]2+[2ζi(

f
fi

)]2
, ζi is the modal damping ratio and fi is

the natural frequency for i = 1, 2. The PSD of physical displacements {x} can
be calculated with the aid of (3.38)

[Wxixj (f)] = [Φ][Wηiηj (f)][Φ]T

=
Wp(f)b2

2m2(2π)4

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0.5h1 + h2 0.7071h1 0.5h1 − h2 0
0 0.7071h1 h1 0.7071h1 0
0 0.5h1 − h2 0.7071h1 0.5h1 + h2 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ .

After the calculations of the PSD of the displacements {x}, the accelera-
tions, forces, stresses, etc. and associated rms values can be numerically ob-
tained. The lowest two natural frequencies of the simply supported beam are
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Fig. 3.5. PSD displacements

f1 = 60 Hz, and f2 = (2π)2

2π f1 = 377.0 Hz. The modal damping ratio is con-
stant for both modes ζ = 0.05. The PSD of the pressure field Wp is constant in
a frequency band f = 20–500 Hz and zero otherwise. The PSD of the pressure
is normalized, e.g. Wpb2

2m2(2π)4 = 1. The PSD of the normalized displacements
and accelerations and associated positive zero crossings of the nodes 2 and 3 (4
is the same as 2) are calculated. The responses are shown in Figs. 3.5 and 3.6.
The rms values of the normalized displacements and positive zero crossings
are

{
x2

x3

}
=
{

0.0060
0.0071

}
,

{
ν+
0,2

ν+
0,3

}
rms

=
{

68.4615
60.4381

}
,

and the rms values of the normalized accelerations and positive zero crossings
are {

ẍ2

ẍ3

}
=
{

3.1084 × 103

1.2504 × 103

}
,

{
ν+
0,2

ν+
0,3

}
=
{

370.1744
184.8545

}
.

The integration had been done with a frequency increment Δf = 0.1 Hz.

Problems

3.5. Calculate the modal bending stress at point A near the fixation of the
bending beam with bending stiffness EI, length L and a bending resistance W .
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Fig. 3.6. PSD accelerations

Fig. 3.7. Calculation modal stress

At the free end of the beam a mass M has been connected. The bending beam
is massless. The bending beam is illustrated in Fig. 3.7.

• Calculate the natural frequency.
• Calculate the mode shape φ at the location of the mass M . The generalized

mass Mφ2 = 1.
• Calculate the force Fδ=1.
• Calculate the bending stress σb at A due to Fδ=1.
• Calculate the modal bending stress σbm at A.

Answers: fn = 1
2π

√
3EI
ML3 , φ = 1√

M
, Fδ=1 = 3EI

L3 , σb = 3EI
WL2 , σbm = 3EI√

MWL2 .
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Fig. 3.8. Acoustic load applied to supported rigid plate

3.6. A rigid square plate with length and width a has a mass m. This system
is illustrated in Fig. 3.8. The plate is supported in the center by a spring with
spring stiffness k and cross section A. The amplification factor Q = 1

2ζ , with
ζ the damping ratio. The PSD of the pressure Wp(f) = Wp. The wavelength
is λ > a. Perform the following operations:

• Calculate the natural frequency f0 of the system.
• Define the normalized mode φ with φ2m = 1 and δ = φη.
• Define the stress mode φσ.
• Calculate the joint acceptance J2

00.
• Calculate the PSD response Wηη(f0) of the modal participation η.
• Calculate the PSD response Wδδ(f0) of the displacement δ of the mass m

at the natural frequency f0.
• Calculate the PSD stress Wσσ(f0) in the spring at the natural frequency f0.

Answers: f0 = 1
2π

√
k
m , φ = 1√

m
, φσ = k

A
1√
m

, J2
00 = a4, Wηη(f0) =

Q2

(2πf0)4
a4

m Wp, Wδδ(f0) = Q2

(2πf0)4
a4

m2 Wp, Wσσ(f0) = ( k
A )2 Q2

(2πf0)4
a4

m2 Wp.

3.7. Repeat the example given on page 214 of the response analysis of a simply
supported beam (Fig. 3.4), however, now exposed to an acoustic field in the
form of a plane wave. All the terms in the coherence matrix [Cpipj (f)] are
equal to one. All other parameters are the same.

• Calculate the joint acceptance matrix [J2
ij ].

• Calculate the matrix of response of the two generalized coordinates
[Wηiηj (f)].

• Calculate the matrix of physical displacements [Wxixj (f)].
• Calculate numerically with Δf = 0.2 Hz the normalized diagonal terms of

the matrix of PSD values [Wxixj (f)], x2 and x3, and associated numbers
of upward crossings ν+

0 .
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• Calculate numerically with Δf = 0.2 Hz the normalized diagonal terms of
the matrix of PSD values [Wẍiẍj (f ]) = (2πf)4[Wxixj (f)], ẍ2 and ẍ3, and
associated numbers of upward crossings ν+

0 .

3.8. The wavelength of acoustic waves propagating in air and flexural waves
propagating in large bending plates are as follows [18]

λacoustic =
c

f
,

λplate =
(

Et3

12m(1 − ν2)

) 1
4
(

2π

f

) 1
2

,

where c is the speed of sound c = 340 m/s2, m the mass per unit of area
m = 2 kg/m2, t the thickness of the plate t = 2 mm, E is the Young’s
modulus E = 70 GPa, the Poisson’s ratio ν = 0.3, and f is the frequency in
Hz.

• At which frequency (critical or coincidence frequency) do the two waves
coincide?

• For lower frequencies, is the flexural wavelength greater than or less than
the acoustic wavelength?

• Evaluate the numerical values of the coincidence frequency and the asso-
ciated wavelength.

• The compressional wave velocity is given by cp = [ Et
m(1−ν2) ]

0.5. Express the
coincidence frequency fcoincidence in cp.

Answers: fcoincidence = c2

2π

√
Et3

12m(1−ν2)

, f < fcoincidence → λplate

λacoustic
< 1, f >

fcoincidence → λplate

λacoustic
> 1, fcoincidence = 3633 Hz, λplate = λacoustic = 0.094 m,

fcoincidence =
√

12c2

2πt
√

cp
.

3.4 Modal Damping

Table 3.5 shows the NASA recommended modal damping ratio profile for
vibroacoustic analysis. The modal damping is expressed as percent of the
critical damping.

Table 3.5. Recommended modal damping ratio [31]

Frequency (Hz) Modal damping ratio ζ

0.0–10.0 0.01
10.0–35.0 0.02
75.0 0.03
130.0 0.04
200.0 0.05
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3.5 Simplified Acoustic Response Analysis

3.5.1 Introduction

In the early stage, structures must be dimensioned before more detailed
strength and stiffness analyzes can be made. For that simple analysis tech-
nique may applied very fruitful. A few of this methods will be discussed and
illustrated with examples.

3.5.2 Acoustic Loads Transformed into Mechanical Random
Vibrations

Large (sandwich) panels, with all kinds of instruments, electronic boxes, etc.
mounted onto them, are fairly sensitive to acoustic loads. The acoustic loads
are transformed into mechanical random vibrations by the panel. These me-
chanical random vibrations vibrate in tune with the mounted instruments,
electronic boxes, etc. In this section we determine the applied mechanical
vibrations due to the acoustic loads.

The SPL is expressed with respect to a reference pressure pref = 2 ×
10−5 Pa and is given by

SPL = 10 log
(

p2

p2
ref

)
.

The SPL are usually specified in the 1/1 octave band or 1/3 octave band. The
center frequency fc (Hz) can be associated with the bandwidth Δf :

• 1/1 octave band Δf = 0.7071fc

• 1/3 octave band Δf = 0.2316fc

The PSD function Wp(f) (Pa2/Hz), where p is the rms sound pressure for a
specific center frequency fc with bandwidth Δf can be obtained as follows

Wp(f) =
p2

Δf
. (3.43)

The power spectral density of the acceleration of the box, due to the
acoustic pressure (Fig. 3.9), is determined as follows [191]

Wa(f) = β2Q2

(
A

gM

)2

Wp(f), (3.44)

where Wa(f) is the PSD of the accelerations (g2/Hz) of the box and the
supporting structures, β = 2.5 is the effectiveness vibro acoustic factor , Q =
4.5 is the amplification factor, A is the area of the side of the box (m2) mounted
to the panel, M is the total mass of the box and the supporting structure (kg)
and g is the gravitational acceleration (9.81 m/s2).
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Fig. 3.9. Model for evaluation of the effects of acoustic pressure

Table 3.6. Calculation of wave length λ , c = 340 m/s

Center frequency fc Wave length λ = c
f

(m)

31.5 10.79
63 5.40

125 2.72
250 1.36
500 0.68

1000 0.34

If the wave length λ = c
f ≥

√
A, where

√
A is the characteristic length or

width of the panel, the sound wave may be considered as a plane wave. The
speed of sound is c = 340 m/s. The wave length λ in the one octave band is
illustrated in Table 3.6.

The expression (3.44) can be easily derived from the undamped equation
of motion for an isotropic plate with a deflection w, bending stiffness D, mass
per unit of area m and exposed to a uniform pressure p

D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4

)
+ m

∂2w

∂t2
= p, (3.45)

where x and y are rectangular coordinates.
The deflection w can be expressed

w(x, y) =
n∑

i=1

n∑
j=1

ηij(t)φij(x, y), (3.46)

where φij(x, y) is the ijth mode shape and ηij(t) the ijth generalized coordi-
nate. The mode shapes are orthogonal, so

m

∫ b

0

∫ a

0

φij(x, y)φkl(x, y)dxdy = mgijδikδjl, (3.47)

where a and b are the length and width of the rectangular bending plate.
The mode shapes can be approximated, e.g.



3.5 Simplified Acoustic Response Analysis 223

Fig. 3.10. Vibration modes simply supported plate φij(x, y) = (sin iπx
a

sin jπy
b

)

• simply supported plate, φij(x, y) = (sin iπx
a sin jπy

b ), i, j = 1, 2, . . . , n and
• clamped supported plate, φij(x, y) = sin iπx

a (1 − cos 2πx
a ) sin jπy

b (1 −
cos 2πy

b ), i, j = 1, 2, . . . , n.

The natural frequency of the supported plate is ωij , i, j = 1, 2, . . . , n. The
uncoupled damped equations of motions for ηij can now be obtained when
the orthogonality relations for the mode shapes φij and the modal damping
ratio ζij are introduced

η̈ij + 2ζijωij η̇ij + ω2
ijηij =

p
∫ b

0

∫ a

0
φijdxdy

m
∫ b

0

∫ a

0
φ2

ijdxdy
, i, j = 1, 2, . . . , n. (3.48)

The equations of motion (3.48) are Fourier transformed in the frequency do-
main. With ηij = Πij(ω)ejωt and p = P (ω)ejωt the equations for Πij become

Πij =
(

1
ω2

ij − ω2 + 2jζijωijω

)
P
∫ b

0

∫ a

0
φijdxdy

m
∫ b

0

∫ a

0
φ2

ijdxdy

= Hi(ω)
P
∫ b

0

∫ a

0
φijdxdy

m
∫ b

0

∫ a

0
φ2

ijdxdy
, (3.49)

and for the acceleration of the generalized coordinates Π̈ij = −ω2Πij , thus

Π̈ij =
(

−ω2

ω2
ij − ω2 + 2jζijωijω

)
P
∫ b

0

∫ a

0
φijdxdy

m
∫ b

0

∫ a

0
φ2

ijdxdy

= −ω2Hij(ω)
P
∫ b

0

∫ a

0
φijdxdy

m
∫ b

0

∫ a

0
φ2

ijdxdy
. (3.50)

The PSD function of the displacement and the acceleration for the gener-
alized coordinates can now be expressed by

Sηij (ω) = |Hij(ω)|2
Sp(ω)(

∫ b

0

∫ a

0
φijdxdy)2

(m
∫ b

0

∫ a

0
φ2

ijdxdy)2
, (3.51)
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and

Sη̈ij (ω) = ω4|Hij(ω)|2
Sp(ω)(

∫ b

0

∫ a

0
φijdxdy)2

(m
∫ b

0

∫ a

0
φ2

ijdxdy)2
. (3.52)

The rms value of the displacement of the generalized coordinate 〈η2
ij 〉 is given

by

〈η2
ij 〉 =

1
4ζ2

ijω
2
ij

Sp(ωij)(
∫ b

0

∫ a

0
φijdxdy)2

(m
∫ b

0

∫ a

0
φ2

ijdxdy)2
. (3.53)

The rms of the acceleration of the generalized coordinate 〈η̈2
ij 〉 does not exist.

The PSD function of the acceleration of the deflection ẅ(x, y) is

Sẅ(ω) =
n∑

i=1

n∑
j=1

Sη̈ij (ω)φ2
ij(x, y), (3.54)

or

Wẅ(f) =
n∑

i=1

n∑
j=1

Wη̈ij (f)φ2
ij(x, y), (3.55)

where Wẅ(f) = 2Sẅ(ω). To keep it simple, only the first mode φ11 will be
considered, and the contribution of all other modes neglected. The integrals
for the simply supported plate are calculated:

∫ b

0

∫ a

0

(
sin

πx

a
sin

πy

b

)
dxdy =

4ab

(π)2
, (3.56)

∫ b

0

∫ a

0

(
sin

πx

a
sin

πy

b

)2

dxdy =
ab

4
. (3.57)

The expressions for the clamped plate modes are too lengthly and are not given
here, but may obtained numerically or by using special purpose software (e.g.
Maple�).

The rms value of the deflection of the first generalized coordinate η11 is

〈η2
11〉 =

1
8ζ2

11(2πf11)3

(
16
π2

)2

Wp(f11)
(

A

M

)2

, (3.58)

where the area of the plate is A = ab and the total mass is M = mab.
The PSD function of the acceleration of the first generalized coordinate

η11 at the first natural frequency f11, associated with simply supported plate
mode φii, is

Wη̈11(f11) =
1

(2ζ11)2

(
16
π2

)2

Wp(f11)
(

A

M

)2

, (3.59)

and the PSD function of the acceleration of the deflection w(x, y) at the first
natural frequency f11, neglecting all other modes, can now be calculated, and
becomes
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Wẅ(x, y, f11) =
1

(2ζ11)2

(
16
π2

)2

Wp(f11)
(

A

M

)2(
sin

πx

a
sin

πy

b

)2

. (3.60)

Equation (3.60) is very similar to (3.44). If ζ11 = 5% = 1
Q11

then (Q2
11β

2) =
16.2112 = 262.8, which is somewhat higher than that in (3.44).

3.5.3 The Stress in an Acoustically Loaded Panel

Based on the NASA guidelines, [134], the following steps can be followed for
establishing acoustic loads of the planar components:

1. Estimate the panel fundamental natural frequency fn.
2. Convert the sound pressure levels to sound pressure PSD (3.44).
3. Based on a damping ratio ζ, determine the amplification factor Q for the

panel.
4. Use Miles’ equation to determine the rms equivalent static pressure prms

using prms =
√

π
2 fnQWp(fn).

5. The equivalent static pressure is given by the 3σ value ppeak = 3prms . This
assumes the panel fundamental mode is the same as the deflection of the
panel exposed to a uniform static pressure and the spatial correlation of
the acoustic pressure field over the panel is uniform too.

This approach is conservative.

Example. The maximum bending stress σb at the center of a circular simply
supported plate with a radius R = 0.5 m, a thickness t = 2 mm, a Poisson’s
ratio ν = 0.33 and an uniform pressure p is given by [207]:

σb =
3(3 + ν)pR2

8t2
.

Assume a fundamental frequency fn = 100 Hz a SPL = 135 dB at a center
frequency fc = 125 Hz in 1/1 octave band. The reference pressure pref =
2.0 × 10−5 Pa. The amplification factor Q = 10. The bandwidth Δf at a
center frequency fc is given by Δf = fc√

2
= 88.35 Hz. The rms pressure

p2
rms = p2

ref 10
SPL
10 = 1.265 × 104 Pa2. The PSD value of the pressure at the

center frequency fc = 125 Hz becomes Wp(125) = p2
rms

Δf = 88.4 Pa2/Hz. The
3σ or the peak value of the pressure Ppeak = 3

√
π
2 fnQWp(125) = 1422 Pa.

The bending stress σb at the center of the circular plate is the same in all
directions:

σb =
3(3 + ν)ppeakR2

8t2
=

3(3 + 0.33) × 1422 × 0.52

8 × 0.0022
= 1.11 × 108 Pa.

In [17, 18] Blevins discussed a method to calculate rms stresses in plates
exposed to random pressures.
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The modal pressure p̄ (inertia load) is defined as follows

p̄ = (2πf0)2m|δ|, (3.61)

where m (kg/m2) is the mass per unit area of the plate, f0 (Hz) is the funda-
mental natural frequency of the plate and |δ| is the maximum modal displace-
ment of φ(x, y) which is the mode shape or vibration mode. The rms stress
σrms(x, y) at a certain point (x, y) in the plate can be determined from the
following equation

σrms(x, y) =
σp̄(x, y)

p̄

√
π

2
f0QWp(f0) (3.62)

where Q is the amplification factor, Wp(f0) is the power spectral density of
the pressure, and σp̄(x, y) is the stress at the location (x, y) corresponding to
the modal pressure p̄.

The calculated bending stress in plates exposed to a random acoustic pres-
sure calculated either with the approximate method proposed in [134] or that
proposed by Blevins [17, 18] are identical. The Blevins approximate method
is discussed in more detail in Appendix H.

3.5.4 Acoustic and Random Vibration Test Tailoring

When developing a qualification test program for spacecraft, it is necessary to
determine whether there should be an acoustic or random vibration test for
each component (instrument, box, . . . ). Several criteria must be considered
when making such a decision.

First, frequency sensitivity of the component must be established, While
many subsystems are not sensitive to frequencies above 2000 Hz, those that
do respond above this threshold cannot be tested by random vibration, but
must instead be tested with acoustic noise. In these cases, decisions must be
made regarding precisely how to conduct the acoustic test. The problem is
easy for high area-to-mass components, which can be simply suspended with
bungee cords within a reverberant acoustic chamber and directly “hit” with
the acoustic source.

Low area-to-mass components are somewhat more problematic, as the vi-
bration energy input should come through the base or mounting structure
in the same manner as random vibration. This is because, when incident
acoustic energy excites a spacecraft structure, high frequency random vibra-
tion is passed through the structure to mounted components.

To simulate this in an acoustic test, the component should be mounted on
a plate. The area distribution and dynamic properties of the plate must be
similar to the spacecraft structure, so that a “flight-like” vibration environ-
ment is imparted to the unit under test. The plate should then be excited by
acoustic energy, which will be passed along to the component in the form of
high frequency random vibration.
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Below 2000 Hz, low area/mass components can be tested with random
vibration only. The random vibration input specification should be a com-
bination of acoustic and random response of the spacecraft structure at the
component interface.

The “break even” area/mass ratio, representing the regime in which both
acoustic and random vibration tests induce equal stochastic acceleration re-
sponses, can be calculated analytically for a SDOF system. A schematic of an
example component is shown in Fig. 3.11. The example component is a SDOF
system having a natural frequency f0 (Hz), a mass m and a modal damping ζ.
From the two simple SDOF systems the “break even” area/mass ration can be
calculated. The area/mass ratio A/m will be derived by applying Lyapunov’s
equation. The damped equations of motion of both SDOF systems (left and
right Fig. 3.11) can be written as follows

z̈(t) + 2ζω0ż(t) + ω2
0z(t) = −ü,

ẍ(t) + 2ζω0ẋ(t) + ω2
0z(x) =

Ap(t)
m

=
F (t)
m

,
(3.63)

where the relative motion of the left SDOF system is z = x − u, the enforced
acceleration is ü(t), A is the surface area of the right SDOF and p(t) the plane
wave pressure field exposed to the surface area of the SDOF systems. The
natural frequency of both SDOF system is ω2

0 = k/m, the damping is c/m =
2ζω0 and the damping ratio is ζ (c = 2ζ

√
km). The enforced acceleration and

the exposed pressure have a random nature with PSD’s Wüü(f) and Wpp(f)
respectively. The PSD of the equivalent force F (t) is given by WFF (f). The
left SDOF in Fig. 3.11 will be denoted by “Base Excited SDOF System” and
the right SDOF by “Pressure Loaded SDOF System”.

Fig. 3.11. Simple component under acoustic and random vibration [63, 64]
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The random responses for z and x for both equations of motion (3.63) will
be found applying Lyapunov’s equation, as discussed in Sect. 2.6. The same
solution procedure is followed on page 172.

Base Excited SDOF System

The SDOF damped equation of motion with the enforced acceleration ü(t)
will be expressed in terms of the relative displacement z(t) = x(t) − u(t)

z̈(t) + 2ζω0ż(t) + ω2
0z(t) = −ü. (3.64)

Equation (3.64) will be transformed into space-state variables y1 = z(t) and
y2 = ż(t). The state-space equation is

(
ẏ1

ẏ2

)
=
(

0 1
−ω2

0 −2ζω0

)(
y1

y2

)
+
(

0
−1

)
ü,

{ẏ} = [A]{y} + {B}ü.

The spring force Fk and the force in the damper Fc are considered to be
the output variables

{F0} =
(

Fk

Fc

)
=
(

k 0
0 c

)(
y1

y2

)
=
(

ω2
0m 0
0 2ζω0m

)(
y1

y2

)
= [C]{y}.

(3.65)
The auto correlation function of the enforced acceleration ü is given by

Rüü(τ) =
Wüü

2
δ(τ), (3.66)

where Wüü(g2/Hz) is the white noise PSD in the cyclic frequency domain.
The correlation matrix of y1, y2 is given by

[Ry1y2(0)] = [Ry1y2 ] =
(

〈y1y1〉 〈y1y2〉
〈y2y1〉 〈y2y2〉

)
=
(

〈y1y1〉 0
0 〈y2y2〉

)
, (3.67)

where 〈yiyj 〉 are the expected values. The process is assumed to be stationary,
thus d

dt 〈y1y1〉 = 〈y2y1〉 + 〈y1y2〉 = 0. This means that 〈y2y1〉 = −〈y1y2〉 = 0.
The Lyapunov equation becomes

[A][Ry1y2 ] + [Ry1y2 ][A]T = −{B} Wüü

2
{B}T ,

[
0 1

−ω2
0 −2ζω0

] [
〈y1y1〉 0

0 〈y2x2〉

]
+
[

〈y1y1〉 0
0 〈y2y2〉

] [
0 −ω2

0

1 −2ζω0

]
(3.68)

=
[

0 0
0 − Wüü

2

]
.

The solution of (3.68) is
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〈y1y1〉 = E{z2} =
Wüü

8ζω3
0

=
Wüü

64π3ζf3
0

,

〈y2y2〉 = E{ż2} =
Wüü

8ζω0
=

Wüü

16πζf0
.

(3.69)

The expected value of the spring force and the damper force {F0},
E[{F0}{F0}T ], can be obtained from

E[{F0}{F0}T ] = [C][Ry1y2 ][C]T =
(

E[F 2
k ] 0

0 E[F 2
c ]

)
=
(

〈FkFk 〉 0
0 〈FcFc〉

)

=
(

ω4
0m2〈y1y1〉 0

0 4ζ2ω2
0m2〈y2y2〉

)

=
π

2
f0Qm2Wüü

(
1 0
0 1

Q2

)
, (3.70)

where Q = 1/2ζ.
The rms values of the spring force and the damper force are respectively

Fk,rms = m

√
π

2
f0QWüü,

Fc,rms =
m

Q

√
π

2
f0QWüü.

(3.71)

The rms damper force is very small compared to the rms spring force.

Pressure Loaded SDOF System

The SDOF damped equation of motion representing the pressure loaded SDOF
and loaded by the force F = Ap(t), is be expressed in terms of the absolute
displacement x(t) is

ẍ(t) + 2ζω0ẋ(t) + ω2
0x(t) =

F (t)
m

. (3.72)

Equation (3.72) will be transformed into space-state variables y1 = x(t) and
y2 = ẋ(t):

(
ẏ1

ẏ2

)
=
(

0 1
−ω2

0 −2ζω0

)(
y1

y2

)
+
(

0
1
m

)
F,

{ẏ} = [A]{y} + {B}F.

(3.73)

The spring force Fk and the force in the damper Fc are considered to be
the output variables

{F0} =
(

Fk

Fc

)
=
(

k 0
0 c

)(
y1

y2

)
=
(

ω2
0m 0
0 2ζω0m

)(
y1

y2

)
= [C]{y}.

(3.74)
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The auto correlation function of the applied force F is

RFF (τ) =
WFF

2
δ(τ), (3.75)

where WFF (N2/Hz) is the white noise PSD in the cyclic frequency domain.
The correlation matrix of y1, y2 is given by

[Ry1y2(0)] = [Ry1y2 ] =
(

〈y1y1〉 〈y1y2〉
〈y2y1〉 〈y2y2〉

)
=
(

〈y1y1〉 0
0 〈y2y2〉

)
, (3.76)

where 〈yiyj 〉 are the expected values. The process is assumed to be stationary,
thus d

dt 〈y1y1〉 = 〈y2y1〉 + 〈y1y2〉 = 0. This means that 〈y2y1〉 = −〈y1y2〉 = 0.
The Lyapunov equation becomes

[A][Ry1y2 ] + [Ry1y2 ][A]T = −{B} WFF

2
{B}T ,

[
0 1

−ω2
0 −2ζω0

] [
〈y1y1〉 0

0 〈y2x2〉

]
+
[

〈y1y1〉 0
0 〈y2y2〉

] [
0 −ω2

0

1 −2ζω0

]
(3.77)

=
[

0 0
0 − WF F

2m2

]
.

The solution of (3.77) is

〈y1y1〉 = E{x2} =
WFF

8ζω3
0m

2
=

WFF

64π3ζf3
0 m2

=
A2Wpp

64π3ζf3
0 m2

,

〈y2y2〉 = E{ẋ2} =
WFF

8ζω0m2
=

WFF

16πζf0m2
=

A2Wpp

16πζf0m2
.

(3.78)

The expected value of the spring force and the damper force {F0},
E[{F0}{F0}T ], can be obtained from

E[{F0}{F0}T ] = [C][Ry1y2 ][C]T =
(

E[F 2
k ] 0

0 E[F 2
c ]

)
=
(

〈FkFk 〉 0
0 〈FcFc〉

)

=
(

ω4
0m2〈y1y1〉 0

0 4ζ2ω2
0m

2〈y2y2〉

)

=
π

2
f0QA2Wpp

(
1 0
0 1

Q2

)
, (3.79)

where Q = 1/2ζ.
The rms values of the spring force and the damper force are respectively

Fk,rms = A

√
π

2
f0QWpp,

Fc,rms =
A

Q

√
π

2
f0QWpp.

(3.80)

The rms damper force is very small compared to the rms spring force.
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Synthesis

The internal spring forces Fs in both SDOF systems will be equated to ob-
tain the “break even” area/mass ratio (A/m). The area/mass ratio can be
calculated using (3.71) and (3.80)

A

m
=

√
Wüü

Wpp
≈

√
Wüü(f0)
Wpp(f0)

. (3.81)

To calculate a possible “break even” a the following SDOF system will be
considered:

• The discrete mass is m = 50 kg.
• The natural frequency f0 = 125 Hz.

In the ECSS standard “Testing” [56] qualification levels for the random en-
forced vibration and acoustic SPL’s are recommended. The random vibration
specification is shown in Table 3.7 and the SPL in Table 3.8. The PSD of the
pressure field at 125 Hz is

Wpp =
(2.0 × 10−5)210

SPL(f)
10

Δf
=

(2.0 × 10−5)210
139
10

0.7071 × 125
= 332.88

Pa2

Hz
.

The PSD of the random enforced acceleration is

Wüü = 0.12
m + 20
m + 1

= 0.12
50 + 20
50 + 1

= 0.16
g2

Hz
= 15.55

(m
s2 )2

Hz
.

Table 3.7. Random Vibration test levels

Frequency (Hz) levels Wüü (g2/Hz)

20–100 +3 dB/octave
100–300 0.12 × (m + 20)/(m + 1)
300–2000 −5 dB/octave

Table 3.8. Acoustic qualification test levels

Center frequency SPL (dB)
(Hz) 0 dB = 2 × 10−5 (Pa)

31.5 130
63 135.5

125 139
250 143
500 138

1000 132
2000 128
4000 124
8000 120

OASPL 147
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The area/mass ratio becomes

A

m
=

√
Wüü(f0)
Wpp(f0)

=

√
15.55
332.88

= 0.216
m2

kg
.

In [63, 64] a typical “break even” of A/m = 0.215 m2

kg is given.
The area/mass ratio of a test object is important in the selection of a

vibration test method. Acoustic testing is more effective for high area/mass
components, while random vibration is more effective for low area/mass com-
ponents.

Problems

3.9. Consider a simply supported plate made of an Al-alloy with the following
properties; the Young’s modulus E = 70.×109 Pa, the Poisson’s ratio ν = 0.3,
the density of the material ρ = 2700 kg/m3, the thickness of the plate t =
1.25 mm, the length of the plate is b = 1 m, the width is a = 0.5 m. The plate
is exposed to a random pressure field, uniform over the surface, with an overall
sound pressure OASPL = 150 dB. The random pressure field has a constant
power spectral density over the frequency range from 20–1020 Hz. The modal
damping ratio ζ = 0.05. The maximum bending stress at the center of the
plate, exposed to a uniform pressure p, is given by σb = 0.1017pa2

t2
6

[207].

• Calculate the PSD Wp of the pressure field.
• What is the first (fundamental) natural frequency f0 (Hz) with the mode

shape φ(x, y) = sin πx
a sin πy

b ?
• What is the maximum deflection at the center of the plate.
• Calculate the modal pressure p̄.
• What is the maximum bending stress at the center of the plate exposed

to the modal pressure p̄?
• Calculate the peak stress pp =

√
π
2 f0QWp.

• What is the maximum rms bending stress at center of the plate applying
the Blevins approximation method?

Answers: 400 Pa2/Hz, f0 = 60.5 Hz, δ = 1, p̄ = 1.951×106 Pa, 1.191×1010 Pa,
pp = 616.6 Pa, 3.76 × 106 Pa.

3.10. An equipment mounting panel (1 × 1 m2) is made of a sandwich con-
struction with Al-alloy face sheets with a thickness t = 0.3 mm and the core
height h = 25 mm. The Young’s modulus of the face sheets is = 70 GPa. The
mass per unit of area of the sandwich panel is m = 3.7 kg/m2. A number of
boxes are randomly placed on the panel and the total mass of the boxes is
M = 75 kg. Calculate the lowest natural frequency of the simply supported
sandwich panel inclusive the total mass of the boxes. The panel is exposed to
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Table 3.9. SPL specification

Octave band (Hz) SPL (dB), 0 dB = 2 × 10−5 Wp(f) Pa2

32.5 128 ?
63 134 ?

125 139 ?
250 143 ?
500 138 ?

1000 132 ?
2000 128 ?

OASPL ? ?

sound pressure field as specified in Table 3.9. Calculate the OASPL and the
PSD function Wp(f).

Specify the mechanical random acceleration test environment Wa(f) g2/Hz
in the octave band to be applied by an electro-dynamic shaker system testing
one of the boxes. Visualize the acceleration specification in a x-y plot.

3.6 Fluid Structure Interaction

3.6.1 Introduction

In Sect. 3.3 no dynamic interaction between vibrating structure and acoustic
loads had been considered. The dynamic response of the structure did not
influence the acoustic pressure field.

In this section the dynamic interaction between the vibrating structure
and the acoustic field will be discussed. This fluid structure interaction is
illustrated in Fig. 3.12.

The following topics will be discussed:

• the derivation of the wave equation
• the principle of fluid structure interaction
• structural response analysis

Examples will be worked out to illustrate the theory.

3.6.2 Wave Equation

At first the static position of the air pressure will be defined. That means the
absence of sound pressures. The physical state is given by:

• pressure P0 (Pa) and
• density ρ0 (kg/m2).

The physical state in the presence of sound is given by:

• total pressure P0 + p(x, y, z, t) (Pa),
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Fig. 3.12. Dynamic interaction of an elastic structure and an ambient fluid [94]

Fig. 3.13. Deformed fluid particle

• density ρ0 + ρ(x, y, z, t) (kg/m2) and
• displacement X̄0 + ξ̄(x, y, z, t) (m),

where p(x, y, z, t) is the sound pressure and ξ̄(x, y, z, t) is the displacement of
the particle.

The deformation of the particle is shown in Fig. 3.13. The shear deforma-
tion is not considered thus the particle remains cubic after deformation. The
change in volume is as follows

V + dV =
(

1 +
∂ξx

∂x

)(
1 +

∂ξy

∂y

)(
1 +

∂ξz

∂z

)
dxdydz

≈
(

1 +
∂ξx

∂x
+

∂ξy

∂y
+

∂ξz

∂z

)
dxdydz, (3.82)

thus the ratio dV/V becomes

dV

V
=
(

∂ξx

∂x
+

∂ξy

∂y
+

∂ξz

∂z

)
= div ξ̄ = ∇ξ̄ = ξi,i, (3.83)

where i = x, y, z.
The mass balance at constant temperature (Boyle’s Law) is

ρ0V = (ρ0 + ρ)(V + dV ) = ρ0V + ρV + ρ0dV + ρdV, (3.84)
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which yields neglecting the second order term ρdV

dV

V
=

−ρ

ρ0
. (3.85)

Combining (3.83) and (3.85) will result in the following relation

ρ = −ρ0

(
∂ξx

∂x
+

∂ξy

∂y
+

∂ξz

∂z

)
= −ρ0ξ̄i,i = −ρ0 div(ξ̄). (3.86)

The sound pressure increase p can be calculated using the Hooke’s law
related to the compressibility of the fluid (air) by the following expression

p = −B
dV

V
= B

ρ

ρ0
= c2ρ, (3.87)

where c is the speed of sound (m/s), B is the bulk modulus of the fluid. The
minus sign has been applied because a decrease in the volume V will give an
increase in the sound pressure p. For an adiabatic1 gas applies that

PV γ = constant, (3.88)

where the total pressure is P = P0 +p and γ = cp

cV
is ratio of the specific heats

at constant pressure and volume. This ratio is γ = 1.66 for an ideal gas and
is γ = 1.4 for air. Differentiation (3.88) will give the following expression

dPV γ + γPV γ−1dV ≈ dPV γ + γP0V
γ−1dV, (3.89)

thus yielding

dP = p = −γP0
dV

V
= −B

dV

V
. (3.90)

The definition of the speed of sound in air c (m/s) is defined by

c =

√
B

ρ0
=

√
γP0

ρ0
=

√
1.4 × 105

1.2
= 342 m/s, (3.91)

where the density of the air ρ0 = 1.2 kg/m3 at sea level and at 20◦C.
The acceleration of the mass particle Aρ0dx can be obtained from d’Alem-

bert’s equation of equilibrium, shown in Fig. 3.14

A(P0 + p) − A

(
P0 + p +

dp

dx

)
dx − Aρ0dxü = 0, (3.92)

or in the form of Newton’s law

dp

dx
= −ρ0ü. (3.93)

1 An adiabatic process is one in which no heat is gained or lost by the system.
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Fig. 3.14. Acceleration of particle

A generalization of (3.93) will give the expression

dp

dx
e1 +

dp

dy
e2 +

dp

dz
e3 = −ρ0(ü + v̈ + ẅ),

dp

dxi
ei = −ρ0

¨̄ξj,j ,

grad(p) = −ρ0
¨̄ξ.

(3.94)

Following physical relations were derived:

• grad(p) = −ρ0
¨̄ξ,

• p = −B dV
V = B ρ

ρ0
= c2ρ,

• ρ = −ρ0 div(ξ̄).

Combining these equations we derive the wave equation

div(grad(p)) =
1
c2

p̈, (3.95)

or

∇2p =
∂2p

dx2
+

∂2p

dy2
+

∂2p

dz2
=

1
c2

p̈. (3.96)

The Fourier transform in the frequency domain of (3.96) is called the Helmholtz
equation

∂2p

dx2
+

∂2p

dy2
+

∂2p

dz2
+ k2p = 0, (3.97)

where k = ω/c is called the wave number.
In the x-direction the Helmholtz equation can be written

∂2p

dx2
+ k2p = 0. (3.98)

For x-variation, the solution of (3.95) has the form

p(x, t) = p̂(x)g(t). (3.99)

Then
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p̂′ ′(x)g(t) =
1
c2

p̂(x)g̈(t), (3.100)

p̂′ ′(x)
p̂(x)

=
1
c2

g̈(t)
g(t)

= constant = −k2, (3.101)

p̂(x) = Aejkx + Be−jkx,
(3.102)

g(t) = Cejkct + Be−jkct.

The solution of p̂(x) can be expressed as follows

p̂(x) = Aejkx + Be−jkx = C sin(kx) + D cos(kx). (3.103)

If the sound wave p̂(x) travels one period, one wavelength further, than
kλ = 2π. The wave length becomes

λ =
2π

k
=

2πc

ω
=

c

f
, (3.104)

where f is the cyclic frequency (Hz).

Example. An infinite rigid plate moves sinusoidally (harmonically) with a
velocity amplitude vw = v̂wejωt. This is illustrated in Fig. 3.15. Calculate the
pressures p̂(x), p̂(0) and the radiated energy Πrad = 1

2 �(F̂ v̂w) per unit of area.
Only the sound wave travelling in the positive x-direction is considered. At
the plate x = 0 the pressure gradient dp̂

dx = −ωρ0v̂w, so that p̂(x) = Be−jkx.
Hence, at x = 0

dp̂

dx

∣∣∣∣
x=0

= { −Bjkejkx} |x=0 = −Bjk = −jωρ0v̂w.

It follows that the constant is

B =
ω

k
ρ0v̂w = ρ0cv̂w.

The sound pressure p(x, t) can now be written as

p(x, t) = ρ0cv̂wejωt−jkx.

Fig. 3.15. Sound waves caused by a moving rigid plate
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If x and t are allowed to vary simultaneously, the pressure will remain constant
if dp̂

dt = d(kx)
dt − ω = 0, or dx

dt = ω
k = c. The sound pressure p̂(0) at x =

0 becomes p̂(0) = ρ0cU̇w, and the absolute value of the impedance (ratio
force/velocity) is | p̂(0)

v̂w
| = ρ0c, the so-called specific acoustic impedance. In

general, the impedance p̂(0)
v̂w

= ρ0ce
jα.

The radiated energy Πrad per unit of area at x = 0 can be calculated as
follows

Πrad =
1
2

� {p̂(0)v̂∗
w } =

1
2
ρ0cv̂wv̂∗

w =
1
2
ρ0cv̂

2
w,

where 1
2 � {p̂(0)v̂∗

w } = lim2T →∞
∫ T

−T
p(0, t)u̇w(t)dt = 〈p(0, t)v̂w(t)〉, and

u̇w(t) = vwejωt.

Spherical Radiator

In a spherical coordinate system with the radius r as the only variable, the
Helmholtz equation (3.97) can be written as

d2p̂

dr2
+

2
r

dp̂

dr
+ k2p̂ = 0. (3.105)

Equation (3.105) describes the radiation of a sound wave from a spherical
source (radiator) as shown in Fig. 3.16. The general solution of the pressure
wave p̂(r) for an outgoing sound wave is

p̂(r) =
Be−jkr

r
, (3.106)

where B is a constant of integration. Using the boundary condition

dp̂

dr
= −A

[(
1
r2

+
jk

r

)
e−jkr

]
r=a

= −jωρ0v̂a, (3.107)

Fig. 3.16. Spherical radiator



3.6 Fluid Structure Interaction 239

the general solution can be obtained, where v̂a is the pulsation velocity of the
spherical radiator of the surface at r = a. After introducing the boundary
condition (3.107), the solution (3.106) becomes

p̂(r) = v̂a
jωρa

1 + jka

a2

r
e−jk(r−a), r ≥ a. (3.108)

Equation (3.108) shows that the sound pressure p̂(r) ∼ 1
r , which is called the

1
r -law of spherical sources. The (point) source strength of the spherical source
is defined by

Q̂s = v̂aAsphere,r=a = v̂a4πa2, (3.109)

thus (3.108) can be rewritten as follows

p̂(r) =
Q̂s

4π

jωρ0

1 + jka

1
r
e−jk(r−a), r ≥ a. (3.110)

For a � r and ka = 2πa
λ � 1 (3.110) becomes

p̂(r) = jωρ0
Q̂s

4πr
e−jkr. (3.111)

Figure 3.17 shows half a radiating sphere, connected to a rigid wall (baffle).
The source strength of the half radiating sphere, with radius r = a and velocity
v̂(a) is given by

Q̂s = 2πa2v̂a, (3.112)

thus the radiated sound pressure expressed in (3.111) is modified, and the
radiated sound pressure p̂(r) from the half spherical radiated becomes

p̂(r) = jωρ0
Q̂s

2πr
e−jkr. (3.113)

Fig. 3.17. Spherical radiator in rigid wall
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Fig. 3.18. Plane radiator as an array of point sources

Figure 3.18 shows a number of one-sided point sources in the z-direction.
The total sound pressure p̂(x, y, z), the sum of the sound pressures p̂i(ri)
radiated by the individual point sources with source strength Q̂i, becomes

p̂(x, y, z) =
jωρ0

2π

∑
i

Q̂i

ri
e−jkri . (3.114)

For a vibrating plate, the infinitesimal source is given by

dQ̂ = ˆ̇wn(x, y)dxdy = ŵn(x, y)dA, (3.115)

where ẇ(x, y) = ẇn(x, y) = ˆ̇wn(x, y)ejωt is the velocity normal to the xy-
plane. Equation (3.114) can be rewritten as Rayleigh’s2 equation

p̂(r) =
jωρ0

2π

∫∫
A

ẇn(x, y)
r

e−jkrdA. (3.116)

3.6.3 Pressure Structure Interaction

The actual sound pressure p = p̂ejωt existing at any point in the fluid (air) is
the sum of two components [184]

p̂ = p̂bl + p̂rad , (3.117)

where the pressure pbl is defined as the pressure that would be observed
with the sound sources turned on but with the flexible structure (transpon-
der, [184]) replaced by a rigid body (i.e. its motion is blocked), the pressure
p̂rad is defined as the radiated pressure that would be observed with the sound
sources turned off but the flexible structure vibrating.
2 Lord Rayleigh 1842–1919.
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3.6.4 Structural Responses

The matrix equation of motion for a linear structural system can be written
as follows

[M ]{ẍ} + [C]{ẋ} + [K]{x} =
{

−
∫

Ai

pdAi

}
= {F }, (3.118)

where the force vector {F } represents the equivalent pressure loads at the
nodes. The pressure p is normal to the surface of the structure and directed
into the structure. The node sequence number is indicated by the index i. The
area Ai represents the node equivalent area.

The physical displacement vector {x} will be projected onto the vibration
modes multiplied by the generalized coordinates (weight factors)

{x} = [Φ]{η(t)}, (3.119)

where [Φ] is the modal matrix of undamped vibration modes and {η} is the
vector of generalized coordinates.

The coupled equations of motion (3.118) can be uncoupled using the or-
thogonality properties of the vibration (normal) modes

mkη̈k + 2ζkωkmkη̇k + ω2
kmkηk = {φk }T {F }, k = 1, 2, . . . , M, (3.120)

where M is the number of kept vibration modes, the generalized mass is
mk = {φk }T [M ]{φk }, the generalized stiffness kk = {φk }T [K]{φk } = ω2

kmk

and the generalized damping ck = {φk }T [C]{φk } = 2ζkωkmk. In general, the
generalized damping or modal damping will be introduced later on after the
undamped equations of motion are uncoupled. The damping matrix [C] is
normally not known. Finally the uncoupled damped equations of motion can
be expressed as follows

η̈k + 2ζkωkη̇k + ω2
kηk =

{φk }T {F }
mk

=
{φk }T {−

∫
Ai

pdAi}
mk

,

k = 1, 2, . . . , M, i = 1, 2, . . . , N, (3.121)

or substituting (3.117) in (3.121) we obtain the following equations are ob-
tained

η̈k + 2ζkωkη̇k + ω2
kηk =

{φk }T { −
∫

Ai
(pbl + prad)dAi}
mk

,

k = 1, 2, . . . , M, i = 1, 2, . . . , N. (3.122)

The radiation pressure p̂rad can be calculated with (3.116), however, the nor-
mal velocity ˆ̇wn will be projected on to the modal base [Φ] weighted by the
generalized coordinates {η} as follows

{ ˆ̇wi,n} = [Φn]]{η̇}. (3.123)
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The radiated pressure p̂rad becomes

p̂rad(x, y, z) = − ω2ρ0

2π

N∑
i

Aiŵn(xi, yi, zi)
e−jkri

ri

= − ω2ρ0

2π

N∑
i

Ai[φi]{η̂} e−jkri

ri
, (3.124)

where η(t) = η̂ejωt, ri the distance between the node and the position (x, y, z)
and [φi] are the modal properties in relation with the normal displacement wi,n

of the node i on the surface of the vibrating structure. The equivalent nodal
load vector {−

∫
Ai

praddA} can now obtained by the following expression

{
−
∫

Ai

praddA

}
=

ω2ρ0

2π

∑
i

Ai

(∑
n

An[φn]{η̂} e−jkrn

rn

)

=
ω2ρ0

2π

∑
i

Ai

(∑
n

An[φn]{η̂} {cos kri − j sin krn}
rn

)
,

i, n = 1, 2, . . . , N, (3.125)

where all nodes i and n are located on the surface of the vibrating structure,
as is the point (x, y, z) where the radiated pressure is measured. In fact this
location is a node.

The distance between nodes i and k, Δrik = |ri − rk |. This is illustrated
in Fig. 3.19. Equation (3.125) is now completely written in vector and matrix
notation{∫

Ai

praddA

}
= − ω2ρ0

2π
�Ai�

[
{cos kΔrin − j sin kΔrin}

Δrin

]
�An�[Φ]{η}

= − ω2ρ0

2π
�A�

[
{cos kΔrin − j sin kΔrin}

Δrin

]
�A�[Φ]{η},

i, n = 1, 2, . . . , N. (3.126)

Fig. 3.19. Surface nodes
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The generalized force associated with vibration mode ψl becomes

{φl}T

{∫
Ai

praddA

}

= − ω2ρ0

2π
{φl}T

∑
n

(
�Ai�

[
{cos kΔrin − j sin kΔrin}

Δrin

]
�An�{φm}{η}

)

= jω
∑

l

(Rlm + jωMlm)ηm,

i, n = 1, 2, . . . , N, l, m = 1, 2, . . . , M, (3.127)

where Rkl is called the modal resistance and Mkl the modal inertia and are
given by

Rlm =
ωρ0

2π
{φl}T �A�

[
sin kΔrin

Δrin

]
�A�{φm}, i, n = 1, 2, . . . , N,

Mlm =
ρ0

2π
{φl}T �A�

[
cos kΔrin

Δrin

]
�A�{φm}, l, m = 1, 2, . . . , M,

(3.128)

and where N is the number of nodes and M the number of modes.
In case i = n, thus Δrin = 0, the following expressions can be derived

using L’Hôpital’s rule

lim
Δrin →0

sin kΔrin

Δrin
= k,

lim
Δrin →0

cos kΔrin

Δrin
= 0.

(3.129)

Equation (3.122) is the basis for further evaluation the equations of motion.

η̈k + 2ζkωkη̇k + ω2
kηk =

{φk }T { −
∫

Ai
(pbl + prad)dAi}
mk

, k = 1, 2, . . . , M,

and can be written as follows, where η(t) is the Fourier transform η(t) =
η̂(ω)ejωt[

ω2
k − ω2

(
1 +

Mkk

mk

)
+ jω

(
2ζkωk +

Rkk

mk

)]
η̂k(ω)

+
N∑

j=1,j �=k

[
ω2 Mjk

mk
+ jω

Rjk

mk

]
η̂j(ω) = − 1

mk
{φk }T

{∫
Ai

pbldAi

}
,

k = 1, 2, . . . , M. (3.130)

The coupling terms in (3.130) will be neglected assuming Mkl � Mkk and
Rkl � Rkk, hence[

ω2
k − ω2

(
1 +

Mkk

mk

)
+ jω

(
2ζkωk +

Rkk

mk

)]
η̂k(ω)

= − 1
mk

{φk }T

{∫
Ai

pbldAi

}
= − 1

mk
{φk }T �Ai�{pbl,i}, k = 1, 2, . . . N.

(3.131)
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The joint acceptance function Jlm had been defined in (3.37), page 212. For
a diffuse sound field, the joint acceptance is

Jlm = {φl}T �Ai�
[
sin kΔin

kΔin

]
�An�{φm}, i, n = 1, 2, . . . , N. (3.132)

The modal inertia Mlm and the modal resistance Rlm can be related to the
joint acceptance Jml. The following expressions can be derived

Mlm =
ρ0k

2π
Jlm,

Rlm =
ωρ0k

2π
Jlm =

ω2ρ0

2πc
Jlm.

(3.133)

The cross PSD of the generalized coordinates η̂i, Sη̂iη̂j (ω) can be calculated
as follows

Sη̂iη̂j (ω) =
Hi(ω)H∗

j (ω)Jij

ω2
i ω2

j mimj
Sp(ω), (3.134)

where Sp(ω) is the PSD of the blocked pressure field. The FRF Hi(ω) is given
by

Hi(ω) =
ω2

i

1 − ω2

ω2
i
(1 + Mii

mi
) + jω

ω2
i
(2ωiζi + Rii

mi
)
. (3.135)

The PSD of the physical displacement {x} can be calculated

Sx̂ix̂j (ω) = {φi}Sη̂iη̂j (ω){φj }T , (3.136)

where the displacement vector {x(t)} = {x̂(t)}ejωt. The matrix of the cross
PSD [Sx̂ix̂j (ω)] of the physical displacements {x̂} can be obtained by (3.38)

[Sx̂ix̂j (ω)] = [Φ][Sη̂iη̂j (ω)][Φ]T ,

the matrix of cross PSD [S ˙̂xi
˙̂xj

] of the velocities { ˙̂x} can be calculated by
(3.39)

[S ˙̂xi
˙̂xj

(ω)] = ω2[Φ][Sη̂iη̂j (ω)][Φ]T ,

and the matrix of cross PSD [S¨̂xi
¨̂xj

(ω)] of the accelerations {¨̂x} is in accor-
dance with (3.40)

[S¨̂xi
¨̂xj

(ω)] = ω4[Φ][Sη̂iη̂j (ω)][Φ]T .

The matrix of cross PSD of the stresses Sσ̂iσ̂j (ω) of the internal stress field
σ̃ can be expressed as follows (3.41)

[Sσ̂iσ̂j (ω)] = [Φσ][Sη̂iη̂j (ω)][Φσ]T ,

where [Φσ] is the matrix of stress modes.
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The single sided PSD functions given in the cyclic frequency domain are
in general (2.61)

W (f) = 2S(ω). (3.137)

The relation between the blocked pressure and the incidence (free-free)
pressure, specified by the usual SPL levels (dB) (see (3.1)) is roughly

Wpbl
(f) = Wp(f)〈Γ 2〉, (3.138)

where

• 〈Γ 2〉 = 1, f ≤ c
2a ,

• 〈Γ 2〉 = 2, f > c
2a ,

where a is the characteristic dimension of the plate and shell structure, e.g.
a ≈

√
Aplate . A more detailed discussion can be read in [184, 185].

Example. A simply supported bending beam has bending stiffness EI(Nm2),
and m (kg/m) mass per unit of length of the beam. The width of the beam
is b (m), and L (m) is the length of the beam. Only the first vibration mode
φ(x) = sin πx

L is taken into account to calculate the response characteristics
of the beam when it is exposed to a reverberant sound field with PSD Wp(f)
(Pa2/Hz).

The deflection w(x, t) of the beam is given by w(x, t) = φ(x)η(t). The nat-
ural frequency f1 associated with the vibration mode φ(x) can be calculated
using Rayleigh’s quotient R(φ)

ω1 = 2πf1 =
√

R(φ) =

√√√√0.5
∫ L

0
EI(d2φ

dx2 )2dx

0.5
∫ L

0
mφ2dx

= π2

√
EI

mL4
.

The generalized mass m1 becomes

m1 =
∫ L

0

m sin2 πx

L
dx =

1
2
mL.

The joint acceptance function for an unidirectional reverberant sound field
can be calculated as follows

J11(ω) = b2

∫ L

0

∫ L

0

φ(x)φ(y)
sin k(x − y)

k(x − y)
dxdy

= b2

∫ L

0

∫ L

0

sin
πx

L
sin

πy

L

sin k(x − y)
k(x − y)

dxdy,

where the wave number k = ω/c.
The modal inertia M11 and the modal resistance R11 can be obtained by

the following expression
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M11 =
ρ0b

2

2π

∫ L

0

∫ L

0

sin
πx

L
sin

πy

L

cos k(x − y)
(x − y)

dxdy,

R11 =
ωρ0b

2

2π

∫ L

0

∫ L

0

sin
πx

L
sin

πy

L

sin k(x − y)
(x − y)

dxdy.

The equation of motion for the generalized coordinated η1(t) = η̂1(ω)ejωt

yields

[−ω2(m1 + M11) + jω(2ζ1ω1m1 + R11)]η̂1 = −b

∫ L

0

sin
πx

L
p̂bldx,

where the blocked pressure is pbl(t) = p̂bl(t)ejωt. The PSD of the reverberant
blocked pressure is given by

Sbl(x, ω) = Sbl(ω)
sin k(Δx)

kΔx
=

Wbl(f)
2

sin k(Δx)
kΔx

=
Wp(f)

2
sin k(Δx)

kΔx
.

The PSD function Sη1(ω) is defined by Sη1(ω) = limT →∞
|η̂1|2
2T and the

PSD function of the blocked pressure Spbl
(ω) is defined by Spbl

(ω) =
limT →∞

|p̂bl1|2
2T . The PSD function the PSD function Sη1(ω) can be expressed

as follows

Sη1(ω) =
|H1(ω)|2
m2

1ω
4
1

b2

∫ L

0

sin2 πx

L
Spbl

(x, ω)dx

=
|H1(ω)|2
m2

1ω
4
1

b2Spbl
(ω)

∫ L

0

∫ L

0

sin
πx

L
sin

πy

L

sin k(x − y)
k(x − y)

dxdy

=
|H1(ω)|2J11(ω)

m2
1ω

4
1

Spbl
(ω),

where the FRF H1(ω) is given by

H1(ω) =
1

1 − ω2

ω2
1
(1 + M11

m1
) + jω

ω2
1
(2ζ1ω1 + R11

m1
)
.

The bending beam has a length L = 1.0 m and the mass per unit of length
m = 1.866 kg/m. The lowest natural frequency is f1 = 50 Hz and the width
of the beam is b = 0.5 m. The speed of sound in air is c = 342 m/s (the wave
number is k = ω1/c = 0.919). The modal damping ratio ζ = 0.02.

The joint acceptance J11 for the unidirectional diffuse sound field can now
be calculated.

J11(ω1) = b2

∫ L

0

∫ L

0

sin
πx

L
sin

πy

L

sin k(x − y)
k(x − y)

dxdy = 0.1.

The modal added mass
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M11(ω1) =
ρ0k

2π
J11(ω1) = 0.018,

and the modal resistance

R11(ω1) =
ωρ0k

2π
J11(ω1) = 5.511.

The mass ratio
M11

m1
= 0.019,

and the damping ratio
R11

2m1ω1ζ
= 0.47,

mean that the added mass is relatively low with respect to the generalized
mass and the modal resistance is 47% of the modal damping.
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Statistical Energy Analysis



4

Statistical Energy Analysis

4.1 Introduction

Statistical energy analysis (SEA) originated in the aerospace industry in the
early 1960s. Today, SEA is applied to a large variety of products, from cars
and trucks to aircraft, spacecraft, electronic equipment, buildings, consumer
products and more. SEA is based on the principle of energy conservation.
All the energy input to a system, through mechanical or acoustic excitation,
must leave the system through structural damping or acoustic radiation. The
method is fast and is applicable over a wide frequency range. SEA is very
good for problems that combine many different sources of excitation, whether
mechanical or acoustic. In SEA the structural vibrational behavior of elements
(subsystems) is described statistically. For high-frequencies a deterministic
modal description of the dynamic behavior of structures is not very useful.
The modes (oscillators) are grouped statistically and the energy transfer from
one group of modes to another group of modes is statistically proportional
to the difference in the subsystem total energies. Readers who are interested
in a more detailed description of the SEA method are encouraged to read
the following interesting literature [116, 214, 229]. A very clear discussion
and explanation of the SEA can be found in [138]. SEA is attractive for
high-frequency regions where a deterministic analysis of all resonant modes
of vibration is not practical.

In [120] Richard Lyon explained his motivation for calculating the power
flow between modes of vibration excited by random noise sources.

4.2 Some Basics about Averaged Quantities

The average power of the product of the displacement x1(t) and x2(t) is
defined as [185, 96]

〈x1x2〉 = lim
T →∞

1
T

∫ T

0

x1(t)x2(t)dt =
1
2

�[X1(ω)X∗
2 (ω)], (4.1)

J. Wijker, Random Vibrations in Spacecraft Structures Design,
Solid Mechanics and Its Applications 165,
c© Springer Science + Business Media B.V. 2009
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where the star ∗ denote the complex conjugate. The displacement x1,2(t) can
be written, using Euler’ identity [53], as follows

x1,2(t) = �[X1,2(ω)ejωt] = �(X1,2) cos(ωt) − �(X1,2) sin(ωt). (4.2)

The average power 〈x1x2〉 of x1(t) and x2(t) now becomes

〈x1x2〉 = [� {X1(ω)} � {X2(ω)}]〈cos2(ωt)〉
+ [� {X1(ω)} � {X2(ω)}]〈sin2(ωt)〉
− � {X1(ω)} � {X2(ω)} 〈sin(ωt) cos(ωt)〉
− � {X2(ω)} � {X1(ω)} 〈sin(ωt) cos(ωt)〉. (4.3)

The time average values of 〈sin2(ωt)〉, 〈cos2(ωt)〉 and 〈sin(ωt) cos(ωt)〉 are

〈sin2(ωt)〉 = lim
T →∞

1
T

∫ T

0

sin2(ωt)dt =
ω

2π

∫ 2π
ω

0

sin2(ωt)dt =
1
2
, (4.4)

〈cos2(ωt)〉 = lim
T →∞

1
T

∫ T

0

cos2(ωt)dt =
ω

2π

∫ 2π
ω

0

cos2(ωt)dt =
1
2
, (4.5)

and

〈sin(ωt) cos(ωt)〉 = lim
T →∞

1
T

∫ T

0

sin(ωt) cos(ωt)dt

=
ω

2π

∫ 2π
ω

0

sin(ωt) cos(ωt)dt = 0. (4.6)

Equation (4.3) can be rewritten as follows

〈x1x2〉 =
1
2
[{ � {X1(ω)} � {X2(ω)} + � {X1(ω)} � {X2(ω)}]

=
1
2

� {X1(ω)X∗
2 (ω)}. (4.7)

As a consequence of (4.7) the average of x2(t), namely 〈x2〉, is

〈x2〉 =
1
2

�[X(ω)X∗(ω)] =
1
2

|X(ω)|2. (4.8)

With the aid of (4.7)we can write the following combinations of time av-
erage values 〈x1ẋ2〉, 〈x2ẋ1〉, 〈ẍ1ẋ2〉 and 〈ẍ2ẋ1〉:

〈x1ẋ2〉 =
1
2

� {X1(ω)Ẋ∗
2 (ω)} =

1
2

� {jωX1(ω)X∗
2 (ω)}

=
ω

2
[� {X1(ω)} � {X2(ω)} − �{X2(ω)} � {X1(ω)}], (4.9)

and
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〈x2ẋ1〉 =
1
2

� {X2(ω)Ẋ∗
1 (ω)} =

1
2

� {jωX2(ω)X∗
1 (ω)}

=
ω

2
[� {X2(ω)} � {X1(ω)} − � {X1(ω)} � {X2(ω)}]. (4.10)

From (4.9) and (4.10) we can conclude that 〈x1ẋ2〉 and 〈x2ẋ1〉 are skew-
symmetric, thus

〈x1ẋ2〉 = −〈x2ẋ1〉. (4.11)

If x1 = x2 = x, (4.11) will give

〈xẋ〉 = −〈xẋ〉 = 0. (4.12)

It can be proven that the average value of 〈ẍ1ẋ2〉 can be expressed in terms
of 〈x1ẋ2〉

〈ẍ1ẋ2〉 = −ω2〈x1ẋ2〉, (4.13)

and therefore 〈ẍ1ẋ2〉 is skew-symmetric too

〈ẍ1ẋ2〉 = −〈ẍ2ẋ1〉, (4.14)

from which, it follows that

〈ẍẋ〉 = −〈ẋẍ〉 = 0. (4.15)

The equation of motion of a SDOF dynamic system with a discrete mass
m, a spring stiffness k and damper c and external force F (t) is given by

mẍ + cẋ + kx = F (t). (4.16)

The average input power Πin is expressed by

Πin = 〈F ẋ〉 =
1
2

� {F (ω)Ẋ(ω)}, (4.17)

where x(t) = X(ω)ejωt and F (t) = F (ω)ejωt. If the averages are applied to
(4.16) the following relation is obtained

m〈ẍẋ〉 + c〈ẋ2〉 + k〈xẋ〉 = 〈F (t)ẋ〉 = Πin . (4.18)

In accordance with (4.12) and (4.15) the average values of 〈ẍẋ〉 = 〈xẋ〉 = 0
and therefore (4.18) becomes

Πin = c〈ẋ2〉 = Πdiss , (4.19)

where Πdiss is the dissipated energy in the damper c. The interpretation of
(4.19), is that the average power Πin introduced in the SDOF system is equal
to the power Πdiss dissipated by the damper. The dissipated power Πdiss can
be rewritten and expressed in terms of the mass m, modal damping ratio ζ,
the natural frequency ωn and Ẋ(ω)
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Πdiss = c〈ẋ2〉 = 2ζ
√

km〈ẋ2〉 = mζωn|Ẋ(ω)|2, (4.20)

where 2
√

km is the critical damping. The loss factor η is the ratio of the dissi-
pated energy per cycle divided by the peak strain energy per cycle. Normally
the loss factor η = 2ζ. Thus the average dissipated power can be rewritten as

Πdiss = mηωn〈ẋ2〉 =
1
2
mηωn|Ẋ(ω)|2. (4.21)

The mobility function Y (ω) is the ratio of the velocity Ẋ(ω) and the
applied force F (ω)

Y (ω) =
Ẋ(ω)
F (ω)

, (4.22)

where � {Y (ω)} is called the conductance and � {Y (ω)} the susceptance. For
a SDOF system, the mobility function Y (ω) is

Y (ω) =
jω

m{ω2
n − ω2 + jηωωn} . (4.23)

The average of ẋ2(t), 〈ẋ2〉, can be expressed as follows

〈ẋ2〉 =
1
2

|Ẋ2(ω)| =
1
2

{Y (ω)F (ω)F ∗(ω)Y ∗(ω)}

= |Y 2(ω)| 1
2

{F (ω)F ∗(ω)} = |Y 2(ω)| 〈F 2〉. (4.24)

The average power input Πin = 〈F ẋ〉 can now be expressed as follows

Πin = 〈F ẋ〉 =
1
2

� {F (ω)Ẋ∗(ω)} =
1
2

|F (ω)|2� {Y ∗(ω)}

=
1
2
mηωn|F (ω)|2|Y (ω)|2 =

1
2
mηωn|X(ω)|2. (4.25)

Example. A SDOF system has a natural frequency ωn = 2πfn = 208.2 rad/s.
The discrete mass is m = 150 kg. A steady-state oscillation force with an
amplitude F = 100 N produces a steady-state velocity v = Ẋ = 0.2 m/s.
Estimate the loss factor η.

The average input power is given by Πin = 1
2FẊ and the average dissi-

pated power is Πdiss = 1
2mηωnẊ2. These are equal Πin = Πdiss . The loss

factor η can be calculated from

η =
F

mωnẊ
=

100
150 × 208.2 × 0.2

= 0.0016.

For a stationary and ergodic random process, the average power of the
velocity ẋ(t) can be expressed as

〈ẋ2〉 =
∫ ∞

0

Wẋẋ(f)df, (4.26)
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and the average power of F (t) is given by

〈F 2〉 =
∫ ∞

0

WFF (f)df, (4.27)

where Wẋẋ(f) is the PSD of the velocity ẋ(t), and WFF (f) is the PSD of the
external force F (t).

In a narrow frequency band with the center frequency f and bandwidth
Δf , the average power of the velocity ẋ(t) and external force F (t) can obtained
using (4.26) and (4.27):

〈ẋ2〉Δf = Wẋẋ(f)Δf, (4.28)

and
〈F 2〉Δf = WFF (f)Δf. (4.29)

The PSD of the velocity ẋ(t) can be expressed in terms of the PSD of the
external force F (t) using (4.24), thus

Wẋẋ(f) = |Y (f)|2WFF (f),

Sẋẋ(ω) = |Y (ω)|2SFF (ω),
(4.30)

where W (f) = 2S(ω). W (f) is the single-sided PSD function dependent upon
the frequency (Hz, cps) and S(ω) is the double-sided PSD function in the
frequency domain (rad/s).

The average power or mean square of ẋ(t) can now be obtained

〈ẋ2〉 =
∫ ∞

0

Wẋẋ(f)df =
∫ ∞

0

|Y (f)|2WFF (f)df

=
1
4π

∫ ∞

− ∞
|Y (ω)|2SFF (ω)dω, (4.31)

where Y (ω) is already given in (4.23)
The integral 1

2π

∫∞
− ∞ |Y (ω)|2dω has a closed form solution (see Appen-

dix B) and with

• a0 = m
• a1 = mηωn

• a2 = mω2
n

• b0 = −1
• b1 = 0

it is
1
2π

∫ ∞

− ∞
|Y (ω)|2dω =

a0b1
a2

− b0

2a0a1
=

1
2m2ηωn

. (4.32)

The integral (4.31) can be further approximated because |Y (ωn)|2 is very
peaked and the PSD WFF (f) = 2SFF (ω) is smooth and constant near ωn or
fn, therefore (4.31) may be written as follows
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〈ẋ2〉 =
∫ ∞

0

Wẋẋ(f)df =
1
2π

∫ ∞

0

|Y (ω)|2SFF (ω)dω

≈ WFF (fn)
4π

∫ ∞

− ∞
|Y (ω)|2dω =

WFF (fn)
4m2ηωn

=
WFF (fn)
8m2πηfn

. (4.33)

The total average energy 〈E〉 is the average of the sum of the kinetic energy
T and the strain energy U

〈E〉 = 〈T + U 〉 =
〈

1
2
mẋ2(t) +

1
2
kx2(t)

〉

=
1
2

(
m〈ẋ2〉 +

k

ω2
n

〈ẋ2〉
)

= m〈ẋ2〉, (4.34)

where 〈ẋ2〉 = ω2
n〈x2〉 and k = mω2

n. With (4.33) the average energy 〈E〉 of the
SDOF system with mass m and average power of the velocity 〈ẋ2〉 is, becomes

〈E〉 = m〈ẋ2〉 =
WFF (fn)
8mπηfn

=
WFF (fn)
4mηωn

. (4.35)

The average dissipated energy Πdiss can now expressed in terms of the
average energy 〈E〉 as follows:

Πdiss = mηωn〈ẋ2〉 = ηωn〈E〉. (4.36)

Furthermore the average power 〈ẍ2〉 of the acceleration can be derived
with the knowledge that 〈ẍ2〉 = ω2

n〈ẋ2〉

〈ẍ2〉 =
ωnWFF (fn)

4m2η
=

1
m2

π

2
fnQWFF (fn), (4.37)

which is Miles’ equation, where the amplification factor is Q = 1
η = 1

2ζ .
The average input power Πin of the external force F (t) is equal to the

average dissipated power Πdiss :

Πin = mηωn〈ẋ2〉 = ηωn〈E〉 =
WFF (fn)

4m
. (4.38)

4.3 Two Coupled Oscillators

Consider a simple two-SDOF system as shown in Fig. 4.1. The coupling ele-
ment between the two SDOFs is a linear spring and is non dissipative. The
quantities of interest in this section are the average energies of each oscillator
and the average energy flow between them.

The 2DOF systems, as shown Fig. 4.1 are coupled with a linear spring k12.
The equations of motion of the two coupled oscillators are

m1ẍ1 + c1ẋ1 + k1x1 + k12(x1 − x2) = F1, (4.39)
m2ẍ2 + c2ẋ2 + k2x2 + k12(x2 − x1) = F2, (4.40)

where



4.3 Two Coupled Oscillators 257

Fig. 4.1. Two coupled oscillators [214]

• ω1 =
√

k1
m1

, ω2 =
√

k2
m2

, ω12 =
√

k12
m1m2

• c1 = 2ζ1

√
k1m1, c2 = 2ζ2

√
k2m2

• c1
m1

= 2ζ1ω1 = η1ω1, c2
m2

= 2ζ2ω2 = η2ω2.

The mass and gyroscopic coupling in the coupling element L is not considered
because these coupling elements are discussed in detail in [116]. Adding mass
and gyroscopic coupling complicates the analysis unnecessarily. Dividing the
equations motion of the coupled system by m1 and m2 respectively we find

ẍ1 + 2ζ1ω1ẋ1 + ω2
1x1 + m2ω

2
12(x1 − x2) =

F1

m1
, (4.41)

ẍ2 + 2ζ2ω2ẋ2 + ω2
2x2 + m1ω

2
12(x2 − x1) =

F2

m2
. (4.42)

In this mathematical model of the two coupled oscillators the applied forces
F1 and F2 are not correlated and therefore 〈F1F2〉 = 0.

The average power supplied by the force F1 is 〈F1ẋ1〉 and the average
power supplied by F2 is 〈F2ẋ2〉. The modified equations of motion (4.41)
become

〈ẍ1ẋ1〉 + 2ζ1ω1〈ẋ2
1〉 + ω2

1 〈x1ẋ1〉

+ m2ω
2
12〈(x1 − x2)ẋ1〉 =

〈F1ẋ1〉
m1

, (4.43)

and

〈ẍ2ẋ2〉 + 2ζ2ω2〈ẋ2
2〉 + ω2

2 〈x2ẋ2〉

+ m1ω
2
12〈(x2 − x1)ẋ2〉 =

〈F2ẋ2〉
m2

. (4.44)
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The averages 〈ẍiẋi〉 = 0 and 〈xiẋi〉 = 0 and 〈xiẋj 〉 = −〈xj ẋi〉 and therefore

〈F1ẋ1〉 + 〈F2ẋ2〉 = 2m1ζ1ω1〈ẋ2
1〉 + 2m2ζ2ω2〈ẋ2

2〉, (4.45)

which means that the average powers supplied to the two coupled SDOFs
is dissipated by the dampers and no energy is dissipated in the coupling
element L. This coupling element is called conservative.

The average power flow from oscillator 1 to oscillator 2 is defined as

Π12 = −〈k12x2ẋ1〉 = −m1m2ω
2
12〈x2ẋ1〉

= − 1
2
m1m2ω

2
12� {X2Ẋ

∗
1 }. (4.46)

The negative sign introduced to be consistent with average damping energy
because the power flow from system 1 to system 2 is extracted from the energy
of system 1. The power flow Π12 will be evaluated and expressed in terms of
the PSD functions of the applied forces WF1F1(f) and WF2F2(f). We will show
that the average power flow Π12 can be written as

Π12 = β12[〈E1〉 − 〈E2〉], (4.47)

where β12 is the coupling factor and 〈Ei〉 is taken from (4.35). The coupling
factor β12 will now be calculated.

The displacement x1 and x2 are harmonic and can be written
(

x1(t)
x2(t)

)
=
(

X1(ω)
X2(ω)

)
ejωt =

(
X1

X2

)
ejωt. (4.48)

The introduction of (4.48) into the equations of motion of the coupled SDOF
systems in (4.41) leads to
(

−ω2 + 2jζ1ωω1 + ω2
1 + m2ω

2
12 −m2ω

2
12

−m1ω
2
12 −ω2 + 2jζ2ωω2 + ω2

2 + m1ω
2
12

)(
X1

X2

)

=

(
F1
m1
F2
m2

)
. (4.49)

The unknown displacement X1 and X2 will be expressed in terms of F1 and F2.
The determinant D(ω) of the matrix in (4.49) is

D(ω) = a0ω
4 − ja1ω

3 − a2ω
2 + ja3ω + a4

= a0(jω)4 + a1(jω)3 + a2(jω)2 + a3jω + a4, (4.50)

where

• a0 = 1
• a1 = 2(ζ1ω1 + ζ2ω2)
• a2 = {ω2

1 + ω2
2 + ω2

12(m1 + m2) + 4ζ1ζ2ω1ω2}
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• a3 = 2(ζ1ω1ω
2
2 + ζ2ω2ω

2
1 + ζ1m1ω

2
12ω1 + ζ2m2ω2ω

2
12)

• a4 = (ω2
1ω2

2 + m1ω
2
12ω

2
1 + m2ω

2
12ω

2
2).

Use Cramer’s rule to solve for X1 and X2:

X1 =
1

m1m2D(ω)
[{m2F1(−ω2 + 2jζ2ωω2 + ω2

2 + m1ω
2
12)}

+ m1m2ω
2
12F2], (4.51)

and

X2 =
1

m1m2D(ω)
[{m1F2(−ω2 + 2jζ1ωω1 + ω2

1 + m2ω
2
12)}

+ m1m2ω
2
12F1]. (4.52)

The displacements X1 and X2 in (4.51) and (4.52) can be expressed in a more
straight forward manner:

X1(ω) = H11(ω)F1(ω) + H12(ω)F2(ω), (4.53)
X2(ω) = H21(ω)F1(ω) + H22(ω)F2(ω), (4.54)

where Hij(ω) are the receptances

• H11(ω) = 1
m1D(ω) (−ω2 + 2jζ2ωω2 + ω2

2 + m1ω
2
12)

• H12(ω) = H21(ω) = ω2
12

D(ω)

• H22(ω) = 1
m2D(ω) (−ω2 + 2jζ1ωω1 + ω2

1 + m2ω
2
12).

The velocities Ẋ1 and Ẋ2, in the frequency domain, are also expressed in
terms of the applied forces F1 and F2 and the mobility functions Yij = jωHij

Ẋ1(ω) = Y11(ω)F1(ω) + Y12(ω)F2(ω), (4.55)
Ẋ2(ω) = Y21(ω)F1(ω) + Y22(ω)F2(ω). (4.56)

The average power flow from SDOF 1 to SDOF 2 is calculated using (4.46)

Π12 = −m1m2ω
2
12〈x2ẋ1〉 = − 1

2
m1m2ω

2
12� {X2(ω)Ẋ∗

1 (ω)}.

The average power flow Π12 when the expressions for Ẋ1(ω) and X2(ω) are
substituted in (4.46) becomes

〈x2ẋ1〉 =
1
2

� {X2Ẋ
∗
1 }

=
1
2

� {H21Y
∗
11|F1|2 + H22Y

∗
12|F2|2 + H21Y

∗
12F1F

∗
2 + H22Y

∗
11F2F

∗
1 }.

(4.57)

The external forces F1 and F2 are not correlated, hence 〈F1F2〉 = 1
2 � {F1F

∗
2 } =

1
2 � {F2F

∗
1 } = 0 and therefore (4.57) can simplified as follows
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〈x2ẋ1〉 =
1
2

� {X2Ẋ
∗
1 }

=
1
2

� {H21Y
∗
11|F1|2 + H22Y

∗
12|F2|2}. (4.58)

Equation (4.58) will elaborated term by term

H21Y
∗
11 =

ω2
12

m1|D(ω)|2 {jω3 − 2ζ2ω2ω
2 − jω(ω2

2 + m1ω
2
12)}, (4.59)

H22Y
∗
12 =

ω2
12

m2|D(ω)|2 {jω3 + 2ζ1ω1ω
2 − jω(ω2

1 + m2ω
2
12)}. (4.60)

The average of 〈x2ẋ1〉 = 1
2 � {X2Ẋ1} will be further worked out and the fol-

lowing expressions obtained

〈x2ẋ1〉 =
ω2ω2

12

m2|D(ω)|2 {ζ1ω1} |F2|2 − ω2ω2
12

m1|D(ω)|2 {ζ2ω2}|F1|2, (4.61)

〈x2ẋ1〉 =
ω2

12

m1m2|D(ω)|2 {m1ω
2ζ1ω1|F2|2 − m2ω

2ζ2ω2|F1|2}, (4.62)

〈x2ẋ1〉 = −ζ1ζ2ω1ω2ω
2
12

{
ω2|F1|2

|D(ω)|2m1ζ1ω1
− ω2|F2|2

|D(ω)|2m2ζ2ω2

}
. (4.63)

The average power flow Π12 now becomes

Π12 = m1m2ζ1ζ2ω1ω2ω
4
12

{
ω2|F1|2

|D(ω)|2m1ζ1ω1
− ω2|F2|2

|D(ω)|2m2ζ2ω2

}
. (4.64)

The loss factor η = 2ζ will be introduced in (4.64), thus

Π12 =
m1m2η1η2ω1ω2ω

4
12

2

{
ω2|F1|2

|D(ω)|2m1η1ω1
− ω2|F2|2

|D(ω)|2m2η2ω2

}
. (4.65)

The time average 〈x2ẋ1〉 can also written as

〈x2ẋ1〉 =
∫ ∞

0

Wx2ẋ1(f)df =
1
2π

∫ ∞

− ∞
Sx2ẋ1(ω)dω. (4.66)

The PSD functions WF1F1(f) and WF2F2(f) of the external forces F1(ω)
and F2(ω) are assumed to be smooth and constant functions in the neighbor-
hood of the natural frequencies ω1 and ω2 respectively. The integral∫∞
0

WFF (f)df = 1
2π

∫∞
− ∞ SFF (ω)dω, where WFF (f) = 2SFF (ω). Equa-

tion (4.65) in conjunction with (4.66) can be rewritten and the average cross
power Π12 expressed in terms of the PSD functions of the external forces:

Π12 = − m1m2η1η2ω1ω2ω
4
12

2π

∫ ∞

− ∞

(jω)2dω

|D(ω)|2

[
WF1F1

4m1η1ω1
− WF2F2

4m2η2ω2

]
. (4.67)
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From (4.67) we can conclude that the cross power flow Π12 is proportional
to the difference of the total energies 〈Ei〉 of the SDOF systems 1 and 2
respectively, which accords with (4.47),

Π12 = β12[〈E1〉 − 〈E2〉].

It is easy to prove that (4.47) can be reversed and the cross power Π21 is

Π21 = β21[〈E2〉 − 〈E1〉], (4.68)

where β12 = β21.
If two conservatively coupled oscillators are identical and excited by inde-

pendent random forces, the spectrum of power flow between them is propor-
tional to the difference in the spectra of their energies. For oscillators that are
not identical, the total energy flow will be proportional to the difference in
energies, provided the excitation spectra are relatively flat near the resonance
frequencies [8].

What is left now is the calculation of the coupling factor β12:

β12 = − m1m2η1η2ω1ω2ω
4
12

2π

∫ ∞

− ∞

(jω)2dω

|D(ω)|2 . (4.69)

The (standard) integral is (see Appendix B)

1
2π

∫ ∞

− ∞

(jω)2dω

|D(ω)|2

=
b0(−a1a4 + a2a3) − a0a3b1 + a0a1b2 + a0b3

a4
(a0a3 − a1a2)

2a0(a0a2
3 + a2

1a4 − a1a2a3)
,

where

• a0 = 1
• a1 = η1ω1 + η2ω2

• a2 = {ω2
1 + ω2

2 + ω2
12(m1 + m2) + η1η2ω1ω2}

• a3 = η1ω1ω
2
2 + η2ω2ω

2
1 + η1m1ω1ω

2
12 + η2m2ω2ω

2
12

• a4 = ω2
1ω

2
2 + m1ω

2
1ω

2
12 + m2ω

2
2ω

2
12,

and

• b0 = 0
• b1 = 0
• b2 = 1
• b3 = 0,

thus
1
2π

∫ ∞

− ∞

(jω)2dω

|D(ω)|2 =
a1b2

2(a0a2
3 + a2

1a4 − a1a2a3)
. (4.70)

Finally after many manipulations the coupling factor β12 becomes
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β12 =
ω4

12m1m2(η1ω1 + η2ω2)
D

, (4.71)

where the denominator D is as follows

D =
[
(ω2

1 + ω2
12m2) − (ω2

2 + ω2
12m1)

]2

+ m1m2ω
4
12

(
2 +

η1ω1

η2ω2
+

η2ω2

η1ω1

)

+ η1η2ω1ω2

[
ω2

1 + ω2
2 + ω1ω2

(
η1

η2
+

η2

η1

)]

+ η1η2ω1ω2

[
m1ω

2
12

(
1 +

η1ω1

η2ω2

)
+ m2ω

2
12

(
1 +

η2ω2

η1ω1

)]
. (4.72)

The coupling factor β12 is positive definite and symmetric with respect to
both SDOF systems.

If SDOF 2 is blocked, i.e. 〈E2〉 = 0, then Π̄12 = β12〈E1〉. That means
the spring k12 in the coupling element is grounded. Like to the average dis-
sipated damping energy Πdiss = ωη〈E〉, the power transferred from SDOF 1
to SDOF 2 blocking SDOF 2 can be expressed as

Π̄12 = β12〈E1〉 = η12ω1〈E1〉. (4.73)

If SDOF 1 is blocked the power transferred from SDOF 2 to SDOF 1 can be
written as in (4.73):

Π̄21 = β21〈E2〉 = η21ω2〈E2〉. (4.74)

The average power Π12 transferred from SDOF 1 to SDOF 2 becomes

Π12 = Π̄12 − Π̄21 = η12ω1〈E1〉 − η21ω2〈E2〉, (4.75)

where ηij are called the coupling loss factors, ωi are the circular frequencies
and 〈Ei〉 = mi〈x2

i 〉 the total energies.
From the symmetry of the coupling factor β12 = β21 the reciprocity rela-

tion of the coupling loss factors can be derived

η12ω1 = η21ω2. (4.76)

Figure 4.2 shows two (water) subsystems (tanks), system 1 and 2. Both tanks
contain water (energy) 〈E1〉 and 〈E2〉. Water is supplied to tank 1 Π1,in and
water leaves the tanks directly as Π1,diss and Π2,diss . Water streams from
tank 1 to tank 2, as Π12. The power balance equations for the tanks are

Π1,in = Π1,diss + Π12, (4.77)
Π12 = Π2,diss , (4.78)

Π1,in = η1ω1〈E1〉 + η12ω1〈E1〉 − η21ω2〈E2〉, (4.79)
η12ω1〈E1〉 − η21ω2〈E2〉 = η2ω2〈E2〉. (4.80)



4.3 Two Coupled Oscillators 263

Fig. 4.2. Power flow analogy (Courtesy R.G. Dejong, Calvin College, USA)

Fig. 4.3. Three coupled subsystems

Equations (4.79) and (4.80) written in matrix notation
[

(η12 + η1)ω1 −η21ω2

−η12ω1 (η21 + η2)ω1

]{
〈E1〉
〈E2〉

}
=
{

Π1,in

0

}
. (4.81)

The second equation in (4.81) gives the ratio between the energies:

〈E2〉
〈E1〉 =

η21

η21 + η2
, (4.82)

and from both equations (4.81) the following known result is obtained

Π1,in = Π1,diss + Π2,diss = η1ω1〈E1〉 + η2ω2〈E2〉. (4.83)

The average power supplied is dissipated.

Example. Figure 4.3 shows a system, which consists of three coupled sub-
systems. Only subsystem 2 receives an external power Π2,in. Set-up the power
balance equations for the subsystems.

Subsystem 1: η1ω1〈E1〉 + η12ω1〈E1〉 − η21ω2〈E2〉 = 0
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Subsystem 2: η2ω2〈E2〉 + η21ω2〈E2〉 + η23ω2〈E2〉 − η12ω1〈E1〉 − η32ω3〈E3〉 =
Π2,in

Subsystem 3: η3ω3〈E3〉 + η32ω3〈E3〉 − η23ω2〈E2〉 = 0

In matrix notation⎡
⎣ (η1 + η12)ω1 −η21ω2 0

−η12ω1 (η2 + η21 + η23)ω2 −η32ω3

0 −η23ω2 (η3 + η32)ω3

⎤
⎦
⎧⎨
⎩

〈E1〉
〈E2〉
〈E3〉

⎫⎬
⎭ =

⎧⎨
⎩

0
Π2,in

0

⎫⎬
⎭ .

It can be seen that the matrix is symmetric. The diagonal terms represent the
outgoing power (the sum of the loss factor and coupling loss factors is called
the total loss factor) and the off diagonal terms represent the incoming power
internal to the system. The right hand vector represents the external power
supplied to the system. The total vibrational energies 〈Ei〉 must be found.

4.4 Multimode Systems

Two linear multimode elastic structural systems, subsystem 1 and subsys-
tem 2, are coupled via their common junction, as shown in Fig. 4.4. In a
frequency band Δω, each subsystem has a number of active modes N1(ω) and
N2(ω). The term modal density n (number of modes per unit of frequency,
(modes/rad/s) is now introduced. The number of modes in the frequency band
Δω can be written as

N1(Δω) = n1(ω)Δω,

N2(Δω) = n2(ω)Δω.
(4.84)

The modes N1(Δω) for subsystem 1 are denoted by α, 1 ≤ α ≤ N1(Δω), and
the modes N2(Δω) for subsystem 2 are denoted by σ, 1 ≤ σ ≤ N2(Δω). There
are N1N2 interacting modal pairs α and σ, as shown in Fig. 4.5. This modal
pair will be considered as two coupled oscillators (SDOF). The power flow
Π12 between subsystem 1 and subsystem 2 will be derived from the following
rules:

Fig. 4.4. Two coupled subsystems
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Fig. 4.5. Power flow in multimode systems

• Each mode of each subsystem has a (circular) natural frequency uniformly
distributed in the frequency range Δω (rad/s)

• Each mode in a subsystem has equal time average energy 〈Eα〉 or 〈Eσ 〉,
hence 〈E1〉 = N1〈Eα〉 and 〈E2〉 = N2〈Eσ 〉

• Each mode in a subsystem has an equal loss factor ηα or ησ; all modes
have equal band width ηω

• The response is determined by resonant modes, with the responses of non
resonant modes being neglected

The average inter modal power flow Πασ between mode α and mode σ, in
a frequency band Δω, is

Πασ = βασ[〈Eα,Δω 〉 − 〈Eσ,Δω 〉]. (4.85)

The total power flow Π1σ from all modes of subsystem 1 to mode σ in the
frequency band δω is given by

Π1σ = βασN1[〈Eα,Δω 〉 − 〈Eσ,Δω 〉]. (4.86)

The total power flow Π12 between subsystem 1 and subsystem 2 in terms of
the frequency band Δω now becomes

Π12 = βασN1N2[〈Eα,Δω 〉 − 〈Eσ,Δω 〉]. (4.87)

The total power flow Π12 can be expressed in subsystem total energies 〈E1〉
and 〈E2〉, in the frequency band Δω, using (4.87)

Π12 = βασN1N2

[
〈E1〉
N1

− 〈E2〉
N2

]
. (4.88)

The coupling loss factor η12 is defined, when subsystem 2 is blocked, as

Π̄12 = βασN1N2
〈E1〉
N1

= βασN2〈E1〉 = ωη12〈E1〉, (4.89)
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and the coupling loss factor η21 is defined, when subsystem 1 is blocked, as

Π̄21 = βασN1N2
〈E2〉
N2

= βασN1〈E2〉 = ωη21〈E2〉. (4.90)

The total power flow Π12 can now be written as follows

Π12 = Π̄12 − Π̄21 = ωη12〈E1〉 − ωη21〈E2〉. (4.91)

The reciprocity law (also called consistency) for the coupling loss factors η12

and η21 can be easily derived, because

η12N2 = η21N1 =
βασN1N2

ω
. (4.92)

The dissipated power Πi,diss per subsystem i is defined as follows

Πi,diss = ωηi〈Ei〉, (4.93)

where ηi is the dissipated loss factor of subsystem i, and ω the center frequency
of the frequency band with bandwidth Δω. The center frequencies may be
defined in the octave or one-third octave bands.

The modal density ni of subsystem i is the average number of modes Ni

in the frequency band Δω, and is defined as in (4.84):

ni =
Ni

Δω
. (4.94)

The reciprocity law (consistency) of the coupling loss factors (4.92) can be
written (no summation)

ηijni = ηjinj . (4.95)

Substituting (4.95) into (4.91), we obtain the following expression for the
power exchange Π12:

Π12 = ωη12

[
〈E1〉 − n1

n2
〈E2〉

]
, (4.96)

or

Π12 = ωη12n1

[
〈E1〉
n1

− 〈E2〉
n2

]
. (4.97)

Figure 4.6 shows two coupled multi-mode subsystems. The power balance
equations are

Πin,1 = Π12 + Πdiss,1, (4.98)
Πin,2 = Π21 + Πdiss,2. (4.99)

When rewritten using the modal densities of both subsystems 1 and 2 these
equations become
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Fig. 4.6. Two interacting subsystems

Πin,1 = ωη12n1

[
〈E1〉
n1

− 〈E2〉
n2

]
+ ωη1〈E1〉, (4.100)

Πin,2 = ωη21n2

[
〈E2〉
n2

− 〈E1〉
n1

]
+ ωη2〈E2〉. (4.101)

In matrix notation these can be written as(
η1 + η12 − η12n1

n2

− η21n2
n1

η2 + η21

){
〈E1〉
〈E2〉

}
=

1
ω

{
Πin,1

Πin,2

}
. (4.102)

Using the consistency of the modal densities (4.95), we can write (4.102) as
follows (

η1 + η12 −η21

−η12 η2 + η21

){
〈E1〉
〈E2〉

}
=

1
ω

{
Πin,1

Πin,2

}
. (4.103)

The loss factor matrix in (4.103) is not symmetric. The matrix can be made
symmetrical multiplying and dividing with the appropriate model densities

(
(η1 + η12)n1 −η12n1

−η21n2 (η2 + η21)n2

){ 〈E1〉
n1

〈E2〉
n2

}
=

1
ω

{
Πin,1

Πin,2

}
. (4.104)

The power flow equations for a structure made up of N subsystems is ex-
pressed in the following matrix form:⎡

⎢⎢⎢⎢⎣

(η1 +
∑N

i �=1 η1i)n1 −η12n1 . . . −η1Nn1

−η21n2 (η2 +
∑N

i �=2 η2i)n2 . . . −η2Nn2

...
...

. . .
...

−ηN1nN . . . . . . (ηN +
∑N

i �=N ηNi)nN

⎤
⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈E1〉
n1

〈E2〉
n2
...

〈EN 〉
nN

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=
1
ω

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Πin,1

Πin,2

...
Πin,N

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (4.105)
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The following example is taken from [139] problem 6.1.

Example. As a first approximation, a spacecraft structure can be modelled as
a flat aluminium platform coupled to a large aluminium cylinder, as illustrated
in Fig. 4.7. The density of Al-alloy ρ = 2700 kg/m3. The Al-alloy plate is 5 mm
thick and its area is 3.53 m2. The cylinder is 2 m long, has a mean diameter
of 1.5 m, and a 3 mm wall thickness. The following information is available
about the structure in the range 500 Hz octave band: the platform is driven
directly and the cylinder is driven only via the coupling joints; the internal loss
factor of the platform (subsystem 1) η1 = 4.4 × 10−3, the internal loss factor
of the cylinder (subsystem 2), η2 = 2.4 × 10−3; the platform rms vibrational
velocity is 〈v1〉 = 27.2 mm/s; and the cylinder rms velocity 〈v2〉 = 13.2 mm/s.
Estimate the coupling loss factors η12 and η21, and the input power Πin,1.

The energies for the subsystems 1 and 2, the platform and cylinder respec-
tively, are given in Table 4.1.

The total input power is dissipated in both subsystems 1 and 2, thus

Πin,1 = ωη1〈E1〉 + ωη1〈E1〉 = 1.3060 Nm/s,

and the power balance equations (4.104) of the platform and the cylinder are

(
(η1 + η12)n1 −η12n1

−η21n2 (η2 + η21)n2

){ 〈E1〉
n1

〈E2〉
n2

}
=

1
ω

{
Πin,1

0

}
.

The second equation gives

〈E1〉
〈E2〉 =

η21

η21 + η2
= 0.1525,

and with the power balance equation for the platform

(η12 + η1)〈E1〉 − η21〈E2〉 =
Πin,1

ω
.

Fig. 4.7. Simple spacecraft structure

Table 4.1. Spacecraft properties

Structural part Mass (kg) Velocity (rms) (m/s) Energy (Nm, J)

Platform M1 = 117.8935 〈v1〉 = 27.2 × 10−3 〈E1〉 = 8.7222 × 10−2

Cylinder M2 = 76.3407 〈v2〉 = 13.2 × 10−3 〈E2〉 = 1.3302 × 10−2
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The coupling loss factors can now be calculated from the last two equations,
η12 = 4.26 × 10−4 and η21 = 3.92 × 10−4.

4.5 SEA Parameters

To generate the SEA power balance equations, we need the following parame-
ters:

• Dissipation loss factors ηi

• Coupling Loss factors ηij

• Modal densities ni

• Subsystem energies 〈Ei〉
• Source Power inputs Πin

4.5.1 Dissipation Loss Factor

For one system the power balance equation tells us that the input power Πin,s

is dissipated by the system, Πdiss,s = ωηs〈Es〉. That means that the dissipated
(intrinsic) loss factor ηs for that system is

ηs =
Πin,s

ω〈Es〉 , (4.106)

where 〈Es〉 is the total energy.
The power input Πin,i of one SDOF i due to an applied force Fi(ω) has

already been derived in (4.38), but is rewritten as follows

Πin,i =
〈F 2

i 〉
4Δfimi

, (4.107)

where 〈F 2
i 〉 = WfΔfi is the mean square applied load, and mi is the mass of

SDOF i. Δfi is the bandwidth.
For a multi mode system there are Ns modes (oscillators) in the frequency

band Δfi, equally mass and force distributed in Δfi and the forces Fi are like
rain on the roof and are spatially not correlated (spatially delta-correlated),
thus 〈FiFj 〉 = δijF

2
i . For a multi mode system s the total input power Πin,s

is written with the use of (4.107)

Πin,s =
Ns∑
i=1

Πin,i =
Ns〈F 2

i 〉
4Δfimi

=
〈F 2

s 〉Ns

4ΔfiMs
=

ns(f)〈F 2
s 〉

4Ms
, (4.108)

where the system has a total mass Ms = Nsmi, 〈F 2
s 〉 = Ns〈F 2

i 〉 and a modal
density ns(f) (ns(f) = 2πns(ω)). The total input power Πs,in can be ex-
pressed in terms of the mean square of the applied force Fs multiplied by



270 4 Statistical Energy Analysis

the real part of the mobility of the system at the location, where the force is
applied

Πin,s = 〈F 2
s 〉 � {Y ∗(ω)} =

ns(f)〈F 2
s 〉

4Ms
. (4.109)

From (4.109) it follows that the modal density ns(f) of the system can be
expressed as follows

ns(f) = 4Ms� {Y ∗(ω)}. (4.110)

The modal density ns(f) of the system can be averaged over the frequency
band Δω = ω2 − ω1 with a center frequency ω it can be calculated using the
following expression

ns(f) =
4Ms

Δω

∫ ω2

ω1

� {Y ∗(ω)}dω =
4Ms

Δω

∫ ω2

ω1

�
{

1
Z∗(ω)

}
dω, (4.111)

where Z∗(ω) is the impedance function.

Example. For a thin bending plate with bending stiffness D, density ρ and
plate thickness t, and area Ap, the real part of the driving point mobility
function can be approximated by that of an infinite thin bending plate Y∞ =

1

8
√

Dρt
. The modal density np(f) of the infinite bending plate is

np(f) = 4Mp� {Y ∗(ω)} =
Ap

2

√
ρt

D
,

or

np(ω) =
Ap

4π

√
ρt

D
.

The total energy 〈Es〉 of the system can be written as

〈Es〉 = Ms〈v2
s 〉, (4.112)

where 〈v2
s 〉 is the spatial average of the mean square velocity squared at a

center circular frequency ω.
The modal density n(f) = n(ω)

2π and (4.106) can now be written as follows

ηs =
ns(f)〈F 2

s 〉
4πωM2

s 〈v2
s 〉 =

ns(f)〈F 2
s 〉

8πfM2
s 〈v2

s 〉 . (4.113)

Equation (4.113) is given in [163].
Equation (4.113) can be expressed in terms of the input power Πin,s:

ηs =
Πin,s

2πfMs〈v2
s 〉 =

Πin,s2πf

Ms〈a2
s 〉 , (4.114)

where 〈a2
s 〉 is the spatially average acceleration. In [158], a band average loss

factor is defined
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ηs =
1

f2 − f1

∫ f2

f1

Πin,s2πf

Ms〈a2
s 〉 df. (4.115)

In the following sections some typical values for the dissipated loss factor
associated with structural elements will be given. Still it is considered essential
to determine the dissipation loss factor of the system experimentally.

The dissipation loss factor η is often expressed in dB, denoted by η̄, us-
ing [40]

η̄ = 10 log
(

η

10−12

)
dB. (4.116)

Plates

The dissipation loss factor η for a plate as reported in the literature [55, 163]
can be obtained from the following expression

η =

⎧⎪⎪⎨
⎪⎪⎩

0.050, up to f = 80 Hz;
1.8

f0.87 , 80 < f < fpivot Hz;

0.002, above fpivot Hz,

(4.117)

where the pivot frequency fpivot = 2500 Hz.

Sandwich Panels

For structures in sandwich design without equipment the dissipation loss fac-
tor can be obtained from [212]

η =
0.3

f0.63
. (4.118)

Here η decreases as frequency increases.
The built-up (sandwich) panel structure dissipation loss factor is estimated

to be

η =

{
0.050, f ≤ fpivot Hz;

0.050( fpivot

f )0.5, f > fpivot Hz,
(4.119)

where fpivot is the pivot frequency. In [37] the pivot frequency is fpivot =
500 Hz.

In [37] the attached resonant equipment has an estimated average loss
factor to be η = 0.06. The loss factor is twice the (critical) damping ratio
η = 2ζ.

The Jet Propulsion Laboratory (JPL) used the following expressions for
the loss factor in the vibro acoustic high frequency SEA response analysis of
stowed solar arrays (solar panels) of their spacecraft Magellan, Mars Observer
and TOPEX:

η =

{
0.050, f ≤ fpivot Hz;

0.050( fpivot

f ), f > fpivot Hz,
(4.120)

where the pivot frequency is fpivot = 250 Hz.
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Table 4.2. Structural properties and dimensions spacecraft solar panels

Structural parameters Magellan Mars Observer TOPEX

Length (m) 2.520 2.268 3.287
Width (m) 2.494 1.829 1.925
Face sheet thickness (mm) 0.381 0.254 0.305
Core thickness (mm) 12.7 25.4 34.29
Mass per unit of area (kg/m2) 4.66 3.72 5.42
Face sheet material Aluminum Kevlar Aluminum
Core material Aluminum Aluminum Aluminum

The general structural properties of the JPL spacecraft solar panels are
given in Table 4.2.

Cylinders

The loss factor of cylinders can vary from 0.002–0.03 for unstiffened cylinders
and from 0.001–0.03 for stiffened cylinders. Above 3000 Hz, the loss factor
is almost constant, 0.004 and 0.006 for unstiffened and stiffened cylinders,
respectively. Several tests [157, 158] gave the average loss factor of a uniform
open-ended cylinder as 0.00219. Radiation damping was neglected.

Acoustic Room

In acoustics, damping is measured from reverberation time TR, the time re-
quired for the vibration energy to decrease by a factor 10−6; see [118]. Thus

e−2πfηTR = 10−6, (4.121)

which gives

η(f) =
2.2
fTR

=
13.816
ωTR

, (4.122)

where f is the center frequency.

4.5.2 Coupling Loss Factor

This section summarizes the coupling loss factors associated with some of the
more common coupling joints, [24].

There are two approaches for deriving coupling loss factors for structures:

• The modal approach. In the modal approach, the couplings between indi-
vidual modes are computed and an average taken over the modes in each
frequency band, e.g. [42].

• The wave approach. In this approach, the coupling loss factor is related
to the power transmissibility for semi-infinite structures, which is often
easier to estimate than the average of couplings between modes of finite
structures.
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The power transmitted from the first to the second structure through the
junction is then the energy lost by the first structure via the coupling. The
coupling loss factor η12 has been defined as the energy lost per radian of mo-
tion relative to the total energy of the subsystem η12ω〈E1〉, and the source of
energy loss is the transmission through the junction at the boundary of the
first subsystem. The coupling loss factor ηij is related to the power transmis-
sion coefficient τij as follows

τij =
Πtrans

Πinc
=

ωηij 〈Ei〉
cg 〈Ei〉/lf

=
ωηijlf

cg
, (4.123)

where Πtrans is the power transmitted through the junction, Πinc is the power
incident on the junction , lf is the mean free path length between the incidents
on the junction, and cg is the group velocity as discussed in Appendix K. For
a beam, the mean free length is the length of the source beam lf = L, and
for a plate lf = πA

Lij
, where Lij is the length of the junction. The power per

length normal to the boundary Πinc = cg 〈Ei 〉
Aiπ

for a reverberant field [96].

L-beam Structures Coupling Loss Factors

Theoretical estimates to determine the coupling loss factors ηij for beams
assembled at a right angle, so-called L-beam structures, are available in [2].
They are given as functions of the transmission coefficients τij between the
two subsystems. The coupling loss factors ηij may be calculated using the
following expression

ηij =
cbiτij

ωLi
, (4.124)

where cbi =
√

ω 4

√
EiIi

ρiAi
is the sound speed of the flexural waves, Ei is Young’s

modulus, Ii is the second moment of area, ρi is the density, Ai is the cross-
section, Li is the length of beam i and τij is the transmission coefficient
across the joint relating the incident waves in subsystem i to be transmitted in
subsystem j. The transmission coefficient for each wave type may be calculated
as follows

τbb =
2β2 + 1

9β2 + 6β + 2
, (4.125)

τbl = τlb =
8β2 + 5β

9β2 + 6β + 2
, (4.126)

τll =
β2

9β2 + 6β + 2
, (4.127)

where β = cbi

cli
, with the longitudinal wave speed cli =

√
Ei

ρi
and the index b

stands for bending and the index l for longitudinal respectively.



274 4 Statistical Energy Analysis

Fig. 4.8. Coupling loss factors L-beam structure

Example. A L-beam structure consists of two beams with the same prop-
erties: a length L = 1 m, a cross-section A = b × h = 0.03 × 0.05 m2, a
second moment of area I = bh3

12 = 1.25 × 10−7 m4. The beams are made of
an Al-alloy with E = 70 GPa and a density ρ = 2700 kg/m3. Calculate the
coupling loss factors ηij for “bb”, “bl” and “ll” respectively in the octave band
f = 31.5–8000 Hz. The coupling loss factors are given in Fig. 4.8.

Plate-to-Plate Coupling Loss Factors

The most commonly encountered structure-to-structure coupling is a line
junction between two plate structures. The coupling loss factor for a line
junction is given in terms of the wave transmission coefficient for the line
junction [15]. The coupling loss factor of a line junction from plate 1 to plate
2 is given by

η12 =
2cBLτ12

πωAp,1
=

2
π

L

k1Ap,1
τ12, (4.128)

where the following properties of plate 1 are of importance:

cB =
√

ω{ D

ρt
}0.25 =

√
tclω

√
1
12

is the bending wave (phase) velocity (or phase velocity), t is the thickness of
the plate, D is the bending stiffness of the plate, ρ is the density of plate,
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L is the length of the junction of the two plates, ω is the radian frequency,
Ap,1 is the area of plate 1 and τ12 the wave transmission coefficient. The

speed of sound in plane of the plate 1 cl =
√

E
ρ(1−ν2) , the wave number is

k1 =
√

ω 4

√
ρt
D and ν is Poisson’s ratio. The transmission coefficient τ12 for

random incidence vibrational energy of two L-shape plates can be calculated
using the approximate formula, [15],

τ12 = τ12(0)
2.754X

(1 + 3.24X)
, (4.129)

where X = t1
t2

. The normal transmission coefficient τ12(0) for thin plates may
be calculated as follows

τ12(0) = 2[ψ0.5 + ψ−0.5]−2, (4.130)

where

ψ =
ρ1c

3
2
l,1t

5
2
1

ρ2c
3
2
l,2t

5
2
2

. (4.131)

When both plates are made of the same sheet material, (4.130) becomes

τ12(0) = 2[X
5
4 + X− 5

4 ]−2. (4.132)

Example. Two identical Al-alloy square plates are firmly connected in a L-
shape form (right angle). The Young’s modulus is E = 70 GPa, the Poisson’s
ratio is ν = 0.3, the density is ρ = 2700 kg/m3, the length is equal to the
width a = b = 1 m and the thickness of the plates is t = 5 mm. Calculate the
coupling loss factor η12(f) in the octave band with center frequencies in the
range f = 31.5–8000 Hz.
The speed of the flexural waves cb = 622.2972 m/s, the longitudinal speed in
the plates is cl = 5091.8 m/s. The normal transmission coefficient τ12(0) = 0.5.
The coupling loss factors η12(f) are shown in Fig. 4.9.

Acoustic Radiation

General

The radiated power is given by

Πrad = Rrad 〈v2
p 〉 = ρcAp〈v2

p 〉σrad = ηsaωMp〈v2
p 〉, (4.133)

where ηsa is the coupling loss factor from the structure to the acoustic room,
Rrad is the radiation resistance, ρc is the acoustic impedance, Ap is the area
of the panel, ρ is the density of surrounding fluid (air), c the speed of sound
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Fig. 4.9. Coupling loss factors L-shape plates

in the surrounding fluid, σrad is the radiation efficiency , Mp the total mass
of the panel and ω the radian frequency. The coupling loss factor of a panel,
for a structure acoustic volume coupling, can now be obtained

ηsa =
Rrad

Mpω
=

Apρcσrad

Mpω
. (4.134)

Using the reciprocity law for coupling loss factors, we can obtain the following
expression for the coupling factor from the acoustic space to the structure:

ηas =
Rrad

Mpω

ns

nas
=

Apρcσrad

Mpω

ns

nas
, (4.135)

where ns is the modal density of the panel and nas is the modal density of the
acoustic space. The dimension of the radiation resistance Rrad is W/(m/s)2

(W = Nm/s).

Plates

The panel radiation of a plate to half space is given by [46, 121, 161]

Rrad = Aρc

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λcλa

Ap
2 f

fcr
g1( f

fcr
) + Pλc

Ap
g2( f

fcr
), f < fcr, ka, kb > 2;

4
π4

Pλc

Ap
( f

fcr
)

1
2 , f < fcr, ka, kb < 2;

( a
λc

)
1
2 + ( b

λc
)

1
2 , f = fcr;

(1 − fcr

f )− 1
2 , f > fcr,

(4.136)

where a and b are the length and width of the panel and further
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• Ap the panel surface area of one side of the panel
• c the speed of sound
• cb the wave speed of bending in the panel
• f the frequency
• fcr the critical frequency of the panel
• k = ω

c is the wave number
• P the perimeter of the panel
• λa = c

f the acoustic wavelength
• λc = cb

fcr
the critical wavelength of the panel at the critical frequency fcr

• � is the density of the air (fluid)

and g1( f
fcr

) and g2( f
fcr

) are defined as follows

g1

(
f

fcr

)
=

{
( 4

π4 ) 1−2α2

α
√

(1−α2
, f < 1

2fcr

0, f > 1
2fcr

,

g2

(
f

fcr

)
=

1
(2π)2

{(1 − α2) ln[ 1+α
1−α ] + 2α}√

(1 − α2)3
,

where α =
√

( f
fcr

).
In the book of Craik [40] Leppington has been cited for expressions of the

radiation efficiency σ

σ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pc

4π2
√

ffcrAp

√
α2−1

[ln{ 1+α
1−α } + 2α

α2−1 ], f < fcr;

a
√

2πf
c (0.5 − 0.15a

b ), f = fcr, a < b;

(1 − fcr

f )− 1
2 , f > fcr.

(4.137)

With respect to (4.136) g1 = 0 and the radiation efficiency had been corrected
at f = fcr.

Example. A sandwich panel has dimensions a = 2.5 m and b = 2.5 m. The
critical frequency is fcr = 500 Hz. Calculate the radiation resistance in the
octave band, 32.5–8000 Hz, using Leppington’s equations. The speed of sound
in air is c = 340 m/s. The radiation efficiency is illustrated in Fig. 4.10.

The subcritical baffled plate radiation efficiency σbaf = σcorner + σedge

when f < fcr in which σcorner and σedge are the modal average radiation
efficiency for the so-called corner and edge modes [141]. The σcorner is

σcorner =
8
π4

(
λ2

c

Ap

){ ( 4
π4 ) 1−2α2

α
√

(1−α2
, f < 1

2fcr

0, f > 1
2fcr

, (4.138)

and σedge is given by
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Fig. 4.10. Radiation efficiency

σedge =
1

4π2

(
Pλc

Ap

){(1 − α2) ln[ 1+α
1−α ] + 2α}√

(1 − α2)3
. (4.139)

The subcritical unbaffled plate radiation efficiency is given by [141]

σunb = Fplate(Fcornerσcorner + Fedgeσedge), f < fcr. (4.140)

Here Fplate is a plate correction that accounts for the effect of inertial flows
that surround the plate at low frequencies where the acoustic wavelength ex-
ceeds the dimensions of the plate. The local corrections Fcorner and Fedge

account for the effect on radiation from corner and edge modes at higher fre-
quencies due to localized inertial flows near the plate perimeter. The correction
factors are

Fplate =
53f4 A2

p

c4

1 + 53f4 A2
p

c4

, (4.141)

Fcorner =
1
2

[ 13 f
fcr

1 + 13 f
fcr

]
, (4.142)

and

Fedge =
1
2

[ 49 f
fcr

1 + 49 f
fcr

]
. (4.143)

Conlon in his paper [37] presented a very simple equation for the radiation
efficiency σrad of a baffled complex sandwich panel, loaded and unloaded
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σrad =

{
0.47(ka

kp
)2.24, ka < 1.5kp;

1.0, ka > 1.5kp,
(4.144)

where ka is the acoustic wave number and kp is the unloaded panel wave
number.

Stiffened Panels

The radiation resistance of a stiffened panel is discussed in [60, 121] and is
given by

Rrad = Rrad,panel + Rrad,rib , (4.145)

where Rrad,panel is the radiation resistance of the panel as discussed in the
previous section and Rrad,rib is the radiation resistance per unit length of the
rib (stiffener) and is given by

Rrad,rib = �cλcg3

(
f

fcr

)
. (4.146)

The function g3 is given by a complicated expression which includes an elliptic
integral and is given in [121].

g3 =
(

1
2π

)2{
(2 − α2) ln

[
1 + α

1 − α

]
− 1

3
α3(1 + 2α2)

}

× (1 − α2)
−3
2 +

[
2

√
2(1 + α2)F

(
1√
2
, φ

)
+

√
2(2 + α2)E

(
1√
2
, φ

)]

×
(

1 − 1
2
α4

)
(1 + α2)

−3
2 , (4.147)

where α = f
fcr

and φ = cos−1[ 1−α2

1+α2 ]
1
2 and F and E are Legrendre’s elliptic

integrals of the first and second kind, respectively. The elliptic integral of the
first type is [90]

F (k, φ) =
∫ φ

0

dθ√
1 − k2 sin2 θ

, (4.148)

and the elliptic integral of the second type is given by

E(k, φ) =
∫ φ

0

√
1 − k2 sin2 θdθ, (4.149)

with 0 < k2 < 1. Quite often in numeric tables the modulus k is replaced by
sin θ.

The approximation of g3 is as follows [60]

10 log g3 =

{
a + b × ( f

fcr
), 0.01 ≤ f

fcr
< 0.3;

c + d × ln( f
fcr

), 0.3 ≤ f
fcr

< 0.9,
(4.150)

where a = −6.15, b = 2.33, c = 2.91 and d = 11.87.
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Unstiffened Cylinder

In [205] the average radiation efficiency of modes in frequency bands contain-
ing some acoustically fast (AF) modes of an unstiffened cylinder is derived.
The average radiation efficiency σrad is

σrad =
ν

3/2
0 fR/fc

2B(F − 1/F )

(
1 − ν0

√
1 − ν2

0(fR/fc)2
)

×
[

1√
1/F − ν0

− 1√
F − ν0

]√
12(1 − ν2), (4.151)

where ν0 = f
fR

, f is the center frequency, the ring frequency is fR = 1
2πR

√
E
ρm

,
R is the radius of the cylinder, E is Young’s modulus, ρm is density of
the applied material, ν is Poisson’s ratio and the critical frequency is fc =
c2

2πt

√
12ρm(1−ν2)

E . The frequency bandwidth factor F is

• the upper frequency limit fu = fF and
• the lower frequency limit fu = f/F

The frequency bandwidth factor is F = 1.122 for the one-third octave band
and F = 1.414 for the octave band. The modal density function B is given in
Table 4.3. Equation (4.151) is always valid when:

1. ν0 < 1/F and ν0 < 0.65 log(3fc/fR)
2. fR/fc > 1.5 and ν0 < fc/fR.

For small values of ν0 and fR/fc (4.151) simplifies to

σrad =
ν

3/2
0 fR/fc

2B

[
F 1/2 − (1/F )1/2

F − 1/F

]√
12(1 − ν2), (4.152)

and if only one-third octave band or narrower bands are considered
[
F 1/2 − (1/F )1/2

F − 1/F

]

 1

2
,

we obtain

σrad 
 ν
3/2
0 fR/fc

4B

√
12(1 − ν2). (4.153)

Table 4.3. Factor B (modal density) unstiffened cylinder

Factor B Applicable frequency range ν0

B = 2.5
√

ν0 ν0 ≤ 0.48
B = 3.6ν0 0.48 < ν0 ≤ 0.83

B = 2 + 0.23

F − 1
F

[F cos( 1.745
F2ν2

0
) − 1

F
cos( 1.745F2

ν2
0

)] ν0 > 0.83
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In [205] it is discussed that the internal radiation may taken equal to the
external radiation which had been derived in this section.

Some cylinder characteristic parameters for aluminium cylinders are:

• ν = 0.33
• E = 70 GPa
• ρ = 2700 kg/m3

• fR ≈ 810/R(m) Hz
• fR/fc ≈ 68.6(t/R)
• fc ≈ 11.8/t(m) Hz

with the associated parameters for air at normal temperature and pressure

• c = 340 m/s
• ρ ≈ 1.2 kg/m3

• ρc ≈ 408 kg s/m2

Critical Frequency

The derivation of the critical frequency fcr is discussed in detail in [159].
When an infinite plate is excited, the frequency at which the speed of the free
bending wave becomes equal to the speed of the acoustic wave in air is called
the critical frequency. The derivation of the critical frequency for a isotropic
thin plate will be summarized. The critical frequencies for thick isotropic thick
plates, thin and thick composite panels are given Table 4.4, where

• α = D12+2D66
D̄

, see Appendix J
• c speed of sound in the fluid (i.e. air)
• D̄ = D11 = D22 is the bending stiffness in x- and y-direction respectively

for a balanced lay-up of layers see Appendix J
• D = Et(h+t)2

2(1−ν2) for a sandwich panel with isotropic face sheets

• D = Et3

12(1−ν2) for a isotropic plate
• E is Young’s modulus
• G is the shear modulus (isotropic assumed)

Table 4.4. Critical frequencies [159]

Type of panels Critical Frequency ωcr Critical Frequency fcr (Hz)

Thin isotropic plate ωcr = c2
√

m
D

fcr = c2

2π

√
m
D

Thick isotropic plate ωcr =
c2

√
m
D√

1− c2m
S

fcr =
c2

√
m
D

2π

√
1− c2m

S

Thin composite panel ωcr =
c2

√
m
D̄√

3+α
4

fcr =
c2

√
m
D̄

2π

√
3+α

4

Thick composite panel ωcr =
c2

√
m
D̄√

3+α
4 − c2m

S

fcr =
c2

√
m
D̄

2π

√
3+α

4 − c2m
S
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• h is the core height
• m is the mass per unit of area
• S = Gh is the shear stiffness for a thick plate
• S = Gh(1 + t

h )2 is the shear stiffness for a sandwich panel
• t is thickness of plate or the face sheet thickness (both face sheets equal

thickness)
• c2m

S ≥ 3+α
4 for a composite sandwich panel

• c2m
S ≥ 1 for a thick isotropic plate sandwich panel

The free vibration equation of motion for a thin isotropic plate is given by

∇4w +
m

D

∂2w

∂t2
= 0, (4.154)

where the plate is assumed to be in the x-y plane and ∇4 = ∂4

∂x4 +2 ∂4

∂x2∂y2 + ∂4

∂y4 .
The solution for the infinite plate may be written

w = ej(ωt−kxx−kyy), (4.155)

where kx and ky are the wave number components. They are related by the
expression k2

x + k2
y = k2, where k is the wave number. The wave number can

be written as k = ω
c . For a thin plate the wave number components can be

expressed as follows by substituting (4.155) in (4.154)

k4
x + 2k2

xk2
y + k4

y = k4 =
mω2

D
. (4.156)

The speed of the bending wave (phase velocity) cb = ω
k becomes

c4
b =

ω2D

m
. (4.157)

At the critical frequency cb = c. The critical frequency ωcr for the thin
isotropic plate is given by

ω2
cr =

c4m

D
, (4.158)

or

fcr =
c2

2π

√
m

D
. (4.159)

Example. A sandwich panel with dimensions a = 2.5 m and b = 2.25 m has
a mass per unit of area m = 2.5 kg/m2. The core height h = 20 mm and both
face sheets have a thickness t = 0.2 mm. The flexural bending stiffness of the
composite sandwich panel is D̄ = D11 = D22 = 5000 Nm, D12 = 70 Nm and
D66 = 165 Nm. The shear modulus of the core is G = 8.2 × 107 N/m2. The
shear stiffness is S = Gh(1 + t

h )2 = 16.7 × 105 N/m. The speed of sound in
air c = 340 m/s. Calculate the critical frequency fcr for
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• the composite sandwich panel
• the sandwich panel in case the face sheets are made of an isotropic Al-alloy

with E = 70 GPa and ν = 0.3.

For the composite sandwich panel the critical frequency is given by

fcr =
c2
√

m
D̄

2π
√

3+α
4 − c2m

S

= 532.3 Hz,

where α = D12+2D66
D̄

= 0.08 and for the sandwich panel with isotropic face
sheets the critical frequency is

fcr =
c2
√

m
D

2π
√

1 − c2m
S

= 570.9 Hz,

where D = Et(h+t)2

2(1−ν2) = 3139 Nm.

4.5.3 Modal Densities

General

The modal density n(ω) is the number of modes per radian frequency (rad/s)
and the modal density n(f) is the number of modes per cyclic frequency (Hz).
The relation between n(ω) and n(f) is given by

n(ω) =
N

Δω
=

N

2πΔf
=

n(f)
2π

, (4.160)

where N is the mode count in the frequency band Δω and Δf .
A compendium of modal densities for typical structural elements of engi-

neering importance is given in [79].

Composite Structure

A composite structure consists of a number of structural elements for which
the modal density ni(ω) is known. In [79] it is postulated that the modal
density of the composite structure is the sum of the modal densities of its
components. The modal density of the composite consisting of m basic struc-
tural elements at a center frequency ω is given by

n(ω) =
m∑

j=1

nj(ω). (4.161)
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General Structure

The expression for the modal density n(f) of a general structure is given
in [33] as

n(f) =
1

(f2 − f1)

∫ f2

f1

4M �(Y )df, (4.162)

where �(Y ) is the real part of the point mobility, and M is the mass of the
structure. The point mobility is the ratio between the velocity response of
the structure measured at the excitation location and the force input to the
structure.

Bending Beam

The natural frequencies of a simply supported bending beam are given by

ωp =
(

pπ

L

)2
√

EI

m
, p = 1, 2 . . . , n, (4.163)

with associated vibration modes φp(x) = sin pπx
L . Here EI is the bending

stiffness, m is the mass per unit of length, L is the length of the beam. Equa-
tion (4.163) can be rewritten such that mode count N(ω), is dependent on
the maximum frequency ω:

N(ω) =
L

π

√
ω 4

√
m

EI
=

1
Δk

√
ω 4

√
m

EI
=

1
Δk

kb. (4.164)

Here Δk = L
π , and kb =

√
ω 4
√

m
EI is the wave number of the bending beam.

The equation of motion of the bending beam is EI ∂4w
∂x4 + m∂2w

∂t2 = 0. Substi-
tuting the solution w(x, t) = ej(ωt−kbx) we can obtain the expression for the
wave number kb. The modal density of the bending beam n(ω) now becomes

n(ω) =
dN(ω)

dω
=

1
Δk

dkb

dω
=

L

2π

1√
ω

4

√
m

EI
. (4.165)

The modal density n(f) = 2πn(ω) can be easily obtained

n(f) = L
1√
2πf

4

√
m

EI
, (4.166)

where f in (4.166) is the cyclic frequency (Hz). The modal n(f) is inversely
proportional to the square root of the frequency.

The speed of sound (phase velocity) in the bending beam is defined by [52]

cp = ω
kb

=
√

ω 4

√
EI
m and the group speed is given by cg = dω

dkb
= 2cp.
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Fig. 4.11. The wave number plane [159]

Plates

After [21, 219] the number of modes N(Ω) can be calculated as follows as-
suming that the boundary conditions do not much effect the higher frequency
range (asymptotic solution)

N(Ω) ≈ 1
Δk1Δk2

∫∫
S

dk1dk2, (4.167)

where S is the region in the first quadrant of the k1 and k2 plane bounded by
the curve ω(k1, k2) = Ω. This is illustrated in Fig. 4.11. The wave numbers
k1 and k2 can be estimated by

k1 =
m1π

a
, k2 =

m2π

b
, m1, m2 = 1, 2, . . . , (4.168)

where a and b are the sides of the rectangular area, and Δk1 and Δk2 are

Δk1 =
π

a
, Δk2 =

π

b
. (4.169)

For a simply supported plate the natural frequency ω(k1, k2) is given by

ω2(k1, k2) =
D

m
(k2

1 + k2
2)

2 =
D

m
r4,

where D is the bending stiffness, m is the mass per unit of area and r2 =
k2
1 + k2

2. If k2
k1

= tan θ, (4.167) can be written as follows

N(Ω) ≈ ab

π2

∫ π
2

0

∫ r

0

ηdηdθ =
ab

2π2

∫ π
2

0

r2dθ, (4.170)

where r is the maximum value for r for any given θ. The modal density n(ω)
can derived using (4.170)

n(ω) =
N(ω)
dω

=
ab

2π2

∫ π
2

0

d(r2)
dω

dθ. (4.171)
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Example. The natural frequency of a simply supported plate is given by

ω2(k1, k2) =
D

m
(k2

1 + k2
2)

2 =
D

m
r4.

The radius r will be expressed in terms of the natural frequency ω as follows

r2 = ω

(
m

D

) 1
2

.

The derivative of r2 with respect to ω becomes

d(r2)
dω

=
(

m

D

) 1
2

.

The modal density n(ω) can be obtained using (4.171)

n(ω) =
ab

2π2

∫ π
2

0

d(r2)
dω

dθ =
ab

2π2

(
m

D

) 1
2
∫ π

2

0

dθ =
ab

4π

(
m

D

) 1
2

;

the modal density n(f) is

n(f) =
ab

2

(
m

D

) 1
2

.

In the following example the modal density n(f) for a plate will be illus-
trated numerically.

Example. A plate is made of an Al-alloy having dimensions of a × b =
2.19×1.22 m and thickness t = 4.95 mm. The Young’s modulus of the material
is E = 72 GPa, the Poisson’s ratio ν = 0.3 and the density is ρ = 2800 kg/m3.
The modal density n(f) is calculated using equation

n(f) =
A

2

(
ρt

D

) 1
2

= 0.176 modes/Hz,

where the area A = a × b and the bending stiffness (flexural rigidity) of the
plate is given by D = Et3

12(1−ν2) . The modal density of an isotropic plate is also
called Courant’s density [57].

The medium surrounding the plate is air with a speed of sound c =
346 m/s. The critical frequency of the plate fcr is calculated using the equation

fcr =
c2

2π

(
ρt

D

) 1
2

= 2508 Hz.

In a paper of Xie et al. [230], the modal density of rectangular plates is
presented accounting for the boundary conditions. For a simply supported
plate the modal density is given by
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Fig. 4.12. Modal density rectangular plate

n(ω) =
A

2π

√
m

D
− 1

4
4

√
m

D

a + b

π
√

ω
, (4.172)

the modal density of a free plate is given by

n(ω) =
A

2π

√
m

D
+

1
2

4

√
m

D

a + b

π
√

ω
, (4.173)

and the modal density of a fully clamped plate is

n(ω) =
A

2π

√
m

D
− 1

2
4

√
m

D

a + b

π
√

ω
, (4.174)

where A = ab, a and b are the length and the width of the plate, respectively.
Remember that the modal density in the cyclic frequency domain is n(f) =
2πn(ω).

Example. The modal density for an Al-alloy rectangular plate, with a length
a = 0.4 m, width b = 0.3 m and a thickness t = 2 mm with different boundary
conditions is calculated. Young’s modulus is E = 70 GPa, Poisson’s ratio is
ν = 0.33 and the density is ρ = 2700 kg/m3. In Fig. 4.12 modal densities are
shown.

Sandwich Panels

The modal densities of sandwich panels with identical isotropic face sheets
and isotropic core are given in Table 4.5. The variables in the expressions for
the modal densities are explained later:
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Table 4.5. Modal density sandwich panels (isotropic face sheets and core)

Reference Modal density n modes/Hz

[37] n(f) =
Apω

c2
b,eff

(1 −
[ 1
c3
b

+ 1
c3s

]
− 4

3

2cb,eff c3
b

)

[159] n(f) =
πApmpf

S
{1 + (m2

pω4 +
4mpω2S2

D
)− 1

2 (mpω2 + 2S2

D
)}

[33] n(f) =
πApmpf

gB

× {1 + [m2
pω4 + 4mpω2g2B(1 − ν2)]− 1

2 [mpω2 + 2g2B(1 − ν2)]}

• Ap is the panel surface area
• B = E(h+tf )2tf

2 ≈ Eh2tf

2

• cb is the bending wave speed cb =
√

ω[ D
mp

]
1
4

• cs is the shear wave speed cs = [Gh
mp

]
1
2

• cb,eff is the effective bending wave speed cb = [ 1
c3

b

+ 1
c3

s
]− 1

3

• D is the section bending stiffness D = Etf (h+tf )2

2(1−ν2) ≈ Eh2tf

2

• f is the cyclic frequency (Hz)
• g = G

h [ 2
Etf

]
• G is the shear modulus G =

√
GLGW

• h is the core height (thickness)
• mp is the build-up panel mass/area

• n(f) is the modal density in the cyclic frequency domain
• n(ω) is the modal density in the radian frequency domain n(ω) = n(f)

2π

• S is the shear stiffness S = Gh(1 + tf

h )2 ≈ Gh
• tf is the face sheet thickness
• ν is the Poisson’s ratio of the face sheet material
• ω is the radian frequency (rad/s) ω = 2πf

Example. A square sandwich panel with a surface area Ap = 2.5 × 2.5 m2

has identical face sheets with a thickness tf = 0.3 mm, the core height is
h = 20 mm and the mass per unit of area is mp = 2.5 kg/m2. The face
sheets are made of an Al-alloy with a Young’s modulus E = 70 GPa, and
the Poisson’s ratio is ν = 0.3. The shear modulus of the core G = 100 MPa.
Calculate the modal density n(f) modes/Hz using the equations written in
Table 4.5 from [33, 37, 159]. The results of the modal density calculations, in
the octave band f = 31.5–8000 Hz, for all methods are about the same, and
shown in Fig. 4.13.

The modal density for a composite sandwich panel had been derived
in [159] and is recapitulated in Appendix J.

Unstiffened Cylinders

The ratio ν0 = ω
ωr

is the ratio between the center frequency ω and the ring
frequency ωr = 1

R (E
ρ )

1
2 , where R is the radius of the cylinder, E is Young’s
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Fig. 4.13. Modal density sandwich panel [33, 37, 159]

Table 4.6. Factor B (modal density) unstiffened cylinder

Factor B Applicable frequency range ν0

B = 2.5
√

ν0 ν0 ≤ 0.48
B = 3.6ν0 0.48 < ν0 ≤ 0.83

B = 2 + 0.23

F − 1
F

[F cos( 1.745
F2ν2

0
) − 1

F
cos( 1.745F2

ν2
0

)] ν0 > 0.83

modulus, and ρ the density of the structural material. The modal density of
an unstiffened cylinder is taken from [55, 205] and can be calculated using a
factor B

B =
πn(f)tfr

2L
=

n(f)πtCl

2A
, n(f) =

2BL

πtfr
=

4AB

πtCl
, (4.175)

where t is the wall thickness, L is the length of the cylinder, Cl =
√

E
ρ is

the longitudinal wave speed, A is the surface area of the cylinder and n(f) is
the modal density of the unstiffened cylinder. In Table 4.6 the approximate
factors B are given in the following references [34, 55, 205]. The parameters
used are listed below:

• F = 2
x
2

• x = 1 for the octave band width with fmax = fF and fmin = f
F becomes

F = 2
1
2 = 1.414 and

• x = 1
3 for the third octave band width fmax = fF and fmin = f

F becomes
F = 2

1
6 = 1.122.
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Fig. 4.14. Factor B calculated in the one-third octave band

The B factor for the one-third octave band is shown in Fig. 4.14.

Acoustic Chamber

The total number of modes (eigenfrequencies) from 0 to an upper limit fre-
quency f in a rectangular room is given by [104]

N(f) =
4π

3
V

(
f

c

)3

+
π

4
A

(
f

c

)2

+
L

8

(
f

c

)
, (4.176)

where V = LxLyLz is the real geometrical volume of the room, A = 2(LxLy +
LxLz + LyLz) is the area of all walls and L = 4(Lx + Ly + Lz) is the sum of
all edge lengths. The modal density of the acoustic room can now be easily
derived from (4.176)

n(f) =
dN(f)

df
=

4π

c
V

(
f

c

)2

+
π

2c
A

(
f

c

)
+

L

8c
. (4.177)

Modal Overlap

The modal overlap Mjk of two modes is the ratio of the bandwidth Δ = ηω
and the modal spacing |ωj − ωk |

Mjk =
Δ

|ωj − ωk | . (4.178)
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Fig. 4.15. Modal overlap of sandwich panel

The modal overlap of a system as a whole is given by

M = n(ω)Δ = n(ω)ηω = n(f)ηf, (4.179)

where η is the loss factor, ω (f) is the center frequency and n(f) is the modal
density.

For M < 1 deterministic methods can be used, e.g., the finite element or
boundary element methods , but if M > 1 then statistical methods are more
suitable.

Example. From the previous example of the modal densities for a sandwich
panel with identical isotropic face sheets and core, the modal overlap will
be calculated assuming η = 0.05 in the octave band f = 31.5–8000 Hz. The
modal overlap, using the description of [159], is shown in Fig. 4.15. The modal
overlap M = 1 at f ≈ 250 Hz.

4.5.4 Subsystem Energies

Mechanical Subsystem

The total energy of a beam, plate or shell subsystem can be expressed in terms
of the total mass M and the spatial average of the velocity response 〈v2〉

M 〈v2〉 =
∫

A

m|v(x)|2dx, (4.180)
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where m is the mass per unit of length or area, v(x) is the spatial velocity
and x denotes the spatial location, one or two dimensional.

The velocity response v(x) normal to the neutral line or plane can be
expressed in a modal expansion of modes φn(x)

v(x) =
∑

n

vnφn(x), (4.181)

where the mode functions are orthogonal, i.e.

∫
A

mφi(x)φj(x)dx =

{
Λi, i = j,
0, i 
= j,

(4.182)

where Λi is the generalized mass (normalization constant) for the mode func-
tion i.

For a single localized source, p(x) is modelled by

p(x) = F0δ(x − x0), (4.183)

where δ(x − x0) is the Dirac delta function. The modal participation (gener-
alized coordinate) vn(x) becomes

vn(ω) =
jωF0φn(x0)

[ω2
n − ω2 + jηnωωn]

. (4.184)

The average velocity v2 can be evaluated using (4.180), thus

v2 =
1
M

∑
n

ω2F 2
0 φ2

n(x0)
[(ω2

n − ω2)2 + η2
nω2ω2

n]Λn
, (4.185)

where the mode function originality was applied.
Uniformly distributed point sources (“rain on the roof”) are spatially av-

eraged over the area A.

〈v2〉 =
1

AmM

∫
A

∑
n

ω2F 2
0 mφ2

n(x0)dx0

[(ω2
n − ω2)2 + η2

nω2ω2
n]Λn

, (4.186)

assuming a uniformly distributed mass per unit of length or area m. Again
the mode function orthogonality property, we can express (4.186) as follows:

〈v2〉 =
ω2F 2

0

M2

∑
n

1
[(ω2

n − ω2)2 + η2
nω2ω2

n]
. (4.187)

Equation (4.187) shows that, for independent localized forces (or random
broadband excitation), the input energy to all modes is uniform and indi-
cates that the response of a subsystem to random broadband excitation is
dominant at natural frequencies ωn.
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Averaging over the frequency band Δω = ω1 → ω2 which contain N =
n2 − n1 modes, we can find the following expression for (4.186):

〈v2〉Δω =
F 2

Δω

M2

n2∑
n=n1

1
Δω

∫
Δω

ω2dω

[(ω2
n − ω2)2 + η2

nω2ω2
n]

, (4.188)

where F 2
Δω is the mean square of the forces within the frequency band Δω.

If ωn ≈ ω, the range of natural frequencies is small compared to the center
frequency ω, and the loss factor ηn is small so that ηnωn � ω. Equation (4.188)
becomes (see also Appendix I)

〈v2〉Δω =
F 2

Δω

ΔωM2

n2∑
n=n1

π

2ηnωn
. (4.189)

Assuming a constant loss factor η in the frequency band ω and ωn ≈ ω for all
modes n, we can evaluate (4.189) as follows:

〈v2〉Δω =
F 2

Δω

M2

π

2ηω

N

Δω
=

F 2
Δf

M2

n(f)
8πηf

. (4.190)

The derivation of (4.190) is discussed in [24] and is in accordance with [102]
where the asymptotic modal analysis (AMA) had been applied.

For one resonant mode φn(x) (SDOF system) the average energy is given
by (4.35)

M 〈v2〉 =
F 2

Δf

M

1
8πηfn

.

Acoustic Room

The temporally averaged energy of an acoustic volume (room) is known
through its relationship to the mean square spatial average pressure

〈Eav 〉 =
〈p2〉
ρc2

V =
M 〈p2〉

Z2
0

, (4.191)

where p2

ρc2 is called the acoustic potential energy density [185], 〈p2〉 is the mean
square sound pressure averaged in space and time, which can be calculated
with 〈p2(f)〉 = p2

ref 10
SPL(f)

10 , and pref = 2.0 × 10−5 Pa. Z0 = ρc is the specific
acoustic impedance or characteristic impedance1 and M = V ρ is the total
mass: SPL(f) is the sound pressure level, SPL(f) = 10 log( p2

p2
ref

) dB, V is the

volume of the acoustic room, ρ is the density of the fluid in the acoustic room
(air ρ ≈ 1.2 kg/m3) and c is the ambient speed of sound in the fluid (air
c ≈ 340 m/s). The energy of an acoustic room can also be derived as follows.
1 For air at normal condition ρc = 414 kg/(m2 s).
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The energy of a subsystem is given by 〈E〉 = M 〈v2〉. The relation between
the pressure variation p and the velocity v in the fluid is given by p = ρcv.
Thus

〈Eav 〉 = M 〈v2〉 = V ρ
〈p2〉
(ρc)2

= V
〈p2〉
ρc2

. (4.192)

What is the dimension of 〈Eav 〉?

Example. Calculate the PSD of the pressure and the average energy in an
acoustic room with a volume V = 1600 m3. The sound pressure level in
the room is SPL = 140 dB (pref = 2 × 10−5 Pa) at the center frequency
fc = 250 Hz in the octave band. The speed of sound in the air is c = 340 m/s,
and the density of air ρ = 1.2 kg/m3.
The mean square of the pressure 〈p2〉 = (2 × 10−5)2 × 10

SPL
10 = 4.0 × 104 Pa2.

The PSD of the pressure Wp = 〈p2〉
0.707fc

= 226.274 Pa2/Hz. The average energy

in the acoustic room 〈Eav 〉 = 〈p2〉
ρc2 V = 461.361 Nm(W).

4.5.5 Source Power Inputs

The average input power Πin of a mechanical load to a subsystem is given by

Πin =
1
2
F 2

Δf � {Y (ω} =
1
2
F 2

Δf

n(f)
4M

, (4.193)

where F 2
Δf is the mean square force in the frequency band Δf , n(f) is the

modal density and M is to the total mass of the subsystem. The spatial
average of the mobility function Re{Y (ω)} is derived in Appendix I.

Some examples of source power inputs Πin,s of some infinite mechanical
systems are given in Table 4.7.

The symbols used in Table 4.7 are given below:

A Cross-section area of beam
D Bending stiffness of plate
E Young’s modulus
F Force
G Shear modulus
I Second moment of area of beam
J Torsion constant of beam
j

√
−1

M Bending moment
T Torque
t Thickness of plate
V Velocity
θ̇ Angular velocity
ρ Density



4.5 SEA Parameters 295

Table 4.7. Properties of infinite systems

System Driving point mobility Power flow into system
Y∞ Πin,s

Beam longitudinal
wave motion;
force excitation

V
F

= 1

2A
√

Eρ

〈F2〉
4A

√
Eρ

Beam torsional
wave motion;
torque excitation

θ̇
T

= 1

2
√

GJp

〈T2〉
4

√
GJp

Beam flexural
wave motion;
force excitation

v
F

= j−1
4Aρ

√
ω
(Aρ

EI
)

1
4

〈F2〉
4Aρ

√
ω
(Aρ

EI
)

1
4

Beam flexural
wave motion;
bending moment excitation

v
M

= (1+j)
√

ω
4EI

(EI
Aρ

)
1
4

〈M2〉
√

ω
8EI

(EI
Aρ

)
1
4

Plate flexural
wave motion;
force excitation

v
F

= 1

8
√

Dρt

〈F2〉
16

√
Dρt

4.5.6 Stresses and Strains

The strain energy per unit of volume U ∗ in an elastic body can be expressed
in the principal stresses and strains:

U ∗ =
1
2
[σ1ε1 + σ2ε2 + σ2ε2]. (4.194)

For thin plate and shell structures the stress perpendicular to the neutral
plane is σ3 = 0, hence U ∗ becomes

U ∗ =
1
2
[σ1ε1 + σ2ε2] ≈ [σε]. (4.195)

For isotropic materials, U ∗ can be expressed as follows

U ∗ =
σ2

E
, (4.196)

where E is the Young’s modulus.
In pure bending, the stress can be expressed in terms of the stress in the

extreme fiber z = e (see Fig. 4.16)

σ(z) =
2zσmax

t
. (4.197)

The strain energy per unit of area U is now
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Fig. 4.16. Plate, beam

U =
∫ t

2

− t
2

U ∗dz =
1
E

∫ t
2

− t
2

σ(z)2dz =
4σ2

max

Et2

∫ t
2

− t
2

(z)2dz =
tσ2

max

3E
. (4.198)

The average strain energy U is equal to the average kinetic energy per unit of
area of the plate, thus

t〈σ2
max 〉
3E

=
Mp〈v2〉

Ap
. (4.199)

For σmax the following relation can be obtained

〈σ2
max 〉 =

3EMp〈v2〉
tAp

. (4.200)

This is in accordance with [176].
For a sandwich plate with a face sheet thickness tf , (4.198) becomes

U =
∫ h

2 +tf

− h
2

U ∗dz =
1
E

∫ h
2 +tf

− h
2

σ(z)2dz =
2tfσ2

max

E
, (4.201)

thus (4.200) changes into

〈σ2
max 〉 =

EMp〈v2〉
2tfAp

. (4.202)

We can now estimate the average stresses 〈σ2
max 〉 from the average energy

of the plate or sandwich panel.
The average value for the maximum strain 〈ε2

max 〉 can be derived
from (4.200) and (4.202) by dividing both equations by E2.

Example. A sandwich panel, with CFRP face sheets t = 0.2 mm, Young’s
modulus E = 100 GPa, an area Ap = 6.25 m2 and a mass m = 2.5 kg/m2, is
exposed to an acoustic excitation in the octave band at 250 Hz, and responds
with an average velocity 〈v〉 = 0.05 m/s. Calculate the average stress 〈σmax 〉
and average strain 〈εmax 〉. The average stress 〈σmax 〉 is

〈σmax 〉 =

√
EMp〈v2〉

2tfAp
= 0.624 × 106 Pa,

and the average stain 〈εmax 〉 is

〈εmax 〉 =
〈σmax 〉

E
= 0.624 × 10−5 m/m.
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Fig. 4.17. (a) Full plate with clamped or free edges; (b) Plate with clamped square
hole

In [176], Shankar mentioned the “stress doubling rule”. For the prediction
of spatial variation of stresses, consistent with the simplicity of the SEA ap-
proach, a doubling of the mean square stress for every constrained boundary
is recommended. For example, at a rigidly clamped boundary (having both
rotations and translations constrained) the mean square peak stress must be
four times the spatially averaged stress, and at a clamped corner (the junction
of two edges) there is a further doubling, i.e. a total factor of 8. The respective
stress concentrations are given by the square roots, i.e. 2 and 2.8. The edges
and corners are illustrated in Fig. 4.17.

4.5.7 Non-resonant Response

The theory discussed in this section comes from papers [46, 162]. For a limp
panel the non-resonant response is given by

〈v2〉 =
2〈p2〉
mω2

, (4.203)

where 〈v2〉 is the mean square of the average velocity, 〈p2〉 is the mean square
acoustic pressure, and m the mass per unit of area.

Consider two reverberant rooms separated by a panel. The transmission
room is denoted by system 1, the receiving room by system 3 and the panel
by system 2. This is illustrated in Fig. 4.18. The power flow balance equations
for the three systems are:

Π1 = ωη1〈E1〉 + ωη12n1

(
〈E1〉
n1

− 〈E2〉
n2

)

+ ωη13n1

(
〈E1〉
n1

− 〈E3〉
n3

)
, (4.204)
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Fig. 4.18. Transmission suite

Π2 = ωη2〈E2〉 + ωη21n2

(
〈E2〉
n2

− 〈E1〉
n1

)

+ ωη23n2

(
〈E2〉
n2

− 〈E3〉
n3

)
, (4.205)

Π3 = ωη3〈E3〉 + ωη31n3

(
〈E3〉
n3

− 〈E1〉
n1

)

+ ωη32n3

(
〈E3〉
n3

− 〈E2〉
n2

)
. (4.206)

In [162] the following expression for the indirect CLF η13, for non-resonant
response, is given

η13 =
τAc

4ωV1
, (4.207)

where sound power transmission coefficient τ is given by

τ =
8ρ2c2

m2ω2
, (4.208)

and A is the area of the panel, c is the speed of sound in air and ρ is the
density of the air. The coupling loss factor η31 is given by

η31 =
2ρc

mω
. (4.209)
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4.6 Applications

4.6.1 Panel in an Acoustic Field

For a panel with a given radiation efficiency σrad and dissipation loss factor ηp.
the ratio of the panel average energy 〈Ep〉 to the acoustic average field energy
〈Ef 〉 is proportional to the ratio of the respective modal densities

〈Ep〉
〈Ef 〉 =

np

nf

ηrad

ηrad + ηp
. (4.210)

Here ηrad is the radiation coupling loss factor, np is the modal density of the
panel and nf is the modal density of the acoustic field.

Equation (4.210) states that a decrease of the panel modal density implies a
decrease in its response. The modal density of a panel is inversely proportional
to the stiffness of the panel because np(f) ∝

√
m
D . That means that an increase

in the panel natural frequency fn, which is proportional to the stiffness fn ∝√
D
m , will cause a lower modal density and an increase in the distance between

consecutive modes.
Decreasing the radiation coupling loss factor ηrad and increasing the dissi-

pation loss factor ηp of the panel will lead to lower average structural responses
of that panel. If the internal loss factor of the panel structure is small com-
pared to the radiation coupling loss factor, ηp � ηrad , the value of ηrad is of
no importance anymore and the ratio of average energies is proportional to
the ratio of modal densities, thus

〈Ep〉
〈Ea〉 ≈ np

nf
.

4.6.2 Sandwich Panels

In this vibro-acoustic application we discuss the response characteristics of a
sandwich panel in a spacecraft structure, carrying equipment, and exposed to
sound pressures.

If the spacecraft is placed in the acoustic room or under the fairing of
a launch vehicle the sandwich panels (side panels) full with equipment and
instruments will be exposed to sound pressure. The response PSD of the
acceleration is used to specify the random vibration (test) environment for
the equipment and instruments as illustrated in Fig. 4.19.

The analysis procedure is taken from [168]. There it is shown in that the
power flow between sandwich panels is negligible when a typical honeycomb
sandwich panels are exposed to vibro-acoustic reverberant pressure loads. This
is shown in Fig. 4.20. The sandwich panel will be considered unconnected from
adjacent structures.

The acoustic input power to sandwich panel or panel element i is Πin,i

and equals the dissipated power of that sandwich panel:
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Fig. 4.19. Typical random response of spacecraft panel

Fig. 4.20. Comparison of the vibration response of a panel either separated from
or to the spacecraft [4]

Πin,i = ηiω〈Ei〉 = ηiωMi〈v2
i 〉 = ηiωMi

〈a2
i 〉

(2πf)2
, (4.211)

where 〈Ei〉 is the energy of element i, ω is the center frequency of either an
octave or third octave band, ηi is the dissipation loss factor, Mi is the total
mass of the bare sandwich panel without any equipment mounted to it, 〈v2

i 〉
is the spatial average mean square velocity, and 〈a2

i 〉 the spatial average mean
square acceleration of the panel.

For sandwich panels with an honeycomb core, the following frequency de-
pendent dissipation loss factor ηi is recommended in [168]

ηi = f −0.7, (4.212)
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Fig. 4.21. Loss factor η = f −0.7

where f is the center frequency (Hz). The values of the loss factor are shown
in Fig. 4.21.

The acoustic input power is given by

Πin,i =
c2〈p2〉σiAini(f)

4πf2Mi
, (4.213)

where c is the speed of sound, 〈p2〉 is the mean square sound pressure, σi is
the radiation efficiency, ni(f) is the modal density, f is the center frequency
(Hz) and Mi is the mass of the bare sandwich panel i.

The NASA Lewis empirical radiation efficiency σ for a flat baffled panel
is given by [36]

σ =

{
f2

f2
cr

, f < fc;
1, f ≥ fcr,

(4.214)

where f is the center frequency and fcr is the critical frequency of the panel.
The modal density of a sandwich panel with isotropic face sheets is taken

from [159] and is expressed as follows.

n(f) =
πApmpf

S

{
1 +
(

m2
pω

4 +
4mpω

2S2

D

)− 1
2
(

mpω
2 +

2S2

D

)}
, (4.215)

where the parameters can be found in Sect. 4.5. Note that mp is the sur-
face mass of the bare sandwich panel. If the material properties of the face
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sheets are not isotropic, equivalent isotropic material properties can be ap-
plied. The modal density n(f) for composite honeycomb sandwich panels with
orthotropic properties is discussed in [159].

The critical frequency ωcr = 2πfcr is that frequency at which the sandwich
panel has the same wave speed (speed of sound) as the surrounding medium,
in general, air with a speed of sound c ≈ 340 m/s. The critical frequency of a
sandwich panel with isotropic face sheets is given by [160]

ω2
cr =

c4mp

D

[1 − c2mp

S ]
, (4.216)

where the parameters can be found in Sect. 4.5. The critical frequency ωcr

does not exists if c2mp

S ≥ 1.
The spatial average mean square acceleration 〈a2

i (f)〉 in the band with
center frequency f can now be obtained using (4.211):

〈a2
i (f)〉 =

c2〈p2〉σiAini(f)
2fM2

i ηi
. (4.217)

The mass loaded sandwich panel response (instrumentation and equipment
mounted to the panel) can be obtained by two methods discussed in [168].

• The mass ratio method to calculate the mean square spatial averaged
acceleration response 〈a2

b(f)〉 is based on the total mass of the mounted
equipment and instruments Mb with respect to the total panel mass Mi +
Mb:

〈a2
b(f)〉 = 〈a2

i (f)〉 Mi

Mi + Mb
. (4.218)

• The mass area density ratio method to calculate the mean square
spatial averaged acceleration response 〈a2

b(f)〉 is based on distributed mas-
sses of the box mb = Mb

Ab
with respect to the total distributed mass per unit

of area mp +mb, where Ab is total area of the foot prints of the equipment
or instruments.

〈a2
b(f)〉 = 〈a2

i (f)〉 mp

mp + mb
. (4.219)

The use of the mass ratio method leads to a more conservative acceleration
PSD compared with the mass density ratio method. PSD values obtained,
using the mass density ratio method agree well with test results.

In general, the equipment’s random acceleration vibration test specifica-
tion is a PSD function Wa(f) (g2/Hz). The spatial average mean square of
the acceleration 〈a2(f)〉 in the frequency band with center frequency f is
calculated using the expression

〈a2(f)〉 = Wa(f)Δf,

where Wa(f) is the constant acceleration PSD value in the frequency band
f with associated band width Δf . In [168] it is proposed to calculate peak
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Table 4.8. Specified SPL, OASPL = ??? dB

One octave frequency band SPL (dB)
(Hz) 0 dB = 2.0 × 10−5 Pa

31.5 124
63 130

125 135
250 139
500 134

1000 128
2000 124
4000 120
8000 116

PSD values Wa,p(f) from the constant Wa(f) in the frequency band f as
follows

Wa,p(f) =
〈a2(f)〉

Δf

1
ηfn(f)

= Wa(f)
1

ηfn(f)
, (4.220)

where ηf is the half power band width, and ηfn(f) is the modal over-
lap.

Example. A sandwich panel with isotropic face sheets has the following
geometry and material properties; the length is a = 1.82 m, the width b =
0.91 m and the total height h = 25 mm. The two identical isotropic face
sheets have a thickness t = 0.3 mm. The face sheet are made of an Al-alloy
with a Young’s modulus E = 71.6 GPa and the Poisson’s ratio is ν = 0.3.
The isotropic shear modulus of the honeycomb core is G = 134 MPa. The
mass per unit of area of the sandwich panel is mp = 4.5 kg/m2. The sandwich
panel is excited by a diffuse sound field as given in Table 4.8. The mean square
pressures can be calculated by 〈p2〉 = p2

ref 10
SPL
10 and pref = 2−5 Pa. The speed

of sound in air is c = 340 m/s.
Calculate the OASPL of the SPL levels given in Table 4.8. The answer to

the previous question is OASPL = 142 dB.
The total mass of the equipment and instrumentation is Mb = 30 kg, and

the total area of the footprint is 40% of sandwich panel area Ai = ab m2.
The mathematical model for the loss factor is ηi = f −0.7, and the radiation
efficiency will be approximated using σi = 1 if f ≥ fcr and σi = f2

f2
cr

if f < fcr.
Calculate the acceleration responses Wa(f) and Wa,p(f) for the bare panel
and the acceleration responses Wa(f) and Wa,p(f) for the mass loaded panel
when this panel is exposed to acoustic pressures.

To calculate the radiation efficiency, we need the critical frequency fcr.
The critical frequency of the bare sandwich panel is fcr = 487.5 Hz.

The PSD accelerations Wa(f) and peaked PSD accelerations Wa,p(f) of
the bare sandwich panel are shown in Fig. 4.22. The PSD accelerations Wa(f)
and peaked PSD accelerations Wa,p(f) of the mass loaded honeycomb sand-
wich panel are shown in Fig. 4.23.
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Fig. 4.22. PSD accelerations bare sandwich panel

Fig. 4.23. PSD accelerations mass loaded sandwich panel

4.7 Test-Based SEA Equations

Statistical Energy Analysis is used to predict wide-band noise and vibration.
That prediction may rely on parameters derived from theory or from test.
The latest is called test-based SEA [32].
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The power flow equations for a structure made up of N subsystems are
given in (4.105).

For a system composed of N subsystems, N2 unknowns must be estimated:
N damping loss factors and N(N − 1) coupling loss factors.

Getting enough test data to generate N2 equations is achieved by applying
input power on one subsystem only and measuring the response of all sub-
systems to that specific excitation. This generates N equations and therefore
this operation must be repeated for all subsystems in order to generate N2

equations. If N = 2 (4.103) can be rearranged. Equation (4.103) is given by
(

η1 + η12 −η21

−η12 η2 + η21

){
〈E1〉
〈E2〉

}
=

1
ω

{
Πin,1

Πin,2

}
.

The space averaged energy of subsystem i is denoted by 〈Eij 〉 when sub-
system j is excited. Equation (4.103) can be written as

ω

⎛
⎜⎜⎝

〈E11〉 〈E11〉 −〈E21〉 0
0 〈E11〉 −〈E21〉 −〈E21〉

−〈E12〉 −〈E12〉 〈E22〉 0
0 −〈E12〉 〈E22〉 〈E22〉

⎞
⎟⎟⎠

⎧⎪⎪⎨
⎪⎪⎩

η1

η12

η21

η2

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

Πin,1

0
0

Πin,2

⎫⎪⎪⎬
⎪⎪⎭

. (4.221)

In [122] it is shown that the condition number of the energy matrix
in (4.221) is even acceptable in case the coupling between subsystems be-
come stronger (see also problem 4.17), however, the energy matrix (4.221)
may be ill-conditioned and errors in the calculation get larger with an in-
creasing number of subsystems [71]. Therefore it is proposed to break down
the N ×N matrix into N sets of (N −1)×(N −1) matrices giving the coupling
loss factors and N equations giving the damping loss factors. For the coupling
loss factors related to subsystem i the following expression is used [71], with
j = 1, 2, . . . , N
⎧⎪⎨
⎪⎩

η1i

...
ηNi

⎫⎪⎬
⎪⎭

j �=i

=
Πin,i

ω〈Eii〉

⎛
⎜⎜⎝

( 〈E11〉
〈Ei1〉 − 〈E1i 〉

〈Eii 〉 ) . . . ( 〈EN1〉
〈Ei1〉 − 〈ENi 〉

〈Eii 〉 )
...

. . .
...

( 〈E1N 〉
〈EiN 〉 − 〈E1i 〉

〈Eii 〉 ) . . . ( 〈ENN 〉
〈EiN 〉 − 〈ENi 〉

〈Eii 〉 )

⎞
⎟⎟⎠

−1

j �=i

⎧⎪⎨
⎪⎩

1
...
1

⎫⎪⎬
⎪⎭ . (4.222)

This matrix is usually well conditioned since the diagonal terms are large.
The damping loss factor of subsystem i is then obtained as [71]

ηi =
Πin,i

ω − [
∑N

j=1(〈Eji〉ηji − 〈Eii〉ηij)]j �=i

〈Eii〉 , (4.223)

or directly using
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⎧⎪⎨
⎪⎩

η1

...
ηN

⎫⎪⎬
⎪⎭ =

1
ω

⎛
⎜⎝

〈E11〉 . . . 〈E1N 〉
...

. . .
...

〈EN1〉 . . . 〈ENN 〉

⎞
⎟⎠
⎧⎪⎨
⎪⎩

Πin,1

...
Πin,N

⎫⎪⎬
⎪⎭ . (4.224)

Under certain assumptions the problem can be greatly simplified

ηij ≈ 1
ω

{
〈Eij 〉

〈Eii〉

}{
Πin,j

〈Ejj 〉

}
. (4.225)

The following assumptions must be considered:

1. The modal energy 〈E〉
N (N is the number of modes per band) of a di-

rectly driven subsystem is greater than that of a subsystem connected
to it. This assumption is not valid for strong coupled subsystems, where

〈Eij 〉
Nj

∼= 〈Eii 〉
Ni

.
2. The expression calculates the coupling loss factor between two subsystems

from measurements on these subsystems only. The underlying assumption
is that most of the power flows directly between the two subsystems, not
through a third one.

In [156] Radcliffe proposed the following expression to identify the damping
loss factors from measurements of the subsystem energies 〈Ei〉, i = 1, 2 . . . N

ηi =
1

niei

⎧⎪⎨
⎪⎩

∑i−1
k=1 nkηkj(ek − ei),

+
∑N

k>i nkηik(ek − ei), i = 2 . . . N − 1;∑N −1
k=1 nkηki(ek − ei), i = N ,

(4.226)

where ei = 〈Ei 〉
n1

and ni is the modal density of subsystem i.
It is assumed that the responses from all subsystems in the SEA model are

measurable at each band center frequency of interest, and that all coupling loss
factors and modal densities are known at these frequencies. For convenience
it is assumed that power is input to subsystem 1.

The internal loss factor for the powered subsystem with unknown input
power cannot be identified from measured subsystem energies and other meth-
ods must be used to estimate it.

In acoustics the damping is measured from the reverberation time TR [118],
the time required for the vibration energy to decrease by a factor 10−6. Thus

e−2πfηTR = 10−6, (4.227)

which leads to
η(f) =

2.2
fTR

, (4.228)

where f is the center frequency.
In [156], Radcliffe proposed a least square error fit to a reverberation time

T̄R from the identified damping loss factor η(fi) as follows
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T̄R =
2.2
∑M

i=1
1
f2

i∑M
i=1

η(f1)
fi

, (4.229)

where M is the number of center frequencies in the frequency band. Equa-
tion (4.229) can obtained by applying the method of Least Squares [226] to
the series of equation, TR,i = 2.2 1/f2

i

ηi/fi
.

The new computed damping loss factor η̄i using the fitted reverberation
time T̄R is

η̄(fi) =
2.2

fiT̄R
. (4.230)

Example. This simple example is illustrated in Fig. 4.24 and is taken
from [156]. An SEA model consists of two identical cubic spaces, separated
by an Al-alloy panel. Acoustic powers are input to Space 1 and the working
medium is air. Space 1 is designated as subsystem 1, the panel as subsystem 2
and space 2 as subsystem 3. The properties of all subsystems are given in
Table 4.9.

Fig. 4.24. Space panel space

Table 4.9. Geometry, material properties, assumed measurements at 5000 Hz

Panel length x width 0.5 × 0.5 m2

Thickness t 0.007 m
Young’s modulus E 70 GPa
Poisson’s ratio ν 0.3
Density ρ 2700 kg/m3

Velocity v 0.000885 m/s

Air Density ρ 1.244 kg/m3

Speed of sound c 344 m/s2

Space 1 Volume V 0.5 × 0.5 × 0.5 m3

Pressure p 39 Pa

Space 2 Volume V 0.5 × 0.5 × 0.5 m3

Pressure p 19 Pa
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Properties of Subsystem 2 (Panel)

The bending stiffness of the panel is given by

D =
Et3

12(1 − ν2)
.

The modal density of the panel is constant over the frequency band is
given by

n2 =
Ap

2

√
ρt

D
= 0.0116 modes/Hz.

The energy E2 can be calculated as follows:

E2 = M 〈v2〉 = 3.7007 × 10−6 Joules,

and the modal energy e2 is

e2 =
E2

n2
= 3.1932 × 10−4 Joules/mode.

The critical frequency fcr of the panel is

fcr =
c2

2π

√
m

D
= 1746 Hz.

Subsystems 1 and 3, Space 1 and Space 2

The modal densities of subsystem 1 and 3 are

n1 = n3 =
4πf2V

c3
+

πfAs

2c2
+

Ls

8c
= 1.0664 modes/Hz.

The energies of the subsystem 1 and 3, 〈E1〉 and 〈E3〉, are

〈E1〉 =
V p2

1

ρc2
= 0.0013 Joules,

and

〈E3〉 =
V p2

2

ρc2
= 3.1991 × 10−4 Joules.

The modal energies are

e1 =
〈E1〉
n1

= 0.0012 Joules/mode,

and

e3 =
〈E3〉
n3

= 2.9998 × 10−4 Joules/mode.
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Coupling Loss Factors

Expressions for the coupling loss factors η21 and η23 are taken from [156]

η21 = η23 =
ρcAp

2πfMp

{ 2λcrP
π2Ap

sin−1( f
fcr

)β, f < fcr;

(1 − fcr

f )− 1
2 , f > fcr,

where ρ is the fluid density, c is the speed of sound in the fluid, Ap is the
area of the panel, P is the perimeter of the panel, Mp is the total mass of the
panel, fcr is the critical frequency of the panel, λcr = c

fcr
is the wavelength

at fcr and β is

β =

⎧⎪⎨
⎪⎩

1, for simply supported edge supports;
2, for clamped edge supports;

√
2, for typical mounting conditions.

The coupling loss factors η21 = η23 can be calculated (f > fcr), f =
5000 Hz

η21 = η23 =
ρcAp

2πfMp

(
1 − fcr

f

)− 1
2

= 8.9342 × 10−4.

The coupling loss factor η12 and η32 can now be computed:

η12 =
n2

n1
η21 = 9.7092 × 10−6,

and
η32 =

n2

n3
η23 = 9.7092 × 10−6.

The coupling loss factor for the flanking path between subsystems 1 and 3
is assumed constant for this example, i.e. η13 = 0.0001, thus Π13 =
ωη13n1(

〈E1〉
n1

− 〈E3〉
n3

).

Loss Factor

The damping loss factor of subsystem 1 cannot be independently computed
because the measured energy in that element is considered as input.

The damping loss factors of subsystem 2 and 3 will be computed us-
ing (4.226)

η2 = 2.4 × 10−3,

and
η3 = 3.0434 × 10−4.

Experimental Determination of the Radiation Efficiency

Let us assume that the structure, the cylinder is system 1, and the surrounding
acoustic volume, the reverberant chamber is system 2. The power balance
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equations of the two systems are, [157]

Π1 = ω(η1 + η12)〈E1〉 − ωη21〈E2〉,
Π2 = −ωη12〈E1〉 + ω(η2 + η21)〈E2〉,

(4.231)

where η1 and η2 are the loss factors (dissipation loss factor, DLF) of the
cylinder and acoustic volume, η12 is the coupling loss factor (CLF) between
the cylinder and the acoustic volume, 〈E1〉 and 〈E2〉 are the energies stored
in the cylinder and acoustic volume, and Π1 and Π2 are the power inputs to
these systems. The CLF η21 between the acoustic volume and the cylinder
can be written as

η21 = η12
n1

n2
, (4.232)

where n1 and n2 are the modal densities of the cylinder and acoustic volume,
respectively. Only the cylinder will be mechanically excited, thus the second
part of (4.231) can be written

η12 =
n2η2〈E2〉

〈E1〉n2 − 〈E2〉n1
, (4.233)

and the radiation efficiency σrad is calculated using

η12 =
σradρc

2πfμs
, (4.234)

where ρ is the density of air, c the speed of sound in air and μs the surface
mass density of the structure.

The modal density n2 of the acoustic volume is given by

n2 =
4πf2V2

c3
+

πfA2

c2
+

P2

c
, (4.235)

where P2, A2, V2 are the total edge length, surface area and volume of the
reverberation chamber, respectively. It can be seen that the modal density of
the acoustic volume increases rapidly with frequency, and hence n1 � n2 for
the frequency f > 100 Hz. Hence (4.233) can be simplified to

η12 =
n2〈E2〉

〈E1〉 . (4.236)

The DLF of the chamber η2 is given by

η2 =
13.816
2πfTr

, (4.237)

where Tr is the reverberation time of the chamber.
The energy of the cylinder 〈E1〉 is given by

〈E1〉 = M 〈v2
1 〉, (4.238)
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Fig. 4.25. Experimental setup

where 〈v2
1 〉 is the space averaged square of the velocity and M is the total

mass of the cylinder. The energy of the acoustic volume is given by

〈E2〉 =
〈p2

2〉V2

ρc2
, (4.239)

where 〈p2
2〉 is the space average square of the sound pressure in the acoustic

chamber.
To measure the radiation efficiency of the cylinder, it is suspended using

bungee ropes in a reverberant chamber, as shown in Fig. 4.25, and excited
laterally using an electromagnetic shaker on the outer surface of the cylinder.
A small force transducer is kept in between the shaker and the cylinder to
measure the input excitation level. A miniature accelerometer with built-in
preamplifier is placed on the inner surface of the cylinder exactly at the loca-
tion of excitation to measure the point mobility. A few number of miniature
accelerometers are mounted on the cylinder at random locations. Four mi-
crophones are suspended at different locations to measure the sound pressure
level (SPL) in the reverberation chamber. The cylinder is excited at a limited
number of randomly selected locations by a random noise generator in the fre-
quency range of interest. The signals from the force transducer, accelerometers
and microphones are recorded on a PC or laptop using a multichannel data
acquisition system. The data is analyzed for point mobility, average cylinder
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velocity and average sound pressure level in the chamber for each excitation
location. Then the spatial average values of these parameters at all excitation
locations are considered for calculation e.g. the radiation efficiency.

4.8 SEA Strategy

The SEA prediction procedure can be divided into the four following steps:

1. Modelling of the dynamic system into subsystems and junctions (coupling)
2. Determination of SEA parameters for the SEA model
3. Calculation of subsystem energies
4. Calculation of average response levels for the systems

Example. Calculate the responses of a plate placed in a reverberant chamber
with the aid of the SEA.

• Two subsystems:
1. Subsystem 1 is the acoustic chamber
2. Subsystem 2 is the plate or panel placed (hung) in the acoustic chamber

• Coupling
1. Radiation

• Space-time average energies
1. Acoustic chamber 〈E1〉 = V 〈p2〉

ρc2

2. Plate/panel 〈E2〉 = M 〈a2〉
ω2

• Modal densities
1. Acoustic chamber n1 = V ω2

c3

2. Plate/panel n2 = A
2

√
(m

D )
• Loss factors

1. Acoustic chamber η1 not considered
2. Plate/panel η2

3. One sided radiation loss factor η21

• Energy balance
1. 〈E2〉

〈E1〉 = n2
n1

[ 2η21
η2+2η21

]
• Result

1. 〈a2〉
〈p2〉 = c

2ρ
√

mD
[ 2η21
η2+2η21

]

where

• A is the surface area of the plate/panel
• a is the acceleration of the plate/panel
• c is the speed of sound in air
• D is the bending stiffness of the plate/panel
• ρ is the density of the air
• p is the pressure in the acoustic chamber
• V is the volume of the acoustic chamber
• ω is the radian frequency
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Problems

4.1. A spring-mounted rigid body with a m = 100 kg mass can be modelled as
an oscillator with a spring stiffness k = 6.25106 N/m. A steady-state applied
force of F = 75 N produces a velocity of v = 0.15 m/s. Estimate the damping
ratio ζ, the loss factor η and the amplification factor Q (quality factor).
Answers: ζ = 0.0125, η = 0.025 and Q = 40.

4.2. The dynamic response of a SDOF system

ẍ + 2ζω0ẋ + ω2
0x = 0,

with, certain initial conditions, is given by

x(t) = Ae−ω0ζt sin(ω0

√
1 − ζ2),

where x(t) is the decaying oscillating displacement, ζ is the damping ratio and
ω0 is the natural frequency. The mass of the SDOF system is m and stiffness
is k = mω2

0 . Prove that the average total energy

〈E〉 = 〈PE〉 + 〈KE〉 =
1
2
kA2e−2ω0ζt.

4.3. Prove that 〈ẋ2〉 = ω2
n〈x2〉.

Hint: Use 〈x2〉 = WF F (fn)
4π

∫∞
− ∞ |H(ω)|2dω and Y (ω) = jωH(ω) and compare

that with (4.33).

4.4. Prove that 〈ẍ2〉 = ω2
n〈ẋ2〉.

Hint: Use 〈ẍ2〉 = WF F (fn)
4π

∫∞
− ∞ ω2|H(ω)|2dω and compare that with (4.33).

4.5. The power flow between to SDOF system is given by Π12 = β12[〈E1〉 −
〈E2〉]. Prove that β12 = β21.
Hint: Use (4.46).

4.6. A SEA model consists of two subsystems and is illustrated in Fig. 4.26.
The power transfer Π12 is given by

Π12 = ωη12〈E1〉 − ωη21〈E2〉.

Show that the power ratio Π12
Πin,1

is

Π12

Πin,1
=

η12η2

η12η12η2 + η21η1 + η1η2
.

4.7. Set up the power balance equations four the system with for subsystems
as shown in Fig. 4.27. The coupling loss factors ηij and the loss factors are
ηi, with i, j = 1, 2, 3, 4.
Answers: [ωηij ]{〈Ei〉} = {Πi,in}, ηii = ηi +

∑
j,j �=i ηij .
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Fig. 4.26. SEA model

Fig. 4.27. Four coupled subsystems

4.8. The dimensions of the Large European Acoustic Facility (LEAF) are
9.0 × 11.0 × 16.4 (width, length, height) m3 and filled with air. Calculate the
modal densities of the LEAF in the one octave frequency band from 31.5–
8000 Hz. The speed of sound in air is c = 340 m/s.
Answers: V = 1624 m3, A = 854 m2, P = 145.6 m, e.g. n(250) =
16.70 modes/Hz.

4.9. The dimensions of the Large European Acoustic Facility (LEAF) are
9.0 × 11.0 × 16.4 (width, length, height) m3 and filled with air. Calculate the
OASPL and the average energies 〈ELEAF 〉 of the LEAF in the one octave
frequency band from 31.5–8000 Hz. The speed of sound in air is c = 340 m/s
and the density of air is ρ = 1.2 kg/m3. The SPLs are given in Table 4.10.
Answers: e.g. OASPL = 154.0 dB, 〈ELEAF (250)〉 = 1.592 × 106 Nm.



4.8 SEA Strategy 315

Table 4.10. SPL in LEAF

One octave frequency band SPL (dB)
(Hz) 0 dB = 2.0 × 10−5 Pa

31.5 136
63 141

125 147
250 150
500 147

1000 144
2000 137
4000 131
8000 125

Fig. 4.28. Plate excited by random force

4.10. A square plate (in vacuum) made of Al-alloy with the following prop-
erties; the Young’s modulus is E = 70 GPa, the Poisson’s ratio is ν = 0.3 and
the density is ρ = 2800 kg/m2 is excited by a random force F . The PSD of
the force F is constant over the octave band fi = 31.5–1000 Hz, i = 1, 2, . . . , 6
and is given by WF = 100 N2/Hz. The total area of the plate is Ap = 4 m2

and the thickness is t = 5 mm. The dissipated loss factor is constant η = 0.02.
The plate is illustrated in Fig. 4.28.

• Calculate 〈F 2
i 〉

• Calculate the overall rms value Frms

• Derive the expression for the mean square of the acceleration 〈a2
i 〉 in the

center frequency 〈fi〉
• Derive the expression for the overall rms value of the acceleration 〈a〉
• Calculate the mean square acceleration 〈a2

i 〉 in the octave band in the
center frequency 〈fi〉 1 = 1, 2 . . . 6

• Calculate the rms value of the acceleration 〈a〉 over the complete band
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Answers: 〈F 2
i 〉 = WF Δfi, 373.09 N, 〈a2

i 〉 = (2πfi)〈F 2
i 〉n(fi)

4ηM2
p

, 〈a〉 =
√∑6

i=1〈a2
i 〉 =

52.7942 m/s2.

4.11. A rectangular steel plate has been supported horizontally. The physical
properties of the plate are: length l = 0.9 m, width b = 0.6 m, thickness
t = 0.00115 m, density ρ = 6956 kg/m3, Young’s modulus E = 210.0 GPa,
shear modulus G = 80.77 GPa and the Poisson’s ratio ν = 0.3. The shear
rigidity is defined by S = Gt. The speed of sound in air c = 340 m/s.

• Calculate mass of plate Mp kg.
• Calculate modal density np(f) modes/Hz.
• Calculate critical frequency of plate fcrit Hz.
• Calculate critical frequency of plate fcrit,S Hz, taking into account

the shear rigidity S N/m and use following expression fcrit,S =√
f2
crit [1 − c2ρt

S ] Hz [160].

Answers: Mp = 4.32 kg, np(f) = 0.141 modes/Hz, fcrit = 9622 Hz and
fcrit,S = 9574 Hz.

4.12. Calculate the modal densities n(f) and n(ω) of a bending beam with
bending stiffness EI, length L, cross section A, and density ρ, using the ex-
pression � {Y (ω)} = n(f)

4M . The complex mobility function Y (ω) is given by

Y (ω) = j−1
4Aρ

√
ω

4

√
Aρ
EI and the total mass is M = AρL.

Answers: n(f) = L√
2πf

4

√
Aρ
EI , n(ω) = L

2π
√

ω
4

√
Aρ
EI .

4.13. Calculate the modal densities n(f) of a unstiffened cylinder with the
following geometrical and material properties; the radius is R = 0.302 m,
the length L = 0.75 m, the wall thickness t = 0.00146 m, the total mass is
M = 5.55 kg, the Young’s modulus E = 70 × 109 N/m2 and the Poisson’s
ratio ν = 0.3. This problem is taken from [34].

• Calculate the ring frequency fr Hz.
• Calculate the wave speed Cl m/s.
• Calculate the modal density n(f) in the octave band. Create a plot f

fr

versus n(f).
• Calculate the modal density n(f) in the one-third octave band.Create a

plot f
fr

versus n(f).

Answers: fr = 2698 Hz, Cl = 5119 m/s, n(f) in the octave band is given in
Fig. 4.29.

4.14. This problem is taken from [159]. A sandwich panel has dimensions
a = 2.15 m and b = 1.80 m. The total mass is M = 13.8 kg. The core height is
h = 18 mm, the face sheet thickness t = 0.2 mm. The face sheet is a laminate
of two layers (0/90) of CFRP. Each CFRP layer has the following properties:
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Fig. 4.29. Modal densities problem 4.13

• Young’s modulus along the fiber direction E = 30 × 1010 Pa
• Young’s modulus along the transverse direction E = 0.607 × 1010 Pa
• Poisson’s ratio ν = 0.346
• Shear modulus G = 0.50 × 1010 Pa

The shear modulus of the honeycomb core is 6.32 × 107, 10.53 × 107 Pa.
Calculate the [D] matrix, assuming that the layers of both face sheets

are balanced, and calculate the shear rigidity S. Further calculate the modal
density n(f) of the sandwich panel in the octave band (32.5–8000 Hz).
Answers: D11 = 5135.3 Nm, D22 = 5028.0 Nm, D12 = 69.7 Nm, D66 =
165.6 Nm, S = 15.0 N/m, n(32.5) = 0.061, n(8000) = 0.634.

4.15. Consider a panel kept in an acoustic chamber and excited mechanically.
For SEA modelling, the acoustic chamber field is taken as subsystem 1 and the
panel is taken as subsystem 2. The energy of acoustic chamber, subsystem 1,
is given by 〈E1〉 = p2V

ρc2 and the energy of the panel, subsystem 2, is given
by 〈E2〉 = M 〈v2〉, where p is the rms pressure field, V is the volume of the
acoustic chamber, ρ is the density of the air in the chamber, c is the speed of
sound in the air, M is the total mass of the panel and 〈v〉 is the velocity of
the panel averaged of the surface.
Prove the relation

〈E1〉 =
η21

η1 + η12
〈E2〉

where η21 and η12 are the coupling loss factors and η1 is the loss factor of the
acoustic chamber given by η1 = Sᾱ

8πfV , where S is the surface of the acoustic
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Table 4.11. Identified damping loss factors

Third octave band fi (Hz) η(fi)

500 0.010
630 0.030
800 0.010

1000 0.008
1250 0.006
1600 0.010
2000 0.008
2500 0.006
3150 0.004
4000 0.003
5000 0.001

chamber and ᾱ is the sound power absorption coefficient and f is the central
cyclic frequency.
Prove that the radiation resistance Rrad of the panel can be expressed by [161]

Rrad =
p2Sᾱ

[4ρc〈v2〉 − n2c2p2

πf2M ]

using the reciprocity relation η12 = η21
n2
n1

. The modal density of the acoustic

chamber is given by n1 = 4πf2V
c3 and n2 is the modal density of the panel.

What is the dimension of Rrad? [ W
(m/s)2 ].

4.16. The identified damping loss factor η(fi) in the third octave frequency
band are given in Table 4.11. Compute the Least Squared error fit of the
reverberation time T̄R (4.229) and calculate the damping loss factors η̄(fi) in
the third octave frequency band.
Answers: T̄R = 0.25 s, see Fig. 4.30.

4.17. Consider a three subsystems model which is subjected sequentially to
power Πin,1, Πin,2 and Πin,3 respectively. The loss factors of each of the sub-
systems are η1, η2 and η3, the coupling loss factors between the subsystems
are η12, η21, η13, η31, η23 and η32. Subsystem 1 is first subjected to an input
power Πin,1 and the energies of all subsystems are measured and are respec-
tively 〈E11〉, 〈E21〉 and 〈E31〉. The first index denotes the subsystem number
and the second index the subsystem subjected to power input. Similarly, the
subsystem 2 will be injected by the power Πin,2 and the measured energies
are respectively 〈E12〉, 〈E22〉 and 〈E32〉. Finally subsystem 3 will powered
by Πin,3 and the measured subsystem energies are respectively 〈E13〉, 〈E23〉
and 〈E33〉.

Generate the 9 × 9 energy matrix [〈Eij 〉], i, j = 1, 2, 3. The sequence of
loss and coupling loss factors is η1, η2 and η3, η12, η21, η13, η31, η23 and η32.

The subsystem energy are related as follows 〈Eij 〉 = ε〈Eij 〉, ε = 0.05, 0.10,
0.30, 0.50, 0.80.
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Fig. 4.30. Damping loss factors

Table 4.12. Condition number of the energy matrix

No. Energy ratio ε Condition number

1 0.05 5.3826
2 0.10 5.8944
3 0.30 9.5020
4 0.50 16.5558
5 0.80 54.4306

Perform the following numerical experiments:

1. Subsystem 1 is driven first and its energy is assumed to be 〈E11〉 = 1.0.
The energy of subsystems 2 and 3 are 〈E21〉 = ε〈E11〉 and 〈E31〉 = ε〈E11〉.

2. Subsystem 2 is driven first and its energy is assumed to be 〈E22〉 = 1.0.
The energy of subsystems 1 and 3 are 〈E12〉 = ε〈E22〉 and 〈E32〉 = ε〈E22〉.

3. Subsystem 3 is driven first and its energy is assumed to be 〈E33〉 = 1.0.
The energy of subsystems 1 and 2 are 〈E13〉 = ε〈E33〉 and 〈E23〉 = ε〈E33〉.
The above energy ratio ε corresponds to weak coupling to strong coupling.
Compute the condition number of the energy matrix (the ratio biggest

eigenvalue to lowest eigenvalue).
Answer: See Table 4.12.

This problem is taken from [122].

4.18. There are two sinusoidal waves:

1. The first wave has a wave number k1 = 2 rad/m and an angular frequency
ω1 = 2 rad/s.
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2. The second wave has a wave number k2 = 2.2 rad/s and an angular
frequency ω2 = 8 rad/s.

Calculate the phase velocities v1 and v2.
The third sinusoidal wave is the summation of the waves 1 and 2. Calculate

the wave number k3, the angular frequency ω3 of the carrier wave and Δk3

and Δω3 of the modulation impressed on the carrier.
Calculate the phase velocity v3 of the carrier wave and the group velocity

vg3.
Answers: v1 = 1 m/s, v2 = 3.636 m/s, k3 = 2.1 rad/m, ω3 = 5 rad/s,

Δk3 = 0,1 rad/m, Δω3 = 3 rad/s, v3 = 2.381 m/s and vg3 = 30 m/s.

4.19. Calculate the group velocity cg of an infinite isotropic bending plate
described by (4.154), (4.155) and (4.156).

Answer: cg = 3
2

√
ω 4

√
D
m .

4.20. The natural frequencies of a simply supported, rectangular plate can be
computed by

ωm,n = π2

√
D

m̄

[(
mπ

Lx

)2

+
(

nπ

Ly

)2]
,

where D = Et3

12(1−ν2) is the bending stiffness, m̄ = ρt is the mass per unit
of area, E is Young’s modulus, ν is Poisson’s ratio, ρ is the density of the
plate material, t is the thickness of the plate, m is the mode number in the x
direction, n the mode number in y direction, Lx the length of the x direction
and Ly the width of the plate in y direction. The wave number in x direction
is kx = mπ

Lx
and the wave number in y direction is ky = nπ

Ly
.

Derive the group speed cgx in x direction and the group speed cgy in y
direction.

Show numerically that the group speed in the x direction can be approxi-
mated by cgx = ∂ω

∂kx
|ωm,n = ωm,n −ωm+1,n

km −km+1
and the group speed in the y direc-

tion can be approximated by cgy = ∂ω
∂ky

|ωm,n = ωm,n −ωm,n+1
kn −kn+1

.
The properties of the plate are given in Table 4.13. Plot the group speed

cgx and cgy as a function of the frequency f (frequency range 0–5000 Hz).

Table 4.13. Properties of single plate

Parameter Unit Dimension

Lx m 1
Ly m 0.7
t m 0.003
E Pa 200 × 1011

ν 0.3
ρ kg/m2 7800
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Fokker-Planck-Kolmogorov Method
or Diffusion Equation Method
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Fokker-Planck-Kolmogorov Method
or Diffusion Equation Method

5.1 Introduction

In the previous parts, random vibration of linear dynamic systems are dis-
cussed. In general, spacecraft structures are considered to behave linearly and
the modal characteristics play an important role in the design and verifica-
tion process. In this part, random vibrations of nonlinear dynamic systems
where modal properties do not exist will be briefly discussed. Many solution
methods exist to solve nonlinear systems exposed to random loads. In [123] an
overview of several solution methods is given. In this chapter one particular
method based on the Fokker-Planck-Kolmogorov (FPK) equation is applied
to predict the response characteristics. Wang and Uhlenbeck’s paper enti-
tled: “On the Theory of the Brownian Motion II”, published in [218] was the
starting point to study the derivation and applications of the FPK equation.
This paper was originally published in Reviews of Modern Physics in 1945.
In [26] Caughey repeated and extended the derivation of the FPK equation
for a Markoff vector process and showed the steady state solution of the FPK
equation for the nonlinear Duffing equation with a Gaussian white noise load.
Risken’s book [165], is completely dedicated to the FPK equation, methods
of solution and applications, however, it has little to do with the mechani-
cal engineering problems. Ibrahim [84] describes in his book the parametric
random vibrations and Roberts and Spanos [166] discuss in their book the
solution of random vibrations of nonlinear dynamic systems using statistical
linearization. To’s book, [210], is more or less an union of the topics described
in [84, 166].

In this chapter, the derivation of the FPK equation, in conjunction with
the Markoff process, will be discussed and, Miles’ equation is obtained as
example of a linear SDOF system, [127], by solving the stationary probability
density function, and the related first and second moments of the random
response.

In general, no closed form solution of the conditional or transition and
joint probability density function from the FPK equation can be obtained

J. Wijker, Random Vibrations in Spacecraft Structures Design,
Solid Mechanics and Its Applications 165,
c© Springer Science + Business Media B.V. 2009
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for nonlinear random vibration problems and therefore the finite element and
finite difference methods are discussed to numerically solve the FPK equa-
tion. In a paper of Kumar and Narayanan, [103], the numerical solution of the
FPK equation by the finite element method, and the finite difference method,
for nonlinear systems is summarized and examples presented. The numerical
solution of the FPK equation demands significant computer resources to cal-
culate both the stationary and transient (non-stationary) probability density
functions.

The FPK equation is strongly related to the Itô and Stratonovich sto-
chastic differential equation (SDE). The difference between both SDEs will
be explained.

This chapter includes many examples and problems.

5.2 Probability Theory

The following set of probability density functions completely defines a random
function [26, 218]:

• f1(x, t)dx is the probability of finding x in the range x to x+dx at time t.
• f2(x1, t1, x2, t2)dx1dx2 is the probability of finding x in the range x1 to

x1 + dx1 at time t1 and x2 in the range x2 to x2 + dx2 at time t2.
• f3(x1, t1, x2, t2, x3, t3)dx1dx2d3 is the probability of finding x in the range

x1 to x1 + dx1 at time t1, in the range x2 to x2 + dx2 at time t2 and in
the range x3 to x3 + dx3 at time t3.

The higher probability density functions fn(x1, t1, . . . , xn, tn) are defined in a
similar manner, however, each fn must satisfy the following criteria:

• fn ≥ 0
• fn is symmetric in the pairs x1, t1, x2, t2, . . . , xn, tn

• fk =
∫ ∞

− ∞
n−k· · ·

∫ ∞
− ∞ fndxk+1 · · · dxn.

The last equation determines a marginal probability. The probability function
fn can be used as a means classifying a purely random function, which means
that the value of x at some time t1 does not depend upon, or is not correlated
with, the value of x at any other time t2. The probability f1(x, t)dx completely
describes the function in this case, since the higher probability density function
fn are found from the following equation

fn(x1, t1, x2, t2, . . . , xn, tn) =
n∏

i=1

f1(xi, ti). (5.1)

It becomes more complicated when the probability density f2 completely
describes the random functions. This is a so-called Markoff process.1 To
1 Also called a Markov process or a Markovian process [149].
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define a Markoff process more precisely the conditional probability will be
introduced. The conditional (transition) probability density function is de-
fined by fc2(x1, t1|x2, t2)dx2 as the probability that, for a given x = x1 at
t = t1, the value of x is in the range from x2 to x2 + dx2 at a time t2
later.

f2(x1, t1, x2, t2) = f1(x1, t1)fc2(x1|x2, t2 − t1). (5.2)

The function fc2 must satisfy the following conditions:

• fc2(x1, t1|x2, t2) ≥ 0;
•

∫ ∞
− ∞ fc2(x1, t1|x2, t2)dx2 = 1;

• f1(x2, t2) =
∫ ∞

− ∞ f1(x1, t1)fc2(x1|x2, t2 − t1)dx1.

For Brownian motion

lim
t→∞

fc2(x1|x2, t) = f1(x2). (5.3)

5.3 Markoff Process

A Markoff process is defined such that the conditional probability that x lies
in the interval, from x1 to x1 + dx1 at t1, from x2 to x2 + dx2 at t2, . . . from
xn−1 to xn−1 +dxn−1 at tn−1 depends only on the values of x at tn and tn−1.
Thus for a Markoff process

fcn(x1, t1, x2, t2, . . . , xn−1, tn−1|xn, tn) = fc2(xn−1, tn−1|xn, tn). (5.4)

It is possible to derive f3, f4, . . . from f2 and (5.2), e.g.

f3(x1, t1, x2, t2, x3, t3) = f2(x1, t1, x2, t2)fc2(x2, t2|x3, t3)

=
f2(x1, t1, x2, t2)f2(x2, t2, x3, t3)

f1(x2, t2)
, (5.5)

and

f4(x1, t1, x2, t2, x3, t3, x4, t4) = f2(x1, t1, x2, t2, x3, t3)fc2(x3, t3|x4, t4)

=
f2(x1, t1, x2, t2)f2(x2, t2, x3, t3)

f1(x2, t2)

× f2(x3, t3, x4, t4)
f1(x3, t3)

, (5.6)

using (5.2) and (5.5). The conditional probability density function must also
satisfy the Smoluchowski or the Chapman-Kolmogorov equation, which will
be discussed in the next section.
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5.4 Smoluchowki or Chapman-Kolmogorov Equation

The Smoluchowki or Chapman-Kolmogorov equation [165, 218] is

fc2(x1, t1|x2, t2) =
∫ ∞

− ∞
fc2(x1, t1|x, t)fc2(x, t|x2, t2 − t)dx. (5.7)

If t1 = 0, the time homogeneity equation (5.7) can be written

fc2(x1|x2, t2) =
∫ ∞

− ∞
fc2(x1|x, τ)fc2(x, τ |x2, t2 − τ)dx, (5.8)

as illustrated in Fig. 5.1.
The joint probability density function f2 is obtained from f3 by integrating

over one coordinate:

f2(x1, t1, x2, t2) =
∫ ∞

− ∞
f3(x1, t1, x, t, x2, t2)dx (5.9)

The joint probability function f2 is written as follows:

f2(x1, t1, x2, t2) = f1(x1, t1)fc2(x1, t1|x2, t2), (5.10)

thus

f1(x1, t1)fc2(x1, t1|x2, t2) =
∫ ∞

− ∞
f1(x1, t1)fc2(x1, t1|x, t)fc2(x, t|x2, t2 − t)dx.

(5.11)
Because f1(x1, t1) is arbitrary, the Smoluchowski or Chapman-Kolmogorov
equation is obtained:

fc2(x1, t1|x2, t2) =
∫ ∞

− ∞
fc2(x1, t1|x, t)fc2(x, t|x2, t2 − t)dx. (5.12)

Equation (5.12) is interpreted as follows. The transition probability density
from x1 at time t1 to x2 at time t2 is the same as the transition probability

Fig. 5.1. Illustration of the Smoluchowski or Chapman-Kolmogorov equation
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density from x1 at time t1 to x at time t times the transition probability
density from x at time t to x2 at time t2 for all possible x and t1 < t < t2.
Equation (5.12) may also be expressed in terms of the probability function P :

P (x1, t1|x2, t2) =
∫ ∞

− ∞
P (x1, t1|x, t)P (x, t|x2, t2 − t)dx. (5.13)

For two random variables y and z, (5.12) can be written

fc2(y1z1, t1|y2z2, t2) =
∫ ∞

− ∞

∫ ∞

− ∞
fc2(y1z1, t1|yz, t)fc2(yz, t|y2z2, t2 − t)dydz,

(5.14)
and for an N -dimensional state-space {x} (5.12) and (5.14) becomes

fc2({x1}, t1| {x2}, t2)

=
∫ ∞

− ∞
· · ·

∫ ∞

− ∞

N∏
i=1

fc2({x1}, t1| {x}, t)fc2({x}, t| {x2}, t2 − t)dxi. (5.15)

5.5 Derivation of the Fokker-Planck-Kolmogorov
Equation

The derivation of the Fokker2-Planck-Kolmogorov (FPK) equation is based on
the work of Wang and Uhlenbeck presented in [26, 218]. From the elementary
theory of probability in random processes, the nth order moment of a random
process x is given by

E{xn} = 〈xn〉 =
∫ ∞

− ∞
xnf(x)dx. (5.16)

For a Markoff process, the transitional behavior is of concern, in particular
the change of various moments of the process with time. A random process
has a certain value x1 at time t and which changes by a small amount to the
a value x at time t + dt as illustrated in Fig. 5.2. The moments of change in
the process in time dt, analogous to (5.16) are defined and assumed to exist
for one-dimensional state-space as follows

an(x, dt) =
∫ ∞

− ∞
(x2 − x)nfc2(x|x2, dt)dx2, n = 1, 2, . . . . (5.17)

The rate of changes of the first and second moments of the increments in
x2 are {

A(x) = limdt→0
d
dt [a1(x, dt)], n = 1;

B(x) = limdt→0
d
dt [a2(x, dt)], n = 2.

(5.18)

2 Adriaan Daniël Fokker 1887–1972.
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Fig. 5.2. Illustration Smoluchowski or Chapman-Kolmogorov equation

Only the first and second moments are assumed non zero in the limit as
dt → 0.

The Smoluchowki or Chapman-Kolmogorov equation of the Markoff pro-
cess in one-dimensional form is written

fc2(x1|x2, t + dt) =
∫ ∞

− ∞
fc2(x1|x, t)fc2(x, t|x2, dt)dx. (5.19)

Consider an infinitely differentiable and arbitrary function R(x) such that

lim
x→ ± ∞

dnR(x)
dxn

= 0, for any n > 0. (5.20)

For example R(x) could be a decaying exponential function. Multiplying (5.19)
by R(x) and integrating over all phase space x yields

∫ ∞

− ∞
R(x2)fc2(x1|x2, t + dt)dx2

=
∫ ∞

− ∞
R(x2)dx2

∫ ∞

− ∞
fc2(x1|x, t)fc2(x, t|x2, dt)dx. (5.21)

To describe the variation of fc2(x1|x2, t+dt) with time, we write ∂fc2 (x1|x2,t)

∂t =
limdt→0[fc2(x1|x2, t + dt) − fc2(x1|x2, t)]/dt. Thus

lim
dt→0

d

dt

∫ ∞

− ∞
R(x2)fc2(x1|x2, t + dt)dx2

= lim
dt→0

d

dt

∫ ∞

− ∞
R(x2)dx2

∫ ∞

− ∞
fc2(x1|x, t)fc2(x, t|x2, dt)dx. (5.22)

Since x2 and x are close together, R(x2) can be developed in a Taylor series
expansion about the point x

R(x2) = R(x) + (x2 − x)R′(x) +
1
2
(x2 − x)2R′ ′(x) + · · · , (5.23)

where higher order terms are ignored. Equation (5.23) is now inserted in (5.22)
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lim
dt→0

d

dt

∫ ∞

− ∞
R(x2)fc2(x1|x2, t + dt)dx2

= lim
dt→0

d

dt

∫ ∞

− ∞
fc2(x1|x, t)

×
∫ ∞

− ∞

[
R(x) + (x2 − x)R′(x) +

1
2
(x2 − x)2R′ ′(x)

]
fc2(x, t|x2, dt)dxdx2.

(5.24)

If dt → 0 and x2 → x then (5.24) becomes after substituting (5.18)
∫ ∞

− ∞
R(x)

∂fc2(x1|x, t)
∂t

dx

= lim
dt→0

d

dt

∫ ∞

− ∞
R(x)[fc2(x1|x, t + dt) − fc2(x1|x, t)]dx

=
∫ ∞

− ∞
fc2(x1|x, t)

[
A(x)R′(x) +

1
2
B(x)R′ ′(x)

]
dx. (5.25)

The conditional probability density function fc2(x1|x, t) will be abbreviated
by fc2 . Integrating (5.25) twice by parts yields

∫ ∞

− ∞
R(x)

∂fc2

∂t
dx = fc2A(x)R(x)|∞

− ∞ −
∫ ∞

− ∞
R(x)

∂

∂x
[A(x)fc2 ]dx

+
1
2
fc2R

′(x)B(x)|∞
− ∞ − R(x)

∂

∂x
[B(x)fc2 ]| ∞

− ∞

+
∫ ∞

− ∞
R(x)

∂2

∂x2
[B(x)fc2 ]dx. (5.26)

Recalling (5.20) and rearranging terms in (5.26), we find that
∫ ∞

− ∞
R(x)

{
∂fc2

∂x
+

∂

∂x
[A(x)fc2 ] − 1

2
∂2

∂x2
[B(x)fc2 ]

}
dx = 0. (5.27)

Let R(x) be an arbitrary function, (5.27) must hold for any R(x), thus the
expression between the braces must be zero. The FPK equation or Kolmogorov
forward equation, for a one-dimensional case, becomes

∂fc2

∂t
= − ∂

∂x
[A(x)fc2 ] +

1
2

∂2

∂x2
[B(x)fc2 ]. (5.28)

The term containing A(x) is known as the drift term with deterministic be-
havior of the system, while the term B(x) is known as the diffusion term due
to the stochastic nature of the excitation or load.

The Pawula theorem states [164, 165] that the generalized Fokker-Planck
equation with finite derivatives greater than two leads to a contradiction to
the positivity of the distribution function.
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If x → x1 and t → 0 the conditional probability density function fc2

approaches unity. For the value if x1 in (5.28) as t → 0

lim
t→0

fc2(x1|x, t) → δ(x − x1), (5.29)

where δ(x − x1) is the Dirac delta function. Equation (5.29) implies that no
transition from one state to another can take place in zero time. The solution
of (5.28) must satisfy the initial conditions (5.29) and boundary conditions

lim
|x|→±∞

fc2(x1|x, t) → 0, (5.30)

For an N -dimensional state-space system the FPK equation is a parabolic
partial differential equation3 (PDE) [26], which can be written as follows

∂fc2

∂t
= −

N∑
i=1

∂

∂xi
[Ai(x)fc2 ] +

1
2

N∑
i=1

N∑
j=1

∂2

∂xi∂xj
[Bij(x)fc2 ]. (5.31)

The required solution of (5.31) is the positive solution satisfying the initial
conditions

lim
t→0

fc2({x1} | {x}, t) →
N∏

i=1

δ(xi − x1,i), (5.32)

where x1,i is the initial value of xi. Thus, the conditional probability density
function approaches unity when the time approaches zero (for t ≥ 0). The
boundary conditions have to fulfill

lim
|xi |→±∞

fc2({x1} | {x}, t) → 0, i = 1, 2, . . . , N. (5.33)

Stationary Solution

If the conditional probability density function fc2(x1|x, t) is independent of
the time, the joint probability function will become a stationary probability
density function, thus

fc2(x1|x, t) = f(x), (5.34)

and
∂fc2

∂t
= 0. (5.35)

The stationary solution is often called the steady-state solution.
3 A parabolic partial differential equation is a type of second-order partial differen-
tial equation, describing a wide family of problem in science including heat diffusion
and stock option pricing. These problems, also known as evolution problems, de-
scribe physical or mathematical systems with a time variable, and which behave
essentially like heat diffusing through a medium like a metal plate.
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The N -dimensional FPK equation (5.31) can be written

1
2

N∑
i=1

N∑
j=1

∂2

∂xi∂xj
[Bij(x)f(x)] −

N∑
i=1

∂

∂xi
[Ai(x)f(x)] = 0. (5.36)

In [27] solution techniques are provided for solving the steady-state re-
sponse of systems exposed to stochastic excitation applying by the FPK equa-
tion.

Example. The following example of a SDOF nonlinear system is taken from
[26, 98]. The system is defined by

ẍ + 2ζωnẋ + F (x) = ξ(t), (5.37)

where ξ(t) is a stationary Gaussian exciting force per unit of mass having
a white noise spectrum, and the non-linearity is present only in the spring
stiffness component, ζ is the damping ratio and ωn is natural frequency of
the linearized spring stiffness (e.g. F (x) = k1x

m + k2x2

m + · · · = ω2
nx + · · · , m

is the mass of the system). If the nonlinear oscillator is fixed, then x(t) is the
absolute displacement response of the mass of the oscillator, and ξ(t) is the
ratio of the exciting force to the mass. On the other hand , if the nonlinear
oscillator is attached to an oscillating base (e.g. enforced acceleration), then
x(t) is the displacement response of the mass relative to the base and ξ(t) is
the negative of the enforced random acceleration at the base. Equation (5.37)
will be written in the state-space form, writing y1 = x and y2 = ẋ{

ẏ1 = y2,

ẏ2 = −2ζωny2 − F (y1) + ξ(t).
(5.38)

The state-space equation is two dimensional corresponding to the dimensions
of y1 and y2. Deriving the FPK equation (5.31), N=2 and i, j = 1, 2. The first
step is evaluating the average values of the first and second order moments
for N = 2{

ai(z, dt) =
∫ ∞

∞ (yi − zi)fc2(y|z, dt)dz1dz2,

bij(z, dt) =
∫ ∞

∞ (yi − zi)(yj − zj)fc2(y|z, dt)dz1dz2, i, j = 1, 2.
(5.39)

{
A1(x) = limdt→0

d
dt [ai(x, dt)], i = 1, 2;

Bij(x) = limdt→0
d
dt [bij(x, dt)], i, j = 1, 2.

(5.40)

In the limit as dt → 0 and yi → xi fc2 → 0. Noting that yi − zi = dyi,
then ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a1 = 〈dy1〉
a2 = 〈dy2〉
b11 = 〈dy2

1 〉
b12 = b21 = 〈dy1dy2〉
b22 = 〈dy2

2 〉,

(5.41)
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thus ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A1 = limdt→0
〈dy1〉

dt = y2 = ẋ,

A2 = limdt→0
〈dy2〉

dt = −2ζωnẋ − F (x),

B11 = limdt→0
〈dy2

1 〉
dt → 0,

B12 = B21 = limdt→0
〈dy1dy2〉

dt = 0,

B22 = limdt→0
〈dy2

2 〉
dt = (2ζωn)2ẋ2dt + Sf = Sf .

(5.42)

The following remarks must be made. The term B11 → 0 because it is of sec-
ond order. The term B11 is evaluated using (5.38). To determine the averaged
value of A2 and B22, 〈dy2〉 will be integrated over a short time dt

〈dy2〉 = −2ζωn〈ẋ〉dt − 〈F (x)〉dt +
∫ t+dt

t

〈f(ς)〉dς, (5.43)

however, since 〈ξ(t)〉 = 0, 〈dy2〉 = −2ζωnẋdt − F (x)dt and A2 = −2ζωnẋ −
F (x). To determine B22, the term 〈dy2

2 〉 must be evaluated.

〈dy2
2 〉 =

〈
ζωnẋdt − F (x)dt +

∫ t+dt

t

ξ(ς)dς

〉

×
〈

ζωnẋdt − F (x)dt +
∫ t+dt

t

ξ(η)dη

〉
. (5.44)

Now F (y1) is the nonlinear force/unit of mass expressed in the characteristic
form

F (y1) = k1y1 + k2y
2
1 + k3y

3
1 + · · · . (5.45)

For a small nonlinearity in stiffness it s assumed that the response to a
stationary random excitation is also stationary. In that case the correlation
〈ẋ

∑
xn〉 = 0.

Furthermore, for stationary white noise force ξ(t), the autocorrelation
function of the process is given by

〈ξ(t)ξ(t + τ)〉 = Rf (τ) = Sfδ(τ), (5.46)

where Sf is the constant PSD function for the white noise force, and δ(τ) is
the delta function. The autocorrelation function becomes

{
Rf (τ) = 0, τ �= 0;
Rf (0) = 〈ξ(t)2〉 = Sf , τ = 0.

(5.47)

The second moment B22 can now obtained:

B22 = lim
dt→0

〈dy2
2 〉

dt
= (2ζωn)2y2

2dt + Sf = Sf . (5.48)
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Equation (5.48) states that the time rate of change of the mean square accel-
eration is constant. Substituting the first moments Ai and second moments
Bij , i, j = 1, 2, we find that (5.31) becomes

∂fc2

∂t
= − ∂

∂y1
[A1fc2 ] − ∂

∂y2
[A2fc2 ] +

1
2

∂2

∂y2
2

[B22fc2 ], (5.49)

or

− ∂

∂y1
[y2fc2 ] +

∂

∂y2
[(2ζωny2 + F (y1))fc2 ] +

Sf

2
∂2fc2

∂y2
2

= 0. (5.50)

This is the stationary form of Kramer’s equation and will be solved in accor-
dance with [26]. Equation (5.50) can be factorized as follows
[
2ζωn

∂

∂y2
− ∂fc2

∂y1

][
fc2y2 +

Sf

4ζωn

∂

∂y2

]
+

∂

∂y2

[
(fc2F (y1)) +

Sf

4ζωn

∂fc2

∂y1

]
= 0.

(5.51)
We see that fc2 = f2(y1, y2) = f(y1)f(y2) = f(ẋ)f(x) is a function of the

displacement and velocity. One way to solve (5.51) is to take

f(y2)y2 +
Sf

4ζωn

∂f(y2)
∂y2

= 0, (5.52)

and
f(y1)F (y1) +

Sf

4ζωn

∂f1

∂y1
= 0. (5.53)

The solutions of (5.52) and (5.53) are respectively

f(y1) = Ae
− 4ζωn

Sf

∫ y1

0
F (η)dη

, (5.54)

and

f(y2) = Be
− 4ζωn

Sf

y2
2
2 . (5.55)

The probability density function f2(y1, y2) becomes

f2(y1, y2) = f(y1)f(y2) = Ce
− 4ζωn

Sf
[

y2
2
2 +

∫ y1

0
F (η)dη]

. (5.56)

Equation (5.56) can also be written

f2(x, ẋ) = Ce
− 4ζωnH

Sf , (5.57)

where H = y2
2
2 +

∫ y1

0
F (η)dη, the total energy of the system per unit of mass.

As already noticed, the probability density function of the displacement and
the velocity are statistically independent. The probability density function
f(x) is non Gaussian if the nonlinear spring stiffness is present.

The spring stiffness per unit of mass is given by
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F (η) =
n∑

i=1

kix
i, (5.58)

representing a hardening spring, then (5.57) yields

f(x) = Ae
− 4ζωn

Sf

∑n

i=1

kixi+1

i+1 . (5.59)

The hardening spring stiffness reduces the large displacement peaks in a ran-
dom process, thereby reducing the rms response. The presence of such non-
linearities in structures subject to random excitation is beneficial and there is
a case for introducing them at the design stage wherever possible.

The probability density function of the displacement of a SDOF linear

ẍ + 2ζωnẋ + ω2
nx =

f(t)
m

system can be written as

f(x) = Ae
− 4ζωnm2

Sf

ω2
nx2

2 , (5.60)

and the probability function of the velocity is

f(ẋ) = Be
− 4ζωnm2

Sf

ẋ2
2 , (5.61)

The probability density functions f(x) and f(ẋ) are symmetric with respect
to x = 0 and ẋ = 0, because the average values of x and ẋ are equal to zero
(〈x〉 =

∫ ∞
− ∞ xf(x)dx = 0 and 〈ẋ〉 =

∫ ∞
− ∞ ẋf(ẋ)dẋ = 0), thus

∫ ∞

− ∞
f(x)dx = 2

∫ ∞

0

f(x)dx = 1,

∫ ∞

− ∞
f(ẋ)dx = 2

∫ ∞

0

f(ẋ)dẋ = 1,

(5.62)
Thus the constants A and B can now being calculated using (see also Appen-
dix B) ∫ ∞

0

e−ax2
dx =

1
2

√
π

a
. (5.63)

Thus both constants A and B become

A =

√
2ζω3

nm2

Sf√
π

, B =

√
2ζωnm2

Sf√
π

. (5.64)

The variance of x and ẋ can now obtained using the following standard integral
∫ ∞

0

x2e−ax2
dx =

1
4a

√
π

a
. (5.65)

Thus
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Var {x} = E{x2} = 〈x2〉 = σ2
x = 2

∫ ∞

0

x2f(x)dx =
Sf

4ζω3
nm2

, (5.66)

and

Var {ẋ} = E{ẋ2} = 〈ẋ2〉 = σ2
ẋ = 2

∫ ∞

0

ẋ2f(ẋ)dx =
Sf

4ζωnm2
. (5.67)

Equations (5.66) and (5.67) were derived in Sect. 2.4.1 by using the spectral
approach.

5.5.1 Calculation of FPK Equation Coefficients

The coefficients A, and B, (5.18) in (5.28), can be calculated for several typical
cases of space-state differential equations given by [149]

ẋi = ψi[x1, x2, . . . , xn; ξ1(t), ξ2(t), . . . , ξn(t)], i = 1, 2, . . . , n, (5.68)

where ψi are linear or nonlinear functions of the state variables xi, i =
1, 2, . . . , n, and the white noise random stationary functions ξi, i = 1, 2, . . . , n.
The auto and cross correlation of ξi(t) and ξj(t) is of the δ type with a PSD
Sij , so that

Rξiξj (τ) = Sijδ(τ), i, j = 1, 2, . . . , n. (5.69)

The output from the system (5.68) will be a Markoff process.
The following state-space system of equations will be examined

ẋi = ψi(x1, x2, . . . , xn) + ξi(t), i = 1, 2, . . . , n, (5.70)

The external forces ξi(t) are stationary, statistically independent white noise
with the following characteristics

E{ξi(t)} = 〈ξi(t)〉 = 0,

E{ξi(t)ξj(t + τ)} = Rξiξj = Sjδijδ(τ), i, j = 1, 2, . . . , n,
(5.71)

where Sj are constant spectral densities of the jth process, and δij is the
Kronecker delta.

Equation (5.70) denotes the Markoff process [X1(t), X2(t), . . . , Xn(t)] for
its probability density, provided xi(t), i = 1, 2, . . . , n for t ≤ t0 depends only
on the value xi(t0) since

xi(t) = xi(t0) +
∫ t

t0

ψi(x1, x2, . . . , xn)dτ +
∫ t

t0

ξi(τ)dτ (5.72)

does not depend on time up to t0. From (5.70) the increments can be calcu-
lated:

Δi = xi(t+δt)−xi(t) = ψi[x1(t), x2(t), . . . , xn(t)]Δt+
∫ t+Δt

t

ξi(τ)dτ. (5.73)
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When (5.73) is substituted in (5.17), the term ai becomes

ai = ψi[x1(t), x2(t), . . . , xn(t)]Δt +
∫ t+Δt

t

〈ξi(τ)〉dτ ; (5.74)

equation (5.18) gives the coefficients Ai:

Ai = ψi[x1(t), x2(t), . . . , xn(t)]. (5.75)

The same procedure will be followed to obtain the coefficients Bij . Equa-
tion (5.73) yields

ΔxiΔxj =
[
ψiΔt +

∫ t+Δt

t

ξi(τ1)dτ1

][
ψjΔt +

∫ t+Δt

t

ξj(τ2)dτ2

]

= ψiψj(Δt)2 + ψiΔt

∫ t+Δt

t

ξi(τ1)dτ1 + ψjΔt

∫ t+Δt

t

ξi(τ1)dτ2

+
∫ t+Δt

t

∫ t+Δt

t

ψi(τ1)ψj(τ2)dτ1dτ2. (5.76)

The terms bij are given by (5.17)

bij = 〈ΔxiΔxj 〉

= ψiψj(Δt)2 +
∫ t+Δt

t

∫ t+Δt

t

〈ψi(τ1)ψj(τ2)〉dτ1dτ2

= ψiψj(Δt)2 + SiδijΔt, (5.77)

and, applying (5.18), we can obtain the coefficients Bij knowing Δt → 0

Bij = Siδij . (5.78)

If the loads wi(t) are statistically dependent so that

〈ξiξj 〉 = Rξiξj (τ) = Sijδ(τ), (5.79)

then the coefficient Bij becomes

Bij = Sij , i, j = 1, 2, . . . , n. (5.80)

Example. A nonlinear Duffing’s oscillator is described by the following equa-
tion of motion

ẍ + 2ζω0ẋ + ω2
0(x2 + εx3) = ξ(t), (5.81)

where 2ζω0 is the damping ratio, ω0 the natural frequency, ε is the ratio of
nonlinearity and ξ(t) is a Gaussian white noise excitation with the statistical
properties

E{ξ} = 〈ξ(t)〉 = 0, E{ξ(t)ξ(t + τ)} = Rξξ(τ) = 2Dδ(τ).
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Letting z1 = x and z2 = ẋ, we can write (5.81) the space-state form
(

ż1

ż2

)
=

(
z2

−2ζω0z2 − ω2
0(z1 + εz3

1)

)
+

(
0

ξ(t)

)
. (5.82)

The coefficients of drift and diffusion are

A1 = z2,

A2 = −2ζω0z2 − ω2
0(z1 + εz3

1),
B11 = 0,

B22 = 2D.

Substituting the coefficients in (5.31) we find the FPK equation becomes

∂fc2

∂t
= −z2

∂fc2

∂z1
+ 2ζω0fc2 + [2ζω0z2 + ω2

0(z1 + εz3
1)]

∂fc2

∂z2
+ D

∂2fc2

∂z2
2

(5.83)

where fc2 is the abbreviation of the conditional density function
fc2({z0} | {z}, t).

If the space-state system of equations has a more general form

ẋi = ψi(x1, x2, . . . , xn)+
n∑

k=1

ϕik(x1, x2, . . . , xn)ξk(t), i = 1, 2, . . . , n, (5.84)

where ξk(t) also satisfy (5.71). The coefficients of FPK equation are now
written, the drift terms Ai

Ai(x1, . . . , xn) = ψi(x1, . . . , xn) +
1
2

n∑
k=1

n∑
l=1

Si
∂ϕil

∂xk
ϕkl i = 1, 2, . . . , n,

(5.85)
and the diffusion coefficients Bij for the space-state system (5.84)

Bij(x1, . . . , xn) =
n∑

k=1

Skϕikϕkj i = 1, 2, . . . , n, (5.86)

or, in the more general case

Bij(x1, . . . , xn) =
n∑

k=1

n∑
m=1

Skmϕikϕmj i = 1, 2, . . . , n. (5.87)

If the functions ψi in (5.84) depend on time, the diffusion coefficient Bij remain
unchanged, however, the drift terms Ai[x1, x2, . . . , xn, t] = ψi, i = 1, 2, . . . , n
are functions of time.
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Example. This example is taken from [178]. The governing equation of a
nonlinear oscillator under one random external excitation and two random
parametric excitations is given by

ẍ + 2αẋ[1 + η(t)] + β1ẋ

[
x2 +

ẋ2

Ω2

]
+ Ω2x[1 + ξ(t)] = ζ(t), (5.88)

where α, β1, Ω are constants and η(t), ξ(t), ζ(t) are independent zero mean
physical Gaussian white noise processes with covariances

E{η(t)η(s)} = Dηδ(t − s),
E{ξ(t)ξ(s)} = Dξδ(t − s),
E{ζ(t)ζ(s)} = Dζδ(t − s).

Letting z1 = x and z2 = ẋ, we can write (5.88) in state-space form
(

ż1

ż2

)
=

(
z2

−2αz2 − β1z2[z2
1 + z2

Ω2 ] − Ω2z1

)

+
(

0 0 0
−2αz2 −Ω2z1 −1

)⎛
⎝ η

ξ
ζ

⎞
⎠ . (5.89)

Equations (5.85) and (5.86) give the coefficients

A1 = z2,

A2 = −2αz2 − β1z2

[
z2
1 +

z2

Ω2

]
− Ω2z1,

B11 = B12 = B21 = 0,

B22 = 4α2z2
2Dη + Ω4z2

1Dξ + Dζ .

Substituting the coefficients in (5.31), we find the FPK equation

∂fc2

∂t
= −z2

∂fc2

∂z1
+ Ω2z1

∂fc2

∂z2

+
∂

∂z2

{[
(2α − 2α2Dη)z2 + β1z2

(
z2
1 +

z2
2

Ω2

)]
fc2

}

+
1
2

∂2

∂z2
2

[(4α2z2
2Dη + Ω4z2

1Dξ + Dζ)fc2], (5.90)

where fc2 is an abbreviation for the conditional density function
fc2({z0} | {z}, t).

5.5.2 Exact Stationary Response Solutions of Nonlinear Dynamic
Systems

The theory described in this section is based on a paper written by Wang
et al. [215].
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Consider the following general nonlinear SDOF system

ẍ(t) + g[ẋ(t), x(t)] = ξ(t), (5.91)

where g[ẋ(t), x(t)] is a mass normalized nonlinear restoring force, and ξ(t) is a
mass normalized zero-mean Gaussian white noise with a delta-type correlation
function E{ξ(t)ξ(t+ τ)} = 2Dδ(τ). By the introduction of the state variables
y1 = x(t) and y2 = ẋ(t) the space-state representation of (5.91) becomes

ẏ1 = y2,

ẏ2 = −g(y1, y2) + ξ(t).
(5.92)

The stationary probability density function f(y1, y2) of the system re-
sponse is governed by the reduced (stationary) FPK equation

−y1
∂f

∂y1
+

∂[g(y1, y2)f ]
∂y2

+ D
∂2f

∂y2
2

= 0. (5.93)

Assume a solution for the probability density function as follows

f(y1, y2) = C exp
[

− p(y1, y2)
D

]
, (5.94)

where C is the normalization constant (
∫ ∞
0

∫ ∞
0

f(y1, y2)dy1dy2 = 1) and
p(y1, y2) is an arbitrary nonlinear function. The probability density func-
tion (5.94) must be nonnegative and normalized for p(y1, y2) in order to
achieve a valid probability density.

Substituting (5.94) in (5.93), and deleting arguments, we find

f

[
y1

∂p

∂y1

1
D

− g
∂p

∂y2

1
D

+
(

∂p

∂y2

)2 1
D

+
∂g

∂y2
− ∂2p

∂y2
2

]
= 0. (5.95)

Since f(y1, y2) �= 0, (5.95) implies

∂g

∂y2
− g

∂p

∂y2

1
D

+ y1
∂p

∂y1

1
D

+
(

∂p

∂y2

)2 1
D

− ∂2p

∂y2
2

= 0. (5.96)

Equation (5.96) express ∂g/∂y2 as a implicit function of p(y1, y2) with the
solution

g(y1, y2) = g1(y1)e[
p(y1,y2)

D ] +
∂p(y1, y2)

∂y2

− 1
D

e[
p(y1,y2)

D ]

∫ y2

y1

y2
∂p(y1, y2)

∂y1
e[− p(y1,y2)

D ]dy2, (5.97)

where

g1(y1) =
[
g(y1, 0) − p(y1, 0)

Dy2

]
e− p(y1,0)

D . (5.98)
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The known function g1(y1) in (5.98) may be arbitrarily selected under the
name p(y1, y2). We have demonstrated that g(y1, y2) and g(y1, y2) +
g1(y1)e[

p(y1,y2)
D ] fulfill (5.96) and possess the same probability density f(y1, y2).

Namely
ẍ + g(ẋ, x) = ξ(t),

and
ẍ + g(ẋ, x) + g1(x)e[

p(ẋ,x)
D ] = ξ(t),

have the same stationary probability density function

f(ẋ, x) = C exp
[

− p(ẋ, x)
D

]
.

Example. The function p(y1, y2) is given by

p(y1, y2) = ayn
1 + bym

1 y2
2 . (5.99)

Substituting (5.99) in (5.97) yields

g(y1, y2) =
[
g1(y1)e

ayn
1

D − 1
2b2y2m

1

(anyn+m−1
1 + Dmbym−1

1 )
]
e

bym
1 y2

2
D

+ 2bym
1 y2 +

my2
2

2y1
+

an

2b
yn−m−1
1 +

Dm

2bym+1
1

, (5.100)

and with a choice of g1(y1), such that the function p(y1, y2) can be simplified
to

g(y1, y2) = 2bym
1 y2 +

my2
2

2y1
+

an

2b
yn−m−1
1 +

Dm

2bym+1
1

. (5.101)

Finally the nonlinear SDOF system is

ẍ + 2bxmẋ +
mẋ2

2x
+

an

2b
xn−m−1 +

Dm

2bxm+1
= ξ(t) (x �= 0). (5.102)

Thus according to (5.94), the exact stationary joint probability density func-
tion f(x, ẋ) of the nonlinear SDOF system as defined by (5.99) is given by

f(x, ẋ) = C exp
[

− axn + bxmẋ2

D

]
. (5.103)

This probability density function satisfies (5.96) in two regions (−∞, 0) and
(0, +∞).

If the function p(y1, y2) satisfies the following condition

∂2p

∂y2
2

− ∂g

∂y2
= 0, (5.104)
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equation (5.96) becomes

−g
∂p

∂y2
+ y1

∂p

∂y1
+

(
∂p

∂y2

)2

= 0, (5.105)

and p(y1, y2) can satisfy (5.96).
Integrating (5.104), we can obtain the following expression with integration

constants
∂p(y1, y2)

∂y2
= g(y1, y2) − g(y1, 0) +

∂p(y1, 0)
∂y2

. (5.106)

Further integration of (5.106) and the introduction of an appropriate integra-
tion constant yields

p(y1, y2) =
∫ y2

0

g(y1, y2)dy2 − y2g(y1, 0) + y2
∂p(y1, 0)

∂y2
+ p(y1, 0). (5.107)

Differentiation of (5.107) with respect to y1 gives

∂p(y1, y2)
∂y1

=
∫ y2

0

g(y1, y2)
∂y1

dy2 − y2
∂g(y1, 0)

∂y1
+ y2

∂2p(y1, 0)
∂y2∂y1

+
∂p(y1, 0)

∂y1
.

(5.108)
The results of (5.106) and (5.107) substituted in (5.105) will give

y2

[∫ y2

0

g(y1, y2)
∂y1

dy2 − y2
∂g(y1, 0)

∂y1
+ y2

∂2p(y1, 0)
∂y2∂y1

+
∂p(y1, 0)

∂y1

]

−
[
g(y1, 0) − ∂p(y1, 0)

∂y2

][
g(y1, y2) − g(y1, 0) +

∂p(y1, 0)
∂y2

]
= 0, (5.109)

and if
∂p(y1, 0)

∂y2
= 0,

equation (5.109) can be expressed

∂p(y1, 0)
∂y1

=
1
y2

g(y1, 0)[g(y1, y2) − g1(y1, 0)]

+ y2
∂g(y1, 0)

∂y1
−

∫ y2

0

g(y1, y2)
∂y1

dy2. (5.110)

When the right-hand side of (5.110) is only a function of the function y1, then
the following equation can also be established by integrating (5.110):

p(y1, 0) =
∫ y2

0

∂p(y1, 0)
∂y1

dy1

=
1
y2

∫ y1

0

g(y1, 0)[g(y1, y2) − g1(y1, 0)]dy1 + y2[g(y1, 0) − g(0, 0)]

−
∫ y2

0

[g(y1, y2) − g(0, y2)]dy2. (5.111)
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Substituting (5.111) in (5.107) yields

p(y1, y2) =
∫ y2

0

g(y1, y2)dy2 +
1
y2

∫ y1

0

g(y1, 0)[g(y1, y2) − g1(y1, 0)]dy1

−
∫ y2

0

[g(y1, y2) − g(0, y2)]dy2 − y2g(0, 0). (5.112)

Example. The function g(y1, y2) is given by g(y1, y2) = βy2 + g1(y1). The
first check is to find out if the right-hand side of (5.110) is a function of y1

only. The right-hand side of (5.110) becomes

∂p(y1, 0)
∂y1

= g1(y1)βy2
1
y2

+ y2
dg1(y1)

dy1
−

∫ y2

0

dg1(y1)
dy1

dy2 = βg1(y1), (5.113)

which is only a function of y1.
Equation (5.111) will give an expression for the function p(y1, y2), namely

p(y1, y2) =
β

2
y2
2 + β

∫ y1

0

g1(y1)dy1. (5.114)

It is easily to verify that (5.104) is satisfied.
When

g(y1, y2) = βy2 + g(y1) + g2(y1)e
y2
2β2

2D ,

the exact probability density is also the same function as in (5.114).

5.5.3 Stationary Solution FPK Equation of Conservative Systems

In [69] for a number of SDOF and MDOF conservative dynamic systems
exposed to random excitation the stationary solution of the FPK equation
had been obtained. The following conservative dynamic systems are discus-
sed:

• Second-order system (SDOF)
• High-order system (MDOF)

Second-Order System (SDOF)

The nonlinear SDOF dynamic system is given by

mẍ + cẋ +
∂U

∂x
= ξ(t), (5.115)

where m is the discrete mass, c the viscous damping, ∂U
∂x represents a conser-

vative elastic restoring force and ξ(t) is the Gaussian white noise excitation
with zero mean and 〈ξ(t)ξ(t + τ)〉 = 2Dδ(τ). The state-space equations can
be written, with y = mẋ



5.5 Derivation of the Fokker-Planck-Kolmogorov Equation 343

ẋ =
y

m
,

ẏ = − ∂U

∂x
− c

m
y + ξ(t).

(5.116)

Retaining the symbol H for the sum of the potential and kinetic energy, so
that

H = U(x) +
y2

2m
, (5.117)

and (5.116) can be written as Itô SDEs

Δx =
∂H

∂y
Δt,

Δy =
[

− ∂H

∂x
− c

∂H

∂y

]
Δt +

√
2DΔW (t),

(5.118)

where W (t) is the standard Wiener process. The stationary FPK equation for
the system (5.118) becomes

[
− ∂

∂x

(
∂H

∂y
f

)
+

∂

∂y

(
∂H

∂x
f

)]
+

∂

∂y

(
c
∂H

∂y
f

)
+ D

∂2f

∂y2
= 0. (5.119)

The terms in the square brackets are the terms which remain if the damping
and white noise are removed from the system, i.e. if the system is conservative.
Find a function f(H) which makes the remaining two terms in (5.119) cancel
and a solution of (5.119) is found. Substitute in (5.119) the function

f(x, y) = f(H(x, y)), (5.120)

which becomes
∂

∂y

(
c
∂H

∂y
f(H)

)
+ D

∂2f(H)
∂y2

= 0. (5.121)

Integration of (5.121) with respect to y yields

c
∂H

∂y
f(H) + D

∂f(H)
∂y

= L(x), (5.122)

where L(x) is an arbitrary function.
In view limy→∞ f(H) = 0 and limy→∞

∂f(H)
∂y = 0 than the arbitrary

function becomes
L(x) = 0, (5.123)

and (5.122) simplifies to

c
∂H

∂y
f(H) + D

∂f(H)
∂H

∂H

∂y
= 0, (5.124)

Assume that ∂H/∂y is not identically zero, otherwise H is independent of y
and hence so is f , then
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df

dH
+

c

D
f = 0. (5.125)

The general solution of (5.125) is

f(H) = Ce[− c
D H], (5.126)

where C is a constant, which is to be chosen to normalize the solution.
The result is that for the second-order system

Δx =
∂H

∂y
Δt,

Δy =
[

− ∂H

∂x
− c

∂H

∂y

]
Δt +

√
2DΔW (t),

(5.127)

with D = constant and C = constant, thus the steady-state probability func-
tion f(x, y) is

f(x, y) = Ce[− c
D H(x,y)], (5.128)

Example. The nonlinear term in (5.115) will be denoted by g(x), thus

g(x) =
∂U

∂x
. (5.129)

Then from (5.117)

H =
∫ x

0

g(θ)dθ + g(0) +
y2

2m
. (5.130)

Thus for the dynamic system

mẍ + cẋ + g(x) = ξ(t), (5.131)

where 〈ξ(t)ξ(t+ τ)〉 = 2Dδ(τ), results (5.128) for the steady-state probability
density function

f(x, y) = Ce
[− c

D (
∫ x

0
g(θ)dθ+ y2

2m )]
, (5.132)

where y = mẋ and C is the normalizing constant. This solution is well known.

5.5.4 High-Order System (MDOF)

Following MDOF dynamic system is illustrated in Fig. 5.3. The discrete
masses mi, 1 = 1, 2, . . . n are connected by linear or nonlinear springs (nonlin-
ear restoring forces). The discrete mass mn is connected to the ground with a
nonlinear spring and in parallel a viscous damping characterized by cn. The
total strain energy stored in the springs is denoted by U(xi). The equations
of motion of the MDOF dynamic system are given by:

miẍi +
∂U

∂xi
= 0, i = 1, 2, . . . n − 1,

mnẍn +
∂U

∂xn
+ cnẋn = ξn(t),

(5.133)
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Fig. 5.3. MDOF dynamic system

where ξ(t) is a Gaussian white noise force with zero-mean and E{ξn(t)ξn(t +
τ } = 〈ξn(t)ξn(t+τ)〉 = 2Dδ(τ). To set up the state-space equations the state-
space variables ẋi = yi/mi, i = 1, 2, . . . , n is introduced, thus the equations
of motion (5.133) can be transferred into the space-state form

ẋi =
yi

mi
=

∂H

∂yi
, i = 1, 2, . . . n,

ẏi = − ∂H

∂xi
, i = 1, 2, . . . n − 1,

ẏn = − ∂H

∂xn
+ cn

∂H

∂yn
+ ξn(t),

(5.134)

where the total energy function H(xi, yi) is given by

H(xi, yi) = U(xi) +
1
2

n∑
k=1

y2
k

mk
. (5.135)

The stationary FPK equation for the joint probability density function
f(xi, yi) = f(H) becomes

[
n∑

i=1

{
− ∂

∂xi

(
∂H

∂yi
f

)
+

∂

∂yi

(
∂H

∂xi
f

)}]
+

∂

∂yn

(
cn

∂H

∂yn
f

)
+ D

∂2f

∂y2
n

= 0.

(5.136)
The terms in between the square brackets cancel out if f is a function of H,
thus

∂

∂yn

(
cn

∂H

∂yn
f(H)

)
+ D

∂2f(H)
∂y2

n

= 0. (5.137)
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A similar solution as for (5.121) is found

f(x1 . . . , xn, y1 . . . , yn) = Ae[− cn
D H(x1...,xn,y1...,yn)], (5.138)

where A is the normalization constant.

5.6 Itô-Stratonovich Dilemma in Stochastic Processes

White noise is the formal time derivative of the standard Wiener process,
W (t), t ≥ 0. This stochastic process is also discussed in Appendix N. The
Wiener process and white noise are related with each other in the following
way:

(W (t2) − W (t1) ⊥ (W (t3) − W (t2)), t1 < t2 < t3,

E{W (t) − W (τ)} = 0,

RWW (t, τ) = 2Dmin(t, τ),

ξ(t) =
W (t + Δ) − W (t)

Δ
,

Rξξ(t − τ) = 2Dδ|t − τ |,

(5.139)

where the symbol ⊥ means perpendicular to. For a standard Wiener process,
2D = 1. The last property is the cause of the dilemma, because it causes the
inclusion of a second order term in the noise in equations that contain first
order terms of time.

Consider the following one dimensional noise driven dynamical system,
represented by the Langevin equation

ẋ = f(x, t) + g(x, t)ξ(t). (5.140)

This equation can be written as a stochastic differential equation (SDE), and
Itô differential equation becomes

Δx = f(x, t)Δt + g(x, t)ΔW, (5.141)

where ΔW = ξΔt is the increment of the Wiener process. Equation (5.141)
represents a Markoff process x. The SDE form of system dynamics is consid-
ered to be a more accurate description of the stochastic process, because of
the difficulties in taking time derivatives of the Wiener process W (t). Now
consider the integral form of the SDE (5.141)

x(t) = x(t0) +
∫ t

t0

f(x, t)dt +
∫ t

t0

g(x, t)dW. (5.142)
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The problem of differing interpretations comes from the second integral (which
is a stochastic integral) in (5.142). It is not possible to write the standard
Riemann sum form for this integral, nor the Riemann-Stieltjes’ form, since
the process W (t) is not of bounded variation. Then, depending upon the way
the equations is discretized (forward/central) we can get two interpretations of
this integral, known as the Itô and Stratonovich interpretations respectively.
Consider the stochastic integral of the function h(t)

Ξ =
∫ t

0

h(W (t), t)dW (t). (5.143)

then, the Itô and Stratonovich interpretation of Ξ are given as (see also Ap-
pendix N)

ΞIto = lim
Δ→0

N −1∑
i=0

h(W (ti), ti)[W (ti+1) − W (ti)], (5.144)

and

ΞStrat = lim
Δ→0

N −1∑
i=0

h

(
W (ti) + W (ti+1)

2
,
ti + ti+1

2

)
[W (ti+1) − W (ti)],

(5.145)
where Δ = max(ti+1 − ti) and 0 < t0 < t1 < · · · < tN = t. There is no reason
to prefer one discretization scheme over the other, and both are equally valid.
From (5.144) and (5.145) it follows directly that if h(W (t), t) = h(t), h(t) is
independent of the noise term, and the two interpretations match. However,
when this is not the case, two different results are obtained. To illustrate this,
take h(t) = W (t). The stochastic integral (5.143) will be evaluated in the Itô
and Stratonovich senses. The Itô interpretation becomes

E{ΞIto } = E

{
N −1∑
i=0

W (ti)[W (ti+1) − W (ti)]

}

=
N −1∑
i=0

E{W (ti)W (ti+1) − W (ti)W (ti)}

=
N −1∑
i=0

(2Dti − 2Dti)

= 0. (5.146)

On the other hand, with the Stratonovich interpretation, the stochastic inte-
gral becomes
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E{ΞStat} = E

{
N −1∑
i=0

[
W (ti) + W (ti+1)

2

]
[W (ti+1) − W (ti)]

}

=
1
2

N −1∑
i=0

E{W (ti)W (ti+1) + W (ti+1)W (ti+1)}

− E{W (ti)W (ti) − W (ti)W (ti+1)}

=
1
2

N −1∑
i=0

(2Dti + 2Dti+1 − 2Dti − 2Dti)

= D

N −1∑
t=0

(ti+1 − ti)

= Dt. (5.147)

Clearly, the results are different. Later it will be shown how these different
interpretations lead to different results for the FPK diffusion equation.

The FPK equation will now be derived from the stochastic differential
equation (SDE)

ẋ = f(x, t) + g(x, t)ξ(t), (5.148)
where x is a Markoff process and is completely characterized by its transition
density function fc2(y, τ |x, t). A function R(x) ≥ 0 will be considered which
is a twice differentiable function and

lim
|x|→∞

R(x) = 0, lim
|x|→∞

R′(x) = 0, lim
|x|→∞

R′ ′(x) = 0. (5.149)

Further it is assumed that fc2 can be expanded in a power series about t∫ ∞

− ∞
[fc2(y, τ |x, t + dt) − fc2(y, τ |x, t)]R(x)dx

=
∫ ∞

− ∞

[
∂fc2(y, τ |x, t)

∂t
Δt + O(Δt2)

]
R(x)dx. (5.150)

And according to the Chapman-Kolmogorov equation

fc2(y, τ |x, t + dt) =
∫ ∞

− ∞
fc2(y, τ |z, t)fc2(z, t|x, t + dt)dz, (5.151)

equation (5.150) becomes∫ ∞

− ∞

[
∂fc2(y, τ |x, t)

∂t
Δt

]
R(x)dx

=
∫ ∞

− ∞

∫ ∞

− ∞
fc2(y, τ |x, t)fc2(x, t|z, t + dt)R(z)dzdx

−
∫ ∞

− ∞
fc2(y, τ |x, t)R(x)dx

=
∫ ∞

− ∞
fc2(y, τ |x, t)

[∫ ∞

− ∞
fc2(x, t|z, t + dt)R(z)dz − R(x)

]
dx. (5.152)
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The function R(z) is expanded about x:

R(z) = R(x) + R′(x)(z − x) +
R′ ′(x)

2
(z − x)2 + O(|z − x|3). (5.153)

Substituting (5.153) in (5.152) yields
∫ ∞

− ∞

[
∂fc2(y, τ |x, t)

∂t
dt

]
R(x)dx

=
∫ ∞

− ∞
fc2(y, τ |x, t)

[∫ ∞

∞
fc2(x, t|z, t + dt)R(z)dz − R(x)

]
dx

=
∫ ∞

− ∞
fc2(y, τ |x, t)[R(x)

∫ ∞

− ∞
fc2(x, t|z, t + dt)dz

+ R′(x)
∫ ∞

− ∞
(z − x)fc2(x, t|z, t + dt)dz

+ R′ ′(x)
∫ ∞

− ∞
(z − x)2fc2(x, t|z, t + dt)dz

− R′ ′(x)
2

∫ ∞

− ∞
O(z − x)3fc2(x, t|z, t + dt)dz − R(x)]dx

=
∫ ∞

− ∞
fc2(y, τ |x, t)[R′(x)

∫ ∞

− ∞
(z − x)fc2(x, t|z, t + dt)dz

+ R′(x)
∫ ∞

− ∞
(z − x)fc2(x, t|z, t + dt)dz

+ R′ ′(x)
∫ ∞

− ∞
(z − x)2fc2(x, t|z, t + dt)dz

− R′ ′(x)
2

∫ ∞

− ∞
O(z − x)3fc2(x, t|z, t + dt)dz]dx. (5.154)

Now, looking at the integrals, we find
∫ ∞

− ∞
(z − x)nfc2(x, t|z, t + dt)dz =

∫ ∞

− ∞
(z − x)nfc2(x, t|z − x, t + dt)dz

= E{(z − x)n, x, t}. (5.155)

Equation (5.154) becomes
∫ ∞

− ∞

[
∂fc2(y, τ |x, t)

∂t
dt

]
R(x)dx

≈
∫ ∞

− ∞
fc2(y, τ |x, t)

[
R′(x)E{(z − x), x, t} +

R′ ′(x)
2

E{(z − x)2, x, t}
]
dx

=
∫ ∞

− ∞
fc2(y, τ |x, t)

[
R′(x)E{(Δx, x, t} +

R′ ′(x)
2

E{Δx2, x, t}
]
dx, (5.156)

where third order terms are neglected.
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Itô and Stratonovich Approach for Integration

To calculate the moments of (5.156), (5.141) can be written

E{(Δx, x, t} = E{f(x, t)Δt + g(x, t)dW (t)}. (5.157)

Two possible integration schemes for integration of a discretized variable can
be applied, the Itô and Stratonovich approaches.

Itô Approach

In the Itô approach the integration scheme used is forward integration, that
is ∫ x2

x1

Φ(x)dx =
N −1∑
i=0

[Φ(xi){x(ti+1) − x(ti)}]. (5.158)

The first moment E{(z − x), x, t} becomes

E{(z − x), x, t} = E{f(x, t)Δt + g(x, t)ΔW (t)}
= E{f(x, t)Δt} + E{g(x, t)ΔW (t)}
= f(x, t)Δt + E{g(x, t)}E{ΔW (t)}
= f(x, t)Δt + E{g(x, t)} × 0
= f(x, t)Δt, (5.159)

and the second moment E{(z − x)2, x, t} is

E{(z − x)2, x, t} = E{[f(x, t)Δt + g(x, t)ΔW (t)]2}
= E{[f(x, t)Δt]2} + E{[g(x, t)ΔW (t)}]2

+ 2E{f(x, tΔtg(x, t)ΔW (t)}
= O(Δt)2 + g(x, t)2E{ΔW (t)2} + 2f(x, t)g(x, t)E{ΔW (t)}
= g(x, t)22DΔt. (5.160)

Higher order moments E{(z − x)2, x, t}, n > 2 have terms in O(Δt)2.

Stratonovich Approach

In the Stratonovich approach, the integration scheme used is the middle point
integration, that is

∫ x2

x1

Φ(x)dx =
N −1∑
i=0

Φ

(
x(ti) + x(ti+1)

2

)
{x(ti+1) − x(ti)}. (5.161)

The first moment E{(z − x), x, t} becomes
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E{(z − x), x, t} = E

{
f

(
x(t + Δt) + x(t)

2

)
Δt

+ g

(
x(t + Δt) + x(t)

2

)
ΔW (t)

}
. (5.162)

In this case f(x(t+Δt)+x(t)
2 ) is not a deterministic function, and g(x(t+Δt)+x(t)

2 )
is not independent of ΔW (t). The functions, f and g can be expanded about
x(t) as follows

f

(
x(t + Δt) + x(t)

2

)
= f(x(t)) +

Δx

2
f ′(x(t)) +

1
2

Δx2

4
f ′ ′(x(t)) + · · · ,

(5.163)

g

(
x(t + Δt) + x(t)

2

)
= g(x(t)) +

Δx

2
g′(x(t)) +

1
2

Δx2

4
g′ ′(x(t)) + · · · ,

E{(z − x), x, t}

= E{f(x, t)Δt} + E

{
Δx

2
f ′(x(t))Δt

}
+ E

{
1
2

Δx2

4
f ′ ′(x(t))Δt

}

+ E{g(x, t)ΔW (t)} + E

{
Δx

2
g′(x(t))ΔW (t)

}

+ E

{
1
2

Δx2

4
g′ ′(x(t))ΔW (t)

}
+ · · · . (5.164)

Using (5.141) and (5.163) in (5.164) will give

E{(z − x), x, t}

= E{fΔt} + E

{
f ′

(
[f + Δx

2 f ′]Δt + [g + Δx
2 g′]ΔW (t)

2

)
Δt

}

+ E

{
1
2
f ′ ′

(
[f + Δx

2 f ′]Δt + [g + Δx
4 g′](ΔW )2

2

)
Δt

}

+ E{gΔW } + E

{
g′
(

[f + Δx
2 f ′]Δt + [g + Δx

2 g′]ΔW

2

)
ΔW

}

+ E

{
1
2
g′ ′

(
[f + Δx

2 f ′]Δt + [g + Δx
4 g′](ΔW )2

2

)
ΔW

}
+ · · · . (5.165)

The term with E{ΔW } = 0 vanish and the terms E{ΔW }2Δt = 2DΔt2 and
higher order are O(Δt)2. Thus only terms remaining are

E{(z − x), x, t} = E{fΔt} + E

{
1
2
g′gΔW 2

}
+ O(Δt2)

= f(x, t)Δt +
1
2
g′(x, t)g(x, t)2DΔt, (5.166)

and the second moment E{(z − x)2, x, t}
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E{(z − x)2, x, t}

= E

{[
f

(
x(t + Δt) + x(t)

2

)
Δt

+ g

(
x(t + Δt) + x(t)

2

)
ΔW (t)

]2}

= E

{[
f

(
x(t + Δt) + x(t)

2

)
Δt

]2}

+ 2E

{[
f

(
x(t + Δt) + x(t)

2

)
g

(
x(t + Δt) + x(t)

2

)]
ΔtΔW

}

+ E

{[
g

(
x(t + Δt) + x(t)

2

)
ΔW

]2}
. (5.167)

Using (5.141) and (5.163) in (5.167) will give

E{(z − x)2, x, t}

= E{f2Δt2} + E

{
f ′2

(
[f + Δx

2 f ′]Δt

2

)2

Δt

}

+ E

{
1
2
f ′ ′2

( {[f + Δx
2 f ′]Δt}2

4

)2

Δt2
}

+ 2E{fgΔtΔW }

+ 2E

{
fg′ Δx

2
ΔtΔW

}
2E

{
f ′g

Δx

2
ΔtΔW

}
+ E{g2ΔW 2}

+ E

{
g′2

(
[f + Δx

2 f ′]Δt

2

)2

ΔW

}

+ E

{
1
4
g′ ′2

( {[f + Δx
2 f ′]Δt}2

4

)2

ΔW 2

}
+ · · · . (5.168)

And in this case the only terms remaining with order O(Δt)2 are

E{(z − x)2, x, t} = E{g2ΔW 2} = g(x, t)22DΔt. (5.169)

For this term, the result of the integration is the same as found using Itô
integration scheme.

Fokker-Planck-Kolmogorov Equation

Use the results of the previous sections and substitute the derived moment
terms in the Itô sense in (5.156):

∫ ∞

− ∞

[
∂fc2(y, τ |x, t)

∂t
Δt

]
R(x)dx

=
∫ ∞

− ∞
fc2(y, τ |x, t)

[
R′(x)f(x, t)Δt +

R′ ′(x)
2

g(x, t)22DΔt

]
dx. (5.170)
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Dividing all terms in (5.170) by Δt, and making Δt → 0 will yield
∫ ∞

− ∞

[
∂fc2(y, τ |x, t)

∂t

]
R(x)dx

=
∫ ∞

− ∞
fc2(y, τ |x, t)

[
R′(x)f(x, t) +

R′ ′(x)
2

g(x, t)22D

]
dx. (5.171)

Integrating the right hand side of (5.171) by parts (twice the second therm
and applying (5.149) we find

∫ ∞

− ∞

[
∂fc2(y, τ |x, t)

∂t

]
R(x)dx

= −
∫ ∞

− ∞
R(x)

∂

∂x
[fc2(y, τ |x, t)f(x, t)]

+
R(x)

2
∂2

∂x2
[fc2(y, τ |x, t)g(x, t)2]2Ddx, (5.172)

then
∫ ∞

− ∞

[
∂fc2(y, τ |x, t)

∂t

]
R(x)dx

= −
∫ ∞

− ∞

{
∂

∂x
[fc2(y, τ |x, t)f(x, t)]

+ D
∂2

∂x2
[fc2(y, τ |x, t)g(x, t)2]

}
R(x)dx. (5.173)

Since this has to hold for every R(x) the FPK equation becomes

∂fc2(y, τ |x, t)
∂t

= − ∂

∂x
[fc2(y, τ |x, t)f(x, t)]

+ D
∂2

∂x2
[fc2(y, τ |x, t)g(x, t)2]. (5.174)

Now use the results of the previous sections and substitute the derived
moment terms in the Stratonovich sense in (5.156):

∫ ∞

− ∞

[
∂fc2(y, τ |x, t)

∂t
Δt

]
R(x)dx

=
∫ ∞

− ∞
fc2(y, τ |x, t)

[
R′(x)(f(x, t) + g′(x, t)g(x, t)D)Δt

+
R′ ′(x)

2
g(x, t)22DΔt

]
dx. (5.175)

Dividing all terms of (5.175) and making Δt → 0 we find
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∫ ∞

− ∞

[
∂fc2(y, τ |x, t)

∂t

]
R(x)dx

=
∫ ∞

− ∞
fc2(y, τ |x, t)

[
R′(x)(f(x, t) + g′(x, t)g(x, t)D)

+
R′ ′(x)

2
g(x, t)22D

]
dx. (5.176)

Integrating the right hand side of (5.171) by parts (twice the second term)
and applying (5.149) then

∫ ∞

− ∞

[
∂fc2(y, τ |x, t)

∂t

]
R(x)dx

= −
∫ ∞

− ∞
R(x)

∂

∂x

[
fc2(y, τ |x, t)

{
f(x, t) +

1
2
g′(x, t)g(x, t)2D

}]

+
R(x)

2
∂2

∂x2
[fc2(y, τ |x, t)g(x, t)2]2Ddx, (5.177)

Since this has to hold for every R(x) the FPK equation becomes

∂fc2(y, τ |x, t)
∂t

= − ∂

∂x

[
fc2(y, τ |x, t)

{
f(x, t) +

1
2
g′(x, t)g(x, t)2D

}]

+ D
∂2

∂x2
[fc2(y, τ |x, t)g(x, t)2]. (5.178)

Rearranging (5.178) will yield

∂fc2(y, τ |x, t)
∂t

= − ∂

∂x
[fc2(y, τ |x, t)f(x, t)]

+ D
∂

∂x

[
g(x, t)

∂

∂x
{fc2(y, τ |x, t)g(x, t}

]
. (5.179)

Notice the difference between (5.174) and (5.179) achieved with two equally
valid schemes of integration.

The most important usages of both approaches are:

• Stratonovich in physics and engineering
• Itô in mathematical analysis, financial mathematics

In [152] a number of Itô and Stratonovich SDEs are given and repeated in
Table 5.1.

MDOF Stochastic Differential Equations

Consider the following stochastic differential equation written in the Strato-
novich form [200]

{ẏ} = fS({y}, t) + g({y}, t){ξ(t)}, (5.180)
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Table 5.1. Itô and Stratonovich SDEs

SDE Definition

Itô ΔX = −aXΔt + σΔW
Stratonovich ΔX = −aXΔt + σΔW

Itô ΔX = (aX + b)Δt + σΔW
Stratonovich ΔX = (aX + b)Δt + σΔW

Itô ΔX = (aX − σ2/2)Δt + σΔW
Stratonovich ΔX = (aX − σ2/2)Δt + σΔW

Itô ΔX = aXΔt + bXΔW
Stratonovich ΔX = (aX − {1/2}b2XΔt + bXΔW

Itô ΔX = (aX + b)Δt + (bX + d)ΔW
Stratonovich ΔX = [(a − {1/2}b)X + c − {1/2}bd]Δt + (bX + d)ΔW

Itô ΔX = [{1/2}a(a − 1)X1−2/a]Δt + aX1−1/aΔW

Stratonovich ΔX = aX1−1/aΔW

Itô ΔX = [{1/2}a2X]Δt + a
√

1 − X2ΔW

Stratonovich ΔX = a
√

1 − X2ΔW

Itô ΔX = [a2X(1 + X2)]Δt + a(1 + X2)ΔW
Stratonovich ΔX = a(1 + X2)ΔW

Itô ΔX = a(b − X)Δt + σ
√

XΔW

Stratonovich ΔX = [a(b − X) − σ2/4]Δt + σ
√

XΔW

where {y} is the 2n-vector of state variables; fS({y}, t) and g({y}, t) are, re-
spectively, and n-vector and n × j matrix, whose elements are deterministic
functions depending nonlinearly on {y}. {ξ(t)} is the j-vector of stationary,
zero-mean white noise processes. As already mentioned the Stratonovich ap-
proach is quite often applied in engineering problems. Equation (5.180) can
be rewritten in the following Itô standard form [200]

{Δy} = fI({y}, t)Δt + g({y}, t){ΔW (t)}, (5.181)

where fI({y}, t) is the vector of drift coefficients, which accounts for the pres-
ence of the Wong-Zakai or Stratonovich correction term. {ΔW (t)} is the
j-vector of the Wiener processes, whose increments satisfy the following rela-
tions

E{ΔW (t)} = {0},

E{ΔW (t1)ΔW (t2)} = [2D]δ(t1 − t2)Δt1Δt2 = [2D]Δt,
(5.182)

In Appendix N it is stated that the Wiener process, denoted by W (t), is also
called Brownian motion, and denoted by B(t). In this section the notation
W (t) will be used to indicate a Wiener process. A Wiener process is called a
standard (or unit) Wiener process if 2D = 1. Equation (5.181) can be written
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{Δy} =
[
fS({y}, t) +

1
2
σ({y}, t)

∂σ({y}, t)
∂y

]
Δt + g({y}, t){ΔW (t)}, (5.183)

where the second term inside the brackets on the right hand side of (5.183)
is the Wong-Zakai or Stratonovich correction term. Partial differentiation,
σ({y},t)

∂y should be used in accordance with the rules of matrix operations.
One can write

Δyi =

[
fS,i +

1
2

2n∑
k=1

m∑
j=1

σkj
σij

∂yk

]
Δt +

m∑
j=1

gijΔWj

= fI,iΔt +
m∑

j=1

gijΔWj , (5.184)

where m is the number of stochastic excitations ΔWj and σij = gil

√
2Dlj ,

l = 1, 2, . . . , m.

Example. This example is taken from [210]. An SDOF system is disturbed
by parametric (multiplicative) and external (additive) Gaussian white noise
excitations. The equation of motion of the SDOF system is

ẍ + α[1 + ξ(t)]ẋ + β[1 + ξ(t)]x = ξ(t), (5.185)

where x is the stochastic displacement, α,β are constants and ξ(t) is the
Gaussian white noise excitation. The second order ordinary differential equa-
tion is transformed into two first order differential equations, the so-called two
space-state, with y1 = x and ẏ1 = x
(

ẏ1

ẏ2

)
=

(
0 1

−β[1 + ξ(t)] −α[1 + ξ(t)]

)(
y1

y2

)
+

(
0 0
0 1

)(
ξ(t)
ξ(t)

)
. (5.186)

Equation (5.186) can be rewritten as an Stratonovich stochastic differential
equation

(
Δy1

Δy2

)
=

(
y2

−βy1 − αy2

)
Δt +

(
0 0
0 1 − βy1 − αy2

)(
ΔW
ΔW

)
(5.187)

or
{Δy} = fS({y}, t)Δt + g({y}, t)ΔW, (5.188)

where ΔW = ξ(t)Δt is the Wiener process. In accordance with (5.184), the
Wong-Zakai or Stratonovich correction terms can be calculated

Δyi =

[
fS,i +

1
2

2∑
k=1

2∑
j=1

σkj
σij

∂yk

]
Δt +

2∑
j=1

gijΔWj

= fI,iΔt +
2∑

j=1

gijΔWj , i = 1, 2, (5.189)
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where [σ] = [g]
√

2D is given by

[σ] =
(

0 0
0 (1 − βy1 − αy2)

√
Sw

)
, (5.190)

and the autocorrelation function Rw(τ) is given by

Rw(τ) = E{Wi(t)Wj(t + τ)} = 2Dδ(τ) = Swδ(τ).

Thus the Itô form of the SDE becomes

{Δy} = {fI }Δt + [G]{ΔW }

=
(

fS,1

fS,2 − 1
2αSw(1 − βy1 − βy2)

)
Δt

+
(

0 0
0 (1 − βy1 − βy2)

)(
ΔW
ΔW

)

=
(

y2

−βy1 − αy2 − 1
2αSw(1 − βy1 − βy2)

)
Δt

+
(

0 0
0 (1 − βy1 − βy2)

)(
ΔW
ΔW

)
. (5.191)

The associated FPK equation is

∂fc2

∂t
= −

2∑
i=1

∂[fI,ifc2 ]
∂yi

+
2∑

i=1

2∑
j=1

∂2[(GDGT )ijfc2 ]
∂yi∂yj

, (5.192)

where the conditional probability density function is fc2 = fc2({y0}, t0| {y}, t)
and f({y}, t) =

∫ ∞
− ∞ · · ·

∫ ∞
− ∞ fc2({y0}, t0| {y}, t)f({y0}, t0)d{y0}.

5.7 Behavior of Linear Systems with Random Parametric
Excitation

In this section, we discuss the behavior of linear systems with parametric
parameters varying as white noise, and is based on a paper of Gray [75]. The
general associated FPK equation is given and moment equations are derived.
In the previous section an example of a parametric system was given. As a
starting point Gray considered an (n + 1)th order linear differential equation
given by

dn+1x

dtn+1
+

n∑
k=0

[ak + ξk(t)]
dkx

dtk
= ξn+1(t) + f(t), (5.193)

where the ak are constants, f(t) is a known signal possessing a PSD spectrum,
and the ξk(t) are the stationary random variables that are ergodic, Gaussian
and white. The mean or expectation of ξk(t) is
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E{ξk(t)} = 〈ξk(t)〉 = 0,
(5.194)

E{ξk(t)ξi(t + τ)} = 〈ξk(t)ξi(t + τ)〉 = 2Dkiδ(τ).

The process in (5.193) defines a continuous Markoff process of n + 1 di-
mensions. Due to the presence of f(t) in the equation, this process may not be
stationary, however, it still possesses a transition probability. Let the variables
y0, y1, . . . , yn be defined by

yk =
dkx

dtk
. (5.195)

Then, if f({y}, t) = f is the joint probability density function in the variable
yk for k = 0, 1, . . . , n, f will satisfy the FPK equation given by

∂f

∂t
= −

n−1∑
k=0

∂(yk+1f)
∂yk

− ∂

∂yn

{[
f(t) − Dn+1,n −

n∑
k=0

(ak − Dnk)yk

]
f

}

+
∂2

∂y2
n

{[
n∑

k=0

n∑
i=0

Dkiykyi − 2
n∑

k=0

Dn+1,kyk + Dn+1,n+1

]
f

}
. (5.196)

Example. Consider the following equation of motion:

d2x(t)
dt2

+ [2ω0ζ + ξ1(t)]
dx(t)

dt
+ [ω2

0 + ξ0(t)]x = ξ2(t).

The following variable transformations are made in comparison with (5.193)

• a0 = ω2
0 ,

• a1 = 2ω0ζ,
• E{ξk(t)} = 0, k = 0, 1, 2,
• E{ξi(t)ξj(t + τ)} = 2Dijδijδ(τ) i, j = 0, 1, 2,
• f(t) = 0,
• y0 = x,
• y1 = dx

dt , and
• n = 1.

Equation (5.196) becomes

∂f

∂t
= −

0∑
k=0

∂(yk+1f)
∂yk

− ∂

∂y1

{[
D21δ21 −

1∑
k=0

(ak − D1kδ1k)yk

]
f

}

+
∂2

∂y2
1

{[
1∑

k=0

1∑
i=0

Dkiδkiykyi − 2
1∑

k=0

D2kδ2kyk + D22δ22

]
f

}
,

or

∂f

∂t
= − ∂(y1f)

∂y0
+

∂

∂y1

{[
ω2

0y0 + (2ζω0 − D11)y1

]
f

}

+
∂2

∂y2
1

{[
D00y

2
0 + D11y

2
1 + D22

]
f
}
.
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5.7.1 Moments and Autocorrelation

Let M be a well-behaved function of the functions yk, so that the stochastic
mean or expectation of M exists and is defined by the integral

E{M } = 〈M 〉 =
∫ ∞

− ∞

∫ ∞

− ∞
· · ·

∫ ∞

− ∞
Mfdy0dy1 · · · dyn. (5.197)

If the FPK equation (5.196) is multiplied by M , integrated over all yk, then
integrated by parts, it yields the result

d〈M 〉
dt

=
n−1∑
k=0

〈
yk+1

∂M

∂yk

〉
+ [f(t) − Dn+1,n]

〈
∂M

∂yn

〉

−
n∑

k=0

(ak − Dnk)
〈

yk
∂M

∂yn

〉
+

n∑
k=0

n∑
i=0

Dki

〈
ykyi

∂2M

∂y2
n

〉

− 2
n∑

k=0

Dn+1,k

〈
yk

∂2M

∂y2
n

〉
+ Dn+1,n+1

〈
∂2M

∂y2
n

〉
. (5.198)

This equation (5.198) can now be used for the finding the means moments
and the autocorrelation function.

Mean

By setting M = yk in (5.198), we can obtain the following result:

d〈yk 〉
dt

= 〈yk+1〉, k = 0, 1, 2, . . . , n − 1,

d〈yn〉
dt

= −
n∑

k=0

(ak − Dnk)〈yk 〉 + f(t) − Dn+1,n.
(5.199)

Combining these equations and using the definition yk = dkx
dtk , we obtain the

equation for the mean of x, given by

dn+1〈x〉
dtn+1

+
n∑

k=0

(ak − Dnk)
dk 〈x〉
dtk

= f(t) − Dn+1,n. (5.200)

Example. Consider a dynamic system defined by the differential equation

d2x

dt2
+ [2ζω0 + ξ1(t)]

dx

dt
+ [ω2

0 + ξ0(t)]x = ξ2(t),

where ξ0(t), ξ1(t) and ξ2(t) are zero-mean Gaussian white noises and

〈ξi(t)ξj(t + τ)〉 = 2Dijδ(τ), i, j = 0, 1, 2.

This is identical to the general case with n + 1 = 2, a1 = 2ζω0, a0 = ω2
0 and

f(t) = 0. The mean will satisfy the differential equation

d2〈x〉
dt2

+ (2ζω0 − D11)
d〈x〉
dt

+ (ω2
0 − D10)〈x〉 = −D21.
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Autocorrelation Function

In an analogous manner used for finding the equation for the mean, the equa-
tion for the autocorrelation E{x(t)x(s)} = 〈x(t)x(s)〉 is given by

dn+1〈x(t)x(s)〉
dtn+1

+
n∑

k=0

(ak − Dnk)
dk 〈x(t)x(s)〉

dtk

= [f(t) − Dn+1,n]〈x(s)〉, (5.201)

which will be valid for t ≥ s.

Second Moments and the Variance

We obtain by using (5.198), with M defined by the relation M = ykyi −
〈yk 〉〈yi〉, the differential equations for Cki, where

Cik = Cik = 〈ykyi〉 − 〈yk 〉 〈yi〉. (5.202)

This leads to the following set of equations:

dCik

dt
= Ci,k+1 + Ck,i+1, i, k = 0, 1, . . . n − 1, i �= n, k �= n,

dCin

dt
= Cn,i+1 −

n∑
k=0

(ak − Dnk)Cik, i = 0, 1, . . . n − 1, i �= n,

1
2

dCnn

dt
= −

n∑
k=0

(ak − Dnk)Cnk +
n∑

k=0

n∑
i=0

DikCik

+
n∑

k=0

n∑
i=0

Dik 〈yk 〉 − 2
n∑

k=0

Dn+1,k 〈yk 〉 + Dn+1,n+1.

(5.203)

The first equation of (5.203) represents 1
2n(n+1) equations (since Cki = Cik).

The second equation of (5.203) represent n equations, and added to the third
equation of (5.203), gives a total of 1

2 (n + 1)(n + 2) equations for the same
number of unknowns Cik = Cki. In principle, once the means are found, the
second moments found also.

Example. Consider a dynamic system defined by the differential equation

d2x

dt2
+ [2ζω0 + ξ1(t)]

dx

dt
+ [ω2

0 + ξ0(t)]x = ξ2(t),

where ξ0(t), ξ1(t) and ξ2(t) are zero-mean Gaussian white noises and

〈ξi(t)ξj(t + τ)〉 = 2Dijδ(τ), i, j, = 0, 1, 2.

This is identical to the general case with n + 1 = 2, a1 = 2ζω0, a0 = ω2
0 and

f(t) = 0. The mean will satisfy the differential equation
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d2〈x〉
dt2

+ (2ζω0 − D11)
d〈x〉
dt

+ (ω2
0 − D10)〈x〉 = −D21.

The mean will be stable if and only if 2ζω0 > D11 and ω2
0 > D10. The

equations for the covariance function Cij are given by

dC00

dt
= 2C01,

dC01

dt
= C11 − (ω2

0 − D10)C00 − (2ζω0 − D11)C01,

1
2

dC11

dt
= −(ω2

0 − 3D10)C01 − (2ζω0 − 2D11)C11 + D00C00

+ D00〈y0〉2 + 2D10〈y0〉〈y1〉 + D11〈y1〉2

− 2D20〈y0〉 − 2D11〈y1〉 + D22.

Consider the following simplified linear equation of motion:

d2x

dt2
+ 2ζω0

dx

dt
+ ω2

0x = ξ2(t),

then for a stationary process the following equations are obtained:

2C01 = 0,

C11 − ω2
0C00 − 2ζω0C01 = 0,

−ω2
0C01 − 2ζω0C11 + D22 = 0.

Solving the set of algebraic equations we find the covariances become

〈ẋx〉 = C01 = C10 = 0, 〈ẋẋ〉 = C11 =
D22

2ζω0
, 〈xx〉 = C00 =

D22

2ζω3
0

,

because the mean values are 〈x〉 = 〈ẋ〉 = 0.
The space state of the previous equation of motion is given by

(
ẏ0

ẏ1

)
=

(
0 1

−ω2
0 −2ζω0

)(
y0

y1

)
+

(
0
1

)
ξ2(t)

= [A]
(

y0

y1

)
+ {G}ξ(t).

The stationary correlation matrix is [R] = [C] + [〈yi〉 〈yj 〉], i, j = 0, 1 and can
be obtained by solving the Lyapunov equation (see Sect. 2.6)

[A][R] + R[A]T = −{G}2D22�G
.

As before, we find

[R] = [C] = D22

(
1

2ζω2
0

0
0 1

2ζω0

)
.
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5.8 Generation FPK Equation for MDOF Systems

The equations of motion for a lumped-parameter systems with MDOF can
be, in general, written as follows [210]:

ẍi + hi(x1, x2, . . . , xn, ẋ1, ẋ2, . . . , ẋn) = fp
ir, (5.204)

fp
ir = fir(x1, x2, . . . , xn, ẋ1, ẋ2, . . . , ẋn)ξr(t), (5.205)

and with {y1} = �x1, x2, . . .
 and {y2} = �ẋ1, ẋ2, . . . , ẋn)
 the equations can
be written in matrix form

{ẍ} + h({y1}, {y2}) = {fp}n×1, (5.206)

and
{fp}n×1 = [f ]n×m{ξ(t)}m×1. (5.207)

With

{y} =
(

y1

y2

)
,

the set of equations can be expressed in a state space

{ẏ} =
(

{y2}
−h({y1}, {y2})

)
+

(
0 0
0 [f ]

)(
0

{ξ}

)
, (5.208)

where {ξ} is the vector of delta correlated white noise processes.
The corresponding Itô equation can be written

{Δy} =
(

{y2}
−h({y1}, {y2}) + κ

)
Δt +

(
0 0
0 [f ]

)(
{ΔW }
{ΔW }

)

= {m}Δt + [G]ΔW, (5.209)

where κ is the Wong-Zakai or Stratonovich correction term, {ΔW } = {ξ}Δt
which is a Brownian motion or Wiener process, and

E[{W (t)} {W (t + τ)}] = [2D]δ(τ), (5.210)

The FPK equation can be easily derived from (5.209) and (5.210)

∂fc2

∂t
= −

2n∑
i=1

∂[mifc2 ]
∂yi

+
2n∑
i=1

2n∑
j=1

∂2[(GDGT )ijfc2 ]
∂yi∂yj

. (5.211)

where the conditional probability density function is given by

fc2 = fc2({y1(0)}, {y2(0)} | {y1(t)}, ({y2(t)}).

In terms of the first and second moments Ai and Bij the FPK equation (5.211)
can be written as follows
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Fig. 5.4. Two degrees of freedom system (four state-space system)

∂fc2

∂t
= −

2n∑
i=1

∂[Aifc2 ]
∂yi

+
1
2

2n∑
i=1

2n∑
j=1

∂2[Bijfc2 ]
∂yi∂yj

, (5.212)

where
Ai = mi, Bij = 2(GDGT )ij . (5.213)

Example. A MDOF linear dynamic system is illustrated in Fig. 5.4. The
state-space variables of that dynamic system are given by

{y} =

⎛
⎜⎜⎝

y1

y2

y3

y4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

x1

x2

ẋ1

ẋ2

⎞
⎟⎟⎠ (5.214)

The state matrix [A] of the dynamic system showed now becomes

[A] =

⎛
⎜⎜⎜⎝

0 0 1 0
0 0 0 1

−(k1+k2)
m1

k12
m1

−c1
m1

0
k12
m2

−(k1+k2)
m2

0 −c2
m2

⎞
⎟⎟⎟⎠ , (5.215)

and the input state matrix denoted by B is

[G] =

⎛
⎜⎜⎝

0 0
0 0
1

m1
0

0 1
m2

⎞
⎟⎟⎠ (5.216)

The forces are denoted by {ξ}

{ξ} =
(

ξ1

ξ2

)
, (5.217)

where {ξ(t)} is a Gaussian and white noise process, with the following statis-
tical properties
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E{ξ(t)} = {0},

E{ξ(t)ξ(t + τ)} = �2D
δ(τ) =
(

Sξ1 0
0 Sξ2

)
δ(τ),

where Sξi are the constant PSD functions. The following notations are now
introduced and substituted in (5.215)

• Ω2
1 = (k1+k2)

m1

• Ω2
2 = (k1+k2)

m2

• ω2
1 = k2

m1

• ω2
2 = k2

m2

• ω2
11 = k12

m1

• ω2
22 = k12

m2

• c1 = 2ζ1

√
k1m1

• c2 = 2ζ2

√
k2m2

• 2ζ1ω1 = c1
m1

• 2ζ2ω2 = c2
m1

thus (5.215) becomes

[A] =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−Ω2
1 ω2

11 −2ζ1ω1 0
ω2

22 −Ω2
2 0 −2ζ2ω2

⎞
⎟⎟⎠ (5.218)

The Itô and Stratonovich stochastic differential equations can be generated

{Δy} = {f }Δt + [g]{ΔW } = {m}Δt + [g]{ΔW }, (5.219)

where {f } = {m} = [A]{y}, because the matrix [g] = [G] is not dependent on
the state variables {y}, but

[G] =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 1

m1
0

0 0 0 1
m1

⎞
⎟⎟⎠ ,

and

[G][D][G]T =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 Sξ1

2m2
1

0

0 0 0 Sξ2
2m2

1

⎞
⎟⎟⎟⎠ .

The FPK equation for this linear system, using (5.192), with fc2 =
fc2({y0} | {y}, t) is given in the following expression
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∂fc2

∂t
=

Sξ1

2m2
1

∂2fc2

∂y2
3

+
Sξ2

2m2
2

∂2fc2

∂y2
4

− y3
∂fc2

∂y1
− y4

∂fc2

∂y2

− ∂

∂y3
[(−Ω2

1y1 + ω2
11y2 − 2ζ1ω1y3)fc2 ]

− ∂

∂y4
[(ω2

22y1 − Ω2
1y2 − 2ζ2ω2y4)fc2 ]. (5.220)

Problems

5.1. When x is a Markoff process prove the following equation

f3(x1, t1, x2, t2, x3, t3) =
f2(x1, t1, x2, t2)f2(x2, t2, x3, t3)

f1(x2, t2)
.

5.2. Derive Miles’ equation of a SDOF linear system with enforced acceler-
ation ü at the base using the FPK equation. The equation governing the
relative motion z is given by

z̈ + 2ζωnż + ω2
nz = −ü.

Prove that the expected value of the square of the absolute acceleration ẍ2 is

E{ẍ2} = (−2ζωn)2E{ż2} + (−ω2
n)2E{z2}.

The white noise PSD function is Sü = Wü

2 , ωn = 2πfn and Q = 1
2ζ .

Answer: E{ẍ} = π
2 fnQWü(1 + 4ζ2).

5.3. This problem is taken from [101]; parametric excitation is combined with
nonparametric excitation. The equation of motion of a SDOF system is given
by

ẍ + ω0[2ζ + ξ2(t)]ẋ + ω2
0 [1 + ξ1(t)]x = ξ0(t).

Here ξ0(t), ξ1(t) and ξ2(t) are white noise processes with spectral densities

[2D] =

⎛
⎝S00 0 0

0 S11 S12

0 S21 S22

⎞
⎠ .

• Set up the nonlinear Stratonovich equation {dy} = {f }dt+[G]{dW } with
y1 = x and y2 = ẋ

• Derive Itô’s equation {dy} = {m}dt + [G]{dW } with y1 = x and y2 = ẋ
• Derive from Itô’s equation the FPK equation for fc2({y0} | {y}, t)
• Solve the stationary FPK equation for f1({y})

5.4. This problem is taken from [92]. A hardening Duffing oscillator subjected
to additive and multiplicative (parametric) white noise is given by
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ẍ + 2ζẋ + [1 − ξ1(t)]x + εx3 = ξ2(t),

where the noise terms are independent, and

Rw(τ) = E[{ξ(t)} {ξ(t + τ)}T ] = [2D]δ(τ) =
(

S1 0
0 S2

)
.

Generate the corresponding FPK equation.
Answer:

∂fc2

∂t
=

∂[(2ζy2 + y1 + εy3
1)]fc2

∂y2
− ∂[y2fc2 ]

∂y1
+

∂2[(S1y
2
2 + S2)fc2 ]
2∂y2

2

.

5.5. This problem is taken from [183]. Solve the following parabolic partial
differential equation

∂u

∂t
=

∂2u

∂x2
,

with the finite difference approximation. Perform the following assignments:

• Set up an explicit finite difference scheme
Answer: ui,k+1 = rui−1,k + (1 − 2r)ui,k + rui+1,k, r = Δt/Δx2, x =
xmin + iΔx, t = kΔt, i, k = 0, 1, 2, . . . .

• Solve the partial differential equation, using the finite difference explicit
scheme, with given initial and boundary conditions for t = 0.02:
– Initial condition t = 0 u = 2x for 0 ≤ x ≤ 0.5, u = 2(1 − x) for

0.5 < x ≤ 1.0.
– Boundary conditions u = 0 at x = 0 and x = 1 for all t.
– Δx = 0.1 and Δt = 0.001
Answer: t = 0.02, (x, u) = (0.0, 0.0), (0.1, 0.1939), (0.2, 0.3781),
(0.3, 0.5373), (0.4, 0.6486), (0.5, 0.6891), (0.6, 0.6486), (0.7, 0.5373),
(0.8, 0.3781), (0.9, 0.1939), (1.0, 0.0).

5.6. A linear mass spring system is coupled with a Duffing-like oscillator,
expressed by the following set of equations of motion

{
Mẍ + λ1ẋ + k1x + γ(x − y) = f1(t),
mÿ + λsẏ + Cy3 + γ(y − x) = f2(t),

(5.221)

where f1(t) and f2(t) are two white non-correlated noises whose diffusion
coefficients are respectively W01 and W02:

⎧⎪⎨
⎪⎩

〈f1(t)〉 = 0,

〈f2(t)〉 = 0,

〈fi(tk)fj(tl)〉 = W0i

2 δijδ(tk − tl).
(5.222)

Write down Itô equations (4 DOFs), expressed in terms of y1 = x, y2 = ẋ,
y3 = y and y4 = ẏ.
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Answer:
⎛
⎜⎜⎝

ẏ1

ẏ2

ẏ3

ẏ3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

y2

− 1
M [λ1y2 + k1y1 + γ(y1 − y3)]

y4

− 1
m [λsy4 + Cy3

3 + γ(y3 − y1)]

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0
f1(t)
M
0

f2(t)
m

⎞
⎟⎟⎠ ,

or
⎛
⎜⎜⎝

Δy1

Δy2

Δy3

Δy3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

y2

− 1
M [λ1y2 + k1y1 + γ(y1 − y3)]

y4

− 1
m [λsy4 + Cy3

3 + γ(y3 − y1)]

⎞
⎟⎟⎠Δt +

⎛
⎜⎜⎜⎝

0√
W01√
2M

ΔW1

0√
W02√
2m

ΔW2

⎞
⎟⎟⎟⎠ ,

where Wi are standard Wiener processes with dW (t) = W (t+dt) − W (t) and
E{ΔW (t)ΔW (t)} = Δt.

The transition probability density function f4c(y0|y, t) = f . Derive the
Fokker-Planck equation expressed in terms of f .
Answer:

∂f

dt
= −y2

∂f

dy1
+

∂

dy2

1
M

[{λ1y2 + k1y1 + γ(y1 − y3)}f ] +
W01

4M2

∂2f

dy2
2

− y4
∂f

dy4

1
m

[{λsy4 + Cy3
3 + γ(y3 − y1)}f ] +

W02

4m2

∂2f

dy4
2

.

5.7. This problem is taken from [6, 7, 78]. Consider the stochastic ordinary
differential equation

Δx = (x − x3)Δt + σΔW,

where W (t) is the standard Wiener process. Write down the FPK equation
and solve the stationary FPK equation for the probability density function
f(x) = f . Calculate the first and second moment 〈x〉, 〈x2〉 as function of
σ = 0.2 . . . 1.0, respectively.
Answers: ∂f

∂t = − ∂
∂x [(x − x3)f ] + σ2

2
∂2f
∂t2 , f(x) = Ce(x2−0.5x4)/σ2

, e.g. σ = 0.2,
C = 0.7312 × 10−5, 〈x2〉 = 0.9785.

5.8. This problem is taken from [6]. The following set of equations is given

ẋ = μox + μr(t)x + [1 − (x2 + y2)](x2 + y2)x − ωy − b(x2 + y2)y + ξx(t),
ẏ = μoy + μr(t)y + [1 − (x2 + y2)](x2 + y2)y + ωx + b(x2 + y2)x + ξy(t),

where the additive noise terms are considered uncorrelated with μr(t). The
correlation functions for μr(t), ξx(t) and ξy(t) are given as

Rμμ = 〈μ(t)μ(t + τ)〉 = 2Dmδ(τ),
Rxx = 〈ξx(t)ξx(t + τ)〉 = 2Dδ(τ),
Ryy = 〈ξy(t)ξy(t + τ)〉 = 2Dδ(τ),
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where Dm and D are the spectral densities. Expressing the white noise proces-
ses as formal derivatives of the Wiener processes Wm, Wx and Wy, set-up the
Itô-type of SDEs taking into account the Wong-Zakai correction. Write down
the FPK equation when f(x, y) = f is the joint probability density function.
Answers:

Δx = {μox + [1 − (x2 + y2)](x2 + y2)x − ωy − b(x2 + y2)y + Dmx}Δt

+
√

2DΔWx(t) +
√

2DmxΔWm(t),
Δy = {μoy + [1 − (x2 + y2)](x2 + y2)y + ωx + b(x2 + y2)x + Dmy}Δt

+
√

2DΔWy(t) +
√

2DmyΔWm(t),
∂f

∂t
= − ∂f

∂x
[{μox + μr(t)x + [1 − (x2 + y2)](x2 + y2)x − ωy − b(x2 + y2)y

+
√

2Dmx}f ]

− ∂f

∂y
[{μoy + μr(t)y + [1 − (x2 + y2)](x2 + y2)y + ωx − b(x2 + y2)x

+
√

2Dmy}f ]

+
∂2f

∂x2
[(D + Dmx2)f ] + 2

∂2f

∂x∂y
[(Dmxy)f ] +

∂2f

∂y2
[(D + Dmy2)f ].

5.9. A nonlinear vibration is described by the following equation of motion
(Duffing’s equation)

ẍ(t) + 2ζω0ẋ(t) + ω2
0x(t) + k3x

3(t) = ξ(t),

where E{ξ(t)ξ(t + τ)} = 2Dδ(τ).
The following assignments are required:

• Derive the FPK equation, for the non stationary and stationary problem
• Derive the joint probability function f2(x, ẋ) for the stationary problem
• Derive the number of up-crossings at level a, given that ν+(a) = ν+

a =∫ ∞
0

ẋf2(a, ẋ)dẋ.
• Try to derive an approximation of ν+(a) for a large |x|, by using (5.338)

Answers: f2(x, ẋ) = Ce− 1
2σ2 ( ẋ2

2 +
ω2
0x2

2 +
k3x4

4 ), σ2 = D
4ζω0

, ν+(a) = 1
σ

√
2π

×

e
− 1

2σ2 [
∫ a

0
(ω2

0x+k3x3)dx]
/
∫ ∞

− ∞ e− 1
2σ2 (

ω2
0x2

2 +
k3x4

4 )dx.

5.10. Let a vector process {z(t)} = �z1(t), z2(t)
T be defined by z1(t) = x(t)
and z2(t) = ẋ(t). we can write Itô SDE

Δ{z(t)} = {f({z(t)} }Δt + {g}ΔW (t),

with

{f {z(t)} } =
[

z2(t)
−2ζz2

1(t) − 1)z2(t) − z1(t)

]
,
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and

{g} =
(

0√
2D

)
.

The Wiener process is given by ΔW (t) = ξ(t)Δt, where ξ(t) is white noise with
the properties E{ξ(t)} = 0 and E{ξ(t)ξ(t + τ)} = 2Dδ(τ). Write down the
original equation of motion (van der Pol). The transition probability density
function is given by fc2({z0}, 0, {z}, t) = f . What is the corresponding FPK
equation and what are the initial and boundary conditions for f?
Answers: ẍ(t) + 2ζ[x(t)2 − 1]ẋ(t) + x(t) = ξ(t), ∂f

∂t = 2ζ(z2
1 − 1)f − z2

∂f
∂z1

+

[2ζ(z2
1 − 1)z2 + z1] ∂f

∂z2
+ D ∂2f

∂z2
1
.

5.11. The nonlinear SDOF dynamic system (Duffing) is excited by a filtered
white noise, [87]. The governing equations are

ẍ + 2ζω0ẋ + αω2
0x3 = f(t),

f̈ + 2γλḟ + λ2f = ξ(t),

where ξ(t) is a white noise with zero mean and autocorrelation

E{ξ(t)ξ(t + τ)} = 〈ξ(t)ξ(t + τ)〉 = 2Dδ(τ).

We can control the input bandwidth γ and center frequency λ.
Write down the FPK equation when the following state variables are in-

troduced; z1 = x, z2 = ẋ, z3 = f and z4 = ḟ . First set up the system of Itô
stochastic differential equations.

5.12. This problem is based on the paper of Dunne and Gandbari [54]. A gen-
eral SDOF system is given by

ẍ + 2ζωnẋ + α1ẋx2 + α2ẋ|ẋ| + ω2
nz + k3x

3 = ξ(t),

where α1 and α2 are constants, ζ is the damping ratio, ωn is the natural
frequency of the linear dynamic system, k3 is a constant and ξ(t) is Gaussian
white noise with zero mean and E{ξ(t)ξ(t + τ)} = 〈ξ(t)ξ(t + τ)〉 = 2Dδ(τ).
Write the two-state (z1 = x, z2 = ẋ) equations described by the Itô SDE,
the corresponding stationary FPK equation for the joint probability density
function f(z1, z2) = f and solve the stationary FPK equation with α1 =
α2 = 0. Generate an expression for the mean up-crossings ν+(a) of level a,
ν+(a) =

∫ ∞
0

z2f(a, z2)dz2. The following parameters are to be used; ζ =
0.0138, α1 = α2 = 0, ωn = 144.34, k3 = 3021 and

√
2D = 200. Calculate

ν+(a).
Answers:
(

Δz1

Δz2

)
=

[
z1

−2ζωnz1 − α1z2z
2
1 − α2z2|z2| − ω2

nz1 − k3z
3
1

]
Δt+

[
0√
2D

]
ΔW (t),
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− ∂

∂z1
[z2f ] +

∂

∂z2
[2ζωnz1 + α1z2z

2
1 + α2z2|z2| + ω2

nz1 + k3z
3
1 ] + D

∂2f

∂z2
2

= 0,

f(z1, z2) = C exp
{

− 2ζωn

D

[
z2
2

2
+

ω2
nz2

1

2
+

k3z
4
1

4

]}
,

where C is normalization constant,

ν+(a) =
C

2

√
πD

ζωn
exp

[
− 2ζωn

D

∫ a

0

(ω2
nz1 + k3z

2
1)dz1

]
.

5.13. This problem is based on an contribution of Scheurkogel and Elishakoff
in the proceedings [233], entitled: “An Exact Solution of the Fokker-Planck
Equation for Nonlinear Random Vibration of a Two-Degrees-of-Freedom Sys-
tem”.

Consider the system of random differential equations

m1ẍ1 + a11ẋ1 + a12ẋ2 +
∂U

∂x1
= ξ1(t),

m2ẍ2 + a21ẋ1 + a22ẋ2 +
∂U

∂x2
= ξ2(t),

where ξ1(t) and ξ2(t) are stationary white Gaussian processes with zero mean
and auto and cross correlation function

E{ξi(t)ξj(t + τ)} = 〈ξi(t)ξj(t + τ)〉 = 2Dijδ(τ), i, j = 1, 2.

The two differential equations describe a coupled two-degrees-of-freedom sys-
tem with linear damping and nonlinear stiffness, the latter derivable from
potential function U(x1, x2)

U(x1, x2) =
k

2
(x2

1 + x2
2) +

α

2
(x1 − x2)2 +

β

4
(x1 − x2)4,

where k, α are positive and β is a small and positive nonlinearity parameter.
The spectral density matrix 2Dij is proportional to the damping matrix

2Dij =
aij + aji

λ
,

where λ is a constant.
Prove that the stationary solution of the FPK equation is given by

f(x1, x2, ẋ1, ẋ2) = γe− λ
2 [m1ẋ2

1+m2ẋ2
2+2U(x1,x2)],

where γ follows from the normalization condition
∫ ∞

− ∞

∫ ∞

− ∞

∫ ∞

− ∞

∫ ∞

− ∞
f(x1, x2, ẋ1, ẋ2)dx1dx2dẋ1dẋ2 = 1.
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Introduce two new variables

u = x1 + x2, v = x1 − x2.

and prove that the following marginal densities are given by

f(ẋ1) =

√
λm1

2π
e−

λm1ẋ2
1

2 ,

f(ẋ2) =

√
λm2

2π
e−

λm2ẋ2
2

2 ,

f(u) =
λk

4π
e− λku2

4 ,

f(v) = Ce−[ λβv4

4 +
λ(k+2α)v2

4 ],

where C is the normalization constant. Show that

f(x1, x2, ẋ1, ẋ2) = f(ẋ1, ẋ2, u, v) = f(ẋ1)f(ẋ2)f(u)f(v).

Further prove that

E{ẋ1} = E{ẋ2} = E{x1} = E{x2} = E{u} = E{v} = 0,

E{ẋ2
1} =

1
λm1

, E{ẋ2
2} =

1
λm2

, E{u2} =
2
λk

, E{x2
1} = E{x2

2}.

and prove, knowing that E{x2
1} = E{x2

2} = E{u2}+E{v2}
4 , and E{x1x2} =

E{u2} −E{v2}
4 , the following relations

E{v2} =
2

λ(k + 2α)

(
1 − 12β

λ(k + 2α)2

)
+ O(β2), β → 0,

E{x2
1} = E{x2

2} =
1

2λk
+

2
λ(k + 2α)

(
1 − 12β

λ(k + 2α)2

)
+ O(β2), β → 0,

E{x1x2} =
1

2λk
− 2

λ(k + 2α)

(
1 − 12β

λ(k + 2α)2

)
+ O(β2), β → 0.

hints: ∫ ∞

− ∞
x2ne−px2

dx =
Γ (n + 1/2)

pn+1/2
,

E{v2m} =
[
λ

4
(k + 2α)

]−m

σm

(
4β

λ(k + 2α)2

)

σm(z) = (2m)!
[
1 − m(m + 2)z

m!4m

]
+ O(z2), z ↓ 0.

5.14. This problem is inspired on a paper of Dimentberg [49]. Consider the
following second-order system
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ẍ + 2αẋ[1 + η(t)] + β1ẋ(x2 + ẋ2/Ω2) + Ω2x[1 + ξ(t)] = ζ(t), β1 ≥ 0,

where η(t), ξ(t) and ζ(t) are independent zero-mean Gaussian white noise
processes or white noise in the Stratonovich sense with intensities Dη, Dξ and
Dζ respectively.

Write down the stationary the stationary joint of probability function f =
f(x, v) of the coordinates x(t) and velocity v(t) = ẋ.

The intensities Dξ and Dη satisfy the following condition

Ω2Dξ = 4α2Dη.

Prove that the following solution of f

f(x, v) =
Ce−β(x2+v2/Ω2)

(ℵ + x2 + v2/Ω2)δ− ℵβ
,

where
ℵ = Dζ/DξΩ

4, δ = 2α/DξΩ
2, β = β1/DξΩ

2,

and
C−1 =

∫ ∞

− ∞

∫ ∞

− ∞
f(x, v)dxdv.

For the further calculations assume that β1 = 0. Calculate the normalization
constant C, f(x) =

∫ ∞
− ∞ f(x, v)dv, 〈x2n〉, 〈x2v2〉 and the positive crossings at

level a, ν+(a) =
∫ ∞
0

vf(x, v)dv.
Answers:

v
∂f

∂x
= Ω2x

∂f

∂v
+

∂

∂v
{[(2α − 2α2Dη)v + β1v((x2 + v2/Ω2)f ]}

+
1
2

∂2

∂v2
[(4α2v2Dη + Ω4x2Dξ + Dζ)f ],

C = (πΩ)−1(δ − 1)ℵδ−1,

f(x) =
ℵδ−1Γ (δ − 1/2)√

πΓ (δ − 1)
(ℵ + x2)−(δ−1/2),

〈x2n〉 =
ℵnΓ (n + 1)Γ (δ − n − 1)√

πΓ (δ − 1)
,

〈x2v2〉 =
ℵ2Ω2

4(δ − 2)(δ − 3)
,

ν+(a) =
Ω

2π

1
(1 + a2/ℵ)δ−1

.

5.15. This problem is taken from [216]. Consider the following non-linear
oscillator

ẍ +
βẋ

1 + ẋ2/2
+

1 + ẋ2/2
1 + x2/2

= ξ(t),
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where the white noise ξ(t) has e zero-mean and a second moment 〈ξ(t)ξ(t +
τ)〉 = 2Dδ(τ). Show that the stationary joint probability function f(x, ẋ) is
given by

f(x, ẋ) = ln
[
(1 + x2/2)β−D(1 + ẋ2/2)β

]
,

where β > 2D.

5.9 Numerical Solution of the FPK Equation

5.9.1 Solution of the FPK Equation by the Finite Element Method

Many papers have been published about the numerical solution of the FPK
equation using the finite element method. In 1985 Langley published a paper
[107] using the finite element method to analyze the statistics of nonlinear ran-
dom vibration, but only for stationary problems. In 1991 Langtangen [108],
discussed the application of the finite element method for stationary struc-
tural reliability problems. In 1991 Spencer and Bergman published a paper
[194] about the numerical solution of the transient FPK equation for nonlin-
ear stochastic systems. In [170] the finite element method was applied to the
transient Duffing oscillator. In 2006 [103] both the finite element method and
the finite difference method were applied to solve two-dimensional (two state
variables, SDOF system) nonlinear systems and a four-dimensional linear sys-
tem consisting of two coupled mass-spring systems. In [178] Shiau introduced
adaptive finite element meshes to solve stationary stochastic systems, and [54]
gives overview of some contributors of the development and use of numerical
method for solving the FPK equation. The following methods are discussed:

• Finite Element method
• Finite Difference method

The Finite Element Method (FEM) which uses simple piece-wise shape
functions defined over a finite, rather than an infinite region, thus allowing
greater flexibility in satisfying complicated boundary conditions.

The Finite Difference method is amongst others the earliest used to solve
parabolic partial differential equations, but they have not widely applied to
the FPK equation.

5.9.2 General Finite Element Approach

The derivation of the finite element matrices will be in accordance with the
theory proposed by Langley [107]. We use Langley’s notation. The FPK equa-
tion can be applied to any dynamical system whose equations of motion can
be written in the form

{ż} = {g(z)} + [A]{w}, (5.223)
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where {z} represents displacements and velocities of the system, [A] is a square
matrix and {w} is a vector of uncorrelated Gaussian white noise processes,
each having a spectral density of unity. {g(x)} is a general vector function of
the variables {z}. The vector {z} is a Markov process and the corresponding
FPK equation is

∂f

∂t
= −

n∑
i=1

∂f

∂zi
(gi(z)f) +

1
2

n∑
i=1

n∑
j=1

∂2

∂zi∂zi
[Bijf ], (5.224)

where f2c({z0}, 0| {z}, t) = f is the transition or conditional probability den-
sity function and matrix [B] = [A][A]T .

Example. The equation of motion of a Duffing oscillator excited by a Gaus-
sian white noise random force f(t) is given by

ẍ + 2ζω0ẋ + ω2
0(1 + εx2)x = f(t).

The state equation can now be written by putting z1 = x and z2 = ẋ

(
ż1

ż2

)
=

(
z2

−2ζω0z2 − ω2
0(1 + εz2

1)z1

)
+

(
0 0
0

√
2D

)(
0

ξ(t)

)
,

where 〈f(t)〉 = 0, 〈ξ(t)〉 = 0, 〈f(t)f(t+τ)〉 = 2Dδ(τ) and 〈ξ(t)ξ(t+τ)〉 = δ(τ).
The stochastic differential equations (SDEs) can now be written
(

Δz1

Δz2

)
=

(
z2

−2ζω0z2 − ω2
0 {1 + εz2

1 }z1

)
Δt +

(
0 0
0

√
2D

)(
0

ΔW (t)

)
,

where ΔW (t) = ξ(t)Δt.
The SDEs lead to the following FPK equation for the transition probability

density function f2c({z0}, 0| {z}, t) = f .

∂f

∂t
= − ∂f

∂z1
(z2f) +

∂f

∂z2
[{+2ζω0z2 + ω2

0(1 + εz2
1)z1}f ] + D

∂2f

∂z2
2

.

Equation (5.224) can be rewritten as

∂f

∂t
= L1[f ] + L2[f ], (5.225)

where the differential operators L1 and L2 are given by

L1 = −
n∑

i=1

∂

∂zi
[gi(z)], (5.226)

L2 =
1
2

n∑
i=1

n∑
j=1

∂2

∂zi∂zi
[Bij ]. (5.227)
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For any weighting or test function φ(z), the weak form of (5.225) (see Appen-
dix M) implies that

∫
R

φ(z)
∂f

∂t
dτ −

∫
R

φ(z)L1[f ]dτ −
∫

R

φ(z)L2[f ]dτ = 0, (5.228)

where
∫

R
represents the integration over the whole domain and dτ =

dz1dz2 · · · dzn. The second and third term in (5.228) will be integrated by
parts, thus

∫
R

φ(z)L1[f ]dτ = −
n∑

i=1

∫
R

φ(z)
∂

∂zi
[gi(z)f ]dτ

= −
n∑

i=1

∫
Ŕ

[φ(z)gi(z)f ]|zi2
zi1

dτ́

+
n∑

i=1

∫
R

gi(z)f
∂

∂zi
[φ(z)]dτ, (5.229)

and
∫

R

φ(z)L2[f ]dτ =
1
2

n∑
i=1

n∑
j=1

∫
R

φ(z)
∂2

∂zi∂zj
[Bijf ]dτ

=
1
2

n∑
i=1

n∑
j=1

∫
Ŕ

[
φ(z)

∂

∂zj
Bijf

]∣∣∣∣
zi2

zi1

dτ́

− 1
2

n∑
i=1

n∑
j=1

∫
Ŕ

∫
R

∂

∂zi
[φ(z)]

∂

∂zj
[Bijf ]dτ, (5.230)

where Ŕ and dτ́ refer to the reduced region in which zi does not appear, and
zi2 and zi1 are the upper and lower limits of zi respectively. In many problems
the region R will represent an infinite domain in which f(z) tends to zero as
zi becomes large. In such cases f(z) and its derivatives will become zero at
infinity, thus (5.228) becomes

∫
R

φ(z)
∂f

∂t
dτ −

n∑
i=1

∫
R

gi(z)f
∂

∂zi
[φ(z)]dτ

+
1
2

n∑
i=1

n∑
j=1

∫
R

∂

∂zi
[φ(z)]

∂

∂zj
[Bijf ]dτ = 0. (5.231)

Since (5.231) involves only the first derivatives of f(z) it is sufficient for the
shape functions to have C0 continuity.

In his paper [107] Langley discussed three possible methods of approximat-
ing the solution of transition probability density function f(z) by applying the
finite element method:
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1. The interior region of the domain is divided into finite elements and sur-
rounded by “infinite elements” which extend to infinity.

2. The interior region of the domain is divided into finite elements, while the
outer region is modelled using boundary elements or series solutions.

3. The interior region, which is considered to be sufficiently large, is divided
into finite elements while the outer region is neglected.

Approach 3 will be adopted because f(z) tends to zero in the outer regions of
the domain. With this approach, the question arises: “How large an interior
region and the density of finite elements must be considered?” Convergence
studies are of great importance.

The interior region is divided into a number of n-dimensional finite el-
ements (n is number of state variables), which have straight parallel sides,
e.g.

• n = 1 line elements,
• n = 2 rectangular elements,
• n = 3 cuboid elements.

To solve (5.231) by the weighted residual method (WRM) (Galerkin), it
is assumed that f can be represented as a sum of shape functions Hi(z). The
shape functions are chosen such that the value of fe within the finite element
can be expressed in terms of the nodal values

fe =
m∑

i=1

Hi(z)fi, (5.232)

where fi is the value of f at node i, Hi(z) is the corresponding shape function
and m is the number of nodes in one finite element. The shape function Hi(z)
is chosen to give unity at node i and zero at all other nodes. It is convenient
to describe the shape functions in global coordinates because gi and Bij are
in general functions of z.

For the 1-dimensional problem, the shape functions H̄k,i(zk), i = 1, 2,
k = 1, 2, . . . , n are [178]

H̄k,i(zk) = H̄k,1(zk) =
−zk + zk,j

zk,j − zk,i
,

H̄k,j(zk) = H̄k,2(zk) =
−zk + zk,i

zk,i − zk,j
,

(5.233)

where i, j represents two nodes and k is the number of state variables, e.g.
z1 = x and z2 = ẋ. In general, the shape function Hi(zk) can be written to be

Hi({z}) =
n∏

k=1

H̄k,i(zk). (5.234)

The shape functions Hi(z), z = z1, in the 1-D element with two nodes
i = 1 and j = i = 2 can be written
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Fig. 5.5. Shape functions for a two-dimensional finite element

H1(z) =
n=1∏
k=1

H̄k,1(zk) =
−z + z2

z2 − z1
,

H2(z) =
n=1∏
k=1

H̄k,2(zk) =
−z + z1

z2 − z1
,

(5.235)

For two variables, n = 2, the finite element to be used is rectangular with
four nodes, m = 4. The four shape functions Hi are illustrated in Fig. 5.5.
The shape functions Hi({z}), {z} = �z1, z2
, in the 2-D rectangular element
with four nodes i = 1, 2, 3, 4 can be written

H1({z}) =
n=2∏
k=1

H̄k,1(zk) =
(

−z1 + z1,3

z1,3 − z1,1

)(
−z2 + z2,2

z2,2 − z2,1

)
,

H2({z}) =
n=2∏
k=1

H̄k,2(zk) =
(

−z1 + z1,4

z1,4 − z1,2

)(
−z2 + z2,1

z2,1 − z2,2

)
,

H3({z}) =
n=2∏
k=1

H̄k,3(zk) =
(

−z1 + z1,1

z1,1 − z1,3

)(
−z2 + z2,4

z2,4 − z2,3

)
,

H4({z}) =
n=2∏
k=1

H̄k,4(zk) =
(

−z1 + z1,2

z1,2 − z1,4

)(
−z2 + z2,3

z2,3 − z2,4

)
,

z1,4 = z1,3, z2,4 = z2,2.

(5.236)

Example. This example is taken from [103]. For the two-dimensional prob-
lem, the shape functions for a bilinear 4-node element (Fig. 5.6) are given
by

H1(r, s) =
(r − r2)(s − s4)

(r1 − r2)(s1 − s4)
, H2(r, s) =

(r − r1)(s − s3)
(r2 − r1)(s2 − s3)

,

H3(r, s) =
(r − r4)(s − s2)

(r3 − r4)(s3 − s2)
, H4(r, s) =

(r − r3)(s − s1)
(r4 − r3)(s4 − s1)

.

(5.237)

In general, both gi and Bij in general, are functions of zi so that it is convenient
to describe the shape functions in a global coordinate system [178].
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Fig. 5.6. Bilinear 4-nod element

Fig. 5.7. Finite element mesh for two-dimensional system

A finite element mesh used for a two-dimensional (state-variables) dynamic
system is illustrated in Fig. 5.7.

Replacing the integral (5.231) over the region with the sum of the integrals
over each finite element, we find

∑
e

{∫
e

φ(z)
∂fe

∂t
dτ −

n∑
i=1

∫
e

gi(z)fe
∂

∂zi
[φ(z)]dτ

+
1
2

n∑
i=1

n∑
j=1

∫
e

∂

∂zi
[φ(z)]

∂

∂zj
[Bijfe]dτ

}
= 0, (5.238)

where
∑

e represents the sum over all finite elements,
∫

e
represents the integral

over an element, and fe the transition probability density function within an
element. φ(z) is now chosen to be zero except over those elements which
contain a particular node, say global node q. Over these finite elements, the
weighting or test function φ(z) is chosen to be one of the shape functions
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corresponding to this node. For one finite element with m nodes and n state
variables, (5.238) can rewritten as follows

∑
e

{
m∑

s=1

[∫
e

{Hi} ∂(Hsfs)
∂t

dτ −
n∑

i=1

∫
e

gi(z)(Hsfs)
∂

∂zi
[{Hi}]dτ

+
1
2

n∑
i=1

n∑
j=1

∫
e

∂

∂zi
[{Hi}]

∂

∂zj
[BijHsfs]dτ

]}
= 0, (5.239)

or

∑
e

{∫
e

{Hi} �Hi
dτ {ḟi} −
n∑

i=1

∫
e

gi(z){Hi} ∂

∂zi
[�Hi
]dτ {fi}

+
1
2

n∑
i=1

n∑
j=1

∫
e

∂

∂zi
[{Hi}]

∂

∂zj
[Bij �Hi
]dτ {fi}

}
= 0, (5.240)

or ∑
e

{[me]{ḟi} + [ke]{fi}} = 0, (5.241)

where {ḟi} are the time derivatives and the {fi} are nodal values at m nodal
values, [me] the so-called mass matrix and [ke] the so-called stiffness matrix
given by

[me] =
∫

e

{Hi} �Hi
dτ, (5.242)

and

[ke] = −
n∑

i=1

∫
e

gi(z){Hi} ∂

∂zi
�Hi
dτ

+
1
2

n∑
i=1

n∑
j=1

∫
e

∂

∂zi
{Hi} ∂

∂zj
[Bij �Hi
]dτ. (5.243)

All the element matrices should be assembled in the overall “mass” matrix
[M ] and “stiffness” matrix [K] and the finite element representation of the
FPK equation can be expressed by

[M ]{ḟ } + [K]{f } = {0}, (5.244)

where {f({z}, t)} is the vector of nodal transition probability density func-
tions. The finite difference method (5.244) can be written as follows

[M ]
[
f(t + Δt) − f(t)

Δt

]
+ [K]{f(t)} = {0}. (5.245)

Rearrangement of the vector terms using the θ method will give a recurrence
relation
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[M − (1 − θ)ΔtK]{f(t + Δt)} = [M + θΔtK]{f(t)}, (5.246)

where 0 ≤ θ ≤ 1 and Δt is the time step. The Crank-Nicholson scheme is
applied with θ = 0.5 for stability:

[
M − Δt

2
K

]
{f(t + Δt)} =

[
M +

Δt

2
K

]
{f(t)}. (5.247)

The initial condition of (5.247) is

lim
t→0

f2c({z0}, 0| {z}, t) = δ({z} − {z0}), (5.248)

and the normalization condition is∫
R

f2c({z0}, 0| {z}, t)dτ = 1. (5.249)

The theorem of total probability can then be applied, yielding

f1({z}, t) =
∫

R

f2c({z0}, 0| {z}, t)f1({z0})dτ. (5.250)

Equation (5.247) can now be written as follows, [194]
[
M − Δt

2
K

]
{f1(t + Δt)} =

[
M +

Δt

2
K

]
{f1(t)}, (5.251)

subject to the initial condition

f1(0) = f1({z0}). (5.252)

Solution 1-D Problem

In [85], the diffusion of bistable potential was investigated with the aid of the
FPK equation. The bistable potential is represented by the nonlinear Langevin
equation (NLE)

d

dt
x = γx − gx3 + η(t), (5.253)

where x is the driven random variable, γ is a positive friction coefficient, and
g is the nonlinearity parameter. The driving random force η(t) is to be a
Gaussian white noise obeying

{η(t)} = 〈η(t)〉 = 0, E{η(t + τ)η(t)} = 〈η(t + τ)η(t)〉 = 2εδ(τ),

where ε is the diffusion coefficient. The equivalent FPK equation for the prob-
ability density (distribution) function f(x, t) = f is

∂f

∂t
= − ∂

∂x
[(γx − gx3)f ] + ε

∂2f

∂x2
. (5.254)
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Fig. 5.8. Illustration of linear 1-D element

The initial probability density function f(x, 0) = f(x) is a Gaussian distribu-
tion

f(x) =
1

σ0

√
2π

e
−(x−μ)2

2σ2
0 . (5.255)

The stationary solution of (5.254) is given by [35]

f(x) = Ae
2γx2

ε − gx3

ε , (5.256)

where A is an constant coefficient, derived from
∫ ∞

− ∞ f(x)dx = 1.
Equation (5.254) will be solved by the finite element method using linear

1-D elements as shown in Fig. 5.8. Equation (5.254) is transformed into the
weak form

∫ b

a

[
φ

∂f

∂t
+

∂

∂x
[(γx − gx3)f ] + ε

∂φ

∂x

∂f

∂x

]
dx = εφ

∂f

∂x

∣∣∣∣
b

a

. (5.257)

The natural boundary conditions ∂f
∂x |a = ∂f

∂x |b = 0 apply. We also have∫ ∞
− ∞ f(x, t) = 1 or

∫ b

a
f(x, t) = 1.

For one linear 1-D element (5.257) can be written
∫ x2

x1

[
φ

∂f

∂t
+ φ

∂

∂x
[(γx − gx3)f ] + ε

∂φ

∂x

∂f

∂x

]
dx = 0, (5.258)

were x1 and x2 are the coordinates of the nodes 1 and 2, respectively (Fig. 5.8).
The “mass” matrix and “stiffness” matrix for the two-node linear 1-D element
will be derived from (5.258).

The probability density function f(x) will be approximated by two shape
functions H1(x) = 1 − (x−x1)

(x2−x1)
= −x+x2

x2−x1
and H2(x) = (x−x1)

(x2−x1)
= −x+x1

x1−x2
in the

following way
f(x) = H1(x)f1 + H2(x)f2, (5.259)

where f1 and f2 are the unknown nodal values of the probability density
function at node 1 and node 2 respectively (see Fig. 5.8). Both shape functions
Hi(x) apply in x1 ≤ x ≤ x2.

The two weighting functions are in accordance with Galerkin’s method,
thus
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φ1(x) = H1(x), φ2(x) = H2(x). (5.260)

The approximate function for f(x) in (5.259) and the weighting func-
tions in (5.260) are substituted in (5.258) and further evaluated to get the
“mass” and “stiffness” matrices for the 1-D linear finite element. The weak
form (5.258) will be evaluated term by term.

∫ x2

x1

φ
∂f

∂t
dx = −

∫ x2

x1

(
H1(x)
H2(x)

)(
H1(x) H2(x)

)(
ḟ1

ḟ2

)
dx

= [me]
(

ḟ1

ḟ2

)
, (5.261)

where [me] is the element “mass” matrix. Now the “stiffness” matrices [ke,i],
i = 1, . . . , 3 will be derived.

∫ x2

x1

γφ
∂[xf ]
∂x

dx = γ

∫ x2

x1

(
H1(x)
H2(x)

)
∂

∂x

[
x
(
H1(x) H2(x)

)]( f1

f2

)
dx

= γ[k1,e]
(

f1

f2

)
, (5.262)

∫ x2

x1

gφ
∂[x3f ]

∂x
dx = g

∫ x2

x1

(
H1(x)
H2(x)

)
∂

∂x

[
x3

(
H1(x) H2(x)

)]( f1

f2

)
dx

= g[k2,e]
(

f1

f2

)
, (5.263)

and
∫ x2

x1

ε
∂φ

∂x

∂f

∂x
dx = ε

∫ x2

x1

∂

∂x

(
H1(x)
H2(x)

)
∂

∂x

(
H1(x) H2(x)

)(
f1

f2

)
dx

= ε[k3,e]
(

f1

f2

)
. (5.264)

Further evaluation of the integrals in (5.261), (5.262), (5.263) and (5.264)
will lead to the “mass” and “stiffness” matrices. The length of the 1-D linear
element is li = x2 − x1. The matrices entries are:

me(1, 1) =
x2

3
− x1

3
,

me(1, 2) =
x2

6
− x1

6
,

me(2, 1) =
x2

6
− x1

6
,

me(2, 2) =
x2

3
− x1

3
,

(5.265)
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k1,e(1, 1) =
x1

x2 − x1
,

k1,e(1, 2) = − x2

x2 − x1
,

k1,e(2, 1) = − x1

x2 − x1
,

k1,e(2, 2) =
x2

x2 − x1
,

(5.266)

k2,e(1, 1) =
x3

1

x2 − x1
,

k2,e(1, 2) = − x3
2

x2 − x1
,

k2,e(2, 1) = − x3
1

x2 − x1
,

k2,e(2, 2) =
x3

2

x2 − x1
,

(5.267)

and

k3,e(1, 1) =
1

x2 − x1
,

k5,e(1, 2) = − 1
x2 − x1

,

k3,e(2, 1) = − 1
x2 − x1

,

k3,e(2, 2) =
1

x2 − x1
.

(5.268)

The total “stiffness” matrix [ke] is

[ke] = γ[k1,e] + g[k2,e] + ε[k3,e]. (5.269)

All the element matrices should be assembled into the overall “mass” matrix
[M ] and “stiffness” matrix [K]; is the finite element representation of the FPK
equation can be expressed by

[M ]{ḟ(t)} + [K]{f(t)} = {0}, (5.270)

where {f } is the vector of nodal probability density functions. Applying the
finite difference method, we can write (5.270) as follows:

[M ]
[
f(t + Δt) − f(t)

Δt

]
+ [K]{f(t)} = {0}. (5.271)

Rearrangement of the vector terms using the θ method will give the recurrence
relation
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[M − (1 − θ)ΔtK]{f(x, t + Δt)} = [M + θΔtK]{f(x, t)}, (5.272)

where 0 ≤ θ ≤ 1 and Δt is the time step. The Crank-Nicholson scheme is
applied with θ = 0.5 for stability:

[
M − Δt

2
K

]
{f(x, t + Δt)} =

[
M +

Δt

2
K

]
{f(x, t)}. (5.273)

The probability density function f(x, t) has to fulfill the normalization rule

∫ ∞

− ∞
f(x, t)dx =

∫ b

a

f(x, t)dx =
N∑

i=1

∫ xi,2

xi,1

f(x, t)dx

=
N∑

i=1

1
2
(xi,2 − xi,1)(fi,1 + fi,2)

=
N∑

i=1

1
2
li(fi,1 + fi,2) = 1, (5.274)

where N is the number of linear finite elements, li is the length of the element
and fi,1 and fi,2 are the values of the probability density function a the nodes
1 and 2 (see Fig. 5.8).

The first moment becomes
∫ ∞

− ∞
xf(x, t)dx =

N∑
i=1

∫ xi,2

xi,1

xf(x, t)dx

=
N∑

i=1

1
3li

(fi,2 − fi,1)(x3
i,2 − x3

i,1)

+
1
2

[(
1 +

xi,1

li

)
fi,1 − xi,1fi,2

li

]
(x2

i,2 − x2
i,1), (5.275)

and the second moment is given by

∫ ∞

− ∞
x2f(x, t)dx =

N∑
i=1

∫ xi,2

xi,1

x2f(x, t)dx

=
N∑

i=1

1
4li

(fi,2 − fi,1)(x4
i,2 − x4

i,1)

+
1
3

[(
1 +

xi,1

li

)
fi,1 − xi,1fi,1

li

]
(x3

i,2 − x3
i,1). (5.276)

Problems

5.16. This problem is based on an example given in [58]. Consider a stochastic
dynamic system
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(
Δx1

Δx2

)
=

(
a11 0
0 a22

)(
x1

x2

)
Δt +

(
c11 0
0 c22

)(
ΔW1

ΔW2

)
,

with �x1(0), x2(0)
 being Gaussian with mean �m1, m2
, and covariance di-
agonal matrix (

σ2
01 0
0 σ2

02

)
,

and ΔW1, ΔW2 are the standard Wiener processes.

The FPK equation is

∂f

∂t
= −(a11 + a22)f − a11x1

∂f

∂x1
− a22x2

∂f

∂x2
+

1
2

(
c2
11

∂2f

∂x2
1

+ c2
22

∂2f

∂x2
2

)
,

with the probability density function f(x, t) at t = 0 is given by

f(x, 0) =
1

2πσ01σ02
e

1
2 [(

x1(0)−m1
σ01

)2+(
x2(0)−m2

σ02
)2],

The system is linear and its exact solution is known to be Gaussian and
is given by

f(x, t) =
1

2πσ1σ2
e

1
2 [(

x1−x̂1
σ1

)2+(
x2−x̂2

σ2
)2],

where

σ2
1(t) =

(
σ2

01 +
c2
11

2a11

)
e2a11t − c2

11

2a11
,

σ2
2(t) =

(
σ2

02 +
c2
22

2a22

)
e2a22t − c2

22

2a22
,

and

x̂1(t) = m1e
a11t,

x̂2(t) = m2e
a22t.

The following numerical values for the parameters are taken:

a11 = −0.5, a22 = −1, m1 = m2 = 0.5,

σ01 = σ02 = 1, c11 = c22 = 1.

The domain Ω(x1, x2) is given by

Ω = {m1 − 3σ01, m1 + 3σ01}, {m2 − 3σ02, m2 + 3σ02}.

Write in MATLAB� or SCILAB� or Octave� or other package a finite
element program to solve the FPK equation of the given dynamic system.
Apply a mesh of 60 × 60 divisions of linear quadrilateral elements and a time
step δt = 0.1 s, for t = 0.1–8.0 s.
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5.9.3 Solution of the FPK Equation by the Finite Difference
Method

The numerical solution the FPK equation by the Finite Difference Method
(FDM) will be illustrated by working out an example is taken from [194].
Consider the SDOF system with a non-linear spring g(x), given as

ẍ + 2ζω0ẋ + g(x) = ξ(t), (5.277)

where ξ(t) is Gaussian white noise with a autocorrelation function E{ξ(t)ξ(t+
τ)} = 2Dδ(τ). Equation (5.277) will be transformed into state-space variables
x1 = x and x2 = ẋ as follows:

ẋ1 = x2,

ẋ2 = −2ζω0x2 − g(x1) + ξ(t).
(5.278)

The corresponding FPK equation is given by

∂f

∂t
= − ∂(x2f)

∂x1
+

∂[{2ζω0x2 + g(x1)}f ]
∂x2

+ D
∂2f

∂x2
2

, (5.279)

where f = fc2 is the transition or conditional probability density function.
The following initial and boundary conditions will be applied:

lim
t→0

fc2(x0|x, t) = δ(x − x0), (5.280)

and
lim

|x1,x2|→∞
fc2(x0|x, t) = 0. (5.281)

The normalization condition is given by
∫

R2
fc2(x0|x, t)dx = 1, (5.282)

where x = {x} = �x1, x2
T . The joint probability function f2(x, t) can be
obtained as follows

f2(x, t) =
∫ ∞

− ∞

∫ ∞

− ∞
fc2(x0|x, t)f1(x0)dx0, (5.283)

so that

lim
t→0

f2(x, t) =
∫ ∞

− ∞

∫ ∞

− ∞
lim
t→0

fc2(x0|x, t)f1(x0)dx0 = f1(x0). (5.284)

The probability density function is given by

f2(x1, x2, t) =
∫ ∞

− ∞
fc2(x1,0, x2,0|x1, x2, t)f2(x1, x2, 0)dx1dx2.
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Fig. 5.9. Finite difference discretization

The initial condition is

f2(x1, x2, 0) =
1

σ1

√
2π

e
−(x1−μ1)2

2σ2
1

1
σ2

√
2π

e
−(x2−μ2)2

2σ2
2 .

The FPK equation (5.279), when f = f2 and g(x) = ω2
0(x+εx3), becomes

∂f

∂t
= −x2

∂f

∂x1
+ 2ζω0f + {2ζω0x2 + ω2

0(x1 + εx3
1)} ∂f

∂x2
+ D

∂2f

∂x2
2

, (5.285)

Let fi,j,k denote the probability density function at discrete locations rel-
ative to a candidate point as shown in Fig. 5.9 and is given by

fi,j,k = f(x1,min + iΔx1, x2,min + jΔx2, kΔt), i, j, k = 0, 1, 2, . . . . (5.286)

The probability density function at fi,j+1,k and fi,j−1,k may be expressed in
a Taylor series [92] (limited to two terms for simplicity)

fi,j+1,k = fi, j, k + f ′i, j, kΔx2 +
1
2
f ′ ′i, j, kΔx2

2 + O(Δx3
2),

fi,j−1,k = fi, j, k − f ′i, j, kΔx2 +
1
2
f ′ ′i, j, kΔx2

2 + O(Δx3
2),

fi,j,k+1 = fi, j, k + f ′i, j, kΔt + O(Δt2),

(5.287)

Solving for the derivative terms at the candidate point fi,j,k gives
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∂f(x1, x2, t)
∂x1

=
fi+1,j,k − fi−1,j,k

2Δx1
+ O(Δx2

1),

∂f(x1, x2, t)
∂x2

=
fi,j+1,k − fi,j−1,k

2Δx2
+ O(Δx2

2),

∂2f(x1, x2, t)
∂x2

1

=
fi+1,j,k − 2fi,j,k + fi−1,j,k

Δx2
1

+ O(Δx2
1),

∂2f(x1, x2, t)
∂x2

2

=
fi,j+1,k − 2fi,j,k + fi,j−1,k

Δx2
2

+ O(Δx2
1),

∂f(x1, x2, t)
∂t

=
fi,j,k+1 − fi,j,k

Δt
+ O(Δt).

(5.288)

By substituting (5.288) into (5.285), we may formulate one equation for
the nodal probability density function (TPDF):

fi,j,k+1 − fi,j,k

Δt
= −x2

{
fi+1,j,k − fi−1,j,k

2Δx1

}
+ 2ζω0fi,j,k

+ (2ζω0x2 + ω2
0x1 + εx3

1)
{

fi,j+1,k − fi,j−1,k

2Δx2

}

+ D

{
fi,j+1,k − 2fi,j,k + fi,j−1,k

Δx2
2

}

= Fi,j,k. (5.289)

The operator Fi, j, k is given by

Fi,j,k =
{

2ζω0 − 2D

Δx2
2

}
fi,j,k

− x2

2Δx1
fi+1,j,k +

x2

2Δx1
fi−1,j,k

+
{

[2ζω0x2 + ω2
0(x1 + εx3

1)]
2Δx2

+
D

Δx2
2

}
fi,j+1,k

×
{

− [2ζω0x2 + ω2
0(x1 + εx3

1)]
2Δx2

+
D

Δx2
2

}
fi,j−1,k. (5.290)

Equation (5.290) multiplied by Δt can be written as follows:

Fi,j,kΔt = αi,j,kfi,j,k + αi+1,j,kfi+1,j,k + αi−1,j,kfi−1,j,k

+ αi,j+1,kfi,j+1,k + αi,j−1,kfi,j−1,k, (5.291)

where:

• αi,j,k = 2ζω0Δt − 2D Δt
Δx2

2

• αi+1,j,k = −x2
Δt

2Δx1

• αi−1,j,k = x2
Δt

2Δx1

• αi,j+1,k = [2ζω0x2 + ω2
0(x1 + εx3

1)]
Δt

2Δx2
+ D Δt

Δx2
2
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• αi,j−1,k = −[2ζω0x2 + ω2
0(x1 + εx3

1)]
Δt

2Δx2
+ D Δt

Δx2
2

• x1 = x1,min + iΔx1, i = 0, 1, 2, . . .
• x2 = x2,min + jΔx2, j = 0, 1, 2, . . .

A more general finite difference approximation for (5.289) is the weighted
average approximation [183]

fi,j,k+1 − fi,j,k

Δt
= θFi,j,k+1 + (1 − θ)Fi,j,k, (5.292)

where, in practice 0 ≤ θ ≤ 1. θ = 0 will give the explicit scheme, θ = 0.5
is the Crank-Nicolson scheme and θ = 1 is the fully implicit backward time-
difference method. The equations are unconditionally stable and convergent
for 1

2 ≤ θ ≤ 1.
Equation (5.292) can be transformed into an explicit finite difference iter-

ation scheme using θ = 0

fi,j,k+1 = (1 + αi,j,k)fi,j,k + αi+1,j,kfi+1,j,k + αi−1,j,kfi−1,j,k

+ αi,j+1,kfi,j+1,k + αi,j−1,kfi,j−1,k. (5.293)

Equation (5.293) is illustrated in Fig. 5.10.
Equation (5.292) will be rewritten to bring the terms “k + 1” to the LHS,

and the terms “k” all at the RHS of the equation

βi,j,k+1fi,j,k+1 + βi+1,j,k+1fi+1,j,k+1 + βi−1,j,k+1fi−1,j,k+1

+ βi,j+1,k+1fi,j+1,k+1 + βi,j−1,k+1fi,j−1,k+1

= βi,j,kfi,j,k + βi+1,j,kfi+1,j,k + βi−1,j,kfi−1,j,k

+ βi,j+1,kfi,j+1,k + βi,j−1,kfi,j−1,k, i, j, k = 0, 1, 2, . . . (5.294)

where

• βi,j,k+1 = 1 − θαi,j,k+1

• βi+1,j,k+1 = −θαi+1,j,k+1

Fig. 5.10. Finite difference explicit scheme
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• βi−1,j,k+1 = −θαi−1,j,k+1

• βi,j+1,k+1 = −θαi,j+1,k+1

• βi,j−1,k+1 = −θαi,j−1,k+1

• βi,j,k = 1 + (1 − θ)αi,j,k

• βi+1,j,k = (1 − θ)αi+1,j,k

• βi−1,j,k = (1 − θ)αi−1,j,k

• βi,j+1,k = (1 − θ)αi,j+1,k

• βi,j−1,k = (1 − θ)αi,j−1,k

5.9.4 Boundary Conditions Numerical Solution FPK Equation

Consider the SDE describing a time-depending discrete SDOF dynamic sys-
tem subjected to external (additive) Gaussian white noise given by

(
ẋ1

ẋ2

)
=

[
g1(x1, x2)
g2(x1, x2)

]
+

[
0

ξ(t)

]
, (5.295)

where the white noise excitation is fully defined by its first two moments

E{ξ(t)} = 0, E{ξ(t), ξ(t + τ)} = 2Dδ(τ). (5.296)

The discussion is partly based on [194]. The transition probability density
function fc2(x1, x2, 0|x1, x2, t) = fc2 gives the probability, being differential
elements (x1, x2, x1 + dx1, x2 + dx2) in the phase plane at time t, having
started from (x1(0), x2(0)) at time t = 0, satisfying the FPK equation

∂fc2

∂t
= − ∂[g1(x1, x2)fc2]

∂x1
− ∂[g2(x1, x2)fc2]

∂x2
+ D

∂2fc2

∂x2
2

, (5.297)

with the initial condition

lim
t→0

fc2(x1, x2, 0|x1, x2, t) = δ{x1(t) − x1(0)}δ{x2(t) − x2(0)}, (5.298)

and the normalization condition
∫ ∞

− ∞

∫ ∞

− ∞
fc2(x1, x2, 0|x1, x2, t)dx1dx2 = 1, (5.299)

together with
lim

|x1|,|x2|→∞
fc2(x1, x2, 0|x1, x2, t) = 0. (5.300)

The theorem of the total probability can be obtained by using the following
equation:

f(x1, x2, t) =
∫ ∞

− ∞

∫ ∞

− ∞
f {x1(0), x2(0)}fc2(x1, x2, 0|x1, x2, t)dx1(0)dx2(0).

(5.301)
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The stationary probability density function f(x1, x2) is

f(x1, x2) = lim
t→∞

fc2(x1, x2, t). (5.302)

When the finite element method is applied, all element matrices should be
assembled in the overall “mass” matrix [M ] and “stiffness” matrix [K] and
the finite element representation of the FPK equation can be expressed

[M ]{ḟ } + [K]{f } = {0}, (5.303)

where {f(xi, t)} is the vector of nodal probability density functions, with the
initial conditions f(x1, x2, 0).

Example. Random initial conditions can be prescribed, for example as a
binormal probability density function

f(x1, x2, 0) = φ

(
x1,0 − μ1,0

σ1,0

)
φ

(
x2,0 − μ2,0

σ2,0

)
,

where φ() is the standard normal density function, μi,0 is the expected values
of the initial condition of xi and σi,0 is the corresponding standard deviation.

The boundary condition for the stationary solution of (5.303) is discussed
in [103]. The system of n homogeneous equations is given by

[K]{f } = {0}, (5.304)

where n also is the number of nodes in the computational mesh. The matrix
[K] has n × n and vector {f } has n elements. This system admits both the
trivial solution {f } = {0} and a nontrivial solution through enforcement of
the normalization condition.

The nontrivial solution is obtained by first fixing the probability density
function at the node corresponding to the origin as unity fc = 1. This degree
of freedom fc becomes constrained and is treated as an additional boundary
condition. The matrix [K] will be partitioned into set u, the unknowns, and
set c

[K]{f } =
[

Kuu Kuc

Kcu Kcc

](
fu

fc

)
=

(
0
0

)
, (5.305)

and (5.305) can be rewritten using the first set of equations

[Kuu]{fu} = −[Kuc]fc = −[Kuc], (5.306)

where the matrix [Kuu] is obtained by removing the cth row and column
from the matrix [K] and we obtain matrix [Kuc] from the cth column after
removing the cth component. The solution of the stationary FPK equation is
obtained by enforcing the normalization condition given in (5.299).
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An alternative method to solve the homogeneous set of (5.304) with the
constraining condition fc = 1 is by the introduction of the Lagrange’s multi-
plier λ connected to the constraining condition as follows

⎡
⎣Kuu Kuc 0

Kcu Kcc 1
0 1 0

⎤
⎦

⎛
⎝fu

fc

λ

⎞
⎠ =

⎛
⎝0

0
1

⎞
⎠ . (5.307)

The sets u and c are extended by the Lagrange multiplier λ, thus the total
number of degrees of freedom (unknowns) becomes n + 1. Afterwards the
normalization condition shall be applied.

In [108] a generalized Lagrange multiplier method is introduced and the
normalization condition (5.299) is now written as

�c
{f } = 1, (5.308)

where �c
 is vector of weighting elements. The system of n + 1 coupled equa-
tions (5.307) can now being written as

[
K cT

c 0

](
f
λ

)
=

(
0
1

)
. (5.309)

We eliminate of {f } from (5.309), and obtain the following two expressions

{λ} = [cT K−1c]−1,

{f } = λ[K]−1�c
,
(5.310)

or
{f } =

1
[cT K−1c]

[K]−1�c
. (5.311)

The computational algorithm becomes

1. Solve [K]{f } = {c}.
2. Compute ψ = �c
{f }.
3. Set {f } = {f }/ψ.

Most of the computational effort spent, is solving the system [K]{f } = {c},
where [K] is nonsymmetric.

Problems

5.17. This problem concerns the diffusion in a bistable potential [85]. The
diffusion of in a bistable potential is represented by the nonlinear Langevin
equation (NLE)

ẋ = γx − gx3 + ξ(t),
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where x(t) is the driven random variable, γ = 1 is the positive friction coef-
ficient, g = 1 the parameter of nonlinearity. The driven random force ξ(t) is
assumed to be a Gaussian white noise obeying

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t + τ)〉 = 2εδ(τ),

where ε = 0.5 × 10−6 is the diffusion coefficient.
The transition density function fc1(x0|x, t) = fc1 will be calculated by

using the weighted average finite difference method, with θ = 1 (fully implicit
backward time difference method and unconditional stable). The discrete tran-
sition density function in the x, t grid is given by

fc1(xmin + (i − 1)Δx, (k − 1)Δt), i, k = 1, 2, . . . ,

where xmin = −1, xmax = 1, representing zero transition density function
lim|x|→∞ fc2(x0|x, t) = 0, and tmax = 10 s.

The probability density function f1(x, t) can be obtained from the follow-
ing equation

f1(x, t) =
∫ ∞

− ∞
fc1(x0|x, t)f1(x0)dx0,

and the mean value of the variable x(t) can be obtained from

〈x〉 =
∫ ∞

− ∞
xf1(x, t)dx.

Carry out the following assignments:

• Show that the FPK equation of the NLE is given by

∂fc1

∂t
= − ∂

∂x
[(γx − gx3)fc1] + ε

∂2fc1

∂x2

and that also
∂f1

∂t
= − ∂

∂x
[(γx − gx3)f1] + ε

∂2f1

∂x2
,

where limt→0 fc2(x0|x, t) = δ(x − x0) thus f1(x, 0) = f1(x0).
• The implicit backward time difference scheme, with fi,k = f1(xmin + (i −

1)Δx, (k − 1)Δt), i, k = 1, 2, . . . is given by

a1fi−1,k+1 + a2fi,k+1 + a3fi+1,k+1 + fi,k = 0,

Derive the coefficients a1, a2 and a3.
– a1 = [γx−gx3

2Δx + ε
Δx2 ]Δt

– a2 = [−γ + 3gx2 − 2ε
Δx2 ]Δt − 1

– a3 = [− γx−gx3

2Δx + ε
Δx2 ]Δt,

– x = xi.
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• Solve the time difference scheme

a1fi−1,k+1 + a2fi,k+1 + a3fi+1,k+1 = −fi,k,

– for t = 0 · · · tmax , tmax = 4, 5, 6 and 10 s,
– Δx = 0.005 and Δt = 0.001, xmin = −1 and xmax = 1,

– with initial condition f1(x0) = 1
σ

√
2π

e− (x0−μ)2

2σ2 , μ = 0 and σ2 = 1 ×
10−6,

– and boundary conditions f(xmin , t) = 0 and f(xmax , t) = 0.
• Calculate 〈x(t)〉 for tmax = 10, 15 s using

f1(x, t) =
∫ ∞

− ∞
fc1(x0|x, t)f1(x0)dx0,

and
〈x(t)〉 =

∫ ∞

− ∞
xf1(x, t)dx.

5.10 Applications

5.10.1 Vibrating Thin Plates Exposed to Acoustic Loads

Introduction

In this section we discuss the nonlinear dynamic behavior of a membrane
type structure, exposed to random acoustic loads. The deformation of the pre-
stress membrane will be represented using one assumed mode. The resulting
nonlinear SDOF equation of motion becomes a Duffing’s equation.

Vibration Theory Thin Plates

The partial differential equation of motion for a thin pre-stressed plate is given
by [77]

m
∂2w(x, y, t)

∂t2
+ D∇2∇2w(x, y, t)

= p(x, y, t) + Nx
∂2w(x, y, t)

∂x2
+ Nxy

∂2w(x, y, t)
∂x∂y

+ Ny
∂2w(x, y, t)

∂y2
, (5.312)

where

• w(x, y, t) is the deflection of the thin plate
• D = Et3

12(1−ν)2) is the bending stiffness
• E is Young’s modulus
• t is thickness of plate
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• ν is Poisson’s ratio
• ∇2∇2w(x, y, t) = (∂2w(x,y,t)

∂x2 + ∂2w(x,y,t)
∂y2 )2

• m mass per unit of area
• p(x, y, t) is the random pressure field
• Nx is the normal pre-stress in x-direction
• Ny is the normal pre-stress in y-direction
• Nxy is the shear pre-stress in x-direction

If the defection w(x, y, t) is a function of x, t only, than

w(x, y, t) = w(x, t). (5.313)

Equation (5.312) becomes the partial differential equation of motion of a bend-
ing beam

m
∂2w(x, t)

∂t2
+ D

∂4w(x, y, t)
∂x4

= p(x, y, t) + Nx
∂2w(x, y, t)

∂x2
, (5.314)

where m is now defined to be the mass per unit of length. Due to the deflection
w(x, t) of the thin plate, a pre-stress will be built up [150]

N̄x =
1
1

Et

2L

∫ L

0

{
∂w(x, t)

∂x

}2

dx, (5.315)

where 2L is the length of the plate. Substituting (5.315) in (5.314) yields

m
∂2w(x, t)

∂t2
+ D

∂4w(x, y, t)
∂x4

= p(x, y, t) + (Nx + N̄x)
∂2w(x, y, t)

∂x2
. (5.316)

The deflection w(x, t) will projected on one assumed mode φ(x, t) as follows

w(x, t) = η(t)φ(t) = η(t) sin
(

πx

2L

)
, (5.317)

where η(t) is the generalized coordinate. The sinusoidal function reflects more
or less the motion of a very thin (hinged-hinged) plate.

The following partial derivatives can be obtained:

∂w(x, t)
∂x

=
(

π

2L

)
cos

(
πx

2L

)
,

∂2w(x, t)
∂x2

= −
(

π

2L

)2

sin
(

πx

2L

)
,

∂3w(x, t)
∂x3

= −
(

π

2L

)3

cos
(

πx

2L

)
,

∂4w(x, t)
∂x4

=
(

π

2L

)4

sin
(

πx

2L

)
,

(5.318)
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and the following integrals can be established
∫ 2L

0

∂2w(x, t)
∂x2

dx =
(

π

2L

)2{
x

2
+

L

2π
sin

(
πx

2L

)}2L

0

=
(

π

2L

)2

L,

∫ 2L

0

{
sin

(
πx

2L

)}2

dx =
{

x

2
− L

2π
sin

(
πx

2L

)}2L

0

= L,

∫ 2L

0

{
sin

(
πx

2L

)}
dx = − 2L

π
cos

(
πx

2L

)2L

0

=
4L

π
.

(5.319)

The assumed mode (5.317) will be substituted in (5.316), (5.318) yields
the following ordinary differential equation of motion:

mη̈(t) sin
(

πx

2L

)
+ η(t)D

(
π

2L

)4

sin
(

πx

2L

)

= p(x, t) − η(t)(Nx + N̄x)
(

π

2L

)2

sin
(

πx

2L

)
. (5.320)

Multiplying (5.320) with sin(πx
2L ) and integrating

∫ 2L

0
all terms in (5.320) will

yield

mη̈(t)
∫ 2L

0

sin2

(
πx

2L

)
dx + D

(
π

2L

)4

η(t)
∫ 2L

0

sin2

(
πx

2L

)
dx

= p(x, t)
∫ 2L

0

sin
(

πx

2L

)
dx

− η(t)(Nx + N̄x)
(

π

2L

)2 ∫ 2L

0

sin2

(
πx

2L

)
dx. (5.321)

Using the results of (5.319) and dividing by L, (5.321) becomes

mη̈(t) + D

(
π

2L

)4

η(t) =
4
π

p(x, t) − (Nx + N̄x)
(

π

2L

)2

η(t). (5.322)

Introducing (5.315) into (5.322) and using (5.319), we find in the following
nonlinear equation of motion

mη̈(t) + D

(
π

2L

)4

η(t)

=
4
π

p(x, t) −
[
Nx +

Et

4

(
π

2L

)2

η2(t)
](

π

2L

)2

η(t), (5.323)

however, after further evaluation, the nonlinear equation of motion becomes

mη̈(t) +
[

Et3

12(1 − ν2)

(
π

2L

)4

+ Nx

(
π

2L

)2]
η(t) +

Et

4

(
π

2L

)4

η3(t)

=
4
π

p(x, t). (5.324)
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Damping will be introduced in (5.324), (5.324) will give Duffing’s oscillator

η̈(t) + 2ζω0η̇(t) + ω2
0 {η(t) + εη3(t)} =

4
π

p(x, t)
m

= w(t), (5.325)

where

• ω0 =
√

k/m,
• k = Et3

12(1−ν2) (
π
2L )4 + Nx( π

2L )2 and
• ε = Et

4k ( π
2L )4.

• E{w(t)w(t + τ)} = 2Dδ(τ).

The uniform membrane stress σx is given by

σx =
Nx

t
+

N̄x

t
=

Nx

t
+

E

4

(
π

2L

)4

η2(t). (5.326)

Random Pressure Load

The random white noise acoustic pressure p(t) has a constant double-sided
PSD function in the radian frequency domain Sp(ω) = Sp or can be ex-
pressed as a single-sided constant PSD function in the cyclic frequency do-
main Wp(f) = Wp = 2Sp. The amplitude of the correlation function 2D can
be written

2D =
(

π

4

)2
Sp

m2
=

(
π

4

)2
Wp

2m2
. (5.327)

Equation (5.325) has the general form

ẍ + g(ẋ, x) = ẍ + βẋ + g1(x) = w(t), (5.328)

where g1(x) = ω2
0(x + εx3) and β = 2ζω0. Introduce the state-variables y1 =

x = η and y2 = ẋ = η̇. The solution of the joint probability density function
f(y1, y2) of the FPK equation of (5.328) is

f(y1, y2) = Ce− p(y1,y2)
D , (5.329)

where
p(y1, y2) =

β

2
y2
2 + β

∫ y1

0

g1(ς)dς.

Finally the function p(y1, y2) can be written as

p(y1, y2) = ζω0y
2
2 + ζω3

0

(
y2
1 +

εy4
1

2

)
. (5.330)

The joint probability density function f(y1, y2) can be expressed as follows

f(y1, y2) = f1(y1)f2(y2), (5.331)
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where

f1(y1) = C1e
−

ζω3
0

D (y2
1+

εy4
1

2 ), (5.332)

f2(y2) = C2e
− ζω0

D y2
2 . (5.333)

The constants C1 and C2 can be derived from the relations
∫ ∞

− ∞ fi(yi)dyi = 1,
i = 1, 2. To obtain the constants C1 and C2 reference is made to Appendix B.

The following relations are defined

σ2
v =

(π
4 )2Sp

4ζω0m2
, (5.334)

and

σ2
d =

(π
4 )2Sp

4ζω3
0m2

. (5.335)

Equations (5.332) and (5.333) become

f1(y1) =
√

2ε

e
1

8σ2
d

ε K 1
4
( 1
8σ2

d
ε
)
e

− 1
2σ2

d

(y2
1+

εy4
1

2 )
, (5.336)

f2(y2) =
1

σv

√
2π

e
− 1

2σ2
v

y2
2 , (5.337)

where Kν(z) is the modified Bessel function of the second kind of order ν
[125]. The function Kν(z) is defined as

Kν(z) =
1
2π{I−ν(z) − Iν(z)}

sin νz
,

and

Iν(z) =
∞∑

r=0

( 1
2z)ν+2r

r!Γ (ν + r + 1)
,

where Iν(z) is a modified Bessel function of the first kind and order ν.
When |z| is large enough and −π < phase (z) < π

Kν(z) =
√

π

2z
e−z

[
1 +

4ν2 − 12

1!8z
+

(4ν2 − 12)(4ν2 − 32)
2!(8z)2

+ · · ·

+
(4ν2 − 12) . . . (4ν2 − {2r − 3}2)

(r − 1)!(8z)r−1
+ · · ·

]
,

then

ezKν(z) ≈
√

π

2z

(
1 +

4ν2 − 12

1!8z
+ · · ·

)
. (5.338)

The frequency of positive zero-crossings ν+
0 (cycles) is given by [106]
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ν+
0 = f1(y1 = 0)

∫ ∞

0

y2f2(y2)dy2. (5.339)

Applying (5.338), we can approximate the number of positive zero crossing ν+
0

ν+
0 ≈ 1

2π

σv

σd

(
1 +

3
4
σ2

dε

)
. (5.340)

The expected value of η, E(η2), can be calculated with the following ap-
proximation

E(η2) = 〈η2〉 =
∫ ∞

− ∞
x2f1(x)dx ≈ σ2

d

(
1 +

3
4
σ2

dε

)
. (5.341)

A SDOF Vibro-Impact System

A SDOF vibration system is considered [91]. An elastic amplitude constraint
is placed under the mass as shown in Fig. 5.11. When the system is vibrating,
the mass m can move with limited amplitude as in a simple linear system
with a damper c and spring stiffness k, but for a finite amplitude, the elastic
constraint will make its contribution. For simplicity, the constraint is modeled
by a non-linear spring ηg(x) according to the Hertz contact law and the inertial
effect is neglected. The system is excited by a stationary random force ξ(t)
with a zero mean and correlation 〈ξ(t)ξ(t+ τ)〉 = 2m2Dδ(τ). The equation of
motion is given by

mẍ + cẋ + kx + ηg(x) = ξ(t), (5.342)

where

g(x) =

{
x

3
2 x ≥ 0

0 x < 0
, (5.343)

Fig. 5.11. SDOF vibro-impact system [91]
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and η is the contact stiffness, which is a function of the elastic properties of
the two contacting bodies.

The joint probability density function f2(x, ẋ) = f , with ẋ = v, c/m =
2ζω0 and k/m = ω2

0 , satisfies the time-independent FPK equation

v
∂f

∂x
= 2ζω0f +

[
2ζω0 + ω2

0x +
η

m
g(x)

]
∂f

∂v
+ D

∂2f

∂v2
. (5.344)

The resulting joint probability density function f2(x, v) is

f2(x, v) = Ce
− v2

2σ2
0

ω2
0

− v2

2σ2
0

− η

mσ2
0

ω2
0

∫ x

0
g(u)du

, (5.345)

where σ0 is given by

σ2
0 =

D

2ζω3
0

, (5.346)

and the normalization constant can be determined by the normalization con-
dition ∫ ∞

− ∞

∫ ∞

− ∞
f2(x, v)dxdv = 1. (5.347)

The normalization constant becomes

C−1 =
√

2πσ2
0ω0

[√
π

2
+

2
5

∞∑
n=0

(−1)n

n!
1
2n

ψ−(4n+2)/5Γ

(
4n + 2

5

)]
, (5.348)

where the non-dimensional contact stiffness, or non-linearity parameter ψ is
given by

ψ =
2η

√
σ0

5mω2
0

. (5.349)

The exact stationary solution of the FPK equation for the vibro-impact prob-
lem is then

f2(x, v) =

⎧⎪⎨
⎪⎩

Ce
− v2

2σ2
0

ω2
0

− x2

2σ2
0

−ψ x5/2

σ
5/2
0 , x ≥ 0;

Ce
− v2

2σ2
0

ω2
0

− x2

2σ2
0 , x < 0.

(5.350)

From preceding analysis, the separated first order probability density func-
tions for the displacement x and the velocity v are

f(x) =

⎧⎪⎨
⎪⎩

C
√

2πσ0ω0e
− x2

2σ2
0

−ψ x5/2

σ
5/2
0 , x ≥ 0;

C
√

2πσ0ω0e
− x2

2σ2
0 , x < 0,

(5.351)

and

f(v) =
1√

2πσ0ω0

e
− v2

2σ2
0

ω2
0 . (5.352)
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Fig. 5.12. Normalized expected number of positive zero-crossing f+
0 of stationary

response

The mean value of the displacement x, μx, is as follows

μx = σ0

−1 + 2
5

∑∞
n=0

(−1)n

n!
1
2n ψ−(4n+4)/5Γ ( 4n+4

5 )√
π
2 + 2

5

∑∞
n=0

(−1)n

n!
1
2n ψ−(4n+2)/5Γ ( 4n+2

5 )
. (5.353)

When the stiffness of the constraint is reduced to zero, i.e. the system is linear,
it can be proved that μx equals to zero. The normalized mean value μx versus
ψ is plotted in Fig. 5.12. When the stiffness becomes very large the mean
value approaches a finite value

lim
ψ→∞

μx = −
√

2
π

σ0. (5.354)

The variance of the displacement x, σ2
x can also be found exactly

σ2
x = σ2

0

√
π
2 + 2

5

∑∞
n=0

(−1)n

n!
1
2n ψ−(4n+6)/5Γ ( 4n+6

5 )√
π
2 + 2

5

∑∞
n=0

(−1)n

n!
1
2n ψ−(4n+2)/5Γ ( 4n+2

5 )
− μ2

x. (5.355)

If ψ approaches to zero, the variance σx → σ0. The normalized variance versus
ψ is plotted in Fig. 5.13. When ψ approaches infinity, σ2

x approaches a finite
value

lim
ψ→∞

σ2
x = σ2

0

(
1 − 2

π

)
. (5.356)
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Fig. 5.13. Normalized expected number of positive zero-crossing f+
0 of stationary

response

Let ν+
0 be the expected number of positive zero-crossings per unit (ex-

pected frequency) of time

ν+
0 =

∫ ∞

0

vf2(0, v)dv. (5.357)

Then

ν+
0 =

ω0

2π

√
2π√

π
2 + 2

5

∑∞
n=0

(−1)n

n!
1
2n ψ−(4n+2)/5Γ ( 4n+2

5 )
. (5.358)

When ψ approaches zero, it can be proved that ν+
0 → ω0

2π . The normalized
positive zero-crossings per unit of time is defined by f+

0 = 2πν+
0 /ω0. The

normalized expected frequency f+
0 versus ψ is plotted in Fig. 5.14. When ψ

approaches zero, it can be proved that the normalized expected frequency
f+
0 approaches 1. As ψ increases, f+

0 also increases since the system is now
becoming more rigid. The limiting normalized expected frequency is found to
be 2 simply by taking the limiting value of (5.358). The positive crossings at
a level x = a can be obtained as follows

ν+
a =

ω0

2π

√
2πe

−a2

2σ2
0√

π
2 + 2

5

∑∞
n=0

(−1)n

n!
1
2n ψ−(4n+2)/5Γ ( 4n+2

5 )
. (5.359)

An increase in the spectral density 2D of the excitation corresponds to an
increase of the input energy, i.e. amplitude in some sense, and the non-linearity
parameter ψ will increase.
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Fig. 5.14. Normalized expected number of positive zero-crossing f+
0 of stationary

response

The impact oscillator can also be viewed as a limiting case of a vibration
system with bilinear spring, a spring with different stiffnesses for positive and
negative displacements. If one of the stiffnesses approaches infinity, the system
becomes an impact oscillator.



A

Simulation of the Random Time Series

The simulation of random time series is discussed in [25, 129, 170, 179, 180].
In this appendix we discuss the efficiency of fast computation of the random
time series. The analysis is based on [128, 129]. If Φ1

x(ω) is the one-sided PSD
of the desired signal x(t), then x(t) may approximated by

x(t) =
√

2
N −1∑
n=0

[Φ1
x(ωn)Δω]

1
2 cos(ωnt − φn), (A.1)

where φn are uniformly distributed random numbers on the interval (0 − 2π)
and ωn = nΔω and Δω = ωmax/N . ωmax is the maximum frequency in the
power spectrum Φ1

x(ω), and N is the total number of terms in the summation.
A considerable improvement in the computational effort can be obtained

by recasting (A.1) to allow the use of the Fast Fourier Transform (FTT). To
accomplish this, (A.1) may be written as

x(t) = �
[

√
2

N −1∑
n=0

[Φ1
x(ωn)Δω]

1
2 ej(ωnt−φn)

]
. (A.2)

If the simulated time series x(t), is needed only at discrete values of time t,
let xn = x(tk) = x(kΔt), where the time duration between the equally spaced
samples is Δt. Evaluation of (A.2) at time t = tk gives

x(tk) = x(kΔt) = �
[

√
2

N −1∑
n=0

[Φ1
x(ωn)Δω]

1
2 ej(ωnkΔt−φn)

]
. (A.3)

To satisfy the Nyquist sampling criterion, the time series, x(t), must be
sampled at a high enough rate to obtain two samples during one period of
the highest frequency component ωmax of interest in the original PSD Φ1(ω).
Hence, Δt is chosen to be

Δt ≤ π

ωmax
. (A.4)

J. Wijker, Random Vibrations in Spacecraft Structures Design,
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The term ωnkΔt in (A.3) can be rewritten as follows

ωnkΔt = nΔωkΔt = n
ωmax

N
k

π

ωmax
=

nk2π

2N
. (A.5)

Thus (A.3) can expressed in the following form

x(kΔt) = �
[

√
2

N −1∑
n=0

[Φ1
x(ωn)Δω]

1
2 e−jφne

jnk2π
2N

]
. (A.6)

Equation (A.6) may be evaluated using the FFT algorithm. given a discrete
sequence an, the FFT provides an efficient means of computing Ak, where

Ak =
N −1∑
n=0

ane
jnk2π

2N , k = 0, 1, 2, . . . , N − 1. (A.7)

Equation (A.6) may be evaluated using the FFT by defining a sequence

an = [Φ1
x(ω)Δω]

1
2 e−jφn n ≤ N − 1,

= 0, n ≥ N.
(A.8)

Equation (A.6) may then be written as

xk = x(kΔt) = �
[

√
2

2N −1∑
n=0

ane
jnk2π

2N

]
k = 0, 1, 2, . . . , 2N − 1. (A.9)

In finding the real part of (A.9) we may use the complex conjugate1 of the
right side of (A.9) to give

xk = x(kΔt) = �
[

√
2

2N −1∑
n=0

ane
−jnk2π

2N

]
k = 0, 1, 2, . . . , 2N − 1. (A.10)

This is equivalent to
xk =

√
2�[FFT (an)]. (A.11)

Note that the length of the sequence an is 2N .
The PSD function φ1

x(ω) can be reconstructed using the following expres-
sion

φ1
x,n = 2

|IFFT (xk)|2
Δω

k = 0, 1, 2, . . . , 2N − 1, n = 0, 1, 2, . . . , N − 1, (A.12)

where IFFT is the inverse Fast Fourier Transform.
1 cos u = �[eju] = �[e−ju].
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Table A.1. Random vibration specification [30]

Frequency (Hz) W (f) g2/Hz

20 0.018
20–125 1.68 dB/oct
125 0.05
300 0.05
300–2000 −3.12 dB/oct
2000 0.007

Overall 6.33 Grms

Fig. A.1. Simulated random time series from Table A.1

If the product φ1
x(ω)Δω is replaced by W 1

x (f)Δf , (A.12) can be written
as follows

W 1
x,n = 2

|IFFT (xk)|2
Δf

k = 0, 1, 2, . . . , 2N −1, n = 0, 1, 2, . . . , N −1, (A.13)

where W (f) is the PSD function in the cyclic frequency domain and f is the
cyclic frequency (Hz).

Example. The enforced random acceleration spectrum is specified in Ta-
ble A.1. This random acceleration spectrum will be simulated by a random
time series. The number of terms in the time series is N = 500, and the max-
imum frequency of interest is fmax = 2000 Hz. The simulated random time
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Fig. A.2. Reconstructed PSD W (f) from Fig. A.1

series is shown in Fig. A.1. The reconstructed PSD function W (f) from the
random time series in Fig. A.1 is shown in Fig. A.2.

Problems

A.1. This problem is taken from [180]. The PSD function is given by

W0(f) = W0
α

α2 + f2
, 0 ≤ f ≤ fu,

where
W0 =

1
[arctan fu

α ]
,

where fu = 40 Hz and α = 4 Hz.
Carry out the following assignments:

• Simulate the random time series
• Reconstruct the original PSD function from the random time series.



B

Tables of Integrals

The solution of the type of integral

In =
1
2π

∫ ∞

− ∞

Gn(jω)
Hn(jω)Hn(−jω)

dω, (B.1)

with the Hurwitz polynomial

Hn(jω) = a0(jω)n + a1(jω)n−1 + · · · + an (B.2)

and
Gn(jω) = b0(jω)2(n−1) + b1(jω)2(n−2) + · · · + bn−1 (B.3)

is given by [43, 74, 171]:

• I1 = b0
2a0a1

• I2 =
a0b1

a2
−b0

2a0a1

• I3 =
b0a2+

a0a1b2
a3

−a0b1

2a0(a1a2−a0a3)

• I4 =
b0(−a1a4+a2a3)−a0a3b1+a0a1b2+

a0b3
a4

(a0a3−a1a2)

2a0(a0a2
3+a2

1a4−a1a2a3)

The solutions of (B.1) will be used to solve integrals of this type in the
course of the book.

The integral ∫ ∞

− ∞

1
|Hg(jω)|2 dω, (B.4)

with the frequency response function

Hg(ω) = −ω2 + ω2
0(1 + jg), (B.5)

cannot be evaluated using (B.1) if n = 2, I2 is not defined because a1 = 0.
The integral (B.4) can be obtained using the residue theorem [195].

J. Wijker, Random Vibrations in Spacecraft Structures Design,
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Table B.1. Accuracy of (B.7)

g (1+g2)0.25

cos(0.5g)

0.01 1.000
0.05 1.001
0.10 1.004
0.50 1.091

∫ ∞

− ∞

1
|Hg(jω)|2 dω =

π cos(0.5g)
2gω3

0(1 + g2)0.25
. (B.6)

When the term g � 1 (structural damping coefficient) then
∫ ∞

− ∞

1
|Hg(jω)|2 dω ≈ π

2gω3
0

. (B.7)

The accuracy of (B.7) is illustrated in Table B.1.

Some Definite Integrals
The following definite integral is of interest [17] for the calculation of the

mean square response:

I0 =
∫ ω2

ω1

dω

(1 − ω2)2 + (2ζω)2

=
1

8
√

1 − ζ2
ln
{

[ω2
2 + 2ω2

√
1 − ζ2 + 1][ω2

1 − 2ω1

√
1 − ζ2 + 1]

[ω2
2 − 2ω2

√
1 − ζ2 + 1][ω2

1 + 2ω1

√
1 − ζ2 + 1]

}

+
1
4ζ

[
arctan

2ζω2

1 − ω2
2

− arctan
2ζω1

1 − ω2
1

]
. (B.8)

Error Function erf(x)
A numerical approximate procedure for calculating the erf(x) is discussed

in [113, 114]. The error function erf(x) is given by erf(x) = 2√
π

∫ x

− ∞ e−y2
dy.

The numerical approximation is as follows

erf(x) =

{
2√
π
e−x2∑9

k=0
2kx2k+1

(2k+1)!! , 0 ≤ x ≤ 2;

1 − e−x2 1√
πx

(1 − 1
2x2 ), 2 < x < ∞.

(B.9)

where ()!! is the double factorial defined as follows

(n)!! =

{
1, n = 0 or n = 1;
n(n − 2)!!, n ≥ 2.

(B.10)

Some identities of double factorials are

(2n)!! = 2nn!, (B.11)
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and

(2n + 1)!! =
(2n + 1)!

2nn!
. (B.12)

The maximum absolute error of (B.9) is 0.0047% and the maximum relative
error is 0.470% [113], which is satisfactory for engineering purposes.

Another approximation of the error function is discussed in [231] and given
by

erf(x) =

⎧⎪⎨
⎪⎩

0.30121 + 0.49161x2 + 0.91811x3 − 2.35341x4

−3.33071x5 + 15.65241x6 − 10.7846x7, 0.13 ≤ x < 0.96;
1, 0.96 ≤ x.

(B.13)
In [192] more details about calculating random vibration integrals are dis-

cussed.

B.1 Approximations of Inverse Transform of the
Standard Normal

If X = 1√
2π

∫ x

− ∞ e−y2
dy is expressed by X = F (x) then the inverse value

x = F −1(X) for the standard normal can be approximated as follows [20]

x = z +
p0 + p1z

1 + p2z
2 + p3z

3 + p4z
4

q0 + q1z1 + q2z2 + q3z3 + q4z4
, (B.14)

where z =
√

−log([1 − X]2), and

• p0 = −0.322232431088
• p1 = −1
• p2 = −0.342242088547

• p3 = −0.0204231210245
• p4 = −0.0000453642210148
• q0 = 0.099348462606
• q1 = 0.588581570495
• q2 = 0.531103462366
• q3 = 0.10353775285
• q4 = 0.0038560700634

This approximation has a relative accuracy of about six decimal digits and is
valid for 0.5 < X < 1. The symmetry of the normal allows us to extend it to
0.0 < X < 0.5 by the transformation X = 1 − X and x = −x.

B.2 Integrals of Probability Density Functions

Solutions of the joint probability functions from the FPK equation are in
general exponential expression. Integral for of these exponential functions are
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given.
∫ ∞

− ∞
e−ax2

dx = 2
∫ ∞

0

e−ax2
dx =

√
π

a
, (B.15)

∫ ∞

− ∞
xe−ax2

dx = 2
∫ ∞

0

xe−ax2
dx =

1
a
, (B.16)

∫ ∞

− ∞
x2e−ax2

dx = 2
∫ ∞

0

x2e−ax2
dx =

1
2a

√
π

a
, (B.17)

∫ ∞

− ∞
x4e−ax2

dx = 2
∫ ∞

0

x4e−ax2
dx =

3
4a2

√
π

a
, (B.18)

∫ ∞

− ∞
xne−ax2

dx = 2
∫ ∞

0

xne−ax2
dx = a− 1

2 (n+1)Γ

{
1
2
(n + 1)

}
. (B.19)

When z is real number and n is an integer, than

Γ (1) = 1, Γ

(
1
2

)
=

√
π, Γ (z + 1) = zΓ (z), Γ (n) = n! (B.20)

∫ ∞

− ∞
e−a(x2+bx4)dx = 2

∫ ∞

0

e−a(x2+bx4)dx =
4
√

a
b e

a
8b K 1

4
( a
8b )

2 4
√

ab
, (B.21)

where Kν(z) is a Bessel function of the second kind and ν order [125].
∫ ∞

− ∞
xe−a(x2+bx4)dx = 2

∫ ∞

0

xe−a(x2+bx4)dx

=
√

πe
a
4b

2
√

ab

[
1 − erf

(√
a

4b

)]
. (B.22)

∫ ∞

− ∞
x2e−a(x2+bx4)dx = 2

∫ ∞

0

x2e−a(x2+bx4)dx

=
4
√

a
b e

a
8b

8b 4
√

ab

[
K 3

4

(
a

8b

)
− K 1

4

(
a

8b

)]
. (B.23)

∫ ∞

− ∞
x4e−a(x2+bx4)dx

= 2
∫ ∞

0

x4e−a(x2+bx4)dx

=
4
√

a
b e

a
8b

16b2 4
√

ab

[
K 3

4

(
a

8b

)
− K 1

4

(
a

8b

)
− 2b

a
K 1

4

(
a

8b

)]
. (B.24)



C

Some Fourier Transforms

The following Fourier transforms are to be solved

h(t) =
1
2π

∫ ∞

− ∞
H(jω)ejωtdω, (C.1)

and
R(t) =

1
2π

∫ ∞

− ∞
|H(jω)|2ejωtdω, (C.2)

with
H(jω) =

1
ω2

n − ω2 + 2jζωωn
(C.3)

The integrals (C.1)and (C.2) will be evaluated by using the theory of complex
functions [195]. Apply the residue theorem to evaluate the integrals. Let f(z)
be single-valued and analytic inside and on a simple closed curve C except
at the singularities a, b, c, . . . inside C which have residues a−1, b−1, c−1, . . . .
Then the residue theorem states that∮

C

f(z)dz = 2πj(a−1 + b−1 + c−1 + · · · ), (C.4)

i.e. the integral of f(z) around C is 2πj times the sum of the residues of f(z)
at the singularities enclosed by C.

To obtain the residue of a function f(z) at z = a the following equation
with a pole of order k can be applied.

a−1 = lim
z→a

1
(k − 1)!

dk−1

dzk−1

{
(z − a)kf(z)

}
. (C.5)

If k = 1 (simple pole) the result of the residue is

a−1 = lim
z→a

(z − a)f(z). (C.6)

The poles of (C.3) are

J. Wijker, Random Vibrations in Spacecraft Structures Design,
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ω1 = ωn(jζ −
√

1 − ζ2),

ω2 = ωn(jζ +
√

1 − ζ2).
(C.7)

Calculate two residues associated with the poles ω1 and ω2. The first residue
a−1 can be calculated as follows

a−1 = lim
ω→ω1

(ω − ω1)
ejωt

(ω − ω1)(ω − ω2)
=

ejωn(jζ−
√

1−ζ2t)

−2ωn

√
1 − ζ2

, (C.8)

and the second residue b−1 becomes

b−1 = lim
ω→ω2

(ω − ω2)
ejωt

(ω − ω1)(ω − ω2)
=

ejωn(jζ+
√

1−ζ2t)

2ωn

√
1 − ζ2

. (C.9)

Solve the definite integral of the type
∫∞

− ∞ f(x)dx. The contour integral
(C.4) can be written as follows

∮
C

f(z)dz = lim
R→∞

[∫ R

−R

f(x)dx +
∫

Γ

f(z)dz

]
, (C.10)

where z = x + jy, Γ the semi-circle with radius R. If |f(z)| ≤ M
Rk for

z = Rejθ where k > 1 and M is a constant then it can be proved that
limR→∞

∫
Γ

f(z)dz = 0 [195].
The integral (C.1) can be solved

h(t) =
1
2π

∫ ∞

− ∞

ejωt

ω2
n − ω2 + 2jζωωn

dω = j(a−1 + b−1), (C.11)

The sum of the residues a−1 + b−1 becomes

a−1 + b−1 =
e−ωnζt

2ωn

√
1 − ζ2

[
−e−jωn

√
1−ζ2t + ejωn

√
1−ζ2t

]

=
e−ωnζt

ωn

√
1 − ζ2

j sin(ωn

√
1 − ζ2t). (C.12)

Integral (C.11) becomes finally

h(t) =
1
2π

∫ ∞

− ∞

ejωt

ω2
n − ω2 + 2jζωωn

dω

= − e−ωnζt

ωn

√
1 − ζ2

sin(ωn

√
1 − ζ2t). (C.13)

The result of integral (C.13) was expected because it is the impulse re-
sponse function of a damped sdof system.

Now the integral (C.2) is solved. The FRF |H(ω)|2 can be written as
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|H(ω)|2 = H(ω)H(−ω), (C.14)

and the four poles of |H(ω)|2 are:

ω1 = ωn(jζ −
√

1 − ζ2),

ω2 = ωn(jζ +
√

1 − ζ2),

ω3 = ωn(−jζ −
√

1 − ζ2),

ω4 = ωn(−jζ +
√

1 − ζ2).

(C.15)

The contour integral
∮

C
f(z)dz is only applicable for the positive side of

the imaginary axis and therefore the solution of (C.2) will be

R(t) =
1
2π

∫ ∞

− ∞
|H(ω)|2ejωtdω = j(a1 + b1). (C.16)

The residues a−1 and b−1 can be calculated as follows

a−1 = lim
ω→ω1

(ω − ω1)
ejωt

(ω − ω1)(ω − ω2)(ω − ω3)(ω − ω4)
, (C.17)

and

b−1 = lim
ω→ω2

(ω − ω2)
ejωt

(ω − ω1)(ω − ω2)(ω − ω3)(ω − ω4)
. (C.18)

Substituting the poles ω1 and ω2 of (C.15) in (C.17) and (C.18) the residues
become

a−1 =
ejωn[jζ−

√
1−ζ2]t

(−2ωn

√
1 − ζ2)(2jωnζ)(2ωn[jζ −

√
1 − ζ2])

, (C.19)

and

b−1 =
ejωn[jζ+

√
1−ζ2]t

(−2ωn

√
1 − ζ2)(2jωnζ)(2ωn[jζ +

√
1 − ζ2])

. (C.20)

The sum of the residues a−1 + b−1 can now be obtained

a−1 + b−1 =
e−ωnζt

(2ωn

√
1 − ζ2)(2jωnζ)(2ω2

n)

×
[
2ωn

√
1 − ζ2 cos

(
ωn

√
1 − ζ2t

)
+ 2ωnζ sin

(
ωn

√
1 − ζ2t

)]
. (C.21)

The final solution of (C.2) becomes

R(t) = j(a−1 + b−1), (C.22)

and substituting (C.21) into (C.22) the following expression can be obtained

R(t) =
e−ωnζt

4ω3
nζ

[
cos
(
ωn

√
1 − ζ2t

)
+

ζ

1 − ζ2
sin
(
ωn

√
1 − ζ2t

)]
, t ≥ 0.

(C.23)
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Problems

C.1. Find the Fourier transform F (ω) of the function

f(t) =
1

b2 + t2
,

using contour integration.
Answer: F (ω) =

∫∞
− ∞ f(t)e−jωtdt = π

b eb|ω|.



D

Modal Effective Mass

A flexible linear structure is idealized as a finite element system with N degrees
of freedom (DOF). The undamped equations of motion of the MDOF dynamic
system are

[M ]{ẍ(t)} + [K]{x(t)} = {F (t)}, (D.1)

where

• [M ] the mass matrix
• [K] the stiffness matrix
• {ẍ(t)} the acceleration vector
• {x(t)} the displacement vector and
• {F (t)} the external force vector.

The interface DOFS are denoted by {xr(t)} (r-set) and the internal DOFS
by {xi(t)} (i-set). The interface DOFS describe the six motions as a rigid
body: three translations and three rotations. The six rigid body motions may
be introduced in one node with six DOFS. The interface DOFS constitute
a determinate interface. Partitioning the equations of motion (D.1) into the
r-set and i-set we find in the following equations

[
Mrr Mri

Mir Mii

]{
ẍr(t)
ẍi(t)

}
+
[

Krr Kri

Kir Kii

]{
xr(t)
xi(t)

}
=
{

Fr(t)
Fi(t)

}
. (D.2)

The physical displacements are expressed as a superposition of rigid body
modes [Φr] and elastic modes [Φe] multiplied by the associated generalized
coordinates xr(t) (r-set) and ηn(t) (n-set) respectively

{x(t)} = [Φr]{xr(t)} + [Φe]{ηn(t)} = [Ψ ]
{

xr(t)
ηn(t)

}
. (D.3)

We can obtain the matrix of rigid body motions Φr from the stiffness
matrix (D.2), ignoring the inertia terms and Fi(t), from the second equation

[Kri]{xr } + [Kii]{xi} = 0. (D.4)
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From (D.4) we can derive a relation between the internal and external DOFs
if there is no load applied to the internal DOFs, hence {Fi} = {0}

{xi} = −[Kii]−1[Kri]{xr } = −[Kii]−1[Kri]	I
 = −[Kii]−1[Kri] = [φr].
(D.5)

The complete rigid body modes [Φr] become

[Φr] =
[

I
φr

]
. (D.6)

If the r-set DOFs are constrained {xr } = {0} the elastic vibration modes
can be obtained with respect to the external DOFs from the eigenvalue prob-
lem (

−ω2
k[Mii] + [Kii]

)
{φk } = {0}, (D.7)

where ω2
k is the k-th eigenvalue with the associated eigenvector {φk }.

The matrix of the elastic vibration modes [Φe] is

[Φe] =
[

0
Φi

]
=
[

0 0 · · · 0
φi1 φi2 · · · φin

]
(D.8)

The introduction of the modal matrix [Ψ ] of (D.3) into (D.2) leads to the
following equations of motion expressed in terms of the external and general-
ized DOFs, {xr(t)} and {ηn(t)}

[
Mo LT

L 	m


]{
ẍr(t)
η̈n(t)

}
+
[

0 0
0 	k


]{
xr(t)
ηn(t)

}
=
{

Fr(t)
0

}
(D.9)

where

• [M0] = [Φr]T [M ][Φr] the rigid body mass matrix with respect to the r-set
• [K][Φr] = [0] the rigid body force vector
• [L]T = [Φr]T [M ][Φe] the modal participation factors
• 	m
 = [φi]T [M ][φi] the generalized masses
• 	k
 = [φi]T [K][φi] the generalized stiffness.
• {Fr(t)} = [Φr]T {F (t)}

Introduce the modal damping ratioin the uncoupled equations of motion
of the generalized coordinated ηk(t) then the second part of equations of (D.9)
will become

η̈k(t) + 2ζkωkη̇k(t) + ω2
kηk(t) =

−{Lk } {ẍr(t)}
mk

, k = 1, 2, . . . , n. (D.10)

The number of modes {φk }, k = 1, 2, . . . , n is in general much less than
the number if internal dofs i. The Fourier transform of (D.10), using η(t) =
Π(ω)ejωt, can be written as

(−ω2 + 2jζkωk + ω2
k)Πk(ω) =

−{Lk } {Ẍr(ω)}
mk

, k = 1, 2, . . . , n, (D.11)
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and if Πk(ω) is made explicit then

Πk(ω) = Hk(ω)
−{Lk } {Ẍr(ω)}

mk
, k = 1, 2, . . . , n. (D.12)

where Hk(ω) = (−ω2 + 2jζkωk + ω2
k)−1. Use the following expression Π̈k =

−ω2Πk.
The first part of equation in (D.9), an equation applicable for the external

dofs xr(t) is
[M0]{ẍr } + [L]T {η̈(t)} = {Fr(t)}. (D.13)

If (D.11) is substituted in the Fourier transform of (D.13) with Π̈k =
−ω2Πk then

(
[M0] + ω2

n∑
k=1

Hk(ω){Lk }T {Lk }
mk

)
Ẍr(ω)} = Fr(ω), (D.14)

or (
[M0] + ω2

n∑
k=1

Hk(ω)[Meff ,k]
)

Ẍr(ω)} = Fr(ω), (D.15)

where the 6 × 6 modal effective mass Meff ,k is defined as

[Meff ,k] =
{Lk }T {Lk }

mk
. (D.16)

The mass matrix [M0] can be expanded as the sum of the modal effective
masses Meff ,k

[M0] =
i∑

k=1

[Meff ,k]

= [Φr]T [M ][Φe]([Φe]T [M ][Φe])−1[Φe]T [M ][Φr]
= [Φr]T [M ][Φr]. (D.17)

The inverse of the modal matrix [Φe] exists, if all modes {φk }, k = 1, 2, . . . , i
are calculated!

The modal effective mass matrix [Meff ,k] of mode k is the fraction of the
total static mass [M0] that can be attributed to this mode.

The residual mass matrix [Mres ] is defined by

[Mres ] = [M0] −
n∑

k=1

[Meff ,k], (D.18)

where n is the number of kept modes n � i, where i is the total number of
degrees of freedom.

Finally (D.15) can now be written
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n∑
k=1

{
[Meff ,k]

(
1 + ω2Hk(ω)

)}
{Ẍr(ω)} = {Fr(ω)}, (D.19)

Equation (D.19) shows the relation between the reaction forces {Fr(ω)} at the
location of the determinate supported structure excited by enforced accelera-
tion {Ẍr(ω)}. This equation will be used in combination with Miles’ equation
to calculate the rms reaction forces of an elastic structure exposed to random
dynamic enforced acceleration. The term between the curly brackets is called
the dynamic mass matrix

[Md(ω)] =
n∑

k=1

[Meff ,k]
(
1 + ω2Hk(ω)

)
. (D.20)

Using the concept of modal effective mass we can decompose a MDOF
structure into a series of SDOF systems. The discrete mass reflects the modal
effective mass meff ,n with corresponding angular natural frequency ωn, spring
constant kn = ω2

nmeff ,n, modal damping ratio ζn and the damping constant
cn = 2ζnωnmeff ,n. The representing series of SDOF systems is called the
asparagus model of the structure [39]. This is illustrated in Fig. D.1.

More about the modal effective masses can be read in [151, 172].

Example. This example is taken from [86]. Consider the two degrees of free-
dom dynamic system shown on Fig. D.2. The parameters have the following
values, the discrete masses are m1 = 2 kg and m2 = 1 kg, the spring constants
are k1 = 1000 N/m, k2 = 2000 N/m and k3 = 3000 N/m. Calculate the modal
effective masses.

The homogeneous equations of motion are
(

m1 0
0 m2

)(
ẍ1

ẍ2

)
+
(

k1 + k3 −k3

−k3 k2 + k3

)(
x1

x2

)
=
(

0
0

)
.

The eigenvalue problem will yield the natural frequencies (Hz), f1 = 4.78 Hz
and f2 = 12.43 Hz. The corresponding vibration modes [Φe] are

Fig. D.1. Asparagus patch model [39]
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Fig. D.2. Two degree of freedom system

[Φe] =
(

0.6280 −0.3251
0.4597 0.8881

)
.

The generalized (diagonal) mass matrix is expressed by

	mg
 = [Φe]T [M ][Φe] =
(

1 0
0 1

)
,

where [M ] is the mass matrix. The vibration modes have been scaled so that
the generalized mass matrix becomes the identity matrix.

The rigid body vector {Φr } can be easily generated

{Φr } =
(

1
1

)
.

The modal participation factors are given by

Lk = {φe,k }[M ]{Φr }, k = 1, 2.

thus L1 = 1.7157 and L2 = −0.2379. A modal participation factor represents
the coupling of the vibration mode with the motion as a rigid body.

The modal effective mass is given by

meff ,k =
L2

k

mg(k, k)
k = 1, 2.

The results are presented in Table D.1. The sum of the modal effective masses
equals the total system mass.

The absolute value of the dynamic mass |md| is presented in Fig. D.3.
Notice that, at the first natural frequency, the dynamic mass is very high.

Problems

D.1. Calculate modal effective masses for the dynamic system shown in
Fig. D.4 shall be calculated. The discrete mass parameter m (kg) and spring
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Table D.1. Modal effective and residual mass

Mode Natural frequency Modal effective mass Residual mass
(Hz) (kg) (kg)

1 4.78 2.944 0.056
2 12.43 0.056 0

Total mass 3

Fig. D.3. Dynamic mass, modal damping ratio ζ = 0.05

Fig. D.4. Dynamic system 8 DOFs
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Table D.2. Calculation of the modal effective mass

Mode shape Natural Modal Generalized Modal effective
�= frequency Participation mass mass

(Hz) Lk mk meff (kg)

1 24.5422 5.5874 1.5746 19.8271
2 31.1052 0.0000 1.0000 0.0000
3 36.6716 2.7421 1.9255 3.9048
4 64.4657 3.7104 5.0429 2.7300
5 81.4344 0.0000 1.0000 0.0000
6 82.0637 0.7400 1.0989 0.4983
7 95.9164 3.8552 7.2863 2.0398

Total mass (without m8 = 10) 29.0000

stiffness parameters k (N/m) are m = 1 and k = 100 000 respectively. The
constrained degree of freedom is x8 = 0. The answers are shown in Table D.2.

D.2. During s sine qualification vibration test of a complete spacecraft, with
a total mass M = 6100 kg, the constant enforced acceleration is Ü(f) =
12.5 m/s2 in the frequency range between 20–100 Hz. The most significant
vibration mode (mode 1) in the axial direction has the following properties:

• The natural frequency is f1 = 36 Hz.
• The modal effective mass is meff ,1 = 2000 kg.
• The generalize mass is m1 = {Φ1}T [M ]{Φ1} = 1. [M ] is the mass matrix

and {Φ1} is the vibration mode.
• Modal damping ratio ζ1 = 0.02
• Maximum modal displacement {Φ1} is 0.05.

Perform the following assignments:

• Calculate the modal participation factor L1.
• Set up the two equations of motion expressed in terms of the enforced accel-

eration ü(t) = Ü(ω)ejωt and the generalized coordinate η1(t) = Π̈(ω)ejωt.
• Calculate the acceleration of the generalized coordinate Π(2π36).
• Calculate maximum physical acceleration amax ,1.
• Calculate dynamic mass |md(2π36)|.

• Calculate reaction force |Fr(2π36)| = |md((2π36)) ∗ Ü(2π36)| or (D.19).

Answers (partly): L1 = 44.7214 kg, Π(2π36) = −1.3975 × 104j, |amax ,1| =
6.9877 × 102 m/s2.
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Thevenin’s and Norton’s Theorems
for Equivalent Linear Mechanical Systems

The theory discussed in this appendix is based on [48, 193]. In Fig. E.1 the
configuration of a load on its mount (source or foundation) can be idealized
as a simple 2DOF harmonic oscillator. Here m1 and m2 are the source and
load masses, respectively, and Z1 and Z2 are the source and load impedances,
respectively. When using a mechanical impedance formulation, it is convenient
to analyze the idealized 2DOF system using Thevenin’s and Norton’s theorems
about equivalent linear mechanical systems.

Thevenin’s theorem states: At a given frequency, any linear system of
loads and sources may be reduced to a simpler system consisting of a single
constant-force source in parallel with a single impedance connected to the load.
Rephrased, Thevenin’s theorem stated that insofar as the load is concerned,
the source can be considered as an equivalent force driving an equivalent
source impedance in parallel with a single impedance of the load, (see Fig. E.2).
The equivalent force is given by the force at the interface when the source is
driving an infinite load (blocked force). The source equivalent impedance is
the source impedance measured with the forces removed.

Norton’s theorem states: At a given frequency, any linear system of
loads and sources may be reduced to a simpler system consisting of a single

Fig. E.1. Idealized 2DOF system
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Fig. E.2. Thevenin’s equivalent system

Fig. E.3. Norton’s equivalent system

Table E.1. Impedance definitions

Name Symbol Definition Alternative names

Dynamic stiffness K F/x Dynamic modulus
Mechanical impedance Z F/v
Dynamic mass m F/a Apparent mass
Flexibility α x/F Receptance compliance
Mobility Y v/F Admittance
Accelerance A a/F Inertance

constant-velocity source in series with a single impedance connected to the
load.
Rephrased, Norton’s theorem states that insofar as the load is concerned, the
source can be considered as an equivalent velocity (motion) driving an equiv-
alent source impedance in series with the load (see Fig. E.3). The equivalent
velocity-source is the interface velocity when the load is removed (in the free
velocity). The source equivalent impedance is the source impedance measured
with the motions removed.

Investigations in vibration mechanics are often described in terms of me-
chanical impedances. In Table E.1 the definitions of impedances are summa-
rized.
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The 2DOF system illustrated in Fig. E.1 is transformed into a equivalent
mechanical system using Thevenin’s theorem. All parameters are defined in
the frequency domain. This equivalent mechanical system is shown in Fig. E.2.
From this equivalent system it follows that

F0 = v(Z1 + Z2), (E.1)

where F0 is the blocked force, v is the interface velocity with the load at-
tached, and Z1 and Z2 are the source and load impedances, respectively.
The associated acceleration is given by a = jωv. Furthermore, if no load is at-
tached to the interface, the free velocity v0 and the associated free acceleration
a0 = jωv0, are related to the blocked force by

F0 = Z1v0 (E.2)

All parameters are in the frequency domain. Thus the following relation
can be written

a

v
=

a0

v0
= jω. (E.3)

Combining (E.1) and (E.2) yields the following important relation

a =
a0

1 + Z2
Z1

, (E.4)

where a is the interface acceleration and a0 is the free acceleration (accel-
eration resulting from no restraining forces at the interface). Equation (E.4)
shows that the interface acceleration a is a function of the source and load
impedances, Z1 and Z2, respectively.

During a vibration test on a shaker the shaker provides an input acceler-
ation that is largely independent of the dynamic characteristics of the source
and the load, an input corresponding to the free acceleration to the free ac-
celeration a0. That means that the impedance of the source Z1 → ∞. The
shaker acts as an infinite impedance source.

The 2DOF system (Fig. E.1) can be reduced to Norton’s equivalent me-
chanical system (Fig. E.3). Applying Norton’s theorem yield

v0 = F

(
1
Z1

+
1
Z2

)
, (E.5)

where v0 is the free velocity and F is the interface force.
From the previous equations (E.1), (E.3) and (E.5) the impedances can

be eliminated and the following relation can be derived

v

v0
+

F

F0
= 1. (E.6)

The ratio of the interface to free velocity can be replaced by the corresponding
ratio interface to free acceleration in (E.6) to derive
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a

a0
+

F

F0
= 1, (E.7)

where a and F are the interface acceleration and force, respectively, and a0 is
the free acceleration and F0 the blocked force.

Equation (E.7) provides the basis for exact dual control of the source load
vibratory system shown in Fig. E.1. It appears that dual-control vibration
test, which involves limiting force levels as well as acceleration levels at the
input to the test item, is a viable solution for improve overtest conditions on
a variety of hardware as applied in the force-limiting vibration testing.

Problems

E.1. A SDOF system has a discrete mass m, a natural frequency ω0 and a
damping ratio ζ. The SDOF is loaded by a harmonic force F (ω). The harmonic
displacement of the mass is denoted by X(ω). Derive the impedance Z(ω) of
the SDOF system.
Answer: Z(ω) = −j(−ω2 + 2jζω0ω + ω2

0)/mω.

E.2. Derive the following relation, [29]

WFF (f) =
∣∣∣∣ M1(f)M2(f)
M1(f) + M2(f)

∣∣∣∣
2

Wa0a0(f),

where M1(f) and M2(f) are the apparent masses of source and load, respec-
tively, WFF (f) is the interface force spectrum and Wa0a0(f) is the accelera-
tion spectrum at the interface of the unloaded structures (free acceleration,
the acceleration resulting from no restraining forces in the interface).



F

Lyapunov’s Equation

Let [A] be an 2n × 2n matrix of real or complex terms aij and suppose that all
eigenvalues of [A] lie in the left half-plane. f(t) is an 2n-component column-
vector with the following property

E[{f(t} {f(t − τ }T ] = [Efi(t}fj(t − τ)T ] = [C]δ(τ), (F.1)

where δ(τ) is the delta-function and the Hermitian matrix [C] is positive
semi-definite.

x(t) is a stationary stochastic process defined by

{ẋ(t)} = [A]{x(t)} + {f(t)}. (F.2)

Then the expected value of x(t) is [65]

E[{x(t} {x(t − τ }T ] = e[A]τ [M ], (F.3)

where the 2n×2n covariance matrix [M ] is uniquely determined by the system
of (2n)2 unknowns

[A][M ] + [M ][A]T = −[C]. (F.4)

The steady-state solution of (F.2) is given by

{x(t)} =
∫ t

− ∞
e[A](t−λ){f(λ)}dλ =

∫ ∞

0

e[A]λ{f(t − λ)}dλ. (F.5)

Therefore,

E[{x(t}{x(t − τ }T ]

= E

[∫ ∞

0

∫ ∞

0

e[A](t−λ){f(t − λ)} {f(t − τ − μ)}T e[A]T μ

]
dλdμ

=
∫ ∞

0

∫ ∞

0

e[A]λ[C]δ(τ + μ − λ)e[A]T μdλdμ

=
∫ ∞

0

e[A](μ+τ)[C]e[A]T μdμ = [M ]e[A]τ , (F.6)
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where
[M ] = E[{x(t} {x(t)}T ] =

∫ ∞

0

e[A]μ[C]e[A]T μdμ. (F.7)

The integrand of (F.7) is called [Z(μ)] = e[A]μ[C]e[A]T μ. Differentiation gives

d[Z(μ)]
dμ

= [A][Z(μ)] + [Z(μ)][A]T . (F.8)

Since the matrix [A] has all its eigenvalues in the left half-plane, the matrix
[Z(μ)] tends exponentially to 0 as μ → ∞. Therefore, integration of (F.8)
from 0 to ∞ will obtain

[A][M ] + [M ][A]T = −[C]. (F.9)

This is the classical Lyapunov equation of stability-theory. The covariance
matrix [M ] is unique for any fixed [C] [65].

For convenience (F.2) is written as

{ẋ(t)} = [A]{x(t)} + {f(t)} = [A]{x(t)} + {B}w(t), (F.10)

where the input vector {B} is a 2n × 1 vector, and w(t) is a scalar white noise
with E{w2(t)} = Sw. The Lyapunov equation (F.9) can be written as [72]

[A][M ] + [M ][A]T = −{B}Sw {B}T = −Sw {B}{B}T . (F.11)

The equation (F.11) will be transformed to a “phase canonical form” by
the transformation

{x(t)} = [K]{s(t)}, (F.12)

where [K] is the state transformation matrix; (F.10) becomes

{ṡ(t)} = [Φ]{s(t)} + {G}w(t), (F.13)

with

• [Φ] = [K]−1[A][K] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 0
0 0 1 · · · 0 0

0 0 0
. . . 0 0

...
...

... · · ·
...

...
0 0 0 · · · 0 1

−d2n −d2n−1 −d2n−2 · · · −d2 −d1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

• {G} = [K]−1{B} =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
...
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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The elements d1, d2, . . . , d2n are the coefficients of the characteristic polyno-
mial of [A]

χ(λ) = λ2n + d1λ
2n−1 + d2λ

2n−2 + · · · + d2n−1λ + d2n, (F.14)

and the matrix [Φ] is recognized as the companion matrix.
The state variables of the realization (F.13) are called the “phase vari-

ables”.
The steady-state solution of (F.11) is given by (F.5)

{x(t)} =
∫ ∞

0

e[A](t−τ){B}w(t)dτ. (F.15)

Now, because a convergent infinite series of the 2n × 2n matrix [A] can be
expressed as an unique polynomial of degree 2n − 1 (2n is the degree of the
minimum polynomial χ(λ) = 0 of [A]), hence

e[A](t−τ) =
2n−1∑
i=0

αi(t − τ)[A]i. (F.16)

Substituting (F.16) into (F.15) will result in

{x(t)} =
∫ ∞

0

e[A](t−τ){B}w(t)dτ

=
2n−1∑
i=0

[A]i{B}
∫ ∞

0

αi(t − τ)w(τ)dτ

=
2n−1∑
i=0

[A]i{B}βi(t) = [CA,B]{β}, (F.17)

where the observability matrix [CA,B ] is

[CA,B ] = [[A]2n−1{B}, [A]2n−2{B}, . . . , [A]{B}, {B}]. (F.18)

An analogous solution can be obtained for (F.13). The steady-state solu-
tion of (F.13) is given by (F.5)

{s(t)} =
∫ ∞

0

e[Φ](t−τ){G}w(t)dτ. (F.19)

The 2n × 2n matrix [Φ] can be expressed as an unique polynomial of degree
2n − 1 (2n is the degree of the minimum polynomial χ(λ) = 0 of [Φ]), hence

e[Φ](t−τ) =
2n−1∑
i=0

αi(t − τ)[Φ]i. (F.20)

Substituting (F.20) into (F.19) will result in



432 F Lyapunov’s Equation

{s(t)} =
∫ ∞

0

e[Φ](t−τ){G}w(t)dτ

=
2n−1∑
i=0

[Φ]i{G}
∫ ∞

0

αi(t − τ)w(τ)dτ

=
2n−1∑
i=0

[Φ]i{G}βi(t) = [CΦ,G]{β}, (F.21)

where the matrix [CΦ,G] is

[CΦ,G] = [[Φ]2n−1{G}, [Φ]2n−2{G}, . . . , [Φ]{G}, {G}]. (F.22)

The matrix [CΦ,G] is called the controllability matrix.
The phase canonical transformation (F.12) is

{x(t)} = [CA,B ]{β} = [K]{s(t)} = [K][CΦ,G]{β}, (F.23)

which means that
{[CA,B ] − [K][CΦ,G]} {β} = {0}, (F.24)

thus
[K] = [CA,B ][CΦ,G]−1. (F.25)

The inverse of the controllability matrix [CΦ,G]−1 can be verified to be [72]

[CΦ,G]−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0
d1 1 · · · 0 0

d2 d1
. . . 0 0

...
... · · · 1 0

d2n−1 d2n−2 · · · d1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (F.26)

Writing the observability matrix [C̄A,B ] and the controllability matrix
[C̄Φ,G] in an opposite sequence will have no influence on the state transfor-
mation matrix [K]. The inverse of the controllability matrix [CΦ,G]−1 can be
verified to be

[C̄Φ,G]−1 =

⎛
⎜⎜⎜⎜⎜⎝

d1 d2 · · · d2n−1 1
d2 d3 · · · 1 0
...

... · · ·
...

...
d2n−1 1 · · · 0 0

1 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎠

. (F.27)

The covariance matrix [M ] can now calculated using the following expression

[M ] = [K][Q][K]T , (F.28)

where the covariance matrix [Q] is obtained from

[Φ][Q] + [Q][Φ]T = −Sw {G}{G}T . (F.29)
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Example. Two coupled oscillators illustrate the details of the computation.
The system is

[A] =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 1 −0.02 0.02
1 −2 0.02 −0.04

⎞
⎟⎟⎠ , {B} =

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠ .

Calculate the state transformation matrix [K] to obtain the second realization
[Φ] and {G}.

The coefficients di of the characteristic polynomial χ(λ) are

d1 = 0.06, d2 = 3.0004, d3 = 0.04, d4 = 1.0

The observability matrix [CA,B] is

[CA,B ] =

⎛
⎜⎜⎝

−0.9992 −0.02 1.0 0.0
0.9988 0.02 0.0 0.0
0.07996 −0.9992 −0.02 1.0

−0.119936 0.9988 0.02 0.0

⎞
⎟⎟⎠ ,

and the controllability matrix [CΦ,G] is

[CΦ,G] =

⎛
⎜⎜⎝

1.0 0.0 0.0 0.0
−0.06 1.0 0.0 0.0

−2.9968 −0.06 1.0 0.0
0.319832 −2.9968 −0.06 1.0

⎞
⎟⎟⎠ ,

and the inverse of the controllability matrix [CΦ,G]−1 is

[CΦ,G]−1 =

⎛
⎜⎜⎝

1.0 0.0 0.0 0.0
0.06 1.0 0.0 0.0

3.0004 0.06 1.0 0.0
0.04 3.0004 0.06 1.0

⎞
⎟⎟⎠ .

Finally the state transformation matrix [K] = [CA,B][CΦ,G]−1 can be ob-
tained:

[K] =

⎛
⎜⎜⎝

2.0 0.04 1.0 0.0
1.0 0.02 0.0 0.0
0.0 2.0 0.04 1.0
0.0 1.0 0.04 0.0

⎞
⎟⎟⎠ .

Lyapunov’s equation

[Φ][Q] + [Q][Φ]T = −{G} {G}T = −C, (F.30)

can be solved more explicitly [65], where the RHS of (F.30) is given by
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[C] =

⎛
⎜⎜⎜⎝

0 · · · 0 0
0 · · · 0 0
...

...
...

...
0 · · · 0 1

⎞
⎟⎟⎟⎠ , (F.31)

and the transformed state matrix [Φ] and the transformed input vector {G}
are given in (F.13). The covariance matrix is [Q] = [E{sisj }]. The expected
values are expressed in terms the matrix [Q], i, j = 1, 2, . . . , 2n, [65]

E{sisj } =

{
0, i + j odd;

(−1)
(j−i)

2 q j+i
2

, i + j even,
(F.32)

where the numbers q1, q2, . . . , q2n are uniquely determined by the 2n linear
equations
{

(−1)k
∑

k
2 ≤s≤ 2n+k

2
(−1)sd2n−2s+kqs+1 = 0, k = 0, 1, . . . , 2n − 2;

(−1)k
∑

k
2 ≤s≤ 2n+k

2
(−1)sd2n−2s+kqs+1 = 1

2 , k = 2n − 1,
(F.33)

where d0 = 1.

Example. For 2n = 6 equations (F.32) and (F.33) states that

[E{sisj }] =

⎛
⎜⎜⎜⎜⎜⎜⎝

q1 0 −q2 0 q3 0
0 q2 0 −q3 0 q4

−q2 0 q3 0 −q4 0
0 −q3 0 q4 0 −q5

q3 0 −q4 0 q5 0
0 q4 0 −q5 0 q6

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where q1, q2, . . . , q2n are determined by the linear equations
⎛
⎜⎜⎜⎜⎜⎜⎝

d6 −d4 d2 1 0 0
0 d5 −d3 d1 0 0
0 −d4 d4 −d2 1 0
0 0 −d5 d3 −d1 0
0 0 d6 −d4 d2 −1
0 0 0 d5 −d3 d1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

q1

q2

q3

q4

q5

q6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
1
2

⎞
⎟⎟⎟⎟⎟⎟⎠

.



G

Correlation Coefficients

The 3D wave equation is derived in [185] and is given by

∇2p − p̈

c2
= 0, (G.1)

where p is the fluctuation in pressure or sound pressure, the Laplacian ∇2 =∑
j

∂2

∂2xj
, j = 1, 2, 3 and c =

√
γ P0

ρ0
≈ 340 m/s the speed of sound with

P0 = 105 Pa the ambient pressure, ρ0 = 1.21 kg/m2 and γ = 1.4 is the ratio
of the specific heats of the gas.

Using the Fourier transform we can transform the sound pressure into the
frequency domain, p(t) = p(ω)ejωt and the Helmholtz equation [185] will be
obtained

∇2p(x, y, z, ω) + k2p(x, y, z, ω) = 0, (G.2)

where k = ω
c is the wave number. The Helmholtz equation in for example

only in the x-direction can be written as follows

d2p(x, ω)
dx2

+ k2p(x, ω) = 0, (G.3)

with the general solution

p(x, ω) = Ae−jkx + Bejkx, (G.4)

where A and B are arbitrary constants and can be solved using the boundary
conditions. The term Aej(ωt−kx) is a wave travelling in the positive x-direction
and the term Bej(ωt+kx) is a wave travelling in −x-direction. The waves are
periodic and the pressures repeat after ωt − kx = 2nπ and ωt + kx = 2nπ,
respectively, where n is an integer. At a given time, the pressure repeats after
a distance of λ = 2pi/k. The quantity λ is called the wave-length.

We define a vectorial wave number {k} = k{l} propagating in the positive
direction of {k} with modulus k. We define also a position vector {r}.
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Fig. G.1. Correlation in a plane wave

Any sound wave travelling in the direction of the vector {k} gives a sound
pressure at the position vector {r}

p(r, t) = Aej(ωt− {k}T {r}), (G.5)

where {k}T {r} = k1x + k2y + k3z, and k2 = k2
1 + k2

2 + k2
3.

Suppose a plane wave of wavelength λ passes from the point A to B, and
θ let be the angle between the vector {k} of the wave fronts and the vector
{r} (the line AB with a length r). This is illustrated in Fig. G.1.

The inner product {k}T {r} = kr cos θ. Then the pressure at point B is
given by p2 = ej(ωt−kr cos θ).

We define the correlation coefficient between the sound pressure at two
points A and B in a sound field as [38]

R =
〈p1p2〉av

[〈p2
1〉av 〈p2

2〉av]
1
2
, (G.6)

where p1(t) and p2(t) are the respective instantaneous sound pressures at time
t at the two points, and the angular brackets denote long time average. That
means that

〈p1p2〉av =
1
T

∫ T

0

p1(t)p2(t)dt. (G.7)

Cancelling out the common factor 1
T we obtain the correlation coefficient

R =

∫ T

0
p1(t)p2(t)dt

[
∫ T

0
p2
1(t)dt

∫ T

0
p2
2(t)dt]

1
2

. (G.8)

Following the Cauchy-Schwarz inequality [100]
∣∣∣∣
∫ T

0

p1(t)p2(t)dt

∣∣∣∣
2

≤
∣∣∣∣
∫ T

0

p2
1(t)dt

∣∣∣∣
2∣∣∣∣
∫ T

0

p2
2(t)dt

∣∣∣∣
2

. (G.9)

We see that the correlation coefficient is |R|2 ≤ 1; that means −1 ≤ R ≤ 1.
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In the following calculation of the correlation coefficients we will make use
of the relations given below [100]

sin(α ± β) = sin α cosβ ± cosα sinβ, (G.10)
cos(α ± β) = cos α cosβ ∓ sin α sin β, (G.11)∫ x

0

sin2 aydy =
x

2
− sin 2ax

4a
, (G.12)

∫ x

0

cos2 aydy =
x

2
+

sin 2ax

4a
. (G.13)

If p1(t) and p2(t) are both sinusoidal of the same frequency, but differ in
phase by φ, so that p(t) = cos ωt and p2 = cos(ωt − φ), then the correlation
coefficient R = cosφ. The integration is done over the period T = 2π

ω .
The correlation coefficient R between the point A and B in Fig. G.1 be-

comes R = cos(kr cos θ). The real parts of the pressures p1 and p2 respectively
in the points A and B are given by

p1(t) = cos(ωt), (G.14)
p2(t) = cos(ωt − kr cos θ). (G.15)

To obtain the correlation coefficient R the following integrals has to be eval-
uated with T = 2π

ω :

∫ 2π
ω

0

p1(t)p2(t)dt =
π

ω
cos(kr cos θ), (G.16)

∫ 2π
ω

0

p2
1(t)dt =

π

ω
, (G.17)

∫ 2π
ω

0

p2
2(t)dt =

π

ω
. (G.18)

The value of R̄ for a random sound field can now be obtained from the
definition of such field as having equal weights to all directions of the incident
sound: a the correlation coefficient R̄ is the average for all directions. This
average R̄ is

R̄ =
1
2π

∫ π

0

∫ 2π

0

cos(kr cos θ) sin θdϕdθ

=
sin(kr)

kr
, (G.19)

which is the cross-correlation coefficient for the sound pressure at two points,
distance r apart, in a random sound field of wave number k.

The derivation of the correlation coefficient R̄ can also be found in Henrich
Kuttruff’s book [104] about room acoustics.



H

Approximations for the Joint Acceptance and
Acoustic Response Analysis

H.1 Theory

The theory discussed in this appendix is based on [17, 18]. The method is
applied to calculate structural response of sandwich panels of the Herschel
spacecraft service module (SVM) exposed to acoustic pressures [211].

A linear elastic plate or shell is exposed to acoustic pressures over large
portions of its surface. The undamped equation of motion of the continuous
structure is

m
∂2w

∂t2
+ L(w) = p, (H.1)

where w(x, y, z, t) is the displacement field, x, y, z are the spatial coordinates,
p(x, y, z, t) is the pressure field on the exposed surface and t is the time,
m(x, y, z) is the mass per unit of area and L() is a linear operator representing
the load-deflection relationship of the structure.

Example. The linear operator for the out-of-plane bending of a thin flat
plate is given for w(x, y, t)

L(w) =
Et3

12(1 − ν2)

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4

)
,

where E is the Young’s modulus, t is the plate thickness, ν is Poisson’s ratio,
and x, y are the rectangular coordinates.

If the operator L(w) is self-adjoint, then the eigenvalue problem associated
with (H.1) can be written as follows

ω2
i mw̃i − L(w̃i) = 0, (H.2)

where ω2
i is the eigenvalue (ωi is the natural frequency) for the ith vibra-

tion mode (eigenfunction) w̃1. The vibration modes are orthogonal over the
structure
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∫
A

w̃imw̃jds = 0, i �= j,

∫
A

w̃iL(w̃j)ds = 0, i �= j, (H.3)

assuming no repeated eigenvalues, thus ω2
i �= ω2

j . A is the domain of the
structure and ds is an element of that domain.

The physical displacement function w(w, y, z, t) will be expressed in terms
of time dependent generalized coordinates ηi(t) and spatial linear independent
eigenfunctions w̃i(x, y, z) as follows

w(x, y, x, t) =
N∑

i=1

ηi(t)w̃i(x, y, z). (H.4)

Substitute the series (H.4) in (H.1), apply the orthogonality relations of
(H.3) and (H.2), and subsequently introduce the ad hoc (uncoupled) modal
viscous damping. The equation of motion of the continuous structural sys-
tem can be expressed in terms the generalized coordinates ηi(t), to give the
following uncoupled equations of motion;

η̈i + 2ζiωiη̇i + ω2
i ηi =

∫
A

w̃ipds∫
A

w̃2
i mds

, i = 1, 2, . . . , N. (H.5)

Those are the well known N equations of motion of a viscously damped SDOF
systems.

It is reasonable to decompose the spatial physical pressure field p(x, y, z, t)
in the same manner as the displacement field, thus

p(x, y, x, t) =
N∑

i=1

ψi(t)p̃i(x, y, z). (H.6)

In the following analysis we consider the modal structural response ηi in
the vicinity of the natural frequency ωi. It is reasonable to consider each
element p̃i as representing the behavior of the plate in the neighborhood of
the ith vibration mode w̃i. Then equations (H.5) become

η̈i + 2ζiωiη̇i + ω2
i ηi =

∫
A

w̃iψip̃ids∫
A

w̃2
i mds

= Jiψi, i = 1, 2, . . . , N, (H.7)

where Ji is the modal joint acceptance given by

Ji =

∫
A

w̃ip̃ids∫
A

w̃2
i mds

, i = 1, 2, . . . , N. (H.8)

The following approximations for the modal joint acceptance Ji is proposed
by Blevins in [17]. They give approximations for the shape of the surface
pressure distributions:
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1. p̃i(x, y, z) = 1. The surface pressure distribution can be approximated as
a constant pressure over the surface. This approximation is very simple.
It can be expected to be applicable when the acoustic half wavelength
exceeds the lateral dimensions of the structure, as is often the case for
fundamental modes of plate structures. This method cannot be applied
for anti-symmetric modes.

2. p̃i(x, y, z) = Sign[w̃i(x, y, z)]. The surface pressure distribution can be
approximated by Sign(w̃i), a function whose value is either +1 and −1
corresponding to the sign of w̃i. The disadvantage is that the square wave
form of Sign(w̃i) is not a realistic representation of a pressure field, and
numerical integration is required to determine the joint acceptance.

3. p̃i(x, y, z) = [sin kx, cos kx]. The surface pressure distribution can be sim-
ulated by a sinusoidal dependence of a travelling wave. This more complex
representation requires numerical evaluation of the joint acceptance.

4. p̃i(x, y, z) = m(x, y, z)w̃i(x, y, z). The surface pressure distribution can
be approximated by the mass-weighted structural mode shape. For the
fundamental mode of a panel, the estimate is similar to the assumption
of uniform pressure. The advantage of the approach is that it tends to
produce a conservative estimate for each mode is exactly the modal joint
acceptance Ji = 1. The validity of the approximation depends on the
degree of which the sound field conforms to the vibration mode.

The mass-weighted mode shape will be used for the shape of the pressure
field on the surface of the structure, thus

p̃i = mw̃i, (H.9)

and the associated joint acceptance (H.8)

Ji = 1. (H.10)

The modal approximation of the generalized response (H.7) can now be
written as

η̈i + 2ζiωiη̇i + ω2
i ηi = ψi, i = 1, 2, . . . , N, (H.11)

For a stationary random pressure loading, the single-sided pressure PSD
function is Wp(f) (Pa2/Hz), thus

ψ2
rms =

∫ f2

f1

Wp(f)df, (H.12)

where ψrms is the root mean square pressure over the frequency band f1 to
f2. As the integration limits are spread to encompass the full frequency range
f1 = 0 to f2 → ∞ the mean square of the generalized coordinate ηi is given
by

η2
i,rms =

Wp(fi)
8ζi(2πfi)3

, i = 1, 2, . . . , N. (H.13)
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The dynamic response of plates and shells to surface pressures is assembled
on a mode by mode basis, using the single mode relation

wi

w̃i
= ηi, (H.14)

where wi is the physical deflection of the ith mode (H.4). The procedure for
calculating the displacement for any mode of the plate or shell exposed to the
acoustic loading can be carried out in four steps [17]:

1. Identify the rms acoustic pressure applied to the surface of the structure in
the frequency range of interest. In general, the sound pressure level (SPL)
are expressed in dB. The rms of the pressure can be calculated using

p2
rms = p2

ref 10
SPL
10 ,

where the reference pressure is pref = 2 × 10−5 Pa. The single-sided PSD
of the pressure is

Wp(f) =
p2
rms

Δf

(Pa2/Hz), where Δf (Hz) is the bandwidth in e.g. the octave or one-third
octave band. For the octave band, the band width is Δf1 = 1.414fc; for
the one-third octave band, the band width is Δf 1

3
= 0.232fc and fc (Hz)

is the center frequency.
2. Perform the modal analysis to calculate the natural frequencies fi = ωi

2π ,
vibration modes w̃i, and associated modal stresses σ̃i in the frequency
range of interest. Estimate a modal damping ratio ζi.

3. Select a characteristic point on the structure which will be matched to the
acoustic pressure. The applied pressure field in approximated by the mass-
weighted mode shape p̃i = mw̃i. Ordinarily this reference point is a point
of maximum response in the mode of interest. Calculate a characteristic
modal pressure

p̃i = m(xr, yr, zr)|w̃i(xr, yr, zr)|,

where xr, yr and zr are the coordinates of the reference point and
m(xr, yr, zr) is the mass per unit of area of the thin-walled structure at
the reference point.

4. The response to the acoustic pressure field is scaled relative to the modal
response using the solution of (H.13). If the pressure field has a random
broadband spectrum Wp(f), then

wi,rms(xr, yr, zr, t)
w̃i(xr, yr, zr)

=
σi,rms(xr, yr, zr, t)

σ̃i(xr, yr, zr)
=

1
p̃i

√
Wp(fi)

8ζi(2πfi)3
. (H.15)

This is a very useful equation for estimating the structural response of
plate and shell structures exposed to random pressure fields.
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Example. Consider an Al-alloy simply supported rectangular thin plate a =
210 mm by b = 140 mm and thick t = 1.2 mm. The Young’s modulus is
E = 70 GPa, the density is ρ = 2770 kg/m2 and the modal damping ratio is
ζ = 0.017. The SPL is 145.7 dB (pref = 2.0 × 10−5 Pa) in the one-third octave
band about the a center frequency fc = 200 Hz (fu = 224 Hz, fl = 178 Hz).

The PSD of the pressure can be calculated

Wp =
p2
rms

0.232fc
= 3202.9 Pa2/Hz.

The natural frequencies (Hz) of the simply supported plate are given by

fij =
π

2

√
D

m

[(
i

a

)2

+
(

j

b

)2]
, i, j = 1, 2, . . . ,

and the corresponding vibration modes are

w̃ij(x, y) = sin
iπx

a
sin

jπx

b
, i, j = 1, 2, . . . ,

where the bending stiffness of the plate is D = Eh3

12(1−ν2) (Nm2) and m = ρh

is the mass per unit of area (kg/m2).
The corresponding modal stresses are

σ̃x =
6π2D(i2b2 + νj2a2) sin iπx

a sin jπy
b

a2b2h2
, i, j = 1, 2, . . . ,

and

σ̃y =
6π2D(j2a2 + νi2b2) sin iπx

a sin jπy
b

a2b2h2
, i, j = 1, 2, . . . .

The mass-weighted pressure field is

p̃ = m sin
iπx

a
sin

jπy

b
.

For i = 1, j = 1, x = a
2 , y = b

2 and ν = 0.33 the following results can be
calculated:

• f11 = 213.6 Hz
• σ̃x = 1.8380 × 1010 Pa
• σ̃y = 2.7215 × 1010 Pa
• p̃ = 3.3240 kg/m

The stress at the center of the simply supported plate can now being
calculated using

σx,rms =
σ̃x

p̃

√
Wp

8ζ(2πf11)3
= 1.7265 × 107 Pa,
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and

σy,rms =
σ̃y

p̃

√
Wp

8ζ(2πf11)3
= 2.5564 × 107 Pa.

The rms acceleration at the center of the simply supported plate is

arms =
(2πf11)2w̃(0, 0)

p̃

√
Wp

8ζ(2πf11)3
=

w̃(0, 0)
p̃

√
πf11Wp

4ζ
= 172.4 g.

This is a rather high acceleration, however, the SPL is very severe.

The bending structural wave length λb of uniform panels is given by

λb = 4

√
Et3

12m

√
2π

f
, (H.16)

the shear structural wave length of the uniform panel is

λs =
1
f

√
Et

2m(1 + ν)
, (H.17)

and the acoustic wave length is

λa =
f

c
=

2π

k
. (H.18)

The coincidence frequency is the frequency at which the acoustic wave
length is equal to the bending structural (or shear structural) wave length,
λa = λb, thus

fcoincidence =
c2

2πt

√
12m

Et
. (H.19)

Example. An Al-alloy uniform plate is thick t = 1.25 mm, the density is
ρ = 2800 kg/m2, the Young’s modulus is E = 70 GPa and the Poisson’s ratio
ν = 0.33. The speed of sound in air is c = 340 m/s.

The bending structural wave length at f = 200 Hz is λb = 0.2381 m,
the shear structural wave length at f = 200 Hz is λs = 17.6777 m and
the coincidence frequency for bending of the uniform plate is fcoincidence =
10 197 Hz. The wave length at fcoincidence is λ = 0.0333 m

Below the coincidence frequency the wave length of the sound field exceeds
the wave length of the bending waves of the plate.

Blevins proposed an improvement of the approximation of structural re-
sponse of plates and shells exposed to an acoustic pressure field by using
one-dimensional sinusoidal acoustic and vibration modes, thus for the pres-
sure field

p̃(x) = m sin(kx + φ), (H.20)
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and for the vibration mode

w̃(x) = sin
(

iπx

L

)
, (H.21)

where φ is the phase angle, k the acoustical wave number k = 2π
λa

, L is the
characteristic length of the panel (length or width) and the modal index i = 2L

λb

is called the number of half waves.
The corresponding joint acceptance Jx(φ) can be calculated and becomes

Jx(φ) =

∫
L

w̃(x)p̃(x)dx∫
L

mw̃(x)2dx

=
sin(kL − iπ + φ) − sin φ

kL − iπ
− sin(kL + iπ + φ) − sin φ

kL + iπ
. (H.22)

A sound pressure field is the sum of standing and travelling waves. A simple
travelling wave in x-direction can be written as follows

P (x, t) = P0 sin(kx − ωt) = P0 sin kx cos ωt − P0 cos kx sin ωt, (H.23)

where the pressure field is decomposed into two standing waves. This is the
solution of the one dimensional wave equation (see Appendix G (G.4)).

The travelling wave is thus the sum of two components, 90 degrees out
of phase; the response is also the sum of two phase-shifted components. The
magnitude of the response can be calculated by using the magnitude of the
joint acceptance as the vector sum of two components

Jx,wave =
√

J2
x(φ = 0) + J2

x(φ = π/2). (H.24)

In general, the acoustic and structural waves will travel in both orthogonal
directions for plates and shells. The 2-D joint acceptance can be approximated
by

J2D = Jx,waveJy,wave . (H.25)

Blevins proved that if the acoustic wavelength is equal to the structural wave-
length λa = λb, the joint acceptance J2D = 1. If there is a mismatch between
the acoustic and structural wave length by 20% or more, the joint acceptance
decays rapidly for the higher modes (large vales of i).

If the acoustic wavelength of a panel exceeds the structural wavelength
in a fundamental mode, the maximum value of the two-dimensional joint
acceptance is 16/π2 = 1.621. This can be easily proved, see [211]. The spatial
pressure field is assumed as follow:

p̃1(x, y) = m, (H.26)

and the mode shapes in the x- and y-direction are respectively

w̃1(x) = sin
πx

a
, w̃1(y) = sin

πy

b
, (H.27)
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where a is the length and b is the width of the panel. The two-dimensional
joint acceptance J11 can be written

J11 =

∫ ∫
A

p̃1w̃1(x)w̃1(y)dA∫ ∫
A

mw̃2
1(x)w̃2

1(y)dA
=

∫ ∫
A

w̃1(x)w̃1(y)dA∫ ∫
A

w̃2
1(x)w̃2

1(y)dA

=

∫
A

w̃1(x)dx
∫

A
w̃1(y)dy∫

A
w̃2

1(x)dx
∫

A
w̃2

1(y)dy
=

2a
π × 2b

π
a
2 × b

2

=
16
π2

. (H.28)

Equation (H.15) can be corrected by introducing the two-dimensional joint
acceptance factor J2D as follows

wi,rms(xr, yr, zr, t)
w̃i(xr, yr, zr)

=
σi,rms(xr, yr, zr, t)

σ̃i(xr, yr, zr)
=

J2D

p̃i

√
Wp(fi)

8ζi(2πfi)3
. (H.29)

An approximate analytical method is discussed for the dynamic response of
panels to surface sound pressures. The method is most applicable to relatively
uniform flat and curved panels which respond out of plane to the pressures.
The method requires the natural frequencies and mode shapes of the panels.
The method also requires that the relationship between modal deformation
and modal stress be known if stress predictions are wanted. Damping and the
PSD of the applied pressure are also required inputs.

The method does not require exact knowledge of the distribution of the
applied surface pressures. Corrections are then applied to allow for the in-
fluence of the acoustic wavelength relative to the wavelength of the panel
modes. The method can be applied for both fundamental and higher modes.
This Appendix is based on a paper of Blevins [17].

Problems

H.1. Consider a thin simply supported rectangular plate of length a, width
b, thickness t and a constant mass per unit of area m, which is exposed to a
sound pressure field. The Young’s modulus is E and the Poison’s ratio is ν.
The vibration modes w̃i(x, y), the natural frequencies fij(Hz) and the modal
stress σ̃ij(x, y) distribution are given by

• fij = ωij

2π = π
2 [ i2

a2 + j2

b2 ]
√

Et3

12m(1−ν2) (Hz), i, j = 1, 2 . . .

• w̃ij(x, y) = sin iπx
a sin jπx

b , i, j = 1, 2 . . .

• σ̃ij(x, y) = Et
2(1−ν2) [

(iπ)2

a2 + ν (jπ)2

b2 ] sin iπx
a sin jπx

b , i, j = 1, 2 . . .

Evaluate the modal joint acceptance Jij for the given modes and the var-
ious approximations of the pressure field distribution p̃ij(x, y):

1. p̃ij(x, y, z) = m, constant
2. p̃ij(x, y, z) = mSign[w̃ij(x, y, z)], square wave
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3. p̃ij(x, y, z) = m sin kx, sinusoidal wave
4. p̃ij(x, y, z) = m cos kx, cosine wave
5. p̃ij(x, y, z) = mw̃ij(x, y, z), mass-weighted mode shape

Answers:

1. Jij = 4[− cos iπ][1−cos jπ]
π2ij .

2. Jij = 16
π2

3. Jij = 2
jπ [1 − cos jπ][ sin(ka−iπ)

ka−iπ − sin(ka+iπ)
ka+iπ ]

4. Jij = 2
jπ [1 − cos jπ][ 1−cos(ka+iπ)

ka+iπ − 1−cos(ka−iπ)
ka−iπ ]

5. Jij = 1

Calculate the natural frequencies fij , modal joint acceptances Jij and
modal stresses σ̃ij(x, y) in the middle of the plate (x, y = a

2 , b
2 ) for i, j = 1, 2, 3

for a simply supported rectangular Al-alloy plate, a = 200 mm, b = 125 mm,
t = 1.25 mm, the density is ρ = 2700 kg/m3, the Young’s modulus is E =
70 GPa and the Poisson’s ratio is ν = 0.33. The speed of sound in air is
c = 340 m/s and the wave number is given by k = ωij

c .
Answers: f11 = 272.1 Hz, wave number k = 5.03, wave length λ = c

f11
=

1.25 m, the modal stress σ̃x = 1.8380 × 1010 Pa, σ̃y = 2.7215 × 1010 Pa, and
the joint acceptances become:

1. J11 = 8
π2

2. J11 = 16
π2

3. J11 = 0.3814
4. J11 = 0.6934
5. J11 = 1

H.2. The deflection of an simply supported circular plate uniformly loaded
by unit pressure is given by [207]

w(r) =
(R2 − r2)

64D(1 + ν)

(
5 + ν

1 + ν
R2 − r2

)
,

and the maximum corresponding stresses (radial, tangential) at the center of
the plate are

σr = σt =
3(3 + ν)R2

8t2
,

and the mass per unit of area is m, where the bending stiffness is D = Et3

12(1−ν2) ,
R is the radius of the plate, E is Young’s modulus, ν is the Poisson’s ratio
and t the constant thickness of the plate. The deflection w(r) of plate loaded
by an unit static pressure is considered to be the vibration mode w̃(r).

Calculate the natural frequency of the simply supported plate with the aid
of Rayleigh’s quotient R(w) ≈ ω2

w = U
T ∗ , inserting ν = 0.33, where

• the strain energy is U = 1
2

∫
D[(d2w

dr2 + 1
r

dw
drt )

2 − 2(1−ν)
r

dw
dr

d2w
dr2 ]rdrdθ,
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• the kinetic energy is T ∗ = 1
2

∫ ∫
mw2rdrdθ.

Answer: fw = ωw

2π = 0.2429
√

Et3

mR4 (Hz). This answer had been obtained using
the software programme MAPLE�, V9.5.

The modal damping ratio is ζ and the constant single-sided PSD of the
pressure is given Wp (Pa2/Hz).

Calculate the rms stresses σr,rms and σt,rms at the center of the simply
supported circular plate applying Blevins approximation method assuming a
mass-weighted pressure field distribution and an associated joint acceptance
J = 1.
Answers:

• σ̃(0)r,t = 3(3+ν)R2

8t2 = 1.2488R2

t2

• p̃ = m|w̃(0)| = m|w(0)| = 0.6696mR4

Et3

• fw = 0.2429
√

Et3

mR4

• σ(0)r,t,rms = σ̃(0)r,t

p̃

√
Wp

8ζ(2πfw)3

H.3. The mode shape of a one-dimensional structure is given by

w̃(x) = sin
(

iπx

L

)
,

and the one-dimensional pressure field is defined as

p̃(x) = m sin(kx + φ),

where φ is the phase angle, k the acoustical wave number k = 2π
λa

, L is the
length and the modal index is i = 2L

λb
or also called the number of half waves.

The corresponding joint acceptance Jx(φ) becomes

Jx(φ) =
sin(kL − iπ + φ) − sin φ

kL − iπ
− sin(kL + iπ + φ) − sinφ

kL + iπ
.

The joint acceptance is the vector sum of two components, thus

Jx,wave =
√

J2
x(φ = 0) + J2

x(φ = π/2).

Calculate Jx,wave for λb

λa
= 1 for i = 1, 2, . . . .

Answer: Jx,wave = 1.3066 for all i.



I

Simplification of Conductance

An elastic 2-D body is excited by a force F (ω) at (x0, y0) and the velocity
v(ω) is observed at location (x, y). Generally the mobility function Y (x, y, ω)
can be written as follows

Y (x, y, ω) =
jω

Mp

∑
r

φr(x, y)φr(x0, y0)
[(ω2

r − ω2) + jηrωrω]
, (I.1)

where φr(x, y) is a vibration mode (mode shape) normalized for a uniform
mass per unit of area mp and the total mass Mp = Ap × mp such that

1
Apmp

∫
A

mpφi(x, y)φj(x, y)dA =
1

Ap

∫
A

φi(x, y)φj(x, y)dA = δij , (I.2)

and ωr is the radian natural frequency and ηr the loss factor associated with
mode r. The point mobility at location (x0, y0) can be easily derived from
(I.1) and is as follows

Y (x0, y0, ω) =
jω

Mp

∑
r

φ2
r(x0, y0)

[(ω2
r − ω2) + jηrωrω]

. (I.3)

The real part of the mobility � {Y (x0, y0, ω)} can be written

� {Y (x0, y0, ω)} =
1

Mp

∑
r

ηrωrω
2φ2

r(x0, y0)
[(ω2

r − ω2)2 + (ηrωrω)2]
. (I.4)

The average of the real part of the mobility � {Y (x0, y0, ω)} can be calculated
over all driving points (x0, y0) on the plate

〈 � {Y (x0, y0, ω)} 〉A =
1

Mp

1
Ap

∫
A

∑
r

ηrωrω
2φ2

r(x0, y0)
[(ω2

r − ω2)2 + (ηrωrω)2]
dA, (I.5)

with 1
Ap

∫
A

φ2
r(x0, y0)dA = 1 the average value 〈 � {Y (x0, y0, ω)}〉A becomes

J. Wijker, Random Vibrations in Spacecraft Structures Design,
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〈 � {Y (x0, y0, ω)} 〉A =
1

Mp

∑
r

ηrωrω
2

[(ω2
r − ω2)2 + (ηrωrω)2]

. (I.6)

Equation (I.6) describes the average conductance of a structure over all the
driving points (x0, y0). An average over the frequency band Δω will also be
taken, thus

〈 � {Y (x0, y0, ω)} 〉AΔω =
1

Mp

1
Δω

∫
Δω

∑
r

ηrωrω
2

[(ω2
r − ω2)2 + (ηrωrω)2]

dω. (I.7)

The integral ∫
Δω

ω2

[(ω2
r − ω2)2 + (ηrωrω)2]

dω =
π

2ηrωr
, (I.8)

because (see Appendix B)
∫ ∞

− ∞

ω2

[(ω2
r − ω2)2 + (ηrωrω)2]

dω =
π

ηrωr
. (I.9)

The evaluation of (I.7) will result in

〈 � {Y (x0, y0, ω)} 〉AΔω =
1

Mp

πN(Δω)
2Δω

=
n(ω)π
2Mp

, (I.10)

where N is the number of modes in the frequency band width Δω and when
introducing for the modal density n(f) = n(ω)

2π , the following known equation
will be obtained and (I.10) becomes

〈 � {Y (x0, y0, ω)} 〉AΔω =
n(f)
4Mp

. (I.11)

This means that if the average conductance of all driving points as well as
over the frequency band Δω = 2πΔf is measured the modal density n(f)
can be computed directly using the total mass Mp of the test structure under
investigation. The natural frequencies should be lie close to each other in the
frequency band.



J

Modal Density of Composite Sandwich Panels

This appendix J is based on an article of Renji [159].

J.1 Equation of Motion

The vertical equilibrium of an element in a rectangular plate is given by [213]

∂Qx

∂x
+

∂Qy

∂y
− p = 0, (J.1)

where Qx is the shear force in a plane x-z, Qx is the shear force in the y-z
plane and p is the uniform pressure load. The equilibrium of the moment
about the y-axis is

∂Mx

∂x
+

∂Mxy

∂y
− Qx = 0, (J.2)

and the equilibrium of the moment about the x-axis is

∂My

∂y
+

∂Myx

∂y
− Qy = 0, (J.3)

where Mxx, Mxy, Myx and Myy are the moment resultants. From the equa-
tions (J.2), (J.3) and (J.1) the following equilibrium equation can be derived

∂2Mx

∂x2
+

∂Mxy

∂x∂y
+

∂Myx

∂x∂y
+

∂2My

∂y2
− p = 0. (J.4)

The twisting moments Mxy and Myx are equal because

Mxy =
∫ t

2

− t
2

τxyzdz =
∫ t

2

− t
2

τyxzdz = Myx, (J.5)

thus (J.4) can be written as follows
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Solid Mechanics and Its Applications 165,
c© Springer Science + Business Media B.V. 2009
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∂2Mx

∂x2
+ 2

∂Mxy

∂x∂y
+

∂2My

∂y2
− p = 0. (J.6)

The relation between the moment resultants and the curvatures for a sym-
metric laminate (balanced lay-up)1 is [93]

⎧⎨
⎩

Mx

My

Mxy

⎫⎬
⎭ =

⎡
⎣D11 D12 0

D21 D22 0
0 0 D66

⎤
⎦ =

⎧⎪⎨
⎪⎩

∂φx

∂x
∂φy

∂y
∂φx

∂y + ∂φy

∂x

⎫⎪⎬
⎪⎭ , (J.7)

where φx and φy are the rotations of the transverse plane due to bending.
To include the effect of transverse shear the Mindlin’s theory is used. The
average shear angle is taken to be the rotation of the transverse plane. For
a sandwich panel, this theory gives accurate results. Hence, if γx and γy are
the average rotations of the transverse plane due to shear, φx = ∂w

∂x − γx and
φy = ∂w

∂y − γy. Equation (J.6) will now rewritten and becomes

D11
∂4w

∂x4
+ 2(D12 + 2D66)

∂4w

∂x2∂y2
+ D22

∂4w

∂y4

= D11
∂3γx

∂x3
+ (D12 + 2D66)

∂2

∂x∂y

(
∂γx

∂x + ∂γy
∂y

)
+ D22

∂3γy

∂y3
+ p. (J.8)

The shear rigidities are defined by

Sx = Gxh

(
1 +

t

h

)2

, Sy = Gyh

(
1 +

t

h

)2

, (J.9)

where Gx and Gy are the shear moduli, h the height of the core and t is the
thickness of the face sheet (equal face sheets). In general the “isotropic” shear
modulus G =

√
GxGy is taken, S = Sx = Sy = Gh(1 + t

h )2.
The average shear angles can be expressed in terms of the shear force

divided by the shear rigidity

γx =
Qx

Sx
, γy =

Qy

Sy
. (J.10)

When (J.10) is substituted in (J.1) the following expression is obtained

S

(
∂γx

∂x
+

∂γy

∂x

)
+ p = 0, (J.11)

or

S

(
∂3γx

∂x3
+

∂3γy

∂x2∂y

)
+

∂2p

∂x2
= 0, (J.12)

1 For an isotropic plate with thickness t, Young’s modulus E and the Poisson’s
ratio ν the bending stiffness matrix becomes D11 = D22 = D, D12 = D21 = νD,

D66 = 1
2
D(1 − ν) and D = Et3

12(1−ν2)
.
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and

S

(
∂3γy

∂y3
+

∂3γx

∂x∂y2

)
+

∂2p

∂y2
= 0. (J.13)

When equations (J.12) and (J.13) are used, (J.8) becomes now

D11
∂4w

∂x4
+ 2(D12 + 2D66)

∂4w

∂x2∂y2
+ D22

∂4w

∂y4

= − 1
S

(
D11

∂2p

∂x2
+ D22

∂2p

∂y2

)
+ p

+ (D12 + 2D66 − D11)
∂3γy

∂x2∂y
+ (D12 + 2D66 − D22)

∂3γx

∂x∂y2
. (J.14)

Terms with the third order of derivatives of the shear angles are now ne-
glected and the pressure is replaced by the inertia force p = −m∂2w

∂t2 , thus the
simplified equation (J.14) becomes [159]

D11
∂4w

∂x4
+ 2(D12 + 2D66)

∂4w

∂x2∂y2
+ D22

∂4w

∂y4

= − m

S

∂2

∂t2

(
D11

∂2w

∂x2
+ D22

∂2w

∂y2

)
− m

∂2w

∂t2
, (J.15)

where m the mass of the panel per unit of area. Equation (J.15) reflects the
equation of motion of a balanced composite sandwich plate, however, some
shear effects are neglected because D11 and D22 are much larger than D12

and D66.

J.2 Modal Density

The area below a constant ω curve in the wave number plane is a measure
of the number of modes N(ω), [21, 219]. For a plate with dimensions a and b
the mode count is given by

N(ω) =
ab

2π2

∫ π
2

0

r2dθ, (J.16)

where for each value of θ, r is the maximum distance to the curve with a
constant ω (see Fig. 4.11). The modal density n(ω) can be derived from (J.16)
and becomes

n(ω) =
dN(ω)

dω
=

ab

2π2

∫ π
2

0

d(r2)
dω

dθ (J.17)

and r2 can be obtained from (J.15).
The solution of a finite plate is assumed to be

W (x, y, ω) = Cej(ωt−kxx−kyy), (J.18)
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where C is a constant and kx and ky are the wave numbers in x and y direction
respectively. When (J.18) is substituted into (J.15) the undamped equation of
motion of the plate will be transformed into the frequency and wave number
domain. And when the deflected W is deleted the following expression is
obtained

D11k
4
x +2(D12 +2D66)k2

xk2
y +D22k

4
y − ω2m

S
(D11k

2
x +D22k

2
y) = mω2. (J.19)

The following wave number space k̄x = 4
√

D11kx and k̄y = 4
√

D22ky will be
constructed. The radius r is related to the wave numbers as follows r cos θ = k̄x

and r sin θ = k̄y or r2 = k̄2
x + k̄2

y. Then the mode count become

N(ω) =
ab

2π2 4
√

D11D22

∫ π
2

0

r2dθ, (J.20)

where r2 can be obtained from (J.19) by using the relationships r cos θ =
4

√
D11kx and r sin θ = 4

√
D22ky. Hence

r4

(
sin4 θ + cos4 θ +

D12 + 2D66

2
√

D11D22

sin2 2θ

)

− r2 mω2

S

(√
D11 cos2 θ +

√
D22 sin2 θ

)
− mω2 = 0, (J.21)

and with

• γ2
1 = 1

2 {1 − D12+2D66√
D11D22

}
• f1(θ) = 1 − γ2

1 sin2 2θ

• f2(θ) = 4

√
D11
D22

cos2 θ + 4

√
D22
D22

sin2 θ,

equation (J.21) can be written as follows

f1(θ)r4 − mω2

S
4
√

D11D22f2(θ)r2 − mω2 = 0. (J.22)

The solution of (J.22) can be easily extracted

r2
1,2 =

1
2f1(θ)

×
[
mω2

S
4
√

D11D22f2(θ)

±

√(
mω2

S
4
√

D11D22f2(θ)
)2

+ 4f1(θ)mω2

]
. (J.23)

The function f1(θ) > 0 thus
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√(
mω2

S
4
√

D11D22f2(θ)
)2

+ 4f1(θ)mω2 >
mω2

S
4
√

D11D22f2(θ), (J.24)

hence the positive root r2 = r2
1 is only applicable. The mode count can be

calculated by substituting (J.23) into (J.20)

N(ω) =
abmω2

4π2S

∫ π
2

0

{
f2(θ)
f1(θ)

+
1

f1(θ)

√[
f2
2 (θ) +

4S2f1(θ)
mω2

√
D11D22

]}
dθ. (J.25)

To calculate the modal density dr2

dω (J.17) needs to be evaluated

dr2

dω
=

1
2f1(θ)

2mω

S
4
√

D11D22

[
f2(θ)

+
1
2

2mω2f2
2 (θ) + 4f1(θ)S2

√
D11D22√

m2ω4f2
2 (θ) + 4mω2f1(θ)S2

√
D11D22

]
. (J.26)

The modal density n(ω) can be derived from (J.20):

n(ω) =
ab

2π2 4
√

D11D22

∫ π
2

0

dr2

dθ
dθ. (J.27)

Equation (J.26) will be substituted in (J.27) and the expression for the modal
density n(ω) becomes

n(ω) =
abmω

2π2S

∫ π
2

0

[
f2(θ)
f1(θ)

+
1

f1(θ)

mω2f2
2 (θ) + 2f1(θ)S2

√
D11D22√

m2ω4f2
2 (θ) + 4mω2f1(θ)S2

√
D11D22

]
dθ, (J.28)

or

n(f) =
2abmf

S

∫ π
2

0

[
f2(θ)
f1(θ)

+
1

f1(θ)

m(2πf)2f2
2 (θ) + 2f1(θ)S2

√
D11D22√

m2(2πf)4f2
2 (θ) + 4m(2πf)2f1(θ)S2

√
D11D22

]
dθ.

(J.29)
If no shear is considered (J.22) can be simplified assuming S → ∞

f1(θ)r4 − mω2 = 0. (J.30)

The root r2 of interest is

r2 =
1

f1(θ)

√
4mω2f1(θ). (J.31)

The derivative dr2

dω can be easily obtained

dr2

dω
=

1
f1(θ)

4mωf1(θ)√
4mω2f1(θ)

. (J.32)
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We can calculate the modal density n(ω) by substituting (J.32) into (J.17)

n(ω) =
ab

2π2 4
√

D11D22

∫ π
2

0

1
f1(θ)

2
√

mf1(θ)√
f1(θ)

dθ

=
ab

2π2

√
m

D11

4

√
D11

D22

∫ π
2

0

d(2θ)√
f1(θ)

=
ab

2π2

√
m

D11

4

√
D11

D22
F

(
γ1,

π

4

)
, (J.33)

where F (γ1,
π
4 ) is the elliptic integral of the first kind, with γ2

1 = 1
2 {1 −

D12+2D66√
D11D22

}, f1(θ) = 1 − γ2
1 sin2 2θ, is defined by [90]

F (k, φ) =
∫ φ

0

dx√
1 − k2 sin2 x

. (J.34)

The modal density n(f) becomes

n(f) =
ab

π

√
m

D11

4

√
D11

D22
F

(
γ1,

π

4

)
. (J.35)

In [22] the following approximate expression for the modal density of an
orthotropic plate is given

n(f) =
√

mA

4

(
1√
D11

+
1√
D22

)
, (J.36)

where A is the area of the plate.

Example. A sandwich panel has dimensions a = 2.5 m and b = 2.0 m. The
total mass is M = 15 kg. The flexural and shear rigidities of the sandwich
panel are D11 = D22 = 5000 N m, D12 = 70 Nm, D66 = 165 Nm and
S = 15 N/m. Calculate the modal densities of the sandwich panel in the
octave band (32.5–8000 Hz). Calculate the modal densities of the same plate,
however, S → ∞, again in the octave band. The calculated modal densities
are plotted in Fig. J.1.
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Fig. J.1. Modal densities sandwich panel



K

Wave Propagation and Group Velocity

The theory about phase velocity and group velocity is based on the book of
Brillouin [23] and [124].

The usual phase velocity cp of waves is defined as the phase difference
between the vibrations observed at two different locations in a free plane
wave. In a wave

ψ = A cos(ωt − kx) = A cos
[
ω

(
t − x

cp

)]
, (K.1)

where the phase velocity cp is
cp =

ω

k
. (K.2)

Another velocity can be defined considering the propagation of a train of
waves with a changing amplitude. This is called the modulation impressed on
a carrier. The modulation results in building up some “groups” (wave-packets)
of large amplitude which moves along with the group velocity cg. A simple
combination of groups obtains when two waves

ω1 = ω + Δω, k1 = k + Δk, (K.3)

and
ω2 = ω − Δω, k1 = k − Δk, (K.4)

are superimposed resulting in

ψ = A cos(ω1t − k1x) + A cos(ω2t − k2x)
= 2A cos(ωt − kx) cos(Δωt − Δkx). (K.5)

The wave in (K.5) represents a carrier with frequency ω and a modulation
with frequency Δω. This wave may be described as a succession of moving
beats (or groups, or wave-packets). The carrier’s phase velocity is cp = ω

k
while the group velocity cg is given by

J. Wijker, Random Vibrations in Spacecraft Structures Design,
Solid Mechanics and Its Applications 165,
c© Springer Science + Business Media B.V. 2009
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Fig. K.1. Series of wavelets

Fig. K.2. k-ω diagram [23]

cg =
Δω

Δk
=

∂ω

∂k
, Δk → 0. (K.6)

The situation is represented in Fig. K.1 where is shown the series of wavelets
(ω, k) with variable amplitude (Δω, Δk). A very useful graphical representa-
tion is created when the frequency ω is plotted against the wave number k as
shown Fig. K.2. The slope of the chord OP gives the phase velocity cp, while
the slope of the tangent at point P yields the group velocity cg.

The frequency ω can be expressed in terms of the wave number k and the
phase velocity cp

ω = kcp, (K.7)

hence
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cg = cp + k
∂cp

∂k
= cp − λ

∂cp

∂λ
, (K.8)

where the wave length λ = k2π. A medium exhibiting a phase velocity is
called a dispersive medium.

Example. The homogeneous undamped equation of motion of a bending
beam is given by

EI
∂4w

∂x4
+ m

∂2w

∂t2
= 0, (K.9)

where EI is the bending stiffness, w is the deflection and m is the mass per
unit of length.

The assumed solution for the deflection is

w(x, t) = Ae−j(ωt−kx), (K.10)

and will be substituted in the undamped equation of motion. This equation
becomes

(EIk4 − ω2m)Ae−j(ωt−kx) = 0.

The wave number k becomes

k =
√

ω 4

√
m

EI
. (K.11)

The phase speed cp in the bending beam can now calculated

cp =
ω

k
=

√
ω

4

√
EI

m
, (K.12)

and the groups velocity becomes

cg =
∂ω

∂k
= 2cp. (K.13)

Summary of Wave Relations [52]
The following is a collection of terms often used in wave analysis:

ω angular frequency (rad/s)
f cyclic frequency f = ω

2π (Hz)
T period T = 1

f = 2π
ω (s)

k wave number k = 2π
λ = ω

cp
(1/m)

λ wave length λ = 2πcp

ω = 2π
k (m)

φ phase of wave φ = kx − ωt = ωcp

cp
(x − cpt) = 2π

λ (x − cpt) (rad)
cp phase velocity cp = ω

k = ωλ
2π (m/s)

cg group velocity cg = dω
dk (m/s)
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The vibration of a bending beam is considered to show the relation between
power and energy [96].

The undamped equation of motion of a bending beam is given by (K.9)
and the assumed solution of the infinite long beam is given by (K.10)

w(x, t) = We−j(kx−ωt).

The velocity ẇ(x, t) is

ẇ(x, t) =
∂w(x, t)

∂t
= jωWe−j(kx−ωt), (K.14)

and the angular velocity ẇ(x,t)
∂x becomes

ẇ(x, t)
∂x

= kωWe−j(kx−ωt). (K.15)

The bending moment M(x) in the bending beam is defined as

M(x) = −EI
∂2w(x, t)

∂x2
= k2EIWe−j(kx−ωt). (K.16)

The shear force D(x) becomes

D(x) = − ∂M(x)
∂x

= −jk3EIWe−j(kx−ωt). (K.17)

The average power Π applied to the beam

Π =
1
2

� {D(x, ω)ẇ∗(xω)} +
1
2

�
{

M(x, ω)
ẇ(x, ω)

∂x

}
, (K.18)

or
Π = ωk3EIW 2. (K.19)

The power input Π is independent of x and t.
The total energy Etot in the beam per unit of length is given by

Etot =
1
2
mẇ2(x, t) +

1
2
EI

(
∂2w(x, t)

∂x2

)2

, (K.20)

or

Etot =
1
2
m

1
2

� {ẇ(x, ω)ẇ∗(x, ω)}

+
1
2
EI

1
2

�
{

∂2w(x, ω)
∂x2

∂2w∗(x, ω)
∂x2

}
. (K.21)

The total energy per unit of length of the beam Etot becomes

Etot =
1
4
mω2W 2 +

1
4
EIk4W 2. (K.22)
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The wave number k is given by (K.11)

k =
√

ω 4

√
m

EI
,

thus the total energy Etot can now be written as follows

Etot =
1
2
EIk4W 2. (K.23)

Rewriting (K.23) the following expression is obtained

Etot =
k

2ω
(EIωk3W 2) =

1
2cp

(ωEIk3W 2) =
1
cg

Π, (K.24)

or
Π = cgEtot . (K.25)

The power Π flows at group velocity.
The term energy density Ξ will now being introduced, energy per unit of

length, area, or volume and the energy density is the sum of the kinetic and
strain energy and can be written as

Ξ = ρ

(
∂w

∂t

)2

= ρω2W 2, (K.26)

where ρ is the density. The power intensity $ is the power per unit width or
area as the waves propagates. The power intensity can be expressed as follows

$ = cgΞ. (K.27)

The undamped equation of motion of a general continuous structure (beam,
plate, etc.) can be written as follows

m(x̄)
∂2w(x̄, t)

∂t2
+ Λ(x̄)w(x̄, t) = 0, (K.28)

where x̄ is the position vector, w(x̄, t) the deflection, m(x̄) is the mass per
unit of length, area or volume and Λ(x̄) a differential operator. Substituting
(K.10) in (K.28) the following expression will be obtained

−m(x̄)ω2W + Λ(−jk)W = 0, (K.29)

thus the frequency

ω =

√
Λ(−jk)
m(x̄)

. (K.30)

The group velocity cg can be expressed into the differential operator Λ
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cg =
dω

dk
=

1
2

[
1

m(x̄)
Λ(−jk)

]− 1
2 −j

m(x̄)
Λ́(−jk), (K.31)

where Λ́(−jk) is derivative op the differential operator with respect to −jk.
Substituting (K.30) into (K.31) will give

cg =
−j

2ωm(x̄)
Λ́(−jk). (K.32)

Example. For a bending beam Λ(x̄) = EI ∂4

∂x4 , Λ(−jk) = EI(−jk)4,

Λ́(−jk) = 4EI(−jk)3 and m(x̄) = m. The frequency is ω =
√

EIk4

m and

the group velocity becomes cg = −j
2ωm(x̄) Λ́(jk) = 2

√
ω 4

√
EI
m .

Relationship Modal Energy and Energy Striking the Boundary

The vibration field that results from the repeated reflections of the outgoing
waves from the boundaries of a plate is called a reverberant field [96]. It is
comprised of modal response. Let’s find the relationship between the modal
energy and the energy striking the boundary of a plate. Suppose the mean
square velocity of the reverberant field is 〈v2〉. The intensity $ over the differ-
ential angle dθ is

d$ = ρcgWv(f)
dθ

2π
, (K.33)

where ρ is the density of the plate, cg is the group velocity and Wv(f) is
the PSD of the velocity. The normal component of the intensity d$n into the
boundary is illustrated in Fig. K.3 and is given by

d$n = d$ cos θ. (K.34)

The total power per length $n normal to the boundary is obtained integrating
between − π

2 ≤ θ ≤ π
2 ≤ θ:

$n =
∫ π

2

− π
2

ρcgWv(f) cos θ
dθ

2π
=

ρcgWv(f)
π

. (K.35)

The modal energy emodal is given by

emodal =
M 〈v2〉
n(f)Δf

=
MWv(f)

n(f)
, (K.36)

where M is the total mass, 〈v2〉 is the average mean square velocity, n(f) is
the modal density and Δf the bandwidth. Introduction of expressions for the
modal density n(f), the group velocity cg and bending waves k of the plate
in (K.35) and (K.36) one can show that the bending and modes of the plate
are related to each other as follows
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Fig. K.3. Intensity into boundary

$n =
k

π
emodal . (K.37)

This expression will be applied deriving the coupling loss factor of two or more
connected plates.



L

Finite Difference Approximations for Various
Orders

By using higher-order Taylor series expansion and more discretization points,
high-order accuracy finite difference schemes are derived by Wojtkiewicz
in [227].

L.1 Introduction

Let

f(x + iΔx, y + jΔy) = fi,j , (L.1)∑m = fi+m,j + fi−m,j , (L.2)∑
k

= fi,j+k + fi,j−k, (L.3)

δx
m = fi+m,j − fi−m,j , (L.4)

and
δy
k = fi,j+k − fi,j−k. (L.5)

L.2 Second Order Approximation

∂2fi,j

∂x2
=
∑1 −

∑0

Δx2
, (L.6)

∂2fi,j

∂y2
=
∑

1 −
∑

0

Δy2
, (L.7)

∂fi,j

∂x
=

δx
1 − δx

0

2Δx
, (L.8)

∂fi,j

∂y
=

δy
1 − δy

0

2Δy
. (L.9)

J. Wijker, Random Vibrations in Spacecraft Structures Design,
Solid Mechanics and Its Applications 165,
c© Springer Science + Business Media B.V. 2009
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L.3 Fourth Order Approximation

∂2fi,j

∂x2
=

16
∑1 −

∑2 −15
∑0

12Δx2
, (L.10)

∂2fi,j

∂y2
=

16
∑

1 −
∑

2 −15
∑

0

12Δy2
, (L.11)

∂fi,j

∂x
=

8δx
1 − δx

2

12Δx
, (L.12)

∂fi,j

∂y
=

8δy
1 − δy

2

12Δy
. (L.13)

L.4 Sixth Order Approximation

∂2fi,j

∂x2
=

270
∑1 − 27

∑2 +2
∑3 − 245

∑0

180Δx2
, (L.14)

∂2fi,j

∂y2
=

270
∑

1 − 27
∑

2 +2
∑

3 − 245
∑

0

180Δy2
, (L.15)

∂fi,j

∂x
=

45δx
1 − 9δx

2 + δx
3

60Δx
, (L.16)

∂fi,j

∂y
=

45δy
1 − 9δy

2 + δy
3

60Δx
. (L.17)

L.5 Eighth Order Approximation

∂2fi,j

∂x2
=

8064
∑1 − 1008

∑2 +128
∑3 − 9

∑4 − 7175
∑0

5040Δx2
, (L.18)

∂2fi,j

∂y2
=

8064
∑

1 − 1008
∑

2 +128
∑

3 − 9
∑

4 − 7175
∑

0

5040Δx2
, (L.19)

∂fi,j

∂x
=

672δx
1 − 168δx

2 + 32δx
3 − 3δx

4

840Δx
, (L.20)

∂fi,j

∂y
=

672δy
1 − 168δy

2 + 32δy
3 − 3δy

4

840Δy
. (L.21)

L.5.1 Tenth Order Approximation

∂2fi,j

∂x2
=

42 000
∑1 − 6000

∑2 +1000
∑3 − 125

∑4 +8
∑5 − 36 883

∑0

25 200Δx2
,

(L.22)
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∂2fi,j

∂y2
=

42 000
∑

1 − 6000
∑

2 +1000
∑

3 − 125
∑

4 +8
∑

5 − 36 883
∑

0

25200Δy2
, (L.23)

∂fi,j

∂x
=

2100δx
1 − 600δx

2 + 150δx
3 − 25δx

4 + 2δx
5

2520Δx
, (L.24)

∂fi,j

∂y
=

2100δy
1 − 600δy

2 + 150δy
3 − 25δy

4 + 2δy
5

2520Δy
. (L.25)

L.5.2 Stability

The simple convection-diffusion equation will be considered to discuss the
stability of the explicit two-level finite difference scheme. The simple FKP
equation is denoted by

∂f

∂t
= −u

∂f

∂x
+ D

∂2f

∂x2
. (L.26)

The corresponding finite difference scheme is

fj,k+1 − fj,k

Δt
= −u

fj+1,k − fj−1,k

2Δx
+ D

fj+1,k − 2fj,k + fj−1,k

Δx2
, (L.27)

or

fj,k+1 = fj,k − β
fj+1,k − fj−1,k

2Δx
+ α

fj+1,k − 2fj,k + fj−1,k

Δx2
, (L.28)

where k = t, k+1 = t+Δt, j = x, j +1 = x+Δx, j − 1 = x − Δx and further
β = uΔt

2Δx is the Courant-Friedrichs-Lewy (CFL) number and the coefficient
α = DΔt

Δx2 , both are typical measures for the advection (bringing) and diffusion
velocities relative to the characteristic propagation Δx

Δt .
It can be proven that the explicit two-dimensional finite difference scheme

is numerically stable when, [201],

α =
DΔt

Δx2
<

1
2
, β =

uΔt

2Δx
< 1, (L.29)

or

Δt < min
(

2Δx

u
,
Δx2

2D

)
. (L.30)

Jain in [88] derived the following stability criteria

uΔt

Δx
< 1,

uΔt

D
≤ 2. (L.31)
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Problems

L.1. The following nonlinear problem is given by the Duffing’s equation

ẍ + 2ζẋ + γx + εx3 = w(t),

where the white noise excitation is fully defined by the first and second mo-
ments

E{w(t)} = 0, E{w(t)w(t + τ)} = 2Dδ(τ).

The state-space variables are defined by

x1 = x, x2 = ẋ.

The space state equation is as follows

{ẋ} = [m(x)] + {G(x)}w(t),

where �x
 = �x1, x2
.
Generate the drift matrix [m(x)] and the diffusion coefficients {G(x)}.

Answers: [m(x)] =
(

x2

−2ζx2−γx1−εx3
1

)
, {G(x)} =

(
0

1

)
.

Derive the associated FPK equation and initial, boundary and normaliza-
tion conditions.
Answers: ∂fc2

∂t = ∂2

∂x2
2
[Dfc2] − ∂

∂x1
[x2fc2] + ∂

∂x2
[{2ζx2 + γx1 + εx3

1}fc2],
limt→0 fc2(x0|x, t) = δ(x0 − x), lim|x1|,|x2|→∞ fc2(x0|x, t) = 0,∫ ∫∞

− ∞ fc2(x0|x, t)dx = 1, f2(x, t) =
∫ ∫∞

− ∞ fc2(x0|x, t)f2(x0)dx0 and
limt→0 f2(x, t) =

∫ ∫∞
− ∞ fc2(x0|x, t)f2(x0)dx0 = f2(x0).

Solve the probability density function f2(x, t) of the parabolic partial dif-
ferential FPK equation, given the following parameters and initial and bound-
ary conditions:

• xmin = −10, xmax = −10, ẋmin = −15, ẋmax = −15
• tmax = 1, 4, 8, 10 s
• ζ = 0.2, γ = 1 ε = 0.1
• D = 2ζ = 0.4
• Initial condition t = 0 is an Gaussian binormal distribution, μx = 0,

μċ = 10, σ2
0,x = σ2

0,ẋ = 1/2

Solve the stationary solution of f2(x) from the FPK equation, ∂f
∂t = 0:

• Analytically. Stationary solution of the FPK equation of the following
equation of motion ẍ+βẋ+g(x) = w(t), with E{w(t)} = 0, E{w(t)w(t+

τ)} = 2Dδ(τ), is given by f2(x, ẋ) = 1
g

√
2πD

β e− β
D [ 12 ẋ2+g(x)x], [27].

• Numerically with the initial condition f2(x = 0, ẋ = 0) = f2(x1 = 0,
x2 = 0) = 1, applying the second order, fourth order and sixth order finite
difference approximation.
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The Galerkin Method

Galerkin1 developed in 1915 an series expansion to approximate the solution
of differential equations [186]. A brief description of the method is as follows.

The differential equation of the problem is written in the form

L{u(x, t)} = 0, (M.1)

where L is the differential operator and u represents the physical quanti-
ties, e.g. displacement, velocity, acceleration. The governing partial differen-
tial equations with the boundary conditions is called the “strong form” of the
problem.

The approximate solution is expressed in series as follows

u =
N∑

i=1

ηi(t)φi(x), (M.2)

where φi(x) represents a sequence of kinematically admissible functions only
dependent on the space coordinate x, and ηi are the generalized coordinates
only dependent on the time t. Galerkin’s method is based on the fact that
some measure of the error in L{u(x, t)} = 0 is minimized for any fixed value
of N satisfying simultaneously, for i = 1..N the conditions

∫
V

L{u(x, t)}φidV =
∫

V

L

{
N∑

j=1

ηj(t)φj(x)

}
φidV = 0, i = 1, 2, . . . , N.

(M.3)
The problem is now reformulated in the “weak form”.

Example. Given a simply supported beam with constant properties. The
bending stiffness is EI, the mass per unit length is m and dynamic load is
q(t) and the length is L. The undamped partial differential equation of motion
is given by
1 Boris G. Galerkin 1871–1945.

J. Wijker, Random Vibrations in Spacecraft Structures Design,
Solid Mechanics and Its Applications 165,
c© Springer Science + Business Media B.V. 2009
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EI
∂4w

∂x4
+ m

∂2w

∂t2
= q(t),

where w is the deflection of the beam.
The deflection w(x, t) will be expressed as follows

w(x, t) = η(t)φ(x) = η(t) sin
(

πx

L

)
.

In accordance with Galerkin’s method the following integral equation should
be solved ∫ L

0

[
EI

∂4w

∂x4
+ m

∂2w

∂t2
− q(t)

]
φdx = 0, (M.4)

or
∫ L

0

[
EIη(t)

∂4 sin(πx
L )

∂x4
+ m sin

(
πx

L

)
∂2η(t)
∂t2

− q(t)
]

sin
(

πx

L

)
dx = 0,

or
∫ L

0

[
EI

(
π

L

)4

η(t) sin2

(
πx

L

)
+ m sin2

(
πx

L

)
η̈(t) − q(t) sin

(
πx

L

)]
dx = 0,

or

EI

(
π

L

)4

η(t)
L

2
+ m

L

2
η̈(t) − 2L

π
q(t) = 0.

Finally the approximate equation of motion expressed in the generalized co-
ordinate η(t) becomes

EI

(
π

L

)4

η(t) + mη̈(t) =
4
π

q(t),

or

η̈(t) +
EI

m

(
π

L

)4

η(t) =
4
π

q(t)
m

.

The natural frequency ω can now being obtained

ω =
(

π

L

)2
√

EI

m
,

and the generalized force is

fg(t) =
4
π

q(t)
m

.

Thus,
η̈(t) + ω2η(t) = fg(t).
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This is the well known equation of motion for an undamped SDOF sys-
tem.

The first term of the LHS of (M.4) will be integrated by parts twice2

(assuming EI constant)

∫ L

0

∂4w

∂x4
φdx =

(
φ

∂3w

∂x3

)∣∣∣∣
L

0

−
∫ L

0

∂3w

∂x3

dφ

dx
dx

=
(

φ
∂3w

∂x3

)∣∣∣∣
L

0

−
[(

dφ

dx

∂2w

∂x2

)∣∣∣∣
L

0

−
∫ L

0

∂2w

∂x2

d2φ

dx2
dx

]
. (M.5)

The test function φ shall obey the boundary conditions, thus:

• φ(0) = 0 at the fixation of the beam,
• dφ

dx |0 = 0 at the fixation of the beam,

• ∂3w
∂x3 |L = 0, no shear force at the tip of the beam,

• ∂2w
∂x2 |L = 0, no bending moment at the tip of the beam.

Equation (M.4) can be expressed as follows

∫ L

0

[
EI

∂4w

∂x4
+ m

∂2w

∂t2
− q(t)

]
φdx

=
∫ L

0

[
EI

∂2w

∂x2

d2φ

dx2
+ m

∂2w

∂t2
φ − q(t)φ

]
dx = 0. (M.6)

The approximate functions for w(x) in (M.6) may be of lower order than in
(M.4), C0 continuous instead of C1 continuous.

The following example concerns the solution of ordinary differential equa-
tion using the finite element method. The “stiffness” and the “load vector”
will be derived. Galerkin’s method will be applied to obtain the finite element
stiffness matrix and external load vector.

Example. This example is taken from [105]. The ordinary differential equa-
tion to be solved is

a
d2u

dx2
+ b

du

dx
+ cu = f(x), 0 < x < L, (M.7)

with boundary conditions

u(0) = U(L) = 0.

2 Integration by parts is defined as:

∫ b

a

f(x)g′(x)dx = f(x)g(x)|b
a −

∫ b

a

g(x)f ′(x)dx.
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Fig. M.1. Linear finite element

The weak formulation of the equation is

∫ L

0

[
−a

du

dx

dw

dx
+ bw

du

dx
+ cwu

]
dx =

∫ L

0

wf(x)dx −
[
aw

du

dx

]L

0

.

The natural boundary conditions at x = 0 and x = L shall be du
dx |0 = du

dx |L = 0,
and w(x) is the test function.

Within one linear finite element as illustrated in Fig. M.1 the shape Hi(x)
and test functions w are the same. Thus for one element the weak formulation
becomes ∫ li

0

[
−a

du

dx

dw

dx
+ bw

du

dx
+ cwu

]
dx =

∫ li

0

wf(x)dx.

The shape functions of internal the linear finite element are defined as
follows (see also Fig. M.1):

• H1(x) = (1 − x/li),
• H2(x) = x/li.

The internal unknown u(x) can be expressed into the shape functions H1(x)
and H2(x) in combination with the nodal properties u(0) = u1 and u(l1) = u2,
hence

u(x) = H1(x)u1 + H2(x)u2 = �H1(x), H2(x)

(

u1

u2

)
,

and

u′(x) =
du

dx
= �H ′

1(x), H ′
2(x)


(
u1

u2

)
=
⌊

− 1
li

,
1
li

⌋(
u1

u2

)
.

The test or weighting functions w are defined by Galerkin’smethod
(

w1(x)
w2(x)

)
=
(

H1(x)
H2(x)

)
,

and (
dw1
dx

dw2
dx

)
=

(
H ′

1(x)
H ′

2(x)

)
=

(
− 1

li
1
li

)
.

The stiffness matrix [Ki] if the ith element can be obtained using the weak
form and the selected shape and test functions for u(x) and w(x)
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[Ki] =
∫ li

0

[
−a

(
H ′

1

H ′
2

)
�H ′

1, H
′
2
 + b

(
H1

H2

)
�H ′

1, H
′
2
 + c

(
H1

H2

)
�H1, H2


]
dx.

Evaluation of the integral gives

[Ki] = − a

l1

(
1 −1

−1 1

)
+

b

2

(
−1 1
−1 1

)
+

cli
6

(
2 1

−1 2

)
.

The element generalized load vector

{Fi} =
∫ li

0

(
H1

H2

)
f(x)dx.

For a constant uniform load f(x) = f0 the element load vector becomes

{Fi} =
f0li
2

(
1
1

)
.

The differential equation (M.7) and associated boundary conditions will
be solved assigning the following values for the parameters:

• a = 1,
• b = −3,
• c = 2,
• f0 = 1,

• L = 1,
• u(0) = 0,
• u(1) = 0,
• Number of linear elements N = 1000.

The results of the finite element analysis are shown in Fig. M.2 and correlate
very good with the numerical solution using Maple�.

Problems

M.1. A beam has a constant thickness t but a width which varies linearly
from b0 at the root to b0/2 at the tip as shown in Fig. M.3. The density of the
material is ρ and the Young’s modulus is E. The flexural vibration w(x, t) of
the beam is approximated by the following expression

w(x, t) = η(t) sin
(

πx

2L

)
.

Applying the Galerkin’s method yields the undamped equation of motion ex-
pressed in the generalized coordinate η(t). Estimate the fundamental natural
frequency.
Answers: m0η̈ + 6.0881EI0η = 0, ω2 = 6.0881 EI0

m0L4 , f = 0.3927
√

EI0
m0L4 (Hz),

m0 = b0tρ, EI0 = b0t
3/12.



476 M The Galerkin Method

Fig. M.2. Solution d2u
dx2 − 3 du

dx
+ 2u = f(x), 0 < x < 1, u(0) = u(1) = 0

Fig. M.3. Tapered beam

M.2. Derive the stiffness matrix, mass matrix and force vector for a beam
element with two nodes; 1 and 2. In node 1 there are two unknown degrees
of freedom; the deflection w1 and the rotation φ1. At node 2 there are two
degrees of freedom too; the deflection w2 and the rotation φ2. The bending
stiffness EI is constant over the beam element with length L. The constant
mass per unit of length is given by m and the constant load per unit of length
is q. The beam element is illustrated in Fig. M.4.

The following weak form of the equation of motion for the beam shall be
used to derive the mass and stiffness matrices and the force vector

∫ L

0

[
EI

∂2w

∂x2

d2φ

dx2
+ m

∂2w

∂t2
φ − q(t)φ

]
dx = 0.
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Fig. M.4. Beam element

The approximate deflection shape w(x) is given by

w(x) = a0 + a1x + a2x
2 + a3x

3

and shall be expressed in the unknown degrees of freedom w1, φ1, w2 and φ2

as follows

w(x) = H1(x)w1 + H2(x)φ1 + H3(x)w2 + H4(x)φ2.

Define the shape functions H1(x), H2(x), H3(x), and H4(x) and perform the
following assignments:

• Derive the stiffness matrix [k] from
∫ L

0
EI ∂2w

∂x2
d2φ
dx2 dx with the aid of Galer-

kin’s method.
• Derive the mass matrix [m] from

∫ L

0
m∂2w

∂t2 φdx with the aid of Galerkin’s
method.

• Derive the force vector [f ] from
∫ L

0
q(t)φdx with the aid of Galerkin’s

method.
• The lowest natural frequency of a fixed-free beam is given by fn =

0.560
√

EI
mL4 (Hz) (verify). Calculate the lowest natural frequency f1 (Hz)

with a finite element model (FEM) consisting of 10 beam elements and
11 nodes. The DOF’s in node 1 are constrained, w1 = φ1 = 0 (hint: set
EI = m = L = 1).

Answers:

• H1(x) = 1 − 3( x
L )2 + 2( x

L )3,

• H2(x) = x − 2(x2

L ) + 2( x3

L2 ),
• H3(x) = 3( x

L )2 − 2( x
L )3,

• H4(x) = −(x2

L ) + ( x3

L2 ),

• [k] = EI
L3

⎛
⎜⎜⎝

12 6L −12 6L
4L2 −6L 2L2

12 −6L
sym. 4L2

⎞
⎟⎟⎠,
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• [m] = mL

⎛
⎜⎜⎜⎜⎝

13
35

11L
210

9
70 − 13L

420

L2

105
13L
420

L2

140
13
35 − 11L

210

sym. L2

105

⎞
⎟⎟⎟⎟⎠ ,

• {f } = qL

⎛
⎜⎜⎜⎝

1
2
L
12
1
2

− L
12

⎞
⎟⎟⎟⎠ .

• Finite element analysis f1 = 0.559
√

EI
mL4 Hz.

M.3. The axial deformation u(x) of a bar subjected to an uniform load q(x)
(1-D Poisson equation) is given by

EA
d2u

dx2
= q,

where E is Young’s modulus and A the constant cross-section of the bar.
The following boundary conditions apply

{
u(0) = 0,

EAdu
dx

∣∣
L

= 0.

The weak form of the problem is expressed as
∫ L

0

[
EA

d2u

dx2
− q

]
vdx = 0,

where v is the test function and obeys the boundary conditions.
Derive from the weak form the following equation

EA

∫ L

0

du

dx

dv

dx
dx = −

∫ L

0

qvdx.

M.4. Solve the following ordinary differential equation

x2 d2u

dx2
− 3x

du

dx
− 4u = x2, 10 < x < 20, (M.8)

with the boundary conditions u(10) = 0 and u(20) = 100, with the aid of the
finite element method using linear elements as illustrated in Fig. M.1, [105].
Perform the assignments:

1. Set up the weak form of (M.8)
2. Derive the stiffness matrix for the linear element based on the weak form

and using Galerkin’s method
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Fig. M.5. Solution x2 d2u
dx2 −3x du

dx
−4u = x2, 10 < x < 20, u(10) = 0 and u(20) = 100

3. Derive the force vector of the linear element based on the weak form and
using Galerkin’s method

4. Solve numerically (M.8) and associated boundary conditions using 10, 50
and 100 elements.

Answers:
∫ 20

10

(
x2 dw

dx

du

dx
+ 4xw

du

dx
+ 4wu

)
dx = −

∫ 20

10

wx2dx +
[
x2w

du

dx

]20
10

,

[Ke] =
1
l2i

(
4x1x

2
2 − 6x2

1x2 − x3
2 + 3x3

1 2x1x
2
2 − x3

2 − x3
1

−2x2x
2
1 + x3

2 + x3
1 6x1x

2
2 − 4x2

1x2 − 3x3
2 + x3

1

)
,

{Fe} =
1

12li

(
−4x2x

3
1 + x4

2 + 3x4
1

−4x1x
3
2 + 3x4

2 + x4
1

)
,

where li is the length of the linear element and x1 and x2 are the coordinates
of respectively nodes 1 and 2 (Fig. M.1). The solution of (M.8) for x = 15 is
u = 19.7816. In Fig. M.5 the numerical solution, using Maple�, is shown.
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Wiener Process, Stochastic Integrals,
Stochastic Differential Equations

N.1 Wiener Process

A Wiener process (notation W (t), t ≥ 0) is named in the honor of Nor-
bert Wiener.1 Another name is the Brownian motion (notation B(t), t ≥ 0).
The Wiener process is a Gaussian process and is completely described by its
expectation and correlation function and is probably the simplest stochas-
tic process and can be taken the prototype of all stochastic processes. The
standard Wiener process has the following main properties [81]:

1. W (0) = 0
2. Paths (trajectories are continuous functions of tε[0, ∞])
3. Expectation E{W (t)} = 0
4. Correlation (Covariance) function E{W (t)W (s)} = min(t, s)
5. For any t1, t2, . . . , tb the random vector �W (t1), W (t2), . . . , W (tn)
 is

Gaussian
6. For any s, t

E{W 2(t)} = t,

E{W (t) − W (s)} = 0,

E{[W (t) − W (s)]2} = |t − s|.

7. Increments of Wiener process on non overlapping intervals are indepen-
dent, i.e. W (t2) − W (s2), W (t1) − W (s1) are independent

8. Paths of Wiener process are not differentiable functions

The properties 1–5 are nothing but the definition of the Wiener process. Prop-
erty 6 is implied in 3 and 4. Property 4 provides the orthogonality of incre-
ments, that is for s1 < s2 < s3 < s4

E{[W (s4) − W (s3)][W (s2) − W (s1)]} = (s2 − s1) − (s2 − s1) = 0.

1 Norbert Wiener 1894–1964.

J. Wijker, Random Vibrations in Spacecraft Structures Design,
Solid Mechanics and Its Applications 165,
c© Springer Science + Business Media B.V. 2009



482 N Wiener Process, Stochastic Integrals, Stochastic Differential Equations

To verify the validity of 8, with h > 0 let define

Δ(h) =
W (s + h) − W (s)

h

and show that limh→0 Δ(h) does not exists. Assume that this limit exists
then the limit for the Fourier transform limh→0 E{ejλΔ(h)} exists and is a
continuous function of λ. Hence, since the random variable Δ(h) is non zero
mean Gaussian with the variance E{ [W (s+h)−W (s)]2

h2 } = 1
h , thus

E{ejλΔ(h)} = e
− λ2
2h →h→0=

{
0 λ = 0
1 λ �= 0

}
:= U(λ).

Since the Heaviside step function U(λ) is discontinuous the assumed differen-
tiability is not valid.

Let X(t) be a standard Wiener process, from property 6 the probability
density function ft(x) can be derived

ft(x) =
1√
2πt

e− x2
2t , t > 0. (N.1)

For the differential dW (t) apply the following properties [204]:

1. dW (t) = ξtdt, where ξt is white noise
2. Expectation E{dW (t)} = 0
3. Correlation (Covariance) function E{dW (t)dW (s)} = 0
4. E{dW 2(t)} = dt

The practical importance of the Wiener process is in the relation property 1.

Simulation of White Noise

The simulation of the white noise is described in [204]. In the case of simulation
of stochastic processes an important question is the reproducibility of the
results. For this purpose, random numbers are computed using deterministic
algorithms. The numerical simulation of stochastic process requires a random
number generator which produces uniformly distributed numbers independent
from each other using certain initial values from the interval (0, 1]. There are
several ways to produce such random numbers from a uniformly distributed
sequence.

Let Rn be a sequence of numbers with standard normal distribution from
the interval [0, 1]

E{Rn} = 0,

E{R2
n} = 1.

(N.2)

Thus, the equation
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ΔW = Rn

√
Δt, (N.3)

fulfills the requirements of the Wiener process

E{ΔW } = E{Rn

√
Δt} = E{Rn}E{

√
Δt} = E{Rn}

√
Δt = 0, (N.4)

and

E{ΔW 2} = E{[Rn

√
Δt]2} = E{R2

n}E{
√

Δt2} = E{R2
n}Δt = Δt. (N.5)

Such a sequence of Rn that satisfies (N.2), can be constructed from to uni-
formly distributed, statistically independent sequences Un and Vn using the
Box-Müller transformation. This sequences can be obtained by applying a
linear generator with arbitrary initial values 0 < U0, V0 ≤ 1 (U0 �= V0). The
algorithm reads

U0 = 0.3, V0 = 0.7, a = 9821.0, b = 0.211322, (N.6)
Un = frac(aUn−1 + b), (N.7)
Vn = frac(aVn−1 + b), (N.8)

where the function frac2 limits the number to the interval [0, 1] by cutting the
integer digits off. Finally, the Box-Müller transformation, which yields the
sequences Rn1 and Rn2 with standard normal distribution from the evenly
distributed sequences Un and Vn

Rn1 =
√

−2 ln Un sin(2πVn),

Rn2 =
√

−2 ln Un cos(2πVn).
(N.9)

Example. Generate a Wiener process within a time interval [0, 1] with a
number of simulations n = 10 000 (Δt = 1/n) using the Box-Müller transfor-
mation to simulate a white noise, normal Gaussian N(0, 1) distributed. The
distribution of the simulation of the Gaussian process in shown in Fig. N.1.
The simulation of the Wiener process is illustrated in Fig. N.2.

More examples are given in [82].

N.2 Itô versus Stratonovich

In this section a not to formal discussion on the differences between Itô and
Stratonovich interpretation of stochastic differential equation (SDE). The dis-
cussion is taken from [148].

The interpretation question arises when dealing with the multiplicative
stochastic (parametric excitation) equation
2 frac(x) = x − fix (x).
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Fig. N.1. Distribution of Rn (104 iterations)

Fig. N.2. Simulated standard Wiener process

Ẋ(t) = f(X(t)) + g(X(t))ξ(t), (N.10)

where f and g are given functions, and ξ(t) is a Gaussian white noise, that is,
Gaussian and stationary random process with zero mean and delta correlated.
Alternatively, (N.10) can be written in terms of the Wiener process W (t) as
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ΔX(t) = f(X(t))Δt + g(X(t))ΔW (t), (N.11)

where ΔW (t) = ξ(t)Δt. When g depends on X(t), (N.10) and (N.11) have
no meaning, unless an interpretation of the multiplicative term g(X(t))ξ(t) is
provided. These different interpretations of the multiplicative term must be
given because, due to extreme randomness of the white noise, it is not clear
what X should be used even during an infinitesimal time step Δt. According
to Itô, that value of X(t) is one before the beginning of the time step, i.e.
X = X(t), whereas Stratonovich uses the value of X at the middle of the
time step: X = X(t + Δt/2) = X(t) + ΔX(t)/2.

Before proceeding further with the consequences of the above discussion
a more precise meaning of the differential of random processes driven by
Gaussian white noise and its implications will be given. The differential of
any random process X(t) is defined by

ΔX(t) = X(t + Δt) − X(t). (N.12)

It can be proven that ΔX(t) = O(
√

Δt).
The differential of the product of two random processes will be investigated

since the differential adopts a different expression depending on the interpre-
tation (Itô or Statonovich) chosen. In accordance with (N.12) the following
expression becomes

Δ(XY ) = [(X + ΔX)(Y + ΔY )] − XY. (N.13)

This expression can be rewritten in many different ways. One possibility is

Δ(XY ) =
(

X +
ΔX

2

)
dY +

(
Y +

ΔY

2

)
dX, (N.14)

but it is also allowed to write the product as

Δ(XY ) = XΔY + Y ΔX + ΔXΔY. (N.15)

Therefore, (N.14) reads in the Stratonovich interpretation when

Δ(XY ) = XSΔY + YSΔX, (N.16)

where
XS(t) ≡ X(t + Δt/2) = X(t) + ΔX(t)/2, (N.17)

and the same for YS(t). The differential of the product follows the Itô inter-
pretation when

Δ(XY ) = XIΔY + YIΔX + ΔXΔY, (N.18)

where
XI(t) ≡ X(t), (N.19)



486 N Wiener Process, Stochastic Integrals, Stochastic Differential Equations

and YI(t) ≡ Y (t). Note that (N.16) formally agrees with the rules of calculus
while (N.18) does not. Previous equations (N.16) and (N.18) can be general-
ized to the product of two function U(X) and V (X), of the random process
X = X(t). Thus

Δ(UV ) = U(XS)ΔV (X) + V (XS)ΔU(X), (N.20)

where Xs is given by (N.17) and ΔV (X) = V (X + ΔX) − V (X) with an
analogous expression for ΔU(X). Within Itô convention it becomes

Δ(UV ) = U(XI)ΔV (X) + V (XI)ΔU(X) + ΔU(X)ΔV (X). (N.21)

The expected value of the multiplicative therm in (N.10), g(X)ξ(t), de-
pends on the interpretation given. In the Itô interpretation it is clear that
E{g(X)ξ(t)} = 0, because the value X and the value g(X) anticipates the
jump in the noise. In other words, g(X) is independent of ξ(t). On the other
hand, it can be proved that within the Stratonovich framework the average
of the multiplicative term reads g(X)g′(X)/2 where the prime denotes the
derivative. The zero value of E{g(X)ξ(t)} makes Itô very appealing because
then the deterministic equation for the mean value of X only depends on
the drift term f(X). In this sense, note that any multiplicative stochastic
differential equation has different expression for the function f(X) and g(X)
depending the interpretation is chosen. In the Stratonovich framework, the
SDE of type (N.11) can be written

ΔX = f (S)(XS)Δt + g(S)(XS)ΔW (t), (N.22)

where XS = X + dX/2. In the Itô sense the SDE becomes

ΔX = f (I)(XI)dt + g(I)(XI)ΔW (t), (N.23)

where XI = X. The function f (S) and f (I) are not only evaluated at different
values of X but are also different functions depending in the interpretation
given. The same applies for g(S) and g(I). From (N.17), (N.22) and (N.23) it
can be shown, keeping terms up to order Δt, the relation between f (S) and
f (I) is

f (I)(X) = f (S)(X) − 1
2
g(S)(X)

∂g(S)(X)
∂X

, (N.24)

while the multiplicative functions g(S) and g(I) are equal

g(I)(X) = g(S)(X). (N.25)

Conversely, it is possible to pass from the Stratonovich SDE to an equivalent
Itô SDE. The difference between both interpretations only effects the drift
term given by function f while the function g remains unaffected. For an
additive SDE, i.e. when g is independent of X, the interpretation question is
irrelevant.
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A crucial difference between Itô and Stratonovich interpretations appears
when a change of variables is performed on the original equation. Then it can
be proved that, Stratonovich convention, the standard rules of calculus hold,
but new rules appear when the equation is understood in Itô sense. From the
point of view of this property, the Stratonovich criterion seems to convenient.
For the sake of completeness, the rules to change of variables will be repeated
in each interpretation. Let h(X, t) be an arbitrary function of X and t. In the
Itô sense, the differential of h(X, t) reads

Δh =
∂h(X, t)

∂X
ΔX +

[
∂h(X, t)

∂t
+

1
2
g2(X, t)

∂2h(X, t)
∂X2

]
Δt, (N.26)

whereas in the Stratonovich sense, the usual expression will be obtained

Δh =
∂h(XS , t)

∂Xs
ΔX +

∂h(XS , t)
∂t

Δt, (N.27)

where
∂h(XS , t)

∂Xs
=

∂h(X, t)
∂X

∣∣∣∣
X=XS

, (N.28)

and XS is given by (N.17). Equation (N.26) is known as the Itô’s lemma and
it extensively used.

If the SDE for X is given by

ΔX = f(X)Δt + g(X)ΔW,

the Itô SDE for h(X, t) can be written as follows

Δh = L0h(X)δt + L1h(X)dW, (N.29)

where the operators L0 and L1 are given by

L0 =
∂

∂t
+ f(X)

∂

∂x
+

1
2
g2(X)

∂2

∂x2
,

L1 = g(X)
∂

∂x
.

(N.30)

Example. The following SDE will be considered to derive Itô formula

ΔX = (α − X)dt + β
√

XΔW.

The change in variable is given by

V (X) =
√

X.

Itô’s formula can be written as

ΔV = L0V (X)Δt + L1V (X)ΔW,
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Fig. N.3. V (X)

and with

∂V (X)
∂t

= 0,
∂V (X)

∂x
=

1
2

√
X

,
∂2V (X)

∂x2
= − 1

4X
√

X
,

then

ΔV =
(

4α − b2

8V
− V

2

)
Δt +

β

2
ΔW.

If α = 2, β = 1, the total time T = 1s and the number of steps N = 200.
The increment of the Wiener process is ΔW = ξ

√
Δt, where ξ ∼ N(0, 1). The

graphical representation of V (X) is given in Fig. N.3.

N.3 Stochastic Integrals

The theory about the stochastic integrals is taken from [82] will be discussed
in a simple engineering way. A more mathematical derivation of the stochastic
integrals (Itô and Stratonovich) can be read in [200].

Given a suitable function h(t), the integral

∫ T

0

h(t)dt

may be approximated by the Riemann sum
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N −1∑
j=0

h(tj)(tj+1 − tj), (N.31)

where the discrete points are defined by tj = jΔt, j = 0, 1, . . . , N − 1. The
integral may be defined by taking Δ → 0 in (N.31).

In a similar way the following sum may be considered

N −1∑
j=0

h(tj)[W (tj+1) − W (tj)], (N.32)

which, is similar with (N.31), may be regarded as an approximation to a
stochastic integral with respect to the Brownian motion

∫ T

0

h(t)dW (t).

Equation (N.32) is known as the Itô integral.
An alternative way to (N.31) is given by

N −1∑
j=0

h

(
tj + tj+1

2

)
(tj+1 − tj), (N.33)

which is also a Riemann sum approximation to the integral
∫ T

0
h(t)dt. The

corresponding alternative of (N.32) is

N −1∑
j=0

h

(
tj + tj+1

2

)
[W (tj+1) − W (tj)], (N.34)

which is indicated by the Stratonovich integral.
It is possible to evaluate exactly the stochastic integrals that are approx-

imated when the deterministic function h(t) will be replaced by the Wiener
process W (t). The Itô version is the limiting case of

N −1∑
j=0

W (tj)[W (tj+1) − W (tj)]

=
1
2

N −1∑
j=0

[
W (tj+1)2 − W (tj)2 − {W (tj+1) − W (tj)}2

]

=
1
2

[
W (T )2 − W (0)2 −

N −1∑
j=0

{W (tj+1) − W (tj)}2

]

=
1
2
W (T )2 − 1

2
T. (N.35)
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The Itô integral can be written to be

∫ T

0

W (t)dW (t) =
1
2
W (T )2 − 1

2
T. (N.36)

The Stratonovich integral is the limiting case of

N −1∑
j=0

1
2
[W (tj) + W (tj+1)][W (tj+1) − W (tj)]

=
1
2

N −1∑
j=0

[
W (tj+1)2 − W (tj)2

]

=
1
2
[
W (T )2 − W (0)2

]

=
1
2
W (T )2. (N.37)

Thus in place of (N.36) the Stratonovich integral is given by

∫ T

0

W (t)dW (t) =
1
2
W (T )2. (N.38)

It can be shown that forming 1
2 [W (tj)+W (tj+1)] and adding an independent

δZj , N(0, Δ/4), gives an value for W ( 1
2 {tj + tj+1}).

Itô and Stratonovich integrals both have their uses in mathematical mod-
eling. A simple transformation converts Itô to Stratonovich. This is explained
in more mathematical detail in [200].

Applying Itô formula it can be verified that [70]

∫ b

a

Wn(t)dW (t) =
1

n + 1
[Wn+1(b) − Wn+1(a)]

− n

2

∫ b

a

Wn+1(t)dW (t). (N.39)

N.4 Correlation Function

The derivation of the correlation function R is taken from an introductional
lecture about stochastic differential equation given by Chris Williams, Insti-
tute for Adaptive and Neural Computations, School of Informatics, University
of Edinburgh, UK. Given the set of SDE’s

Δ{x(t)} = −[A]{x(t)}Δt + [G]{ΔW (t)}. (N.40)

The solution is
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{x(t)} = e−At{x(0)} +
∫ t

0

e−A(t−s)[G]{dW (s)}. (N.41)

The Wiener have with zero means and expectation given

E[{W (t)} {W (s)}] = 〈{W (t)} {W (s)} 〉 = [2D]min(t, s), (N.42)

and the expectation of the standard Wiener process ΔW (t) is

E[{ΔW (t)} {ΔW (t)}] = dt. (N.43)

For the stationary solution the {x(0)} dependency will be removed

E[{x(t)}{x(s)}] = Rxx(t − s) = Rxx(τ)

=
∫ min(t,s)

0

e−A(t−s)[G][2D][G]T e−AT (t−s)ds. (N.44)

For autocorrelation function [Rxx(τ)] stationary processes and zero lag τ = 0

Rxx(0) =
∫ ∞

0

e−A(t−s)[G][2D][G]T e−AT (t−s)ds. (N.45)

Equation (N.45) is the solution of the following Lyapunov equation [10, 66]

[A][Rxx(0)] + [Rxx(0)][A]T = −[G][2D][G]T . (N.46)

Problems

N.1. Describe in detail the Polar-Marsaglia algorithm for generating random
variates, X, from a standard normal density X ∼ N(0, 1).

N.2. Prove that for a standard Wiener process the following relation applies
[99]

E{|W (t) − W (s)|4} = 3|t − s|2, for all s, t ≥ 0.

N.3. The Wiener process is defined such that W (0) = 0, E{W 2(t1)} = t1 and
E{W 2(t0)} = t0. Prove that the expected value of the Itô stochastic integral

E

{∫ t1

t0

W (t)dW (t) = 0
}

.

This problem is taken from [130].

N.4. Let X be the solution of the Itô SDE

ΔX =
b2

2
XΔt + bXdW.

Derive that the same process X is also the solution of the Stratonovich equa-
tion

ΔX = bXdW.
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N.5. The formal scalar linear SDE is given by

ΔX = A(t)XΔt + B(t)XΔW.

Prove that the solution of the SDE is in case of the

• Stratonovich equation

X = Ce
(
∫ t

t0
A(s)ds+

∫ t

t0
B(s)dW )

,

• Itô equation

X = Ce
(
∫ t

t0
[A(s)−B(s)2/2]ds+

∫ t

t0
B(s)dW )

.

N.6. Prove that

[Rxx(t − s)] = e−A(t−s)[Rxx(0)] for t > s,

and
[Rxx(t − s)] = [Rxx(s − t)]T .

N.7. This problem is taken from [228]. The equations of motion for the four-
dimensional linear system are
⎛
⎜⎜⎝

ẋ1

ẋ2

ẋ3

ẋ4

⎞
⎟⎟⎠ =

⎡
⎢⎢⎣

0 1 0 0
−(k1 + k2) −c1 k2 0

0 0 0 1
k2 0 −(k2 + k3) −c2

⎤
⎥⎥⎦

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠+

⎡
⎢⎢⎣

0 0
1 0
0 0
0 1

⎤
⎥⎥⎦
(

ξ1(t)
ξ2(t)

)
,

where ξ1(t) and ξ2(t) are Gaussian white noise stochastic processes, such that

E{ξ1(t)} = 0, E{ξ2(t)} = 0, E{ξi(t)ξj(t + τ)} = 2Dijδijδ(τ).

The system parameters are: k1 = k2 = k3 = 1, c1 = c2 = 0.4, and D11 =
D22 = 0.2.

Reconstruct the MDOF dynamic system and calculate the correlation ma-
trix [Rxx] and covariance matrix [Cxx].
Answer:

[Rxx] = [Cxx] =

⎡
⎢⎢⎣

0.3333 0 0.1667 0
0 0.5 0 0

0.1667 0 0.3333 0
0 0 0 0.5

⎤
⎥⎥⎦ .
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Glossary

Adjoint operator—An operator is self-adjoint if L†(w1, w2) =
∫

[w2L(w1) −
w1L(w2)]dx = 0 applies.
Autocorrelation function—The autocorrelation function of a signal is the
average of the product of the value of the signal at time t with the value at
time t + τ .
Apparent Mass—Complex frequency response function which is the ratio
of force to acceleration.
Brownian motion—Is the seemingly random movement of particles sus-
pended in a liquid or gas or the mathematical model used to describe such
random movements, often called a particle theory (named after the Scottish
botanist Robert Brown).
Coupling loss factor—The coupling loss factor (CLF) gives the loss rate
when power transmits from one subsystem to another.
Convolution—The process in which one function h(λ)is convolved or folded
back along another function f(t). If the result of the convolution is c(t) we
define the process as follows

c(t) =
∫ ∞

− ∞
h(λ)f(t − λ)dλ.

Critical Frequency—When an infinite plate is excited, the frequency at
which the speed of the free bending wave becomes equal to the speed of the
acoustic wave in air is called the critical frequency.
Diffuse Sound Field—A diffuse sound field consists of an infinite number
of statistically uncorrelated plane progressive waves. A sound field in which
the time average of the mean square sound pressure is everywhere the same
and the flow of acoustic energy in all directions is equally probable.
Ergodic Process—The mean and the variance of a stationary ergodic process
can be computed using temporal averaging instead of ensemble averaging

E{x(t)} = 〈x(t)〉 = μx =
1
T

∫ T

0

x(t)dt.

J. Wijker, Random Vibrations in Spacecraft Structures Design,
Solid Mechanics and Its Applications 165,
c© Springer Science + Business Media B.V. 2009
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Excitation—Excitation is an external force (or other input) applied to a sys-
tem causing it to respond.
Fokker-Planck-Kolmogorov equation—Represents the evolution in time
and space of the probability density function of the states of a stochastic dy-
namical system.
Force limited vibration test—Any vibration test in which the force be-
tween the test item and shaker is measured and controlled.
Frequency—The frequency of a periodic function is the reciprocal of the pe-
riod 1

T . The unit of frequency is Hertz (Hz).
Frequency Response Function—The frequency response function for a
linear system is the Fourier transform of the unit impulse function h(τ) which
describes this system. In equation form

H(ω) =
∫ ∞

− ∞
h(τ)e−jωtdτ.

Gaussian Random Vibration—Gaussian random vibration is vibration
which has instantaneous magnitudes that occur according to the Gaussian
distribution.
Group velocity—The group velocity cg is the velocity of energy propaga-
tion.
Linear System—A system is linear when the principle of linear superposition
holds: if the output of x1(t) for the input F1(t) and x2(t) for an input F2(t)
then in the input F1(t) + F2(t) would for a linear system yield x1(t) + x2(t)
as an output.
Loss factor—The loss factor of a subsystem represents the loss percentage
when the input power to the subsystem from an external excitation source
is converted to the dynamical energy of the subsystem. (Also called damping
loss factor, intrinsic loss factor.)
Markov (Markoff) process—A simple stochastic process in which the dis-
tribution of future states depends only on the present state and not on how
it arrived in the present state.
Mechanical Impedance—Is a measure of how much a structure resists mo-
tion when subjected to a given force. It relates forces with velocities acting
on a mechanical system.
Modal Effective Mass—Masses in de model consisting of SDOF systems
connected in parallel to a common base, so as to represent the apparent mass
of a base-driven dynamic system. the sum of the modal effective masses equals
the total mass.
Modal Energy—The average energy per mode in the subsystem.
Modal Overlap—The modal overlap is the ratio of the average damping
bandwidth for an individual mode to the average spacing between resonance
frequencies.
Mode count—The mode count represents the number of resonance modes
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available in the band of interest for the subsystem to receive and store dy-
namical energy.
Narrow Band—A process whose spectral density function is narrow, encom-
passing a small finite set of frequencies which are adjacent.
Norton’s equivalent system—At a given, any linear system of loads and
sources may be reduced to a simpler system consisting of a single constant
velocity source in series with a single impedance connected to the load.
Notching—Reduction of acceleration input spectrum in narrow frequency
bands, usually where items have resonances.
Parametric Vibration—Parametric vibration refers to the oscillatory mo-
tion that occurs in a structure or mechanical system as a result of time-
dependent variation of such parameters as inertia, damping, or stiffness.
Power Spectral density—Measures how a signal is distributed in the fre-
quency domain.
Probability distribution function—The probability density function F (x)
defines the probability that x(t) ≤ x at any value of t. In terms of the prob-
ability density function f(x),

F (x) =
∫ x

− ∞
f(u)du,

where u is a dummy variable of integration.
Radiation efficiency—Radiation efficiency σ is defined as the proportion-
ality between radiated sound power Π and the square of the surface normal
velocity 〈v2〉 averaged over time and radiating surface A.
Random Process (Stochastic Process)—A random process is a set (en-
semble) of time functions that can be characterized through statistical prop-
erties.
Random Vibration—Random vibration is vibration whose instantaneous
magnitude is not specified for any given instant of time. Random Vibration
may be broad-band, covering a wide and continuous range of frequencies,
narrow-band, covering a relatively narrow range of frequencies.
Resonant Frequency—In physics, resonance is the tendency of a system to
oscillate at maximum amplitude at certain frequencies, known as the system’s
resonant (or resonance) frequencies.
Response—The response of a system is the motion (or other output) result-
ing from an excitation.
Single Degree of Freedom System (SDOF)—Vibration model with one
mass attached to a base with a spring and optional a damper.
Standard Deviation σ—The standard deviation is equal to the root mean
square (rms) value of the deviation of a function (or a set of numbers) from
the mean value. In vibration theory, the mean value is zero, therefore, the
standard deviation is equal to the rms value.
Stationary process—A stationary process is a collection of time-history
records having statistical properties that are invariant with respect to trans-
lations in time.
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Statistical Energy Analysis—The Statistical Energy Analysis (SEA) is a
technique to analyze and predict the vibro-acoustic response of a complex
system by calculating the energy flow between subsystems.
Strict Stationarity—All statistical properties are invariant with time.
Subsystem—A subsystem can be seen as a part or physical element of the
structure (“the system”) that is to be analyzed. Subsystems are structural or
acoustical entities that have modes which are similar in nature and have equal
modal energies.
Thevenin’s equivalent system—At a given, any linear system of loads and
sources may be reduced to a simpler system consisting of a single constant
force source in parallel with a single impedance connected to the load.
Total Energy—The total time averaged vibrational energy stored in the res-
onant modes of the subsystem.
Transition probability density function—Transition probability density
function fc2(x0|x, t) gives the probability of being in a differential element
(x, x+dx) of the phase plane at time t, having started at x0 at time zero, and
satisfies the Fokker-Planck equation.
Variance σ2—The variance is equal to the square of the standard deviation,
where the mean value is zero, it is the mean square value of a variable which
represents the magnitude of a vibration.
Wavelength—The wavelength is the distance between repeating units of a
wave pattern.
Wave Number—The wave number is the number of wavelengths in a dis-
tance 2π

k =
2π

λ
.

Weak form—The weak form is a variational statement of the problem in
which the residual is integrated against a test function. This has the effect
of relaxing the problem; instead of finding an exact solution everywhere, the
solution is found satisfying the strong form on average over the domain. This
is illustrated by the following example:

Strong form d2u
dx2 = po,

Residual form R = d2u
dx2 − po = 0,

Weak form
∫ L

0
Rvdx = 0, v is test function.

Weak Stationarity—The mean and the autocorrelation are invariant with
time.
Wide Band—A process whose spectral density function is wide, encompass-
ing a large finite set of frequencies which are adjacent.
Wiener Process—A Wiener process W (t) starting at the origin at time zero
is a Gaussian stochastic process with independent increments which are tem-
porally homogeneous.
White Noise—A noise with a δ correlation is called a white noise, because
the spectral distribution is independent of the frequency.
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White Random Vibration—White random vibration has a constant accel-
eration spectral density over the frequency spectrum of interest. It is a form
of white noise.
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71. Gélat, P., Lalor, N. (2002) The Role and Experimental Determination
of Equivalent Mass in Complex SEA Models, J. Sound Vib. 255(1),
pages 97–110

72. Gersch, W. (1969) Mean-Square Responses in Structural Systems,
J. Acoust. Soc. Am. 48(1), pages 403–413, Part 2

73. GSFC-STD-7000 (1996) General Environmental Verification Standard
(GEVS) for GSFC Flight Programs and Projects

74. Gradshteyn, I.S., Ryzhik, I.M., Geronimus, Yu.V., Tseytlin (1965) Table
of Integrals, Series and Products, Academic Press, San Diego, Transla-
tion edited by Jeffrey, A.

75. Gray, A.H. Jr. (1965) Behavior of Linear Systems with Random Para-
metric Excitation, J. Acoust. Soc. Am. 37(2), pages 235–239

76. Gumbel, E.J. (1954) Statistical Theory of Extreme Values and Some
Practical Applications, National Bureau of Standards, Washington, Ap-
plied Mathematics Series 33

77. Harris, C.M., Crede, C.E. (1976) Shock and Vibration Handbook,
McGraw-Hill, New York, ISBN 0-07-026799-5

78. Harrison, G.W. (1988) Numerical Solution of the Fokker-Planck Equa-
tion Using Moving Finite Elements, Numer. Methods Part. Differ. Equ.
4, pages 219–232



504 References

79. Hart, F.D., Shah, K.C. (1971) Compendium for Modal Densities for
Structures, NASA CR-1773

80. den Hartog, J.P. (1961) Strength of Materials, Dover, New York
81. Heinrich, W., Hennig, K. (1978) Zufallsschwingungen mechanischer Sys-

temen, Vieweg, Wiesbaden, ISBN 3-528-06822-1
82. Higham, D.J. (2001) An Algorithmic Introduction to Numerical Sim-

ulation of Stochastic Differential Equations, Society for Industrial and
Applied Mathematics, SIAM Rev. 43(3), pages 525–546

83. Holand, I., Kavlie, D., Moe, G., Sigbjörnsson, R. (1977) Safety of Struc-
tures under Dynamic Loading, 1, Tapir, Trondheim, ISBN 82-519-0248-7

84. Ibrahim, R.A. (1985) Parametric Random Vibration, Dover, New York,
ISBN 978-0-486-46262-2

85. Indira, R., Valsakumar, M.C., Murthy, K.P.N., Ananthakrishna, G.
(1983) Diffusion in a Bistable Potential: A Comparative Study of Differ-
ent Methods of Solution, J. Stat. Phys. 33(1), pages 181–194

86. Irwin, T. (2004) Effective Modal Mass & Modal Participation Factors,
Revision B, Vibration data

87. Iyengard, R.N. (1988) Stochastic Response and Stability of the Duff-
ing Oscillator Under Narrow Band Excitation, J. Sound Vib. 126(2),
pages 255–263

88. Jain, M.K. (2007, reprint) Numerical Solution of Differential Equations,
New Age International, New Delhi, ISBN 0-85226-432-1

89. James, G. (1993) Advanced Modern Engineering Mathematics, Addison-
Wesley, Reading, ISBN 0-201-56519-6

90. Jahnke, E., Emde, F. (1909) Funktiontafeln met Formeln und Kurven,
Teubner, Leipzig

91. Jing, H.S., Sheu, K.C. (1990) Exact Stationary Solutions of the Random
Response of a Single-Degree-Of-Freedom Vibro-Impact System, J. Sound
Vib. 141(3), pages 363–373

92. Johnson, E.A., Wojkiewicz, S.F., Bergman, L.A., Spencer, B.F. (1997)
Finite Element and Finite Difference Solutions to the Transient Fokker-
Planck Equation, Deutsche Electrone-Synchrotron (DESY) Report
DESY-97-161, Proceedings of a Workshop: “Nonlinear and Stochastic
Beam Dynamics in Accelerators-A Challenge to Theoretical and Compu-
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