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Preface 

The design of many structures such as pressure vessels, aircrafts, bridge 
decks, dome roofs, and missiles is based on the theories of plates and 
shells. The degree of simplification needed to adopt the theories to the 
design of various structures depends on the type of structure and the re­
quired accuracy of the results. Hence, a water storage tank can be satis­
factorily designed using the membrane shell theory, which disregards all 
bending moments, whereas the design of a missile casing requires a more 
precise analysis in order to minimize weight and materials. Similarly, the 
design of a nozzle-to-cylinder junction in a nuclear reactor may require a 
sophisticated finite element analysis to prevent fatigue failure while the 
same junction in an air accumulator in a gas station is designed by simple 
equations that satisfy equilibrium conditions. 

Accordingly, this book is written for engineers interested in the theories 
of plates and shells and their proper application to various structures. The 
examples given throughout the book subsequent to derivation of various 
theories are intended to show the engineer the level of analysis required 
to achieve a safe design with a given degree of accuracy. 

The book covers three general areas. These are: bending of plates; 
membrane and bending theories of shells; and buckling of plates and shells. 
Bending of plates is discussed in five chapters. Chapters 1 and 2 cover 
rectangular plates with various boundary and loading conditions. Chapter 
3 develops the theory of circular plates of uniform and variable thickness 
as well as plates on an elastic foundation. Chapter 4 presents approximate 
analyses such as the energy and yield-line methods for evaluating plates 
of different shapes. Chapter 5 discusses the bending of plates with various 
shapes and the bending of orthotropic plates. 

Shell theory is presented in four chapters. Chapters 6 and 7 cover the 
membrane theory and its application to spherical and conical shells as well 
as other configurations. Bending of cylindrical shells is discussed in Chapter 
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xii Preface 

8. Both long and short cylinders are evaluated due to mechanical as well 
as thermal loads. Examples combining circular plates and cylindrical shell 
components are given to illustrate the design of some actual structures. 
Bending of shells with double curvature is discussed in Chapter 9 and 
numerical examples are given. 

Buckling of plates and shells is discussed in Chapters 10, 11, and 12. 
General Buckling theory of plates is given in Chapter 10 with approxi­
mations used in various design codes. Chapter 11 covers buckling of cy­
lindrical shells with design applications. Chapter 12 discusses buckling of 
spherical, conical, and other miscellaneous shapes. 

The discussion of plate and shell theories is incomplete without a brief 
mention of two topics. The first is shell roof structures, and the second is 
finite element formulations. A complete coverage of these two topics is 
beyond the scope of this book. However, a brief summary of the analysis 
of various roof structures is given in Chapter 13. Chapter 14 presents a 
summary of the finite element formulation as used in solving complicated 
plate and shell configurations. 

Most of the chapters in this book can be covered in a two-semester 
course in "plate and shell theory." Also, a special effort was made to make 
the chapters as independent from each other as possible so that a course 
in "plate theory" or "shell theory" can be taught in one semester by 
selecting appropriate chapters. 

In order to study and use the theory of plates and shells, the engineer 
is assumed to have a good working knowledge of differential equations 
and matrix analysis. In addition two appendices are given at the end of 
the book to make the book as "self-contained" as possible. The first ap­
pendix is for Fourier Series and the second one is for Bessel Functions. 

Maan Jawad 
St. Louis, MO 

1994 
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1 

Bending of Simply Supported 
Rectangular Plates 

1-1 Introduction 

Many structures such as powerplant duct assemblies (Fig. 1-1), submarine 
bulkheads, ship and barge hulls, building slabs, (Fig. 1-2), and machine 
parts are designed in accordance with the bending theory of plates. The 
analysis of most plate configurations consists of solving a differential equa­
tion that is a function of deflection, applied loads, and stiffness of the plate. 
The solution of this differential equation results in an expression for the 
deflection of the plate. Other quantities such as forces and moments must 
then be determined from the calculated deflection. In this chapter, equa­
tions that express moments and forces in terms of deflection are developed 
first. Next, the basic differential equation for the bending of rectangular 
plates is established together with corresponding boundary conditions. These 
expressions are then used to solve various plate configurations and loading 
conditions. 

The basic assumptions made in the derivation of the equations for the 
bending of thin plates are: 

1. The thickness of the plate is substantially less than the lateral dimen-
sions. 

2. The plate is homogeneous and isotropic. 
3. Loads are applied perpendicular to the middle surface of the plate. 
4. The deflection of the plate due to applied loads is small. 
5. Lines perpendicular to the middle surface before deformation remain 

perpendicular to the deformed middle surface. 

With these assumptions, the basic relationships can now be derived. 
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2 Bending of Simply Supported Rectangular Plates 

Figure 1-1. Duct assembly. (Courtesy of the Nooter Corporation, St. Louis, MO.) 

1-2 Strain-Deflection Equations 

The relationship between strain and deflection of a thin plate is available 
from geometric considerations. We begin the derivation by letting an in­
finitesimal section (Fig. 1-3) undergo some bending deformation. The change 
in length at a distance z from the middle surface is expressed as 

or 

dx dx + Ex dx 

rx rx + z 

Z 
E =­x 

rx 

(1-1) 

(1-2) 

(1-3) 
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Strain - Deflection Equations 3 

Figure 1-2. Reinforced concrete buliding. (Courtesy of the Portland Cement As­
sociation, Chicago, IL.) 

where 

'x = radius of curvature in the x-direction; 
Ex = strain in the x-direction; 
Xx = curvature in the x-direction. 

Similarly, in the y-direction, 

z 

where 

'y = radius of curvature in the y-direction; 
Ey = strain in the y-direction; 
Xy = curvature in the y-direction. 

(1-4) 

(1-5) 

The quantity Xx is related to the deflection, w, and slope, dwldx, by the 
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4 Bending of Simply Supported Rectangular Plates 

y 

expression (Shenk 1979) 

or, for small deflections, 

Similarly, in the y-direction, 

z 

Figure 1-3. 

Xx = 

Xy = 
d2w 
dy2 . 

Substituting Eqs. (1-6) and (1-7) into Eqs. (1-3) and (1-5) gives 

d2w 
E = x -z-

dx2 

d2w 
E = Y -z dy2' 

(1-6) 

(1-7) 

(1-8) 

(1-9) 
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Strain-Deflection Equations 5 

The shearing strain-deformation relationship can be obtained from Fig. 
1-4. If an infinitesimal element of length dx and width dy undergoes shear­
ing deformations due to in-plane shearing forces and twisting moments 
then from Fig. 1-4a 

au d 
ay y 

sin a = a = ----''-----

(1 + :;) dy 

or, for small shearing angles, 

v 

dy 
dy .. av dy 

ay 

au 
a =-. 

ay 

l
UI dX+~dX "I 

: .. dx _. 

iF X 

v+ av dx 
-+--~~-~ ax 

(0) 

.-------------~x 

z 
(b) 

Figure 1-4. 
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6 Bending of Simply Supported Rectangular Plates 

Similarly, 

av dx 
. ax 
sm~=~=-----

(1 + :~) dx 

av 
~ =-. ax 

Hence, 

au av 
'Yxy = ex + ~ = - + -

ay ax 

where 

u = deflection in the x-direction; 
v = deflection in the y-direction; 

'Y xy = shearing strain; 
au av h· . d ... -, - = s eanng strams ue to tWistmg. 
ay ax 

(1-10) 

The rotation of the middle surface is shown in Fig. 1-4b and is given by 
awlax. Due to this rotation, any point at distance z from the middle surface 
will deflect by the amount 

or 

u = z tan e = ze 

aw 
u = -z­ax 

aw 
v = -z-. 

ay 

Hence, Eq. (1-10) becomes 

a2w 
'Yxy = -2z--

ax ay 

Equations (1-8), (1-9), and (1-11) can be written as 

a2w 

-z [~ 
0 

~l 
ax2 

1 
a2w 
ay2 

0 
a2w 

ax ay 

(1-11) 

(1-12) 
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Stress-Deflection Expressions 7 

and are sufficiently accurate for developing the bending theory of thin 
plates. More precise strain expressions that are a function of the three 
displacement functions u, v, and w will be derived later when the buckling 
theory of thin plates is discussed. 

1-3 Stress-Deflection Expressions 

Our next step is to express Eq. (1-12) in terms of stress rather than strain 
because it is easier to work with stress. The relationship between stress 
and strain, excluding thermal loads, in a three-dimensional homogeneous 
and isotropic element (Fig. 1-5) is obtained from the theory of elasticity 
(Sokolnikoff 1956) as 

Ex 1 -J-l- -J-l- 0 0 0 Ux 

lOy -J-l- 1 -J-l- 0 0 0 u y 

Ez 1 -J-l- -J-l- 1 0 0 0 U z 

'Yxy E 0 0 0 2(1 + J-l-) 0 0 Txy 

'Yyz 0 0 0 0 2(1 + J-l-) 0 Tyz 

'Yzx 0 0 0 0 0 2(1 + J-l-) Tzx 

(1-13) 

}-T" 
TyZ 

I O"x 
J------- ---- -

I 
I 

I Tzy 

dY // )--T" Y 

}--. 
I 0" 

I Z 

~ 
z 

dx 

Figure 1-5. 

Stress-Deflection Expressions 7 

and are sufficiently accurate for developing the bending theory of thin 
plates. More precise strain expressions that are a function of the three 
displacement functions u, v, and w will be derived later when the buckling 
theory of thin plates is discussed. 

1-3 Stress-Deflection Expressions 

Our next step is to express Eq. (1-12) in terms of stress rather than strain 
because it is easier to work with stress. The relationship between stress 
and strain, excluding thermal loads, in a three-dimensional homogeneous 
and isotropic element (Fig. 1-5) is obtained from the theory of elasticity 
(Sokolnikoff 1956) as 

Ex 1 -J-l- -J-l- 0 0 0 Ux 

lOy -J-l- 1 -J-l- 0 0 0 u y 

Ez 1 -J-l- -J-l- 1 0 0 0 U z 

'Yxy E 0 0 0 2(1 + J-l-) 0 0 Txy 

'Yyz 0 0 0 0 2(1 + J-l-) 0 Tyz 

'Yzx 0 0 0 0 0 2(1 + J-l-) Tzx 

(1-13) 

}-T" 
TyZ 

I O"x 
J------- ---- -

I 
I 

I Tzy 

dY // )--T" Y 

}--. 
I 0" 

I Z 

~ 
z 

dx 

Figure 1-5. 



8 Bending of Simply Supported Rectangular Plates 

where 

E :=: axial strain; 
IT :=: axial stress; 
'Y :=: shearing strain; 
T :=: shearing stress; 
E :=: modulus of elasticity; 
j.L :=: Poisson's ratio. 

The quantities x, y, and z refer to the directions shown in Fig. 1-5. The 
quantity 2(1 + j.L)/E is usually written as I/G where G is called the shearing 
modulus. 

The stress perpendicular to the surface, i.e., in the z-direction, has a 
maximum value equal to the applied pressure. For the majority of plate 
applications in bending, the stress ITz in the z-direction is small compared 
to the stress in the other two directions and thus can be neglected. In 
addition, the shearing stresses Tyz and Tzx are not needed in the formulation 
of a two-dimensional state of stress. Hence, for this condition, Eq. (1-13) 
can be written as 

(1-14) 

Substituting Eq. (1-12) into Eq. (1-14) gives 

a2w 

[:;] [1 0 

J 
ax2 

-Ez 
j.L 

a2w 
:=: 

1 - j.L2 ~ 1 0 

0 (1 
ay2 

a2w 

(1-15) 

ax ay 

The elastic moduli of elasticity and Poisson's ratio for some commonly 
used materials are given in Table 1-1. The value of Poisson's ratio is rel­
atively constant at various temperatures for a given material and is thus 
listed only for room temperature in Table 1-1. 

1·4 Force-Stress Expressions 

Equation (1-15) can be utilized better when the stress values are replaced 
by moments. This is because the moments at the edges of the plate are 
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Table I-I. Moduli of elasticity and Poisson's ratio 

Modulus of Elasticitya 

Poisson's Room 
Temperature, of 

Material Ratio Temperature 200 400 600 800 .1000 

Aluminum (6061) 0.33 10.0 9.6 8.7 
Brass (C71000) 0.33 20.0 19.5 18.8 17.8 
Bronze (C61400) 0.33 17.0 16.6 16.0 15.1 
Carbon Steel (C < 0.3) 0.29 29.5 28.8 27.7 26.7 24.2 20.1 
Copper (CI2300) 0.33 17.0 16.6 16.0 15.1 
Cu-Ni (70-30) (C71500) 0.33 22.0 21.5 20.7 19.6 
Nickel alloy C276 0.29 29.8 29.1 28.3 27.6 26.5 25.3 
Nickel alloy 600 0.29 31.0 30.2 29.5 28.7 27.6 26.4 
Stainless steel (304) 0.31 28.3 27.6 26.5 25.3 24.1 22.8 
Titanium (Gr.l,2) 0.32 15.5 15.0 14.0 12.6 11.2 
Zirconium alloys 0.35 14.4 13.4 11.5 9.9 

Concrete 0.15 3.1b 
Wood, hard 2.1 
Wood, soft 1.3 

aIn million psi. 
bPor 3000 psi concrete. 

needed to satisfy some of the boundary conditions in solving the differential 
equation. The relationship between moment and stress is obtained from 
Fig. 1-6a. The moments shown in Fig. 1-6b are positive and are per unit 
length. By definition, the sum of the moments about the neutral axis due 
to the internal forces is equal to the sum of the moments of the external 
forces. Hence, 

(1-16) 

The negative sign of Mxy in Eq. (1-16) is needed since the direction of 
Mxy in Fig. 1-6b results in a shearing stress 'I'xy that has a direction opposite 
to that defined in Fig. 1-4a in the positive z-axis. Substituting Eq. (1-15) 
into Eq. (1-16) results in 

a2w 

[~: 1 ~ -D [~ 
0 

J 
ax2 

J.1 a2w 
1 0 ay2 (1-17) 

Mxy 0 0 -(1 - a2w 
ax ay 
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Figure 1-6. 

where 

D = 12(1 _ f.L2)· (1-18) 

The quantity D is the bending stiffness of a plate. It reduces to the 
quantity EI, which is the bending stiffness of a beam of unit width, when 
we let f.L = o. 
Problems 

1-1 The finite element formulation for the stiffness of a solid three­
dimensional element is based on the strain-stresse matrix Eq. (1-13). Re­
write this equation as a stress-:-strain matrix. 
1-2 A strain gage rosette is mounted on the flat inside surface of a valve 
casting as shown in Fig. Pl-2. The valve is then pressurized and the fol-
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Figure Pl-2. 

lowing strain values were measured 

Ex = 300 X 10-6 inches/inch 

lOy = 150 x 10 - 6 inches/inch 

1045 = 600 X 10- 6 inches/inch. 

11 

Calculate the maximum stresses if E = 20,000 ksi and j.L = 0.15. Hint: 
first, calculate the shearing strain 'Yxy at the location of the strain gage from 
Mohr's circle which is expressed as 

Ex + lOy Ex - lOy 'Yxy 
lOa = 2 + 2 cos 26 + "2 sin 26 

where 6 = 45° in this case. Then, calculate the principal strains from Beer 
and Johnson (1981) 

Ex + lOy 
lOmax = 2 + 

min 

1 
:2 'Ymax = ± 

(EX ; lOy r + ('Y~y r 

(Ex; Eyr + ('Y~yr 

8 = ! tan -1 'Yxy 
2 Ex - lOy 

where 28 is the orientation of the plane of maximum strain with respect 
to the plane of given strains. The last step is to use Eq. (1-14) to obtain 
maximum stress. 
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1-3 The stress in the x-direction of a point on the surface of a plate is 
equal to 35 MPa. The stress in the y-direction is equal to 70 MPa and that 
in the z-direction is equal to 35 MPa. Determine the maximum shearing 
stress by Mohr's circle and show the plane on which it acts. 
1-4 Determine the maximum bending stress values O'x and O'y in a plate 
with length a = 100 cm and width b = 75 cm. The deflection is approx­
imated by 

k . 1TX . 1Ty 
W = sm-sm-

a b 

where k is a constant equal to 0.462 cm. Let t = 1.2 cm, f.L = 0.3, and 
E = 200,000 MPa. 
1-5 A simply supported rectangular plate with dimensions a = 30 inches 
and b = 20 inches (Fig. Pl-5) is subjected to a uniform pressure of 15 psi. 
Determine the maximum bending moment in the middle of the plate by 
taking unit strips in the middle of the plate in the x- and y-directions. 
Assume the strips to be connected at point A. Compare the results 
with the more accurate solution obtained from the plate theory in Example 
1-2. 

1-5 Governing Differential Equations 

The differential equation for the bending of a beam 

r-

b 

-

_ M(x) 
EI 

y 

A 

Q 

Figure PI·5. 

(1-19) 
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can be expressed in terms of applied loads by 

d4w _ p(x) 
dx 4 - EI' (1-20) 

A similar equation can be written for the bending of a plate. The cor­
responding differential equation for the bending of a plate is more com­
plicated because it must include terms for the bending in the x- and 
y-directions as well as torsional moments that are present in the plate. 
Lagrange (Timoshenko 1983) was the first to develop the differential equa­
tion for the bending of a rectangular plate in 1811. We begin the derivation 
of the governing equations by considering an infinitesimal element dx, dy 
in Fig. 1-7 subjected to lateral loads p. The forces and moments, per unit 
length, needed for equilibrium are shown in Fig. 1-8 and are positive as 
shown. Also, downward deflection is taken as positive. It is of interest to 
note that two shearing forces, Qx and Qy, and two torsional moments, Mxy 
and Myx, are needed to properly define the equilibrium of a rectangular 
plate. 

Summation of forces in the z-direction gives the first equation of 
equilibrium: 

p(x, y) dx dy Qx dy + (Qx + a;x dX) dy 

- Qy dx + (Qy + a~y dY) dx = O. 

r-----------------------------~r_--~x 

z 

Figure 1-7. 
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P(X,y) 
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~ M + OMYXd 
yx -- Y oY 

Q + a.Qy d 
y ay Y 

M + aMy d 
y F Y 

Figure 1-8. 

This equation reduces to 

aQx aQ 
p(x, y) + - + -y = o. 

ax ay 

M + aMx dx 
x ax 

(1-21) 

Summation of moments around the x-axis gives the second equation of 
equilibrium 

( aMy ) My dx - My + ay dy dx - Mxy dy + (Mxy + a:Xy dX) dy 

+ (Qy + a;y dY) dx dy - Qx dy dy/2 

+ (Qx + a;x dx ) dy dy/2 + P dx dy dy/2 = o. 

Simplifying this equation gives 

aMxy aMy 
Q +---+ y ax ay 

The bracketed term in this equation is multiplied by an infinitesimal quan­
tity dy. It can thus be deleted because its magnitude is substantially less 
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than that of the other three terms. The equation becomes 

aQy a2My _ a2Mxy 
ay ay2 ax ay 

(1-22) 

Summation of moments around the y-axis gives the third equation of 
equilibrium 

aQx a2Mx _ a2Myx 
ax ax2 ax ay 

Substituting Eqs. (1-22) and (1-23) into Eq. (1-21) gives 

p(x, y) + a2Mx _ 2 a2Mxy + a2My = o. 
ax2 ax ay ay2 

(1-23) 

(1-24) 

In this equation it was assumed that Mxy = Myx because at any point on 
the plate the shearing stress Txy = - Tyx. 

Substituting Eq. (1-17) into this equation gives 

a4w a4w a4w 
-4 + 2 -2-2 + -4 = p(x, y)/D. 
ax ax ay ay 

(1-25) 

A comparison of this equation with Eq. (1-20) for the bending of beams 
indicates that Eq. (1-25) is considerably more complicated because it con­
siders the deflection in the x- and y-directions as well as the shearing effects 
in the xy plane. 

Equation (1-25) can also be written as 

(1-26) 

where 

and 

Equation (1-26) is the basic differential equation for rectangular plates 
in bending. A solution of this equation yields an expression for the de­
flection, w, of the plate. The moment expressions are obtained by substi­
tuting the deflection expressions into Eq. (1-17). The shear forces are 
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obtained from Eqs. (1-22), (1-23), and (1-17), and are given by 

(1-27) 

(1-28) 

For sign convention we will assume a downward deflection as positive 
in Eq. (1-26). All other quantities are assumed positive as shown in 
Fig. 1-8. 

Problems 

1-6 Find Mx, My, Mxy , Qx, and Qy of a rectangular plate whose deflection 
is given by 

k . m'ITX . n'ITy 
w = sm-a-sm b 

where k, a, b, )1, and m are constants. 
1-7 Derive Eqs. (1-25), (1-27), and (1-28). 

1-6 Boundary Conditions 

The most frequently encountered boundary conditions for rectangular plates 
are essentially the same as those for beams. They are either fixed, simply 
supported, free, or partially fixed as shown in Fig. 1-9. 

(a) Fixed Edges: For a fixed edge (Fig. 1-9), the deflection and slope 
are zero. Thus, 

Wly=b = 0 (1-29) 

awl = o. (1-30) 
ay y=b 

(b) Simply Supported Edge: For a simply supported edge (Fig. 1-9), the 
deflection and moment are zero. Hence, 

(1-31) 

and, from Eq. (1-17), 

Myly=o = - D(a2~ + f.L a2~) I = o. 
ay ax y=o 

(1-32) 
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The expression f.L a2~ in Eq. (1-32) can be written as f.L ~ (aw) which is ax ax ax 
the rate of change of the slope at the boundary. But the change in slope 
along the simply supported edge y = 0 is always zero. Hence the quantity 

f.L a2~ vanishes and the moment boundary condition becomes ax 

Myly=o = aa2~1 = o. 
y y=o 

(1-33) 

(c) Free Edge: At a free edge, the moment and shear are zero. Hence, 

Mxlx=a = Mxylx=a = Qxlx=a = O. 

From the first of these boundary conditions and Eq. (1-17) we get 

G:~ + f.L ~:~) Ix=a = O. (1-34) 

The other two boundary conditions can be combined into a single expres­
sion. Referring to Fig. 1-10, it was shown by Kirchhoff (Timoshenko and 
Woinowsky-Krieger 1959) that the moment Mxy can be thought of as a 
series of couples acting on an infinitesimal section. Hence, at any point 
along the edge 

Q' = _ (a~XY) I 
y x=a 

This equivalent shearing force, Q', must be added to the shearing force 
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The expression f.L a2~ in Eq. (1-32) can be written as f.L ~ (aw) which is ax ax ax 
the rate of change of the slope at the boundary. But the change in slope 
along the simply supported edge y = 0 is always zero. Hence the quantity 

f.L a2~ vanishes and the moment boundary condition becomes ax 

Myly=o = aa2~1 = o. 
y y=o 

(1-33) 

(c) Free Edge: At a free edge, the moment and shear are zero. Hence, 

Mxlx=a = Mxylx=a = Qxlx=a = O. 

From the first of these boundary conditions and Eq. (1-17) we get 
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M aMxy 
xy + CJY dy 

y 

Figure 1·10. 

Qx acting at the edge. Hence the total shearing force at the free edge is 
given by Q' and Eq. (1·27) as 

( aMxy) I V=Q-- =0 
x x ay x~a 

Substituting the values of Qx and Mxy from Eqs. (1.27) and (1·17) into this 
equation gives 

G:: + (2 - ~) a:3;2) Ix~a = O. (1-35) 

Equations (1-34) and (1-35) are the two necessary boundary conditions 
at a free edge of a rectangular plate. 

(d) Partially Fixed Edge: A partially fixed edge occurs in continuous 
plates or plates connected to cbeams. For this latter condition, Fig. 1·11 
shows that the two boundary conditions are given by 

and 

(1-37) 
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BEAM 

Figure 1-11. 

(e) Corner Reactions: It was shown in the derivation of Eq. (1-35) that 
the torsion moment Mxy shown in Fig. 1-10 can be resolved into a series 
of couples. At any corner, say x = a and y = b in Fig. 1-12, the moment 
Mxy results in a downward force and so does Myx as shown in the figure. 
Hence the total reaction at x = a and y = b is given by 

(1-38) 

Equation (1-38) is normally used to determine the force in corner bolts 
of rectangular cover plates of gear transmission casings, flanges, etc. 

To summarize, Eqs. (1-29) and (1-30) are used for fixed edges whereas 
Eqs. (1-31) and (1-33) are utilized for simply supported edges. Free edges 
are expressed by Eqs. (1-34) and (1-35) and boundaries of plates with beam 
edges are given by Eqs. (1-36) and (1-37). Corner loads are expressed by 
Eq. (1-38). 

Example 1-1 

Find the moment and reaction expressions for a simply supported rectan­
gular plate (Fig. 1-13a) of length a, width b, and subjected to a sinusoidal 
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Figure 1-13c. Corner reinforcement. 

load given by 

• 1TX • 1Ty 
P = Po SIll -;- SIn b· 

Solution 

The differential Eq. (1-26) is written as 

V4 Po. 1TX • 1Ty 
W = -SIn-SIn-. 

Dab 
(1) 

From Fig. 1-13, the boundary conditions are given by 

W=o 
a2w 

at x = 0 and and -=0 x = a 
ax2 

w=O and 
a2w 

at y = 0 and y = b. -=0 
ay2 
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The assumed expression for the deflection must be of the same general 
format as that of the applied load in order to solve Eq. (1). It must also 
satisfy the boundary conditions of the plate. Hence, a deflection of the 
form 

C . 'TrX • 'Try 
W = sm-sm-

a b 

satisfies the given boundary conditions. 
Substituting Eq. (2) into Eq. (1) gives 

and the expression for w becomes 

Substituting this expression into Eq. (1-17) gives 

M = y 

(2) 

(3) 

The maximum value for moments Mx and My occur at x = al2 and 
y = b12. 

To find the reactions, we calculate Qx and Qy from Eqs. (1-27) and 
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(1-28). This gives 
Po 1TX . 1Ty 

Q = cos-sm-
x (1 1) a b 

1Ta a2 + b2 

Q ~ . ~ 1Ty 

Y = ( 1 1) sm -;; cos b 
1Tb a2 + b2 

for edge x = a, the reaction is given by 

(4) 

and for edge y = b, the reaction is given by 

_ ( aMxy ) I V - Q--
y y ax 

y~b 

- Po ( 1 2 - f.L) . 1TX 

( 
1 1 ) 2 b2 + -----;;z- sm -;;. 

1Tb a2 + b2 

(5) 

The total reaction around the plate is obtained by integrating Eqs. (4) 
and (5) from x = 0 to x = a and from y = 0 to y = b and then multiplying 
the result by 2 due to symmetry. This gives 

(6) 

The first part of this equation can also be obtained by integrating the 
applied load over the total area, or 

(b (a 1TX ay 
Jo Jo P sin -;; sin b dx dy. 

The second expression in Eq. (6) is the summation of the four corner 
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reactions given by Eq. (1-38). Hence, at x = 0 and y = 0 the expression 
for the reaction is 

R = 2(M ) I = 2po(1 - ,..,) 
xy x=o ( )2' y=o 1 1 

7r2ab - + -
a2 b2 

A plot of the shear distribution and reaction is shown in Fig. 1-13b. 
The positive value of R indicates that the corners have a tendency to lift 
up and a downward force is needed to keep them in place. This action 
must be considered when designing cover plates and concrete slabs. An 
example of the reinforcement at the corners of a concrete slab is shown 
in Fig. 1-13c. 

1-7 Double Series Solution of Simply Supported 
Plates 

The first successful solution of a simply supported rectangular plate sub­
jected to uniform load was made by Navier (Timoshenko 1983) in 1820. 
He assumed the load p in Eq. (1-26) to be represented by the double 
Fourier series, Appendix A, of the form 

( ) ~ ~ . m7rX . n7ry 
p x, y = mL;:ln~l Pmn sm -a- sm b (1-39) 

where Pmn is obtained from 

4 (b (a . m7rX . n7ry 
Pmn = ab Jo Jo f(x, y) sm -a- sm b dx dy (1-40) 

and f(x,y) is the shape of the applied load. 
Similarly the deflection w is expressed by 

( ) ~ ~ . m7rX . n7ry 
w x, y = L.J L.J Wmn sm -- sm -b . 

m=ln=l a 
(1-41) 

This equation automatically satisfies four boundary conditions of a simply 
supported plate and Wmn is a constant that is determined from the differ­
ential equation. 

The solution of a rectangular plate problem consists of obtaining a load 
function form Eq. (1-39). The the unknown constant Wmn is obtained by 
substituting Eqs. (1-39) and (1-41) into Eq. (1-26). 
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Example 1-2 

(a) Determine the maximum bending moment of a simply supported 
plate due to a uniformly applied load. 

(b) Let a steel rectangular plate with dimensions a = 30 inch and b = 
20 inch be subjected to a pressure of 15 psi. Determine the maximum 
bending moment and deflection if f.1 = 0.3, E = 30,000 ksi, and t = 0.38 
inch. 

Solution 

(a) Let the coordinate system be as shown in Fig. 1-14. Equation (1-40) 
can be solved by letting f(x, y) equal a constant Po because the load is 
uniform over the entire plate. Hence, 

4p (b (a mTrX nTry 
Pmn = abo Jo Jo sin -a- sin b dx dy 

4po ( ( = -- cos mTr - 1) cos nTr - 1) 
Tr 2mn 

where 

m = 1,3,5, .. . 
n = 1, 3, 5, .. . 

From Eq. (1-39), 

P _- 1z6Po ~ ~ . mTrX . nTry 
L... L... sm -a- sm b' 

Tr mn m~1.3 •.. n~1.3, ... 

b 

y 

Figure 1-14. 
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Substituting this equation and Eq. (1-41) into Eq. (1-26) gives 

m = 1,3,5, .. . 

n = 1,3,5, .. . 

Hence, the deflection expression becomes 

. m'ITX . n'ITy 
16po oc oc sm -a- sm b 

w = 'IT6D m=t3, ... n=~, ... mn[(mla)2 + (nlb)2)2' (1) 

The bending and torsional moment expressions are given by Eq. (1-17) 
and are expressed as 

M - 16po [~ ~ F . m'ITX . n'ITY] 
x - 4 L.i L.i mn sm sm b 

'IT m=1,3, ... n=1,3,... a 
(2) 

M - 16po [~ ~ G . m'ITX . n'ITY] 
y- 4 L.i L.i mn sm sm b 

'IT m=1,3, ... n=1,3,... a 
(3) 

M - 16po(1 - f.L) [~ ~ H m'ITX n'ITY] 
xy - 4 L.i L.i mn cos cos b 

'IT m = 1,3, ... n = 1,3,... a 
(4) 

where 

F = (mla)2 + f.L(nlb)2 
mn mn[(mla)2 + (nlb)2)2 

G = f.L(mla)2 + (nlb)2 
mn mn[(mla)2 + (nlb)2)2 

1 

The maximum values of deflection and bending moments occur at x = 
al2 and Y = b12. 

A plot of Eqs. (2), (3), and (4) is shown in Fig. 1-15 for a square plate. 
The figure also shows a plot of M1 and M2 obtained from Mohr's circle 
along the diagonal of the plate. M1 becomes negative near the corner of 
the plate. This is due to the uplift tendency at the corners. This uplift is 
resisted by the reaction R that causes tension at the top portion of the 
plate near the corners. This tension must be properly reinforced in concrete 
slabs as shown in Fig. 1-13c. 

(b) The maximum values of Mx, My, and ware obtained from expression 
(2), (3), and (4) above. The computer program "DBLSUM" in Table A-2 
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Figure 1-15. (Timoshenko and Woinowsky-Krieger 1959.) 

of Appendix A is used to determine the series summation for m and n. 

16Pob2 

Mx = --4- (0.3035) = 299.1 inch-Ibs/inch 
'IT 

16pob2 .• 
My = --4- (0.4941) = 487.0 mch-Ibs/mch 

'IT 

16p b4 

w = 'IT6~ (0.4647) 

The value of D is given by Eq. (1-18) as 

D = Et3 30,000,000 x 0.383 

12(1 - f.L2) 12 (0.91) 
150,747 lbs-inch. 

the maximum deflection is 

w = 0.12 inch. 

Example 1-3 

Find the deflection expression for the simply supported plate loaded as 
shown in Fig. 1-16. 
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y 

Figure 1·16. 

Solution 

The Fourier expansion of the load is obtained from Eqs. (1-39) and (1-40) 
as 

4 ff+ d/2 je+cl2 . m'ITX . n'ITy 
Pmn = -b d Po SIll -- SIll -b dx dy a C f-d/2 e-el2 a 

16po . m'ITe . m'ITC . n'ITj . n'ITd ( ) 
Pmn = d 2 SIll -- SIll -2- SIll -b SIll 2b . 1 mn C 'IT a a 

Substituting this expression and Eq. (1-41) into Eq. (1-26) gives 

. m'ITe . m'ITC . n'ITj . n'ITd 
16po SIll -a- SIll 2a SIll b SIll 2b 

Wmn = 'IT6cdD mn[(mla)Z + (nlb?J2 (2) 

and 

'" '" . m'ITX . n'ITy 
W = m="23, ... n=B, .. Wmn SIn -a- SIll b' (3) 

This equation reduces to Eq. (1) of Example 1-2 for a uniformly loaded 
plate when C = a, d = b, e = a12, and j = b12. 

Problems 

1-8 Find the expression for moments Mx and My in Example 1-3. 
1-9 A tabletop is loaded as shown in Fig. 1-16. Find the maximum stress 
in the table if a = 200 em, b = 80 em, C = 30 em, d = 15 em, e = 80 
em,! = 40 em, E = 840 kg/mm2, P = 0.2 kg/em2, and /.1 = 0.30. Assume 
the tabletop to be simply supported. 
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1-10 Show that in Example 1-3 the value of Pmn for a concentrated load, 
Pm is 

4p 0 • m'ITe . m'ITf 
Pmn = --;;b sm -a- sm T· 

1-8 Single Series Solution of Simply Supported Plates 

Levy (Timoshenko 1983) in 1900 developed a method for solving simply 
supported plates subjected to various loading conditions using single Four­
ier series. This method is more practical then Navier's solution because it 
is also applicable to plates with various boundary conditions as discussed 
in Chapter 2. Levy suggested the solution of Eq. (1-26) to be expressed 
in terms of homogeneous and particular parts each of which consists of a 
single Fourier series where the unknown function is determined from the 
boundary conditions. Thus the solution is expressed as 

(1-42) 

The homogeneous solution is written as 

(1-43) 

where fey) indicates that it is a function of y only. This equation also 
satisfies a simply supported boundary condition at x = 0 and x = a. 
Substituting Eq. (1-43) into the differential equation 

V4w = 0 

gives 

which is satisfied when the bracketed term is equal to zero. Thus, 

d:;~Y) _ 2(~'ITr d2~;~y) + (~'IT) ~m(Y) = o. (1-44) 

The solution of this differential equation can be expressed as 

(1-45) 
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Pmn = --;;b sm -a- sm T· 

1-8 Single Series Solution of Simply Supported Plates 
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(1-43) 
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Substituting Eq. (1-45) into Eq. (1-44) gives 

R~ - 2(:1Tr R~ + (:1Tr = 0 
which has the roots 

R = m 

m1T 
+­- , 

a 

Thus, the solution of Eq. (1-44) is 

m1T 
±­

a 

ffmy ffmy mTIy m7ry 

fm(Y) = Clme --;;- + C2me - --;;- + C3mYe --;;- + C4mYe ---;;-

where Clm, C2m , C3m , and C4m are constants. This equation can also be 
written as 

fm(Y) = A sinh m1TY + B cosh m1TY 
m a m a 

. m1TY m1TY + CmY smh -- + DmY cosh --. 
a a 

Hence, the homogeneous solution given by Eq. (1-43) becomes 

~ [ . m1TY m1TY C . h m1TY 
Wh = L..; Am smh -- + Bm cosh -- + mY sm --

m~l a a a 

m1TY] . m1TX + DmY cosh -- sm--
a a 

(1-46) 

where the constants Am, Bm, Cm, and Dm are obtained from the boundary 
conditions. 

The particular solution, wP ' in Eq. (1-42) can be expressed in a single 
Fourier series as 

(1-47) 

The load P is expressed as 

( ) ~ (). m1TX P x, Y = L..; Pm Y sm-
m=l a 

(1-48) 

where 

21a • m1TX Pm(Y) = - p(x, y) sm - dx. 
a 0 a 

(1-49) 
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Substituting Eqs. (1-47) and (1-48) into Eq. (1-26) gives 

d4km _ 2(m-rr)2 d2km + (m-rr)4km = Pm(Y). (1-50) 
dy4 a dy2 a D 

Thus, the solution of the differential equation (1-26) consists of solving 
Eqs. (1-46) and (1-50) as shown in the following example. 

Example 1-4 

The rectangular titanium plate shown in Fig. 1-17 is subjected to a uniform 
load Po' Determine the expression for the deflection. 

Solution 

From Eq. (1-49), 

() 2po fa . m-rrx d 
Pm Y = - Slll-- X 

a 0 a 

= 2po (cos m-rr _ 1) = 4po 
m-rr m-rr 

m = 1,3, ... 

Hence, Eq. (1-50) becomes 

d4km _ 2(m-rr)2 d2km + 
dy4 a dy2 

The particular solution of this equation can be taken as 

km = C. 

a 
r- ss 

!2. 
2 

~ 

SS 
b 

55 

2" 
'----- ss 

y 

Figure 1-17. 

(1) 
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Substituting this expression into Eq. (1) gives 

k = 4a4po 
m m5'IT5D 

m = 1,3, ... 

And Eq. (1-47) for the particular solution becomes 

_ 4a4po ~ 1. m'ITX 
W p - 5D L.J - sm --. 'IT m = 1,3, ... m 5 a 

(2) 

The homogeneous solution for the deflection is obtained from Eq. 
(1-46). Referring to Fig. 1-17, the deflection in the y-direction due to 
uniform load is symmetric about the x-axis. Hence, the constants Am and 

Dm must be set to zero since the quantities sinh m'ITy and y cosh m'ITY are 
a a 

odd functions as y varies from positive to negative. Also, m must be set 

to 1, 3, 5, etc. in order for sin m'ITX to be symmetric around x = a12. 
a 

Hence, 

and the total deflection can now be expressed as 

~ ( m'ITy . m'ITY 4Poa4 ). m'ITX 
W = L.J Bmcosh-- + Cmysmh-- + ---s5D sm--. 

m=1,3,... a a m'IT a 
(3) 

The boundary conditions along the y-axis are expressed as 

w = a at y = ± bl2 

and 

a2w 
ay2 - a at y = ± b12. 

From the first of these boundary conditions we get 

m'ITb b. m'ITb 4a4po 
B cosh -- + C - smh -- + -- = a 

m 2a m 2 2a m5'IT5D 

and from the second boundary condition we get 

[Bm (:'IT) + bemJ cosh ~:b + Cm (~:b) sinh ~:b = O. 
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Solving these two simultaneous equations gives 

2a3po em = ------~~m--~-b 
m4~4D cosh--

2a 

With these two expressions known, Eq. (3) can now be solved for various 
values of x and y. 

The load in the previous few examples was assumed uniform in distri­
bution. Other distributions can be used in Eq. (1-49) as long as they can 
be expressed in terms of x and y. Thus, if the load in Example 1-4 is 
triangular in distribution as shown in Fig. 1-18, then it can be expressed 
as 

and Eq. (1-49) becomes 

pox 
P =-

m a 

() 21a Pox . m~x d Pm Y = - - sm -- x 
a 0 a a 

y 

= 2po (_l)m+l 
m~ 

Figure 1-18. 

m = 1,2, ... 
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Figure PI-I2. 

x 

y 

Figure PI-13. 

Problems 

1-11 Find the expression for Mx, My and Mxy in Example 1-4. 
1-12 A channel weir is approximated as a simply supported rectangular 
plate subjected to the loading shown in Fig. Pl-12. Find the expression 
for the moments. 
1-13 An internal zirconium bulkhead is loaded as shown in Fig. Pl-13. 
Find the expression for the moments assuming the plate to be simply 
supported. 

1·9 DeSign of Rectangular Plates 

The procedure for designing a rectangular plate with a given boundary 
condition and applied lateral loads is 
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1. Express the loads in a Fourier series and define a similar expression for 
the deflection. 

2. Solve Eq. (1-26) for the actual deflection, W, by utilizing the boundary 
conditions in the solution. 

3. Determine the maximum moments from Eq. (1-17). 
4. For metallic plates, the required thickness is calculated from the expres­

SiOn u = Me/I where, for a unit width, it reduces to 

t = \l6M/u. (1-51) 

5. For reinforced concrete slabs where the reinforcement is about the same 
in the x- and y-axes, the design can be approximated by Eq. (1-26) as 
discussed above. The design of concrete plates is more complicated than 
that of metallic plates because the engineer has to determine not only 
the magnitude of the bending moments, but also their direction and 
location in order to properly space the reinforcing bars. Standards such 
as the ACI 318 establish minimum requirements for concrete thickness 
and reinforcement spacing throughout the slab. 

6. Orthotropic plates and reinforced concrete slabs where the reinforce­
ment is not the same in the x- and y-directions are analyzed in accor­
dance with the orthotropic plate theory discussed in Chapter 5. 

Allowable stress values at various temperatures of various materials are 
published in many international codes. The AS ME VIII -1 code publishes 
allowable stresses for over 500 different steels and nonferrous alloys. These 
stresses are based on the smaller of two-thirds of the yield stress or one­
fourth of the tensile stress of the material at a given temperature. Table 
1-2 lists allowable stress values for a few materials at temperatures below 
the creep and rupture values. Allowable stresses at elevated temperatures 
are discussed in Chapter 2. Allowable stress values for reinforced concrete 
are given in various standards such as ACI 318. 

Table 1-2. AS ME VIII-l allowable stress values, ksi 

Temperature, OF 

AS ME Room 
Material Designation Temperature 300 500 700 

Carbon steel SA 516-70 17.5 17.5 17.5 16.6 
Stainless steel SA 240-304 18.8 16.6 15.9 15.9 
Aluminum SB 209-6061 T4 7.5 6.9 
Copper alloy SB 171-715 70/30 12.5 10.4 10.4 10.4 
Nickel alloy SB 575-276 25.0 25.0 23.9 23.1 
Titanium alloy SB 265-Gr 3 16.3 11.7 7.5 
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Maximum moments and stresses in most of the frequently encountered 
load cases for simply supported rectangular plates have been tabulated 
in many references for the convenience of the engineer. Timoshenko 
(Timoshenko and Woinowsky-Krieger 1959) lists tables and charts for max­
imum moments and deflections of numerous loading conditions. Roark 
(Roark and Young 1975) has similar tables and so does Pilkey (Pilkey and 
Chang 1978). Table 1-3 gives maximum deflection and stress values for 
simply supported plates with two commonly encountered loading conditions. 

Loading conditions not found in published references must be solved by 
developing a Fourier series for the loads and deflection and then satisfying 
the boundary conditions as discussed in this chapter. 

The exact analysis of perforated rectangular plates, which are used in 
boilers and pressure vessels, is difficult to obtain. However, various ap­
proximations can be made to obtain a solution. One such approximation 
is given by the ASME boiler code, Section I, and consists of using the 
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classical solution of a solid plate and then modifying it by using ligament 
efficiency factors to account for the effect of the perforations on the plate 
stress. 

Problems 

1-14 What is the required thickness ofthe rectangular cover for the open­
ing shown in Fig. PI-14? The cover is made of aluminum SA209-6061 T4 
material. The temperature is 300°F and the applied pressure is 100 psi. 
Calculate the required number of bolts if they are made of the same ma­
terial. Do the corner bolts have to be larger than the rest of the bolts? 
1-15 What is the required thickness of the internal partition ABCD of 
the holding tank shown in Fig. PI-IS? The bottom of the tank is enclosed 
by a circular plate while the top is enclosed by a semicircular plate that 
covers one side of the top. The tank is full of water on one side of the 
partition. The material is SA 240-304 and the temperature is lOO°F. Assume 
the partition ABCD to be simply supported on all four sides. 
1-16 In Example 1-2, what modifications must be made to Eq. (1) if the 
thickness of the plate is variable and is a function of x and y. 
1-17 Discuss the modifications that have to be made to the differential 
equation and boundary conditions if the corners of a simply supported 
plate are allowed to curl up due to applied pressure. 
1-18 In Fig. 1-11, how should the reinforcing bars in a concrete slab be 
placed to ensure continuity of moments, shears, etc. between the slab and 
beam? 
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Bending of Various Rectangular 
Plates 

2-1 Plates with Various Boundary Conditions 

Most rectangular plates in building slabs, ship hulls, aircraft skins (Fig. 
2-1), and rectangular holding tanks have boundary conditions other than 
simply supported. The Levy solution discussed in Chapter 1 can be utilized 
very effectively in solving rectangular plates with various boundary con­
ditions. Equations (1-46) and (1-50) are readily applicable to plates with 
two opposite sides simply supported, and the boundary conditions for the 
other two sides can then be incorporated into the total solution. For plates 
that do not have two opposite simply supported sides, the solution is more 
difficult because various cases have to be superimposed to arrive at a 
solution. The following examples illustrate the general procedure to be 
followed in solving plates with various boundary conditions. 

Example 2-1 

Find the expression for the deflection of a uniformly loaded plate having 
three sides simply supported and the fourth side fixed as shown in Fig. 
2-2. 

Solution 

From Example 1-4, the particular deflection is expressed as 

39 
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Figure 2·1. P·1S Fighter. (Courtesy of the McDonnell Douglas Corp., St. Louis, 
MO.) 
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Plates with Various Boundary Conditions 

and the total deflection is given by 

~ ( . m7ry m7ry 
w = m=t'2,... Am smh -a- + Em cosh -a- + 

m7rY) . m7rX + DmY cosh -- sm--
a a 

"" 4 4 "" P oa . m7rX + L.J -5-5- sm --. 
m=1,3, ... m 7r D a 

CmY sinh m7ry 
a 

41 

Since the deflection is symmetric with respect to x 
odd and the deflection expression becomes 

a/2, m must be 

~ ( . m7ry m7ry m7ry 
w = m=t'3,... Am smh -a- + Em cosh -a- + CmY sinh -a-

m7ry 4Poa4 ). m7rX + DmY cosh -- + ----s5D sm --. 
a m7r a 

(1) 

The boundary conditions are given by 

w=o and oW = 0 
oy 

at y = 0 

w=O and 
o2W 

at y = b. -=0 
oy2 

Using these four boundary conditions to solve for the unknown constants 
in Eq. (1) gives 

A = 4poa4 Fm 
m m57r5D Gm 

-4poa4 

Em = m57r5D 

C = 4poa4 Hm 
m m57r5D Gm 

m7rb m7rb. m7rb 
- 2 cosh -- - -- smh --

a a a 

G 2 h m7rb . h m7rb 2 m7rb 
= cos --sm -- - --

m a a a 

m7r. m7rb m7rb m7r. m7rb 
H = 2-smh--cosh-- - -smh---

m a a a a a 
( m7r)2 b h m7rb - cos --. 

a a 
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With these constants established, Eq. (1) can be solved for the deflection. 
The moments throughout the plate can then be obtained from Eq. (1-17). 

Example 2-2 

For the plate shown in Fig. 2-3, find the maximum bending moment if 
p = 10 psi, a = 30 inches, b = 24 inches, E = 30,000 ksi, and f.l = 0.3. 
Use two terms of the series only. What is the required thickness if the 
allowable stress is 20,000 psi? 

Solution 

The boundary conditions are 

(1) at y = 0, w = a 
a2w 

(2) at y = 0, - = 0 ay2 

(3) at y = b, 

(4) aty = b, 

Since the solution is symmetric around x = a/2, m must be odd and the 
general solution is given by 

~ ( . m'Try m'Try m'Try 
w = m=f'3,... Am smh -a- + Bm cosh -a- + Cmy sinh -a-

m'Try 4Poa4 ). m'TrX + DmY cosh -- + ~D sm --. 
a m'Tr a 

(1) 
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Figure 2-3. 
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Plates with Various Boundary Conditions 

From the first boundary condition, Eg. (1) gives 

From the second boundary condition, Eg. (1) gives 

Solving the third and fourth boundary conditions yields 

and 

where 

m27T2 

+ Cm -2- b(fL 
a 

4fLPoa2 

+--
m37T3D 

D = _H...::.m"---_A...::.m.::....F..:.:..:m 
m G m 

m7Tb 
fL) cosh-­

a 

1) . h m7Tb 2m7T C h m7Tb sm -- - -- cos--
a a m a 

m37T3 m7Tb 
1m = (fL - 1) -3- cosh--

a a 
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44 Bending of Various Rectangular Plates 

The bending moment is obtained from Eq. (1) and the expression 

(2) 

The stiffness factor D can be deleted from the lefthand side of Eq. (2) and 
from constants Am, Bm, em, and Dm on the righthand side of the equation. 
Equation (2) is solved by calculating all constants for m = 1 and m = 3. 
This can best be done in tabular form as 

Value 

DBm 
DCm 

Fm 
Gm 

DHm 
1m 
1m 

DKm 
DAm 
DDm 
Mx 

m = 1 

-105,875.54-
5543.63 

0.04707 
2.429 

-8078.68 
-4.995E-3 
-0.02973 

-342.02 
99,789.12 
-5259.82 

913 
Total Mx = 867 inch-Ibs/inch 

t = \l6Mla = \16 x 867/20,000 
= 0.51 inch 

Example 2·3 

m = 3 

-435.7 
68.44 
64.99 

2150.94 
-118,879.48 

-20.4184 
-369.34 

16,381.24 
435.47 

-68.43 
-46 

Find the expression for the deflection of the plate shown in Fig. 2-4a due 
to a uniform load. 
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The solution must be divided into three separate cases as shown in Fig. 
2·4b. The differential equations to be solved are 

V 4W 1 = p/D, V4W2 = 0, V4W3 = 0 

and 

(1) 

Case 1 

The solution of a uniformly loaded, simply supported plate is given in 
Example 1·4 .. Using the coordinate system shown in Fig. 2-4b, the solution 
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is expressed as 

_ ~ (B h m'IT(y - b12) C (y _ b12) . h m'IT(y - b12) WI - L. m cos + m sm 
m=I,3,... a a 

or 

where 

Case 2 

4Poa4 ) • m'ITX + --SS-D sm--m'IT a 

B = m 

m'ITb 
4a4po + m'ITPoa3b tanh ~ 

m'ITb 
m5'IT5 D cosh --

2a 

The boundary conditions are 

azwzl z = wzly=o = WZly=b = 0 
ay y=o 

and 

_ D (aZwz + aZwz) I 
ayZ J.1 axz y=b 

00 

L m=I,Z, ... 
M . m'ITX 

m Sln--. 
a 

Substituting the function 

Wz = i: fm(Y) sin m'ITX 
m=I,Z,... a 

into the differential equation V4wz = 0 gives 

. m7ry m7rY m7rY 
fm(Y) = Am smh -- + Bm cosh -- + Cmy sinh --

a a a 

m7rY + DmY cosh --.. 
a 

(2) 

(3) 

46 Bending of Various Rectangular Plates 

is expressed as 

_ ~ (B h m'IT(y - b12) C (y _ b12) . h m'IT(y - b12) WI - L. m cos + m sm 
m=I,3,... a a 

or 

where 

Case 2 

4Poa4 ) • m'ITX + --SS-D sm--m'IT a 

B = m 

m'ITb 
4a4po + m'ITPoa3b tanh ~ 

m'ITb 
m5'IT5 D cosh --

2a 

The boundary conditions are 

azwzl z = wzly=o = WZly=b = 0 
ay y=o 

and 

_ D (aZwz + aZwz) I 
ayZ J.1 axz y=b 

00 

2: m=I,Z, ... 
M . m'ITX 

m Sln--. 
a 

Substituting the function 

Wz = i: fm(Y) sin m'ITX 
m=I,Z,... a 

into the differential equation V4wz = 0 gives 

. m7ry m7rY m7rY 
fm(Y) = Am smh -- + Bm cosh -- + Cmy sinh --

a a a 

m7rY + DmY cosh --.. 
a 

(2) 

(3) 



Plates with Various Boundary Conditions 47 

Substituting the deflection expression into the first three boundary con­
ditions gives 

and from the fourth boundary condition we get 

D = -Mm 
m DTm 

where 

T = 2m7l' sinh m7l'b, 
m a a 

Hence, 

~ Mm (b h m7l'b , h m7l'y W2 = L.J -- cot -- Slll --
m=1,2, ... DTm a a 

m7l'Y) , m7l'x - Y cosh -- Slll --, 
a a 

which can be written as 
00 

~ K (y) , m7l'x W2 = L.J m Slll --, 
m=1,2,... a 

Case 3 

The boundary conditions are 

and 

a2W31 
W3 = ax2 x=Q (

a2W3 + a2W3)! = 0 
ax2 ay2 x=a 

(a;;3 + (2 - ~) a~;;2)lx=a 2: 
n=1,2, ... 

V ' n7l'y 
n Slll b' 

Substituting the function 

~ ()' n7l'y W3 = _ L.J gn X Slll b 
n-l,2, ... 

(4) 

(5) 
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into the differential equation V4W3 = 0 gives 

( ) . h mrx h n'rrx C . h n'ITX 
gn X = An sm b + Bn cos b + nX sm b 

n'ITX 
+ DnX cosh b' 

Substituting this expression into the four boundary conditions results in an 
expression similar to that of Eq. (5) and can be expressed as 

00 

'" L () . n'ITy 
W3 = LJ n x sm b' 

n=1,2, ... 
(6) 

Substituting Eqs. (3), (5), and (6) into Eq. (1) gives 

W = i lm(Y) sin m'ITX + i Km(Y) sin m'ITX 
m=1,3,... a m=1,2,oo. a 

+ _ i Ln(x) sin n;y. 
n-l,2,oo. 

(7) 

This equation has two unknowns. They are Mm in the expression Km(y), 
and Vn in the e:xpression Ln(x). The boundary conditions of Fig. 2-4a are 

at x = 0, 

at x = a, 

at y = 0 

at y = b 

a2w 
W = 0 and - = 0 ax2 

w=O and 
a2w 
-=0 ay2 

w=O and aw = o. 
ay 

Equation (7) satisfies all of the above boundary conditions except 

aaW / = 0 and Vxlx=a = O. 
Y y=b 

These two boundary conditions are used to determine the two unknowns 
in Eq. (7). From the first boundary condition we get 

( ~ dJm .. m'ITX 
LJ -sm-- + 

m=1,3, ... dy a 

00 

L 
m=1,2, ... 

dKm . m'ITX 
--sm--
dy a 

+ n=~, ... n; Ln cos n;y) /Y=b = O. (8) 
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w=O and 
a2w 
-=0 ay2 

w=O and aw = o. 
ay 

Equation (7) satisfies all of the above boundary conditions except 

aaW / = 0 and Vxlx=a = O. 
Y y=b 

These two boundary conditions are used to determine the two unknowns 
in Eq. (7). From the first boundary condition we get 

( ~ dJm .. m'ITX 
LJ -sm-- + 

m=1,3, ... dy a 

00 

L 
m=1,2, ... 

dKm . m'ITX 
--sm--
dy a 

+ n=~, ... n; Ln cos n;y) /Y=b = O. (8) 
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In order to solve this expression, the last term needs to be expressed in 

terms of the quantity sin( m;x). This can be accomplished by letting 

where 

Defining 

and 

eq. (8) becomes 

2: n=1,2, ... 
H . m'ITX 

mn sm -­
a 

2 fa . m'ITX 
Hmn = - Ln(x) sm --. 

a 0 a 

n'ITy 
cos - = (- 1)n at y = b 

b 

8m = 0 when m is even, 

8m = 1 when m is odd, 

2:"" [0;:, dJml dKml 2:00 

n'IT H ( 1) ] . m'ITX 0 u - + -- + - - n sm-- = _ md d _ b mn a m-1,2,... y y=b Y y=b n-1,2, ... 

or 

dJml dKml ~ n'IT ( ) 8m d + d + _L.J b Hmn -1 n = O. 
Y y=b Y y=b n-1,2, ... 

(9) 

This equation cannot be solved directly for Vn and Mm. Rather it has 
infinite solutions of Mm and Vn' Thus, if we truncate the equation after 
m = n = 2, then the equation becomes 

dJ11 dK11 'IT 2'IT d + d - b Hn + b H12 = 0 
Y y=b Y y=b 

and 

dJ21 dK21 'IT 2'IT -d + -d - -b H21 + -b H22 = O. 
Y y=b Y y=b 

Similarly two other equations can be written to satisfy the boundary 
condition 
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From the four simultaneous equations, the unknown quantities MI , M2 , 

VI, and V2 are determined from the expressions for Km and Lm. Once 
these expressions are known, the deflection is obtained from Eq. (7). 

Problems 

2-1 Use the expressions derived in Example 2-1 to determine the maxi­
mum stress in a rectangular plate with a = 90 cm, b = 60 cm, p = 1 kgfl 
cm2, E = 21,000 kgf/mm2, and I.t = 0.3. 
2-2 Use the expressions derived in Example 2-2 to determine the maxi­
mum stress in a titanium rectangular plate with a = 40 inches, b = 30 
inches, p = 30 psi, E = 15,000 ksi, and I.t = 0.32. 
2-3 Use the expressions derived in Example 2-2 to determine the maxi­
mum stress at a point where x = 15 inches and y = 15 inches. Let a = 
40 inches, b = 50 inches, E = 30,000 ksi, P = 10 psi, t = 1.0 inch, and 
I.t = 0.30. 
2-4 A copper internal baffle plate in a reactor has the boundary conditions 
shown in Fig. 2-4. Find its maximum deflection if a = 36 inches, b = 20 
inches, p = 100 psi, E = 16,000 ksi, and I.t = 0.33. 
2-5 The top plate of a truck weigh scale is supported by beams such that 
any portion of the plate can be approximated by Fig. P2-5. Find the expres­
sions for the bending moments at the edges and in the middle due to 
uniform pressure p. 
2-6 Find the expression for the deflection of a rectangular plate shown 
in Fig. P2-6 due to edge moments given by 

MI = m~ Em(y) sin m;x. 
Fixed 

b 

~------------------~--~x 
ss 

ss 

Fixed 

y 

Figure P2·5. 
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b 
~----------------4-----'x 

ss ss 

y 

Figure P2-6. 

2-7 Find the expression for the deflection of a rectangular plate fixed at 
all sides. 

Hint: Use the results of Problem 2-6 to solve this problem by switching 
the x- and y-axes. 
2-8 Find the moments in the side plates of an oil barge (Fig. P2-8) due 
to hydrostatic pressure. The pressure distribution can be approximated as 
triangular in shape with a maximum value at a height of 5'-9" and zero 
at the top and bottom. This is due to the difference in specific gravity 
between the contents in the inside and water on the outside. Assume the 
plate panels to be simply supported at the top and bottom and fixed along 
the sides. Also, assume the length of each side plate panel to be 360 inches 
which is the spacing of the bulkheads in the barge. This large length dis­
regards the effects of the intermediate vertical stiffeners, between the bulk-

Figure P2-8. Oil barge. (Courtesy of the Mississippi Valley Barge Line.) 
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20m 

t J 

7.J 7>~II""" "" II" "'"'' I ilL,' 

Figure P2-9. 

heads, that are welded to the side plates for increased rigidity (see Problem 
5-10). Let E = 29,000 ksi and J.l = 0.29. 
2-9 Find the maximum moment in the small concrete dam shown in Fig. 
P2-9 due to hydrostatic pressure. Sides AC and BD are simply supported. 
Side AB is free and side CD is fixed. Let E = 2180 kgf/mm2 and J.l = O. 
Assume a uniform thickness. 

2-2 Continuous Plates 

The classical methods developed so far for solving rectangular plates are 
also applicable to continuous plates. The boundary conditions of each panel 
as well as the compatibility of forces or deformations between any two 
panels across a common boundary, such as ab in Fig. 2-5a and ab and ac 
in Fig. 2-5b, must be used to determine the constants in the differential 
equations of each panel. As the number of panels increases, it becomes 
more tedious to find a solution with the classical plate theory due to the 
number of simultaneous equations that must be solved to obtain the con­
stants of integration. A more practical approach for solving such plates is 
to use an approximate solution such as a finite element analysis which is 
discussed in Chapter 14. 
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S5 b 55 

Fixed, I IT 55 

55 Q 55 

(0) 

55 b 55 

SS IT ill 
~ 
~Fixed 
~ c ------ a 55 

55 I 55 

",Y y" 

Fixed 

(b) 

Figure 2-5. 

The procedure for solving continuous plates is illustrated in Example 2-
4 for a two-panel structure. 

Example 2-4 

Find the expressions for the deflection in the continuous plate shown in 
Fig. 2-6a due to a uniform load on panel I only. 

Solution 

The boundary conditions for panel I are 

at Yl = 0 W = 0 

at Yl = b 

a2w 
-2 = Mo 
aYl 
w=o 

aw = o. 
aYl 

(1) 

(2) 

(3) 

(4) 
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a. 

r;-] 
c ss IT ss 

B -----

b SS I 5S 

Fixed 

((II 

a. 
)(2 

c II 

(bl 

)( 
.1 

b I 
a 

Y1 

Figure 2-6. 

The expression for the deflection is obtained from Example 2-1 as 

w = m=t3, ... (Am sinh _m_;_y + Bm cosh _m_;_y + 

mTiy 4Poa4 ). mTiX + DmY cosh -- + ----s5D sm --, 
a mTi a 

(5) 

Let the moment Mo between panels I and II be represented by 
00 

M = " E ( ) , m-rrx o L.J m Y sm --, 
m=1,3,... a 

(6) 



Continuous Plates 

From the boundary conditions (1) through (4) we get 

where 

A = - B (COSh m'ITb - 1) 
m m a 

m'ITb 
- D b cosh--

m a 

. h2 m'ITb sm --
a 

C b . h m'ITb - sm--
m a 

The boundary conditions for panel II are 

at Y2 = 0 w=o 

aw = 0 
aY2 

at Y2 = c w=O 

a2w 
-=M 
ay~ 0 

The expression for the deflection is written as 

~ ( . m'ITy m'ITy . m'ITy 
w = m=f3,... Fm smh -a- + Gm cosh -a- + HmY smh -a-

m'ITY) . m'ITX + ImY cosh -- sm --. 
a a 

55 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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From the boundary conditions (11) through (14) we get 

where 

Em 
F m = - K3 + K4K5 

Gm = 0 

H =! (1 _ m7TC coth m7TC) Em 
m C a a K3 + K4K5 

I = m7T Em 
m a K3 + K4K5 

K m27T2 ( . h m7TC m7TC h m7TC) = -- sm -- + -- cos --
3 a2 a a a 

. h m7TC m7TC h m7TC sm -- - -- cos --
a a a 

K4 = ---------------------
. h m7TC csm --

a 
2m7T m7TC m 27T2 • m7TC 

K = --cosh-- + --csmh--. 
5 a a a2 a 

(16) 

(17) 

(18) 

(19) 

The constants Am through 1m are in terms of the bending moment constant 
Em. This constant is obtained by solving the compatibility equation at the 
common boundary which is 

slope in panel I = slope in panel II. 

Once Em is known, then equations (5) and (15) can be solved for the 
deflections at any location in the plates. 

Other applications of the continuous plate concept are for large plates 
with multiple point supports. Such applications are found in concrete flat 
slab floors (Winter et al. 1964) with multiple column supports as well as 
stayed vessels commonly encountered in chemical plants and refineries. 
These cylindrical vessels consist of inner and outer shells tied together with 
stays and the annular space between them pressurized. The analysis of 
both inner and outer shells is based on the theory of plates with multiple­
point supports. 

Numerous articles have been written on the subject of plates with multiple 
supports. Some of these articles are listed in Timoshenko (Timoshenko and 
Woinowsky-Krieger 1959). A large plate under uniform pressure with closely 
spaced supports (Fig. 2-7a) can be analyzed using the Levy solution. Due to 
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Figure 2-7. 

symmetry, the boundary conditions in the plate along x = ± al2 are 

aw 
slope = - = 0 

ax 

and from Eq. (1-27), 

shear Qx = - D(a3w + a3w) = 0 
ax3 ax ay2 . 

57 

(2-1) 

(2-2) 

Similar boundary conditions exist along the boundary y 
particular solution of the equation 

±aI2. The 

~74W = q/D 

and the homogeneous solution of 

~74w = 0 

are accomplished by expressing the deflection by the series 

~ m7rX 
w = 10 + L.J Im(Y) cos -

m~2,4,... a 

(2-3) 

(2-4) 

(2-5) 
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and the load by 

'" m7rX P = Po + L.. Pm(Y) cos-. 
m=2,4,... a 

(2-6) 

Equation (2-5) satisfies the boundary conditions given by Eqs. (2-1) and 
(2-2). Substituting Eqs. (2-5) and (2-6) into Eqs. (2-3) and (2-4) and sum­
ming the two equations results in an expression for the deflection with 
three unknown constants. The first is obtained directly from the slope 
boundary in Eq. (2-1). The second constant is obtained from Eq. (2-2) 
keeping in mind that the shear, Q, is equal to zero along the unsupported 
length (a-b) and pa2/4 over the supports b. The third unknown constant 
is evaluated from the condition that the deflection, w, is equal to zero at 
the supports. 

18 

16 

14 

100M 

{I +J.I) PQ< 

12 

10 

8 

6 

0.1 0.2 

r=b/a 

0.3 

Figure 2-8. 

0.4 0.5 
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With the deflection known, the bending moments can be determined 
from Eq. (1-17). The maximum negative bending moment occurs at the 
supports and is expressed by Woinowsky-Krieger as 

M = (1 ) 2[(1 - r)(2 - r) 
max + f-L pa 48 

1 ~ 2 . m'ITr m'IT(2 - r). ] 
+ 4 3 .. 2 L.J 3' h smh -2 cosh 2 sm m'ITr (2-7) 

'IT ,- m= 1 m sm m'IT 

where r = bfa. Figure 2-8 shows a plot of this equation for various r ratios. 
The analysis expressed by Eq. (2-7) assumes the intermediate supports 

to be rigid. If the supports deflect due to applied loads, then the moments 
must be determined from an analysis of a plate on an elastic foundation. 

Problems 

2-10 Find the expressions for the bending moments in Example 2-4 if 
a = 5 m, b = 15 m, C = 10 m, p = 1 kgffcm2, E = 210,000 MPa, and 
f-L = O. 
2-11 Plot the value of Mx along the length of panels I and II in Fig. 2-6a 
at x = af2. Compare the result to the bending moments obtained from a 
beam of unit width and length ABC in Fig. 2-6a. 
2-12 A continuous concrete slab is supported by columns as shown in 
Fig. 2-7. Calculate the maximum bending moment if a = 20 ft, b = 3 ft, 
P = 150 psf, and f-L = O. 

2-3 Plates on an Elastic Foundation 

The effective pressure on any point in a plate or slab resting on a continuous 
foundation such as a concrete road pavement or a rectangular tubesheet 
in a heat exchanger (Fig. 2-9), is equal to p - f where p is the applied 
load and f is the resisting pressure of the foundation. If we assume the 
foundation to be elastic, i.e., its elasticity is defined by a force that causes 
a unit deflection when applied over a unit area, then we can define 

f = kw (2-8) 

Figure 2-9. 
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where k is the foundation modulus. Values of k for various soils are given 
in numerous references such as McFarland (McFarland et al. 1972). 

Equation (1-26) for the lateral deflection of a plate can now be modified 
to 

or 

1 
~74W = - (p - kw) 

D 

k 
V4w + - w = p/D 

D 
(2-9) 

It must be kept in mind that under certain applied loads and boundary 
conditions a negative deflection may result somewhere in the plate. This 
indicates that the foundation must be able to sustain a tensile load at that 
location. This condition is very common in circular plates used in heat 
exchangers as discussed in Chapter 3 and the engineer must take appro­
priate precautions if the foundation cannot undergo a tensile force. 

We can use the Levy method to obtain a solution of Eq. (2-9) for plates 
simply supported at two opposite edges with arbitrary boundary conditions 
at the other two edges. We proceed by solving the homogeneous and 
particular parts as in Eq. (1-42). Again expressing the deflection by the 
Fourier series 

and solving the homogeneous part of Eq. (2-9), we get 
oc 

Wh = 2: [Am sinh amY sin ~mY + Bm sinh amY cos ~mY 
m=l 

+ em cosh amY sin ~mY + Dm cosh amY cos ~mY] sin m7rX (2-10) 
a 

where 

a = m 
! (m2

7r
2 + 

2 a 2 
m4

7r
4 + !£) 

a 4 D 
(2-11) 

and 

~m = ! (m27r2 _ 

2 a 2 

m4'lT4 k) 
7+D· (2-12) 
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Similarly, if we express the deflection by 

~ (y). m'ITX wp = L.J gm sm --
m=l a 

(2-13) 

and the applied loads as 

~ (y). m'ITX P = L.J Pm sm --
m=l a 

(2-14) 

and we substitute these equations into Eq. (2-9) to get 

d4gm _ 2(m'IT)2d2gm (m4'IT4 !5...) = Pm(y) 
dy4 a dy2 + a4 + D gm D· (2-15) 

Equations (2-10) and (2-15) are the two governing expressions for rectan­
gular plates on an elastic foundation with two simply supported edges. 

Example 2-5 

Find the expression for the deflection of the plate shown in Fig. 2-10 that is 
resting on a foundation of modulus ko and subjected to a uniform pressure p. 

Q 

Fixed 

ss ss 

b 

Fixed 

AI III r l~ 
I. ' J 

Figure 2·10. 
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Solution 

For a uniform pressure p, the particular solution of Eq. (2-15) gives 

p 4 1 
g =--
m D m7r (m47r4 ko) . 

--+-
a4 D 

(1) 

Due to symmetry of the deflection around the x-axis, we can take Bm = 

em = 0 in Eq. (2-10) and the total deflection becomes 

Wh = m~l [ Am sinh amY sin I3mY 

D h ] . m7rX + m cos amY cos I3mY + gm sm -a-' 

The boundary conditions are 

and 

at Y = +b/2, 

aW = o. 
ay 

W=o 

Substituting these boundary conditions into Eq. (2) gives 

and 

b b gm 
Dm = - Am tanh am 2" tan 13m 2" - b b 

cosh am 2" cos 13m 2" 

where 

(2) 
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K h b. b 
5 = ~m COS am "2 sm ~m 2"' 

With Am and Dm known, Eq. (2) can now be solved for the deflection. 

Problems 

2-13 Find the expression for the deflection of a simply supported plate 
uniformly loaded and supported on an elastic foundation of modulus ko . 

2-14 Solve Example 1-3 if the plate is resting on an elastic foundation of 
modulus ko . 

2-4 Thermal Stress 

A change in the temperature of a plate may result in a change in the length 
of the middle surface and a change in the curvature. Accordingly, the basic 
differential equations derived in Chapter 1 must be modified to consider 
temperature change. We begin the derivation by defining u and v as the 
change in length of the middle surface in the x- and y-directions, respec­
tively, of the plate shown in Figs. 1-3 and 1-4. Then Eq. (1-12) becomes 

0 
0 0 

a2w 

[~J 
ax 

[~]- z [~ 
0 

~] 
ax2 

0 
0 

0 1 
a2w 

(2-16) -
oy 

0 
ay2 

a 0 a2w 
- 0 ay oX oX ay 

Next we define the change in strain due to temperature change as a(t..T), 
where a is the coefficient of thermal expansion and t..T is the temperature 
change which is a function of z through the thickness of the plate. Values 
of a for some commonly encountered materials are shown in Table 2-1. 

For thin plates with temperature loads, Eq. (1-13) can be expressed as 

[ :: ] = ~ [_1 fL 

'Yxy 0 

-fL 0] [ax] [1] 1 0 ay + a(t..T) 1 

o 2(1 + fL) Txy 0 

(2-17) 
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or 

1 f-L 0 

[~:J E 
1 0 [~J- ~~;[H (2-18) 

1 - f-L2 f-L 

1 - f-L 
0 0 

2 

For the case where the plate bends without a change in the length of 
the middle surface, i.e., U = v = 0, we substitute Eqs. (2-16) and (2-18) 
into Eq. (1-16) and get 

a2w 

[~J -D[~ -(1 ~-J 
ax2 

-~[:l 
f-L 

a2w 
1 (2-19) 

0 
ay2 1 - f-L 

a2w 
0 

ax ay 

where 

f2 Mo = uE (.:U)z dz. 
-1/2 

(2-20) 

Substituting Eqs. (2-19) and (2-20) into the plate equilibrium Eq. (1-24) 
gives 

V4-/ 1 V2 w - P D - D(l _ f-L) Mo· (2-21) 

Equation (2-21) is the governing differential equation for the bending 
of a rectangular plate due to lateral pressure and thermal loads. 

For the case where p = 0, Eq. (2-21) reduces to 

(2-22) 

where 

a2 a2 
V2=_+-

ax2 ay2' 

Next we consider the case where the length of the middle surface changes 
due to temperature variation without any lateral deflection, i.e., W = o. 
For this case we need, in addition to the forces shown in Fig. 1-6, three 
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Nyx 
'---+-
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yx oy 

N +oNy d 
y oy Y 

Figure 2·11. 

x 

in-plane forces Nx, Ny, and Nxy as shown in Fig. 2-11. The stress-force 
relationship is expressed as 

(2-23) 

Substituting Eq. (2-18) into Eq. (2-23) gives 

o ] [Nx ] No [1] o Ny + E 1 
2(1 + f.L) Nxy t 0 

(2-24) 

where 

II12 

No = uE (LlT) dz. 
-112 

(2-25) 

From Eq. (2-16) we observe that each of the three strains is a function 
of the deflections u, v, and w. Hence, a compatibility equation (Timo­
shenko and Goodier 1951) that combines the three strains is obtained from 
Eq. (2-16) and is expressed as 

(2-26) 
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Substituting Eq. (2-24) into this expression yields the differential equation 

a2 a2 

2 (Nx - ~Ny + No) + -2 (-~Nx + Ny + No) 
ay ax 

- 2(1 + ~) a2Nxy = o. (2-27) 
ax ay 

In order to solve this equation, we need to investigate the in-plane forces 
in the plate. Summing forces (Fig. 2-11) in the x- and y-directions yields 

aNx + aNyx = 0 
ax ay 

and (2-28) 

~ + aNxy = o. 
ay ax 

These equations are satisfied by selecting a stress function tjJ(x, y) that is 
defined by 

a2tjJ a2tjJ a2tjJ 
Nx = ay2' Ny = ax2' and Nxy = ax ay (2-29) 

Substituting Eq. (2-29) into Eq. (2-27) results in the differential equation 

V4tjJ + V2No = O. (2-30) 

Equations (2-21) and (2-30) constitute the general solution of a plate 
subjected to temperature change. Equation (2-21) is solved by the methods 
discussed in this book while Eq. (2-30) is solved by methods discussed in 
the theory of elasticity for plane stress problems which are beyond the 
scope of this book. 

Example 2-6 

Find the deflection in a simply supported plate due to decrease in temperature 
of the top surface of To and increase ofthe bottom surface by To· 

Solution 

and Eq. (2-20) becomes 

(1) 
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Let 

and 

where 
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~ ~ . m'ITX . n'ITy 
W = mL:ln~l Wmn SIn -a- sm b 

M ~ ~ T . m'ITX . n'ITy 
o = mL:ln~l mn SIn -a- sm b 

4 fb fa . m'ITX . n'ITy 
Tmn = ab JoJo Mo sm -a- sm b dx dy. 

Substituting Eqs. (2) and (3) into Eq. (2-22) results in 

Tmn Wmn = ____ ....c:..::..:'--__ _ 

D(l - f.L)'IT2(-;: + ~~) 
Substituting Eq. (1) and (4) into Eq. (5) gives 

8aETot2 
Wmn = -----~----

3mnD(1 - f.L)'IT4 ( :: + ~~) 
where m and n are odd. 

(2) 

(3) 

(4) 

(5) 

(6) 

Since the temperature variation does not affect the middle surface, i.e., 
u = v = 0, Eq. (2-30) is redundant and need not be considered. 

Problems 

2-15 Calculate the maximum moment in Example 2-6. 
2-16 Find the expression for the bending moment in the plate shown in 
Fig. P2-5 due to the temperature variation given by 

T = To(2zlt). 

Hint: Use the solution of Problem P2-6 to satisfy the boundary condi­
tions. 

2·5 Design of Various Rectangular Plates 

The maximum bending and deflection of rectangular plates with various 
boundary conditions have been solved and tabulated in many references. 
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Szilard (1974) as well as the references given in Section 1-9 tabulate max­
imum moments and deflections for rectangular plates with some commonly 
encountered boundary conditions. Moody (1970) lists numerous moment 
tables for rectangular plates free at one edge with various boundary con­
ditions at the remaining edges and subjected to various loading conditions. 
Continuous plates are designed in accordance with the equations developed 
in Section 2-2. 

The ASME VIII-l code contains rules for the design of jacketed shells 
with large rlt ratios (Fig. 2-12) that are based on the stayed plate theory 
and Eq. (2-7). Letting J..L = 0.3 and using a bla ratio of 0.4, Eq. (2-7) can 
be reduced to 

t = aJ2.~8(; (2-31) 

The value of 2.28 in the denominator is varied by the ASME from 2.1 
to 3.5 depending on the type of construction and method of weld attach­
ment. 

For continuous concrete slabs supported by columns without interme­
diate beams, the reinforcement cutoffs are also based on Eq. (2-7) and are 
detailed in the ACI 318 code. 

Allowable stress values for some materials were given in Table 1-1 at 
temperatures below the creep and rupture range as defined by ASME 
VIII-I. For high-temperature applications, the AS ME criteria in the creep 
and rupture range are based on limiting the allowable stress to the lower 
of the following values: 

1. 100% of the average stress for a creep rate of 0.01 %/100 hr. 

~ll8ln. ~.:: :'. 
": .:,' 

r min. I min. 

fll fbI fel 

fll 
I· nomlnol thlckn ... 01 thl thlnno. ,toyed pll" 

Figure 2-12. Welded staybolts. (Courtesy of ASME.) 
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Table 2-2. ASME VIII-1 allowable stress values at elevated temperatures, ksi 

ASME 
Temperature, of 

Material Designation 900 1100 1300 

Carbon steel SA 516-70 6.5 
Stainless steel SA 240-304 14.7 9.8 3.7 
Nickel alloy SB 575-276 22.3 15.0 

2. 67% of the average stress for rupture at the end of 100,000 hr. 
3. 80% of the minimum stress for rupture at the end of 100,000 hr. 

Using these criteria, the allowable stress values for the materials listed 
in Table 1-1 that are permitted at high temperatures are shown in Table 
2-2. 

Problems 

2-17 The inner and outer shells of a pressure vessel are stayed together 
on a 12-inch stay pitch. The pressure between the cylinders is 50 psi. Use 
Eq. (2-31) to determine the required thickness of the cylinders. Disregard 
the hoop stress in the cylinders due to pressure because it is small in most 
applications. Let the allowable bending stress be equal to 15 ksi. 
2-18 Determine the required diameter of the stays in Problem 2-17. Let 
the allowable tensile stress = 20 ksi. If the stays are attached as shown in 
Fig. 2-12b, calculate the required size of the fillet welds. The allowable 
stress in shear = 12 ksi. 
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Bending of Circular Plates 

3-1 Plates Subjected to Uniform Loads in the 
a-Direction 

Circular plates are common in many structures such as nozzle covers, end 
closures in pressure vessels, and bulkheads in submarines and airplanes. 
The derivation of the classical equations for lateral bending of circular 
plates dates back to 1828 and is accredited to Poisson (Timoshenko 1983). 
He used polar coordinates to transfer the differential equations for the 
bending of a rectangular plate to circular plates. The first rigorous solution 
of the differential equation of circular plates for various loading and bound­
ary conditions was made around 1900 and is credited to A. E. H. Love 
(Love 1944). 

The five basic assumptions made in deriving the differential equations 
for lateral bending of rectangular plates in Section 1-1 are also applicable 
to circular plates. The differential equations for the latel'al bending of 
circular plates subjected to uniform loads in the a-direction are derived 
from Fig. 3-1. For sign convention it will be assumed that downward de­
flections and clockwise rotations are positive. Hence, if a flat plate under­
goes a small deflection as shown in Fig. 3-1, then the radius of curvature 
r at point B is given by 

or 

sin (<l» = <l> = rlre 

1 -1 dw 
~ = <l>lr = --. 
re r dr 

(3-1) 

The quantity re represents a radius that forms a cone as it rotates around 
the z-axis (in and out of the plane of the paper). The second radius of 
curvature is denoted by rr' The origin of rr does not necessarily fall on the 

71 
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I 

Figure 3-1. 

axis of symmetry although, for any point B, the radii rr and ra coincide 
with each other. The value of rr is obtained from Eq. (1-6) as 

1 d2w x=-= 
rr dr2 

or 

1 d2w d<l> 
(3-2) x=-= dr2 dr' rr 

The Mx and My expressions in Eq. (1-17) can be written in terms of the 
radial and tangential directions as 

(3-3) 
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or 

(3-4) 

or 

[~J (3-5) 

where 

D = 12(1 - f.L2)' 

The classical theory of the lateral bending of circular plates discussed in 
this section is based on the assumption that the loads on the plate are 
uniformly distributed in the e direction. In this case the torsional moment 
Mrs is zero and the other forces are as shown in Fig. 3-2a. Summing 
moments around line a-a gives 

(Mrrde) - (Mr + d:'r dr)(r + dr) de + 2(Mt dr de/2) 

- Qr de drl2 - (Q + ~; dr) (r + dr) de drl2 = o. (3-6) 

The quantity Mt dr de/2 is the component of Mt perpendicular to axis 
a-a as shown in Fig. 3-2b. Equation (3-6) can be reduced to 

(3-7) 

Substituting Eq. (3-5) into this equation gives 

d [1 d ( dW)] - -- r- = QID. 
dr r dr dr 

(3-8) 

Or, since 

2'ITrQ = J p2'ITr dr, 
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z 

Figure 3-2. 

Eq. (3-8) can be written in a different form as 

where p is a function of r. 

de 
Mt 2 -

(3-9) 

The analysis of circular plates with uniform thickness subjected to sym­
metric lateral loads consists of solving the differential equation for the 
deflection as given by Eq. (3-8) or (3-9). The bending moments are then 
calculated from Eq. (3-5). The shearing force is calculated from Eqs. 
(3-7) and (3-5) as 

(3-10) 

or, from Eqs. (3-7) and (3-4), as 

Q = _D(d2
<1> + ! d<l> _ ~). 

dr2 r dr r2 
(3-11) 
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Example 3-1 

(a) Find the expression for the maximum moment and deflection of a 
uniformly loaded circular plate with simply supported edges. 
(b) Find the required thickness of a steel plate if the allowable stress = 

15,000 psi, p = 5 psi, a = 20 inches, E = 30,000,000 psi, and f1 = 0.3. 
What is the maximum deflection? 
(c) For a concrete plate, f1 is usually taken as zero. What are the moment 
expressions at r = 0, r = a12, and r = a? 

Solution 

(a) From Fig. 3-3, the shearing force Q at any radius r is given by 

27TrQ = 7Tr2p 

or 

From Eq. (3-8) 

Q = prl2. 

d [1 d ( dW)] 
dr ~ dr r dr 

_ pr 
- 2D· 

Integrating this equation gives 

dw pr3 elr C2 slope = - = -- + - + -
dr 16D 2 r 

p 

1 I I I 
.I 
q 

Figure 3-3. 

! 
J 

(1) 
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pr4 C r2 
deflection = w = 64D + -t- + C2 In r + C3• (2) 

At r = 0 the slope is equal to zero due to symmetry. Hence, from Eq. 
(1), C2 must be set to zero. At r = a, the moment is zero and 

_D(d2W + ~ dW) = 0 
dr2 r dr 

or 

C _ - (3 + Jl-) pa2 

1 - (1 + Jl-) 8D· 

At r = a, the deflection is zero and Eq. (2) gives 

c = pa4 (6 + 2Jl- _ 1) 
3 64D 1 + Jl- . 

The expression for deflection becomes 

Substituting this expression into Eq. (3-5) gives 

Mr = i6 (3 + Jl-)(a2 - r2) 

Mt = i6 [a2(3 + Jl-) - r2(1 + 3Jl-)]' 

The maximum deflection is at r = 0 and is given by 

pa4 (5 + Jl-) 
max W = 64D 1 + Jl- . 

A plot of Mr and M t is shown in Fig. 3-4 for Jl- = 0.3. The plot shows 
that the maximum moment is in the center and is equal to 
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M 

po2/16 

ria 

Figure 3·4. 

It is of interest to note that Mt is not zero at the edge of the plate. This 
is important in reinforced concrete plates as reinforcing bars are needed 
around the perimeter to resist the tension stress caused by M t • 

(b) 

and 

Maximum M = 5 ~6202 (3.3) = 412.5 inch-Ibs/inch 

t = 

t = 
6 x 412.5 

15,000 

= 0.41 inch. 

Maximum w = pa4 (5 + f.1) = 0.27 inch 
64D 1 + f.1 
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(c) 
For I.L = 0, the moment expressions become 

At r = 0, 

At r = a/2, 

M = 3p (a2 _ r2) 
r 16 

M t = i6 (3a2 - r2). 

M = llpa2 

t 64' 

(Q) radial and circular pattern 

",,- f', 

I '\ 

\ / 

....... ./ 

(b) square mesh pattern 

Figure 3-5. 
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At r = a, 

Figure 3-5 shows a general layout of reinforcing bars in a circular concrete 
slab. 

Example 3-2 

Find the stress at r = a and r = b for the plate shown in Fig. 3-6. Let 
a = 24 inches, b = 12 inches, P = 20 lbslinch, t = 0.50 inch, E = 30,000 
ksi, and IJ. = 0.3. 

Solution 

The shearing force at any point is given by 

Q = bPlr. 

Substituting this expression into Eq. (3-8) and integrating results in 

bP C1r2 

w = 4D r2(1n r - 1) + -4- + C2 In r + C3 · (1) 

I 

I 
I 
I 
I 
I 

F 

I 
I 

~ 
I 

Figure 3-6. 
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The boundary conditions are 

w = 0 at r = a 

dwldr = 0 at r = a 

Mr = 0 at r = b. 

Evaluating Eq. (1) and its derivatives at the boundary conditions results 
in 

At r = b, 

or 

and 

Similarly, at r = a 

Example 3-3 

C1 = - 648.531D 

C2 = 1667.461D 

C3 = 12,814.461D. 

M t = -67.8 inch-Ibs/inch 

(J't = 6Mlt2 = 1627 psi. 

M t = - 34.26 inch-Ibs/inch 

(J't = 822 psi 

Mr = -114.21 inch-Ibs/inch 

(J'r = 2741 psi. 

Find the expression for the deflection of the plate shown in Fig. 3-7a due 
to load F. 
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Solution 

(a) 

I 

F I F 

~ I)MoiMO(Y 
Mo( I )Mo 

~ 
(b) 

Figure 3-7. 

The plate can be separated into two components (Fig. 3-7b). Continuity 
between the inner and the outer plate is maintained by applying an un­
known moment, Mo , as shown in Fig. 3-7b. The deflection of the inner 
plate due to Mo is obtained from Eq. (3-8) with Q = ° as 

(1) 

The slope is 

(2) 

and Mr is obtained from Eq. (3-5) as 

[ CI C2 ] Mr = - D 2 (1 + fJ.) - ~ (1 - fJ.) . (3) 

At r = 0, the slope is zero and from Eq. (2) we get C2 = 0. 
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At r = b, Mr = Mo and Eq. (3) yields 

-2M 
C1 = D(l + °fl)" (4) 

Equations (1) and (2) can be expressed as 

-M r2 
w = 2D(1 : fl) + C3 (5) 

dw -rMo 
dr D(1 + fl)" 

(6) 

The deflection of the outer plate is obtained from Example 3-2 as 

_ bF 2 C4r 2 

w - 4D r (In r - 1) + 4 + Cs In r + C6 • (7) 

At r = a, the slope is zero and Eq. (7) gives 

C4a + Cs = -bFa(2Ina -1). (8) 
2 a 4D 

At r = b, Mr = Mo and from Eqs. (7) and (3-5) we get 

-M bF If = 4D [(1 - fl) + 2(1 + fl) In b] 

At r = b, the slope of the outer plate is equal to the slope of the inner 
plate. Taking the derivatives of Eq. (7) and equating it to Eq. (6) at r = 
b gives 

C4b Cs -b2F bMo 
2 + b = 4D (2 In b - 1) - D(l + fl)" (10) 

Equations (8), (9), and (10) contain three unknowns. They are Mo , C4 , 

and Cs. Solving these three equations yields 

(11) 

(12) 

(13) 
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With these quantities known, the other constants can readily be obtained. 
Constant C1 is determined from Eq. (4). Constant C6 is solved from Eq. 
(7) for the boundary conditions w = 0 at r = a. This gives 

bF 
C6 = 8D (a2 + b2 - 2b2 In a). (14) 

Constant C3 can now be calculated from the equation 

w of inner platelr=b = w of outer platelr=b. 

Equating Eqs. (1) and (7) at r = b gives 

bF 
C3 = 8a2D [-2a2b2 In (a/b) + (a2 - b2)a2]. (15) 

Hence, the deflection of the inner plate is obtained by substituting Eqs. 
(11) and (15) into Eq. (5) to give 

bF 
w = -- [(a2 - b2)(a2 + r2) - 2a2(b2 + r2)ln(a/b)] 

8a2D 

and the deflection of the outer plate is obtained by substituting Eqs. (12), 
(13), and (14) into Eq. (7). This gives 

Problems 

bF 
w = -- [(a2 + b2)(a2 - r2) + 2a2(b2 + r2)ln(r/a)]. 

8a2D 

3-1 The double concrete silo shown in Fig. P3-1 is covered by a concrete 
flat roof as shown. Find the moments in the roof due to an applied uniform 
load p, and draw the Mr and Mt diagrams. The attachment of the roof to 
the cylindrical silos is assumed simply supported. Let j.L = o. 
3-2 Stainless steel baffles are attached to a vessel that has an agitator 
shaft as shown in Fig. P3-2. The attachment of the baffles to the vessel is 
assumed fixed and the uniform pressure due to agitator rotation is 20 psi. 
What are the maximum values of Mr and Mt and where do they occur? 
What is the maximum deflection at point b? Let E = 27,000,000 psi and 
j.L = 0.29. Also, if the baffles are assumed as fixed cantilevered beams, 
what will the maximum moment be and how does it compare to Mr and 
M t? 
3-3 The pan shown in Fig. P3-3 is made of aluminum and is full of water. 
If the edge of the bottom plate is assumed fixed, what is the maximum 
stress due to the exerted water pressure? Let 'Y = 62.4 pcf, t = 0.030 inch, 
E = 10,200 ksi, and j.L = 0.33. What is the maximum deflection? 
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Figure P3-2. 
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Figure P3-3. 

3-4 The pan in Problem 3-3 is empty and is at a temperature of 100°F. 
What is the thermal stress in the bottom plate if the bottom surface of the 
bottom plate is subjected to a temperature of 160°F and the top surface is 
subjected to a temperature of 40°F? Let the coefficient of expansion be 
13.5 X 10- 6 inches/inch/oF. 
3-5 Find the expressions for the moments in the circular plate shown in 
Fig. P3-S. 
3-6 Find the expressions for the moments in the circular plate shown in 
Fig. P3-6. 
3-7 Find the expressions for the moments in the circular plate shown in 
Fig. P3-7. 

Figure P3-5. 

p 

At t iii I Iii i i 
b 

1---
1 

1 

Figure P3-6. 

Q 
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Figure P3-7. 

3-2 Plates with Variable Thickness and Subjected to 
Uniform Loads in the a-Direction 

Circular plates with variable thickness are encountered in many machine 
parts such as turbine blades, bellows, and springs. The analysis of such 
plates (Szilard 1974) is similar to that of plates with constant thickness 
except that the flexural rigidity D is a variable rather than a constant. 
Substituting Eq. (3-4) into the differential Eq. (3-7) gives 

or 

where 

D!!:... (d<l> + !) + dD (d<l> + 11~) = - Q (3-12) 
dr dr r dr dr r 

D d2
<1> + (D + dD) d<l> + (11 dD _ D) ~ = _ Q (3-13) 

dr2 r dr dr dr r r 

<1>= 
dw 

dr 
For a uniformly loaded plate, 

Defining 

where 

Q = _1_ J p(2'ITr)dr = prl2. 
2'ITr 

p = ria 

i a = outer radius of plate. 
Eq. (3-13) becomes 

D d2<1> + (D + dD) d<l> + (II. dD _ D) ~ = -ppa3
• 

dp2 p dp dp ,.... dp p p 2 (3-14) 
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The solution of Eq. (3-14) depends on specifying an expression for the 
thickness t. A commonly encountered class of plates is shown in Fig. 3-S. 
Solution of the plate shown in Fig. 3-Sa is obtained by defining 

t = Kr 

where 

EK3r 3 
D = 12(1 - f12)" 

Equation (3-14) becomes 

d2<\J d<\J - 12Q(1 - f12) 
p3 - + 4p2 - - (1 - 3f1)p<\J = EK3a (3-15) 

dp2 dp 

I a 

"I (a) i:~-'I 
I-====-__ C 

~ 1 

I 
I 

(j 

(b) L-------1\-----=.::.-=--=-
I 
I 
I 
I 

I 
I ... 

Figure 3-8. 
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The homogeneous solution of Eq. (3-15) can be expressed as 

<Ph = Apa + Bpb 

where 

a = [-3 + Y9 - 4(3 .... - 1)]/2 

b = [-3 - Y9 - 4(3 .... - 1)]/2 

and A and B are constants. 
Solution of the plate shown in Fig. 3-8b is obtained by defining 

and 

t = to(1 - r/ro) 

D = Do(1 - p)3 

Et3 

Do = 12(1 :: .... 2) and .... = 1/3, 

and Eq. (3-14) becomes 

d2<p d<p Qr2p2 
p2(1 - p)3 dp2 + (1 - 4p)(1 - p)2 dp - (1 - p)2<p = --v;:. (3-16) 

The homogeneous solution of Eq. (3-16) is given by 

'" = A (1 + 2P) B(3P - 2p2) 
'l'h P + (1 _ p)2 

where A and B are constants. 
The particular solution of Eqs. (3-15) and (3-16) is obtained once the 

applied loads are defined. 

Example 3-4 

Determine the expression for the deflection in the plate shown in Fig. 
3-9. Let .... = 1/3. 

Solution 

Let 

t = Cr. 

The homogeneous solution of Eq. (3-15) becomes 

<Ph = A + Bp-3. 
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F 

~I 
I 

a 

Figure 3-9. 

To solve for a particular solution, let Q = 2 F 
'7Tap 

and 

G 
<Pp = 2· p 

Substituting into Eq. (3-15) gives 

G = 3(1 - J.12)F 
'7TEC3a2 

and the total solution becomes 

G 
<p = A + Bp -3 + 2. 

p 

The boundary conditions are 

at r = b, p = b/a and <P = 0 

and 

at r = a, p = 1 and <P = o. 
Hence, from Eq. (1) 

(1) 
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Integrating Eq. (1) and solving for the boundary condition 

w = 0 at p = 1 

results in the following expression for the deflection: 

w = Aa(p - 1) + ~a (1 - :2) + Ga( 1 - ~). 
Another class of problems that is often encountered in machine parts is 

plates with variable thickness. The variable thickness can be expressed as 
(Timoshenko and Woinowsky-Krieger 1959) 

where 

13 = factor defining thickness of plate as shown in Fig. 3-10; 
to = thickness of plate at center. 

Substituting Eq. (3-17) into Eq. (3-14) gives 

d2
<1> + (! _ I3P) d<l> - (! + fA-13) <I> = 

dp2 P dp p2 
-Kpe13p2/2 

where 

The solution of Eq. (3-18) is given by 

<I> = <l>h + <l>P" 

Let the particular solution be expressed as 

<l>p = Apel3p2/2 + Be13p2/2. 

Substituting this into Eq. (3-18) gives 

(3-17) 

(3-18) 

Pirchler (Timoshenko and Woinowsky-Krieger 1959) suggested a homo­
geneous solution in terms of a series of the form 

'" _ A ( ~ (1 + fA-)(3 + fA-) ... (2m - 1 + fA-) 2 1) 
'l'h - 1 P + L.J P m+ 

m=1 2.4.4.6.6 ....... 2m.2m.(2m + 2) 
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Figure 3-10. 

0.6 O.B 

and the total solution is given by 

<l> = K(C<l>h - P ef3P2/Z) • 
(3 - f.L)~ 

1.0 

(3-19) 

The constant C is obtained from the boundary condition of a solid plate 
and the maximum moments are determined from Eq. (3-19). 

Problems 

3-8 Find the expression for the bending moments Mr and Mt for the plate 
shown in Fig. 3-8. Let f.L = 113. 
3-9 Find the expression for the bending moments Mr and Mt for the plate 
shown in Fig. P3-9. Let f.L = 1/3. 
3-10 Find the expression for Mr and M t for the concrete circular plate 
shown in Fig. P3-10. Let p = 1000 kgf/mz, ~ = 4.16, and f.L = o. 

3-3 Plates Subjected to Nonuniform Loads in the 0-
Direction 

Many structural applications are encountered where the load distribution 
on the circular plate is variable in the a-direction. These include stack 
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Figure P3-9_ 

foundations, submerged bulkheads, and nozzle covers sUbjected to con­
necting piping loads. The easist method for deriving the governing equation 
for such problems is from the differential equation of rectangular plates. 
The reason is that the equation for rectangular plates includes the effects 
of torsional moments that are ignored in the derivation of the equation 
for circular plates with uniform loading in the 6-direction and which are 
needed for the case where the load is variable in the 6-direction. The 

rom 

Figure P3-10. 
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differential expression for rectangular plates is given by Eq. (1-25) as 

iJ4w iJ4w iJ4w p(x, y) 
- + 2-- + - = -- (3-20) 
iJx4 iJx2 iJy2 iJy4 D' 

This equation must now be transferred to polar coordinates. Referring to 
Fig. 3-11, 

Hence 

x = r cos a, y = r sin a, tan a = ylx. 

iJr - = xlr = cos a 
iJx 

iJ iJ 
- tan a = - (ylx) 
iJx iJx 

1 iJa iJ 
cos2 a iJx = iJx (ylx) 

iJr I . -=yr=sma 
iJa 

iJa cos2 a 
- - -y -- - -ylr2 = -sin air iJx- x2 -

iJa - = xlr2 = cos air. 
iJy 

y 

Figure 3·11. 
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Using the chain rule of partial derivatives, 
aw awar awae 
-=--+--ax ar ax ae ax 

aw 1 aw . 
= - cos e - - - SIll e ar r ae 

a2w a aw 1. a aw 
- = cos e - - - - SIll e - -ax2 ar ax r ae ax 

a2w 2 2 a2w sin e cos e aw sin2 e 
=-cos e- -- +---ar2 ar ae r ar r 

2 aw sin e cos e a2w sin2 e 
+ - +---ae r2 ae2 r2 . 

Similarly, 

a2w a2w. 2 a2w sin e cos e aw cos2 e - = - SIll e + 2 -- + ---ay2 ar2 ar ae r ar r 
_ 2 aw sin e cos e + a2w cos2 e 

ae r2 ae2 r2 
and 
a2w azw azw cos 28 aw cos 2e -a- = -z sin e cos e + ----- - ---x ay ar ar ae r ae rZ 

aw sin e cos e aZw sin e cos e 
ar r aez rZ 

Hence, Eg. (3-20) becomes 

a4w 2 a3w 1 azw 1 aw 2 a4w 
-+-----+--+--­ar4 r ar3 r2 arz r3 ar r2 arZae2 

2 a3w 4 azw 1 a4w 
- - -- + - - + - - = p/D r3 aez ar r4 ae2 r4 ae4 . 

Similarly, the values of Mx , My, and Mxy become 

Mr = _ D(aZw + j..L aZw) 
axz ay2 

-D[ ~zr~ + j..LG ~~ + ~ ~:~) ] 
( 1 aw 1 a2w a2w) 

M t = - D ; a; + 7i ae2 + j..L arz 

Mrt = (1 - j..L)D(! a2w _ 1. aw). 
r ar ae r2 ae 

(3-21) 

(3-22) 

(3-23) 

(3-24) 
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The shear forces are expressed as 

a (aZw 1 aw 1 aZw) 
Qr = - D ar arz + ; a;: + ~ asz 

1 a (aZw 1 aw 1 a2w) 
Qt = - D ; as ar2 + ; a;: + ~ aS2 

The boundary conditions are: 
for simply supported plates 

W = 0 and Mr = 0 
for fixed plates 

aw 
W = 0 and - = 0 

ar 

for plates with free edge 

Mr = 0 and V = (Qr - ~ a:rt) = o. 

Equation (3-21) is solved by letting 

w = Wh + wp. 
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(3-25) 

(3-26) 

The homogeneous solution, Wh, is expressed (McFarland et al. 1972) by 
the following Fourier series 

00 00 

Wh = L: in(r) cos nS + L: gn(r) sin nS. 
n=O n=l 

Substituting this expression into V4w = 0 gives 

00 (d4fn 2 d3in 1 + 2n2 d2in 1 + 2n2 din 
n~o dr4 + ; dr3 - r2 drZ + r3 dr 

nZ(nZ - 4) ) 
+ r 4 in cos nS 

+ f (d4gn + ~ d3gn _ 1 + 2nZ dZgn + 1 +2nZ dgn 
n=l dr4 r dr3 rZ drZ r3 dr 

This equation is satisfied if 

d4fn 2 d3in 1 + 2nZ dZin 1 + 2nZ din -+--- -+ -
dr4 r dr3 rZ drZ r3 dr 

nZ(nZ - 4) 
+ 4 in = 0 (3-27) 

r 
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and 

d4gn + ~ d3gn _ 1 + 2n2 d2gn + 1 + 2n2 dg 
dr4 r dr3 r2 dr2 r3 dr 

n2(n2 - 4) 0 (3-28) + 4 gn = . r 
Let fn(r) = bnrrn 

and 
gn(r) = cnrm. 

Substituting these equations into Eqs. (3-27) and (3-28) gives 

m(m - l)(m - 2)(m - 3) + 2m(m - l)(m - 2) 

- (1 + 2n2)m(m - 1) + (1 + 2n2)m + n2(n2 - 4) = O. 

The roots of this equation are 

and 

and 

Similarly, 

m3 = n + 2, m4 = -n + 2. 

fo(r) = Aoro + Bor2 + Coro In r + Dor2 In r 

= Ao + Bor2 + Co In r + Dor2 In r. 

If n = 1, ml = m4 = 1, m2 = -1, m3 = 3 

fl = AIr + Blr3 + Clr l +. Dlr In r 

gl = Elr + Flr3 + Glr- l + Hlr In r. 

f, = A rn + B r- n + C rn+2 + D r-n+2 
n n n n n 

gn = Enrn + Fnr-n + Gnrn+ 2 + Hnr- n+2. 

Hence, the homogeneous solution, Wh, beomes 

Wh = Ao + Bor2 + Co In r + Dor2 In r 

+ (AIr + Blr3 + Clr- l + Dlr In r) cos 0 

+ (Elr + Flr3 + Glr- l + Hlr In r) sin 0 
oc 

+ ~ (A rn + B r- n + C rn+ 2 + D r- n+ 2) cos nO LJ n n n n 
n=2 

+ 2: (En rn + Fnr-n + Gnrn+2 + Hnr- n+ 2) sin nO. (3-29) 
n=2 
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The particular solution, wP ' is obtained by letting 
00 

wp = Io(r) + L [In(r) cos n6 + In(r) sin noB] 
n=l 

and 
00 

P = po(r) + L [Pn(r) cos n6 + Sn(r) sin n6] 
n=l 

where 

1 J'" Pn(r) =:;;: _'" per, 6)cos n6 d6 n = 0,1,2, ... 

1 J'" Sn(r) =:;;: _'" per, 6)sin n6 d6 n = 1,2, . , . 

Substituting wp into the equation V4w = p/D gives 

d4Io + ~ d3Io _ 1.. d2Io + 1.. dlo + i [d4In + ~ d3In _ 1 + 2n2 d2In 
dr4 r dr3 r2 dr2 r3 dr n = 1 dr4 r dr3 r2 dr2 

1 + 2n2 dIn n2(n2 - 4) I ] 6 + 3 -d+ 4 nCos n 
r r r 

oc [d4J 2 d3J 1 + 2n2 d2J L n n n 

+ n = 1 dr4 + ~ dr3 - r2 dr2 

1 + 2n2 dIn n2(n2 - 4) ] . 
+ 3 -d + 4 I n sm n6 

r r r 

= p~) + ~ LPn COS n6 + ~ L Sn sin n6, 

from which we obtain the following solution: 

d4Io + ~ d3Io _ 1.. d2Io + 1.. dlo = (r)/D 
dr4 r dr3 r2 dr2 r3 dr Po (3-30) 

(3-31) 

(3-32) 
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Equation (3-21) is the differential equation for the bending of circular 
plates and is derived from the expression V4w = pi D. Its solution is given 
by Eqs. (3-29) through (3-32). 

Example 3-5 

Find the bending moment in the plate shown in Fig. 3-12. The load dis­
tribution on the plate is given by 

Solution 

r 
P = Po - cos e. 

a 

Since the applied load is a function of e, all terms in the homogeneous 
deflection given by Eq. (3-29) are deleted except 

(1) 

Similarly, Eqs. (3-30) and (3-32) are ignored and Eq. (3-31) is used. The 
expression for Pn becomes Pi since the load is a function of e only. Ac­
cordingly, 

Pl(r) = 1:. J'" (por cos e) cos e de = por J'" cos2 e de 
'iT -'" a a -'" 

= poria. 

Equation (3-31) becomes 

d4l1 + ~ d311 _ i d211 + i dl1 _ iIi = por (2) 
dr4 r dr3 r2 dr2 r3 dr r4 aD' 

Po 

Figure 3-12. 
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Substituting this expression into Eq. (2) and solving for the constants C1 

through C6 gives 

and 

C Po 
1 = 192aD 

C2 = C3 = C4 = Cs = C6 = 0 

porS 

II = 192aD' 

The solution for W p is expressed as 

p or 5 

wp = 192aD cos tl. 

combining this expression with Eq. (1) gives the total solution for the 
deflection. 

w = (AIr + Elr3 + C11r + D1r In r + 1~;:~) cos tl. 

Since tl and Mr are finite as r ~ 0, constants C1 and Dl must be set to 
zero. The deflection expression then becomes 

_ 3 ~ 
( 

S ) 
W - AIr + E1r + 192aD cos tl. (3) 

At r = a, Mr = O. Equation (3) gives 

E __ 2(5 + j.L) poa 
1 - (3 + j.L) 192D' 

At r = a, W = 0 and Eq. (3) results in 

A _ (7 + j.L) p oa3 

1 - (3 + j.L) 192D' 

The final expression for the deflection can now be written as 

_ Po (r5 2(5 + j.L) 3 (7 + j.L) 3) 
W - 192D -;; - (3 + j.L) ar + (3 + j.L) a r cos tl. 

The equations for Mr and Mt can now be obtained and are expressed as 

p oa2(5 + j.L) ( r2) 
Mr = 48 (ria) 1 - a2 cos tl 

M = 4poa2 [(~) (5 + j.L)(1 + 3j.L) _ r3 (1 5)] 
t 192 a (3 + j.L) a3 + j.L cos tl. 
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J 
Figure P3-11. 

Problems 

3-11 Find the maximum bending moment in the plate shown in Fig. P3-
11. The edge of the plate is fixed and the applied load is expressed as 

pDT 
P = - cos e. 

a 

3-12 Find the expression for the bending moments in the plate shown in 
Fig. P3-12. 

3-4 Plates on an Elastic Foundation 

Power and petrochemical plants as well as refineries use evaporators, con­
densors, and heat exchange units as part of their daily operations. These 

I 
I 

P1crrr±rill P, 

§i----Ir-------+-~ 
I.. a ~I 

Figure P3-12. 
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units consist of two perforated circular plates, called tubesheets, that are 
braced by a number of tubes as shown in Fig. 3-13. The tubesheets and 
tubes are inserted in a vessel consisting of a cylindrical shell and two end 
closures. Fluid passing around the outside surface of the tubes exchanges 
heat with a different fluid passing through the tubes. The tubesheets are 
assumed to be supported by both the shell and tubes and are analyzed as 
circular plates on an elastic foundation. Referring to Figs. 3-2 and 3-14, it 
is seen that the foundation pressure f acts opposite the applied pressure 
p. Hence Eq. (3-9) can be expressed as (Hetenyi 1964) 

~ :r {r :r [~! (r ~;)]} = Pr ; fr (3-33) 

or 

where 

fr = load exerted by the elastic foundation; 
fr = kow; 

Pr - kw 
D 

(3-34) 

ko = foundation modulus defined as the modulus of elasticity of foun­
dation divided by the depth of foundation, psi per inch. 

A plate on an elastic foundation that is subjected to uniform pressure 
will settle uniformly without developing any bending moments. If a support 
is placed at the edge of such a plate, then bending moments are developed 
because of the nonuniform settlement caused by the boundary condition. 

tubeside shells ide 
inlet nozzle 

tubesheet 

tubeside chamber shell 

shells ide chamber 

shellside 
outlet nozzle 

Figure 3-13. 
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Accordingly, we can investigate the effects of the various boundary con­
ditions on the plate stress by allowing the applied pressure to be set to 
zero. Letting 

a = -\!kolD 

the differential equation becomes 

(~ + !!!.) (~ + !!!.) w + a4w = O. 
dr2 r dr dr2 r dr 

Let ar = Y=!p. 
Then the differential equation becomes 

V4w - w = 0 

where 

Equation (3-35) can be written either as 

V2(V2W + w) - (V2w + w) = 0 

or 

V2(V2W - w) + (V2w - w) = O. 

Hence, the solution is a combination of 

V2W + W =O 

and 

V2w - W = O. 

p 

Figure 3-14. 

(3-35) 
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The first equation can be written as 

d2w 1 dw 
-+--+w=O 
dp2 p dp 
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and the solution is expressed in terms of Bessel function, see Appendix B, 
as 

w = A1Jo(p) + A2YO(P). 

The second equation has a solution in the form of 

w = A:/o(ip) + A4Yo(ip). 

Hence, the total solution is written as 

w = A1Jo(±arvz) + A2Yo(±arVz) 

+ A3JO(±arv'=l) + A 4YO(±arv'=l). 

This equation can be written as (Hetenyi 1964) 

w = C1Z1(ar) + C2Z2(ar) + C3Z3(ar) + C4Z4(ar) (3-36) 

where the functions Zl to Z4 are modified Bessel functions given in Ap­
pendix B. 

Example 3·6 

A tubesheet in a heat exchanger (Fig. 3-15) is subjected to edge load, Qo, 
caused by the difference in expansion between the supporting tubes and 
the cylindrical shell. Find the expression for the deflection of the tubesheet 
due to force Qo if it is assumed simply supported at the edges. 

Solution 

From Eq. (3-36), 

w = C1Z1(ar) + C2Z2(ar) + C3Z3(ar) + C4Z4(ar). (1) 

Q 
o 

Figure 3-15. 

Q 
o 
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The first constant is determined from the boundary condition at r = 0, 
where the slope dwldr is equal to zero due to symmetry. Hence, 

~;Ir=o = C1aZ;(ar) + C2aZ~(ar) + C3aZ3(ar) + C4aZ~(ar). 
From Fig. B-3 of Appendix B, the quantity Z~(O) approaches infinity as r 
approaches zero. Hence, C4 must be set to zero. The second constant is 
determined from the boundary at r = 0 where the shearing force, Q, is 
zero due to symmetry. The shearing force is expressed as 

Q = D(d3W + 2 d2w _ 1. dW) (2) 
dr3 r dr2 r2 dr . 

The derivatives of the first term in Eq. (1) are 

dw 
C1aZi(ar) 

or, from Appendix B, 

d2w 
dr2 

The third derivative is 

dr 

~r: = C1 [ a3Z~(ar) - :2 Z~(ar) + ~ Zi(ar) ] 

Substituting these expressions into Eq. (2) yields 

Q = D[Cla3Z~(ar)]. 

The derivatives of Z2 and Z3 in Eq. (1) are similar to those for Z1' Thus, 
the total expression for Q in Eq. (2) becomes 

Q = D[Cla3Z~(ar) - C2a3Zi(ar) + C3a3Z~(ar)]. 

At r = 0, Q = 0 due to symmetry. From Fig. 8-3 of Appendix B, Zi and 
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Z~ have a finite value at r = ° while Z~ approaches 00. Hence, C3 must be 
set to zero. At the boundary condition r = a we have 

(d2W f1 dW) 
Mrlr=a = ° = -D dr2 + -; dr 

and 

Substituting Eq. (1) into Eq. (3) yields 

1 - f1 
aZ2(aa) - -- Z~(aa) 

a 
C1 1 - f1 

aZl(aa) + -- Z~(aa) 
a 

And from Eqs. (4) and (5) we get 

where 

Substituting the expression for C1 into Eq. (5) gives 

C2 = -k~;a [ Zz(aa) - 1 :a f1 Z~(aa) l 

(3) 

(4) 

(5) 

With C1 and C2 known, and C3 = C4 = 0, Eq. (1) can be solved for 
moments and shears throughout the plate. 

Problems 

3-13 Show that the maximum deflection of a circular plate on an elastic 
foundation subjected to a concentrated load, F, in the center is given by 
the following expression when the radius of the plate is assumed infinitely 
large: 

F 
Wmax = 8Da2' 
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3-14 What are the values of C1 and C2 in Example 3-6 if the shear force 
Qo is replaced by a bending moment Mo? 

3-5 Plates with Variable Boundary Conditions 

In many structures such as large oil storage tanks, the surface pressure 
above the contents causes an uplift force that is transferred to the cylindrical 
shell as shown in Fig. 3-16a. This force is normally transferred to the 
foundation through the anchor bolts. Many tanks, however, are not an­
chored to the foundation, especially in earthquake zones, to avoid damage 
to the tanks and their attachments. In such cases the uplift force due to 
surface pressure and earthquake loads is transferred to the base plate as 
shown in Fig. 3-16b. The edge of the plate tends to lift up and the rest of 
the plate is kept in place by the pressure of the tank contents. The solution 
for the deflection of such a plate is obtained from Eqs. (3-29) and (3-30) 
as 

pr4 
w = A + Br2 + C In r + Fr2 In r + 64D 

p 

p 

20 

(a) 

F 

(bl 

Figure 3·16. 

(3-37) 
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where the constants A, B, C, and F are determined from the boundary 
conditions. 

At r = a, two boundary conditions can be specified. The first is the 
uplift force Qo' The other boundary condition is obtained by specifying 
either Mr or 8. The other boundary conditions are obtained from Fig. 
3-17 by assuming an unknown dimension r = b at which the following 
boundary conditions are satisfied. 

w = 0, dwldr = 0, 

These three boundary conditions plus the two at r = a are used to solve 
the unknowns b, A, B, C, and F. As the constants A, B, C, and F are a 
functions of b, the five equations obtained from the boundary conditions 
cannot be solved directly. A practical solution, however, can easily be 
obtained by writing a small computer program that increments various 
values of b until a solution is obtained. 

Example 3-7 

The tank shown in Fig. 3-18 is subjected to an earthquake motion that 
results in an upward force at the cylinder-to-plate junction of 234 lbs/inch. 
Determine the maximum stress in the bottom plate and the maximum 
uplift. Assume the shell-to-plate junction to have zero rotation as the 
cylindrical shell is substantially thicker than the base plate. Let f.L = 0.3 
and E = 29,000 ksi. 

Solution 

At r = b the deflection, w, is zero and Eq (3-37) becomes 

-pb4 

A + Bb2 + C In b + Fb2 In b = 64D' 

0.0 

I 
I p 
I 
I 

.1 i: b J 
a 

Figure 3-17. 

(1) 



108 Bending of Circular Plates 

p =26 psi 

I" t= ,~ 

y" '----t='6 

1 

I" 
a =360" 

Figure 3-IS. 

.I 

At r = b the slope dwldr = O. Equation (3-37) gives 

-4pb3 

2Bb + Clb + Fb(2 In b + 1) = 64D' 

At r = b, Mr = 0 and 

M = _D(d2W + ~dW) = O. 
r dr2 r dr 

Substituting w into this equation gives 

(2) 

3.7143Bb2 - C - Fb2(3.7143 In b + 4.7143) + 4.7::Zb4 = o. (3) 

at r = a, dwldr = 0 and 

-4pa3 

2Ba + Cia + Fa (2 In a + 1) = 64D' 

At r = a, Q = Qo and 

which gives 

F = Qoa _ pa2 

4D 8D' 

(4) 

(5) 

Combining Eqs. (2), (3), (4), and (5) results in an equation that relates 
the unknown quantity b to the known loads Qo and p. By placing all terms 
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on one side of the equation, a computer program can be written to incre­
ment the quantity b until a solution is found that satisfies this equation. 
Using such a program results in a value of b of 346.2 inches. With this 
dimension known, the constants A, B, C, and F can now be determined 
and are given by 

A = 1.1347 X 1011 B = 2.5450 X 106 

C = - 2.4615 X lO lD F = -4.0014 X 105 . 

The maximum moment, Mn is found to be 787.9 inch-Ibs/inch and the 
maximum deflection at the edge as 0.02 inch. 

maximum stress in bottom plate = 6Mlt2 = 6 x 787.9/0.43752 

= 24,700 psi. 

Problem 

3-15 Find the stress in the bottom floor plate of the oil tank shown in 
Fig. P3-15. Let E = 30,000 ksi and J..L = 0.30. 

3-6 Design of Circular Plates 

The references cited in Sections 1-9 and 2-5 for rectangular plates also 
contain numerous tables for calculating maximum stress and deflection in 
circular plates of uniform thickness subjected to various loading and bound­
ary conditions. For concrete slabs, extra precaution must be given to place­
ment of reinforcing bars as discussed in Example 3-1. 

I 
I 
I 
I 
I 

36kgf/cm2 

I 
t=25mm 

I P = 4 kgf/cm2 
I 

... 
t=12mm .. 1 

D=15m _ . 

Figure P3·15. 



Table 3·1. Circular plates of uniform thickness 

Case Number Maximum Values 

1. P I 
I at center 

3pa2 

j' , 'i' , ,~ Sr = S, = 8t2 (3 + IL) 

3pa4(1 - 1L)(5 + IL) 
w = 16Et3 

at center 

I 

Y 

3( Mo 

l\) /\ I 
I 
I 
I a 
I 

~ 

e = 

For IL = 0.3, 

3pa3(1 - IL) 
2Et3 

at edge 

1. 238pa2 

Sr = S, = at center 

0.696pa4 

w = Et 3 

t2 

e = _ 1.050pa3 

Et 3 

Sr = _ 3pa2 

4t 2 

at center 

at edge 

at edge 

3pa4(1 - 1L2) 
w = 16Et3 

at center 

For IL = 0.3 

4t2 

0.171pa4 

w = Et 3 

Sr = S, = 6Moft 2 

6Moa2(1 - IL) 
w = Et 3 

at edge 

at. center 

at any point 

at center 

e = 12Moa(1 - IL) 
Et 3 

at edge 

For IL = 0.3 
Sr = S, = 6Moft2 at any point 

w= 
4.20Moa2 

at center 

e = at edge 

Notation: a = outside radius of plate; b = radius of applied load; E = modulus of elasticity; 
p = applied load; r = radius; S, = tangential stress; Sr = radial stress; t = thickness; w = 
deflection; 9 = rotation, radians; I/.. = Poisson's ratio. 
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Circular plates are used as end closures in many shell structures such as 
reactors, heat exchangers, and distillation towers. Discussion of the inter­
action of circular plates with various shells will be discussed in later chap­
ters. Table 3-1 lists a few loading conditions that will be utilized later when 
the interaction of plate and shell components is considered. 

The deflection and stress in perforated circular plates are obtained from 
the theoretical analysis of solid plates modified to take into consideration 
the effect of the perforations. One procedure that is commonly used is 
given in the ASME Code, Section VIII-2, Appendix 4. The code uses 
equivalent values of Poisson's ratio and modulus of elasticity in the the­
oretical equations for the deflection and stress of solid plates to obtain 
approximate values for perforated plates. The equivalent values are func­
tions of the pitch and diameter of the perforations. The procedure is based, 
in part, on O'Donnell's work (O'Donnell and Langer, 1962). 

The design of heat exchangers is based on Eq. (3-36) and its solution as 
shown in Example 3-6. Many codes and standards such as AS ME-VIII and 
TEMA (TEMA 1988) simplify the solution to a set of curves and equations 
suitable for design purposes. 



4 

Approxirnate Analysis of Plates 

4-1 The StraIn Energy (Ritz) Method 

The classical theories discussed in the previous chapters are cumbersome, 
if not impossible, to solve when the geometry, boundary condition, or load 
distribution becomes more complicated. Other approximate methods can 
be utilized to solve such problems. These include the strain energy method 
and the yield line theory. 

The strain energy Method is frequently utilized in solving rectangular 
plates with intermediate supports and partial loads. We begin the derivation 
by stating that the strain energy, U, of the infinitesimal element shown in 
Fig. 4-1a due to applied stress is obtained from the expression 

strain energy = force x deflection. 

The strain energy, U, due to stress o"x acting on~urfaces ABeD and 
A'B'CD' in Fig. 4-1a is given by 

dU ,= Iv o"x d( U + : dx) dy dz - Iv o"x du dy dz 

dU= Iv o"x d(~~) dx dy dz 

where 

u = deflection in the x-axis as shown in Fig. 4-1b; 
U = strain em~rgy of a solid element. 

By defining 
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du 
E=­

x dx 



and 

The Strain Energy (Ritz) Method 

,;rx 
y z 

, 
;,-__ ----" B 

Af-~+--_{ 

(a) 

~----------~x 

x 

y 
I I 

I L _________ ..J 

(b) 

Figure 4·1. 

O'x 
E=­

x E 

Clx 

the expression for strain energy becomes 

dU = Iv O'x d(~) dx dy dz 

0'2 

dU = 2i dx dy dz 

1 
dU = 2" O'xEx dx dy dz. 

Summation of the strain energy due to O'x, O'y, and O'z results in 

U = Iv ~ (O'xEx + O'yEy + O'zEz) dx dy dz. 

113 
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dx 

r-----------~----~.x 

Yxy 

dy 

y 

Figure 4·2. 

The strain energy due to shearing stress Txy is obtained from Fig. 4-2 as 

1 
dU = 2" (Txy dx dz)(,yxy dy) 

U = t ~ Txy"Yxy dx dy dz. 

Hence, the total strain energy due to O'x, O'y, O'z, Txy , Tyz , and Txz is given 
by 

For thin plates, 

and the strain energy expression reduces to 

U ~ t (O'xex + O'yey + Txy"Yxy) dx dy dz. 

Substituting Eqs. (1-12) and (1-15) into this expression results in 

{( )

2 
D a2w a2w 

U = - J - + - -2(1-
2 ax2 ay2 

(4-1) 



The Strain Energy (Ritz) Method 

The external work, w, due to applied loads is given by 

w = J pw dx dy. 

The total potential energy of the system is defined as 

n=u-w 
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(4-2) 

(4-3) 

where n is the total potential energy that must be minimized in order for 
the plate to be in stable equilibrium. 

Equation (4-3) can be solved by expressing the deflection, w, in a geo­
metric series. Ritz (McFarland et al. 1972) suggested a series of the form 

w = C1ft(x, y) + Czf2(X, y) + .... (4-4) 

where the [(x, y) functions represent the deflection of the plate and satisfy 
the boundary conditions. The constants C are chosen so as to make Eq 
(4-3) a minimum. Thus 

etc. (4-5) 

Example 4-1 

Find the deflection of the simply supported plate shown in Fig. 4-3 due to 
a uniform pressure p. 

Solution 

Let the deflection given by Eq. (4-4) be represented by an equation of the 
form 

~ ~ A . m'ITX . n'ITy 
w = L.J L.J mn SIn -- SIn -b 

m=ln=l a 
(1) 

.---__ --"5"'5,...-___ -r-__ x 
Q 

55 b 55 

55 

y 

Figure 4-3. 
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which satisfies the boundary conditions. Substituting this expression into 
Eq. (4-1) and noting that 

a2wa2w a2w 
[ ( ) 2J 2(1 - f.L) ax2 ay2 - ax ay = 0 

gives 

D Ibla ["" "" (m2'IT2 n2'IT2). m'ITX . n'ITYJ2 
U = -2 2: 2: Amn -2- + -b2 sm - sm -b dx dy 

o 0 m=l n=l a a 

ab "" "" (m2'IT2 n2'IT2) 2 
U = -8 D 2: 2: A~n -2- + -b2 . 

m=l n=l a 
(2) 

Similarly Eq. (4-2) becomes 

Ibla "" "" m'ITX n'ITy 
w = 2: 2: pAmn sin - sin -b dx dy 

o Om=l n=l a 

"" "" b 
= 2: 2: pAmn +- (cos m'IT - 1)(cos n'IT - 1). (3) 

m=l n=l 'IT mn 

Substituting Eqs. (2) and (3) into Eq. (4-3) gives 

"" "" [D (m2'IT2 n2'IT2) 2 n = ab 2: 2: -8 A~n -2- + -b2 
m=l n=l a (4) 

- E- Amn (cos m'IT - 1)(cos n'IT - 1)J 
'IT2 mn 

From Eq. (4-5), 

and 

A = 4p(cos m'IT - 1)(cos n'IT - 1) 

mn (m2 n2)2 . 
D'IT6mn - + -

a2 b2 

Equation (1) for the deflection becomes 

~ ~ (4P(COS m'IT - 1)(cos n'IT - 1)) . m'ITX . n'ITy w = L.J L.J 2 sm -- sm -
m=l n=l (m2 n2) a b D'IT6mn - + -

a2 b2 
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or 

~ ~ 16p . m7rX . n7ry 
w = L.J L.J 2 sm -- sm b· 

m=1,3, ... n=1,3,... (m2 n2) a 
D7r6mn - +-

a2 b2 

The solution of rectangular plates by the Ritz method consists of defining 
an expression in the form of Eq. (4-4) that satisfies all of the boundary 
conditions. A modification of the Ritz method with Lagrange multipliers, 
is used to solve plates with various boundary conditions such as interme­
diate supports where the expression in Eq. (4-4) cannot satisfy all of the 
boundary conditions. To begin the derivation let us assume that Eq. (4-4) 
satisfies all of the boundary conditions except two. Let these two boundary 
conditions be defined as 

and 

B2(C1 , Cz, ... ) = o. 
Because Bl and B2 are the reaction constraints, they must be added to the 
total work and Eq (4-3) becomes 

(4-6) 

where Kl and K2 are constants. Minimizing Eq. (4-6) results in the following 
simultaneous equations 

all = 0 _ au _ aw + K aB1 + K aB2 

aC1 - aC1 aC1 1 aC1 2 aC1 

all au aw aB1 aB2 
- = 0 = - - - + K 1 - + K 2 -aC2 aC2 aC2 aC2 aC2 

all 
- = 0 = Bl 
aK1 

all 
aK2 = 0 = B2 • 

Solution of these simultaneous equations yields the expression for the 
deflection. 
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Example 4-2 

The plate shown in Fig. 4-4 is simply supported at the edges and is also 
supported by a column at x = al2 and y = b12. Find the deflection due 
to a uniform pressure p. 

Solution 

Let the deflection be given by 

~ ~ A . mTiX . nTiy 
w = L... L... mn sm -- sm -b . 

m~l n~l a 
(1) 

Then from Eq. (4) of Example 4-1 

00 00 [D (m2Ti2 n2Ti2) 2 

U - W = ab m2; 1 n~l 8" A~n 7 + bz 

- - - cos mTi - 1 cos nTi - 1 . p Amn ( )( )] 

Ti2 mn 
(2) 

As Eq. (1) for the deflection is not satisfied at x = al2 and y = b12, it 
follows that a constraint equation mut be expressed as 

~ ~ A . mTi . nTi 0 
L... L... mn sm - sm -2 = 
m~l n~l 2 

and the total energy of the system is 

n U K 'V 'V A . mTi . nTi 
= - W + 1 mL:1 nL:1 mn sm 2 sm 2 

a 
ss x 

55 b 5S 
2" 

b J-t 
ss 

y 

Figure 4-4. 
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where U - W is given by Eq. (2). Minimizing II with respect to Amn gives 

all DabTi4 

aA = 0 = + -4- [(m/a)2 + (n/b)2]2Amn 
mn 

pab(cos mTi - l)(cos nTi - 1) 
Ti2mn 

K . mTi . nTi 
+ I SIll 2" SIll 2 

A = 4pa4(cos mTi - l)(cos nTi - 1) 
mn DTi6mn[m2 + n2(a/b)2]2 

4a3 KI . mTi . nTi 
+ DTi4b[m2 + n2(a/b)2]2 SIll 2" SIll 2 

all oc 00 • mTi . nTi 
- = 0 = 2: 2: Amn SIll -2 SIll -2 . 
aKI m~1 n~1 

Substituting Amn into this equation and solving for KI gives 

K _ pab Al 
I - 2 A 

Ti 2 

where 

~ ~ (cos mTi - l)(cos nTi - 1) . mTi . nTi 
A I = L.J L.J SIll - SIll -

m~1 n~1 mn[m2 + n2(a/b)2]2 2 2 

and 

. mTi . nTi } SIll - SIll-
Al 00 00 2 2 . mTiX . nTiy 

- A- 2: 2: [2 2( /b)2]2 SIll - SIll -b . 2 m~1 n~1 m + n a a 

Problems 

4-1 Derive Eq. (4-1). 
4-2 Find the deflection of the concrete balcony supported as shown in 
Fig. P4-2. The uniform load is taken as p. Let a = 72 inch, b = 30 inches, 



120 

p 100 psf and 
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Q 
~----~S~S--------~----~X 

• 55 

S5 

y 

Figure P4-2. 

~ ~ A . m7TX . n7TY 
w = L. L. mnsm--sm-b· 

m=l n=l a 

4-3 The steel plate in Fig. P4-3 is part of a shoring box for an earth 
embankment. Find the deflection due to a uniform earth pressure of 120 
psf. Let a = 60 inches, b = 75 inches, and 

~ ~ A . m7TX . n7TY 
w = L. L. mn sm -- sm -b . 

m=ln=l a 

4-2 Yield Line Theory 

The yield line theory is a powerful tool for solving many complicated plate 
problems where an exact elastic solution is impractical to obtain and an 

~----~~Q~------~~--~x 
SS 

55 

• S5 

y 

Figure P4-3. 
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approximate solution is acceptable. It is best suited for plates with free 
boundary conditions and concentrated loads. The theory is based on the 
assumption that the stress-strain diagram of the material can be idealized 
as shown in Fig. 4-5a. At point A on the elastic stress-strain diagrma, the 
stress distribution in a plate of thickness t is as shown in Fig. 4-5b. For a 
plate under external moment M, the equilibrium equation for external and 
internal moments is given by 

M = (cry)(t/2)(1/2)(2t/3) 
or 

(4-7) 

which is the basic relationship for bending stress of an elastic plate. For 
design purposes the yield stress is divided by a factor of safety to obtain 
an allowable stress. 

As the load increases, the outer fibers of the plate are strained past the 
yield point A in Fig. 4-5a. As the strain approaches point B, the stress 

(] 
B 

(a.) 

(b) 

-T-Frt F-£E! 
(e) 

Figure 4-5. 
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distribution becomes, for all practical purposes, as shown in Fig. 4-5c. 
Summation of internal and external moments gives 

or 

Mp = (CTy) (tI2)(tI2) 

4Mp 
CTy =~. (4-8) 

Equation (4-8) is the basic equation for the bending of a plate in ac­
cordance with the plastic theory. For design purposes, the applied loads 
are multiplied by a load factor to obtain the design loads. 

The plastic theory is applied in industry to both metallic plates as well 
as concrete slabs. Tensile stress in concrete slabs due to plastic moments 
is resisted by reinforcing bars, and tests conducted on such slabs (Wood 
1961) verify the applicability of the plastic theory. 

Example 4·3 

The maximum bending moment in a circular plate subjected to applied 
loads is 3000 inch-Ibs/inch. Calculate the required thickness using elastic 
and plastic methods. Use a safety factor of 2.0, a load factor of 2.0, and 
a yield stress of 36,000 psi. 

Solution 

(a) Elastic Analysis 

CTa = allowable stress = 36,000/2.0 = 18,000 psi 

Hence, 

t= (6M= .y--;;: 
(b) Plastic Analysis 

6 x 3000 
18,000 

1.0 inch. 

Mp = 3000 x 2.0 = 6000 inch-Ibs/inch 

and 

4 x 6000 . 
36,000 = 0.82 lOch. 

Hence, a savings of 18% in thickness is obtained by using plastic versus 
elastic analysis for the same factor of safety. 

The yield line theory in plate analysis is very similar to the plastic hinge 
theory in beam analysis. Application of the plastic hinge theory in beams 
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F 

~'I-----'---
I. 

~ ~ 2L .I. L 
"3 "3 .1 

(Q) 

2FLV ~ 
V 4FL 

27 
(b) 

(e) 

Figure 4-6. 

can be illustrated by referring to the fixed beam shown in Fig. 4-6a. The 
elastic moment diagram due to the concentrated load is shown in Fig. 
4-6b. The maximum elastic moment is 4FLl27 and occurs at the right end 
support. As the load increases, the moment at the right end reaches Mp 
and a plastic hinge is developed at that location. However, because the 
moments at the left end and under the load are below Mp the beam can 
carry more load because it is still statistically determinate. Eventually the 
moment under the load reaches Mp and a plastic hinge is developed there 
also. However, the beam is still stable and more load can be applied to 
the beam until the moment at the left side reaches Mp and the beam 
becomes unstable as shown in Fig. 4-6c. At this instance the moment under 
the load, Mp , is equal to the moment, Mp , at the ends of the span. The 
magnitude of the moments can be determined by letting the external work 
equal the internal work. The amount of external work can be expressed 
as 

E.W. = (F)(w) 
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while the internal work is expressed as 

or 

l. W. = Mp(e) + Mp(3e) + Mp(2e). 

e can be expressed as 

w 
tan e = e = (2/3)L 

3w 
e = 2L' 

Hence, the internal work is given by 

3w 
I.W. = 6Mp 2L' 

Equating external and internal work gives 

FL 
Mp =9' 

The ratio of Mp to Me is 0.75. This coupled with the fact that te 
v'6MeIS while tp = v'4MpIS results in a net ratio of tp to te of 0.7. Thus, 
a 30% savings in thickness is achieved by plastic analysis of this beam. 

For plate analysis, the plastic hinges become yield lines. Also, axes of 
rotation develop in plates rather than points of rotation. Some of the 
properties of yield lines and axes of rotation are 

1. In general, yield lines are straight. 
2. Axes of rotation of a plate lie along lines of support. 
3. Axes of rotation pass over columns. 
4. A yield line passes through the intersection of axes of rotation of ad­

jacent plate segments. 

Some illustrations of plates with various geometries, supports, and yield 
lines are shown in Fig. 4-7. It must be noted that the failure mechanism 
method described here is an upper bound solution and all failure mecha­
nism patterns must be investigated in order to obtain a safe solution. 
However, the failure mechanisms for the class of problems discussed here 
have been verified experimentally and can thus be used for design purposes. 

Example 4-4 

Find the maximum plastic moment in a simply supported square plate 
subjected to a uniform load of intensity p. 
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free 

fixed fixed ~e 
SS ss 

Figure 4-7. 

Solution 

The collapse mechanism of the square plate (Fig. 4-8a) consists of four 
yield lines. Section AA through the diagonal of the plate (Fig. 4-8b) details 
the rotation of one of the yield lines. The plastic moment, Mp , at this yield 
line undergoes a rotation of 2a over the length ad. 

external work = internal work 

(p) (volume of pyramid) = (Mb) (2a) (length) (4 yield lines) 

(V2L) (p)(U x w/3) = (Mp)(2a) -2- (4). 

For small deflection w, we let 

We then get 

w 
tan a = a = V2L12. 
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Cal 

Cbl 

Figure 4-8. 

The method discussed in Example 4-4 becomes cumbersome for com­
plicated geometries. A more efficient method of formulating the expression 
for internal work is to use vector designations. We illustrate the method 
by referring to the square plate with the failure mechanism shown in Fig. 
4-9a. The applied moments in one panel (Fig. 4-9b) can be designated by 
the vectors given in Fig. 4-9c. The horizontal components of the vector 
moment (Fig. 4-9d) cancel each other while the vertical vectors are additive. 

If we use the approach discussed in Example 4-4, then from sketches 
(d) and (e) of Fig. 4-9 we get 

I.W. for one panel = 2(M;)C~:2<l» (9) 

= 2(Mp cos <l»C~:2<l» (;;2) 
= 2(Mp)w. 

This same result can be obtained more efficiently by observing in sketches 
(d) and (e) of Fig. 4-9 that the product of the quantity Mp times the slanted 
length is of the same magnitude as the product of the momentMp applied 



(b) 

a M~ 
(~) 

along the edge L. Hence, 

Yield Line Theory 

:[2~;} 
aLb 

(a) 

Figure 4-9. 

(e) 

(e) 

l. W. for one panel = (Mp)(L )(6) 

= (Mp)(L)(Z2) 

= 2(Mp)w. 
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As the rotation of the outside edge is obtained more easily than the 
rotation of the inner yield lines, the vector approach will be used in all 
subsequent discussions. 

Example 4-5 

Find the required thickness of a square plate fixed at the edges and sub­
jected to a uniform load of 12 psi. Use a load factor of 2.0, and yield stress 
of 36 ksi. 
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Solution 

From Fig. 4-lOa, 

E.W. = I.W. 

G) (202)(2.0 x 12)w = work due to Mp at internal yield lines 

+ work due to Mp at edges 

and from Fig. 4-10b, 

3200 w = 4(Mp)(L)(~2) + 4(Mp)(L)(L~2) 
or, 

Mp = 200 inch-Ibs/inch. 

4x200 . 
36000 = 0.15 Inch. , 

Example 4·6 

Find Mp of the rectangular plate in Fig. 4-11a due to uniform load p. The 
plate is simply supported. 

20" I .. 
Cal 

Cbl 

Figure 4·10. 
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Solution 

The yield lines take the shape shown in Fig. 4-11b. Distance x is unknown 
and must be determined. 

From Fig. 4-11c, 

E.W. = p(E.W. I + E.W. II + E.W. III) 

= P[2 (a;) (1/3) + 2(b - 2x)(a/2)(l/2) 

+ 4(x) (a/2) (1/2)(1/3) Jw. 

I'" 
20' 

-I 

I{ SS 
55 

55 

55 

(01 

20' 

(bl 

(el 

Figure 4-11. 
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Equating internal and external work and solving for Mp gives 

M, ~ P[2 r~ +~) l (1) 

Minimizing Mp by taking its derivative with respect to x and equating it to 
zero gives 

a2 3a2 
x2 +-x--=0 b 4 . (2) 

For a = 10 ft, and b = 20 ft, Eq. (2) gives x = 6.51 ft. 
From Eq. (1), 

M = (14,400 - 3124.8) 
p p 2(4.00 + 1.54) 

= 1018 p inch-Ibs/inch. 

Problems 

4-4 Find Mp due to a uniform load on the simply supported hexagon plate 
shown in Fig. P4-4. 
4-5 Find Mp in the skewed bridge slab (Fig. P4-5) due to uniform load p. 
4-6 Determine Mp in the triangular weir plate shown in Fig. P4-6 due to 
uniform load p. The plate is fixed at all edges. 

4·3 Further Application of the Yield Line Theory 

The deflections obtained from the yield line theory are larger than those 
obtained from the elastic theory due to reduced thicknesses. This should 

w 
Figure P4-4. 
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Figure P4-S. 

be considered in applications where small deflections are critical to the 
performance of equipment such as flanges and other sealing components. 
Also, the yield line theory tends to give an upper bound solution. Ac­
cordingly, all possible yield line paths must be investigated in order to 
obtain a true solution. This is especially important in plates with free edges 
as illustrated in Example 4-7. 

Example 4-7 

Find the maximum moment in a triangular section (Fig. 4-12a) subjected 
to a uniform load p. 

Solution 

Assume the yield line to be as shown in Fig. 4-12b at an angle a from side 
A. Then 

C=a+b 

W W 
I.W. = Mp(x cos a) -.- + Mp(x cos b) -'-b 

xsma xsm 

= Mp(cot a + cot b)w 

E W = [(A)(X sin a) ! (B)(x sin b) !] 
.. P 2 3+ 2 3 w 

= P: (A sin a + B sin b)w. 

Equating internal and external work results in 

M = px A sin a + B sin b 
p 6 cot a + cot b . 
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Figure P4-6. 

Minimizing Mp with respect to a results in 

a = C/2 

which indicates that in any triangle with one edge free, the yield line always 
bisects the angle between the two simply supported edges. The plastic . 
moment is given by 

M = px A sin (C/2) + B sin (C/2) 
p 6 cot (C/2) + cot (C/2) . 

(ct) 

(b) 

Figure 4-12. 

, , 
, free edge , , , 
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Example 4-8 

Find the maximum moment in a uniformly loaded square plate, (Fig. 
4-13a) with three sides simply supported and one side free. 

Solution 

(a) Let the failure pattern be as shown in Fig. 4-13b. Then, 

w w 
I.W. = 2Mp(L) L12 + Mp(L) L _ Y 

= (4M + MpL)w 
p L - Y 

[L(L - y) 1 Ly L 11] 
E.W. = P 2 3" + 2 + 2(L - y) 2" 2: 3" w 

= p[ L(L 3- y) + L: ]w. 

L 

L 55 55 L 05 

free 
(a) 

L 

L[bJ 
~ 

(b) 

L 

LU 
WW 

(e) 

Figure 4-13. 
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Equating internal and external work gives 

pL2U - Ly - y2 
Mp = 6 SL - 4y 

Minimizing Mp with respect to y gives 

or 

and 

y = 2.1SL which is discarded 

y = O.3SL 

pU 
Mp = 14.14' 

(b) Let the failure pattern be as shown in Fig. 4-13c. Then, 

w w 
I.W. = 2MpL - + 2Mpx-

x x 

= e~L + 2ix)w 

[2LX 1 2xL 1 1J 
E. W. = p 2 3 + 2 3 + (L - 2x)L 2 w 

_ [2LX (L - 2X)LJ 
- p 3 + 2 w. 

Equating internal and external work results in 

M = pL 3Ux - 2x2L 
p 12 L + x 

Minimizing Mp with respect to x gives 

x = -1.87 L or x = O.S4L which are impossible. 

Thus, the first alternate (a) controls. 
The yield line mechanism in circular plates subjected to uniform or 

concentrated loads have a radial pattern. The failure mode is conical in 
shape as illustrated in Example 4-9. This circular .pattern must also be 
investigated for rectangular plates under concentrated loads. 

Example 4·9 

Find the moment in a simply supported circular plate due to (a) uniform 
load p and (b) concentrated load F in the middle. 
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Figure 4-14. 

Solution 

(a) From Fig. 4-14 using w as the deflection in the middle, 

i2'lT w 
1. W. = Mpa d<l> -

o a 

= 2'TTMpw 

E. W. = ('TTa2p/3)w 

and 

Mp = pa2/6. 

(b) Again from Fig. 4-14 using w as the deflection in the middle, 

E.W. = F(w) 

and 

F 
Mp = 2'TT. 

It is of interest to note that Mp in this case is independent of the radius. 

Example 4-10 

Find the moment in a square plate subjected to a concentrated load F in 
the middle if the plate is (a) simply supported on all sides or (b) fixed on 
all sides. 

Solution 

(a) From Figure 4-15a, using a straight line mechanism with a deflection, 
w, in the middle 

w 
4(Mp)(a) a/2 = F(w) 

Mp = O.125F. 
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(Q) (b) 

fixed 

(e) (d) 

Figure 4-15. 

From Figure 4-1Sb, using a circular mechanism with a deflection, w, in the 
middle 

2(2'lTMp)w = F(w) 

Mp = O.08F. 

Hence, the straight line mechanism controls. 
(b) From Figure 4-1Sc, using a straight line mechanism with a deflection, 

w, in the middle 

2[ 4(Mp)(a) a~2Jw = F(w) 

Mp = O.063F. 

From Figure 4-1Sd, using a circular mechanism with a deflection, w, in the 
middle 

2(2'lTMp)w = F(w) 

Mp = O.08F 

and the circular mechanism controls. 
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Figure 4-16. 

A possible failure mechanism that occurs near corners of reinforced 
concrete slabs is shown in Fig. 4-16. Experimental (Moy 1981) and theo­
retical evaluation (Jones 1966) showed that for square slabs without corner 
reinforcement, this mechanism results in a maximum moment that is about 
10% higher than that obtained from a straight line mechanism. For slabs 
with small acute corner angles and without adequate corner reinforcement, 
the maximum moment is about 25% higher than that obtained from straight 
line mechanisms. Thus for reinforced concrete slabs with sharp corners, 
the plastic moments developed previously must be increased accordingly. 

Another failure mechanism that occurs in long narrow plates is shown 
in Fig. 4-17 and should be investigated together with other failure modes. 

Problems 

4-7 Find Mp in the square base plate (Fig. P4-7) due to uniform load p. 
4-8 Find Mp in Problem 4-7 if a concentrated load F is applied at the 
middle of the free edge. 
4-9 The internal vessel tray (Fig. P4-9) is assumed fixed at the outer edge. 
Determine Mp due to a concentrated load in the middle. 
4-10 Determine Mp in the triangular plate shown in Fig. P4-1O due to 
uniform load p. 
4-11 Find Mp in the rectangular balcony (Fig. P4-11) with two adjacent 
sides fixed and the opposite corner supported by a column. The balcony 
is uniformly loaded with 75 psf. How will reinforcing bars be arranged. 

Figure 4-17. 
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Table 4-1. Plastic bending moments in various plates 

Case 

1. Uniform load, p simply supported 
edge 

2. Uniform load, p fixed edge 

3. Concentrated load, F, in the middle 
simply supported edge 

4. Concentrated load, F, in the middle 
fixed edge 

5. Uniform load, p simply supported 
edges 

L 

6. Uniform load, p, fixed edges 

Maximum Moment 

pr2 
M=­

p 6 

F 
M=-

p 2'lT 

F M=-
p 4'lT 

139 



7. Concentrated load, F, in the middle 
simply supported edges 

8. Concentrated load, F, in the middle 
fixed edges 

9. Uniform load, p, simply supported 
edges 

a 

10. Uniform load, p, fixed edges 

a 

11. Concentrated load, F, at the centroid 
simply supported edges 

a 

12. Concentrated load, F, at the centroid 
fixed edges 

6 
a 

F 

8 

F 
471' 

_ pa2 

M; - 144 

F Ma 
p - 60 

F 
120 

aThese bending moments are to be increased by a factor of 1.25 to account for sharp angle 
effect at the corners of reinforced concrete slabs. 

140 
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4-4 Design Concepts 

The plastic theory is used as an approximation for determining maximum 
moments in plates that cannot be solved by the classical plate theory due 
to complex geometry, boundary conditions, or applied loading. In many 
structures this approximation is adequate for design purposes. When a 
more accurate analysis is needed, the plastic theory is used first as an 
approximation followed by a more rigorous analysis such as the finite 
element method. Table 4-1 lists the maximum plastic moment for some 
frequently encountered plates with various loading and boundary condi­
tions. It should be noted that the deflection due to plastic design is larger 
than that obtained from the elastic theory due to reduced thickness. Thus, 
extra precaution must be given to the design of components that cannot 
tolerate large deflections such as cover plates in flanged openings. 

Equation (4-8) for plastic bending of a plate is used by numerous inter­
national codes to establish an upper limit on the allowable bending stress 
values. The ratio obtained by dividing Eq. (4-7) by Eq. (4-8) is 1.5 and is 
referred to as the shape factor. It indicates that for a given bending moment, 
plastic analysis of plates results in a stress level that is 50% lower than that 
determined from the elastic theory for the same factor of safety. Accord­
ingly, many standards such as the ASME Boiler and Pressure Vessel Code 
use an allowable stress for plates in bending that is 50% higher than the 
tabulated allowable membrane stress value. 



5 

Plates of Various Shapes and 
Properties 

5-1 Introduction 

Many structures (Fig. 5-1) consist of plates with shapes other than rectan­
gular or circular. In this chapter a brief discussion of elliptic and triangular 
plates is given. The solution of other shapes is obtained by approximate 
solutions similar to those discussed in Chapter 4 or by a finite element 
analysis. 

Many structural components such as bridge decks, reinforced concrete 
slabs, corrugated sheet plates, and composite materials (Fig. 5-1) have 
physical properties that are different in the x- and y-axes. Accordingly, the 
equations derived in Chapter 1 cannot be used directly to analyze these 
components. Rather, a modified theory is needed and is referred to as the 
orthotropic plate theory. This theory is briefly discussed in this chapter. 

5-2 Elliptic Plates 

The shape of an elliptic plate is expressed by the equation 

x2 y2 
- + - = 1 
a2 b2 

(5-1) 

where a and b are the major and minor axes shown in Fig. 5-2. The 
boundary conditions for an elliptic plate with a fixed boundary (Fig. 5-2) 
are given by 

142 

w = 0 and aw = 0 
an 
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Figure 5-1. F1l7 Fighter (Courtesy of Lockheed Advanced Development Com. 
pany.) 
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y 

2a 

Figure 5-2. 

where n is normal to the plate edge. 

N 

An expression for the deflection of a uniformly loaded plate that satisfies 
the boundary conditions is given by 

x2 y2 
( )

2 

w=K a2 + b2 -1. (5-2) 

Substituting Eq. (5-2) into the differential Eq. (1-26) gives 

p a4b4 

K = 8D 3a4 + 3b4 + 2a2b2 (5-3) 

and the moments are obtained from Eq. (1-17) as 

_ _ 4 [2(l L) 2(_1 31J.) Mx - DK x a4 + a2b2 + y a2b2 + b4 

- (1. + ~)J (5-4) 
a2 b2 

M = y [ 2(31J. 1) - 4DK x --;;: + a2b2 

- (IJ. +.1..)J a2 b2 

xy 
Mxy = - 8DK(1 - IJ.) a2b2 ' 

(5-5) 

(5-6) 

For simply supported plates, the expression for deflection is more com­
plicated than that given in Eq. (5-2). The solution has been developed by 
many authors such as Perry (Perry 1950). 
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Example 5·1 

Determine the required thickness of a fixed elliptic plate with a = 20 
inches and b = 15 inches due to a pressure of 100 psi. Let IJ. = 0.3 and 
the allowable stress equal 15,000 psi. 

Solution 

From Eq. (5-3), K = 124,7111D, and Eqs. (5-4), (5-5), and (5-6) give 

( 
X2 y2 1 ) 

Mx = -498,844 45,283 + 34,615 - 261 

( 
X2 y2 1 ) 

My = -498,844 59,751 + 15,976 - 192.5 

Mxy = -7.76xy. 

At x = 20 inches and y = 0 inches, maximum value of Mx = - 2495 
inch-Ibs/inch. 

At x = 0 inches and y = 15 inches, maximum value of My = - 4434 
inch-Ibs/inch. 

At x = 14.02 inches and y = 10.7 inches, maximum value of Mxy = 

1164 inch-Ibs/inch. 

t = 

5·3 Triangular Plates 

6 x 4434 
15,000 

1.33 inches. 

The solution of a uniformly loaded simply supported isosceles right tri­
angular plate, ABO, of length a is obtained from Fig. 5-3. The plate is 
assumed to be loaded over a small area of dimension c with a downward 
load p. In order to find a solution that satisfies the simply supported 
boundary along line AB, we need to apply a mirror image of the load at 
a point on the other side of the boundary on a fictitious extension of the 
plate, ABC, as shown in Fig. 5-3. This fictitious load, p', has an upwards 
direction. The bending couple due to p' and p results in a zero bending 
moment and deflection along boundary AB. The deflection due to p is 
obtained from Example 1-3 with a = band c = d. This gives 

2:'" 2:'" . m'ITX . n'ITy w = w sm--sm-1 mn 
m=ln=l a a 

(5-7) 
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Figure 5-3. 

. m'ITe . m'ITC . n'ITf. n'ITC 
sm--sm--sm-sm-

W = 16p a 2a a 2a (5-8) 
mn 'IT6Dcz mn[(m/a)2 + (n/a)z)2 

For load pi we substitute in Example 1-3 the quantity (a - f) for e and 
the quantity (a - e) for f. This gives 

~ ~ . m'ITX . n'ITy 
Wz = L..J L..J gmn sm -- sm -

m=ln=l a a 
(5-9) 

where 

. m'ITf . m'ITC . n'ITe . n'ITC 
16 I sm - sm -2 sm - sm -2 cos m'IT cos n'IT 

IfJ a a a a 
gmn = 'IT6Dcz mn[(m/a)Z + (n/a)z)2 (5-10) 

and the total solution of the triangular plate is given by 

(5-11) 

The deflection of a simply supported equilateral triangular plate of length 
a is obtained by defining the coordinate system as shown in Fig. 5-4. The 
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B 

a. 

y 

Figure 5-4. 

equations for the boundary conditions become 

y!3 
x = - 6 a at boundary AB 

1 a 
y = - y!3x + 3" at boundary BC 

1 a 
y = y!3 x - 3" at boundary AC. 

Hence, a deflection expression that vanishes at the boundaries is given by 

W = K( x + V; a) (~ + y - ~) (~ - y - ~) 
or 

(5-12) 

Woinowsky-Kreiger (Timoshenko and Woinowsky-Kreiger 1959) ob­
tained a value of K that satisfies the simply supported boundary condition 
in the form of 

(5-13) 

Problems 

5-1 Wha,t is the required thickness of the fixed elliptic plate (Fig. P5-1) 
due to a 7 kgf/cm2 pressure? Let the allowable stress be 1400 kgf/cm2 and 
/J. = 0.26. 
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Figure P5·1. 

5-2 Determine the expressions for Mx, My, and Mxy for a simply supported 
isosceles right triangular plate. 
5-3 Compare the maximum Mx value obtained from Problem 5-2 with 
that obtained from the yield line theory of Chapter 4. 
5-4 Determine the expressions for Mx, My, and Mxy for a simply supported 
equilateral triangular plate. 

5-4 Orthotropic Plate Theory 

In our discussion of plates so far, the material was assumed homogeneous 
and isotropic. In an isotropic material subjected to an axial stress in a 
principal direction, the major deformation occurs in the direction of applied 
load. Lateral deformation of smaller magnitude (Fig. 5-5a) occurs in the 
other principal directions. Also, shearing stress causes only shearing de­
formation as discussed in Section 1-3. The deformation is dependent on 
the elastic constants E and fl. Many materials of construction such as steel, 
aluminum, and titanium fall into this category. 

In orthotropic materials stressed in one of the principal directions, the 
lateral deformation in the other principal directions could be smaller or 
larger than the deformation in the direction of the applied stress depending 
on the material properties (Fig. 5-5b). Also, the magnitude ofthe shearing 
deformation (Jones 1975) is independent of the elastic constants. Some 
materials of construction that fall into this category are bridge steel ducts 
(Troitsky 1987), reinforced concrete, plywood sheets, and composite ma­
terials (ASMEc 1992). 

In anisotropic plates, or orthogonal plates stressed in other than the 
principal axes, the applied stress in a given direction causes not only ex­
tension in the same direction and deformation in the other two directions, 
but also shearing deformation (Fig. 5-5c). Similarly shearing stress causes 
not only shearing deformations, but also axial deformations. The state of 
stress in an anisotropic plate is very complicated and is beyond the scope 
of this book. 

The development of the plate theory for orthotropic materials is similar 
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to that of isotropic materials. The stress-strain Eq. (1-14) can be rewritten 
as (McFarland et al. 1972) 

where E 1, E 2 , E 12 , and G are constants defined as 

E _ Ex 
1 -

1 - /-Lx/-Ly 

Ey 
E2 = ----"--

1 - /-Lx/-Ly 

E12 = /-LyE1 = /-LxE 2 

Txy 
G=-

'Yxy 

(5-14) 
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where 

Ex = modulus of elasticity in the x-direction; 
Ey = modulus of elasticity in the y-direction; 
/-Lx = contraction in the y-direction due to stress in the x-direction; 
/-Ly = contraction in the x-direction due to stress in the y-direction; 

'Txy = shearing stress in the x-y direction; 
'Yxy = shearing strain in the x-y direction. 

The strain deflection expressions given by Eq. (1-12) are also valid for 
orthotropic plates as they area function of geometry only. Substituting 
Eq. (1-12) into Eq. (5-14) gives 

a2w 
-

[:;l [ E, 
E12 

2tl 
ax2 

a2w 
-z ~2 E2 ay2 

0 
a2w 

(5-15) 

ax ay 

The moment expressions given by Eq. (1-17) become 

a2w 

[E:l 
[ D. 

Dxy 

2~J 
ax2 

a2w 
- D~y Dy ay2 

0 
a2w 

(5-16) 

ax ay 

where Dx, Dy, Dxy , and Ds are bending stiffness constants defined as 

E1t3 E2t3 

Dx = 12 Dy = 12 
(5-17) 

D = E12t3 

xy 12 

The shear expressions Eqs. (1-27) and (1-28) become 

(5-18) 

(5-19) 
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where 

H = Dxy + 2Ds. (5-20) 

The plate differential Eq. (1-25) becomes 

a4w a4w a4w 
Dx -4 + 2H -2-2 + Dy -4 = p(x, y). (5-21) 

ax ax ay ay 

Equation (5-21) is normally referred to as the Huber's differential equa­
tion of orthotropic plates (Troitsky 1987). 

For simply supported plates, the expressions for deflection and load are 
given by Eqs. (1-41) and (1-39). For a uniformly loaded plate, Eq. (1-40) 
gives 

where m and n are odd. 
Substituting this expression and Eqs. (1-39) and (1-41) into Eq. (5-21) 

gives 

The deflection is obtained by substituting this expression into Eq. 
(1-41). 

For isotropic plates, Dx = Dy = H = D. Thus, Eq. (5-22) reduces to 
the value of Wmn given in Example 1-2 for isotropic plates. 

For a plate simply supported along two sides and infinitely long along 
the other two sides (Fig. 5-6), we define the deflection as 

Wh = :i: fm(Y) sin m7l'x. 
m=l a 

Then the homogeneous solution of Eq. (5-21) becomes 

m7l' m7l' d 2fm dYm ( )4 ()2 
Dx ----;; fm - 2H ----;; dy2 + Dy dy4 = O. 

Letfm = Cegy . 
Then, 
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and 

m'IT J 1 gl = ± - -- (H + V If2 - D D ) 
2 a Dy x y (5-23) 

and the homogeneous solution becomes 

Wh = i: (Ameg,y + Bm&2Y + Cmeg3Y + Dm&4Y) sin m'ITx. (5-24) 
m=l a 

The particular solution depends on the applied loads. If we assume a 
uniformly loaded plate, then 

where 

p(x) = ~ . m'ITX 
L.J Pm sm--

m=l a 

2 (a . m'ITX 
Pm = ~ Jo p(X) sm -a- dx 

m = 1,3, ... 

b r--------r--~.x 

ss ss 

-l----a---..lJ 
y 

Figure 5·6. 
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Substituting this expression into Eq. (5-21) results in 

m7r m7r d 2am d 4am ( )4 ()2 
Dx -;;-, am - 2H -;;- dy2 + Dy dy4 = Pm' 

The particular solution is 

and 

~ Pm ( a )4 . m7rX 
Wp = L.J - -- sm--. 

m=l Dx m7r a 
(5-25) 

The total solution becomes 

(5-26) 

As y gets larger, the quantities eg,y and eg3Y tend to approach infinity. Thus, 
we must set Am and em to zero and Eq. (5-26) reduces to 

W = i [Bmeg2Y + Dmeg4Y + Pm (~)4] sin m7rx. (5-27) 
m=l Dx m7r a 

Problems 

5-5 Find the maximum stress in a simply supported rectangular plate due 
to a uniform pressure of 8 psi. The plate is constructed of a boron/epoxy 
laminate with Ex = 30,000 ksi, Ey = 3000 ksi, G = 1000 ksi, /J-x = 0.30, 
and /J-y = 0.03. Let a = 30 inches, b = 25 inches, and t = 1/4 inch. 
Compare the result with that of an equivalent isotropic plate of E = 16,500 
ksi and f.L = 0.165. 
5-6 Use Eq. (5-27) to solve Problem 5-5. Let a = 30 inches and b = 100 
inches in Fig. 5-6. 

5-5 Orthotropic Materials and Structural Components 

Solution of Eq. (5-25) requires specific values of the bending stiffness 
constants Dx, Dy, Dxy , and Ds. These constants must be determined ex­
perimentally or empirically for various materials and structural compo-
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nents. Many references are available for orthotropic plate design such 
as McFarland (McFarland et al. 1972), Timoshenko (Timoshenko and 
Woinowsky-Krieger 1959), Troitsky (Troitsky 1987), and Ugural (Ugural 
1981). Some commonly encountered cases are given in this section. 

Reinforced Concrete Slabs 

In a two-way reinforced concrete slab (Fig. 5-7), the bending stiffness 
constants are usually taken as 

D = EJx 
x 1 - f.L~ 

Dxy = f.Le VDxDy 

H = VDxDy 

where 

Ee = modulus of elasticity of concrete; 
Es = modulus of elasticity of steel; 

(5-28) 

Ix = moment of inertia about the neutral axis in an x constant 
direction 

= (lex + (n - 1)lsx) Ix = constant; 

Iy = moment of inertia about the neutral axis in a y constant 
direction 

= (ley + (n - l)lsy)ly=constant; 
lex' ley = moment of inertia of concrete about the neutral axis of composite 

section in the x- and y-axes, respectively; 

'r----f.'!f-_ .. x 

y 

Figure 5-7. 
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1m 1sy = moment of inertia of steel about the neutral axis of composite 
section in the x- and y-axes, respectively, 

n = EsIEc; 
fLc = Poisson's ratio of concrete. 

From Egs. (5-20) and (5-26) it is seen that H2 
(5-23) reduces to two double roots of magnitude 

gl = g3 = g 

gz = g4 = -g 
where 

- m'IT)f;; 4 X g-- -
a Dy 

and Eg. (5-26) can be rewritten as 

w = f [Cern + Dmy)e- gy + Pm (~)J sin m'ITx. 
m~l Dx m'IT a 

Corrugated Plate 

For this type of construction (Fig. 5-8), the bending stiffnesses are given 
by 

s Et3 
D=----~ 

x L 12(1 - fL2) 

Dy = E1 Dxy = HI2 (5-29) 

L Et3 

H = -; 12(1 + fL) 

~---+--~~ .. x 

y 

Figure 5-8. 
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where 

Stiffened Plates 

For this type of construction (Fig. 5-9), the bending stiffnesses are given 
by 

(5-30) 

H = 12(1 _ fJ.2) + Dxy 

where Ix and Iy are the composite moment of inertia of stiffeners and plate 
in the x- and y-directions, respectively. 

Box-Type Bridge Decks 

The stiffness values for this type of construction are discussed in detail by 
Troitsky (Troitsky 1987). The stiffness values of the configuration shown 

Q 

+---J---_x 

y 

Figure 5-9. 



Orthotropic Materials and Structural Components 157 

+----+ __ .x 

t1-~+-____________ +-~ 

in Fig. 5-10 are given by 

where 

Figure 5-10. 

Dx = 12(1 - 112) 

D = EIB 
Y g + c 

2[~ (g + h)d r 
H=------

£. + h + 2[ 
t tb 

E = modulus of elasticity; 

(5-31) 

I B = composite stiffness of rib and plate about the neutral axis in the 
y-direction; 

t = thickness of the plate. 
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The results obtained from Eq. (5-31) tend to be on the unconservative 
side due to the distortion of the deflected cross section shown in Fig. 
5-11. Thus, modifications are needed for the classical solution of Eq. 
(5-31). This modification, which is beyond the scope ofthis book, is referred 
to as the Pelikan-Esslinger method and is detailed by Troitsky. 

Problems 

5-7 Determine the maximum bending moment in the simply supported 
concrete slab shown in Fig. P5-7. The slab is 30 feet long and 18 feet wide. 
How does this moment compare with ACI's method of calculating the 
moment as a simply supported unit strip in the short direction only? Let 
p = 200 psf, Es = 30,000 ksi, n = 10, and flc = 0.15. 
5-8 A corrugated siding for a building (Fig. P5-8) is subjected to 40 psf 
wind load. Determine the maximum bending moment of the panel is as­
sumed simply supported. Let E = 10,000 ksi and fl = 0.33. 
5-9 Part of a ship deck is shown in Fig. P5-9. Determine the maximum 
bending moment assuming the deck to be simply supported. Let E = 
29,000 ksi, p = 75 psf, and fl = 0.30. 
5-10 Refer to Problem 2-8. The side plates have intermediate vertical 
stiffeners between the bulkheads. The stiffeners are 7C14.75 and spaced 
on 2 ft centers. The plate thickness is 11/32 inch. Calculate the maximum 
stress due to uniform internal pressure of 0.10 psi. Use Eq. (5-26) and let 
the top and bottom edges be simply supported and the sides fixed. 
5-11 In Problem 5-10, let the pressure vary as described in Problem 2-8 
with a maximum value of 1.25 psi. Calculate the maximum stress. 
5-12 Oil barges are normally double-hulled due to environmental con­
cerns. Thus, the barge discussed in Problems 2-8,5-10, and 5-11 consists, 
in actuality, of an inner and outer skins as shown in Fig. P5-12. How should 
this sandwich construction be analyzed? 

- - - theoretical deflection line 

-- actual deflection line 

Figure 5-11. 
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11'-6" 

Figure P5-9. 

3/8" plute for outer skin 

I V32" plate for inner skin 

L2' stiffener 
spacing 

Figure P5-12. 

7C14.75 
stiffener 
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25" 

w 
Figure PS·13. 

5-13 A box-type bridge deck is shown in Fig. P5-13. Find the maximum 
bending moment due to a 200 psf uniform load. Let E = 30,000 ksi and 
J.L = 0.29. Assume the deck to be simply supported. 

5·6 Design of Plates with Various Shapes and 
Properties 

With the exception of a few cases, the maximum bending of plates with 
other than rectangular or circular shapes cannot be obtained in a closed 
form solution based on existing theories. Accordingly, the engineer usually 
relies on approximate solutions such as those obtained from plastic theory 
or finite element analysis. Numerous finite element programs are available 
for personal computer applications. Such programs are used to solve simple 
plate problems with complicated geometries and boundary conditions. 

Factors needed in Eq. (5-21) for solving orthotropic plate theory are 
presented in this chapter for commonly encountered types and configu-
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rations. Factors for plates with configurations and properties other than 
those discussed in Sections 5-4 and 5-5 or in other references must be 
obtained experimentally. Calculating these factors as well as the solution 
of the pertinent differential equation can be made expeditiously by writing 
a small computer program. 

The methods given in this chapter for determining the maximum bending 
moment in reinforced concrete slabs have been simplified by ACI for design 
purposes. ACI-318 uses various factors to approximate the load distribution 
in the slabs. It then calculates the maximum moment in the slabs by treating 
them as unit strips in bending and then modifying the moments by various 
factors to approximate orthotropic plate solution. 



6 

Membrane Theory of Shells of 
Revolution 

6-1 Basic Equations of Equilibrium 

The membrane shell theory is used extensively in designing such structures 
as flat-bottom tanks, pressure vessel components (Fig. 6-1) and dome roofs. 
The membrane theory assumes that equilibrium in the shell is achieved by 
having the in-plane membrane forces resist all applied loads without any 
bending moments. The theory gives accurate results as long as the applied 
loads are distributed over a large area of the shell such as pressure and 
wind loads. The membrane forces by themselves cannot resist local con­
centrated loads. Bending moments are needed to resist such loads as dis­
cussed in Chapter 8. The basic assumptions made in deriving the membrane 
theory (Gibson 1965) are 

1. The shell is homogeneous and isotropic. 
2. The thickness of the shell is small compared to its radius of curvature. 
3. The bending strains are negligible and only strains in the middle surface 

are considered. 
4. The deflection of the shell due to applied loads is small. 

In order to derive the governing equations for the membrane theory of 
shells, we need to define the shell geometry. The middle surface of a shell 
of constant thickness may be considered a surface of revolution. A surface 
of revolution is obtained by rotating a plane curve about an axis lying in 
the plane of the curve. This curve is called a meridian (Fig. 6-2). Any point 
in the middle surface can be described by first specifying the meridian on 
which it is located and second by specifying a quantity, called a parallel 
circle, that varies along the meridian and is constant on a circle around 

163 
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Figure 6-1. A pre:ssure vessel. (Courtesy of the Nooter Corp., St. Louis, MO.) 

the axis of the shell. The meridian is defined by the angle e and the parallel 
circle by <I> as shown in Fig. 6-2. 

Define r (Fig. 6-3) as the radius from the axis of rotation to any given 
point 0 on the surface; rl as the radius from point 0 to the center of 
curvature of the meridian; and r2 as the radius from the axis of revolution 
to point 0, and it is perpendicular to the meridian. Then from Fig. 6-3, 

r = r2 sin <1>, ds = rl d<l>, and dr = ds cos <1>. (6-1) 

The interaction between the applied loads and resultant membrane forces 
is obtained from statics and is shown in Fig. 6-4. Shell forces Nq, and No 
are membrane forces in the meridional and circumferential directions, 
respectively. Shearing forces Nq,o and Noq, are as shown in Fig. 6-4. Applied 
load Pr is perpendicular to the surface of the shell; load Pq, is in the me­
ridional direction; and load Po is in the circumferential direction. All forces 
are positive as shown in Fig. 6-4. 

The first equation of equilibrium is obtained by summing forces parallel 
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Figure 6-2. 

to the tangent at the meridian. This yields 

parallel 
circle 

NOlj>r1 dcfJ - (NOIj> + a~<I> dcfJ )r1 dcfJ - Nlj>r de 

+ (NIj> + a~<I> dcfJ )(r + :~ dcfJ) de 

165 

+ plj>r de r1 dcfJ - NOr1 dcfJ de cos cfJ = O. (6-2) 

z 

Figure 6-3. 
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Figure 6-4. 

The last term in Eq. (6-2) is the component of Ne that is parallel to the 
tangent at the meridian. It is obtained from Fig. 6-5a by finding the com­
ponents FI and F2. These are expressed as 

de ( aNe ) de FI + F2 = (Nerl d</» 2"" + Ne + ae de r l d</> 2· 

Neglecting terms of higher order results in 

FI + F2 = Nerl d</> de. 

The component of FI and F2 that is parallel to the tangent at the meridian 
is shown in Fig. 6-5b and is given by 

Nerl d</> de cos </>. 

This value is shown as the last expression in Eq. (6-2). Equation (6-2) 
can be simplified as 

a aNep _ 
a</> (rN<j» - r l ae - rlNe cos </> + p<j>rrl - O. (6-3) 

The second equation of equilibrium is obtained from summation of forces 
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Ca) 

Cb) 

Figure 6-5. 

in the direction of parallel circles. Referring to Fig. 6-4, 

Nq,ar de - (Nq,a + a~r d<l> ) (r + :~ d<l> ) de 

( aNa ) - Nar1 d<l> + Na + To de (r1 d<l» 

cos <I> de 
+ Par de r1 d<l> - Neq,r1 d<l> 2 

_ (N aNeq, de) ( drh) cos <I> de = 0 
aq, + ae r1 'I' 2 . (6-4) 

The last two expressions in Eq. (6-4) are obtained from Fig. 6-6 and are 
the component of Naq, in the direction of parallel circles. Hence, from Fig. 
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6-6a, 

(6-5) 

The value of da. can be expressed in terms of e and <I> as shown in Fig. 
6-6b. 

or 
" da. = , de 

da. = ' de 
'2 tan <I> 

'2 sin <I> de 
'2 tan <I> 

da. = cos <I> de. (6-6) 
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Substituting Eq. (6-6) into Eq. (6-5) results in the expression that is shown 
as the last term in Eq. (6-4). Equation (6-4) can now be simplified to read 

a aNe 
a<l> (,N<j>e) - '1 as + 'INe<j> cos <l> - Pe"l = O. (6-7) 

This is the second equation of equilibrium of the infinitesimal element 
shown in Fig. 6-4. The last equation of equilibrium is obtained by summing 
forces perpendicular to the middle surface. Referring to Figs. 6-4, 6-5, and 
6-7, 

or 

Ne'l sin <l> + N<j>' = PPI' (6-8) 

Equations (6-3), (6-7), and (6-8) are the three equations of equilibrium 
of a shell of revolution subjected to axisymmetric loads. 

6-2 Ellipsoidal and Spherical Shells Subjected to 
Axisymmetric Loads 

In many structural applications, loads such as dead weight, snow, and 
pressure are symmetric around the axis of the shell. Hence, all forces and 
deformations must also be symmetric around the axis. Accordingly, all 
loads and forces are independent of e and all derivatives with respect to 

I 
Pr 

I 
I 

Figure 6-7. 
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e are zero. Equation (6-3) reduces to 

a 
a<l> (rNq,) - rlNa cos <l> = - pq,rrl· (6-9) 

Equation (6-7) becomes 

a 
a<l> (rNaq,) - rlNaq, cos <l> = Parrl' (6-10) 

In this equation, we let the cross shears Nq,a = Naq, in order to maintain 
equilibrium. 

Equation (6-8) can be expressed as 

(6-11) 

Equation (6-10) describes a torsion condition in the shell. This condition 
produces deformations around the axis of the shell. However, the defor­
mation around the axis is zero due to axisymmetric loads. Hence, we must 
set Naq, = Pa = 0 and we disregard Eq. (6-10) from further consideration. 

Substituting Eq. (6-11) into Eq. (6-9) gives 

Nq, = ? 2 <l> [J rIriPr cos <l> - Pq, sin <l» sin <l> d<l> + cJ. (6-12) 
r2 sm 

The constant of integration C in Eq. (6-12) is additionally used to take 
into consideration the effect of any additional applied loads that cannot 
be defined by Pr and Pq, such as weight of contents. 

Equations (6-11) and (6-12) are the two governing equations for design­
ing double-curvature shells under membrane action. 

Example 6-1 

Determine the expressions for N q, and Na due to internal pressure P in an 
ellipsoidal shell (Fig. 6-8) of radii a and b. 

Solution 

For internal pressure we define Pr = P and Pq, = O. Then from Eqs. 
(6-1) and (6-11) 

(1) 
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a 

Figure 6-8. 

The constant C is obtained from the following boundary condition: 

At <I> = 'Tr/2, '2 =, and N4> = pr/2. 

Hence, from Eq. (1) we get C = 0 and N4> can be expressed as 

N = p,.z 
4> 2'2 sin2 <I> 

or 

(2) 

From Eq. (6-11), 

No = P'2( 1 - ;:J. (3) 

From analytical geometry, the relationship between the major and minor 
axes of an ellipse and '1 and '2 is given by 

a2b2 

, = ------------------
1 (a2 sin2 <I> + b2 cos2 <1»3/2 

a2 

'2 = (a2 sin2 <I> + b2 cos2 <1»1/2· 

Substituting these expressions into Eqs. (2) and (3) gives the follow-
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ing expressions for membrane forces in ellipsoidal shells due to internal 
pressure: 

pa2 1 
N = - --,---,-------

'" 2 (a 2 sinz <I> + bZ cosz <I> )1/Z 
(4) 

paz bZ - (aZ - bZ) sin2 <I> (5) 
Na = 2bz (a2 sinz <I> + bZ cos2 <I»1/Z' 

A plot of Eqs. (4) and (5) is shown in Fig. 6-8. Equation (4) for the 
longitudinal force, N"" is always in tension regardless of the alb ratio. 
Equation (5) for Na on the other hand gives compressive circumferential, 
hoop, forces near the equator when the value alb ;::: \12. For large alb 
ratios under internal pressure, the compressive circumferential force tends 
to increase in magnitude and instability may occur for large alt ratios. Thus 
extreme case must be exercised by the engineer to avoid buckling failure. 
The AS ME VIII-2 code contains design rules that take into account the 
instability of shallow ellipsoidal shells due to internal pressure as discussed 
in Section 6-5. 

For spherical shells under axisymmetric loads, the differential equations 
can be simplified by letting r1 = rz = R. Equations (6-11) and (6-12) 
become 

and 
(6-13) 

N", = + [J (Pr cos <I> - P", sin <1» sin <I> d<l> + c]. (6-14) 
sm <I> 

These two expressions form the basis for developing solutions to various 
loading conditions in spherical shells. For any loading condition, expres­
sions for Pr and P", are first determined and then the above equations are 
solved for N", and Na. 

Example 6-2 

A concrete dome with thickness t has a dead load of 'Y psf. Find the 
expressions for N", and Na. 

Solution 

From Fig. 6-9a and Eq. (6-14), 

Pr = - 'Y cos <I> and p", = 'Y sin <I> 

N", = + [J( - 'Y cosz <I> - 'Y sinz <1» sin <I> d<l> + c] 
sm <I> (1) 

R 
N ... = -:--Z,\., ('Y cos <I> + C). 

'+' SIn 'Y . 



Ellipsoidal and Spherical Shells Subjected to Axisymmetric 173 
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(b) 

Figure 6-9. 

As <l> approaches zero, the denominator in Eq. (1) approaches zero. Ac­
cordingly, we must let the bracketed term in the numerator equal zero. 
This yields C = -"y. Equation (1) becomes 

N = - R"y(1 - cos <l» (2) 
<I> sin2 <l> . 

The convergence of Eq. (2) as <l> approaches zero can be checked by 
I'Hopital's rule. Thus, 

N I _ = - R"y sin <l> I = _-_"Y_R 
<I> <1>-0 2 sin <l> cos <l> <1>=0 2 

Equation (2) can be written as 

N = _-_"Y..:....R_ 
<I> 1+cos<l>' 

(3) 
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From Eq. (6-13), Ns is given by 

~s = 'YRC + ~os <I> - cos <1». 

A plot of Nq, and Ns for various values of <I> is shown in Fig. 6-9b. The 
plot shows that for angles <I> greater than 52°, the hoop force, Ns, is in 
tension and special attention is needed for concrete reinforcing details. 

Example 6-3 

Find the forces in a spherical dome due to a lantern load Po applied at an 
angle <I> = <1>0 as shown in Fig. 6-lOa. 

Solution 

Since Pr = Pq, = 0, Eq. (6-14) becomes 

RC 
Nq, =~. 

SIn '!' 

From statics at <I> = <1>0' we get from Fig. 6-lOb 

(Q) 

H A 

~.NCP ~t-\-~ 

(b) 

Figure 6-10. 

(1) 
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Substituting this expression into Eq. (1), and keeping in mind that it is a 
compressive membrane force, gives 

and Eq. (1) yields 

From Eq. (6-13), 

C -Po. 
= -- sm '" R 't'o 

sin <1>0 
N<jJ = -Po~' 

sm 't' 

N = P sin <1>0 
o o sin <1>' 

In this example there is another force that requires consideration. Re­
ferring to Fig. 6-10b, it is seen that in order for Po and N<jJ to be in 
equilibrium, another horizontal force, H, must be considered. The direc­
tion of H is inwards in order for the force system to have a net resultant 
force Po downwards. This horizontal force is calculated as 

Example 6-4 

H = -Po cos <1>0 

sin <1>0 

The sphere shown in Fig. 6-11a is filled with a liquid of density 'Y. Hence, 
Pr and P<jJ can be expressed as 

Pr = -yR(1 - cos <1» 

P<jJ = O. 

(a) Determine the expressions for N<jJ and No throughout the sphere. 
(b) Plot N<jJ and No for various values of <I> when <1>0 = 110°. 
(c) Plot N<jJ and No for various values of\><I> when <1>0 = 130°. 
(d) If 'Y = 62.4 pcf, R = 30 ft, and <1>0 == 110°, determine the magnitude 

of the unbalanced force H at the cylindrical shell junction. Design the 
sphere, support cylinder, and the juru::tion ring. Let the allowable stress 
in tension be 20 ksi and that in compression be 10 ksi. 

Solution 

(a) From Eq. (6-14), we obtain 

N - -yR2 (! . 2 '" ! 3 ) 
<jJ - sin2 <I> 2 sm 't' + 3 cos <I> + C . (1) 
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As c!> approaches zero, the denominator approaches zero. Hence, the 
bracketed term in the numerator must be set to zero. This gives C = -113 
and Eq. (1) becomes 

(2) 

The corresponding NfJ from Eq. (6-13) is 

- 2 [1 1 (3 )] NfJ - -yR 2 - cos c!> - 3 sin2 c!> cos c!> - 1 . (3) 

As c!> approaches '11', we need to evaluate Eq. (1) at that point to ensure 
a finite solution. Again the denominator approaches zero and the bracketed 
term in the numerator must be set to zero. This gives C = 113 and Eq. 
(1) becomes 

N<j> = 6 ~R: c!> (3 sin2 c!> + 2 cos3 c!> + 2). (4) 
sm 

The corresponding NfJ from Eq. (6-13) is 

NfJ = -yR2 U -cos c!> - 3 Si~2 c!> (cos3 c!> + 1) J. (5) 

Equations (2.) and (3) are applicable between 0 < c!> < c!>o, and Eqs. (4) 
and (5) are applicable between C!>O < c!> < '11'. 

(b) A plot of Eqs. (2) through (5) for C!>O = 110° is shown in Fig. 6-11b. 
N<j> below circle C!>O = 110° is substantially larger than that above circle 

(Q) 

Figure 6-11. 
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Figure 6-11 (continued) 
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110°. This is due to the fact that most of the weight of the contents is 
supported by the spherical portion that is below the circle <Po = 110°. Also, 
because N q, does not increase in proportion to the increase in pressure as 
<P increases, Eq. (6-13) necessitates a rapid increase in Ne in order to 
maintain the relationship between the left- and righthand sides. This is 
illustrated in Fig. 6-11b. 

A plot of Nq, and Ne for <Po = 130° is shown in Fig. 6-11c. In this case, 
Nq, is in compression just above the circle <Po = 130°. This indicates that 
as the diameter of the supporting cylinder gets smaller, the weight of the 
water above circle <Po = 130° must be supported by the sphere in compres­
sion. This results in a much larger Ne value just above <Po = 130°. Buckling 
of the sphere becomes a consideration in this case. 

(c) From Fig. 6-11b for <Po = 110°, the maximum force in the sphere is 
Ne = 1.23 ,,/R2. The required thickness of the sphere is 

1.23( 62.4)(30)2/12 
t = 20,000 

= 0.29 inch. 

A free body diagram of the spherical and cylindrical junction at <Po = 110° 
is shown in Fig. 6-11d. The values of Nq, at points A and B are obtained 
from Eqs. (2) and (4), respectively. The vertical and horizontal components 
of these forces are shown at points A and B in Fig. 6-11d. The unbalanced 
vertical forces result in a downward force at point C of magnitude 0.7095 
,,/R2. The total force on the cylinder is (0.7095 ,,/R2)(2TI)(R)(sin(180 -
110)). This total force is equal to the total weight of the contents in the 
sphere given by (4/3)( TIR3)"Y. The required thickness of the cylinder is 

0.7095(62.4)302/12 
t = 10,000 

= 0.33 inch. 

Summation of horizontal forces at points A and B results in a compressive 
force of magnitude 0.2583 ,,/R2. The needed area of compression ring at 
the cylinder to sphere junction is 

A 
Hr 0.2583 x 62.4 x 302(30 sin 70) 

IT 10,000 

= 40.89 in. 2 

This area is furnished by a large ring added to the sphere or an increase 
in the thickness of the sphere at the junction. 
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Problems 

6-1 Derive Eq. (6-3). 
6-2 Derive Eq. (6-12). 
6-3 Plot the values of Nq, and Ne as a function of <I> in an ellipsoidal shell 
with a ratio of 3:1. 
6-4 The nose of a submersible titanium vehicle is made of a 2:1 ellipsoidal 
shell. Calculate the required thickness due to an external pressure of 300 psi. 
Let a = 30 inches, b = 15 inches, and the allowable compressive stress = 
10 ksi. 
6-5 Determine the forces in the spherical shelter (Fig. P6-5) due to snow 
load. 
6-6 Determine the values of Nq, and Ne of the roof of the underwater 
habitat (Fig. P6-6). For hydrostatic pressure, let 

Pq, = 0 

Pr = 'Y[H + R(1 - cos <1»] 

6-7 Determine the magnitude of the reaction R in the dome shelter shown 
in Fig. P6-7 due to dead load 'Y. 
6-8 Determine the forces in the missile head (Fig. P6-8) due to load, 'Y, 
induced by acceleration. The equivalent pressure is expressed as 

t I 

Pr = -Po cos2¢ 

PCP = Pocos¢sincp 

Pq, = 'Y sin <I> 

Pr = - 'Y cos <1>. 

P =PoCOS$ 

I t I I I J 

Figure P6-S. 
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Figure P6-7. 

Figure P6-S. 
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6-3 Conical Shells 

Equations (6-11) and (6-12) cannot readily be used for analyzing conical 
shells because the angle <l> in a conical shell is constant. Hence, the two 
equations have to be modified accordingly. Referring to Fig. 6-12, it can 
be shown that 

<l> = 13 = constant 

'2 = s tan a 

N", = Ns . 

Equation (6-11) can be written as 

or since '1 = 00, 

Ns No 
-;:; + s tan a = Pr 

No = PrS tan a 1 
= Pr'2 

N. - Pr' 
0- cos a 

Similarly from Eqs. (6-1) and (6-9), 

! 'l(S sin aNs) - 'lNa sin a = -PsS sin a'l' 

I 

~\ 1\ 
la\ 
I \ 
I \ 5 
I \ 

\ 

Figure 6-12. 

(6-15) 

(6-16) 
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Substituting Eq. (6-16) into this equation results in 

Ns = ~ 1 [f (Ps - Pr tan ex)s ds + C J. (6-17) 

It is of interest to note that while No is a function of N", for shells with 
double curvature, it is independent of N", for conical shells as shown in 
Eqs. (6-16) and (6-17). Also, as ex approaches 0°, Eq. (6-17) becomes 

which is the expression for the circumferential hoop force in a cylindrical 
shell. 

The analysis of conical shells consists of solving the forces in Eqs. 
(6-16) and (6-17) for any given loading condition. The thickness is then 
determined from the maximum forces and a given allowable stress. 

Example 6-5 

Determine the longitudinal and circumferential forces, Ns and No, of 
the mushroom-like concrete shelter shown in Fig. 6-13a due to a dead 
load, 'Y. 

Solution 

From Fig. 6-13, Ps = 'Y cos ex and Pr = -'Y sin ex 
From Eq. (6-16), 

No = -'YS sin ex tan ex. 

From Eq. (6-17), 

Ns = ~ 1 [f ( 'Y cos ex + 'Y sin ex ~~: :)s ds + C] 

At s = L, Ns = O. 
Hence, 

and 

'YS C 
2 cos ex s 

C = _----'-'YL_2 
2 cos ex 

'Y(U - S2) 
Ns = . 

2s cos ex 
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Figure 6-13. 

A plot of No and Ns is shown in Fig. 6-13b. The figure illustrates the 
need for reinforcing bars along the entire length of the shelter and especially 
near the support. Theoretically, reinforcing bars are not needed in the 
hoop direction. They are needed, however, as temperature reinforcement. 

Example 6-6 

Determine the maximum longitudinal and circumferential forces in the 
conical hopper shown in Fig. 6-14 due to internal pressure p. 

Solution 

From Eq. (6-16), the maximum No occurs at the large end of the cone and 
is given by 

( ro ) pro No = p -.- tan u = --. 
sm u cos u 
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Figure 6·14. 

From Eq. (6·17), 

Ns = ~ 1 (J -p tan a s ds + c) 
-1 ( S2) = -;- - p tan a '2 + C . 

(1) 

At s = L N = pro _1_ 
's 2 cos a 

Substituting this expression into Eq. (1), and using the relationships ofEq. 
(6-15), gives C = O. Equation (1) becomes 

N = pr 
s 2cosa 

d pro 
an max Ns = 2 . 

cos a 

It is of interest to note that the longitudinal and hoop forces are identical 
to those of a cylinder with equivalent radius of ro/cos a. 

Problems 

6-9 Determine the maximum values and location of Ns and No in the wine 
glass shown in Fig. P6·9. Let L = 3.00 inches, Lo = 0.25 inches, 'Y = 
0.0289Ib/in3 , and a = 30°. 
6-10 The lower portion of a reactor is subjected to a radial nozzle load 
as shown in Fig. P6-10. Determine the required thickness of the conical 
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Py =Y(L - sleDs a 

Ps:o 

Figure P6·9. 
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section. Use an allowable stress of 10 ksi. What is the required area of the 
ring at the point of application of the load? 
6-11 Solve Example 6·4 for a snow load, q. 

6-4 Wind Loads 

The distribution of wind pressure on shells of revolution is assumed (Flugge 
1967) perpendicular to the surface (Fig. 6-15), and is usually expressed as 

Pr = -P sin <I> cos e] (6-18) 
Po = Po = O. 

I. 24' 

20001b!in 

.1 
Figure P6·10. 
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Figure 6-15. 

This distribution is an approximation of the actual wind pressure on a 
structure. More accurate approximations can be made. However, they are 
too complicated to solve mathematically in a closed-form equation. The 
result obtained from an approximate distribution is well within most ac­
ceptable engineering tolerances and is discussed in this section. The wind 
load (Fig. 6-15) causes a compressive pressure on the windward side of the 
shell and suction on the leeward side of the shell. The total sum of the 
pressure, i.e., windward plus leeward, is equal to the numerical value 
published by various standards for wind loads on structures. The load 
distribution is a function of both <!> and e and the eqUilibrium Eqs. (6-3), 
(6-7), and (6-8) are valid for obtaining membrane forces in the shell due 
to wind loads. Substituting Eq. (6-18) into Eq. (6-8) gives 

(6-19) 

Using this equation to eliminate Ne from Eqs. (6-3) and (6-7) and using 
Neq, = Nq,e results in 

aNp + (r1) r1 aNq,e 1 + - Nq, cot <!> - - -- = -pr1 cos <!> cos e 
aq, r2 r ae (6-20) 
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and 

aNpe '1 1 aNp . '" + 2 - N<pe cot <I> + -:---:i: = P'1 sm e. (6-21) 
a'f' '2 sm 'f' ae 

Thus, membrane forces in shells of revolution due to wind loads are 
obtained by solving first Eqs. (6-20) and (6-21) for the two forces N<p and 
N<pe. Then Eq. (6-19) is solved for Ne. 

For spherical shells,'1 = '2 = R. Also, the membrane forces are assumed 
distributed so that Ne and N <p have their maximum value at e = 0° and 
180°, as these are the locations for maximum wind load (Fig. 6-15). The 
shell acts similar to a beam under bending. The shearing force N<pe is a 
maximum at e = 90° where N<p and Ne are zero. The three membrane 
forces can be expressed as 

N<p = C<p cos e ] 
N<pe = C<pe sin e 
Ne = Ce cos e 

(6-22) 

where C<p' C<pe, and Ce are functions of <I> only. Substituting Eq. (6-22) into 
Eq. (6-20) results in 

dCp __ 1_ __ 
d<l> + 2C<p cot <I> sin <I> C<pe - pR cos <1>. (6-23) 

Similarly, substituting Eq. (6-22) into Eq. (6-21) gives 

dCpe __ 1_ _ 
d<l> + 2C<pe cot <I> sin <I> C<p - pRo (6-24) 

The solution of Eqs. (6-23) and (6-24) can best be obtained by defining 
functions U <p and V <p as 

U<p = C<p + C<pe ] 
V<p = C<p - C<pe. 

Adding Eqs. (6-23) and (6-24) gives 

~( __ 1) __ 
d<l> + 2 cot <I> sin <I> U<p - pR(1 cos <1». 

This is a partial differential equation of the form 

~~ + A(x)y = B(x) , 

(6-25) 

(6-26) 
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the solution of which is given by 

Y = _1_ J B(x)efA(x)dx dx. 
efA(x)dx 

The quantity efA(x)dx = ef (2cot4>-(1/sin4»)dx 

= e2Insin4>-lntan(4)12) 

= sin2 <I> cot( <1>/2). 

The quantity J B(x)efA(x)dx = r pR(1 - cos <I»sin2 <I> cot(<I>/2) 

= r pR sin3 <I> 

-pR 
= -3- [cos <I>(sin2 <I> + 2) - 2]. 

Thus, U4> becomes 

U4> = 3 sin2 ;~~t(<I>/2) [cos <I>(sin2 <I> + 2) - 2]. 

Similarly, V4> in Eq. (6-25) is obtained by subtracting Eqs. (6-23) and (6-
24) and following the above procedure. This gives 

and 

Similarly 

V4> = 3 sin2 :~n(<I>/2) [cos <I>(sin2 <I> + 2) - 2] 

c - Up + Vp 
4> - 2 

pR[ cos <I>(sin2 <I> + 2) - 2]cos <I> 
3 sin3 <I> 

c _ Up - Vp 
4>0 - 2 

pR[cos <I>(sin2 <I> + 2) - 2] 
3 sin3 <I> 

With C4> and C4>O known, Eq. (6-22) is solved for N4> and N4>o. The value 
of No is obtained from Eq. (6-19). 
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For conical shells, Fig. 6-12 and Eq. (6-15), define the geometry. Re­
placing Nq,a with Nsa and defining ds = r d <\>, we get from Eq. (6-21), 

dNsa 2 . 
--+-Nsa =psm9 

ds s 

which upon integrating gives 

N =psin9(~ c) 
sa S2 3 + (6-27) 

where C is a constant obtained from the boundary conditions. Similarly, 
Eq. (6-20) reduces to 

( s C s sin a) N = --- --- cos9 
s p 6 sin a S2 sin a 2 

and Eq. (6-19) for the hoop force becomes 

No = -ps sin a cos 9. 

Problems 

6-12 Derive Eqs. (6-20) and (6-21). 
6-13 Derive Eqs. (6-27) and (6-28). 

(6-28) 

(6-29) 

6-14 The auditorium dome (Fig. P6-14) is subjected to a wind pressure, 
p, of 12 psf. Determine the maximum forces and their location. 

Figure P6-14. 
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4m 

Figure P6-15. 

6-15 The picnic shed shown in Fig. P6-15 is subjected to a wind pressure, 
p, of 50 kgf/m2. Determine the maximum forces and their location. 

6-5 Design of Shells of Revolution 

The maximum forces for various shell geometries subjected to commonly 
encountered loading conditions are listed in numerous references. One 
such reference is by NASA (Baker et al. 1968), where extensive tables and 
design charts are listed. Flugge (1967) contains a thorough coverage of a 
wide range of applications to the membrane theory, as does Roark and 
Young (1975). 

Extra care should be taken in the design of shallow ellipsoidal heads 
subjected to internal pressure. Example 6-1 illustrated the possibility of 
inelastic instability in the circumferential direction of an ellipsoidal head 
due to internal pressure. Many codes have provisions and design aids for 
avoiding such instability, which tends to occur in heads subjected to low 
pressures and having large diameter-to-thickness ratios of over about 230. 
The ASME VIII-2 code provides a chart (Fig. 6-16) for designing ellipsoidal 
heads with various alb ratios. The design is based on approximating the 
geometry of a head with a spherical radius, L, and a knuckle radius, r, as 
defined in Fig. 6-16. The required thickness of a specific head is determined 
from Fig. 6-16 by knowing the values of L, r, base diameter of the head, 
applied pressure, and allowable membrane stress. 

Example 6-7 

Some of the commonly used boiler heads in the United States have an alb 
ratio of about 2.95. This corresponds to L = D and r = 0.06D. Determine 
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the required thickness of this head if D = 14 ft, P = 75 psi, and a = 

20,000 psi. Calculate the required thickness from Eq. (4) of Example 6-1 
and also from Fig. 6-16. 

Solution 

From Eq. (4) of Example 6-1, the maximum force is at <I> = 0°. Thus, 

pa2 
t=-

2ba 
75 x (168/2)2 

2 x (8412.95) x 20,000 

= 0.46 inch. 

From Fig. 6-16 with pia = 0.0038, and rID = 0.06 we get tiL = 0.005, 

or t = 0.005 x 168 = 0.84 inch (controls). 

Notice that the thickness obtained from Fig. 6-16 is almost double that 
determined from theoretical membrane equations that do not take into 
consideration any instability due to internal pressure. 



7 

Various Applications of the 
Membrane Theory 

7-1 Analysis of Multi-Component Structures 

The quantity Nej>r2 sin2 <I> in Eq. (6-12), when multiplied by 21T, represents 
the total applied force acting on a structure at a given parallel circle of 
angle <1>. Hence, for complicated geometries, the value of Nej> in Eq. 
(6-12) at any given location can be obtained by taking a free-body diagram 
of the structure. The value of Ne at the same location can then be deter­
mined from Eq. (6-11). This method is widely used (Jawad and Farr 1989) 
in designing pressure vessels, flat-bottom tanks, elevated water towers (Fig. 
7-1), and other similar structures. Example 7-1 illustrates the application 
of this method to the design of a water tower. The American Petroleum 
Institute (API 620 1991) Standard has various equations and procedures 
for designing components by the free-body method. This method is also 
useful in obtaining an approximate design at the junction of two shells of 
different geometries. A more accurate analysis utilizing bending moments 
may then be performed to establish the discontinuity stresses of the selected 
members at a junction if a more exact analysis is needed. 

Example 7-1 

The tank shown in Fig. 7-2 is filled with a liquid up to point a. The 
specific gravity is 1.0. Above point a the tank is subjected to a gas 
pressure of 0.5 psi. Determine the forces and thicknesses of the various 
components of the steel tank disregarding the dead weight of the tank. 
Use an allowable tensile stress of 12,000 psi and an allowable compres­
sive stress of 8000 psi. 
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Figure 7-1. Elevated water tank, (Courtesy of Chicago Bridge and Iron Company,) 

Solution 

Tank Roof 

The maximum force in the roof is obtained from Fig, 7-3a, Below section 
a-a, a 0,5 psi pressure is needed to balance the pressure above section 
a-a, Force N,*, in the roof has a vertical component V around the perimeter 
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of the roof. Summation of forces in the vertical direction gives 

21TRV - 1TR2p = 0 

Hence, 

V = 60 lbs/inch. 

V 
N<J> = ~ = 6010.42 

sm 't' 

= 144 lbs/inch. 

From Eq. (6-11) with'l = '2 = R 

No = 144 lbs/inch. 

Since No and N<J> are the same, use either one to calculate the thickness. 
The required thickness is 

t = N<J>lu = 144/12,000 

= 0.012 inch. 

Because this thickness is impractical to handle during fabrication of a 
tank with such a diameter, use t = 1/4 inch. 

40-Ft Shell 

The maximum force in the shell is at section b-b as shown in Fig. 7-3b. 
The total weight of liquid at section b-b is 

W = 62.4(1T)(20)2(35) 

= 2,744,500Ibs. 

Total pressure at b-b is 

p = 0.5 + (62.4/144)(35) 

p = 15.67 psi. 

The total sum of the vertical forces at b-b is equal to zero. Hence, 

2,744,500 - (15.67)(1T)(240)2 + V(1T)(480) = 0 

or 
V = 60 lbs/inch 

and 

N<J> = 60lbs/inch. 



Analysis of Multi-Component Structures 

In a cylindrical shell, '1 = 00 and '2 = R. Hence, Eq. (6-11) becomes 

No = pR = (15.67)(240) = 3761lb/inch. 

The required thickness t = NolO" = 3761112,000. 

t = .031 inch. 
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Use t = 3/8 inch in order to match the conical transition section discussed 
later. 

The unbalanced force at the roof-to-shell junction is 

H = 131lb/inch (inwards). 

The area required to contain the unbalanced force, H, is given by 

A = (H) (shell radius)/allowable compressive stress 

= 131 x 240/8000 = 3.93 inch2• 

Use 1 inch thick x 4 inch wide ring as shown in Fig. 7-4a. 

3/8" cylinder 

(0.) 

(b) 

Figure 7-4. 
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Conical Transition 

At section b-b, force V in the 40-ft shell must equal force V in the cone 
in order to maintain equilibrium as shown in Fig. 7-3b. Thus, 

V = 60lb/inch. 
and 

Ns = 6010.707 = 85 lb/inch. 

In a conical shell'1 = 00 and '2 = Rlcos Cl. Hence from Eq. (6-15) 

Ne = pRlcos Cl = 240(15.67)/0.707 = 5319lb/inch. 

The required thickness at the large end of the cone is 

t = 5319/12,000 = 0.44 inch. 

The horizontal force at point b is Ns cos 45. 

H = 60 lbs/inch (inwards) 

The required area is 
A = 60 x 240/8000 = 1.8 inz. 

Use 3/4 inch thick by 3 inch wide ring as shown in Fig. 7-4b. 
The forces at the small end of the cone are shown in Fig. 7-5a. The 

weight of the liquid in the conical section at point c is 

W = 'IT"/H('i + '1'Z + ~)/3 
= 'IT x 62.4 X 10(102 + 10 x 20 + 20Z)/3 

= 457,400Ibs. 

Total liquid weight is 

W = 2,744,500 + 457,400 = 3,201,900Ibs. 

Pressure at section c-c is 

P = 0.5 + (62.4/144)(45) 

= 20.0 psi. 

Summing forces at section c-c gives 

20.0 x 'IT X 1202 - 3,201,900 - (V x 'IT x 240) = 0 

V = - 3047 lb/inch. 

The negative sign indicates that the vertical component of Ns is opposite 
to that assumed in Fig. 7-5a and is in compression rather than tension. 
This is caused by the column of liquid above the cone whose weight is 
greater than the net pressure force at section c-c. 
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Ns = -3047/0.707 

= - 4309 lblinch (compressive) 

Na = pRlcos a = 20.0 X 12010.707 

= 3395 Ib/inch. 
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Na at the small end is smaller than Na at the large end. Hence, the thickness 
at the small end need not be calculated for Na. Since Ns at the small end 
is in compression, the thickness due to this force needs to be calculated 
because the allowable stress in compression is smaller than that in tension. 
Hence, 

t = 4309/8000 = 0.54 inch. 

Use t = 5/8 inch for the cone. 
The horizontal force at section c-c (Fig. 7-5) is given by 

H = 3047 lblinch inwards. 
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The required area of the ring is 

A = 3047 x 120/8000 = 4S.71 in.2 

This large required area is normally distributed around the junction as 
shown in Fig. 7-6. 

20·Ft Shell 

At section c-c (Fig. 7-S), the value of V in the 20-ft shell is the same as 
V in the cone due to continuity. Thus, 

N.p = V = -3047lb/inch 

No = pR = 20.0 x 120 = 2400 lb/inch. 

At section d-d (Fig. 7-S), the liquid weight is given by 

W = 3,201,900 + (62.4)(-rr)(10)2(2S) 

= 3,692,000 lb 

and the pressure is calculated as 

p = O.S + (62.41144)(70) 

= 30.83 psi. 

12" i" KID' ring 

20' diameter .. I 
Figure 7·6. 



Analysis of Multi-Component Structures 

From Fig. 7-5b, the summation of forces about d-d gives 

3,692,000 - 30.83 X 'iT X 1202 + V X 'iT X 240 == 0 

or 

Ntj> == V == -3047Ib/inch, 

which is the same as that at point c. 

No = pR == 30.83 X 120 

== 3700 lb/inch. 

The required thickness of the shell is governed by Ntj> at section d-d. 

t == 3047/8000 == 0.38 inch. 

Use t == 3/8 inch for bottom cylindrical shell. 

Problems 

201 

7-1 Determine the thickness of all components including stiffener rings 
at points A and B of the steel tower shown in Fig. P7-1. The tower is full 

25' 

50' 

I .. 20' .. I 
Figure P7 -1. 



202 Various Applications of the Membrane Theory 

of liquid to point A. The roof is subjected to a snow load of 25 psf. The 
allowable stress in tension is 15 ksi and that in compression is 10 ksi. 
7-2 Determine the thickness of all components including stiffener rings 
of the elevated water tower shown in Fig. P7-2. The tower is full of liquid 
between points A and D. The allowable stress in tension is 15 ksi and that 
in compression is 10 ksi. 

7-2 Pressure-Area Method of Analysis 

The membrane theory is very convenient in determining thicknesses of 
major components such as cylindrical, conical, hemispherical, and ellip­
soidal shells. The theory, however, is inadequate for analyzing complicated 
geometries such as nozzle attachments, transition sections, and other details 
similar to those shown in Fig. 7-7. An approximate analysis¥of these com­
ponents can be obtained by using the pressure-area method. A more ac­
curate analysis can then be performed based on the bending theories of 
Chapters 8 and 9 or the finite element theory. 

14' 

10' 

30' 

8' 
F 

Figure P7·2. 
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torus 

torus 

I 

-1- rr=r 
Figure 7-7. 

The pressure-area analysis is based on the concept (Zick 1963) that the 
pressure contained in a given area within a shell must be resisted by the 
metal close to that area. Referring to Fig. 7-8a, the total force in the shaded 
area of the cylinder is (r)(P)(L) while the force supported by the available 
metal is (L)(t)(a). Equating these two expressions results in t = Prla which 
is the equation for the required thickness of a cylindrical shell. Similarly 
for spherical shells, Fig. 7-8b gives 

(R<l> )(R)(P)(1I2) = (R<l> )(t)( a) 

t = PRI2a. 

Referring to Fig. 7-9a, it is seen that pressure area A is supported by 
the cylinder wall and pressure area B is supported by the nozzle wall. 
However, pressure area C is not supported by any material. Thus it must 
be supported by adding material, M, at the junction. The area of material 
M is given by 

(P)(R)(r) = (a)(M) 

M = (P(R)(r)la. 
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For a spherical shell, the required area, M, from Fig. 7-9b is 

(P)(R)(r)(1I2) = (O')(M) 

M = (112) (P) (R) (r)/O'. 
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The required area is added either to the shell, nozzle, or as a reinforcing 
pad as shown in Fig. 7-10. 

The pressure-area method can also be applied for junctions between 
components as shown in Fig. 7-11. Referring to Fig. 7-11a, the spherical 
shell must support the pressure within area ABC. The cylindrical shell 
supports the pressure within area AOCD. At point A where the spherical 
and cylindrical shells intersect, the pressure area to be supported at point 
A is given by AOe. However, because area AOC is used both in the ABC 
area for the sphere and A OCD for the cylinder, and because it can be 
used only once, this area must be subtracted from the total calculated 
pressure in order to maintain equilibrium. In other words, this area causes 
compressive stress at point A. The area required is given by 

A = (r)(VR2 - r2)(1I2)(P)/0' 

where 0' is compressive stress. 

reinforcing pad 

added reinforcement 
fa nozzle 

added r.einforcement 
to cylinder 

Figure 7-10. 
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I 
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D - --- C r 
I 

(b) 

(e) 

Figure 7-11. 

In Fig. 7-11b, pressure area A is supported by the cylindrical shell and 
area C by the spherical shell. Area B is supported by the transition shell. 
The transition shell is in tension because area B is used neither in the area 
A nor area B calculations. 

In Fig. 7-11c, pressure area A is supported by the cone and area B is 
supported by the cylinder. The transition shell between the cone and the 
cylinder supports pressure area C which is in tension and area D which is 
in compression. Summation of areas C and D will determine the state of 
stress in the transition shell. 

The pressure-area method is also commonly used to design fittings and 
other piping components. Figure 7-12 shows one design method for some 
components. 
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Pressure-Area Method of Analysis 
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Figure 7-12. (Kellogg 1961.) 
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Find the required thickness of the cylindrical, spherical, and transition 
shells shown in Fig. 7-13. Let p = 150 psi and U' = 15,000 psi. 

Solution 

For the cylindrical shell, 

t = pr/U' 

For the spherical shell, 

150 x 36/15,000 = 0.36 inch. 

t = pR12U' = 150 x 76/2 x 15,000 0.38 inch. 
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Figure 7·13. 

For the transition shell, pressure area B = area of triangle abc - area of 
segment ade 

or 

= 150[(76 cos 41.14 x 50/2 - 142(48.86 x 'TTf180)/2] 

= 202,1101bs-in.2 

t x (J' x 14(48.86'TT/180) = 202,110 

t = 1.13 inch. 

Another application of the pressure-area method is in analyzing conduit 
bifurcations (Fig. 7-14). The analysis of such structures is discussed by 
Swanson (Swanson, et al. 1955) and AISI (AISI 1981). 

Problems 

7-3 Using the pressure-area method, show that the required thickness of 
the bellows expansion joint (Fig. P7-3) due to internal pressure is given by 

where 

d» w; 

s = allowable stress; 

P = internal pressure. 

t = ----"P-..o.( d_+_w----')'------:-­
s(1.14 + 4w/q) 
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A-A 

Figure 7-14. (Courtesy of Steel Plate Fabricators Association.) 

7-4 Calculate the area needed to reinforce the nozzle shown in Fig. P7-4. 
Let p = 800 psi and (J" = 20 ksi. 
7-5 Calculate the thicknesses t1 , t2 , t3 , t4 , and area A of the section shown 
in Fig. P7-5 based on an average allowable stress of 18 ksi. Let p = 250 
psi. 
7-6 The pipe elbow shown in Fig. P7-6 is subjected to a pressure of 4000 
psi. Show that the average stress in the outer surface is equal to 10,170 psi 
and the stress in the inner surface is equal to 28,230 psi. 

7-3 One-Sheet Hyperboloids 

Many structures (Fig. 7-15) are shaped in the form of one-sheet hyper­
boloids. These include cooling towers in power .plants as well as water 

Figure P7-3. 
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Figure P7·4. 
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Figure 7-15. st. Louis Planetarium. (Courtesy of Jennifer Jawad.) 

storage tanks. The governing equation for such structures is 

x2 + y2 Z2 

a2 - b2 = l. (7-1) 

This equation is plotted in Fig. 7-16. At any constant elevation z = c, 
the cross section is a circle. At the surface of this circle, such as x = a, 
Eq. (7-1) reduces to 

(7-2) 

or 

z = ±(b/a)y (7-3) 

which is the equation of a pair of straight lines that lie along the surface 
at that point. 

Equation (7-1) can also be written in polar coordinates as 

1 
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z 

--t--_ 
y 

Figure 7-16. 

or 

This equation can also be written as 

From Fig. 7-16 we get the relationship 

tan <l> = dz/dr. 

Substituting Eq. (7-5) into this expression gives 

b( r2 )112 
tan <l> = ±- 2 2 . 

a r - a 

The equations for r1> r2, and r are expressed as (Flugge 1967) 

-a2b2 

r = -----------------
1 (a2 sin2 <l> - b2 cos2 <l> )3/2 

(7-4) 

(7-5) 

(7-6) 

(7-7) 
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(7-8) 

and 

a2 sin <I> 
(7-9) 

A hyperboloid of a given shape can be expressed by Eq. (7-1) once a 
and b are established. The value of a is obtained at the equator where z = 
O. The value of b is determined at a given elevation z. At any given 
elevation, the value of r is obtained from Eq. (7-4) and the value of <I> is 
calculated from Eq. (7-6). At the same elevation, the values of rl and r2 
are obtained from Eqs. (7-7) and (7-8). 

The dead load of the hyperboloid at any given elevation can be obtained 
from Fig. 7-17 as 

w = f 27rr dz = f 27rrhl d<l> (7-10) 

Substituting the values of rl and r from Eqs. (7-7) and (7-9) into this 
expression and defining Q and dQ (Kelkar and Sewell 1987) as 

Va2 + b2 

Q = cos <I> (7-11) 
a 

Va2 + b2 

dQ = - sin <I> d<l> 
a 

(7-12) 

gives 

(7-13) 

Figure 7·17. 
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where Qo is evaluated at the top of the tower and 'Y is the dead weight per 
unit surface area. 

The direction of '1 in Fig. 7-16 and Eq. (7-7) is opposite that shown in 
Fig. 6-4 due to the negative curvature of the hyperboloid. Accordingly, '1 
must be entered as a negative value in Eqs. (6-10) through (6-12) for the 
equilibrium of shells of revolution. Thus, Eq. (6-11) must be written as 

No N<l> - -- =p '2 hi r" 

(7-14) 

For axisymmetric loads, Eq. (6-10) can be discarded and Eq. (6-12) 
defines the equilibrium of the shell at a given elevation as described in 
Section 7-1. Accordingly, the analysis of a one-sheet hyperboloid due to 
axisymmetric loads consists of establishing first the values of N <l> at various 
elevations in the structure. Then No is calculated from Eq. (7-14) at these 
elevations. 

For nonsymmetric loads such as wind and earthquake forces, the solution 
becomes more complicated. References such as Flugge (Flugge 1967) and 
Gould (Gould 1988) discuss such loading conditions and their solutions. 

Problems 

7-7 Determine the forces N<l> and No in the natural draft cooling tower 
shown in Fig. P7-7a due to dead weight. The thickness profile is shown in 
Fig. P7-7b. Calculate these forces at 20-ft increments in height. Assume 
the weight of the concrete as 150 pcf. 
7-8 Determine the forces in the water tower shown in Fig. P7-8. Disregard 
the dead weight of the tower and consider weight of the water only. Cal­
culate the forces at 3-meter increments. 

7-4 Deflection Due to Axisymmetric Loads 

The deflection of a shell due to membrane forces caused by axisymmetric 
loads can be derived from Fig. 7-18. The change of length AB due to 
deformation is given by 

dv 
- d<l> - w d<l> d<l> . 

The strain is obtained by dividing this expression by the original length 

'1 d<l> 

(7-15) 
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7m 
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I. 13m .1 
Figure P7-S. 

Figure 7-18. 
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The increase in radius r due to deformation (Fig. 7-19) is given by 

vcos<!> - wsin<!> 

or 

8 e = ! (v cos <!> - w sin <!». 
r 

Substituting in this equation the value 

r = r2 sin <!> 

gives 

v W 
Ee = - cot <!> - -

r2 r2 

or 

w = v cot <!> - r28e. 

From Eqs. (7-15) and (7-16) we get 

dv 
d<!> - v cot <!> = r1E<I> - rlEe· 

I / ,cp / 
II 

/ 
/ 

/ 

/ 
/ 

-I 

/ 
/ 

/ 

A 

Figure 7-19. 

(7-16) 

(7-17) 

(7-18) 
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From Eq. (1-13) for two-dimensional problems, 

(7-19) 

Hence, Eq. (7-18) becomes 

dv 1 
d<l> - v cot e!> = Et [N",(r1 + f.Lr2) - Ne(r1 + f.Lr2)] (7-20) 

Let the righthand side of this equation be expressed as g(e!», 

1 
gee!»~ = Et [N",(r1 + f.Lr2) - Ne(r1 + f.Lr2)] (7-21) 

and Eq. (7-6) is reduced to 

v = sin<l>(f ~(<I» + c). (7-22) 
sm e!> 

In order to solve for the deflections in a structure due to a given loading 
condition, we first obtain N", and Ne from Eqs. (6-12) and (6-11). We then 
calculate v from Eqs. (7-21) and (7-22). The normal deflection, W, is then 
calculated from Eq. (7-17). 

The rotation at any point is obtained from Figs. 7-18 and 7-19 as 

1 (dW ) 
"'=~ d<l>+v. (7-23) 

Example 7-3 

Find the deflection at point A of the dome roof shown in Fig. 7-20 due to 
an internal pressure p. Let f.L = 0.3. 

Solution 

For a spherical roof with internal pressure, 

r1 = r2'= R 

Pr = P and p", = o. 
The membrane forces are obtained from Eqs. (6-12) and (6-11) as 

N", = Ne = pR12. 
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Figure 7·20. 

From Eq. (7.21), 

1 
g(<!» = Et [(PRI2)(R)(1 + J-L) - (PRI2)(R)(1 + J-L)] 

= 0 

and Eq. (7.22) gives 

v = C sin <!> 
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at the point of support, <!> = 30°, and the deflection v 
C = o. 

o. Hence, 

From Eq. (7·17) 

W = -r2E9 

and from Eq. (7-19), 

_pR2 
W = 2Et (1 - J-L). 

At point A, the horizontal component of the deflection is given by 

pR2 
Wh = 2Et (1 - J-L) sin <!> 

(1) 
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Hence, with IJ. = 0.3 and <l> = 30° 

0.175pR2 
Wh = Et . 

If we substitute into this expression the quantity R = 2r which is obtained 
from Fig. 7-20, we get 

0.7pr2 
Wh =-et. (2) 

It will be seen in the next chapter that the deflection of a cylinder due 
to internal pressure is given by 

pr2 
W = Et (1 - 1J./2) 

or, for IJ. = 0.3, 

0.85pr2 
W= 

Et 
(3) 

A comparison of Eq~. (2) and (3) shows that at the roof-to-cylinder 
junction there is an offset in the calculated horizontal deflection. However, 
this offset does not exist in a real structure because of discontinuity forces 
that normally develop at the junction. These forces consist of local bending 
moments and shear forces. Although these forces eliminate the deflection 
offset, they do create high localized bending stresses. It turns out that these 
localized stresses are secondary in nature and can be discarded in the design 
of most structures as described in the next chapter. 
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Bending of Thin Cylindrical 
Shells due to Axisymmetric 
Loads 

8-1 Basic Equations 

The membrane forces discussed in the last two chapters are sufficient to 
resist many commonly encountered loading conditions. At locations 
where the deflection is restricted or there is a change in geometry such as 
cylindrical-to-spherical shell junction', the membrane theory is inadequate 
to maintain deflection and rotation compatibility between the shells as 
illustrated in Example 7-3. At these locations discontinuity forces are de­
veloped which result in bending and shear stresses in the shell. These 
discontinuity forces are localized over a small area of the shell and dissipate 
rapidly along the shell. Many structures such as missiles (Fig. 8-1), pressure 
vessels, and storage tanks are designed per the membrane theory and the 
total stress at discontinuities is determined from the membrane and bending 
theories. In this chapter the bending theory of cylindrical shells is developed 
and in Chapter 9 the bending theory of spherical and conical shells is 
discussed. 

We begin the derivation of the bending of thin cylindrical shells by 
assuming the applied loads to be symmetric with respect to angle e. A free­
body diagram of an infinitesimal section of a cylindrical shell is shown in 
Fig. 8-2. The applied loads p can vary in the x-direction only. At edges 
x = 0 and x = dx the axial membrane force Nx, bending moments Mx, 
and shearing forces Qx are axisymmetric. In the circumferential direction, 
only the hoop membrane force No and bending moments Mo are needed 
for eqUilibrium. There are no shearing forces, Qo, because the applied 
loads are symmetric in the circumferential direction. Summation of forces 
in the x-direction gives the first equation of equilibrium: 

(Nxr de) - (Nx + d;x dx )r de = 0 

221 
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Figure 8-1. The space shuttle Endeavour. (Courtesy of NASA.) 



or 

Basic Equations 

(0) 

(b) 

Figure 8-2. 

Mx+d~XdX 

-+--LJ--Nx+ dNx dx 
dx 

Qx+ dQx dx 
dx 

~x r dx de = o. 
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(8-1) 

This equation indicates that Nx must be a constant. We assume a cylinder 
with open ends and set Nx = O. In Section 8-3, we will discuss the case 
where Nx is not zero. 

Summation of forces in the z-direction gives the second equation of 
equilibrium: 

Qxr de - (Qx + d;x dx ) r de - No dx de + pr dx de = 0 

or 
dQx No ( ) - + - = p. 8-2 
dx r 

Summation of moments around the y-axis gives the third equation of 
equilibrium: 

Mxr de - (Mx + d:x dx )r de + (Qx + d;x dX) (r dB) dx 

dx de dx 
- pr dB 2: dx + 2No 2: dx 2: = o. 
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After simplifying and deleting terms of higher order we get 

dMx _ Q = 0 
dx x • 

Eliminating Qx from Eqs. (8-2) and (8-3) gives 

d2Mx No 
dx2 + -; = p. 

(8-3) 

(8-4) 

Equation (8-4) contains two unknowns, No and Mx. Both ofthese unknowns 
can be expressed in terms of deflection, w. Define axial strain as 

du 
Ex = dx' 

The circumferential strain is obtained from Fig. 8-3 as 

2'TT(r + ilr) - 2'TTr 
Eo = 

or 

ilr 
Eo =­

r 

2'TTr 

-W 
Eo =­

r 

(8-5) 

(8-6) 

where W is the deflection and is taken as positive inwards. the stress-strain 
relationship given by Eq. (1-14) can be written in terms of force-strain 

I 
I 

I 
I 

/ 

", 
;' 

/ 

---- ...... 

I I 
\ I 
\ I 
\ I 

\ / , / , / 

" ;' 

............ _----'.,.," 

Figure 8-3. 
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relationship as 

[Nx] = Et 2 [1 f-l] [Ex]. 
Ne 1 - f-l f-l 1 Ee 

(8-7) 

Notice that the shearing strain, "/xe, is zero in this case due to load symmetry 
in the a-direction. Substituting Egs. (8-5) and (8-6) into the first expression 
of Eg. (8-7) results in 

Et (dU w) 
Nx = 1 _ f-l2 dx - f-l -;: . 

Substituting into this expression the value Nx = 0 from Eg. (8-1), we get 

du W 
- = f-l-. 
dx r 

Similarly, the second term of Eg. (8-7) can be written as 

Et ( W 
Ne = 1 2 - - + 

- f-l r 
dU) 

f-l dx ' 

or upon inserting Eg. (8-8), it becomes 

N __ Etw 
e -

r 

(8-8) 

(8-9) 

The basic moment-deflection relationships of Eg. (1-17) are also appli­
cable to thin cylindrical shells. Referring to the two axes as x and a rather 
than x and y, the first two expressions in Eg. (1-17) become 

(8-10) 

It should be noted that x and a in Eg. (8-10) are not in polar coordinates 
but redefined x- and y-axes. Polar transformation of Eg. (8-10) is given in 
Chapter 11. 

The third expression, Mxy , in Eg. (1-17) vanishes because the rate of 
change of deflection with respect to a is zero due to symmetry of applied 
loads. Also, due to symmetry with respect to a, all derivatives with respect 
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to a vanish and the first expression in Eq. (8-10) reduces to 

d2w 
Mx = - D­

dx2 

and the second expression in Eq. (8-10) becomes 

d2w 
Mo = - f.LD dx2 ' 

From Eqs. (8-11) and (8-12) it can be concluded that 

Mo = f.LMx • 

Substituting Eqs. (8-9) and (8-11) into Eq. (8-4) gives 

d4w Et 
dx 4 + Dr2 w = - p(x)1D 

(8-11) 

(8-12) 

(8-13) 

which is the differential equation for the bending of cylindrical shells due 
to loads that are variable in the x-direction and uniformly distributed in 
the a-direction. Defining 

~4 = ~ = 3(1 - f.L2) (8-14) 
4Dr2 r2t2 

the differential equation becomes 

d4w 
- + 4~4W = - p(x)1D 
dx4 

where p is a function of x. 

(8-15) 

Solution of Eq. (8-15) results in an expression for the deflection, w. The 
longitudinal and circumferential moments are then obtained from Eqs. 
(8-11) and (8-13), respectively. The circumferential membrane force, No, 
is determined from Eq. (8-9). 

One solution of Eq. (8-15) that is commonly used for long cylindrical 
shells is expressed as 

w = elix(C1 cos ~x + C2 sin ~x) 

+ e- 13X(C3 cos ~x + C4 sin ~x) + [(x). (8-16) 

Where [(x) is the particular solution and C1 to C4 are constants that are 
evaluated from the boundary conditions. 

A different solution of Eq. (8-15) that is commonly used for short cy­
lindrical shells is expressed as 

w = C1 sin ~x sinh ~x + C2 sin ~x cosh ~x 

+ C3 cos ~x sinh ~x + C4 cos ~x cosh ~x. (8-17) 
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'he procedure for establishing moments and forces in cylindrical shells 
Nell as defining long and short cylinders is discussed in the following 

sections. 
For sign convention, Mx, Qx, Ne, and Me are all positive as shown in 

Fig. 8-2. The deflection, W, is positive inwards and the rotation, t/J, in the 
x-direction is positive in the direction of positive bending moments. 

8-2 Long Cylindrical Shells 

One application of Eq. (8-16) is of shear forces and bending moments 
applied at the edge of a cylindrical shell, (Fig. 8-4). Referring to Eq. (8-16) 
for the deflection of a shell, we can set the function f(x) to zero as there 
are no applied loads along the cylinder. Also, the deflection due to the 
term eJ3x in Eq. (8-16) tends to approach infinity as x gets larger. However, 
the deflection due to moments and forces applied at one end of an infinitely 
long cylinder tend to dissipate as x gets larger. Thus, constants C1 and C2 

must be set to zero and Eq. (8-16) becomes 

(8-18) 

The boundary conditions for the infinitely long cylinder (Fig. 8-4) are 
obtained from Eq. (8-11) as 

Qo 

Qo 

Figure 8-4. 



o 
0.05 
0.10 
0.15 
0.20 
0.30 
0.40 
0.50 
0.55 
0.60 
0.80 
1.00 
1.20 
1.40 
1.60 
1.80 
2.00 
2.50 
3.00 
3.5 
4.0 
5.0 
6.0 
7.0 
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Table 8·1. Values of functions Aj3x' Bj3x' Cj3x' Dj3x 

1.0000 
0.9976 
0.9907 
0.9797 
0.9651 
0.9267 
0.8784 
0.8231 
0.7934 
0.7628 
0.6354 
0.5083 
0.3899 
0.2849 
0.1959 
0.1234 
0.0667 

-0.0166 
-0.0423 
-0.0389 
-0.0258 
-0.0045 

0.0017 
0.0013 

Mx 

Mo 

-1.0 

Bj3x 

1.0000 
0.9025 
0.8100 
0.7224 
0.6398 
0.4888 
0.3564 
0.2415 
0.1903 
0.1431 

-0.0093 
-0.1108 
-0.1716 
-0.2011 
-0.2077 
-0.1985 
-0.1794 
-0.1149 
-0.0563 
-0.0177 

0.0019 
0.0084 
0.0031 
0.0001 

(Q) 

2.0 

(b) 

4.0 

Figure 8·5. 

C~x 

1.0000 
0.9500 
0.9003 
0.8510 
0.8024 
0.7077 
0.6174 
0.5323 
0.4919 
0.4530 
0.3131 
0.1988 
0.1091 
0.0419 

-0.0059 
-0.0376 
-0.0563 
-0.0658 
-0.0493 
-0.0283 
-0.0120 

0.0019 
0.0024 
0.0007 

6.0 

0.0000 
0.0475 
0.0903 
0.1286 
0.1627 
0.2189 
0.2610 
0.2908 
0.3016 
0.3099 
0.3223 
0.3096 
0.2807 
0.2430 
0.2018 
0.1610 
0.1231 
0.0491 
0.0070 

-0.0106 
-0.0139 
-0.0065 
-0.0007 

0.0006 
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and from Eq. (8-3) as 

Qxlx=o = Qo = :1 . 
x=o 

Substituting Eq. (8-18) into the first boundary condition gives 

Mo 
C4 = 2132D 

and from the second boundary condition 

1 
C3 = - 2133D (Qo + I3Mo)· 
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Hence, the deflection equation for the long cylinder shown in Fig. 8-4 is 

e-~ 

w = 2133D [Mo (sin I3x - cos I3x) - Qo cos I3x]. (8-19) 

By defining 

A~x = e-~(cos I3x + sin I3x) 

B~x = e-~X(cos I3x - sin I3x) 

C~ = e-~x cos I3x 

D~x '= e-~x sin I3x 

(8-20) 

(8-21) 

(8-22) 

(8-23) 

the expression for the deflection and its derivative becomes 

-1 
deflection = wx = 2133D (I3MoB~ + QoC~) (8-24) 

1 
slope = $x = 2132D (2I3MoC~x + QoA~x) (8-25) 

1 
moment = Mx = 213 (2I3MaA~x + 2QoD~) (8-26) 

shear = Qx = - (2I3MoD~ - QoB~). (8-27) 

The functions A~x through D~x are calculated in Table 8-1 for various values 
of I3x. 

Example 8-1 

A long cylindrical shell is subjected to end moment Mo as shown in Fig. 
8-Sa. Plot the value of Mx from I3x = 0 to I3x = 5.0. Also determine the 
distance x at which the moment is about 1 % of the original applied moment 
Mo· 
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Solution 

From Eq. (8-26), 

Mx = MoAl3x· 

The values of AJ3x are obtained from Eq. (8-20) and a plot of Mx is shown 
in Fig. 8-5b. From Eq. (8-26) and Table 8-1, the value of J3x at which Mx 
is equal to about 1 % of Mo is about 2.285. Hence, 

J3x = 2.285 

or 

x = 1.78 Vri for fl = 0.3. 

The significance of the quantity 1.78 Vri is apparent from Fig. 8-5b. It 
shows that a moment applied at the end of a long cylinder dissipates very 
rapidly as x increases and it reduces to about 1 % of the original value at 
a distance of 17.8 Vri from the edge. Many design codes such as the AS ME 
VIII-1 use a similar criterion for defining long cylinders where the forces 
applied at one end have a negligible effect at the other end. 

Example 8-2 

Determine the maximum stress in a long cylinder due to the radial load 
shown in Fig. 8-6a. 

Solution 

From the free-body diagram of Fig. 8-6b, the end load at point A is equal 
to Qo/2. Also, from symmetry the slope is zero at point A, Thus, 

Slope due to Mo + slope due to Qo/2 = O. 

From Eq. (8-25) 

or 

Mo = ~;. 

The maximum longitudinal bending stress = 6MJt2 = 23Q~ 
J3t 

Maximum deflection at point A = ;J3~ + 4~~ = 8~~ 



Long Cylindrical Shells 

r-t 

, 
Ca) 

-;J'(~)(k-
2 Qo Q o 2 

22 
Cb) 

Figure 8·6. 

The circumferential membrane force is obtained from Eq. (8-9) as 

N __ Etw _ EtQo 
e - r 8r~31)· 

The circumferential bending moment is 

3IJ.Qo 
Me = IJ.Mx = 2~t2 

and the total maximum circumferential stress is 

Example 8-3 

231 

Determine the expression for stress in the long cylinder shown in Fig. 
8-7a due to an internal pressure of 100 psi. The cylinder is supported by 
rigid bulkheads. 
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(Q.) 

Q.r---------------~ 

x 

(b) 

Figure 8-7. 

Solution 

Because the internal pressure is considered applied load, Eq. (S-lS) can 
be written as 

W = e-l3x (C3 cos I3x + C4 sin I3x) + f(x) 

and because the pressure is constant along the length of the cylinder, the 
particular solution can be expressed as 

wp = K. 

Substituting this expression in Eq. (S-15) results in 

W = p 

which can also be expressed as 

W = _ pr2 
p Et' 

A free-body diagram of the discontinuity forces at the end is shown in Fig. 
S-7b. The unknown moment and shear forces are assumed in a given 
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direction as shown. A negative answer will indicate that the true direction 
is opposite the assumed one. The compatibility condition requires that the 
deflection at the edge due to pressure plus moment plus shear is equal to 
zero. Referring to Eq. (8-24) and Fig. 8-7; 

-p Mo Qo 0 
4J34D - 2f32D + 2J33D = 

or 

(1) 

Similarly the slope due to pressure plus moment plus shear is equal to zero 
at the edge. Hence, from Eq. (8-24) and Fig. 8-7, 

or 

Mo - ~; = o. (2) 

Solving Eqs. (1) and (2) gives 

p P 
Mo = 2132 and Qo = ~. 

Thus, the deflection is given by Eq. (8-24) and Fig. 8-7 as 

W = 2;D (- iB~ + c~) -4;D· 
At the bulkhead attachment, the circumferential membrane force No is 
zero because the deflection is zero in accordance with Eq. (8-9). The axial 
bending moment is given by Eq. (8-11) as 

d2w pe-~ . 
Mx = - D dx2 = 2132 (sm f3x - cos f3x). 

The circumferential bending moment is given by Eq. (8-13) as 
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The circumferential membrane force is given by Eq. (8-9) as 

-Et ( P ) Na = -r- 2134D (- BJ3x + 2CJ3x - 1). 

longitudinal bending stress crLb = ± 6M)t2 

longitudinal membrane stress crLm = 0 
circumferential bending stress crab = J.LcrLb 
circumferential membrane stress cram = Nalt 

Problems 

8-1 In Example 8-1, assume a shearing force Qo is applied at the end of 
the cylinder rather than Mo. Find the maximum longitudinal moment and 
its location from the edge. Let f..I. = 0.30. 
8-2 A cylindrical container is filled with a fluid to a level a-a (Fig. P8-2). 
The metal temperature at a given time period is 400°F above section a-a 
an 100°F below section a-a. Determine the discontinuity forces in the 
cylinder at section a-a. Let a = 6.5 X 10-6 inch/inchfOF, E = 30,000 ksi, 
and J.L = 0.30. 
8-3 Calculate the longitudinal bending stress at points a and b due to the 
applied loads shown in Fig. P8-3. Let E = 27,000 ksi and J.L = 0.32. 
8-4 Show that for a uniform load over a small length, a, the deflection 
at point A in Fig. P8-4 is given by 

pr2 
w = 2Et (2 - e- J3c cos I3c - e- J3b cos I3b). 

8-5 Find the expression for the bending moment in the water tank shown 
in Fig. P8-5. Let E = 20,000 kgflmm2 and J.L = 0.29. Hint: Calculate first 

Q.I--.,......-=~ 

I 

I R=IO' " t=O.125 

Figure P8-2. 
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100 Yin 200}'in 

Figure PS-3. 

Figure PS-4. 

I. 15m 

Figure P8-S. 

r=30" 

t=5 
mm 
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No in terms of p(x). Next use Eq. (8-9) to calculate wand dw/dx. Then 
use the fixed boundary condition at the bottom to calculate Mo. Mx is then 
obtained from Eq. (8-26). 

8-3 Long Cylindrical Shells with End Loads 

The radial deflection obtained from Eq. (8-18) is based on the assumption 
that the axial membrane force, Nx , in Eq. (8-1) is negligible. However, 
many applications involve pressure and hydrostatic loads that result in axial 
forces. The deflections and slopes due to these axial forces must be de­
termined first and then the deflections and slopes due to edge effects 
described in the previous section are superimposed for a final solution. 
This procedure is illustrated here for a cylindrical shell with end closures 
and subjected to internal pressure. 

Let a cylindrical shell (Fig. 8-8a) be subjected to internal pressure p. 
Then the circumferential, hoop, stress at a point away from the ends is 
obtained from Fig. 8-8b as 

or 

2(YotL = p(2r)L 

pr 
(Yo = -. 

t 

Similarly the longitudinal stress is obtained from Fig. 8-8c as 

-rrr2p = (Yi2-rrr) 

or 

(8-28) 

(8-29) 

The maximum stresses given by Eqs. (8-28) and (8-29) for thin cylindrical 
shells subjected to internal pressure are valid as long as the shell is allowed 
to grow freely. Any restraints such as end closures and stiffening rings that 
prevent the shell from growing freely will result in bending moments and 
shear forces in the vicinity of the restraints. The magnitude of these mo­
ments and forces is determined subsequent to solving Eq. (8-18). The total 
stress will then be a summation of those obtained from Eqs. (8-28) and 
(8-29) plus those determined as a result of solving Eq. (8-18). 

The circumferential and axial strains are obtained from Eqs. (1-14), with 
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(a) 

(b) 

( 0"' 
(c~ 

Figure 8·8. 

'i"xy = 0, (8·28), and (8-29) as 

pr 
EO = Et (1 - j.L/2) 

pr 
Ex = 2Et (1 - 2j.L). 

The radial deflection is obtained from Fig. 8-3 as 

2'lT(r + i1r) - 2'lTr 
Eo = 

2'lTr 

i1r -w 
r r 
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(8-30) 

(8-31) 
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or 

w = -rEo. 

From this expression and Eq. (8-30), we get 

pr2 
w = - Et (1 - fJ./2). 

Example 8-4 

(8-32) 

A stiffening ring is placed around a cylinder at a distance removed from 
the ends as shown in Fig. 8-9a. The radius of the cylinder is 50 inches and 
its thickness is 0.25 inch. Also, the internal pressure = 100 psi, E = 30,000 
ksi, and fJ. = 0.3. Find the discontinuity stresses if (a) the ring is assumed 
to be infinitely rigid and (b) the ring is assumed to be 4 inches wide x 3/8 
inch thick. 

ring 

BA 
r=50" 

(0.) 

(b) 

(e) 

Figure 8-9. 
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Solution 

(a) 

3(1 - 0.32) 

~ = 4 502 X 0.252 = 0.36357 

D = 30,000,000 X 0.253 = 42 925 82 
12(1 - 0.32) ,. . 

From Eq. (8-32), 

100 X 502 . 
wp = 30,000,000 X 0.25 (1 - 0.3/2) = 0.0283 mch. 

From Fig. 8-9b it is seen that for an infinitely rigid ring, the deflection is 
zero. Also from symmetry, the slope is zero and Eqs. (8-24) and (8-25) 
give 

Total deflection at the ring attachment is equal to zero 

Mo Qo 
0.0283 + 2~2D - 2~3D' 

Similarly, the slope at the ring attachment is zero 

Mo Qo 0 
~D - 2~2D = 

From Eq. (2), 

From Eq. (1), 

Mo = 321.53 inch-Ibs/inch. 

and 

Qo = 233.79Ibs/inch. 

Stress in the ring is zero because it is infinitely rigid. 

longitudinal bending stress in cylinder = 6Molt2 = 30,870 psi 

(1) 

(2) 
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circumferential bending stress = 0.3 x 30,870 = 9260 psi 

circumferential membrane stress at ring junction = 0 psi 

total longitudinal stress = 30,870 + ~o~ ~.~~ = 40,870 psi 

total circumferential stress = 9260 psi. 

(b) From Fig. 8-9c, and symmetry, we can conclude that the shear and 
moment in the shell to the left of the ring are the same as the shear and 
moment to the right of the ring. Accordingly, we can solve only one un­
known shear and one unknown moment value by taking the discontinuity 
forces of a shell on one side of the ring only. The deflection of the ring 
due to pressun! can be ignored because the ring width is 16 times that of 
the shell. The deflection of the ring due to 2Qo is given by 

2Qor2 
WR = AE· 

Compatibility of the shell and ring deflections require that 

deflection of shell = deflection of ring 

or, from Fig. 8-9c, 

(deflection due to p - deflection due to Q + deflection due to M)lshell 

= deflection due to 2Qolring 
. 2 

E.. (1 
Et 

) Qo Mo 2Qor2 
- /-1/2 - 2J33D + 2J32D = AE 

Mo - 4.01Qo = - 321.4. (1) 

From symmetry, the rotation of the shell due to pressure plus Qo, plus Mo 
must be set to zero. 

or 

Qo = 2J3Mo· 

Solving Eqs. (1) and (2) gives 

Qo = 122 lbs/inch 

Mo = 167.7 inch-Ibs/inch. 

(2) 

Notice that this moment is about half of the moment in the case of an 
infinitely rigid ring. 
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stress in ring = 2~or = 8130 psi. 

Maximum longitudinal stress in shell occurs at the ring attachment and is 
given by 

O"x = P2r + 6Af = 10,000 + 16,100 = 26,100 psi. 
t t 

Deflection of shell at ring junction is given by 

pr2 ( ) Qo Mo 
w = Et 0.85 - 2(33D + 2(32D 

406,120 
w= 

E 

The circumferential membrane force is 

Etw 
No = (1 - fJ-2)i 

The circumferential bending moment is 

Mo = fJ-Mx = 0.3 x 167.7 = 50.3 inch-Ibs/inch 

2030 6 x 50.3 . 
<To = 0.25 + 0.252 = 8120 + 4830 = 12,959 pSI. 

Problems 

8-6 The cross section of an aluminum beer can is shown in Fig. P8-6. 
Assume the top of the can to be a flat plate connected to an equivalent 
cylinder as shown by the shaded line. Determine the maximum permissible 
internal pressure. Let the shell allowable membrane stress = 30 ksi and 
the shell allowable bending plus membrane stress = 90 ksi. Let the allow­
able bending stress in the top plate = 45 ksi. Assume E = 11 ,000 ksi and 
fJ- = 0.33. 

The pressure obtained from the assumptions made above is much lower 
than the actual pressure in the aluminum can. In the actual can there is 
an extension, or an expansion joint, between the top plate and the cylinder. 
Explain the effect of the expansion joint in increasing the permissible 
pressure. Also, determine the deflection of the top plate due to calculated 
pressure and calculate the membrane stress in the plate if it were treated 
as a spherical shell having a shape of the deflected plate. How does the 
membrane stress in the deflected plate compare with the bending stress of 
a flat plate? 
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0.012" 

I" 

1-----27'2----t--0.005" 

Figure P8-6. 

8-7 Determine the maximum stress in the two cylindrical shells and the 
circular plate shown in Fig. P8-7 due to a pressure in the top compartment 
of 200 psi. Let E = 25,000 ksi and I.l. = 0.25. 

8-4 Short Cylindrical Shells 

It was shown in the previous sections that the deflection due to applied 
edge shearing forces and bending moments dissipates rapidly as x increases 
and it becomes negligible at distances larger than 2.285/~. This rapid re­
duction in deflection as x increased simplifies the solution of Eq. (8-16) by 
letting C1 = Cz = O. When the length of the cylinder is less than about 
2.285/~, than C1 and Cz cannot be ignored and all four constants in Eq. 
(8-16) must be evaluated. Usually the alternate equation for the deflection, 
Eq. (8-17), results in a more accurate solution for short cylinders than Eq. 
(8-16). The calculations required in solving Eq. (8-17) are tedious because 
four constants are evaluated rather than two. 

Example 8-5 

Derive Na due to applied bending moment Mo at edge x = 0 for a short 
cylinder of length L. 



Solution 

Short Cylindrical Shells 

I r=20" 

p=20q I 
P.S.1. 

I 
I 
I 

I 
I 
I 

p=Op.s.i·1 

I 
I 
I 

+=1/4" 

+=3/16" 

Figure P8-7. 

The four boundary conditions are 
Atx = 0 

( d2W) moment = M = - D -
o dx2 

( d3W) shear = 0 = - D dx3 • 

Atx = L 

moment = 0 = _D(ddx2W2) 

shear = 0 = -D(~~). 
The second derivative of Eq. (8-17) is given by 

d2w 
dx2 = 2J32( C1 cos J3x cosh J3x + C2 cos J3x sinh J3x 
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- C3 sin J3x cosh J3x - C4 sin J3x sinh J3x). (1) 
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The third derivative of Eq. (8-17) is given by 

~: = 2j33[C1(cos j3x sinh j3x - sin j3x cosh j3x) 

+ Cz( cos j3x cosh j3x - sin j3x sinh j3x) 

- C3(sin j3x sinh j3x + cos j3x cosh j3x) 

- C4(sin j3x cosh j3x + cos j3x sinh j3x)]. 

Substituting Eq. (1) into the first boundary condition gives 

Substituting Eq. (2) into the second boundary condition gives 

From the third and fourth boundary conditions we obtain 

C = Mo (sin j3L cos j3L + sinh j3L cosh j3L) 
3 2Dj3z sinh j3L - sin j3L 

'and 

C = Mo (sin j3L + sinh j3L) 
4 2Dj3z sinh j3L - sin j3L . 

From Eq. (8-9) 

Problems 

N _ Etw 
9 - r 

= Et (C1 sin j3x sinh j3x + Cz sin j3x cosh j3x 
r 

+ C3 cos j3x sinh j3x + C4 cos j3x cosh j3x) 

8-8 Solve problem 8-4 if the length of the cylinder is 2.0 inches. 

(2) 

8-9 Solve problem 8-3 assuming the total length of the cylinder is 3.0 
inches and the loads are applied at the edges. 
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8·5 Stress Due to Thermal Gradients in the Axial 
Direction 

Thermal temperature gradients in cylindrical shells occur either along the 
axial length or through the thickness of cylinders. Thermal gradients through 
the thickness are important only in thick cylindrical shells (Jawad and Parr 
1989) and are beyond the scope of this book. Stress in a cylindrical shell 
due to temperature gradients in the axial direction can be obtained by 
subdividing the cylinder into infinitesimal rings of length dx. The thermal 
expansion in each ring due to a change of temperature Tx within the ring 
is given by 

where 
a is the coefficient of thermal expansion. Some values of a are shown in 
Table 2-l. 

Since adjacent cylindrical rings cannot have a mismatch in the deflection 
due to temperature Tx at their interface, a pressure Px must be applied to 
eliminate the temperature deflection mismatch. Hence, 

p r2 
_x_ = arT 
Et x 

and 

Px = EtaT)r 

(To = - Pxrlt = - EaTx· (8-33) 

As the cylinder does not have any applied loads on it, the forces Px must 
be eliminated by applying equal and opposite forces to the cylinder. Hence, 
Eq. (8-15) becomes 

d4w 4 4 _ EtaTx 
dx4 + ~ w - rD. (8-34) 

The total stress in a cylinder due to axial thermal gradient distribution 
is obtained by adding the stresses obtained from Eqs. (8-33) and (8-34). 

Example 8·6 

The cylinder shown in Pig. 8-10a is initially at oop. The vessel is heated as 
shown in the figure. Determine the thermal stresses in the cylinder. Let a = 
6.5 X 10-6 inchiinchfP, E = 30,000 ksi, L = 10 ft, t = 0.25 inch, r = 30 
inches, and fl = 0.3. The cylinder is fixed at point A and free at point B. 
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I. L 

(a.) 

~-------------. 

(b) 

Figure 8-10. 

Solution 

, r free 
" edge 

The temperature gradient is expressed as Tx = 300 xl L. The circumferential 
stress due to ring action is given by Eq. (8-33) as 

(fa = - Ea.300x1L 

Equation (8-34) is written as 

d4w Eta. 
dx4 + 4f34w = rD (300xIL). 

A particular solution of this equation in taken as 

w = C1x + C2 

Substituting this expression into the differential equation gives 

C1 = 300ml L 

(1) 
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and 

w = -m(300xIL). 

From Eq. (8-9) 

O'a = Nalt = Ewlr. (2) 

Adding Eqs. (1) and (2) gives 

O'a = 0 

which indicates that the thermal stress in a cylinder due to linear axial 
thermal gradient is zero. 

The slope (Fig. 8-lOb) due to thermal gradient is 

e = dwldx = ra(300IL) 

At the fixed end, bending moments will occur due to the rotation e 
caused by thermal gradients. The boundary conditions at the fixed edge 
are w = 0 and e = O. From Eq. (8-24) and Fig. 8-lOb, 

o = [3Mo + Qo' 

From Eq. (8-25) 

Solving these two equations gives 

Mo = 2m(300)[3D1L 

= 19.63 inch-Ibs/inch 

0' = 6Molt2 = 6 x 19.63/0.252 = 1880 psi. 

Problem 

8-10 A coke drum in a refinery operates at 900°F. The ambient temper­
ature is 100°F. The supporting cylinder is shown in Fig. P8-10. The tem­
perature distribution in the cylinder, (Fig. P8-10) is parabolic between 
points A and B and linear between points Band C. Find the thermal stress 
in the cylinder if it is assumed fixed at both ends. Let a = 7.0 X 10-6 

inchlinch/oF, f.L = 0.30, and E = 29,000 ksi. 

8-6 Discontinuity Stresses 

The design of various components in a shell structure subjected to axisym­
metric loads consists of calculating the thickness of the main components 
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Figure P8-10. 

first using the membrane theory and a given allowable stress. The forces 
due to various boundary conditions, such as those listed in Table 8-2, are 
then determined in accordance with the methods discussed in this chapter. 
In most cases, the magnitude of the discontinuity bending and membrane 
stresses at the junction is high. However, these high stresses are very local 
in nature and dissipate rapidly away from the junction as shown in the 
examples previously solved. Tests and experience have shown that these 
stresses are secondary in nature and are allowed to exceed the yield stress 
without affecting the structural integrity of the components. 

Many Design Codes such as the ASME Pressure Vessel and Nuclear 
codes generally limit the secondary stresses at a junction to less than twice 
the yield stress at temperatures below the creep-rupture range. This stress 
level corresponds to approximately three times the allowable stress because 
the allowable stress is set at two-thirds the yield stress value. The justifi­
cation for limiting the stress to twice the yield stress is best explained by 
referring to Fig. 8-11. The material stress-strain diagram is approximated 
by points ABO in Fig. 8-11. In the first loading cycle, the discontinuity 
stress, calculated elastically, at the junction increases from point A to B 
and then to C as the applied load is increased. The secondary stress is 
allowed to approach twice the yield stress indicated by point C. This point 
corresponds to point D on the actual stress-strain diagram which is in the 
plastic range. 

When the applied loads are reduced, the local discontinuity stress at 
point D is also reduced along the elastic line DEF. The high discontinuity 
stress at the junction is very localized in nature and the material around 



Discontinuity Stress 

Table 8-2. Various discontinuity functions 

Edge Functions 
w 

e 
f3D 

General Functions 
w 

e 

-Ho 
2f33D 

Ho 
2f32D 
o 
2Hof3r 
Ho 
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the localized area is still elastic. Thus, when the applied loads are reduced, 
the elastic material in the vicinity of the plastic region tends to return to 
its original zero strain and causes the much smaller volume of plastic ma­
terial with high discontinuity stress to move from points D to E and then 
to F. Accordingly, at the end of the first cycle after the structure is loaded 
and then unloaded, the highly stressed discontinuity area that was stressed 
to twice the yield stress in tension is now stressed in compression to the 
yield stress value. 

On subsequent loading cycles, the discontinuity stress is permitted to 
have a magnitude of twice the yield stress. However, the high stressed area 
which is now at point F moves to point E and then to point D. The high 
stress with a magnitude of twice the yield stress in the junction remains 
within the elastic limit on all subsequent loading cycles. 

If the secondary discontinuity stress at the junction is allowed to exceed 
twice the yield stress such as point G, then for the first loading cycle the 
strain approaches point H on the actual stress-strain diagram. Download-
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stress 

I 
I 

c/ 
I 

I 
I 

G, 
I 

I D H 

strain 

Figure 8-11. 

o 

ing will follow the path from H to I and then to F. Hence, yielding of the 
junction will occur both in the up and down cycles. Subsequent cycles will 
continue the yielding process which results in incremental plastic defor­
mation at the junction that could lead to premature fatigue failure. 
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Bending of Shells of Revolution 
Due to Axisymmetric Loads 

9-1 Basic Equations 

In Chapter 6 the basic equations of equilibrium for the membrane forces 
in shells of revolution due to axisymmetric loads were developed. Referring 
to Fig. 6-4, it was shown that the two governing equations of equilibrium 
are given by Eqs. (6-9) and (6-11) as 

d 
d<l> (rN<j» - rlNe cos <I> + p<j>rrl = 0 (9-1) 

and 

(9-2) 

In many applications such as at a junction of a spherical to cylindrical 
shell subjected to axisymmetric loads, bending moments and shear forces 
are developed at the junction in order to maintain equilibrium and com­
patibility between the two shells. The effect of these additional moments 
and shears (Fig. 9-1) on a shell of revolution is the subject of this chapter. 
The axisymmetric moments and shears at the two circumferential edges of 
the infinitesimal element are shown in Fig. 9-1. Circumferential bending 
moments, which are constant in the 8-direction for any given angle <1>, are 
applied at the meridional edges of the element. The shearing forces at the 
meridional edges must be zero in order for the deflections, which must be 
symmetric in the 8-direction because the loads are axisymmetric, to be 
constant in the 8-direction for any given angle <1>. 

Summation of forces in Fig. 9-1 parallel to the tangent at the meridian 
results in 

Q(r d8) sin d<l>!2 + (Q + ~; d<l> )(r + :; d<l» d8 sin d<l>!2 = O. 

251 
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de 

Figure 9-1. 

Simplifying this equation gives 

Qr d<l> de = o. 
Adding this expression to Eq. (9-1) gives 

d 
d<l> (rNq,) - rlNe cos <I> - Qr + pq,rrl = O. (9-3) 

Summation of forces perpendicular to the middle surface in Fig. 9-1 gives 

- Q(r de) cos d<l>/2 + (Q + ~; d<l> ) (r + :; d<l> ) de cos d<l>/2 = O. 

Simplifying this expression and adding it to Eq. (9-2) gives 

. d(Qr) 
Noj>r + Nerl sm <I> + # - Prrrl = o. (9-4) 

Summation of moments in the direction of a parallel circle gives 

d~ (Moj>r) - Merl cos <I> - Qrlr2 sin <I> = o. (9-5) 

The second term involving Me in this equation is obtained from Fig. 9-2. 
Equations (9-3) through (9-5) contain the five unknowns Ne, Nq" Q, Me, 

and Mq,. Accordingly, additional equations are needed and are obtained 
from the relationship between deflections and strains. The expressions for 
the meridional and circumferential strains were obtained in Chapter 7 as 
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~\ dill 
1\\/ 

-.lr, \ r2 tan ¢ 
I, , 
I \ , 

(0) 

Figure 9-2. 

Eqs. (7-15) and (7-16) and are given by 
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E~ = (:; - w) /r1 (9-6) 

Ee = (v cot <l> - w)/r2' (9-7) 

The expressions for Ne and N~ are obtained from Eq. (1-14) as 

Et 
N~ = 1 2 (E~ + /-LEe) (9-8) 

-/-L 

Et 
Ne = 1 2 (Ee + /-LE~). (9-9) 

- /-L 
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Substituting Eqs. (9-6) and (9-7) into Eqs. (9-8) and (9-9) gives 

Et [1 (dV ) fJ- ] N = - - - w + - (v cot <!> - w) 
<l> 1 - fJ-2 '1 d<!> '2 (9-10) 

Et [1 fJ- (dV )] No = 1 _ fJ-2 ;; (v cot <!> - w) + ~ d<!> - w . (9-11) 

The expression for change of curvature in the <!>-direction is obtained 
from Fig. 9-3. The rotation (X of point A in Fig. 9-3 is the summation of 
rotation (Xl due to deflection v and rotation (X2 due to deflection w (Fig. 
9-4). From Fig. 9-4a, 

and from Fig. 9-4b, 

Hence, 

dw 
(X2 = '1 d<!>' 

(9-12) 

Similarly the rotation ~ of point B is the summation of rotations due to 
deflection v and w. The rotation due to deflection v is expressed as 

and the rotation due to w is 

A IX 

Figure 9·3. 
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(Q) 

(b) 

Figure 9·4. 

Hence, 

( dv ) / dw d ( dw ) ~ = v + d<l> d<l> '1 + '1 d<l> + d<l> '1 d<l> d<l>. (9-13) 

Due to rotation, the middle surface does not change in length. Thus, from 
Fig. 9-3 

AB = A'B' 

'1 d<l> = '1(dQ + ~ - ex) . 

or, 
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Change in curvature 

1 1 
X = - --

'" ,i '1 

d (v dw ) 
X", = '1 d<l> ~ + '1 d<l> . (9-14) 

The change of curvature in the e-direction is obtained from Fig. 9-5 
which shows the rotation of side AB due to the deformation of element 
ABeD. The original length AB is given by 

AB = '2 sin <I> de. 
After rotation, AB is expressed by 

AB = ,~ sin (<I> + 0.) de. 
Equating these two expressions and assuming small angle rotation yields 

1 1 
---; = - (1 + 0. cot <1» 

'2 '2 

c 

Figure 9-5. 



and from 

we get 

Spherical Shells 

1 1 
Xe = ---; - -

'2 '2 

a cot <I> 
Xe = 

'2 
Substituting Eq. (9-12) into this expression gives 

Xe = 1. (~+ dW) cot <1>. 
'2'1 '1 d<l> 
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(9-15) 

The relationship between moment and rotation is obtained from Eqs. 
(1-6), (1-7), and (1-17) as 

M", = D(X", + f-tXe) 

Me = D(Xe + f-tX",). 

Substituting Eqs. (9-14) and (9-15) into these two expressions gives 

( 1 da f-t ) M", = D - - + - a cot <I> 
'1 d<l> '2 

( 1 f-t da) Me = D - a cot <I> + - - . 
'2 '1 d<l> 

(9-16) 

(9-17) 

(9-18) 

(9-19) 

The eight equations (9-3), (9-4), (9-5), (9-10), (9-11), (9-12), (9-18), and 
(9-19) contain eight unknowns. They are Ne, N"" Q, M"" Me, v, W, and 
a. Solution of these equations is discussed next. 

9-2 Spherical Shells 

The forces and moments throughout a spherical shell due to edge shears 
and moments will be derived in this section. For spherical shells (Fig 
9-1), the radii '1 and '2 are equal to R. Also, the pressures Pr and p", are 
set to zero for the case of applied edge loads and moments. The eight 
pertinent equations derived in Section 9-1 can now be reduced to two 
differential equations. The first equation is obtained by substituting the 
moment Eqs. (9-18) and (9-19) into Eq. (9-5). This gives 

QR2 

D' 
(9-20) 
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The second differential equation is more cumbersome to derive. We start 
by substituting Eq. (9-3) into Eq. (9-4) to delete Na• Then integrating the 
resultant equation with respect to <l> gives 

Net> = -Qcot<l>. 

Substituting this expression into Eq. (9-4) yields 

From Eqs. (9-10) and (9-11) we get 

dv 
d<l> - w = R(Net> - IJ-Na)/Et 

and 

(9-21) 

(9-22) 

(9-23) 

v cot <l> - w = R(Na - IJ-Net»IEt. (9-24) 

Combining Eqs. (9-23) and (9-24) results in 

dv 
d<l> - v cot <l> = R(1 + IJ-)(Net> - Na)IEt. (9-25) 

Differentiating Eq. (9-24) and combining it with Eq. (9-25) gives the expres­
sion for a 

dw _ R [ _ _ dNa _ dNp] 
v + d<l> - Et (1 + IJ-)(Net> Na) d<l> R d<l> . 

Substituting Eqs. (9-21) and (9-22) into this expression results in 

d2 Q dQ 2 
d<l>2 + d<l> cot <l> - Q( cot <l> - IJ-) = Eta. (9-26) 

Equations (9-20) and (9-26) must be solved simultaneously to determine 
Q and a. The exact solution of these two equations is too cumbersome to 
use for most practical problems and is beyond the scope of this book. 
Timoshenko (Timoshenko and Woinowsky-Krieger 1959) showed that a 
rigorous solution of Eqs. (9-20) and (9-26) results in expressions for a and 
Q that contain the terms eAet> and e-Aet> where A is a function of Rlt. These 
terms have a large numerical value for thin shells with large Rlt ratios. 
Substitution of these terms into Eqs. (9-20) and (9-26) for shells with large 
<l> angles results in two equations with substantially larger numerical values 
for the higher derivatives d2Qld<l>2 and d2ald<l>2 compared-,to the other 
terms in the equations. Hence, a reasonable approximation of Eqs. (9-20) 
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and (9-26) is obtained by rewriting them as 

and 

dZQ 
d<l>z = Eta. 

Substituting Eq. (9-27) into Eq. (9-28) gives 

d4Q - + 4>-4Q = 0 
d<l>4 

where 

>-4 = EtRZ/4D ] 
= 3(1 - ~Z)(Rlty 
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(9-27) 

(9-28) 

(9-29) 

(9-30) 

The solution of Eq. (9-29) is similar to that obtained for cylindrical shells 
and is given by either 

or 

Q = eA<j,( C1 sin >-<1> + Cz cos >-<1» 

+ e-II.<I>(C3 sin >-<1> + C4 cos >-<1» 

Q = Kl sin >-<1> sinh >-<1> + K2 sin >-<1> cosh >-<1> + K3 cos >-<1> sinh >-<1> 

+ K4 cos >-<1> cosh >-<1>. 

(9-31) 

(9-32) 

For continuous spherical shells without holes and subjected to edge 
forces, the constants C3 and C4 in Eq. (9-31) must be set to zero in order 
for Q to diminish as <I> gets smaller. Hence, Eq. (9-31) becomes 

Q = ell.<I>(C1 sin >-<1> + Cz cos >-<1». (9-33) 

This equation can be written in a more compact form by substituting for 
<I> the quantity <1>0 - ~ shown in Fig. 9-6. The new equation with redefined 
constants is 

(9-34) 

After obtaining Q, other forces and moments can be determined. Thus, 
from Eq. (9-21), we obtain the longitudinal membrane force 

N<I> = - Cle-II.~ sin(>-~ + C2 ) cot(<I>o - ~). (9-35) 
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Figure 9-6. 

The circumferential membrane force is determined from Eq. (9-22) as 

No = - V2 C1e- At sinO" + C2 - 'TT/4). (9-36) 

The rotation is determined from Eq. (9-28), 

(9-37) 

The moments are obtained from Eqs. (9-18) and (9-19) using only higher 
order derivatives 

M~ = - ~ ~; ] 

= ~ 'A C1e- At sin('A' + C2 + 'TT/4) (9-38) 

.Mo = f-LM~. (9-39) 

The horizontal displacement is obtained from Fig. 9-7 as 

Wh = v cos <I> - W sin <I> 

= (v cot <I> - w) sin <I> (9-40) 

and from Eq. (9-24) 

Wh = ;t (No - f-LNc!» sin <I> (9-41) 

V2'AR 
Et C1e- At sin(<I>o - ') sin('A' + C2 - 'TT/4). (9-42) 

Table 9-1 gives various design values for spherical shells due to applied 
edge loads. 
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Find the location and maximum value of moment Met> due to the horizontal 
force shown in Fig. 9-8. 

Solution 

The first boundary condition at the edge is 

Q = Ho sin <1>0 at, = 0 

and from Eq. (9-34) 

C1 sine - C2) = Ho sin <1>0' 

From Eqs. (9-28) and (9-38) 

-D 1 d3Q 
M = Ii" Et d,3' 

(1) 

Substituting the third derivative of Eq. (9-34) into this expression gives 

-2DCA3e->'" 
Met> = REt [(cos C2)(cos A, + sin A') 

+ (sin C2)(sin A, - cos A')]. 

The second boundary condition at the edge is 

Mo = 0 

or, 

cos C2(1) + sin C2( -1) = O. (2) 
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Q 

Table 9-1. Edge Loads on Spherical Shells 

a 
~---+------:{-~ ..... ---Ho 

Edge Functions' = 0 and <1> = <1>0 

2Ho'A2 . .h - Et sm '1'0 

~~ sin <1>0(2'A sin <1>0 - fL cos <1>0) 

General Functions 

0HorAt sin <1>0 cos('A' + ~) 
- 2Ho'ArAt sin <1>0 cos 'A, 

HoR ,. . -T rio., sm <1>0 sm 'A, 

- ~; [20 'A2e- At sin <1>0 sin ( 'A, + ~) ] 
~~ e- At sin <1>0 [2'A sin <1> cos 'A, - 0 fL cos <1> cos( 'A, + ~) ] 

M'~ ~M' 

Edge Functions, = 0 and <1> = <1>0 

4Mo'A3 
EtR 

2Mo'A2 . .h 
-~sm'l'o 



Q 

M<j> 

Spherical Shells 

Table 9-1. (continued) 

General Functions 

2M)\. . 
-~rx.sm A' 

2\12 Mt2 e- x• COS( A' + *) 
\12 Moe-x. sin ( A' + *) 
4M A3 
__ 0 _ e-x. cos A' 

EtR 

- 2~;A e-x. [\12 A sin <l> COs( A' + *) 
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+ f.L cos <l> sin A' ] 

Notation: M. = jl.M",; N", = - Q cot 4>; Wh = horizontal component of deflection; 0. = 
rotation; ~ = 4>0 - 4>; A = "¢'(Rlt)23(1 - jl.2); jl. = Poisson's ratio. Inward deflection is 
positive. Positive rotation is in direction of positive moments. Tensile N", and N. are positive. 
Positive moments cause tension on the inside surface. Inward Q is positive. 

From Eq. (2) we get 

and from Eq. (1) we get 

Ho--~~------------+----+--------~---Ho 

Figure 9-8. 
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The expression for M<j> becomes 

4DX?e-A~ 
M<j> = sin <P sin ~~. 

REt 

Substituting 

D = 12(1 - fJ.?) 

into the moment expression results in 

M<j> = H~R e-A~ sin <Po sin ~~ 

which is the same as that given in Table 9-1. 
The location of the maximum moment is obtained from 

or 

1T 

~ = 2~· 

The maximum moment is obtained from Eq. (3) as 

M - 0.2079HoR . A-. 
o - ~ sm 'Po· 

Example 9-2 

(3) 

Calculate the required thickness of the hemispherical and cylindrical shells 
in Fig. 9-9a and determine the discontinuity stress at the junction. Let p 
= 200 psi. Allowable membrane stress is 18 ksi and f.L = 0.3. 

Solution 

The required thickness of the cylindrical shell is 

pr 200 x 36 . 
t = -;;:- = 18,000 = 0.40 mch. 

The required thickness of the hemispherical shell is 

pr 200 x 36 . 
t = 20" = 2 x 18,000 = 0.20 mch. 
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(Q) 

(b) 

\~ THo 
IT"' 

Figure 9-9. 
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The discontinuity forces are shown in Fig. 9-9b. The first compatibility 
equation at point a is 

deflection of cylinder due to p + Ho + Mo 

= deflection of hemisphere due to p + Ho + Mo (1) 

The expressions for the deflection of the cylinder are obtained from Eq. 
(8-32) and Table 8-2. For the hemisphere, the expressions are obtained 
from Eq. (1) of Example 7-3 and Table 9-1. Let outward deflection and 
clockwise rotation at point a be positive. Hence, 

3(1 - fL2) 
f3 = 4 362 X 0.42 = 0.3387 

E(O.4)3 5.8608E 
D = 12(1 - 0.32) 1000 

A = 4 e:'~l r 3(1 - 0.32) = 17.2695. 
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Thus Eq. (1) becomes 

(200)(36)2 Ho 
E(O.4) (0.85) - (2)(0.3387)3(5.8608EI1000) 

Mo (200)(36.1)2 
+ (2)(0.3387)2(5.8608EI1000) = (2)(E)(0.2) (1 - 0.3) 

Ho(36.1) (2 x 172695) 2Mo(17.2695)2 
+ E(0.2) . + E(0.2) 

550,800 - 2195.67Ho + 743.67Mo 

= 456,123.5 + 6234.29Ho + 2982.36Mo 

Mo + 3.77Ho = 42.29. (2) 

The second compatibility equation at point a is given by rotation of 
cylinder due to p + Ho + Mo = rotation of hemisphere due to p + Ho 
+ Mo 

Ho Mo . 
o - (2)(0.3387)2(5.8608EI1000) + (0.338~)(5.8608E/1000) 

= 0 _ 2Ho(17.2695)2 _ 4Mo(17.2695)3 
E(0.2) E(0.2)(36.1) 

1.50Mo + Ho = O. (3) 

Solving Eqs. (2) and (3) yields 

Mo = -9.08 inch-Ibs/inch Ho = 13.63Ib/inch 

The negative sign for the moment indicates that the actual moment is 
opposite that assumed in Fig. 9-9b. 

Cylindrical shell 

longitudinal bending stress = 6~o = 340 psi 
t 

longitudinal membrane stress = ~; = 9000 psi 

total longitudinal stress = 9340 psi 
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From Eq. (8-13), 

hoop bending stress = 0.3 x 340 = 100 psi 

deflection at point a = (550,800 - 2195.67Ho + 743.67Mo)/E 

= 514,120IE. 

The hoop membrane force is obtained from Eq. (8-9) as 

Ne = Etw = 5712 lbs/inch 
r 

5712 . 
hoop membrane stress = 0.4 = 14,300 pSI 

total hoop stress = 14,400 psi 

Hemispherical shell 

longitudinal stress = P2r + 6~o 
t t 

(200)(36.1) 6(9.08) 
= 2(0.2) +---0.22 
= 19,410 psi 

From Table 9-1, 

hoop force = P; + HoA - 2MoA21R 

= (200)~36.1) + (13.63)(17.2695) _ 2(9.08)3~~·2695)2 

= 18,480 psi 
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If a spherical shell has an axisymmetric hole, and is subjected to edge 
loads, then Eq. (9-33) must be used to determine the constants Kl through 
K 4 . Other design functions are then established from the various equations 
derived. Table 9-2 lists various equations for open spherical shells. 

Problems 

9-1 Derive Eq. (9-35) 
9-2 What is the maximum stress in the spherical shell and flat plate shown 
in Fig. P9-2 due to internal pressure of 600 psi? Let E = 16,000 ksi and 
,.... = 0.0. 
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Table 9-2. Edge loads in open spherical shells (Baker et al. 1968) 

Q 

M .. 



Spherical Shells 269 

Table 9-2. (continued) 

MO~ __ ~M' 
Q 

M<j> 
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Table 9-2. (continued) 

Notation: Me = j..lMq,; Nq, = - Q cot cI>; Wh = horizontal component of deflection; a = 
rotation; K, = sinh2 A - sin2 A; K2 = sinh2 A + sin2 A; K3 = sinh A cosh A + sin A cos A; 
K4 = sinh A cosh A - sin A cos A; Ks = sin2 A; K6 = sinh2 A; K7 = cosh A cos A; Ks = sinh 
A sin A; K8(O = sinh ~A sin ~A; K9 = cosh A sin A - sinh A cos A; K9(~) = cosh ~A sin ~A 
- sinh ~A cos ~A; KlO = cosh A sin A + sinh A cos A; KlO(~A) = cosh ~A sin ~A + sinh ~A 
cos ~A; Kll(~A) = cosh ~A cos ~A - sinh ~A sin ~A; K12 = cosh A cos A + sinh A sin A; K12(~A) 
= cosh ~A cos ~A + sinh ~A sin ~A; K13(~A) = cosh ~A sin ~A; K'4(~A) = sinh ~A cos ~A. 

9-3 Determine the discontinuity stress at the spherical-to-cylindrical junc­
tion shown in Fig. P9-3. The dimensions of the stiffening ring at the junction 
are 4 inches x 3/4 inch. Let E = 30,000 ksi and f.L = 0.30. 
9-4 The heating compartment in Fig. P9-4 between the two spherical 
shells is subjected to 100 psi pressure. Find the discontinuity stress in the 
top and bottom spherical shells. E = 27,000 ksi and f.L = 0.28. 
9-5 Determine the length L = R where the moment diminishes to 1% 
of moment Mo applied at the free edge in Fig. P9-5. How does this length 
compare with that in Example 8-1 for cylindrical shells? 
9-6 Derive Eq. (9-42). 

9-3 Conical Shells 

The derivation of the expressions for the bending moments in conical shells 
is obtained from the general equations of Section 9-1. In this case the angle 

Figure P9-2. 
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Pr Pr 
"2 """2 

R=30" --
P=120pSi 

p=o 
r=15" 

Figure 9-3. 

46" 

Figure P9-4. 
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M~_-+-""",,"""--
Figure P9-S. 

is constant as shown. in Fig. 9-10. Equations (9-5), (9-6), (9-7), (9-12), 
(9-13), (9-14), (9-20), and (9-21) have to be rewritten for conical shells 
with the following substitutions 

11' 
cf> = "2 - a, '2 = s tan a 

ds = '1 dcf>. 

The solutions of the resulting eight equations (Flugge 1967) involve 
Bessel functions. These solutions are too cumbersome to use on a regular 
basis. However, simplified asymptotic solutions, similar to those developed 
for spherical shells, can be developed for the large end of conical shells 
with 13 > 11 where 

(9-43) 

Figure 9-10. 
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This range of 13 is common for most conical shells encountered in industry. 

Qs = 23/4S~ [ C1 cos(13 - i) + C2 sin(13 - i) ] (9-44) 

Ms = ~ ;~ViTi3 [ C1 sin(13 + i) - C2 cos(13 + i) ] (9-45) 

Mo = fJ-Ms 

-v'i3e~tanex [ () ()] No = 2 ~ y;rr S C1 cos 13 + i + C2 sin 13 + i 
Ns = Qs tan ex 

= s sin ex (N _ N) 
w Et 0 fJ- s 

where C1 and C2 are obtained from the boundary conditions. 

(9-46) 

(9-47) 

(9-48) 

(9-49) 

Application of Eqs. (9-43) to (9-49) to edge forces of a full cone is given 
in Table 9-3. Table 9-4 lists various equations for truncated cones. 

Table 9-3. Edge loads in conical shells (Jawad and Farr 1989) 

h 

Ho --'----- '-----t------' ----'-- Ho 

Edge Functions t = 0 

6 
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Table 9·3. (continued) 

General Functions 

Q y'2 Hor~' cos ex cos(~, + *) 
2HoR2~ cos2 ex a, (u 

- h e-~' cos tJ'o 

M", 
Hoh . 
-Tr~tsm ~, 

e _ H oh2 e-~t sin(~' + !) 
y'2D~2 cos ex 4 

2~o:: :;:~ [cos ~, - ::~ tan ex cos(~, + *) ] 

Edge Functions , = 0 

e 

General Functions 

Q 
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Table 9-3. (continued) 

+~Rf.Lh, tanasin~'J cos'a 

275 

Notation: M. = ILM ; No!> = - Q cot IX; Wh = horizontal component of deflection; e = 
rotation; ~ = (h/(':/iti sin IX» \Y'3(1 - 1L2); IL = Poisson's ratio. Inward deflection is positive. 
Positive rotation is in direction of positive moments. Tensile No!> and N. are positive. Positive 
moments cause tension on the inside surface. Inward Q is positive. 

Table 9-4. Edge loads in open conical shells (Baker et al. 1968) 

'-----1------" ----.~Ho 
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Table 9-4. (continued) 

Q 

e 
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Table 9·4. (continued) 

Notation: M. = fLM .. ; N. = - Q cot IX; Wh = horizontal component of deflection; e = 
rotation; f3 = \\"3(1 - fLZ)/v'txm tan IX; Kl = sinhz f3L - sinz f3L; Kz = sinhz f3L + sinz 

f3L; K3 = sinh f3L cosh f3L + sin f3L cos f3L; K4 = sinh f3L cosh f3L - sin f3L cos f3L; Ks 
= sin2 f3L; K6 = sinh2 f3L; K7 = cosh f3L cos f3L; K7W = cosh f3L~ cos f3L~; Ks = sinh 
f3L sin f3L; Ksm = sinh f3L~ sin f3L~; K9 = cosh f3L sin f3L - sinh f3L cos f3L; K9m = 

cosh f3L~ sin f3L~ - sinh f3L~ cos f3L~; KlO = cosh f3L sin f3L + sinh f3L cos f3L; KlO(~) = 

cosh f3L~ sin f3L~ + sinh f3L~ cos f3L~; K l1m = cosh f3L~ cos f3L~ - sinh f3L~ sin f3L~; 
K12m = cosh f3L~ cos f3L~ + sinh f3L~ sin f3L~; K13m = cosh f3L~ sin f3L~; K14m = sinh 
f3L~ cos f3L~. 

Example 9-3 

Find the discontinuity forces in the cone (Fig. 9·11a) due to an internal 
pressure of 60 psi. Let E = 30,000 ksi and f.1 = 0.30. 

Solution 

The deflection w at point A due to internal pressure (Fig. 9·11b) is obtained 
from Eq. (8-32) by using the radius rlcos ex rather than r. Hence, radial 
deflection is expressed as 

w = -pr (1 - f.1/2). 
Et cos2 ex 

(1) 
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The horizontal deflection is 

loe" .. I 
(Cl) 

(b) 

I Mo 

I" 
t=-

4 

A 

~( 
I A0- Ho 

(C) 

Figure 9-11. 

-pr (1 /2) 
W H = Et cos a - f1 

- (60)(54)2(1 - 0.3/2) 
30,000,000(0.25)(0.8) 

- 0.0248 inch. 

The rotation, e, at point A is obtained by writing Eg. (1) as 
2 . 2 

W = - px sm a (1 - /2) 
Et cos2 a f1 
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and from Eq. (9-12) with v = 0, and dx = '1 d<!> 

From Table 9-3, 

e = 
dw 

'1 d<!> 
dw 

dx 

e = 2px sin2 a (1 - fl/2) 
Et cos2 a 

= 2p, sin a (1 - fl/2) 
Et cos2 a 

2(60)(54)(0.6)(0.85) 
30,000,000(0.25)(0.64) 

e = 0.000689 radians. 

R = rlcos a = 54/0.8 

= 67.50 

13 = V67.50 320.25 0.60 ~3(1 - 0.32
) 

= 37.549 

D = 42,926. 

From Fig. 9-11c, 

deflection due to p + Mo + Ho = 0 

or, 

-0.0248 _ hMo + h3Ho (1 _ flh tan a) = 0 
2D132 cos a 2D133 cos a 2R13 cos a 
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Mo - 1.91OHo = - 463.21. (2) 

Similarly, 

rotation due to p + Mo + Ho = 0 

_ 0.000689 _ hMo + h2Ho = 0 
DI3 cos a 2D132 cos a 

or 

Mo - 0.959Ho = -12.339. (3) 
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Solving Eqs. (2) and (3) results in 

Problems 

Mo = 442.3 inch-Ib/inch. 

Ho = 474.1Ib/inch. 

9-7 Find the discontinuity forces at points A, B, and C of Fig. P9-7 due 
to 500 psi pressure in the cone compartment ABC. Let E = 25,000 ksi 
and f.L = 0.31 in the cylinder and flat plate. Let E = 30,000 ksi and f.L = 
0.29 in the cone. 
9-8 Find the discontinuity forces at point A due to a 100 psi pressure in 
compartment AOB of Fig. P9-8. Assume the 40-inch head to be large 
enough so that the discontinuity forces at A are insignificant at the knuckle 
region. Let E = 16,000 ksi and f.L = 0.30. 
9-9 Find the discontinuity forces at the cone to flat plate junction shown 
in Fig. P9-9. Let p = 60 psi, E = 20,000 ksi, f.L = 0.25 and a. = 36.87°. 

9-4 Design Considerations 

Numerous references are available for determining the bending stresses in 
spherical and conical shells due to various edge conditions. One of the 

~ n I 
BI----fC 

Figure P9-7. 
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Figure P9·8. 

most extensive coverages is given by Baker (Baker et al. 1968). Flugge 
(Flugge 1967) has extensive tables for solving the differential equations for 
spherical and conical shells. 

When the configuration of the shell is other than spherical or conical, 
the classical methods discussed in this chapter become impractical to use 
and other more general methods such as finite element analysis are em· 
played. It has also been shown by Baker that for some configurations such 

Figure P9·9. 
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cone 

~ 

~ knuckle 
~ 

F---~--------~B 

I __ sphere 

r -- ............ 
A 

'" ~ knuckle 
~ 

~~~--------~B 

Figure 9-12. 

as those shown in Fig. 9-12, the discontinuity forces in the region between 
points A and B can be approximated by using the spherical equations 
derived here for the knuckle portion as long as the angle <1>0 is larger than 
about 20 degrees. 
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Buckling of Plates 

10-1 Circular Plates 

The differential equation for the bending of a circular plate subjected to 
lateral loads, p, is obtained from Eq. (3-11) as 

d2<l> d<l> Qr2 
r2 - + r - - <l> = - -. 

dr2 dr D 

When in-plane forces N r are applied as shown in Fig. 10-1, and the lateral 
loads, p, are reduced to zero, then the corresponding value of Q is 

Q = Nr<l>· 

Letting 

A2 = N/D 

the differential equation becomes 

d2<l> d<l> r2- + r- - (r2A2 - 1)<1> = O. 
dr2 dr 

Defining 

x = Ar and dx = A dr 

we get 

(10-1) 

(10-2) 

(10-3) 

The solution of this equation is in the form of a Bessel function. From 
Eq. (B-3) of Appendix B, 

(10-4) 

283 
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Figure 10-1. 

at r = 0, Yl(x) approaches infinity. Hence, C2 must be set to zero and 
Eq. (10-4) becomes 

(10-5) 

For a fixed boundary condition, <l> = 0 at r = a and a nontrivial solution 
of Eq. (10-5) is 

fl(x) = 0 

or from Table B-1 of Appendix B, x = 3.83, and Eqs. (10-1) and (10-2) 
give 

VN/D (a) = 3.83 

or 

N = 14.67D 
cr a2 

(10-6) 

For a simply supported plate, the moment at the boundary r = a is zero 
and Eqs. (10-5) and (3-4) give 

N = 4.20D 
cr a2 • 

(10-7) 

Example 10-1 

What is the required thickness of a simply supported circular plate sub­
jected to a lateral pressure of 2 psi and in-plane compressive force of 100 
lb/inch if a = 29 inches, f.1 = 0.31, E = 30,000 ksi, allowable stress in 
bending = 10,000 psi, and factor of safety (F.S.) for buckling = 3.0. 
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Solution 

From Example 3-1, 

M = ~:2 (3 + fJ.) = 348.0 inch-Ib/inch 

t = \16 x 348/10,000 = 0.46 inch. 

Try t = 0.50 inch. 

. 6 x 348 . 
actual bendmg stress = 0.52 = 8350 pSI 

actual compressive stress = 10010.5 = 200 psi 

30,000 x 0.53 • 

D = 12(1 _ 0.312) = 345,720 mch-Ibs. 

From Eq. (10-7), 

4.20 x 345,720 = 34" 50 . 
CJ'cr = 292 x 0.5 pSI. 

allowable compressive stress = 3450/3 = 1150 psi. 
Using the interaction equation 

actual bending stress actual compressive stress 
II bl b d· + II bl . :5 1.0 a owa e en mg stress a owa e compressIve stress 

we get 

8350 200 
10000 + 1150 = 0.83 + 0.17 = 1.0 o.k. , 

Use t = 0.50 inch. 

Problems 

10-1 Derive Eq. (10-7). 
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10-2 What is the required thickness of a fixed circular plate subjected to 
a lateral pressure of 3 psi and in-plane compressive force of 500 Iblinch if 
a = 40 inches, fJ. = 0.30, E = 25,000 ksi, allowable stress in bending = 
25,000 psi, and factor of safety (P.S.) for buckling = 4.0? 
10-3 What is the effect of Nr on the bending moments if it were in tension 
rather than compression? 
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10-2 Rectangular Plates 

The differential equation of a rectangular plate with lateral load, p, is given 
by Eq. (1-26) as 

~74W = plD. (10-8) 

If the plate is additionally loaded in its plane (Fig. 10-2a) then summation 
of forces in the x-direction gives 

or 

aNx aNyx 
-+-=0. ax ay 

r---------------------~x 
Ny 

Nyx 

y 

N + aNXdX 
x ax 
aNxy 

Nxy+ ax dx 

N +aNYXd 
YX ay y 

N +aNYd 
Y ay y 

(a) 

~------~~dX~----------X 

z 
(b) 

Figure 10-2. 

(10-9) 
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Similarly, summation of forces in the y-direction gives 

aNy aNxy 
-+-=0. 
ay ax 

(10-10) 

Summation of forces in the z-direction (Fig. 1O-2b) gives the following for 
Nx : 

aw 
-N dy-+ 

x ax ( Nx + aNx dx) (aw + ~ (aw) dx) d 
ax ax ax ax y 

which reduces to 

Similarly, for Ny, 

a2w aNyaw 
N -dxdy + --dxdy. 

Yay2 ay ay 

For Nxy from Fig. 10-3, 

( aw) ( aNxy ) (aw a2w ) - N dy - + Nx + - dx - + -- dx dy xy ay y ax ay ax ay 

or 

a2 aN a 
Nx ~dxd + ~~dxd. y ax ay y ax ay y 

~------------~_x 

Figure 10-3. 

(10-11) 

(10-12) 

(10-13) 
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Similarly for Nyx 

a2w aNyx aw 
N --dxdy + --dxdy. yx ax ay ay ax (10-14) 

The total sum of Eq. (10-8), which was obtained by summing forces in 
the z-direction, with Eqs. (10-11), (10-12), (10-13), and (10-14) gives the 
basic differential equation of a rectangular plate subjected to lateral ,and 
in-plane loads. 

1 ( a2w a2w a2w ) V4w = D P + Nx -2 + Ny -2 + 2Nxy --ax ay ax ay 
(10-15) 

It should be noted that Eqs. (10-9) and (10-10), which were obtained by 
summing forces in the x- and y-directions, were not utilized in Eq. (lO­
IS). They are used to formulate large-deflection theory of plates which is 
beyond the scope of this book. 

Another equation that is frequently utilized in buckling problems is the 
energy equation. It was shown in Chapter 4 that the strain energy expres­
sion due to lateral loads, p, is given by Eq. (4-1) as 

D f {(a2w a2w) 2 [a2w a2w u-- -+- -2(1- 11.)--
- 2 A ax2 ay2 f'" ax2 ay2 

(10-16) 

The strain energy expression for the in-plane loads is derived from Fig. 
10-4 which shows the deflection of a unit segment dx. Hence, 

dx' dx2 - e: dx r 
E = dx _ dx' = ! (aw) 2 dx 

x 2 ax 

or per unit length, 

Similarly, 
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dx .------. ______ -.----~x 

z 

It can also be shown that 

w 

dX' 

~-~ 
dX~ 

Figure 10-4. 

awaw 
'Yxy = ax ay· 

w+~; dx 
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Hence, the strain energy expression for the in-plane forces is given by 

U = L (NxEx + NyEy + Nxy'Yxy) dx dy 

U = ! r [N (aw) 2 + N (aw) 2 
2 JA x ax y ay 

awaw] + 2Nxy - - dx dy. ax ay (10-17) 

The total strain energy expression for rectangular plates loaded laterally 
and in-plane is the summation of expressions (10-16) and (10-17). Thus, 

D a2w a2w {( )
2 

U-- -+-
- 2 L ax2 ay2 

[ ( )2]} a2wa2w a2w 
- 2(1 - fl) - - - - dx dy ax2 ay2 ax ay 

1 r [N (aw)2 N (aw) 2 
+ 2: JA x ax + y ay 

awaw] + 2Nxy - - dx dy. ax ay 
The total potential energy of a system is given by Eq. (4-3) as 

II=U-W 

(10-18) 

(10-19) 
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where W is external work. In order for the system to be in equilibrium, 
Eq. (10-19) must be minimized. 

Example 10-2 

Find the buckling stress of a simply supported rectangular plate (Fig. 10-
5) subjected to forces N x . 

Solution 

Let the deflection be expressed as 

00 00 • m'ITX . n'ITy 
W = L L Amn sm--sm-b ' 

m=l n=l a 

which satisfies the boundary conditions. 
Substituting this expression into Eq. (1O-1S), and noting that the expression 

2(1 - /-L) [a2w a2w _ ( a2w )2J = 0, 
ax2 ay2 ax ay 

gives 

or, 

'IT4ab 00 00 (m2 n2) 2 
U = -S- D L L Amn 2" + b2 

m=l n=l a 
2b 00 

'IT ~~ 22 
- Sa Nx mL:1 n~l m Amw 

(1) 

Since there are no lateral loads, we can take the external work in the 
z-direction as zero and Eq. (10-19) becomes 

II=U. 
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I- Q. -I 
55 

"IT' Nx ss 

s.s 

y 

Figure 10-5. 

Solving Eq. (1) for 

an = 0 
aAmn 

we get 

'IT2a2D (m2 n2) 2 
Ncr = --2- 2 + b2 . m a 

(2) 

The smallest value of Eq. (2) is for n = 1. Also, if we substitute 

and 

we get 

(3) 

where 

K = (!!!:.. + alb)2. 
alb m 

(4) 

A plot of Eq. (4) is shown in Fig. 10-6 and shows that the minimum 
value of K is 4.0. 

Problems 

10-4 Derive Eq. (10-15). 
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IOr-----r-----~----,_----~----_._. 

m=1 2 3 4 5 
8~+-_r~--T_+r----~----~----_r~ 

2~----r_----+_----~----~----_r~ 

O~----~----~2----~3----~4~----5~~ 

a 
b 

Figure 10-6. 

10-5 What is the required thickness of the plate in Fig. 10-5 if a = 40 
inches, b = 15 inches, Nx = 400 lb/inch, E = 16,000 ksi, and fJ- = 0.33? 
Use a factor of safety of 4.0. Use increments of 1116 inch for thickness. 

10-3 Plates with Various Boundary Conditions 

Figure 10-7 shows a plate simply supported on sides x = 0 and x = a and 
subjected to force Nx . The differential Eq. (10-15) becomes 

(10-20) 

a. 

-, 
r----------------,-----x 

S5 Nx 

y 

Figure 10-7. 
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Let the solution be of the form 

w = i: f(y) sin m'ITx. 
m=l a 

(10-21) 

This solution satisfies the two boundary conditions w = Mx = 0 at x = 0 
and x = a. 

Substituting Eq. (10-21) into Eq. (10-20) results in 

d4f d2f 
dy4 - A dy2 + Bf = 0 (10-22) 

where 

The solution of Eq. (10-22) is 

fey) = C1e- ay + C2eay + C3 cos l3y + C4 sin l3y (10-23) 

where 

Values of the constants C1 through C4 are obtained from the boundary 
conditions y = 0 and y = b. 

Case 1 

Side y = 0 is fixed and side y = b is free. The four boundary conditions 
are 

for y = 0, deflection w = 0 

. aw 0 rotatlOn - = 
ay 

a2w a2w 
for y = b, moment My = 0 = - + f.L-

ay2 ax2 

a3w a3w 
shear Q = 0 = - + (2 - f.L) --. 

ay3 ax ay2 
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From the first boundary condition we get 

C1 + C2 + C3 = 0 

and from the second boundary condition we get 

-aCl + aC2 + fjC3 = 0 

or, 

and 

C3 fjC4 ----
2 2a . 

Substituting C1 and C2 into Eq. (10-23) gives 

fey) = C3 (cosfjy - coshay) + C4 (sinfjy - ~sinhay) 
a 

With this expression and Eq. (10-21), we can solve the last two boundary 
conditions. This results in two simultaneous equations. The critical value 
of the compressive force, Nn is determined by equating the determinant 
of these equations to zero. This gives 

2gh(g2 + h2) cos fjb cosh ab 

where 

and 

= ~ (a 2h2 - fj2g2)sin fjb sinh ab (10-24) 
afj 

For m = 1, the minimum value of Eq. (10-24) can be expressed in terms 
of stress as 

(10-25) 

where, for f1 = 0.25, 

K min = 1.328. (10-26) 
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Case 2 

Side y = 0 is simply supported and side y = b is free. Again starting with 
Eq. (10-23) and satisfying the boundary conditions at y = 0 and y = b, 
we get a solution (Timoshenko and Gere 1961) identical to Eq. (10-25) 
with K given by 

Case 3 

b2 

K = 0.456 + 2" for I.l. = 0.25. 
a 

(10-27) 

Sides y = 0 and y = b are fixed. In this case, the minimum value of K in 
Eq. (10-25) is 

K = 7.0 for I.l. = 0.25. (10-28) 

Example 10-3 

Let the plate in Fig. 10-5 be simply supported at x = 0 and x = a, simply 
supported at y = 0, and free at y = b. Calculate the required thickness 
if a = 22 inches, b = 17 inches, Nx = 300 lblin, factor of safety (F.S.) = 

2.0, I.l. = 0.25, cry = 36 ksi, and E = 29,000 ksi. 

Solution 

Assume t = 0.25 inch. From Eq. (10-27) the minimum value of K = 0.456 
and Eq. (10-25) becomes 

'/T2 (29,000,000) 
cr cr = -12-(-0.----'93-7...;...5)-(--'-17-10--'.2-5-) 2 0.456 

= 2510 psi which is less than the yield stress. 

Allowable stress = 2510/2 = 1255 psi. Actual stress = 30010.25 = 1200 
psi. o.k. 

Problems 

10-6 Derive Eq. (10-22). 
10-7 Derive Eq. (10-23). 
10-8 Derive Eq. (10-24). 
10-9 Determine the actual expression of K in Eq. (10-26). Plot K versus 
alb for m values of 1, 2, and 3 and alb values from 1.0 to 5.0. 
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10-4 Application of Buckling Expressions to Design 
Problems 

Many codes utilize the expressions of Section 10-3 to establish buckling 
criteria for various members. The American Institute of Steel Construction 
Manual (AISC 1991) assumes the buckling stress of unsupported members 
in compression not to exceed the yield stress of the material. Thus, Eq. 
(10-25) can be written as 

TI2E 
(J' = -------::------" K 

y 12 (1 - /..\.2) (b/t)2 
(10-29) 

or, for steel members with f.L = 0.3 and E = 29,000 ksi 

b l: - = 162 -. 
t (J'y 

(10-30) 

Equation (10-29) is based on the assumption that the interaction between 
the buckling stress and the yield stress in designated by points ABC in 
Fig. 10-8. However, due to residual stress in structural members due to 
forming, the actual interaction curve is given by points ADC and Eq. 
(10-30) is modified by a factor of 0.7 as 

b l: - = 114 -. 
t (J'y 

abuckling 

a j-:.A;.,..."",--__ ~B 
Y 

O.75ay -------"-~ o 
I 
I 
I 
I 
I 

L 
r 

Figure 10-8. 

(10-31) 

c 
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Single-Angle Struts 

Leg b of the angle shown in Fig. 1O-9a is assumed free at point B. Point 
A is assumed simply supported because it can rotate due to deflections. 
Thus, Eq. (10-27) is applicable with a minimum value of K = 0.456. Thus 
Eq. (10-31) becomes 

b 76 
t = ~. 

Double Angles 

Due to symmetry (Fig. 1O-9b) the possibility of rotation is substantially 
reduced from that of case 1. Thus, the AISC uses the average of the simply 
supported - free case, Eq. (10-27), and the average of the simply supported­
free and fixed-free, Eq. (10-26), cases. 

{JF 
Ca) Cb) 

A B 

D 
Cel Cd) 

Ce) 

Figure 10-9. 
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0.456 + 0.456 ; 1.328 

K = 2 = 0.674 

and Eq. (8.31) is approximated by AISC as 

b 95 
t = ycr;. 

Stems of T's 

For this case, point A in Fig. 10-9c is assumed fixed due to the much thicker 
flange, and point B is taken as free. The K value is taken from Eq. 
(10-26) and expression (10-31) gives 

b 132 
-=--
t ycr;. 

The AISC reduces this value further down to 

b 127 
t = ycr;. 

Flanges of Box Sections 

Points A and B in Fig. 1O-9d are conservatively taken as simply supported. 
In this case, k = 4.0 and Eq. (10-31) becomes 

b 228 
- =--
t ycr;. 

The AISC increases this value to match experimental data and it becomes 

b 238 
t ycr;. 

Perforated Cover Plates 

In Fig. 10-ge, the plate between the perforation and edge is assumed fixed 
because additional rigidity is obtained from the continuous areas between 
the perforations. The dimension of the perforated plate is assumed to be 
alb = 1.0. This ratio results in a K value of about 7.69. This is higher than 
that given by Eq. (10-28) which is based on the smallest possible value. 
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Equation (10-31) becomes 

Other Compressed Members 

Other members are assumed to have a K value that varies between 4.0 for 
simply supported edges and 7.0 for fixed edges. The AISC uses a value of 
K = 4.90. This gives 

Another standard that uses the plate buckling equations to set a criterion 
is the American Association of State Highway and Transportation Officials 
(AASHTO 1992). The equations are very similar to those of AISC. AASHTO 
uses the square root of the actual compressive stress in the bit equations 
rather than the square root of the yield stress. Also, limits are set on the 
maximum bit values for various strength steels. 

A theoretical solution of the buckling of rectangular plates due to various 
loading and boundary conditions is available in numerous references. Two 
such references are Timoshenko and Gere (1961) and Iyengar (1988). 
Timoshenko discusses mainly isotropic plates whereas Iyengar handles 
composite plates. 

Various NASA publications are also available for the solution of the 
buckling of rectangular plates with various loading and boundary condi­
tions. NASA's Handbook of Structural Stability consists of five parts and 
contains numerous theoretical background and design aids. Part I, edited 
by Gerard and Becker, includes various classical buckling solutions for flat 
plates. Part II, edited by Becker, is for buckling of composite elements. 
Part III is for buckling of curved plates and shells and Part IV discusses 
failure of plates and composite elements. Parts III and IV were edited by 
Gerard and Becker. Compressive strength of flat stiffened panels is given 
in Part}/ which is edited by Gerard. 
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Buckling of Cylindrical Shells 

11-1 Basic Equations 

In this chapter, we derive the equations for buckling of cylindrical shells 
(Fig. 11-1) subjected to compressive forces. Two approaches for devel­
oping the buckling equations will be discussed. The first is that of Sturm 
(Sturm 1941) which is well suited for designing cylindrical shells at various 
temperatures using actual stress-strain curves as discussed in Section 
11-5. This approach is used in many pressure vessel codes for the design 
of cylindrical shells. 

The second approach for analyzing buckling of cylindrical shells is that 
of Donnell (Gerard 1962). This method is discussed in Section 11-6 and is 
used extensively in the aerospace industry. 

We begin Sturm's derivation by taking an infinitesimal element of a 
cylindrical shell with applied forces and moments as shown in Fig. 11-2. 
Summation of forces and moments in the X-, y-, and z-directions results 
in the following six equations of equilibrium: 

aNx + aNox _ Q a2w = 0 
ax ay x ax2 

(11-1) 

aNo + aNxo + Q atIJ = 0 
ay ax °ay (11-2) 

aQo aQx atIJ a2w - + - = p + No - - N ay ax ay x ax2 

a2w a2w 
-N --N-

xO ay ax ox ax ay (11-3) 

Q = aMx + aMox 
x ax ay (11-4) 

300 
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Qo = aMo + aMxo 
ay ax 

(11-5) 

aljJ a2w 
Nex - Nxo + Mox - + MXO - 2 = 0 

ay ax 
(11-6) 

where w is the deflection in the z-direction. 
The above equations cannot be solved directly because there are more 

unknowns than available equations. Accordingly, additional equations are 
needed. We can utilize the stress-strain relationship of Eq. (1-14) and 
rewrite it in terms of force-strain relationship as 

Et 
(11-7) N = 1 2 (Ex + /-LEo) x 

- /-L 

Et 
(11-8) No = 1 2 (Eo + /-LEx) 

- /-L 

(Q) inside cyl inder under lateral external pressure 

vacuum 

(b) cylinder under external lateral and end pressure 

(c) cylinder under axial compressive force 

Figure 11-1. 
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M + dM9d 9 dy y 

Q +~d 9 dy Y 

M dM9x 
9x+ dY dy 

N + dNx9dX 
x9 dx 

vNJ:.::::o;:::I'l--.N + dNx dx 
x dx 

M +dMx9d 
x9 dx x 

(al 

(bl 

Figure 11-2. 

Et 
N ex = 2(1 + f.1) "lex (11-9) 

where Ex and Ee are the strains in the x- and y-directions and "lex is the 
shearing strain. 

Similarly, the moment-deflection equations are expressed as 

M = x -D-+--+ -C2W f.1 a2w w) 
ax2 y2 ae2 f.1 y2 (11-10) 

Me = -D -+--+-(a2w 1 a2w w) 
f.1 ax2 y2 ae2 y2 (11-11) 

Mex = - D(l -
1 a2w 

f.1) ; ae ax' (11-12) 
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The relationship between strain and deformation is given by 

au 
E =­

x ax 
av v 

E = - +-° ay r 
au av 

'YOx = ay + ax 

303 

(11-13) 

(11-14) 

(11-15) 

where u and v are the deflections in the x- and y-directions, respectively. 
Equation (11-14) is based on the fact that the radial deflection, w, for 

thin shells produces bending as well as stretching of the middle surface. 
Hence, from Fig. 11-3 

dS2 - dS1 (r + w) de + (avlae) de - r de 
dS1 r de 

av w av w 
= - + - = - +-. 

rae r ay r 

The change in angle 8$ shown in Fig. 11-2 is expressed as 

ae 
1 a2w w 

1-----+E. 
r ae2 r ° (11-16) 

a$ 
-= 

This equation is obtained from Fig. 11-2 where the angle 8$ is the total 
sum of 

(1) de which is the original angle 

(2) - ! a2~ de which is the change in slope of length ds 
r ae 

(3) - ~ de which is due to radial deflection 
r 

(4) Eo de which is due to circumferential strain. 

The derivative of these four expressions results in Eq. (11-16). 
Assuming Mxy = Myx , the above 16 equations contain the following 

unknowns: Nx, No, Nxo, Nox , Qx, Qo, Mx, Mo, MxO' Ex, Eo, 'YxO, w, u, v, 
and $. These 16 equations can be reduced to four by the following various 
substitutions. 

From Eqs. (11-13), (11-14), and (11-15) we get 

(11-17) 
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Figure 11-3. 

Substituting Eqs. (11-7), (11-8), and (11-9) into Eq. (11-17) gives 

a2Na a2Nx 1 a2Nx J.1 a2Na 
ax2 - J.1 ax2 +;:z. aa2 -;:z. ae2 

2(1 + J.1) a2N ax Et a2w 
--=--

r ae ax 
(11-18) 

The shearing forces in Eqs. (11-1) and (11-2) are eliminated by combining 
these two equations with Eqs. (11-4), (11-5), and (11-6). This gives 

a2Na _ a2Nx + 1 + Ea a2Ma + 2(1 + Ea) a2Max = 0 (11-19) 
ay2 ax2 r ay2 r ay ax . 

Equations (11-4) and (11-5) are combined with Eq. (11-3) to give 

a2Mx + 2 a2Ma:! + a2Ma 
ax2 ayax ay2 

a\jJ a2w a2w a2w 
= p + Na- - N - - Nxa -- - Nax --. (11-20) 

ay x ax2 ay ax ay ax 

Substituting Eqs. (11-10), (11-11), and (11-12) into Eq. (11-20) results in 
the first of the four basic equations we are seeking: 

[a4w J.1 a2w 2 a4w 1 a4w 1 a2w] 
- D ax4 + ;:z. ax2 + ;:z. ae2 ax2 + ;A ae4 + ;A ae2 

1 a\jJ a2w 1 a2w 1 a2w 
= p + Na; ae - Nx ax2 - Nxa ; ae ax - Nax ; ae ax· (11-21) 
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The second basic equation is obtained by combining Eqs. (11-11), (11-12), 
and (11-19): 

1. a2Ne --'- a2Nx _ (1 + Ee) D [1. a4w 
r2 ae2 ax2 r r4 ae 4 

+ 1. a2w + (2 - f..L) ~J = o. (11-22) 
r4 ae2 r2 ae2 ax2 

Combining Eqs. (11-18) and (11-1) yields the third basic equation: 

a2Ne a2Nx 1 a2Nx f..L a2Ne Et a2w 
ax2 + (2 + f..L) ax2 + ~ ae2 - ~ ae2 = -;: ax2. (11-23) 

Solving for Ee from Eqs. (11-7) and (11-8) and differentiating twice with 
respect to x gives the fourth basic equation: 

(11-24) 

Equations (11-21) through (11-24) are the four basic equations needed 
to develop ,a solution for the buckling of cylindrical shells. 

11-2 Lateral Pressure 

When the external pressure is applied only to the side of the cylinder as 
shown in Fig. 11-1a, then the solution can be obtained as follows. Let 

Ne = -pr + I(x, y) (11-25) 

where I(x, y) is a function of x and y which expresses the variation of Ne 
from the average value. When the deflection, w, is small, then the function 
I(x,y) is also very small. Similarly, the end force Nx is expressed as 

Nx = 0 + g(x,y). (11-26) 

Since Nex = Nxe = 0, then 

Nex = 0 + hex, y) (11-27) 

Nxe = 0 + j(x, y). (11-28) 

Substituting Eqs. (11-25) through (11-28) into Eqs. (11-21) through 
(11-24) and neglecting higher order terms such as 

d l . h . at(! an WIt terms III -
ae 
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other than unity results in the following four equations: 

D [a4w + ~ a2w + ~~ +! (a2w + a4w)] 
ax4 r2 ax2 r2 ae2 ax2 r4 ae2 ae4 

+ ;f(x, y) = -p[; ~:: + ~ + Ee] 

! a2f _ a2g _ (1 + Ee) D[! a4w 
r2 ae2 ax2 r3 r2 ae4 

1 a2w a4w ] + - - + (2 - 11.)--
r2 ae2 r- ae2 ax2 = 0 

(11-29) 

(11-30) 

(11-31) 

(11-32) 

Equations (11-29) through (11-32) can be solved for various boundary 
conditions. For a simply supported cylinder, the following conditions are 
obtained from Fig. 11-4: 

a2w a2w 
at x = ± Ll2, w = - = - = 0 ax2 ae2 • 

Also, because of symmetry, 

aw ae = 0 for all values of e when x = 0 

and 

aw ae = 0 for all values of x when e = O. 

Similarly, av = 0 for all values of e at x = ± Ll2. ae 
These boundary conditions suggest a solution of the form 

1TX 
W = A cos ne cos L 

B . 1TX 
V = sm ne cos L 
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Figure 11-4. 

where n is the number of lobes as defined in Fig, 11-5, Substituting these 
two expressions into Eqs. (11-29) through (11-32) gives 

[ 11'4 (2n2 - /J-)11'2 n2 n4] 'TTX 
D L 4 + r2U - r4 + r4 A cos n6 cos L 

P 'TTX 1 = - (An2 + Bn) cos n6 cos -L - - f(x, y) 
r r 

- Et 11'2 'TTX 
= -- - A cos n6 cos -

r L2 L 

a2f _ a2g _ Et 11'2 'TTX 

ax2 /J- ax2 - - -;: U (Bn + A) cos n6 cos L' 

From Eq, (11-33) if follows that 

'TTX 
f(x, y) = C cos n6 cos L 

and from Eqs, (11-34) and (11-35) that 

'TTX 
g(x, y) = G cos n6 cos L' 

(11-33) 

(11-34) 

(11-35) 

(11-36) 

(11-37) 

(11-38) 
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(a) (b) 

(e) 

";';""'".~ f .h.p, 

-t~~l-:t 
edges Simple supported edges fixed 
symmetrical about It. symmetrical about It. 

Figure 11·5. 

From Eq. (11-36) 

r 
Bn + A = Et (C - JJ.G) (11-39) 

and the values of C and G are found to be 

where 

~ _ Et _ Et (H _ 1) (1 _ pr) (u + 1 - JJ.) (11-40) 
A - ru2 r 3 (1 - JJ.2) Et AU 

G = Et + Et (H _ 1) (1 _ pr) (1 - JJ.(u - 1)) (11-41) 
A ruA r3(1 - JJ.2) Et Au 

H = n2 [1 + (A - 1)(2 - JJ.)] 
'TT2r2 

A = n2U + 1 

n2L2 

u=22"+1. 
'TTr 
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From Eq. (11-33), 

Et D a + 1 + fl 1TX 
- - - (H - I)A cosn8 cos-
r 2a 2 r 4 aA L 

D 1TX + -n2(n2A2 - fl(A -1) -1)Acosn8cos-
~ L 

= E. FA cos n8 cos 1TX (11-42) 
r L 

where 

F = n2 - 1 + 1:. - ~ 
a aA 

-~ {(H - 1) (1 - pr) [a(1 - fl2) 
r2EtaA Et 

+ (1 + fl2)] + a + 1 + fl}' (11-43) 

Equation (11-42) indicates that solutions different from zero exist only 
if 

x+Y-Z 
Per = F 

where 

z = D a + 1 + fl (H _ 1). 
r3 aA 

Equation (11-44) can be written as 

Per = ~KE Gf 
where 

K = Kl + 4K2(rlt)2 

2 n2[n2A2 - fl(A - 1)] - U(H - 1) 
Kl = 3 F(1 - fl2) 

(11-44) 

(11-45) 

(11-46) 

(11-47) 
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where 
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u=a+l+f.1. 
ax' 

(11-48) 

Equation (11-45) is the basic equation for the buckling of cylindrical 
shells subjected to lateral pressure. A plot of Kin Eq. (11-45) is shown in 
Fig. 11-6. 
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Figure n -6. Buckling coefficient K for cylinders with pressure on sides only, edges 
simply supported; fJ., = 0.30. (Sturm 1941.) 



Lateral Pressure 311 

Example 11·1 

Find the allowable external pressure for the inner cylinder shown in Fig. 
11-7. Let L = 10 ft, r = 2 ft, E = 29,000 ksi, t = 112 inch, factor of safety 
(F.S.) = 2.5, and fL = 0.3. Assume the inner cylinder to be simply supported. 

Solution 

Llr = 5, 2rlt = 96 

From Fig. 11-6, K = 11. Hence, from Eq. (11-45), 

_ 11 ( )()3 Per - 8 29,000,000 0.5/24 

= 360 psi 

P = PerIF.S. = 360/2.5 = 144 psi. 

Equation (11-45) assumes the end of the cylindrical shell to be simply 
supported. A similar equation can be derived for the case of a cylindrical 
shell with fixed ends. In this case the slope and deflection at the ends are 
zero. Proceeding in a similar fashion as for the simply supported case, a 
buckling equation is obtained. The derivation is more complicated than 
that for the simply supported cylinder. The resulting buckling equation is 
the same as Eq. (11-45) with the exception of the value of K. A plot of K 
for the fixed end condition is shown in Fig. 11-8. 

Problems 

11-1 Derive Eq. (11-40). 
11-2 Derive Eq. (11-42). 

outer 
cylinder 

L 

Figure 11-7. 
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Figure 11-8. Buckling coefficient K for cylinders with pressure on sides only, edges 
fixed; f.L = 0.30. (Sturm 1941.) 

11-3 What is the required thickness of the inner cylindrical shell shown 
in Fig. Pl1-3? Let p = 15 psi, L = 20 ft, r = 20 inches, F.S. = 3.0, 
E = 15,000 ksi, and fl = 0.3. Assume ends to be fixed. 

11-3 Lateral and End Pressure 

Many cylindrical shells are subjected to axial forces in the lateral and axial 
directions (Fig. 11-1b) or to vacuum. The governing equations are very 
similar to those derived for the lateral condition. For lateral and axial 
loads, Eq. (11-26) is written as 

pr 
Nx = - "2 + g(x, y) (11-49) 
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L 

Figure Pll-3. 

while Eqs. (11-25), (11-27), and (11-28) remain the same. Equation (11-
29) becomes 

[ a4w Il a4w 2 a4w 1 a2w a4w] 1 
D-+--+---+--+- +-f(xy) ax4 r ax4 r2 ae2 ax2 r4 ae2 ae4 r ' 

= _p[! a2w + ~ + E ] _ pr a2w (11-50) 
r ae2 r a 2 ax2 

while Eqs. (11-30), (11-31), and (11-32) remain the same. Using the bound­
ary conditions for a simply supported cylinder, the governing Eq. (11-45) 
can be written as 

where 

1 
Pcr = 8 K' E(tlrp 

K' = K~ + 4K~ (rlt)2 

F 
K~ = Kl 22 

'lTr 
F + 2£2 

F 
K~ = K2 22' 

'lTr 
F + 2£2 

(11-51) 

(11-52) 
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A plot of Eq. (11-52) for a simply supported cylinder is shown in Fig. 11-9. 
A similar equation can be derived for a cylinder with fixed ends. The 

resulting K' value is plotted in Fig. 11-10. 

Example 11-2 

Determine if the cylinder shown in Fig. 11-11 is adequate for full vacuum 
condition. Let E = 16,000 ksi, f.L = 0.3 and factor of safety (F.S.) = 4. 

Solution 

96 
Llr = 24 = 4.00 

2rlt = 192. 

200Mn~TTTr--~~~-rMn-rTT~----------------------~ 
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Figure 11-9. Buckling coefficient K' for cylinders with pressure on sides and ends, 
edges simply supported; f1 = 0.30. (Sturm 1941.) 
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Figure 11·10. Buckling coefficient K' for cylinders with pressure on sides and ends, 
edges fixed; /-L = 0.30. (Sturm 1941.) 
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Figure 11·11. 
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Assume the ends of the cylinder to be simply supported due to the flexibility 
of the end plates. From Fig. 11-9, K' = 20 and from Eq. (11-51), 

P = (1/4) [2~ x 16,000,000 (0.25/24)3] 

= 11.3 psi < 14.7 psi. no good. 

For t = 5/16 inch, we get K' = 16 and p = 17.66 psi. 

Problems 

11-4 Find the required thickness of the inner cylinder shown in Fig. P11-4 
due to a full vacuum condition, 15 psi, in the inner cylinder. Use Eq. 
(11-51). Let E = 29,000 ksi and,... = 0.30. Use multiples of 1/16 inch in 
determining the cylinder thickness. 
11-5 In Problem 11-4, find the required thickness in the outer cylinder 
due to a full vacuum condition in the annular jacket space. Use Eq. 
(11-51) even though the axial force on the outer cylinder is substantially 
less than that given by Eq. (11-51). 
11-6 Solve Problem 11-5 using Eq. (11-45) as a more appropriate equation 
due to the small end load. What is the difference between this thickness 
and that obtained in Problem 11-5? 

Figure Pll-4. 
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11-4 Axial Compression 

When an axial force is applied at the end of a cylinder, the buckling strength 
is developed as follows. Let W be the applied end load per unit length of 
circumference. Equations (11-25) and (11-26) become 

No :::: 0 + f(x, y) (11-53) 

Nx :::: - W + g(x, y). (11-54) 

For a simply supported cylinder, the buckling equation can be expressed 
as 

where 

x+Y-Z 
Wer :::: n2 + V(R - 1) 

Z :::: D(ao 2- 1) ao + 1 + fJ. (R - 1) 
r aoAo 

V :::: fJ.D(a + 1 + fJ.) 
rEt2A~ 

Lo :::: length of one buckle wave (Lo « L). 

Equation (11-55) can be simplified as follows. 

(11-55) 

Let aer :::: We/t, and for long cylinders with small values of rlt, Eq. (11-
55) becomes 

acr :::: 0.6Etlr. (11-56) 

Tests have shown that for actual cylinders, which have a slight out-of­
roundness, the stress magnitude given by Eq. (11-56) is unconservative. 
Figure 11-12 shows the scatter of some of the data obtained from various 
tests. An empirical equation that defines the lower bound of available test 
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Figure 11-12. (Seide 1981.) 

data (AeI 1989) is given by 

(J'cr = 0.6CEtlr (11-57) 

where 

c = 1 - 0.9(1 - eC- 1116)V(rit)). 

Example 11-3 

Determine the thickness of the lower cylinder shown in Fig. 11-13 needed 
to support a reactor of weight 400,000 lbs. Use Eq. (11-57). Let E 
30,000 ksi and factor of safety (F.S.) = 4.0. 

Solution 

Try t = 0.25 inch. Then rlt = 192. 
From Eq. (11-57), C = 0.48 
and 

a = (114)(0.48 X 0.6 X 30,000,000 X 0.25/48) 

= 11 ,250 psi. 

Actual stress is given by 

400,000 . 
'IT X 96 X 0.25 = 5300 pSI. 

Theoretically, the thickness can be reduced further. However, consider­
ation must be given to handling and erection procedures. 
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Figure 11-13. 
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11-7 What is the required thickness of the cylindrical shell shown in Fig. 
Pll-?? The weight of the spherical tank is 100,000 lbs. Let E = 30,000 
ksi, fL = 0.30, factor of safety, (F.S.) = 5.0. Use increments of 1/16 inch 
to determine thickness. 
11-8 An oil storage standpipe is shown in Fig. Pl1-8. Is the thickness 
adequate for axial compression due to dead weight? Let E = 30,000 ksi, 
fL = 0.30, factor of safety (F.S.) = 5.0, and weight of steel = 490 pcf. 

11-5 Donnell's Equations 

Donnell in 1933 was able to combine Eqs. (11-1) through (11-16) by means 
of ingenious substitutions to obtain one equation for the buckling of cy­
lindrical shells. The eighth-order differential equation he obtained is a 
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Figure PlI·7. 

I~il 
Figure PlI·8. 
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function of deflection (Gerard 1962) and is expressed as 

Et a4w (a2w a2w a2w) DV8w + 2" -4 + V4 Nx -2 + 2Nxy --ll + No ----n2 = o. 
r ax ax ax au au 

(11-58) 

This equation can be used for various loading conditions. Let us take 
the simple case of applied lateral pressure, where 

Nx = Nxy = 0 and No = pr = !Ycrt. (11-59) 

Equation (11-58) then becomes 

DV8W + - - + V4 N - = o. Et a4w (a2w) 
r2 ax4 0 a(j2 

(11-60) 

An expression for the deflection that satisfies the simply supported bound­
ary condition of a cylinder can be expressed as 

. m7fX . n7fY 
w = Wmn sln-L sm-. 

7fr 
(11-61) 

Substituting this expression into Eq. (11-60) gives the nontrivial solution 

where 

(m2 + ~2)2 12Z2 
K = ~2 + 7f4~2(1 + ~2/m2)2 

~ = nL 
7fr 

Z = curvature parameter 

U = - V1 - 1-12 . 
rt 

The minimum value of Eq. (11-63) is obtained when m 
(11-63) then becomes 

,(1 + ~2)2 12Z2 
K = ~2 + 7f4~2(1 + ~2)2· 

Short Cylinders 

(11-62) 

(11-63) 

(11-64) 

(11-65) 

1. Equation 

(11-66) 

For short cylinders, the curvature parameter Z can be set to zero and 
Eq. (11-66) becomes 

K = (~ + 1/~)2. (11-67) 
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Intermediate-Length Cylinders 

As the ratio Llr increases, the quantity ~ + 1 can be approximated by ~. 
Hence, Eq. (11-66) becomes ' 

K = Q.2 12Z2 

I-' + 7T4~6· 

Minimizing this quantity with respect to ~ gives 

K = 1.038VZ. 

Long Cylinders 

(11-68) 

(11-69) 

For long cylinders, the buckling mode is similar to that of a circular ring 
and is elliptic in shape. Hence, n = 2 and 

2L 
~ =--

7Tr 

and Eq. (11-68) reduces to 

(11-70) 

A plot of K defined by Eqs. (11-67), (11-69), and (11-70) is shown in 
Fig. 11-14. 

I03~------~--------~------~--------,---~~~ 

I02~ ______ -+ ________ +-______ -+ __ ~~~~ ______ ~ 

~ =1.038Z1 
10 t:--------+------:;;;tI""-9---- mode rote length 

100 S Z S 5(1-jA.2)(R/t)2 

1+--- Short -----I 

Z 

Figure 11-14. (Gerard 1962.) 
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Example 11·4 

The aluminum pipe shown in Fig. 11·15 is subjected to a vacuum pressure 
of 10 psi. The pipe has stiffeners spaced at 8-ft intervals. Let E = 10,000 
ksi, factor of safety (F.S.) = 3.0, and f.L = 0.25. (a) Find the required 
thickness based on Eq. (11-62). (b) Compare the result with Sturm's Eq. 
(11-51). 

(a) 

Let t = 3116 inch. 

Then actual stress is 

u = pr/t 

= 10 x 12/0.1875 = 640 psi. 

From Eq. (11-65) 

U 962 

Z = rl VI - f.L2 = 12 x 0.1875 VI - 0.252 

= 3966. 

From Eq. (11-69), K = 1.038YZ = 65.4 

The allowable stress from Eq. (11-62) with a factor of safety of 3.0 is 

= '71"2 x 65.4 x 10,000,000 (0 1875/96)2 
Uall 3 x 12(1 - 0.252) . 

= 730 psi> 640 psi. ok. 

L=a' 

Figure 11-15. 
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(b) 

Llr = 96/12 = 8, Dlt = 128. 

From Fig. 11-9, K = 7.2. 
From Eq. (11-51) with a factor of safety of 3, 

Problems 

P = ~ 7 ~2 (10,000,000) (0.1875/12)3 

= 11.4 psi 

(J" = prlt = 11.4 x 12/0.1875 = 732 psi. 

11-9 Solve Problem 11-4 by using Eq. (11-62). Is there any difference in 
the results? If so, why? 
11-10 Solve Problem 11-5 by using Eq. (11-62). 

11-6 DeSign Equations 

The equations derived in Sections 11-1 through 11-5 are used in numerous 
codes and standards for design purposes. Some of these design equations 
are given in this section. 

External Pressure 

The AS ME Power Boiler, Pressure Vessel, and Nuclear Reactor Codes 
use Eq. (11-51) as a basis for establishing design rules for external loads. 
This method permits the use of stress-strain curves of actual materials of 
construction to obtain allowable external pressure. This procedure prevents 
the possibility of calculating an allowable external pressure that results in 
a stress value that is above the yield stress of the material. Equation 
(11-51) for lateral and end pressure can be written as 

K' 
(J"er = Perrlt = "2 E(tI2r)2. (11-71) 

Define 

Equation (11-71) becomes 

(11-72) 
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A plot of this equation as a function of IOcr> Ll2r, and t12r is shown in 
Fig. 11-16. This figure is normally used by entering the values of Ll2r and 
t12r for a given shell and determining the critical strain IOcr' 

In order to determine the critical stress, plots of stress-strain diagrams 
are made for different materials at various temperatures. These diagrams 
are plotted by ASME on a log-log scale with the ordinate plotted as rIc'! 
2 and abscissa as IOcr' The value of rIc,!2 in these diagrams is referred to 
by ASME as B. A sample of a stress-strain diagram for carbon steel is 
shown in Fig. 11-17. The ASME procedure consists of determining critical 
strain IOcr from Fig. 11-16 and the B value from Fig. 11-17. The allowable 
external pressure is then calculated from 

(2B)t 
P=--

r(F.S.) . 
(11-73) 

If the value of IOcr falls to the left of the material curves in Fig. 11-17, 
then the allowable external pressure is given by 

P = (rlt)(F.S.)' 
(11-74) 

The ASME Codes use a factor of safety (F.S.) of 3.0 in Eqs. (11-73) 
and (11-74) for external pressure design. 

The ability of a cylindrical shell to resist external pressure increases with 
a reduction in its effective length. The AS ME code gives rules for adding 
stiffening rings to reduce the effective length. Rules for the design of 
stiffening rings (Jawad and Farr 1989) are also given in the ASME code. 

An empirical equation developed by the U.S. Navy (Raetz 1957) for the 
buckling of cylindrical shells under lateral and axial pressure in the elastic 
range is given by 

2.42E (tI2r)2.5 
Pcr = (1 - ,....2)3/4 [Ll2r - 0.45(tI2r)1I2]' (11-75) 

This equation is a good approximation of Eq. (11-51). 
Tests that led to the development of Eq. (11-75) also showed that the 

effective cylindrical length for cylinders with end closures in the form of 
hemispherical or elliptical shape is equal to the length of the actual cylinder 
plus one-third the depth of the end closures as illustrated in Fig. 11-18. 

For structures with large rlt ratios, Eq. (11-75) can be simplified to 

2.42E (tI2r)2.5 
Pcr = (1 - ,....2)3/4 Ll2r . 
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I;/FI" "I~I 
-~ ------------- t-

L 

L + 1/3H 
L 

Figure 11-18. 

Substituting into this equation the value of f.L = 0.30 for metallic structures 
and f.L = 0.15 for concrete structures results in 

0.92E(tlr)2.5 
Per = Llr, 

0.87 E(tlr)2.5 
Per = Llr 

Example 11·5 

for metallic structures ] 

for concrete structures 
(11-76) 

Determine the allowable pressure for the cylinder in Fig. 11-19 based on 
Eq. (11-75). Compare the result with that obtained from Eq. (11-51). Let 
E = 16,000 ksi, f.L = 0.3 and factor of safety (F.S.) = 4. 

Solution 

Llr = 96 + ~4 x 9/3 = 4.25 

2rlt = 192. 
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I" 
t=-

4 

Figure 11-19. 

From Eq. (11-75), 

[ 2.42 x 16,000,000 (0.25/48)2.5 ] 
P = (1/4) (0.91)0.75 2.125 - 0.45(0.25/48)1.2 

= 9.74 psi. 

From Fig. 11-9, K' = 18. And from Eq. (11-5!), 

1 
P = 4 x 8 X 18 X 16,000,000 (0.25/24)3 

= 10.17 psi. 

Axial Compression 

The allowable axial compressive stress for cylindrical shells in the ASME 
Code is obtained by using a factor of safety of 10 in Eq. (11-56) to account 
for the reduction in strength as shown in Fig. 11-12. This gives the following 
approximate equation for the elastic buckling: 

(]"= 
0.0625E 

r/t 
(11-77) 

or in terms of strain 

0.0625 
E=--

r/t . 

In the inelastic region, the material charts (Fig. 11-17) must be used. Ac­
cordingly, the above strain equation must be multiplied by a factor of 2 to 
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compensate for the fact that the ASME material charts are plotted with 
B = (J"/2 which is half of the critical stress. Thus, we enter the charts with 

0.125 
E =--

rlt 
(11-78) 

and read a value of B from the charts. This B value is the allowable 
compressive stress in the cylinder with a theoretical factor of safety of 10. 

An empirical equation that is often used in the design of stacks and other 
self-supporting cylindrical structures made of low carbon steel was devel­
oped by the Chicago Bridge and Iron Company (Roark and Young 1975) 
as 

where 

Allowable stress = (X) (Y) 

X = [1,000,000 tlr] [2 - ~ (100 tlr) ] for tlr < 0.015 

X = 15,000 psi for tlr > 0.015 

Y = 1 for 2L1r ~ 60 

Y = 21,600 for 2L1r > 60 
18,000 + 2(Llr) 

Minimum t = 114 inch. 

(11-79) 

Another expression that is often used in determining the allowable com­
pressive stress of steel cylindrical shells of flat-bottom oil storage tanks was 
developed by the API (API Standard 620). From Eq. (11-56) with E = 

30,000,000 psi and a factor of safety of 10, the allowable compressive stress 
becomes 

(J" = 1,800,000 (tlr). (11-80) 

This allowable compressive stress is limited to 15,000 psi. A stress tran­
sition equation between this limit and Eq. (11-56) was developed by API 
as shown in Fig. 11-20. The API standard also includes curves for allowable 
stress of cylindrical shells subjected to biaxial stress combinations. 

It should be noted that Eqs. (11-77) and (11-80) do not include any terms 
for the length of the cylinder. Hence, for extremely large Llr ratios, Euler's 
equation for column buckling may control the allowable stress rather than 
shell buckling and should be checked. In this case, the expression to be 
considered is 

(11-81) 
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Figure 11·20. (Courtesy of American Petroleum Institute.) 

where 

A = material cross sectional area; 
I = material moment of inertia; 

K = 1.0 for cylinders with simply supported ends 
= 0.5 for cylinders with fixed ends 
= 2.0 for cantilever cylinders. 

The critical axial compressive stress in reinforced concrete structures is 
obtained from Eqs. (11-56) and (11-57). Buckling stress for other loading 
conditions such as torsion and shear as well as various loading combinations 
are given in various publications such as that from NACA (Gerard and 
Becker 1957). 

Example 11·6 

The reactor shown in Fig. 11-21a is constructed of carbon steel with yield 
stress of 38 ksi and E = 30,000 ksi. The design temperature is lOO°F. 
(a) Determine by the ASME method the required thickness due to vacuum. 
(b) Check the thickness due to the wind loading shown in Fig. 11-21b. 

Solution 

(a) Vacuum condition 

Try t = 3/8 inch. 

L = 30 + (2)(1)/3 = 30.67 ft = 368 inch. 

Ll2r = 7.7 and 2r/t = 128. 
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(a) (b) 

Figure 11-21. 

From Fig. 11-16, Ecr = 0.00012 inch/inch 
From Fig. 11-17, Ecr falls to the left of the material curve. 
Hence, from Eq. (11-74) 

- (0.00012)(29,000,000)(0.375) _ 1 1 . ok 
p - 3 x 24 - 8. pSI. 
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(b) The bending moment at the bottom of the cylinder due to wind load 
is given by 

M = (30)(4)(31)2/2 = 57,660 ft-Ibs 

M 57,660 x 12 . 
stress U' = 'ITr2t = 'IT(24)2(0.375) = 1020 pSI. 

From Eq. (11-78), 

0.125 
E = 24/0.375 = 0.002 inch/inch 
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and from Fig. 11-17, the allowable compressive stress is determined as 

B = 15,000 psi> 1020 psi. ok. 

Check Euler's buckling (K = 2.0) by calculating 

A = 2'ITrt = 56.55 in.2 and I = 'ITr3t = 16,286 in.4 

'IT2 X 30,000,000 x 16,286 
(fer = 

(2 x 360)2(56.55) 

(fer = 164,500 psi. 

Use 38,000 psi yield stress. 

F.S. = 38,000/1020 = 37. 

Hence, Euler's buckling does not control. 

Example 11-7 

The stack shown in Fig. 11-22 is subjected to an effective wind pressure 
of 40 psf. What is the required thickness? Use Eq. (11-79). 

Solution 

Maximum bending moment at bottom 

M = (40)(8)(50)2/2 = 400,000 ft-Ibs 

Try t = 114 inch (minimum allowed by equation) 

(f = Mel I = M = 400,000 
'ITtr2 'IT X 0.25 X 482 

= 2660 psi. 

From Eq. (11-79), 

Hence, 

Hence, 

2(L/r) = 25 

Y = 1.0 
t/r = 0.0052. 

x = [1,000,000 x 0.25/48][2 - (0.667)(100 x 0.25/48)] 

X = 8600 psi. 

Allowable stress = XY = 8600 x 1.0 = 8600 psi> 2660 psi. 
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I "l 

40 p.s.f. 

50' 

Figure 11·22. 

Example 11-8 

The flat-bottom gasoline tank shown in Fig. 11-23 is subjected to a snow 
load of 30 psf. Calculate the actual stress in the cylinder due to snow load 
and compare it to the allowable stress. 

Solution 

Actual stress at bottom of cylindrical shell 

p(7Tr2) 
(T =--

27Trt 

_ (30/144)(240) _ 100 . 
- 2(0.25) - pSI. 

From Fig. 11-20 with tlr = 0.00104, 

(T = 1,800,000(0.00104) = 1870 psi> 100 psi. 
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L 

30p.s.f. 

I 

40' 

Figure 11-23. 

Figure P11·11. 

.1 

.1'1 
t=f1f 
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Problems 

11-11 Find the required thickness of the cylinder shown in Fig. P11-11 
due to a full vacuum condition. Use Eq. (11-73) or (11-74). 
11-12 Solve Problem 11-11 using Eq. (11-75). 
11-13 What is the required thickness of the supporting cylinder shown in 
Fig. P11-1!? The weight of the contents is 100,000 lbs. 
11-14 What is the required thickness of the steel stack shown in Fig. 
PII-14 due to an effective wind load of 50 psf? Add the weight of the steel 
in the calculations. The thickness of the top 25 ft may be made different 
than the thickness of the bottom 25 ft. Weight of steel is 490 pef. Use Eq. 
(11-79). 
11-15 Calculate the required cylindrical shell thickness of the flat-bottom 
tank shown in Fig. 11-23 due to a snow load of 30 psf plus the dead weight 
of the roof and cylinder. Use Eq. (11-80). 

r---

I 
I 
I 
I 
I 

, 16' 
120 I 

I 
I 
I 
I 

'-- I 
""II'" 

Figure Pll-14. 
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Buckling of Shells of Revolution 

12-1 Buckling of Spherical Shells 

The buckling of spherical shells under external pressure has been inves­
tigated by numerous researchers. Von Karman (Von Karman and Tsien 
1939) developed a solution that fits experimental data very closely. Taking 
a buckled section of a spherical shell (Fig. 12-1) he made the following 
assumptions: 

1. The deflected shape is rotationally symmetric 
2. The buckled length is small 
3. The deflection of any element of the shell is parallel to axis of rotational 

symmetry 
4. The effect of lateral contraction due to Poisson's ratio is neglected 

Based on these assumptions and Fig. 12-1, the strain due to extension 
of the element is 

dr dr 

cos e cos a 
E = 

dr/cos a 

E = cos a _ 1. 
cos e 

The strain energy of the extension of the element is 
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)

2 
ER3 ~ cos a 

VI = -2 (t/R)2'IT 1 (-- -1 sin ada. 
o cos e (12-1) 
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Figure 12-1. 

The strain energy due to compression of the shell prior to buckling is 

-ER3 13 pR ( )

2 

U2 = -2- (tIR)2'IT 10 2Et a. da.. (12-2) 

Similarly, the strain energy due to bending is given by 

ER3 'IT 113 [(cos e de U3 = - (tIR)3 - sin a. -- - -
2 6 0 cos a. da. 

( . )2] sm e + -.- - 1 da.. 
sm a. (12-3) 

The external work is equal to the applied pressure times the volume in­
cluded between the deflected and original surfaces. This can be expressed 
as 

w = R3'IT J: sinz a.(tan e - tan a.)cos a. da.. 

The total potential energy, II, of the system is given by 

II = U1 + Uz + U3 - w. 

(12-4) 

(12-5) 

The terms in Eq. (12-5) can be simplified substantially by assuming 13 to 
be small. Then, expanding the sine and cosine expressions into a power 
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series and neglecting terms higher than the third order, Eq. (12-5) becomes 

113 [1 PR]2 IT = E(tIR) - (82 - ( 2) - - a da 
o 2 2Et 

E(tIR)3 13 d8 8 13 
+ 12 L da - 1 + ~ - 1 a da + p 10 a 2( 8 - a) da. [( )2 ( )2] 

(12-6) 

Minimizing this equation with respect to 8 results in an equation that is 
too cumbersome to solve. Accordingly, Von Karman assumed an expres­
sion for 8 that satisfies the boundary condition 8 = 0 at a = 0 and 8 = 
13 at a = 13, in the form 

8 = {1 - K[1 - (a/l3)2]) 

where K is a constant. 
Substituting Eq. (12-7) into the expression 

aIT = 0 
aK 

and utilizing the relationship (J = pRI2t we get 

or 

(J 1 4 1 
- = - 132(28 - 21K + 4K2) + - (tIR)Z­
E 70 3 132 ' 

The ordinate 20 in Fig. (12-1) is calculated from 

20 + 1: (dzldr) dr = 0 

20 = R f: tan 8 cos ada. 

(12-7) 

(12-8) 

The ordinate of the shell at the center before deflection is given by 
R(1 - cos 13). The deflection, wo , at the center is then expressed by 

Wo = R f: (tan a - tan 8)cos a da 

or, assuming 13 to be small, 

Wo = R 1: (a - 8) da. (12-9) 
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Substituting Eq. (12-9) into Eq. (12-7) gives 

K = 4wo 
RJ32 

Substituting Eq. (12-10) into Eq. (12-8) results in 

~ - ~ 2 _ ~ Wo [32 w~ ~ £..] ~ 
E - 5 13 5 R + 35 R2 + 3 R2 132 . 
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(12-10) 

(12-11) 

The minimum value of Eq. (12-11) is obtained by differentiating with 
respect to 132 and equating to zero. This gives 

and Eq. (12-11) becomes 

O"ERt ___ 45 [ 16 10 3 ] 7" (WJt)2 + 3 - 2 (wolt) . (12-12) 

A plot of this equation is shown in Fig. 12-2. The minimum buckling value 
is 

Example 12-1 

O"er = 0.183EtIR] 
t2 

Per = 0.366E R2 . 
(12-13) 

A hemispherical shell with a radius of 72 inches is subjected to full vacuum. 
Determine the required thickness if a factor of safety (F.S.) of 4 is used 
for buckling. Let E = 30,000 ksi 

Solution 

From Eq. (12-13), with F.S. = 4, we get 

t = RJO.::6E 

=72 4 x 14.7 
0.366 x 30,000,000 

= 0.17 inch. 
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Figure 12-2. 

12-1 Find the required thickness of the hemispherical shell in Problem 
11-4. Use a factor of safety of 3.0. 
12-2 A spherical aluminum diving chamber is under 1000 ft of water. 
Determine the required thickness. Let R = 36 inches, factor of safety 
(F.S.) = 1.5, and E = 10,000 ksi. 

12-2 Buckling of Stiffened Spherical Shells 

Equation (12-13) can be written in terms of buckling pressure as 

Pcr = 0.366E(tIR)2 

or 

R ~ t = ~o.366E. 

(12-14) 

(12-15) 
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Equation (12-15) shows that for a given external pressure and modulus 
of elasticity, the required thickness is proportional to the radius of the 
spherical section. As the radius gets larger, so does the thickness. One 
procedure for reducing the membrane thickness is by utilizing stiffened 
shells. Thus, for the shell shown in Fig. 12-13 with closely spaced stiffeners, 
the buckling pressure (Buchert 1964) is obtained by modifying Eq. (12-14) 
as 

in which 

1m = effective membrane thickness 
= t + (A/d) 

Ib = effective bending thickness 

= e~Ir/3 

where 

A = area of stiffening ring; 
d = spacing between stiffeners; 
I = moment of inertia of ring; 
I = thickness of shell. 

(12-16) 

For large spherical structures such as large tank roofs and stadium domes, 
the stiffener spacing in Fig. 12-3 increases significantly. In this case, the 
composit buckling strength of shell and stiffeners (Buchert 1966) is ex­
pressed by 

(12-17) 

Local buckling of the shell between the stiffeners must also be considered 
for large-diameter shells. One such equation is given by 

Et3 

Per = 7.42 Rd2' (12-18) 

It should be noted that large edge rotations and deflections can reduce 
the value obtained by Eq. (12-17) significantly. 

Equation (12-17) is also based on the assumption that the spacing of the 
stiffeners is the same in the circumferential and meridional directions. 
Other equations can be developed (Buchert 1966) for unequal spacing of 
stiffeners. 
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/ 

/ 

\ 
'\.. 

..- -....... 

~ 

(<1) 

(b) 

Figure 12-3. 

'\ 

12-3 Determine the allowable external pressure on the stiffened head in 
Fig. 12-3. Assume R = 13 ft, t = 3/8 inch, d = 8 inches, size of stiffeners 
is 4 inch x 3/8 inch, E = 29,000 ksi, and a factor of safety (F.S.) of 10. 
12-4 Use Eqs. (12-17) and (12-18) to determine the required thickness 
of dome and the size and spacing of stiffeners. Let R = 200 ft, E = 29,000 
ksi, p = 85 psf, and factor of safety = 10. 

12·3 Buckling of Conical Shells 

The derivation of the equations for the buckling of conical shells is fairly 
complicated and beyond the scope of this book. The derivation (Niordson 
1947) for the buckling pressure of the cone shown in Fig. 12-4 consists of 
obtaining expressions for the work done by the applied pressure, membrane 
forces, stretching of the middle surface, and bending of the cone. The total 
work is then minimized to obtain a critical pressure expression in the form 

(12-19) 
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where 

E = modulus of elasticity; 
t = thickness of cone; 

ao = Ap(l - 13/2); 
A = -rrl€; 

Po = p(l - 13/2); 
e 

13 = - tan a. 
p 
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Equation (12-19) is very cumbersome to use due to the iterative process 
required. Seide showed (Seide 1962) that Eq. (12-19) for the buckling of 
a conical shell is similar to the equation for the buckling of a cylindrical 
shell having a length equal to the slant length of the cone and a radius 
equal to the average radius of the cone. He also showed that the buckling 
of a cone is affected by the function [(I - R1IR2 ) and is expressed as 

where 

p = pressure of equivalent cylinder as defined above; 
[ = cone function as defined in Fig. 12-5. 

(12-20) 

By various substitutions (Jawad 1980), it can be shown that Eq. (12-20) 
can be transferred to the form of Eq. (11-76) as 

0.92E(teIR2Ys . 
Per = LelR2 for metalhc cones 

0.87E(eIR2Ys 
Per = LelR2 for concrete cones 

where 

te = effective thickness of cone 

=tcosa 

t = thickness of cone 

and 

Le = effective length of cone 

L 
= 2" (1 + R1IR2)· 

(12-21) 

(12-22) 

(12-23) 

Thus, conical shells subjected to external pressure may be analyzed as 
cylindrical shells with an effective thickness and length as defined by Eqs. 
(12-22) and (12-23). 
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L 

p 

Figure 12-4. 

Example 12-2 

Determine the allowable external pressure, at room temperature, for the 
steel cone shown in Fig. 12-6 by using (a) Eq. (12-21) and (b) Eq. (11-73). 
Let F.S. = 3.0, and E = 30,000 ksi. 

Solution 

(a) 

From Fig. 12-6, Ci = 17.35° 

From Eq. (12-22), te = (3/32) (cos 17.35) = 0.0895 inch. 

32 (20) . From Eq. (12-23), Le = 2" 1 + 30 = 26.67 mch. 

12) 

12 Y. f-r< 
/ ~ 

115 v.: . 
110 / 

V 
105 ~ 

rr nr .rl""" 

o 0.1 0.2 0..3 0:4 05 0.6 0.7 0.8 0.9 10. 

I-~ 
R2 

Figure 12-5. (Jawad 1980). 
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1",,-' , , , , , , 
20" , B" 

32" t= 32 

---+---~ 

Figure 12-6. 

Hence, from Eq. (12-21), 

(b) 

o 92 30000000 (0.0895)2.5 
. X " 30 

p = (26.67/30)(3) 

= 5.03 psi. 

LeID2 = 26.67/60 = 0.44 

D2/te = 60/0.0895 = 670 

From Fig. 11-16, E = 0.00018 inch/inch 
From Fig. 11-17, B = 2500 psi 

and from Eq. (11-73), 

(2 X 2500)(0.0895) 
P = (30)(3) 

= 4.97 psi. 
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It should be remembered that there is an advantage in using method (b) 
in that the actual stress-strain diagram of the material is used. This takes 
into account the plastic region if IT falls in that region. 
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Problems 

12-5 Determine the required thickness of the cone shown in Fig. P9-9 
due to full vacuum. Use (a) Eq. (12-21) and (b) Eq. (11-73). Let E = 

16,000 ksi and factor of safety (F.S.) = 2.50. 
12-6 Determine the required thickness of the cone shown in Fig. 12-6 
due to full vacuum. Let E = 30,000 ksi and use F.S. = 3.0. 

12-4 Design Considerations 

Spherical Shells 

Extensive tests on spherical shells (Kollar and Dulacska 1984) have shown 
that the buckling Eq. (12-13) must be reduced further to 

ITer = 0.125Et1R (12-24) 

or, in terms of critical pressure, 

E 
Per = 4(Rlt)2' (12-25) 

ASME uses Eq. (12-25) with a factor of safety of 4.0 to obtain the 
permissible external pressure on a spherical shell. Hence, 

Ellipsoidal Shells 

0.0625E 
P = (RltF' 

(12-26) 

An approximate equation for the buckling of ellipsoidal shells is similar to 
Eq. (12-13) for spherical shells and is given by 

(12-27) 

where '1 and '2 are defined in Fig. 6-8. 

Shallow Heads 

For shallow ellipsoidal shells under external pressure, the region near the 
knuckle area is in tension. The remaining surface can be approximated by 
a spherical shell and Eq. (12-27) is simplified by letting'l = '2' 
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Conical Shells 

Conical shells subjected to external pressure are designed as cylindrical 
shells with an effective thickness and length as given by Eqs. (12-22) and 
(12-23). 

Hyperbolic Paraboloid Sheets 

The general buckling of hyperbolic paraboloid sheets of revolution with 
stiffening rings at top and bottom can be expressed (Kollar and Dulacska 
1984) by an equation of the form 

(2 

Pcr = 0.070E"2 
'0 

where '0 is the smallest radius (Fig. 7-17) at the throat. 

(12-28) 

Other forms of buckling (Kollar and Dulacska 1984) such as free-edge, 
local, and axisymmetric buckling must also be investigated. Usually, these 
forms of buckling are less severe than that given by Eq. (12-28) except for 
specific conditions. 

Various Shapes 

Further theoretical and experimental research is still needed to establish 
buckling strength of various configurations and shapes. This includes ec­
centric cones, torispherical shells, toriconical shells, and stiffened shells. 
Additionally, the effect of out-of-roundness and edge conditions on the 
buckling strength of shells needs further investigation. 
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Roof Structu res 

13-1 Introduction 

Many roof structures (Fig. 13-1) are designed in accordance with the mem­
brane and bending theories of shells. Roofs such as hyperbolic paraboloids 
(Fig. 13-2a) and elliptic paraboloids (Fig. 13-2b) are analyzed in accordance 
with the membrane theory of shells of revolution developed in Chapter 6. 
Barrel roofs, (Fig. 13-3a) are treated as cylindrical segments in accordance 
with the bending theory discussed in Chapter 8 with discontinuity edge 
forces applied along the length of the cylindrical segments. Roofs in the 
shape of folded plates (Fig. 13-3b) are considered as beams connected at 
their ridges. All of these roofs are generally assumed to resist uniformly 
distributed dead and live loads. 

In this chapter a brief discussion is presented for the analysis of each of 
the roof shapes mentioned above. A more complete treatment of the design 
and detail of these roof structures is discussed in the references cited in 
this chapter. 

We begin the derivation of the equations needed in the analysis of hy­
perbolic and elliptic paraboloids by expressing the membrane forces in 
shells of double curvature (Fig. 6-4), in terms of rectangular coordinates 
(Fig. 13-4) rather than polar coordinates. Also, it will be assumed that the 
only significant forces acting on roof shells are those due to dead and live 
loads. These loads are assumed to act in the z-direction only for shallow 
shells. Projecting the forces of the infinitesimal element ABeD in the plane 
EFGH (Fig. 13-4), and summing forces in the x-, y-, and z-axes, respec­
tively, gives 

aNx dy aNyx dx 
- dx -- cos ~ + - dy -- cos ~ = 0 
ax cos a ay cos ~ 

(13-1) 
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aNy dx aNxy dy 
- dy -- cos a + -- dx -- cos a = 0 
ay cos <!> ax cos a 

(13-2) 

and 

aNx dy. aNxy dy. aNy dx. 
-dx--sm<!> + --dx--sma + -dy--sm6 
ax cos a ax cos a ay cos <!> 

aNxy dx. dx dy . + - dy -- sm <!> - pz ---- sm 13 = o. (13-3) 
ay cos <!> cos <!> cos a 

If we define 

N = N cos <!> 
x x cos a 

N = N cos a l 
y y cos <!> 

- sin 13 
pz = pz cos <!> cos a 

(Q) 

(b) 

Figure 13-2. 

(13-4) 
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(a) 

(b) 

Figure 13-3. 

and substitute these three expressions into Eqs. (13-1) through (13-3) we 
get 

aNx aNxy 
-+-=0 
ax ay 

(13-5) 

aNy aNxy _. +-=0 
ay ax 

(13-6) 

aN aN aNx aNx 
_x tan <I> + -y tan a + --y tan a + --y tan <I> = pz. (13-7) 
ax ay ax ay 

Equation (13-7) can further be simplified by substituting the quantities 
tan <I> azlax, tan a = azlay, and Eqs. (13-5) and (13-6) into it. This 
yields 

(13-8) 

Equations (13-5), (13-6), and (13-8) are the three basic equations for ana­
lyzing structures such as hyperbolic paraboloids and elliptic paraboloids. 
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Figure 13-4. 

Their solution is obtained by defining a stress function, F, of the form 

a2F 
N =--

xy ax ay' (13-9) 

Substituting this expression into Eqs. (13-5), (13-6), and (13-8) results in 

(13-10) 

(13-11) 

a2F a2z a2F a2z a2F a2z _ 
ay2 ax2 - 2 ax ay ax ay + ax2 ay2 = pz· (13-12) 

The solution of Eqs. (13-10) through (13-12) depends on the geometry 
of the specific shell being analyzed. 

Problems 

13-1 Derive Eqs. (13-1), (13-2), and (13-3). 
13-2 Derive Eqs. (13-5), (13-6), and (13-7). 
13-3 Derive Eq. (13-8). 
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13·2 Hyperbolic Paraboloid Shells 

The equation for a hyperbolic paraboloid, (Fig. 13-5) is expressed as 

yz Xl 
z=---

2h2 2hI 
(13-13) 

where hI and h2 are constants. At x = 0, or alternatively at y = 0, this 
equation reduces to a parabola. At z equal to a constant larger than zero, 
Eq. (13-13) reduces to a hyperbola. At z = 0, Eq. (13-13) reduces to an 
expression (Kelkar and Sewell 1987) that defines the relationship between 
two straight lines. These straight lines can be generated from a set of new 
axes, x and y, that are oriented (Fig. 13-6) with respect to the x-y plane 
by angle 

~ 
tan t/J = ...J-';:' (13-14) 

For a rectangular shell, we let hI = h2 = h, and the equation for the 
surface (Billington 1982) becomes 

h 
z = ab xy. (13-15) 

The load pz in Eq. (13-12) is the projected load over the surface and is 
normally taken as a constant. Substituting Eq. (13-15) into Eq. (13-12) and 
letting pz = p gives 

a2F ab 
ax ay = 2h p. (13-16) 

z 

Figure 13-5. 
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h 

y 

Figure 13-6. 

From Eq. (13-9) we get the shear forces as 

ab 
Nxy = - 2h P 

Integrating Eq. (13-16) gives 

ab 
F = 2h pxy + C1(x) + C2(y) 

and from Eqs. (13-10) and (13-11) we get forces Nx and Ny as 

N = a2C(y) 
x ay2 

N = a2C(x) 
y ax2 ' 

(13-17) 

(13-18) 

(13-19) 

(13-20) 

Most roof structures have either free edges or edges supported by beams 
that cannot resist any forces in their weak axis. For these structures, it is 
customary to assume Nx = Ny = 0 throughout the shell by letting C1 and 
C2 = O. This assumes that the only stress in the structure is shear and is 
given by Eq. (13-17) as 

-ab 
Nxy = ThP 

-ab sin 13 
= Th PZcos ~ cos <1>' 

(13-21) 

The total vertical force on the structure due to dead and live loads is 
transferred to the supports through shear stress at the edges given by Eq. 
(13-21). The allowable shear stress is based on the critical shearing stress 
of a hyperbolic paraboloid which is approximately the same (Kollar and 
Dulacska 1984) as the critical shearing stress of a plate. The critical shearing 
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stress of a plate is approximated (Timoshenko and Gere 1961) by the 
equation 

'TI"2E 

'fer = 12(1 _ jL2)(b/t)2 [5.35 + 4(b/a)2] (13-22) 

where b is the small length of the shell. 
When the hyperbolic paraboloid is in the shape of a deep arch (Fig. 

13-1), the loads are transferred in one direction only. In this case, the 
forces in the arches are determined by any Structural Analysis method. 

Problems 

13-4 Derive Eq. (13-15). 
13-5 What is the critical buckling shearing stress in a reinforced concrete 
hyperbolic paraboloid roof (Fig. 13-6) if a = 25 ft, b = 20 ft, h = 6 ft, 
t = 4 inches, E = 3,100 ksi, and jL = 0.15? 

13-3 Elliptic Paraboloid Shells 

The equation for an elliptic paraboloid (Fig. 13-7) is given by 

x2 y2 
Z = 2hl + 2h2' 

(13-23) 

When x = constant, or alternatively when y constant, Eq. (13-23) 
becomes a parabola. When z is a constant, the equation becomes an ellipse. 
Substituting Eq. (13-23) into Eq. (13-12) and letting pz = p gives 

(13-24) 

Figure 13-7. 
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For many elliptic paraboloid roofs, the edges are either free or supported 
by beams that cannot support any loads in their weak axes. Thus, Nx and 
Ny are zero at the boundary conditions. Solution of Eq. (13-24) is achieved 
by expressing F in a Fourier Series that vanishes at the boundary conditions 
and is of the form 

n = 1,3,5, ... 

The load p can also be expressed as 

p = n~l Pn(x) cos n;y 

where 

4p Ibl2 n'ITy 
P (x) = - cos - dy 

n bob 

and Eq. (13-26) becomes 

P = :i: - (_1)(n+I)/2 4p cos n'ITY. 
n~ I 'ITn b 

Substituting Eqs. (13-25) and (13-27) into Eq. (13-24) yields 

d2fn _ Ff, = (_1)(n+I)/2 4p h 
dx2 n n n'IT 2 

where 

2 2 h 
k2 = n 'IT ~ 

n b2 hI' 

(13-25) 

(13-26) 

(13-27) 

(13-28) 

Solving this equation for the homogeneous and particular solutions gives 

fn(x) = A sinh kx + B cosh kx + (_1)(n+I)/2 4pb2 hI (13-29) 
n3'IT3 

Due to symmetry of loads, A = O. Also, at x = a12, F = O. Thus, Eq. 
(13-29) can be solved for B as 

B = (_1)(n+l)/2 4pb2h1 • 

n3'IT3 cosh knal2 

With B known, Eqs. (13-29) and (13-25) are solved and the values of Nx , 

Ny, and Nxy are obtained from Eqs. (13-4) and (13-9). 
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The allowable buckling load, Pen for elliptic paraboloid shells can be 
approximated (Kollar and Dulacska 1984) by 

Et2 ( 1 1 ) 
Pcr = 0.366 2 m + R~ . (13-30) 

Problems 

13-6 Derive Eq. (13-24). 
13-7 Determine the values of Nx, Ny, and Nxy from Eqs. (13-4) and 
(13-9) using the expression given by Eqs. (13-25) and (13-29). 

13-4 Folded Plates 

Folded plate roofs (Fig. 13-8a and b) are commonly used in buildings where 
intermediate columns are undesirable. Also, bottom hoppers of rectangular 
storage tanks (Fig. 13-8c) can be analyzed using the folded plate theory. 
Methods of analyzing various folded structures vary greatly depending on 
the needed degree of accuracy. Usually a preliminary analysis is performed 

Figure 13·8. 
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first that is based on equilibrium considerations. Then, a more elaborate 
analysis is conducted that takes into consideration the rotation and de­
flection compatibility of the various components. The following assump­
tions are normally made when analyzing folded plates 

1. The plate material is elastic, isotropic, and homogeneous. 
2. The cross section of the plate is constant throughout its span. 
3. The supporting end members have infinite stiffness in their own planes 

and are flexible normal to their own planes. 
4. The plates carry loads transversely by bending normal to their planes. 
5. The distribution of all loads in the longitudinal direction is the same on 

all plates. 
6. The plates carry loads longitudinally by bending within their planes. 
7. Longitudinal stresses vary linearly over the depth of each plate. 
8. The torsional stiffness of the plates normal to their own planes is zero. 
9. Displacements due to forces other than bending moments are neglected. 

The preliminary analysis of folded plates proceeds as follows: 
a. Calculate the transverse bending moment for each panel based on an 

assumed dead weight and applied loads. This is accomplished by assuming 
the edges of the panels (Fig. 13-9a) to be continuously supported in the 
transverse direction (Fig. 13-9b). The moments are determined by any 
Structural Analysis method. The reactions in the transverse supports are 
the'n determined. 

b. Since the transverse supports are fictitious, the reactions must be 
eliminated by calculating their equivalent in-plane forces in the adjacent 
panels as illustrated in Fig. 13-9c. 

Steps a and b can be combined into one step by using Matrix Analysis 
of a frame, taking into consideration axial forces. 

c. Calculate the longitudinal bending stresses in each panel due to the 
in-plane forces from step b. The panels are assumed simply supported at 
the ends with maximum bending moment in the middle of the span. 

d. The longitudinal bending stresses calculated in step c for adjacent 
panels will be different at the edge intersection because the loads in each 
panel are different. Thus, it is necessary to apply shearing forces (Fig. 13-
9d) at the edges of connecting panels in order to have the longitudinal 
stresses at a given edge in equilibrium. The shearing forces are assumed 
parabolic in distribution and their magnitude is determined by solving a 
set of simultaneous equations. 

e. The total stress in each panel is determined by combining the stresses 
determined in steps a, c, and d. 

The method discussed in steps a through e satisfies the equilbrium equa­
tions across the edges. Compatibility of the deflections of adjacent panels 
at an edge due to in-plane loads was not considered. Neither was the 
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(a) 

(b) 

(e) 

Cd) 

Figure 13·9. 
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transverse rotation of adjacent panels at the edges. These two conditions 
will have to be satisfied in order to complete the analysis of a folded plate. 

The stresses obtained in steps a through e must be adjusted to take into 
consideration the deflection and rotation compatibility at each edge. We 
begin the derivation of the deflection expression by noticing that the shape 



362 Roof Structures 

of the moment diagram due to in-plane loads in the panels is parabolic as 
shown in Fig. 13-lOa and is given by 

Mx = PLx/2 - Px2/2 (13-31) 

The distribution of the shear forces Tx must be assumed triangular in 
shape (Fig. 13-10) in order for the resulting parabolic moment to be com­
patible with the load bending moment. Thus, the shear force at any point 
x in Fig. 13-lOb is expressed as 

Tx = To(1 - 2x/L) 

and the moment diagram is 

Mx = J (d/2)(Tx)(L/2 - x) dx 

= (d/2)(To)(Lx/2 - x2 + 2x3/3L) 

or letting T = (To)(L/2)(1I2) 

Mx = (2)(d)(T)(x/2 - x2/L + 2X3/3U). 

p 

L 

~I~ ~ /\ 
(a) 

(b) 

Figure 13-10. 

(13-32) 
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This parabolic equation has a similar shape as Eq. (13-31). Hence, the 
expression for deflection of each panel can be calculated from the com­
bination of Eqs. (13-31) and (13-32). In order to simplify the deflection 
calculations, the bending moments are expressed in terms of stresses. Re­
ferring to Fig. 13-11, 

Also, from Eq. (1-6) 

Hence, the equation 

becomes 

d2y = M/EJ 
dx2 

Figure 13-11. 
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Defining 

E = crlE 

gives 

-cr~; cr = MI E1. 

The deflection at the centerline of the panels can be determined from 
Structural Analysis methods by using Fig. 13-12. This gives 

= ..l. (L2)(-crt + crb ) 
W 9.6 dE' (13-33) 

In this equation, the tensile stress is entered as a positive and the com­
pressive stress as a negative quantity. 

From the calculated deflections at each edge, the rotation of each panel 
is determined from geometry. The change in rotation difference of two 
adjacent panels at a given edge due to applied external forces is designated 
byeF • 

The rotations e F at each of the internal edges are due to the fictitious 
hinges inserted in the structure in order to find the in-plane loads in the 
panels. These rotations must be eliminated as the edges in the actual 
structure are rigid. One method of eliminating the rotations eF is to apply 
correction moments at each of the inner edges as shown in Fig. 13-13. 
Accordingly, the procedure needed to satisfy the rotation compatibility of 
the panels is as follows 

1. From the stresses obtained in step e above, calculate the deflection 
of each panel and then calculate the net rotation eF at each of the inner 
edges. 

-at+ob 

l/dE 

A~' 
SA es 
I. L .1 

Figure 13-12. 
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t 

Figure 13-13. 

2. Apply a correction moment, Mx, at each of the internal edges and 
calculate the rotation, e~x, at all the inner edges and the corresponding 
reactions. The shape of these reaction forces along the length of the panel 
must be the same as the shape of the rotation. Since the shape of the 
rotation due to Mx must be the same as the rotation due to applied loads, 
it follows that a parabolic shape is to be selected. However, an approximate 
shape that is easier to use is of the form 

P P · 1TX 
x = 0 SIn T' 

The expression for the moment is of the form 

and from the equations 

M M · 1TX 
X = sm­

o L 
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and 

we get 

(13-34) 

3. Resolve the reactions to in-plane loads in the panels and use steps b 
through e to calculate stresses. 

4. Then calculate deflections and rotations, 8~x, at all inner edges. The 
expression for the deflection of a sinusoidal load is given by 

= L2( - O"t + O"b) 
W 11"2 dE (13-35) 

5. The net rotation at the selected inner edge is then given by 

8 Mx = 8~x + 8~x 

6. Steps 2 through 5 are repeated for each inner edge. 
7. Since the net rotation of the panels at each edge is zero, a number 

of equations can be written as follows: 

where 

[

8n + k 18 Mxll + k28Mx12 + k 38 Mx13 + ---- = 0] 
81'2 + k 18 Mx21 + k 28 Mx22 + k38 Mx23 + ---- = 0 

8 Fn + k18Mxn1 + k28Mxn2 + k38Mxn3 + ---- = 0 

8n = rotation of edge 1 due to applied loads; 
8 Mxll = rotation of edge 1 due to moment Mx applied at edge 1; 
8 Mx12 = rotation of edge 1 due to moment Mx applied at edge 2; 

Ki = constants to be determined. 

The final stresses are given by 

[

Sl = Slp + k1S11 + k 2S 12 + ---] 
S2 = S2p + k1 S21 + k 2S 22 + ---

Sn = Snp + k 1S n1 + k 2S n2 + ---

(13-36) 

(13-37) 
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13·5 Barrel Roofs 

The governing differential equation for the bending of barrel roofs is de­
rived in a similar manner as that of cylindrical shells in Chapter 8. The 
shell segment in Fig. 13-14 is subjected to uniform dead and live loads in 
the z-direction only. Equations for the equilibrium of the element (Gibson 
1968) in the X-, Y-, and z-directions are derived first. Then expressions are 
obtained for the stress-strain relationship. The relationship between the 
various deflections in the X-, y-, and z-axes are also determined from the 
geometry of the shell section. By a series of combinations and substitutions, 
and assuming a Poisson's ratio of zero, the equations are simplified into 
one governing equation of the form 

( a2 a2 )4 12 a4w 12,2 ( a2 a2 )2 
,2 ax2 + ,2 a<!>2 W + fi ax4 = Et3 ax2 + ,2 a<!>2 p. (13-38) 

The homogeneous and particular solutions of this equation, taking 
advantage of loads and boundary conditions (Chattarjee 1971), 
yields an expression for the deflection with eight constants of integra­
tion. These constants are obtained from the boundary conditions of the 
roof. 

Figure 13·14. 
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The solutions of Eq. (13-38) as well as other corresponding moments 
and forces are found in many references. The ASCE Manual (ASCE 1960) 
gives comprehensive theoretical and tabular values for various boundary 
conditions. Gibson (Gibson 1968), Chatterjee (Chattarjee 1971), and Bil­
lington (Billington 1982) give many solved examples using theoretical and 
tabular values. 



14 

Basic Finite Element Equations 

14-1 Definitions 

The finite element method is a powerful tool for calculating stress in com­
plicated shell and plate structures that are difficult to analyze by classical 
plate and shell theories. The method consists of subdividing a given domain 
into small elements connected at the nodal points as shown in Fig. 14-l. 
The mathematical formulation consists of combining the governing equa­
tions of each of the elements to form a solution for the domain that satisfies 
the boundary conditions. The approximations associated with finite ele­
ment solutions depend on many variables such as the type of element 
selected, number of elements used to model the domain, and the boundary 
conditions. 

The complete derivation of the various equations for one-, two-, and 
three-dimensional elements is beyond the scope of this book. However, a 
few equations are derived here to demonstrate the basic concept of Finite 
Element formulation and its applicability to the solution of plates and 
shells. 

We begin the derivations by defining various elements (Fig. 14-2) and 
terms. Figure 14-2a shows a one-dimensional element in the x-direction 
with two nodal points, i and j. Figure 14-2b shows a two-dimensional 
triangular element in the x, y plane with nodal points i, j, and k. And 
Fig. 14-2c shows a three-dimensional rectangular brick element with eight 
nodal points. 

Let the matrix [3] define the displacements within an element. The size 
of the displacement matrix (Weaver and Johnston, 1984) depends on the 
complexity of the element being considered. The matrix [q] defines nodal 
point displacements of an element and matrix [F] defines the applied loads 
at the nodal points. The size of matrices [q] and [F] depends on the type 
and geometry of the element being considered. For the one-dimensional 
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Figure 14-2. 
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element in Fig. 14-2a, the quantities [q] and [F] are defined as 

[q] = [:;:] 1 
[F] = [~:] 

371 

(14-1) 

Similarly, the [q] and [F] matrices for the two-dimensional triangular ele­
ment in Fig. 14-2b are expressed by 

qix Fix 
qiy Fiy 

[q] %x [F] Fjx (14-2) . 
qjy Fjy 
qkx Fkx 
qky Fky 

The shape function matrix [N] defines the relationship between a func­
tion at the nodal points and the same function within the element. Thus, 
the relationship between the nodal deflection [q] (Fig. 14-2a) and the gen­
eral deflection 8 at any point in the one-dimensional element is expressed 
as 

8 = [Ni Nj ] [:;] 

= [NHq] 

while the relationship between the nodal displacements [q] and the general 
displacements [8] in Fig. 14-2b for a two-dimensional element is 

qix 

[~] [~i ~J 
qiy 

0 Nj 0 Nk qjx 
Ni 0 Nj 0 qjy 

qkx 
qky 

or 

[8] = [NHq]. (14-3) 

Let the strain-displacement matrix [d] define the relationship between 
the strains in a continuum to the displacements in accordance with 

[0] = [d][8] (14-4) 
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Strain in an element can also be expressed in terms of the deflection of 
the nodal points. Substituting Eq. (14-3) into Eq. (14-4) gives 

[E] = [d][N][q]. (14-5) 

Equation (14-5) can also be written as 

[E] = [B][q] (14-6) 

where 

[B] = [d][N]. (14-7) 

The stress-strain relationship is obtained from Eq. (1-13) as 

[cr] = [D][E] - [D][Eo] ] 
= [D][B][q] - [D][Eo] (14-8) 

where [Eo] is the initial strain in a domain and [E] is the total strain. 
With these definitions, the basic finite element equations can now be 

derived. Referring to Fig. 14-3, the strain energy for a differential element 
of volume dV is 

(14-9) 

element number 2 :3 

nodClI points I 2 3 4 

I I I I 
nodQI area I in2 15 12 9 6 

element avo area I in2 13.5 10.5 7.5 

lenqth 4 4 4 

Figure 14·3. 
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The total strain energy is given by 

U = Iv i ([EV[a] - [EoV[a]) dV 

Substituting Eq. (14-8) into Eq. (14-10) yields 

U = i {[q)T[BV[D][B][q] - 2[q)T[BV[D][Eo] 

+ [EoV[D][EoH dV. 

The external work due to the nodal loads [F] is 

WF = [FV[q]· 

The external work due to surface pressure, [p], is 

Wp = ([u][P]) ds 

or 

The potential energy of one element is 

II = U - (WF + Wp ) 

or for the whole system 

E 

II = 2: rue - (W} + W;)] 
e=l 

where e refers to any given element. 
The minimum potential energy is obtained from 

or, 

all 
aq 

all = 0 
aq 

et1 [Iv [Be)T[De][Be] dV [q] 

- Iv [BeV[De][Eo] dV 

- Is [NeV[Pe] dSJ - Fe = O. 
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(14-10) 

(14-11) 

(14-12) 

(14-13) 

(14-14) 

(14-15) 
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The quantity 

is called the stiffness matrix of an element and is written as 

Hence, the finite element equation becomes 

e~l [KeHq] = e~l [L[BeV[DeHEo] dV 

+ Is [Ne)T[Pe] dS] + Fe 

which can be abbreviated as 

[F] 

where 

[F] = applied forces. 

(14-16) 

(14-17) 

(14-18) 

Equation (14-17) is the basic finite element equation for a domain. 

Problems 

14-1 Write the matrices [q] and [F] for the three-dimensional element in 
Fig. 14-2c. 
14-2 Derive Eq. (14-11). 
14-3 Derive Eq. (14-15). 

14-2 One-Dimensional Elements 

In formulating the finite element equations, the shape of the element as 
well as other functions such as applied loads, deflections, strains, and 
stresses are approximated by a polynomial. The size of the polynomial 
depends on the degrees of freedom at the nodal points and the accuracy 
required. Hence, for the one-dimensional element shown in Fig. 14-2a, a 
polynomial for a function such as deflection (Grandin 1986) may be ex­
pressed as 

(14-19) 
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where 

x == length along the x-axis; 
C1 and C2 are constants. 

375 

The polynomial given by Eq. (14-19) can be written as a function of two 
matrices [g] and [C] as 

8 = [g][C] 

8 = [1 x] [g:]. 
(14-20) 

At the nodal points Xi and xj ' Eq. (14-20) becomes 

[:;] == D ~;] [ g:] (14-21) 

Define [h] as the relationship between [C] and [q] at the nodal points. 
Thus, Eq. (14-21) becomes 

where 

[:;] = [h][ C] 

[h] = [1 Xi]. 
1 Xj 

Solving for the matrix [C] gives 

[g:] = [h]-1 [:;] 

[ C1] __ 1 [Xj -IXi] [qq,i,] 
C2 - Xi - Xj - 1 

or, from Eq. (14-20) the function at any point is 

8 == [g][ h ] -1 [:;] 

or 

(14-22) 

(14-23) 

The quantity [g] [h] -1 relates the deflection at the nodal points to that 
within the element. It is called the shape function and is designated as [N]. 
Thus, 

[N] == [g][h]-1. (14-24) 
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Then Eq. (14-23) can be written as 

8 = [N] [:;] (14-25) 

where 

1 
[N] = -- [(xj - x) (-Xi + x)]. 

Xj - Xi 
(14-26) 

Once the shape function for a linear element is established, the governing 
stiffness expression, Eq. (14-18), can also be determined. Thus, for the 
one-dimensional element shown in Fig. 14-2a, the general deflection func­
tion is expressed by Eq. (14-19) and the shape function [N] is given by 
Eq. (14-26). From Hook's law, the strain in an axial member is expressed 
as 

d 
/0 =-u 

dx 

and from Eqs. (14-5) and (14-6) 

d 
[/0] = dx [N][q] 

or 

(14-27) 

where 

[B] = [-1 1] = ~ [-1 1]. 
Xj - Xi L 

For a uniaxial body without initial strain, 

[ IT] = [E][ /0 ] 

Hence, 

[D] = [E] 

From Eq. (14-16) the value of the stiffness matrix [K] becomes 

[K] = AE [ 1 -1] L -1 1· (14-28) 

From Eq. (14-17), the first term on the righthand side is due to the 



One-Dimensional Elements 377 

thermal effect and reduces to 

rxEA(aT) [ - i]. (14-29) 

The second term on the righthand side of Eq. (14-17) is for the surface 
loads. In this case, the surface loads can be applied only at the nodal points 
i and j. Hence, when Px is applied at node i, 

Is [N]Y[Px] ds = Px[ ~] f ds = PxA{ ~]. (14-30) 

When Px is applied at node j, 

Is [N]Y[Px] ds = PxA{ ~]. (14-31) 

The complete finite element equation for one-dimensional elements is ob­
tained by combining Eqs. (14-28) through (14-31) 

ALE [-i -i][:;] = rxEA(aT) [ -i] 
+ AiPX[~] + AjPx[~] + F 

or 

[K][q] = [F]. (14-32) 

Stress in the member is obtained from Eq. (14-8) as 

IT = [E][B][q] = ~ [-1 1][:;] -Erx(aT). (14-33) 

Example 14-1 

Find the stress in the tapered conical shell (Fig. 14-3). The shell is subjected 
to a force of 50 kips at point A. The cross sectional area of the cone 
increases from 6 square inches at the right end to 15 square inches at the 
left end. The shell is also subjected to a uniform decrease in temperature 
of 50°F. Assume the shell to be subdivided into three equal lengths and 
let the coefficient of thermal expansion be equal to 7 x 10- 6 inch!inch! 
OF. Also, let the modulus of elasticity equal 30 x 106 psi and Poisson's 
ratio equal 0.3. 



378 Basic Finite Element Equations 

Solution 

Element 1 

The stiffness matrix from Eq. (14-28) is 

[K] = AE [ 1 -1] = 107 [ 10.125 
1 L -1 1 -10.125 

-10.125] 
10.125 . 

The thermal force from Eq. (14-29) is 

a:AE( - tlT) [-IJ = 103 [ 141.75] 
1 -141.75 

and Eq. (14-18) gives 

107 [ 10.125 -10.125] [ql] = 103 [ 141.75] 
-10.125 10.125 22 -141.75 . 

Element 2 

The governing Eq. (14-18) for element 2 is 

107 [ 7.875 -7.875] [q2] = 103[ 110.25] 
-7.875 7.875 q3 -110.25 . 

Element 3 

[K3 ] = ALE [_11 -1] = 107 [ 5.625 -5.625] 
1 -5.625 5.625 

The thermal force is 

a:AE(-tlT)[-I] = 103[ 78.75] 
1 -78.75 . 

The nodal forces are 

and Eq. (14-18) becomes 

107 [ 5.625 
-5.625 

-5.625] [q3] = 103[ 128.75]. 
5.625 q4 -78.75 
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Combining the matrices for elements 1, 2, and 3 (Table 14-1) gives 

107 -10.125 18.000 -7.875 0 q2 = 103 -31.50 . [ 
10.125 -10.125 0 0] [ql] [ 141.75] 

o -7.875 13.500 -5.625 q3 18.50 
o 0 -5.625 5.625 q4 -78.75 

Because the deflections ql and q4 are zero at the supports, we can delete 
the first and last rows and columns from the stiffness matrix and the above 
matrix reduces to 

107 [ 18.000 -7.875] [q'l,] = 103 [ -31.50]. 
-7.875 13.500 q3 18.50 

Solving for the values of q2 and q3 results in 

[q2J 1 [-1.545J 
q3 = 104 0.469· 

Table 14-1. Total stiffness and force matrices 

Stiffness Matrix [K] 

F/q 1 

1 10.125 

2 -10.125 

3 

4 

Load Matrix [F] 

Node Force 

1 141.75 

2 -141.75 
110.25 

3 -110.25 
128.75 

4 -78.75 

2 

-10.125 

10.125 
7.875 

-7.875 

3 

-7.875 

7.875 
5.625 

-5.625 

4 

-5.625 

5.625 
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The strain expression in each element is given by Eq. (14-27) as 

1 
E = L (-qi + q) 

E1 = - 0.386E-4 

Ez = 0.504E-4 

E3 = -0.117E-4. 

The stress is obtained from Eq. (14-33) as 

0' = EE - cxE( - 6.T) 

= 30 x 106E + 10,500 

r ~;J = [li,~i~J 
,-0'3 '10,150 

A classical theoretical solution of this simple problem can be obtained 
for comparison purposes. We can let the right end grow freely due to 
temperature and applied load. We then apply a load at the end to let the 
deflection at the right end be equal to zero. Using for the deflection due 
to loads the equation 

we get qz = -1.574 

w = f Fdx 
EAx 

=f:f dx 
E 15 _ 9x 

L 

q3 = 0.449 

[
0'1] 19290] O'z = 11,930 
0'3 10,040 

The calculated stress in Example 14-1 is different in each of the elements. 
This causes a discontinuity in stress at internal nodal points joining two 
elements. To overcome this, a procedure (Segerlind 1976), called the con­
jugate stress method is used to average the stresses at the nodal points. It 
calculates an approximate average stress value at the nodal points from 
the following equation 

[Q][O=] = [R] (14-34) 
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where 

[Q] = a function of the [N] matrix; 
[0=] = stress at the nodal points, called conformal stress; 
[R] = a function of the element stress, called conjugate stress. 

In accordance with the theory of conjugate stress approximations, the 
matrices [Q] and [R] for an element are calculated from the quantities 

[Q] = Iv [N)T [N] dV (14-35) 

and 

[R] = Iv [a][N)T dV (14-36) 

where [a] is the stress in the element. 
In many applications the member axis, which is used to determine the 

stiffness and load matrices, does not coincide with the global axis of the 
structure as illustrated in Fig. 14-4. In order to accommodate this condition, 
the member orientation with respect to the global axes needs to be taken 
into consideration. The resulting stiffness matrix (Wang 1986) is of the 
form 

(14-37) 

y 

~~---L--------~X 

Figure 14-4. 
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where 

kl = cos2 a k2 = cos a sin a k3 = sin2 a 
a = angle shown in Fig. 14-4 and measured counterclockwise from the 

positive x-axis, 

and load in each member is expressed as 

EA 
F = L (-qiX cos a - qiy sin a + qjx cos a + % sin a) (14-38) 

Problems 

14-4 What is the thermal stress in the conical shell shown in Example 14-
1 if the applied axial load is equal to zero? 
14-5 What is the stress in the conical shell shown in Example 14-1 if the 
change in temperature is equal to zero? 

14-3 Linear Triangular Elements 

From Fig. 14-2b it is seen that each element has three nodal points and 
each nodal point has two degrees of freedom. Hence the displacement 
within the element is expressed by the following polynomial 

u = C1 + C2x + C3y 

V = C4 + Csx + C6y (14-39) 

where u and v are the deflection in the x- and y-axes, respectively. In 
matrix form these equations are written as 

[~] = [g][ C] 

where 

[g] [~ x Y 0 0 ~] (14-40) 
0 0 1 x 

and 

[C] [:] 
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The shape matrix [N] is obtained from Eq. (14-24) and is expressed as 

where Ni, Nj, and Nk are defined as 

1 
Ni = 2A. (ai + bix + ciY) 

1 
Nj = 2A. (aj + bjx + cjy) 

1 
Nk = 2A. (ak + b~ + CkY) 

ai = XjYk - XkYj, bi = Yj - Yk, ci = Xk - Xj 

aj = XkYi - xiYk> bj = Yk - Yi' cj = Xi - Xk 

ak = xiYj - XjYi, bk = Yi - Yj' Ck = Xj - Xi 

1 1 Xi Yi 
A. = - 1 Xj Yj 

2 1 Xk Yk 

2A. = area of triangle with coordinates XiYi, xjYj, XkYk' 
The u and v expressions within the element are 

qix 

[~J 
qiy 

[N] %x 
qjy 
qkx 
qky 

(14-41) 

The strain-deflection relationship is obtained from Eq. (2-16) as 

[~J = 

a 
ax 

o 

o 
a 

ay 
a a 

ay ax 

(14-42) 
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This strain expression can be designated as 

[e] = [d] [~] = [d][N][q] 

or 

[e] = [B][q] 

where 

(14-43) 

For a plane-stress formulation the stiffness matrix [D] was derived in 
Chapter 1 and is given by Eq. (1-14) as 

[DJ ~ 1 ~ ~' [: : 1 ~ ~ J 
For a plane-strain formulation, Eq. (1-13) is used. Letting 

ez = 'Yyz = 'Yxz = 0 

1 _/J.._ 0 
1 - /J.. 

E(l - /J..) /J.. 1 0 (14-44) [D] = (1 + /J..)(1 - 2/J..) 1 - /J.. 

0 0 
1 - 2/J.. 

2(1 - /J..) 

The stiffness matrix is calculated from Eq. (14-16). The result can be 
expressed as 

ku k12 k13 k14 k15 k16 

k22 k23 k24 k25 k26 

K = Et k33 k34 k35 k36 (14-45) 
4d k44 k 45 k46 

symmetric 
k55 k56 

k66 



where 

and 

Linear Triangular Elements 

kll == kl (Yz - Y3F + k3(X3 - Xz)Z 

k12 == kZ(x3 - XI)(Yz - Y3) + k3(X3 - Xz)(Yz - Y3) 

k13 == kl(yz - Y3)(Y3 - YI) + k3(X3 - XZ)(X I - X3) 

k14 == kZ(xl - X3)(Yz - Y3) + k3(X3 - XZ)(Y3 - Yt) 

k t5 == kl (YI - YZ)(yz - Y3) + k3(XZ - XI)(X3 - XZ) 

kt6 == kz(xz - XI)(Yz - Y3) + k3(X3 - XZ)(YI - YZ) 

kzz == k t (X3 - xz)2 + k3(yz - Y3)Z 

k23 == kZ(x3 - XZ)(Y3 - Yt) + klxt - X3)(Yz - YJ) 

k24 == kl (X3 - XZ)(XI - X3) + k3(Y2 - Y3)(Y3 - YI) 

k25 == kZ(x3 - X2)(YI - YZ) + k3(XZ - XI)(Yz - Y3) 

kZ6 == kl (XZ - XI)(X3 - XZ) + k3(Yt - YZ)(yz - Y3) 

k33 == k l(Y3 - YI)Z + k3(XI - x3F 

k34 == kZ(xl - X3)(Y3 - YI) + k3(XI - X3)(Y3 - YI) 

k35 == kl (Yt - Y2)(Y3 - Yt) + k3(X I - X3)(XZ - Xl) 

k36 == kZ(x2 - XI)(Y3 - YI) + k3(XI - X3)(YI - Y2) 

k44 == kl(XI ~ x3F + k3(YJ - YtF 

k45 == kz(xt - X3)(Yt - YZ) + k3(X2 - XI)(Y3 - YI) 

k46 == k t (Xl - X3)(XZ - Xl) + k3(Yt - YZ)(YJ - YI) 

k55 == kl(YI - Y2F + k3(XZ - xtF 

k56 == k2(xZ - XI)(Yt - Y2) + k3(X2 - XI)(YI - Y2) 

k66 == kl (X2 - XI)Z + k3(YI - YZ)Z 

For Plane-Stress 

1 
kl = 1 2 - j.L 

1 
k3 = 2(1 + j.L) 

For Plane-Strain 

k3 = 2(1 + j.L) 

The forces are calculated from Eq. (14-17). 

385 
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Example 14-2 

The triangular plate (Fig. 14-5a) is stiffened at the edges as shown. Find 
the stress in the various components. Let E = 30,000 ksi and J..L = 0.3. 

Solution 

The various nodal points are numbered as shown in Fig. 14-5b. The stiffness 
matrices, K, for members A, B, and C are obtained from Eq. (14-37) as 

Member A with a = 0° 

K _ 0.5 X 3000 X 104 

A - 30 

7 

(a) 

(b) 

l1.00 
0.00 

-1.00 
0.00 

0.00 
0.00 
0.00 
0.00 

.30" I .. 

Figure 14-5. 

-1.00 
0.00 
1.00 
0.00 

o.OOJ 0.00 
0.00 
0.00 
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or, since q1, q2, and q4 are zero, we eliminate rows and columns 1, 2, and 
4 and we get 

Member B with ~ = 1350 

With nodal points q1, q2, qs, q6 l 0.50 
_ 1 x 3000 X 104 -0.50 

KB - 28.28 - 0.50 
0.50 

or, since q4 is zero, 

-0.50 
0.50 
0.50 

-0.50 

-0.50 
0.50 
0.50 

-0.50 

[ 
53.04 - 53.04 53.04] 

KB = 104 -53.04 53.04 -53.04 
53.04 -53.04 53.04 

Member C with ~ = 63.440 

With nodal points q1, Q2, Qs, Q6 

r 0.20 
Kc = 0.75 x 3000 x 104 0.40 

22.36 -0.20 
-0.40 

or, since Q1 and Q2 are zero 

0.40 
0.80 

-0.40 
-0.80 

Kc = 104 [20.125 40.25J 
40.125 80.50 

Member D 

With Q1' Q2, and Q4 equal to zero 

From Eq. (14-45) 

_ Et [K33 K3S K36] 
KD - 4~ Kss KS6 

K66 

-0.20 
-0.40 

0.20 
0.40 

[ 
74.11 -17.90 30.69] 

KD = 104 -17.90 53.71 0.00 
30.69 0.00 153.31 

0.50

J -0.50 
-0.50 

0.50 

-0.40

J -0.80 
0.40 
0.80 



388 Basic Finite Element Equations 

From Table 14-2, the total matrix is 

[ 
177.15 -70.94 83.73] 

K = 104 -70.94 126.88 -12.79 
83 . .73 -12.79 286.85 

and the force matrix is 

[
3.0] 

F = 5.0 kips. 
7.0 

From Eq. (14-32), 

Kq = F 

or 

[q3] [3.235] 
q5 = 5.927 X 10-6 inch. 
q6 1.760 

The stresses in members A, B, and C are obtained from Eq. (14-38) as 

O'A = 3.24 ksi, O'B = -0.7 ksi, O'c = 5.67 ksi. 

The stress in plate D is obtained from Eq. (14-8) as 

[O'x] [8.85] 
O'y = 7.94 ksi. 
Txy 5.59 

Table 14-2. Total stiffness matrix (multiplied by 104) 

F/q 3 5 6 

3 50.00 
53.04 -53.04 53.04 
74.11 -17.90 30.69 

5 -53.04 53.04 -53.04 
20.13 40.25 

-17.90 53.71 0.00 

6 53.04 -53.04 53.04 
40.25 80.50 

30.69 0.0 153.31 
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14-4 Axisymmetric Triangular Linear Elements 

Many plate and shell configurations (Fig. 14-1) are modeled as axisym­
metric triangular elements. Axisymmetric triangular elements (Fig. 14-6) 
have the same size N matrix as that defined by Eq. (14-41) for plane 
elements. The strain-stress relationship given by Eq. (14-42) for plane 
elements must be modified for axisymmetric elements to include the hoop 
strain ES. Thus, Eq. (14-42) becomes 

a 
0 

ar 

[n 
0 

a 
az [~J (14-46) 1 
0 

r 
a a 
az ar 

and the [B] matrix becomes 

bi 0 bj 0 bk 0 

1 
0 Ci 0 cj 0 Ck 

[B] =-
2dNi 2dNj 2dNk 

(14-47) 
2d 

0 0 0 
r r r 

Ci bi cj bj Ck bk 

Figure 14-6. 
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where 

[ ::] = [B] 

'Yrz 

(14-48) 

The stress-strain relationship is obtained from Eq. (1-13) with 'Yrz = 'Yra. 
This gives 

1 
_IJ. _ _ IJ._ 

0 
1-1J. 1- IJ. 

_IJ._ 1 _IJ._ 0 
E(1 - IJ.) 1-1J. 1 - IJ. 

[D] = (1 + 1J.)(1 - 21J.) _IJ. _ _ IJ._ 
1 0 

1- IJ. 1-1J. 

1-2 
0 0 0 

2(1 - IJ.) 

The stiffness matrix is determined from Eq. (14-16) as 

[Ke] = t [BeY[De][Be] dV. 

(14-49) 

The evaluation of the integral (BTDB) dV in axisymmetric problems is 
complicated by the fact that the matrix [B] contains the variable 1/r. A 
common procedure for integrating this quantity (Zienkiewicz 1977) is to 
use the radius r at the centroid of the element. Also, we can substitute for 
the quantity dV the value (21TrA) where A is the area of the element. 
Hence, the stiffness matrix [K] becomes 

[K] = [BY[D][B]2rA. (14-50) 

14-5 Higher Order Elements 

Equations derived for the linear triangular elements in Sections 14-3 and 
14-4 can also be established for the linear rectangular elements shown in 
Fig. 14-7. The equations for the rectangular elements are slightly more 
complicated than those for triangular elements (Rockey et al. 1975) due 
to the additional fourth nodal point. In both cases the strain is constant 
throughout the element. This is a disadvantage in areas where a large strain 
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1 1 
linear element 

~ 
quadratic element 

I : I 
quadratic element 

Figure 14-7. 

gradient exists because a large number of elements is needed. Accordingly, 
higher order elements are normally utilized. The higher order elements 
have additional nodal points in the sides, and sometimes in the interior. 
With more nodal points in an element, the strain becomes more complex 
within an element and fewer elements are needed to define a complex 
geometry or an area with large strain gradients. 

The shape function [N] needed to define higher order elements is more 
complicated than that of linear elements and its derivation requires more 
sophisticated methods using natural coordinate systems (Weaver and John­
ston 1984). Also, the stiffness matrix, which is a function of [N], requires 
numerical integration which is cumbersome to evaluate without a com­
puter. The accuracy of the results depends, in part, on the method used 
for the numerical integration. 

Finite element formulation of a plate element, as well as finite element 
formulation of a shell element, have also been derived (Gallagher 1975) 
and are based on various polynomial approximations. The accuracy of these 
formulations depends on the particular plate or shell theory being used. 

Finite element formulation of three-dimensional brick elements is also 
available in the literature. The equations become cumbersome for elements 
higher than quadratic. 



APPEND~X A 

Fourier Series 

A-1 General IEquations 

A periodic function (Wylie 1960) can be represented by a series that is 
expressed as 

or 

f(x) = O.SAo + Al cos X + A z cos 2x + ... + Am cos mx 

+ BI sin x + Bz sin 2x + ... + Bm sin mx 

f(x) = O.SAo + L Am cos mx + L Bm sin mx. (A-1) 
m=1 m=1 

The series given by Eq. (A-1) is known as a Fourier Series and is used 
to express periodic functions such as those shown in Fig. A-l. The coef­
ficients A and B in Eq. (A-l) are evaluated over a 21T period starting at a 
given point d. The value of Ao can be obtained by integrating Eq. (A-1) 
from x = d to x = d + 21T. 

Thus, 

f d+27T fd+Z7T fd+Z7T 
d f(x) dx = O.SAo d dx + Al d cos x dx + 

fd+~ fd+~ 
+ Am d cos mx dx + Bl d sin x dx + 

f
d+Z7T 

+ Bm d sin mx dx. 

The first term in the righthand side of the equation gives 1TAo. All other 

392 



General Equations 393 

Figure A-I. 

terms on the righthand side are zero because of the relationships 

f d+27T 
d cos mx dx = 0 m ;/= 0 

f d+27T 
d sin mx dx = O. 

Hence, 

I fd+27T 
Ao = - f(x) dx. 

7T d 
(A-2) 

The Am term in Eq. (A-I) can be obtained by multiplying both sides of 
the equation by cos mx. 

f d+2 I fd+27T 
d f(x) cos mx dx = lAo d cos mx dx 

f d+27T 
+ AId cos X cos mx dx + . . . 

f d + 27T fd + 27T 

+ Am d cos mx cos mx dx + Bl d sin x cos mx dx 

f d+27T 
+ ... + Bm d sin mx cos mx dx. (A-3) 
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Since 

f d+21T 
d cos mx cos nx dx = 0 m 4= n 

f d+21T 
d COS2 mx dx = 1T m 4= 0 

f d+21T 
d cos mx sin nx dx = O. 

Equation (A-3) becomes 

f d+21T 
d f(x) cos mx dx = Am1T 

or 

1 fd+21T 
Am = - f(x) cos mx dx. 

1T d 
(A-4) 

Similarly the values of Bm can be found by multiplying both sides of Eq. 
(A-I) by sin mx. Using the expressions 

f d+21T 
d sinmxsinnxdx=O m 4= n 

and 

f d+21T 
d sin2 mx dx = 1T 

the equation becomes 

1 fd+21T 
Bm = - f(x) sin mx dx. 

1T d 
(A-5) 

Accordingly, we can state that for a given periodic functionf(x), a Fourier 
expansion can be written as shown in Eq. (A-I) with the various constants 
obtained from Eqs. (A-2), (A-4), and (A-5). 

Example A·I 

Express the function shown in Fig. A-2 in a Fourier Series 

Solution 

f(x) = 0 

f(x) = Po 

d = -1T 



Po 

-2IT 

-IT 

From Eq. (A-2) , 

or 

From Eq. (A-4) 

-IT 

IT 
2 

General Equations 

Po 

Po 

IT 

IT 

2 

Figure A-2. 

2IT 

IT 

3IT 

1 fO 1 fTI Ao = - (0) dx + - Po dx 
1T -TI 1T 0 

1 fTI 
Am = - Po cos mx dx 

1T 0 

Am = O. 
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• x 
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From Eq. (A-S), 

Fourier Series 

1 i1T Bm = - Po sin mx dx 
1T 0 

= ..J!.E... (-cos mx)lo 
m1T 

= -Po (cos m1T - 1) 
m1T 

B = 2po when m is odd 
m m1T 

= 0 when m is even. 

Therefore, the expansion of the function shown in Fig. A-2 is expressed 
as 

f(x) = O,Spo + 2po L 1. sin mx. 
1T m=1,3, ... m 

A plot of this equation with m 1,3, 5 is shown in Fig. A-2. 

Problems 

A-I What is the Fourier expansion of the function shown in Fig. PA-l? 
A-2 What is the Fourier expansion of the function shown in Fig. PA-2? 

A-2 Interval Change 

In applying the Fourier Series to plate and shell problems, it is more 
convenient to specify intervals other than 21T. Defining the new interval 

Figure PA-l. 



Interval Change 

Figure PA-2. 

as 2p, Eqs. (A-2), (A-4), and (A-S) can be written as 

1 fd+2P 
Ao = - f(x) dx 

p d 

1 fd+2P m7rX 
Am = - f(x) cos - dx 

pdp 

1 fd+2P m7rX 
Bm = - f(x) sin - dx 

pdp 

where 

2p = period of function, 

and the series can be written as 

() 1 ~ m7rX ~ B . m7rX 
fix =2" A o+ mL:.IAmcosp+ mL:.1 m SlD p ' 
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(A-6) 

(A-7) 

(A-8) 

(A-9) 

Parts of the equation under the summation signs can be solved by avail­
able computer programs. A short computer program called "SNGLSUM" 
is listed in Table A-I. 

Example A-2 

Find the Fourier expansion of the Functionf(x) = cos x as shown in Fig. 
A-3. 

Solution 

The period 2p is equal to 7r. Thus, p = 7r/2 and d = -7r/2. 

1 J'IT/2 
A = - cos x dx = 4/7r 

o 7r/2 -'IT/2 

2 f'IT/2 m7rX 4 '" (_l)m+l 
Am = - cos x cos -/2 dx = - 2: (4 2 1) 

7r -'IT/2 7r 7r m=l m -

Bm = o. 
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Table A-I. Program "SNGLSUM" 

10 REM THE NAME OF THIS PROGRAM IS SINGLE SUMMATION, 
"SNGLSUM" 

20 REM THIS PROGRAM CALCULATES THE SUM OF A SINGLE 
SERIES 

30 REM INPUT EQUATION TO BE EVALUATED IN LINE 210 
40 REM STATEMENTS 210 TO 219 ARE RESRV'D FOR EQUAT'N TO BE 

SOLV'D 
50 REM INPUT THE MAXIMUM SUMMATION VALUE IN LINE 200 
60 PRINT "IS THE M SUMMATION ODD (0), EVEN (E), OR 

CONTINUOUS (C)" 
70 INPUT A$ 
80 IF A$ = "0" THEN 120 
90 IF A$ = "E" THEN 150 
100 IF A$ = "C" THEN 180 
110 GOTO 60 
120 M1 = 1 
130M2 =2 
140 GOTO 200 
150 M1 = 2 
160 M2 = 2 
170 GOTO 200 
180 M1 = 1 
190 M2 = 1 
200 FOR M = M1 TO 30 STEP M2 
210 Y = 1 / (M}'2 
220 LET T = T + Y 
230 NEXTM 
240 PRINT "SUMMATION OF SERIES IS = "; T 
250 END 

Figure A-3. 
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and from Eq. (A-9), 

2 4 oc (_ l)m + 1 

f(x) = - + - 2: 4 2 1 cos 2mx. 
'IT 'IT m=l m -

A-3 Half-Range Expansions 

If a function is symmetric with respect to the axis of reference as shown 
in Fig. A-4, then the coefficient integral can be simplified by integrating 
over one-half the period. This integration can be performed as an even or 
an odd function. Hence, 

For an even periodic function 

Ao = ~ (p f(x) dx 
p Jo 
2lP m'lTX Am = - f(x) cos - dx 
pop 

Bm = O. 

------~----~--~----~x 

(a) odd 

----~----~~----~--~x 

(b) odd 

----~----~~----~--__ x 

(e) even 

Figure A-4. 

(A-lO) 
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For an odd periodic function 

Ao = Am = 0 .] 

2 iP • m7TX Bm = - f(x) sm - dx 
pop 

(A-ll) 

It should be noted that the even and odd functions defined by Eqs. 
(A-lO) and (A-ll) and Fig. A-4 do not refer necessarily to the shape of 
the function but rather to the reference line from which they are defined. 
This can best be illustrated by the following example. 

Example A-3 

Figure A-5 shows a plot of the function y = x - x2• Obtain and plot the 
Fourier Series expansion of this function (a) from y =/ -1 to Y = 1; 
(b) as an even series from y = 0 to y = 1; (c) as an odd series from 
y=Otoy=1. 

y 
2.0 

1.0 2.0 
continuous function 

-1.0 
even function 

2.0 
odd function 

Figure A-5. 
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Solution 

(a) 

(b) 

(c) 

d = - 1, 2p = 2 or p = 1 

Ao = II (x - x2) dx = - 2/3 
-1 

II m7TX 
Am = (x - X2) cos -- dx = 

-1 1 

II m7TX 
Bm = (x - X2) sin -- dx = 

-1 1 

4 cos m7T 

m27T2 

2 cos m7T 

m7T 

~ 4 cos m7T ~ 2 cos m7T . 
I(x) = -1/3 - LJ 2 2 cos m7TX - LJ sm m7TX 

m~1 m 7T m~1 m7T 

4 co (_ l)m 2 co (_ l)m 
-1/3 - 2 L --2- cos m7TX - - L -- sin m7TX 

7T m~1 m 7T m~1 m 

Ao = 2 f (x - X2) dx = 1/3 

e m7TX 
Am = 2 Jo (x - X2) cos -1- dx = 

2(1 + cos m7T) 

Bm = 0 

ji( ) _ 1/6 _ ~ 2(1 + cos m7T) 
X - LJ 2 2 COS m7TX 

m~1 m 7T 

Ao = Am = 0 

e . m7TX 4(1 
Bm = 2 Jo (x - X2) sm -1- dx = 

ji( ) _ ~ 4(1 - cos m7T) • 
X - LJ 3 3 sm m7TX 

m~1 m 7T 

A-4 Double Fourier Series 

401 

In solving rectangular plate problems of length a and width b, it is cus­
tomary to express the applied loads in terms of a single or double series. 
The double Fourier series is normally expressed as an odd periodic function 
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with a half range period given between 0 and a for one side of the plate 
and 0 to b for the other side. Thus, 

f( ) ~ ~ B . m'ITX . n'ITy 
x, y = mL:1 n~l mn SIn -a- SIll b (A-12) 

where 

4 (b (a . m'ITX . n'ITy 
Bmn = ab Jo Jo f(x, y) SIll -a- SIll b dx dy. (A-13) 

Equation (A-12) can be solved by many available commercial programs. 
One simplified such program, called "DBLSUM," is listed in Table A-2. 

Table A-2. Program "DBLSUM" 

10 REM THE NAME OF THIS PROGRAM IS DOUBLE SUMMATION, 
"DBLSUM" 

20 REM THIS PROGRAM CALCULATES THE SUM OF A DOUBLE 
SERIES 

30 REM INPUT EQUATION TO BE EVALUATED IN LINE 370 
40 REM STATEMENTS 370 TO 379 ARE RESRV'D FOR EQUAT'N TO BE 

SOLV'D 
45 REM LINES 350 AND 360 GIVE THE MAX. SUMMATION VALUE 
50 PRINT "IS THE M SUMMATION ODD (0), EVEN (E), OR 

CONTINUOUS (C)" 
60 INTPUT A$ 
70 IF A$ = "0" THEN 110 
80 IF A$ = "E" THEN 140 
90 IF A$ = "C" THEN 170 
100 GOTO 50 
110 M1 = 1 
120 M2 = 2 
130 GOTO 200 
140 Ml = 2 
150 M2 = 2 
160 GOTO 200 
170 Ml = 1 
180 M2 = 1 
190 GOTO 200 
200 PRINT "IS THE N SUMMATION ODD (0), EVEN (E), OR 

CONTINUOUS (C)" 
210 INPUT A$ 
220 IF A$ = "0" THEN 260 
230 IF A$ = "E" THEN 290 
240 IF A$ = "C" THEN 320 
250 GOTO 200 
260 Nl = 1 
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Table A-2. Continued 

270 N2 = 2 
280 GOTO 350 
290 N1 = 2 
300N2=2 
310 GOTO 350 
320 N1 = 1 
330 N2 = 1 
340 GOTO 350 
350 FOR M = M1 TO 30 STEP M2 
360 FOR N = N1 TO 30 STEP N2 
370 U (-If((M + N)/2 - 1) 
371 V = M*N*(M'2 + N'2}'2 
372 Y = UN 
380 LET T = T + Y 
390 NEXTN 
400 NEXTM 
410 PRINT "SUMMATION OF SERIES IS = "; T 
420 END 

~------~Q--------r---X 

b 

y 

Figure A-6. 

Example A-4 

403 

The rectangular plate shown in Fig. A-6 is subjected to a uniform pressure 
Po' Determine the Fourier expansion for the pressure. 

Solution 

From Eq. (A-13), 

B - 4po fb fa . m7rX . n7ry dx d 
mn - b sm sm b Y a 0 0 a 

16po m, n are odd functions 

~( ) 16po ~ ~ 1. m7rX . n7rY 
J' x, Y = --2- L.J L.J - sm --- sm-

7r m=1,3, ... n=1,3, ... mn a b 



APPENDIX B 

Bessel Functions 

B-1 General Equations 

In many plate and shell applications involving circular symmetry, the re­
sulting differential equations aie solved by means of a power series known 
as Bessel functions. Some of these functions are discussed in this appendix. 

The differential equation 

d2y 1 dy 
dx2 + ; dx + Y = 0 (B-1) 

is referred to as Bessel's equation of zero order. Its solution (Bowman 
1958) is given by the following power series 

y = C1Jo(x) + C2Yo(x) (B-2) 

where 
C1 and C2 constants obtained from boundary conditions; Jo(x) 

Bessel function of the first kind of zero order. 

x2 X4 x6 

Jo(x) = 1 - 22 + 22 . 42 - 22 . 42 . 62 + ... 

00 (-I)m (x)2m 
= m~o (m!)2 2: 

Yo(x) = Bessel function of the second kind of zero order. 

Yo(x) = Jo(x) f XJ~x) 
x2 X4 

= Jo(x) In x + 22 - 22 . 42 (1 + 1/2) 

x6 

+ 22 . 42 . 62 (1 + 1/2 + 1/3) - ... 

404 
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Equation (B-1) is usually encountered in a more general form as 

d2y dy 
x2 dx2 + x dx + (x2 - k2)y = O. (B-3) 

The solution of this equation (Hildebrand 1964) is 

y = C1I k(x) + C21 -k(X) 

when k is not zero or a positive integer, or 

y = C1h(x) + C2Yix) 

when k is zero or a positive integer. And where, 

I k(X) = Bessel function of the first kind of order k 

_ ~ (-1)m ( 12)2m+k 
- mL:o (m!)(m + k)! x 

I -ix) = Bessel function of the first kind of order k 

00 (1)m 
= m~o (m!)(~ _ k)! (x/2)2m-k 

Yk(x) = Bessel function of the second kind of order k 

2 [ 1 k-1 (k - m - 1)' =;; (In(x/2) + 'Y)lk(x) - 2" m~o m! . (x/2)2m-k 

1 oc (X/2)2m+k ] 
+ 2" m~o (_1)m+1[h(m) + hem + k)] m!(m + k)! 

m 

hem) = 2: 1Ir m>l. 
r=l 

'Y = 0.5772 

A plot of lo(X) , 11(x), Yo(x), and Y1(x) is shown in Fig. B-l. Also, Table 
B-1 gives some values of lex) and Y(x). 

A different form of Eq. (B-3) that is encountered often in plate and 
shell theory is 

d2y dy 
x2 dx2 + x dx - (x2 + k2)y = O. (B-4) 

The solution of this equation (Dwight 1972) is 

y = C1h(x) + C2L k(x) 

when k is not zero or a positive integer, or 

y = C1h(x) + C2Kix) 
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-1.0 

(C;U 

1.0 

Yo(x) 

Figure B-1. 

Table B-1. Values of 1 0 , J1 , Yo, and Y 1 

x lo(x) 11 (x) Yo(x) Y 1(x) 

0.0 1.0000 0.0000 -00 -00 

0.5 0.9385 0.2423 -0.4445 -1.4715 
1.0 0.7652 0.4401 0.0883 -0.7812 
1.5 0.5118 0.5579 0.3825 -0.4123 
2.0 0.2239 0.5767 0.5104 -0.1070 
2.5 -0.0484 0.4971 0.4981 0.1459 
3.0 -0.2601 0.3391 0.3769 0.3247 
3.5 -0.3801 0.1374 0.1890 0.4102 
4.0 -0.3972 -0.0660 -0.0169 0.3979 
4.5 -0.3205 -0.2311 -0.1947 0.3010 
5.0 -0.1776 -0.3276 -0.3085 0.1479 
5.5 -0.0068 -0.3414 -0.3395 -0.0238 
6.0 0.1507 -0.2767 -0.2882 -0.1750 
6.5 0.2601 -0.1538 -0.1732 -0.2741 
7.0 0.3001 -0.0047 -0.0260 -0.3027 
7.5 0.2663 0.1353 0.1173 -0.2591 
8.0 0.1717 0.2346 0.2235 -0.1581 
8.5 0.0419 0.2731 0.2702 -0.0262 
9.0 -0.0903 0.2453 0.2499 0.1043 
9.5 -0.1939 0.1613 0.1712 0.2032 

10.0 -0.2459 0.0435 0.0557 0.2490 



General Equations 

when k is zero or a positive integer and where 

Ik(x) = modified Bessel function of the first kind of order k 

00 (xI2)2m+k 

= L '( k)" m~l m. m + . 
Kk(X) = modified Bessel function of the second kind of order k 

= (-1)k+I[ln(xI2) + 'Y]Ik(x) 

+ ! ~1 (-l)m(k - m - 1)! (xI2)2m-k 
2 m~O m! 

+ ! i (-1)k(xI2)2m+k [(1 + 112 + + 11m) 
2 m=O m!(m + k)! 

+ (1 + 112 + ... + 1I(m + k))). 

A plot of Io(x), II(x), Ko(x), and K1(x) is shown in Fig. B-2. 
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Another equation that is often encountered in plate and shell theory is 
given by 

(B-5) 

The solution of this equation (Hetenyi 1964) for the important case of 
k = 0 is given by 

y = C1Z 1(X) + CZZ 2(x) + C3Z3(X) + C4Zix) (B-6) 

Figure B·2. (Wylie 1960.) 
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where 

00 (xI2)4m 
Zl(X) = ber(x) = 1:0 ( -1)m [(2m)!J2 

• 00 (xI2)4m+2 
Z2(X) = - bel(x) = - L (-I)m [(2 1)']2 

m~O m + . 
2. Zl(X) 2 

Z3(X) = -- kel(x) = -2- - - [R1 + (In (')'xI2»(Z2(X))] 
'IT 'IT 

2 Z2(X) 2 
Zix) = -- ker(x) = -2- + - [R2 + (In (')'xI2»(Zl(X))] 

'IT 'IT 

_ ( I )2 _ h(3) ( 1)6 h(5) ( 12)10 _ ... 
R1 - x 2 (3!)2 x 2 + (5!)2 x 

h(2) ( )4 h( 4) ( )8 h(6) ( I )12 
R2 = (2!)2 xl2 - (4!)2 xl2 + (6!)2 x 2 _ ... 

hen) = 1 + 112 + 1/3 + ... + lin 

')' = 0.5772. 

A plot of Zl(X), Z2(X), Z3(X), Zix), and their derivatives is shown in Fig. 
B-3. 

B-2 Some Bessel Identities 

The derivatives and integrals of Bessel functions follow a certain pattern. 
The identities given here are needed to solve some of the problems given 
in this text. 



Some Bessel Identities 409 

5 6 

Figure B-3. (Hetenyi 1964.) 
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d 2Z 4(X) = _ Zix) _ ! dZ4(x) 
dx2 x dx 

The last four equations are needed in the solution of circular plates on 
elastic foundation. In these equations the value of (kx) is needed rather 
than (x) in the Z functions. In this case, these equations take on the form 

k2Z~(kx) = k2Z 2(X) - ~ Z~(kx) 
x 

k2Z~(kx) = - k 2Z 1(X) - ~ Z~(kx) 
x 

B-3 Simplified Bessel Functions 

As x approaches zero, the various Bessel functions can be expressed as 

Xk 
hex) = (2k)(k!) 

Y ( ) _ _ 2k(k - I)! -k 
k x - X 

'IT 

2 
Yo(x) = - In x 

'IT 

Xk 
hex) = 2kk! 

Kk(X) = (2k-l)[(k - l)!]x- k 

Ko(x) = -lnx 

k 0/= 0 

k 0/= 0 

Zl(X) = 1.0 ZzCx) = -x2/4 



Simplified Bessel Functions 

Z3(X) = 1/2 

dZ1(x) = -x3116 
dx 

dZ2(x) = -x/2 
dx 

2 -yx 
Z4(X) = -In-

1T 2 
dZ3(x) = ~ In -yx 

dx 1T 2 
dZ4(x) 2 
--=-

dx 1TX 
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As x approaches infinity, the various Bessel functions can be expressed as 

Jk(x) = (2 cos(x - ~k) ~k = (2k + 1) ~ 
~~ 4 

Yk(x) = (2 sin(x - ~k) 
~~ 

eX 
Ik(x) = y21TX 

e-X 

Kk(X) = y2x/1T 

Zl(X) = 1] cos IT Zz(x) = -1] sin IT 

Z3(X) = 13 sin 'I" Z4(X) = -13 cos 'I" 

1 
1] = -- eX/Vi vz:rrx 

x x 
IT = V2 - 1T/8 'I" = V2 + 1T/8 

dZ1(x) 1] . 
-- = - (cos IT - sm IT) 

dx V2 
dZz(x) -1] . 
~ = V2 (cos IT + sm IT) 

dZ3(x) 13 . 
~ = V2 (cos 'I" - sm '1") 

dZ4(x) -13 . 
~ = V2 (cos 'I" + sm'l") 



APPENDIX C 

Conversion Factors 

Pressure Units 

1 psi 1 N/mm2 1 bar 1 KPa 1 kgf/cm2 

psi 1.0000 145.0 14.50 0.1450 14.22 
N/mm2 0.006895 1.000 0.1000 0.0010 0.09807 
bars 0.06895 10.000 1.000 0.0100 0.9807 
KPa 6.895 1000.0 100.00 1.000 98.07 
kgf/cm2 0.0703 10.20 1.020 0.0102 1.000 

1 N/mm2 = 1 MPa. 

Modulus of Elasticity Units 

1 ksi 1 KN/mm2 1 MPa 1 kgf/mm2 

ksi 1.000 145.0 0.1450 1.422 
KN/mm2 0.006895 1.000 0.001 0.009807 
MPa 6.895 1000.00 1.000 9.807 
kgf/mm2 0.7033 102.0 0.1020 1.000 

Force Units 

lIb 1 kgf IN 
lb 1.000 2.205 0.2248 
kgf 0.454 1.000 0.1020 
N 4.448 9.807 1.0000 

412 



Answers to Selected Problems 

1-2 0"1 = 11,945 psi, 0"2 = -1360 psi, T12 = 6650 psi 
1-4 O"x = 92.2 MPa, O"y = 124.9 MPa 
1-15 t = 2.74 inch 
2-5 

-4a4 

Hm = ------------------------
mSTrS(COSh _m_Tr_b + G ~ sinh m_Tr_b) 

2a m2 2a 

mTr . h mTrb -sm --
a 2a 

G"" = - -----------------
. mTrb mTr mTrb 

smh -- + - cosh --
2a a 2a 
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414 Answers to Selected Problems 

2-6 

w = i (Bm cosh m-rry + CmY sinh m-rry) sin m-rrx 
m~l a a a 

where 

2 m-rrb 
Cm = - - B coth--

b m 2a 

( m2-rr2 _ 2m-rr C ) cosh m-rrb 
a2 a 2 2a 

m2-rr2 C b . h m-rrb - -- -sm--
a22 2 2a 

2 m-rrb 
C2 = b coth 2a 

2-12 M = 7,620 inch-Ib/inch 
3-3 = 8670 psi, Max w = 0.23 inch. 
3-4 = 12,330 psi 
3-6 

where 



Answers to Selected Problems 

4-4 Mp = pL2/8 
4-6 Mp = pVI144 
4-11 Mp = 157.3 P 
6-4 t = 0.90 inch 

6-5 Nq, = - PoRI2 

Ne = - p oRe cos2 <I> - 112) 

6-6 

N = - 'YR2 (3H + 1 _ 2 cos2 <I> ) 
q, 6 R 1 + cos <I> 

N. = -'YR2 (3H _ 1 _. 6 - 4 cos2 <1» 

e 6 R 1 + cos <I> 

6-9 

N _ - 847'YV sin <X 

max s - 432 at s = Ll12 

'YV 
max Ne = 4 sin <X at s = Ll2 

7-4 A = 5.76 in2 

7-5 

t1 = 0.21 inch, 

t3 = 0.98 inch, 

A = 1.22 in2 

t2 = 0.82 inch 

t4 = 0.69 inch 

8-1 Max Mx = 0.322 Qo/l3 at x = 0.61 Vrt 
8-2 At Section a-a Mo = 0 and Ho = 0.0195D133 

8-3 Ma = 14.95/13 and Mb = 44.97/13 
8-6 

p = 3.49 psi 

Mo = 0.1074P inch-Ib/inch, Qo = 1.855P lb/inch. 

8-7 Discontinuity moments and forces at junction are 

moment if! top cylinder = 595.4 inch-Ib/inch (comp. on outside) 
moment in bottom cylinder = 163.1 inch-Ib/inch (comp. on outside) 
moment in plate = 758.5 inch-Ib/inch (tension on top) 
horizontal force in top cylinder = 495.9 lbs compressive 
horizontal force in bottom cylinder = 109.2 lbs tensile 
horizontal force in plate = 386.7 lbs tensile 
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416 Answers to Selected Problems 

9-2 Mo = 1886 inch-lb/inch, 
11-3 t = 5/16 inch. 
12-2 t = 0.73 inch. 
12-3 p = 148.9 psi. 
A-2 

Ho = 1200 Ib/inch 

1 2~ cosmx 1. 
f(x) = - - - LJ ( 1)( 1) + -2 sm x 

'iT 'iT m=2,4 m - m + 
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Index 

A 

Allowable stress of various materials, 35, 
70 

Allowable secondary stress, 248 
Approximate analysis of plates, 112, 120 
Axisymmetric triangular linear finite 

elements, 389 

B 

Barrel roofs, 367 
Bending of 

circular plates, 71 
conical shells, 270 
cylindrical shells, 221 
rectangular plates, 1 
shells of revolution, 251 
spherical shells, 257 

Bending stiffness of a plate, 10, 150 
Bessel functions, 103,283,404 
Boundary condition of 

circular plates, 106 
cylindrical shells, 306 
rectangular plates, 16 

Box-type bridge decks, 156 
Buckling of 

circular plates, 283 
conical shells, 344, 349 
cylindrical shells 

lateral pressure, 305 
lateral and end pressure, 312 
axial compression, 317 

ellipsoidal shells, 348 
hyperbolic paraboloid sheets, 349 
rectangular plates, 286 

421 

c 

shallow heads, 348 
spherical shells, 338, 348 
stiffened spherical shells, 342 

Circular plates 
bending of, 71 
buckling of, 283 
design of, 109 
nonuniform loads in the a-direction, 91 
on elastic foundation, 100 
reinforcement of, 78 
uniform loads in the a-direction, 71 
variable boundary conditions, 106 
yield line theory, 134 

Coefficients of thermal expansion, table of, 
64 ~. 

Conical shells 
bending, 270 
membrane, 181 

Continuous plates, 52 
conversion factors, 412 
corner reinforcement in a concrete slab, 21 
Corrugated plates, 155 
Cylindrical shells 

D 

Bending of, 221 
buckling of, 300 
long, 227 
short, 242 
thermal stress, 245 

Deflection of shells of revolution, 214 
Design of 

circular plates, 109 
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Design of (continued) 
cylindrical shells under external pressure, 

324 
rectangular plates, 34, 68 
shells of revolution, 190 

Differential equation of 
bending of cylindrical shells, 226 
bending of spherical shells, 259 
buckling of circular plates, 283 
buckling of cylindrical shells, 307, 321 
buckling of rectangular plates, 288 
circular plates in bending, 74, 88, 94, 101 
orthotropic plates in bending, 151 
rectangular plates in bending, 15 

Discontinuity stresses, 247 
Donnell's Equations, 319 
Double series solution of rectangular 

plates, 24 

E 

Edge loads on shells 
conical, 273, 275 
cylindrical, 249 
spherical, 262, 268 

Elastic foundation 
bending of circular plates, 100 
bending of rectangular plates, 59 

Elevated temperature stresses, 70 
Ellipsoidal shells, 169, 348 
Elliptic paraboloid shells, 357 
Elliptic plates, 142, 147 
Energy methods, 112, 288, 338 

F 

Finite elements 
axisymmetric triangular linear, 389 
higher order, 390 
linear triangular elements, 382 
one-dimensional, 374 

Folded plates, 359, 
Fourier series, 24, 29, 392 

H 

Hexagonal plates, 130 
Higher order finite elements, 390 
Hyperbolic Paraboloid sheets, buckling of, 

349 
Hyperbolic paraboloid shells, 355 

I 

Intermediate supports of rectangular plates, 
56 

L 

Lagrange multipliers, 117 
Levy's solution, 29 
Linear triangular finite elements, 382 
Long cylindrical shells, 227 

M 

Membrane theory of shells of revolution, 
163 

Modulus of elasticity, table of various 
materials, 9 

Multiple supports of plates, 56 

N 

Navier's solution, 24 
Nozzle reinforcement, 203 

o 
One-dimensional finite elements, 374 
One sheet hyperboloids, 209 
Orthotropic plates, 148 

P 

Plates on elastic foundation 
circular, 100 
rectangular, 59 

Poisson's ratio, table of various materials, 7 
Pressure-Area method, 202 

R 

Rectangular plates 
bending of, 1 
boundary conditions, 16 
buckling of, 286 
design of, 34, 68 
differential equation, 15 
double series solution, 24 
multiple point support, 56 
plates on elastic foundation, 59 
simply supported, 1 
single series solution, 29 
strain energy method, 112 
thermal stress, 63 
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Rectangular plates (continued) 
various boundary conditions, 39 
yield line theory, 120 

Reinforced concrete slabs, 21, 78, 154 
Roofs 

S 

barrel, 367 
elliptic paraboloids, 357 
folded plates, 359 
hyperbolic paraboloids, 355 

Shallow heads, buckling of, 348 
Shells of revolution 

bending, 251 
membrane, 163 

Short cylindrical shells, 242 
Single series solution of rectangular plates, 

29 
Spherical shells 

axisymmetric loading, 169 
bending, 257 
wind loads, 185 

Staybolts, 69 
Stiffened plates, 156 
Strain-deflection equations, 2 
Strain energy 

Ritz method, 112 
Ritz method with Lagrange multipliers, 

117 

Stress-deflection expressions, 8 
Stress-strain relationship 

of a plate, 8 
of a solid, 7 

T 

Thermal stress 
cylindrical shells, 245 
rectangular plates, 63 

Triangular plates, 131, 140, 145 
Tubesheets, 101 

v 
Variable boundary conditions, 106 
Variable thickness 

circular plates of, 86 
Various boundary conditions 

bending of rectangular plates with, 39 

w 
Wind loads, 185 

y 

on spherical shells, 187 
on conical shells, 189 

Yield line theory 
circular plates, 134 
rectangular plates, 120 
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