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Preface

The design of many structures such as pressure vessels, aircrafts, bridge
decks, dome roofs, and missiles is based on the theories of plates and
shells. The degree of simplification needed to adopt the theories to the
design of various structures depends on the type of structure and the re-
quired accuracy of the results. Hence, a water storage tank can be satis-
factorily designed using the membrane shell theory, which disregards all
bending moments, whereas the design of a missile casing requires a more
precise analysis in order to minimize weight and materials. Similarly, the
design of a nozzle-to-cylinder junction in a nuclear reactor may require a
sophisticated finite element analysis to prevent fatigue failure while the
same junction in an air accumulator in a gas station is designed by simple
equations that satisfy equilibrium conditions.

Accordingly, this book is written for engineers interested in the theories
of plates and shells and their proper application to various structures. The
examples given throughout the book subsequent to derivation of various
theories are intended to show the engineer the level of analysis required
to achieve a safe design with a given degree of accuracy.

The book covers three general areas. These are: bending of plates;
membrane and bending theories of shells; and buckling of plates and shells.
Bending of plates is discussed in five chapters. Chapters 1 and 2 cover
rectangular plates with various boundary and loading conditions. Chapter
3 develops the theory of circular plates of uniform and variable thickness
as well as plates on an elastic foundation. Chapter 4 presents approximate
analyses such as the energy and yield-line methods for evaluating plates
of different shapes. Chapter 5 discusses the bending of plates with various
shapes and the bending of orthotropic plates.

Shell theory is presented in four chapters. Chapters 6 and 7 cover the
membrane theory and its application to spherical and conical shells as well
as other configurations. Bending of cylindrical shells is discussed in Chapter

Xi
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8. Both long and short cylinders are evaluated due to mechanical as well
as thermal loads. Examples combining circular plates and cylindrical shell
components are given to illustrate the design of some actual structures.
Bending of shells with double curvature is discussed in Chapter 9 and
numerical examples are given.

Buckling of plates and shells is discussed in Chapters 10, 11, and 12.
General Buckling theory of plates is given in Chapter 10 with approxi-
mations used in various design codes. Chapter 11 covers buckling of cy-
lindrical shells with design applications. Chapter 12 discusses buckling of
spherical, conical, and other miscellaneous shapes.

The discussion of plate and shell theories is incomplete without a brief
mention of two topics. The first is shell roof structures, and the second is
finite element formulations. A complete coverage of these two topics is
beyond the scope of this book. However, a brief summary of the analysis
of various roof structures is given in Chapter 13. Chapter 14 presents a
summary of the finite element formulation as used in solving complicated
plate and shell configurations.

Most of the chapters in this book can be covered in a two-semester
course in “plate and shell theory.” Also, a special effort was made to make
the chapters as independent from each other as possible so that a course
in “plate theory” or “shell theory” can be taught in one semester by
selecting appropriate chapters.

In order to study and use the theory of plates and shells, the engineer
is assumed to have a good working knowledge of differential equations
and matrix analysis. In addition two appendices are given at the end of
the book to make the book as ‘“‘self-contained” as possible. The first ap-
pendix is for Fourier Series and the second one is for Bessel Functions.

Maan Jawad
St. Louis, MO
1994
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Bending of Simply Supported
Rectangular Plates

1-1 Introduction

Many structures such as powerplant duct assemblies (Fig. 1-1), submarine
bulkheads, ship and barge hulls, building slabs, (Fig. 1-2), and machine
parts are designed in accordance with the bending theory of plates. The
analysis of most plate configurations consists of solving a differential equa-
tion that is a function of deflection, applied loads, and stiffness of the plate.
The solution of this differential equation results in an expression for the
deflection of the plate. Other quantities such as forces and moments must
then be determined from the calculated deflection. In this chapter, equa-
tions that express moments and forces in terms of deflection are developed
first. Next, the basic differential equation for the bending of rectangular
plates is established together with corresponding boundary conditions. These
expressions are then used to solve various plate configurations and loading
conditions.

The basic assumptions made in the derivation of the equations for the
bending of thin plates are:

1. The thickness of the plate is substantially less than the lateral dimen-
sions.

The plate is homogeneous and isotropic.

Loads are applied perpendicular to the middle surface of the plate.
The deflection of the plate due to applied loads is small.

Lines perpendicular to the middle surface before deformation remain
perpendicular to the deformed middle surface.

Nk W

With these assumptions, the basic relationships can now be derived.



2 Bending of Simply Supported Rectangular Plates

Figure 1-1. Duct assembly. (Courtesy of the Nooter Corporation, St. Louis, MO.)

1-2 Strain—Deflection Equations

The relationship between strain and deflection of a thin plate is available
from geometric considerations. We begin the derivation by letting an in-
finitesimal section (Fig. 1-3) undergo some bending deformation. The change
in length at a distance z from the middle surface is expressed as

dx _dx + e dx

1-1
T, r, +z ( )
or
z
= — 1-2
=2 (12
€ = Xi2 (1-3)
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Figure 1-2. Reinforced concrete buliding. (Courtesy of the Portland Cement As-
sociation, Chicago, IL.)

where

r, = radius of curvature in the x-direction;
¢, = strain in the x-direction;
X, = curvature in the x-direction.

Similarly, in the y-direction,

z
& = r—y (1-4)
g, = X,Z (1-5)

where

Il

radius of curvature in the y-direction;
= strain in the y-direction;
curvature in the y-direction.

&y

Xy

The quantity ¥, is related to the deflection, w, and slope, dw/dx, by the
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Figure 1-3.
expression (Shenk 1979)
_dw
dx?
Xx = . d_w 2732
dx
or, for small deflections,
d*w
= — —, 1-
Xx e (1-6)
Similarly, in the y-direction,
d*w
Xr = T e (1-7)
Substituting Eqs. (1-6) and (1-7) into Egs. (1-3) and (1-5) gives
d*w
€, = —Z d—x2 (1-8)
d2
g, = ud (1-9)

y = —2:1;2‘.
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The shearing strain—deformation relationship can be obtained from Fig.
1-4. If an infinitesimal element of length dx and width dy undergoes shear-
ing deformations due to in-plane shearing forces and twisting moments

then from Fig. 1-4a

—d
. ay Y
sina = a =
v
<1 + —) dy
ay
or, for small shearing angles,
_du
ay
du
vy dx+§dx |
l—dx l
X
v+%dx
Jdu
"u+a—y-dy
y @
= X
§ “ou
=% 1
””” e
Y
z

(b

Figure 1-4.
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Similarly,
d
i dx
sin B =B =
<1 + a—”) dx
ox
av
B = ox’
Hence,
ou av
= + = — — -
Yoy = @ + B oy o (1-10)
where

u = deflection in the x-direction;

v = deflection in the y-direction;
Y.y = shearing strain;
ou ov . . L
—, — = shearing strains due to twisting.
ay ox

The rotation of the middle surface is shown in Fig. 1-4b and is given by
ow/ox. Due to this rotation, any point at distance z from the middle surface
will deflect by the amount

u = ztan 6 = z0

or
ow ow
u=—z— V= —z—.
ox ay
Hence, Eq. (1-10) becomes
o*w
= =2 . 1-11
Yy 2% oy (1-11)
Equations (1-8), (1-9), and (1-11) can be written as
- ]
2
e, 10 0] | %
0w
g,|=—-z|0 1 0 — (1-12)
ay
Yy 0 0 2 P
L 9x 9y |




Stress—Deflection Expressions

and are sufficiently accurate for developing the bending theory of thin
plates. More precise strain expressions that are a function of the three
displacement functions u, v, and w will be derived later when the buckling
theory of thin plates is discussed.

1-3 Stress—Deflection Expressions

Our next step is to express Eq. (1-12) in terms of stress rather than strain
because it is easier to work with stress. The relationship between stress
and strain, excluding thermal loads, in a three-dimensional homogeneous
and isotropic element (Fig. 1-5) is obtained from the theory of elasticity

(Sokolnikoff 1956) as

1T —-p —p 0 0 0 W
- 1 —p 0 0 0
T Bl Rt 1 0 0 0
E {0 0 21+ p) 0 0
0 0 0 21 + p) 0
| 0 0 0 0 21 + )|
o
| y
|
dz ! v
|
T
| Ty {
'u
| Lo Ox
A -
/
/" Tay Tx2
dy / y
)/ Tzx
/ X
g
| A /
dx

Figure 1-5.
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where

= axial strain;

axial stress;

shearing strain;

= shearing stress;

= modulus of elasticity;
Poisson’s ratio.

TFMMAa< Qo
||t

The quantities x, y, and z refer to the directions shown in Fig. 1-5. The
quantity 2(1 + w)/E is usually written as 1/G where G is called the shearing
modulus.

The stress perpendicular to the surface, i.e., in the z-direction, has a
maximum value equal to the applied pressure. For the majority of plate
applications in bending, the stress o, in the z-direction is small compared
to the stress in the other two directions and thus can be neglected. In
addition, the shearing stresses 7,, and 7,, are not needed in the formulation
of a two-dimensional state of stress. Hence, for this condition, Eq. (1-13)
can be written as

1 p 0 e
X E X
=T w1l 0 e, |. (1-14)
xy 0 0 1 [ 'ny

Substituting Eq. (1-12) into Eq. (1-14) gives

[ o°w T
9x?
Fw
ay?
(1 - u‘) 2w
Lox 9y |

1 0
—-Ez "
0y=1_u2p,1 0
0 0

(1-15)

The elastic moduli of elasticity and Poisson’s ratio for some commonly
used materials are given in Table 1-1. The value of Poisson’s ratio is rel-
atively constant at various temperatures for a given material and is thus
listed only for room temperature in Table 1-1.

1-4 Force-Stress Expressions

Equation (1-15) can be utilized better when the stress values are replaced
by moments. This is because the moments at the edges of the plate are
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Table 1-1. Moduli of elasticity and Poisson’s ratio

Modulus of Elasticity”
Temperature, °F

Poisson’s Room

Material Ratio Temperature 200 400 600 800 . 1000
Aluminum (6061) 0.33 10.0 9.6 8.7
Brass (C71000) 0.33 20.0 19.5 18.8 17.8
Bronze (C61400) 0.33 17.0 16.6 16.0 15.1
Carbon Steel (C < 0.3) 0.29 29.5 28.8 27.7 26.7 24.2 20.1
Copper (C12300) 0.33 17.0 16.6 16.0 15.1
Cu-Ni (70-30) (C71500)  0.33 22.0 21.5 20.7 19.6
Nickel alloy C276 0.29 29.8 29.1 28.3 27.6 26.5 25.3
Nickel alloy 600 0.29 31.0 30.2 29.5 28.7 27.6 26.4
Stainless steel (304) 0.31 28.3 27.6 26.5 25.3 24.1 22.8
Titanium (Gr.1,2) 0.32 15.5 15.0 14.0 12.6 11.2
Zirconium alloys 0.35 14.4 13.4 11.5 9.9
Concrete 0.15 3.1%
Wood, hard 2.1
Wood, soft 1.3

“In million psi.
®For 3000 psi concrete.

needed to satisfy some of the boundary conditions in solving the differential
equation. The relationship between moment and stress is obtained from
Fig. 1-6a. The moments shown in Fig. 1-6b are positive and are per unit
length. By definition, the sum of the moments about the neutral axis due
to the internal forces is equal to the sum of the moments of the external
forces. Hence,

Mx 12 O

M, | = f Lo z dz. (1-16)
—t

_Mxy Txy

The negative sign of M, in Eq. (1-16) is needed since the direction of
M, in Fig. 1-6b results in a shearing stress 7,, that has a direction opposite
to that defined in Fig. 1-4a in the positive z-axis. Substituting Eq. (1-15)
into Eq. (1-16) results in

.
M, 1w 0 gf;
M, |=-D|p 1 0 e (1-17)
M, 00 ~a-wl| 2

[ ox oy
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(b)

Figure 1-6.

where

___E°
TR0 - )
The quantity D is the bending stiffness of a plate. It reduces to the

quantity EI, which is the bending stiffness of a beam of unit width, when
we let p = 0.

D (1-18)

Problems

1-1 The finite element formulation for the stiffness of a solid three-
dimensional element is based on the strain—stresse matrix Eq. (1-13). Re-
write this equation as a stress—strain matrix.

1-2 A strain gage rosette is mounted on the flat inside surface of a valve
casting as shown in Fig. P1-2. The valve is then pressurized and the fol-
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y
|
!
[
I
|
|

Figure P1-2.

lowing strain values were measured

= 300 x 10~° inches/inch
, = 150 X 10~° inches/inch
g45 = 600 X 107° inches/inch.

€

P

€

Calculate the maximum stresses if £ = 20,000 ksi and p = 0.15. Hint:
first, calculate the shearing strain v,, at the location of the strain gage from
Mohr’s circle which is expressed as
g, + g, €, —
+

2 2
where 6 = 45°in this case. Then, calculate the principal strains from Beer
and Johnson (1981)

e T
min 2 2 2

1 J Ex — & : Yxy ?

e [T

1 Yx
- tan—l Xy
2 €, — €

8 X .
€g = 2 cos 20 + %sm 20

0

where 20 is the orientation of the plane of maximum strain with respect
to the plane of given strains. The last step is to use Eq. (1-14) to obtain
maximum stress.
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1-3 The stress in the x-direction of a point on the surface of a plate is
equal to 35 MPa. The stress in the y-direction is equal to 70 MPa and that
in the z-direction is equal to 35 MPa. Determine the maximum shearing
stress by Mohr’s circle and show the plane on which it acts.
1-4 Determine the maximum bending stress values o, and o, in a plate
with length a = 100 cm and width b = 75 cm. The deflection is approx-
imated by

w = ksin — sin =

a b

where k is a constant equal to 0.462 cm. Let ¢t = 1.2 cm, p = 0.3, and
E = 200,000 MPa.
1-5 A simply supported rectangular plate with dimensions a = 30 inches
and b = 20 inches (Fig. P1-5) is subjected to a uniform pressure of 15 psi.
Determine the maximum bending moment in the middle of the plate by
taking unit strips in the middle of the plate in the x- and y-directions.
Assume the strips to be connected at point A. Compare the results
with the more accurate solution obtained from the plate theory in Example
1-2.

1-5 Governing Differential Equations

The differential equation for the bending of a beam
Pw M@
dx*  EI

(1-19)

<

a

Figure P1-5.
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can be expressed in terms of applied loads by

d'w _ px)
dx*  EI’

A similar equation can be written for the bending of a plate. The cor-
responding differential equation for the bending of a plate is more com-
plicated because it must include terms for the bending in the x- and
y-directions as well as torsional moments that are present in the plate.
Lagrange (Timoshenko 1983) was the first to develop the differential equa-
tion for the bending of a rectangular plate in 1811. We begin the derivation
of the governing equations by considering an infinitesimal element dx, dy
in Fig. 1-7 subjected to lateral loads p. The forces and moments, per unit
length, needed for equilibrium are shown in Fig. 1-8 and are positive as
shown. Also, downward deflection is taken as positive. It is of interest to
note that two shearing forces, O, and Q,, and two torsional moments, M,,
and M,,, are needed to properly define the equilibrium of a rectangular
plate.

Summation of forces in the z-direction gives the first equation of
equilibrium:

(1-20)

00,
ox

px,y)dxdy — Q. dy + <Qx + dX) dy

0+ %)
- Q0,dx +{Q, + —dy|dx =0.

1
VY,

fa——ey
dx

«——

Figure 1-7.
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, dx

-—x

d P(xy) Mx* ZTX dx

v N sl
\

AN
My+ My g
ay
Figure 1-8.
This equation reduces to
Q. 99,
,y) + + — = 0. 1-21
PEY) + S T (1-21)

Summation of moments around the x-axis gives the second equation of
equilibrium

oM, M,
M,dx — | M, + Edy dx — M,, dy + | M,, + Py dx | dy

ad
+ (Qy + —a% dy) dx dy — Q, dy dy/2

a%‘ dx) dy dy/2 + p dx dy dy/2 = 0.

+<Qx+ 3

Simplifying this equation gives

oM oM 10 140 1
+—=2 - =24+ |2 +-==+z-pldy=0.
9 ox ay <6y 2 ox 2p> Y

The bracketed term in this equation is multiplied by an infinitesimal quan-
tity dy. It can thus be deleted because its magnitude is substantially less
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than that of the other three terms. The equation becomes

ad M 0*M,
% _ —r - —= (1-22)
ay ay dax dy

Summation of moments around the y-axis gives the third equation of
equilibrium

= (1-23)

Substituting Eqs. (1-22) and (1-23) into Eq. (1-21) gives

*M *M *M
,y) + -2 = 4 Y= 0. 1-24
p(x, ) ax? ox dy ay? (1-24)
In this equation it was assumed that M,, = M, because at any point on
the plate the shearing stress 1,, = — 7,

Substituting Eq. (1-17) into this equatlon gives

dw o, dw o dw
ox? ay*  ay*

™ = p(x, y)/D. (1-25)
A comparison of this equation with Eq. (1-20) for the bending of beams
indicates that Eq. (1-25) is considerably more complicated because it con-
siders the deflection in the x- and y-directions as well as the shearing effects
in the xy plane.
Equation (1-25) can also be written as

V2w = Véw = p(x, y)/D (1-26)
where
Viw = Fw + rw
ox?  9y?
and
Viw = ot ow 3w

+ =+
ox*  ax?ayr 9yt

Equation (1-26) is the basic differential equation for rectangular plates
in bending. A solution of this equation yields an expression for the de-
flection, w, of the plate. The moment expressions are obtained by substi-
tuting the deflection expressions into Eq. (1-17). The shear forces are
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obtained from Eqgs. (1-22), (1-23), and (1-17), and are given by

*w Fw
Qe= - D(E ™ 6y2> (1-27)
3w *w
= — + —_— -
o, D<6x2 P 6y3> (1-28)

For sign convention we will assume a downward deflection as positive
in Eq. (1-26). All other quantities are assumed positive as shown in
Fig. 1-8.

Problems

1-6 Find M,, M,, M,,, Q,, and Q, of a rectangular plate whose deflection
is given by

nmy

b

. mmx
w = k sin — sin
a

where k, a, b, n, and m are constants.
1-7 Derive Egs. (1-25), (1-27), and (1-28).

1-6 Boundary Conditions

The most frequently encountered boundary conditions for rectangular plates
are essentially the same as those for beams. They are either fixed, simply
supported, free, or partially fixed as shown in Fig. 1-9.

(a) Fixed Edges: For a fixed edge (Fig. 1-9), the deflection and slope
are zero. Thus,

w|y=b =0 (1-29)
ow
— = 0. (1-30
oy |, )

(b) Simply Supported Edge: For a simply supported edge (Fig. 1-9), the
deflection and moment are zero. Hence,

wly—o = 0 (1-31)
and, from Eq. (1-17),
0w *w
o= —Dl—+p— = 0. 1-32
Mly=o D<3y2 : axz) y=0 ’ (132
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a

simpl
/ sup:o¥ted 7

free

& X

partially
restrained

[

y

~N

Figure 1-9.

The expression Ew in Eq. (1-32) can be written as 9 (o which is
P o 4 Hax \ax
the rate of change of the slope at the boundary. But the change in slope
along the simply supported edge y = 0 is always zero. Hence the quantity
62
" 6_):: vanishes and the moment boundary condition becomes

Pw

My =35 =0, (1-33)

y=0
(c) Free Edge: At a free edge, the moment and shear are zero. Hence,
Mx|x=a = Mxy|x=a = Qx‘x:a = 0'
From the first of these boundary conditions and Eq. (1-17) we get
Pw | Pw
a2 P2
The other two boundary conditions can be combined into a single expres-
sion. Referring to Fig. 1-10, it was shown by Kirchhoff (Timoshenko and

Woinowsky-Krieger 1959) that the moment M,, can be thought of as a
series of couples acting on an infinitesimal section. Hence, at any point

along the edge
, oM,
¢=- ( ay )

This equivalent shearing force, Q', must be added to the shearing force

= 0. (1-34)

xX=a

xX=a
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aM
Myy + =559

/

Figure 1-10.

Q, acting at the edge. Hence the total shearing force at the free edge is
given by Q' and Eq. (1-27) as

=0

xX=a

M,
Ve=1{0: — Ty

Substituting the values of Q, and M,, from Egs. (1-27) and (1-17) into this

equation gives
*w *w
— 4+ (2 -
<6x3 ( k) ox 6y2)

Equations (1-34) and (1-35) are the two necessary boundary conditions
at a free edge of a rectangular plate.

(d) Partially Fixed Edge: A partially fixed edge occurs in continuous
plates or plates connected to beams. For this latter condition, Fig. 1-11
shows that the two boundary conditions are given by

= 0. (1-35)

x=a

lelate = V'beam

>w Pw *w
D= + 2 - = EI %% 1-3
[8)53 ( ») ox ayz] 0 (8y4> e0 (1-36)
and
M,plate = Mlbeam
w *w #>w
D= + 2 = GJ [—= 1-
<ax2 K 6y2> =0 <ax ayZ) =0 (1-37)
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BEAM
PLATE

) 1=

Figure 1-11.

(e) Corner Reactions: It was shown in the derivation of Eq. (1-35) that
the torsion moment M,, shown in Fig. 1-10 can be resolved into a series
of couples. At any corner, say x = a and y = b in Fig. 1-12, the moment
M, results in a downward force and so does M,, as shown in the figure.
Hence the total reaction at x = a and y = b is given by

(1-38)

R =2M)|,_, = 2D(1 - )(62W>

|3 W\ax ay) [3=¢

Equation (1-38) is normally used to determine the force in corner bolts
of rectangular cover plates of gear transmission casings, flanges, etc.

To summarize, Eqs. (1-29) and (1-30) are used for fixed edges whereas
Egs. (1-31) and (1-33) are utilized for simply supported edges. Free edges
are expressed by Egs. (1-34) and (1-35) and boundaries of plates with beam
edges are given by Eqgs. (1-36) and (1-37). Corner loads are expressed by
Eq. (1-38).

Example 1-1

Find the moment and reaction expressions for a simply supported rectan-
gular plate (Fig. 1-13a) of length a, width b, and subjected to a sinusoidal
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= X
M,y
b dy
4 ox
Y/

Figure 1-12.

Figure 1-13a and b.
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A

K
N

top corner reinforcement

section A-A

Figure 1-13c. Corner reinforcement.

load given by

sin = sin =
P = Do 4 b
Solution
The differential Eq. (1-26) is written as
Viw = % sin — p, 2 sin %y
From Fig. 1-13, the boundary conditions are given by
2
w=0 and 22 =0 atx=0 and x
ox?
*w
w=0 and — =0 aty=0 and y

21

1)
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The assumed expression for the deflection must be of the same general
format as that of the applied load in order to solve Eq. (1). It must also
satisfy the boundary conditions of the plate. Hence, a deflection of the

form

. mX Ty
= —_ _— 2
w = C sin , Sin— 2)

satisfies the given boundary conditions.
Substituting Eq. (2) into Eq. (1) gives

— Do .omx . omy (3)

Substituting this expression into Eq. (1-17) gives

— Po 1 3 . .. my
Mx——z‘l—?<;+ﬁ)51n781n?‘
™ le+ﬁ
— Po M 1 . ..my
M, 7 ) 2<;+;)sm—sm?
v '—5+ZE
1 —
oy = P p‘)z cos cos%y
(1 1
™ '3‘!"65 ab

The maximum value for moments M, and M, occur at x = a/2 and
y = b/2.
To find the reactions, we calculate Q, and Q, from Eqgs. (1-27) and
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(1-28). This gives

Q)r = —‘—1p0—1008751n%y
m™a ;E-‘-ﬁ

Qy=—p°—sinﬂ—cosw—y
b=+ = ’
™\ T

Vx = (Qx - %>

—Po 12—\ . @y

= —1_12 <E + b2 ) Sin —b— (4)

ma\ - + ﬁ
and for edge y = b, the reaction is given by
-0
y y ox y=b
_ TP 1 2wy ™
= b2+ = )sm o 5)

2
1 1
ﬂb(; + ﬁ)
The total reaction around the plate is obtained by integrating Eqs. (4)

and (5) fromx = 0tox = aand fromy = 0to y = b and then multiplying
the result by 2 due to symmetry. This gives

4p.ab N 8po(1 — ) ©)

w2 2
2ab( blz)

The first part of this equation can also be obtained by integrating the
applied load over the total area, or

f fpsm-sm—dxdy

The second expression in Eq. (6) is the summation of the four corner

total reaction =
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reactions given by Eq. (1-38). Hence, at x = 0 and y = 0 the expression
for the reaction is

S D
et 1 1\
’n'%lb(; + 55)

A plot of the shear distribution and reaction is shown in Fig. 1-13b.
The positive value of R indicates that the corners have a tendency to lift
up and a downward force is needed to keep them in place. This action
must be considered when designing cover plates and concrete slabs. An
example of the reinforcement at the corners of a concrete slab is shown
in Fig. 1-13c.

R =2M,)

1-7 Double Series Solution of Simply Supported
Plates

The first successful solution of a simply supported rectangular plate sub-
jected to uniform load was made by Navier (Timoshenko 1983) in 1820.
He assumed the load p in Eq. (1-26) to be represented by the double
Fourier series, Appendix A, of the form

p(x7 y) = 2 Pmn sin M sin m (1'39)
m=1n=1 a b
where p,,,, is obtained from
3 4}"’[“ . mmX . nwy
Prn = 20 |0 Jo f(x, y) sin - sin— dx dy (1-40)
and f(x,y) is the shape of the applied load.
Similarly the deflection w is expressed by
w(x,y) = O D, W, sin % sin % (1-41)
m=1n=1

This equation automatically satisfies four boundary conditions of a simply
supported plate and w,,, is a constant that is determined from the differ-
ential equation.

The solution of a rectangular plate problem consists of obtaining a load
function form Eq. (1-39). The the unknown constant w,,, is obtained by
substituting Egs. (1-39) and (1-41) into Eq. (1-26).
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Example 1-2

(a) Determine the maximum bending moment of a simply supported
plate due to a uniformly applied load.

(b) Let a steel rectangular plate with dimensions a = 30 inch and b =
20 inch be subjected to a pressure of 15 psi. Determine the maximum
bending moment and deflection if p = 0.3, E = 30,000 ksi, and ¢t = 0.38
inch.

Solution

(a) Let the coordinate system be as shown in Fig. 1-14. Equation (1-40)
can be solved by letting f(x, y) equal a constant p, because the load is
uniform over the entire plate. Hence,

4
= p°ff s1n-——sm ydxdy

Pmn =

4p,
p— (cos mm )(cos nm )
_ 16p,
wmn
where
m=1,3,5...
n=13,5...
From Eq. (1-39),
_16p, < ad mmx . nwy
P= m:1,3,...n=12,3,... sin p; sin b

Figure 1-14.
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Substituting this equation and Eq. (1-41) into Eq. (1-26) gives

~ 16p, m=1,35,...
W = SpnmD[(mla) + (Wb n=1,3,5,. ..

Hence, the deflection expression becomes

sin mmx sin my
A D) « b (1)
T 0D 55, a5, mn[(m/a)? + (n/b)?

The bending and torsional moment expressions are given by Eq. (1-17)
and are expressed as

M, = 1—6%) [ 2 E F,, sin max sin m] )
™ m=13,... n=13,... a b
| s S in T G AT
M, = — [m=123 n=12,3,... G,,, Sin ; sin 3 ] 3)

1 1_ fe <] o
Mxy=M[m2 S m, Cosmcosm] @

=1,3,... n=1,3,... a b
where
_(mla)* + p(n/b)?
™ mn[(mla)* + (n/b)*]?
_ w(mla)* + (n/b)?

mn[(m/a)?> + (n/b)?)?

1

7 " ab[(mla)? + (n/b)*

The maximum values of deflection and bending moments occur at x =
a2 and y = b/2.

A plot of Egs. (2), (3), and (4) is shown in Fig. 1-15 for a square plate.
The figure also shows a plot of M; and M, obtained from Mohr’s circle
along the diagonal of the plate. M, becomes negative near the corner of
the plate. This is due to the uplift tendency at the corners. This uplift is
resisted by the reaction R that causes tension at the top portion of the
plate near the corners. This tension must be properly reinforced in concrete
slabs as shown in Fig. 1-13c.

(b) The maximum values of M,, M,, and w are obtained from expression
(2), (3), and (4) above. The computer program “DBLSUM” in Table A-2
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Figure 1-15. (Timoshenko and Woinowsky-Krieger 1959.)

of Appendix A is used to determine the series summation for m and #.

16p,b>
M, = 6p o2 (0.3035) = 299.1 inch-lbs/inch
16pb
M, = 6” o2 (0.4941) = 487.0 inch-lbs/inch
16
w = p b 0.4647)

The value of D is given by Eq. (1-18) as

Er 30,000,000 x 0.38°
D = =1 4 -inch.
20 - P~) 12 (0.91) 50,747 1bs-inch

the maximum deflection is

w = 0.12 inch.
Example 1-3

Find the deflection expression for the simply supported plate loaded as
shown in Fig. 1-16.
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Figure 1-16.

Solution

The Fourier expansion of the load is obtained from Egs. (1-39) and (1-40)
as

f+d/2 j‘e+c/2 y
= — d
Prn ab cd Jf—ar o Po sm sm b dx dy
1 d
Pmn = opo sin e sin e sin n—ﬂf sin ni. (6]

mn cdw? a 2a b 2b
Substituting this expression and Eq. (1-41) into Eq. (1-26) gives

16p, 2a b 2b )
™ @w%dD [(mla)? + (n/b)?]
and
w= > > W, sin MY gin 222 3)
m=1,3,..n=13,... a b

This equation reduces to Eq. (1) of Example 1-2 for a uniformly loaded
plate when ¢ = a,d = b, e = a/2, and f = b/2.

Problems

1-8 Find the expression for moments M, and M, in Example 1-3.

1-9 A tabletop is loaded as shown in Fig. 1-16. Find the maximum stress
in the table if a = 200 cm, b = 80 cm, ¢ = 30cm, d = 15cm, e = 80
cm, f = 40 cm, E = 840 kg/mm?, p = 0.2 kg/cm?, and p. = 0.30. Assume
the tabletop to be simply supported.
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1-10  Show that in Example 1-3 the value of p,,, for a concentrated load,
Po» I8

1-8 Single Series Solution of Simply Supported Plates

Levy (Timoshenko 1983) in 1900 developed a method for solving simply
supported plates subjected to various loading conditions using single Four-
ier series. This method is more practical then Navier’s solution because it
is also applicable to plates with various boundary conditions as discussed
in Chapter 2. Levy suggested the solution of Eq. (1-26) to be expressed
in terms of homogeneous and particular parts each of which consists of a
single Fourier series where the unknown function is determined from the
boundary conditions. Thus the solution is expressed as

W= w, + w, (1-42)

The homogeneous solution is written as

W= 3 o) sin 22 (143)

where f(y) indicates that it is a function of y only. This equation also
satisfies a simply supported boundary condition at x = 0 and x = a.
Substituting Eq. (1-43) into the differential equation

Viw =0

gives

mr\' o (ma\ ) | d0) _
[(a>f'”(y) 2<a> dy? dy* ] a "= 0

which is satisfied when the bracketed term is equal to zero. Thus,

a*fa(y) dzfm(y)
oA G (e o

The solution of this differential equation can be expressed as

f(y) = F,eRmy. (1-45)
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Substituting Eq. (1-45) into Eq. (1-44) gives

2 4
R: — 2<@> R2 + <ﬂf—> =0
a a
which has the roots

R, = = ,

mm mw
4 .

Thus, the solution of Eq. (1-44) is

my

fu(¥) = Cie s + Cype =

where C,,,, C,,y Cs, and Cg,, are constants. This equation can also be
written as

mmy

m_'lry
+ Cyyes + Cyye ¢

f(y) = A, sinh ‘n% + B,, cosh mny

+ C,y sinh r_ngx + D,y cosh ?.

Hence, the homogeneous solution given by Eq. (1-43) becomes

oc

W, = 2 [Am sinh _m_;rl + B,, cosh ﬂ:—y + C,,y sinh

m=1

my

+ D,y cosh QZLX] sin r_rzaﬂ_x (1-46)

where the constants A,,, B,,, C,,, and D,, are obtained from the boundary
conditions.

The particular solution, w,, in Eq. (1-42) can be expressed in a single
Fourier series as

W, = > k() sin —’Tlalx (1-47)
m=1
The load p is expressed as

p(x,y) = 21 Pm(y) sin ﬂ:—x (1-48)

where

2 [ . mmx
pm(y) =~ fo p(x, y) sin —= dx. (1-49)
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Substituting Eqs. (1-47) and (1-48) into Eq. (1-26) gives

2 4
d*k,, mw\ d’k,, mw Pm(y)
——m _ —_ —2 4+ | — = 2 s 1-
dy* 2( a ) dy? < a ) =D (10

Thus, the solution of the differential equation (1-26) consists of solving
Egs. (1-46) and (1-50) as shown in the following example.

Example 1-4

The rectangular titanium plate shown in Fig. 1-17 is subjected to a uniform
load p,. Determine the expression for the deflection.

Solution
From Eq. (1-49),

_ 2p, f ¢ mmx
pm(y) = 7 Jo S0 dx
2 4
=—£3(cosmw—1)=ﬁ m=1,3,...
mar mw
Hence, Eq. (1-50) becomes
2 4
d‘k mw\ d’% mm 4p
=2l ==+ |— = — 1
dy* (a) dy? <a>k"’ mmD W
The particular solution of this equation can be taken as
k, = C.
a
SS
b
2
—a X
b SS SS
2
SS
!

Figure 1-17.



32 Bending of Simply Supported Rectangular Plates

Substituting this expression into Eq. (1) gives

o datp,

m= 5D m=13,...

And Eq. (1-47) for the particular solution becomes

da*p, < 1 . mmx
w, = =D mg;’m s sin - )

The homogeneous solution for the deflection is obtained from Eq.
(1-46). Referring to Fig. 1-17, the deflection in the y-direction due to
uniform load is symmetric about the x-axis. Hence, the constants A,, and

. ... . ,omm mm
D,, must be set to zero since the quantities sinh 1) and y cosh ) are
a a
odd functions as y varies from positive to negative. Also, m must be set
. . mmx ,
to 1, 3, 5, etc. in order for sin — to be symmetric around x = a/2.

Hence,

o

w, = > <Bm cosh -me}— + C,.y sinh in%) sin ng

m=1,3,...

and the total deflection can now be expressed as

Y

mmy . .mmy  4dp,at\ . mmx
= B h—= + h + . (3
w m:;lm( 1 COS p, C,.ysin p m51-r5D> sin p (3)

The boundary conditions along the y-axis are expressed as
w=0 aty = = b2
and

— =0 aty = = b/2.

From the first of these boundary conditions we get

mwb b . mmb  4a’p,
B,, cosh 7 + C,, —2- sinh Ta— 5D =

and from the second boundary condition we get

B, o)+ bc,, cosh@ + C,, mwb sinhm—wb = 0.
a 2a 2a 2a
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Solving these two simultaneous equations gives

Cm — 2a3p0 b
m*m*D cosh mmo
2a
mmb
da*p, + mmp.a®h tanh ——
2a
B, = -
m>w’D cosh o
2a -

With these two expressions known, Eq. (3) can now be solved for various
values of x and y.

The load in the previous few examples was assumed uniform in distri-
bution. Other distributions can be used in Eq. (1-49) as long as they can
be expressed in terms of x and y. Thus, if the load in Example 1-4 is
triangular in distribution as shown in Fig. 1-18, then it can be expressed
as

_ DoX
Pm = a
and Eq. (1-49) becomes
2 J” DoX . mmx
DY) = 2o g ST, dx

2p
= o (_qym+1 =1,2,...
mﬂ( ) m=1,2,

Figure 1-18.
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Figure P1-13.

Problems

1-11 Find the expression for M,, M, and M,, in Example 1-4.

1-12 A channel weir is approximated as a simply supported rectangular
plate subjected to the loading shown in Fig. P1-12. Find the expression
for the moments.

1-13  An internal zirconium bulkhead is loaded as shown in Fig. P1-13.
Find the expression for the moments assuming the plate to be simply
supported.

1-9 Design of Rectangular Plates

The procedure for designing a rectangular plate with a given boundary
condition and applied lateral loads is
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1. Express the loads in a Fourier series and define a similar expression for
the deflection.

2. Solve Eq. (1-26) for the actual deflection, w, by utilizing the boundary

conditions in the solution.

Determine the maximum moments from Eq. (1-17).

4. For metallic plates, the required thickness is calculated from the expres-
sion o = Mc/I where, for a unit width, it reduces to

t = \/6Mlo. (1-51)

5. For reinforced concrete slabs where the reinforcement is about the same
in the x- and y-axes, the design can be approximated by Eq. (1-26) as
discussed above. The design of concrete plates is more complicated than
that of metallic plates because the engineer has to determine not only
the magnitude of the bending moments, but also their direction and
location in order to properly space the reinforcing bars. Standards such
as the ACI 318 establish minimum requirements for concrete thickness
and reinforcement spacing throughout the slab.

6. Orthotropic plates and reinforced concrete slabs where the reinforce-
ment is not the same in the x- and y-directions are analyzed in accor-
dance with the orthotropic plate theory discussed in Chapter S.

w

Allowable stress values at various temperatures of various materials are
published in many international codes. The ASME VIII-1 code publishes
allowable stresses for over 500 different steels and nonferrous alloys. These
stresses are based on the smaller of two-thirds of the yield stress or one-
fourth of the tensile stress of the material at a given temperature. Table
1-2 lists allowable stress values for a few materials at temperatures below
the creep and rupture values. Allowable stresses at elevated temperatures
are discussed in Chapter 2. Allowable stress values for reinforced concrete
are given in various standards such as ACI 318.

Table 1-2. ASME VIII-1 allowable stress values, ksi
Temperature, °F

ASME Room
Material Designation Temperature 300 500 700
Carbon steel SA 516-70 17.5 17.5 17.5 16.6
Stainless steel SA 240-304 18.8 16.6 15.9 15.9
Aluminum SB 209-6061 T4 7.5 6.9
Copper alloy SB 171-715 70/30 12.5 10.4 10.4 10.4
Nickel alloy SB 575-276 25.0 25.0 23.9 23.1

Titanium alloy SB 265-Gr 3 16.3 11.7 7.5
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Maximum moments and stresses in most of the frequently encountered
load cases for simply supported rectangular plates have been tabulated
in many references for the convenience of the engineer. Timoshenko
(Timoshenko and Woinowsky-Krieger 1959) lists tables and charts for max-
imum moments and deflections of numerous loading conditions. Roark
(Roark and Young 1975) has similar tables and so does Pilkey (Pilkey and
Chang 1978). Table 1-3 gives maximum deflection and stress values for
simply supported plates with two commonly encountered loading conditions.

Loading conditions not found in published references must be solved by
developing a Fourier series for the loads and deflection and then satisfying
the boundary conditions as discussed in this chapter.

The exact analysis of perforated rectangular plates, which are used in
boilers and pressure vessels, is difficult to obtain. However, various ap-
proximations can be made to obtain a solution. One such approximation
is given by the ASME boiler code, Section I, and consists of using the

Figure P1-14.
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classical solution of a solid plate and then modifying it by using ligament
efficiency factors to account for the effect of the perforations on the plate
stress.

Problems

1-14 What is the required thickness of the rectangular cover for the open-
ing shown in Fig. P1-14? The cover is made of aluminum SA209-6061 T4
material. The temperature is 300°F and the applied pressure is 100 psi.
Calculate the required number of bolts if they are made of the same ma-
terial. Do the corner bolts have to be larger than the rest of the bolts?
1-15 What is the required thickness of the internal partition ABCD of
the holding tank shown in Fig. P1-15?7 The bottom of the tank is enclosed
by a circular plate while the top is enclosed by a semicircular plate that
covers one side of the top. The tank is full of water on one side of the
partition. The material is SA 240-304 and the temperature is 100°F. Assume
the partition ABCD to be simply supported on all four sides.

1-16 In Example 1-2, what modifications must be made to Eq. (1) if the
thickness of the plate is variable and is a function of x and y.

1-17 Discuss the modifications that have to be made to the differential
equation and boundary conditions if the corners of a simply supported
plate are allowed to curl up due to applied pressure.

1-18 In Fig. 1-11, how should the reinforcing bars in a concrete slab be
placed to ensure continuity of moments, shears, etc. between the slab and
beam?

A

Figure P1-15.
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Bending of Various Rectangular
Plates

2-1 Plates with Various Boundary Conditions

Most rectangular plates in building slabs, ship hulls, aircraft skins (Fig.
2-1), and rectangular holding tanks have boundary conditions other than
simply supported. The Levy solution discussed in Chapter 1 can be utilized
very effectively in solving rectangular plates with various boundary con-
ditions. Equations (1-46) and (1-50) are readily applicable to plates with
two opposite sides simply supported, and the boundary conditions for the
other two sides can then be incorporated into the total solution. For plates
that do not have two opposite simply supported sides, the solution is more
difficult because various cases have to be superimposed to arrive at a
solution. The following examples illustrate the general procedure to be
followed in solving plates with various boundary conditions.

Example 2-1

Find the expression for the deflection of a uniformly loaded plate having
three sides simply supported and the fourth side fixed as shown in Fig.
2-2.

Solution
From Example 1-4, the particular deflection is expressed as

4p.a* . mmx
w, = — > sin ——
P TS, mPnD

39
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Figure 2-1. F-15 Fighter. (Courtesy of the McDonnell Douglas Corp., St. Louis,
MO.)

fixed

ss |p ss

SS

Figure 2-2.
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and the total deflection is given by

w= > <Am sinhmTTry + B,, cosh@ + C,y sinh 22

mmy\ . mmx

+ D,y cosh —X) sin ——
a a

— dp.a* . mmx

+
m=13,. m>mD

Since the deflection is symmetric with respect to x = a/2, m must be
odd and the deflection expression becomes

Y Y

w = <Am sinh mTy + B,, cosh mTﬂ + C,y sinh @;T_y
a

—

=M

3,...

m=

+ D,y cosh m;Ty +

1)

4p a* g T
in .
m>mD a

The boundary conditions are given by

w =0 and a—W=O aty =0
ay

32
_v; =0 aty =b.

dy

Using these four boundary conditions to solve for the unknown constants
in Eq. (1) gives

w =0 and

_ 4p.at F,
An = m°w°D G,
_ —4p,a’
B, = m’w D
c - 4p.a* H,,
"~ m*wD G,
D, = -""a4,
a
b
E,=2 coshz( ) — 2 cosh mmb _ mm sinh mT
a a a
b
G,, = 2 cosh sinh mmb _ 2 m;r
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With these constants established, Eq. (1) can be solved for the deflection.
The moments throughout the plate can then be obtained from Eq. (1-17).

Example 2-2

For the plate shown in Fig. 2-3, find the maximum bending moment if
p = 10 psi, a = 30 inches, b = 24 inches, E = 30,000 ksi, and p = 0.3.
Use two terms of the series only. What is the required thickness if the

allowable stress is 20,000 psi?

Solution

The boundary conditions are

aty =0, w=20

(2)aty =

(3) aty

(4) aty

0,

b,

b,

62w_

o O
v o
ay? P
FPw
§+(2—M)

0

FPw
ox29y

Since the solution is symmetric around x = a/2, m must be odd and the
general solution is given by

oc

w= 3 <Am sinh m—? + B,, cosh -"? + C,y sinh maﬂ

m=1,3,...

+ D,y cosh m;-ry +

m>mwD

SS

4p.a*\ . mmx
Do sin .

1)

ss | b

free

Figure 2-3.

SS
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From the first boundary condition, Eq. (1) gives

—dp.at
B, = P&
" miwD

From the second boundary condition, Eq. (1) gives

2pa®
C, =——.
" m*w*D

Solving the third and fourth boundary conditions yields

Kme_JmHm
Am = 1,G,, — J,F,
and
H, - A,F
D — m m- m
m Gm
where
2 2 b
F,=(1-p) =T smhﬂ:—
222 b
G, = 2mm sinh mﬂb + m;T b(1 — ) cosh 2
a a a
21 b
H, = Bmm (p.— 1) cosh—q—T—
m2m b 2 b
+C, b(u—l)smhm—ﬂ-——”ﬂc ﬂ;L
4upoa
3 3D
3 b
I, = (u—l) cosh%
22 b 3 3 b
J., =1+ pL)mTr coshmﬂ— + (= 1b mr smhm—:—
mem m2m? b
K,=(1-p2 Bsh—b—(1+p,) 1TCsmh—“—T—
3.3 b
+p T C,(1 — p)cosh T:—.
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The bending moment is obtained from Eq. (1) and the expression

02 02
M,= -D v + p,—w .
ox? ay?

It has a maximum value at y = b and x = a/2. Hence,

- b
LN {(Am sinh ™ 4 B, cosh ™22 + C, b sinh 22
D n-Ts. a a a

mwb 4dp.a* \ m*w?
+ D,,b cosh P m57r5D> o

b
_ u[m (@1 A+ 2D,,.> Gnp 0
a a a

222 b
+ 2T (Bm@ + 2Cm> coshm—ﬂb + C,,,bm;T sinh 2
a a a a a
2.2 b
+ Dmbm ;T cosh ﬂﬂ—}} sin r_n_'r_r'
a a 2

)

The stiffness factor D can be deleted from the lefthand side of Eq. (2) and
from constants A,,, B,,, C,,, and D,, on the righthand side of the equation.
Equation (2) is solved by calculating all constants for m = 1 and m = 3.

This can best be done in tabular form as

Value m=1 m=3
DB,, —105,875.54 —435.7
DC,, 5543.63 68.44

F, 0.04707 64.99
G,, 2.429 2150.94
DH,, —8078.68 —118,879.48
I, —4.995E-3 —20.4184
J, —0.02973 —369.34

DK, —342.02 16,381.24
DA,, 99,789.12 435.47
DD, —5259.82 —68.43

M 913 —46

Total M, = 867 inch-Ibsfinch
t = V6MIG = \/6 X 867720,000
= 0.51 inch

Example 2-3

Find the expression for the deflection of the plate shown in Fig. 2-4a due

to a uniform load.



Solution
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simply supported

a
simply
supported free
fixed
(@)
ss ss
o X -
ss Po ss -+ ss Po=0 ss
" sS v W=0
case | = . MTTX
y == My-ZMmsm )
case 2
ss .
My=0
+ s Po=0 X
. nTT
Vx =ZVn sin by
‘ ss
case 3
(b)
Figure 2-4.
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The solution must be divided into three separate cases as shown in Fig.
2-4b. The differential equations to be solved are

and

Case 1

Véw, = p/D,

V4W2 = 0,

V4W3 = O

W:W1+W2+W3.

1)

The solution of a uniformly loaded, simply supported plate is given in
Example 1-4. Using the coordinate system shown in Fig. 2-4b, the solution
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is expressed as

°° - b2 . - b2
wi= > (Bm coshM + C,.(y — b/2) smhm————)
m=1,3,... a a
dp.a* \ . mmx
s D> sin—— (2)
or
= mmx
w= 3 50 sn ©)
where
C = 2a°p, —
474D cosh
2a
mb
4a*p, + mmp.a*b tanh Y
B = - mmb
57D cosh o2
2a
Case 2
The boundary conditions are
w
6y22 = Waly—o = Wily=p = 0
and
0?w, 9w, o mmx
-D + p— = M,
<ay2 " ax2> yeb m 122 sin =

Substituting the function

o

o= 3 fuly)sin T

m=1,2,.
into the differential equation V4w, = 0 gives

£.(y) = A,, sinh —"? + B,, cosh m;fl + C,y sinh @

+ D,y cosh _m_afrz
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Substituting the deflection expression into the first three boundary con-
ditions gives

B,=C, =0

A,, —D,,b coth —n}:—b,

and from the fourth boundary condition we get

-M
D, = =
" DT,
where
2 b
T, = 2% Ginh 2
a
Hence,
< M, mary
= —= | b coth —— sinh
.= 2 DT, ( a
— y cosh m) sin ﬂﬂ—x, 4)
a a
which can be written as
- . mmux
wo= 3, K,()sin 0, )
m=1.2,... a
Case 3
The boundary conditions are
Pw *w *w
W3=az3 =< 23+ 23> =0
X |, _o 0x ay v—a
and
Pws Pws ad nwy
+ (2 - = V, sin —=
< ox? ( ») ox ay*) | . _, n=%:z,_,, b
Substituting the function
ad nmy

ws = > 8x) sin ==

n=1,2,...
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into the differential equation V4w; = 0 gives

g.(x) = A, sinh omE L B, cosh nr oy C,x sinh nmr
b b b
+ D, x cosh E;)T—x

Substituting this expression into the four boundary conditions results in an
expression similar to that of Eq. (§) and can be expressed as

wy= > L(x)sin =, (6)
n=1,2,... b
Substituting Eqgs. (3), (5), and (6) into Eq. (1) gives

w= 3 0)sin T4 X K()sin
m 2

m=1,3,...
+ > Ly(x)sin ny @)
n=1,2,... b

This equation has two unknowns. They are M,, in the expression K,,(y),
and V, in the expression L,(x). The boundary conditions of Fig. 2-4a are

2
atx =0, w=0 and a—w=0
ax?
atx =a, M,=0 and V,=0
62
aty =0 w=0 and _é;vzf:()
ow
aty=b w=0 and — =0
dy

Equation (7) satisfies all of the above boundary conditions except
d
P =0 and V,_, =0
ay y=b

These two boundary conditions are used to determine the two unknowns
in Eq. (7). From the first boundary condition we get

( &S dl, . ommx &S dK,, . mmx
> + —= sin ——
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In order to solve this expression, the last term needs to be expressed in

terms of the quantity sin(ﬁ;E . This can be accomplished by letting

oc

L@ = 3 Hon

n=1,

N

yees

where
2 a
H,, == f L,(x) sin 2=,
alo a
Defining
cosn—ZX =(-1)" aty=5»
and

0,

3, = 1 when m is odd,

0 when m is even,

eq. (8) becomes

2 I:Sm é’ﬂ + d_Kﬂ + 2 i’l_‘lT Hmn("‘l)n:| sin mmwx -0
m=12,... dy y=b dy y=b n=1.2,... b a
or
4 dK ~ AT
Sm_m +J + _Hmn -1 = 0. 9
dy y=b dy y=b n=12,2,... b ( ) ( )

This equation cannot be solved directly for V, and M,,. Rather it has
infinite solutions of M,, and V,. Thus, if we truncate the equation after
m = n = 2, then the equation becomes

dl, dK, T 2m
H v Ty g, =0
dy b dy b b 11 b 12

and
a7, dK, - 2
Do & _Tp +fg, -0
dy b dy —b b 21 b 22 0

Similarly two other equations can be written to satisfy the boundary
condition

V, = 0.
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From the four simultaneous equations, the unknown quantities M,, M,,
V., and V, are determined from the expressions for K,, and L,,. Once
these expressions are known, the deflection is obtained from Eq. (7).

Problems

2-1 Use the expressions derived in Example 2-1 to determine the maxi-
mum stress in a rectangular plate witha = 90 cm, b = 60 cm, p = 1 kgt/
cm?, E = 21,000 kgf/mm?, and p. = 0.3.

2-2  Use the expressions derived in Example 2-2 to determine the maxi-
mum stress in a titanium rectangular plate with a = 40 inches, b = 30
inches, p = 30 psi, £ = 15,000 ksi, and p = 0.32.

2-3 Use the expressions derived in Example 2-2 to determine the maxi-
mum stress at a point where x = 15 inches and y = 15 inches. Let a =
40 inches, b = 50 inches, E = 30,000 ksi, p = 10 psi, t = 1.0 inch, and
o= 0.30.

2-4 A copper internal baffle plate in a reactor has the boundary conditions
shown in Fig. 2-4. Find its maximum deflection if a = 36 inches, b = 20
inches, p = 100 psi, E = 16,000 ksi, and p = 0.33.

2-5 The top plate of a truck weigh scale is supported by beams such that
any portion of the plate can be approximated by Fig. P2-5. Find the expres-
sions for the bending moments at the edges and in the middle due to
uniform pressure p.

2-6 Find the expression for the deflection of a rectangular plate shown
in Fig. P2-6 due to edge moments given by

M, = S E,(y) sin @:—x
m=1

Fixed
AN

SS
SS

Fixed

C il

Figure P2-5.
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M
[ (' f
No\ \ \
b
SS SS
A
LU U U U \
MI
Y
y
Figure P2-6.

2-7 Find the expression for the deflection of a rectangular plate fixed at
all sides.

Hint: Use the results of Problem 2-6 to solve this problem by switching
the x- and y-axes.
2-8 Find the moments in the side plates of an oil barge (Fig. P2-8) due
to hydrostatic pressure. The pressure distribution can be approximated as
triangular in shape with a maximum value at a height of 5'-9" and zero
at the top and bottom. This is due to the difference in specific gravity
between the contents in the inside and water on the outside. Assume the
plate panels to be simply supported at the top and bottom and fixed along
the sides. Also, assume the length of each side plate panel to be 360 inches
which is the spacing of the bulkheads in the barge. This large length dis-
regards the effects of the intermediate vertical stiffeners, between the bulk-

= : L I Ralll =
(ji O D8 O O8] E]%" =

| | == e , > — e =
” ] mY mY @’ @ @Y. =

[V

tnn M . - : [ ™M : hidis
of v : ! ! ! 1
= i | [ ,

7@30=210"

Figure P2-8. Oil barge. (Courtesy of the Mississippi Valley Barge Line.)
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20m

7m

olm— = 73X
ol__ "~

Figure P2-9.

heads, that are welded to the side plates for increased rigidity (see Problem
5-10). Let E = 29,000 ksi and p. = 0.29.

2-9 Find the maximum moment in the small concrete dam shown in Fig.
P2-9 due to hydrostatic pressure. Sides AC and BD are simply supported.
Side AB is free and side CD is fixed. Let E = 2180 kgf/mm? and p. = 0.
Assume a uniform thickness.

2-2 Continuous Plates

The classical methods developed so far for solving rectangular plates are
also applicable to continuous plates. The boundary conditions of each panel
as well as the compatibility of forces or deformations between any two
panels across a common boundary, such as ab in Fig. 2-5a and ab and ac
in Fig. 2-5b, must be used to determine the constants in the differential
equations of each panel. As the number of panels increases, it becomes
more tedious to find a solution with the classical plate theory due to the
number of simultaneous equations that must be solved to obtain the con-
stants of integration. A more practical approach for solving such plates is
to use an approximate solution such as a finite element analysis which is
discussed in Chapter 14.
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The procedure for solving continuous plates is illustrated in Example 2-

4 for a two-panel structure.

Example 2-4

Find the expressions for the deflection in the continuous plate shown in

Fig. 2-6a due to a uniform load on panel I only.

Solution

The boundary conditions for panel I are

aty, =0 w=20
Fw _
oyt

aty, = b w=20
aw_o.

ay1 -

1
@)
©)
(4)
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/ﬁk AN\

Fixed
(@)

(b

W
Figure 2-6.

The expression for the deflection is obtained from Example 2-1 as

w = 2 (Am sinh mmy + B,, cosh my + C,y sinh mry
m=1,3,... a a
mmy  4p.at\ . mmx
+ D,y cosh + = sin .
a m’w>D a

Let the moment M, between panels I and II be represented by

)

(6)



Continuous Plates 55

From the boundary conditions (1) through (4) we get

b
A, = —B,,,(cosh mT“b - 1) — C,b sinh mT“ %)
mwbh
— D,,b cosh — (8)
4p.a*
Bm - _m5175D (9)
—F 2 3
Cp = =2 4 B2 (10)
mw  m*w*D
2 _—
a
K sinh? mb
1
=—B, +
Dy =3 Bt Co—g
where
K, = mr (coshml - 1)
a
b b
K, = mwb _ sinh mm cosh ml.
a a a

The boundary conditions for panel II are

aty, = 0 w=20 11)
ow
— =0 12
P (12)
aty, = ¢ =0 (13)
2
M, (14)
Y2

The expression for the deflection is written as

o

w= > (Fm sinh ? + G,, cosh @ + H,,y sinh mny
a

m=1,3,...

+ I,y cosh ?) sin m—:f (15)
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From the boundary conditions (11) through (14) we get

E
F = ———m™ 16
G,=0 17)
1 mmc mc E
H =-11- th & 18
m c< a ° a>K3+K4K5 (18)
mar E
l] = ——"— 19
where
22
K; = m:r (sinh e + mme cosh mwc)
a a a a
sinh mmc  mmc cosh mmc
a a a
Ke = mmc
¢ sinh —
a
22
Ks = 2mm cosh mme + n ;rr ¢ sinh —mﬁc.
a a a a

The constants A,, through I, are in terms of the bending moment constant
E,.. This constant is obtained by solving the compatibility equation at the
common boundary which is

slope in panel I = slope in panel II.

Once E,, is known, then equations (5) and (15) can be solved for the
deflections at any location in the plates.

Other applications of the continuous plate concept are for large plates
with multiple point supports. Such applications are found in concrete flat
slab floors (Winter et al. 1964) with multiple column supports as well as
stayed vessels commonly encountered in chemical plants and refineries.
These cylindrical vessels consist of inner and outer shells tied together with
stays and the annular space between them pressurized. The analysis of
both inner and outer shells is based on the theory of plates with multiple-
point supports.

Numerous articles have been written on the subject of plates with multiple
supports. Some of these articles are listed in Timoshenko (Timoshenko and
Woinowsky-Krieger 1959). A large plate under uniform pressure with closely
spaced supports (Fig. 2-7a) can be analyzed using the Levy solution. Due to
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a
b
A B
a X
Cc v D
(®) v
Figure 2-7.
symmetry, the boundary conditions in the plate along x = *a/2 are
aw
1 =—=0 2-1
slope = -~ (2-1)
and from Eq. (1-27),
P>Pw Pw
shear O, = _D<$ + = ay2> = (2-2)
Similar boundary conditions exist along the boundary y = =+a/2. The
particular solution of the equation
Véw = q/D (2-3)
and the homogeneous solution of
Viw =0 (2-4)
are accomplished by expressing the deflection by the series
- mmx
w=fo+ _;4 fn(y) cos == (2-5)

yeen
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and the load by

P=pot X puly)cosT (2-6)
m=24,... a

Equation (2-5) satisfies the boundary conditions given by Egs. (2-1) and
(2-2). Substituting Egs. (2-5) and (2-6) into Egs. (2-3) and (2-4) and sum-
ming the two equations results in an expression for the deflection with
three unknown constants. The first is obtained directly from the slope
boundary in Eq. (2-1). The second constant is obtained from Eq. (2-2)
keeping in mind that the shear, Q, is equal to zero along the unsupported
length (a—b) and pa*/4 over the supports b. The third unknown constant
is evaluated from the condition that the deflection, w, is equal to zero at
the supports.

I00M |
(1+1)Pa*
12 1

r=b/a

Figure 2-8.
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With the deflection known, the bending moments can be determined
from Eq. (1-17). The maximum negative bending moment occurs at the
supports and is expressed by Woinowsky-Krieger as

(1L-ne-n
M = + 7 I A S A
1 & 2 . . mmr mw(2 —r)
+ i m2=1 pC— sinh 5 cosh 5 sin m'nr] (2-7)

where r = b/a. Figure 2-8 shows a plot of this equation for various r ratios.

The analysis expressed by Eq. (2-7) assumes the intermediate supports
to be rigid. If the supports deflect due to applied loads, then the moments
must be determined from an analysis of a plate on an elastic foundation.

Problems

2-10 Find the expressions for the bending moments in Example 2-4 if
a=5m,b=15m,C = 10 m, p = 1 kgf/cm?, E = 210,000 MPa, and
n = 0.

2-11 Plot the value of M, along the length of panels I and II in Fig. 2-6a
at x = a/2. Compare the result to the bending moments obtained from a
beam of unit width and length ABC in Fig. 2-6a.

2-12 A continuous concrete slab is supported by columns as shown in
Fig. 2-7. Calculate the maximum bending moment if a = 20 ft, b = 3 ft,
p = 150 psf, and p. = 0.

2-3 Plates on an Elastic Foundation

The effective pressure on any point in a plate or slab resting on a continuous
foundation such as a concrete road pavement or a rectangular tubesheet
in a heat exchanger (Fig. 2-9), is equal to p — f where p is the applied
load and f is the resisting pressure of the foundation. If we assume the
foundation to be elastic, i.e., its elasticity is defined by a force that causes
a unit deflection when applied over a unit area, then we can define

f=kw (2-8)

TritIaz

Figure 2-9.
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where k is the foundation modulus. Values of k for various soils are given
in numerous references such as McFarland (McFarland et al. 1972).

Equation (1-26) for the lateral deflection of a plate can now be modified
to

Véw = %(p — kw)
or
k
Véw + oY= p/D (2-9)

It must be kept in mind that under certain applied loads and boundary
conditions a negative deflection may result somewhere in the plate. This
indicates that the foundation must be able to sustain a tensile load at that
location. This condition is very common in circular plates used in heat
exchangers as discussed in Chapter 3 and the engineer must take appro-
priate precautions if the foundation cannot undergo a tensile force.

We can use the Levy method to obtain a solution of Eq. (2-9) for plates
simply supported at two opposite edges with arbitrary boundary conditions
at the other two edges. We proceed by solving the homogeneous and
particular parts as in Eq. (1-42). Again expressing the deflection by the
Fourier series

mmwx

Wi = D fuly) sin T
m=1 a
and solving the homogeneous part of Eq. (2-9), we get
w, = > [A,, sinh o,y sin B,,y + B,, sinh a,,y cos B,y
+ C,, cosh a,,y sin B,,y + D,, cosh e,y cos B,,y] sin T—;Tf (2-10)

where

1 [ m?m? m*m* k
= [= - 2-11
Ofm \/ 2( 2 N# T D) (2-11)

and

1 [ m?w? mimt  k
B, = \/§< " — pr + B) (2-12)
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Similarly, if we express the deflection by

Wy = 3 gu(y) sin (2-13)
m=1
and the applied loads as
- . mmx
=3 puly)sin ™ (2-14)

and we substitute these equations into Eq. (2-9) to get

2
dg,. mmw\ d? miat k Pm(¥)
—_— 2 _— —om — = m . -
dy* ( a ) dy? * < a*t * D>gm D 2-15)

Equations (2-10) and (2-15) are the two governing expressions for rectan-
gular plates on an elastic foundation with two simply supported edges.

Example 2-5

Find the expression for the deflection of the plate shown in Fig. 2-10 that is
resting on a foundation of modulus &, and subjected to a uniform pressure p.

Fixed

SS SS

Fixed

Téééééé”*

Figure 2-10.
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Solution
For a uniform pressure p, the particular solution of Eq. (2-15) gives
4 1

)4
F*__ - 1
Em D mm (m“ﬂ”' ko) @

+_
a* D

Due to symmetry of the deflection around the x-axis, we can take B,, =
C,, = 0in Eq. (2-10) and the total deflection becomes

Wy, = Zl [Am sinh «,,y sin B,,y ®

+ D,, cosh a,,y cos B,y + gm] sin r_n_;r_x.

The boundary conditions are

aty = +b/2, w=20

and
ow _
ay B
Substituting these boundary conditions into Eq. (2) gives
A, = 8m
b b
K1<cosh X S cos B, E)
and
b b
D, = —A,, tanh o, — tan B3, 5~ Em 5
cosh o, 5 cos B,y 3
where
K, + K b b
K, = ﬁ - tanhamitan Bmz
b b
K, = a,, cosh a,, 3 sin 3, 3
K. = b sinh L eon 1,
3 = B, sin o&mzcosﬁm2
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. b b
K, = a,, sinh o, 3 cos B,, 3

K; = B,, cosh a,, g sin B, >

With A,, and D,, known, Eq. (2) can now be solved for the deflection.

Problems

2-13  Find the expression for the deflection of a simply supported plate
uniformly loaded and supported on an elastic foundation of modulus k.,
2-14 Solve Example 1-3 if the plate is resting on an elastic foundation of
modulus k.

2-4 Thermal Stress

A change in the temperature of a plate may result in a change in the length
of the middle surface and a change in the curvature. Accordingly, the basic
differential equations derived in Chapter 1 must be modified to consider
temperature change. We begin the derivation by defining u and v as the
change in length of the middle surface in the x- and y-directions, respec-
tively, of the plate shown in Figs. 1-3 and 1-4. Then Eq. (1-12) becomes

9 T [ o*w ]
w 00 2
€, s u 1 00 52
e, |=1 0 = of [v]-zl0o 1 o] &¥ (2-16)
y ay dy?
Yoy 9 0 0 00211 5,
— = 0
L dy ox J | 0x 9y |

Next we define the change in strain due to temperature change as «(AT),
where a is the coefficient of thermal expansion and AT is the temperature
change which is a function of z through the thickness of the plate. Values
of a for some commonly encountered materials are shown in Table 2-1.

For thin plates with temperature loads, Eq. (1-13) can be expressed as
€, 1 —p 0 o, 1

+ a(AT) |1 (2-17)
0

-n 1 0 o

y

oyl —

Sy =

Yy 0 0 21 + wll~

xy
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or
o
ox o ATE
o, =1_E’L2 Wl 0 e, —%—;1 (2-18)
Tay o o Lom Yy 0
L 2

For the case where the plate bends without a change in the length of
the middle surface, i.e., u = v = 0, we substitute Egs. (2-16) and (2-18)
into Eq. (1-16) and get

[ #w ]
2
M, 1 0 ox 1
Pw M,
M, |=-Dlp 1 0 W ~1“P«1 (2-19)
Mxy 0 0 _(1 - l"‘) aZw 0
| 9x dy |
where
/2
M, = aEf . (AT)z dz. (2-20)
— 1

Substituting Eqgs. (2-19) and (2-20) into the plate equilibrium Eq. (1-24)
gives

1
Véw = p/D — ——— V2M,,. 2-21
p D =) (2-21)

Equation (2-21) is the governing differential equation for the bending
of a rectangular plate due to lateral pressure and thermal loads.
For the case where p = 0, Eq. (2-21) reduces to

2 = _.—__MO -
Vi = g -2)

where
2o & + a—z.
ox?  9y?
Next we consider the case where the length of the middle surface changes

due to temperature variation without any lateral deflection, i.e., w = 0.
For this case we need, in addition to the forces shown in Fig. 1-6, three
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Ny
N —
ny+a XY dx
N+ ‘?ﬂ&dx

aN
Nyx+ —-Yld
y Ny+ aNx dy
Figure 2-11.

in-plane forces N,, N,, and N,, as shown in Fig. 2-11. The stress—force
relationship is expressed as
N, w2 | Ox
N, | = j | o dz (2-23)
— 1
N

xy Ty

y

Substituting Eq. (2-18) into Eq. (2-23) gives
€y 1 —p 0 N, 1

1 N,
== |- =2 2-24
g, ™ 1 0 N, | + it 1 (2-24)
Vay 0 0 2(1 + ) N,, 0
where

12

N, = aEf ” (AT) dz. (2-25)
—

From Eq. (2-16) we observe that each of the three strains is a function
of the deflections u, v, and w. Hence, a compatibility equation (Timo-
shenko and Goodier 1951) that combines the three strains is obtained from
Eq. (2-16) and is expressed as

Ve, | Fe, _ Oy

—= 2-26
ay*  x?  axdy (2-26)
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Substituting Eq. (2-24) into this expression yields the differential equation
02 02
JZ(NX - “‘Ny + N,) + @ (—pN, + Ny + No)
02N,
-2(1 + p)—=2=0. -
(L4 w52 =0 @2)

In order to solve this equation, we need to investigate the in-plane forces
in the plate. Summing forces (Fig. 2-11) in the x- and y-directions yields

oN, | Ny _
ox ay

and (2-28)
% + a_]Vx.X — 0
ay 0x

These equations are satisfied by selecting a stress function y(x, y) that is
defined by

62 2. 62
N——lll N—allj and N,, = - ll}.
dx dy

x_ayza y_a_xz,

(2-29)

Substituting Eq. (2-29) into Eq. (2-27) results in the differential equation
Vi + V2N, = 0. (2-30)

Equations (2-21) and (2-30) constitute the general solution of a plate
subjected to temperature change. Equation (2-21) is solved by the methods
discussed in this book while Eq. (2-30) is solved by methods discussed in
the theory of elasticity for plane stress problems which are beyond the
scope of this book.

Example 2-6

Find the deflection in a simply supported plate due to decrease in temperature
of the top surface of T, and increase of the bottom surface by T,

Solution
T = T,2z/t)

and Eq. (2-20) becomes
M, = «ET,t6. (1)
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Let
W= > > W, sin MY gin = (2)
m=1n=1 a b
and
M, = > > T,,sin M sin 22 (3)
m=1n=1 a b
where
nwy
T = ff sm———sm b dx dy. 4)
Substituting Egs. (2) and (3) into Eq. (2-22) results in
W = e 6)

D1 — p)w? <——- + Zj)

Substituting Eq. (1) and (4) into Eq. (5) gives

2
- 8aET,t ©)

2

2
3mnD(1 — p)m* (m ZZ>

where m and n are odd.
Since the temperature variation does not affect the middle surface, i.e.,
u = v = 0, Eq. (2-30) is redundant and need not be considered.

Problems

2-15 Calculate the maximum moment in Example 2-6.
2-16 Find the expression for the bending moment in the plate shown in
Fig. P2-5 due to the temperature variation given by

T = T,(22/)).

Hint: Use the solution of Problem P2-6 to satisfy the boundary condi-
tions.

2-5 Design of Various Rectangular Plates

The maximum bending and deflection of rectangular plates with various
boundary conditions have been solved and tabulated in many references.
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Szilard (1974) as well as the references given in Section 1-9 tabulate max-
imum moments and deflections for rectangular plates with some commonly
encountered boundary conditions. Moody (1970) lists numerous moment
tables for rectangular plates free at one edge with various boundary con-
ditions at the remaining edges and subjected to various loading conditions.
Continuous plates are designed in accordance with the equations developed
in Section 2-2.

The ASME VIII-1 code contains rules for the design of jacketed shells
with large #/t ratios (Fig. 2-12) that are based on the stayed plate theory
and Eq. (2-7). Letting . = 0.3 and using a b/a ratio of 0.4, Eq. (2-7) can
be reduced to

t=a L. (2-31)

The value of 2.28 in the denominator is varied by the ASME from 2.1
to 3.5 depending on the type of construction and method of weld attach-
ment.

For continuous concrete slabs supported by columns without interme-
diate beams, the reinforcement cutoffs are also based on Eq. (2-7) and are
detailed in the ACI 318 code.

Allowable stress values for some materials were given in Table 1-1 at
temperatures below the creep and rupture range as defined by ASME
VIII-1. For high-temperature applications, the ASME criteria in the creep
and rupture range are based on limiting the allowable stress to the lower
of the following values:

1. 100% of the average stress for a creep rate of 0.01%/100 hr.

Round Anchor

18 in.
t min. ¢ min. 0.7 ¢ min.
(a) b (e}
Round Anchor
¢ min Block
A& kh. . ¢ min. N
ey AT P
0.7 ¢t min. Complete
Penetration
(d) o "’“C,

t = nominal thickness of the thinner stayed plate

Figure 2-12. Welded staybolts. (Courtesy of ASME))
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Table 2-2. ASME VIII-1 allowable stress values at elevated temperatures, ksi

Temperature, °F

ASME
Material Designation 900 1100 1300
Carbon steel SA 516-70 6.5 '
Stainless steel SA 240-304 14.7 9.8 3.7
Nickel alloy SB 575-276 22.3 15.0

2. 67% of the average stress for rupture at the end of 100,000 hr.
3. 80% of the minimum stress for rupture at the end of 100,000 hr.

Using these criteria, the allowable stress values for the materials listed
in Table 1-1 that are permitted at high temperatures are shown in Table
2-2.

Problems

2-17 The inner and outer shells of a pressure vessel are stayed together
on a 12-inch stay pitch. The pressure between the cylinders is 50 psi. Use
Eq. (2-31) to determine the required thickness of the cylinders. Disregard
the hoop stress in the cylinders due to pressure because it is small in most
applications. Let the allowable bending stress be equal to 15 ksi.

2-18 Determine the required diameter of the stays in Problem 2-17. Let
the allowable tensile stress = 20 ksi. If the stays are attached as shown in
Fig. 2-12b, calculate the required size of the fillet welds. The allowable
stress in shear = 12 ksi.
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Bending of Circular Plates

3-1 Plates Subjected to Uniform Loads in the
0-Direction

Circular plates are common in many structures such as nozzle covers, end
closures in pressure vessels, and bulkheads in submarines and airplanes.
The derivation of the classical equations for lateral bending of circular
plates dates back to 1828 and is accredited to Poisson (Timoshenko 1983).
He used polar coordinates to transfer the differential equations for the
bending of a rectangular plate to circular plates. The first rigorous solution
of the differential equation of circular plates for various loading and bound-
ary conditions was made around 1900 and is credited to A. E. H. Love
(Love 1944).

The five basic assumptions made in deriving the differential equations
for lateral bending of rectangular plates in Section 1-1 are also applicable
to circular plates. The differential equations for the lateral bending of
circular plates subjected to uniform loads in the 6-direction are derived
from Fig. 3-1. For sign convention it will be assumed that downward de-
flections and clockwise rotations are positive. Hence, if a flat plate under-
goes a small deflection as shown in Fig. 3-1, then the radius of curvature
r at point B is given by

sin (¢) = & = riry
or

1 —-1dadw
—_—= / = — -
Yo olr r o ar (3-1)
The quantity r, represents a radius that forms a cone as it rotates around
the z-axis (in and out of the plane of the paper). The second radius of
curvature is denoted by r,. The origin of r, does not necessarily fall on the

71
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Figure 3-1.

axis of symmetry although, for any point B, the radii », and r, coincide
with each other. The value of r, is obtained from Eq. (1-6) as

_1_ _dw
X = r, dr
or
1 d*w  do
X=0 = " T ar (3-2)

The M, and M, expressions in Eq. (1-17) can be written in terms of the

radial and tangential directions as

1
M, D 1 wlfr
M, po1]]1

(3-3)
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or
Rlra
FIRE N
74 B B
.
or
| Al
M, r || dr?
= —D -
[M,] 1] dw G-3)
- dr
where
E?
b= 12(1 — pd)’

The classical theory of the lateral bending of circular plates discussed in
this section is based on the assumption that the loads on the plate are
uniformly distributed in the 6 direction. In this case the torsional moment
M,, is zero and the other forces are as shown in Fig. 3-2a. Summing
moments around line a—a gives

(M,rdo) — (M, + d‘]i‘fr dr)(r + dr) do + 2(M, dr d6/2)

— Qrdo dr2 — (Q + ﬁid—g dr) (r + dr)do dr2 = 0. (3-6)

The quantity M, dr d6/2 is the component of M, perpendicular to axis
a—a as shown in Fig. 3-2b. Equation (3-6) can be reduced to

dM,
dr

Substituting Eq. (3-5) into this equation gives

d1d( d
= [;d—r (r d—’:)] = QID. (3-8)

2arQ = JpZ*n'r dr,

M, + r— M, + Qr = 0. (3-7)

Or, since
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A aQ
Q+ i dr
dMr
Mf f My + ar dr
Cl\ ‘,//
= //\/\
M, N "
t
40 Q
8 il — I
T r
(a)
/

Figure 3-2.

Eq. (3-8) can be written in a different form as
1d) d|1d [ aw P
rdr {r dr l:r dr <r dr)]} D (3-9)

where p is a function of r.

The analysis of circular plates with uniform thickness subjected to sym-
metric lateral loads consists of solving the differential equation for the
deflection as given by Eq. (3-8) or (3-9). The bending moments are then
calculated from Eq. (3-5). The shearing force is calculated from Egs.
(3-7) and (3-5) as

a3 2 1
w 1d*w _@3) (3-10)

0= ofty . 10w

dr’ ' rdrr  Par
or, from Egs. (3-7) and (3-4), as
o 1dd o
= -p(==2+-=2-2Z|. 3-11
Q ( r dr 2 (3-11)

dr? r
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Example 3-1

(a) Find the expression for the maximum moment and deflection of a
uniformly loaded circular plate with simply supported edges.

(b) Find the required thickness of a steel plate if the allowable stress =
15,000 psi, p = 5 psi, a = 20 inches, E = 30,000,000 psi, and p = 0.3.
What is the maximum deflection?

(c) For a concrete plate, p. is usually taken as zero. What are the moment
expressions at ¥ = 0, r = a/2, and r = a?

Solution
(a) From Fig. 3-3, the shearing force Q at any radius 7 is given by
2mrQ = wrip
or
Q = pri2.

da|ldf aw)| _ pr
dr rdrrdr 2D

Integrating this equation gives

From Eq. (3-8)

dw pr®  Cr G,
= —-——= — _— h— 1
slope dr 16D - 2 - r )

Figure 3-3.
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“« C
P Syt G )

deflection = w = 64D 4

At r = 0 the slope is equal to zero due to symmetry. Hence, from Eq.
(1), C, must be set to zero. At r = a, the moment is zero and

’w  pdw
D(dr2 r dr) =0

or

—G + wpa
1+ p) 8D

At r = a, the deflection is zero and Eq. (2) gives

_ pat (6+2p
C3_64D<1+p 1)'

C1=

The expression for deflection becomes

- P 5+“‘2_2
w 64D( )( r? ).

Substituting this expression into Eq. (3-5) gives

_ P 2 _ .2
M, 16(3+M)(a )

M,

LG + w) - 2L+ 3]

The maximum deflection is at » = 0 and is given by
_pe (5t

TaXW = 64p (1 T p>'

A plot of M, and M, is shown in Fig. 3-4 for w = 0.3. The plot shows
that the maximum moment is in the center and is equal to

a2
M, =M, =526+ W,
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3.0

pa?/l6

2.0

Maximum M =

Maximum w

Mt

| | iy

0.2 04 06 08

r/a

Figure 3-4.

5 X 202

16

- M
ag

‘o 6 x 412.5
B 15,000

0.41 inch.

It is of interest to note that M, is not zero at the edge of the plate. This '
is important in reinforced concrete plates as reinforcing bars are needed
around the perimeter to resist the tension stress caused by M,.

(3.3) = 412.5 inch-lbs/inch

pat (S + p\ .
= 61D (—1 n M) = (.27 inch
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(©)

For p = 0, the moment expressions become

_® . .

P32 2
M, 16 (3a? — ).
Atr =0,
3pa?
M, =M, ="
" 16
Atr = a2,
9pa? _ 1lpa®
M="a M=

(@) radial and circular pattern

//'

TN

1

(b) square mesh pattern

Figure 3-5.
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Atr = a,

Figure 3-5 shows a general layout of reinforcing bars in a circular concrete
slab.

Example 3-2

Find the stress at r = a and r = b for the plate shown in Fig. 3-6. Let
a = 24 inches, b = 12 inches, F = 20 Ibs/inch, ¢ = 0.50 inch, E = 30,000
ksi, and p = 0.3.

Solution
The shearing force at any point is given by
Q = bFlr.
Substituting this expression into Eq. (3-8) and integrating results in

C,r?

bF
w=Er2(lnr—l)+ + Glnr + G (1)

§e

Figure 3-6.
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The boundary conditions are

w=0 atr=a
dwldr = 0 atr =a
M, =0 atr =b.

Evaluating Eq. (1) and its derivatives at the boundary conditions results
in

I

C, = —648.53/D
C, = 1667.46/D
C; = 12,814.46/D.

Atr = b,

M, =0

1dw d*w
M, = ”D<?Z * Wi)

bF bF 1
= -D{ﬂilnr—ﬁi

culZEL i)+ &G
Klopla ™™ 2 TR

M, = —67.8 inch-lbs/inch

or

and
o, = 6M/t> = 1627 psi.

Similarly, at r = a

M, = —34.26 inch-Ibs/inch
o, = 822 psi

, = —114.21 inch-lbs/inch
o, = 2741 psi.

Example 3-3

Find the expression for the deflection of the plate shown in Fig. 3-7a due
to load F.
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e
Mo( ___ig )Mo

Figure 3-7.

Solution

The plate can be separated into two components (Fig. 3-7b). Continuity
between the inner and the outer plate is maintained by applying an un-
known moment, M,, as shown in Fig. 3-7b. The deflection of the inner
plate due to M, is obtained from Eq. (3-8) with O = 0 as

C 2
= ;’ + Cnr + Cs 1)
The slope is
aw Cir G,
— =4 = 2
dr 2 r’ @
and M, is obtained from Eq. (3-5) as
C C
M, = —D[j (T+w-730- u)]- ©)

At r = 0, the slope is zero and from Eq. (2) we get C, = 0.



82 Bending of Circular Plates

Atr = b, M, = M, and Eq. (3) yields

-2M
= — 4
Equations (1) and (2) can be expressed as
—-M_r?
W__—ZD(1+}L)+C3 Q)
dw -rM,
hicd A o ol - Y 6
dr D1+ p) ©)
The deflection of the outer plate is obtained from Example 3-2 as
bF C,r?
w=:15r2(lnr—1)+ 2 + Cslnr + C,. @)
At r = a, the slope is zero and Eq. (7) gives
C4a C5 _bFa
—+ == 2lna - 1). 8
2 T4~ ap Gha D ®)
Atr = b, M, = M, and from Egs. (7) and (3-5) we get
-M bF
o _ 7 1 —
0 = 22[(1 = w) + 201+ wInb]

F2armrEe-D O

At r = b, the slope of the outer plate is equal to the slope of the inner
plate. Taking the derivatives of Eq. (7) and equating it to Eq. (6) at r =
b gives

Cb N Cs

2 b

—b%F bM,
——4—5—(21111)—1)~D—(1—ﬂ5. (10)

Equations (8), (9), and (10) contain three unknowns. They are M,, C,,
and Cs. Solving these three equations yields

m, = S e wn(an) — (@ - b2)] (1)
bF [a® — b?
Ca = _D_< 22 " a> "
_bF
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With these quantities known, the other constants can readily be obtained.
Constant C, is determined from Eq. (4). Constant C; is solved from Eq.
(7) for the boundary conditions w = 0 at r = a. This gives

bF

C. = —
¢ 8D

(a*> + b> — 2b% In a). (14)

Constant C; can now be calculated from the equation
w of inner plate|,_, = w of outer plate|,_,.
Equating Eqgs. (1) and (7) at r = b gives
bF
G = 842D
Hence, the deflection of the inner plate is obtained by substituting Eqs.
(11) and (15) into Eq. (5) to give
_ bF
~ 8a’D

[—242b% In(a/b) + (a*> — b?)a?). (15)

[(@®> — b?)(a® + r?) — 24%(b* + r?)In(a/b)]
and the deflection of the outer plate is obtained by substituting Eqs. (12),
(13), and (14) into Eq. (7). This gives

bF
8a’D

[(@* + b*)(a* — r?) + 24*(b*> + r?)In(r/a)].

Problems

3-1 The double concrete silo shown in Fig. P3-1 is covered by a concrete
flat roof as shown. Find the moments in the roof due to an applied uniform
load p, and draw the M, and M, diagrams. The attachment of the roof to
the cylindrical silos is assumed simply supported. Let p = 0.

3-2 Stainless steel baffles are attached to a vessel that has an agitator
shaft as shown in Fig. P3-2. The attachment of the baffles to the vessel is
assumed fixed and the uniform pressure due to agitator rotation is 20 psi.
What are the maximum values of M, and M, and where do they occur?
What is the maximum deflection at point b? Let E = 27,000,000 psi and
p = 0.29. Also, if the baffles are assumed as fixed cantilevered beams,
what will the maximum moment be and how does it compare to M, and
M,?

3-3 The pan shown in Fig. P3-3 is made of aluminum and is full of water.
If the edge of the bottom plate is assumed fixed, what is the maximum
stress due to the exerted water pressure? Let y = 62.4 pcf, t = 0.030 inch,
E = 10,200 ksi, and p. = 0.33. What is the maximum deflection?
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Figure P3-3.

3-4 The pan in Problem 3-3 is empty and is at a temperature of 100°F.
What is the thermal stress in the bottom plate if the bottom surface of the
bottom plate is subjected to a temperature of 160°F and the top surface is
subjected to a temperature of 40°F? Let the coefficient of expansion be
13.5 x 10~° inches/inch/°F.

3-5 Find the expressions for the moments in the circular plate shown in
Fig. P3-5.

3-6 Find the expressions for the moments in the circular plate shown in
Fig. P3-6.

3-7 Find the expressions for the moments in the circular plate shown in
Fig. P3-7.

il P
EREEEI \EEEEEE
AN\
o]
! a
Figure P3-5.
P

|
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| b
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Figure P3-6.
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3-2 Plates with Variable Thickness and Subjected to
Uniform Loads in the 6-Direction

Circular plates with variable thickness are encountered in many machine
parts such as turbine blades, bellows, and springs. The analysis of such
plates (Szilard 1974) is similar to that of plates with constant thickness
except that the flexural rigidity D is a variable rather than a constant.
Substituting Eq. (3-4) into the differential Eq. (3-7) gives

D£<@+9)+@<@+MQ>=—Q (3-12)

dr \ dr r dr \ dr r
or
d*d D dD)\ do dD D\ ¢
b a <r * dr) ar * <pd dr r) ro ¢ GB)
where
dw
b= -

For a uniformly loaded plate,
0= 1 fp(Z'nr)dr = prl2.
27y

Defining
p = rla

where
a = outer radius of plate.
Eq. (3-13) becomes

¢  —ppa’
=== 2= £ (314
dp? p dp) dp p (-149
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The solution of Eq. (3-14) depends on specifying an expression for the
thickness ¢. A commonly encountered class of plates is shown in Fig. 3-8.
Solution of the plate shown in Fig. 3-8a is obtained by defining

t = Kr
where
EK3r3
P na Wy
Equation (3-14) becomes
&% dd ~120(1 — p?)
3 — 2T _ —_ = -
P T 4p o (1 = 3ppd . 31

(@)

(b

r

(o}

Figure 3-8.
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The homogeneous solution of Eq. (3-15) can be expressed as
by = Ap® + Bp®

where
a=[-3+vV9 —43n — 1)]2
b=[-3-V9= 4G - D)2

and A and B are constants.
Solution of the plate shown in Fig. 3-8b is obtained by defining

t=t,(1 — rir,)

and
D = Do(l - p)3
Et3
DO = m and = 1/3,

and Eq. (3-14) becomes

dZ d 2.2
Rl - o T8+ (1= 41— P G — (- = S (g

o

The homogeneous solution of Eq. (3-16) is given by
1+ 2p> <3p - 2p2>
=A + Bl——
o ( p (1 - py?
where A and B are constants.

The particular solution of Egs. (3-15) and (3-16) is obtained once the
applied loads are defined.

Example 3-4

Determine the expression for the deflection in the plate shown in Fig.
3-9. Let p = 1/3.

Solution
Let
t = Cr.
The homogeneous solution of Eq. (3-15) becomes
b, =A + Bp~3.



Plates with Variable Thickness in the 6-Direction

-n

T T°~ -

Figure 3-9.

F
2map

To solve for a particular solution, let Q =

and

¢p=

2IQ

Substituting into Eq. (3-15) gives

30— @F
- mEC3?

and the total solution becomes
_ G
b =A+ Bp 34+ E

The boundary conditions are

atr =b, p=>bla and & =0
and

atr=a, p=1 and ¢ = 0.
Hence, from Eq. (1)

a*(b — a)
A=G—a3_b3
2 _ 2
Bsz(a b?)

a3_b3'

89

M
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Integrating Eq. (1) and solving for the boundary condition
w=0 atp =1
results in the following expression for the deflection:

Ba 1 1
w—Aa(p—1)+—2—<1—§>+Ga<1—-‘;).

Another class of problems that is often encountered in machine parts is
plates with variable thickness. The variable thickness can be expressed as

(Timoshenko and Woinowsky-Krieger 1959)
t = t,e R0
where

B = factor defining thickness of plate as shown in Fig. 3-10;
t, = thickness of plate at center.

Substituting Eq. (3-17) into Eq. (3-14) gives

d’d 1 dd 1 2
ot o) i (5w = ke

where

6(1 — p?)a’
k=& Eg )a’p
The solution of Eq. (3-18) is given by

b =4, + b,
Let the particular solution be expressed as
b, = ApeP*2 + BePr’2,
Substituting this into Eq. (3-18) gives

G-pp’

eBPZ/Z

b, =

(3-17)

(3-18)

Pirchler (Timoshenko and Woinowsky-Krieger 1959) suggested a homo-

geneous solution in terms of a series of the form

¢h=A1<p+ SOAFwWBrp).. . Cn-1+y,,,

m=1 2.4.4.6.6......2m.2m.2m + 2)

)
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Figure 3-10.

and the total solution is given by

- k[ c, - —P— Bp%). 3-19

The constant C is obtained from the boundary condition of a solid plate
and the maximum moments are determined from Eq. (3-19).

Problems

3-8 Find the expression for the bending moments M, and M, for the plate
shown in Fig. 3-8. Let p = 1/3.

3-9 Find the expression for the bending moments M, and M, for the plate
shown in Fig. P3-9. Let p = 1/3.

3-10 Find the expression for M, and M, for the concrete circular plate
shown in Fig. P3-10. Let p = 1000 kgf/m?, B = 4.16, and p = 0.

3-3 Plates Subjected to Nonuniform Loads in the 0-
Direction

Many structural applications are encountered where the load distribution
on the circular plate is variable in the 6-direction. These include stack
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-

]
f=]
A

Figure P3-9.

foundations, submerged bulkheads, and nozzle covers subjected to con-
necting piping loads. The easist method for deriving the governing equation
for such problems is from the differential equation of rectangular plates.
The reason is that the equation for rectangular plates includes the effects
of torsional moments that are ignored in the derivation of the equation
for circular plates with uniform loading in the 6-direction and which are
needed for the case where the load is variable in the 6-direction. The

{l5 cm

30cm

_—

I
|
I

1.2m

Figure P3-10.
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differential expression for rectangular plates is given by Eq. (1-25) as

0w o*w a'w _ p(x, y)

Fw 5w 320
ox* ox? ay>  ay* D (3-20)

This equation must now be transferred to polar coordinates. Referring to
Fig. 3-11,

r?2 = x2 + y?, X = rcos 0, y = rsin 0, tan 0 = y/x.
Hence

iaz—x/r—cos() o /r = sin 0
0x 00 Y

d 0

—tan 6 = — (y/

ox an ox ()

1 06 i)

Z = —(y/

cos> 9 ox  ox ()
a0 s2 0 .
Pl COx2 = —y/r* = —sin 0/r
00

— = x/r? = cos 0/r.
dy

‘Y

Figure 3-11.
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Using the chain rule of partial derivatives,

w

aw or ow 90
— — + — —

ox or ox 200 ox

ow 1ow .
= —2cos 0 — —~wsm9
or r 90
Pw 1 d ow
— =080 —— — —sinf— —
ax? cos 9 r 00 ox
*w w sin@cos® Iwsin? 0
= —¢08?’0 — 2 —
ar? ar 00 or r
N 2a_wsinﬁcose 82__wsin26
99 r? 90% r?
Similarly,
Fw W, #Pw sin@cos® owcos?0
5 = 75 S0 + 2 —
ay ar 20 r or r
23__wsin6cose az_wcosze
90 r? 902 12
and
w Pw . Pw cos 28 9w cos 20
= —sin 6 cos 6 + - — >
ox dy  or orab r 09 r
_ow sin 0 cos 0 9w
or r 962
Hence, Eq. (3-20) becomes
dw 20w _1Fw  low 2 o'w
ar* rord  r2or:  rPor  r?or20?
20w A4Pw Law_
PP oZar | rt o0 | riger P
Similarly, the values of M,, M,, and M,, become
*w 3w
M, = -D|\— + (i
ox? dy
- ar? B ror  r?90?
low 1 6w *w
M = -D{-—+ 55 +p_—
r or r= 00 or
1 9w 1 ow
M. =1-pDl-——— - =—).
=W (r arae 2 ae)

9*w sin 0 cos 6

> .

(3-21)

(3-22)
(3-23)

(3-24)
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The shear forces are expressed as

9 (w 1low 1w
- _p (&, 2, oF 325
o b or (ar2 * ror r? 662> (3-25)
10 (Pw 1ow 1w
- p-2 (L, 22y 228 3-26
Q’ r 90 <8r2 e e 692> (3-26)

The boundary conditions are:
for simply supported plates
w=0 and M, =0

for fixed plates

w=0 and — =0

for plates with free edge

1 oM
M, =0 and V=<Q,——a—’5)=0.
r 99

Equation (3-21) is solved by letting
w=w, +w,
The homogeneous solution, w,, is expressed (McFarland et al. 1972) by
the following Fourier series

Wy, = Zo f(r) cos nd + Zl 2,(7) sin no.

Substituting this expression into V4w = 0 gives
5 (8 285 Le2dy  Leaed,

= \ dr* rar r? dar? 3 dr
2(,2 __ 4
+ Q(L‘;—)f,) cos nb

r

dr* r dr? r? ar? r*  dr

2 2_4
+ Z(er——)g,,> sin n6 = 0.

(@ 2d%g, 1+2wd%, 1+2dg,

This equation is satisfied if
daf, 24, 1+ 2 d¥, N 1 + 2n* df,

ar* T rdrt 2 dr? r3 dr
N n?(n? 4— 4)
r

fn=0 (3-27)
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and
d’g, gd3n_1+2n2d2,,+1+2n2£
dr* r dr? r? dr? r3  dr
2(2 __
+ E(Lﬂ%‘) g, = 0. (3-28)
Let f,(r) = b, r™
and
gn(r) = Cnrm'

Substituting these equations into Egs. (3-27) and (3-28) gives

m(m — D(m — 2)(m — 3) + 2m(m — 1)(m — 2)
-1+ 2n)mm — 1) + (1 + 2n¥)m + n*(n> — 4) = 0.

The roots of this equation are
m; = n, m, = —n, m; =n + 2, my = —n + 2.

Ifn=0, m=m=0, mg=my =2

and
fo(r) = Ag® + B2 + Cr°Inr + D Inr
=A,+ B>+ C,Inr + D,r?Inr.
Iftn=1 m=my=1 my= -1, my=3
and
fi=Ar + BprP+ Cr/! + Dirinr
g =Er+ FrP+ Gyr™ ' + Hrlnr.
Similarly,

fo=A," + B,r "+ C,r"*2 + D, r~"+2
g = E," + For—" + G,r"*2 + H,r—"+2,
Hence, the homogeneous solution, w,, beomes
w, = A, + By?> + C,lnr + D?In r
+ (A + By + Cyr~t + DyrInr) cos 6
+ (Eyr + Fyr> + Gyr=! + HirIlnr) sin 0

Ms

+ (A,r* + B,r" + C,r"*2 + D,r="*2) cos n

Ul

n=2

8

+ (E,r* + Fr=" + G,r"*2 + H,r "*?)sin nf. (3-29)

2

U

n
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The particular solution, w,

, is obtained by letting

= I(r) + i [2,(r) cos n® + J,(r) sin nd]

and

p = po(r) + i [p,(r) cos nd + S,(r) sin no]

where

pa(r) =

Su(r) =

Substituting w, into the equation V4w = p/D gives

l[ p(r, 8)cos no do n=
™wJ—m

r

0,1,2,...

1 o
;j, p(r,0)sinn6dé n=1,2,.. .

97

¢l 2d0, A& ddl, S [d 280 12w dd,
dar*  rdr* r*dr? rPdr = rodr r2 dr?
14 2n*dl, nr*n* -4
+ 5 o In] cos nf
N i &, 24, 1+ dY,
dr*  r dr? r2 dr?
1+ 2n2dl, n*n?—4) .
+ 5 ar pr J,,:! sin n6
p(}gr) + —Ep,,cosne + —ES sin n6,
from which we obtain the following solution:
da‘l 2d°I 1 d?I 1 di,
o “ o - o = %o _ ) _
at T rar  rdr T rar P oV (3-30)
¢l 28 12, 1w,
art  r dr 2 dr? r dr
2 —
(—”r—4)-1 = pJD (3-31)
d, 2, L+ 2Rd, 1+ d,
drt  r dr® 2 dr? o dr
nA(n? —
ﬂ—“—)f = S,/D. (3-32)
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Equation (3-21) is the differential equation for the bending of circular
plates and is derived from the expression V4w = p/D. Its solution is given
by Egs. (3-29) through (3-32).

Example 3-5

Find the bending moment in the plate shown in Fig. 3-12. The load dis-
tribution on the plate is given by

’
)4 —po;cose.

Solution

Since the applied load is a function of 6, all terms in the homogeneous
deflection given by Eq. (3-29) are deleted except

w, = (A;, + Byr® + Cy/r + Dyrlnr) cos 6. @

Similarly, Egs. (3-30) and (3-32) are ignored and Eq. (3-31) is used. The
expression for p, becomes p; since the load is a function of 6 only. Ac-
cordingly,

pi(r) = %f:r (%:—r cos 9) cos 0 do = 1_)2_r f:r cos? 6 db
= polla.
Equation (3-31) becomes
¢l &l 3L 3dh 3 pe

dr* rdr® 12 dr Pdr ' aD @
Let [, = Cr° + Cy* + Cyr* + C? + Csr + Cs.

Po

J[_2>

Figure 3-12.
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Substituting this expression into Eq. (2) and solving for the constants C;
through Cq gives

_ _Po
€ = 192D
C2=C3:C4:C5:C6':O
and
5
I = L
192aD
The solution for w, is expressed as
P’
= - 0.
"r = 19240 °°

combining this expression with Eq. (1) gives the total solution for the
deflection.

Ors
w = (Alr + Bir* + C/r + Dyrlnr + 152aD> cos 0.

Since 0 and M, are finite as r — 0, constants C; and D; must be set to
zero. The deflection expression then becomes

5
w = (Alr + Bir? + Por ) cos 6. 3)

Atr = a, M, = 0. Equation (3) gives
B, - 26 + w) poa

3 + ) 192D
Atr = a, w = 0 and Eq. (3) results in
(3 + w)192D°

The final expression for the deflection can now be written as

:L<E_Mm3 (7 + 1)
192D B+ p B+ w

The equations for M, and M, can now be obtained and are expressed as

M, = MM(/)( 2>cose

_ 2| (N +wA+3w P
M, = 19 [(a) G+ pe 1+ Spu):l cos 6.

a3r) cos 0.
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I 1

Figure P3-11.

Problems

3-11 Find the maximum bending moment in the plate shown in Fig. P3-
11. The edge of the plate is fixed and the applied load is expressed as

3-12 Find the expression for the bending moments in the plate shown in
Fig. P3-12.

3-4 Plates on an Elastic Foundation

Power and petrochemical plants as well as refineries use evaporators, con-
densors, and heat exchange units as part of their daily operations. These

Y

Figure P3-12.
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units consist of two perforated circular plates, called tubesheets, that are
braced by a number of tubes as shown in Fig. 3-13. The tubesheets and
tubes are inserted in a vessel consisting of a cylindrical shell and two end
closures. Fluid passing around the outside surface of the tubes exchanges
heat with a different fluid passing through the tubes. The tubesheets are
assumed to be supported by both the shell and tubes and are analyzed as
circular plates on an elastic foundation. Referring to Figs. 3-2 and 3-14, it
is seen that the foundation pressure f acts opposite the applied pressure
p. Hence Eq. (3-9) can be expressed as (Hetenyi 1964)

1d| d|1d/[ aw _p—f
rdr{rdr [rdr (r dr>:|} ) (3-33)
or
d> 1d\(d*> 1d p, — kw
(ﬁ * r dr> (ﬁ * r dr) v D (3-34)
where

f, = load exerted by the elastic foundation;

fr = kow;

k, = foundation modulus defined as the modulus of elasticity of foun-
dation divided by the depth of foundation, psi per inch.

A plate on an elastic foundation that is subjected to uniform pressure
will settle uniformly without developing any bending moments. If a support
is placed at the edge of such a plate, then bending moments are developed
because of the nonuniform settlement caused by the boundary condition.

tubeside shellside
outlet nozzle inlet nozzle tuteside
EI— TJ inlet nozzle e

l— shellside chamber @ r

N— tube \Kb
\ l-tubesheet tubesheet — \1/

’ |
J L tubeside chamber she1ll —" | L I_

channel

I

shellside
outlet nozzle

Figure 3-13.
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Accordingly, we can investigate the effects of the various boundary con-
ditions on the plate stress by allowing the applied pressure to be set to
zero. Letting

o = Vk,/D

the differential equation becomes

d_2+1£ iz__l_li + 4 _O
dr*  rdr/\dr* rdr o ew =1

Letar = V/— 1p.
Then the differential equation becomes

Viw —w =20 (3-35)
where

Equation (3-35) can be written either as
VA(Viw + w) — (VPw + w) =0
or
VZ(V2w — w) + (V2w — w) = 0.
Hence, the solution is a combination of
Viw +w =0
and

Viw — w = 0.

ATTITTID

Figure 3-14.

VVVM
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The first equation can be written as

d—zvl)-kld—w-kw—o
dp*  pdp

and the solution is expressed in terms of Bessel function, see Appendix B,

as
w = Al‘lo(p) + AZYO(p)'

The second equation has a solution in the form of
w = A3l (ip) + AY(ip).
Hence, the total solution is written as
W= AJ(zarVi) + AYo(2arVi)
+ AJ(zarV=i) + AY(xarV/—i).
This equation can be written as (Hetenyi 1964)
w = CZ(ar) + CZy(ar) + C3Zs(ar) + CyZy(ar) (3-36)

where the functions Z; to Z, are modified Bessel functions given in Ap-
pendix B.

Example 3-6

A tubesheet in a heat exchanger (Fig. 3-15) is subjected to edge load, Q,,
caused by the difference in expansion between the supporting tubes and
the cylindrical shell. Find the expression for the deflection of the tubesheet
due to force Q, if it is assumed simply supported at the edges.

Solution
From Eq. (3-36),
w = Clzl(ar) + szz(ar) + C3Z3(ar) + C4Z4(Otr). (1)

BEEERERE

Figure 3-15.
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The first constant is determined from the boundary condition at r = 0,
where the slope dw/dr is equal to zero due to symmetry. Hence,

dw

o = CioZi(ar) + CyaZi(ar) + CyaZi(ar) + C,aZi(ar).

r=0

From Fig. B-3 of Appendix B, the quantity Z,(0) approaches infinity as r
approaches zero. Hence, C, must be set to zero. The second constant is
determined from the boundary at r = 0 where the shearing force, Q, is
zero due to symmetry. The shearing force is expressed as

d*w 1d°w 1dw
Q= D(W = —ﬁz)-

The derivatives of the first term in Eq. (1) are

@)

dw
i CiaZi(ar)
d*w
W = ClaZZ’{(ar)

or, from Appendix B,
d*w o,
i Cl[azzz(ar) -7 Zl(ar):l.
The third derivative is
d*w

371 al " o '
o = Cy| *Zj(ar) — - Z(ar) + > Zi(ar)

or, from Appendix B,

d*w , 1 a ., a .,
-d'r—3 = Cl{a322(ar) - ; [azZz(ar) - ; Zl(ar)] + r_2 Zl(ar)}.

Substituting these expressions into Eq. (2) yields
Q = D[C,0’Zy(ar)].

The derivatives of Z, and Z; in Eq. (1) are similar to those for Z;. Thus,
the total expression for Q in Eq. (2) becomes

Q = D[C,03Z)(ar) — Ca3Zi(ar) + Cya3Z)(ar)].
Atr =0, Q = 0 due to symmetry. From Fig. 8-3 of Appendix B, Z; and
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Z} have a finite value at r = 0 while Z, approaches . Hence, C; must be
set to zero. At the boundary condition » = a we have

M|_,=0= —D(% + %%") 3)
and
3 2
0= 0 = p(f2 1dn_1d) @)
Substituting Eq. (1) into Eq. (3) yields
aZ,(aa) — 1-w Zi(aa)
C, = ¢ ‘ 5)

— :
oZy(aa) + — B Zi(aa)

And from Egs. (4) and (5) we get

C, = _k?l‘;"‘ I:Zl(aa) + ;a“‘ zg(aa)]
where
F = Z(aa)Z)(aa) — Zi(aa)Z,(aa) + 1 o?a“ [Zi(0a) + Z5(aa)].

Substituting the expression for C; into Eq. (5) gives

co=E I:Zz(aa) -

With C; and C, known, and C; = C, = 0, Eq. (1) can be solved for
moments and shears throughout the plate.

— a z;(aa)].

Problems

3-13 Show that the maximum deflection of a circular plate on an elastic
foundation subjected to a concentrated load, F, in the center is given by
the following expression when the radius of the plate is assumed infinitely
large:

W = F
max 8Da2'
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3-14 What are the values of C; and C, in Example 3-6 if the shear force
Q, is replaced by a bending moment M,?

3-5 Plates with Variable Boundary Conditions

In many structures such as large oil storage tanks, the surface pressure
above the contents causes an uplift force that is transferred to the cylindrical
shell as shown in Fig. 3-16a. This force is normally transferred to the
foundation through the anchor bolts. Many tanks, however, are not an-
chored to the foundation, especially in earthquake zones, to avoid damage
to the tanks and their attachments. In such cases the uplift force due to
surface pressure and earthquake loads is transferred to the base plate as
shown in Fig. 3-16b. The edge of the plate tends to lift up and the rest of
the plate is kept in place by the pressure of the tank contents. The solution
for the deflection of such a plate is obtained from Egs. (3-29) and (3-30)
as

4
w=A+Br2+c1nr+Fr21nr+6‘ZD (3-37)
. P

=

2a

(a)

F
p

(b)
Figure 3-16.
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where the constants A, B, C, and F are determined from the boundary
conditions.
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