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Preface 
 
The series of International Symposia on Transportation and Traffic Theory provides 
the main regular opportunity for those concerned with theoretical approaches to the 
analysis of transport and traffic systems for the benefit of society to meet and 
exchange their latest thinking on advances in understanding and application. The 
symposia also provide a unique opening for those who are interested in contributing to 
or gaining a deeper understanding of this field. The ultimate aim of the symposia is to 
contribute, though a more complete understanding of transport and traffic phenomena, 
to more effective approaches to the planning, design and management of transport 
systems. However, the focus of the symposia is on the underlying science, leading to 
papers on the more fundamental aspects of transport and traffic, especially where the 
existing theory is felt to be underdeveloped, inadequate, or in need of correction. In 
these cases, the formulation, development and testing of new theories as well as the 
critique, refinement, and extension of existing ones has led to the generation of new 
perspectives.  
 
After the first symposium that was held in 1959 at the General Motors Research 
Laboratories in Michigan, the symposia in this series have been held normally every 3 
years. However, the International Advisory Committee has taken the view that the 
international flow of excellent material is now sufficiently great to justify an increase 
in the frequency to every 2 years from 2005. The level of interest and support for the 
present symposium has validated this decision. The second symposium took place in 
London in 1963, and after a total of 7 symposia in north America, 2 in each of Japan 
and Australia, and symposia in Germany, The Netherlands, France and Israel, we 
were glad to welcome colleagues from around the world to London for the 17th 
ISTTT, 23-25 July 2007.  
 
Attention at the Symposia has tracked the themes of interest to leading international 
researchers in the subject area. By providing a forum at which new insights have been 
shared and hitherto unsuspected links between different lines of analysis have been 
explored, the Symposia have facilitated significant advances. The meeting of minds at 
typically two or three Symposia has engendered ground-breaking developments that 
have contributed strongly to innovation in practice, often stimulating continuing 
research in several countries. Some of these themes have been pursued since the early 
symposia, whilst others have emerged during the series.  
 
The contributions to the present symposium address a wide range of topics on the 
planning, modelling, management and operation of transport systems. The processes 
and phenomena that are considered are often both complicated and subtle, reflecting 
the intricate operation of systems such as transport that are managed to some extent 
but that are used by many individuals each making decisions on a personal basis. The 
technical challenges that arise from this are substantial. Within this scope, the 
contributions range from developments of established topics to the exploratory 
application of novel methodologies. Several contributions address aspects of traffic 
flow modelling, including representation of following, merging and lane changing 
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behaviour that can affect the operation of road systems profoundly. Methodological 
developments presented in this area include analysis of advanced model formulations 
and solution methods. Investigation of individual behaviour on and operation of 
networks has given rise to contributions on traffic assignment, both static and 
dynamic, considering both behaviour and management of travellers. Design and 
management methods including pricing are topical, and together with issues such as 
attitude to uncertainty, risk and reliability is given due emphasis. Management of both 
public access and private operations is considered with reference to logistic systems, 
public transport and emergency vehicles. The importance of individual decision 
making and response pervades the contributions, and is the focus of a group that 
considers aspects of travel demand.  
 
This volume contains contributions selected for presentation at the 17th International 
Symposium on Transportation and Traffic Theory from the many offers of extended 
abstracts and subsequently invited submissions of full papers. All the chapters have 
therefore been subjected to a rigorous three-stage peer review process. In accordance 
with past practice, the papers were presented wholly in plenary sessions, leading to 
active discussion across the whole field by participants ranging from young entrants 
to those approaching retirement. Each of the 77 full papers that were submitted was 
reviewed by between two and four independent referees of international standing, 
leading to the selection of the 36 chapters presented in this volume. The result of this 
is that these proceedings rank with the most highly esteemed international refereed 
journals. A further 4 papers were identified as having similarly high quality and 
relevance, but could not be included because of limitations of space and time; the 
authors of these papers have been recommended to proceed with journal publication 
in the usual way. The high quality of the resulting papers, notwithstanding the 
reduction of the interval between successive symposia from the previously usual 3 
years to 2, is a testament to the vigour and enthusiasm of researchers in this field, 
stimulating their activity at the highest levels. 
 
These papers have been prepared by 86 different authors working in 12 countries, 
with representatives from academia, government and industry. The predominance of 
multi-authored papers shows that the forefront of research is now being developed by 
colleagues working together in a collaborative scientific style that is supported by 
worldwide communication systems. This mode of research is emerging rapidly and 
becoming established as a norm.  
 
In working on the papers presented at the symposium and preparing this volume for 
publication, we have called on, and therefore wish to record our thanks to, many 
colleagues who have given generously of their time, skills and intellectual energy, 
often against demanding deadlines. Notable amongst these colleagues are, of course, 
the authors themselves. Alongside them we wish to thank the referees who advised so 
effectively on content and style of presentation, supporting the authors in their 
original work and the editors in making what turned out to be difficult choices 
between so many excellent papers. Members of the local organising committee 
supported us in planning and arranging the symposium and its sessions through their 
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scientific and organisational experience. We wish to thank members of the 
International Advisory Committee of the ISTTT who provided regular encouragement 
and advice on all aspects of the symposium. We also wish to thank Panagiotis 
Angeloudis, Jackie Sime and Dr Jan-Dirk Schmöcker for their skill and dedication to 
organisational detail and DLR in Berlin for designing the original website.  
 
Finally, we wish to thank each of the range of organisations whose financial support 
has made it possible for us to host the 17th ISTTT in London. 
 
 
Benjamin Heydecker, Michael Bell and Richard Allsop 
 
March 2007 
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A COMPUTABLE THEORY OF DYNAMIC
CONGESTION PRICING

Terry L Friesz, Penn State University, USA
Changhyun Kwon, Penn State University, USA
Reetabrata Mookherjee, Oracle Retail, USA

SUMMARY

In this paper we present a theory of dynamic congestion pricing for the day-to-day as well as
the within-day time scales. The equilibrium design problem emphasized herein takes the form
of an MPEC, which we call the Dynamic Optimal Toll Problem with Equilibrium Constraints,
or DOTPEC. The DOPTEC formulation we employ recalls an important earlier result that
allows the equilibrium design problem to be stated as a single level problem, a result which is
surprisingly little known. The DOPTEC maintains the usual design objective of minimizing
the system travel cost by appropriate toll pricing. We describe how an infinite dimensional
mathematical programming perspective may be employed to create an algorithm for the
DOTPEC. A numerical example is provided.

INTRODUCTION

The advent of new commitments by municipal, state and federal governments to construct and
operate roadways whose tolls may be set dynamically has brought into sharp focus the need
for a computable theory of dynamic tolls. Moreover, it is clear from the policy debates that
surround the issue of dynamic tolls that pure economic efficiency is not the sole or even the
most prominent objective of any dynamic toll mechanism that will be implemented. Rather,
equity considerations as well as preferential treatment for certain categories of commuters
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2 Transportation and Traffic Theory 17

must be addressed by such a mechanism. Accordingly, we introduce in this paper the dynamic
user equilibrium optimal toll problem and discuss two plausible algorithms for its solution;
we also provide detailed numerical results that document the performance of the two
algorithms.

The dynamic user equilibrium optimal toll problem should not be considered a simple
dynamic extension of the traditional congestion pricing paradigm associated with static user
equilibrium and usually accredited to Beckmann et al. (1956). Rather, the dynamic user
equilibrium optimal toll problem is most closely related to the equilibrium network design
problem which is now widely recognized to be a specific instance of a mathematical program
with equilibrium constraints (MPEC). In fact it will be convenient to refer to the dynamic user
equilibrium optimal toll problem as the dynamic optimal toll problem with equilibrium
constraints or DOTPEC, where it is understood that the equilibrium of interest is a dynamic
user equilibrium.

The relevant background literature for the DOTPEC includes a paper by Friesz et al. (2002)
who discuss a version of the DOTPEC but for the day-to-day time scale rather than the dual
(within-day as well as day-to-day) time scale formulation emphasized in this paper. Also
pertinent are the paper by Friesz et al. (1996) which discusses dynamic disequilibrium
network design and the review by Liu (2004) which considers multi-period efficient tolls.
Although the DOTPEC is not the same as the problem of determining efficient tolls including
the latter's multiperiod generalization, the exact nature of the differences and similarities is
not known and has never been studied. To study the DOTPEC, it is necessary to employ some
form of dynamic user equilibrium model. We elect the formulation due to Friesz et al. (2001),
Friesz and Mookherjee (2006) and its varieties analyzed by Ban et al. (2005) and others. The
dynamic efficient toll formulation will be constructed by direct analogy to the static efficient
toll problem formulation of Hearn and Yildrim (2002).

The main focus of this paper is the formulation and solution of the DOTPEC. To this end,
again using the DUE formulation reported in Friesz et al. (2001) and Friesz and Mookherjee
(2006), we will form a Stackelberg game that envisions a central authority minimizing social
costs through its control of link tolls subject to DUE constraints with the potential for
additional side constraints for equity and other policy considerations. Also, since we will
allow multiple target arrival times of the users, the within-day scale model, we show how to
easily extend the formulation to include the day-to-day evolution of demand. Of course there
are several ways such a model may be formulated. The dual-time scale formulation we shall
emphasize is based on our prior work on differential variational inequalities and equilibrium
network design and follows the qualitative theory conjectured (but not analyzed) by Friesz et
al. (1996).

Central to the study of the DOTPEC in this paper is the dynamic generalization of a result due
to Tan et al. (1979) and reprised by Friesz and Shah (2001) showing that a system of
inequalities expressing the relationship of average effective delay to minimum delay is
equivalent to a static user equilibrium. This system of inequalities allows one to state the
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equilibrium network design problem as a single level mathematical program. Extension of
this result to a dynamic setting allows us in this paper to state the DOTPEC as an equivalent,
non-hierarchical optimal control problem. We consider two principal methods for solving this
optimal control problem: (1) descent in Hilbert space without time discretization, and (2) a
finite dimensional approximation solved as a nonlinear program. In both approaches we
employ an implicit fixed point scheme like that in Friesz and Mookherjee (2006) for dealing
with time shifts in differential variational inequalities. In an example provided near the end of
this paper, we numerically study a small network and determine its optimal dynamic tolls.

NOTATION AND MODEL FORMULATION

In this section we purposely repeat key portions of the time-lagged DUE formulation given in
Friesz et al. (2001), because of its key role in this manuscript. The reader familiar with the
notation and time-shifted DUE model presented in Friesz et al. (2001) may skip this section of
the present paper.

Dynamic, Delay Operators and Constraints

The network of interest will form a directed graph ( )ANG , , where N denotes the set of

nodes and A denotes the set of arcs; the respective cardinalities of these sets are N and A .

An arbitrary path Pp ∈ of the network is

( ){ }pmi aaaap ,...,,...,, 21≡ ,

where P is the set of all paths and ( )pm is the number of arcs of p . We also let et denote

the time at which flow exists an arc, while dt is the time of departure from the origin of the

same flow. The exit time function p
iaτ therefore obeys

( )diae tpt τ=

The relevant arc dynamics are

( )
( ) ( ) ( ){ }pmiPptpgtpg

dt

tpdx

iaia
ia

1,2,...,,=
1

∈∈∀−
−

(1)

( ) ( ){ }pmiPppxtpx
iaia 1,2,...,,=
,0

∈∈∀ (2)

where px
ia is the traffic volume of arc ia contributed by path p , pg

ia is flow exiting arc ia

and pg
ia 1−

is flow entering arc ia of path Pp ∈ . Also, pga0
is the flow exiting the origin of

path p ; by convention we call this the flow of path p and use the symbolic name pgh ap 0
= .
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Furthermore

⎩
⎨
⎧

∉

∈

pa

pa
p

i

i

ia if0

if1
=δ

so that ( ) ( ) Aatxtx p
aap

Pp
a ∈∀∑

∈

δ= is the total arc volume.

Arc unit delay is ( )aa xD for each arc Aa ∈ . That is, arc delay depends on the number of

vehicles in front of a vehicle as it enters an arc. Of course total path traversal time is

( )
( )

( ) ( )
( )

( ) PpttptptptD
pmaiaia

pm

i
p ∈∀−⎥⎦

⎤
⎢⎣
⎡ −

−
∑ τττ ==

1
1=

It is expedient to introduce the following recursive relationships that must hold in light of the
above development:

[ ]

( ){ }pmiPptpxDtptp

PptxDttp

iaiaiaiaia

aaa

2,3,...,,))(()(=)(

)(=)(

11

111

∈∈∀⎥⎦
⎤

⎢⎣
⎡+

∈∀+

−−
τττ

τ

from which we have the nested path delay operators first proposed by Friesz et al. (1993):

,),(),(
)(

1=

PpxtpxtD
iaia

pm

i
p ∈∀Φ≡ ∑δ

where ( ){ }pmiPppxx
ia 1,2,...,,:(= ∈∈

and

.=

))((=),(

))((=),(

))((=),(

))((=),(

1

1=

11

21333

1222

111

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ+

Φ++Φ+Φ

Φ+Φ+Φ

Φ+Φ

Φ

∑
−

−

ja

i

j
iaia

iaaiaiaia

aaaaa

aaaa

aaa

txD

txDxt

txDxt

txDxt

txDxt

�
�

To ensure realistic behaviour, we employ asymmetric early/late arrival penalties

( )[ ]Ap txtDtF −+ ,

where At is the desired arrival time and

0=)),((=),(

0>),(=)),((<),(

0>),(=)),((>),(

ApAp

E
ApAp

L
ApAp

txtDtFtxtDt

txtxtDtFtxtDt

txtxtDtFtxtDt

−+⇒+

−+⇒+

−+⇒+

χ

χ

while ),(>),( xtxt EL χχ .
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Let us further denote arc tolls by ay for each arc Aa ∈ . We assume that users pay any toll

imposed on an arc at the entrance of the arc. Then the path tolls py for each path Pp ∈ are

( ) Ppxttypty
ja

i

j
iaia

pm

i
p ∈∀⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Φ+∑∑

−

),(=
1

1=

)(

1=

δ ,

where 0=),(
0

xtaΦ . If the tolls are paid when users exit arcs, then the path toll becomes

( ) Ppxttypty
ja

i

j
iaia

pm

i
p ∈∀⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Φ+∑∑ ),(=

1=

)(

1=

δ .

We now combine the actual path delays and arrival penalties to obtain the effective delay
operators

( ) PpTtxDtFxtDxt Appp ∈∀−++Ψ ),(),(=),( (3)

Since the volume which enters and exits an arc should conserve flow, we must have

( ) ( ) [ ]
10

( ( ))
= , 1, ( )

( (0))

t a ai i
a ai iDa ai i

t D x tp pg t dt g t dt p P i m p
x−

+
∀ ∈ ∈∫ ∫ , (4)

where )(=)(
0

thtpg pa . Differentiating both sides of (4) with respect to time t and using the

chain rule, we have

( ) Ppxtx'DtxDtpgth aaaaaap ∈∀++ )))(()))(1(((=
111111
� (5)

( ) [ ])(2,,)))(()))(1(((=
1

pmiPpxtx'DtxDtpgtpg
iaiaiaiaiaiaia ∈∈∀++

−
� . (6)

These are proper flow progression constraints derived in a fashion that makes them
completely consistent with the chosen dynamics and point queue model of arc delay. These
constraints involve a state-dependent time lag ))(( txD

iaia but make no explicit reference to

the exit time functions. These flow propagation constraints describe the expansion and
contraction of vehicle platoons; they were presented by Friesz et al. (1995). Astarita
(1995, 1996) independently proposed flow propagation constraints that may be readily placed
in the above form.

The final constraints to consider are those of flow conservation and non-negativity:

( ) WjiQdtth
t

ijp
f

t
ijPp

∈∀∫∑
∈

,=)(
0

(7)

( ) ijp Pjih ∈∀≥ ,0 (8)

[ ])(1,,0 pmiPppg
ia ∈∈∀≥ (9)

[ ])(1,,0 pmiPppx
ia ∈∈∀≥ , (10)

where W is the set of origin-destination pairs, ijP is the set of paths connecting origin-

destination pair ( )ji, , 0> tt f , and 0tt f − defines the planning horizon. Furthermore, ijQ is

the travel demand (a volume) for the period [ ]ftt .0 . In what follows h will denote the vector
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of all path flows, g the vector of all arc exit flows. Finally, we denote the set of all feasible

exit flow vectors ( )gh, by Ω ; that is

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }satisfiedare10,9,8,7,6,5,2,1:, gh≡Ω . (11)

Dynamic User Equilibrium

Given the effective unit travel delay pΨ for path ,p the infinite dimensional variational

inequality formulation for dynamic network user equilibrium itself is: find ( ) Ω∈∗∗ hg , such

that

( )( ) ( ) ( )[ ] ( ) ( )[ ] 0,,=,,,
0

≥−⋅Ψ−Ψ ∗∗∗

∈

∗∗∗ ∫∑ dtththghxt
t

hhghxt ppp
f

t
Pp

(12)

for all ( ) Ω∈gh, , where Ψ denotes the vector of effective path delay operators. Friesz et al.

(2001) show all solutions of (12) are dynamic user equilibria1. In particular the solutions of
(12) obey

( )( ) ( ) 0=>,, thhgxt pijp
∗∗∗ ⇒Ψ μ (13)

( ) ( )( ) ijpp hgxtth μ=,,0> ∗∗∗ Ψ⇒ (14)

for ijPp ∈ where ijμ is the lower bound on achievable costs for any ij -traveler, given by

( ) [ ]{ } 0,:,inf= 0 ≥∈Θ fpp tttxtessμ

and
{ } 0:min= ≥∈ ijpij Ppμμ .

We call a flow pattern satisfying (13) and (14) a dynamic user equilibrium. The behavior
described by (13) and (14) is readily recognized to be a type of Cournot-Nash non-
cooperative equilibrium. It is important to note that these conditions do not describe a
stationary state, but rather a time varying flow pattern that is a Cournot-Nash equilibrium (or
user equilibrium) at each instant of time.

THE DYNAMIC EFFICIENT TOLL PROBLEM (DETP)

Hearn and Yildrim (2002) studied the efficient toll in the static setting with the traveling cost
which is linear in the traffic flow. The objective of the efficient toll is to make the user
equilibrium traffic flow equivalent to the system optimum by appropriate congestion pricing.
To study the dynamic efficient toll problem (DETP), we introduce the notion of a tolled
effective delay operator:

{ } ( ) PptyTtxDtFxtDyxt pApppp ∈∀+−++Θ ),(),(=),,( ,

1Although we have purposely suppressed the functional analysis subtleties of the formulation, it should be noted

that (12) involves an inner product in a Hilbert space, namely [ ]( )P
TL 0,2 .
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where py denotes the toll for path p . Of course we have the relationship

( ) ( ) ( )tyxtyxt pppp +ΨΘ ,=,, . (15)

To make the toll meaningful, we enforce the efficient toll non-negative:
( ) [ ] Pptttty fp ∈∈∀≥ ,,0 0 .

Analysis of the System Optimum

The dynamic system optimum (DSO) is achieved by solving

( ) ( ) dtthxte
t

J pp
rt

Pp

f

t
,=min

0
1 Ψ−

∈

∑∫
subject to

( )
( ) ( ) ( )[ ]pmiPptpgtpg

dt

tpdx

iaia
ia

,1,=
1

∈∈∀−
−

(16)

( ) ( )[ ]pmiPppxtpx
iaia ,1,=
,0

∈∈∀

( ) [ ])(1,,)))(()))(1(((=
1

pmiPpxtx'DtxDtpgtpg
iaiaiaiaiaiaia ∈∈∀++

−
� (17)

( ) ( ) WjiQdtth
t

ijp
f

t
ijPp

∈∀∫∑
∈

,=
0

(18)

000 ≥≥≥ hgx , (19)

where we have used the convention

pa hpg =
0

.

It will be convenient to employ the following shorthand for shifted variables:

)](0,,)))((( pmiPptxDtpgpg
iaiaiaia ∈∈∀+≡ .

Penaltizing (17) we obtain

( ) ( )
( )

( ) ( ) dtxtx'Dtpgtpg

p

thxte
t

J
iaiaiaiaia

ia
pm

iPp
pp

rt

Pp

f

t ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ +−+Ψ

−
∈

−

∈

∑∑∑∫
2

1
1=0

1 )))(((1
2

,= �
μ

, (20)

where p
iaμ is the penalty coefficient. Let us then define the set of feasible controls

( ) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≥≥∈∀≡Λ ∫∑
∈

00,,,=:,
0

ghWjiQdtth
t

gh ijp
f

t
ijPp

. (21)
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Optimal control problem (20) and (21) is an instance of the time-shifted optimal control
problem analyzed in Friesz et al. (2001). We also employ the following notation for the state
vector and control vector, respectively:

( )[ ]⎟
⎠
⎞

⎜
⎝
⎛ ∈∈ pmiPppxx

ia ,1,:=

( )[ ]⎟
⎠
⎞

⎜
⎝
⎛ ∈∈ pmiPppgg

ia ,1,:= .

The DSO Hamiltonian is

( ) ( ) ( )
( )

( )

( )

( ) ( ) .

)))(()(1(
2

,;,,,,

1
1=

2

1
1=

1

⎟
⎠
⎞

⎜
⎝
⎛ −+

⎭
⎬
⎫

⎩
⎨
⎧ +−+Ψ≡

−
∈

−
∈

−

∈

∑∑

∑∑∑

tpgtpgp

xtx'Dtpgtpg

p

thxteghxtH

iaiaia

pm

iPp

iaiaiaiaia
ia

pm

iPp
pp

rt

Pp

λ

μ
μλ �

Let us introduce the vector

( ) ( ) ( )[ ]⎟
⎠
⎞

⎜
⎝
⎛ ∈∈ pmiPpghxtpFghxtF

ia ,0,:;,,,,=;,,,, μλμλ ,

where ( ) ( )
Pp

h

ghxtH
ghxtpF

p
a ∈∀

∂

∂ μλ
μλ

;,,,,
=;,,,, 1

0
(22)

( )

( )

( )( )[ ]

( )

( )

( )

( )( ) ( )( )[ ]
[ ])(1,,

,if

))((1

1;,,,,

;,,,,

,if

;,,,,

=;,,,,

0

1

1

00

1

pmiPp

txDttxDt

t
xtx'Dpg

ghxtH

pg

ghxtH

txDtt

pg

ghxtH

ghxtpF

fiafia

iasiaiaia
ia

ia

ia

ia

ia

∈∈∀

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

+∈

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+∂

∂
+

∂

∂

∈

∂

∂

�
μλ

μλ

μλ

μλ
(23)

and each ( )ts
ia is a solution of the fixed point problem ( ) ( )( )[ ]sxDtsts

iaia −=arg= . We may

write (22) and (23) in detail as

( ) ( )
( )

( ) Pppxtx'Dtpgtpgp

h
h

xt
xteghxtpF

aaaaaaa

p
p

p
p

rt
a

∈∀+⎥⎦
⎤

⎢⎣
⎡ +−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

Ψ∂
+Ψ−

1111101

0

)))(()(1(

,
,=;,,,,

λμ

μλ

�

(24)
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( )

( )

( )( )[ ]

( )

( )
( )

( )( ) ( )( )[ ]
[ ]1)(1,,

,if

)))(()(1(

)))(()(1(

,if

)))(()(1(

=;,,,,

0

1

111111

00

111111

−∈∈∀

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

+∈

⎥⎦
⎤

⎢⎣
⎡

⎭
⎬
⎫

⎩
⎨
⎧ +−−

+−
⎭
⎬
⎫

⎩
⎨
⎧ +−

∈

+−
⎭
⎬
⎫

⎩
⎨
⎧ +−

−

++++++

++++++

pmiPp

txDttxDt

t
xtx'Dtpgtpgp

ppxtx'Dtpgtpgp

txDtt

ppxtx'Dtpgtpgp

ghxtpF

fiafia

ias
iaiaiaiaiaia

iaiaiaiaiaiaiaia

ia

iaiaiaiaiaiaiaia

ia

�

�

�

μ

λλμ

λλμ

μλ
(25)

( )

( )( )[ ]

( )
( )

( )( ) ( )( )[ ]
.)(=,

,if

)))(()(1(

,if

=;,,,,

0

1

00

pmiPp

txDttxDt

t
xtx'Dtpgtpgpp

txDtt

p

ghxtpF

fiafia

ias
iaiaiaiaiaiaia

ia

ia

ia

∈∀

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

+∈

⎥⎦
⎤

⎢⎣
⎡

⎭
⎬
⎫

⎩
⎨
⎧ +−−−

∈

−

−
�μλ

λ

μλ
(26)

Then a necessary condition for ( ) Λ∈SS gh , to be the system optimum is
( )

( ) ( ) Λ∈∀⎟
⎠
⎞

⎜
⎝
⎛ −≤ ∑∑

∈

ghpSgpgghxtpF
iaia

SSSS

ia

pm

iPp

,;,,,,0
0=

μλ (27)

for each time instant ( )( ){ }[ ]fiafia txDttt +∈∈ sup A0, , together with the state dynamics (16) and

the following adjoint equations and boundary conditions

( )
[ ])(1,,

,
==

,
1 pmiPp

px

xt
e

px

H

dt

Spd

ia

S
prt

ia

S
ia

∈∈∀
∂

Ψ∂

∂

∂
− −

λ

( ) [ ])(1,,0=, pmiPptSp
fia ∈∈∀λ ,

where the superscript S denotes a trajectory corresponding to a system optimum.

Analysis of the User Equilibrium in the Presence of Tolls

However, a dynamic tolled user equilibrium must obey

( )[ ]{ } ( ) ( )[ ] ( ) Λ∈≥−Θ−

∈
∫∑ ghdtththyhxte
t U

pp
U
p

U
p

rtf

t
Pp

,allfor0,,
0

, (28)

where the state dynamics as well as all other state and control constraints are identical to those
introduced above for DSO. In particular, the set of feasible controls Λ referred to in (28)
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remains unchanged. We formulate an optimal control problem2 from the above dynamic user
equilibrium variational inequality problem; its objective is

( )[ ] ( )dtthyhxte
t

J p
U
p

U
p

rtf

t
Pp

,,=min
0

2 Θ−

∈
∫∑

with the same constraints introduced previously. As previously done for the system optimum
problem, we penaltize the flow propagation constraints to obtain the modified criterion

( )[ ] ( )
( )

( ) dtxtx'Dtpgtpg

p

thyhxte
t

J
iaiaiaiaia

ia
pm

iPp
p

U
p

U
p

rtf

t
Pp ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ +−+Θ

−
∈

−

∈

∑∑∫∑
2

1
1=0

2 )))(()(1(
2

,,= �
μ

(29)

Then we have another standard form time-shifted optimal control problem, although it is
subtly but importantly different than that for DSO. In particular, the Hamiltonian now
becomes

( ) ( )[ ] ( )
( )

( )

( )

( ) ( )⎟
⎠
⎞

⎜
⎝
⎛ −+

⎭
⎬
⎫

⎩
⎨
⎧ +−+Θ≡

−
∈

−
∈

−

∈

∑∑

∑∑∑

tpgtpgp

xtx'Dtpgtpg

p

thyhxteghxtH

iaiaia

pm

iPp

iaiaiaiaia
ia

pm

iPp
p

U
p

U
p

rt

Pp

1
1=

2

1
1=

2 )))(()(1(
2

,,;,,,,

λ

μ
μλ �

An analysis of necessary conditions similar to that for DSO is now possible. The key
difference is that the counterpart of (24) must in the user equilibrium case be written as
follows:

( ) ( )[ ]

( ) Pppxtx'Dtpgtpgp

yhxteghxtpG

aaaaaaa

U
p

U
p

rt
a

∈∀+⎥⎦
⎤

⎢⎣
⎡ +−+

Θ−

1111101

0

)))(()(1(

,,=;,,,,

λμ

μλ

�
(30)

( ) ( ) [ ])(1,,;,,,,=;,,,, pmiPpghxtpFghxtpG
iaia ∈∈∀μλμλ . (31)

Then a necessary condition for ( ) Λ∈SS gh , to be a dynamic user equilibrium (DUE) is
( )

( ) Λ∈⎟
⎠
⎞

⎜
⎝
⎛ −≤ ∑∑

∈

gpUgpgghxtpG
iaia

UUUU

ia

pm

iPp

μλ ;,,,,0
0=

(32)

for each time instant ( )( ){ }[ ]fiafia txDttt +∈∈ sup A0, , together with the state dynamics (16) and

the following adjoint equations and boundary conditions:

( )[ ]
[ ])(1,,

,,
==

,
2 pmiPp

px

yhxt
e

px

H

dt

Upd

ia

U
p

U
prt

ia

U
ia

∈∈∀
∂

Θ∂

∂

∂
− −

λ

( ) [ ])(1,,0=, pmiPptUp
fia ∈∈∀λ ,

2This may not be used for numerical computation as its statement depends on knowledge of the dynamic user
equilibrium being sought. However, it may be employed for qualitative analyses like those which follow.
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where the superscript U denotes a trajectory corresponding to a dynamic user equilibrium in
the presence of tolls.

Characterizing Efficient Tolls

It is the purpose of efficient tolls to make the criteria 1J and 2J identical along solution

trajectories for which flow propagation and other constraints are satisfied, for then the system
optimal total costs are identical to the tolled user optimal total costs. Furthermore, the vectors
of path flows (departure rates) obey

( ) ( )thth SU = . (33)

There are as well identical arc exit flows and identical arc volumes. Therefore, along solution
trajectories

Up
Upx

J
Spx

JSp
a

aa

a
,=

,
=

,
=,

1

1

2

1

1

1
λλ

∂

∂

∂

∂
. (34)

With (34) in mind and upon comparing (27) and (32), we find

( )
( )

( )[ ]{ }

( ) ( ){ }.,=

,,=
,

,

tyxte

yhxteh
h

xt
xte

U
p

U
p

rt

U
p

U
p

rtS
p

p

S
pS

p
rt

+Ψ

Θ
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂

Ψ∂
+Ψ

−

−−

The only toll constraint is non-negativity; hence applying the projection after the expression

for ( )ty U
p is derived with non-negativity relaxed will give an exact expression:

( )
( ) [ ]f

S
p

p

S
pU

p ttth
h

xt
ty ,

,
= 0∈∀

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

Ψ∂
+

, (35)

where [ ]+
⋅ is the elementary projection operator defined by

[ ]
⎩
⎨
⎧

<

≥
=

+

.0if0

0if

v

vv
v

This result is completely analogous to that for an efficiently tolled static user equilibrium.

THE DYNAMIC OPTIMAL TOLL PROBLEM WITH
EQUILIBRIUM CONSTRAINTS (DOTPEC)

We now introduce the dynamic optimal toll problem with equilibrium constraints (DOTPEC).
The DOTPEC is a type of dynamic network design problem for which a central authority
seeks to minimize congestion in a transport network, whose flows obey a dynamic network
user equilibrium, by dynamically adjusting tolls. In particular the central authority seeks to
solve the optimal control problem

( ) ( )dtthxt
t

J pp
Pp

f

t
,=min

0

Ψ∑∫
∈

(36)
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subject to

( )[ ]( ) ( ) Λ∈∀≥−Θ∫∑
∈

gwdthwyghxt
t

pppp
f

t
Pp

,0,,,
0

(37)

( )
( ) ( ) ( )[ ]pmiPptpgtpg

dt

tpdx

iaia
ia

,1,=
1

∈∈∀−
−

(38)

( ) ( )[ ]pmiPppxtpx
iaia ,1,=
,0

∈∈∀ (39)

( ) Ppxtx'DtxDtpgth aaaaaap ∈∀++ )))(()))(1(((=
111111
� (40)

( ) ( )[ ]pmiPpxtx'DtxDtpgtpg
iaiaiaiaiaiaia ,2,)))(()))(1(((=

1
∈∈∀++

−
� (41)

( ) ( ) WjiQdtth
t

ijp
f

t
ijPp

∈∀∫∑
∈

,=
0

(42)

( )[ ]pmiPphpgpx piaia ,1,000 ∈∈∀≥≥≥ , (43)

where Λ is the set of feasible controls (exit flows) defined previously. In the DUE constraints
(37), we have introduced the notion of an effective delay operator in the presence of tolls, by
which is meant

{ } ( ) PptyTtxDtFxtDyxt pApppp ∈∀+−++Θ ),(),(=),,( ,

where py denotes the toll for path p . Of course we have the relationship

( ) ( ) ( )tyxtyxt pppp +ΨΘ ,=,, , (44)

where we recall from Friesz, Bernstein, Suo and Tobin (2001) that

( ) ( ) Ppxttypty
iaiaia

pm

i
p ∈∀Φ+

−
∑ ),(=

1

)(

1=

δ .

The variational-inequality constrained optimization problem (35) through (42) is a bi-level
problem that is intrinsically difficult to solve. Note in particular that, even for a single instant
of time, the number of constraints of the type (37) is uncountable.

In this paper, to numerically solve specific instances of (36)-(43), we may exploit the
following alternative to expressing the underlying DUE problem as an infinite dimensional
variation inequality:

Theorem 1 Given that the effective travel delay for path p is ( ) ( )[ ]tytxt pp ,,Θ , a nonnegative

path flow vector 0≥h is a user equilibrium if and only if the conditions

( ) ( )[ ] ( )

( )
( ) WjiPp

dtth
t

dtthtytxt
t

ijij

p
f

t
ijPp

ppp
f

t
ijPp

p ∈∈∀

Θ

≥Θ

∫∑

∫∑

∈

∈

,,=

,,

0

0

μ (45)

are satisfied.
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Proof : The dynamic user equilibrium condition stated in (13) and (14) can be modeled as an
equivalent complementarity problem, that is

( )[ ] ( ) ( ) ( ) 00,,0,=, ≥≥−Θ−Θ ∗∗∗∗ thxtthxt pijppijp μμ (46)

for all [ ] ( ) WjiPpttt ijf ∈∈∈ ,,,,0 . To show necessity we integrate the complementarity

condition in (46) over the time horizon and summing for all paths, and obtain

( )[ ] ( ) ( ) Wjidtthxt
t

pijp
f

t
ijPp

∈∀−Θ ∗∗

∈
∫∑ ,0=,

0

μ

or

( ) ( ) ( ) ( ) Wjidtth
t

dtthxt
t

p
f

t
ijPp

ijpp
f

t
ijPp

∈∀Θ ∗

∈

∗∗

∈
∫∑∫∑ ,=,

00

μ . (47)

To show sufficiency we re-state (45) as

( ) ( )[ ] ( )

( )
( ) WjiPp

dtth
t

dtthtytxt
t

ij

p
f

t
ijPp

ppp
f

t
ijPp

ijp ∈∈∀

Θ

≥−Θ

∫∑

∫∑

∈

∈

,,

,,

0

0

μ (48)

and multiply both sides by path flow to obtain

( )[ ] ( )

( ) ( )[ ] ( )

( )
( ) ( ) WjiPpth

dtth
t

dtthtytxt
t

thxt ijp

p
f

t
ijPp

ppp
f

t
ijPp

pijp ∈∈∀

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
Θ

≥−Θ ∗

∈

∈
∗∗

∫∑

∫∑
,,

,,

,=0

0

0

μ (49)

from which (46) follows immediately. ▄

By virtue of Theorem 1, we may replace the DUE constraint (37) by the equality and
inequality constraints (45) to obtain the following equivalent form of the DOTPEC:

( ) ( )dtthxt
t

J pp
Pp

f

t
,=min

0

Ψ∑∫
∈

(50)

subject to

( ) ( )[ ] ( )

( )
( ) Wji

dtth
t

dtthtytxt
t

p
f

t
ijPp

ppp
f

t
ijPp

ij ∈∀

Θ

∫∑

∫∑

∈

∈

,

,,

=

0

0

μ (51)

( ) WjiPp ijijp ∈∈∀≥Θ ,,μ (52)

( )
( ) ( ) ( )[ ]pmiPptpgtpg

dt

tpdx

iaia
ia

,1,=
1

∈∈∀−
−

(53)

( ) ( )[ ]pmiPppxtpx
iaia ,1,=
,0

∈∈∀ (54)
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( ) Ppxtx'DtxDtpgth aaaaaap ∈∀++ )))(()))(1(((=
111111
� (55)

( ) ( )[ ]pmiPpxtx'DtxDtpgtpg
iaiaiaiaiaiaia ,2,)))(()))(1(((=

1
∈∈∀++

−
� (56)

( ) ( ) WjiQdtth
t

ijp
f

t
ijPp

∈∀∫∑
∈

,=
0

(57)

( )[ ]pmiPphpgpx piaia ,1,000 ∈∈∀≥≥≥ . (58)

Note that the above formulation is an infinite dimensional mathematical program with
inequality and equality constraints in standard form, and that the number of constraints for
any given instant of time is countable.

MULTIPLE TIME SCALES

We have investigated the within-day behavior of road network users so far. In this section we
describe a day-to-day adjust process that sets daily travel demand. Our perspective is very
simple: if today commuters experiences a level of congestion above a threshold representing
the budget or tolerance for congestion of the typical commuter, travel demand will be less
tomorrow and more workers will elect to stay at home (telecommute). To operationalize this
idea, we take the perspective of evolutionary game theory to describe the day-to-day demand
learning process in terms of the moving average of congestion and difference equations.

Let { }L1,2,...,≡ϒ∈τ be one typical discrete day within the planning horizon, and take the

length of each day to be Δ , while the continuous clock time t within each day is presented by
( )[ ]ΔΔ−∈ ττ ,1t for all { }L1,2,...,∈τ . The entire planning horizon spans L consecutive days.

As noted above, we assume the travel demand for each day changes based on the moving
average of congestion experienced over previous days. In fact we postulate that the travel
demands τ

ijQ for day τ between a given OD pair ( ) Wji ∈, are determined by the following

system of difference equations:

( ) ( )[ ]
[ ]1,1

,,

=

11

0=1 −∈∀

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−
Δ⋅⋅

Ψ

−

+

∗∗
Δ⋅+

Δ⋅

−

∈
+

∫∑∑
L

P

dtghxt

sQQ ij

ij

p

j

j
jijPp

ijijij τχ
τ

τ

τττ (59)

with boundary condition

ijij QQ
~

=1 , (60)

where +ℜ∈ijQ
~

is the fixed travel demand for the OD pair ( ) Wji ∈, for the first day and ijχ

is the representative threshold. The operator [ ]+x is shorthand from [ ]x0,max . The parameter
τ
ijs is related to the rate of change of inter-day travel demand.
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ALGORITHMS FOR SOLVING THE DOTPEC

In this section, we provide two different algorithms for solving the DOTPEC: (1) descent in
Hilbert space without time discretization, and (2) a finite dimensional discrete time
approximation solved as a nonlinear program.

The Implicit Fixed Point Perspective

In both approaches, state-dependent time shifts must and can be accommodated using an
implicit fixed point perspective, as innovated for the dynamic user equilibrium by Friesz and
Mookherjee (2006). More specifically, in such an approach, one employs control and state
information from a previous iteration to approximate current time shifted functions. This
perspective may be summarized as follows:

1. Articulate the current approximate states (volumes) and controls (arc exit rates) by
spline or other curve fitting techniques as continuous functions of time.

2. Using the aforementioned continuous functions of time, express time shifted controls
as pure functions of time, while leaving unshifted controls as decision functions to be
updated within the current iteration.

3. Update the states and controls, then repeat Step 2 and Step 3 until the control controls
converge to a suitable approximate solution.

Descent in Hilbert Space

To articulate what is meant by descent in Hilbert space, it is much easier to study an abstract
problem rather than the DOTPEC because of the notational complexity of the underlying
DUE problem. To that end, let us consider an abstract optimal control problem with mixed
state-control constraints involving state-dependent time shifts from the point of view of
infinite dimensional mathematical programming:

dttuuxF
t

J D
f

t
),,,(=min

0
∫ (61)

subject to

n
fDDD ttHxtuuxGxtuuxf

dt

dx
xtuux ]),[(00,=),,,(0,=(0)),,,,(=:=),,( 0

1∈
⎭
⎬
⎫

⎩
⎨
⎧

≥Λ∈
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where

.]),[(]),[(]),[(:

]),[(]),[(]),[(:

]),[(]),[(]),[(:

]),[(]),[(:))((

]),[(

0
212

0
2

0
1

0
212

0
2

0
1

0
212

0
2

0
1

0
21

0
1

0
2

m
f

m
f

n
f

m
f

m
f

n
f

m
f

m
f

n
f

m
f

n
fD

m
f

ttLttLttHG

ttLttLttHF

ttLttLttHf

ttLttHxDtuu

ttLUu

→ℜ××

→ℜ××

→ℜ××

→ℜ×+≡

⊆∈

+

+

+

+

In the above, m
fttL ]),[( 0

2 is the m -fold product of the space of square integrable functions

],[ 0
2

fttL and n
fttH ]),[( 0

1 is the n -fold product of the Sobolev space ],[ 0
1

fttH for the real

interval 1
0 ],[ +ℜ⊂ftt . In applying descent in Hilbert space to this problem, it is convenient to

use quadratic-loss penalty functions and a logarithmic barrier function to create the
unconstrained program:

dtx
t

dttuuxG
t

dttuuxF
t

J ii
i

f

tDii
i

f

tD
f

t

2

0

2

00
1 )(0,min

2

1
)),,,((

2

1
),,,(=min ρη ∑∫∑∫∫ ++ (62)

where it is understood that x denotes the operator

,]),[(=(0)),,,,(=:=),,( 0
1

01
n

fDD ttHxxtuuxf
dt

dx
xtuux ∈

⎭
⎬
⎫

⎩
⎨
⎧

Λ∈

and iη and iρ are penalty and barrier multipliers to be adjusted from iteration to iteration.

The resulting problem can be solved using a continuous time steepest descent method. For the
penalized criterion (57), the algorithm can be stated as following:

Step 0. Initialization. Pick Utu ∈)(0 and set 1=k .

Step 1. Finding state variables. Solve the state dynamics

0

11

=(0)

),,,(=

xx

tuuxf
dt

dx k
D

k −−

and call the solution )(txk , using curve fitting to create an approximation to )(txk when

necessary.

Step 2. Finding adjoint variables. Solve the adjoint dynamics

[ ]

0=)(

),,,,(= =
11

f

kxx
k
D

k
x

t

tuuxH
dt

d

λ

λ
λ −−∇−

where the Hamiltonian is given by

),,,()),,,((
2

1
)(0,min

2

1
),,,(=),,,,( 22 tuuxftuuxGxtuuxFtuuxH D

T
Dii

i
ii

i
DD ληρλ +++ ∑∑
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Call the solution )(tkλ , using curve fitting to create an approximation to )(tkλ when

necessary.

Step 3. Finding the gradient. Determine
[ ] kuu

kk
D

k
u

k
u tuuxHJ =

1 ),,,,( λ−∇≡∇

Step 4. Updating the current control. For a suitably small step size
1

++ℜ∈kθ

determine
k

uk
kk Jtutu ∇−− θ)(=)( 1

Step 5. Stopping Test. For 1
++ℜ∈ε , a preset tolerance, stop if

ε||<|| 1 kk uu −+

and declare
1+∗ ≈ kuu

Otherwise set 1= +kk and go to Step1.

Discrete-time Approximation of DOTPEC

The optimal control problem (45)-(53) may be given the following discrete time
approximation:

( ) ( )[ ] ( )ΔΨ∑∑
∈

kpkkp
Pp

N

k

thtxtkJ ,=min
0=

φ

subject to

( ) ( ) ( )[ ] ( )

( ) ( )
( ) Wji

thk

thtytxtk

kp

N

kijPp

kpkpkkp

N

kijPp

ij ∈∀

Δ

ΔΘ

∑∑

∑∑

∈

∈

,

,,

=

0=

0=

φ

φ

μ

( ) [ ] ( ) WjiPpNkt ijijkp ∈∈∈∀≥Θ ,,,0,μ

( ) ( ) ( ) ( )

[ ] [ ])(1,,,10,

=
11

pmiPpNk

tpgtpgtpxtpx kiakiakiakia

∈∈−∈∀

⎥⎦
⎤

⎢⎣
⎡ −Δ+

−+

( ) ( )[ ]

( ) [ ]Nktx

pmiPppxtpx

k

iaia

0,0

,1,=
,00

∈∀≥

∈∈∀
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( ) [ ]

( )

[ ] ( )[ ]

( ) ( ) ( )

( ) [ ]NkAaty

WjiQthk

pmiPpNk

xtx'DtxDtpgtpg

PpNkxtx'DtxDtpgth

ka

ijkp

N

kijPp

iakiaiakiaiakiakia

akaakaakakp

0,,0

,=

,2,,0,

)))(()))(1(((=

,0,)))(()))(1(((=

0=

1

111111

∈∈∀≥

∈∀Δ

∈∈∈∀

++

∈∈∀++

∑∑
∈

−

φ

�

�

( ) ( ) ( ) [ ],0,000 Nkthtgtx kkk ∈∀≥≥≥

where k takes non-negative integer values, Δ is the discrete time step that divides the time
interval [ ]ftt ,0 into N equal segments, ( )kφ is the coefficient which arises from a trapezoidal

approximation of integrals, that is

( )
⎩
⎨
⎧

otherwise1

and0=if0.5
=

Nk
kφ

and Δktk = .

One advantage of time discretization is that we can now completely eliminate state variables
(arc volumes) from the problem by noting that

( ) ( ) ( ) [ ] ( )[ ]pmiPpNktpgtpgpxtpx riaria

k

r
iakia ,1,,10,=

1
0=

,01 ∈∈−∈∀⎥⎦
⎤

⎢⎣
⎡ −Δ+

−+ ∑ .

As a consequence, one obtains a finite dimensional mathematical program, which may be
solved by conventional algorithms developed for such problems. We employ GAMS/MINOS
for the numerical example of the next section.

NUMERICAL EXAMPLE

In what follows, we consider a 3 arc, 3 node network shown in Figure 1. The arc labels and
arc delay functions for this network are summarized in Table 1.

There are 2 paths connecting the single OD pair formed by nodes 1 and 3, namely:
{ } { } { }3122112113 ,=,,=,,= aapaapppP .

Figure 1. 3-arc 3-node traffic network.
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Table 1. Arc labels and delay functions.
Arc name From node To node Arc delay, ( )( )txD aa

1a 1 2
1100

1
2 ax+

2a 2 3
2150

1
1 ax+

3a 2 3
3100

1
3 ax+

The controls (path flows and arc exit flows) and states (path-specific arc traffic volumes)
associated with the network are presented in Table 2.

Table 2. Control and state variables.
Path Path flow Arc exit flow Traffic volume of arc

1p
1ph 1

2

1

1
, p

a
p
a gg 1

2

1

1
, p

a
p
a xx

2p
2ph 2

3

2

1
, p

a
p
a gg 2

3

2

1
, p

a
p
a xx

We consider three-day toll planning in which each day is 24 hours, hence, 24=Δ and 14=L

(two weeks). We assume there is the initial travel demand 150=
~
Q units from node 1 (origin)

to node 3 (destination). The threshold for travel cost is 20000=χ and the inter-day rate of

change in travel demand is 0.7=13s . The desired arrival time for each day is 12=At , and we

employ the symmetric early/late arrival penalty

( )[ ] ( )[ ]2,5=, ApAp ttxDtttxDtF −+−+ .

Further, without any loss of generality, we take

( ) ( )[ ] Pppmipx
ia ∈∈∀ ,1,0=0 .

In what follows we forgo the detailed symbolic statement of this example, and, instead,
provide numerical results in graphical form.

DOTPEC Computation Based on Time Discretization and GAMS/MINOS

Path flows and arc exit flows for paths 1p and 2p are presented in Figures 2 and 3, while path

flows and tolls for each arc are given in Figures 4, 5 and 6, for three days from the computed
fourteen-day results. We see that tolls tend to be proportional to the path flows. When, for
path ,1p we compare the effective path delays (including tolls) with path flows (origin

departure rates) by plotting both for the same time scale, Figure 7 is obtained. This figure
shows that departure rate peaks when the associated effective path delay achieves a local
minimum, thereby demonstrating that a dynamic user equilibrium has been found. Similar
comparisons are made for paths 2p in Figure 8. The daily changes of travel demand from the

origin to destination according to the difference equation (54) are given in Figure 9.
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Path Flow 1
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Figure 2. Path and arc exit flows for path 1p

Path Flow 2
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Figure 3. Path and arc exit flows for path 2p .

Path Flows and Toll at Arc 1
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Figure 4. Path flows and toll at arc .1a

Path Flow and Toll at Arc 2
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Figure 5. Path flow and toll at arc 2a .
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Path Flow and Toll at Arc 3
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Figure 6. Path flow and toll at arc 3a .

Path Flow vs. Travel Cost at Path 1
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Figure 7. Comparison of path flow and associated unit travel costs
for path 1p .

Path Flow vs. Travel Cost at Path 2
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Figure 8. Comparison of path flow and associated unit travel costs
for path 2p .
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Daily Travel Demand Fluctuation
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Figure 9. Daily changes of travel demand from the origin (node 1)
to the destination (node 3)

DOTPEC Computation based on Descent in Hilbert Space

The same numerical example was also solved by descent in Hilbert space, a continuous-time
numerical scheme described in a previous section. While employing the implicit fixed point
approach, we penalize the flow propagation constraints, the travel demand constraint, and the
DUE conditions which are converted to a set of inequality constraints. We present the path
tolls in Figures 10 and 11. As in the previous section we again show the resulting flows are a
dynamic user equilibrium by plotting the travel cost and departure flow on the same time axis
in Figures 12 and 13.

Comparison of Tolls

To compare, the tolls by DETP and DOTPEC with two algorithms of choice, we suggest a
computational scheme for DETP. Recall that the decision rule for the dynamic efficient toll is:

( )
( ) [ ]f

S
p

p

S
pU

p ttth
h

xt
ty ,

,
= 0∈∀

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

Ψ∂
+

.

Note that the partial derivative of ( )S
p xt,Ψ with respect to the path flow ph is not zero, since

the state variable x is an implicit function of the control ph as the relationship is expressed in

the state dynamics. Further we cannot calculate the derivative directly due to the nested delay
operator appears in ( )⋅⋅Ψ ,p . However, from the numerical study of the dynamic system

optimum traffic assignment, it is known that the controls are zero or singular. When the
departure rate is nonzero, it as well as the states obtained from it are smooth and the delay

operator is differentiable, although the derivative
( )

p

S
p

h

xt

∂

Ψ∂ ,
does not exist at the time
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moments where there are kinks in the controls. The derivative is numerically approximated
as:

( )[ ] ( )[ ] ( )[ ]
δ

δ ghxtghxt

h

ghxt pp

p

p ,,,,,, Ψ−+Ψ
≅

∂

Ψ∂ ∗∗

.

A numerical comparison of the tolls found from the DETP with those from the DOTPEC is
given in Figure Figures 14 and 15. We see that the efficient toll has a more spike-like
behavior than that for the DOTPEC. It is also interesting to note that the total congestion cost
for the DETP is ( )38.8526.43, while the total congestion cost for the DOTPEC is

( )46.8538.30, by discrete approximation and ( )45.1343.09, by descent in Hilbert spaces for

paths ( )21, pp .

Flows and Toll at Path 1
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Figure 10. Path flows and toll at path 1p .

Flows and Toll at Path 2
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Figure 11. Path flows and toll at path 2p .
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Path Flow vs. Travel Cost at Path 1
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Figure 12. Comparison of path flows and associated unit travel costs
for path 1p .

Path Flow vs. Travel Cost at Path 2
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Figure 13. Comparison of path flow and associated unit travel costs
for path 2p .

Comparison of Dynamic Tolls at Path 1
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Figure 14. Comparison of Dynamic Tolls by DEPT, DOTPEC solved by
discret time approximation (DOTPEC 1), and DOTPEC solved by

descent in Hilbert spaces (DOTPEC 2) for path 1p .
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Comparison of Dynamic Tolls at Path 2
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Figure 15. Comparison of Dynamic Tolls by DEPT, DOTPEC solved by
discrete time approximation (DOTPEC 1), and DOTPEC solved by

descent in Hilbert spaces (DOTPEC 2) for path 2p .

CONCLUDING REMARKS

We have presented a mathematical formulation of the DOTPEC and have shown how it may
be directly solved using the notion of descent in Hilbert space for a small illustrative problem.
We have also computed solutions using the more familiar approach of time discretization
combined with off-the-shelf nonlinear programming software. Clearly, in-depth testing and
comparison of these solution methods is required before one can be recommended over the
other.

We have not explored in this manuscript the difficult theoretical questions of algorithm
convergence, existence of solutions to the dynamic efficient toll and the DOTPEC problems,
the Braess paradox and the price of anarchy. These topics are being addressed in a separate
manuscript still in preparation. Given that serious efforts are already under way to implement
versions of the optimal dynamic toll problem in the U.S. and elsewhere, our initial focus on
computation seems fully justified.

We close by commenting that analytical DUE models ― in our opinion ― are far and away
the best starting point for studies of the theoretical aspects of dynamic efficient tolls and
dynamic congestion pricing. In particular, we have shown in this paper that an intuitive
generalization to a dynamic setting of the efficient static toll rule is correct ― something that
could not be established in such a definitive way with a simulation model.
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BOUNDING THE INEFFICIENCY OF TOLL 
COMPETITION AMONG CONGESTED 
ROADS 

Feng Xiao, Hai Yang and Xiaolei Guo, Department of Civil Engineering, The Hong Kong 
University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China 

 
INTRODUCTION 

Oligopolistic competition in an economic market is known to be inefficient and has been 
studied extensively in various contexts. Bounding such inefficiency was also considered 
recently by a few researchers (Cowling and Mueller, 1978; Anderson and Renault, 2003; 
Johari and Tsitsiklis, 2005; Guo and Yang, 2005). Similarly, competitions in traffic network 
can also be inefficient. A typical instance that has been studied is the selfish-routing problem, 
which may cause efficiency loss in comparison with a centrally designed optimal solution, 
because trip-makers choose their route selfishly with the aim of minimizing their individual 
generalized travel cost (Roughgarden, 2002 and 2005; Roughgarde and Tardos, 2002; Correa 
et al, 2004). For selfish-routing problem, bounds are usually established in the spirit of “price 
of anarchy” determined by looking for the worst possible ratio between the total cost incurred 
by players in an equilibrium situation and in an outcome of minimum-possible total cost or 
system optimum. When oligopolistic competition and selfish-routing both come into play in 
the context of private toll roads, the following issues are of great interest: what are the 
properties of the inefficiency bounds for the combined problems where private firms control 
substitutable traffic infrastructures and compete with each other in an oligopolistic market, 
while taking into account the fact that trip-makers follow the principle of selfish-routing? Can 
a general expression of the inefficiency for such problems be established? Is the inefficiency 
bounded? For the combined problem, the inefficiency bound, defined as the worst possible 
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ratio between the total realized social welfares in an outcome of social optimum and in an 
equilibrium situation, has to be studied by considering the behaviors of both competitive firms 
and selfish routing users. 
 
A number of studies have been made on the network road pricing games (see Yang and 
Huang, 2005, for a recent review). Insightful results of toll competition have been obtained 
for the case of simple networks with parallel links (De Vany and Saving, 1980; De Palma, 
1992; De Palma and Lindsey, 2002). In a general network context, Yang and Woo (2000) 
studied toll road competition using a game-theoretic approach. Wang et al. (2004) examined 
the strategic interactions and market equilibria of a bilateral monopoly (a private road 
operator and a private bus service provider) on a private highway. Yang et al. (2006) applied a 
bilevel variational inequality approach to formulating and solving the toll road competition 
problem with traffic equilibrium constraints.     
 
Attention is now being paid to the efficiency loss of toll road competition and its bound, but 
so far only certain specific problems are investigated under restrictive assumptions. Engel et 
al. (2005) studied toll competition among private asymmetric roads subject to congestion. 
They found that competition yields tolls that are higher than optimal and that traffic flows are 
inefficiently small. They also pointed out that increases in competition improve the efficiency. 
Their limited results are given based on the restrictive assumption that demand grows at the 
same rate as capacity when the number of roads is increased by network replication. 
Acemoglu and Ozdaglar (2005) provided an analysis of a similar situation. In contrast with 
most existing results in the economics literature where greater competition tends to improve 
the allocation of resources, they found that increasing competition can increase inefficiency. 
Their observations are made in the case of fixed demand when minimizing the total cost and 
they found a tight bound of 6/5 on the inefficiency in pure strategy oligopoly equilibria. 
Ozdaglar (2006) also considered elastic demand function but only for the concave case. A 
tight bound of 3/2 is given by utilizing a strong assumption that the first-order derivative of 
demand function is also concave. Hayrapetyan et al. (2005) examined a similar problem with 
concave demand and linear delay function. They showed that in a network with parallel links, 
concave demand and linear delays, the inefficiency can be bounded by 5.064. They claimed 
that this bound is also held even when delays are relaxed to be convex. In particular, when 
delay is exclusively a congestion effect (without fixed cost in the delay function), they found 
that the bound can be improved to 3.125. Unsatisfactorily, their discussion is based on a 
truncated demand curve. Though they stated that the price of anarchy of a truncated demand 
curve has not decreased in comparison with differentiable demand curve, their bounds are 
inevitably loose. Xiao et al. (2007) studied the inefficiency of the oligopolistic equilibria of 
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toll road competition. In their model they considered a one-shot game where the road capacity 
and level of toll charge are determined simultaneously by each firm subject to the resulting 
traffic flow being in equilibrium. An important property they obtained is that at both 
oligopolistic equilibria and social optimum, the volume-capacity ratio of each road remains 
unchanged and is only determined by the road’s own unit construction cost. As a result, the 
travel times are identical for all competitive roads under the assumption that link travel time 
function is homogeneous of degree zero. With this property, the inefficiency bounds can be 
developed in a quite simplified manner.  
 
This study is intended to investigate the inefficiency of the equilibria for a situation where 
two or more profit-maximizing private firms operate multiple toll roads in a parallel road 
network. It is a continuous development along the line of Xiao et al. (2007), nevertheless, it 
should be pointed out that the current study focuses on toll competition only, all road 
capacities are predetermined. In this case, the basic property of identical link travel time at 
equilibria, as identified in Xiao et al. (2007), no longer holds. Surprisingly, without such a 
property, the development of inefficiency bounds becomes much more complicated, requiring 
a totally different methodology. 
 
The inefficiency of oligopolistic toll competition is examined in the absence of any regulatory 
authority. To derive the inefficiency bound, we technically avoid the interplay of link travel 
time functions by instead using the market share (percentage of total traffic flow) of each road, 
which is an equilibrium outcome arising from given toll charges and link travel time functions. 
The final bounds turn out to be mainly dependent upon the property of the demand function. 
Furthermore, for the symmetric case where all roads have identical travel time function, we 
provide analytical expression of the bounds in terms of the number of the parallel roads only. 
 
The rest of the paper is structured as follows. After presenting the model and the results of 
sensitivity analysis, we establish the necessary conditions for oligopolistic market equilibria 
and social optimum for further examination. We establish the bounds of inefficiency by 
considering the worst cases for asymmetric competitive roads, and classify and develop 
specific bounds by exploring the properties of the various demand functions. We also develop 
analytical expression of the inefficiency bounds for the specific, simplified case of symmetric 
roads. 
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PRELIMINARIES 

Description of Traffic Network and Sensitivity Analysis 

We consider n  roads that join two locations and define N  as the set of roads. Each road 
has a differentiable travel time function, ( )i it q , where iq  is the traffic flow on road .i N∈  

We assume that 0it > , d d 0i it q >  and 2 2d d 0i it q >  for any i N∈ . Suppose, for 

simplicity, that each firm operates a single toll road consisting of a single link of this parallel 
network. For each road i N∈ , a level of toll charge, iτ , is chosen by the firm operating it. 

The vectors of tolls and traffic flows are arranged by column vectors ( )
T:i i Nτ = τ ∈ , and 

( )
T:iq q i N= ∈ . Furthermore, we define ( )B Q  as the marginal benefit of an additional trip 

when Q  trips are already made (it is called marginal benefit function or inverse demand 

function). It is further assumed that ( )d d 0,B B Q Q′ = <  where 

 
1

n

i
i

Q q
=

= ∑  (1) 

With the above notation, we consider Nash equilibrium among the multiple private firms 
operating parallel toll roads on the network. To begin with, the following assumption is made 
and used throughout the whole study. 
 
Assumption 1. 
(a) The travel time function, ( )it ⋅  is convex, strictly increasing and continuously 

differentiable for i N∈ ; 
(b) The inverse demand function, ( )B ⋅  is strictly decreasing and continuously 

differentiable for 0Q ≥ ; 

(c) At Nash equilibrium, all firms are active, namely, 0iq∗ >  and 0i
∗ >τ  for i N∈ . 

 
Note that here no assumption is made on the concavity or convexity of ( )B Q ; the travel time 

function, ( )i it q  can have a “fixed cost” (i.e. ( ) 00 0i it t= ≥ , the free flow travel time of road 

i ); part (c) of Assumption 1 means that only actively participating firms are taken into 
account.  
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The cost of making one trip on private toll road i  has two components. First, the toll iτ  

charged by firm i N∈ ; second, the travel time ( )i it q  when iq  trips are already on the road. 

Thus, the generalized travel cost faced by a trip-maker is ( )i i it qτ + β  (we only consider 

homogeneous travelers with identical value of time, represented by β ). At equilibrium traffic 

flow iq  is determined by 

( ) ( ) , i i iB Q t q i N= τ + β ∀ ∈  (2) 

So for any two roads , ,j i i j N≠ ∈ , we have 

( ) ( )i i i j j jt q t qτ + β = τ + β  (3) 

Equation (2) implicitly defines q  as a function of τ . Differentiating (2) and (3) with respect 

to iτ  yields 

1
1 ,  

n
j i

i
j i i

q qB t i N
=

∂ ∂′′ = + β ∀ ∈
∂τ ∂τ

∑     (4) 

1 ,  , ,   j i
j i

i i

q qt t i j N j i
∂ ∂′ ′β = + β ∀ ∈ ≠
∂τ ∂τ

    (5) 

Thus from eqns.(4) and (5) we obtain 
11

,  1
j i ji

i
i i

j i j

B
tq i N

B t B t
t

≠

≠

′
−

′β∂
= ∀ ∈

∂τ ′ ′ ′ ′+ − β
′

∑

∑
  (6) 

1 ,   , ,   1
j

i j
i i

l i l

q B i j N j i
t B t B t

t≠

∂ ′
= ∀ ∈ ≠

′∂τ β ′ ′ ′ ′+ − β
′∑     (7) 

Since ( ) 0B Q′ <  and ( ) 0i it q′ > , we have 0i iq∂ ∂τ <  and 0j iq∂ ∂τ > . This result is 

expected in the sense that raising toll charge on one road will decrease the traffic flow on that 
road and correspondingly increase the traffic flows on other roads. 
Oligopolistic Market 
In an oligopolistic market, each firm i N∈  tries to maximize its own profit given by 

( )i i iqπ = τ τ    (8) 

From definition, if *q  is a Nash equilibrium solution, then for each firm i N∈ , the 

following equation must hold 

( )*

0
arg max ,   

i
i i iq i N

τ ≥
τ = τ τ ∀ ∈  (9) 
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Thus, if the Nash equilibrium has a solution *q

1
, it must satisfy 

* * * 0,   i
i i i

i

qq i N
⎞⎛ ∂

+ τ τ = ∀ ∈⎟⎜
∂τ⎝ ⎠

    (10) 

* * 0,   i
i i

i

qq i N∂
+ τ ≤ ∀ ∈

∂τ
   (11) 

By Assumption 1, all roads are active at Nash equilibrium, namely, * *0, 0   for i iq i N> τ > ∈ , 

then the Nash equilibrium conditions (10)-(11) can be simplified into  

* * 0,   i
i i

i

qq i N∂
+ τ = ∀ ∈

∂τ
   (12) 

Substituting (2) and (6) into (12) yields 

( ) ( ) ( ) ( )* * * * * *1 0,   11
i i i i i i

j i j

B Q t q q t q q B Q i N
B

t≠

′ ′− β − β + = ∀ ∈
′−

′β
∑    (13) 

where * *
1

n
ii

Q q
=

= ∑  is the total realized traffic flow at Nash equilibrium. Here for 

convenience we use a parameter iω  to denote the following term 

1 ,   11
i

j i j

i N
B

t≠

ω = ∀ ∈
′−

′β
∑      (14) 

Obviously, the value of parameter iω  depends on the properties of road travel time and 

inverse demand functions; ( ]0,1iω ∈  ( 1ω =  when there is only one private firm). With the 

above definition, eqn.(13) can be rewritten as 

( ) ( ) ( ) ( )* * * * * * 0,   i i i i i i iB Q t q q t q q B Q i N′ ′− β − β + ω = ∀ ∈    (15) 

At equilibrium, each active road has a certain traffic share. Let is  denote the i th road’s 
equilibrium traffic share defined below 

*

* ,   i
i

qs i N
Q

= ∀ ∈    (16) 

Clearly, 0 1,   is i N< ≤ ∀ ∈ . 

                                                 
1 For the case of concave inverse demand function, a sufficient condition for the existence of Nash equilibrium is provided 

3
1 1 1

1
j

j ii i

j i j

t
B t t

t
≠

≠

′′
− ≥

′ ′ ′′

′

∑
∑

 

See Engel et al. (2004) for the proof. 
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Social Optimum 

It is well known that social welfare is defined as the sum of consumers’ and producers’ 
surplus, or equivalently total trip-makers’ benefits minus total travel cost, which can be 
mathematically formulated as 

( ) ( )
10

d
Q n

i i i
i

W B v v q t q
=

= −β∑∫      (17) 

Then the social optimization (SO) problem is given by 

( ) ( )
0 10

max  d
Q n

i i iq i
B v v q t q

≥
=

−β∑∫   (18) 

Let ( ):iq q i N= ∈  be the optimal solution to (18), then the following first-order optimality 

conditions hold 

( ) ( ) ( ) 0,   i i i i i iB Q t q q t q q i N⎡ ⎤′− β − β = ∀ ∈⎣ ⎦    (19) 

( ) ( ) ( ) 0,   i i i i iB Q t q q t q i N′− β − β ≤ ∀ ∈    (20) 

where 
1

n
ii

Q q
=

= ∑  is the socially optimal demand. 

  
Let W  and *W  respectively denote the maximum social welfare and the social welfare at 
Nash equilibrium 

( ) ( )
10

d
Q n

i i i
i

W B v v q t q
=

= −β∑∫     (21) 

( ) ( )
*

* * *

10

d
Q n

i i i
i

W B v v q t q
=

= −β∑∫    (22) 

We can define the following ratio to measure the inefficiency of Nash equilibrium 

*

W
W

ρ =     (23) 

Obviously, 1ρ ≥ , and a larger value of ρ  implies a more inefficient Nash equilibrium. 
Hereafter, our task is to establish an upper bound of this inefficiency ratio ρ . 

Interpretation of Parameter iω  and Property of the Game 

In a classic Cournot model, each firm’s strategy space is taken as the output. Thus a Cournot 
equilibrium can be regarded as a set of outputs in which each firm is choosing its 
profit-maximizing output level given its beliefs about the other firm’s choice, and each firm’s 
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beliefs about the other firm’s choice are actually correct (Varian, 1992). Correspondingly, for 
the model discussed here, if each firm can control or choose its own road flow, then it is 
actually a Cournot model. The first-order optimality condition in terms of road flows can be 
written as 

( ) ( ) ( ) ( )* * * * * * 0   for i i i i i iB Q t q q t q q B Q i N′ ′−β −β + = ∈    (24) 

But for the pricing game on a parallel traffic network, the strategy space of each firm is its 
direct control variable of toll charge, rather than its output of traffic flow. Even if its belief 
about the other firms’ choice of tolls are correct, the firm can not simply choose a “proper” 
toll by only examining its own road, because the entire network flow pattern will vary if toll 
charge on any road changes. The network pricing game cannot be regarded as a classic 
Bertrand model either, since the total travel cost on each road is not burdened by the firm but 
the trip-makers using the road. 
 
After the above clarification, we now look at how iω , defined in (14), plays an important role 

in determining the property of the network pricing game, which can be seen from the 
first-order optimality condition (15). When 1iω → , eqn.(15) reduces to eqn.(24), implying 

that the game becomes a Cournot game. As a result, it makes no difference whether the 
strategy space is traffic flow or toll charge. It is clear from (14) that 1iω →  if and only if 

jt′ → ∞ for all  ,j N j i∈ ≠ , given that B′  is bounded. This just corresponds to the situation 

when the marginal travel costs on all other roads are very high (i.e., all other roads are highly 
congested). In this case, a small change of toll charge on road i  can hardly affect the traffic 
flows on other roads, or traffic flows on other roads can be taken as given when firm i  sets 
up its toll charge for maximizing profit. Consequently, profit maximization of firm i  with 
respect to either toll iτ  or flow iq  will give rise to an identical result. 

 
On the other hand, when 0 for some  ,jt j N j i′ → ∈ ≠  (i.e., there is no congestion on one of 

the roads), we have 0iω → . By comparing (15) and (19), we find that the toll charged on 

road i  at oligopoly equilibria turns out to be a marginal-cost pricing toll. This can be 
explained as follows: at equilibrium, a small change in the toll charge of road i  will not 
inflict the generalized total travel cost of road j , since road j  is not congested. Thus, to 

keep the generalized total travel cost of road i  unchanged and equal to the generalized total 
travel cost of road j , the change in the toll charge of road i  must lead to the same but 

opposite change in its travel time, namely, tΔτ = −Δ  (without loss of generality, we consider 
unit value of time). At the profit-maximizing point, ( )( )q q qτ⋅ = τ + Δτ + Δ , leading to 
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q q−τΔ = Δτ  after dropping the second-order term. From tΔτ = −Δ , we obtain 

( )q t qτ = Δ Δ , the marginal-cost pricing toll. In this case, we have the same result as Bertrand 

model of oligopoly, since the oligopolistic competition in the Bertrand model also leads to 
marginal-cost pricing. 
 

BOUND EXPRESSIONS FOR ASYMMETRIC ROADS 

General Bound Expression 

Definition 1.  Let { }max ,m m i is s i Nω = ω ∈  and define a function ( )γ ⋅  as 

( ) ( ) ( ) ( )( ): m mx B x s xB x B x x′γ + ω = γ      (25) 

or equivalently, 

( )
( ) ( )( )1

m mB B x s xB x
x

x

− ′+ ω
γ =      (26) 

This function is introduced to facilitate our subsequent analysis. As observed from a 
geometric interpretation of ( )xγ  in Figure 1, ( )1 1 m mx s< γ ≤ + ω  if ( )B ⋅  is concave, and 

( ) 1 m mx sγ ≥ + ω  if ( )B ⋅  is convex (see Appendix A1 for a proof). Of course, for a linear 

function of ( )B ⋅ , being both convex and concave, we have ( ) 1 m mx sγ = + ω . Clearly, 

( ) 1xγ →  when 0m msω → . 

B

Q

( )B Q

x

( )B x

( )1 m ms x+ ω( )x xγ

( )( )1 m mB s x+ω

( ) ( ) ( )( )m mB x s xB x B x x′+ω = γ B

Q

( )B Q

x

( )B x

( )1 m ms x+ ω ( )x xγ

( )( )1 m mB s x+ω

( ) ( )

( )( )          
m mB x s xB x

B x x

′+ω

= γ

a. ( )1 1 m mx s< γ ≤ +ω  for concave ( )B ⋅      b. ( ) 1 m mx sγ ≥ +ω  for convex ( )B ⋅  
 

Figure 1. Graphical illustration of ( )γ ⋅  
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When ( )B ⋅  is concave, ( )γ ⋅  is well upper-bounded by 2, because ( )γ ⋅  has a upper-bound 

of 1 m ms+ ω  and 0 1m ms< ω ≤ . However, from Figure 1(b) we see that, for a convex ( )B ⋅ , 

( )γ ⋅  could go to infinity when the tangent line of the demand curve becomes a vertical line 

(i.e., the demand is highly inelastic in the vicinity of the tangent point). In this extreme case, 
an upper-bound of ( )γ ⋅  for a convex demand curve can not be simply determined. 

Nevertheless, given a meaningful specific inverse demand function with a well defined slope 
anywhere, it is not difficult to find an upper-bound for ( )γ ⋅  expressed in terms of the 

parameters contained in the inverse demand function. For example, if ( )B ⋅  takes the widely 

used form of ( ) bB Q aQ−= , 0a > , 0 1b< < , we have ( ) ( )
11 b

m mx b s −
γ = − ω  and thus, 

( ) ( )
11 1 bx b −

< γ ≤ − ; if ( )B ⋅  takes the form of ( ) 0
bB Q B aQ= − , 0a > , 0 1b< < , we 

have ( ) ( )
11 b

m mx b sγ = + ω  and ( ) ( )
11 1 bx b< γ ≤ + ; and if ( )B ⋅  takes the exponential form 

of ( ) ( )1 lnB Q b Q a−= − , 0a > , 0b > , we have ( ) m msx eωγ =  and ( )1 x e< γ ≤ . 

 

Lemma 1.  Let *Q Qε = , then it holds that ( )*1 Q< ε ≤ γ . 

 
Proof:  See Appendix A2 for a proof.     ■ 
 

Definition 2.  The following function ( )θ ⋅  is introduced 

( )
( )( )

( ) ( )

2

0

1
2

d
x

x B x
x

B v v xB x

′−
θ =

−∫
      (27) 

 
Figure 2 provides a geometric interpretation of ( )xθ . In both cases of Figure 2, the 

numerator, ( )( )2 2x B x′− , is the area of the triangle with its hypotenuse tangent to the 

inverse demand curve, and the denominator, ( ) ( )
0

d
x
B v v xB x−∫ , is the shaded area. Thus, 

( )xθ  is the ratio of the two areas, and it can be easily confirmed that ( ) 1xθ ≥  if ( )B ⋅  is 

concave, and ( ) 1xθ ≤  if ( )B ⋅  is convex. Of course, for linear ( )B ⋅ , being both convex 

and concave, we have ( ) 1xθ = . 
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( )B Q

B

Qx

( )B x

( )( )x B x′−

( )B Q

B

Qx

( )B x

( )( )x B x′−

a. ( ) 1xθ ≥  for concave ( )B ⋅              b. ( ) 1xθ ≤  for convex ( )B ⋅  
 

Figure 2. Geometric meaning of ( )xθ  

In opposite to ( )γ ⋅ , ( )θ ⋅  is well upper-bounded by 1 when ( )B ⋅ is convex. But ( )θ ⋅  could 

go to infinity when ( )B ⋅  is concave and the shaded area is infinitely small (i.e., the demand 

is perfectly elastic). Nonetheless, like the function ( )γ ⋅ , an upper bound of ( )θ ⋅  can be 

easily established for a given specific concave demand function. For example, if ( )B ⋅  takes 

the form of ( ) 0
bB Q B aQ= − , 0a > , 1b > , 0 0B > , we have ( ) ( )1 2x bθ = + . If 1b = , 

( ) 1xθ = , as expected for a linear ( )B ⋅ . 

 
Lemma 2.  The social welfare *W  at Nash equilibrium satisfies  

( )( )
( )

( ) ( )
2 2

1

1
2

n

i i
i

W B Q Q q
Q

∗ ∗ ∗ ∗

∗
=

⎡ ⎤
′ ⎢ ⎥≥ − + ω

θ⎢ ⎥⎣ ⎦
∑      (28) 

 
Proof:  See Appendix A3 for a proof.     ■ 
 
Lemma 3.  The following inequality holds  

( )( ) ( )
1

n

i i i i
i

W W B Q q q q∗ ∗ ∗ ∗

=

′− ≤ − ω −∑      (29) 

 
Proof:  See Appendix A4 for a proof.     ■ 
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Combining Lemma 2 and 3 we readily obtain 

( )( ) ( )

( )( )
( )

( ) ( )

( ) ( )

( ) ( ) ( )

*
1

* *
2 2

1

2

1

2 2

1

1 1
1

2

2
                                 

2

n

i i i i
i

n

i i
i

n

i i i
i
n

i i
i

B Q q q q
W W W
W W

B Q Q q
Q

Q Q q q

Q Q q

∗ ∗ ∗

=

∗ ∗ ∗

∗
=

∗ ∗ ∗

=

∗ ∗ ∗

=

′− ω −
−

ρ = = + ≤ +
⎡ ⎤

′− + ω⎢ ⎥
θ⎢ ⎥⎣ ⎦

+ θ ω

=

+ θ ω

∑

∑

∑

∑

     (30) 

By applying the market share is  defined by (16), eqn.(30) can also be written as follows 

( )

( )

*
*

1

* 2

1

1 2

1 2

n
i

i i
i

n

i i
i

qQ s
Q

Q s

=

=

+ θ ω

ρ ≤

+ θ ω

∑

∑
    (31) 

Now we try to simplify the right-hand side of inequality (31) and eliminate parameter iω . 

First note that { }max ,m m i is s i Nω = ω ∈ , we have 

( )

( )

*
*

1

* 2 2

1,

1 2

1 2

n
i

m m
i

n

m m i i
i i m

qQ s
Q

Q s s

=

= ≠

+ θ ω

ρ ≤
⎛ ⎞

+ θ ω + ω⎜ ⎟
⎝ ⎠

∑

∑
     (32) 

( )

( )

*

* 2 2

1,

1 2

1 2

m m

n

m m i i
i i m

Q s

Q s s
= ≠

+ θ ω ε
=

⎛ ⎞
+ θ ω + ω⎜ ⎟

⎝ ⎠
∑

    (33) 

( )
( )

*

* 2

1 2

1 2
m m

m m

Q s

Q s

+ θ ω ε
≤

+ θ ω
     (34) 

where (33) is from the definition of ε  (see Lemma 1); and by dropping the term 
2

1,

n
i ii i m
s

= ≠
ω∑ , we obtain (34). 

 
Because 1 msε > ≥ , we can further relax the upper-bound of ρ  by increasing mω . We know 

that 1mω ≤ , so we just replace mω  by 1. Furthermore, from Lemma 1, ε  is upper-bounded 

by ( )*Qγ . Therefore, we obtain 
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( ) ( )
( )

* *

* 2

1 2

1 2
m

m

Q Q s

Q s

+ θ γ
ρ ≤

+ θ
   (35) 

 
From inequality (35), we have the following theorem. 
 
Theorem 1.  For the case of perfect competition, namely 0,is i N→ ∀ ∈ , it holds that 

1ρ → . 
 
Proof:  Under perfect competition, it follows that 0ms → . From Definition 1, when 

0ms → , ( )* 1Qγ → . For a given continuous and differentiable inverse demand function, 

( )*Qθ  is finite. Thus, the right-hand side of (35) approaches 1. Since 1ρ > , it follows 

immediately that 1ρ → .     ■ 
 
Taking the market share ms  of road m, as an independent variable in inequality (35), we 
consider the following maximization problem for obtaining the bound 

( ) ( )
( )

* *

* 2

1 2
max

1 2m

m

s
m

Q Q s

Q s

+ θ γ

+ θ
      (36) 

Solving this problem yields 

( ) ( )
2* *1 2 1

2

Q Q+ θ γ +
ρ ≤     (37) 

where “=” can hold only if  

( ) ( )
( ) ( )

2* *

* *

1 2 1

2m

Q Q
s

Q Q

+ θ γ −
=

θ γ
     (38) 

To further simplify the above result, we define the following parameters γ̂  and θ̂  

 ( )ˆ sup  xγ = γ   (39) 

 ( )ˆ sup  xθ = θ   (40) 

where ( )γ ⋅  and ( )θ ⋅  are two functions defined by (25) and (27), respectively. Therefore, 

we readily obtain Theorem 2 by setting ( )* ˆQγ = γ  and ( )* ˆQθ = θ  in (37). 
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Theorem 2.  With Assumption 1, for any general demand function the inefficiency ratio ρ  
is bounded by 

 
2ˆ ˆ1 2 1

2
+ θγ +

ρ ≤   (41) 

Concave Inverse Demand Function 

Lemma 4.  If ( )B ⋅  is concave, the following inequality holds 

 ( )( ) ( ) ( )
2

1

1
2

n

i i i i
i

W W B Q q q q Q Q∗ ∗ ∗ ∗ ∗

=

⎡ ⎤
′− ≤ − ω − − −⎢ ⎥

⎣ ⎦
∑  (42) 

 
Proof:  With Assumption 1, if ( )B ⋅  is concave, we have 

 ( ) ( ) ( ) ( )( )( )
21d

2

Q

Q

B v v Q Q B Q B Q Q Q
∗

∗ ∗ ∗ ∗′≤ − − − −∫  (43) 

Figure 3 graphically compares the areas represented by the two sides of inequality (43), and 
the proof follows the same line as in the proof of Lemma 3. Let (43) take the place of (91) in 
the proof of Lemma 3, then the inequality (29) of Lemma 3 is simply replaced by (42). 
Therefore, Lemma 4 is true.    ■ 
 

B

Q

( )B Q

Q∗ Q

( )B Q ∗

 

Figure 3. Graphical illustration for Inequality (43) 
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Lemma 4 for the case of concave inverse demand functions is the counterpart of Lemma 3 for 
the general inverse demand function. Combining Lemma 2 and Lemma 4, we obtain 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

2 22
*

1
* 2 2

1

12 1
21

2

n

i i
i

n

i i
i

Q Q qq Q
W W

W Q Q q

∗ ∗ ∗ ∗

=

∗ ∗ ∗

=

⎡ ⎤
+ θ ω − ε −⎢ ⎥− ⎣ ⎦ρ = + ≤

+ θ ω

∑

∑
 (44) 

where *Q Qε =  satisfies ( )*1 Q< ε ≤ γ  as shown in Lemma 1. Again, like previous 

manipulation, we have 

 
( ) ( )

( )

2*

* 2

1 2 1

1 2
m

m

Q s

Q s

⎡ ⎤+ θ ε − ε −
⎣ ⎦ρ ≤

+ θ
  (45) 

From previous analysis of ( )*Qγ  and Lemma 1 we know that ( )* 1 1m m mQ s sε ≤ γ ≤ + ω ≤ +  

when ( )B ⋅  is concave. The right-hand side of inequality (45) is increasing with ε  when 

1 msε ≤ + . Thus we can replace ε  with ( )*Qγ  in (45) and obtain 

 
( ) ( ) ( )( )

( )

2* * *

* 2

1 2 1

1 2

m

m

Q s Q Q

Q s

⎡ ⎤+ θ γ − γ −
⎢ ⎥⎣ ⎦ρ ≤

+ θ
 (46) 

 
Theorem 3.  With Assumption 1 and the assumption that the inverse demand function ( )B ⋅  

is concave, it holds that 

 
ˆ3 1 8

4
+ + θ

ρ ≤   (47) 

 

Proof:  First, we take ( )*Qγ  as a decision variable and solve the following maximization 

problem 

 
( )

( ) ( ) ( )( )
( )*

2* * *

* 2

1 2 1
max

1 2

m

Q
m

Q s Q Q

Q sγ

⎡ ⎤+ θ γ − γ −
⎢ ⎥⎣ ⎦

+ θ
     (48) 

We readily obtain 

 
( )( )

( )

*

* 2

1 2

1 2
m m

m

Q s s

Q s

+ θ +
ρ ≤

+ θ
        (49) 
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where “=” can hold only if 1mω =  and ( )* 1 mQ sγ = + . From our early discussion, we know 

this is true only if the inverse demand function is linear or ( )* 1Qθ = . 

 
Second, maximizing the right-hand side of inequality (49) with respect to ms  yields  

 
( )*3 1 8

4

Q+ + θ
ρ ≤   (50) 

where “=” can hold only if ( )( ) ( )* *1 8 1 4ms Q Q= + θ − θ . Thus we readily obtain (47) by 

setting ( )* ˆQθ = θ . This completes the proof.     ■ 

 

From eqn.(47), when ˆ 1θ = , namely the inverse demand function is linear, the inefficiency 
ratio is bounded by 3 2 . 

Convex Inverse Demand Function 

Now we move to the discussion of the case of convex inverse demand function, including the 
demand function of constant elasticity. 
 

( )B Q

B

QQ∗ Q

( )B Q ∗

( )B Q

 

Figure 4. Graphical illustration for Inequality (52) 
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Lemma 5.  With Assumption 1, and assume that ( )B ⋅  is convex, it holds that 

 ( )( ) ( ) ( ) ( ) ( )( )
1

1
2

n

i i i i
i

W W B Q q q q Q Q B Q B Q∗ ∗ ∗ ∗ ∗ ∗

=

′− ≤ − ω − − − −∑  (51) 

 
Proof:  With Assumption 1, if ( )B ⋅  is convex, we have 

 ( ) ( ) ( ) ( ) ( ) ( )( )1d
2

Q

Q

B v v Q Q B Q Q Q B Q B Q
∗

∗ ∗ ∗ ∗≤ − − − −∫  (52) 

A geometric interpretation of this inequality is given in Figure 4, where the two sides of (52) 
are represented by the relevant areas. Then the proof follows the same line as in the proof of 
Lemma 3. Let (52) take the place of (91) in the proof of Lemma 3, then the inequality (42) of 
Lemma 4 simply becomes (51). This completes the proof.     ■ 
 
Lemma 5 for the convex inverse demand function is the counterpart of Lemma 3 for the 
general inverse demand function. Combining Lemma 2 and Lemma 5 and substituting (28) 
into (51) yields 

 

( ) ( )
( ) ( ) ( )( )

( )( )

( ) ( ) ( )

2

1

2 2

1

1
2

2

2

n

i i
i

n

i i
i

Q B Q B Q
Q Q qq

B Q

Q Q q

∗ ∗

∗ ∗ ∗

∗
=

∗ ∗ ∗

=

⎡ ⎤ε − −
⎢ ⎥+ θ ω −
⎢ ⎥′−
⎣ ⎦ρ ≤

+ θ ω

∑

∑
 (53) 

where Q Q∗ε =  satisfies ( )1 Q∗< ε ≤ γ  from Lemma 1. Again, like what we have done 

earlier, after dropping the term 2
1,

n
i ii i m
s

= ≠
ω∑  in the denominator, we have 

 
( ) ( ) ( )

( )* 2

1 2 1 ,

1 2
m m

m m

Q s h Q

Q s

∗ ∗⎡ ⎤+ θ ω ε − ε − ε⎣ ⎦ρ ≤
+ θ ω

 (54) 

where h  is a function defined by 

 ( )
( ) ( )

( )
,

B x B x
h x

B x x
− ε

ε =
′−

, ( )1 x< ε ≤ γ  (55) 

From the definition (55) of ( ),h x ε  and the definition (25) of ( )γ ⋅ , we have the following 

relationship 
 ( )( ), m mh x x sγ = ω  (56) 

The term ( ) ( )2 1 ,m ms h Q∗ω ε − ε − ε  in (54) has the following property 
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Lemma 6.  With Assumption 1, if ( )B ⋅  is convex, for any m msω , then the term 

( ) ( )2 1 ,m ms h Q∗ω ε − ε − ε  increases with ε . 

 
Proof:  See Appendix A5 for a proof.     ■ 
 

With Lemma 1 and Lemma 6, setting ( )Q∗ε = γ  in the right-hand side of (54) and making 

use of (56) lead to 

 
( ) ( )( )

( )

* *

* 2

1 1

1 2
m m

m m

Q Q s

Q s

+ θ + γ ω
ρ ≤

+ θ ω
  (57) 

Since 1ρ > , we have ( ) ( )( ) ( )* * * 21 2m mQ Q s Q sθ + γ > θ . We can just relax mω  to 1. By 

setting ( )* ˆQγ = γ  and ( )* ˆQθ = θ , we obtain 

 ( )
2

ˆ ˆ1 1
ˆ1 2

m

m

s
s

+ θ + γ
ρ ≤

+ θ
  (58) 

Clearly, eqn.(58) gives the same result as eqn.(49) for linear inverse demand functions ( ˆ 1θ =  
and ˆ 1 1m m ms sγ = + ω ≤ + ), which is an expected “coincidence”, because a linear function is 

both convex and concave. 
 
Taking the right-hand side of inequality (58) as a maximization problem with respect to ms , 

we readily obtain the following theorem. 
 
Theorem 4.  With Assumption 1, and assume that the inverse demand function ( )B ⋅  is 

convex, it holds that 

 
( )

2ˆ ˆ2 4 2 1
4

+ + θ + γ
ρ ≤   (59) 

where “=” can hold only if  

 
( )

( )

2ˆ ˆ4 2 1 2
ˆ ˆ2 1ms

+ θ + γ −
=

θ + γ
 (60) 
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Theorem 4 bounds the inefficiency of oligopoly with convex inverse demand function. Since 
parameter γ̂  is determined by m msω  and the function form of ( )B ⋅ , Theorem 4 is not 

straightforwardly tractable without information on the specific inverse demand function. 
 
We conclude this section by providing the inefficiency ratios for some widely used inverse 
demand functions. 
 
1)  Exponential demand function with ( ) ( )1 lnB Q b Q a−= −  

21 0,  1 0B bQ B bQ′ ′′= − < = > , the conditions for strictly decreasing and convex demand are 

satisfied. From Definitions 1 and 2, we have ( ) m mse eωγ ⋅ = ≤ , ( ) 1 2θ ⋅ = . Substituting them 

into eqn.(59) yields 

 
( )

22 4 1
1.56

4
e+ + +

ρ ≤ ≈   (61) 

 

2)  Polynomial demand function with ( ) 0
bB Q B aQ= −  where 00, 1,  0a b B> > >   

Then 1 0bB abQ −′ = − < , ( ) 21 0bB ab b Q −′′ = − − < , the conditions for strictly decreasing and 

concave demand are satisfied. From Definitions 1 and 2, we have ( ) ( )1 2bθ ⋅ = + . 

Substituting ( ) ( )1 2bθ ⋅ = +  into eqn.(50) yields 

 3 5 4
4

b+ +
ρ ≤            (62) 

Especially, when 1b = , representing the linear inverse demand function case, we have 
1.5ρ ≤ . 

 

SPECIFIC BOUND FOR SYMMETRIC ROADS 

The term “symmetric roads” here refers to the case with an identical travel time function ( )t ⋅  

for all parallel roads. As we have proved in Lemma 1, *Q Q> . Thus for the symmetric road 
case we have  

 
*

*,   i i
Q Qq q i N
n n

= > = ∀ ∈        (63) 

After relaxing each iω  to 1 in eqn.(30), we obtain 
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( ) ( )

( ) ( ) ( )

2

1

2 2

1

2

2

n

i i
i
n

i
i

Q Q q q

Q Q q

∗ ∗ ∗

=

∗ ∗ ∗

=

+ θ

ρ ≤

+ θ

∑

∑
   (64) 

Substituting (63) into (64) leads to 

 
( ) ( )

( )

* *

*

2

2

n Q Q

n Q

+ θ γ
ρ ≤

+ θ
      (65) 

Since ( )* 1Qγ > , the right-hand side of inequality (65) is increasing with both ( )*Qθ  and 

( )*Qγ . Substituting θ̂  and γ̂  for ( )*Qθ  and ( )*Qγ , we finally obtain 

 
ˆ ˆ2
ˆ2

n
n
+ θγ

ρ ≤
+ θ

      (66) 

For symmetric roads, it holds that  

 
1

ms
n

=     (67) 

For concave inverse demand function, from Part (a) of Lemma 4 and (67) we have 

 ( )* 11 1m mQ s
n

γ ≤ + ω ≤ +      (68) 

Substituting (67) into (44) and relaxing each iω  to 1, we have 

 
( ) ( )

( )

2*

*

2 1

2

n Q n

n Q

⎡ ⎤+ θ ε − ε −
⎣ ⎦ρ ≤

+ θ
      (69) 

When ( )* 1 1Q nε ≤ γ ≤ + , the right-hand side of inequality (69) increases with both ε  and 

( )*Qθ . Thus we obtain the following largest upper-bound by setting 1 1 nε = +  and 

( )* ˆQθ = θ  

 

1ˆ 2

ˆ2

n
n

n

⎛ ⎞
+ θ +⎜ ⎟

⎝ ⎠ρ ≤
+ θ

  (70) 

When θ̂ → ∞ , namely the demand is perfectly elastic when *Q Q< , the right-hand side of 

inequality (70) reaches an upper-bound of ( )1 1/ 2n+ . Thus, if the inverse demand function is 

concave, we can conclude that 

 11
2n

ρ ≤ +   (71) 
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Here we show that the bound ( )1 1 2n+  is tight by providing a numerical example. Consider 

an extreme situation that the inverse demand function ( ) 1 for 0 1B Q Q= ≤ ≤  and 

( ) 2  for 1 2B Q Q Q= − ≤ ≤ . There is only one road ( 1n = ) and the road has a zero travel time. 

Then the firm would obtain a maximal profit of 1 by charging a toll of 1 and the social 
welfare realized is 1. Otherwise, the optimal solution can gain a social welfare of 3 2  by 

charging 0 . Thus, the inefficiency ratio is 3 2  and just equal to the upper-bound we 
calculated from (71). Obviously, it is not difficult to slightly modify this example to ensure 
Assumption 1(a) and (b). 
 
For convex inverse demand functions, substituting (63) and (56) into (53) yields 

 ( )ˆ ˆ1
ˆ2

n
n

+ θ + γ
ρ ≤

+ θ
  (72) 

When ˆ 1θ → , the right-hand side of the inequality reaches the upper-bound of 

( ) ( )ˆ1 2n n+ + γ + . Thus for any convex inverse demand function, we conclude that  

 
ˆ1

2
n

n
+ + γ

ρ ≤
+

  (73) 

It is worth noting that the bound is tight when the inverse demand function is linear, where 
ˆ 1 1 1m ms nγ = + ω ≤ + . Thus for the special case of linear inverse demand function 

 ( )
( )

21
2

n
n n

+
ρ ≤

+
  (74) 

Clearly eqn.(74) is consistent with eqn.(70) when ˆ 1θ = , because a linear inverse demand 
function is both concave and convex. Especially, for a monopoly market ( 1n = ), the 
inefficiency ratio reaches its maximum of 4 3 , and for a duopoly ( 2n = ), the inefficiency 

ratio reduces to 9 8 . 
 

CONCLUSIONS 

Distinguished from previous works, we examined the inefficiency of toll competition with 
general inverse demand functions. We probe into more details of the inverse demand function 
and establish more precise bounds under specific situations. We summarize the main results 
obtained from our study into Tables 1 and 2. In the tables, n  is the number of firms or 

parallel roads; γ̂  and θ̂  are the upper-bounds of the two parameters defined in Definitions 



 48 Transportation and Traffic Theory 17 
 
 
1 and 2, respectively, and they can be calculated if a specific demand function is given. Here 
we note that for asymmetric travel cost functions, the bounds established in the above table 
may not be tight, An obvious observation for the proof is that when 1n = , the travel cost 
function is both asymmetric and symmetric, the tight bound obtained in symmetric case is 
3 2  for a concave demand function, while from the result in asymmetric case, the bound 

could go to infinity if θ̂ → ∞ . In the future, we expect new methods to address this disunity 
and expand the results above by obtaining tighter bounds for the case of asymmetric travel 
cost functions. 
 

Table 1. General expression of the upper bound of the inefficiency ratio for toll competition 

Inverse Demand 
function General Concave Convex 

Asymmetric 
travel cost functions 

2ˆ ˆ1 2 1
2

+ θγ +  
ˆ3 1 8

4
+ + θ  ( )

2ˆ ˆ2 4 2 1
4

+ + θ + γ
 

With 
θ̂  

ˆ ˆ2
ˆ2

n
n
+ θγ

+ θ
 

1ˆ 2

ˆ2

n
n

n

⎛ ⎞
+ θ +⎜ ⎟

⎝ ⎠

+ θ
 

( )ˆ ˆ1
ˆ2

n
n

+ θ + γ

+ θ
 Symmetric 

Travel cost 
function Without 

θ̂  
γ̂  11

2n
+  

ˆ1
2

n
n
+ + γ

+
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Table 2. Upper bound of the inefficiency ratio for some specific demand functions 

Inverse 
Demand 
function 

Linear 
b aQ−  

( )0, 0a b> >  

Exponential 

( )1 lnb Q a−−  

( )0, 0a b> >  

Polynomial 

0
bB aQ−  

( )00, 1,  0a b B> > >  

Constant elasticity 
baQ−  

( )0,0 1a b> < <   

Asymmetric 
travel cost 
functions 

3
2

 1.56  3 5 4
4

b+ +  ( ) ( )
21

2 4 1 1 1

4

bb b −⎛ ⎞⎛ ⎞
+ + − + −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠  

Symmetric 
Travel cost 
function 

( )
( )

21
2

n
n n

+

+
 

11
2 2
e
n
−

+
+

 
( )

11
2 1

b
n n b

+
+

+ +
 ( ) ( )

( )

1

2 1 1 1

2 1

bn b b

n b

−⎛ ⎞
+ − + −⎜ ⎟

⎝ ⎠

+ −
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APPENDIX A 

A1. Properties of ( )γ ⋅  

If ( )B ⋅  is concave, we have 

 ( ) ( ) ( )m m m mB x s xB x B x s x′+ ω ≥ + ω  (75) 

which is illustrated in Figure 1 (a). From the definition of ( )γ ⋅ , inequality (75) gives 

 ( )( ) ( )( )1 m mB x x B s xγ ≥ + ω   (76) 

Since ( )B ⋅  is strictly decreasing, inequality (76) simply implies that ( ) 1 m mx sγ ≤ + ω . 

For a convex ( )B ⋅ , the proof is similar.     ■ 

A2. Proof of Lemma 1 

(a) We first show that 1ε > . If it holds that *
i iq q>  for all i N∈ , then *Q Q>  and 1ε > . 

Otherwise, without loss of generality, suppose *
j jq q> , with eqn.(20) we have 

( ) ( ) ( )       j j j j jB Q t q q t q′≤ β + β     (77) 

( ) ( )* * *
j j j j jt q q t q′≤ β + β      (78) 

( ) ( ) ( )* * * *
j jB Q q B Q B Q′= + ω <     (79) 

where (78) is from the assumption that travel time function is convex and strictly increasing 

and (79) is obtained from the Nash equilibrium condition (15). Because ( )B ⋅  is strictly 

decreasing, ( ) ( )*B Q B Q<  implies *Q Q>  and 1ε > . 

 

(b) We prove that ( )*Qε ≤ γ . As we have proved, *Q Q> , then there at least exists one road 

j  on which *
j jq q> . Thus we have 

( ) ( ) ( )j j j j jB Q t q q t q′= β + β    (80) 

( ) ( )* * *
j j j j jt q q t q′≥ β + β     (81) 

( ) ( )* * *
j jB Q q B Q′= + ω       (82) 

( ) ( )* * *
m mB Q s Q B Q′≥ + ω     (83) 

( )( )* *B Q Q= γ      (84) 
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where (81) is from the assumption that travel time function is convex and strictly increasing; 

(82) is from Nash equilibrium condition (15); Since { }max ,m m i is s i Nω = ω ∈ , 
* * *

j j m m m mq q s Qω ≤ ω = ω , we obtain (83); and eqn. (84) is from Definition 1. Because ( )B ⋅  is 

strictly decreasing, ( ) ( )( )* *B Q B Q Q≥ γ  implies ( )* *Q Q Q< γ , and thus ( )*Qε ≤ γ .   ■ 

A3. Proof of Lemma 2 

From eqn.(15) we have 

( ) ( ) ( ) ( ) ( ) ( )* * * * * * * * *
i i i i i i i i it q B Q q t q q B Q B Q q B Q′ ′ ′β = −β + ω ≤ + ω        (85) 

Thus 

( ) ( )
*

* * *

10

d
Q n

i i i
i

W B v v q t q
=

= − β∑∫      (86) 

( ) ( ) ( )( )
*

* * * *

10

d
Q n

i i i
i

B v v q B Q q B Q
=

′≥ − + ω∑∫     (87) 

( ) ( ) ( )( ) ( )
*

2* * * *

10

d
Q n

i i
i

B v v Q B Q B Q q
=

′= − + − ω∑∫     (88) 

( )( )
( )

( ) ( )
2 2

1

1 
2

n

i i
i

B Q Q q
Q

∗ ∗ ∗

∗
=

⎡ ⎤
′ ⎢ ⎥= − + ω

θ⎢ ⎥⎣ ⎦
∑     (89) 

where (87) is from (85) and (89) is from Definition 2.      ■ 

A4. Proof of Lemma 3 

From eqns.(21)-(22) we have 

( ) ( ) ( )( )
1

d
Q n

i i i i i i
iQ

W W B v v q t q q t q
∗

∗ ∗ ∗

=

− = −β −∑∫      (90) 

Because ( )B ⋅  is strictly decreasing and from Lemma 1, *Q Q> , it follows that  

( ) ( ) ( )d
Q

Q

B v v Q Q B Q
∗

∗ ∗≤ −∫     (91) 

Moreover, because ( )it ⋅  is convex, ( )i i iq t q  is also convex for 0iq ≥ , thus we have 

( ) ( ) ( ) ( ) ( )( )i i i i i i i i i i i i iq t q q t q q q t q q t q∗ ∗ ∗ ∗ ∗ ∗′− ≥ − + , i N∈  (92) 

Substituting (91) and (92) into (90) yields 
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( ) ( ) ( ) ( ) ( )( )
1

n

i i i i i i i
i

W W Q Q B Q q q t q q t q∗ ∗ ∗ ∗ ∗ ∗ ∗

=

′− ≤ − −β − +∑      (93) 

( ) ( ) ( ) ( )( )
1

n

i i i i i i i
i

q q B Q t q q t q∗ ∗ ∗ ∗ ∗

=

′= − − β −β∑       (94) 

( )( ) ( )
1

n

i i i i
i

B Q q q q∗ ∗ ∗

=

′= − ω −∑     (95) 

where (95) is from the Nash equilibrium condition (15).      ■ 

A5. Proof of Lemma 6 

For any given m msω , we simply rewrite ( ),h x ε  as ( ) ,h ε  and let 

( ) ( ) ( )2 1m mu s hε = ω ε − ε − ε , ( )1 x< ε ≤ γ . Then we have 

 ( ) ( ) ( ) ( )2 1m mu s h h′ ′ε = ω − ε − ε − ε , ( )1 x< ε ≤ γ  (96) 

where ( ) ( ) ( )h B x B′ ′ ′ε = ε ε , ( )1 x< ε ≤ γ . With Assumption 1, if ( )B ⋅  is convex, we have 

 ( )
( ) ( )

( )1
B x B x

B x
x

− ε
′ ε ≥

− ε −
, ( )1 x< ε ≤ γ  (97) 

Figure 5 graphically compares the two lines’ slopes represented by the two sides of inequality 

(97). Multiplying both sides of (97) by ( ) ( )1 B x′ε −  (a negative term) leads to 

 ( ) ( ) ( )1 h h′ε − ε ≤ ε , ( )1 x< ε ≤ γ   (98) 

With (98), relaxing ( ) ( )1 h′ε − ε  to ( )h ε  in (96) leads to 

 ( ) ( )( )2 m mu s h′ ε ≥ ω − ε , ( )1 x< ε ≤ γ  (99) 

With Assumption 1, it is obvious that ( )h ε  increases with ε  for ( )1 x< ε ≤ γ , and gives 

( )( ) m mh x sγ = ω , thus ( ) m mh sε < ω  for ( )1 x< ε < γ . Then it follows immediately from (99) 

that ( ) 0u′ ε >  for ( )1 x< ε < γ  and ( )( ) 0u x′ γ ≥ . Therefore, Lemma 6 is true.     ■ 
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Figure 5. Graphical illustration for Inequality (97) 
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SUMMARY

This paper investigates competitive equilibrium between road pricing and parking charging

when the responses of road users and the equity issue of road pricing are taken into

consideration. To determine the equilibrium, this paper presents a multiobjective bilevel

programming model with an equity constraint. The lower level is a time-dependent network

equilibrium problem with elastic demand that simultaneously considers road users’ choice of

departure time, route, and parking location, and the upper level is a multiobjective program

that maximizes the social welfare of the system with an equity constraint and the total revenue

of the car park operator. A penalty function approach that is embedded by a multiobjective

simulated annealing method is developed to solve the problem. A numerical example is used

to demonstrate the effectiveness of the methodology.
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INTRODUCTION

Road and parking congestion is an increasingly serious problem in most densely populated

cities around the world due to the dramatic increase in the number of vehicles. Such

congestion is mainly attributed to an imbalance between demand and supply (Lam et al.,

1999; Tong et al., 2004). A shortage of supply exacerbates traffic congestion on the roads and

increases the time that is spent searching for parking, and also causes more illegal roadside

parking (Axhausen and Polak, 1991; Young et al., 1991).

A possible solution to the growing road congestion and parking shortage problems in urban

areas may be to expand the capacity of the transportation infrastructure. Unfortunately, this

can result in the inefficient allocation of resources because it creates excess capacity at most

times of day except for the morning and evening peak commuting periods. The expansion of

capacity may also induce new traffic demand and thus cause further congestion during peak

periods. Furthermore, the resources that are available for the expansion of infrastructure

capacity remain limited in most urban areas. Road pricing has been widely suggested as a

viable alternative to infrastructure expansion, because it can be used to manage traffic demand

and alleviate traffic congestion by changing the route choice of road users (Yang and Lam,

1996; Yang and Bell, 1997; Verhoef, 2002; Lo and Szeto, 2005; Ho et al., 2005) and their

choice of departure time (Arnott et al., 1990; Yang and Huang, 1997; Yang and Meng, 1998;

Wie and Tobin, 1998). Recent rapid developments in information and communication

technologies have further aided and supported the practical implementation of road pricing

schemes. Some well-known successful examples of electronic road pricing include the

schemes in California, Singapore, and, more recently, London (Yang and Huang, 2005; Wong

et al., 2005).

However, the road pricing option comes with social and even political problems, such as the

issues of equity. Typically, road pricing is often controversial because of the social equity

issue (Button and Verhoef, 1998) and spatial equity issue (Yang and Zhang, 2002). The social

and spatial equity issues are concerned about the distributions of costs and benefits across

different socioeconomic groups and different areas in a transportation network. Recently,

Szeto and Lo (2006) introduced the impacts of road pricing across generations, i.e., the

intergeneration equity issue. In the forthcoming discussions, we focus on the spatial equity

issue arising from road pricing.

Moreover, it has been observed that the recent pricing practice in London has lessened the

traffic demand into and out of central London, which has served to reduce congestion on the

roads to the target level that was set by the Department for Transport, but has caused the
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owners of parking facilities to lose revenue because of the decrease in parking demand. There

is therefore an incentive for car park operators to reduce parking charges for attracting

customers back into the system. Were this to occur, it would put pressure on the relevant

authorities to further increase the toll level to maintain the effectiveness of the road pricing

scheme. Naturally, this leads us to ask to the question of where the equilibrium between road

pricing and parking charging lies in a dynamic transportation system when the responses of

road users and the equity issue are taken into consideration.

To answer this intriguing question, it is necessary to analyze the tradeoff among the players

that are involved in the system. In a dynamic transportation system there are three types of

players, each of which has a different set of objectives: the road authority, the owners of the

parking facilities, and road users. The authority manipulates the differential toll level to

maximize the social welfare of the system while taking into consideration the resulting equity

issue, where the social welfare of the system is measured by the total benefit to road users

minus the total social cost. The car park operator, which represents all of the owners of the

parking facilities, determines the parking charge level on a time dependent basis to maximize

total revenue. The road users make decisions about their departure time, route and parking

location to minimize their individual travel disutility. The two most important decision

variables in the system are road tolls and parking charges, both of which significantly

influence the objectives of the players. Obviously, each player must consider the responses of

the other two players when making a decision.

This paper provides a methodology to explore the tradeoff between the decision variables of

road toll and parking charge levels that explicitly considers the spatial equity issue of road

pricing. A multiobjective bilevel programming model that incorporates an equity constraint is

proposed to optimize the time-differential road tolls and parking charges at all times of day. In

the proposed bilevel model, the upper level is a two-player game between the road authority

and the car park operator in which time-varying road tolls and parking charges are the

decision variables. The lower level is a dynamic or time-dependent network equilibrium

problem with elastic demand that governs the choices of the road users regarding their

departure time, route, and parking location for a given combination of road tolls and parking

charges. A penalty function approach in conjunction with a multiobjective simulated

annealing (MOSA) algorithm is developed to solve the proposed model. As a result, the

Pareto efficient solutions for the road tolls and parking charges can be obtained by time of the

day in a network with various equity levels. We also compare the efficiency of different

pricing schemes and explore the impact of equity on network performance.
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The remainder of this paper is organized as follows. In the following section, we describe

some of the basic considerations in developing the bilevel model. For a given road toll and

parking charge pattern, a time-dependent network equilibrium formulation with elastic

demand is presented to model a road user’s travel and parking choice behavior, and is solved

by a projection method. We then formulate the proposed bilevel programming model for the

pricing design problem before and after the introduction of road pricing and develop some

solution algorithms for the problem. A numerical example is used to illustrate the application

of the proposed model. Conclusions are drawn in the final section, and some

recommendations for future research are given.

BASIC CONSIDERATIONS

Assumptions

To facilitate the presentation of the essential ideas in this paper, the following assumptions are

adopted.

A1 The entire study horizon [0, T] is discretized into equally spaced intervals that are

sequentially numbered },,1,0{ TTt �=∈ , where δ is the length of an interval with TT =δ .

A2 The function of the demand elasticity is used to capture the responses of road users to

various levels of road tolls and parking charges. The responses include switching to

alternative modes, such as the bus or subway, and not making the journey at all.

A3 A road user’s travel disutility consists of the travel cost components of travel time from

origin to parking location, the time delay of searching for parking, the parking charge at the

parking location, the walking time from the parking location to the destination, the schedule

delay cost of early or late arrival at the destination, and the cost of road tolls, if any.

A4 All of the users of the road system are assumed to have sufficient and perfect information

about the conditions of the roads and parking facilities, and can thus make travel choices

about departure time, route, and parking location in a dynamic or time-dependent user-

optimal manner (Lam et al., 2006; Tong et al., 2004).

Notation

The following notation is used throughout the paper unless otherwise specified.

rsI The set of all feasible parking locations that serve users between OD pair (r, s).

riP The set of all routes between origin r and parking location i.
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, ( )ri pT t The travel time of road users who leave origin r during interval t to travel to

parking location i along route p.

( )id t The time delay of searching for an available parking space at location i during

interval t.

( )iz t The parking charge for users who arrive at location i during interval t.

isw The walking time from location i to destination s.

( )rs tΘ The schedule delay cost of early or late arrival at destination s for users who

depart from origin r during interval t.

, ( )rs ipf t The departure flow rate during interval t on route p between OD pair (r, s) via

location i.

( )ac k The travel time on link a during interval k.

( )au k The inflow to link a during interval k.

( )iD t The parking accumulation at location i during interval t.

( )ih t The hourly parking fee at location i during interval t.

, ( )ri p tλ The road tolls on route p between origin r and parking location i during interval t.

, ( , )rs ip tϕ x The travel disutility of road users who leave origin r during interval t for

destination s via route p and park their cars at location i.

x The vector pair ( , )λ h of road tolls and parking charges with

( ), ( ) : , , ,ri p t r i p t= λ ∀λ and ( )( ) : ,ih t i t= ∀h .

min ( )rsϕ h The minimal travel disutility between OD pair (r, s) before the introduction of

road pricing.
min ( )rsϕ x The minimal travel disutility between OD pair (r, s) after the introduction of road

pricing.

rsQ The total demand between OD pair (r, s) over the entire study horizon.

Travel disutility

Consider a transportation network G = (N, A), where N is the set of all nodes that includes

origin nodes, intersection nodes, destination nodes, and parking locations, and A is the set of

all directed links that includes road links, parking access links from the road network to the

parking location, and walkways or walk links between the parking location and the final

destination. Let R denote the set of origin nodes, r represent a single origin node NRr ⊂∈ , S

denote the set of destination nodes, and s represent the destination node NSs ⊂∈ .
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According to assumption A3, the travel disutility (in terms of equivalent units of time) of road

users who leave origin r during interval t for destination s via route p and park their cars at

location i for a given combination of road tolls and parking charges can be expressed as

( ), 1 , 2 ,( , ) ( ) ( )rs ip ri p i ri pt T t d t T tϕ = α + α +x

( )3 , 4 5 6 ,( ) ( ) ( ), , , , ,i ri p is rs ri pz t T t w t t r s i p t+α + + α + α Θ + α λ ∀ , (1)

where the coefficient (α) is used to convert different quantities to units of time.

The route travel time , ( )ri pT t in Equation (1) can be represented by the sum of all of the link

travel times along this route (Chen, 1998).

, ( ) ( ) ( ), , , ,ri
ri p a apt

a k t

T t c k k r i p t
≥

= δ ∀∑∑ , (2)

where the indicator variable ( )ri
apt kδ equals 1 if the flow on route p departing from origin r

during interval t to travel to parking location i arrives at link a during interval k, and 0

otherwise.

We now define the link travel time function ( )ac k in Equation (2). Thus far, there is no

universally acceptable form of time-dependent or dynamic link travel time function. However,

it is generally agreed that the link travel time function can be expressed in terms of the inflow,

exit flow, and number of vehicles on the link. Chen and Hsueh (1998) further showed that the

exit flow and the number of vehicles on a link can be represented by the inflow. Hence, the

travel time ( )ac k on link a during interval k can be expressed as a function of the inflow to

that link by interval k, i.e.,

( )( ) (1), (2), , ( ) , ,a a a ac k f u u u k a k= ∀� . (3)

However, it should be pointed out that such travel time function may possibly violate the first-

in-first-out (FIFO) discipline (Daganzo, 1995). In order to satisfy the FIFO condition, it is

required that the rate of change in link travel time for each link in the network is greater than

−1 (Ran and Boyce, 1996).

The inflow to link a, ( )au k , during interval k in Equation (3) is

( ) ( ), ,ri
a apt

ri p t

u k u k a k= ∀∑∑∑ , (4)
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where ( )ri
aptu k is the inflow to link a during interval k that departs from origin r along route p

toward parking location i during interval t. This link inflow can be represented by the route

inflow using the indicator variable ( )ri
apt kδ as follows.

,( ) ( ) ( ), , , , , ,ri ri
apt apt rs ip

s

u k k f t a p r i t k= δ ∀∑ . (5)

The time delay of searching for an available parking space can be computed by the following

Bureau of Public Roads (BPR) function (Lam et al., 1999, 2006).

( ) ( )
4.030

, ,( ) 0.31 ( ( )) , , , ,i ri p i i ri p id t T t d D t T t C r i p t+ = + + ∀ , (6)

where 0
id is the free-flow parking access time at parking location i and iC is the capacity of

parking location i. The parameters in Equation (6) are obtained from the calibration results

that were based on the survey data in Hong Kong (Lam et al., 1999).

We now derive the parking accumulation formula in Equation (6) through an approach that is

similar to that of Lam et al. (2006). The cumulative arrivals , ( )rs ipU t of road users at location

i along a specific route p between OD pair (r, s) by the beginning of interval t is given by

,

1

, ,
1 ( )

( ) ( ), , , , ,
ri p

t

rs ip rs ip
k k T k

U t f k r s i p t
−

ξ= + =ξ

= ∀∑ ∑ . (7)

For a given OD pair (r, s), the cumulative arrivals , ( )rs iU t of road users at parking location i

along all routes by interval t can then be computed by

, ,( ) ( ), , , ,rs i rs ip
p

U t U t r s i t= ∀∑ . (8)

Therefore, the total cumulative arrivals ( )iU t of road users from all OD pairs at parking

location i by interval t is given by

,( ) ( ), ,i rs i
rs

U t U t i t= ∀∑ . (9)

Conversely, road users who arrive at parking location i along route p before interval (t-l) and

park for the duration l will already have left parking location i before interval t, and thus for

any OD pair (r, s) the cumulative departures , ( )rs ipV t of road users from location i along route

p by the beginning of interval t is

,

1

, ,
1 ( )

( ) ( ), , , , ,
ri p

t l

rs ip rs ip
k k T k

V t f k r s i p t
− −

ξ= + =ξ

= ∀∑ ∑ . (10)
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Hence, for a given OD pair (r, s), the cumulative departures , ( )rs iV t of road users from

parking location i by interval t is

, ,( ) ( ), , , ,rs i rs ip
p

V t V t r s i t= ∀∑ , (11)

and thus the total cumulative departures ( )iV t of road users for all OD pairs from parking

location i by interval t is

,( ) ( ), ,i rs i
rs

V t V t i t= ∀∑ . (12)

Therefore, the parking accumulation ( )iD t at location i during interval t equals ( )iU t minus

( )iV t , that is,

( ) ( ) ( ), ,i i iD t U t V t i t= − ∀ . (13)

The parking charge in Equation (1), which is dependent on the desired parking duration l and

the arrival time interval at the parking location, can be defined as

, ,( ) ( ), , , ,i ri p i ri pz t T l h t T r i p t+ = × + ∀ , (14)

where ,( )i ri ph t T+ is the hourly parking fee during interval ,ri pt T+ .

The walking time is computed by

( , ) , ,isw i s i s= Γ ω ∀ , (15)

where ),( siΓ is the walking distance from location i to destination s and ω is the average

walking speed of users (km/h).

The schedule delay costs of early or late arrival at destination s can be defined as follows

(Yang and Meng, 1998; Huang and Lam, 2002).

( )( )( ) ( )

( )( ) ( )

* *
, , , ,

* *
, , , ,

( ) ( ) ,if ( ) ( )

( ) ( ) ( ) ,if ( ) ( )

0,otherwise

s s ri p i ri p is s s ri p i ri p is

rs ri p i ri p is s s s s ri p i ri p is

t t T t d t T t w t t T t d t T t w

t t T t d t T t w t t t T t d t T t w

⎧τ −Δ − + + + + −Δ > + + + +
⎪
⎪

Θ = γ + + + + − −Δ + Δ < + + + +⎨
⎪
⎪
⎩

(16)

where * *[ , ]s s s st t− Δ + Δ is the desired arrival time window of users at destination s without

any schedule delay penalty and τ ( )γ is the unit cost of arriving early (late) at destination s.

The road toll , ( )ri p tλ on route p between origin r and parking location i during interval t can

be represented by the sum of all of the link tolls along this route as follows.
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, ( ) ( ) ( ), , , ,ri
ri p a apt

a A k t

t k k r i p t
∈ ≥

λ = λ δ ∀∑∑ , (17)

where ( )a kλ is the road toll on link a during interval k and A is the set of toll links.

Time-dependent network equilibrium conditions

For a given combination of road tolls and parking charges, we consider the decision of road

users about whether to travel or not, and, if they do decide to travel, then their choice of

departure time, route, and parking location. As in Yang and Meng (1998) and Szeto and Lo

(2004), we assume that the total demand rsQ between OD pair (r, s) is a continuous and

monotonically decreasing function ( )rsD ⋅ of the OD travel disutility min ( )rsϕ x , that is,

( )min ( ) , ,rs rs rsQ D r s= ϕ ∀x . (18)

According to assumption A4, all of the travel choice decisions of road users adhere to the

deterministic dynamic or time-dependent user equilibrium condition (Ran and Boyce, 1996;

Chen, 1998; Lam et al., 2006) that for each OD pair only the combination of departure time,

travel route, and parking location with the minimum travel disutility is actually used. This

condition can mathematically be expressed as

min
,

, min
,

( ), if ( ) 0
( , ) , , , , ,

( ), if ( ) 0

rs rs ip
rs ip

rs rs ip

f t
t r s i p t

f t

⎧= ϕ >⎪
ϕ ∀⎨

≥ ϕ =⎪⎩

x
x

x
. (19)

Equation (19) states that no road user would be better off by unilaterally changing the choice

of departure time, travel route, or parking location.

Definition 1. For a given vector pair ( , )=x λ h of road tolls and parking charges, a flow

pattern ( )* * *,=y f Q is a time-dependent user equilibrium if it satisfies both conditions (18)

and (19).

TIME-DEPENDENT NETWORK EQUILIBRIUM FORMULATION

Following the work of Wie et al. (1995) and Chen (1998) on dynamic network models, the

deterministic time-dependent network equilibrium problem that is given in Definition 1 can

be expressed as a finite-dimensional variational inequality (VI) problem as follows.
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Theorem 1. For a given vector pair ( , )=x λ h of road tolls and parking charges, a time-

dependent flow pattern ( )* * *,=y f Q on the road network reaches the user equilibrium state if

and only if it satisfies the following VI condition.

( ) ( )* 1 * *
, , ,( , ) ( ) ( ) ( ) 0rs ip rs ip rs ip rs rs rs rs

rs i p t rs

t f t f t D Q Q Q−ϕ − + − ≥∑∑∑∑ ∑x , (20)

subject to

, ( ) , ,rs ip rs
i p t

f t Q r s= ∀∑∑∑ , (21)

, ( ) 0, , , , ,rs ipf t r s i p t≥ ∀ , (22)

0, ,rsQ r s≥ ∀ , (23)

where Equation (21) is the OD demand conservation constraint and Equations (22) and (23)

are the usual non-negativity constraints on route flow and OD demand, respectively.

Remark 1. The first term on the left-hand side of VI (20) is equivalent to the equilibrium

formulation for the departure time, route, and parking location choices, and the second term

serves to derive the elastic demand expression (18). Although the proof of Theorem 1 is

omitted here, the readers can refer to the studies of Wie et al. (1995), Chen (1998) and Lam et

al. (2006) for further details. As all of the functions in VI (20) are continuous and the feasible

set is closed because the OD demand is bounded, there is at least a solution to the VI problem

(20)-(23) according to Brouwer’s fixed point theorem. However, the route travel time is

essentially non-linear and non-convex because of the non-linearity and non-convexity of flow

propagation constraint (5). It means that the VI problem (20)-(23) is non-convex and multiple

local solutions may exist (Chen, 1998).

Note that the VI problem (20)-(23) is formulated in terms of the route flows, and thus a route-

based heuristic solution algorithm that requires the explicit enumeration of the routes is

developed to solve the VI problem. The solution algorithm is proposed as follows.

Step 0. Initialization. Set iteration n = 1. Choose an initial OD demand pattern { }( )n
rsQ .

Step 1. Dynamic or time-dependent traffic assignment. Assign the OD demand { }( )n
rsQ to the

network by employing the existing route-based dynamic or time-dependent traffic

assignment methods, and obtain the temporal and spatial link flow distribution.

Step 2. Moving. Compute the minimal OD travel disutility and the auxiliary OD demand

pattern { }( )n
rsG in terms of Equation (18).
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Step 3. Updating. Update the OD demand pattern using the method of successive averages

(MSA).

Step 4. Convergence Check. If a certain convergence criterion is satisfied, then stop.

Otherwise, set n = n+1 and return to Step 1.

Remark 2. In Step 0, the initial OD demand can be determined based on an empty network.

In Step 1, the dynamic or time-dependent traffic assignment problem with fixed OD demand

can be solved by using various state-of-the-art route-based solution algorithms, such as the

disaggregate simplicial decomposition method, the gradient projection method (Chen et al.,

1999), the gap-function method (Lo, 1999), or the route/time swapping method (Huang and

Lam, 2002). An attractive advantage of the route-flow solutions that are generated by the

route-based algorithms is its capability of providing more detailed information about the

travel pattern, which is not available with the link-flow solutions. The route-flow solutions

have become increasingly important in many real applications, such as route guidance and

information systems (Mahmassani and Peeta, 1993). However, the route-based algorithms

also have some disadvantages, such as the need of explicit route enumeration. This greatly

prohibits the application of the route-based algorithms to realistic large-scale networks.

Fortunately, some effective methods, such as the column generation procedure that was

recently proposed by Lim and Heydecker (2005), have been developed to generate a set of

reasonable routes, in which only the routes that are most utilized are contained. Lim and

Heydecker (2005) showed that the number of reasonable routes in a medium-scale or even

large-scale network is small after dropping unreasonable routes, which yields encouraging

results in the application of the route-based algorithms to a general network. In this study, the

GP method in conjunction with the column generation procedure is adopted. In Step 4, the

convergence criterion can be set as below (Sheffi, 1985).

min( ) 1( ) ( ) min( ) min( 1)

min( ) min( )

( )1

| |

n n n n n
rs rs rs rs rs

n n
rs rs rs

D Q
G

RS

− −⎛ ⎞ϕ − ϕ − ϕ
= + < ε⎜ ⎟⎜ ⎟ϕ ϕ⎝ ⎠

∑ , (24)

where | |RS is the cardinality of the OD pairs in the network and ε is a small positive number.

PRICING DESIGN MODEL

In the foregoing sections, we formulate the dynamic or time-dependent network equilibrium

problem with elastic demand and develop a solution algorithm for the problem with a given

parking charge and road toll pattern ( , )=x λ h . Yang and Zhang (2002) recently showed that

road pricing can create an equity concern, in the sense that a change in the OD travel disutility

of road users traveling between various OD pairs may be significantly different before and



66 Transportation and Traffic Theory 17
�

�

after the introduction of road tolls at some links. Therefore, to consider the equity issue

explicitly, we formulate a pricing design model. For ease of presentation, the before- and

after-implementation scenarios are labeled as “Scenario B (Before)” and “Scenario A (After)”

respectively.

Pricing design model before the implementation of road tolls: Scenario B

Before the implementation of road tolls there are two types of players in the system, the car

park operator and the road users, and one decision variable, the parking charge level. The car

park operator attempts to maximize the total revenue by determining the time-varying parking

charge level as follows.

0 ,max ( ) ( ) ( )i rs ip
rs i p t

z t f tΖ =∑∑∑∑
h

h , (25)

subject to
min max( ) ( ) ( ), ,i i ih t h t h t i t≤ ≤ ∀ , (26)

where min ( )ih t and max ( )ih t are the lower and upper bounds, respectively, of the parking

charges at location i during interval t. The flow pattern ( ),=y f Q in Equation (25) is

determined by the solution to the lower-level time-dependent network equilibrium problem

with elastic demand, which is formulated in the foregoing section as VI problem (20)-(23).

It should be pointed out that the car park operator is mainly concerned with the revenues from

parking charges, and does not care about the fairness of the charging level because parking

charges are market oriented. Therefore, the equity constraint is not considered in the parking

pricing design model.

Pricing design model after the implementation of road tolls: Scenario A

There are three players in Scenario A: the road authority, the car park operator, and the road

users. The road tolls and parking charges are the two most important decision variables in

designing an efficient transport system in this scenario, as both of them significantly influence

the objectives of the players by jointly governing the social welfare of the system, the total

revenue of the car park operator, and the temporal and spatial flow distribution and realized

OD demand of the road users. Moreover, it has been demonstrated that the introduction of

road tolls creates an equity issue that may cause the road pricing policy to be rejected by the

public (Yang and Zhang, 2002). The equity issue must therefore be considered in the

determination of the road toll level. Consequently, the pricing design problem after the

implementation of road tolls aims to achieve an equilibrium between road pricing and parking
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charging while taking into account the responses of road users and the equity issue. It can be

regarded as a two-player game between the road authority and the car park operator, in which

the road authority aims to maximize the social welfare of the system by manipulating the road

toll level while considering the equity issue, and the car park operator aims to maximize the

total revenue by determining the time-varying parking charge level.

Similar to Meng and Yang (2002) and Yang and Zhang (2002), we deal with the equity issue

by incorporating an equity constraint into the road toll design model. Equity is measured as

the relative change in OD travel disutility before and after the introduction of road tolls. The

road toll design problem for the road authority is thus formulated as follows.

( )1
1 , , ,0

max ( , ) ( )d ( , ) ( ) ( )rsQ
rs rs ip ri p rs ip

rs rs i p t

D w w t t f t−Ζ = − ϕ − λ∑ ∑∑∑∑∫λ
λ h x , (27)

subject to
min

min

( )
max

( )
rs

rs rs

⎧ ⎫ϕ⎪ ⎪
≤ β⎨ ⎬

ϕ⎪ ⎪⎩ ⎭

x

h
, (28)

min max( ) ( ) ( ), ,a a at t t a A tλ ≤ λ ≤ λ ∀ ∈ , (29)

where expression (28) is the equity constraint, the parameter β is a given appropriate positive

constant that measures the degree of equity of the benefit distribution, where a smaller β

value implies a more equitable pricing design and vice versa. min ( )a tλ and max ( )a tλ are the

lower and upper bounds, respectively, of the road toll on link a during interval t. The

interrelation between route toll , ( )ri p tλ and link toll ( )a tλ is determined by Equation (17).

The parking pricing design model for the car park operator is formulated as below.

2 ,max ( , ) ( ) ( )i rs ip
rs i p t

z t f tΖ =∑∑∑∑
h

λ h , (30)

subject to
min max( ) ( ) ( ), ,i i ih t h t h t i t≤ ≤ ∀ . (31)

The pricing design model in Scenario A can be formulated as a multiobjective programming

model, as follows.

1

, 2

( , )
max ( , )

( , )

Ζ⎛ ⎞
Ζ = ⎜ ⎟

Ζ⎝ ⎠λ h

λ h
λ h

λ h
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( )1
, , ,0

,

( )d ( , ) ( ) ( )

( ) ( )

rsQ
rs rs ip ri p rs ip

rs rs i p t

i rs ip
rs i p t

D w w t t f t

z t f t

−⎛ ⎞− ϕ − λ⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑∑∑∑∫

∑∑∑∑

x

, (32)

subject to (28)-(29) and (31), where min ( )rsϕ x and ( ),=y f Q are the equilibrium OD disutility

and flow pattern, respectively, that are obtained by solving the lower-level time-dependent

network equilibrium problem (20)-(23).

It should be pointed out that the pricing design models (25)-(26) for Scenario B and (32) for

Scenario A with the time-dependent network equilibrium problem (20)-(23) as a constraint

actually constitute two bilevel problems. As the lower-level equilibrium constraints (20)-(23)

are non-convex, the pricing design models (25)-(26) and (32) are also non-convex. Therefore,

it is very difficult to solve the two bilevel programming problems. Fortunately, the recently

developed simulated annealing (SA) based algorithms can be used to solve the two bilevel

programming problems. In the following section, we develop two SA-based solution

algorithms for the proposed pricing design models (25)-(26) and (32).

SOLUTION ALGORITHMS

In this section, we first develop a SA-based solution algorithm for the pricing design model

(25)-(26) in Scenario B, and then generate a multiobjective simulated annealing (MOSA)

algorithm to find the set of potential Pareto efficient solutions for the proposed multiobjective

bilevel programming problem (32) in Scenario A.

Solution to Scenario B

SA algorithms have been successfully applied to solve single-objective continuous

equilibrium network design problems (Friesz et al., 1992; Huang and Bell, 1998; Yang and

Zhang, 2002). They have the ability to obtain a globally optimal solution without the need of

stipulating any details about mathematical structure, such as the shape of the feasible region

and the derivatives of the objective functions.

The SA solution method was inspired by the thermodynamic process of the cooling

(annealing) of solids (Eglese, 1990). In this process, a solid is heated until it melts, and the

temperature of the solid is then slowly decreased in accordance with an annealing schedule

until it reaches the lowest energy state, or ground state. If the initial temperature is not high

enough or the temperature is decreased too rapidly, then the solid at the ground state will have
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many defects or imperfections. This annealing process is echoed in the search for a strategy.

At the start of the search almost any move is accepted, regardless of whether it is good or bad,

which allows the exploration of the solution space. Gradually, the probability of accepting

non-improving moves (or neighboring solutions) decreases until in the end only improving

moves are accepted. This ability to initially accept non-improving moves avoids the solution

becoming trapped at a poor local optimum. The flowchart of the SA-based solution algorithm

for the pricing design model (25)-(26) is shown in Figure 1, and the step-by-step procedure

of the solution algorithm is given as follows.

Step 0. Initialization.

a) Choose the three classic parameters for the SA procedure: initial temperature 0T ,

cooling factor ( 1)σ < , and length of temperature step in the cooling schedule stepN .

b) Choose the two stopping criteria: the final temperature stopT and the maximum

number of iterations without improvement stopN .

c) Start with a randomly generated initial solution vector (0)h and solve the lower-level

time-dependent network equilibrium problem (20)-(23) with (0)h . Compute the

objective function (0)
0 ( )Ζ h . Let (0)( )V h be the neighborhood of feasible solutions in

the vicinity of (0)h . Set the counter 0countN n m= = = .

Step 1.Generation of neighboring solutions. Set a random perturbation and generate a new

solution vector ĥ in the neighborhood ( )( )mV h of the current solution vector ( )mh ,

solve the lower-level time-dependent network equilibrium problem (20)-(23) with ĥ ,

compute the objective function 0
ˆ( )Ζ h , and then determine ( )

0 0 0
ˆ( ) ( )mΔΖ = Ζ − Ζh h .

Step 2. Metropolis’ rule. If 0 0ZΔ ≤ , then accept the new solution, let ( 1) ˆm+ =h h , m = m+1,

and go to Step 3. Otherwise, accept the new solution with a certain probability

( )0exp / np Z T= −Δ : if p > random [0,1), then ( 1) ˆm+ =h h , m = m+1 and go to Step 3.

Otherwise, let ( 1) ( )m m+ =h h , 1count countN N= + and go to Step 3.

Step 3. Cooling schedules. If stepm N< , then go to Step 1. Otherwise, set n = n+1, 1n nT T −= σ ,

m = 0, and go to Step 4.

Step 4. Termination check. If count stopN N> or n stopT T< , then terminate. Otherwise, go to

Step 1.
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Remark 3. In Step 1, the new solution vector ĥ can be generated in the neighborhood
( )( )mV h of the current solution vector ( )mh by various methods, such as the method of Hooke

and Jeeves that was used in Yang and Zhang (2002) or the method of random and

independent choice from the empirically determined interval [ 3, 3]− as in Friesz et al.

(1992) and Huang and Bell (1998). If any entry in ĥ exceeds its upper or lower bound, then it

is set at the respective bound.

Figure 1 Flowchart of the proposed SA-based algorithm
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Solution to Scenario A

It is known that the objectives of the different players in a multiobjective scenario are usually

in conflict with each other, and thus a solution may perform well in terms of one criterion but

give an adverse result in terms of another criterion. This implies that there is no well-defined

optimal solution and the decision makers have to choose a compromise solution from the set

of available Pareto efficient (or non-dominated) solutions.

There are various approaches to procure the set of Pareto efficient solutions for multiobjective

programming problems, such as the hierarchical approach, utility function approach,

simultaneous approach, goal programming approach, and interactive approach (Miettinen,

1999), but these traditional solution methods are difficult to apply for the non-convex

multiobjective programming problem as proposed in this paper. However, the SA-based

solution algorithms are appropriate for solving such multiobjective programming problems,

and Friesz et al. (1993) and Meng and Yang (2002) employed this technique to solve

multiobjective static equilibrium network design problems. The MOSA approach that was

presented by Ulungu et al. (1999) has been successfully employed to solve multiobjective

combinatorial optimization problems, such as the Knapsack problem, assignment problem,

and production scheduling problem (Teghem et al., 2000; Suman, 2004; Mansouri, 2006).

Mansouri (2006) recently showed that the MOSA algorithm performs very well with

multiobjective problems, and outperforms the multiobjective genetic algorithm (MOGA) in

terms of solution quality. In this paper, the MOSA approach of Ulungu et al. (1999) is

adopted to find the set of potential Pareto efficient solutions for the proposed multiobjective

bilevel programming problem (32) with equilibrium constraints (20)-(23). Note that the

nonlinear implicit constraint (28) can be incorporated into objective function (32) by using the

penalty function approach, which means that we need only to solve the resultant

multiobjective programming problem with bound constraints using the MOSA algorithm. The

step-by-step procedure of the penalty function method in conjunction with the MOSA

algorithm is given as follows.

Step 0. Initialization. Set an initial penalty multiplier 0ρ and a scale parameter θ . Set k = 0.

Step 1. The MOSA algorithm for solving the multiobjective programming problem with bound

constraints.

Step 1.0. Set l = 1.
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Step 1.1. Generation of the weight set for the scalarizing function. Generate a wide diversified

set L of uniform random weight vectors ( )( )( ) : 1, 2 ,ll
kw k l L= = ∀ ∈w with ( ) 0l

kw ≥

and
2 ( )

1
1,l

kk
w l L

=
= ∀ ∈∑ for the scalarizing function

( )( ) ( )( )
1 21 2( , ) ( , ) ( , ) ( , )l ll

kS Z w w= Ζ + ρ ϕ + Ζw λ h λ h λ h , (33)

where

min

min

( )
( , ) max max ,0

( )
rs

rs rs

⎧ ⎫⎧ ⎫ϕ⎪ ⎪ ⎪ ⎪
ϕ = −β⎨ ⎨ ⎬ ⎬

ϕ⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

xλ h
h

. (34)

Step 1.2. Use the proposed SA-based algorithm for Scenario B to solve the transformed

bilevel programming problem with bound constraints (29) and (31), in which the

objective function is the scalarizing function (33) and the decision variable is

( , )=x λ h . Denote ( )( )lPE w as the set of Pareto efficient solutions up to the current

iteration.

Step 1.3. Termination check for the weight set. If Steps 1.1-1.2 has been carried out for each

weight vector ( )lw of set L, then go to Step 1.4. Otherwise, set l = l+1 and repeat

Steps 1.1-1.2 for the next weight.

Step 1.4. Filtering operations. As the solutions that are generated with a certain weight may

be dominated by solutions that were generated with other weights, it is necessary to

filter set | | ( )
1 ( )L l

l PE=∪ w to obtain a good approximation of the set of Pareto efficient

solutions. This operation can be performed by making pairwise comparisons of all of

the solutions in the sets ( )( )lPE w and removing the dominated solutions.

Step 2. Termination check. If ( , )kρ ϕ < ελ h , then stop. Otherwise, set 1k k+ρ = θρ , k = k+1,

and go to Step 1.

Remark 4. In Step 1.1, the scalarizing function is used to project the multidimensional

objective space into a mono-dimensional space. Different scalarizing functions lead to

different projection paradigms. However, the impact of using different scalarizing functions is

small because the method is stochastic (Ulungu et al., 1999; Teghem et al., 2000). In this

paper, the well-known and easiest scalarizing function, the weighted-sum type, is adopted, but

other scalarizing functions could also be chosen, such as the weighted-Chebyshev type. The

set of weights is uniformly generated as { }( ) 0,1 , 2 , , ( 1) ,1l
kw r r r r= −� , where r is a

positive integer.
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NUMERICAL STUDY

In this section, a numerical example is given to illustrate the application of the proposed

model and solution algorithm. We employ the proposed algorithm to determine the set of

potential Pareto efficient solutions for road tolls and parking charges for the proposed

multiobjective bilevel programming problem, which we hope will provide some interesting

insights for decision makers. We also compare the efficiency of different pricing schemes and

investigate the effect of the equity parameter on OD disutility and demand level.

Experimental settings

The test network, which is shown in Figure 2, consists of two OD pairs (1-3 and 1-4), six

routes, four nodes, six links, and three parking locations (A, B, and C). The six travel routes

are shown in Table 1. The central node 3 represents the city center area. As the city center is

very congested, a toll cordon is set around this area, which is depicted by the bold dashed line

in Figure 2. Road users traversing the city center area are subject to a cordon toll. Road users

traveling between OD pair (1, 3) must select car park A or B to park their cars on reaching the

city center area via Routes 1 or 2. Road users traveling between OD pair (1, 4) can reach their

final destination by Routes 4 and 5 that traverse the city center area, which involves paying

the cordon toll, or by bypassing the area on Routes 3 or 6, which avoids paying the cordon toll.

Figure 2 Example network
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Table 1 Routes in the example network

OD pair Route No. Node sequence
1 1-3(1,3)
2 1-2-3
3 1-4
4 1-3-4
5 1-2-3-4

(1,4)

6 1-2-4

For locations A, B, and C, the free-flow parking access times and parking capacities are all

0.1 hour and 1,100 vehicles, respectively. It is assumed that the walking distances from

locations A, B, and C to the final destination are 0.5 km, 0.75 km, and 0.75 km, respectively.

The average parking duration of the road users is four hours. The study period runs from

06:00 to 14:00 and is divided into 16 intervals of 30 minutes each. For each time interval, the

following BPR-type link travel time function is adopted.

( )( )40( ) 1.0 0.15 ( ) ,a a a ac t c u t C a= + ∀ , (35)

where 0
ac and aC are the free-flow travel time and capacity of link a, respectively. The values

of these parameters are given in Figure 2. The average walking speed of users is assumed to

be given and fixed at ω = 5.0 km/h. The parameters in the travel disutility function are

1 1.0α = , 2 1.4α = , 3 0.15α = , 4 1.8α = , 5 0.15α = , 6 0.15α = , * 9.0t = , 0.25Δ = , 6.9τ = ,

and 15.21γ = .

The negative exponential demand functions are adopted, and are specified as
minexp( ( )), ,rs rs rs rsQ q r s= −ρ ϕ ∀x , (36)

where rsρ is a positive parameter of the elastic demand function and rsq is the potential

demand between OD pair (r, s). In this numerical example, these parameters are set as

13 2500q = , 14 1500q = , 13 0.1ρ = , and 14 0.08ρ = .

After many trial and error experiments to test the influence of the SA parameters, the

following values are chosen.

0 100T = , 0.9σ = , 500stepN = , 1.0stopT = , and 2500stopN = .

The proposed solution algorithm is coded in Language C and run on a DELL

INSPIRON/510m computer.
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Analysis of the numerical results

We first investigate the convergence of the proposed solution algorithms. Figure 3 plots the

value of the weighted objective function with the weight 1 2( , ) (0.5,0.5)w w = and the equity

parameters 1.10β = against the CPU time that is required by the proposed MOSA algorithm.
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Figure 3 Convergence of the proposed MOSA algorithm

Figure 3 shows that the value of the weighted objective function increases sharply at the

beginning of the iterations and then tends to stabilize after about 1,300 seconds. A small

oscillation can be observed along the solution path. This is because the SA algorithm allows

the acceptance of non-improving neighboring solutions with a certain probability during the

course of the solution.
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Figure 4 Typical convergence of the algorithm for the lower-level problem
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Table 2 Departure flow pattern for the journey to parking locations A and B along different

routes and the corresponding disutility (Disu.) for OD pair (1, 3) (hours)

A via Route 1 A via Route 2 B via Route 1 B via Route 2Departure time

Flow Disu. Flow Disu. Flow Disu. Flow Disu.
06:00-06:30 0.0 2.87 0.0 2.89 0.0 2.93 0.0 2.95
06:30-07:00 0.0 2.64 0.0 2.67 0.0 2.70 0.0 2.72
07:00-07:30 305.6 2.50 0.0 2.52 0.0 2.55 0.0 2.57
07:30-08:00 486.8 2.50 0.0 2.51 0.0 2.51 0.0 2.53
08:00-08:30 0.0 2.60 0.0 2.61 431.2 2.50 0.0 2.51
08:30-09:00 0.0 2.64 0.0 2.73 291.3 2.50 0.0 2.59
09:00-09:30 0.0 2.94 0.0 3.05 0.0 2.93 0.0 3.04
09:30-10:00 0.0 3.18 0.0 3.29 0.0 3.22 0.0 3.33
10:00-10:30 0.0 3.70 0.0 3.81 0.0 3.76 0.0 3.87
10:30-11:00 0.0 4.29 0.0 4.40 0.0 4.34 0.0 4.44

Figure 4 illustrates the typical convergence pattern of the proposed solution algorithm for the

lower-level time-dependent network equilibrium problem. The G-value (see Equation (24))

dramatically oscillates at the beginning of iterations, and then gradually decreases as the

number of iterations increases. This is because the MSA method with a pre-specified step size

is used in the proposed algorithm for solving the lower-level problem. After 2,500 iterations,

the G-value becomes less than 0.0001. Tables 2 and 3 list the resultant departure flow patterns

for the journey to various parking locations along different routes and the corresponding

disutilities for OD pairs (1, 3) and (1, 4), respectively. The routes and parking locations that

are used in all of the intervals have the minimum disutility, whereas the unused routes and

parking locations have an equal or greater disutility. Hence, the deterministic time-dependent

network equilibrium condition that is given in Definition 1 has been fulfilled.
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Table 3 Departure flow pattern for the journey to parking location C along different routes

and the corresponding disutility (Disu.) for OD pair (1, 4) (hours)

Route 3 Route 4 Route 5 Route 6Departure time

Flow Disu. Flow Disu. Flow Disu. Flow Disu.
06:00-06:30 0.0 2.64 0.0 2.90 0.0 2.93 0.0 2.66
06:30-07:00 0.0 2.43 0.0 2.74 0.0 2.76 0.0 2.45
07:00-07:30 296.7 2.27 0.0 2.61 0.0 2.63 63.2 2.27
07:30-08:00 330.8 2.27 0.0 2.67 0.0 2.67 352.4 2.27
08:00-08:30 0.0 3.16 0.0 3.46 0.0 3.48 0.0 3.27
08:30-09:00 0.0 3.50 0.0 3.65 0.0 3.74 0.0 3.61
09:00-09:30 0.0 3.85 0.0 3.96 0.0 4.07 0.0 3.96
09:30-10:00 0.0 4.33 0.0 4.43 0.0 4.56 0.0 4.44
10:00-10:30 0.0 4.92 0.0 5.02 0.0 5.12 0.0 5.03
10:30-11:00 0.0 5.51 0.0 5.60 0.0 5.71 0.0 5.62
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Figure 5 Frontier of the Pareto efficient solutions in the objective space ( 1Z , 2Z ) for various

values of the equity parameter β

After some trial-and-error tests, the number of weight vectors L in the MOSA algorithm is

fixed to 13 (r = 12). The resultant sets of potential Pareto efficient solutions for the four

values of the equity parameter β (β =1.05, 1.10, 1.15 and 1.20) are plotted in the objective

space, as shown in Figure 5. It can be observed from this figure that the number of solutions

within the frontier of the potential Pareto efficient solutions for all β values is generally less

than the number of weights. This is because the solutions that are generated with a certain

weight may be dominated by solutions that are generated with other weights. The dominated



78 Transportation and Traffic Theory 17
�

�

solutions are removed from the set of potential Pareto efficient solutions by the filtering

operations in the proposed solution algorithm.

It can also be seen in Figure 5 that some solutions (represented by the non-shaded points) are

supported (solutions that correspond to the optimization of the scalarizing function (33) for

some values of weight vector w ) and some solutions (represented by the darkened points) are

non-supported (Ulungu et al., 1999). The sets of potential Pareto efficient solutions for the

various degrees of equity in Figure 5 present some interesting information on the tradeoffs

between the total social welfare (objective function 1Z ) and the total parking revenue

decreases (objective function 2Z ) for road authorities and car park operators.
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Figure 6 Resultant pricing of road tolls and parking charges at various times of day

As an illustration, Figure 6 displays the time-differential pricing (represented by the solid

lines) of road tolls and parking charges that is associated with the weight 1 2( , ) (0.5,0.5)w w =

and the equity parameter 1.10β = . It can be seen that the road toll and parking charge levels

during the morning peak period (08:00 to 09:30) are high, but are close to their respective

lower bounds during the off-peak periods. It can also be seen that the parking charging level

at location A during the peak period is a few higher than that at location B. This is because the

walking distance from location A to final destination is 0.25 km nearer than that from location

B to the final destination. To compare the efficiency of the different pricing schemes in terms

of the total social welfare and total parking revenue, we also compute the optimal uniform

pricing for the road tolls and parking charges, represented by the dotted lines in Figure 6.

Peak period
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Table 4 Results generated by the different pricing schemes

Equity parameter 1.05β = 1.10β = 1.15β = Scenario B

Pricing scheme S1 S2 S1 S2 S1 S2 S3

1Z 34948.5 34902.1 34994.3 34963.9 35006.8 34979.4 34812.6Objective
function
(hour) 2Z 2127.4 2101.5 2123.6 2092.7 2117.1 2078.6 2234.5

Note: S1 and S2 represent the time-differential and uniform pricing schemes for the road tolls and parking

charges, respectively. S3 represents a no-toll pricing scheme.

Table 4 shows the values of the objective functions 1Z and 2Z for the time-differential (S1)

and uniform pricing (S2) schemes for three values of the equity parameter β and the weight

1 2( , ) (0.5,0.5)w w = , together with the objective function that is associated with the situation

in which there is no road toll pricing scheme (S3). It is noted that as compared with Schemes

S1 and S2, Scheme S3 results in the largest 2Z value and the smallest 1Z value. This is

because Scheme S3 is to maximize the objective function 2Z at the cost of the reduction of

the objective function 1Z . It is also noted that the values of the objective functions 1Z and 2Z

that are associated with Scheme S1 for each equity parameter are larger than those that are

associated with Scheme S2. In other words, the solution that is generated by Scheme S2 is

dominated by that which is generated by Scheme S1. This can be explained by examining the

route inflow distributions of the two pricing schemes and of Scheme S3, as shown in Tables 5

and 6.

Table 5 shows the route inflow pattern for OD pair (1, 3) the destination of which is located

within the road pricing area. It can be seen that compared to Scheme S3, road users traveling

between OD pair (1, 3) under Scheme S1 depart from the origin earlier to avoid a high cordon

toll when they cross the cordon. This adjustment of departure time will greatly reduce the

road congestion level during the peak period. However, road users traveling between OD pair

(1, 3) in Scheme S2 choose not to change the departure pattern that they followed before the

implementation of road pricing. This implies that Scheme S1 can drive travel demand into a

more reasonable and efficient distribution over the network because it provides a more

flexible temporal and spatial alternative to road users. Therefore, Scheme S1 is generally

superior to Scheme S2.
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Table 5 Route inflow pattern for OD pair (1, 3)

Route 1 Route 2Departure time
S1 S2 S3 S1 S2 S3

06:00-06:30 0.0 0.0 0.0 0.0 0.0 0.0
06:30-07:00 0.0 0.0 0.0 0.0 0.0 0.0
07:00-07:30 305.6 0.0 0.0 0.0 0.0 0.0
07:30-08:00 486.8 0.0 37. 2 0.0 0.0 146.6
08:00-08:30 431.2 581.3 586.3 0.0 471.4 477.9
08:30-09:00 292.0 451.7 376.4 0.0 36.7 0.0
09:00-09:30 0.0 0.0 0.0 0.0 0.0 0.0
09:30-10:00 0.0 0.0 0.0 0.0 0.0 0.0
10:00-10:30 0.0 0.0 0.0 0.0 0.0 0.0
10:30-11:00 0.0 0.0 0.0 0.0 0.0 0.0

Table 6 Route inflow pattern for OD pair (1, 4)

Route 3 Route 4 Route 5 Route 6Departure
time S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3
06:00-06:30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
06:30-07:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
07:00-07:30 296.8 156.3 0.0 0.0 0.0 328.2 0.0 0.0 0.0 63. 2 0.0 0.0
07:30-08:00 330.7 390.6 239.7 0.0 0.0 425.3 0.0 0.0 59.7 352.4 488.4 0.0
08:00-08:30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
08:30-09:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
09:00-09:30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
09:30-10:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10:00-10:30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10:30-11:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 6 shows the route inflow pattern for OD pair (1, 4), which is located outside the road

pricing area. We can see from Table 6 that compared to Scheme S3, Schemes S1 and S2 shift

the route inflows from Routes 4 and 5, which traverse the toll cordon, to Routes 3 and 6,

which bypass the cordon toll area. This indicates that road pricing would not only make a

direct and significant impact on the choice of road users traveling to destinations that are

located within the road pricing area, but would also have an indirect impact on travel within

OD pairs that fall outside the road pricing area.

Finally, we demonstrate how inequity occurs in the example network, and how it influences

the OD demand level or network congestion level. Figure 7 shows the change in OD disutility

and the corresponding realized OD demand against variation in the equity parameter β . It can
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be seen that when 1.20β < , the increase of β can lead to a dramatic increase in the disutility

for OD pair (1, 3), and thus a dramatic decrease in the corresponding OD demand according

to Equation (36). However, as β increases, the disutility for OD pair (1, 4) increases slightly,

and therefore the corresponding demand for this OD pair decreases very little.
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Figure 7 Change in OD disutility (solid lines) and realized OD demand (dotted lines) for OD

pairs (1, 3) and (1, 4) versus the equity parameter

The substantial difference between the changes in the OD disutility for OD pairs (1, 3) and (1,

4) causes the spatial equity issue, as stated in previous sections. This is because the equity

constraint (28) is binding for OD pair (1, 3) when 1.20β < , which is the critical value of the

equity parameter that corresponds to the optimal pricing scheme without the equity constraint.

As β increases, the equity constraint is gradually relaxed and higher tolls are allowed. This

causes a dramatic increase in the disutility for OD pair (1, 3) because the destination falls

within the toll cordon, whereas the disutility for OD pair (1, 4) increases slightly because road

users traveling within this OD pair are able to complete their journey by choosing bypass

routes that avoid the cordon toll area. It can also be seen in Figure 7 that when 1.20β ≥ , the

relaxation of the equity constraint does not lead to a further increase in the OD disutility for

OD pair (1, 3) or decrease in the realized demand for this OD pair. This is because all of the

equity constraints become inactive when β exceeds the critical value of 1.20.

CONCLUSIONS

In this paper, we investigated the equilibrium problem of road pricing and parking charging in

the form of competition between the road authority and the car park operator, while taking

into consideration the responses of road users and the equity issue in a time-dependent
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transportation network. We proposed a multiobjective bilevel programming model in which

the lower level is a time-dependent network equilibrium problem with elastic demand that

simultaneously considers road users’ choices of departure time, route, and parking location,

and the upper level is a multiobjective programming that maximizes the social welfare of the

system with an equity constraint and the total revenue of the car park operator. To solve the

bilevel problem, we developed a penalty function method that was embedded by a

multiobjective simulated annealing algorithm. The proposed modeling approach provides a

useful tool for finding an efficient pricing scheme and for evaluating the effect of various

pricing schemes on travel behavior at a strategic level.

It was shown in the numerical example that the proposed solution algorithm could effectively

solve the time-dependent network equilibrium problem, and construct the Pareto efficient

solutions for the multiobjective programming problem with various equity levels. The time-

differential pricing scheme was found to be generally superior to the uniform pricing scheme

as the former could provide a more flexible temporal and spatial alternative to travelers. We

also found that road pricing not only has a direct and significant impact on the choice

behavior of road users traveling to destinations that are located within the road pricing area,

but also has an indirect effect on road users traveling to destinations that lie outside of the

road pricing area. Although the numerical results could give interesting insights on the topic

concerned, we had to emphasize that they were drawn from a small hypothetical network. It

would be interesting to apply the methodology to a real case study to ascertain the reliability

of these findings. This is a promising future avenue of research that would have policy

implications for the planning and implementation of efficient yet politically acceptable road

pricing schemes.

Some other relevant issues that we are investigating include the consideration of multiple

heterogeneous user classes and various types of parking facilities (Yang and Zhang, 2002;

Lam et al., 2006), the explicit treatment of the supply and demand uncertainty (Li and Huang,

2005), the investigation of spillback queuing on roads and parking bottlenecks (Daganzo,

1998), and the development of efficient solution algorithms for large-scale networks.
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DYNAMIC RAMP CONTROL STRATEGIES
FOR RISK AVERSE SYSTEM OPTIMAL
ASSIGNMENT

Takashi Akamatsu, Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi,
Japan
Takeshi Nagae, Graduate School of Science and Technology, Kobe University, Kobe, Hyogo,
Japan

INTRODUCTION

This paper explores dynamic ramp control strategies for a simple transportation network with
stochastic travel time. The objective of the ramp metering considered here is not only to mitigate
congestion in a freeway but also to achieve Dynamic System Optimal (DSO) assignment in a
network with two parallel links; one of the links is a freeway with a single bottleneck, and the
other is a local bypass link that can be regarded as an aggregation of a local street network.
Travel time on the bypass link is assumed to follow a stochastic process due to many factors
that cannot be controlled or predicted. A road network manager is expected to control the
inflow rate to the freeway at each time point so as to attain the DSO assignment for a certain
time horizon.

We approach this problem by formulating it as a stochastic control problem (SCP), and then
provide feedback (‘state contingent’) control rules that exploit the real-time observation of the
realization of the stochastic state variable (i.e. random travel times). We then find that the
optimal control (ramp metering) strategies at each time period can be classified into seven patterns,
depending on the realization of the queue length in the freeway and the observed travel time of the
bypass link. In order to obtain more detailed properties of the optimal control strategies, we
need to solve the problem numerically. For this purpose, we reveal that the optimality
conditions of the problem (i.e. Hamilton-Jacobi-Bellman (HJB) equations) can be equivalently
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stated as a dynamical system of Generalized Complementarity Problems (GCP). Based on this
reformulation, we provide an efficient and robust algorithm for obtaining quantitative results for
the control problem. Furthermore, we present results from systematic numerical experiments,
which reveal how the uncertainty in the travel time affects the optimal control policies.

Although there have been some studies on the DSO assignment in recent years, conventional
approaches cannot be used to tackle the DSO assignment problem in this paper. Indeed, as we
show below, little is known about the theoretical properties of the DSO assignment problem in
deterministic models as well as stochastic environments in this paper. Friesz et al.(1989) study
DSO assignment on a network with general topology. They present a deterministic optimal
control formulation of the DSO assignment model, in which an ‘exit function’ is assumed for
describing an outflow rate of a link. However, this modeling approach has the serious
drawback of violating First-In-First-Out (FIFO) conditions according to which the traffic flow
should be satisfied in each link. Ziliaskopoulous (2000) provides a linear programming (LP)
formulation of the DSO assignment on a network with a one-to-many OD pattern, in which the
cell transmission model (CTM) of Daganzo (1994) is employed to describe traffic flow
propagation. However, in order for the LP formulation to be consistent with the CTM, we have
to assume that the position of any vehicle can always be controlled (eg. stopped; the
assumption of ‘holding’). This is a problematic assumption to implement, and hence it is
questionable to think that this model represents a natural DSO assignment. We should also note
that analysis for general networks might face difficulties due to the non-convexity of the DSO
assignment problem even if we could provide a sound model of the DSO assignment
preserving FIFO conditions (for this point, see Lovel and Daganzo (2000) and Erera et
al.(2002)). In view of these studies, it seems that analyzing the model for general networks in
one leap is not a very fruitful way to understand the theoretical properties of the DSO
assignment. More recently, Kuwahara et al.(2000) and Munoz and Laval (2006) study the
properties of the optimal control (ramp metering) in simple parallel-link networks. They show
a graphical solution method based on the concept of dynamic marginal cost, which provides
useful insights into the DSO assignment. However, this method cannot be extended
systematically to the DSO assignment problem with stochastic travel time. Thus, our novel
approach based on stochastic control theory as well as the theoretical findings contribute to the
studies on dynamic traffic assignment and control.

This paper is organized as follows: After presenting the stochastic control formulation of our
DSO assignment model in the next section, we derive the HJB equations of the SCP in the third
section. We then show some qualitative properties of the optimal control policies. In the fourth
section, we reformulate the HJB equations for the DSO assignment as a system of GCPs, which
enables us to develop an efficient solution method for the DSO assignment. In the fifth section, we
provide an illustrative example of the proposed control method. The final section summarizes the
paper.
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DYNAMIC SYSTEM OPTIMAL RAMP METERING UNDER
UNCERTAINTY

Networks and Link Models

We consider a dynamic system optimal (DSO) assignment problem defined on a simple
network with two parallel links connecting a single origin-destination (OD) pair (see Figure 1).
One of the links, link 1, is a freeway with a single bottleneck of capacity μ , and the other, link

2, is a local bypass link with a very large capacity; link 2 may be regarded as a virtual link that
is an aggregation of a local street network. We suppose that the number of vehicles arriving at
the origin of the network until time t, Q(t), is known for all t in a fixed time period [0,T].

In the DSO assignment, a road network manager is assumed to control the inflow rate to the
freeway, u(t), at each time point t; this implicitly determines the inflow rate to link 2 as q(t) –
u(t), where q(t) is the OD flow rate at time t defined as q(t) = dQ(t)/dt. Thus, the DSO
assignment considered in this paper can be viewed as a ramp-metering problem with a single
freeway on-ramp.

We suppose that the travel time of link 1 at time t, c(t), is determined simply by the queue
length, x(t), at the bottleneck:

μ/)()( txtc = , (1)

and the queue evolution is governed by the following state equation (i.e. the point-queue model
is assumed):

[ ]⎩
⎨
⎧

=−

>−
=

0)(if0,)(max

0)(if)(
)(

txtu

txtu
tx

μ

μ
� , 0)0( =x , (2)

where u(t) is the controlled inflow rate into link 1. The travel time of link 2, m(t), is supposed
to be just a function of time, which implies that m(t) can not be controlled by a road manager’s
metering strategies. We also assume that m(t) evolves unpredictably over time due to many
factors (such as fluctuation of OD flows into the local street network or traffic accidents) that
cannot be controlled or predicted. We model the stochastic dynamics of m(t) as

dWdtttmdm )()(/ σα += , m(0) = m0, (3)

where W(t) is a standard Wiener process; )(tα and σ are an exogenously given (time-

dependent) function and a volatility parameter, respectively. To illustrate the intuitive meanings
of (3), in Figure 2, we provide an example of a sample path of the stochastic process m(t).
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μ
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x(t)

q(t)

m(t)

Freeway

Local
Bypass

u(t)

q(t)-u(t)

Figure 1: A parallel link network

Figure 2: A sample path of the stochastic process m(t)

Stochastic Feedback Control Formulation

The objective of the road manager is to minimize ‘social cost’ due to the total travel time spent
in the network for a certain time horizon [0,T]. Before providing a formal definition of the
social cost, we first introduce the total travel time spent in the network by vehicles arriving at
the origin at time t:

))()(()()()()( tutqtmtutctC −⋅+⋅≡ . (4)

Then the total travel time for the whole control period [0,T] is given by

∫≡
T

dttCC
0

)( .

Note here that both the total travel time C as well as C(t) are random variables because the
travel time of link 2, m(t), follows a stochastic process given in (3). For this stochastic setting,
the simplest definition of the social cost in this network is the expected total travel time:

⎥⎦
⎤

⎢⎣
⎡ ==∫ 0000 )0(,)0()( xxmmdttCE

T
,

where Et[] denotes the expectation operator conditional on the information available at time t.
However, employing this definition of the social cost as the road manager’s objective could
cause a serious problem: it allows the use of ‘risky’ control strategies in which the total travel
time C in the worst case is very large (i.e. variance of C is large) while the expectation of C is
small. Therefore, we need to consider the trade-off between ‘risk’ and ‘return’ in controlling the
stochastic social cost C(t).

This trade-off can be modelled in an expected utility maximization framework; we evaluate the
total travel time in terms of utility U(–C(t)), rather than C(t) itself, and then the expected utility
is maximized. Thus, the road manager’s problem is formulated as the following stochastic
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control problem:

[SCP]
{ }

( ) ⎥
⎦

⎤
⎢
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⎡
==−−∫≤≤

00

2

00
)()(0

)0(,)0(
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)(
)(max xxmm

Tx
dCUE

T

tqtu μ
ττ (5)

subject to eqs.(2) and (3); and )(Tx is free.

A few remarks are in order here: first, the problem formulated above, [SCP], is not an
open-loop control problem, in which {u(t)} is determined in advance before controlling and
observing the realization of state variables {x(t)} and {m(t)}; rather the problem [SCP] gives a
feedback (‘state contingent’) control, in which the optimal inflow rate u(t) is a function of state
variables, x(t) and m(t), observed at time t. This implies that the optimal control for [SCP]
exploits the real-time observation of the realization of the stochastic state variable (i.e. random
travel time m(t)). Second, the optimal control depends on a degree of risk aversion towards
potentially ‘risky’ control strategies that exhibit a large variance of C; a risk averse manager
should prefer a ramp control strategy that exhibits less risky control to a more risky one with
the expectation of C being equal. The degree of risk aversion is reflected by a concave utility
function U(–C) in our model; the higher the curvature of U(–C), the higher the risk aversion of
the road manager.

OPTIMALITY CONDITIONS

Hamilton-Jacobi-Bellman Equations

We shall derive the optimality conditions for the SCP formulated in the previous section. We
first define the value function V(t, x, m) by

{ }
( ) ⎥⎦

⎤
⎢⎣
⎡ ==−≡ ∫

T

tt
tu

mtmxtxdCUEmxtV
)(

)(,)()(max),,( ττ . (6)

By applying the dynamic programming (DP) principle, we have
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where ∫
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≡Δ
t

t
ddVmxtV )(),,( ττ . Taking the limit of 0+→Δ and using stochastic calculus

(Ito’s lemma):
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we obtain the Hamilton-Jacobi-Bellman (HJB) equation:
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for all ),0[ Tt ∈ . (8)

In order to avoid notational complexity, we denote this in a more compact form as

VLtuZ
tqtu

0
)()(0

))((.max0 +=
≤≤

for all ),0[ Tt ∈ , (9)

with an infinitesimal generator L0 defined as
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and the term Z(u(t)) involving the control variable u(t):

x

V
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where the subscript of V denotes the partial derivative (i.e. xVVx ∂∂≡ / ).

Optimal Control Strategies

Optimal control can be derived by solving the maximization problem (with respect to u(t)) in
the HJB equation (9). Since the objective function Z takes two distinct forms depending on
whether 0)( =tx or 0)( >tx , we will divide the derivation into two cases.

(a) The case of x(t) = 0

When there is no queue in the freeway, the function Z(u) should be further classified into two
cases due to the indifferentiability of the max. function in the state equation (2). For the first
case in which 0]0,)(.[max =− μtu (i.e. μ<)(tu ), the derivative of Z is always positive:

0)())(())(,(0 >⋅−′≡=
∂

∂
tmuCUtmuf

u

Z
, (12)

It follows from this that the optimal control in this case is to assign all the OD flow into the
freeway:

control A: μ<== )(0)()()( tqandtxiftqtu . (13)

Substituting this into (9), we obtain the HJB equation for this case as VLC 000 += where



Dynamic Ramp Control Strategies 93

)0(0 UC ≡ .

For the second case in which μμ −=− )(]0,)(.[max tutu (i.e. μ≥)(tu ), the optimality

condition for a regular interior maximum to (9) is given by

),0,(),(0 0 mtVmuf
u

Z
x+==

∂

∂
. (14)

Defining the inverse function of )(' ⋅U by )(⋅I , we can represent (14) as

)())(/),0,(( uCtmmtVI x −= .

Since )())(()( tmutquC ⋅−= for x(t) = 0, we obtain the interior solution u(t) = v0 as

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

)(

))(,0,(

)(

1
)(0 tm

tmtV
I

tm
tqv x . (15)

It can be proved that the solution v0 given by (15) is a monotone function of m(t), and there
exist m* and m** such that
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holds. Since the inflow rate u(t) is restricted by )()( tqtu ≤≤μ , (16) implies that the optimal
control strategies for the case of 0)( =tx and μ≥)(tq are given by
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For these controls, the HJB equations that the value function V should satisfy can be obtained
by substituting (17) into (9):

001 =+ VLC for control B,

00 =VN for control C, (18)

010 =+ VLC for control D,

where ( )))(()(1 tqtmUC −⋅≡ μ , ( ) 01 )( L
x

tqL +
∂

∂
−≡ μ , VL

x

V

tm
vVN 000 )

)(

1
( +

∂

∂
−−≡ μ .

Note that quantitative determination of m* and m** requires the identification of the value
function by solving the HJB equations.

(b) The case of x(t) > 0

When there is a queue in the freeway, the optimality condition for an interior maximum to (9)
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is given by
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where the function f1(u, x, m) is defined by
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obtain the interior solution as
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For any fixed value of x(t) > 0, the solution v1 given by (20) is a monotone function of m(t), and

there exist m and m such that
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holds (for the proof, see Akamatsu and Yamazaki (2006)). This, together with the constraint
)()(0 tqtu ≤≤ , implies that the optimal control for the case of x(t) > 0 can be characterized by

the following three strategies:
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The corresponding HJB equations can be obtained by substituting these controls into (9):

022 =+ VLC for control E,

01 =VN for control F, (23)

013 =+ VLC for control G,

where ( ))()(2 tqtmUC ⋅−= , ( ))()/)((3 tqtxUC ⋅−= μ ,
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Note that these boundaries, m and m , are functions of (t, x(t)); this implies that the optimal
control at time t is selected from either one of the controls E, F, or G, depending on the
realization of both state variables x(t) and m(t).

Table 1 and Figure 3 summarize these results. Table 1 shows all the optimal control patterns
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(from A to F) and the corresponding HJB equations for possible queuing states of the freeway.
Figure 3 illustrates a typical pattern of the optimal control strategies at time t (when the OD
flow rate q(t) is greater than the bottleneck capacity μ ). This figure shows that the optimal

control strategies at each time period can be classified into 6 patterns (from control B to F),
depending on the values of two state variables realized at time t, m(t) and x(t). Suppose, for
example, that some moderate length of queue xe is observed at time t and the realized travel
time of link 2 at that time is me (which is below the lower boundary curve). We then see from
the figure that the optimal inflow rate into the freeway should be zero (i.e. all the OD flow
should be assigned to the local bypass link). The two boundary curves dividing the m(t) – x(t)
plane into 6 regions in the figure are determined as a function of time and some parameters in
the model (eg. σαμ ),(,),( ttq and the risk aversion parameter of U(C)). The detailed

properties of these curves are revealed by numerical experiments in the later section.

Table 1. Optimality Conditions (HJB equations) and Optimal Inflow Rate into the Freeway

Queuing State of Link 1 Optimality Conditions u(t) Control ID

0)( =tx�
))(( μ<tq L0 V(t,x(t),m(t)) + C0 = 0 q(t) A

L0 V(t,x(t),m(t)) + C1 = 0 μ B

N0 V(t,x(t),m(t)) = 0 v0 C
0)( =tx μ−= )()( tutx�

))(( μ≥tq

L1 V(t,x(t),m(t)) + C0 = 0 q(t) D

L2 V(t,x(t),m(t)) + C2 = 0 0 E

N1 V(t,x(t),m(t)) = 0 v1 F0)( >tx μ−= )()( tutx�

L1 V(t,x(t),m(t)) + C3 = 0 q(t) G
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Figure 3: The optimal control strategies at time t in the state space (m(t), x(t))

 

Comparisons with the Risk-neutral Strategies

It is worthwhile to discuss the optimal controls for the ‘risk neutral’ case in which the utility
function is linear (i.e. the objective function of [SCP] reduces to only the expected total travel
time). For the linear utility function, the objective function Z(u(t)) defined in (11) reduces to
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In a similar vein to the discussion of the previous subsection, the optimal control for this case
may be divided according to whether the freeway queue exists or not (i.e. 0=x or 0≥x ).

When x(t) = 0, the derivative of Z(u) is given by
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This implies that the function Z(u) is piecewise linear with respect to u, and the maximum is
attained at either )()( tqtu = or μ=)(tu , depending on the sign of uZ / ∂∂ . Thus, the

optimal metering strategy should be
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x

x
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Comparing this with the optimal control given in (17), we see that the control C vanishes in the
risk-neutral case, and the control rule results in ‘bang-bang control’.

When 0)( >tx , the derivative of Z(u) is given by
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This implies that the optimal control for this case is given by
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Similar to the case of x(t) = 0, this shows that the intermediate control F in (22) disappears.
These results are summarized by Figures 4 and 5. The former (Figure 4) shows the
relationship between u and m when x = 0, in which (a) gives the optimal control for a general
risk-averse utility function and (b) the control for the risk-neutral case. Similarly, the latter
(Figure 5) depicts the optimal control rule when 0≥x . We can conclude from these figures
that the introduction of risk aversion has the effect of ‘smoothing’ the optimal control.

Figure 4: The optimal control strategies for the case of x(t) = 0.

Figure 5: The optimal control strategies for the case of 0)( >tx .
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REFORMULATION AND NUMERICAL ALGORITHMS

In order to examine the detailed properties of the optimal control strategies (i.e. properties of v0,
v1, and the two boundary curves in the state space), we need to solve the problem numerically.
This section presents an efficient numerical algorithm for solving the SCP. For this purpose, we
reveal that the optimality conditions of our problem (i.e. HJB equations) can be reformulated
as a dynamical system of GCP. We then show that the system is decomposed with respect to
time under an appropriate discretization framework. This enables us to reduce our problem to
successively solving the sub-problems, each of which is formulated as a finite-dimensional
GCP. We also provide an algorithm for solving the sub-problem. Due to space limitation, the
technical details of the algorithm are relegated to Nagae and Akamatsu (2006a,b) and
Akamatsu and Yamazaki (2006).

Reformulation as a Dynamical System of Nonlinear Complementarity Problems

(a) Optimality Conditions for the Inner Region

At any time ),0[ Tt ∈ in which x(t) > 0 holds, the optimal control is given by either E, F, or G

(see Table 1). The HJB equations in (23) for these controls are also mutually exclusive. More
concretely, suppose one of the controls, assume control E, is optimal at time t. Then, only one
of the HJB equations in (23), C2+ L2V = 0 for control E, holds and the other HJB equations do
not hold; it can be easily verified from the definition of the HJB equation (9) that 01 ≥VN

and 013 ≥+ VLC when control E is optimal. This mutual exclusiveness of the HJB equations

can be naturally expressed by the following dynamical system of GCP:

[GCP2]
⎩
⎨
⎧

≥+≥≥+

=+⋅⋅+

0,0,0

0][][][

13122

13122

VLCVNVLC

VLCVNVLC

++ ××∈∀ RRTmxt ),0[),,( (24a)

or equivalently,

0)],,(),,,(),,,(.[min 12122 =++ mxtVLCmxtVNmxtVLC ,

++ ××∈∀ RRTmxt ),0[),,( (24b)

(b) Boundary Conditions

For [GCP2] to be a well-posed problem, the value function V(t) at any time t should satisfy
some appropriate boundary conditions; we should consider the conditions on the following
four boundaries of the state space (x(t), m(t)) (see Figure 6 for a conceptual illustration of these
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conditions).

i) Upper boundary of m(t): +∞→)(tm

When m(t) tends to infinity, the optimal control is to assign all the OD flow into link 1
(the freeway); hence, the value function should satisfy

∫=+∞→
T

t
dxqmmxtV )()(

1
)|,,( τττ

μ
, +×∈∀ RTxt ),0[),( . (25)

ii) Lower boundary of m(t): 0)( =tm

Clearly, the optimal control for m(t) = 0 is to assign all the OD flow into link 2 whose
travel time is zero; hence, the value function also should be zero:

0)0|,,( =→mmxtV , +×∈∀ RTxt ],0[),( . (26)

iii) Upper boundary of x(t): +∞→)(tx

When x(t) tends to infinity, the optimal control is to assign all the OD flow into link 2;
hence, the value function should satisfy

,)()()()|,,( ⎥⎦
⎤

⎢⎣
⎡ ==+∞→ ∫ mtmdmqExmxtV

T

tt τττ

+×∈∀ RTmt ),0[),( . (27)

From the Feynman-Kac formula, the value function satisfying (27) can be obtained as the
solution of the following partial differential equation (PDE):

0)|,,()( 03 =∞→+ xmxtVLtC , +×∈∀ RTmt ),0[),( , (28)

with a terminal condition: 0)|,,( =+∞→xmxTV +∈∀ Rm .

iv) Lower boundary of x(t): 0)( =tx

The optimality conditions for this boundary has already been shown in the previous
section (ie. (13), (17) and (18)), and they are classified into two cases according to whether or
not the OD flow rate exceeds the link capacity .μ When the OD flow rate is less than the link
capacity (i.e. μ<= )(0)( tqandtx ), the optimal control is given by control A in Table 1. The

optimal control is u(t) = q(t), and the HJB equation reduces to the following PDE:

[PDE1] 0)0|,,(00 ==+ xmxtVLC , +×∈∀ RTmt ),0[),( . (29)

When the OD flow rate is greater than the link capacity (i.e. μ≥= )(0)( tqandtx ), the optimal

control is given by any one of B, C or D in Table 1, depending on the level of m(t); the HJB
equations in (18) for these controls are also mutually exclusive. In a similar vein to [GCP2],
this mutual exclusiveness of the HJB equations can be expressed as
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[GCP1]
⎩
⎨
⎧

≥+≥≥+

=+⋅⋅+

0,0,0

0][][][

10001

10001

VLCVNVLC

VLCVNVLC
+×∈∀ RTmt ),0[),( , (30a)

or equivalently,

0)],,(),,,(),,,(.[min 10001 =++ mxtVLCmxtVNmxtVLC ,

+×∈∀ RTmt ),0[),( . (30b)

Finally, we should impose a terminal condition that must be satisfied by the value function at
the terminal time T:

0),,( =mxTV ++ ×∈∀ RRmx ),( . (31)

Thus, the SCP has been reformulated as a generalized complementarity problem [GCP], which
consists of [GCP2] with four boundary conditions (i.e. eqs.(25), (26), (27), and [PDE1]/
[GCP1]) and a terminal condition (31).

Figure 6: The optimality conditions and four boundary conditions
that should hold at time t in the state space (m(t), x(t))

Discretization

In order to develop a numerical algorithm for solving [GCP], it is convenient to represent the
problem in a discrete (time-state) framework. We consider a discrete grid in the time-state
space ],0[],0[],0[ TMX ×× with increments dx, dm, and dt. Let (xi, mj, tk) be each point of

the grid, where the indices i (= 0,1,..., I+1), j (= 0,1,..., J+1), and k (k = 0,1,…,K) characterize
the locations of the point with respect to state variables x, m, and time t, respectively. We also
denote the value of V(t, x, m) at a grid point (xi, mj, tk) by Vi,j(k). Using this grid point
representation, we can approximate the value function V(t, x, m) at time tk by a (column) vector
V(k) whose elements are [Vi, j(k) | i = 0,1,..., I+1; j = 0,1,..., J+1].

In this framework, infinitesimal operator Ln (n = 0,1,2) can be approximated as a matrix Ln by
using an appropriate finite difference scheme (eg., that of Crank–Nicholson). Similarly,
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infinitesimal operator Nn (n = 0 or 1) can be approximated by a set of nonlinear functions Nn of
V(k). Thus, the three operators that appear in the HJB equations (23) for controls E, F, and G
(i.e. VNVLC 122 ,+ , and VLC 13 + ) at time tk can be represented as
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. (32)

We are now in a position to express [GCP] obtained in the previous subsection as a finite
-dimensional GCP. To begin with, we represent the main problem [GCP2] (for time tk) by

[GCP2(k)] 0GFE =],,.[min )()()( kkk (33)

Next, the four boundary conditions from i) to iv) in 4.1 can be easily fitted into this discrete
framework as follows. The first (original) boundary condition (for +∞→m ) is governed by (25)
and the state equation (2). By using the discrete counterpart of (25):

∑
=

+ Δ==
K

kn
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Ji txkxnxnqk ))(()(
1

)(V 1,

μ
(34)

we easily obtain the values of {V i, J+1(k); i = 0,1,…,I }. The second condition (for m = 0) is
given by (26), whose discrete correspondence is only to set

{V i, 0 (k) = 0; i = 0,1,…,I }. (35)

The third condition (for +∞→x ) is given by (27), which reduces to solving the PDE in (28).
The discrete counterpart of this PDE is

0CA =+ )()( 3 kk , (36)

where A(k) is a discrete approximation of LoV, which is defined as

)()()1()1()( 00 kkkkk VLVLA −≡ ++ .

For given V(k+1), the system of linear equations (36) can be solved, which determines the
value of {VI+1, j(k); j = 0,1,…, J }. The final boundary condition (for x = 0) is governed by
[PDE1] and [GCP1]. The former reduces to the following system of linear equations:

[PDE1(k)] 0CA =+ )()( 0 kk , (37)

and the latter is represented by

[GCP1(k)] 0DCB =],,.[min )()()( kkk , (38)

where B(k), C(k) and D(k) are defined by

⎪
⎩

⎪
⎨

⎧

+−≡

−≡

+−≡

++

+

++

)()()()1()1()(

)()1()(

)()()()1()1()(

011

00

100

)()(

kkkkkk

kkk

kkkkkk

CVLVLD

VNVNC

CVLVLB

. (39)



102 Transportation and Traffic Theory 17

The solution of (37)/(38) gives the value of V(k) on this boundary,{V0, j(k); j = 1,2,…, J }. In
summary, [GCP] is thus expressed as a dynamical system of finite dimensional GCPs:

[GCP-D] 0GFE =],,.[min )()()( kkk for k = 0,1,…,K (40)

with the four boundary conditions:

i) {V i, J+1(k); i = 0,1,…,I } is given by (34),
ii) {V i, 0 (k) = 0; i = 0,1,…,I },
iii) {V I+1, j(k); j = 0,1,…, J} is given by (36),

iv)
⎩
⎨
⎧

≥=

<=

μ

μ

)(],,.[min

)(

)()()(

)(

k

k

tqif

tqif

kkk

k

0DCB

0A
,

and a terminal condition: V(K) = 0.

Algorithm

The problem [GCP-D] has a convenient property that the sub-problem [GCP(k)] is independent
from other sub-problems [GCP(l)] ( lk ≠ ) when V(k+1) is known. This implies that the series
of sub-problems {[GCP(k)] | k = 0,1,...K} can be solved in a successive manner: using the
terminal condition for V(K), we first solve the sub-problem [GCP(K–1)] and obtain the
solution V(K–1); using V(K–1) as a given constant, we solve the sub-problem [GCP(K–2)] and
obtain V(K–1); and by repeating the procedure recursively, we obtain the entire value function
{V(k) | k = 0,1,2,…,K}. Since each sub-problem [GCP(k)] consists of [GCP2(k)] and the four
boundary conditions, the procedure for obtaining V(k) is naturally divided into computation of
V(k) on the boundaries and solving [GCP2(k)]. Thus, the outline of the algorithm for solving
[GCP] can be summarized as follows:

Step 0. Set the terminal condition: 0V =:)(K ; Set time counter 1: −= Kk .

Step 1. Compute V(k) for the state space boundaries i) { V i, J+1(k); i = 0,1,…, I },
ii) { V i, 0 (k) = 0; i = 0,1,…,I }, and iii) { V I+1, j(k); j = 0,1,…, J }.

Step 2. Compute V(k) for the boundary iv) (i.e. {V0, j(k); j = 1,2,…, J}):
Given V(k+1) and (V0, 0(k), V0, J+1(k)),
solve [PDE1(k)] if μ≤)(kq , [GCP1(k)] otherwise.

Step 3. Compute V(k) for the inner region (i.e. {Vi, j(k); i = 1,2,…, I; j = 1,2,…, J }):
Given V(k+1) and V(k) for all boundaries obtained in Step 1 and Step 2,
solve [GCP2(k)].

Step 4. If k = 0 terminate, otherwise 1: −= kk and return to Step 1.

In the algorithm above, we need an efficient procedure for solving sub-problems [GCP1(k)]
and [GCP2(k)], which are formulated as a finite-dimensional GCP. For this, we use a
smoothing function approach developed by Peng (1998), Qi and Liao (1999), and Peng and Lin
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(1999). This approach is not only the state-of-the-art technique but is also suitable for our
problems with a special sparse Jacobian matrix from the view point of efficiency, as discussed
in Akamatsu and Yamazaki (2006) and Nagae and Akamatsu (2006a,b).

In the smoothing function approach, one solves the following system of nonlinear equations:

0VFVFVFVH =≡ )}(),(),(.{min)( 321 , (41)

where )}(),(),(.{min 321 VFVFVF is a vector operator whose j th element is defined as

},,.{min 321
jjj FFF . Note that the equations system, H(V) = 0, cannot be solved by naive

methods, since H(V) is indifferentiable. The key idea of the smoothing approach, in order to
overcome difficulties due to the indifferentiability of H, is to transform the original problem
into a system of smooth equations via a so-called smoothing function ),( ηVS with j th

component,

]/)([expln),( ηηη VV j

j

j FS −−≡ ∑ (42)

where 0≥η is referred to as the smoothing parameter. This type of function in eq.(42) is also

known as an expected minimum cost (or a LOG-sum function) for a LOGIT model in the
random utility theory. It is well known that the smoothing function has two desirable properties
for developing an efficient algorithm: First,

)(),(lim)0,(
0

VHVSVS =≡+
+→

η
η

.

In other words, the solution of the smooth equations system 0VS =),( η is equivalent to the
solution of (41), H(V) = 0, at the limit of 0→η ; second, ),( ηVS is a continuously
differentiable function of V for all 0>η . The former property ensures that the present

algorithm provides a good approximation to the solution of (41), whereas the latter property is
exploited to guarantee the efficiency of the algorithm.

The smoothing approach-based algorithm generates a solution set of the smooth equations
system, forming a path )}),(,{( 0VSV =ηη as the parameter η tends to zero. This path is

usually referred to as the smoothing path. Let )(nη denote the smoothing parameter in the n th

iteration, and V(n) be a solution of the corresponding smooth equation 0VS =),( )(nη . For this

notation, we can summarize the procedure for generating the smoothing path as

Step 0. Choose .)1(
+∈ Rη Set iteration counter 1:=n ;

Step 1. If 0VH =)( )(n terminate; V(n) is the solution of the GLCP;

Step 2. Solve the smooth equations system 0VS =),( )()( nn η ;

Step 3. Choose the next smoothing parameter ),0[ )()1( nn ηη ∈+ ;

Step 4. Set 1: += nn ; return to Step 1.

It is easy to verify that any accumulation point of the smoothing path },{ )()( nn ηV generated by

the algorithm above is the solution of (41), since the first property of the smoothing function
)()0,( VHVS =+ and the condition applicable to the smoothing parameters, 0)1()( ≥> +nn ηη is
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satisfied. The global convergence of the generic algorithm has been established (e.g. Peng and
Lin (1999)): Any smoothing path },{ )()( nn ηV generated by the algorithm converges to

)0,( * +V globally, when i) ),( )()()( nnn ηVSS ∇≡∇ is nonsingular, and ii) the norm of 1)( ][ −∇ nS

is finite for all n. Since both the conditions are naturally satisfied in our framework, the
smoothing path globally converges to the solution of (41).

ILLUSTRATIVE EXAMPLES OF CONTROL OPERATIONS

An Example Illustrating the Proposed Method

For illustrating how the proposed method works, we show a numerical example obtained by
applying the algorithm presented in the previous section. We first assume the OD flow rate

)(tq to be a step function:

⎩
⎨
⎧

<≤

<≤
=

Ttifq

tifq
tq

τ

τ0
)(

1

0 ,

where q0 and q1 are given as 10 qq << μ and τ is given as T<< τ0 . We then assume that

the road manager has a constant absolute risk aversion (CARA) utility function:

( )[ ] θθ )(exp))(( tCtCU −−−≡− ,

where θ is a given parameter that represents risk averseness of the road manager; the larger it
is, the more risk averse the road manager becomes.

Figure 7: OD flow profile for the numerical experiment 
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The base case parameters are as follows: The length of the control horizon is T = 1. The OD
flow rate is initially 0.10 =q and switches to 2.01 =q at time 7.0=τ . Figure 7 shows the

cumulative OD flow. The capacity of the bottleneck is 5.0=μ . For the sake of simplifying the
discussion, we assume 0)( =tα ],0[ Tt ∈∀ , which implies that the expected travel time of the

local bypass (link 2) is fixed at the initial value m0. The volatility of the local bypass travel
time is 3.0=σ . The road manager’s risk aversion is assumed to be 5.0=θ .

As we discussed in the third section, the optimal control strategy is characterized by two
boundary (threshold) curves, ),( xtm and ),( xtm , each of which is a function of (t, x(t)). At

time t, these boundary curves can be described as functions of x(t), as illustrated in Figure 3.
Figure 8 shows these boundary curves obtained by applying our algorithm in the setting
described above. In this figure, the diagrams (a), (b), (c), and (d) are the boundary curves at t =
0.01, 0.4, 0.6 and 0.99, respectively. Observe that both boundary curves ),( xtm and ),( xtm

decrease with respect to t. This can be interpreted as follows: the effect of increasing x at t on
the value function (i.e. the expected total travel time in the remaining duration evaluated in
terms of utility) decreases as t increases because the remaining duration (and thus the total
travel time for the duration) decreases with respect to time.

 

Figure 8: Time-dependent changes in the threshold curves 
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Figures 9,10, and 11 illustrate how the two boundary curves ),( xtm and ),( xtm can be

used to decide the optimal ramp-metering for a particular sample path of the stochastic travel
time m(t). Figure 9 shows a sample path of m(t) and the corresponding two boundary curves
m and m as functions of time. Figures 10 and 11 represent the optimal freeway inflow rate

u(t) and the queue length under the optimal control, x*(t), for this sample path, respectively. In
these figures, we use the notation x*(t) in order to emphasize that the queue length at t is
obtained as the result of the optimal ramp-metering before t, )},0[|)({ tssu ∈ , corresponding

to the sample path m(t). In Figure 9, the solid line represents the sample path of m(t), and two

dotted lines are the boundary curves, )](,[ * txtm and )](,[ * txtm . Note that both the boundary

curves are plotted as functions of time. This is because the queue length x*(t) at t is
automatically decided from both the sample path of the travel time )},0[|)({ tssm ∈ and
corresponding optimal inflow rate )},0[|)({ tssu ∈ . Figure 9 also indicates that the travel time

m(t) hits the lower and upper boundary curves at t1 and t2, respectively. In Figure 10, we can
see that the basic property of the optimal inflow rate u(t) switches at these two hitting times as
denoted by (22). That is, u(t) = 0 before the first hitting time t1 (i.e. m(t) is below the lower
boundary m ), u(t) = q(t) after the second hitting time t2 (i.e. m(t) exceeds the upper boundary

m ), and 0 < u(t) < q(t) during t1 < t < t2 (i.e. m(t) remains between the two boundary curves).
Observe that the inflow rate fluctuates during ),( 21 ttt ∈ unlike other time windows. This

reflects the fact that the optimal inflow rate for this period should be a function of
))(),(),(,()( 1 tqtmtxtvtu = , as denoted by (20).

Properties of the Threshold Curves

Using the numerical algorithm developed above, we explore the effects of uncertainty on our
control strategies. More specifically, from numerical experiments, we show the manner in
which the boundary curves change through the controlled period (1) when the uncertainty in
the travel time of the local bypass link (i.e. the volatility σ of the travel time) is increased, and
(2) when the degree of risk aversion (i.e. the risk aversion measure θ ) for the control strategy
is increased.

Figure 12 shows the dependence of the boundary curves at time t = 0 on the volatility σ . In
this figure, the two dotted lines represent the upper and lower boundary curves, ),0( xm and

),0( xm , for 0.0=σ ; further, the solid lines and chain lines are the boundary curves for

=σ 0.3 and 0.5, respectively. Observe that both the upper and lower boundary curves shift
downward whenσ increases. The reason for this is that the greater volatility implies a higher
chance of encountering small values of m(t) in the future, in which the road manager can
improve his/her utility by decreasing the queue length. Therefore, higher σ increases the
optimal queue length x*(t) and shifts both boundary curves downward. In other words, the road
manager has an option to feedback (state-contingent) management of the queue length, and the
economic value of the option increases as the travel time volatility σ increases.
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Figure 9: A sample path of m(t) and the corresponding threshold curves

for the control period [0,1]

 

 
Figure 10: Optimal inflow rate for the sample path of m(t) in Figure 9.

 

 
Figure 11: Queue evolution in the freeway for the optimal metering in Figure 10.
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Figure 13 shows the way in which the boundary curves change with respect to the road
manager’s risk averseness, θ . In this figure, each pair of solid lines, dotted lines, and chain
lines represents the boundary curves at t = 0 for =θ 0.1, 0.3, and 0.9, respectively. We can see
that the upper boundary curve increases with respect to θ , whereas the lower boundary curve
decreases. This implies that when the manager is more risk averse, an extreme control, i.e.
either u(t) = 0 or u(t) = q(t), becomes not optimal.

 
Figure 12: The threshold curves for various levels of volatility 

 
Figure 13: The threshold curves for various levels of risk-aversion 
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CONCLUDING REMARKS

This paper provides ramp control strategies that achieve dynamic system optimal assignment
on a network with two parallel links; one of the links is a freeway with a single bottleneck, and
the other is a local bypass link (or an aggregation of a local street network) whose travel time
follows a stochastic process. Formulating the model as a continuous-time stochastic control
problem, we provide feedback (‘state contingent’) control rules that exploit the real-time
observation of the realization of the stochastic travel time. Our theoretical analysis shows that
the optimal ramp control strategies at each time period can be classified into seven patterns (as
summarized in Table 1 and Figure 3), depending on the realization of queue length in the
freeway and the observed travel time of the bypass link. We further reveal that the optimality
conditions of the problem can be reformulated as a dynamical system of generalized
complementarity problems, which enables us to provide an efficient and robust algorithm for
obtaining quantitative results for the control problem. Finally, we provide an illustrative example
of the proposed control method, and present results from systematic numerical experiments,
which reveal how the uncertainty in travel time affects the optimal control policies.
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A ROBUST APPROACH TO CONTINUOUS
NETWORK DESIGNS WITH DEMAND
UNCERTAINTY
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SUMMARY

In this paper, we consider a robust optimization approach to solve a continuous network
design problem with demand uncertainty. We assume that the travel demands belong to a
convex and compact uncertainty set instead of having them follow some probability
distributions and traffic flows on the underlying network are in user equilibrium. For a given
demand realization, our problem reduces to a mathematical program with equilibrium
constraints. The algorithm we propose for the problem converges under certain conditions.
However, numerical results using two networks from the literature empirically demonstrate
that the algorithm is effective and has the potential to solve realistic problems.

INTRODUCTION

The objective of a continuous network design (CND) problem is to determine a (continuous)
capacity expansion plan for an existing transportation network within a given budgetary
constraint. Because of the continuous nature of the problem, the number of feasible plans is
infinite and it is typical to choose one with the best system performance measure. When
travel demands are fixed, one such performance measure is the system delay or the total travel
time and the expansion plan yielding the least system delay is desirable.
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Many articles in transportation science assume that travel demands (either fixed or elastic) are
deterministic and formulate CND problems as bi-level optimization problems or mathematical
programs with equilibrium constraints or MPEC (see, e.g., Yang and Bell, 1998, and Chiou,
2005, for recent reviews). However, only a small number of articles deal with uncertain
demands. Barnhart (2000) proposes a scenario-based stochastic model to solve a network
design problem with uncertain demands to distribute crops in Mexico. Waller and
Zilliaskopoulos (2001) use an inflated demand for a dynamic network design problem to
address the uncertainty. They also suggest a two-stage stochastic optimization model with
recourse for the same problem. Chen et al. (2003) develop a multi-objective bi-level mean-
variance model to determine the optimal toll and capacity in a build-operate-transfer roadway.
In an attempt to balance efficiency and robustness in a network design problem with demand
uncertainty, Yin et al. (2005) offer two optimization models to achieve trade-offs that reflect
decision makers’ attitude towards risks. In optimization literature, some (see, e.g., Patriksson
and Wynter, 1999) extend stochastic programming approaches to bi-level or MPEC problems
and, in our setting, these approaches generally require knowing the probability distributions
associated with the travel demand for each origin-destination (O-D) pair. Although our CND
problem can be formulated as stochastic bi-level or MPEC problem, it is not clear that such
approach is practical because realistic problems have a large number of O-D pairs and the
relationships between them are often difficult to estimate due in part to the lack of data.

In this paper, we assume that travel demands are uncertain to account for the intrinsic day-to-
day or within-day fluctuations and adopt the robust optimization approach in, e.g., Ben-Tal
and Nemirovski (1999, 2002). Instead of using probability distributions to model demand
uncertainties, the robust optimization approach assumes that demands belong to an
uncertainty set denoted as Q. Although it may be possible to make Q contain all possible
demand realizations, doing so may lead to decisions too conservative or models too
computationally complex to solve. Generally, Q need not contain all possible demand
realizations and, in some models (see, e.g., the portfolio example in Ben-Tal and Nemirovski,
1999), Q does not represent the support of the demand distributions. Instead, the choice of Q
should make the resulting model computationally tractable and reflect the decision maker’s
attitude toward risk.

Two common forms of uncertainty sets in robust optimization are polyhedra and ellipsoids.
To illustrate them in our setting, let W be the set of O-D pairs with cardinality m (or m = |W|)
and d denote a vector of demands, dw, where w ∈ W. Then, an example of a polyhedral
uncertainty set is a box uncertainty set (see, e.g., Bertsimas and Sim, 2003). Mathematically,
Q = {d | mn

wd < dw < mx
wd , ∀ w ∈ W}, where mn

wd and mx
wd represent the minimum and

maximum travel demands for O-D pair w, respectively. In its most familiar form, an
ellipsoidal uncertainty set can be represented as follows:

}
)(

|{ 2
2

20

θ≤
−

= ∑w
w

ww

s

dd
dQ ,
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where 0
wd and sw are the nominal demand and possible variation for O-D pair w and θ is a

subjective value representing the decision maker’s attitude toward risk. Given mn
wd and mx

wd ,

one set of parameters for the above ellipsoid is:

)(2
10 mx

w
mn
ww ddd += and )(2

1 mn
w

mx
ww dds −= .

When θ = 0, Q with the above parameters reduces to the singleton {d0}, where d0 is a vector
of 0

wd . On the other hand, Q becomes the largest volume ellipsoid inside and the smallest

volume ellipsoid inscribing the box when θ = 1 and m respectively. Thus, Q does not

include all the demands inside the box defined above when θ < 1. When θ > m , there are
demands in Q not in the box. In general, larger θ means the decision maker is more risk
averse.

Between the two forms, Ben-Tal and Nemirovski (1999) demonstrate via a simple portfolio
problem that a box uncertainty set can lead to a decision too conservative to be of interest.
The same article also discusses a linear program with uncertain coefficients motivated by
Soyster (1973) in which a polyhedral uncertainty set leads to a solution that can be obtained
by solving a (deterministic) linear program with the uncertain coefficients at their worst
values, an extremely rare event. For our CND problem, setting the travel demands at their
worst values, i.e., setting dw = mx

wd , may not produce the desired result. The counterexample

in Fisk (1979) shows that the largest demand scenario may not lead to a solution with the
worst or largest system delay. Moreover, a design against such a worst case scenario would
also be too conservative.

In this paper, we adopt the ellipsoidal uncertainty set for our CND problem for its flexibility
and others (see, e.g., Ben-Tal and Nemirovski, 2002, and Chen et al., 2006) have used it
successfully in various applications. For the remainder, the following sections formulate a
robust network design problem and propose an algorithm to solve the problem. This
algorithm is convergent under a given set of conditions. Using ellipsoidal uncertainty sets, we
then discuss how to implement the algorithm and summarize results from a numerical
experiment involving two transportation networks from the literature. Finally, some
concluding remarks are given.

ROBUST NETWORK DESIGN PROBLEM

To formulate our robust network design problem, let N and L denote the sets of nodes and
links in the transportation network. For a given demand vector d ∈ Q, V(d) denotes the
associated set of all feasible flow distributions and can be mathematically expressed as
follows:

{ }WwxdEAxxvvdV w
w

ww

w

w ∈∀≥=== ∑ ,0,,|)( ,
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where xw is the vector of link flows associated with O-D pair w, v is the vector of total or
aggregated link flows, and A is the node-link incidence matrix associated with the network.
To specify the origins and destinations of link flows, Ew is a vector in NR with two nonzero
components, one has a value 1 in the component corresponding the origin node of O-D pair w
and the other has a value -1 in the component for the destination. For each link a ∈ L,

),( aaa cvt denotes the travel cost (time) as a function of link flow va and the expansion amount

ca. Below, t(v, c) denotes a vector whose components consist of individual link travel cost
functions, ),( aaa cvt .

Using the above notation, the robust network design (RND) problem can be formulated as
follows:

RND:
),,(

min dvyc
y

s.t. Bch
Aa aa ≤∑ ∈

)(

vd ∈ V(d), ∀d ∈ Q
t(vd, c)T(u – vd) > 0, ∀u ∈ V(d), d ∈ Q
t(vd, c)Tvd < y, ∀d ∈ Q

max0 aa cc ≤≤ , a A∀ ∈

When combined with the last constraint, the variable y in the objective function represents the
maximum total travel time (or system delay) over Q. Thus, the objective is to minimize the
maximum possible total travel time associated with the capacity expansion vector c. In the
first constraint, ha(ca) is the expansion cost function for link a and B is the available budget.
Thus, the constraint guarantees that the total cost of expansion is within the available budget.
In combination, the second and third sets of constraints ensure that vd is a user equilibrium
flow distribution with respect to each demand vector d ∈ Q. In particular, the user
equilibrium condition is stated as a variational inequality in the third set of constraints, where
u denotes any feasible flow distribution with respect to a demand vector d. As stated, the
numbers of constraints and decision variables (vd in particular) in these two sets are infinite.
The fourth set of constraints, in conjunction with the objective function, calculates the
maximum total travel time over Q associated with a capacity expansion vector c. Finally, the
last set requires the amount of expansion on each arc to be nonnegative and not to exceed its
maximum.

As formulated above, the RND problem is a MPEC (see Luo et al., 1996), a class of
nonconvex optimization problems difficult to solve. Compounding to this difficulty is the fact
that the RND problem has an infinite number of constraints and decision variables. The next
section proposes an algorithm for the RND problem and shows that it converges to an optimal
solution under some assumptions.
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AN ALGORITHM

The algorithm proposed below solves a sequence of relaxed RND problems, each one better
approximating the original RND problem than its predecessors. In the literature, some, e.g.,
Lawphongpanich and Hearn (2004) refer to this approach as a cutting constraint or plane
algorithm (see also Kelly, 1960, and Marcotte, 1983).

Assume that 1d , 2d , …, nd are elements of Q. Then, a relaxed robust network design
(RRND) problem can be written as:

RRND:
),,(

min ivyc
y

s.t. Bch
Aa aa ≤∑ ∈

)(

vi ∈ V(di), ∀i = 1, …, n
t(vi, c)T(u – vi) > 0, ∀u ∈ V(di), i = 1, …, n
t(vi, c)Tvi < y, ∀ i = 1, …, n

max0 aa cc ≤≤ , a A∀ ∈

The RRND problem stated above is simply the original RND problem with Q approximated

by the discrete demand set Q̂ = {d1, …, dn}.

Let ( )yc ˆ,ˆ be a global optimal solution to RRND. (To simplify our presentation, we ignore the

vi component of the solution vector.) Then, ( )yc ˆ,ˆ solves the original RND problem only if
the user equilibrium, v(d), associated with every Qd ∈ has a total travel time no larger than

ŷ , i.e., ( ) ydvcdvt T ˆ)(ˆ),( ≤ . To verify this inequality computationally, consider the following

worst-case demand (WCD) problem with ĉ :

WCD( ĉ ): dmax t(v(d), ĉ )Tv(d)

s.t. v(d) ∈ Ω(d, ĉ )
d ∈ Q

where Ω(d, ĉ ) is the set of user equilibrium distributions associated with d and ĉ , i.e.,
Ω(d, ĉ ) = {v | t(v, ĉ )T(u – v) > 0, ∀u ∈ V(d)}. Among the two constraints in the problem, the
first ensures that v(d) is a user equilibrium distribution and the other forces d to be in Q. For a
given capacity expansion vector ĉ , the objective of WCD( ĉ ) is to find a demand vector in Q

whose user equilibrium flow distribution yields the maximum total travel time. If d̂ , a global

optimal solution to WCD( ĉ ), is such that t(v( d̂ ), ĉ )Tv( d̂ ) < ŷ , then ĉ is an optimal capacity

expansion vector. On the other hand, if t(v( d̂ ), ĉ )Tv( d̂ ) > ŷ , then an improved solution may

be obtained by solving the RRND problem with an expanded discrete demand set }ˆ{
~

dQ ∪ .
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Similar to the RND problem, WCD( ĉ ) is a difficult MPEC problem. Later, we also let Ψ( ĉ )

denote the set of globally optimal solutions to the WCD( ĉ ) problems, i.e., d̂ ∈ Ψ( ĉ ). Below,
we state the approach outlined above as the Demand Generation (DG) Algorithm.

Demand Generation Algorithm

Step 0: Choose an initial demand vector Qd ∈1 . Set n = 1 and Q1 = {d1}.

Step 1: Solve the RRND problem with the discrete demand set Qn and let (cn, yn) denote the
resulting optimal solution.

Step 2: Solve WCD(cn) and let )1( +nd denote the resulting optimal solution.

Step 3: If t(v( )1( +nd ), cn)T v( )1( +nd ) < yn, stop and cn is an optimal capacity expansion vector.
Otherwise, set Q(n+1) = Qn∪{ )1( +nd } and n = n + 1. Go to Step 1.

Assume that both (cn, yn) and )1( +nd globally solve the RRND and WCD(cn) problems in Steps
1 and 2, respectively. Additionally, let (c*, d*) be a global optimal solution to the RND
problem. Because the RRND problem is a relaxation of RND, yn < y* for all n. If the above
algorithm stops at some finite iteration n, then t(v( )1( +nd ), cn)T v( )1( +nd ) < yn implying that
(cn, yn) is feasible to the RND problem. When combined with yn < y*, the optimality of
(c*, y*) implies that yn = y*, i.e., (cn, yn) is optimal to RND.

When the demand generation algorithm generates an infinite sequence, the theorem below
gives conditions under which any of its subsequential limits is optimal to the RND problem.
In particular, the theorem views the solution sets Ω(d, c) and Ψ(c) of the user equilibrium and
the WCD(c) problems as mappings and assumes that both are closed (see, e.g., Chapter 7 of
Bazaraa et al, 1993). When each consists of a single element for all d and c, both Ω(d, c) and
Ψ(c) becomes functions and being closed reduces to being continuous.

Theorem: Assume that (cn, yn) and )1( +nd globally solve the RRND and WCD(cn) problems
in Steps 1 and 2, respectively, and the mappings Ω(d, c) and Ψ(c) are closed. If the demand
generation algorithm generates an infinite sequence {(cn, yn)}n, then any of its subsequential
limits globally solves the RND problem.

Proof: First, note that the demand vectors generated in Step 2 are distinct. If )1( +nd = jd for
some j < n, then t(v( )1( +nd ), cn)T v( )1( +nd ) = t(v( jd ), cn)T v( jd ) < yn. Therefore, the stopping
criterion in Step 3 is satisfied and the algorithm must stop. This contradicts the hypothesis
that the algorithm generates an infinite sequence.

Because the RRND problem in iteration (n + 1) has one more constraint that the one in
iteration n, yn < y(n+1). As mentioned previously, yn < y* for all n. So, the sequence {yn}n is
bounded and non-decreasing and must therefore converge. Let n

n yy ∞→
∞ = lim . Then, y∞ <

y*.
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Observe that {cn}n is a sequence in the compact set {ca:
max0 aa cc ≤≤ }. Thus, there must exist

a convergent subsequence, i.e., c∞ = n
n cΦ∈lim , for some Φ ⊆ {1, …, ∞}. For each n, the

following hold:

t(v( id ), cn)T v( id ) < yn < t(v( )1( +nd ), cn)T v( )1( +nd ), ∀ i = 1, …, n.

(Previously, v( id ) is written as iv in the DG algorithm for brevity. However, the notation
v(di) is more convenient here.) Because Q is compact, there exists d∞ = )1(

ˆlim +

Φ∈

n

n
d , where

Φ⊆Φ̂ . Taking the limit with respect to Φ̂ , the above yields

t(v( id ), cn)T v( id ) < y∞ < t(v(d∞), c∞)T v(d∞), ∀ i = 1, …, ∞.

The closeness property of Ω(d, c) and Ψ(c) implies that d∞ solves the WCD(c∞) problem and
v(d∞) is a user equilibrium with respect to c∞ and d∞ . Taking the limit of the first term with
respect to set {(i +1, n): i ∈ Φ̂ , n ∈ Φ̂ }, the above inequality leads to

t(v(d∞), c∞)T v(d∞) < y∞ < t(v(d∞), c∞)T v(d∞)

or t(v(d∞), c∞)T v(d∞) = y∞ < y*. As before, (c∞, y∞) is optimal to the RND problem because
the worse-case demand d∞ satisfies the stopping criterion in Step 3, thereby implying that
(c∞, y∞) is feasible to the RND problem. The optimality of (c*, y*) further implies that
y* = y∞.

The above convergence proof relies on a number of assumptions that are either difficult to
verify or satisfy in practice. Our main purpose of the above discussion is to demonstrate that
the DG algorithm is not totally heuristic. In particular, it is difficult both theoretically and
computationally to ensure both (cn, yn) and )1( +nd in Steps 1 and 2 globally solve the RRND
and WCD(cn). (See, e.g., Vavasis, 1995 and references cited therein.) In addition, Ψ(c) is a
solution set to an MPEC, a difficult class of problems to solve and explore theoretically. In
fact, theories concerning the optimality conditions of MPECs are still in early stages (see, e.g.,
Luo et al., 1996). On the other hand, the numerically results in the next section demonstrate
empirically that the DG algorithm is effective at providing a good solution to the CND
problem despite not being able to verify the assumptions stated above.

IMPLEMENTATION AND EXAMPLES

To investigate its effectiveness, we implemented the DG algorithm and solved two problems
from the literature. We used a 300 MHz IBM SP2 computer with 512 MB of RAM, an
algebraic modeling system called GAMS (Brooke, et al., 1992) and CONOPT Version 3.14
(Drud, 1992) to solve the RRND and WCD(c) problems. In Step 3, it is more practical to
terminate the algorithm when (yn – t(v( )1( +nd ), cn)T v( )1( +nd )) < ε and ε = 5 ×10-3 for the
results reported below. Additional details concerning the solutions to problems in Steps 1 and
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2 of the algorithm are presented in the following two subsections and then results from our
experiments are summarized.

Solving the Relaxed Robust Network Design Problem

The third set of constraints in the RRND problem consists of n variational inequalities, one for
each i = 1, …, n, of the form:

t(vi, c)T(u – vi) > 0, ∀u ∈ V(di). (1)

For each i, this variational inequality is equivalent to requiring vi to satisfy the following set of
constraints:

wiTi Acvt ,),( ρ≥ , ∀ w ∈ W,

.),( , μρ +≤∑ ∈Ww

wiT
w

i
w

iTi Edvcvt

For each demand vector i and O-D pair w, wi ,ρ is a Lagrangian multiplier associated with the

flow balance constraints: i
w

ww dEAx = . When μ is zero, the above constraints are KKT

conditions associated with the variational inequality in (1) (see, e.g., Luo et al, 1996, and
Lawphongpanich and Hearn, 2004). When μ is a small positive constant, the constraints
allow vi to satisfy the variational inequality and the KKT conditions approximately (see, Bai
et al., 2006).

In our implementation, μ = (10-4)⋅t(v( nd ), )1( −nc )T v( nd ) in iteration n. Because the CONOPT
solver can only provide local optimal solutions, we solved the RRND problem ten times, each
time with a different randomly generated initial solution. The best local optimal solution
among these ten is taken to be (cn, yn) in Step 1.

Solving the Worst-Case Demand Problem

Instead of solving the WCD(cn) problem in Step 2 optimally, our strategy is to find )1( +nd that
yields v( )1( +nd ), a user equilibrium distribution associated with cn and )1( +nd , satisfying
t(v( )1( +nd ), cn)T v( )1( +nd ) > yn. Our approach is to randomly select ten demand vectors along

the boundary of Q. For each random demand vector, say d
~

, we solved the user equilibrium

problem associated with cn and d
~

using MINOS Version 5.0 (Murtagh and Saunder, 1983).

Let v( d
~

) be the user equilibrium distribution associated with cn and d
~

. If the associate

system delay, t(v( d
~

), cn)Tv( d
~

), is greater than yn by at least 0.5%, set )1( +nd = d
~

and go to

Step 3. Otherwise, we used CONOPT to solve the WCD(cn) problem with d
~

as an initial
solution. If CONOPT gives a demand vector whose user equilibrium travel time exceeds yn,
ignore the remaining random demand vectors, set )1( +nd equal to the demand vector from
CONOPT, and go to Step 3. If none of the ten random demand vectors produces a new
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demand vector with system delay larger yn, then we assume that the stopping criterion in Step
3 is met and terminate the demand generation algorithm.

Numerical Results

In our experiment, we consider two networks from the literature, nine node (see Hearn and
Ramana, 1998) and Sioux Falls (see, LeBlanc et al., 1975).

Nine-node problem: Figure 1 displays the underlying network. For each link, the travel cost
function is of the form

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅+⋅=

4

0
0 15.01),(

aa

a
aaaa cc

v
tcvt (2)

where the values for ( )00 , aa ct are as listed in Hearn and Ramana (1998). There are four O-D

pairs for the nine-node problem and they include 1 – 3, 1 – 4, 2 – 3, and 2 – 4. We assume
that all O-D pairs have uncertain demands and the ellipsoid uncertainty set is of the form:

}1|{
1

20

∑
=

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
∈=

W

w w

wwW

s

dd
RdQ (3)

where 100
31 =−d , 200

41 =−d , 300
32 =−d , 400

42 =−d and sw = 0.5× 0
wd . Finally, the expansion

cost function is ( ) aaa cch = for all link a.

Figure 1: The nine-node network

Results for the nine-node problem are presented below. Figure 2 displays the amount of CPU
time required to approximately solve the RND problem in the manner described in
Subsections 4.1 and 4.2 with the total budget, B, varied from 10 to 100. The figure indicates
that problems with moderate budgets require more CPU times. When the budget is small,
possibilities are limited, thereby making the expansion decision simpler. With a budget
sufficient large, the optimal expansion decision is also simple and involves expanding the
capacity of each utilized link until the travel time reaches its free-flow level. The expansion
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decision becomes more difficult with a moderate budget because more competing alternatives
must be considered in order to find the one that minimizes the maximum travel time over the
uncertainty set.
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Figure 2: Computation times for the nine-node network

Table 1 and Figure 3 compare the (approximate) solutions to the RND problem (or the robust
plans) against the solutions from solving continuous network design problem (or the nominal
plans) assuming that the travel demand for each O-D pair is 0

wd . As an example, Table 1

shows the two expansion plans when the available budget, B, is 50. Figure 3 plots the
differences between the two plans for B ranging from 10 to 100, where the difference between

the robust, cR, and nominal, cN, is defined as
22

/ RNR ccc − . On average, the difference

between robust and nominal expansion plans is approximately 31% of ||cR||2. In addition, the
difference tends to decrease as the available budget increases. In particular, the differences
when B = 80, 90, and 100 are relatively small. When B is sufficiently large, cR = cN because,
as mentioned previously, it is optimal to expand the capacity of every utilized link until its
travel time equals to its free flow level.

Table 1: Nominal and robust capacity expansion plans with B = 50
Link 1-6 2-5 5-7 6-8 7-3 Total
Nominal 0 7.7 36.2 0 6.1 50
Robust 2.1 12.6 15.2 8.7 11.5 50
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Figure 3: Differences between cR and cN for the nine-node problem

To compare the operating behaviors of the two capacity expansion plans, robust and nominal,
we randomly generated 300 travel demand vectors in which the demand of each O-D pair is

uniformly distributed between 05.0 wd and 05.1 wd . For each random demand vector d
~

, two

user equilibrium distributions, one (vR( d
~

)) associated with capacity expansion cR and the

other (vN( d
~

)) with cN, are computed. In total, there are 600 user equilibrium distributions,

300 are of the form vR( d
~

) and the remaining are of the form vN( d
~

). The average and
standard deviation of the total travel times associated with the user equilibrium distributions in
these two sets are computed and compared in Figure 4.
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Figure 4: Percent differences between the mean and standard deviation of total travel times
associated with nominal and robust expansion plans for the nine-node problem
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There are two graphs in Figure 4, one for the relative percent difference in the mean system
delays, or (mean[cN] – mean[cR])/mean[cR], and the other for the difference in the standard
deviations, or (std[cN] – std[cR])/std[cR]. Being more conservative, cR yields slightly higher
mean system delay for the nine-node problem on average. However, the standard deviation
associated with cR is generally smaller than those associated with cN. In other words, the total
travel time associated with cR is less volatile.

The optimal objective value of the RRND problem, denoted as y*(cR), provides an estimate of
the system delay over the uncertainty set Q. As stated previously, the capacity expansion plan
cN is computed based on the nominal demand vector d0. Let y*(cN) be the total travel time
associated with the user equilibrium distribution with capacity expansion cN and demand d0.
In one interpretation, y*(cN) gives an estimate of the system delay associated with cN over the

uncertainty set Q. Among all 300 random travel demand vectors ( id
~

, i = 1, …, 300), we

compare total travel times associated vR( id
~

) and vN( id
~

) against the system delay estimates

y*(cR) and y*(cN), respectively. Table 2 lists the percentages for which t(vR( id
~

), cn)TvR( id
~

) <

y*(cR) and t(vN( id
~

), cn)TvN( id
~

) < y*(cN).

Table 2: Reliability of total travel time estimates associated with robust and nominal capacity
expansion plans.

Budget y*(cN) t(vR( id
~

),cn)TvR( id
~

) < y*(cN) y*(cR) t(vN( id
~

),cn)TvN( id
~

) < y*(cR)

10 2273 43.7% 3450 92.3%
20 2119 45.3% 3227 92.0%
30 1971 43.0% 3058 92.7%
40 1898 43.3% 2801 91.7%
50 1729 42.3% 2651 91.7%
60 1612 42.3% 2543 91.7%
70 1529 42.3% 2465 91.3%
80 1469 42.7% 2270 91.0%
90 1426 42.3% 2138 91.3%
100 1394 43.0% 2089 92.7%

On average, approximately 43% or 129 random demands out of the 300 yields total travel
times no larger than the nominal estimates or y*(cN). In other words, the nominal system
delay estimate, y*(cN), is 43% reliable. On the other hand, the average reliability of the robust
system delay estimate, y*(cR), is nearly 92%. Because cN is computed from a single demand
vector, d0, the above comparison may be unfair. However, the DG algorithm generated no
more than seven demand vectors for the nine-node problem, i.e., cR is computed from at most
seven demand vectors when the uncertainty set is an ellipsoid. Thus, computing an expansion
plan with a highly reliable system delay estimate does not require a large number of demand
vectors from the uncertainty set.



Continuous Network Design with Demand Uncertainty 123

Sioux Falls Problem: Our main objective for solving this problem is to demonstrate
the potential of the demand generation algorithm in solving realistic RND problems. The
Sioux Falls network (see, LeBlanc et al., 1975) contains 76 links, 24 nodes, and 528 O-D pairs.
The original parameters in LeBlanc et al (1975) are transformed into ( )00 , aa ct by associating

the original parameters with those in equation (2). We also set d0, the nominal travel demand
vector, to be original demands divided 13 and assume that O-D pairs with nominal demands
greater one (thousand trips) have uncertain travel demands. Based on this criterion, there are
53 O-D pairs with uncertain demands. As before, the uncertainty set of these O-D demands is
an ellipsoid (see equation 3) with sw = 0

wd and ha(ca) = ca for all a ∈ L.

In general, the demand generation algorithm required two or three iterations or between 869
and 2917 CPU seconds (see Figure 5) to solve for the Sioux Fall problem with the available
budget ranging from 50 to 200.
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Figure 5: Computational times for the Sioux Fall network

Figures 6 and 7 illustrate that the differences between the robust and nominal plans. The first
one, Figure 6, displays the differences between the two expansion vectors, cR and cN, i.e.,

22
/ RNR ccc − . On the other hand, Figure 7 shows the difference in the operating

behaviors based 100 random demand vectors generated using the Normal distribution with
mean 0

wd and standard deviation 05.0 wd⋅ . (Recall that only 53 O-D pairs have uncertain

demands.) Similar to the nine-node problem, the total travel times associated with the robust
expansion vector is slightly less volatile than the ones associated with the nominal counterpart.
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Figure 6: Difference between cR and cN for Sioux Falls
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Figure 7: Percent differences between the mean and standard deviation of total travel times
associated with nominal and robust expansion plans for Sioux Falls

CONCLUSION

In this paper, we consider a robust optimization approach and formulate a continuous network
design problem with demand uncertainty as a mathematical program with equilibrium
constraints. The problem assumes that flows on the underlying network are in user
equilibrium and travel demands belong to a convex and compact uncertainty set. We propose
an algorithm, called the demand generation algorithm, to solve the problem. During each
iteration, the algorithm solves two problems. One is a relaxed continuous network design
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problem based on a discrete set of demand vectors and the other is a problem that generates a
worst-case demand. In theory, the algorithm converges under a set of conditions. However,
numerical results from the nine-node and Sioux Falls networks empirically demonstrate that
the algorithm is effective in practice and has the potential to solve realistic network design
problems. Moreover, the results from these two networks indicate that capacity expansion
plans from our robust formulation are less volatile and produce reliable system delays
estimates when compared to the plan based only on nominal demands. Furthermore, the
framework for our model is general and can be extended to accommodate other forms of
equilibria, elastic demands and other types of uncertainty such as incident-induced travel time
uncertainty.
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GENERALISATION OF THE RISK-AVERSE
TRAFFIC ASSIGNMENT

W.Y. Szeto, Liam O’Brien, Margaret O’Mahony, Centre for Transport Research, Department
of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2,
Ireland.

SUMMARY

Traditionally, the risk-averse traffic assignment is described by a game played between
network users who seek minimum cost routes and demons that seek to impose maximum
costs on the network users by damaging links in the network. This problem assumes the
presence of one and only one active OD specific demon in each OD pair, and furthermore
assumes the capacity reduction to be 50% if the link is selected for damage by one or more
OD specific demons. In this paper, we relax these two assumptions and propose a multiple
network demon formulation in which each demon is free to select any link to damage.
Numerical studies are carried out to examine the effects of relaxing the two assumptions on
expected network cost, give an insight into the network demon behaviour in selecting links to
damage, demonstrate the existence of multiple solutions to the proposed game, and compare
the link selection behaviour of the OD specific and network demons and their impacts on
expected network cost. Overall the results indicate the importance of the assumptions used to
expected network cost and reliability measures, and provide some further insights into the
nature of the route choice game.

INTRODUCTION

Transport networks cannot often operate at their full capacities due to many traffic
disruptions. These disruptions can range from irregular and random incidents, like adverse
weather, traffic accidents, breakdowns, signal failures and road-works to disasters like
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landslides and earthquakes. These unpredictable disruptions not only reduce link capacities
and increase travel times of transport network users, but also result in travel time uncertainty.
Faced with uncertainty about the travel times in their route choice, the transport network users
are required to make a trade-off between the travel cost (including travel time, early or late
arrival penalty, and so on) and its uncertainty. This behaviour is known as risk-taking
behaviour (Yin et al., 2004). Many studies (e.g. Mirchandani and Soroush, 1987; Uchida and
Iida, 1993; Boyce et al., 1998; Chen and Recker, 2000; Yin and Ieda, 2001; Bell and Cassir,
2002; Yin et al., 2002; Lo and Tung, 2003; Chan and Lam, 2005; Sumalee et al., 2005) have
been performed to model this risk-taking behaviour of route choices. One approach is the
game theoretic approach (e.g. Bell, 2000; Bell and Cassir, 2002; Szeto et al., 2006).

The game theoretic approach was first proposed in Bell (2000) as an approach to assess the
performance reliability of transport networks. This approach uses the network cost resulting
from a two-player zero-sum non-cooperative game as a measure of the performance
reliability. Bell and Cassir (2002) extended this game concept to a multiplayer non-
cooperative game to model the risk-averse behaviour in route choice assignment with fixed
demand. Szeto et al. (2006) extended the Bell and Cassir (2002) formulation to incorporate
the elastic behaviour of demand.

The game theoretic approach enjoys at least three advantages over the more conventional
approaches according to Bell (2000) and Bell and Cassir (2002). First, the game theoretic
approach can determine links where the network users are most vulnerable to link failure
under the assumption that the users are highly pessimistic or naturally very negative about the
state of the road network. Second, the total expected network cost of the game gives a useful
measure of network reliability. Different designs may be compared on the basis of this
measure. Third, statistical distributions for link performance (such as delay, travel time or
capacity) are not required, unlike the more conventional approaches. This information is very
often either absent or not accurate enough to be used.

The main idea behind the game theoretic approach is based on the notion of a fictitious game
played between on the one hand users who seek minimum cost routes, and on the other hand,
an evil entity or demon that seeks to maximise the total expected network cost to the users by
damaging links in the network. The traffic assignment problem when formulated based on this
approach, known as risk-averse traffic assignment, consists of two sub-problems: the user
problem and the demon problem. The user problem describes the non-cooperative behaviour
of network users, whereas the demon problem describes the evil behaviour in the sense of
trying to cause maximum damage to the users. However, the formulation developed based on
this approach only allows exactly one demon per OD pair in which each OD-specific demon
is not free to damage links outside of its own specific OD pair. This one demon per OD pair
assumption is not general enough. For example, it does not allow two links to be damaged on
one OD pair but no link to be damaged on other OD pairs. It also restricts the number of
demons or links to be damaged to be equal to the number of OD pairs and does not allow the
number of links to be damaged in a network to be greater or smaller than the number of OD
pairs. Furthermore, the capacity reduction when link damage occurs is typically 50%. In other
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words only two operational states are accounted for – congested and un-congested. This
clearly does not model the wide range of capacity levels.

In this paper we propose a more general game theoretic formulation by relaxing the above
two assumptions. We extend the existing game theoretic formulation to allow demons (called
network-specific demons or simply network demons) to be free to select any links to damage
and to impose no restriction on the number of demons or number of links to be damaged. We
assess the impact of this extension on the total expected network cost. Moreover we challenge
the effect of the assumption of 50% capacity reduction, especially when there are multiple
demons involved, and when more than one demon selects a particular link to damage. In
addition, we examine the effect of using or relaxing this assumption with particular reference
to the implications for network (or performance) reliability. We also conduct a brief study to
provide a better insight into the demon behaviour in selecting links to damage, illustrate the
existence of multiple solutions, and compare the results obtained from OD specific and
network demons.

The remainder of this paper is organised as follows: section 2 proposes a multiple network
demon formulation; section 3 details the numerical studies while section 4 provides
conclusions and suggests some important future research directions.

FORMULATION

A general transportation network with multiple links, routes, and Origin-Destination (OD)
pairs is considered. There are rsN homogenous players between each OD pair rs , each whom
it is assumed seeks minimum cost routes among all other alternatives (hereafter we refer to
them as the ‘users’). There are also M demons with the freedom to roam the network without
restriction and with the capability to select any link to damage, including links already
selected for damage by other demon(s). It is assumed that the network-specific demons are
intent on causing maximum delays (and hence increased costs) to the users by damaging
link(s) in the network. By so doing the demons maximise their expected pay-off which is the
total network cost faced by the users. Moreover, we assume that no user knows which link(s)
the demon(s) will choose to damage, and none of the demons know in advance which link a
user may decide to use. In general we assume that each link is assumed to have two costs
depending on whether it is damaged or not. However for the purposes of some of our studies
we relax this assumption so that the link costs increase with an increasing number of demons
that select a particular link to damage. This is due to the assumption that the link capacity
reduces linearly or non-linearly with respect to the number of demons choosing that particular
link. Furthermore, both rsN and M are assumed to be fixed. With this setting, we can
formulate the proposed risk-averse user equilibrium traffic assignment problem with multiple
network demons by applying the results in Nash (1951), Bell and Cassir (2002), and Szeto et
al. (2006).
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Similar to Bell and Cassir (2002) and Szeto et al. (2006), the proposed formulation comprises
two main sub-problems: the user problem and the demon problem. The user problem can be
viewed as a non-cooperative game in which each homogenous player tries to select the route
with minimum expected trip cost. The user problem can be approximated to deterministic
traffic assignment when the number of homogenous users is large (Bell and Cassir, 2002).
The first order condition of deterministic traffic assignment can be expressed as the following
non-linear complementarity conditions:
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where rs
jh is the flow on route j between OD pair rs ; h is the route flow vector; ( )rs

jkg h

represents the cost of route j between OD pair rs in scenario k based on the flow vector h ;

d is the minimum expected travel cost route between OD pair rs ; kq is the probability of

scenario k occurring.

According to (1), if route j connecting OD pair rs carries flow ( 0rs
jh > ), the corresponding

expected route travel cost ( )rs
jk k

k

g q∑ h must be equal to the minimum expected travel cost

( )
d

min rs
dk k

k

g q
⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ h between OD pair rs , as the term in the square brackets in (1) must equal

zero. If route j carries no flow ( 0rs
jh = ), the corresponding expected route travel cost must

be greater than or equal to the minimum expected travel cost based on (2). Condition (3) is
the non-negativity condition of route flows.

The route flow rs
jh in (1)-(3) must satisfy flow conservation, expressed as:

rs rs rs
j j

j

N hδ=∑ , (4)

where rsN is the travel demand of OD pair rs ; rs
jδ is the route-OD incidence indicator.

1rs
jδ = if j connects OD pair rs , and 0rs

jδ = otherwise.

The cost of route j between OD pair rs in scenario k , ( )rs
jkg h , in (1) and (2) is the total cost

on every link that is on this route:
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( ) ( )rs
jk ja ak a

a

g t vδ=∑h , (5)

where jaδ is 1 if link a is on route j , and 0 otherwise; ( )ak at v denotes the flow-dependent

cost on link a in scenario k and is defined by the Bureau of Public Roads (BPR) function in
(6) below:
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where 0
at is the free-flow travel time of link a ; akc is the capacity of link a in scenario k ; av

is the link flow given in (7) below:

rs
a ja j

rs j

v hδ=∑∑ . (7)

The above equation states that the link flow is simply the sum of the route flows using that
link.

The scenario probability in (1)-(2), kq , depends on the link selection probability of all

demons. Let ( )1, , , ,m Mk l l l= … … , ml be the link selected for damage by demon m ,
m

m
lp be

the probability of demon m selecting ml to damage, and M be the number of network-

specific demons. The scenario probability kq is defined by:

1
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M
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m

q p
=

= ∏ . (8)

The demon problem describes the objectives of the demons. All demons seek the mixed
strategy to maximise their individual expected pay-offs or the total expected network cost to
the users. The problem for multiple network demons can be written as the following nonlinear
complementarity conditions:
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where n is the number of links in the network; ( )
1, ..., ,...,m M

rs
j l l lg h is the cost of route j between

OD pair rs in scenario ( )1, , , ,m Mk l l l= … … ; ml and M follow earlier definitions; mw is the

link selected for damage by demon m that gives the demon maximum expected payoff; i and
q are indices for demons.

m

m
lp is the probability of demon m selecting ml to damage, must

satisfy:

1 0
m

m

m
l

l

p − =∑ , (12)

and be non-negative by definition as shown in (11).

Conditions (9)-(10) represent the necessary and sufficient conditions of the Nash equilibrium
of a non-cooperative, mixed strategy game for the demons (see Nash 1951). The second
square bracket term in (9) is the total network cost in scenario ( )1, , , ,m Ml l l… … . The second

term is the total expected network cost when demon m selects link ml to damage (or the

expected payoff to demon m when it selects link ml to damage) and considers the link

selection strategies of all other demons. The first term is the maximum expected payoff to
demon m or the maximum total expected network cost. When demon m selects a particular
link to damage with some probability ( 0

m

m
lp > ) then the term inside the braces must be zero

and the maximum expected pay-off to that demon (the first term inside the braces of (9)) must
be equal to the total expected network cost (the second term inside the braces of (9)) when the
demon selects that link to damage. If a particular demon does not choose a particular link ml

to damage ( 0
m

m
lp = ), then the maximum expected pay-off to the demon must be greater than

or equal to the total expected network cost when the demon selects link ml to damage

according to (10).

The risk-averse traffic assignment with multiple network-specific demons is to find rs
jh and

m

m
lp such that (1)-(12) are satisfied. This problem can be re-expressed as a Non-linear

Complementarity Problem (NCP). To simplify our NCP, we introduce two notations. We let
the minimum expected OD travel costs faced by users (or the second term in (2)) be rsφ :
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and let the maximum expected pay-off to demon m (the first term inside the braces of (9) and
(10)) be mπ :
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The risk-averse traffic assignment with multiple network-specific demons can then be
expressed as a NCP: to find *x such that:

≥*x 0 , ( ) ≥*F x 0 , and (15)

( ) 0⋅ =*T *x F x , (16)

where the asterisk associated with the variable refers to the optimal solution;
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It should be clear that when x satisfies the NCP (15)-(18), the rs
jh and

m

m
lp in x must satisfy

the risk-averse traffic assignment (1)-(12). Moreover, the NCP (15)-(18) must have at least
one solution. The proof can be found in the Appendix. Furthermore, this NCP can have more
than one solution. This will be shown in the numerical studies.

The NCP (15)-(18) can be transformed to a minimization problem via a gap function. Let Ω

be the solution set to the NCP formulation and { ( ) },ψ = ≥ ≥x 0 F x 0 . A function ( )G x is the

Gap function for the NCP if the following three conditions are satisfied:
(i) ( ) 0G ≥x ;
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(ii) ( ) 0G = ⇔ ∈Ωx x , and;

(iii) ( )min 0G
ψ∈

=
x

x is a global minimum.

These properties mean that if we can find G(x) to be zero, we have a solution to the NCP. On
the other hand, if the NCP has no solution, then G(x) must have global solutions with positive
objective values (Theorem 3.1 in Kanzow and Fukushima, 1996).

In this paper, we adopt the one in Lo and Chen (2000):

( ) ( )( ),i i
i

G x Fϕ=∑x x , (19)

where

( ) ( )21
, ,

2
a b a bϕ φ= , and (20)

( ),a bφ is the Fischer Function defined as follows:

( ) ( ) ( )2 2,a b a b a bφ = + − + . (21)

By adopting the gap function (19), the NCP (15)-(18) can be reformulated into a minimization
program:

min ( )G
x

x , (22)

where G(x) is defined by (19)-(21). This minimization program can then be solved by a
number of existing algorithms. In this paper, this program is solved by the Generalised
Reduced Gradient (GRG) algorithm (Abadie and Carpentier, 1969).

NUMERICAL STUDIES

The effect of introducing multiple network-specific demons

In this study we consider the effect of introducing multiple network-specific demons into the
game. The simple test network used to generate results is shown in figure 1 below and
consists of one OD pair with three parallel links. Since this network has only one OD pair, the
demon(s) here can be considered as OD-specific demon(s), and the results here can also be
used to explain the effect of introducing more than one demon per OD pair. So, in this study,
we use the term ‘demons’ instead of ‘network demons’. The following network parameters
also apply:

Free-flow travel times: 0 0 0
1 2 3 10t t t= = = minutes.
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Link capacities: 1 2 3 4000k k kc c c= = = Vehicles/hour, if a link is not selected for

damage by any demon;

1 2 3 2000k k kc c c= = = Vehicles/hour, if a link is selected for

damage by one or more demons.

While the network chosen need not be symmetric, it is used here for illustrative purposes. In
this example, we assume that the capacity is always reduced by 50% regardless of how many
(network or OD) demons select the same link to damage simultaneously. Again the reason for
this is to simplify the analysis. Later we will challenge this assumption by studying the effects
of relaxing it, that is, by allowing for a greater capacity reduction when multiple demons
select the same link to damage. We also assume as much freedom as possible for demons to
damage links so that on the one hand demons are forced to damage at least one link per day,
while on the other hand they are not restricted from selecting the same links to damage that
other demons have selected. Therefore the number of possible scenarios of link damage
increases with the number of demons in the network. In our study we calculate the total
expected network cost for the cases when there are one, two and then three demons in the
network giving us respectively, 3, 9 and 27 possible scenarios of link damage. For
comparison purposes, we also consider the case without demons (i.e., there is no capacity
uncertainty).

Figure 2 shows the total expected network cost for each case under various levels of network
congestion. The level of network congestion is represented by the congestion index (C.I.):

Total Number of Network Users
Congestion Index =

Total Network Capacity
.

where the total network capacity can be determined using the following rules:
a) For networks with links in series only, the total network capacity is equal to the

minimum link capacity of all links.
b) For networks with links in parallel only, the total network capacity is simply equal to

the sum of all the individual link capacities.
c) For other networks, the total network capacity can be obtained by first dividing the

networks into many (strongly connected) subnetworks with only links in series or
links in parallel and then by considering each subnetwork as an ‘artificial’ link and
applying rules a) and b) repeatedly until the total network capacity is obtained.

1 2

3

2

1

Figure 1: Test network 1
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Replacing some links in the original network by many ‘artificial’ links with equal
capacity may be necessary before dividing the network into many subnetworks.

In general, the higher the value of C.I., the more congested the network is.

0.00E+00

2.00E+05

4.00E+05

6.00E+05

8.00E+05

1.00E+06

1.20E+06

0 0.5 1 1.5

Congestion Index

T
ot

al
E

xp
ec

te
d

N
et

w
or

k
C

os
t

3 demons

2 demons

1 demon

0 demons

According to figure 2, we can see that when the number of demons is fixed, the total expected
network cost increases with rising levels of congestion in the network, which is expected.
Moreover, the total expected network cost tends to increase with the number of demons
present in the network. Again, this is expected. The reasons are as follows: First, the network
cost under capacity degradation must be higher than the one without as a lower capacity leads
to a higher travel cost. Therefore, the total expected network cost in the multiple-demon case
must be higher than the one in the no-demon case. Second, more demons allows more links to
be degraded at the same time as shown in table 1, and hence a lower network capacity and a
higher total expected network cost. This is why two or more demons can certainly impose a
higher network cost on the users than one demon.

Table 1a: Link capacities for the one demon case

Scenario
1 2 3

Link 1 2000 4000 4000
Link 2 4000 2000 4000
Link 3 4000 4000 2000

Figure 2: The total expected network cost for a range of congested conditions
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Table 1b: Link capacities for the two demon case

Scenario
1 2 3 4 5 6 7 8 9

Link 1 2000 4000 4000 2000 2000 2000 4000 2000 4000
Link 2 4000 2000 4000 2000 4000 2000 2000 4000 2000
Link 3 4000 4000 2000 4000 2000 4000 2000 2000 2000

It is also clear from figure 2 that the differences in the total expected network cost produced
by different numbers of demons become very significant as the number of users (the travel
demand) tends to the capacity of the network, i.e. as the network becomes more congested. At
low levels of demand relative to the capacity (un-congested conditions), figure 2 shows that
the number of demons we assume to be active has little or no impact on the total expected
network cost. This result makes sense when we consider some damage to a link such as, for
example, a lane closure due to road repairs. This would have the effect of halving the capacity
of the link but would not cause that much delay to users when the travel demand is low.
However if the travel demand were high then a lane closure would have a serious impact on
the congestion levels. In fact, in this example at the highest demand level used (i.e., 16000
users, C.I. =1.33), we found that the differences between the total expected network costs is
very significant ranging from about 41% when we go from assuming one demon to two
demons in the network, up to about 68.5% when we go from assuming one demon to three
demons. According to Bell (2000) the total expected network cost provides a useful measure
of the network reliability since it reflects the expectations of the pessimistic users. Therefore
we can conclude that the number of demons we assume will have a significant impact on the
total expected network cost that we use to measure the network reliability.

The obvious question at this point is – how can we determine exactly how many demons we
should choose to be active in the network (or in an OD pair)? This is a difficult question to
answer since it is also linked to the other question of how much we should assume that each
demon contributes to the link capacity reduction when the demon selects a link to damage.
However one possible method may be to choose the number of demons that are suitable based
on some available data on incidents that have led to past link failures in the network. Very
often however this kind of data may be unavailable.

Actually, in this study we consider an even more uncertain network than the ones considered
in Bell and Cassir (2002) or in Szeto et al. (2006), since we consider more demons, which
results in greater uncertainty in link capacity. If only one demon is active then we have three
scenarios of link damage (see table 1a) whereas if we have two demons there are nine
scenarios of link damage (see table 1b). These two tables illustrate how greater uncertainty
arises. It is clear from the two-demon case that there are many more scenarios to choose from
in which the capacities of links 1, 2, or 3 (or all) are reduced by 50%. Take scenarios 3 to 9
for example - here two link capacities are reduced by 50% since the two demons select
different links to damage.
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To conclude, in this study we have ascertained the effect of ignoring multiple demons which
really means ignoring greater uncertainty in link capacity (or ignoring greater network
capacity uncertainty) and pointed out the implications to network reliability, however we
leave the question of exactly how many demons to assume in the model of risk-averse traffic
assignment to future studies.

The effect of introducing capacity reduction in some proportion to the number of
demons

In previous work on risk-averse traffic assignment (Bell and Cassir, 2002; Szeto et al., 2006)
the conventional approach to modelling the damaged capacity was to assume that if a demon
selects a link to damage, then the capacity of that particular link is half the value of its initial
capacity. The rationale for such an assumption is based on a link having two operational states
– congested and un-congested. Even when a number of OD-specific demons select the same
link to damage at the same time, the capacity is still reduced by half. Because of this, we used
a similar assumption in our first numerical study above: when more than one network-specific
demon selects the same link to damage at the same time, the capacity is still reduced by 50%.
Indeed, it is reasonable to assume that if many (network or OD-specific) demons select the
same link to damage at the same time, the resultant link capacity reduction is in some
proportion to the number of active demons selecting this particular link to damage, since there
are many more than just two operational states in real road networks. Therefore in this study,
we relax the assumptions on link capacity degradation due to the presence of multiple demons
and examine the effects of introducing the capacity reduction of a particular link on the
maximum expected pay-off to the demon(s).

We use the same network as shown in figure 1 above and therefore the results here can be
used to explain the effects of ‘greater capacity degradation’ due to either multiple network-
specific demons or multiple OD-specific demons. The free-flow travel times and undamaged
link capacities are the same as in our first study (above) but the damaged link capacities are
set based on the relaxed assumptions. The values for the damaged link capacities are given in
table 2. We consider two different cases of this: Case one (two) capacity reduction is linear
(non-linear) with respect to the number of demons. We repeat the calculations that we carried
out in the first numerical study using the same travel demand range, and obtain the maximum
expected pay-offs to the demon(s) for different congestion levels in the network represented
again by the congestion index that we defined earlier.

Table 2: The damaged link capacities

No. of demons selecting a link to damage
0 1 2 3

Link Capacity (vph) for Case 1 4000 3000 2000 1000
Link Capacity (vph) for Case 2 4000 2000 1000 500
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Case 1: linear capacity reduction

Figure 3 shows the total expected network cost in the case of linear capacity reduction. The
trend is similar to the one in the first numerical study (i.e., base case). The total expected
network cost tends to increase with the number of demons present in the network. Moreover,
the total expected network cost increases as the congestion levels rise for any number of
demons. Furthermore, like before, the differences in the total expected network costs
produced by different numbers of demons are negligible when the congestion levels are low,
regardless of the number of demons present. However, when the network is congested, the
demons have a much greater impact on the total expected network cost and these differences
are quite substantial as we can see from the graph in figure 3. For the highest level of demand
shown here of 16,000 users (C.I=1.33), the total expected network cost varies greatly
depending on how many demons we assume are active. In fact, going from assuming one
demon to assuming three demons produces a massive 339.9% increase in the total expected
network cost. Contrast this to the first numerical study in which we used a cruder assumption
on capacity reduction, we find only a corresponding 68.5% difference in the total expected
network cost when we go from having one to three active demons in the network. This has
important implications to network reliability defined based on expected network cost. The
total expected network cost resulting from multiple demons in the network will be quite
different (higher) than the case with one demon and will therefore result in a different value
that we use to measure the network reliability.
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Figure 3: The total expected network cost for a range of demons from free-flow to congested
conditions when we assume a linear capacity reduction

Case 2: non-linear capacity reduction

Figure 4 reveals the total expected network cost in the case of non-linear capacity reduction.
The observation is similar but the manner in which the total expected network cost increases
with increasing levels of congestion differs and the differences in total expected network cost
produced by different number of demons are even more substantial when compared with
those in the base and linear capacity reduction cases we have previously examined.
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To illustrate this clearly, we plot figure 5, which clearly shows the total expected network cost
against congestion levels for the three cases on link capacity degradation for the three demon
case. From this figure, we can see that the total expected network cost in the non-linear
capacity reduction case is much larger than those in the base and linear capacity reduction
cases when C.I. is greater than or equal to 1. At the highest level of demand (i.e., C.I. = 1.33),
the total expected network cost in the nonlinear capacity reduction case is 16 times larger than
that in the base case. This large difference not only is significant but also poses more
questions than it necessarily answers regarding how much uncertainty we should consider (i.e.,
how many demons) and further how much link degradation we should assume. From both this
numerical study and the first one, it is quite clear that the assumptions regarding capacity
degradation may have more significance than those regarding how many demons to select.
However when both of these assumptions are relaxed, they produce significantly higher

Figure 4: The total expected network cost for a range of demons from free-flow to
congested conditions when we assume a non-linear capacity reduction

Figure 5: The total expected network cost vs. congestion levels for the three different
assumptions on link capacity degradation for the three demon case
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network cost for users to face and are worthy of further study due to the implications for the
network reliability.

The Demon Probabilities – the demons’ evil behaviour

It is worthwhile to have a closer look at the probabilities of demons selecting particular links
to damage so as to gain a better understanding of the demons’ evil behaviour (evil in the sense
of how they maximise their expected pay-offs). This is of importance since it gives us a sense
for which links get damaged with higher probabilities, what scenarios are more likely to occur
and also provides us with some insight into the problem. For these purposes we choose a
simple test network of just one OD pair with two parallel links. This sample network is shown
in figure 6.

The following network parameters also apply:

Free-flow travel times: 0 0
1 25 mins; 10 mins.t t= =

Link capacities: 1 2 4000k kc c= = vehicles/hour if there is no damage and 2000

vehicles per hour if demon(s) select these links to damage.

Case 1: the one demon case

Firstly we consider a simple case where there is only one demon active in the network,
because this case will provide us with some insight into the ‘evil behaviour’ and increases our
understanding of what happens when there are two or more demons involved. In this simple
case, there are only two resulting scenarios. These two scenarios are respectively: demon 1
selects link 1 to damage; demon 1 selects link 2 to damage. The links that the demon selects
to damage varies in their probabilities over a travel demand range (here we examine from
2,000-10,000 users). We expect that the sole demon will damage the link with the most flow
with the highest probability. In this way the demon can impose the highest network cost on
most users thereby maximising its maximum expected pay-off.

1 2

2

1

Figure 6: Test network 2
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Figure 7 shows the risk-averse flows in the network. Interpreting figure 7 is relatively
straightforward since all flow will choose link 1 initially because it is the minimum cost route.
As link 1 becomes congested (volume/capacity =0.75, or congestion index = 0.375), i.e. when
it tends towards its capacity of 4000 vph, the users begin to slowly choose link 2. From a
demand of about 6,000 users onwards (or congestion index= 0.75), the users begin to choose
both routes fairly evenly although there is of course still more flow on link 1 since it is the
lowest cost route.
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The probabilities of demon 1 selecting links 1 and 2 to damage closely mirror the flow
patterns. These probabilities are shown in a plot against the rising congestion levels in figure
8. The sole demon will choose link 1 to damage until the demand reaches a level approaching
capacity of that facility. At this point the demand is high enough to force some users to
choose link 2. However at this point there is still not that much flow on link 2 so the demon
continues to damage link 1 almost exclusively. At about 6,000 users (or congestion index=
0.75), the flow on link 2 becomes significant enough to attract the demon to choose link 2 to
damage with a somewhat lower probability and link 1 still with a higher probability. However

Figure 7: The link flow patterns for the case of one active demon

Figure 8: The link damage probabilities for the one demon case
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the values of the probabilities of the demon selecting links 1 and 2 to damage tend towards
approx 0.55 and 0.45 respectively once congestion begins to occur. These values seem
reasonable as they reflect how the slightly higher probability of the demon selecting link 1 to
damage is due to the fact that there are more users on this link. In this way the demon can
maximise the network cost faced by the user and hence, in the process, maximise its own
expected pay-off, as we expected.

Case 2: the two demon case

Secondly, we consider two demons, which is beneficial as no one has presented and discussed
the results about the case of two or more (network-specific or OD-specific) demons. We
adopt the same network and parameters as in the case just above where we considered one
demon. As before, the demons are not restricted from damaging the same links at the same
time. Table 3 sets out the possible scenarios of link damage.

Table 3: Scenarios for two demons in network 2

Scenario Link 1 Link 2
1 Demons 1 & 2 0
2 0 Demons 1 & 2
3 Demon 1 Demon 2
4 Demon 2 Demon 1

In figure 9, the link flows for the users who face the maximum (total expected) network cost
imposed by two demons are plotted for increasing levels of congestion in the network. These
link flow patterns follow a broadly similar trend to flows in the network with one demon (see
figure 7), and that is, when the network is un-congested the users tend to choose the minimum
cost route until the demand rises to a level that approaches the capacity of that facility. After
this point the users begin to choose route 2 but do so slightly more readily than in the previous
case with just one demon. In general, however, the flow patterns are very similar between the
two cases. In some ways like before the demon behaviour in selecting links to damage reflects
the popularity of the routes chosen. When we assumed only one active demon in the network,
this demon damaged link 1 with a probability of one at low demand levels, since link 1 was
the minimum cost route and it attracted all of the users.

Similarly, in the case of two demons, according to table 4, one of the demons damages link 1
with a probability of one when the demand is low (but both routes carry flows) for the same
reason as we have just mentioned in the one demon case, while the other demon will damage
the other link since there is no further benefit or pay-off to be gained from damaging the same
link as the first demon. The explanation for this is relatively simple. If demon 1 damages link
1 with a probability of one which in un-congested conditions imposes maximum (total
expected) network cost on all users then demon 2 receives a higher pay-off in damaging link 2
with a probability of one so as to impose the network cost on the remaining users and in the



144 Transportation and Traffic Theory 17

process maximise its expected pay-off. There is no benefit to demon 2 to further damage link
1, since under our capacity assumptions the capacity of the link will not reduce any further by
doing so. For rising congestion levels when users begin to choose route 2, the pay-off to the
demons remain at a maximum since they each individually damage the two links and
therefore impose the highest network cost possible on all users.
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Table 4 also reveals that the demon selection strategies change with the congestion level. For
example, demon 1 selects link 1 to damage with probability of one when the congestion
indices are 0.25, 0.375, 0.5, 0.875, and 1.25 but selects link 1 to damage with zero probability
when the congestion indices are 0.625, 0.75, 1.0, and 1.125. However, as long as one demon
selects a different link to damage from the other demon, their payoffs must be maximized.
This suggests that the ‘flip-flop’ solution as shown in table 4 is only one of the optimal
solutions, which will be further discussed in the next subsection.

Table 4: The demons’ link selection probabilities for the two demon case

Congestion Link selection probabilities
Index Demon 1 Selects Demon 2 Selects

Link 1 Link 2 Link 1 Link 2
0.25 1 0 0 1
0.375 1 0 0 1
0.5 1 0 0 1
0.625 0 1 1 0
0.75 0 1 1 0
0.875 1 0 0 1
1 0 1 1 0
1.125 0 1 1 0
1.25 1 0 0 1

One point is worthwhile to mention. In a sense the overall trend is similar to the case with one
demon where the sole demon begins to damage the link with less flow with a lower

Figure 9: The link flow patterns for the case of two active demons
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probability so as to impose costs on all users. However, significantly, the sole demon only
begins to damage link 2 when the number of users on that link is greater than about 3000 vph
(congestion index = 0.375). Compare this to the evil behaviour of the two demons in this case,
where the other demon always damages link 2 with a probability of one no matter how many
users are on that link. These slightly different strategies may help to explain why the
maximum expected pay-off is higher when there are two demons instead of one since they
quite literally have the resources to impose maximum damage on the users by damaging more
links and therefore in the process maximising their expected pay-offs. In fact the percentage
increase in the maximum expected pay-off when we assume two demons instead of one is
approximately 63%. These results follow a similar trend to our earlier studies involving
multiple demons on network 1. Figure 10 below shows the maximum expected pay-offs to the
demon(s) for rising congestion levels. As before the significant differences occur when the
network is very congested. In general we can conclude that whenever both links are damaged
this implies the optimal solution.
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Similar effects and trends in the demon probabilities can be observed for a three links network
with 3 network-specific demons but due to space constraints we cannot show them here. The
simpler network used here with two network-specific demons makes it easier to visualise the
results. In general, the trends that we have shown hold well but it must be mentioned however
that due to the nature of the problem, there can be multiple solutions as shown in the
following example.

The existence of multiple solutions

Table 5 shows another set of the optimal link selection probabilities for the demons when link
2 carries flow. The overall effect in terms of the total expected network cost is the same, since
as the table shows that both demons still select different links to damage for each level of
congestion shown. In other words we have demonstrated that the demons choose exactly the

Figure 10: The maximum expected pay-off vs. level of congestion in the network
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opposite links to damage between the solution shown here and those shown in the previous
numerical study.

To summarise the results shown in tables 4 and 5, when link 2 carries flow then both demons
have a probability of one in different links. However with one small exception which occurs
when the network is very un-congested. In this scenario there are other possible solutions.
These other possible probabilities occur when there is no flow on link 2 (i.e., when the
demand is lower than the capacity of the minimum cost route). In this case it is possible for
both demons to select link 1 (the minimum cost route) to damage with a probability of one.
This does not affect the maximum expected pay-off since there is no real benefit in terms of
getting a higher network cost for the other demon to damage link 2 when there is no flow on
this link so the overall expected pay-offs to the demons remains the same. We can say
therefore that when link 2 has no flow, at least one of the demons has a probability of 1 in
selecting link 1 to damage.

Table 5: Another set of the optimal demons’ link selection probabilities

Congestion Link selection probabilities
Index Demon 1 Selects Demon 2 Selects

Link 1 Link 2 Link 1 Link 2
0.25 0 1 1 0
0.375 0 1 1 0
0.5 0 1 1 0
0.625 1 0 0 1
0.75 1 0 0 1
0.875 0 1 1 0
1 1 0 0 1
1.125 1 0 0 1
1.25 0 1 1 0

OD Specific vs. Network Specific Demons in a Multi-Commodity Network

The purpose of this study is to highlight the impacts of the OD specific demons as formulated
in Bell and Cassir (2002) and the network demons as described by this paper since in previous
examples we considered only one OD pair which does not allow us to consider more than one
OD specific demon and does not allow for other possibilities such as all network demons
damaging one OD pair only. To have a fair comparison between the two types of demons, we
assume that the link capacity is reduced by 50% when it is selected for damage by one or
more demons. This assumption is necessary here since there is no possibility of more than one
OD specific demon selecting the same link to damage in the same OD pair. Furthermore we
consider only two network specific demons to be active in the network since there are only
two OD specific demons present (one for each OD pair). The network used here is shown in
figure 11 and consists of two OD pairs: OD pairs (1,2) and (2,3). OD pair (1,2) connects
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origin 1 to destination 2 via two parallel and symmetric links. OD pair (2,3) connects origin 2
to destination 3 via one link only – link 3.

The following network parameters chosen for illustrative purposes also apply:

Free-flow travel times: 0 0 0
1 2 3 10 mins.t t t= = =

Link capacities: 1 2 3 4000k k kc c c= = = Vehicles/hour, if a link is not selected for

damage by any demon;

1 2 3 2000k k kc c c= = = Vehicles/hour, if a link is selected for

damage by one or more demons.
OD travel demand: 12 6000N = users,

We consider two demand levels for OD pair (2,3): 2000 users (case 1) and 4000 users (case 2)

Case 1: 23 2000N =

The link selection strategies of the demons for this case are shown in table 6. Due to the two
parallel and symmetric links, the OD specific demon for OD pair (1,2) will always have an
equal probability of selecting links 1 and 2 to damage to maximise the total expected network
cost to the users. The O-D specific demon for OD pair (2,3) will always damage link 3 with a
probability of one since under the assumptions in Bell and Cassir (2002) that the O-D specific
demon for OD pair (2,3) is forced to damage at least one link per day and only link 3 connects
the OD pair (2,3). Regardless of the demand for travel and network parameters, the OD
specific demons will always behave in this way. However, the same cannot be said for the
network demons. The formulation proposed in this paper allows the network demons to have
the freedom to ‘roam’ the network choosing whatever links they wish to damage so as to
maximise the total expected network cost to the users. For the fixed demand level of 2000
users here, both network specific demons concentrate entirely on damaging links between OD
pair (1,2) and they do so in such a way that both demons select different links to damage.
Whether demon 1 selects link 1 to damage and demon 2 selects link 2 to damage or vice-versa
does not matter as the total expected network cost to the users remains the same.

Figure 11: Test network 3
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Table 6: Link selection probabilities of the demons for case 1

OD-Specific Demons Network DemonsOD Pair Link
Demon 1 Demon 2 Demon 1 Demon 2

1 0.5 0 1 01-3
2 0.5 0 0 1

2-3 3 0 1 0 0

It is clear from this example that the network demons are more flexible and can choose to
concentrate on one OD pair only, in this case OD pair (1,2), which seems appropriate since
this OD pair has a higher demand and therefore more users can be affected by damaging these
links. The OD specific demons do not have this freedom however, and are forced to damage
different OD pairs. This example shows that this may not necessarily be the best strategy
since there are not as many users affected by link 3 being damaged, and therefore the total
expected network cost imposed on the users by the OD specific demons is consequently lower
than those imposed by the network demons in this case. In this particular example, the total
expected network cost imposed on the users by the network specific demons is 14.75% higher
than that of the OD specific demons. This is a significant difference and underlines how the
network demons give the worse case scenario of link damage in this case. This has important
implications for the network reliability since we define the network reliability based on these
values.

Case 2: 23 4000N =

In this case, we consider the same network and network parameters as before. However the
demand parameters are changed somewhat with OD pair (2,3) having an increased travel
demand of 4000 users. The resulting demons’ link selection strategies are shown in table 7.
As before the link selection strategies of the OD specific demons remains the same (as we
would expect) but the network demons select different links to damage than before. In this
case the two links in OD pair (1,2) are selected for damage with equal probability by one
network demon and the sole link in OD pair (2,3) is selected for damage with a probability of
one by the second network demon. This means that in this case the link damage probabilities
under the two assumptions are the same and hence the OD-specific and network specific
demons impose the exact same network cost on the users.

Table 7: Link selection probabilities of the demons for case 2

OD-Specific Demons Network DemonsOD Pair Link
Demon 1 Demon 2 Demon 1 Demon 2

1 0.5 0 0.5 01-3
2 0.5 0 0.5 0

2-3 3 0 1 0 1
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By comparing the two cases, we can see that the network demons can give the same link
damage probabilities as the OD specific demons. This implies that the network demon
approach is more general in the sense that this approach can capture the results obtained by
the OD specific demon approach. This is reasonable as network demons can behave as if they
are OD specific demons. Moreover, the network demons can at least yield the same total
expected network cost as the OD specific demons. This means that the network demon
approach can always give the worst case scenario in network reliability analysis. This is again
reasonable as network demons have freedom to choose links anywhere in the network to
damage, regardless of what OD pair those links connect.

CONCLUSIONS

This paper develops a formulation of the risk-averse traffic assignment that allows for the
presence of multiple network-specific demons and therefore allows us to consider the effect
of greater network uncertainty in terms of capacity degradation. Through numerical studies
we demonstrate just how important the assumption on how many demons to use is. A
numerical study is also performed to consider the effect of relaxing the assumption on
capacity reduction when links are selected for damage by one or more demons. The results
show just how important it is to accurately capture the link capacity degradations. Relaxing
this assumption also allows for more operational states to be modelled. Apart from these two
contributions, we also provide some further insights into the demon behaviour in selecting
links to damage and what their optimal damage strategies are, demonstrate the existence of
multiple solutions to this route choice game, and compare the network demon approach
proposed here and the traditional OD specific demon approach.

This paper opens up many future research directions. First, the proposed multiple network
demon formulation and the ones in Bell and Cassir (2002) and Szeto et al. (2006) could be
formulated into one model of risk-averse traffic assignment. This would have the benefit of
providing one clearly defined framework for the problem. Second, the formulation is defined
as a Nash game where the demon cannot predict user response to link damage. An alternative
to this model would be to formulate the problem as a Stackelberg game in which the demon is
placed at the upper level. This extension may allow for a better approximation of the worst-
case expected travel cost. Third, the very important question of how many demons are
appropriate to assume remains unanswered. Extensive studies on real networks involving data
on previous incidents are required to rectify this. Fourth, the studies here on the behaviour of
two demons are carried out on small test networks. Different, larger networks are required to
further investigate the demons behaviour and to determine if they always select certain links
to damage over others in the network with a higher probability, in particular those critical
links near the origin and destination nodes. Fifth, by assuming a greater number of demons
and more capacity degradation states, the complexity of the problem increases since the
number of scenarios increases exponentially according to the number of demons used and the
number of capacity degradation states. The resultant formulation is difficult to solve for large
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networks. This should be addressed in the future. Sixth, the route set is assumed to be known
in advance in this paper. One important future extension is to develop a link-based
formulation so that the route set is not required to be known in advance and that the number
of variables is reduced (since there are considerably less links than routes in large networks).
Finally, using the risk-averse framework proposed in this study, one can assess the reliability
of transport networks, develop a reliable network design, and analyse the effect of
assumptions on traveller behaviour in each approach on network design and reliability. This
may bring up some interesting and important future research directions.
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APPENDIX: THE PROOF OF THE EXISTENCE OF SOLUTIONS

We prove the existence of solutions of the NCP (15)-(18) by using two important results in
Nagurney (1993):

1. A NCP can be reformulated into a Variational Inequality Problem (VIP) as the VIP
contains the NCP as a special case (Proposition 1.4), and

2. A VIP must have at least one solution if the mapping function ( )F x is continuous

with respect to x and if the solution set is the compact convex set and bounded
(Theorems 1.4 and 1.5).

Based on Proposition 1.4 in Nagurney (1993), we have the following proposition:

Proposition 1: The NCP (15)-(18) can be reformulated into the following VIP.

Find *x such that:

( )T* *( ) 0,≥ ∀ ∈Ωx - x F x x , (23)

where x and ( )F x are defined as in (17) and (18), respectively; uR+Ω = is the solution

set; u is the dimension of x , which is equal to the sum of the number of paths in the
network, the number of OD pairs, the product of the number of demons and the number of
links, and the number of demons.
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This proposition implies that if the VIP (23) has a solution, the NCP (15)-(18) will also have
the same solution. The following proves that the VIP (23) indeed has a solution using the
result in Theorems 1.4 and 1.5 in Nagurney (1993).

Proposition 2: A solution to the VIP (23) exists.
Proof:
We first show that the solution set Ω can be reduced to a bounded compact convex set.
By definition, the link selection probability

m

m
lp must not exceed one and the route flow

rs
jh must be less than or equal to the corresponding demand:

1
m

m
lp ≤ and (24)
rs rs
jh N≤ . (25)

Using (24) and (25), we have:

( ) ( ) ( )rs rs rs
jk k jk k jk

k k k

g q g q g≤ ≤∑ ∑ ∑h N N , (26)

where , , |rs rs rs
j jh j rs h N⎡ ⎤= ∀ =⎣ ⎦N .
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respectively be rewritten as:
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By (28) and the fact that the minimum expected OD travel cost must be less than or equal
to the expected route travel cost between that OD pair (i.e.,

( ) ( )
d

minrs rs rs
dk k jk k

k k
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∑ ∑h h ), we know that the minimum expected OD travel

cost is bounded:
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With the upper bound x
�
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r x=
�

so that the solution set uR+Ω = to be a bounded compact convex set.

We now show that ( )F x is a continuous function of x . From (5)-(8), it is not difficult for

us to see that ( )rs
jkg h is a continuous function of rs
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We can therefore say that all elements of ( )F x are continuous functions of x and hence

( )F x is a continuous function of x .

Based on propositions 1 and 2, we can conclude that the NCP (15)-(18) must have at least one
solution.
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EMPIRICAL STUDIES ON ROAD TRAFFIC 
RESPONSE TO CAPACITY REDUCTION 

Richard Clegg, Department of Electronics and Electrical Engineering, University College 
London, UK 
 
 
SUMMARY 
 
This paper uses empirical data collected on street to provide insight into how real traffic 
systems are behaving.  The data are fitted to statistical models and these statistical models 
show how traffic systems respond when the capacity of the system is reduced.  This research 
follows on from the general interest in highway capacity reduction following Cairns et al 
(1998).   
 
A great deal of effort has been spent on models (mathematical and computational) that 
simulate the day-to-day behaviour of road traffic.  Many of these models include parameters 
that adjust how quickly users will respond by changing their behaviour.  This paper provides a 
starting point for the calibration of such models by careful statistical analysis of real-life data 
collected in the city of York (UK).  The data were collected to track a real-life capacity-
reducing event that occurred in the city (a partial road closure).  The paper begins with a brief 
discussion of the context of the research, other studies providing evidence in this area and the 
modelling context. 
 
In the second section of the paper the survey performed is described.  The survey took place 
in the morning peak and collected licence plate data.  It considers the effect of a road closure.  
Before and during data are available for several days at several sites to establish the ambient 
variability in the system and then to compare this with the response to the change in the 
system.  The data collected are freely available to other researchers. 
 
The third section of the paper considers day-to-day variability in the traffic pattern and 
models “recurrence rate” (the percentage of drivers seen on one day who reappear on another 
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day).  A statistical model is fitted to the data showing that the recurrence rate starts lower than 
many researchers might expect for a morning rush hour and falls off quickly with subsequent 
days.  A marked day of the week effect is noted showing that recurrence is higher on the same 
day of the week.  This can be thought of as the “See you next Wednesday” effect, that is, the 
effect on the traffic system of a pool of drivers who travel on the same day or the same set of 
days.  
 
The fourth section of the paper considers the transient response of the drivers to a change in a 
road system.  The data studied show a “healing” effect. The initial (day one) response to the 
change is strong but the effect becomes weaker in subsequent days.  This response can be 
seen in both travel times and link flows.  This can be thought of as analogous to the road 
traffic engineering rule of thumb that a change that seems disastrous on Monday will “be 
alright by Friday”. 
 
The final section of the paper considers the effects of rerouting as seen in the data and 
measures the route choice response to an incident. Again this can be separated into an initial 
response and a later “settling down” consistent with the “It’ll be alright by Friday” rule. 
 
While the results presented here are just on one road system, the analysis is intended as a 
starting point for people wishing to calibrate network models in which drivers change route in 
response to congestion and changes to the network.  The conclusion section of this paper 
describes how these results could have implications for modelling and further research. 
 

INTRODUCTION 

The aim of this paper is to make a rigorous statistical examination of an urban road traffic 
network.  The statistical analysis takes account of the behaviour down to the individual 
vehicle level.  In particular the real-life effect of reduction in road capacity is analysed.  To 
this end two surveys were undertaken in the city of York looking at interventions leading to 
road capacity reduction.  Note that throughout this paper the term intervention is used to refer 
to a planned alteration to a road network such as a road or bridge closure.   
 
It should be stressed that the motivation of the surveys undertaken and of this paper is not to 
provide insight into the detailed effects of specific interventions in a specific town. It is hoped 
that in the future, through technologies such as GPS and licence plate recognition, large data 
sets that can identify individual vehicles will become more readily available.  Methods such 
as those used in this paper could be used to identify general characteristics of road traffic 
networks and, in turn, to provide insight for mathematical and computational modelling.  The 
techniques given in this paper could be applied such data set and this statistical analysis could 
do much to inform efforts in creating accurate simulation models of the urban traffic 
environment. 
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The data set considered here is also examined in Clegg (2005), chapter five of Clegg (2005b) 
and Clegg (2006). 

Background and Previous Research 

Responses to congestion and to road capacity reduction are of great interest both to the road 
traffic engineer and to the modeller.  Cairns et al (1998) and a summary update in Cairns et al 
(2002), reviewed on-street evidence from over ninety cases of road capacity reduction (in 
some cases this was deliberate reduction due to a planned scheme and in some cases due to 
accidents which closed roads for long periods). Two important conclusions of this report 
were, “...overall, the two responses - changing route and changing journey time – seem to be 
the most universal” (Cairns et al 1998 p28) and also that in the “short term...it is the common 
experience that, after an adjustment period, traffic alters to take account of the new 
conditions.  Reference to a ‘settling down’ period has been made” (Cairns et al 1998 p36).   
 
Note that a number of other driver responses to congestion are possible including a no-travel 
decision, destination switching and mode switching.  These possibilities are not investigated 
here since the data could not produce firm conclusions on these travel choices. 
 
The effect of roadworks on congestion has been investigated by a number of researchers, for 
example, Marvin and Slater (1997) and Goodwin (2005) although the emphasis is on 
calculating the cost to the economy of the delays imposed by roadworks.  In the UK there is 
some governmental interest in this subject following the Traffic Management Act 2004 that 
regulates roadworks in the UK.  More information can be found at 
www.dft.gov.uk/stellent/groups/dft_roads/documents/divisionhomepage/612852.hcsp 

Ambient Variability 

Before considering the response to a change to a network it would be useful to know how 
much to expect networks to be in a state of change anyway.  Do drivers habitually travel at 
the same time via the same route most days or are drivers constantly experimenting with new 
routes and travelling at different times of day?  This is sometimes referred to in the literature 
as churn. 
 
Bonsall et al (1984) report on the collection of a large number of licence plates from roadside 
surveys undertaken in Leeds.  They report that over the hours they surveyed then considering 
only those drivers who travelled at the absolute height of the morning rush hour, only 45% 
(but see later note about a 15% increase) of those drivers were seen in a two and a quarter 
hour period around the rush hour on a subsequent day.  Over the course of the full rush hour it 
seems that, for these survey results at least, more than half the drivers seen will not travel on 
the next day.  Their results also showed that of those drivers who were seen on a subsequent 
day, many of them were not travelling within a quarter of an hour window of the journey on 
the original day.  It is also important to note that they stress the recording process was 
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unavoidably error prone when looking at the number of matches they “assume a 15% 
increase in the number of matches” (p387) due to missed matches from incorrectly recorded 
data. 
 
However, Stephenson and Tepley (1984) conclude that when comparing two days from the 
before-period: “60% of drivers travelled at the same time (+/- 5 minutes) every day during 
uncongested conditions”  but it is unclear from their paper if they intend this to mean 60% of 
those drivers seen on both of the two days or 60% of the drivers seen on the first day. 
 
Jan et al (1999) report on the use of GPS data to understand route choice.  Their data set was 
GPS data from 100 households (216 drivers) over a one-week period.  They reported that “the 
path chosen on a trip most often differs considerably from the shortest time path across the 
network” (p1) and also that “travelers habitually follow the same path for the same trip’” 
(p12).   
 
A review from the point of view of Global Positioning System (GPS) data is given by 
Pendyala (2003) and the author analyses several small data sets of between sixteen and thirty-
two individuals, concluding that, “The percentage of individuals in each sample who exhibit 
the same characteristic across all days...is extremely small... [often] zero.” 
 
One important result comes from Huff and Hanson (1986) who studied data from individual 
drivers collected over a 35-day period.  A major conclusion of their work is that 
“observations taken for a single day in the travel history of an individual are not likely to be 
representative of the range of daily travel patterns exhibited by that person over a more 
extended time period, and we are led to reject the view that travel is highly routinized in the 
restricted sense that every weekday is assumed to look much like every other weekday” 
(p108).” 

Evidence about Road Capacity Reduction 

As mentioned, Cairns et al, (1998) investigated over ninety reports of capacity reducing 
incidents, but few of these reports produced quantitative results about route choice. 
Stephenson and Tepley (1984) is a notable exception.  They examined data obtained in 
Edmonton after the closure of the Kinnaird Bridge.  They considered how drivers changed 
their route as a result of the closure and showed a “knock-on” effect of drivers not directly 
affected by the closure shifting their route to avoid the congestion.  In addition the paper 
makes reference to a settling down period, that is an initial response of the closure that lessens 
as time goes on.  However, the paper does not provide any quantification of this effect. 
 
Daugherty et al (1999) reports on a number of bus priority schemes implemented in Great 
Britain.  They conclude that drivers often change their route in response to these schemes and 
this can cause problems if the new routes are unable to absorb the traffic.  Unfortunately, the 
reports tend to be qualitative not quantitative in nature.   
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Many authors report peak spreading as a response to increased congestion, but offer little in 
the way of qualitative evidence.  Such peak spreading could be either a result of a departure 
time choice response on the part of the drivers or a result of changes in travel time in other 
parts of the network as a result of the intervention.  
 

SUMMARY OF SURVEYS 

While not of general interest, description of the surveys performed is included here in order to 
provide context for the following discussion.  If desired, a fuller description of the surveys 
can be found in Clegg (2005), Clegg (2005b) and Clegg (2006).  The modelling here 
supersedes the modelling performed in those references.  The data can all be downloaded 
from www.richardclegg.org/route/ 
 
In fact, two surveys took place but the first of these, a survey of the closure of Lendal Bridge 
in York, was affected both by the UK “fuel crisis” (protests which blockaded refineries and 
caused a temporary fuel shortage throughout the UK) and also by flooding in York.  No 
results from this survey are given here but they can be found in the above website. 
 
The survey recorded licence plate data for the morning rush hour for several days over several 
sites.  The data recorded is in the form of partial licence plates from all vehicles at sites.   The 
survey monitored the temporary closure of one lane of the inner ring road in York on a road 
called “Fishergate”.   

General Survey Information 

The survey took place over the course of several weeks and recorded the morning rush hour 
on weekdays.  Several sites were simultaneously monitored and licence plates of all vehicles 
recorded over those sites.  The plates were recorded manually (audio recording with a 
phonetic alphabet for commonly confused letters) and transcribed later.  
 
The timing of the surveys was chosen to meet several aims.  It was important to get a good 
estimate of the ambient variability of traffic over days and weeks by monitoring the traffic 
before the intervention.  It was considered important to estimate the transient response of the 
traffic to an intervention in the weekdays immediately following.  It was desirable to get some 
estimate of the longer-term impact over more than one week.  Weekdays only were 
monitored.  While it was recognised that day of the week effects do occur the difference in 
traffic patterns between weekdays are widely recognised to be less than the differences 
between weekdays and weekends.  The morning rush hour was picked over the evening rush 
hour as, in York, this has more traffic and occurs at a more predictable time of day. 
 
Other considerations were taken into account when picking the geographical location.  It was 
of primary importance to survey those sites directly affected by the closure.  Secondarily, 
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those sites that would have knock-on effects by being directly before or after the closure 
should be monitored.  It was important to try to monitor potential rerouting locations where 
possible.  There was a recognised trade off between monitoring sites close to the site of the 
intervention and monitoring sites far from the site.  Nearby sites would have more vehicles 
which were affected by the intervention but more distant sites would provide more 
information per vehicle matched with a vehicle seen at the intervention site.  A compromise 
between these two cases was sought. 
 
The time was recorded at intervals of approximately five minutes. Surveyors were supplied 
with synchronised watches at the beginning of the surveys. The times for data between each 
time stamp are interpolated so, for example, if there are ten plates between a time stamp at 
8:10 and one at 8:19 they will be split so that one plate is seen in each minute. Because of this 
interpolation and possible rounding of the time, the times recorded can only be assumed to be 
accurate to within five minutes, however, it is thought that the timing is accurate to a much 
greater resolution than this. 
 
The surveys were mainly undertaken by audiotape (that is, surveyors recording licence plates 
onto audio tape which were later transcribed).  The possibility of recording or transcription 
errors should be taken seriously (this is discussed in a later section). 

The Fishergate Survey 

 
Figure 1: Fishergate Survey showing survey sites. 
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Figure 1 shows the survey sites used for the Fishergate Survey.  All sites are monitored only 
in the direction of the arrows given.  This survey was based around works to repair a 
collapsed sewer at site A.  The repair work involved a partial closure of site A, essentially one 
lane being removed from the road.  
 
The closure was originally scheduled to last only two weeks and therefore the plan was to 
survey for one week before, one week during and one week after the closure.  However, the 
closure was extended to four weeks and therefore no true after survey data is available. A 
possible exception is the 13th of July when the closure was suspended for one day to allow for 
the increase in traffic due to a major horseracing event that weekend (the extra traffic due to 
the race-goers is thought not to have had a great effect on traffic during the morning peak).  
The days surveyed (all in the summer of 2001) were as followed: 

1. 25th, 26th, 27th, 28th, 29th June and 2nd July – before surveys. 
2. 3rd, 4th, 5th, 6th, 11th, 12th July – during surveys. 
3. 13th July – temporary removal of roadworks (could be seen as after). 
4. 16th July – during survey (roadworks back in place). 
 

For the Fishergate survey, for most sites, the traffic was monitored at most sites from 7:45 to 
9:15.  This was in order to catch all of the rush hour traffic and a quarter of an hour window 
either side. However, at selected sites, this window was adjusted to monitor from 8:00 to 
9:30. This happened at those sites that would be reached last on a journey (for example, in 
Figure 1 site J would always be reached after site A). This was decided since the travel time 
between some pairs of sites was of the order of half an hour. Without such an offset some of 
the survey time would otherwise be wasted since the earliest (or latest) parts of the data could 
not be expected to match with data at any other site. The sites that were surveyed from 8:00 to 
9:30 were sites A, I and J.   

Data and Analysis Techniques Used 

In any project of this nature considerable pre-processing of data is necessary before fitting 
models.  The details of this pre-processing are not of general interest but are briefly recorded 
here as a guide for other researchers who might undertake similar work.  Since the aim of this 
work is to consider the behaviour of individuals it is necessary to infer matches between 
observations.  These matches may, for example, be a car seen on two different days at the 
same site or a car seen on the same day at different sites. 

Statistical methods used 

The statistical methods used in this paper are the standard t-tests and linear modelling. Both of 
these are well-known techniques and are only summarised briefly here.  Full descriptions can 
be found in most standard statistical text, for example. Comparisons between sample means 
are done using the two-sided Welch t-test (this allows small sample sizes and the possibility 
that the first mean may be smaller or larger than the second).  
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The linear models used are general linear models (not generalised linear models, although the 
results do not differ if generalised linear models are used instead).  The models take the form 

,
10 εββ ++= ∑ =

k

i ii xy  

where the observed variable y is dependent on the observed variables x1,x2,…,xk, and the βi are 
the parameters of the model (to be fitted).  The errors ε are assumed to be independent and 
identically distributed with a normal distribution, mean zero and with variance independent of 
the xi.   
 
In this paper significances are assigned at the 10%, 5%, 1% or 0.1% levels indicating that the 
significance of that parameter is at the level given or lower. If a result is stated as having 
“low” significance then that parameter is not significant at the 10% level.  This indicates that 
the data analysed do not support the inclusion of this parameter in the model. 

A note on errors in recording and transcription of data 

In any data gathering experiment some sources of error are to be expected.  Attempts have 
been made to compensate for some sources of error.  In other cases, the errors have been 
ignored and no systematic attempt has been made to deal with them. 
 
In some cases surveys began late, ended early, had missing data or no data due to failures of 
the surveyors or their equipment.  On these occasions data for that site and day were 
completely removed from the results presented here.  In addition analysis of modelling 
residuals showed that Fishergate survey site H had an unusually high flow of traffic (50% 
more than usual) on 16th July 2001.  No particular reason is known for this anomalous high 
flow.  While it did not appear to change modelling results a great deal, that day of data at that 
site was omitted from analysis. 
 
Secondly, errors could be made either in the recording or transcription process either by 
vehicles being omitted or recorded or transcribed incorrectly.  The surveyors were encouraged 
to use a phonetic alphabet to reduce such errors.  In addition, any plates that appeared to have 
been only partly recorded and foreign plates (likely to be recorded inconsistently by different 
surveyors) were removed from the data.  However, no systematic method has been used to 
estimate such errors.  As previously mentioned, Bonsall et al (1984) estimate that in looking 
at matches on their licence plate data, one must “assume a 15% increase in the number of 
matches” (p387) due to missed matches from incorrectly recorded data.  In the data reported 
here, it would be inappropriate to assume a particular percentage increase should be applied 
across the board.  It is certain that these recording errors will have occurred and will affect the 
absolute levels of the figures measured.  However, the models fitted are fitted in terms of 
trends and increases and decreases which would be less affected by such errors.   
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False matches 

A final source of error even if the data is correctly recorded is that of false matches.  Since the 
licence plates recorded are only partial number plates then a match may not necessarily 
indicate that the same vehicle has been seen but, instead, that two different vehicles with the 
same partial licence plate have been seen.  This problem is something of a classic problem in 
road traffic surveys. For more details on possible solutions see Hauer (1979), Maher(1985), 
Watling and Maher (1988 and 1992) and Watling (1994).  For this paper, two approaches are 
used.  When it can be assumed that vehicles have journeyed between two sites on a single day 
then a maximum likelihood estimation method based upon assumptions about journey time 
following Watling (1994).  When an estimate of a number of matches between two sites is 
required and journey time information is irrelevant (for example, when wanting the number of 
matches between one site on two different days) then a simple probabilistic correction is 
applied similar to the approach in Hauer (1979).  

Adjustment of times considered 

Sometimes the particular times considered can be of critical importance.  Consider, asking the 
question “what percentage of traffic at site A is seen again at the downstream site B?” 
Assume that under normal conditions it takes 20 minutes to get between site A and site B.  If 
the comparison is made from all data between 8:00 and 9:00 at both sites then the vehicles 
seen at site A between 8:40 and 9:00 are unlikely to be seen at site B not because they do not 
get there but because they do not get there in the time considered.  Now, if this percentage as 
measured on two different days and is seen to go down on the second day it could indicate 
that a smaller percentage of the vehicles at site A travel on to site B on the second day.  
However, it could also indicate that the same percentage will eventually reach site B on the 
second day but they took longer to get there. This effect can be avoided by not considering the 
final half hour of data at site A (assuming half an hour is the maximum time that could be 
expected to be taken from site A to site B).  This process of omitting data will be referred to 
in this paper as “trimming”.   

Normalisation by site 

Finally, it is sometimes necessary to compare measurements between different sites.   For 
example, it might be necessary to measure whether a particular effect increases or decreases 
traffic flow.  However, the flows would naturally be expected to differ considerably between 
sites and this effect could overwhelm the effect being considered.  Therefore, where 
appropriate, the data has been normalised, in this case by, for each site, taking the raw 
measurement and, for each site, subtracting the mean at that site and dividing by the standard 
deviation over that site.  This means that the measurement for each site will be mean zero and 
variance one.  When this has been done the data will be described in the text as having been 
“normalised by site”. 
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Initial data analysis 

Basic information about the data including the number of vehicles recorded on every day 
surveyed and histograms showing the distribution throughout the survey period can be found 
in Clegg (2005b).    

 

Figure 2: Matches between vehicles at Fishergate sites E and A on first during day. 

Figure 2 gives in insight into the nature of the data being used. The plot is from the first day 
where the closure is in place (3rd July 2001). A cross represents an observation of a partial 
licence plate at both site E and A.  The x-axis is the time (in minutes past midnight) when the 
plate was seen at site E (480 is 8:00 am and 540 is 9:00 am).  The y-axis is the time difference 
between the sighting at E and the sighting at A.  Assuming that the match is a genuine one, 
this will be the time taken to travel from E to A.  The darker line of crosses in the centre of 
the diagram represents the journeys most likely to be genuine.  As can be seen, the travel time 
from E to A increases steadily from 8:00am until 9:00am).  The travel time seems to decrease 
slightly after this.  This could be genuine (as a result of the rush hour finishing) or it could be 
a result of the fact that the data only goes up to 9:15 (535 minutes after midnight).  The 
crosses off this main diagonal are likely to be false matches as discussed earlier.  The blank 
areas in the bottom left and top right of the plot are areas that were not surveyed because they 
were before the start of the survey or after the end of the survey respectively. 
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ANALYSIS OF RECURRENCE RATE 

Consider two sets of observations made at two disjoint time periods T1 and T2 (it does not 
matter, for the purposes of this definition, whether the observations are made at the same 
geographical location).  The recurrence rate R is given by 

)(
),(

),(
1

21
21 TV

TTVTTR = , 

where V(T1,T2) is the number of vehicles seen in both sets of observations and V(T2) is the 
number of vehicles seen in time period one.  In other words R is the percentage of vehicles 
seen in the set of observations at time period T1 also seen in time period T2. In the case of the 
data observed here, due to the problem of false matches the quantity V(T1,T2) can only be 
estimated.  The simple probabilistic correction method is used.  To increase the reported 
recurrence rate, “trimming” is performed as described earlier so the first site is only measured 
between 8:20 and 8:40 whereas the second site is analysed over the whole data period.  This 
time interval is certainly sufficient for a driver to travel between the most distant site pairs 
surveyed.  The general conclusions are not sensitive to the trimming process and similar 
conclusions follow if the exact time period used is changed.  

 

  25/6/01   26/6/01   27/6/01   28/6/01  
25/6/01  123.7 (107.7)   57.5 (42.2)   55.8 (40.3)   55.4 (39.1)  
26/6/01  54.7 (38.8)   116.0 (100.7)   61.0 (45.5)   62.6 (46.3)  
27/6/01  54.9 (38.9)   55.3 (40.0)   116.6 (101.1)   64.2 (47.9)  
28/6/01  56.3 (40.3)   59.2 (43.8)   61.0 (45.5)   130.5 (114.2)  
29/6/01  54.1 (38.1)   48.6 (33.2)   53.9 (38.4)   57.8 (41.5)  
2/7/01  56.2 (40.2)   55.1 (39.8)   54.0 (38.5)   57.7 (41.4)  
3/7/01  50.6 (34.7)   61.0 (45.7)   55.9 (40.5)   59.0 (42.7)  
4/7/01  50.0 (34.0)   54.7 (39.4)   56.2 (40.7)   58.9 (42.6)  
5/7/01  50.4 (34.4)   49.6 (34.3)   50.4 (34.9)   61.0 (44.7)  
6/7/01  44.5 (28.5)   51.4 (36.1)   50.9 (35.4)   52.4 (36.1)  
11/7/01  44.1 (28.2)   49.7 (34.4)   54.5 (39.0)   56.9 (40.6)  
12/7/01  43.9 (27.9)   46.4 (31.0)   48.6 (33.1)   52.8 (36.5)  
13/7/01  42.7 (26.8)   39.6 (24.3)   46.3 (30.8)   46.7 (30.4)  
16/7/01  50.4 (34.4)   44.4 (29.1)   46.9 (31.4)   48.9 (32.6)  

Table 1: Recurrence rate as percentage at Fishergate site A. 

A partial table for Fishergate site A is shown in Table 1.  The raw recurrence rate (before 
correction for false matches) is the main figure and the figure in brackets is adjusted by the 
probabilistic correction. The diagonal (in bold) is the match of a day with itself and should 
(after correction) be exactly 100% − note that the definition of recurrence rate above would 
not allow for a recurrence rate above 100% but the figures in brackets are only estimates of 
the correct recurrence rate.  The reason it is over 100% in the uncorrected data is that a plate 
may match with more than one plate in the other data set.  Note that the recurrence rate of a 
day with itself is not considered in the analysis in the next section. 
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A number of features are evident from this table.  Even for days close together the adjusted 
recurrence rate is always lower than 50%.  The majority of the rush hour in a relatively 
congested city does not seem to consist of the same drivers travelling day after day.   This 
corresponds with the work of other authors as reported in the introduction. 

Modelling recurrence rates 

A linear model is fitted to the recurrence rate data,  
,][ 3210 dw IIdRE ββββ +++=  

where R is the recurrence rate, d is the number of days separating the two surveyed days (not 
including weekends), Iw is an indicator variable which is 1 if the two survey days are in 
different weeks and Id is an indicator variable which is 1 if the two survey days are on the 
same day of the week.  The parameters can, therefore be interpreted as follows: 
β0 – intercept (the theoretical day zero recurrence rate with no other effects), 
β1 – correction for number of days between two days considered, 
β2 – correction added if the two days are on different days of the week and 
β3 – correction added if the two days are the same day of the week. 
 
The results of the model fitting are shown in Table 2. At the majority of sites, all modelled 
parameters were significant. The exceptions are site B which has extremely low traffic and 
sites F and H. Apart from these sites, the models all have quite high R2 values indicating that 
the model, simple as it is, explains a good deal of the variability of recurrence rate.  The 
exception is the final row.  The model parameters all have the signs expected, that is, 
recurrence rates are higher if the two days are on the same day of the week, lower if they are 
significantly far apart in time and lower still if they are in different weeks. 
 
The final row shows a combined model for all sites.  This has all parameters significant but a 
lower R2 value than the other successful models.  This could indicate that some of the 
variability in recurrence rate is site dependant and the final model does not capture this. This 
hypothesis is backed up by the fact that the intercept parameter is very different across the 
different sites.   It is possible that some particular geographical features make some sites more 
likely to have higher recurrence rates. 

Discussion 

The results presented here are broadly consistent with those of Bonsall et al (1984).  With that 
study suggesting a 45% match from one day to the next and this study suggesting a 38% 
decrease (39% reduced by 0.66% according to parameter β1) which varies greatly between 
sites.  It should also be noted that Bonsall et al match against a longer survey time on the 
second day and hence the figures are not strictly comparable.  However, these numbers 
certainly do back up those authors who claim that the make-up of rush hour drivers changes 
greatly from day-to-day. 
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Site ββββ0 ββββ1 ββββ2 ββββ3 R2 Ra
2

 p-value 

A 42.2 
(0.1%) 

-0.800 
(0.1%) 

-3.35 
(1%) 

5.41 
(0.1%) 

0.560 0.545 1.73e-15 

B 24.6 
(0.1%) 

-0.476 
(low) 

-3.40 
(low) 

0.0966 
(low) 

0.060 0.022 0.198 

C 37.6 
(0.1%) 

-0.510 
(0.1%) 

-3.00 
(5%) 

4.39 
(0.1%) 

0.407 0.386 6.79e-10 

D 37.4 
(0.1%) 

-0.780 
(0.1%) 

-2.35 
(10%) 

5.18 
(0.1%) 

0.567 0.556 1.32e-11 

E 53.5 
(0.1%) 

-0.731 
(0.1%) 

-5.36 
(0.1%) 

2.90  
(1%) 

0.656 0.644 <1e-15 

F 34.2 
(0.1%) 

-0.597 
(0.1%) 

-2.46 
(low) 

2.01  
(low) 

0.267 0.242 5.36-6 

G 40.1 
(0.1%) 

-1.00 
(0.1%) 

-4.32  
(1%) 

5.11 
(0.1%) 

0.630 0.614 6.18e-16 

H 25.5 
(0.1%) 

-0.360  
(1%) 

-1.23 
(low) 

3.35  
(1%) 

0.234 0.203 0.000180 

I 35.9 
(0.1%) 

-0.831 
(0.1%) 

-3.23  
(1%) 

3.70  
(1%) 

0.562 0.540 1.36e-15 

J 39.2 
(0.1%) 

-0.412  
(1%) 

-5.41 
(0.1%) 

2.49 
(10%) 

0.413 0.389 1.27e-8 

K 42.7 
(0.1%) 

-0.719 
(0.1%) 

-4.87 
(0.1%) 

3.49  
(1%) 

0.650 0.636 <1e-15 

All  39.0 
(0.1%) 

-0.666 
(0.1%) 

-3.71 
(0.1%) 

3.72 
(0.1%) 

0.226 0.222 <1e-15 

Table 2: Model fitting for Fishergate matches 8:20-8:40 am against full data. 

 
The modelling in this section shows evidence for an effect that might be thought of as the 
“see you next Wednesday” effect.  That is, a consistent increase in recurrence related to the 
day of the week.  This could be a pool of drivers who only drive on one day every week or it 
could be a pool of drivers with a consistent working pattern that happens to have a daily 
component (for example, they drive to work on Mondays through to Thursdays but car share 
as a passenger on Fridays).  There is certainly not enough information available to definitively 
settle this issue with this data set.   
 
The recurrence rate of traffic falls off extremely quickly even in the short period of time 
measured.  The model shows a reasonable fit to a linear fall off with weekday and an 
additional term if the days are in separate weeks. It cannot be ascertained whether this is due 
to route choice, departure time-choice that moves the driver outside the measured period or 
some other choice element such as destination choice, mode choice or even a choice not to 
travel. 
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The implications for modellers developing a simulation model of an urban system are 
twofold.  Firstly, if the model is a learning model, it may be that the period a driver has to 
learn about a route is quite short.  The low recurrence rate which falls off quickly may well 
mean that the typical driver does not have long to learn about a journey before making a 
change.    Also it may be that there are a considerable number of drivers who are not habitual 
drivers on that network even in the rush hour.  Of course, the source of the fall off in 
recurrence rate is unknown.  Some of it may be connected with vehicle replacement and some 
of it may be associated with shifts in destination and overall vehicle behaviour.   
 

TRANSIENT RESPONSES TO INTERVENTION 

Road traffic engineers often assume that the initial “day one” results of an intervention will 
lessen in subsequent days.  This is sometimes thought of as the “It’ll be alright by Friday” 
effect, the idea that a poor performance on Monday may well be acceptable by Friday as the 
network somehow adjusts to the change.  In this section the changes to flows and travel times 
as a result of the Fishergate intervention are considered.  For the purposes of the analysis here 
the 13th July 2001 is considered to be a day without intervention (since the closure was 
removed on that day).  Repeating the analysis with this day removed does not substantially 
change the results as presented here. 

Analysis of Site Flows 

Firstly the raw flows are normalised by site (so each site has mean zero and unit variance). 
The question is then does the flow increase or decrease as a result of the intervention.  A t-test 
is used to compare the mean flow when the closure is in place and when it is not. 
 
The mean normalised flow is -0.0811 with the closure in place and 0.0811 when it is not.  
However, a 95% confidence interval for the mean when the closure is not in place is given by 
(-0.153, 0.478) and the p-value is 0.312 indicating that there is no statistically significant 
change in flow over all sites as a result of the closure.  This is unsurprising since some sites 
were chosen as rerouting sites (that is sites where the flow would be expected to increase with 
the closure in place because drivers switch routes to use that site). 
 
One approach is to separate the sites into those that might be expected to have a decrease in 
flow, as they would be directly affected by the closure, and those that might be expected to 
have an increase in flow, as they are potential rerouting sites.  Sites A, C and D were chosen 
as those most likely to have a decrease in flow and sites F, G and K were chosen as potential 
rerouting sites.   
 
A t-test comparing the flow at sites A, C and D during the closure with the flow at other sites 
and times showed that the mean flow decreased as expected, from 0.121 before closure to        
-0.764 afterwards.  The p-value for the test was 8.19e-6 indicated a strongly significant 
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difference in the means indicating that it is likely that due to this closure the flow was reduced 
overall at these sites. 
 
A t-test comparing the flow at sites F, G and K during the closure with the flow at other sites 
and times showed that the mean increased as expected from -0.058 to 0.39 with a p-value of 
0.031.  This indicates that, overall, the flow seemed to increase over these sites. 
 
Finally, the effects at each site were separated using a linear model as follows: 

KKBBAA IIIfE ββββ ++++= ...][ 0 , 
where E[f] is the expected value of the flow, the β variables are the various parameters of the 
model and IA, IB etc are indicator variables which are 1 at the site in question if the closure in 
place and 0 otherwise.  The results of fitting a linear model are given in Table 3. 
 

ββββ0 ββββA ββββB ββββC ββββD ββββE ββββF ββββG 
0.081 
(low)  

-0.995      
1% 

-0.607     
10% 

-0.719      
5% 

-0.818      
5% 

0.285   
(low) 

0.129   
(low) 

0.029   
(low) 

ββββH ββββI ββββJ ββββK R2 Ra
2 df p-value 

0.501   
(low) 

0.219   
(low) 

-0.428   
(low) 

0.785      
5% 

0.175 0.108 11, 134 0.005 

Table 3: Flow changes by site at Fishergate 

A model with so many parameters should be treated with caution. However, from this 
modelling it seems that sites A, B, C and D have a statistically significant reduction in flow 
and site K has a statistically significant increase.  These directions coincide with what might 
be expected considering their physical location.  Site K is the most obvious rerouting as a 
result of the intervention and sites A, B, C and D are those sites most directly affected.  The 
R2 statistic is relatively low indicating that this model explains only a small amount of the 
variation in flows observed.  However, this would certainly be expected in such a simplistic 
statistical model.  Note also that the model is over-specified (it has a parameter for each site 
as well as an intercept). 

Analysis of Site Pairs 

In this section the transient response to the intervention is considered with a simple linear 
model.  This model is fitted to the travel times and flows between site pairs.  These times and 
flows are calculated using the Maximum Likelihood Estimator method as described earlier.  
The site pairs were chosen as those pairs that seem to be likely to be most affected by the 
intervention.  In making these comparisons the data has been “trimmed” by removing the last 
half hour of observations from the first site of the pair to avoid the incomplete journeys 
problem as described earlier. 
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Flow and travel time data for each site pair was produced using the Maximum Likelihood 
Estimator and these results then individually fitted to a linear model for each site pair 
considered.  The model used was 

DIyE c 210][ βββ ++= , 
where y represents either flow or travel time Ic is an indicator variable which is 1 if the closure 
is in place and 0 otherwise and D is a variable indicating the number of days since the closure 
occurred (not including weekends) or 0 if the closure is not in place. For clarity, the variable 
D has the value 1 on the 3rd July, 2 on the 4th July and 10 on the last day surveyed, the 16th 
July.  It is expected that the parameters β1 and β2 will have different signs since one 
represents the effect of the closure and the second represents the return to normal effect. 
 
The parameters are to be interpreted as follows, 
β0 – the model intercept, that is the flow or travel time with no other effects occurring, 
β1 – the effect of the closure itself on flow/travel time, 
β2 – the effect of the number of days since the closure, if positive, the dependent variable will 
rise following the closure as time goes on and if negative the dependent variable will fall 
following the closure. 
 
The results of the modelling for flow across the site pairs are shown in Table 4.  The rows 
shaded are those models where parameters other than the intercept had statistical significance.  
The other site pairs cannot be said to show a statistically significant response to the 
intervention.  In some ways this is not surprising since a three-parameter model is being fitted 
to at most fourteen data points.  Site pair E-K shows an increase in flow as a result of the 
intervention which is as expected since E-K is a potential rerouting.  Similarly, site pairs A-D, 
A-J and D-I show decreases in flow and again, this might be expected since those pairs are 
directly affected by the closure.  D-I shows a return to normal effect with a 10% statistical 
significance.  However, this result should be treated with caution, when fitting so many 
models, some results are likely to show as having statistical significance at this level. 
 
Note that site pair A-D was the only site pair that had statistical significance for either β1 or β2 

but had the two in the same direction.  That is, it showed the effect progressing as time went 
on rather than a return to normal.  However, the effect was not of statistical significance. 
 
The results shown in Table 5 show the equivalent results to Table 4 but considering travel 
time instead of flow.  Again the shaded rows show those models with statistically significant 
parameters other than the intercept.  Site pairs E-A, C-A and F-A all showed an increase in 
travel time as a result of the intervention.  These sites were leading up to the intervention and 
hence such an increase would be expected.  At site pair C-A, one of the pairs likely to be most 
strongly affected by the intervention, a return to normal effect was observed with a strong 
significance (0.1% level).  
 
Site pairs A-D, H-I and D-I showed a decrease in travel time and a “return to normal” effect 
though only A-D and H-I had statistically significant return to normal effects and at the 
lowest level of significance considered.  These site pairs were “after” the intervention on the 
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road network and it might be expected that travel times would decrease since the reduced flow 
would allow those drivers past the intervention to travel more quickly. 
 

 
Site Pair ββββ0 ββββ1 ββββ2 R2 Rz

2 df p-value 
E-A 214    

0.1%  
-18.5   
(low) 

2.72   
(low) 

0.228 0.087 : 2, 11 0.241 

E-B 13.5    
0.1% 

-2.56   
(low) 

0.257   
(low) 

0.122 -0.054 2, 10 0.523 

E-F 48.0    
0.1% 

4.50   
(low) 

-0.519   
(low) 

0.014 -0.165 2,11 0.926 
 

E-K 216    
0.1% 

55.4     
1% 

-3.47   
(low) 

0.658 0.589 2,10 0.005 

A-D 736    
0.1% 

-61.4      
5% 

   -1.38   
(low) 

0.622 0.538 2,9 0.013 

F-G 26.8   
0.1% 

7.05   
(low) 

-0.836   
(low) 

0.158 -0.011 2,10 0.424 

C-A 574    
0.1% 

-20.9   
(low)  

-1.55   
(low) 

0.292 0.164 2,11 0.149 

A-J 138    
0.1% 

-27.2      
1% 

1.28   
(low) 

0.587 0.504 2,10 0.012 

G-C 349   
0.1% 

-28.7   
(low) 

1.48   
(low) 

0.250 0.100 2,10 0.238 

D-I 77.9    
0.1% 

-20.8      
5% 

2.29     
10% 

0.431 0.305 2,9 0.079 

H-I 211   
0.1%  

19.2   
(low) 

-1.28   
(low) 

0.205 0.028 2,9 0.357 

F-A 83.6    
0.1% 

6.24   
(low) 

-2.11   
(low) 

0.254 0.119 2,11 0.199 

Table 4: Linear Model of flow response for Fishergate site-pairs 

Discussion 

Overall, the effects of the intervention on flows and travel times were subtle but detectable in 
statistical modelling.  The statistical models showed that some sites experienced an increase 
in traffic as a result of the closure and some sites experienced a decrease, however, six of the 
eleven sites considered had no significant change of flow as a result of the intervention being 
studied. 
 
Modelling was carried out to attempt to fit a model that contained both an initial response and 
a “return to normal” effect.  Although the model was only successful on a few of the site pairs 
considered this would be expected given the small effect on flows previously established.   
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Site Pair ββββ0 ββββ1 ββββ2 R2 Rz

2 df p-value 
E-A 7.19    

0.1% 
3.72      
5% 

-0.311   
(low) 

0.453 0.353 2,11 0.036 

E-B 7.92    
0.1% 

1.43   
(low) 

0.005   
(low) 

0.130 -0.044 2,10 0.497 

E-F 7.36    
0.1% 

-0.285   
(low) 

-0.037   
(low) 

0.299 0.171 2,11 0.142 

E-K 6.39    
0.1% 

-0.814   
(low) 

-0.114   
(low) 

0.268 0.121 2,10 0.211 

A-D 0.443    
0.1% 

-0.126   
(low) 

0.051     
10% 

0.321 0.171 2,9 0.175 

F-G 2.59    
0.1% 

-0.927   
(low) 

0.008   
(low) 

0.380 0.256 2,10 0.092 

C-A 1.08    
0.1% 

2.06    
0.1% 

-0.162    
0.1% 

0.883 0.861 2,11 <0.001 

A-J 4.27    
0.1% 

-0.393   
(low) 

-0.015   
(low) 

0.230 0.076 2,10 0.271 

G-C 1.71    
0.1% 

0.650   
(low) 

0.062   
(low) 

0.591 0.509 2,10 0.012 

D-I 5.16    
0.1% 

-1.57     
10% 

0.177   
(low) 

0.309 0.156 2,9 0.189 

H-I 1.22    
0.1% 

-0.174   
(low) 

0.055     
10% 

0.358 0.215 2,9 0.136 

F-A 3.77    
0.1% 

1.67      
5% 

-0.130   
(low) 

0.441 0.339 2,11 0.042 

Table 5: Linear Model of travel time response for Fishergate site pairs. 

Four models on site pairs were found with a statistically significant “return to normal” effect 
and one of these was significant at the 0.1% level.  Further this was an effect on the travel 
time for a site pair that might reasonably be expected to be amongst the most strongly 
affected. This provides reasonable evidence for the “it’ll be alright by Friday” effect.  The 
latest observation here was only ten weekdays after the initial intervention.   Further studies 
would certainly be necessary to establish the nature of a longer-term effect.  The model here 
considered only a linear “return to normal” effect.  While this is certainly not the case over a 
longer period of time, it was not considered that sufficient data were available to consider a 
more sophisticated model. 
 
The statistical model described here could have considerable implication for simulation 
modelling of transport systems.  Most of the urban traffic models available today are aimed at 
answering questions about the results of a change and some would be able to provide an 
estimate as to how long the results of a change would take to settle down.  However, as far as 
the author is aware, no models have had the duration of these transient effects calibrated 
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against real data.  If the modelling of transient responses is to be improved then such 
calibration via studies of this type is vital. 
 

DRIVER REROUTING RESPONSE 

Finally, a model was created to attempt to assess the level of rerouting as a result of the 
intervention.  The switch of drivers from site A to site K was modelled.  These sites were 
chosen because A was the site of the intervention and K was the only site that had been shown 
to have a significant increase in traffic after the intervention.   
 
The rerouting problem was considered by looking at the recurrence rate between site A and K 
on separate days.  As with the previous recurrence rate experiment, the data is “trimmed” by 
reducing the data to just that from 8:20 to 8:40 on the first day in order to increase the 
recurrence rate seen.  That is, the percentage of vehicles seen at site A on one day and site K 
on a different day.  If this increased during the intervention then this could be a result of 
drivers from A rerouting to K as a result of the closure.  Let R(d1,d2) be the recurrence rate 
between site A on day d1 and site K on day d2.  Because no (or extremely few) vehicles would 
be seen at A and K on the same day then measurements are not made where d1 = d2. The 
following model was then fitted 

242312110][ DIDIRE cc βββββ ++++=  , 
where R is the recurrence rate, Ic1 is an indicator which is 1 if d1 is a closure day D1 is the 
number of days d1 is since the closure (or 0 if it is an open day) as described in the previous 
section.  Ic2 and D2 are the equivalent quantities for d2.  The parameters can be interpreted as 
follows, 
β0 – the intercept, or recurrence rate with no other effects in place, 
β1 – the effect of the closure at site A. If negative, this indicates that fewer drivers switch from 
site A on one day to site K on another when the closure is in place on the day they were at site 
A. 
β2 – the effect of the time since the closure at site A.  If it has the opposite sign to β1, this 
indicates that the effect measured by parameter β1 declines with the time since closure. 
β3 – the effect of the closure at site K.  If positive, this indicates that more drivers switch to 
site K from site A when the closure is in place on the day they were seen at site K, 
β4 – the effect of the time since the closure at site K.  If it has the opposite sign to β3, this 
indicates that the effect measured by parameter β3 declines with the time since closure. 
 
The results of the model fitting are seen in Table 6.   
 
ββββ0 ββββ1 ββββ2 ββββ3 ββββ4 R2 Ra

2 df p-value 
1.15e-4 
0.1% 

-1.46e-5 
1% 

3.1e-6 
0.1% 

2.55e-5 
0.1% 

-1.73e-6 
5% 

0.223 0.204 4,164 1.87e-8 

Table 6: Linear model of recurrence rates from site A to site K. 
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As can be seen, all the parameters of the model are statistically significant.  The negative 
value for β1 indicates that the recurrence rate decreases if the first day considered is in a 
closure period.  The positive value for β3 indicates that the recurrence rate increases if the 
second day considered is in the closure period.  In other words, the percentage of drivers 
switching from A to K increases if we look at A before the closure and K during the closure.  
This is consistent with drivers switching route from site A to site K as a result of the closure.  
Meanwhile the parameters β2 and β4 have the opposite signs to β1 and β3 respectively.  This 
indicates that the effects both decrease if the closure is in place for longer.  This is consistent 
with the idea that initially a certain number of drivers swap their route from A to K when the 
closure occurs but fewer drivers do so as the time continues.   

 
ββββ0 ββββ1 ββββ2 ββββ3 ββββ4 R2 Ra

2 df p-value 
21.1 
0.1% 

-6.33 
0.1% 

0.421 
5% 

9.90 
0.1% 

-0.398 
5% 

0.490 0.478 4,164 <1e-15 

Table 7: Linear model of travellers from site A to site K. 

If the same model is fitted to the estimated number of matches between the two sites instead 
of the recurrence rate then similar results are seen.  The results are summarised in Table 7. 
This table gives some idea how small the effects being measured are.  The estimated number 
of drivers that would take A before the closure and K after the first day of closure would only 
be approximately 10 according to this model.  As can be seen, the effects being estimated in 
this model are very small and hard to pick out from the noise. 

Discussion 

The model fitted here shows evidence consistent with a small number of drivers changing 
route from site A to site K as a result of intervention.  Perhaps even more interestingly, it 
shows evidence of a return to normal effect as time goes on.  It provides further evidence for 
an “It’ll be alright by Friday” effect.  It should be stressed that all these recurrence rate effects 
may be subject to the decays in recurrence rate described in the previous section about 
recurrence rate. 
 
The results in this section have an interesting implication for modellers.  These results appear 
to show an initial “over-reaction” effect followed by a settling down effect.  Some dynamic 
day-to-day models could well capture this behaviour but more real-life data analysis of this 
type would be needed to calibrate how many days it would take for this rerouting and settling 
down to occur. 
  

CONCLUSION 

The three main sections of this paper look at fitting different statistical models to data 
gathered on a traffic system.  The aim is to better understand the behaviour of the traffic 
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system.  None of the results described are particularly unexpected but they are, nonetheless, 
important things to quantify if researchers are to produce calibrated simulation models of 
urban road networks.  Three separate modelling results were obtained. 
 
Firstly, recurrence rate at a site was shown to reduce sharply as the number of weekdays 
between the two observations increased.  This recurrence rate reduced further if the days 
observed were in different weeks and increased if the days were the same day of the week (the 
“See you next Wednesday” effect.   The recurrence rate was observed to differ between 
different sites. 
 
Secondly, the effect on flows and travel times of a capacity reducing intervention was 
investigated.  It was shown that in some cases this effect could be separated into an initial 
response and a dying down of this initial effect.  This corresponds to the engineering rule of 
thumb that “It’ll be alright by Friday”, the idea that a change producing a large effect when 
initially implemented may well settle down within a short space of time. 
 
Thirdly, the effect on rerouting of the intervention was investigated.  Recurrence rates of 
traffic between two different sites likely to be the main two sites for rerouting was fitted to a 
statistical model.  The model was shown to be consistent with an initial rerouting and a dying 
down of this response as the intervention continues.  This is consistent with the idea that the 
initial rerouting was “too much” and this was subsequently corrected as time continued, as if 
the system over-reacts and then corrects. 

Critical discussion 

The models described here are certainly far from perfect.  Due to the relative scarcity of data 
(and uncertainty in some measurements) the author deliberately kept the number of 
parameters modelled small and avoided using heavily parameterised models.  For example, 
the linear dependence of recurrence rate on the difference in weekdays between the two days 
on which measurements take place is certainly only valid for a short time period (apart from 
anything else, this model would predict large negative recurrence rates after a few months).  
More data could build more sophisticated models of how the recurrence rate falls off in longer 
time periods.   
 
All the work here depends on investigation of two interventions in a single city both within a 
year of each other.  There is no way of knowing how similar such measurements would be if 
made while studying other cities and other interventions. 
The data worked with is prone to a number of measurement errors (as previously described).  
This will certainly affect the results given.  While it is accepted that, for example, the absolute 
level of the recurrence rate will be subject to some correction (perhaps large) due to these 
recording errors, it is hard to see how this could systematically affect the direction of changes.  
Therefore, while the absolute levels of the parameters in this paper may not be correct in all 
cases, the direction of the changes given seem more certain. 
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Finally, it should again be stressed that the author does not expect a general audience to have 
a particular interest in the exact behaviour of the traffic as a result of this particular 
intervention in this particular city. Indeed, these studies could be considered as a single data 
point with very different results would be obtained in different cities or at different times.  A 
main aim of this paper is to stimulate further modelling and research along the lines described 
and, in this way, to understand how well these results generalise. 

Implications for modelling and further research 

Perhaps what is of most interest in this paper is that the techniques used could easily be used 
on subsequent data sets (as GPS and licence plate recognition cameras become more common 
it may well become easier to get good data sets for this purpose).  This would establish the 
generality of these results.  In turn this could then be used to inform the development of 
models of an urban road network. 
 
In particular it may become very useful for models to be able to predict the transient response 
of a scheme on the earliest days after implementation and to know, not just what is likely to 
happen on day one but how long it will take for the situation to improve (assuming that an 
improvement is predicted). 
 
This paper points to a number of directions for further research.  If, in the future, data sets, 
from GPS or licence plate cameras become more readily available then this type of modelling 
can be used to investigate both the ambient variability of road traffic and also how driver 
behaviour is affected by interventions. 
 
If network modellers truly wish to capture the on-street behaviour of drivers who learn and 
change their route as a result of changes to the network then those models must be calibrated 
against real data.  The statistical models in this paper provide a starting point for modellers 
who want their learning drivers to behave in a realistic way, including the fact that drivers do 
not travel at the same time to the same destination every day.  Instead driver behaviour will 
change as time goes on and that day of the week effects may have importance.   
 
In addition, modellers may wish to be able to model how drivers on a network will respond to 
an intervention.  If drivers do, as the evidence here seems to suggest, have an initial response 
and a settling down period then it may be important to know how long this period lasts and 
how severe the intermediate effects might be.  
  
If these results could be backed up by further studies they would give a sound empirical basis 
for setting learning parameters and memory parameters in models that consider how 
individual drivers reroute as day follows day. 
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VARIATION OF VALUE OF TRAVEL TIME 
SAVINGS OVER TRAVEL TIME IN URBAN 
COMMUTING: THEORETICAL AND 
EMPIRICAL ANALYSIS  

 
Hironori Kato, Department of Civil Engineering, The University of Tokyo, Japan 

 
INTRODUCTION 
 
In measuring the benefit stemming from a particular transport project, the starting point is 
generally the traveller's willingness to pay: the amount of money each individual would be 
willing to pay for the resulting change in her or his circumstances. Typically, the dominant 
component of the benefit derived from transport investment is a saving in travel time. There 
have been many empirical and theoretical studies of the value of travel time saving (VTTS) 
following the introduction of the economic theory of time allocation in the 1960s. It was 
Becker (1965) who first suggested that a consumer gains utility from the consumption of both 
time and goods, and not from consumed goods only. Following on from Becker's work, 
several researchers such as DeSerpa (1971), Evans (1972) and Small (1982) have developed 
time-allocation models in which utility to the consumer is maximized with respect to the 
consumption of time and goods under the constraints of available time and money. 
Simultaneously, several different definitions of VTTS have been proposed (Jara-Diaz, 2000). 
DeSerpa's definition of VTTS is particularly important as it includes two distinct values of 
time: the value of time as a resource and its value as a commodity. 
 
In the traditional time-allocation framework, we focus on the individual's behaviour over the 
short term. This means that individuals never change jobs and they remain in the same 
houses. However, as Small (1999) points out, many factors such as constant job turnover, 
house-moving, family status and habits may have an effect on travel time savings in the long 
run. In general, whether a consumer model should be formulated from a short-term or a long-
term viewpoint depends on the behavioural context that a modeller assumes in her or his 
analysis. For example, if we set out to analyze an individual's leisure travel on a daily basis, 
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we probably do not need to consider choice of residential location. This is because we 
generally expect that individuals neglect the location of their residence in choosing leisure 
activities in which to participate. However, consider the act of commuting. Can we expect 
commuters to make decisions from a short-term viewpoint only? The answer is probably 'no'. 
We may need to take account of where the commuter chooses to live, because individuals 
often consider both choices simultaneously. In such cases, individuals choose travel time not 
only from the viewpoint of the trade-off between travel time and travel cost, but also take into 
account the trade-off between travel time and cost of housing. Thus residential location choice 
may lead to different VTTS results. In this paper, VTTS analysis is carried out with explicit 
consideration of choice of residential location. 
 
Regarding empirical analysis of VTTS, models based on disaggregate discrete choice have so 
far been the most popular approach. Train and McFadden (1978), using the choice of mode 
for the home to workplace trip, show that the conditional indirect utility function formulated 
in discrete choice theory will give the value of travel time savings as the marginal substitution 
rate between travel time and travel cost. In a similar manner, Truong and Hensher (1985) and 
later discussions (Bates, 1987; Truong and Hensher, 1987) show how the Becker and DeSerpa 
models can be incorporated into VTTS estimation within the discrete choice model 
framework. These days, in practical transport planning, VTTS is usually estimated using a 
discrete choice model, such as the multinomial logit model. Constant values of VTTS 
estimated with a discrete choice model are often used in practical transport planning; this 
constancy derives simply from an assumption of a linear utility function. However, this 
linearity assumption may not be acceptable, as De Lapparent et al. (2004) point out. 
 
By using a non-linear utility function, we can derive a non-constant VTTS with respect to 
travel time. There have been a number of investigations studying the relationship between 
VTTS and travel time (Hague Consulting Group and Accent Marketing & Research, 1996; 
Hensher, 1997; Wardman, 1998; 2001; 2004; Hultkrantz and Mortazavi, 2001; Axhausen et 
al., 2004). This paper adds new evidence to the body of research related to non-constant 
VTTS. 
 
In this investigation, the variation of VTTS over the travel time of urban commuters is 
examined both theoretically and empirically by incorporating choice of residential location 
and a non-linear utility function. The following section of the paper describes the formulation 
of a model for an individual's time allocation allowing for residential location choice. We then 
derive VTTS from the model and analyze it under market equilibrium. Next, we provide a 
theoretical analysis of the variation of VTTS over travel time. This is followed by an 
empirical analysis using the revealed preference data of urban rail users in Tokyo. We analyze 
the variation of VTTS over travel time empirically. Finally, we summarize the results and 
discuss further topics of research. 
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VTTS DERIVED FROM TIME ALLOCATION MODEL WITH 
RESIDENTIAL LOCATION CHOICE  

Model formulation and derivation of VTTS 

We formulate a consumer's behaviour with respect to time allocation and residential location 
choice with the theory of urban economics and a time allocation model (Alonso, 1964; Solow, 
1973; Becker, 1965). Basically, we follow the simple residential land use model presented by 
Kanemoto (1980). 
 
Suppose a simple city that has a unique central business district (CBD) at its core. All 
households are identical. They have the same preferences and the same number of workers. 
For simplicity, we assume that each household has one worker. An individual resides at only 
one location. This assumption eliminates, for example, households with an apartment in the 
city and a house in the suburbs; the actual number of such households is so small that they can 
safely be ignored. Housing capital can be instantaneously adjusted. Although housing is in 
reality a durable good, we assume that all the characteristics of houses such as lot size and 
building area can be changed instantaneously. Ours is, therefore, a city in an imaginary long-
term equilibrium state in which the capital-land ratio is always perfectly adjusted. Travel cost 
stems from commuting cost only. 
 
We assume an individual gains utility from leisure time, travel time, work time, consumption 
of a composite good and consumption of land for housing. The individual is constrained by 
available time and budget and there is a constraint consisting of a fixed minimum travel time. 
We also assume utility maximization as the behavioural principle. Let the utility of the 
individual be u . An individual's behaviour can then be described as: 

( )tTThzuu w
tTThz w

,,,,max
,,,,

=  (1) 

 subject to wTczPhR ⋅=+⋅+⋅ ω  (2a) 
o

w TtTT =++ , tt ≥   (2b,c) 
where u  is a utility function; z  is the composite good; h  is land area; T  is time available for 
leisure; t  is travel time; R  is rent; P  is the price of the composite good; c  is travel cost; ω  is 
wage rate; wT  is the work duration; oT  is available time and t  is the minimum travel time. 
We assume that the marginal utility with respect to travel time is negative. 
 
Let a Lagrange function for this optimization problem be, 

( ) ( )czPhRTtTThzuL ww −⋅−⋅−⋅+= ωλ,,,, ( ) ( )tttTTT w
o −+−−−+ κμ  (3) 

where λ , μ ,κ   are the Lagrange multipliers. Then, from the first-order optimality conditions, 
we can derive 
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In general, we can expect that rent R  and travel cost c  are some functions of travel time. 
More exactly, they are functions of minimum travel time. In the same way, we assume that 
the wage rate also depends on minimum travel time. Then, we can describe the individual's 
indirect utility function, which is derived from utility maximization, as ( ) ( ) ( )( )tctYtRv −, , where 

( ) zPTtY w ⋅−⋅≡ ω . 
 
Then we can derive the following two equations from the Envelope Theorem (Varian, 1987): 

( ) ( )
t

tt
t

hRcY
t
u

t
v

∂
−∂

+
∂

⋅−−∂
+

∂
∂

=
∂
∂ κλ κωλ −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+⋅
∂
∂

−
∂
∂

=
t
ch

t
RT

t w  (5) 

( ) λλ
−=

∂
⋅−−∂

+
∂
∂

=
∂
∂

c
hRcY

c
u

c
v  (6) 

If we define the value of travel time savings as "the willingness to pay to recover the utility 
level to the original situation when the minimum travel time is reduced" as DeSerpa shows, 
we can derive VTTS from our model as 
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VTTS     (7) 

This means that VTTS consists of four components. The first is the value of relaxing the 
constraint of minimum travel time, the second is the value of income change stemming from 
the change of wage rate caused by travel time saving, the third is the value of cost saving 
caused by travel time saving, and the fourth is the value of land-cost change caused by travel 
time saving. 

VTTS under the market equilibrium 

Since households are identical in our model, the utility level at equilibrium must be the same 
everywhere in the city. Otherwise, households at a place of lower utility level would have an 
incentive to relocate and the allocation would not meet the requirements of a market 
equilibrium. Therefore, under market equilibrium, the indirect utility function should satisfy 

( ) ( ) ( )( ) .)(, constutctYtRv =−  (8) 
By solving this equation with respect to ( )tR , we can derive the bid rent function as 

( ) ( ) ( )( )utctYRtR ,−=  (9) 
This describes the maximum rent that a household can pay at a particular distance from the 
centre if it is to receive the given utility level. Here, define ( ) ( )tctYI −= . By total 
differentiation, Equation (8) yields 
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From Equation (10), we obtain  
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On the other hand, from Roy's Identity, the indirect utility function (8) should satisfy 
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As ( ) tcTttI w ∂∂−∂∂=∂∂ ω  should be satisfied, finally we derive the following equation from 
Equations (11) and (12), 
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This shows that the sum of marginal income and marginal travel cost with respect to 
minimum travel time should be equal to the marginal land-cost with respect to minimum 
travel time under market equilibrium. 
 
By substituting Equation (13) into the VTTS formula (7), we find that VTTS is reduced to 

λκ . As shown later, this is the same as the value of VTTS derived from the simple time 
allocation model. Under market equilibrium, the formula for VTTS reduces to a simple 
equation including the value of relaxing the constraint of minimum travel time alone. This 
result may prove very useful in VTTS research, because it means we can neglect individual 
location choice in VTTS discussions. Moreover, the above result is quite general. It is not 
affected by the functional forms of the utility function, the rent function, the travel cost 
function or the wage rate function. However, we should bear in mind the basic assumptions of 
this model, especially the assumption of the simple form of city. 
 
 
THEORETICAL ANALYSIS OF VTTS OVER TRAVEL TIME  

Time allocation model and VTTS 

From this section onward, we assume equilibrium in the land market. By making this 
assumption, we are able to neglect choice of residential location, as shown earlier. Land will 
be treated as one component of the composite good. Then, we consider that an individual 
gains utility from leisure time, work time, travel time and consumption of the composite 
good. Let the utility of the individual be u . The time-allocation model can then be formulated 
as  

( )tTTzuu w
tTTz w

,,,max
,,,

=  (14) 

subject to  wTcz ⋅=+ ω , o
w TtTT =++ , tt ≥  (15a,b,c) 

The Lagrange function corresponding to the above time-allocation model is shown as 
( ) ( ) ( ) ( )tttTTTczTtTTzuL w

o
ww −+−−−+−−⋅+= κμωλ,,,  (16)   

where λ , μ  and κ  are the Lagrange multipliers. The first-order conditions of optimality are 
derived as 
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and equations (15a) to (15c).  
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Next, let the indirect utility function of the individual be ( )tTcv o ,, . Then, by applying the 
Envelope Theorem to the above utility maximization problem, we obtain 
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As VTTS can be defined as the willingness to pay for travel time savings, VTTS can be 
derived from Equations (18) and (19) as 
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On the other hand, from the first-order optimality conditions, we can obtain VTTS as 
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Comparative static analysis 

We next examine the variation of VTTS over travel time based on the time-allocation model. 
In order to see this variation, we must visualize the impact of travel time on the components 
of VTTS shown in Equation (20), which satisfy the first-order optimality conditions of 
Equations (15) and (17). We carry out the analysis using a method of comparative static 
analysis presented by Kono and Morisugi (2000) and Jiang and Morikawa (2004). 
 
First, by total differential of Equations (15a) to (15c), we obtain 
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To simplify the analysis, we assume that the utility function is additive separable with respect 
to tTTz w ,,, . This means, 
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We also assume that the marginal utility, both with respect to consumption of the composite 
good z  and with respect to leisure time T , is positive and decreasing, according to 
neoclassical microeconomics theory. Therefore, there are 
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Then, Equations (22) and (24) lead to 
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We assume that the marginal utility with respect to work time is negative according to past 
research (Greenven et al., 2005; Jara-Diaz et al., 2004). 
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On the other hand, we cannot assume a priori whether the marginal utility with respect to 
work time and the marginal utility with respect to travel time increase or decrease. That 
means we have to consider the following two cases: 
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From above considerations, we can describe the equations (15a), (15b) and (15c) as 

( ) ( )μλωλ ,wTcz ⋅=+  (28a) 
( ) ( ) ( ) o

w TtTT =++ κμμλμ ,,  (28b) 
( ) tt =κμ,  (28c) 

where we assume that the travel time is equal to the minimum travel time. 
 
Let the wage rate and travel time follow the function of minimum travel time, as the earlier 
analysis assumes. We can then derive the following equations from the total differential of 
Equations (28a), (28b) and (28c) with respect to t : 
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By solving these equations, we obtain 
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In order to clarify the signs of the above three equations, we assume the following: 
- The marginal travel cost with respect to minimum travel time is positive: 0>∂∂ tc . 
- The marginal wage rate with respect to minimum travel time is negative: 0>∂∂ tω . 
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The first assumption is quite natural, because in general travel cost increases as travel time 
increases. The second assumption may be dependent on market characteristics. We follow the 
empirical results of Yoshida and Endo (1999), which show average wage rate decreasing as 
travel time increases in the Tokyo Metropolitan Area. 
 
Then, from Equation (22), we can derive 0>∂∂ tμ  if the utility function satisfies 022 <∂∂ wTu . 
However, we cannot fix the sign of t∂∂μ  if 022 >∂∂ wTu . Even if we were to assume 0≥∂∂ tω , 
we would not be able to fix the sign of t∂∂μ . In the same way, we can derive 0>∂∂ tκ  if the 
utility function satisfies 022 <∂∂ wTu  and 022 <∂∂ tu . However, we cannot fix the sign of t∂∂κ  
in other cases. We cannot fix the sign of t∂∂λ . 
 
We summarize the signs of t∂∂λ , t∂∂μ  and t∂∂κ  derived from our analysis in Table 1. As 
Table 1 shows, we cannot fix the signs of all elements of VTTS simultaneously. In other 
words, we have to assume a specific utility function in order to fix the sign of the marginal 
VTTS with respect to minimum travel time.  
 
As a special case, we may point out a case which satisfies the following three conditions 
simultaneously: 
- The marginal utility with respect to work time is decreasing: 022 <∂∂ wTu . 

- The marginal utility with respect to (minimum) travel time is decreasing: 0
22 <∂∂ tu . 

- The marginal utility with respect to income will decrease as the (minimum) travel time 
increases: 0<∂∂ tλ . 
This case leads to a simple result; that is, VTTS will increase monotonously as (minimum) 
travel time increases. We will examine the condition 0<∂∂ tλ  more deeply for this special 
case. Since the utility function satisfies 022 <∂∂ wTu , the work time should satisfy 0>∂∂ λwT  
and 0<∂∂ μwT  as Equation (27a) shows. Then, from Equation (30b), the condition of 

0<∂∂ tλ  is derived as: 
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The left-hand side of Equation (31) is negative, because the three terms on the left-hand side 
satisfy 0<∂∂ μT , 0<∂∂ μwT  and, 0>∂∂ tμ , respectively, where 0>∂∂ tμ  can be read from 
Table 1. However, we cannot judge whether the left-hand side of Equation (31) is greater than 
-1 or not. Consequently, we can summarize the conditions for the above special case as 

Table 1 Signs of three elements of marginal VTTS with respect to minimum travel time 
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follows: if the utility function satisfies 022 <∂∂ wTu , 0
22 <∂∂ tu  as well as Equation (31), VTTS 

will increase as (minimum) travel time increases. Note that the above conditions are not the 
only ones that give a monotonic relation between VTTS and travel time. 
 
From this comparative static analysis, we conclude that it is difficult to obtain a simple result 
for the relationship between travel time and VTTS, even if we assume an additive separable 
utility function. Moreover, as Kono and Morisugi (2000) point out, there is no reason why we 
should use an additive separable utility function. Hence, in the next section, we will analyze 
the variation of VTTS over travel time not from a theoretical viewpoint, but using an 
empirical approach. In this empirical analysis, we will not assume additive separability of the 
utility function, but rather will approximate the utility function. Using this approximation, the 
analysis may not provide a strict solution for the relationship between VTTS and travel time, 
but we will be able to examine it with richer implications. 
 
 
EMPIRICAL ANALYSIS OF VTTS OVER TRAVEL TIME  

Derivation of VTTS based on the discrete-choice model with non-linear utility function 

The discrete choice model system is used to clarify variations in VTTS over travel time. The 
discrete choice model assumes utility maximization by individuals under the condition that a 
specific service is chosen to the exclusion of all others. Suppose an individual chooses 
transport service i . Let iu  be the conditional utility function. Then, the conditional utility 
maximization is given as 
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We can obtain the following equations from the first optimality condition: 
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Then, we derive an approximation of the direct utility function and the indirect utility 
function. There have been some investigations that formulate the non-linear utility function 
by approximation (for example, Axhausen et al., 2004; De Lapparent et al., 2002). Here, we 
follow a method shown by Blayac and Causse (2001). First, we obtain the first-order 
approximation from the Taylor expansion of the direct utility function as 
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By substituting the first-order optimality conditions into Equation (35), an approximated 
indirect utility function is derived as 

( ) ( ) ( ) ( ) ( ) iiiwiw
o
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iii XtTtTTcTTtcv _1,, +−+−+−−+−= ∗∗∗∗∗∗ κμωλμμωλ  

i
o

iii ZTtc _1++−−= ∗∗∗ μκλ   (36) 
As Ben-Akiva and Lerman (1985) show, the generic variables among the conditional indirect 
utility functions cannot affect the individual's probability of making a specific choice option. 
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Thus, by omitting the generic variables from Equation (36), we can rewrite the conditional 
indirect utility function as 

iiitici tcv _1,_1_1_1 θθθ ++=  (37) 
This indicates that the parameters of the conditional indirect utility function should be 
dependent on the service chosen. However, in our empirical analysis we assume that the 
parameters are common among the various services. This is because one individual has a 
different choice set from another individual in our empirical analysis. 
 
We can derive the quadratic indirect utility function in the same way as the first-order 
approximation. It is shown as 

iiictiticitici tctctcv _2_2
2

2_2
2

2_2_2_2_2 θθθθθθ +++++=  (38) 
When travel cost follows a function of minimum travel time, such as ( )ii tc , the approximated 
VTTSs are derived as  

( )
c

iict
i

tc
VTTS

_1

_1_1
_1 θ

θθ ∂∂+
=   (39a) 

( ) ( ) ( )( )
icticc

iiiictiiiciicitt
i tc

tctctcctct
VTTS

_22_2_2

_22_2_22_2_2
_2 2

22
θθθ

θθθθθ
++

∂∂++∂∂+∂∂++
=   (39b) 

 

Empirical Analysis 

The empirical analysis makes use of revealed preference data collected during the 8th Tokyo 
Metropolitan Transport Census. This data was originally collected through a paper-based 
questionnaire in the Tokyo Metropolitan Area in October and November 1995. The original 
data includes origin and destination information about urban rail users, purpose of journey, 
chosen route including first station, final station and transfer points and users' socio-
demographic data. Sample data are selected using the following procedure. First, only 
commuter journeys by workers are selected. This is simply because our model deals with 
commuter journeys. Second, we select commuters who have two or more than two alternative 
routes. This is because we want to analyze route choice behaviour. Third, we select 
commuters whose destinations are located within the central business district (CBD). This is 
because our model basically assumes a city with a unique CBD in which all residents 
commute to the CBD. These selection criteria lead ultimately to data on 1,218 journeys. 
 
For these selected journeys, we prepare data relating to level of service. We determine the 
travel cost and travel time for home-to-workplace journeys, including access from home to 
the origin stations, travel from the destination station to the workplace, and rail travel between 
the stations. As a part of the route choice, we consider an origin station choice as well as a rail 
route choice. That is, we prepare data for alternative routes between different pairs of stations 
where available. The available stations and routes are selected as follows: First, we set access 
links from centres of origin zones to adjacent stations. The maximum number of access links 
is five for each zone. Second, we calculate the home-to-workplace travel time for all available 
routes. Third, we identify three routes for each origin-destination pair by selecting the shortest, 
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the second shortest and the third shortest home-to-workplace travel-time routes. Consequently, 
two or more than two origin stations may be included in the route choice set. We select the 
three shortest travel-time routes in the route choice set, because the empirical analysis in the 
Tokyo Metropolitan Area (Kosuda et al., 2004) shows that 99 % of all rail-use travellers 
choose either of the three shortest travel-time routes. 
 
Before considering parameter estimation, we will analyze the relationship between travel time 
and travel cost. Figure 1 shows the travel time and cost of routes chosen by commuters 
included in the data used for parameter estimation. We find that the marginal travel cost with 
respect to travel time seems to be increasing as the travel time increases. There are three 
reasons for this. The first is the influence of initial cost in rail-use travel. There are about 
twenty private rail operators in Tokyo alone. Each sets its own fare table independently. 
However, all generally have a fare structure consisting of a fixed initial fare that must be paid 
for any journey. That is, the fare between any two stations comprises this initial fare and a 
distance-based fare. Someone travelling only a short distance pays just the initial fare, while 
another rail user going further has to pay more. Moreover, a rail user travelling a long way 
may need to use more than one rail operator. In such a case of a multi- operator journey, the 
user has to pay the initial fare several times. This existence of an initial fare causes a non-
linearity in the travel cost curve. The second reason for the rising marginal travel cost with 
respect to travel time is the influence of non-charged or low-cost transport modes such as 
walking and bicycle. The travel time shown in Figure 1 includes access time from home to 
station and egress time from station to workplace. When a rail user's journey takes little time, 
the marginal travel cost with respect to travel time is nearly constant, because the ratio of 
travel time by foot or bicycle to the total travel time is quite high. On the other hand, when a 
user has a longer journey, the influence of the walked or cycled portion decreases and the 
marginal cost may become positive. The third reason is the influence of commuter's choice of 
rail-service type. In Tokyo, many rail operators provide various types of express services in 
the urban rail network. Some types of express service do not require an additional charge as 
compared to the local service. When an express service is available for no extra charge, long-

Figure 1 Travel time vs. travel cost of urban rail service in Tokyo. 
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distance rail users tend to choose the express service more than short-distance users. This may 
also result in non-linearity in the travel cost curve. 
 
Based on the above considerations, we assume an exponential curve for the relationship 
between travel time and travel cost. We estimate the two parameters of the curve as 

( )tc 0143.0exp141=    530.02 =R       (34) 
where c  means travel cost (in yen) and t  means travel time (in minutes). It is clear from this 
that the initial travel cost is estimated as 141 yen. 
 

Results of Empirical Analysis 

Table 2 shows the results of parameter estimation with the multinomial logit model. As Yai et 
al. (1997) and Morichi et al. (2001) point out, the similarity of the routes may be observed in 
the urban rail network in the Tokyo. However, our model does not consider the similarity of 
the routes, because Kosuda et al. (2004) show that the estimated results of the urban rail route 
choice model with the Multinomial logit model are not significantly different from the 
estimated results with the Mixed logit model that considers the similarity of the routes. We 
use only travel time and travel cost as explanatory variables in the conditional indirect utility 
function. As Kato et al. (2003) shows, the other factors including the number of transfers, the 
in-vehicle congestion and the number of companies used may also influence the rail route 
choice, we neglect them due to the analytical simplicity. Two cases of parameters are 
estimated: one using a linear utility function and the other using a quadratic utility function. 
We find that the estimation results are quite good in both cases. All variables comfortably 
pass statistical tests and the model fit is also quite good. The signs of all variables are also 
reasonable. 
We examine the value of travel time savings based on these results. First, we evaluate VTTS 
using the linear and quadratic models using the observed data. The travel times and travel 
costs used are the same as those used in parameter estimation. Figure 2 shows the results. 
Using the linear utility function, VTTS increases as travel time increases. This is because we 

variables unit parameter t-value parameter t-value
travel cost yen c -0.00229 (-5.62***) -0.00234 (-1.79*)
travel time min t -0.0963 (-18.8***) -0.138 (-16.5***)
(travel cost)2 yen2 c2 0.00000205 (-1.79*)
(travel time)*(travel cost) yen*min tc -0.0000194 (-2.32**)
(travel time)2 min2 t2 0.000136 (-18.5***)
initial log likelihood L(0) -1336.8 -1336.8
maximum log likelihood L*(x) -881.9 -782.1
likelihood ratio 0.339 0.414
number of samples 1218 1218
*** means significance in 99% degree, ** means significance in 95% degree

 and * means significance in 90% degree

linear model quadratic model

 
Table 2 Parameter estimation results 
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use Equation (34) in the evaluation. With the linear approximation, VTTS seems stable at 
about 50 yen/minute, whereas when the quadratic utility function is used it seems to vary 
considerably in the range 50 to 100 yen/minute. In 1995, the year of the census data, the 
average wage rate in Tokyo was 51.7 yen/minute, so this evaluation shows that VTTS is 
almost the same or slightly more than the average wage rate. 
 
Since there is no clear relationship between VTTS and travel time when using the quadratic 
approximation, we simulate VTTS by inputting travel times from 0 to 180 minutes into the 
quadratic VTTS formula (Equation 39b) directly. We again use Equation (34) for this 

simulation. Figure 3 shows results. For travel times of less than about 85 minutes, VTTS 
decreases as travel time increases. On the other hand, it increases if travel time is over 85 
minutes. Note that the average travel time of rail-user commuters in the Tokyo Metropolitan 
Area is about 65 minutes. Two questions are of interest here: "why does the marginal VTTS 
decrease when the travel time is short?" and "why does the marginal VTTS increase when the 
travel time is long?" The second question was covered by the special case described earlier in 
our theoretical analysis. Hence, the first question is addressed here. According to the 
theoretical analysis, there is no simple condition in which VTTS decreases monotonously as 
travel time increases. Therefore, only a hypothetical consideration is possible. We propose the 
hypothesis that the absolute value of marginal wage rate with respect to travel time is much 
larger than other factors if the travel time is short. If the wage rate function satisfies 

0<<∂∂ tw , VTTS may fall as travel time increases, as Equation (21) illustrates. This 
explanation, as well as the analysis of the second question given earlier, remains purely 
hypothetical. In order to be more specific, we may need to carry out further examinations with 
additional data. 

Figure 2 Evaluation results of VTTS with the estimated model and the observed data. 
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CONCLUSIONS 
 
We have examined the variation of VTTS over travel time for urban commuters both 
theoretically and empirically. Our model incorporates the non-linearity of the utility function 
as well as choice of residential location. The theoretical formulation shows that a joint model 
of time allocation and residential location choice can be reduced to a time-allocation model 
under market equilibrium. The comparative static analysis with the time-allocation model 
concludes that the properties of VTTS over travel time cannot be specified in a simple manner. 
The empirical analysis demonstrates that the sign of marginal VTTS with respect to travel 
time may be negative for specific travel times, but may become positive for other specific 
travel times. Although we have not yet found explicit reasons for these empirical results, we 
have discussed possible reasons. The results of our analysis indicate that the mechanism of 
the variation of VTTS over travel time is quite complicated. A more careful examination 
using additional empirical data is required. 
 
This work points to some possible future research. The conclusions of our VTTS analysis by 
the theoretical approach may be improved with some specific modifications. First, our model 
is formulated using the assumption that the city has a single CBD. However, there are many 
cities around the world with multiple sub-centres. As a matter of fact, Tokyo has several 
urban sub-centres around the CBD. To more properly present the distribution of residential 
location, we could reformulate the city structure to give it sub-centres, as shown by Helsley 
and Sullivan (1991) and Zhang and Sasaki (1997). Second, the model presented in this paper 
assumes identical individuals, leading to a constant utility level for all residents in the urban 
area. However, individual heterogeneity may result in a more complicated market equilibrium. 
Classical urban economic theory (for example, Alonso, 1964) shows that variations in income 
level may lead to separation of residential areas by income level. We can improve the model 

Figure 3 Simulation result of VTTS with the quadratic utility function. 
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by considering residential location choice at various income levels. Third, our model assumes 
that commuters always consume urban rail services. This reflects the fact of very high modal 
share of rail ride in Tokyo. However, in general, people choose from among several transport 
modes, including automobile, bus, tram, bicycle and walking. The choice of transport mode is 
highly influenced by wage rate and residential location (Anas and Moses, 1979; Sasaki, 1990; 
and DeSalvo and Hug, 1996). 
 
Regarding the empirical analysis, our model is based on a simple multinomial logit model 
under the homogeneity of individual preference. To take into account the heterogeneity of 
individual preference, we could use the random coefficient model such as the mixed logit 
model (Train, 2003). There has been some VTTS research involving the mixed logit model 
such as Hess et al. (2005) and Sillano and Ortuzar (2005). In addition to the simple 
formulation, we use only two explanatory variables: travel time and travel cost. As Hess et al. 
(2005) point out, bias would be introduced if we chose the wrong variables for the model. 
Rail-use commuters may consider not only travel time and travel cost, but also transfers, 
congestion and train comfort in making a route choice as Kato et al. (2003) indicate. 
Incorporating these factors, even as approximations, would make the model more complicated 
but may be worth trying. 
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SUMMARY 

Traffic conflicts between merging and through vehicles are typical phenomena near freeway 
on-ramp sections, yet few microscopic models describing the interaction of these vehicles in 
the merging process have been proposed. In this paper, vehicle interactions during merging 
process are modeled under an enhanced game-theoretic framework.  Freeway on-coming 
through vehicle and on-ramp merging vehicle are considered as competing players that seek 
to maximize their respective rewards during the merging process. As the freeway vehicle aims 
to maintain their initial car-following state and minimize speed variations, the on-ramp 
merging vehicle strives to join mainline traffic in the minimal time possible subject to safety 
constraints. Considering non-cooperative nature of the game, drivers at the merging section 
would eventually adopt strategies that form Nash equilibrium. To assess the model 
parameters, we propose a bi-level estimation methodology with the upper level as a least 
square problem and the lower level a linear complementarity problem searching for the 
equilibria. Applicability of the proposed model is examined and validated using trajectory 
data collected from field.  Testing results indicate that this framework can effectively capture 
vehicle interactions at freeway merging sections while achieving a relatively high accuracy of 
predicting vehicles’ actions.  
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INTRODUCTION 

Traffic conflicts between merging and through vehicles are typical phenomena near freeway 
on-ramp sections. Such conflicts often slow down the freeway vehicles and trigger 
shockwaves that propagate and dissipate over time and space, or result in localized congestion 
that could evolve into long-lasting bottlenecks throughout entire peak periods. A clear 
understanding of the merging process renders indispensable technical foundations for 
designing freeway on-ramps and developing sophisticated traffic management strategies such 
as ramp control. In previous studies, freeway merging process was often described in a “one-
way” fashion, focusing on the influence of through traffic on merging vehicles in terms of the 
latter’s gap acceptance behavior (Hidas, 2002; Kita, 1993; Kosonen, 1999; Owen and Zhang, 
1998; Yang and Koutsopoulos, 1996). However, in real life it is frequently observed that a 
through vehicle performs courtesy yield or accelerates when seeing a merging vehicle on the 
ramp, while an on-ramp vehicle accelerates or decelerates looking for appropriate gaps in 
response to the movements of through traffic. Clearly, there exists mutual influence between 
the merging and through vehicles, i.e., they are not independent of but affecting each other’s 
decision in an “interactive” manner.  Such pattern has been noted as typical in freeway 
merging area and considered a dominant factor affecting traffic characteristics near on-ramp 
sections (Kita et al., 1999). 
 
A few research efforts have been devoted to model freeway merging process taking into 
account vehicular interactions. Troutbeck (1999) analyzed give-way behavior of mainline 
vehicles before approaching on-ramps.  Rysgaard and Nielsen (1998) performed a study of 
motorway merging-giveway behavior in Europe. In addition to these studies, freeway 
merging process with vehicle interactions has also been studied from macroscopic perspective 
using aggregate variables (Cassidy et al., 1990; Vermijs, 1991). Notably, Kita et al. (1999, 
2002) were one of the first to model vehicles merging interactions as a “game”, where each 
involving vehicle determines its final action by considering each other’s alternatives. 
Specifically, Kita’s model considers collision risk as an incentive factor to build players’ 
payoff functions. That is, in order to minimize collision risks, freeway through vehicle can opt 
to give way to ramp merging vehicle, while ramp merging vehicle will choose to merge to 
freeway mainline or stay on the ramp merging section. However, in Kita’s model vehicle 
speeds are assumed constant during the merging process, which is not true in reality. In 
addition, as pointed out by Troutbeck (1999), freeway vehicle usually perform giveaway 
behavior even before the appearance of merging vehicle, so the alleged interaction may not 
exist.  
 
In this paper, merging and yielding behavior at freeway on-ramp sections are modeled under 
an improved game-theoretic framework. Vehicle speeds are no longer assumed constant as in 
Kita’s study, while minimum safety gaps are explicitly considered in players’ payoff 
functions. Comparing to previous modeling efforts, more realistic behavioral rules are 
proposed in this study to describe typical behavior at merging sections.  To be sure, it is 
assumed that during the merging process freeway on-coming vehicles would try to maintain 
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their initial car-following state and minimize speed variations, while on-ramp merging 
vehicles would strive to join mainline traffic in the minimum time possible subject to safety 
constraints. These behavioral rules are incorporated into respective payoff functions of 
conflicting vehicles, and the resultant pair of their actions is formulated as an equilibrium 
solution. Finally, an estimation methodology based on bi-level programming technique is 
proposed for assessing model parameters. Applicability of the proposed model is examined 
and validated using trajectory data collected from field.  Testing results indicate that this 
framework can effectively capture vehicle interactions at freeway merging sections while 
achieving a relatively high accuracy of predicting vehicles’ actions.  

GAME THEORETICAL MERGING MODEL   

Game Definition 

Consider a typical merging situation shown in Figure 1, where vehicles involved include a 
merging vehicle, a lag vehicle (i.e., oncoming through vehicle) and possibly a lead vehicle. 
As illustrated in this figure, merging vehicle is that vehicle in acceleration lane trying to join 
the freeway; lag vehicle is the vehicle in the target lane just behind the merging vehicle, and 
lead vehicle is the one immediately in front of the lag vehicle in the target lane.  The process 
is modeled as an independent game by taking merging and lag vehicles as players. This 
means, immediately upon seeing each other, both the merging vehicle and lag vehicle have to 
decide a set of moves to maximize their respective rewards in the game. The decisions are 
based on their instantaneous states including speed and acceleration rates as well as their 
predictions on the interaction situation. The action strategies for each player (vehicle) are 
assumed as follows: 

1. The merging vehicle can select either to merge into the mainline traffic immediately or 
to wait until the next available gap; 

2. The lag vehicle’s options are whether to keep its current car-following state or 
decelerate to yield in order to facilitate a smooth merge.  

R.DX

Lead vehicleLag vehicle

Merging vehicle

 
X represents the headway distance between merging and lag vehicle; RD represents the 
remaining distance on acceleration lane. 

Figure 1.  Vehicles in a typical merging situation 
 

It is important to clarify that albeit the lead vehicle is not directly considered as a player, its 
influence is implicitly accounted for by incorporating it into the payoff functions of the lag 
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vehicle. This should become clear when payoff functions of each player are detailed in 
forthcoming sections. 
 
For the game defined above, equilibrium is achieved when no player can unilaterally increase 
his expected payoff by changing his probability of selecting a particular strategy. This 
essentially gives Nash equilibrium:  

                                1 1

2 2

( ) ( )
( ) ( )

E E
E E

≥
≥

p*,q* p,q*
p*,q* p*,q

                                                            (1)                       

where E1 and E2 is the expected payoff at equilibrium, and p* and q* represent the 
equilibrium strategy sets for merging and lag vehicles respectively. In case of multiple 
equilibriums, a superior solution is considered to be the one that gives the highest payoffs for 
both players. 

Payoff Functions Formulation 

In the literature, payoff functions are often formulated assuming that minimizing collision 
risks is the behavioral goal for each individual player (Kita 1993; Kita and Fukuyama 1999). 
This assumption may result in trivial equilibrium solutions as collision risks are affecting both 
players thus each player would have similar magnitude of effects on game equilibrium (Kita 
1993). In this study, it is assumed that freeway through vehicle’s objective is to minimize 
speed variations, i.e., try to employ a lowest possible acceleration rate during the merging 
process. By contrast, merging vehicle’s objective is to minimize the time spent in acceleration 
lane subject to safety constraints. These rules are mapped to mathematical functions 
describing each player’s payoffs. Prior to detailing these functions, it should be noted that lag 
vehicle’s payoffs are in the unit of acceleration ( 2/ft s ), and merging vehicle’s, in the unit of 
time (second). Also the typical merging scenario is assumed as follows: (1) prior to 
approaching the merging section, the lag and lead vehicles are interacting with each other as 
in a normal car-following situation, and (2) lag and merging vehicle immediately constructs 
their respective payoff matrix once the merging vehicle appears on the acceleration lane and 
the distance between lag and merging vehicle is less than 200 feet. Vehicle beyond this 
distance are assumed out of the interaction range (Toledo, 2003). The time at which they 
construct payoff matrix and make decisions will be referred to as decision time henceforth.  

Payoffs for the lag vehicle 

At the decision time, lag vehicle needs to decide whether to perform a courtesy yield, or 
maintain its current car following state as dictated by its lead vehicle.  First, consider the case 
if the lag vehicle chooses to maintain its current car-following state with instantaneous 
acceleration rate la . If its opponent on the acceleration lane chooses to wait for the next 
available gap, then the lag vehicle can indeed maintain its current state as it desires. In this 
case, the lag vehicle’s payoff is la , i.e., it can keep the acceleration rate dictated by the lead 
vehicle.  Note la is directly observable at the decision time.  However, if the merging vehicle 
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decides to merge right away, the lag vehicle may have to apply an unexpected braking to 
avoid potential collision in response to the sudden cutting-in of the merging vehicle.  This 
sharp and unfavorable deceleration rate is not directly observable at the decision time thus has 
to be projected based on the instantaneous states of both lag and merging vehicles.  The 
projected time is the time at which the lag vehicle anticipates the merging vehicle enters the 
freeway.  The initial states at the decision time are denoted by the following: 

mv : Instantaneous speed of the merging vehicle at decision time; 

lv  : Instantaneous speed of the lag vehicle at decision time; 

ma : Instantaneous acceleration of the merging vehicle at decision time; 

la : Instantaneous acceleration of the lag vehicle at decision time; 
RD : Remaining distance on the acceleration lane for the merging vehicle at decision time; 
X : Initial gap distance between lag and merging vehicles at decision time. 
 
The projected states, from the lag vehicle’s perspective are as follows: 

'mv : Instantaneous speed of the merging vehicle at projected time; 
'lv  : Instantaneous speed of the lag vehicle at projected time; 
'mt :  The time duration that the lag vehicle anticipates the merging vehicle would need to 

complete the remaining distance ( RD ) on the acceleration lane; 
'X : Gap distance between lag and merging vehicle when the latter joins the freeway. 

 
Given the initial states at the decision time, projected states can be computed as: 

 2' ( ) 2m m mv v a RD= +                                                                                (2) 

 '' m m
m

m

v vt
a
−

=                                                                                                        (3) 

 ' 'l l l mv v a t= +                                                                                                        (4) 
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l
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a
−
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                                                                               (5) 

With these projected state variables, the lag vehicle is able to estimate the braking rate needed 
to avoid a potential collision when the merging vehicle suddenly cuts in.  Using 'X  to 
approximate the braking distance the payoff of the lag vehicle sa  can be estimated as:  
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l
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β β
⎧ −

+  >⎪= ⎨
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                                                                   (6) 

where bt  is the braking time anticipated by the lag vehicle; 1β and 2β are free coefficients to 
be estimated from data. ' 0X ≤  indicates the lag vehicle should have surpassed the merging 
vehicle when the latter joints the freeway. In this case, there is no need for the lag vehicle to 
brake and it just keeps its initial car-following state la .  Also it should be stressed that sa is 
essentially a quantity assumed to be “perceived” as necessary by the lag vehicle at the 
decision time; it reflects the lag vehicle’s prediction about possible interactions if lag vehicle 
maintains its car-following state while merging vehicle selects to merge anyway. Moreover, 
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even though various approaches are available for obtaining sa analytically, the relationship 
assumed in Equation (6) has been found to yield best accuracy with ', 'lX v  and bt , which are 
directly obtainable from the collected trajectory data.   
 
The other option for the lag vehicle is to conduct an early courtesy yield, giving a clear sign 
of invitation for the on-ramp vehicle to merge. This yielding action produces a gentle 
decrease in speed by applying a comfortable deceleration rate, therefore the payoff ya  is 
determined using the following equation: 

 2
3 'max[ , 10]  /

1.0
m l

y
m

v va ft s
t

β −
= −

−
                                                                           (7) 

where 3β  is a parameter to be calibrated from observation data, and 1.0 is the assumed safety 
time margin. Equation (7) gives a braking rate that ensures the lag vehicle to achieve 
relatively low speed some time before the merging vehicle joins the freeway.  If the merging 
vehicle’s speed mv is lower than the lag vehicle’s speed lv , the lag vehicle will brake at a rate 
bounded by -10 2/ secft , which is the limit of comfortable deceleration rate suggested in 
Traffic Engineering Handbook.  Note when the lag vehicle takes yielding action, its payoff is 
regardless of merging vehicle’s action.  
 
The payoff matrix of the lag vehicle is summarized in Table 1. 
 

Table 1. Payoff matrix of freeway lag vehicle 
Players Lag Vehicle 

Actions Yield Not Yield 

Merge ya  
sa  

 
Merging 
Vehicle 

Wait ya  la  

Payoffs for the merging vehicle 

The merging vehicle driver creates its payoff matrix as soon as he/she enters the acceleration 
ramp and recognizes freeway conditions. The payoff functions proposed here are the times 
required to join freeway traffic. These times are calculated based on initial conditions of both 
vehicles as well as anticipated actions to be carried by the freeway vehicle. As being pointed 
out earlier, these times are associated with the acceleration/deceleration rates the merging 
vehicle anticipates the lag vehicle to adopt, therefore reflecting strong interactions between 
both decision makers. 
 
First consider the situation where the merging vehicle decides to merge instead of waiting for 
the next available gap. If the freeway lag vehicle selects to yield, then the merging vehicle can 
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smoothly join the freeway traffic using a comfortable acceleration rate comforta  as there would 
be no conflict at the merging point. On the other hand, if the lag vehicle chooses not to yield, 
the merging vehicle would need to adopt a more aggressive acceleration rate maxa  in order to 
arrive at the merging point earlier than the lag vehicle to avoid potential collision risks. The 
specific payoffs are expressed as follows: 

 
2

4 5

2m m comfort
m y

comfort

v v a RD
t

a
β β−

− + +
= +                                                          (8) 

 
2

max
6 7
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2m m
m ny

v v a RD
t

a
β β−

− + +
= +                                                          (9) 

where 
m yt − : The payoff that the merging vehicle needs to join freeway traffic if lag vehicle selects to 

yield; 
m nyt − : The payoff that the merging vehicle needs to join freeway traffic if lag vehicle selects 

not to yield; 
4β 5β 6β 7β : Free coefficients to be calibrated from observation data; 

mv : Merging vehicle’s initial speed when entering the acceleration lane; 
  RD : Remaining distance on the acceleration lane; 

comforta : Comfortable acceleration rate merging vehicle adopts if lag vehicle selects to yield;  

maxa  : Maximum acceleration rate merging vehicle adopts if lag vehicle selects not to yield; 
 
Alternatively, merging vehicle can also select to wait for the next available gap rather than 
competing with the freeway lag vehicle. In this case, if the lag vehicle still performs a 
courtesy yield, signaling a clear invitation for the merging vehicle to take the move first, the 
latter doesn’t really have to wait till next available gap, rather, it will wait for a while till 
recognizing the yielding gesture, then accelerate and merge immediately with a comfortable 
acceleration rate comforta .  However, if the lag vehicle selects not to yield but keeps its initial 
acceleration dictated by the car-following situation, the merging vehicle needs to wait till the 
lag vehicle overpasses it, and takes the next immediate gap with a more aggressive 
acceleration rate maxa .  The payoffs for this situation are expressed as: 
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where 

 203



 204 Transportation and Traffic Theory 17 
 
 

w yt − : The payoff that the merging vehicle spends on acceleration lane before joining freeway 
traffic if the lag vehicle selects to yield; 

w nyt − : The payoff that the merging vehicle spends on acceleration lane before joining freeway 
traffic if the lag vehicle selects not to yield; 

8β 9β 10β 11β 12β : Free coefficients to be calibrated from observation data; 

mv : Merging vehicle’s initial speed when entering the acceleration lane; 

0t : Waiting time merging vehicle has to wait before recognizing lag vehicle’s yielding 
gesture; 

0't : Waiting time merging vehicle has to wait till lag vehicle overpasses it;  
is safety margin of time headway; 
X : Initial lag distance; 

la : Lag vehicle’s initial acceleration rate; 
  RD : Remaining distance on the acceleration lane for the merging vehicle; 

comforta : Comfortable acceleration rate merging vehicle adopts if lag vehicle selects to yield;  

maxa  : Maximum acceleration rate merging vehicle adopts if lag vehicle selects not to yield; 
 
The payoff matrix of the merging vehicle is summarized in Table 2. 
 

Table 2. Payoff matrix of on-ramp merging vehicle 
Players Lag Vehicle 

Actions Yield Not Yield 

Merge m yt −  m nyt −  

 
Merging 
Vehicle 

Wait w yt −  w nyt −  

 
Summarizing from the above, a payoff bi-matrix can be constructed in Table 3: 
 

Table 3. Merging-yielding game in normal form 
 
 

 

Players Lag Vehicle 
Actions  Yield Not Yield 
 Probability q 1-q 
Merge p ( ya , m yt − ) ( sa , m nyt − ) 

Merging 
vehicle 

Wait 1- p ( ya , w yt −  ) ( la , w nyt − ) 
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Parameter Estimation 

Parameters estimation of the proposed model is achieved by solving a bi-level programming 
problem. The upper level is a non-linear programming problem minimizing system total 
deviation from actual observed actions: 

 2 2
( , )

1

ˆ ˆmin [( ( , )) ( ( , )) ]
n

p q i i i i
i

Q Q p q P P p q
=

  − + −∑                                    (13) 

where i is the index of observations, iQ is the observed choice of through vehicle (1 yield, 0 
otherwise), iP  represents the observed choice of merging vehicle (1 merge, 0 otherwise), 

while ˆ
iQ  is the model predicted choice of through vehicle (1 yield, 0 otherwise), îP  is the 

model predicted choice of merging vehicle (1 merge, 0 otherwise). Both ˆ
iQ  and îP are 

functions of yielding and merging probabilities p and q , which are the optimizers for the 
upper level programming problem. The optimal value of p and q  should minimize the square 
difference between observed choices and model predicted choices.  
 
The lower level program seeks solution for Nash equilibrium. The bi-matrix game may have 
several equilibrium solutions in pure strategies, as well in mixed strategies. The non-
uniqueness of Nash equilibrium of bi-matrix games is a serious theoretical and practical 
problem. For our modeling purpose, any local solution should suffice. Since the lower level 
problem is actually a two-player game, Stengel (1999) has showed that there exists an 
equivalent linear complementarity formulation as follows: 
 0 ( ) 0e M S S≤ − ⋅ ⊥ ≥                                                                        (14) 
Here [ 4

21 ] RSSS ∈′=  is an auxiliary variable with 2
21, RSS ∈ . Also, e is a vector of all 1’s 

with a proper dimension, and ⎥
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⎣

⎡
=

0
0

TT
A

M  with A and T being the freeway vehicle and 

merging vehicle payoff matrix respectively. 
 
Therefore, given the payoff matrices A and T, S can be obtained by solving (14). The 
probability for choosing each strategy can then be computed as: 
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⎧ =⎪⎪
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⎪ =
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                                                                                               (15) 

Provided equations (14) and (15), the bi-level program (13) can be formulated as a 
mathematical program with complementarity constraints (MPCC). MPCC has been recently 
extensively studied, and Ferris et al. (2002) implemented a solver of nonlinear program with 
equilibrium constraints (NLPEC) as sub-system of GAMS (General Algebraic Modeling 
System). NLPEC can automatically convert MPCC into an equivalent single level NLP using 
a number of reformulation techniques. We adopt NLPEC in this study for the parameter 
estimation. Figure 2 illustrates the schematic workflow for this bi-level programming process. 

 205



 206 Transportation and Traffic Theory 17 
 
 
It should be noted that the parameter estimation method above is consistent with the method 
of "probability of equilibrium selection" originally developed by Kita and Fukuyama (2002), 
as there may exist multiple equlibria. Our method can jointly estimate the payoff and the 
probability of equilibrium selection so that multiple equilibria can be accommodated. Table 3 
lists how the probabilities of different equilibrium strategies are defined and Equation (13) 
demonstrates the objective function of the estimation model that incorporates these 
probabilities. The method does not require any selection criteria form their resultant actions 
(i.e., no need for identifying the correspondence between realized equilibrium and the values 
of the explanatory variables). 
 

Set 0i =  
Initialize iαααα , iββββ  

Observation Data 

Observed choices 
 (Q i , P i ) ~ (0/1, 0/1) 

Merging vehicle 
payoff matrix A 

Freeway vehicle 
Payoff Matrix T 

Upper-level Programming 
2 2

( , )
1

ˆ ˆmin [( ( , )) ( ( , )) ]
n

p q i i i i
i

Q Q p q P P p q
=

  − + −∑

Y 

* *,= =i iα α β βα α β βα α β βα α β β
* *,= =i ip p q q

Lower-level Programming 
Nash Equilibrium 

Convergence? 
,i iα βα βα βα β ip ,

iq  
1i i= +  

Parameter Estimation: Bi-level Programming 

 
 

Figure 2. Schematic workflow for bi-level programming 
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Model Validation  

Model validation is the process of quantifying predicting capability of the calibrated model 
using validation data set.  The following metrics are employed in model validation:  
 
Root Mean Square Error (RMSE) 

 ( )2

1

1 n

i i
i

RMSE x y
n =

= −∑                                                                      (16) 

Where    xi is the model predicted value indexed by i; 
              yi is the actual observation indexed by i; 
              n is the number of total observations. 
 
Correlation Coefficient  
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1

n
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i x y
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=
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where   x  is the mean of model predicted values; 
            y  is the mean of the actual observed values; 
            xσ  is the standard deviation of model predicted values; 
            yσ is the standard deviation of the actual observed values. 
                         
Mean Absolute Error (MAE) 

 
1

1 | |
n

i i
i

MAE y x
n =

= −∑                                                                                    (18) 

CASE STUDY 

The field observation data were used to calibrate and validate the proposed model. These data 
were obtained from Freeway Data Collection for Studying Vehicle Interactions (DCSVI) 
project conducted by FHWA in 1983. The data collection site was an on-ramp section of I-
405 at Roscoe Boulevard, Van Nuys, California. This site includes a 4-lane freeway section 
that is 1728 feet in length with a metered entrance ramp. The length of the ramp acceleration 
lane after meter signal light is about 400 feet.  A full-frame 33 mm motion picture camera was 
mounted on a fixed-wing, short-take-off-and-landing aircraft. The site was then filmed at one 
frame per second with the aircraft flying clockwise at altitudes ranging between 2,500 and 
4,500 feet. Individual vehicle trajectories were then extracted from the film at 1-second 
resolution. The extracted data set contains 200,000 data records (vehicle-seconds), including 
detailed information about vehicle speed, acceleration, front and lag distances and other 
variables. Figure 3 demonstrates the geometry of the test site. 
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Figure 3. Geometry of the test site 

 
The extracted data set was carefully examined to identify merging cases consistent with the 
assumptions prescribed earlier.  With each identified case, trajectories of involved vehicles 
were traced back from their actual choices (i.e., yield/not yield, wait/merge) while examining 
their respective speed and acceleration profiles. In the end this screening process identified a 
total of 86 merging cases that meet model assumptions. For each merging case, the lead, lag, 
and merging vehicle’s trajectories are meticulously investigated and analyzed. Figure 4 
illustrates an example of speed profiles for merging and lag vehicles in four typical merging 
scenarios.  In this figure, the time when the merging vehicle joins freeway mainline is marked 
as “merge point” by the vertical line, and the first point in merging vehicle’s speed profile 
represents the decision point for all the players. This way, merging situation can be effectively 
deduced and reconstructed using speed profiles between the merge and decision point. For 
instance, in the scenario where lag vehicle choose to yield and merging vehicle chooses to 
wait (see Figure 4(d)), it can be clearly seen from the figure that lag vehicle slowly 
decelerates signalling his yielding intention while the merging vehicle has a relatively long 
accelerating time frame suggesting the latter selects not to merge immediately but rather to 
wait. Likewise, when the lag vehicle chooses not to yield and merging vehicle chooses to 
merge immediately (see Figure 4(b)), corresponding speed profiles depict a steep increase for 
merging vehicle, while a drop in lag vehicle’s speed can be seen right before the merge point. 
This indicates that a sudden cutting in of the merging vehicle causes the lag vehicle to 
decelerate unexpectedly.  

 
 
 
 
 
 
                             
 
 
 
 
                          4(a)                                                                       4(b) 
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                              4(c)                                                                        4(d)                      

Figure 4. Vehicle speed profiles in the merging process 

 
From the total 86 cases, the extracted trajectories from 63 cases were used in calibrating 
model parameters via bi-level programming, while the rest of 23 cases were used for 
validation. Table 4 summarizes the calibrated parameters and Table 5 summarizes the 
validation results. 

Table 4. Calibrated Model Parameters 
1β  1.0658166 

2β  -0.01398846 

 
Freeway Lag 
Vehicle 

3β  6.06633624 

4β  0.00432315 
5β  1.10E+02 
6β  -0.00589191 
7β  2.06E+03 
8β  -0.00000247 
9β  0.00266124 
10β  1.10E+02 
11β  -0.0000699 
12β  -0.00717059 

 
 
 
 
 
 
 
On-Ramp 
Merging Vehicle 

13β  2.06E+03 

 
Table 5. Validation results 

No. of Validation Cases 23 
No. of Pure Strategy Equilibrium 12 
No. of Mixed Strategy Equilibrium 11 
Mean Average Error 0.087 
Root Mean Square Error 0.280 
Correlation Coefficient 0.915 

Lag vehicle - Yield vs. Merging Vehicle - Merge

30
35
40
45
50
55
60
65
70

20
7

20
9

21
1

21
3

21
5

21
7

21
9

22
1

22
3

22
5

22
7

22
9

Time(sec)

S
pe

ed
(m

ph
)

Lead
Lag
Merging

Merging Point 

Lag Vehicle - Yield vs. Merging Vehicle - Wait

30
35
40
45
50
55
60
65
70

231 233 235 237 239 241 243 245 247 249 251

Time(sec)

S
pe

ed
(m

ph
)

Lead
Lag
Merging

Merging Point 

 209



 210 Transportation and Traffic Theory 17 
 
 
As shown in Table 5, a total of 23 merging cases were used in model validation. About one 
half of these cases resulted in mixed strategy equilibrium while the other half pure strategy 
equilibrium. The Mean Average Error is 0.087, which essentially equals to the false alarm 
rate, in other words, the model successfully predicted vehicles actions with 91.3% of all the 
cases. The Root Mean Square Error of model predictions is 0.289 while Correlation 
Coefficient between real choices and model predicted choices is 0.915. This indicates that the 
proposed model has a good capability to replicate and predicate vehicle actions at merging 
sections. 

CONCLUDING REMARKS 

This paper describes a game-theoretical framework that can model driver’s behavior during 
the complex merging maneuver. In the game, freeway on-coming vehicles aims at 
maintaining their initial car-following state and minimize speed variations, while on-ramp 
merging vehicles strive to join mainline traffic in the minimum time possible subject to safety 
constraints. These behavioral rules are incorporated into respective payoff functions of 
conflicting vehicles, and the selected actions become the outcome of a game with each player 
trying to maximize his own rewards. An estimation methodology based on bi-level 
programming technique is proposed for assessing model parameters. Vehicle trajectory data 
from the field is used for the estimation and validation of the proposed model.  
 
This study is an attempt to better understand merging behavior from game perspective. The 
proposed model can be implemented in simulation package to improve current modeling 
technique. Currently only two players, each with two alternatives are considered in the game, 
yet the framework could be further expanded “horizontally” to include more players, or 
“vertically” to consider multiple choices and sequential moves for each player. Albeit a game 
with more than 4 players may involve tremendous amount of computation thus practically not 
feasible, however a 3-player game with multiple options for each player merits further 
exploration. For example, the lag vehicle can have more options including accelerating to 
surpass the merging vehicle or conducting a lane change to avoid potential conflicts. This 
should also include collecting new high-resolution trajectory data to aid detailed analysis and 
model calibration/validation.  Such work is the subject of a research project currently 
underway by the authors. 
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RANDOM SUPPLY AND STRATEGIC 
BEHAVIOUR IN STATIC TRAFFIC 
ASSIGNMENT 

Giuseppe Bellei and Guido Gentile, Dipartimento di Idraulica, Trasporti e Strade Università 
degli Studi di Roma “La Sapienza”, Italy 

SUMMARY 

In this paper the modelling framework of static traffic assignment is extended to the case 
where random arc costs are jointly distributed, although implicitly through a local correlation 
structure at nodes. The resulting network loading problem is then solved through a Monte 
Carlo simulation at each node processed in topological order. This way of reproducing the 
day-by-day randomness of transport supply allows highlighting the role of en-route 
information to drivers, who are induced to make adaptive choices. The two limit situations 
where maximum level of information is supplied by a route guidance system and minimum 
level is self-obtained are considered.  

INTRODUCTION 

Deterministic traffic assignment is based on the assumption that each user is perfectly 
informed about the topology of the network and the costs that he would incur by travelling on 
any road arc. In this context, as a rational decision maker he will choose to travel on a shortest 
path, i.e. one among the paths connecting on the network his origin to his destination with the 
least cost. Any congestion phenomena is reproduced by means of an arc cost function, 
through which the disutility of travelling throughout each arc depends in general on the flows 
of all the arcs of the network. This induces an equilibrium, where no user finds convenient to 
change unilaterally his path choice.  
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With stochastic traffic assignment some degree of randomness in the cost pattern is 
introduced. The users are assumed to choose among paths on the basis of their costs, 
represented by random variables, whose residual reproduces the perception error by the user 
and/or the modelling error by the analyst (e.g. data inaccuracy, unrepresented variables and 
drivers’ heterogeneity within each user class). More specifically, path costs are associated 
with independent identically distributed Gumbel random residuals in the Logit model and 
with correlated normal residuals in the Probit model. Path cost correlation within the Probit 
model arises from path overlapping, assuming independent normal residuals for arc costs. 
When such randomness is taken into account together with arc cost dependence on flows, 
stochastic equilibrium is defined, where users travelling between the same origin and 
destination will split among paths consistently with the probability of being perceived (and/or 
evaluated) as minimum cost ones. 
 
However, such a demand-oriented interpretation of supply randomness does not seem to 
constitute an appropriate modelling framework for reproducing many phenomena occurring in 
our everyday traffic experience, corresponding to the occurrence both of intrinsically random 
events and of events perceived by drivers as random, independently on their nature, such as: 

• the downgrading of capacity, due to accidents, occasional road works, illegal parking, 
and so on, which is typically perceived as random, although may be known to take 
place with a certain frequency; 

• the downgrading of speed, due to weather conditions, which is only partially appraised 
by drivers, although may be known to take place under specific circumstances; 

• the day-by-day variability of trip generation, due to the individual mobility needs 
related to cyclic and non-systematic activities, of which drivers are not fully aware; 

• the within-day variability of supply performances, which cannot be represented in a 
static model, but yet has to be accounted here, since the daily cyclic pattern of travel 
costs is known by most drivers only in rather aggregate terms and the rapid changes of 
travel times when queues are building up, or vanishing, may look as random to them; 

• the current phase of the traffic light when the driver approaches an intersection is 
considered as random by the user and can induce to an adaptive behaviour – for 
instance, if equivalent left-turn opportunities are given at traffic lights on an arterial, 
many drivers adopt the strategy to take the first left-turn that is green when reached. 

 
Among the randomness sources listed above there are some local ones, that take place at the 
arc/node level, and some global ones that take place at network level, and the proposed 
approach is not meant to analyse and represent them separately. Moreover, although these 
random arc costs may be independent in some cases, in general correlations are relevant and 
have to be considered. Global sources, like demand variation, affect in most cases the whole 
network, determining a non-trivial correlation pattern among arc costs, but also local 
independent sources, like capacity downgrading due to accidents, can give rise to cost 
correlations, because the queue may spillback on upstream arcs. In particular, the correlation 
among arc costs is relevant with respect to the role of information, since drivers utilize 
information about such costs through the knowledge of the correlation pattern coming from 
experience.  
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The representation and evaluation of drivers’ information systems is one of the main issues 
faced in the last years by research on transportation, since they are seen as a tool to mitigate 
road congestion in urban areas at a lesser investment cost and impact on urban environment 
than new infrastructures. The proper modelling framework to design and operate route 
guidance systems is Dynamic Traffic Assignment which requires a huge amount of input data, 
often unavailable or roughly approximated. However, if the role of information is highlighted 
within static traffic assignment, the utilization of such a less demanding modelling tool can be 
envisaged, both in the evaluation stage and in some early design stages of many different 
information systems, with specific formulations to be tailored to the features of such different 
systems. A traffic assignment model which includes the representation of drivers’ route 
choice behaviour with respect to information acquisition and processing when no information 
system is present is also useful, to get a consistent “do nothing” scenario for information 
systems evaluation, or if empirical evidence is found that this improves the fitting of the 
observed flows.  
 
The aim of this work is thus to formulate and solve two novel traffic assignment models in the 
static framework, characterized respectively by a maximum and a minimum level of 
information, which we named the Full Information Model (FIM) and the Self Information 
Model (SIM). In both cases there are two key factors to be taken into account. The first one is 
the day-by-day randomness of transport supply in road networks, which allows drivers to take 
advantage of information concerning the actual travel costs they are going to face during a 
specific trip. The second one is the adaptive nature of the travel choices made by a rational 
decision maker when such information is obtained en-route, and the consequent adoption of a 
strategic behaviour. 

STATE OF THE ART AND PROPOSED MODELS 

The issue of supply randomness has been set up by Mirchandani and Soroush (1987), who 
extended the traditional “demand-side” Stochastic User Equilibrium (SUE) definition to 
include inherent travel time randomness by introducing, in addition to the usual error term of 
random utility discrete choice models, applied to route choice and identified as a perception 
error, a further random term, representative of actual travel time variability. They also 
introduce both linear and nonlinear disutility functions of perceived actual travel time to 
model risk-averse, or risk-prone, drivers’ behaviour. In the case of linear functions model and 
solution algorithm development parallels traditional SUE and arc travel time independence is 
not required, although no scope for considering their correlation is given. Following their 
work, considerable effort has been spent on taking supply randomness into account, but this 
effort mainly focused on the impact of such randomness on network reliability, as surveyed 
by Clark and Watling (2005), when addressing the problem of identifying the distribution of 
total travel time in the light of day-to-day demand variation, as a mean to evaluate overall 
network reliability in case of capacity downgrading on some arc. 
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The proposed approach falls into the “behavioural reliability” class, among the ones identified 
by Clark and Watling as classes of modelling techniques, quantifying the impact on variable 
network performance of elements like the abovementioned randomness sources and the more 
severe performance degradation occurring in emergencies. The issue this class of modelling 
techniques deals with is, following almost literally Clark and Watling, how to represent the 
impact on the “typical” route choice pattern, or on other responses such as departure time 
choice, which is presumed to arise from the modified mean behaviour of drivers in their 
attitude to the unpredictable variation of travel times and/or the “risk” perceived. The aspect 
of drivers’ behaviour which has been more frequently addressed is risk averseness, which, 
beside the nonlinear disutility approach of Mirchandani and Soroush, is addressed by Uchida 
an Iida (1993) utilising risk analysis and by Bell and Cassir (2002) utilising game theory. 
Another perspective on supply randomness came from Watling (2002), who discussed 
consistency of SUE paradigm, observing that random flows, consistent with a random utility 
route choice model, should be made consistent also with random costs. The answer to this 
consistency problem is the definition of a class of Generalized SUE models, relying on 
representing drivers’ information acquisition process as a day by day sampling from random 
cost distributions. 
 
All these approaches, however, consider only pre-trip drivers’ choices, thus allowing for pre-
trip information systems modelling (although none explicitly addresses this issue), while 
modelling of en-route information is possible only within a strategic, framework, where the 
transport system users take both pre-trip choices with regard to their travelling strategy and 
adaptive choices with regard to the implementation of the chosen strategy, where en-route 
information may play a role. 
 
This framework is commonly adopted in transit assignment, where the strategy (Spiess and 
Florian, 1989) is represented by a subgraph of the transit network graph, grouping a set of 
origin destination paths with suitable properties, named hyperpath (Nguyen and Pallottino, 
1988). The pre-trip choice is the hyperpath choice made prior to departure, including the 
choice of a set of lines to board at any stop and the stop where to alight once a line had been 
boarded. The adaptive behaviour is usually represented as boarding the first transit line 
arriving within the set. Such a behaviour is not necessarily defined as a choice based on 
information, as it can be seen simply as a rule describing the utilization of lines calling at a 
stop. An overview of methods for representing line choice/utilization at stops, together with a 
model for the case of vehicle overcrowding, can be found in Bouzaïene-Ayari et al. (2001). A 
choice model has to be developed if availability of real-time user information at stops is taken 
into account, as proposed by Gentile et al., (2005). Beside transit assignment, a model where 
adaptive choices are considered within general capacitated networks with queues has been 
proposed by Marcotte and Nguyen (1998), but no specific reference to supply randomness 
and information is made. By our knowledge, thus, an approach dealing with supply 
randomness in road networks by representing route choice within a strategic behaviour 
framework, hasn’t been yet developed. Since adopting such a framework is a straightforward 
way to represent the role of information within drivers’ choices we believe that such a 
development is of both theoretical and practical interest. 
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The proposed model is based on several simplifying assumptions, to help focusing on the 
issue of relations between random supply and strategic behaviour: pre-trip information on 
actual costs, however obtained, is ignored, as well as risk-adverse, or risk-prone, behaviour. A 
deterministic choice model is considered, and extension to Deterministic User Equilibrium 
(DUE) is only sketched, although an assignment procedure dealing with cost dependence on 
flow is defined and utilized, following the steps of consolidated approaches for passing from 
network loading to equilibrium. The model formally presented thus qualifies as a 
Deterministic Network Loading (DNL) on a stochastic network, with a single user class to 
further simplify the model. Extension to Stochastic User Equilibrium (SUE) will not be 
addressed at all, since it would require a more sophisticated approach, distinguishing between 
endogenous supply randomness, the one arising from demand randomness which both 
Mirchandani and Soroush (1987) and Watling (2002) considered, and exogenous supply 
randomness, considered here.  
 
A sequential route choice model is adopted, like the one developed by Nguyen et al. (1998) 
for a logit-type Stochastic Network Loading (SNL) to transit networks, and that developed by 
Gentile and Papola (2006) for road networks. The drivers are assumed to choose, sequentially, 
at any node, starting from the origin, the exiting arc which leads to their destination at the 
minimum cost, instead of choosing jointly a minimum cost path. While seemingly rather 
different from usual behavioural assumptions, this sequential choice is trivially coincident 
with DNL minimum path choice, and a similar result holds also for SNL, since the well 
known Dial’s method implements a logit path choice model, which can be shown to be 
equivalent to a sequential choice model. 

CHOICE MODELS AND NETWORK LOADING 

The road network is represented, as usual, by a directed graph G = (N, A), where N is the set 
of the nodes, and A ⊆ N×N is the set of the arcs. A generic arc from node i to node j is 
denoted as ij. The forward and backward star of node i∈N are defined as F(i) = {j∈N: ∃ij∈A} 
and B(i) = {j∈N: ∃ji∈A}, respectively. An efficient subgraph Gd(N, Ad) for any destination d 
is considered where only the efficient arcs ij∈Ad = {ij∈A: TOd(i) > TOd(i)} which get closer to 
the destination are included, for ease of computation. Indeed, the topological order TOd(i) is 
some “distance” measure on the network from the generic node i∈N to destination d. The 
efficient forward and backward star of node i for each destination d are then defined as the set 
of nodes Fd(i) = {j∈N: ∃ij∈Ad} and Bd(i) = {j∈N: ∃ji∈Ad}, respectively. There are two special 
subsets of the nodes: the centroid nodes C⊆N, where trips have their origins and destinations, 
and the information nodes I⊆N, where adaptive route choices may take place. At nodes i∉I 
drivers’ choices are based on average costs, in such a way that, if I = ∅ and costs are 
independent by flows the model reduces to a DNL, while at nodes i∈I drivers get, during the 
trip, some information about actual costs and utilize such information to decide the next node 
j on their way to the destination, belonging to node i efficient forward star Fd(i). 
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The random arc costs correlation structure is not explicitly defined. It is represented as drivers 
perceive it within a sequential model, where route choices are assumed to be made at the local 
arc/node level, and is implicitly defined by marginal joint distributions representing: 

• serial correlation between the cost γij of each arc ij∈A and the cost ωj
d to reach the 

destination d from final node j of the arc, mainly arising from queue spillover and 
depending on arc length; 

• parallel correlation at each node i∈I among the costs ωk
d to reach the destination d 

from every node k∈Fd(i), mainly arising from demand fluctuations and depending on 
path overlapping. 

In particular, the marginal joint distribution, independent on d, of the arc cost γij and the node 
cost ωj

d is assumed to be a bivariate normal variable, while the marginal joint distribution of 
the node costs ωk

d belonging to the efficient forward star of node i is assumed to be a 
multivariate normal variable. Denoting by: 

- cij, σij the mean and standard deviation of random variable γij; 
- wk

d, σk
d the mean and standard deviation of random variable ωk

d; 
- ρij the correlation coefficient for the bivariate distribution of γij and ωj

d; 
- ωωωωi

d, wi
d the vectors of random and mean cost from nodes k∈Fd(i) to the destination d; 

- ΣΣΣΣ
d
i the variance-covariance matrix of ωωωωi

d; 
the assumptions on how cost distribution is perceived by drivers are formally expressed as: 
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The expression (2) for the random actual costs from nodes k∈Fd(i) to the destination d is 
written in compact and general, but rather implicit, form. In most cases, however, the 
cardinality of Fd(i) is three or less. When Fd(i) = {h, j, k}, for example, denoting by σh

d, σj
d, 

σk
d the standard deviations of variables in ωωωωi

d and by ρhj
d, ρhk

d, ρjk
d the correlation coefficients 

among such variables, the (2) can be explicitly written as: 
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The cost γij of arc ij∈A is its actual travel cost, while the cost ωj
d is the expected value of 

travel cost from node j down to destination d deriving by sequential choices made en-route, 
which is in general different from the cost that drivers evaluate at node i to make the choice. 
 
The costs that drivers are assumed to evaluate at nodes i∉I are in fact simply average costs, 
and the next node, with respect to i, on the way to destination d, is node j such that: 

( ){ } ,arg min d
d
kk iFj i N i Iw∈

= ∈ ∉  (4) 
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Even if only average cost is considered for sequential choice at nodes i∉I, random cost to 
destination d from node i, as perceived by drivers, has to be calculated from its joint 
distribution (1) with the cost of arc j in (4). This ensures that cost to destination is evaluated 
taking properly into account serial correlation when making adaptive choices at nodes i∈I:  

,d d
i j ij i N i Iγω ω= + ∈ ∉  (5) 

It results then, applying to (5) the formula for the linear combination of bivariate normal 
random variables, that marginal distribution of ωi

d is univariate normal with mean and 
variance derived from the parameters of the joint distribution of ωj

d and γij:  

( )22, 2d d dd
iji j ij ij jj ijN w c ρσω σ σσ+ + +∼  (6) 

The drivers are thus assumed to be aware of the random nature of cost to destination, with 
reference to serial correlation, also at nodes i∉I, where no information is available on the cost 
of alternative routes to destination and choices are made on the basis of average cost.  
At nodes i∈I the drivers are assumed to use some information on actual cost to evaluate the 
cost of continuing their trip from node i to destination d passing through any node k∈Fd(i), 
here defined as continuation cost from node i to node k. Denoting by ξik

d these continuation 
costs, which are random variables as well, the probability that node k∈Fd(i) is chosen to reach 
destination d, Pik

d, is defined by:  

{ } ( )Pr , , ,d dd d
ik ik ih k h i k h i IP Fξ ξ= < ∈ ≠ ∈  (7) 

Two alternative specifications of the continuation costs are given, corresponding to the 
different choice models. In the case of full information it is assumed that drivers are informed 
at nodes i∈I about the actual travel cost from node i to destination d corresponding to any 
choice of continuation node k. In the case of self information it is assumed that drivers get 
informed at nodes i∈I about the actual cost of the arc leading to node k, only if such cost is 
higher than a given threshold, and infer continuation costs to all nodes k∈Fd(i) from their 
knowledge about average costs and correlation. 

Full Information Model 

In the FIM continuation cost at node i∈I to each node k∈Fd(i) is simply the sum of the actual 
cost to destination from node k and the actual cost of arc ik: 

( ) ,d d d
kik ik k i i IFξ γω= + ∀ ∈ ∈  (8) 

The distribution of continuation costs at node i∈I is thus multivariate normal, being a linear 
combination of the costs of arcs ik and the costs to destination from nodes k, with k∈Fd(i). 
Denoting by ξξξξi

d the continuation cost vector at i∈I, by ci
d the arc cost vector and by ΣΣΣΣξξξξd

i the 
variance-covariance matrix of ξξξξi

d we get, assuming that arc costs γik are uncorrelated, the 
following expressions for continuation cost, correspondent to (2) and (3): 
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where the terms on the diagonal of ΣΣΣΣξξξξi
d are the variances of the sum of the arc costs and the 

costs to destination from the final node of each arc k∈Fd(i): 
2 22 2d dd

ik kjik ikk
ξ ρ σ σσσσ = + +  (11) 

It is worth noting that in the FIM minimum actual cost paths would be chosen only if I = N, 
while information results to be, as a matter of fact, limited if I⊂N. If I = N the model can 
represent a route guidance system, but user classes representative of equipped and non 
equipped drivers should be considered, which would complicate somewhat the model, since 
cost to destination should be class specific. Within this work, drivers are homogeneous, thus 
in the FIM cost to destination d from nodes i∈I coincides with minimum continuation cost: 

( ){ }min d
dd

j ii F ijξω ∈=  (12) 

Assumptions (1) and (2) imply that marginal distribution of each ωi
d, ωj

d and γij ,for j∈Fd(i), is 
normal, hence there is admittedly a lack of consistency with respect to (8) and (12). It is, 
however, the same lack of consistency which is inherent to widely adopted Clark’s 
approximation (Clark, 1961). Expressions (7) and (12) define continuation probabilities and 
the random variable cost from node i∈I to destination d. Neither expression allows analytical 
calculation, so that continuation probabilities are obtained by numerical calculation, based on 
sampling from distribution (9) and approximating each continuation probability Pij

d by the 
relative frequency of cases when the correspondent continuation cost ξij

d results to be the 
minimum one. Denoting by Pi

d the continuation probability vector at node i∈I such numerical 
calculation is formally expressed as: 

( )PX= dd
i iξP  (13) 

The same sampling allows approximating mean and variance of ωi
d distribution by the mean 

and variance of minimum continuation cost in the sample, built with a Montecarlo simulation 
approach. These numerical calculations are formally expressed as: 

( ) ( )W S;X Xd d
i iw σ= =d d

i iξ ξ  (14) 

Self Information Model 

In the SIM the continuation cost vector ξξξξi
d at node i∈I is given a more complex definition, 

since drivers are assumed to go through a two stage forecasting process, triggered by 
observed congestion on outgoing arcs and implying that: the cost to destination from final 
nodes of arcs where congestion is observed is estimated utilizing their cost and serial 
correlation; cost to destination from final nodes of other arcs is estimated utilizing estimates 
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for cost to destination from final nodes of these arcs and parallel correlation. This process is 
formalized in the following. 
 
First, if the actual cost γij of some arc ij is higher than a predefined threshold value (1+k1)cij, 
cost γij is attributed to arc ij, cost to destination from node j is estimated as the mean of 
distribution (1), conditional on γij, and continuation cost ξij

d is evaluated as their sum. 

( ) ( );
d d
j jdd d d

j j ij j ijij ij ij ij ij ij
ij ij

w c w c
σ σ

ρ γ ξ ρ γ γω
σ σ

= + − = + − +  (15) 

Second, continuation costs ξih
d towards nodes h∈Fd(i) such that the cost of the arc ih is lower 

than, or equal to, (1+k1)cih, are evaluated by attributing to each arc its mean cost cih and 
estimating cost to destination from nodes h as the means of the corresponding components of 
distribution (2), conditional on estimated costs to destination from nodes j∈Fd(i) such that 
cost of arc ij is higher than (1+k1)cij. 
 
Let’s then partition the vector ωωωωi

d and the matrix ΣΣΣΣi
d with respect to the final nodes of arcs 

whose cost is above the threshold (conditioning arcs) and below the threshold, or equal to it 
(conditional arcs). If the vector components and the matrix rows, or columns, corresponding 
to conditional arcs are denoted by a minus sign superscript and the ones corresponding to 
conditioning arcs are denoted by a plus sign superscript, suitably rearranging the rows and the 
columns of the vector ωωωωi

d and of the matrix ΣΣΣΣi
d the partition is as follows: 

;
− −− −+

+ +− ++

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

d d d
i iid d

ii
d d d

i ii

ωωωω Σ ΣΣ ΣΣ ΣΣ Σ
ωωωω ΣΣΣΣ

ωωωω Σ ΣΣ ΣΣ ΣΣ Σ
 (16) 

The costs to destination ωωωωi
d+

 and continuation costs ξξξξi
d+

 corresponding to conditioning arcs are 
given by (15), while the vector of costs to destination ωωωωi

d -, conditional on ωωωωi
d +, is normally 

distributed as follows: 

( )( )1 1,N − −− − + +−+ −− −+ +−++ +++ ⋅ ⋅ − − ⋅ ⋅∼d d d dd d d dd d
i i i ii i i ii iw wΣ Σ Σ ΣΣ Σ Σ ΣΣ Σ Σ ΣΣ Σ Σ ΣΣ ΣΣ ΣΣ ΣΣ Σω ωω ωω ωω ω  (17) 

Finally, denoting by ci the mean arc cost vector, partitioned as ωωωωi
d, continuation costs 

corresponding to conditional arcs are given as: 

( )1−− − − + +−+ ++= + + ⋅ ⋅ −d d d dd d
ii i i ii iξ w c wΣΣΣΣ ΣΣΣΣ ωωωω  (18) 

Expressions (16)÷(18) assume that both ωωωωi
d + and ωωωωi

d –exist, but also cases when no arc cost, 
or every arc cost, is above the threshold have to be taken into account. If we consider again 
that Fd(i) = {h, j, k}, the (18) can be made explicit, and the continuation costs can be derived 
in all the possible cases, which are four: 1 - no arc cost above the threshold; 2 - only the cost 
of one arc, let it be j, above the threshold; 3 - only the cost of one arc, let it be j, below, or 
equal to the threshold; 4 - all arc costs above the threshold. The elements of ξξξξi

d are thus: 
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Case 1 γih ≤ (1+k1)cih, γij ≤ (1+k1)cij, γik ≤ (1+k1)cik 

; ;d d dd d d
h ih j ij k ikih ij ikw c w c w cξ ξ ξ= + = + = +  (19) 

Case 2 γih ≤ (1+k1)cih, γij > (1+k1)cij, γik ≤ (1+k1)cik  

( )

( )

( )

d
d d hd

h ih ijih hj ij
ij

d
jd d

j ijij ij ij ij
ij

d
d d kd

k ik ijik kj ij
ij

w c c

w c

w c c

σ
ξ ρ γ

σ

σ
ξ ρ γ γ

σ

σ
ξ ρ γ

σ

= + + −

= + − +

= + + −

 (20) 

 

Case 3 γih > (1+k1)cih, γij ≤ (1+k1)cij, γik > (1+k1)cik 

( )

( )
( )

( )
( )

( )
( )

( )

2 21 1

d
d hd

h ihih ih ih ih
ih

d d d d d dd d
j jhj hk jk ih jk hk hj ikd d

j ij ih ikij ih ikd d
ih ikhk hk

d
d kd

k ikik ik ik ik
ik

w c

w c c c

w c

σ
ξ ρ γ γ

σ

ρ ρ ρ ρ ρ ρ ρ ρσ σ
ξ γ γ

ρ ρσ σ

σ
ξ ρ γ γ

σ

= + − +

− −
= + + − + −

− −

= + − +

 (21) 

Case 4 γih > (1+k1)cih, γij > (1+k1)cij, γik > (1+k1)cik 

( )

( )

( )

d
d hd

h ihih ih ih ih
ih
d
jd d

j ijij ij ij ij
ij

d
d kd

k ikik ik ik ik
ik

w c

w c

w c

σ
ξ ρ γ γ

σ

σ
ξ ρ γ γ

σ

σ
ξ ρ γ γ

σ

= + − +

= + − +

= + − +

 (22) 

The calculation of continuation cost in the SIM aims at representing the behaviour of drivers 
when faced to unusual congestion, by assuming that some information can be visually 
obtained in such cases, for instance by observing that some queue on downstream arcs is close 
to spillback. Since this phenomenon is not the only one which can be observed by drivers, we 
have taken a more general approach, also allowing to use most common cost functions. 
 
User classes could be introduced, in the SIM, to distinguish between commuters, whose 
experience helps adapting their choices to changing network performance, and occasional 
users, less prone to adaptive behaviour. 
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A conceptual difference arises between SIM and FIM when we note that, even if user classes 
are not considered, actual and perceived random cost have to be considered. In the FIM, in 
fact, the costs ξξξξi

d, determining continuation choice probabilities are the same drivers will face 
on their route to destination, allowing to use them to calculate also the mean and variance of 
ωi

d distribution, while in the SIM the same costs systematically differ from actually 
experienced ones, which are the actual costs of chosen alternative. The distribution of cost to 
destination ωi

d, at each node i∈I, is thus a distribution conditional on the choices made, whose 
mean and variance are defined as follow: 

( ){ }E E arg min :dd d d d
i i j ij ihj h iw Fγ ξω ω⎡ ⎤= = + = ∈⎡ ⎤⎣ ⎦ ⎣ ⎦

 (23) 

( ){ }V V arg min :dd d d d
i i j ij ihj h iFγ ξσ ω ω⎡ ⎤= = + = ∈⎡ ⎤⎣ ⎦ ⎣ ⎦

 (24) 

No equation like (12) for the FIM is defined for the SIM, since equations (23) and (24) define 
only the parameters of ωi

d distribution, while equation (7) for continuation probabilities still 
holds, taking into account, of course, that continuation costs are given by (18). It is clear, 
however, that the assumption of a normal marginal distribution for ωi

d is not supported, also 
in this case, by its derivation and it is adopted to facilitate calculating cost distributions 
upstream. As for FIM, numerical calculation of both continuation probability and mean and 
variance of cost to destination is needed. 
 
The formal expressions (13) and (14) for numerical calculation of continuation probability 
vector at node i∈I, mean and variance of distribution conditional to choices made become: 

( )PY ξ=
dd

i iP  (25) 

( ) ( )W S, ; ,Y Yd d
i iw σ= =

d dd d
i ii iγ γγ γγ γγ γω ωω ωω ωω ω  (26) 

having denoted by γγγγi
d the vector of random costs of arcs ij, j∈Fd(i). 

 
The dependence of continuation probabilities on continuation costs in (25) doesn’t mean that 
sampling takes place on their distribution, which is, as a matter of fact, unknown. The explicit 
expressions (19)÷(22) show how continuation costs can be determined from the costs of 
conditioning arcs, but such dependence represents the two-stage drivers’ cost forecasting 
process, while the sampling process, which has two-stages as well, goes in the opposite 
direction. Cost to destination vector is sampled first from distribution (2), then the cost of 
each arc ij is sampled, deriving from (1) the distribution of γij, conditional on sampled cost to 
destination from node j, denoted as ϖj

d, that is it is sampled from: 

( ) ( )2 2, 1ijd d d
j j jijij ij d

j
ijijN c w

⎛ ⎞
+ − −⎜ ⎟

⎝ ⎠
∼ σ ργ ρ σϖ ϖ

σ
 (27) 
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Deterministic Network Loading 

Both choice models defined above are easily integrated into a recursive procedure for the 
calculation of cost to destination and continuation probability vector at each node, that is 
followed by a network loading based on the equations for demand consistency and 
conservation of flow by destination at nodes. Such equations, denoting by f d

ij the flow on arc 
ij having d as its destination and by Did the demand flow from node i to destination d, are 
expressed as:  

( ) ( )
d d

idj F i h B iij hi i Nf f D∈ ∈= + ∀ ∈∑ ∑  (28) 

and define, together with relation with arc flows and non-negativity constraints: 
d

d Cij ij ij Af f∈= ∀ ∈∑  (29) 

0 ;d
ij d C ij Af ≥ ∀ ∈ ∀ ∈  (30) 

the feasible arc flows which are loaded to the network consistently with previously defined 
choice models. 
 
To make the definition of recursive procedures most compact the (4)÷(6) for nodes i∉I are 
written by setting Pij

d = 1 for j = sd(i). Costs and continuation probabilities for the FIM are 
calculated in the topological order from destination d as follows: 

( ){ }

( ) ( ) ( )

2 22

2P W S

0; 0

; 1; 2min

; ;X X X

d

d d
i i

d d dd dd
ijh i iji h ij ij jjF i ij

d d
i i

if i dw
i Iw w c P

i Iw

σ

ρσ σ σσσ

σ

∈

= = =

= + = = + + ∉

= = = ∈d d dd
i i i iξ ξ ξP

 (31) 

The analogous procedure for the SIM differs only with respect to formal expressions for 
numerical calculations, since (23)-(24) replace (13)-(14): 

( ){ }

( ) ( ) ( )

2 22

2P W S

0; 0

; 1; 2min

; , ; ,Y Y Y

d

d d
i i

d d dd dd
ijh i iji h ij ij jjF i ij

d d
i i

if i dw
i Iw w c P

i Iw

σ

ρσ σ σσσ

σ

∈

= = =

= + = = + + ∉

= = = ∈
d d dd dd

i i ii i iP ξ γ γξ γ γξ γ γξ γ γω ωω ωω ωω ω

 (32) 

Once recursion defined by (31), or (32), has been executed for one destination d, arc flows 
bound to that destination can be loaded to the network by applying continuation probabilities 
to conservation equations in the inverse topological order: 

( )( ) ( );d
d dd d

ij idh iij B hi j i i Nf f dP F∈= + ∀ ∈ ∀ ∈∑  (33) 

and arc flows defined by (29) are simply obtained by executing recursion (31), or (32), and 
loading (33) for any destination, each time summing the flows bound to that destination to the 
flows bound to other destinations previously loaded. 
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Taken together, the random cost parameters/ continuation probability recursion X, defined by 
(31), or Y, defined by (32) and the flow loading L, defined by (33), are the network loading 
map (NLM) of full information, or self information, respectively. The main feature of random 
supply NLM is that, in addition to mean arc cost vector c, also arc standard deviation σσσσA and 
correlation coefficient ρρρρ vectors are input to the NLM. The vectors of mean cost to destination 
w and of its standard deviation σσσσN, instead, are endogenous with respect to X and Y, being 
calculated and utilized within such recursions, while the continuation probabilities P, output 
from X and Y and input to L, are endogenous to the NLM.  
 
An algorithm implementing such NLM on general networks has been developed. An 
equilibrium model could be easily formulated by expressing consistency of the NLM and the 
performance function c(f), supplying mean arc costs c, as a function of arc flows f. Within 
this work, we limit ourselves to formalize NLM definition, since some problems are likely to 
arise if the properties of a random supply equilibrium are investigated, as usual, within a fixed 
point formulation framework. 
 
It is easy to see, in fact, that NLM is increasing with respect to cost variance, which is 
exogenous and fixed here, while it should rather be assumed to increase with mean cost. 
The assumption of a monotone decreasing NLM, underlying existence and uniqueness proofs 
of DUE and SUE models, is thus strongly complicated by contrasting effects of mean cost and 
variance, or it should be based on a fixed variance assumption, rather simplistic in a random 
supply framework. The random supply equilibrium is thus only graphically represented as 
follows and the solution algorithm proposed is to be regarded only as an heuristic seeking for 
consistency of NLM and performance function: 

 
Figure 1 Equilibrium with random supply – Full-Info 

The equivalent representation for the SIM is simply obtained by substituting Y to X, being 
however the arguments of the two recursions identical at this level of aggregation. 
 
The algorithm utilized to achieve consistency is a standard Method of Successive Averages 
(MSA), which could be easily extended to cope with demand elasticity by considering that 

  

performance function 

network loading map  

c 

L(P, d)
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X(c, ρρρρ, σσσσ A)P
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vector w calculated by recursions X and Y contains detailed information on road network 
performance, such that demand elasticity may be represented as a function d(w). 
 
It may be interesting, when concluding the part devoted to model formulation, to note that the 
strategic behaviour has not been explicitly formalized, as usual, in terms of choice among 
hyperpaths. Indeed, we adopted a sequential approach to route choice, whose strategic aspect 
is implicit in considering expected values of the cost to destination at nodes where full 
information is not available. Only in the case of the FIM with I = N, expected costs are never 
taken into account since there is one obvious optimal hyperpath, including all efficient arcs to 
the destination. 

NUMERICAL EXPERIMENTS 

Some numerical experiments have been performed utilizing the MSA algorithm based on the 
NLM described by (31)-(32) and (33), to evaluate how adaptive choices influence the flow 
pattern on a simple network, by comparing them with flow pattern obtained by applying the 
same algorithm to DUE, SUE Logit and SUE Probit. To this purpose, the parameters of 
variance-covariance matrices (1) and (2) have to be specified. This issue is faced, for the 
purpose of carrying out numerical experiments, by deriving fixed variance and correlation 
parameters from some network features and from a reference cost pattern, determined by a 
preliminary assignment, which is used also for other purposes, from defining efficient arcs to 
destination, to setting variances for the SUE models to be compared with the proposed ones. 
The way the parameters have been derived is illustrated here below, while the network 
utilized and calculations made, as well as the results obtained, are reported in the following. 

Determination of cost distribution parameters 

The arc variances σij are taken as proportional to the reference arc costs gij, determined by a 
preliminary DUE assignment, that is σij = k2gij for each ij∈A. The serial correlation 
coefficients ρij could be taken as dependent on arc storage capacity, that is the product of arc 
length, number of lanes and maximum vehicle linear density, since queue spillback, causing 
serial correlation, represented by such coefficients, takes place as more frequently as smaller 
it is the arc storage capacity. Such a dependence can be specified by assuming perfect 
correlation in correspondence to null storage capacity, then decreasing and taking a given 
correlation value in correspondence to another representative storage capacity. Since the arcs 
of the network utilized for numerical experiments can’t be distinguished by each other with 
this respect, ρij is assumed to be dependent on gij in the same way, fixing the arc cost at which 
it is ρij = 0.5. 
 
The parallel correlation coefficients ρj

d are determined from the overlapping of efficient 
paths, weighted with path utilization, accordingly to the method presented in Gentile and 
Papola (2006), which allows to accomplish such task without explicit path enumeration. Here 
we just recall the founding equations of such method, denoting by:  
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- Pd(h) the set of efficient paths from node h to destination d, that is the set of paths 
from h to d on graph Gd(N, Ad), based on topological order TOd(h) for each node h; 

- Pq the probability of using path q, which is determined by preliminary assignment;  
- P°hj

d the conditional probability of using arc ij to reach destination d from node i, as 
determined by preliminary assignment; 

- Δij
q the generic element of the incidence matrix, equal to 1 if link ij belongs to path q 

and equal to 0 otherwise. 
 
The topological order of node h, with respect to destination d, is determined by taking as a 
measure of distance the cost of shortest paths with arc costs gij. The overlapping of efficient 
paths to destination d from nodes h and k, rhk

d, can thus be defined equivalently as the sum of 
the reference arc costs which are common to each couple of paths q∈Pd(h) and r∈Pd(k) 
weighted by the joint probability to use path q leaving from node h and path r leaving from 
node k: 

( )( )d d d
qd r

q r ijijq h r k ijhk ijP P A gr P P∈ ∈ ∈= ∑ ∑ ∑ Δ Δ  (34) 

or as the sum of each reference arc cost, weighted by the joint probability to use it leaving 
from node h and leaving from node k: 

( )( )d d d
qd r

q ij rijij q h r khk ijA P Pgr P P∈ ∈ ∈= ∑ ∑ ∑Δ Δ  (35) 

The average reference cost from h to d, is by definition: 

( )d d
qd

q ijq h ijhh ijP A gr P∈ ∈= ∑ ∑ Δ  (36) 

It is denoted by rhh
d since it coincides with the definition of the overlapping of Pd(h) with 

itself according to (34), being in this case equal to Pq the joint probability of using q and r, if 
q = r, and null otherwise. The probability Pq of using the generic path q∈Pd(h) for users 
leaving from node h and directed to destination d is given by the product of the conditional 
probabilities of its arcs: 

d
q d

q ijijij AP P∈= ∏ Δ  (37) 

while Pq = 0 if q∉Pd(h). On these bases the following recursive formulas are proved to hold 
true, and can be easily solved by visiting each node h in topological order: 

( ) ( ) ( )if otherwised
d dd d d d d

j hhk hj jk hk khF h kTO TOr P r r r∈= > =∑ °  (38) 

( )( )d
d d d

jjj hhh hj hjF gr P r∈= +∑ °  (39) 

Once all the rhk
d and rhh

d have been determined by (38) and (39), we set: 
d

d hk
hk d d

hh kk

r
r r

ρ =
+

 (40) 

for any each node pair h, k such that ∃i| h, k∈Fd(i) and for each destination d. 
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Also the variance parameters for stochastic models utilized for comparisons is derived from 
preliminary assignment costs, in the sense that the same σij as for the proposed models is 
utilized within Probit SUE and the variance parameter of Logit SUE is determined in such a 
way to be the same as the Probit one in correspondence to the preliminary assignment 
equilibrium origin destination cost. 

Test network, calculations and results 

The developed algorithm has been applied to the network defined in Table 1, where both the 
network topology and the arc cost functions parameters are represented. The separable cost 
function associated to each arc is cij( fij) = T0ij + T1ij⋅( fij / Qij)βij, of the usual BPR type. 
 
The arcs have identical parameters, except for 4-5 and 5-6, whose T0 and T1 are half the ones 
of the other arcs, so that the network is characterized by the presence of a central North-South 
fast corridor from node 4 to node 6. There is only one origin-destination demand component 
from node 1 to node 9.  
 

 
 

Table 1. The network used in the numerical experiments. 

A reference case for numerical experiments has been defined by setting the main model 
parameters as follows. The arc variance factor is k2 = 0.2. The preliminary assignment cost gij 
at which serial correlation coefficient ρij is one half is assumed to be 1, that is the cost of arcs 
2-3, 3-6, 4-7, and 7-8; since cost gij is lower than 1 for the north-south corridor and higher for 
the other arcs, we have correlation coefficients respectively higher and lower than one half. 
The demand d19 is equal to 2000 veh./h. 
 
A sensitivity analysis has then been carried out with respect to these parameters by varying 
them in such a way to cover a range of reasonable values. The arc variance factor has been 
varied from 0.1 to 0.3 with an increment of 0.05. The serial correlation has been varied fixing 
the arc cost at which ρij is one half, in such a way that the serial correlation spanned, 

i j T0 T1 ββββ Q 
1 2 1 1 4 1000 
1 4 1 1 4 1000 
2 3 1 1 4 1000 
2 5 1 1 4 1000 
3 6 1 1 4 1000 
4 5 0.5 0.5 4 1000 
4 7 1 1 4 1000 
5 6 0.5 0.5 4 1000 
5 8 1 1 4 1000 
6 9 1 1 4 1000 
7 8 1 1 4 1000 
8 9 1 1 4 1000 

1 2 3 

54 

7 98

6 
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approximately, from 0 to 1 with an increment of 0.25. The demand D19 has been varied from 
1000 to 3000 with an increment of 500. 
 
In addition to arc flows, the expected origin destination cost w1

9 is analyzed as a measure of 
network performance in correspondence to different assumptions about the information 
available to drivers, the strength of serial correlation and the awareness of parallel correlation. 
In Table 2 all the arc flows are reported for the reference case, considering five different 
network loading models: Deterministic, Logit, Probit, the FIM and the SIM with I = N. 
 
The sensitivity analysis has been carried out only with respect to the proposed models and the 
results are presented in the form of diagrams, where the expected origin destination cost are 
depicted, together with the share of demand flow travelling on the North-South corridor 
evaluated through the mean flow of the two arcs 2-5 and 5-8. 
 

The reference cost pattern for the stochastic models is obtained by performing 1000 MSA 
iterations to solve DUE, while 100 MSA network loading iterations are performed within the 
sensitivity analysis to approach equilibrium, each one involving 1000 local Montecarlo 
random drawings to find out at every node continuation probabilities, as well as mean and 
variance of cost to destination distribution. 

 

i node j node Determ. Logit Probit Full-Info Self-Info 
1 2 936 951 950 1002 935 
1 4 1064 1049 1050 998 1065 
2 3 224 294 302 387 180 
2 5 712 657 648 615 755 
3 6 224 294 302 387 180 
4 5 840 755 745 612 821 
4 7 224 294 306 386 244 
5 6 840 755 747 611 838 
5 8 712 657 646 616 739 
6 9 1064 1049 1049 998 1017 
7 8 224 294 306 386 244 
8 9 936 951 951 1002 983 

Table 2. The arc flows for different network loading models - Reference case. 

The most evident feature of the FIM arc flow pattern is that the share of flow on the North-
South corridor is the lowest, not only with respect to DUE, which was expected, but also with 
respect to SUE Logit and SUE Probit, and up to the point that the East-West corridor becomes 
slightly more loaded than the North-South one. Although at the other demand levels it is the 
North-South corridor that is more loaded, differences are always negligible. 
 
Also arcs 2-3, 3-6, 4-7, and 7-8, belonging to outer paths, are significantly more loaded by the 
FIM than by DUE and SUE, although still less than inner paths. 
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The flow pattern of the SIM closely resembles DUE and only small changes towards FIM can 
be noted, much lower than those of SUE models. 
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Table 3. Expected travel time and central corridor flow share with varying demand. 

The variation of the level of service with the demand, on the left side diagram, is much more 
regular than the flow pattern variation, on the right side. The expected origin-destination 
travel time is lower for FIM than for DUE on the whole demand range considered, with a 
difference that is steadily increasing with demand. Travel time is also lower for SIM than for 
DUE, but the difference is much smaller and almost insensitive to demand. The central 
corridor flow share is steadily decreasing with the demand for the SIM, as well for DUE, 
although less rapidly; while it is much less sensitive to demand for the FIM and it seems to 
converge to the same value for highest demand levels, where we can suppose that congestion 
doesn’t allow anymore taking advantage of adaptive behaviour. 
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Table 4. Expected travel time and central corridor flow share with varying cost variance. 

In this table and in the following, DUE doesn’t depend on the parameters, which represent 
random supply, and is reported as a reference. The analysis of sensitivity to arc variance is 
quite interesting, because it shows that differences in flow pattern may be minimal, as it 
happens to be for FIM with respect to variance, or for SIM with respect to DUE, even if 
steadily variable and remarkable gains are obtained from adaptive behaviour in both cases. 
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Table 4. Expected travel time and central corridor flow share with varying serial correlation. 

The influence of serial correlation on numerical results seems to be rather limited, even if a 
decreasing expected travel time up to highest correlation levels is in line with expectations, 
since adaptive behaviour relies on correlation, and also the final increase may be explained by 
a decrease of overall network efficiency when the arcs of fast corridor become strongly 
correlated and, on the average, underutilized because their costs are often high together and 
drivers get informed about, as shown by left side diagram. 

CONCLUSIONS 

The basic concepts for the definition of a framework where random supply and drivers’ 
adaptive choices based on information can be jointly represented has been set up, by 
introducing two alternative route choice models and developing the correspondent NLM. 
Although the properties of equilibrium have not yet been studied, an algorithm attaining 
consistency of NLM and performance function has been developed and applied to a test 
network. 
 
Numerical results show that significantly different flow patterns are obtained from 
deterministic models, or stochastic models representing demand randomness, and from the 
random supply models proposed in this paper, at least when full information is available to 
drivers and congestion is not too high. The flow pattern resulting when only self obtained 
information are available is not significantly different from that of a deterministic model 
Utilizing such model as an alternative to existing assignment models is thus probably not 
worth the additional data requirements and computational burden. The network performances, 
instead, look always significantly different from those measured by a deterministic model, 
both in case of self obtained and full information, implying that the use of the two proposed 
models requiring additional data and computational burden may be justified to evaluate the 
benefits of a driver information system. 
 
The role of arc cost variance resulted to be more important in determining model outputs, and 
in particular network performance, than arc cost correlation. This may be due to the small 
dimension of the test network, or by the emphasis on local representation of cost distribution 
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of our approach, which may lead, despite our effort to “think globally and model locally”, to 
hinder the role of arc cost correlation. 
 
Indeed, several issues emerge as necessary to complete what we recognize to be an 
exploratory work, from the extension of numerical experiments to more complex networks, to 
developing a sound equilibrium formulation, not excluding further investigation on the overall 
modelling implications of the proposed approach. For example: what is the sense of an 
equilibrium where the link flows and the corresponding travel times express the expected 
values among potentially very different day-by-day traffic patterns? Are we allowed to 
evaluate the average flow pattern as the composition of the expected local route choice at 
nodes each one evaluated independently from the others? 
 
Once these issues are dealt with, a number of extensions can be envisaged, from introducing 
users’ classes to integrating within the same framework demand randomness and supply 
randomness with adaptive behaviour and to improving the representation of information 
systems that provide a partial information such as variable message signs. A perhaps more 
decisive step, both from a theoretical and from an application point of view, would be to 
transfer into a within day dynamic framework the representation of supply randomness and 
drivers’ adaptive behaviour in presence of information. 
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SUMMARY 

Transportation networks are an indispensable component of everyday life in modern society.  

Disruption to the networks can make peoples’ daily lives extremely difficult as well as 

seriously cripple economic productivity. In this paper, we develop network-based 

accessibility measures for assessing vulnerability of degradable transportation networks. The 

accessibility-based vulnerability measures explicitly consider the interaction between the 

disrupted network and the multi-dimensional travel responses of the network users. To model 

different dimensions of travel behavioral responses, a combined travel demand model 

formulated as a variational inequality problem is adopted to estimate the utility-based 

accessibility measure that is consistent with random utility theory.  Numerical examples are 

conducted to demonstrate the feasibility of the proposed network-based accessibility measures 

for assessing vulnerability of degradable transportation networks.  The results indicate that the 

accessibility measures derived from the combined travel demand model are capable of 

measuring the consequences of both demand and supply changes in the network and have the 

flexibility to reflect the effects of different travel choice dimensions on the network 

vulnerability. 
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INTRODUCTION 

Transportation networks are an indispensable component of everyday life in the modern 

society.  Platt (1995) refers to such physical or virtual networks (i.e., road networks, power 

lines, water distribution networks, communication networks, and the Internet) that are vital to 

people’s health, safety, comfort, and economic activities as lifelines.  Disruption to these 

lifelines can seriously damage the economic productivity of the society as well as making 

peoples’ daily lives extremely difficult (Miller, 2003).  Transportation networks as one of the 

lifelines demand meticulous security consideration especially in the aftermath of recent 

disastrous events around the world.  The terrorist attacks of September 11th expose not only 

our vulnerability to transportation network disruptions—crippling air travel in the immediate 

aftermath and perhaps forever changing the convenience of air travel—but also our lack of 

knowledge about the extent and impact of these disruptions—in this case, impacting the 

economic viability of segments of the air travel industry.  The terrorist bombings on London’s 

subway and bus systems provide a solemn illustration of how disruption to the lifelines can 

impact people’s lives in the city.  Months after the attack, signs of a city of 7.2 million people 

straining to adjust to the fractured lifelines were everywhere.  Since the bombings, subway 

passenger numbers had dropped by 30% on weekends and between 5% and 15% on weekdays 

on some periods (BBC News, Aug 4, 2005).  Tourist activities and retail figures were also 

down.  Most recently, Hurricanes Katrina and Rita highlight the importance of planning and 

preparedness for natural disasters.  

 

Given that transportation networks are so critical to the functioning of modern society and yet 

are so fragile, it is important to understand their vulnerability and the consequences to 

disruption in order to manage risks associated with critical events.  Despite the significance of 

the subject, the current knowledge based on the subject is limited due to the lack of empirical 

insights, models, data, and decision support tools.  Current efforts in transportation research to 

characterize network vulnerability tend to be qualitative due to the absence of well-defined 

quantitative measures.  While these qualitative indices are useful in communicating the risk of 

threats to the public, they do not possess the necessary basis for comparison of various threats 

and the trade-off among potential response measures.  A few quantitative approaches have 

been suggested to measure network vulnerability (Chang, 2003; Chang and Nojima, 2001; 

D’Este and Taylor, 2001, 2003; Jenelius et al., 2006; Lleras-Echeverri and Sanchez-Silva, 

2001, Nicholson and Dalziell, 2003; Sohn 2006; Taylor et al., 2006). However, these 

approaches overlook many factors that may influence actual changes in travel choices (e.g., 

congestion, alternatives available to travelers at different damage locations including changes 

to route choice, mode choice, destination choice, and travel choice). The development of a 

theoretical quantitative measure that considers different travel behavioral responses of 

network users when the network is disrupted is needed. 

 

Transportation network vulnerability is not only related to terrorist attacks, but also to natural 

disasters and traffic accidents, which will degrade the service of a transportation network. All 

these are considered as abnormal events that will occur in a transportation network with 

different probabilities, and the consequences of these abnormal events are also different.  Due 

to the complexity of the probability and uncertainty in the vulnerability related events, the 

evaluation of transportation network vulnerability can be extremely difficult.  The aim of this 
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paper is to develop network-based accessibility measures for assessing vulnerability of 

degradable transportation networks.  Accessibility is a fundamental concept in transportation 

analysis and planning.  Typically, accessibility refers to the ‘ease’ of reaching opportunities 

for activities and services and can be used to evaluate the performance of a transportation and 

urban system.  These network-based accessibility measures consider the consequence of one 

or more links failures in terms of network travel time (or generalized travel cost) increase as 

well as the enforced changes in travel behavior.  In this analytical context, transportation 

network vulnerability is considered as a problem of reduced accessibility due to disruptions.  

To model different dimensions of travel behavioral responses (e.g., change in route choice, 

mode choice, destination choice, and travel choice), a combined travel demand model 

formulated as a variational inequality (VI) problem is adopted to estimate the utility-based 

accessibility measure that is consistent with random utility theory.  Numerical examples are 

conducted to demonstrate the feasibility of the proposed network-based accessibility measures 

for assessing vulnerability of degradable transportation networks. 

 

BACKGROUND 

Because network vulnerability is a relatively new research topic in the transportation field, 

there are no universal definitions and quantitative measures for assessing transportation 

network vulnerability. Recently, a few quantitative approaches have been suggested to 

measure network vulnerability. Berdica (2002) defined vulnerability as “a susceptibility to 

incidents that can result in considerable reductions in road network serviceability.” Services 

of transportation networks are to provide means for moving passengers and goods to different 

places in different times. Incidents (or network disruptions) are events that can directly or 

indirectly result in considerable reductions or interruptions in the serviceability of a 

link/route/road network. Transportation network vulnerability can be regarded as a problem of 

reduced accessibility due to different disruptions.   

 

D’Este and Taylor (2001, 2003) and Taylor et al. (2006) used the Australian national strategic 

transportation network to illustrate that the standard approaches to network reliability based 

on probabilities may not be adequate in dealing with the ‘weak spots’ in a network, where 

failure of some part of the transportation infrastructure can have adverse consequences on 

accessibility between specific locations and overall system performance.  Because the 

network is sparse at the national level, failure of a link or a subset of links can significantly 

reduce accessibility, causing delays and detours with significant social, economic, and 

environmental consequences. Two definitions of vulnerability for the network analysis were 

used.  One is the connective vulnerability between two nodes and the other is the access 

vulnerability of a node.  Connective vulnerability considers the consequence of network 

degradation.  It uses loss of utility (or increase of the generalized travel cost) as the measure 

of vulnerability (i.e., the connection between two nodes is vulnerable if it gains generalized 

travel cost after link failure). The concept of access vulnerability is built on the concept of 

accessibility, which quantifies an individual’s freedom to participate in activities in the 
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environment.  A node is vulnerable if the accessibility of the node is reduced by link 

disruption. To determine the weaknesses in the network, D’Este and Taylor (2003) used link 

choice probabilities, which can be calculated in a stochastic traffic assignment model (Bell, 

1995), to measure the relative performance of alternative paths and the consequences of 

network failure using links with a higher link choice probability as candidate links for 

studying the effects of network degradation through cutting those candidate links and 

assessing the impacts on network operation of those cuts. 

 

Lleras-Echeverri and Sanchez-Silva (2001) proposed a method to analyze the consequences 

of the failure of each link.  They defined a classification parameter (CP) for each link in the 

network.  A critical link is defined as a link whose failure causes the highest increase in the 

generalized travel cost (i.e., a critical link is associated with a high CP value).  A centroid-

based accessibility index, which is defined as the sum of generalized costs of the shortest path 

from one centroid to all the other centroids, is employed as the measure for the consequences 

of link failures. Chang and Nojima (2001) applied the distance-based accessibility measure 

(i.e., without congestion effects) to assess the transportation system performance for an 

earthquake scenario. Chang (2003) also used the distance-based accessibility measure for 

evaluating restoration strategies after the Hansin earthquake.  The travel time-based 

accessibility measure was adopted for assessing a hypothetical earthquake scenario on the 

potential bridge damage in Seattle (Chang, 2003).  Jenelius et al. (2006) proposed the 

concepts of link importance and site exposure to assess the vulnerability of transport 

networks. Both link importance indices and site exposure indices were derived based on the 

generalized travel cost increase and travel demand increase to reflect equal opportunities and 

social efficiency. Application of the proposed measures to the road network of northern 

Sweden showed that the results could be used in the planning of transport networks. Sohn 

(2006) employed the weighted accessibility measure by distance and traffic volume to 

prioritize the retrofit plans for highway links under the event of a flood disaster. Nicholson 

and Dalziell (2003) applied standard risk assessment method to evaluate a range of natural 

disasters to the regional highway in New Zealand. However, the above approaches overlook 

many factors that may influence actual changes in travel choices – factors such as congestion, 

alternatives available to travelers at different damage locations (including changes to different 

modes, origin-destination flows, and destination opportunities), or even canceling of trips. 

Ignoring these factors could lead to biased estimates of network vulnerability. Hence, the 

purpose of this paper is to develop a vulnerability analysis framework that is capable of 

assessing the consequences of both demand and supply changes in the network and have the 

flexibility to reflect the effects of different travel choice dimensions (e.g., changing route, 

switching mode, changing destination, and canceling or postponing trip) on network 

vulnerability. In this paper, we extend our previous work (Chen et al., forthcoming) by 

formulating the combined travel demand model as a VI problem to consider the interactions of 

different modes. This extension is significant, because it offers a more complete assessment 

of the consequences of network disruptions. 
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MATHEMATICAL FORMULATION 

The accessibility-based vulnerability measures proposed in this paper consider the 

consequences of one or more links failures in terms of the increase in network travel time (or 

generalized travel cost).  Within this analytical context, the interaction between the enforced 

transportation network disruptions and the enforced responses of network users can also be 

considered.  According to Nicholson and Dalziell (2003), when the intended travel routes are 

closed, the behavioral responses of the travelers include:  

 

1. Canceling their trip (i.e., change in trip generation); 

2. Postponing their trip (i.e., change in the temporal distribution of trips); 

3. Choosing another destination (i.e., change in the spatial distribution of trips); 

4. Choosing another mode (i.e., change in mode split); 

5. Choosing a different route (i.e., change in trip assignment). 

 

To model different dimensions of travel behavioral responses, a combined travel demand 

model (CTDM) is adopted to estimate the long-term equilibrium network condition due to 

network disruptions. Over the past three decades, several combined (or integrated) models 

that can consider the interrelated travelers’ decisions (trip generation, trip distribution, mode 

split, and trip assignment) have been developed (e.g., Evans, 1976; Dafermos and Nagurney, 

1984; Safwat and Magnanti, 1988; Lam and Huang, 1992; Oppenheim, 1995; Bar-Gera and 

Boyce, 2003; Boyce and Bar-Gera, 2004). In this paper, we develop a variational inequality 

(VI) formulation for a combined travel demand model that integrates the travel-destination-

mode-route choice. The model is based on the well-established random utility theory in 

microeconomics, and provides an explicit, rigorous framework where each individual traveler 

is regarded as a consumer of urban trips such that their travel behavior can be interpreted as 

outcome of rational decision-making process. Thus, the proposed formulation not only allows 

a systematic and consistent treatment of travel choice over different dimensions but also 

behavioral richness. In the following, we present the description of the combined travel-

destination-mode-route model. 

Notation 

i Origin index 

j Destination index 

m Mode index 

r Route index  

ma  Link index of mode m 

β Parameters in the combined travel demand model: rβ , mβ , dβ , and tβ  are positive 

parameters associated with the route, mode, destination, and travel choice, 

respectively. 

� ' Rescaled parameters, where 1 1 1 1 1 1 1 1 1
;  ;  

' ' 'm m r d d m t t dβ β β β β β β β β
= − = − = −  
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τ Α scalar attached to travel time in the utility function (value of time) 

hi is the traveling propensity of origin i; 

hij  is the traveling propensity of destination j from origin i 

hijm is the traveling propensity of mode m between i and j 
ma

ijrδ  Link-route incidence indicator, 1 if link am on the route r from origin i to destination j 

on mode m, 0 otherwise 
m

a
v  Flow on link a of mode m: mam

a ijmr ijr

i j r

v T δ=���  

a
v  Flow on link a: ,m

a a

m

v v a= ∀�  

m

ac  Fixed cost of travel on link a of mode m 

ijmr
c  Fixed cost of taking route r on mode m from origin i to destination j: m

m

am

ijmr a ijr

a

c c δ=�  

( )m

at ⋅  Travel time function for link a of mode m 

( )m

ag ⋅  Generalized link travel cost function for link a of mode m: ( ) ( )m m m

a a ag t cτ⋅ = ⋅ +  

ijmrg  Generalized travel cost of taking route r on mode m from origin i to destination j: 

( ) m

m

am

ijmr a ijr

a

g g δ= ⋅�  

Pxy (Unconditional) joint probability of x and y (e.g., Pijmr is the probability that a traveler 

in origin i travels to destination j on mode m through route r) 

Py|x Conditional probability of choosing y given x (e.g., Pr|ijm is the probability of choosing 

route r given that a traveler in origin i has chosen to travel to destination j on mode m) 

Ni Number of potential travelers from origin i in a given time period 

Ti Number of travelers from origin i in a given time period 

Ti0 Number of non-travelers in origin i in a given time period 

Tij Number of travelers from origin i to destination j in a given time period 

Tijm Number of travelers using mode m from origin i to destination j in a given time period 

Tijmr Number of travelers taking route r on mode m from origin i to destination j in a given 

time period 

iW
~

 Expected received utility of origin i 

/t iW�  Expected received utility of travel given a traveler in origin i 

/j iW�  Expected received utility of choosing destination j given that a traveler in origin i has 

chosen to travel 

/m ijW�  Expected received utility of choosing mode m given that a traveler in origin i has 

chosen to travel to destination j 

Combined Travel Demand Model 

Following Oppenheim (1995), each traveler’s decision process is assumed to have the 

following top-down structure: 
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1. Given an individual at location i, a given time period (hour, day, etc.), and an activity 

(e.g., shopping, work, recreation, etc.), a potential traveler first decides whether to travel 

or not.  Pt|i is the probability that a potential traveler makes a trip in the study time period.  

Since departure time choice is not considered in this combined model, this step is assumed 

to account for the first two behavioral responses (i.e., canceling and postponing their 

trips). 

2. Given the choice made at the first level, the conditional probability that an individual will 

choose destination j to conduct the activity is Pj|i.  This step accounts for the change in 

destination choice. 

3. Given the outcomes from the first two decisions, the conditional probability that an 

individual will choose mode m (for traveling from i to j) to conduct the activity is Pm|ij.  

This step accounts for the change in mode choice. 

4. Given the outcomes from the preceding decisions, the conditional probability that an 

individual will choose route r (for traveling from i to j on mode m) to conduct the activity 

is Pr|ijm.  This step accounts for the change in route choice. 

 

The above hierarchical structure of the traveler choice process can be represented as in Figure 

1. This “nested” structure is the basis for constructing the conditional probabilities at each 

stage based on the multinomial logit choice function, which is also the foundation for 

developing a variational inequality formulation for the combined travel-destination-mode-

route model. 
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Figure 1 Hierarchical structure of a combined travel-destination-mode-route model  

 

 

Given the number of potential travelers iN  at origin i in a given time period (hour, day, etc.), 

the number of travelers taking route r on mode m from origin i to destination j in the study 

period can be computed by multiplying the conditional probability at each stage in a nested 

structure from the route choice stage up to the travel decision stage are 

 

 / / / / , , , ,ijmr i ijmr i t i j i m ij r ijmT N P N P P P P i j m r= ⋅ = ⋅ ⋅ ⋅ ⋅ ∀  (1) 
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At each stage, the traveler’s choice follows a logit-based probability expression as follows. 

 

  
|

|

( )

| ( )
,

1
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t i h W
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T e
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N e

β

β

+

+
= = ∀

+

�

� , (2)

 
|

|

( )

| ( )
, ,

d ij j i

d il l i

h W

ij

j i h W
i

l

T e
P i j

T e

β

β

+

+
= = ∀

�

�

� , (3)

 
|

|

( )

| ( )
, , ,

m ijm mij

m ijn n ij

h W

ijm

m ij h W
ij

n

T e
P i j m

T e

β

β

+

+
= = ∀

�

�

� , (4)
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r ijmr

r ijmk

g

ijmr

r ijm g

ijm

k

T e
P i j m r

T e

β

β

−

−
= = ∀

�
, (5) 

 

where /t i
W� , /j iW� , /m ijW�  are the expected received utilities of choices at each stage 

respectively. These expected received utilities are calculated recursively starting from the last 

stage (i.e., route choice stage) and up to the first stage (i.e., travel decision stage). 

 

 /

1
ln , , ,r ijmrg

m ij

rr

W e i j m
β

β

−
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 /( )

/

1
ln , ,m ijm m ijh W

j i

mm

W e i j
β

β

+
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��  (7)

 /( )

/

1
ln ,d ij j ih W

t i

jd

W e i
β

β

+
= ∀�

��  (8) 

 

We also define the expected received utilities of each origin as 

 

  ( )/( )1
ln 1 ,t i t ih W

i

t

W e i
β

β
+= + ∀
��  (9) 

 

In addition to the conditional probabilities specified above, conservation and non-negativity 

constraints must hold at each stage: 

 

 , , ,ijm ijmr

r

T T i j m= ∀� , (10)

 , ,ij ijm

m

T T i j= ∀� , (11)

 ,i ij

j

T T i= ∀� , (12)
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 0 ,i i iN T T i= + ∀ , (13)

 0 0, 0, 0, 0, 0, , , , .
i i ij ijm ijmr

T T T T T i j m r≥ ≥ ≥ ≥ ≥ ∀  (14) 

 

Thus, the equilibrium conditions of the proposed combined travel demand model are defined 

by Eqs. (1)-(14). In the following, we propose a variational inequality (VI) formulation and 

prove that the solution of the VI problem is exactly the equilibrium solution of the combined 

travel-destination-mode-route model. 

 

Let Ω  denote the feasible set satisfying constraints (10)-(14). Then, the variational inequality 

problem is to find ( )* * * * *

0, , , ,ijmr ijm ij i iT T T T T ∈Ω , such that 

 

( ) ( )

( )

( )

( ) ( )

* * * *

* * *

* * *
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0 0 0
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1 1
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1 1
ln ln 0

ijmr ijmr ijmr ijm ijmr ijmr

ijmr r r

ijm ijm ij ijm ijm

ijm m m

ij ij i ij ij

ij d d

i i i i i i i

i it t

g T T T T

T h T T T

T h T T T

T h T T T T T

β β

β β

β β

β β

� �
+ − −� �

� �
� �

+ − − −� �
� �
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+ − − −� �
� �
� � � �

+ − − + − ≥� � � �
� � � �

�

�

�

� �

T

 (15) 

for all ( )0, , , ,i i ij ijm ijmrT T T T T ∈Ω .  Let  
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0 0

1 1
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1 1
ln ln , , , ;

1 1
ln ln , , ;

1 1
ln , ; ln , .

ijmr ijmr ijmr ijmr ijm

r r

ijm ijm ijm ij

m m

ij ij ij i

d d

i i i i i

t t

c g T T T i j m r

c T h T i j m

c T h T i j

c T h i c T i

β β

β β

β β

β β

= + − ∀

= − − ∀

= − − ∀

= − ∀ = ∀

 (16) 

 

and the corresponding vectors 0,,,, iiijijmijmr ccccc .  The VI can be simplified to the standard 

form:  

 

 * *( ) ( ) 0,TF − ≥ ∀ ∈Ωx x x x , (17) 

 

where ( ) [ ]T
iiijijmijmrF 0,,,,x ccccc=  and 0, , , ,

T

ijmr ijm ij i i
� �= � �x T T T T T . 
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Note that the proposed VI formulation is based on the generalized link cost function, which 

depends on the entire link flow pattern.  That means the proposed VI formulation has the 

ability to deal with link interactions and includes the mathematical programming formulations 

(Evans, 1976; Dafermos and Nagurney, 1984; Safwat and Magnanti, 1988; Lam and Huang, 

1992; Oppenheim, 1995; Bar-Gera and Boyce, 2003; Boyce and Bar-Gera, 2004) of the 

combined travel demand model as a special case. 

 

In the following, we give some qualitative properties of the proposed VI formulation. 

 

Definition 1. A mapping nn
RRKH →⊆:  is said to be strictly monotone on K, if  

 

 ( ) ( ) yxandKyxyxyHxH
T

≠∈∀>−− ,,0)()( . (18) 

 

Theorem 1. Suppose * ∈Ωx  is a solution of the VI problem (15), then it is an equilibrium 

solution of the combined travel demand model. 

 

Proof.  See Appendix. 

 

 

Theorem 2. (Existence of solution) Suppose the link cost function of mode m (i.e., ( )m

a
g v ) is 

continuous. Then the VI problem (15) has at least one solution. 

 

Proof. See Appendix. 

   

 

Theorem 3. (Uniqueness of solution) Suppose the link cost function of mode m (i.e., ( )m

a
g v ) 

is monotone and continuous, then the VI problem (15) has a unique solution. 

 

Proof. See Appendix. 

An Accessibility Based Approach for Network Vulnerability Analysis 

Accessibility is a fundamental concept in transportation analysis and urban planning (Miller, 

1999). Typically, accessibility refers to the ‘ease’ of reach and is frequently measured as a 

function of the available opportunities moderated by some measure of impedance. Despite the 

popularity of the concept, accessibility has historically been measured in different ways 

depending on the context of the applications (see Bhat et. al, 2000 and references therein for a 

comprehensive review).  Accessibility measures considered in the literature are of five 

primary types: spatial separation, cumulative opportunities, gravity, utility, and time-space. 

Spatial separation measures use the distance between a location and every other location in 

the study area as the measurement of accessibility. Cumulative opportunities measures 
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consider the opportunities within a specified travel time, or distance, and use the value of 

cumulative opportunities as the measurement of accessibility.  A third type of accessibility 

measures is gravity measures. These are continuous measures that sum attractions in a study 

area but discount them with increasing time or distance from the origin. Utility measures are 

based on an individual’s perceived utility for different travel choices. These measures take the 

form of the natural log of the sum of the travel choices.  Time-space measures add a third 

dimension to the conceptual framework of accessibility. They take into account the time 

constraints of the individuals being considered. 

 

A few vulnerability studies have employed accessibility as an indicator (Chang, 2003; Chang 

and Nojima, 2001; D’Este and Taylor, 2001, 2003; Jenelius et al., 2006; Lleras-Echeverri and 

Sanchez-Silva, 2001, Sohn 2006; Taylor et al., 2006). In this paper, the utility measure is 

adopted to quantify the accessibility of different travel choice dimensions that is consistent 

with random utility theory used in the combined travel demand model described above.  Ben-

Akiva and Lerman (1979) defined the accessibility measure derived from random utility 

theory as follows: 

 

 	


�

�

�

=
∈Kk

kUMaxEA , (19) 

where  E  = expectation operator, 

 K  = a set of feasible alternatives, 

 kU  = random utility of alternative k.  

 

For an individual, accessibility was defined as the expected value of the maximum random 

utility of alternative k in choice set K.  They also proved two important properties for the 

accessibility measure in Eq. (19):  

 

1. Monotonicity with respect to choice set size.  This property implies that any addition to a 

person’s choice set leaves the individual no worse off than before the addition.  

 

2. Monotonicity with respect to the systematic utilities.  This property implies that the 

measure of accessibility does not decrease if the systematic utility of any of the 

alternatives in the choice set increases. 

 

With the two important properties, accessibility measures can be determined to assess 

network vulnerability due to disruptions.  For example, under a certain abnormal event, the 

capacities of some links in the network may be significantly degraded, making them 

unattractive to some road users.  This will reduce the size of the choice set (i.e., smaller 

number of alternative routes).  Under the first property, the accessibility measure for route 

choice should not increase due to the unattractiveness (or unavailability) of some degraded 

links.  Furthermore, due to congestion caused by the reduced number of available links, travel 

time of the private car mode will increase and hence will decrease the utility of the private car 
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mode.  According to the second property, the accessibility measure of the private car mode 

should not increase. 

 

Furthermore, if the random variable is assumed to follow a Gumbel distribution, the 

accessibility measure will have a closed-form expression. Let 
k k k

U V ε= +  and ( )k kV E U= , 

where kε  is a Gumbel random variate.  The accessibility measure defined in Eq. (19) becomes 

     

 
1

ln kV

k
k K k K

A E MaxU e
μ

μ∈ ∈

� �
= =� 	

 

� , (20) 

 

where μ is a positive scale parameter.  In this paper, we adopt Eq. (20) as the accessibility 

measure for the combined travel-destination-mode-route model to evaluate the consequences 

of network disruptions.  Using the expected received utilities ( /m ijW� , /j iW� , /t iW� , and iW
~

) given 

in Eqs. (6) to (9), the accessibility measure for each stage is defined as follows: 

 

 Network accessibility:  ��=
i

i

i

ii NWNA
~

, (21) 

 Zonal accessibility:  iWA
iti ∀= ,

~
, (22) 

 O-D accessibility:  jiWA
ijij ,,

~
∀= , (23) 

 O-D accessibility by mode m: mjiWA
ijmijm ,,,

~
∀= . (24) 

 

The accessibility measures given in Eqs. (21) to (24) provide a quantitative measure to assess 

the effects of network disruptions at different travel choice dimensions, ranging from the level 

of O-D accessibility by mode to the aggregate level of network accessibility. 

VULNERABILTIY ASSESSMENT PROCEDURE 

In this section, a vulnerability assessment procedure is provided to compute the accessibility 

measures and to perform the quantitative network vulnerability analysis.  The steps are briefly 

summarized as follows. The overall procedure is presented in Figure 2 and can be 

summarized as follows. 

 

Step 1: Define a degraded scenario. 

Step 2: Solve the VI problem (Eq. 15) to obtain the equilibrium solutions for each travel 

choice dimension (i.e., route flows, O-D flows by mode, O-D flows, and trips 

generated in each origin) for both normal and degraded scenarios. 
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Step 3:  Using Eqs. (21) – (24), compute the accessibility measures for each travel choice 

dimension (i.e., O-D accessibility by mode, O-D accessibility, zonal accessibility, 

and network accessibility) for both normal and degraded scenarios. 

Step 4: Perform the vulnerability assessment analysis based on the accessibility measures 

from Step 3. 

Step 5: Report the results of the vulnerability assessment analysis. 

 

Solve the VI problem to obtain 
the equilibrium solutions

Compute the accessibility measures for 
each travel choice dimension

Vulnerability assessment analysis

Initialization of 
Scenarios

Report

Solve the VI problem to obtain 
the equilibrium solutions

Solve the VI problem to obtain 
the equilibrium solutions

Compute the accessibility measures for 
each travel choice dimension

Vulnerability assessment analysisVulnerability assessment analysis

Initialization of 
Scenarios

Initialization of 
Scenarios

ReportReport
 

 

Figure 2 Vulnerability assessment procedure  

 

The core of the above procedure is to solve the VI combined travel demand model (Eq. (15)). 

There are many iterative methods that have been developed for solving the VI problem, such 

as the projection methods (Bertsekas and Gafni, 1982; Cui and He, 1999), the nonlinear 

Jacobian methods (Pang and Chan, 1982), the successive overrelaxation methods (Pang, 

1985), the proximal point methods (Auslender et al., 1999), and the Newton-type methods 

(Bonnans, 1994; Harker and Pang, 1990). Some of the recent developments are also reviewed 

by Facchinei and Pang (2003). Among these iterative methods, the projection methods have 

received much attention due to its global convergence and simplicity of implementation. In 

this study, we adopt a new self-adaptive Goldstein-Levitin-Polyak (GLP) projection algorithm 

developed by Han (2002) and Zhou and Chen (2003) to solve the VI problem (15).  A unique 

feature of this algorithm is that the stepsize is self-adaptive using the information derived 

from the previous iterations. This feature is designed to effectively minimize the expensive 

line searches and to guarantee global convergence. Readers may refer to Han (2002) and 

Zhou and Chen (2003) for the details of the self-adaptive GLP projection method for solving 

the combined travel demand model. 
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NUMERICAL EXPERIMENTS 

In this section, we illustrate the network vulnerability assessment approach proposed in this 

paper using a simplified network as depicted in Figure 3. The network consists of 6 nodes and 

7 links.  There are two modes available: car and transit. The free-flow travel time and capacity 

of each link are given in Table 1 with subscripts ‘c’ and ‘t’ for car and transit, respectively.   

 

 
 

Figure 3 Example network 

 

Table 1 Network characteristics 

 

Link 
0

cat  
caC  

0

tat  
taC  

1 10.00 100.00 12.00 100.00 

2 4.00 80.00 4.80 80.00 

3 12.00 80.00 14.40 80.00 

4 4.00 50.00 4.80 50.00 

5 5.00 120.00 6.00 120.00 

6 5.00 50.00 6.00 50.00 

7 4.00 50.00 4.80 50.00 

 

The link cost function for both car network and transit network adopted for this study are 

from Chen and Bernstein (2004) and can be expressed as follows: 
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where 
cav  and 

tav  are link flows for car and transit; 0

cat  and 0

tat  are free-flow travel times for 

car and transit (e.g., 00 2.1
ct aa tt = ); 

caC and 
taC  are link capacities for car and transit; E is the 

passenger car equivalence to public transit (e.g., bus);  cα and tα are set to 0.15; and cγ and 

tγ are set to 4.0.  E is also used to model link flow interaction between the two modes. In the 

experiments, E is assumed to be 4.0. 

 

The zonal input data are provided in Tables 2 to 5. The route, mode, destination, and travel 

choice parameters, tdmr ββββ and,,, , are assumed as 2.0, 1.0, 0.5, 0.1, respectively. For 

illustration, we consider two scenarios: S1 and S2. S1 is the normal scenario without 

disruption; S2 is the degraded scenario with the capacity of link 5 degraded to half of its 

original capacity. 

 

Table 2 Zonal data 

 

Zone (i) Number of Potential Travelers ( iN ) Traveling propensity ( ih ) 

1 150 12.9 

2 150 13.5 

 

 

Table 3 Traveling propensity of O-D pairs ( ijh ) 

 

O\D 3 4 

1 3.4 4.2 

2 9.1 8.7 

 

 

Table 4 Traveling propensity of O-D pairs by car ( ijch ) 

 

O\D 3 4 

1 4.1 3.8 

2 3.3 2.9 

 

 

Table 5 Traveling propensity of O-D pairs by transit ( ijth ) 

 

O\D 3 4 

1 9.5 8.8 

2 9.9 10.1 
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Equilibrium Solutions of the Combined Travel Demand Model 

The equilibrium solutions of each travel choice dimension of the two scenarios are shown in 

Table 6. The results show that the combined travel demand model is capable of quantifying 

the effects of degraded capacity of link 5 on the different travel choice dimensions. Under the 

degraded scenario S2, trip productions from both origins drop slightly (i.e., number of trips 

cancelled or postponed increases due to the reduced capacity of link 5). At the trip distribution 

step, OD pairs (1,4) and (2,3) are directly affected by the capacity disruption of link 5 since 

link 5 is part of the only route that connects these two OD pairs. Because of the reduction of 

OD flows between OD pairs (1,4) and (2,3), part of the total flows generated in the trip 

generation step is shifted to alternate destinations. Hence, the OD flows between OD pairs 

(1,3) and (2,4) are increased as a result of the degradation of link 5. In terms of mode choice, 

the results are similar to the trip distribution step (i.e., OD flows for both modes are decreased 

for OD pairs (1,4) and (2,3) and slightly increased for OD pairs (1,3) and (2,4)). At the route 

choice step, flows on routes that pass through link 5 are reduced because of lower level-of-

service (higher travel times) due to the reduced capacity of link 5. 

 

Equilibrium link flows of both scenarios are presented in Figure 4. Figure 4(a) depicts the 

results of the car network while Figure 4(b) depicts the results of the transit network. In each 

figure, there are two values for each link. The value in the parenthesis is for the degraded 

scenario. As expected, flows on link 5 for both modes are decreased due to reduced capacity 

of link 5 in the degraded scenario. These aggregate link-flow patterns are consistent with the 

equilibrium solutions shown in Table 6. 
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Table 6 Equilibrium solutions of combined travel demand model 

 

Choice Dimensions Variables S1 S2 

T01 41.42 43.98 

T02 35.63 37.56 

T1 108.58 106.02 

Trip Generation 

(Ti and T0i) 

T2 114.37 112.44 

T13 78.32 85.40 

T14 30.27 20.63 

T23 38.82 33.25 

Trip Distribution 

(Tij) 

T24 75.55 79.19 

T13c 50.90 58.09 

T14c 19.04 15.55 

T23c 26.90 24.61 

T24c 50.01 52.40 

T13t 27.41 27.30 

T14t 11.22 5.07 

T23t 11.93 8.64 

Mode Choice 

(Tijm) 

T24t 25.53 26.79 

T13c1 50.85 58.08 

T13c2 0.05 0.01 

T14c1 19.04 15.55 

T23c1 26.90 24.61 

T24c1 5.98 4.15 

T24c2 44.03 48.25 

T13t1 27.24 27.30 

T13t2 0.18 0.00 

T14t1 11.22 5.07 

T23t1 11.93 8.64 

T24t1 3.11 4.40 

Route Choice 

(Tijmr) 

T24t2 22.43 22.39 
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3
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5 6

1Origin

Origin

Destination
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27.24 (27.30)

26.43 (18.12)
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11.40 (5.08)

15.03 (1
3.04)

12.10 (8
.64)

14.33 (9.47)

Link flow S1 (Link Flow S2)
(a) Car Network

(b) Transit Network  
 

Figure 4 Equilibrium link flows of scenarios S1 and S2 

Accessibility Measures and Vulnerability Analysis 

Using the equilibrium solutions obtained from solving the combined travel demand model, 

accessibility measures can be computed using Eqs. (21) to (24). Table 7 shows the 

accessibility measures of both scenarios and the changes in accessibility measures (ΔAs) 

between S2 and S1 for different travel choice dimensions. In both scenarios, all four 

dimensions of users’ responses are modeled. Accessibility measures at all levels decrease 

when link 5 is degraded as indicated by the last column in Table 7. To explain the results, 

let’s start from the bottom of the hierarchical choice structure at the OD mode level. For OD 

pair (1,4), the deterioration of accessibility for transit is more than that of car (also see Figures 

6(a) and 6(b)). This is due to the different link cost functions used in the experiment. The 

congestion externality of transit links is higher than that of car links (i.e., 00 2.1
ct aa tt = ). As a 

result, the transit network appears to be more vulnerable than the car network. Similar results 

can also be observed for other OD pairs. At the OD level, we also observe that OD pair (1,4) 

is more vulnerable (also see Figures 5). The upper-level accessibility is a logsum of the lower-

level accessibilities (see Eqs. (6) to (9)). In this hierarchical structure, the vulnerability 

information from the lower level will be transferred to the upper level. This is one of the 

advantages of using the combined travel demand model and the corresponding utility-based 

accessibility measures. At the origin level, the change in accessibility is in between the 

changes in accessibility of its OD pairs, because users can choose among the available 

destinations. At the network level, the change in accessibility is less than that of both origins, 

because some potential travelers can choose not to travel. Overall, the vulnerability of the 
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network is related to the travel choice dimensions available for the users. More travel choice 

dimensions available will result in a lesser vulnerable network under degraded conditions. 

 

Table 7 Accessibility measures for different travel choice dimensions 

 

Accessibility Level Variables S1 S2 �A (S2-S1) 

Network (A) A 13.62 13.06 -0.56 

A1 -3.26 -4.10 -0.84 Zonal (Ai) 

A2 -1.84 -2.54 -0.70 

A13 -7.31 -7.93 -0.62 

A14 -10.02 -11.57 -1.56 

A23 -13.10 -14.07 -0.97 

O-D (Aij) 

See Figure 4 

A24 -11.37 -11.94 -0.57 

A13c -11.85 -12.42 -0.57 

A14c -14.28 -15.66 -1.38 

A23c -16.77 -17.67 -0.91 

A24c -14.68 -15.25 -0.57 

A13t -17.86 -18.57 -0.71 

A14t -19.81 -21.78 -1.97 

A23t -24.18 -25.32 -1.14 

O-D by mode (Aijm) 

See Figures 5(a) and  

       5(b) 

A24t -22.55 -23.12 -0.57 
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Note: ΔA refers to changes in accessibility measures 

Figure 5 Changes in accessibility measures on O-D level 
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        (a) O-D car level    (b) O-D transit level 

 

Figure 6 Changes in accessibility measures on different O-D mode levels 

Sensitivity Analysis 

In this section, three sensitivity analyses are conducted with respect to the degree of link flow 

interactions (E), the amount of capacity degraded on link 5, and the number of travel choice 

dimensions on the accessibility measures. Figure 7 shows that the effect of the degree of link 

flow interactions (E value) on the accessibility measures for the normal scenario. Figure 8 

shows the effect of the amount of degraded capacity on link 5 on the reductions of 

accessibility measures. Figure 9 shows the effect of the number of travel choice dimensions 

on the changes in accessibility measures at the network level for both modes. From these 

figures, the following observations can be drawn: 

 

•  Ignoring link flow interactions (i.e., without interactions in Figure 7) overestimates the 

accessibility measures for all travel choice dimensions. The overestimation of accessibility 

measures increases as the value of E increases (though at a decreasing rate). Also, the 

amount of accessibility overestimated is different for different accessibility levels as well 

as within the same accessibility level. 

• As the amount of degraded capacity of link 5 increases, the reduction of accessibility 

measures for all levels increases. At the network level, disruption to link 5 can 

significantly reduce the network accessibility as link 5 is a critical link to the network. At 

the origin level, origin 2 is slightly more vulnerable compared to origin 1 because of a 

slightly larger trip production from origin 2. At the OD level, OD pairs (1,4) and (2,3) are 

the most vulnerable as there is no alternate route without using link 5. 

• Using less travel choice dimensions can overestimate the vulnerability measures as 

indicated by Figure 9. The changes in accessibility measures are more drastic if only the 

route choice dimension is used to assess network vulnerability. Regardless of the number 

of travel dimensions used in the network vulnerability assessment procedure, all travel 

choice models indicate OD pairs (1,4) and (2,3) are more vulnerable to the disruption of 
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link 5. Between the two modes, the transit mode appears to be more vulnerable than the 

car mode. 

 

-20

-15

-10

-5

0

5

10

15

20

0 2 4 6 8 10

E values

A
cc

es
si

b
il
it
y
 m

ea
su

re
s 

  
  
  
  
  
  
  
  
  
  
  
 

Network

Origin 1

Origin 2

OD 1-3

OD 1-4

OD 2-3

OD 2-4

Without 

Interactions

 
Figure 7 Degree of link flow interactions on accessibility measures 
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Figure 8 Changes in accessibility measures under different capacity degradation 
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(b) Transit network 

 

Figure 9 Changes in accessibility measures on the number of travel choice dimensions 

 

CONCLUSIONS 

This paper has presented a network-based accessibility measures for assessing vulnerability of 

degradable transportation networks. The network vulnerability assessment approach 

employed a combined travel demand model formulated as a variational inequality problem to 

explicitly consider the interactions between modes (i.e., car and transit) and between the 

disrupted network and the multi-dimensional travel responses of the network users (e.g., 

changing route, switching mode, changing destination, and canceling or postponing trip). 

Network-based accessibility measures, derived from the combined travel demand model that 

is consistent with random utility theory, were used to quantify the vulnerability of degradable 
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transportation networks. Numerical results, albeit using a small network, indicated that the 

proposed vulnerability assessment approach is capable of measuring the consequences of both 

demand and supply changes in the network and has the flexibility to reflect the effects of 

different travel choice dimensions on network vulnerability. 
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APPENDIX 

I. Proof of Theorem 1: Let ijmπ , ijμ , iλ , iϕ  be the dual variables associated with equality 

constraints (10)-(14) respectively.  The KKT conditions of the VI problem (15) are given as 

below (Facchinei and Pang, 2003): 

 

 ( ) 1 1
ln ln 0, , , ,ijmr ijmr ijmr ijm ijm ijmr

r r

g T T T T i j m rπ
β β

� �
+ − − = ∀� �

� �
 (A.1) 

 ( ) 1 1
ln ln 0, , , ,ijmr ijmr ijmr ijm ijm

r r

g T T T i j m rπ
β β

+ − − ≥ ∀  (A.2) 

 
1 1

ln ln 0, , ,ijm ijm ij ijm ij ijm

m m

T h T T i j mπ μ
β β

� �
− − + − = ∀� �

� �
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1 1

ln ln 0, , ,ijm ijm ij ijm ij

m m

T h T i j mπ μ
β β
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 0 0 0

1 1
ln 0, ln 0,i i i i i

t t

T T T iϕ ϕ
β β

� �
− = − ≥ ∀� �

� �
. (A.8) 

 

Note that at equilibrium, the solutions of the combined travel demand model are positive. 

Without loss of generality, we can assume 0 0, 0, 0, 0, 0i i ij ijm ijmrT T T T T> > > > >  for all i, j, 

m, r.  From (A.1) and (A.2), we have 

 

 ( ) 1 1
ln ln 0, , , ,ijmr ijmr ijmr ijm ijm

r r

g T T T i j m rπ
β β

+ − − = ∀  (A.9) 

 

with constraint (10), we have /ijm m ijWπ = − � , so 
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Similarly, from (A.3), (A.4), and (11), we have 
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From (A.5), (A.6), and (12), we have 
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From (A.7), (A.8), and (13), we have 
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The above derivations show that the solution of the VI problem (15) satisfies the equilibrium 

conditions of the combined travel demand model. The proof is completed.   � 

II. Proof of Theorem 2:  According to the relationship, 

 

    ( ) ( ) m

m

am

ijmr ijmr a ijmr ijr

a

g T g T δ=� . 

 

ijmr
g  is also continuous.  Then, ( )F x  is continuous.  Since the set Ω  is convex and compact, 

existence of a solution is guaranteed (Theorem 1.4, Nagurney, 1993).   � 

 

 

III. Proof of Theorem 3: By rearranging the left-hand side of (15), we obtain an alternative 

VI formulation as shown below: 
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for all ( )0, , , ,i i ij ijm ijmrT T T T T ∈Ω .  
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Here, 1 1 1 1 1 1 1 1 1
;  ;  

' ' 'm m r d d m t t dβ β β β β β β β β
= − = − = − .  Without loss of generality, we assume 

rmdt ββββ <<<  (Daganzo and Kusnic, 1993), which implies '

mβ , '

dβ and '

tβ  are positive. 

 

Let  
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 (A.16) 

 

and the corresponding vectors 0,,,, iiijijmijmr ccccc . The VI (A.15) can be rewritten as 

 

 * *( ) ( ) 0,TF − ≥ ∀ ∈Ωx x x x , (A.17) 

 

where ( ) [ ]TiiijijmijmrF 0,,,,x ccccc= and 0, , , ,
T

ijmr ijm ij i i
� �= � �x T T T T T .   

 

 

According to Theorem 2, there exists at least one solution. Since 

( ) ( ) m

m

am

ijmr ijmr a ijmr ijr

a

g T g T δ=� , according to the assumption, ( )ijmr ijmr
g T  is monotone. 

Furthermore, the logarithm function is strictly monotone on ++R (i.e., positive orthant of R).  

Thus, it is straightforward to verify that mapping F is strictly monotone. Thus, the uniqueness 

of solution can be obtained easily following a similar proof of Theorem 1.6 by Nagurney 

(1993).            � 
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SUMMARY 
 

Consider a city of an arbitrary shape where users are distributed continuously over the city 

region. Within this region, the road network is dense and can be represented as a continuum: 

users patronize a two-dimensional continuum network to the central business district (CBD). 

A congestion-pricing technique is applied to this continuum transportation system to 

maximize its total social welfare. This paper presents the theoretical bounds for the efficiency 

of this congestion-pricing scheme for both the fixed and elastic demand cases. The ratio of 

total costs and total social welfare between the system-optimal and user-optimal travel 

patterns are taken as the measures of efficiency in the fixed and elastic demand cases, 

respectively. With a better understanding of the efficiency of congestion-pricing, traffic 

planners can better comprehend the likely benefit that is obtainable from a congestion-pricing 

scheme. 

 

 

INTRODUCTION 
 

In the literature, the modeling of traffic equilibrium problems is classified into two general 

approaches: the discrete modeling approach and the continuum modeling approach. The 

discrete modeling approach, in which each road link within the network is modeled 

separately and the demand is assumed to be concentrated at hypothetical zone centroids, is 

commonly adopted for detailed planning. The continuum modeling approach, in contrast, is 

used for the initial phase of planning and modeling in broad-scale regional studies, in which 

Transportation and Traffic Theory 2007 
Edited by R.E. Allsop, M.G.H. Bell and B.G. Heydecker 
© 2007 Elsevier Ltd. All rights reserved. 



264 Transportation and Traffic Theory 17 

 

 

 

the focus is on the general trend and pattern of the distribution and travel choice of users at 

the macroscopic level, rather than at the detailed level. In the continuum approach, a dense 

network is approximated as a continuum in which users are free to choose their routes in a 

two-dimensional space. The fundamental assumption is that the differences in modeling 

characteristics, such as the travel cost and the demand pattern, between adjacent areas within 

a network are relatively small as compared to the variation over the entire network. Hence, 

the characteristics of a network, such as the flow intensity, demand, and travel cost, can be 

represented by smooth mathematical functions (Vaughan, 1987). A promising extension to 

modeling an arbitrary city shape has recently been made, and a solution algorithm that uses 

the finite element method (FEM) to solve the resultant continuum model has been published 

(Wong et al., 1998; Ho et al., 2006). 

 

The continuum modeling approach has various advantages over the discrete modeling 

approach in macroscopic studies with very dense transportation systems (Blumenfeld, 1977; 

Taguchi and Iri, 1982; Sasaki et al., 1990; Gwinner, 1998). First, it reduces the problem size 

for dense transportation networks. The problem size in the continuum modeling approach 

depends on the method that is adopted to approximate the modeling region, and thus an 

effective approximation method, such as the FEM (Zienkiewicz and Taylor, 1989), can help 

to reduce the size of the problem. Second, less data is required to set up a continuum model. 

As a continuum model can be characterized by a small number of spatial variables, it can be 

set up with a much smaller amount of data in comparison to a discrete modeling approach, 

which requires data for all of the included links. This makes the continuum model suitable for 

macroscopic studies in the initial design phase, as the resources for the collection of data in 

this phase are very limited. Finally, the continuum modeling approach provides a better 

understanding of the global characteristics of a road network. As the numerical results of a 

continuum model can be visualized in a two-dimensional sense, the influence of different 

model parameters and the spatial interaction between locations can easily be detected and 

analyzed.  

 

Traffic equilibrium problems are usually formulated as a mathematical program. By 

considering different objectives in the program, different equilibrium travel patterns, namely 

the user-optimal and system-optimal travel patterns, can be obtained. In the user-optimal 

travel pattern, all users in the transportation system choose their routes by minimizing the 

total travel cost incurred. As these users are not cooperating with each other, extra delays and 

congestion will be experienced, which reduces the total system benefit. In contrast, a system-

optimal travel pattern, which maximizes the total system benefit, can be obtained by 

introducing proper regulatory measures, such as congestion-pricing, to the transportation 

system. Congestion-pricing is a method that is used to reduce traffic congestion and to raise 

revenue for funding transportation improvements. The underlying principle of congestion-

pricing is one of regulating the choice behavior of users to approach a system-optimal travel 

pattern by imposing tolls on the users. From the system point of view, a system-optimal 

travel pattern is superior to a user-optimal pattern, because the system-optimal pattern 

maximizes the total system benefit. However, the question becomes one of whether the cost 

of implementing congestion-pricing can be compensated for by a gain in the system benefit. 
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To answer this question, it is necessary to ascertain how efficient the system-optimal travel 

pattern is in maximizing the total system benefit, or how inefficient the user-optimal travel 

pattern is in this context. Roughgarden and Tardos (2002) attempted to ascertain the 

theoretical bounds of the price of anarchy, which is a term that was introduced by 

Papadimitriou (2001) to represent the ratio of total cost for a user-optimal travel pattern 

compared to total cost for a system-optimal pattern, in a discrete transportation network with 

a fixed demand. Roughgarden and Tardos proved that the price of anarchy for networks with 

a linear link cost function is at most 4/3. In addition to this linear link cost function, the 

theoretical bounds of the price of anarchy for discrete networks with a more general link cost 

function were derived by Roughgarden (2003), who pointed out that the bounds of the price 

of anarchy are solely dependent on the link cost function and is independent of the network 

topography. Chau and Sim (2003) investigated the bound of the price of anarchy of the non-

atomic congestion game with elastic demand, and concluded that it is more difficult to obtain 

the bound of the price of anarchy of the elastic demand when compared to the fixed demand 

case. Similar analyses of the price of anarchy can be found in the work of Correa et al. (2004) 

for capacitated networks, and in that of Guo and Yang (2005) for networks in the context of 

stochastic user-equilibrium.  

 

Based on the idea of the price of anarchy in the discrete modeling approach, we study the 

theoretical bounds of congestion-pricing efficiency in a continuum transportation system. We 

consider a single class of users in a study region of arbitrary shape. The region has a central 

business district (CBD), which is the destination of all users. For this single class of users, 

both fixed and elastic demand cases are considered and the existence of a theoretical bound 

for these two cases is explored. To evaluate the efficiency of congestion-pricing for the 

determination of the theoretical bound, two different models are considered: the user-optimal 

model, which is based on the model that was introduced by Wong et al. (1998), and the 

system-optimal model, which is based on the first-best formulation of Ho et al. (2005). As 

congestion-pricing is adopted in the system-optimal model to ensure the system is best 

performed, the comparison of these the user-optimal and system-optimal models helps to 

shed light on the efficiency of congestion-pricing for improving the system performance. Due 

to the differences in the formulation of the fixed and elastic demand in the system-optimal 

model, different measures of efficiency will be considered. In the fixed demand case, the 

measure of efficiency is taken as the ratio of total travel cost of a user-optimal pattern to that 

of a system-optimal pattern, whereas in the elastic demand case the measure of efficiency is 

taken as the ratio of social welfare of a system-optimal pattern to that of a user-optimal 

pattern. By considering the interrelation of different variables, such as the flow and total 

travel cost, at the optimal points of the aforementioned problems, the theoretical bounds of 

congestion-pricing efficiency will be obtained. 

 

In the remainder of this paper, we first introduce the notation and the specific equations that 

are used to obtain the theoretical bounds for the fixed and elastic demand cases. Based on 

these definitions, the proofs for the theoretical bounds of congestion-pricing efficiency in a 

continuum transportation system are presented for both of the fixed and elastic demand cases. 
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DEFINITIONS AND NOTATION 
 

General 

 

In this study, we consider a two-dimensional city with an arbitrary shape and denote the city 

region as Ω. The outer boundary of the city is denoted as Γ with Γ⊂Ω, and the CBD is 

located at O which is encircled by the inner boundary of the city Γc with Γc⊂Ω. The 

transportation cost per unit distance of travel at location ( ) Ω∈yx,  is denoted as ( )f,, yxc , 

which has the following functional form in terms of the traffic flow vector, ( )yx,f , at that 

location: 

 ( ) ( ) ( ) ( )γ
yxyxbyxayxc ,,,,, ff += ,            (1) 

where ( )yxa ,  and ( )yxb , , which are strictly positive scalar functions of the cost-flow 

relationship that reflects the local characteristics of the streets at location ( ) Ω∈yx, , are the 

free-flow travel cost and congestion-related parameter of the cost-flow relationship. γ , which 

is a positively defined constant for the entire region, is the non-linearity parameter for this 

cost-flow relationship. ( ) ( ) ( )( )yxfyxfyx yx ,,,, =f  is a vector that represents the flow state at 

location ( )yx,  in the study area, and ( )yxf x ,  and ( )yxf y ,  are the flow flux in the directions 

x and y, respectively, and ( ) ( ) ( )22
,,, yxfyxfyx yx +=f  is the norm of the flow vector that 

measures the traffic flow intensity at ( )yx, .  Ho et al. (2005) proved that for a continuum 

transportation system with the unit transportation cost function that is defined in equation (1), 

the marginal cost function ( )f,,m yxc  at location ( ) Ω∈yx,  can be expressed as:  

 ( ) ( ) ( ) ( ) ( )γ
γ yxyxbyxayxc ,,1,,,m ff ++= .  (2) 

 

Based on the unit transportation cost in equation (1) and the marginal cost function in 

equation (2), the path travel cost and path marginal cost from a home location H∈Ω to the 

CBD (O) along the chosen path P can be expressed by the following equations: 

 ( ) ( ) syxcyxu
P

d,,,, �= ff , (3) 

 ( ) ( ) syxcyxu
P

d,,,, mm �= ff . (4) 

 

For brevity, the location parameters, x and y, of the forgoing variables and functions will be 

omitted in the forthcoming discussions. As the efficiencies of congestion-pricing in both of 

the fixed and elastic demand cases in a continuum transportation system are to be studied in 

this paper, the formulation of the user-optimal and system-optimal models, which are 

introduced in Wong et al. (1998) and Ho et al. (2005), are introduced in the following 

subsections. 
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Fixed demand models 

 

In fixed demand models, the demand at location ( )yx,  is denoted as ( )yxq , , which is a 

strictly positive scalar function. The user-optimal model, ( )cq,,Suf Ω , for the fixed demand 

case is formulated into a minimization problem with the following objective function:  

 ( ) ( ) Ω��
�

��
	= �� �Ω

dd��
0

uf

f

f cZ , (5) 

where subscript ‘u’ represents a user-optimal model and the subscript ‘f’ indicates that it is a 

fixed demand case. This minimization problem is subject to the following two constraints: 

 ( ) Ω∈∀=−⋅∇ yxq ,,0f , (6) 

 ( ) Γ∈∀= yx,,0f , (7) 

where equation (6) is the flow conservation relationship, and equation (7) is the boundary 

condition at the boundary Γ of the study region Ω. For this minimization problem, the 

following differential equations are satisfied at its optimal solution ( )ufufuf ,uf=Ψ : 

 ( ) ( ) Ω∈∀=∇++ yxuba ,,0uf

uf

uf
uf

f

f
f

γ
, (8a) 

 ( ) Ω∈∀=−⋅∇ yxq ,,0uff , (8b) 

 ( ) Γ∈∀= yx,,0uff ,  (8c) 

 ( ) cyxu Γ∈∀= ,,0uf . (8d) 

 

The derivation of these differential equations that are satisfied at the optimal point of the 

optimization problem can be found in Wong et al. (1998). At the optimal solution Ψuf, the 

path travel cost is denoted as ( )uffu , which is dependent on the flow pattern fuf. However, for 

brevity, this path travel cost is denoted as ufu , which also holds for the elastic demand case. 

From equation (8a) we can easily observe that ufuf // u∇−f , and ( ) ufufuf ubac ∇=+=
γ

ff . 

The system-optimal model, ( )cq,,Ssf Ω , for the fixed demand case is formulated into a 

minimization problem with the following objective function:  

 ( ) ( )[ ] Ω= ��Ω dsf fff cZ , (9) 

where subscript ‘s’ represents a system-optimal model. This minimization problem is also 

subject to the same constraints that are shown in equations (6) and (7). At the optimal 

solution ( )sfm,sfsf ,uf=Ψ  for this minimization problem, the following differential equation, 

 ( )( ) ( ) Ω∈∀=∇+++ yxuba ,,01 sfm,

sf

sf
sf

f

f
f

γ
γ , (10) 

together with equations (8b), (8c) and (8d), are satisfied. The derivation of these differential 

equations that are satisfied at the optimal point of the optimization problem can be found in 

Ho et al. (2005). At the optimal solution Ψsf, the path marginal cost is denoted as ( )sffmu , 

which is dependent on the flow pattern fsf. However, for brevity, the path marginal cost is 
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denoted as sfm,u , which also holds for the elastic demand case. From equation (10), we can 

easily that sfm,sf // u∇−f , and ( ) ( ) sfm,sfsfm 1 ubac ∇=++=
γ

γ ff . The total social cost and 

total marginal user cost for the study area can be expressed as: 

 ( ) ��Ω Ω=Ψ du uqC ,  (11) 

 ( ) ��Ω Ω=Ψ dmm quC . (12) 

 

As an indicator for measuring the efficiency of the congestion-pricing method in a continuum 

transportation system for the fixed demand case, the following ratio is defined: 

 ( )
( )
( )sfu

ufu
f ,,

Ψ

Ψ
=Ωρ

C

C
cq . (13) 

This ratio is specific for the given study region Ω, fixed demand pattern q, and unit 

transportation cost function c.  

 

 

Elastic demand models 

 

In the user-optimal model with elastic demand, the demand at location ( )yx,  is denoted as 

( )uyxq ,, , and its relation to the path travel cost ( )fu  is specified as: 

 ( ) ( )( )fuyxDuyxq ,,,, = . (14) 

 

Similarly, for the system-optimal model with elastic demand, the demand at location ( )yx,  is 

defined as: 

 ( ) ( )( )fmm uyxDuyxq ,,,, = , (15) 

where in this case the demand is dependent on the path marginal cost ( )fmu  at location ( )yx, .  

 

To ensure the existence of the inverse function, 1−D , the elastic demand function is assumed 

to be a monotone function. Similar to the fixed demand case, the user-optimal model, 

( )cD,,Sue Ω , for the elastic demand case is formulated into a minimization problem with the 

following objective function:  

 ( ) ( ) ( ) Ω��
�

��
	 −= �� ��Ω

− dd�d�,
0

1

0
ue

q

DcqZ ξξ
f

f , (16) 

where subscript ‘e’ indicates the elastic demand case. This minimization problem is also 

subject to the same constraints in equations (6) and (7). At the optimal solution 

( )uequ ,, ueueue f=Ψ  of this minimization problem, the following differential equation  

 ( ) ( ) Ω∈∀=− −
yxqDu ,,0ue

1

ue , (17) 
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together with equations (8a), (8b), (8c) and (8d) are satisfied (Wong et al., 1998). The 

system-optimal model, ( )cD,,Sse Ω , for the elastic demand case is formulated into a 

maximization problem with the following objective function:  

 ( ) ( ) ( ) Ω��
�

��
	 −= �� �Ω

− dd�,
0

1

se fff cDqZ
q

ξ . (18) 

 

This maximization problem is also subject to the same constraints in equations (6) and (7). At 

the optimal solution ( )sesem,sese ,, quf=Ψ  of this maximization problem, equations (10), (17), 

(8b), (8c) and (8d) are satisfied (Ho et al., 2005). The total user benefit of the system is 

defined as: 

 ( ) ( )�� �Ω

− Ω=Ψ dd
0

1
q

DB ξξ . (19) 

Based on the total social cost that is defined in equation (11) and the total user benefit in 

equation (19), the social welfare of the system is defined as: 

 ( ) ( ) ( )Ψ−Ψ=Ψ uCBW . (20) 

As an indicator for measuring the efficiency of the congestion-pricing scheme in a continuum 

transportation system with elastic demand case, the following ratio is defined: 

 ( )
( )
( )ue

se
e ,,

Ψ

Ψ
=Ωρ

W

W
cD . (21) 

Similarly, this ratio is specific to the given study region Ω, elastic demand function D, and 

unit transportation cost function c. 

 

In addition to the optimal solutions ueΨ , ufΨ , seΨ , and sfΨ  that are obtained by solving the 

corresponding optimization problems, two other sets of solutions, ( )cfcfcf ,uf=Ψ  and 

( )cececece ,, quf=Ψ , are considered for the fixed and elastic demand cases. These sets of 

solutions, which are indicated by subscript ‘c’, are the arbitrary feasible solutions for the 

forgoing fixed and elastic demand models. These solutions satisfy constraints (6) and (7) 

only, and do not guarantee optimality with respect to any objective function. 

 

 

THE THORETICAL BOUND FOR THE FIXED DEMAND CASE 
 

In this section, the theoretical bound for the effectiveness of the system-optimal scheme 

compared to the user-optimal scheme in fixed demand case is presented. The proof follows 

the steps that were introduced by Roughgarden and Tardos (2002) for discrete networks. 

First, we consider the following lemmas that concern the total travel costs of used and unused 

path in the continuum transportation system: 

 

LEMMA 1A.  A flow f is at user optimal (UO) if and only if for each OD pair the path travel 

cost for all used paths are equal, and 
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 ( ) ( )�� ≤
'

dd
PP

scsc ff  or �� +≤+
'

dd
PP

sbasba
γγ

ff , 

 where P is the used path and P’ is any unused path. 

 

PROOF Necessity – By the definition of Wardrop’s first principle of equilibrium. 

 

Sufficiency – For used path P, using equations (8a) and (8d), and the fact that 

flow uff  is parallel to P, we have: 

( ) ( ) ( ) ( )( ) ( )HHOddd ufufufuf

uf

uf
ufuf uuususbasc

PPP
=−−=⋅∇−=⋅+= ��� f

f
ff

γ
 

Thus, the path travel cost is independent of the path taken. For any unused 

path 'P , using equations (8a) and (8d), and the fact that flow uff  is not parallel 

to 'P , we have: 

( ) ( ) ( ) ( )( ) ( )HHOddd ufufuf
'

uf
'

uf

uf
uf

'
uf uuususbasc

PPP
=−−=⋅∇−=⋅+≥ ��� f

f
ff

γ
 

Combining these two equations, we have: 

( ) ( ) ( )�� ≤=
'

uf dHd
PP

scusc ff  

This completes the proof. 

 

 

LEMMA 1B.  A flow f is at system optimal (SO) if and only if for each OD pair the path 

marginal cost for all used paths are equal, and 

 ( ) ( )�� ≤
'

mm dd
PP

scsc ff  or ( ) ( )�� ++≤++
'

d1d1
PP

sbasba
γγ

γγ ff , 

 where P is the used path and P’ is any unused path. 

 

PROOF Necessity – By Lemma 1A (with the assumption that the path marginal cost 

for all used paths between each OD pair are equal and ( ) ( )�� ≤
'

mm dd
PP

scsc ff ), 

flow f is a user optimal flow pattern with respect to the marginal cost function 

cm. Thus, the objective function,  

( ) ( ) Ω��
�

��
	= �� �Ω

dd��
0

m

f

f cZ  

of the user-optimal model for the fixed demand case is minimized subject to 

constraints (6) and (7) for flow f. Therefore, by integrating the marginal cost 

function cm with respect to f , this objective function is equivalent to equation 

(9). This implies that the system-optimal model for the fixed demand case is 

solved by this flow pattern f. 

 

 Sufficiency – The proof is similar to that in Lemma 1A, but we use the 

marginal cost function cm and the path marginal cost um (instead of the unit 
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transportation cost function c and total travel cost u that are used in the proof 

of Lemma 1A). This completes the proof. 

 

 

Similar proofs can also be found in Wong et al. (1998) and Ho et al. (2005). In addition to the 

total travel cost, we consider the following lemmas for the definition of the total social cost 

for the UE travel pattern and the total marginal user cost for the SO travel pattern. 

 

LEMMA 2A.  The total social cost, ( )ufu ΨC , of a user-optimal (UO) model is defined as: 

  ( ) ( )��Ω Ω=Ψ dufufufu ff cC . 

 

PROOF First, we consider the rightmost part of Lemma 2A, and by equation (8a) for 

the fixed demand UO flow pattern, we have: 

  ( ) ���� ΩΩ
Ω∇=Ω dd ufufufuf uc fff . 

 As ufuf u∇−//f , and by Green’s theorem, we have: 

  ( ) ������ ΓΓΩΩ
Γ⋅−Γ⋅−Ω⋅∇=Ω

c
cuuuc dddd ufufufufufufufuf nfnffff . 

 where n and nc are respectively the unit normal unit vector for boundaries Γ 

and Γc. From equations (8b), (8c), (8d) and (11): 

  ( ) ( )ufuufufuf dd Ψ=Ω=Ω ���� ΩΩ
Cquc ff . 

 This completes the proof. 

 

 

LEMMA 2B.  The total marginal user cost, ( )sfm ΨC , of a system-optimal (SO) model is 

defined as: 

  ( ) ( )��Ω Ω=Ψ dsfmsfsfm ff cC . 

 

PROOF The proof is similar to that for Lemma 2A, but we use the set of differential 

equations for the system-optimal model with fixed demand. 

The above lemmas define the total social cost and total marginal user cost for the UO and SO 

schemes, respectively. As this study focuses on the effectiveness of congestion-pricing, 

which is a comparison of the user-optimal and system-optimal schemes within the same study 

area, the following lemma establishes a linkage between the UO and SO schemes through the 

flow pattern. 

 

LEMMA 3.  Suppose that flow pattern uff  is the solution of the problem ( )cq,,Suf Ω , then 

the flow pattern ( ) γ
γ

/1

uf 1/ +f  is the solution of the problem 

( )( )cq ,1/,S
/1

sf

γ
γ +Ω . 
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PROOF Substituting the flow pattern ( ) γ
γ

/1

uf 1/ +f  into the left-hand side of the 

inequality in Lemma 1B, we have: 

  ( )
( )

( )
( ) ��� +=

+
++=

+
++

PPP
sbasbasba dd

1
1d

1
1 uf

uf

/1

uf γ
γγ

γ γ
γ

γ
γ f

ff
. 

 Together with Lemma 1A, we have: 

  ( )
( )

( )
( )��� +

++=+≤
+

++
' /1

uf

'
uf/1

uf d
1

1dd
1

1
PPP

sbasbasba

γ

γ

γ

γ

γ
γ

γ
γ

γ
f

f
f

. 

 Thus, it is shown that if uff  is a UO flow pattern then ( ) γ
γ

/1

uf 1/ +f  is a SO 

flow pattern. As the flow is scaled down by a factor of ( ) γ
γ

/1
1+ , the fixed 

demand of this SO problem is also scaled down by the same factor (that is 

with the fixed demand at the level of ( ) γ
γ

/1
1/ +q ) for the continuity equation 

to hold and this completes the proof. 

 

Based on the linkage of the flow pattern between the UO and SO schemes within the same 

study area Ω and the unit transportation cost function c, the following corollary and lemma 

establish the relationships of the path travel cost, path marginal cost, total social cost and total 

marginal user cost between the UO and SO schemes.  

 

COROLLARY 4.  The path marginal cost along a path P with respect to the flow 

( ) γ
γ

/1

uf 1/ +f , which is the solution of the problem ( )( )cq ,1/,S
/1

sf

γ
γ +Ω , 

is equal to the path travel cost on the same path P with respect to the 

flow uff , which is the solution of the problem ( )cq,,Suf Ω . 

 

PROOF Substitute the flow pattern ( ) γ
γ

/1

uf 1/ +f  into equation (4) and by 

equation (3), we have: 

  
( )

( )
( )

.dd
1

1
1

ufuf/1

uf

/1

uf
m usbasbau

PP
=+=

+
++=

�

�
�

�
+

�� γ

γ

γγ
γ

γ
γ

f
ff

 

 This completes the proof. 
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LEMMA 5. For any δ > 0, an arbitrary feasible solution cfΨ  for the problem 

( )( )cq,1,Suf δ+Ω  has a total social cost of at least ( ) ( )sfmsfu Ψ+Ψ CC δ , 

where sfΨ  is the solution of the problem ( )cq,,Ssf Ω . 

 

PROOF Consider the convexity of the function ( ) 1+
+=

γ
ffff bac , where: 

( ) ( ) ( ) ( )

( ) ( ) ( ).sfmsfcfsfsf

sfcfsfsfcfcf

sf

fffff

f

ff
ffffff

ff

cc

c
cc

−+=

∂

∂
−+≥

=
.    (22) 

 Evaluating the total social cost that is associated with flow pattern cff  and 

using equation (22), we have: 

 
( ) ( )

( ) ( ) ( ) .dd

d

sfmsfsfmcfsfu

cfcfcfu

����
��

ΩΩ

Ω

Ω−Ω+Ψ≥

Ω=Ψ

ffff

ff

ccC

cC
.   (23) 

Consider the second term ( )��Ω Ωdsfmcf ff c  on the right-hand side of the 

inequality in equation (23). By equation (10) and the fact that fcf is not 

necessarily parallel to sfu∇ , we have: 

 ( ) ���� ΩΩ
Ω⋅∇−≥Ω dd cfsfm,sfmcf fff uc . 

By Green’s theorem and with equations (8b), (8c), and (8d) for the system-

optimal model with fixed demand, and after rearranging, we have: 

  ( ) ( )���� ΩΩ
Ω+≥Ω d1d sfm,sfmcf quc δff . 

 Thus, substituting the above inequality back to equation (23), and by Lemma 

2B and equation (12), we have: 

  ( ) ( ) ( )sfmsfucfu Ψ+Ψ≥Ψ CCC δ . 

 This completes the proof. 

 

 

With the definition of the total social cost and total marginal user cost in Lemma 2A and 2B, 

and the relationship of different costs between UO and SO scheme in Corollary 4 and Lemma 

5, the theoretical bound for the effectiveness of congestion-pricing in the fixed demand case 

is given in the following theorem. 

 

THEOREM 6. For any continuum transportation network with fixed demand and the unit 

transportation cost function taking the form of ( ) γ
ff bac += , the ratio 

( )cq,,f Ωρ  should be at most ( )( ) 1/)1(
11

−+
−++ γγγ

γγ
, of which γ is the 

parameter for the non-linearity of flow intensity in the unit transportation cost 

function. 
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PROOF Let sfΨ  be the solution of the problem ( ) ( )( )cq ,1/1,S
/1

sf

γ
γδ ++Ω . As sfΨ  is 

also an arbitrary feasible solution of ( ) ( )( )cq ,1/1,S
/1

uf

γ
γδ ++Ω , and from 

Lemma 5, we have:  

 ( ) ( ) ( )sf1msf1usfu Ψ+Ψ≥Ψ CCC δ ,   (24) 

 where sf1Ψ  is the solution of the problem ( )( )cq ,1/,S
/1

sf

γ
γ +Ω . By taking 

( ) 11
/1

−+=
γ

γδ , sfΨ  becomes the solution of the problem ( )cq,,Ssf Ω , and 

equation (24) can be written as ( ) ( ) ( )( ) ( )sf1m

/1

sf1usfu 11 Ψ−++Ψ≥Ψ CCC
γ

γ . 

 By equation (12), Corollary 4 and then equation (11), the above inequality can 

be modified as: 

  ( ) ( )
( )

( )ufu/1sf1usfu
1

1
1 Ψ

�

�
�

�
+

−+Ψ≥Ψ CCC
γ

γ
, 

 where uff  is the flow pattern of problem ( )cq,,Suf Ω . Applying Lemma 3 and 

Lemma 2A to the first term on the right-hand side of the above inequality and 

applying the definition of the unit transportation cost c, we can show that: 

  

( )
( ) ( ) ( )

( )

( ) ( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( ) .

1
1

1

1
1

1

1

1

1
1d

1

1

1

1
1d

11

1

1
1d

11

ufu/)1(

ufu/1ufu/)1(

ufu/1ufuf/)1(

ufu/1/)1(

1

uf

/)1(

uf

ufu/1/)1(

1

uf

/1

uf

sfu

Ψ

�

�
�

�
+

−=

Ψ

�

�
�

�
+

−+Ψ
+

=

Ψ

�

�
�

�
+

−+Ω+
+

=

Ψ

�

�
�

�
+

−+Ω
+

+
+

≥

Ψ

�

�
�

�
+

−+Ω
+

+
+

≥Ψ

+

+

Ω+

Ω +

+

+

Ω +

+

��

��

��

C

CC

Cba

C
ba

C
ba

C

γγ

γγγ

γ

γ

γγ

γγγ

γ

γγ

γγγ

γ

γ

γ

γ

γγ

γγ

γγγ

γγγ

ff

ff

ff

 

 Thus, ( ) ( )
( ) ( ) γγ

γ
ρ

γγ
−+

+≤
Ψ

Ψ
=Ω

+ /)1(

sfu

ufu
f

1
1,,

C

C
cq . This completes the proof. 

 

In this section, we prove that the theoretical bound for the effectiveness of the system-optimal 

scheme over the user-optimal scheme (or the efficiency of congestion-pricing) for a 

continuum transportation network with fixed demand and specific type of unit transportation 

cost function is ( )( ) 1/)1(
11

−+
−++ γγγ

γγ
, where γ is the parameter for the non-linearity of flow 

intensity in the unit transportation cost function. The following assumptions are made in this 

proof: only a single destination (CBD) is considered, no destination charge or toll for users to 

access the CBD, and the specific type of unit transportation cost function, ( ) γ
ff bac += , is 

used. Also, the above theoretical bound for the efficiency of congestion-pricing in the 

continuum transportation system is analogous to that of the discrete networks with 

polynomial cost function (Roughgarden, 2003). 
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THE THORETICAL BOUND FOR THE ELASTIC DEMAND CASE 

 

This section derives the theoretical bound of effectiveness for the elastic demand case in a 

continuum transportation system. In this section, the proof of the theoretical bound follows 

the steps that were introduced by Yang and Huang (2005) for discrete networks. Firstly, a 

general theoretical bound is found for a decreasing elastic demand function, and then based 

on this result a more specific bound is found for a particular type of elastic demand function. 

 

General elastic demand function 

 

In this section, the upper bound of congestion-pricing efficiency is considered for a general 

decreasing demand function. In order to find this upper bound, the relationship of the user-

optimal solution, Ψue, and any arbitrary feasible solution, Ψce, is first considered in terms of 

demand and inverse of demand function as shown in the following lemma. 

 

 

LEMMA 7 For any decreasing elastic demand function, ( )uD , the following inequality 

should be satisfied: 

  ( ) ( ) ( )( )�� �� ��Ω Ω

−−− Ω−+≤Ω dddd ueceue

1

0

1

0

1 uece

qqqDDD
qq

ξξξξ . 

 

PROOF Two different cases, uece qq ≥  and uece qq < , are considered. In the case of 

uece qq ≥ , as the demand function is a decreasing function, its inverse is also a 

decreasing function, and thus we have: 

  ( ) ( ) ξξ d
ce

ue

1

ueuece � −≥−
q

q
Duqq . 

 By equation (17) and integrating over the entire study area: 

  ( ) ( ) ( )( )�� �� ��Ω Ω

−−− Ω−+≤Ω dddd ueceue

1

0

1

0

1 uece

qqqDDD
qq

ξξξξ . 

 Thus, this lemma holds in the case of uece qq ≥ . In the case of uece qq <  and as 

1
D

−  is a decreasing function: 

  ( ) ( ) ξξ d
ue

ce

1

ueceue � −<−
q

q
Duqq . 

 By equation (17) and integrating over the entire study area: 

  ( ) ( ) ( )( )�� �� ��Ω Ω

−−− Ω−+<Ω dddd ueceue

1

0

1

0

1 uece

qqqDDD
qq

ξξξξ . 

 Therefore, this lemma also holds for the case of uece qq < . By combining the 

two cases of uece qq ≥  and uece qq < , the proof is completed. 
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Apart from the linkage in the inverse demand function, the relationship between the user-

optimal solution and any arbitrary feasible solution is also considered in terms of the unit 

transportation cost function c as follows. 

 

 

LEMMA 8. For the unit transportation cost function in the form of ( ) γ
ff bac += , the 

following inequality should be satisfied: 

  ( ) ( ) ( ) ( )( ) ceceueueue fffff cccR −≥γ , 

 where ( )
( ) γγ
γ

γ
γ

/)1(
1

+
+

=R . 

 

PROOF Consider a ratio ( )fr  such that: 

( )
( ) ( )( )

( ) ueue

ceceue

ce
ff

fff
f

c

cc
r

−
= .     (25) 

 Differentiating equation (25) with respect to cef  and by the definition of the 

unit transportation cost c, we have: 

 
( ) ( )

( ) ueue

ceue

ce

ce
1

d

d

ff

ff

f

f

c

bbr
γγ

γ +−
= . (26) 

 

 Differentiating again with respect to cef , we have: 

  
( ) ( )

( )
0

1

d

d

ueue

1

ce

2

ce

ce

2

≤
+−

=

−

ff

f

f

f

c

br
γ

γγ
. 

 

 

 Thus, for the function ( )cefr , maximum point(s) exist. To find the flow pattern 

of this maximum point, we let equation (26) vanish, which gives 

( ) ue

/1

ce 1 ff
γ

γ
−

+= . As this is the maximum point for the function ( )fr , we 

have: 

  
( )

( )ceue/1
1

1
ff rr ≥

�

�
�

�
+

γ
γ

. 

 Using equation (25) and rearranging, we have:  

  
( )

( )
( ) ( )( ) ceceue/)1(

ueue

1
fff

ff
cc

c
−≥

+
+ γγ

γ

γ
. 

 This completes the proof. 
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LEMMA 9.  For a user-optimal (UO) flow pattern, uef , which solved the model 

( )cD,,Sue Ω , the following inequality should be satisfied:  

  ( )( ) ( )( )��Ω
− ≥Ω−−− 0dueceue

1

ueceue qqqDc fff . 

 

PROOF From equation (17) and rearranging, we have: 

  ( )( ) ( )( ) 0due

1

ueue

1

uece =Ω−−−��Ω
−−

qDuqqDuq ue . 

 By equations (6) and (8b), the above equation can be modified as: 

  ( )( ) 0dueceue

1

ueueceue =Ω−−⋅∇−⋅∇��Ω
−

qqqDuu ff . 

 By Green’s theorem and with equations (8c) and (8d), we have: 

  ( )( ) 0dueceue

1

ueceueue =Ω−−∇⋅−∇⋅��Ω
−

qqqDuu ff . 

 Applying equation (8a) and using the fact that 

( )ueceueceuece ffff cuu =∇≤∇⋅−  gives: 

  ( ) ( ) ( )( ) 0dueceue

1

ueceue ≥Ω−−−��Ω
−

qqqDc fff . 

 This completes the proof. 

 

 

Based on all of the three lemmas developed previously in this section, the theoretical bound 

of the effectiveness of congestion-pricing with elastic demand is given in the following 

theorem. 

 

 

THEOREM 10 For any continuum transportation network with elastic demand and where 

the unit transportation cost function takes the form of ( ) γ
ff bac += , the 

ratio ( )cD,,e Ωρ  should be at most ( ) ( ) ( )( )11 ueue −ΨΨ+ WBR γ . 

 

PROOF From Lemma 9 and assuming that sece ff =  of which sef  is a special case of 

cef  that maximizes the social welfare of the system, we have: 

   ( )( ) ( )( ) 0dueseue

1

ueseue ≥Ω−−−��Ω
−

qqqDc fff . 

 By Lemma 7 and rearranging, the above inequality becomes: 

   
( ) ( )( ) ( ) ( )

( ) ( ) .0dd

d

sese
0

1

ueue
0

1

seseue

se

ue

≥Ω+−

−+−

�
�� �

−

Ω

−

ff

fffff

cD

cDcc

q

q

ξξ

ξξ
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 By equations (19) and (20), Lemma 2A, and Lemma 8, and after 

rearranging, we have: 

   ( ) ( ) ( )
( ) 

�

�
�

�
−

Ψ

Ψ
+≤Ω 11,,

ue

ue
e

W

B
RcD γρ . 

 This completes the proof.  

 

 

In this section, the theoretical bound for the effectiveness of the system-optimal scheme over 

the user-optimal scheme (or the efficiency of congestion-pricing) for a continuum 

transportation network with elastic demand is found to be ( ) ( )
( ) 

�

�
�

�
−

Ψ

Ψ
+ 11

ue

ue

W

B
R γ , which is 

dependent on the non-linearity parameter γ of the flow intensity in the unit transportation cost 

function and the ratio of the total user benefit ( )ueB Ψ  to the social welfare ( )ueΨW  of the 

system at the user-optimal solution. In addition to the three assumptions made in the proof of 

the fixed demand case, a decreasing elastic demand function, D, is assumed in this proof. 

 

 

Specific elastic demand function 

 

The previous section considered the theoretical bound of congestion-pricing effectiveness for 

a decreasing demand function, in which the bound is dependent on the total user benefit and 

social welfare of the system, which means that this bound is based on the result of the user-

optimal problem. In this section, we develop a more explicit theoretical bound for the 

following specific form of elastic demand function: 

 ( ) ( ) α
β

−
+== uKuDq , (27) 

where K and β are positive real numbers and α ≥ 1. We choose the functional form in 

equation (27) because this function decreases with respect to the path travel cost or path 

marginal cost and the function has a finite value of αβ −K  when the cost vanishes, which are 

essential properties for typical demand functions that are commonly used. More importantly, 

a close form solution for the theoretical bound can be obtained for this demand function, 

which helps to shed light on the analytical properties of the elastic demand case. From 

equation (27), the following inverse function of demand, D
-1

, can be derived: 

 ( ) βαα −== −− /1/11 qKqDu . (28) 

 

To obtain the user benefit at a particular point with this elastic demand function, the 

following integration of the inverse demand function is considered: 

 ( ) q
qK

KD
qq

β
α

α
ξβξξξ

ααα
αα −

−
=−=

−
−− �� 1

dd
/)1(/1

0

/1/1

0

1 . (29) 
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Consider the following ratio ( ) ( ) 
�
��

� −�� −−
ueue

0

1

0

1 dd
ueue

quDD
qq

ξξξξ . By equation (29) and 

the fact that β and ueq  is non-negative, we have: 

 
( )

( )
α

ξξ

ξξ
≤

−�
�

−

−

ueue
0

1

0

1

d

d

ue

ue

quD

D

q

q

. (30) 

Rearranging equation (30) and integrating over the entire study area gives: 

 
( )

( )

( )
( )

α
ξξ

ξξ
≤

Ψ

Ψ
=

Ω−

Ω

�� �
�� �

Ω

−

Ω

−

ue

ue

ueue
0

1

0

1

dd

dd

ue

ue

W

B

quD

D

q

q

. 

Applying this result to Theorem 10 gives the following: 

 ( ) ( ) ( )
( )

( )( )1111,,
ue

ue
e −+≤

�

�
�

�
−

Ψ

Ψ
+≤Ω αγγρ R

W

B
RcD . 

Therefore, for any continuum transportation network with an elastic demand function that 

takes the form ( ) ( ) α
β

−
+== uKuDq , and with a unit transportation cost function that takes 

the form ( ) γ
ff bac += , the ratio ( )cD,,e Ωρ  is at most ( )( )11 −+ αγR . 

 

 

CONCLUSIONS 
 

We have derived the theoretical bounds for the efficiency of congestion-pricing in a 

continuum transportation system. The proofs have been given for both the fixed and elastic 

demand cases. In the fixed demand case, it has been proven that if a particular type of unit 

transportation cost function is considered, the upper bound of the efficiency of congestion-

pricing is a function of the non-linearity parameter of the unit transportation cost function. In 

the elastic demand case, it is proven that if a decreasing elastic demand function is 

considered, the theoretical bound is based on the user benefit and social welfare of the user-

optimal solution. In addition to the general forms of decreasing elastic demand function, this 

paper has also proved the upper bound of the efficiency of congestion-pricing for a specific 

type of elastic demand function. It is found that the theoretical bound is solely dependent on 

the non-linearity parameters of the unit transportation cost and elastic demand functions.  
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UNIQUENESS OF EQUILIBRIUM IN 
STEADY STATE AND DYNAMIC TRAFFIC 
NETWORKS 
 
 
 
Richard Mounce and Mike Smith, Department of Mathematics, University of York, UK. 
 
 
SUMMARY 
 
This paper addresses the issue of uniqueness of equilibrium in traffic networks, which are 
considered to be directed graphs in which traffic flows along acyclic paths, which we call 
routes, connecting origin-destination (OD) pairs. The demand for travel between each OD 
pair is assumed to be rigid. It is shown that in the steady state model, provided that each link 
cost function is a non-decreasing function of link flow, costs at equilibrium are unique. The 
paper then goes on to consider dynamic user equilibrium in dynamic traffic models, with 
special attention given to the bottleneck model. In the dynamic bottleneck queueing model, 
the route cost vector is not a monotone function of the route flow vector; an example network 
is given to illustrate this. An alternative definition of what constitutes an increasing function 
(of a function) is then given; and the cost function is shown to satisfy this condition in the 
bottleneck model. A number of additional properties are then put forward that must be 
satisfied in order for the equilibrium flow pattern to be essentially unique in the single OD 
pair case; the bottleneck model is shown to satisfy these properties. 
 
 
INTRODUCTION 
 
The steady state model 
 
In the steady state model, the set D  of feasible vectors consists of all those non-negative 
vectors that meet the non-negative (rigid) demand between each OD pair. Link flows are 

Transportation and Traffic Theory 2007 
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found by summing route flows. Each link has a corresponding link cost function and route 
costs are found by simply summing the link costs along that particular route. Further details of 
the model can be found in Smith (1979). 
 
Theorem 1. Costs at equilibrium are unique in the steady state model provided that each link 
cost )(xci  (or indeed )( ii xc  since the cost for link i  depends only on the flow on link i ) is a 
non-decreasing function of its corresponding link flow ix . 
 
Proof. Suppose that there are two equilibrium flow vectors X andY , with different route cost 
vectors, i.e. )()( YCXC ≠ . The link flow vectors must also be different, i.e.   

)()( ycxc ≠ , since )()( ycxc =  implies that )()( YCXC = . Since each link cost function is a 
non-decreasing function of link flow, iiiiii yxycxc >⇒> )()(  and iiiiii yxycxc <⇒< )()( . 
Therefore, if we let the dot represent the vector dot product,  

0)))(()(()()()( >−−=−⋅− ∑
i

iiiiii yxycxcyxycxc .     (1) 

Since X is an equilibrium, 
0)()( ≤−⋅− XZXC            (2) 

for all vectors Z in the set of feasible vectors D . SinceY is also an equilibrium, 
0)()( ≤−⋅− YZYC           (3) 

for all DZ ∈ . However, if we choose YZ =  in (2) and XZ =  in (3) we obtain 
0)))(()(()())()(( ≤−−=−⋅− YXYCXCyxycxc , 

which clearly contradicts (1). Consequently, link costs (and hence route costs) must be unique 
at equilibrium. 
 
 
The dynamic traffic assignment model 
 
Within-day time is represented by the interval [0,1]. Each route inflow, say rX , is considered 
to be a real-valued, non-negative, essentially bounded and measurable function (this may or 
may not be continuous). The null sets are then quotiented out (i.e. rr YX =  means that the two 
functions agree for almost all time ]1,0[∈t ) so that each route inflow is in ]1,0[∞L . All of 
these route inflows are components in the route flow vector X . Demand for travel between a 
given OD-pair k  is considered to be a fixed function ]1,0[∞∈ Lkρ . Therefore the set of 
feasible route flow vectors is 

}],1,0[,0:{ ∑
∈

∞ =∈≥=
kRr

krrr XLXXXD ρ  

where kR  is the set of routes connecting OD-pair k . 
 
Given any link inflow function ix  we suppose that the cost to traverse link i  if entered at time 
t  is the sum of a constant (congestion-free) travel time ic and a delay )(td x

i . Constant 
(monetary) prices could also be incorporated without making any difference to the results 
throughout the paper (these prices could be converted into cost in time units). Although the 
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delay depends upon the whole link inflow function, it is reasonable to require that traffic 
entering the link be not affected by traffic entering later than it. It is also reasonable to require 
first-in first-out (FIFO) at each link, i.e. traffic cannot exit a link earlier than traffic entering 
the link earlier than it. The cost to traverse route r , X

rC  can then be found by summing all of 
the link costs at the times that each link is reached, i.e. 
 ∑

∈

=
rii

X
ir

x
ir tActXC

:

))(())((  

where )(tA X
ir is the arrival time at link i  if route r  is entered at time t  and the route inflow 

vector is X. 
 
We now denote by ix  the inflow to link i  if the route flow vector is X . If we let irx  be the 
inflow at link i  of traffic on route r , then clearly 
∑

∈

=
rir

iir xx
:

 

where ri ∈ means that link i  is a link on route r . If we let irOx  represent the outflow from 
link i  of flow on route r , then 

∫ ∫
+

+=
t tdt

iirir

x
i ducuOxduux

0

)(

0
)()(            (1) 

since traffic entering at time t  exits at time )(tdct x
ii ++ . Notice that there is 

interdependency between the route flows and the link flows and delays. Given a particular 
route flow vector X , the associated link flow vector (consisting of all the link inflow 
functions) is defined to be the solution of the integral equations (1). 
 
If the network is at dynamical user equilibrium, more costly routes are unused for all within-
day time, i.e. for all routes r  and s  connecting the same OD-pair, 

0)()()( =⇒> tXtCtC r
X
s

X
r . 

A natural day-to-day swap vector is given by )(Xφ defined by 

∑ +−=
srsr

rs
X
s

X
rr tCtCtXtX

~:,

)]()()[())(( δφ  

for each within-day ]1,0[∈t , where sr ~  means that routes r  and s  connect the same OD 
pair, [x]+ = max{x,0} and rsδ  is the swap from route r  to route s  vector (i.e. it has 1−  in the 
r th place,1 in the s th place but zeros everywhere else). If day-to-day time τ  is considered 
continuous, we have the dynamical system 

)()( X
d

dX φ
τ
τ

= ,   0)0( XX =                      (2) 

where 0≥τ  and 0X  is any initial route inflow vector in D. This dynamical system evolves 
continuously over day-to-day time with each element being a within-day inflow function 
giving all inflow rates to all routes at all within-day times. 
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The Bottleneck Model 
 
In the bottleneck model, queueing occurs vertically at link exits when traffic flow exceeds 
capacity (in which case we say that the bottleneck is congested). The bottleneck delay id  on 
link i  is connected to the bottleneck capacity is  and the bottleneck inflow ix  by the 
following integral equation:  

∫∫
+

=
)(

0
0

)()(
tdt

t
i

t

t i

x
i

duusduux   

for all t  in some congested period ],[ 10 tt . 
 
Smith and Wisten (1995) used Schauder’s fixed point theorem to prove existence of 
equilibrium of the dynamical system (2) provided that route cost is continuous (as a function 
of route inflow) and that the feasible set D is convex and compact. It is clear that D is convex. 
Mounce (2006) establishes that the feasible set D is compact and Mounce (2005) uses an 
implicit function theorem to show that the route cost vector is indeed a continuous function of 
the route flow vector. 
 
Akamatsu (2000) was able to obtain an analytical solution to the DUE problem in the 
bottleneck model for a single origin network or a single destination network; but only 
assuming that for each time all links have both positive inflows and queues.  
 
The dynamical system (2) is globally convergent if for any starting vector 0X  the dynamical 
system converges to the set of equilibria as ∞→τ . Mounce (2006) shows that in the 
bottleneck model this occurs when each route passes through at most one bottleneck.  
 
 
MONOTONICITY OF THE COST OPERATOR (WITH RESPECT 
TO AN INNER PRODUCT) 
 
Monotonicity in function space 
 
In the steady state case, the route cost vector )(XC is a non-decreasing function of the route 
flow vector X if and only if for all route flow vectors X and Y , 

0)())()(( ≥−⋅− YXYCXC          (3) 
where the dot represents the vector dot product. In the dynamic case, the route cost vector is 
an operator, i.e. the route cost vector function )(XC depends upon the (whole) route flow 
vector function .X  A natural generalisation of (3) in the dynamic case is to say that )(XC is a 
monotone function of X if and only if 

0))()())(()((),()(
1

0
≥−−=−− ∑∫

r
rr

Y
r

X
r dttYtXtCtCYXYCXC  

for all route flow vectors X  and Y . 
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Monotonicity in the bottleneck model 
 
Smith and Ghali (1990a) showed that in the bottleneck model, route cost is monotone in the 
single bottleneck per route case when link capacities are constant; and Mounce (2006) shows 
that this is also the case when link capacities are non-decreasing functions of within-day time. 
However, route cost monotonicity does not necessarily hold in networks with routes passing 
through more than one bottleneck. This was noted by Smith and Ghali (1990b) and an 
example network given in Mounce (2001). 
 
 
A counterexample to monotonicity in the bottleneck model 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 shows a network with two routes; route 1 traverses links 1 then link 2, whereas route 
2 traverses link 3 followed by link 2. Link 1 has congestion-free cost 1c and delay function 

xd1 ; and similarly for the other links. In this example, within-day time is represented by the 
interval ],0[ T , where T  is chosen so that all traffic will reach the destination (and note that 
T is greater than 1 here only to ease the calculations; a rescaling could easily be 
implemented). Let 11 =c  and 032 == cc . Then choose the route flow vectors X  and Y  as 
follows: 
 
 ]5.0,0[ ]1,5.0[ ]75.1,1[ ]2,75.1[

)(1 tX  5.1  5.0  0 0 
)(2 tX 1 2 1 3 

)(1 tY  1 1 0 0 
)(2 tY  1.5 1.5 1 3 

 

Origin Destination

Link 1

Link 2Link 3

Figure 1: The network
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Figures 2 and 3 show levels of congestion at the two bottlenecks during the congested time 
periods. In Figure 2 the dashed line has gradient 1 and represents both the inflow for Y  and 
the outflow for both X and Y . In Figure 3 the dashed line has gradient 2. 
 
 
 

 
 

∫
t

duux
1 2 )(

t  
0

2

2

75.1  

5.1

1 

3  

∫
t

duux
0 1 )(

t  0 1

1

5.0  

75.0

Figure 2: Congestion for traffic entering link 1 during [0,1] 

Figure 3: Congestion for traffic entering link 2 during [1,2] 
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Since the congestion-free costs do not vary with time or traffic volume, clearly the 
contribution to YXYCXC −− ),()(  will be zero and therefore 

dttYtXtAdtAdYXYCXC rr
Y
ir

y
i

ri

T X
ir

x
i ))()())((())((),()(

,
0

−−=−− ∑∫ . 

Obviously only the time periods when the route flows X and Y differ need to be considered. 
Since link 1 is the first link on route 1, 1)()( 1111 +== ttAtA YX . Clearly 0)(1 =td y  for all t , 
whereas 2)(1 ttd x =  for ]21,0[∈t  and 2)1()(1 ttd x −=  for ]1,21[∈t . Therefore 

0
2
1

2
1

2
1

2
))()()))((())(((

1

21

21

011111

1

0 111 =−⋅
−

+⋅=−− ∫∫∫ dttdttdttYtXtAdtAd YyXx . 

Since ttA X =)(22  for all t  for both X andY , and 0)()( 22 == tdtd yx  for ]1,0[∈t , 

0))()()))((())((( 22222

1

0 222 =−−∫ dttYtXtAdtAd YyXx  

Now note that 0))(1( 12 =++ tdtd xx  for ]21,0[∈t and 0))(1( 12 =++ tdtd yy  for ]43,0[∈t . 
Since the flows are linear, the average of ))(1( 12 tdtd xx ++  on ]1,21[  and the average of 

))(1( 12 tdtd yy ++  on ]1,43[  is the same and is given by 

8
1)43(4))(1(

431
1 1

43

1

43 12 =−=++
− ∫∫ dtttdtd xy . 

Therefore 

.
64
1

8
1

4
1

2
1

8
1

2
1

2
1))(1(

2
1))(1(

2
1

))()()))((())(((

1

21 12

1

21 12

11212

1

0 212

−=⋅⋅+⋅⋅−=+++++−=

−−

∫∫

∫
dttdtddttdtd

dttYtXtAdtAd

yyxx

YyXx

 

When all of these terms are summed, we obtain 

0
64
1),()( <−=−− YXYCXC  

and therefore monotonicity does not hold in general for networks with routes passing through 
more than one bottleneck.  
 
 
COST AS A NON-DECREASING OPERATOR WITH RESPECT 
TO A PARTIAL ORDER 
 
Link cost as a non-decreasing operator 
 
We shall start by showing that link delay (and hence link cost) is a one-to-one function of link 
flow when the link is congested. We define a congested period to be the largest interval 

],[ 10 tt  for which 0)( >td x
i for all ),( 10 ttt ∈ . In the bottleneck model this is clear. In other 

models, the cost function can be restructured so that )()( tdctc x
ii

x
i += . Here we prove the 

results for the bottleneck model. 
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Lemma 1. Link delays are a one-to-one function of both the congested periods and the 
inflows during the congested periods (together).  
 
Proof. Suppose that )()( tdtd y

i
x
i =  for all ]1,0[∈t . Clearly the congested periods for x  and 

y must coincide, otherwise one delay would be zero and the other would be positive (and 
hence they would be unequal). On any congested period ],[ 10 tt , 

∫ ∫ ∫ ∫
+ +

===
t

t

tdt

t

tdt

t

t

t
iiii

x
i

y
i

duuyduusduusduux
0 0 0 0

)( )(

.)()()()(         □ 

 
Definition 1. By using a partial order it is possible to define the link cost being a non-
decreasing function of link flow if and only if  

∫∫ ≥
''

)()(
t

t i

t

t i duuyduux  ]1,0[', ∈∀ tt  with 'tt ≤ )()( tctc y
i

x
i ≥⇒  for all ]1,0[∈t        (4) 

where clearly )()()()( tdtdtctc y
i

x
i

y
i

x
i ≥⇔≥ . 

If causality is assumed in our model (i.e. traffic delays at time t  are only affected by traffic 
entering the link up until time t ), then from (4) it can be deduced that 

)()( tytx ii ≥  for almost all )()(],0[ 0 tctctt y
i

x
i ≥⇒∈  for all ],0[ 0tt ∈ .   (5) 

 
 
Theorem 2.  Link delay (and hence also link cost) is a non-decreasing function of link flow. 
 
Proof.  First define )(tq x

i  to be the queue on link i  at time t  and let 
}0)(:],0[sup{)( =∈= uqtutb x

i
x
i , i.e. the last time that the link became congested (if the link 

is uncongested at time t  then ttb x
i =)( ). Now suppose that ∫∫ ≥

''
)()(

t

t i

t

t i duuyduux  

]1,0[', ∈∀ tt  with 'tt ≤ . Then 

∫∫ ≥
t

tb
i

t

tb
i

x
i

x
i

duuyduux
)()(

)()( , 

which can be rewritten as 

∫∫ ∫∫∫
++

=+≥=
)(

)(

)(

)( )(

)(

)()(
)()()()()(

tdt

tb i

tdt

tb

t

tb i

tb

tb i

t

tb ii

y
i

x
i

x
i

x
i

y
i

y
i

x
i

x
i

duusduuyduusduuxduus   (6) 

It then immediately follows that )()( tdtd y
i

x
i ≥ .             □  

 
Of more practical use is the following result: 
 

Lemma 2. If )()( tdtd y
i

x
i =  for ],[ 00 tt ∈  and ∫∫ ≥

t

t i

t

t i duuyduux
00

)()(  for all ],( 10 ttt ∈ , then 

)()( tdtd y
i

x
i ≥  for t  in some interval ],( 20 tt . 
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Proof. Firstly, suppose that 00 )( ttb x
i <  (and hence 00 )()( ttbtb x

i
y

i <= ). Then it must be 
possible to choose an interval ],( 20 tt  such that )()( 0tbtb x

i
x
i =  for ],( 20 ttt ∈ .  

Clearly ∫∫ = 0

0

0

0 )()(
)()(

t

tb i

t

tb i x
i

x
i

duuyduux  by Lemma 1 and therefore for ],( 20 ttt ∈ , 

∫∫ ∫∫∫
++ +

=≥==
)(

)(

)(

)( )()(

)(

)(
)()()()()(

000

tdt

tb i

tdt

tb

t

tb i

t

tb i

tdt

tb ii

y
i

x
i

x
i

x
i

y
i

x
i

x
i

x
i

duusduuyduuxduusduus , 

from which it immediately follows that )()( tdtd y
i

x
i ≥  for ],( 20 ttt ∈ . Alternatively if 

00 )( ttb x
i =  then either 0)( ttb x

i =  on some interval ],( 20 tt  in which case (6) holds with 

0)( ttb x
i = , or otherwise  ttb x

i =)(  for t  in some interval ],( 20 tt in which case 
0)()( == tdtd y

i
x
i on the interval ],( 20 tt .              □ 

 
An alternative viewpoint is to say that, on a congested period, link inflows are an increasing 
function of link delays: 
 
Lemma 3. If )()( tdtd y

i
x
i =  for ],[ 00 tt ∈  but )()( tdtd y

i
x
i >  on some interval ],( 10 tt , 

then ∫∫ >
t

t i

t

t i duuyduux
00

)()(  for all ],( 10 ttt ∈ . 

 
Proof. Suppose that )()( tdtd y

i
x
i = for ],[ 00 tt ∈  but )()( tdtd y

i
x
i >  on some interval ],( 10 tt . 

Then either 00 )( ttb x
i < or o

x
i ttb =)( 0 . Firstly, suppose that 00 )( ttb x

i < , in  
which case )()( 00 tbtb y

i
x
i =  (otherwise delays would be unequal before time 0t ) and therefore 

∫∫ = 0

0

0

0 )()(
)()(

t

tb i

t

tb i x
i

x
i

duuyduux  by Lemma 1. Then for ],( 10 ttt ∈ , 

∫∫∫ ∫∫
+

−=−=
0

0

0

00 )(

)(

)()()(

)()()()()(
t

tb
i

tdt

tb
i

t

t

t

tb
i

t

tb
ii

x
i

x
i

x
i

x
i

x
i

duuyduusduuxduuxduux  

        ∫ ∫
+

−>
)(

)( )(0

0

0

)()(
tdt

tb

t

tb
ii

y
i

x
i

x
i

duuyduus  

        ∫ ∫∫ =−=
0

0 00 )()(

)()()(
t

tb

t

t
ii

t

tb
i

x
i

x
i

duuyduuyduuy . 

Otherwise, if o
x
i ttb =)( 0  then, since )()( tdtd y

i
x
i > on ],( 10 tt , it must be true that o

x
i ttb =)(  for 

],[ 10 ttt ∈ . Then for ],( 10 ttt ∈ , 

∫∫ ∫ ∫∫ ∫ >+=>=
++ t

t
i

tdt

t

t

tb

tb

t
iii

t

t

tdt

t
ii duuyduusduuyduusduusduux

y
i

y
i

y
i

x
i

00 00 0

)()()()()()(
)(

)(

)()(

.     □ 
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Link output as a non-decreasing operator 
 
Theorem 3. The cumulative outflow from a link is a non-decreasing function of the link 
inflow. 
 

Proof. Suppose that ∫∫ ≥
''

)()(
t

t i

t

t i duuyduux ]1,0[', ∈∀ tt , in which case it is clear that 

)()( tbtb y
i

x
i ≤  for all ]1,0[∈t . Then for all ]1,0[∈t , 

∫∫∫ ≥≥
)(

)(

)(

)(

)(

)(

)()()(
tb

tb
i

tb

tb
i

tb

tb
i

y
i

x
i

y
i

x
i

y
i

x
i

duuyduusduux         (7) 

and hence 

∫∫∫∫∫ +≥+=+
t

tb
i

tb

i

t

tb
i

tb

i

t

ii
x
i

x
i

x
i

x
i

duusduuyduusduuxducuOx
)(

)(

0)(

)(

00

)()()()()(  

                      ∫ ∫ ∫++≥
)(

0

)(

)( )(

)()()(
tb tb

tb

t

tb
iii

x
i

y
i

x
i

y
i

duusduuyduuy  

                      ∫ ∫+≥
)(

0 )(

)()(
tb t

tb
ii

y
i

y
i

duusduuy  

       ∫ +=
t

ii ducuOy
0

.)(         □ 

 
 
Of more practical use is the following result: 
 

Lemma 4. If )()( tdtd y
i

x
i =  for ],[ 00 tt ∈  and ∫∫ ≥

t

t i

t

t i duuyduux
00

)()(  for t  in some interval 

],[ 10 tt , then for all )](),([ 1100 tdttdtt y
i

x
i ++∈ , 

∫∫
++

+≥+
t

tdt
ii

t

tdt
ii

x
i

x
i
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Using (7), 
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In addition, link outflow during a congested period is a non-decreasing function of link delay: 
 
Corollary 1. If )()( tdtd y
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Proof. Suppose that )()( tdtd y
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x
i =  for ],[ 00 tt ∈  but )()( tdtd y
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i >  on some interval ],( 10 tt .  

Then by Lemma 3, ∫∫ >
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)()(  for all ],( 10 ttt ∈ , and then by Lemma 4 the 

result follows immediately.          □ 
         
 
 
UNIQUENESS OF COSTS AT EQUILIBRIUM 
 
We already know that equilibrium exists (Smith and Wisten, 1995, Mounce, 2005) and in this 
section we show that costs at equilibrium are unique in the single OD pair case. Firstly, we 
introduce the notion of a branch as follows: 
 
Definition 2. Given any link, say l , in the network, the branch associated with link l  is 
defined to be the longest (acyclic) path, say p , traversing link l  that is the unique (acyclic) 
path between the start node and end node of path p . 
 
Lemma 5.  Suppose that branch b  is such that )()( tCtC Y

b
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for ],[ 10 ttt ∈  (where bX is the flow into branch b ) then it is possible to choose 2t , with 

120 ttt ≤< , such that )()( tCtC Y
b

X
b ≥  for ],[ 20 ttt ∈ . 
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Proof. If link 1 is the first link of branch b , then since 1xX b = , clearly 
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for all )](),([ 111010 tdttdtt yx ++∈ . If link 2 is the next link on branch b , then this is equivalent 
to 
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for all )](),([ 111010 tdttdtt yx ++∈ . It is possible to choose 2t , with 12 tt ≤ , such that 
)()( 111212 tdttdt yx +=+ . Then since link exit time is a non-decreasing function of link arrival 

time (see Lemma 1 of Mounce (2005)), 
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The result then follows by induction.           □ 
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Proof. Suppose that branch b  is such that )()( tCtC Y
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for all ],( 10 ttt ∈ .             □ 
 
Now we come to the main result of the paper: 
 
Theorem 4. In the bottleneck model, costs at dynamic user equilibrium are unique in the 
single OD pair case.  
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Proof. Suppose that there exist two equilibria X and Y with different route costs and hence 
different link costs (for some within-day time). As noted by Kuwahara (1993), at equilibrium 
the travel time between any two nodes is the same for all used paths connecting the two 
nodes, and therefore we can define )(tA X

i to be the arrival time at link i  when the route flow 
vector is X . Without loss of generality, suppose that for some ]1,0[0 ∈t ), 

))(())(( tActAc Y
i

y
i

X
i

x
i = for all ],0[ 0tt ∈  and for all links i  in the network (in which case 

clearly )()( tAtA Y
i

X
i =  for all ],0[ 0tt ∈ ), but that costs are unequal for at least one link in the 

network after time 0t . 
 
Define a sequence of (sets of) branches as follows: 
Step 1. Let 1S  be the set of branches from the origin (i.e. with the origin as the start node). 
Step 2. Let 2S  consist of all the branches with start node equal to the tail node of some branch 
in 1S ; and also all those branches in 1S  with the destination as the tail node. 
Step 3. For any i , define iT  to be the set of branches in iS  that terminate at a node, say n , for 

which there is a branch that is not in U
i

j
jS

1=

 that terminates at node n . Then let 3S  consist of 

all the branches with start node equal to the tail node of some branch in 22 \ TS  , all those 
branches with tail node equal to the destination and all the branches in 2T . 
 
 
Step m . Let mS  consist of all the branches with start node equal to the tail node of some 
branch in 11 \ −− mm TS  , all those branches with their tail node equal to the destination and all 
the branches in 1−mT . 

 
 
 
An example is shown in Figure 4 for which }2,1{1 =S , }4,3,2{2 =S  and }5,3{3 =S . 
 
Let { }{ }0))(())((:]1,0[sup:min tSitACtACtjm j

Y
b

Y
b

X
b

X
b =∈∀=∈=  where )(tA X

b is the arrival 
time at the first link of branch b , i.e. m  is the first stage at which the branch costs are 
different immediately after time 0t . Consequently, it is possible to choose ]1,( 02 tt ∈  such that 
at all stages 1,2,1 −mK , ))(())(( tACtAC Y

b
Y
b

X
b

X
b =  for all ],0[ 2tt ∈ . Now we let +

mS  be the set 

1

2

3

4
5

Origin Destination 

Figure 4: Example of the process that generates a sequence of cuts 
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of branches in mS  with ))(())(( tACtAC Y
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b > on some interval to the right of 0t , and −

mS  be 
the set of branches in mS  with ))(())(( tACtAC Y
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b ≤ on some interval to the right of 0t  (and 

clearly +− ∪= mmm SSS ). It is possible to choose 3t , with 23 tt ≤ , such that for all +∈ mSb , 
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the same terminal node as branch b , that is used for X during ],[ 30 ttt ∈ . Since branch costs 
are equal for X  and Y  for all branches upstream of branch b , )()( tAtA Y
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Given branch +∈ mSb , since m  is the first stage where costs (and hence arrival times) are 
different, )()( tAtA Y

b
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b =  for all ],0[ 3tt ∈ . Therefore by Lemma 6, 
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Since the set mS  in the above process forms a cut of the network (and the total flow between 
the origin and destination is fixed), by (9) it is clear that, for all ],( 30 ttt ∈ , 
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Hence it is possible to choose 4t , with 34 tt ≤ , such that for some branch −∈ mSb , 
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that is used for Y  during ],( 50 tt . Since branch costs are equal for X  and Y  for all branches 
upstream of branch b , )()( tAtA Y

b
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b =  for all ],0[ 1tt ∈ .  
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Then by Lemma 1 of Mounce (2005), 
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for all ],[ 10 ttt ∈ . 
 
Therefore at stage m  there is at least one path 1p  that is higher cost, and also used, 
for X during ],[ 10 tt  and also at least one path 2p  that has cost no greater for X during ],[ 10 tt  
that is used for Y . Suppose that these two paths were to meet at a node. Since 2p  is used for 
Y during ],[ 10 tt  and Y  is an equilibrium (and at equilibrium all used paths to any given node 
must be least costly for all within-day time) it must be true that )()(
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combining the cost inequalities yields,  
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for ],( 10 ttt ∈ , which contradicts the fact that X is an equilibrium. 
 
Since all paths must eventually meet at the destination, in order to avoid a contradiction, one 
of the following must occur at some stage subsequent to stage m : 
i) All paths that are equal or less costly for X must become more costly for X during the 
relevant time period; or 
ii) All paths that are more costly for X must become equal or less costly for X during the 
relevant time period. 
 
When considering whether (i) can occur, first note that on any interval, if a branch is used 
forY , it must be used for X  (except where there are two paths that are uncongested for both 
X and Y  that connect the same two nodes) otherwise there would be a less costly unused 
route for X . Assume that )()( tCtC Y
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for all ),( 10 ttt ∈ . We can follow a modified version of the process above that defines mS , that 
stops when it reaches such branches, to give a cut S  of the used routes with 
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for ),( 10 ttt ∈ , which is a contradiction, since there is a fixed volume of traffic departing from 
the origin on any interval of time. 
 
Now consider whether (ii) can occur. Firstly, note that by (10) if a path 2p  that is equal or less 
costly for X  joins with a path 1p  that is higher cost for X , then path 2p  must be unused for 
Y , and then for all ],( 10 ttt ∈ , 
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Hence paths that are equal or less costly for X cannot affect (by combining with) the cost 
along paths that are higher cost for X . Secondly, from (8) and Lemma 6, it can be deduced 
that the total outflow from +

mS  must be no less for X than Y during an interval for traffic 
leaving the origin after 0t . Therefore the flow into at least one branch b  out of +

mS  must be 
higher on some interval, and therefore the cost of a resulting path p with the same terminal 
node as branch b  must satisfy 
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on some half open interval to the right of 0t . One might think that this argument can be 
repeated at each subsequent stage. However, it is possible for the total inflow to a node to be 
greater for X  than for Y  but the total outflow from the node to be less for  
X on some appropriate intervals of time. This is only possible, say at stage k , if a branch 

+∈ kSb1  from say node 1m to node 1n  that satisfies ))(())(( 11 11
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Since the cost on all used paths connecting any two nodes must be the same, branch 2b  
cannot originate from node 1m , but instead from say node 2m . Branch 2b  must originate from 
a branch that is higher cost and higher flow for X  and therefore there must be another branch 

3b  that is higher flow for X  and such that all used paths to the terminal node of branch 3b  are 
higher cost for X . Then since branch 1b  is higher flow for X , there must be another branch 

4b  such that for all ],( 10 ttt ∈ ,  ∫∫ <
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Now we show that it is not possible for branches 3b  and 4b to intersect at node 2n  to give 
lower total outflow for X  during some interval to the right of )( 02

tAX
n  (where )( 02

tAX
n  is the 

arrival time at node 2n  for traffic departing the origin at time 0t ). Figure 5 shows the 
configuration of the network if they were to intersect.  
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In order for the total outflow to be lower for X , branch 4b would have to be uncongested 
during the relevant time interval. Using Lemma 5 and the fact that any used path to a node 
must be least costly, for t  in some interval to the right of 0t , the following hold: 
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Summing the right hand sides and left hand sides of (11) and (12) respectively (and cancelling 
common terms) yields 
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whereas from the equilibrium conditions we can derive the following:  
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both holding on some interval to the right of 0t . For both (13) and (14) to hold on some 
interval to the right of 0t , equality has to hold in (14) at time 0t , and then since  

)(1 tP X , )(2 tP X , )(1 tPY  and )(2 tPY are all non-decreasing, on some interval to the right of 
)( 01 tP X , either: 

a) 0))(()())(()( 0101 4411
=−>− tPCtCtPCtC XX

b
X

b
XX

b
X

b  and  

0))(()())(()( 0102 2233
=−<− tPCtCtPCtC XX

b
X

b
XX

b
X

b   

with )()( 11 tPtP XY > , contradicting )()( 11 tPtP XY ≤ ; or 
b) 0))(()())(()( 0102 2233

=−>− tPCtCtPCtC XX
b

X
b

XX
b

X
b  and  

0))(()())(()( 0101 4411
=−<− tPCtCtPCtC XX

b
X

b
XX

b
X

b   

with )()( 22 tPtP XY > , contradicting )()( 22 tPtP XY ≤ . 
 
Therefore branch 3b cannot join with branch 4b . A similar argument can be applied if there 
are more than two pairs of nodes. 
 
Since (i) or (ii) above can never occur at any stage subsequent to stage m , the contradiction 
in (10) cannot be avoided since all routes must eventually meet at the destination. Therefore 
the initial assumption that the costs are different for X andY must be rejected. Hence both 
route costs and link costs at dynamical user equilibrium are unique in the single OD pair case.    
                     □ 
 

1b

4b

3b

2b

1m 1n

2m 2n

Figure 5: The resulting network configuration 
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Since Lemma 1 showed that link costs are a one-to-one function of inflow when links are 
congested, in the single OD pair case, link flows are unique at equilibrium at least when there 
is sufficient traffic to cause congestion. 
 
 
CONCLUSIONS AND FURTHER RESEARCH 
 
In the steady state model, it is clear what is meant by an increasing function. Costs at user 
equilibrium were shown to be unique provided that each link cost is a non-decreasing function 
of link flow. In the dynamic model, the traffic assignment is taking place in function space 
and there are different interpretations of increasing. We first considered a natural 
generalisation of a monotone function in terms of a dot product. In the dynamic bottleneck 
queueing model, the route cost vector is not a monotone function of the route flow vector and 
an example network was given to illustrate this. Alternative definitions for increasing and 
non-decreasing operators in function space were then given. The bottleneck model was shown 
to satisfy these properties and then these properties were used to show that costs at dynamical 
user equilibrium are unique in the single OD pair case. 
 
The issue of unique equilibrium is still open in the case where there are many origins and 
many destinations. However, this research should facilitate a proof of the uniqueness of costs 
at equilibrium in the single destination case and also in the single   
destination case. In the multiple origins and multiple destinations case, equilibrium may well 
not be unique. 
 
Finally, it should be stressed that although the results in the paper were constructed around the 
bottleneck model, one would expect that these techniques can be applied to other dynamic 
traffic assignment models. 
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ANALYSIS OF THE DYNAMIC SYSTEM 
OPTIMUM AND EXTERNALITIES WITH 
DEPARTURE TIME CHOICE  

Andy H. F. Chow, Centre for Transport Studies, University College London, London, U.K. 

 

INTRODUCTION  

Dynamic traffic assignment models of route and departure time choice for travellers through 
congested networks provide important insight into the dynamics of peak periods and 
sensitivity of travellers’ behaviour in response to a range of transport policy measures. In 
general, formulations of dynamic traffic assignment follow the extension of the two 
Wardrop’s (1952) principles: user equilibrium and system optimum. The dynamic user 
equilibrium assignment has been the focus in the past two decades. As a result of previous 
research (see for example, Friesz et al., 1993; Friesz et al., 2001; Heydecker and Addison, 
1996, 1998, 2005; Szeto and Lo, 2005), we have gained a substantial knowledge on the 
formulations, properties, and solution methods of dynamic equilibrium assignment.   
 
This paper aims to analyse the dynamic system optimal assignment with departure time 
choice, which is an important, yet underdeveloped area. The dynamic system optimal 
assignment process suggests that there is a central “system manager” to distribute network 
traffic over time within a fixed horizon. Consequently, the total, rather than individual, travel 
cost of all travellers through the network is minimised. Although the system optimal 
assignment is not a realistic representation of network traffic, it provides a bound on how we 
can make the best use of the road system, and as such it is a useful benchmark for evaluating 
various transport policy measures. These measures include time-varying pricing (Yang and 
Huang, 1997), network access control (Smith and Ghali, 1990), and road capacity 
management (Ghali and Smith, 1993; Heydecker, 2002). 
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Proceeding after Heydecker and Addison (2005), the travel cost incurred by each traveller is 
considered to have three distinct components: a cost related to the travel time en route, and 
time-specific costs associated with the departure time of the traveller from the origin and the 
arrival time at the destination respectively. Given the assigned network flow, the associated 
travel times through the network are determined by a traffic model. The travel times then 
influence the arrival times of travellers and hence the travel costs incurred. Many previous 
analyses (see, for example, Friesz et al., 1989; Carey and Srinivasan, 1993; Yang and Huang, 
1997) in the area of dynamic system optimal assignment adopted an optimal control theoretic 
formulation with Merchant and Nemhauser’s (1978a,b) outflow traffic model. On the one 
hand, this formulation provides some attractive mathematical properties for analysis. On the 
other hand, however, it ignores the importance of ensuring proper flow propagation as first 
shown by Tobin (1993). In addition, the outflow models have also been widely criticized for 
their implausible traffic behaviour (see Astarita, 1996; Heydecker and Addison, 1998; Friesz 
and Bernstein, 2000; Mun, 2001). Following Daganzo (1995) and Mun (2001), to ensure the 
satisfaction of several necessary physical principles such as proper flow propagation (or 
consistency between flows and travel times), non-negativity of flow, first-in-first-out (FIFO) 
queue discipline, and causality, the traffic model adopted in this paper considers the travel 
time on each link to be a linear non-decreasing function of link traffic volume. Examples of 
the traffic models of this kind include deterministic queuing model, Friesz et al.’s (1993) 
linear whole-link traffic model, and Mun’s (2002) divided linear travel time model. Detailed 
discussion of the traffic models and their properties can be referred to Astarita (1996), Mun 
(2001), and Carey (2004a,b).  
 
In addition to the system optimizing flow, it is noted that each additional traveller, who enters 
the system at a certain time, imposes an additional travel cost on the others who enter the 
system at that time and thereafter. The additional travel cost imposed to the system by the 
additional traveller is called “externality”. Understanding the nature of this externality in a 
dynamic setting is important in managing time-dependent networks. Nevertheless, much 
previous research on the externality was specific to certain kinds of traffic models. For 
example, Kuwahara (2001) investigated the dynamic externality, while the analysis is confined 
to deterministic queuing model. Some traffic models adopted in some previous studies were 
even now considered to be implausible for various reasons. For example, Carey (1987) and 
Carey and Srinvasan (1993) provided one of the first comprehensive analyses on system 
optimizing flow and dynamic externality using Kuhn-Tucker conditions. However, they 
adopted the Merchant and Nemhauser’s outflow traffic model, which was later found to 
violate causality and unable to capture the flow propagation behaviour properly. This paper 
revisits the topic of dynamic externality in a more general and plausible way. We develop a 
novel sensitivity analysis of the traffic models, and apply it to derive the externality through an 
optimal control theoretic formulation.  
 
This paper starts with deriving the formulation and necessary conditions of the dynamic system 
optimal assignment in the next section. The dynamic system optimal assignment problem is 
formulated as a state-dependent optimal control problem, which was first introduced by Friesz 
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et al. (2001) to transport research area for analysing and solving dynamic user equilibrium 
assignment problem. As an extension to Friesz et al., (2001), the paper applied the state-
dependent control theoretic formulation to analyse and solve dynamic system optimal 
assignment problem. To analyse the dynamic externalities, a novel sensitivity analysis of the 
traffic model with respect to the link inflow is adopted. The sensitivity analysis is developed 
through flow propagation mechanism and the analysis is not confined to a specific traffic 
model. Indeed, we apply the sensitivity analysis to deterministic queuing model and we are 
managed to restore previous analytical results achieved by Ghali and Smith (1993) and 
Kuwahara (2001). Then, solution algorithms are presented for implementing the sensitivity 
analysis and solving the dynamic traffic assignments. With the solution algorithms, we 
provide some numerical calculations and discuss the characteristics of the results. Finally, 
some concluding remarks including possible and necessary future research work are given.  
 

DYNAMIC SYSTEM OPTIMAL ASSIGNMENT  

In the present study, the formulation and analysis for system optimal assignment are restricted 
to networks in which origin-destination pairs are connected with single travel links. In 
addition, capacity limitations of different links are considered to be mutually distinct. The 
system optimal assignment with departure time choice for fixed travel demand is then 
formulated as the following optimal control problem, which looks for an optimal inflow 
profile )(sea , where s represents the time of entry of the traffic to the link. The optimal 
inflow profile minimizes the total system travel cost within the planning horizon, T, given a 
fixed amount of total throughput, odJ . The optimal control problem is formulated as:  
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The objective function was adopted by Merchant and Nemhauser (1978a,b), and by several 
other researchers since then. Proceeding after Heydecker and Addison (2005), this study 
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considers the total travel cost ( )sCa encountered by each traveller on the travel link has three 
distinct components. The first component is the time spent on travelling along the link, which is 
determined by the travel time model that is adopted. In addition to the travel time, we add a 
time-specific cost [ ])(sf aτ  associated with arrival time ( )saτ  through link a at the destination 
for traffic which enters the link at time s. Finally, we add a time-specific cost )(sh  associated 
with departure from the origin at time s. Possible choices of these time-specific cost functions 
are investigated by Heydecker and Addison (2005). Consequently, the total travel cost ( )sCa  
associated with entry time to link a at time s  is determined as a linear combination of these 
costs as 
 

( ) ( ) ( ) ( )][][ sfssshsC aaa ττ +−+= .                                                                    (7) 
 
Following Daganzo (1995) and Mun (2001), we consider the exit time )(saτ  to be a linear 
non-decreasing of link traffic volume )(sxa , hence FIFO queue discipline are structurally 
guaranteed. As a result, we do not need to add any explicit constraint for this and so by pass 
the associated computational problems as shown by Carey (1992). Following Friesz et al.’s 
(1993), we consider that  )(saτ  takes the functional form as   
 

a

a
aa Q

sx
ss

)(
)( ++= φτ ,                                                                                                 (8) 

 
The notation aφ  and aQ  denote the free flow travel time and the capacity of the travel link 
respectively. This travel time model is chosen simply for ensuring the plausibility of the 
corresponding assignment results, it does not affect the generality of the analysis and the 
calculation in this paper except when the deterministic queuing model or the bottleneck model 
is adopted. For the bottleneck model (see Vickrey, 1969; Arnott, de Palma and Lindsey, 
1998), the state variable, which is the amount of traffic in queue, is not differentiable at the 
point when the inflow equals to capacity. Arnott, de Palma and Lindsey (1998) derived the 
dynamic system optimal solution for the bottleneck model by intuitive reasoning that showed 
that the dynamic system optimal inflow profile is equal to the link capacity through the 
assignment period. A mathematical analysis and proof of conditions for dynamic system 
optimal assignment with the bottleneck model can be referred to Chow (2007) which adopted 
a bang-bang control theoretical formulation and analysis.      
 
Equations (2) ensure the proper flow propagation along each link, in which )(sGa  denotes the 
cumulative link outflow by the exit time )(saτ . Equations (3) are the state equations that 
govern the evolution of link traffic, )(sxa . The variables )(sea  and )(sga  represent the flow 
rates at time s of inflow and outflow respectively. Equations (4) define the cumulative link 
inflow )(sEa . Equation (5) specifies the amount of total throughput Jod generated in the 
system within the time horizon T. Conditions (6) ensure the positivity of the control variable, 
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)(sea . Given a non-negative inflow )(sea , the corresponding outflow )(sga  and link traffic 
volume )(sxa  is guaranteed to be non-negative (Mun, 2001). Hence, we do not add any 
additional constraints to ensure the non-negativity of )(sga  and )(sxa .  
 
One technical difficulty is that with the traffic models above, the time lag between changes to 
the control variable, )(sea , and the corresponding responses, )(sga , is state-dependent 
(Friesz et al, 2001). This state-dependent control theoretic formulation is unorthodox. Its 
properties and application to dynamic equilibrium were studied by Friesz et al. (2001). As an 
extension to Friesz et al. (2001), we derive the necessary conditions for the state-dependent 
system optimization problem and state them in the following the proposition.  
 

Proposition 1: The necessary conditions for the optimization problem (1) – (6) can be 
derived as  
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where oda s νμ =)(  is constant with respect to time and its magnitude is determined by 
the predefined amount of throughput.  

 
Proof: 
See Appendix A.  � 

 
The first term on the left-hand-side of (9), )(sCa , is the cost experienced by that additional 
traveller given the current traffic condition, and the integral in the second term on the left-

hand-side of (9), dtte
u
Cs

T

a
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)()( , is the additional travel cost, which is regarded as 

externality, imposed by an additional amount of traffic, us, at time s to existing travellers in 
the system. In this study, we consider parameters us of the form for which 
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=
otherwise                     0

),[ if           1)( dssst
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tde

s

a ,                                                                          (10) 

in which ds represents the incremental time step*.  
                                                 
* The inflow )(sea

 is a continuous quantity with respect to time. The value of )(sea∂  is zero if we refer to only 
one particular instant, and hence it will not be effective on the cost )(sCa

. To validate the analysis, we adopt the 
notation su∂  to represent the change in inflow within a time interval rather than at a particular time instant.   
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The terms )(saλ  and )(saγ  denote the costate variables at times s. The costate variables 

)(saλ  and )(saγ  in the optimal control formulation represents the sensitivity of the value of 
the objective function with respect to the changes in the state variables )(sxa  and )(sga  in 
the corresponding constraints at the associated time s (Dorfman, 1969). Thus, the value of the 
costate variables in the system optimal control formulation equals to the total change in the 
value of the total system travel cost Z  with respect to slight changes in the state variables (i.e. 
link traffic volume )(sxa  and outflow profile )(sga ) at time s. The costate variable )(saλ  is 
given by  
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+= )()('11)( τλ .                                                                            (11) 

 
and [ ] )()( ss aaa τλγ = † can then be determined accordingly. The difference between the 
costate variables )(saλ  and )(saγ  can also be calculated as  
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The quantity in (12) is interpreted as the external cost to be imposed on a traveller who enters 
the link at time s and leaves at time )(saτ  such that the system can be transformed from a 
user equilibrium state to a decentralized system optimal state. Following this, similar to their 
static counterparts (see Sheffi, 1985), proposition 1 shows that the dynamic system optimal 
assignment can be reduced to an equivalent dynamic user equilibrium assignment formulation 
in which additional components of the cost, [ ])()()( sss aaa γλ −+Ψ , are introduced. In the 
optimality conditions, the cost components )(sCa  and )(saΨ are generated within the system, 
while last two cost components (i.e. the costate variables) are external to the system.  
 

SENSITIVITY ANALYSIS OF TRAFFIC MODELS  

As shown in the previous section, knowing the externality, )(saΨ , is important in managing 
road networks in dynamic setting. It requires determining the sensitivity of the total travel 

cost 
ts

a

u
C

∂
∂

 for each departure time s with respect to a change of us in the link inflow a 

particular time s. We further note that if we differentiate both sides of (7) with respect to us, 
we have   
 
                                                 
† See Appendix A for derivation. 
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As a result, calculating the externality )(saΨ  requires the sensitivity of traffic models with 
respect to perturbations in link traffic inflow. Consequently, the section derives a novel 
expression for the sensitivity of the time of exit with respect to such perturbations in inflow, 
which is given in the following proposition.  
 

Proposition 2: Suppose there is a change of us in the link inflow rate at a particular 
time s, the sensitivity of the time of exit at a time s with respect to this perturbation 
can be calculated as 
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in which )(taσ  is the time of entry to the link that leads to exit at time t. Indeed, )(⋅aσ  
is defined as the inverse function of )(⋅aτ . 

 
Proof:  
See Appendix B.  � 

 
 
Discussion  
 
The derivative of exit time function at time t with respect to the change of parameter us in 
inflow at time s is then expressed in terms of the dependence of the inflow profile )(κae  in 
which κ  lies between t and )(taσ , the outflow )(tga  at time t, and the value of the derivative 
at time )(taσ . 
 
When the deterministic queuing model is adopted (see for example, Vickrey, 1969; Arnott, de 
Palma, Lindsey, 1998), the externality will be zero when the travel link is uncongested. When 
the travel link is congested, the externality will be greater than zero, and traffic will be 
discharged with an outflow rate )(tga  that equals to the link capacity aQ  for all times t. 
Substituting aa Qtg =)(  for all times t into (14) reduces the equation to   
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Equation (15) implies that in the particular case of the deterministic queuing model, the 

derivative 
ts

a

u∂
∂τ

 takes the value of zero for all times t before the time of perturbation s, and 

ts

a

u∂
∂τ

 equals to 
aQ

1  for all times t after the time of perturbation s. This agrees with the 

previous analyses on the sensitivity of the deterministic queuing model (see for example, 
Ghali and Smith, 1993; Kuwahara, 2001). However, the sensitivity analysis developed in this 
paper allows for other mechanisms of delay and flow propagation, and hence is more general 
so that it can be applied to other traffic models. 
 

SOLUTION ALGORITHMS  

In this section, we first present Algorithm 1 for solving the dynamic user equilibrium 
assignment. Algorithm 2 is used to evaluate the derivatives given in proposition 2. Finally, 
Algorithm 3 is used to solve dynamic system optimal assignment. 
 
 
Algorithm 1: Calculate dynamic user equilibrium assignment  
 
Step 0: Initialisation 
0.1 Choose an initial equilibrium cost *

odC ;  
0.2 Set the overall iteration counter 1:=n ; 
0.3 Set 0:)( =kea   for all links a, and all times k, ],0[ Kk ∈ . The notation )(kea  represents 

the assigned inflow to link a between times skΔ  and sk Δ+ )1( . The total number of 
simulated time steps is denoted as sTK Δ= / ;   

0.4 Set the link index 1:=a ; 
0.5 Set the time index 0:=k ; 
0.6 Set the inner iteration counter 1:=in . 
 
Step 1: Network loading 
Find )1( +kaτ  by loading the travel link using the inflow )(kea  at the current iteration. The 
network loading algorithm “Algorithm D2” described in Nie and Zhang (2005) was adopted 
for this purpose.  
 
Step 2: Update the inflow 
2.1 Calculate  
      [ ] [ ])1()1()1()1()1( +++−+++=+ kfkkkhkC aaa ττ ;  
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in which  [ ] [ ] [ ]
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≈  using a finite difference approximation.  

We note the equilibrium is achieved if and only if 0=Ω  for all positive inflow )(kea ;  
2.3 Update the inflow as ]0),)(max[(:)( dkeke pa π+=  using Newton’s method. The second-

order searching direction is denoted by 'Ω
Ω−=d   and the step size π , which is 

interpolated linearly as  
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where )1(1 +kCa  and )1(0 +kCa  represent the corresponding values of )1( +kCa  when 

)(* kea  is being updated with π  is taken as 1 and 0 respectively. To determine π , two 
network loadings are required to calculate the values of )1(1 +kCa  and )1(0 +kCa  
respectively.  

 
Step 3: Stopping criteria 
3.1. Check if  ε≤−+ *)1( oda CkC  or in  is greater than the predefined maximum number of   

inner iterations, then go to step 3.2; otherwise, set 1: += ii nn  and go to step 1;   
3.2.   If Kk = , then go to step 3.3; otherwise k:= k + 1 and go to step 1;  
3.3.   If Aa = , then go to step 3.4; otherwise a:= a + 1 and go to step 0.5;  
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zero at equilibrium. If n  is greater than the predefined maximum number of overall 
iterations or ξ  is sufficiently small, i.e. εξ ≤  where ε  is a test value, then go to step 3.5; 
otherwise set n:=n+1 and go to step 1.2; 
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where 0
as  and 1

as  respectively denote the first and last times of entry to link a. 
 
 
Algorithm 2: Calculate externality   
 
Step 1: Initialisation for calculating the derivatives of link exit time 
1.1 Set the link index 1:=a ; 
1.2 Set the time index 0:=k , to represent the time when the inflow is perturbed;  
1.3 Set the time index 0:=ω  to represent time at which we consider the change in exit time 

due to the perturbation in inflow at time k. 
1.4: Calculate the derivatives of link exit time:  
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1.5  If K=ω , then go to step 1.6; otherwise 1: += ωω  and go to step 1.4;  
1.6  If Kk = , then go to step 1.7; otherwise k:= k + 1 and go to step 1.3;  
1.7  If Aa = , then go to step 2; otherwise a:= a + 1 and go to step 1.2.  
 
Step 2: Calculate the derivatives of total travel cost function 
2.1 Set the link index 1:=a ; 
2.2 Set the time index 0:=k ;  
2.3 Set the time index 0:=ω ; 

2.4 Calculate [ ]( )
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2.5  If K=ω , then go to step 2.6; otherwise 1: += ωω  and go to step 2.4;  
2.6  If Kk = , then go to step 2.7; otherwise k:= k + 1 and go to step 2.3;  
2.7  If Aa = , then go to step 3; otherwise a:= a + 1 and go to step 2.2.  
 
Step 3: Calculate the externality  
3.1 Set the link index 1:=a ; 
3.2 Set the time index 0:=k ;  
3.3 Initialise 0:)( =Ψ ka ; 
3.4 Set the time index 0:=ω ; 

3.5 Calculate 
ω

ω
k

a
aaa du

dCekk )()()( +Ψ=Ψ ; 

3.6  If K=ω , then go to step 3.7; otherwise 1: += ωω  and go to step 3.5;  
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3.7  If Kk = , then go to step 3.8; otherwise k:= k + 1 and go to step 3.3;  
3.8  If Aa = , then stop; otherwise a:= a + 1 and go to step 3.2.  
 
 
Algorithm 3: Calculate dynamic system optimal assignment  
 
Step 0: Initialisation 
0.1 Choose an initial equilibrium cost *

odC ;  
0.2 Set the overall iteration counter 1:=n ; 
0.3 Set 0:)( =kea   for all links a, and all times k, ],0[ Kk ∈ ; 
0.4 Set costates 0:)( =kaλ  for all times ],0[ Kk ∈ ; 
0.5 Set the link index 1:=a ; 
0.6 Set the time index 0:=k ; 
0.7 Set the inner iteration counter 1:=in . 
 
Step 1: Network loading 
Find )1( +kaτ  by loading the travel link using the inflow )(kea  at the current iteration. The 
network loading algorithm “Algorithm D2” described in Nie and Zhang (2005) was adopted 
for this purpose.  
 
Step 2: Calculate externality 
Use Algorithm 2 to calculate the externality )(kaΨ  associated with each )(kea .  
 
Step 3: Determine the auxiliary inflow 
3.1 Calculate  
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3.3 Calculate the auxiliary inflow )(
)()( ' k

kkd
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a
a Ω

Ω−= ; 

3.4. If Aa = , then go to step 3.5; otherwise a:= a + 1 and go to step 0.7; 
3.5. If Kk = , then go to step 4; otherwise k:= k + 1 and go to step 0.6.  
 
Step 4: Determine step size for inflow  
Search for θ , for all a and k, by golden section method such that 

[ ][ ]{ }0 ,)()()(max:)( kekdkeke aaaa −+= θ  gives the minimum total travel cost. 
 
Step 5: Calculate the associated costate variables 
5.1 Set the link index 1:=a ; 
5.2 Set 0)( =Kaλ ; 
5.3 Set the time index 1: −= Kk ; 
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5.4 Compute [ ]( ) s
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5.5 Calculate [ ])(kaa τλ  from )(kaλ  and )(kaτ  using linear interpolation as  
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5.6. If 0=k , then go to step 6.7; otherwise k:= k - 1 and go to step 5.2;  
5.7. If Aa = , then go to step 7; otherwise a:= a + 1 and go to step 5.1.  
 
Step 6: Overall stopping criteria 
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zero at system optimum. If n  is greater than the predefined maximum number of overall 
iterations or ξ  is sufficiently small, i.e. εξ ≤  where ε  is a test value, then go to Step 
6.2; otherwise set n:=n+1 and go to step 0.5; 

6.2. Check if the total throughput ∑∑
∀ ∀

=
a k

aod keE )(  from the system is equal to the 

predefined total demand Jod for the o-d pair. If yes, then terminate the algorithm; 

otherwise update 
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+=
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** :
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dE

EJ
CC

od

odod
odod , and go back to step 0.2. The derivative 

*
od

od

dC
dE

 is given by (16).  

 
 
Discussion 
 
In Algorithm 2, step 1.4, we note that the function )(ωσ a  does not necessarily give an 
integral value. To implement the sensitivity analysis into computer, a interpolation is needed 

to determine the value of 
)(ωσ

τ

a
k

a

du
d

. This study adopts a linear interpolation which 

approximates the value of 
)(ωσ

τ

a
k

a

du
d

 as  
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where the notation ⎡ ⎤)(ωσ a  represent the smallest integer not smaller than )(ωσ a , and 

⎣ ⎦)(ωσ a  is the greatest integer not larger than )(ωσ a . 
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In addition, in Algorithms 1 and 3, the inflow profile is solved by a forward dynamic 
programme in the order of departure time interval. It is possible due to the causal property of 
the travel time models that ensures the travel cost experienced by the traffic that departs from 
an origin at time s is independent of the traffic departing from that origin after time s. The 
study period in continuous time, T, is discretized into K intervals of length sΔ . Following 
this, the instantaneous flow in continuous time formulation is represented by the amount of 
traffic over a discrete time interval k, which represents the interval ))1(,[ sksk Δ+Δ . Within 
each departure time interval k, the equilibrium inflow is calculated by using Newton method, 
which converges with an order of convergence at least two (Luenberger, 1989, p202). 
Nevertheless, when we calculate the costate variables in Algorithm 3, we have to calculate 
them backward in time due to the transversality condition of the costates is given at the end of 
the study horizon. The auxiliary flows are calculated based on the traffic conditions at the last 
iteration, while the costate variables are calculated based on the traffic conditions at the 
current iteration. As a result, they are not consistent, and we adopt a step size search (Step 4) 
in Algorithm 3 as a kind of heuristics to accommodate this.  
 
Finally, a crucial point in developing numerical algorithms for solving dynamic traffic 
assignments is to discretize the continuous time formulation (Heydecker and Verlander. 
1999). The main difference between the continue time formulation and the discrete time 
solution algorithm is that the continuous time formulation treats quantities of flow rate (e.g. 
inflow, )(sea ) at a time instant s, whilst the discrete time solution algorithm has to typically 
consider the flow rate )(kea  over a time interval k, which represents the time interval 

))1(,[ sksk Δ+Δ . The discretization process brings in difficulties in deciding the time instant at 
when the associated costs should be considered. Heydecker and Verlander (1999) suggested 
that a predictive manner should be adopted for plausible assignment results. Following 
Heydecker and Verlander (1999), in a discrete time algorithm the travel cost, which are 
calculated forward in time, associated with the flow should be considered at the end of the 
interval (i.e. at the time sk Δ+ )1( ), instead of at the start of the interval (i.e. at time skΔ ). 
However, when we work with the costate variables (Step 3.1 in Algorithm 3), we should look 
at the value of costate at the start of the time interval skΔ  instead of the end of the interval. 
This is because the costate variables are calculated backward in time. The consequence of 
considering the costs at an inappropriate time was illustrated by Heydecker and Verlander 
(1999).  
 

NUMERICAL CALCULATIONS  

We first consider a single link, which has a free flow time 3 mins and a capacity 20 vehs/min, 
connecting a single origin-destination pair. The size of discretized time interval sΔ  is taken as 
1 min. We first show the numerical solutions of the whole link traffic model. A parabolic 
profile, which is specified as (17), of inflow is loaded into the travel link. 
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This profile has a peak inflow rate of 50 vehs/min, which equals to 2.5 times of the link 
capacity. The function of link traffic model is to determine the corresponding profile of link 
outflow and the link travel time, given the profile of link inflow. The traffic model adopted in 
this example is Friesz et al’s (1993) linear whole-link traffic model. Figure 1 depicts the 
profile of link outflow. We note that the outflow will approach to, but not exceed, the link 
capacity for a high inflow rate. This is an important feature for a plausible traffic model. 
Figure 2 plots the associated link travel times.  
 
Then, we investigate the accuracy of the sensitivity analysis in proposition 2. We consider the 
parabolic inflow profile is perturbed at time 1, and the associated variations in travel time are 
plotted in Figure 3. The “analytical” variations are calculated according to Equation (14). The 
“numerical” variations are determined by using direct numerical finite difference method, and 
they are plotted in the same figure for comparison. To calculate the finite difference, one extra 
unit of inflow is added at time 1, while the inflow profile remains unchanged at other times. 
The “numerical” variations in travel times are then calculated by subtracting the link travel 
time loaded by the original inflow profile from that loaded by the perturbed inflow profile. 
The result shows that the analytical variations given by Equation (14) can represent the true 
numerical variations in travel time reasonably well. Both numerical and analytical variations 
drop to zero at time 83 when all traffic is cleared from the link.  
 
Next, we calculate the dynamic traffic assignments. We consider a network with a single 
origin-destination pair connected with two parallel travel routes consisting of one single link 
as shown in Figure 4. Link 1 has free flow time 3 mins and capacity 20 vehs/min, and link 2 
has free flow time 4 mins and capacity 30 vehs/min. Furthermore, the origin-specific cost is 
specified to be a monotone linear function of time with a slope -0.4. The destination cost 
function is piecewise linear, with no penalty for arrivals before the preferred arrival time 

50* =t , and increases with a rate 2 afterwards. The length of the planning horizon ],0[ T , 
where T=100, is set such that all traffic can be cleared by time T. The total amount of traffic 

odJ  is taken as 800 vehs. Figure 5 shows the corresponding profiles of link inflows and the 
total travel cost at equilibrium. The traffic is assigned to the route 1 during times 18 and 49, 
and to route 2 during times 21 and 49. The link flow volumes using route 1 and route 2 are 
380.25 (vehs) and 419.75 (vehs) respectively. The measure of disequilibrium ξ  achieved is 
below 10-17. At dynamic user equilibrium, the total system travel cost is 12,465.2 veh-hr. 
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Figure 3 Sensitivity of travel time with respect to a perturbation in inflow 

 
 
 
 
 
 
 
 

Figure 4 Example network 
 

0
5

10
15
20
25
30
35
40

0 10 20 30 40 50 60
Departure time (min)

In
flo

w
 (v

eh
/h

r)

0

5

10

15

20

25

30

C
os

t (
m

in
)

Route 1 Inflow Route 2 Inflow

Route 1 Total travel cost Route 2 Total travel cost

0

5
10

15
20
25

30
35

40

0 10 20 30 40 50 60

Departure time (min)

In
flo

w
 (v

eh
/m

in
)

0

5

10

15

20

25

30

C
os

t (
m

in
)

Route 1 Inflow Route 2 Inflow
Route 1 Internal travel cost Route 2 Internal travel cost
Route 1 Total travel cost Route 2 Total travel cost  

Figure 5 Equilibrium assignment                       Figure 6 System optimal assignment 
 

1 2

Link 1

Link 2

1 2

Link 1

Link 2



 316 Transportation and Traffic Theory 17 
 
 
Figure 6 shows the assignment of the dynamic system optimum. With the same total 
throughput Jod, the period of assignment to link 1 expands from times [18, 49] to times [4, 
56], while that to link 2 expands from times [21, 49] to times [6, 50]. In general, the profiles 
of link inflows are more spread at system optimum in order to reduce the intensity of 
congestion on the links, whilst maintaining the same volume of travel. The associated total 
system travel cost at system optimum is decreased from 12,465.2 veh-hr in user equilibrium 
to 11,447.3 veh-hr in system optimum. However, due to the addition of externality and the 
costate variables, the marginal social cost at which travel takes place increases from 15.58 
min at user equilibrium to 21.78 min at system optimum, although the system optimizing flow 
causes the decrease in total system cost.   
 
To illustrate the cause of the decrease in system travel cost, Figure 7 shows the profiles of the 
link traffic volumes at user equilibrium and system optimum respectively. Interestingly, yet 
importantly, the results show that, with Friesz et al’s (1993) travel time model, the system 
optimal assignment has to allow queuing even at system optimum. The system optimal 
assignment can only manage and minimize congestion. This implies that the previous 
analyses on dynamic system optimum using the deterministic queuing model in which 
congestion can be eliminated (see for example, Vickrey, 1969; Arnott, de Palma, Lindsey, 
1998) do not apply in general. Furthermore, the dynamic system optimizing tolls (i.e. the sum 
of externality and external costs: [ ][ ])()()( sss aaaa τλλ −+Ψ ) which are to be imposed to the 
travellers to decentralize the system optimal flows are calculated and shown in Figure 8. The 
results show that the dynamic tolls generally increase with time for travellers who arrive at 
the destination before the preferred arrival time, and decrease afterwards. 
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Figure 7 Link traffic volumes                         Figure 8 System optimizing tolls  

 
Finally, the progress of the system optimization algorithm is shown by Figure 9 and Figure 
10, which illustrate the reduction of the total system cost and the measure of disequilibrium 
over iteration respectively. The results agree with the analysis that the total system cost 
reduces as the measure of disequilibrium drops. However, the measure of disequilibrium can 
only reach 0.04 in this calculation. It is because indeed solving the dynamic system optimal 
assignment is difficult, since the solution procedure involves solving two dynamic 
programmes simultaneously and consistently: solving the network loading forward in time for 
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the state variables and solving the costate equations backward in time for the costate 
variables. We are exploring better strategies for better quality solution.  
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Figure 9 Total system cost over iteration              Figure 10 Disequilibrium over iteration  

 

CONCLUDING REMARKS 

The main contribution of this paper is the necessary conditions for dynamic system 
optimizing flow and the analysis of dynamic externalities. This study gives us a deeper 
understanding of the nature of dynamic system optimal assignment through a general and 
plausible framework. We developed a novel sensitivity analysis of traffic models with respect 
to perturbations in link inflow. The analytical results developed can be used to recover some 
earlier more specific ones of Vickrey (1969) where the bottleneck model was used. However, 
the present results are substantially more general. The knowledge of system optimizing flows 
and dynamic externalities provide important insight into the management of dynamics of peak 
periods and travellers’ behaviour. 
 
We also presented solution algorithms for implementing the sensitivity analysis and solving the 
dynamic traffic assignments. We also applied the algorithms to numerical calculations. The 
characteristics of the results were discussed. With Friesz et al’s (1993) linear traffic model, the 
system optimal assignment has to allow queuing, and the externality that each traveller 
imposes on the others is not zero even at system optimum. We can only manage and minimize 
queuing and externality of each traveller imposes on the others. This implies that the previous 
analyses on dynamic system optimum using the deterministic queuing model do not apply 
generally. Further study is required to improve the performance of the solution algorithm for 
the system optimal assignment.  
 
In the present study, the formulation and analysis presented are restricted to networks in 
which capacity limitations of different routes are mutually distinct. We are currently 
exploring ways in which this analysis can be extended to consider shared bottlenecks in 
general networks. In case of networks that have multiple origin-destination pairs with 
overlapping routes, traffic entering the network during the journey time of a traveller from 



 318 Transportation and Traffic Theory 17 
 
 
other origins downstream can influence the travel time of travellers from its upstream. As a 
result, some special computational technique, for example Guass-Seidel relaxation (see 
Sheffi, 1985), seems likely to be required. The basic idea of such relaxation scheme is to 
decompose the assignment problem for networks with overlapping routes connecting multiple 
origin-destination pairs into several sub-problems. In each sub-problem, we calculate the 
assignments for one origin-destination pair, and temporarily neglect the influences from the 
flows between other origin-destination pairs. When equilibrium or system optimum is reached 
for the current origin-destination pair, we proceed with calculations for another pair. The 
procedure is repeated until equilibrium or system optimum is reached in the whole network. 
The relaxation scheme is not guaranteed to converge, but if it does, the solution will be the 
final assignment pattern (see Sheffi, 1985, p217). In case of routes with multiple links, 
difficulties are introduced when we have to calculate the derivatives of route exit time (see for 
example Balijepalli, 2005; Balijepalli and Watling, 2005). Following Proposition 2, changing 
the inflow to a link on the route during one time interval will induce perturbations in the link 
travel time, the link outflow, and hence the inflow to subsequent link(s) in several succeeding 
time intervals. Hence, the dimension of time intervals to be considered in calculating the 
derivatives will expand exponentially along the route. We are currently investigating the 
strategies to cope with this curse of dimensionality. Efficient computing methods for system 
optimal assignments in general networks are still under investigation, however, the work 
reported in the present paper provide a solid and necessary foundation for future research.  
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APPENDIX A: DERIVATION OF THE OPTIMALITY 
CONDITIONS OF DYNAMIC SYSTEM OPTIMAL ASSIGNMENT  

This appendix derives the necessary conditions for the dynamic system optimization problem 
(1) – (6) by using a calculus of variations technique.  
  
The objective function Z  is first augmented with the constraints to form the following 
Lagrangian:  
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where )(saλ  and )(saγ  are the respective costate variables for the flow conservation and flow 
propagation constraints; and )(saμ  and )(saρ  are the associated multipliers on the 
cumulative and the non-negativity constraints of the control variables respectively. Finally, 

odν  is the multiplier associated with the total throughput. Using integration by parts, the terms 

involving 
ds

sdxa )(
 and 

ds
sdEa )(

 in the integrand over time can be rewritten as 

 

ds
ds

sd
sxxTxTsdxsds

ds
sdx

s
T

a
aaaaa

T

aa

T
a

a ∫∫∫ −−==
000

)(
)()0()0()()()()(

)(
)(

λ
λλλλ ,  (A-2) 

 
and  
 

ds
ds

sd
sEETETsdEsds

ds
sdE

s
T

a
aaaaa

T

aa

T
a

a ∫∫∫ −−==
000

)(
)()0()0()()()()(

)(
)(

μ
μμμμ , 

(A-3) 
 
in which the initial values )0(ax  and )0(aE  are considered to be zero. Consequently, the 
Lagrangian *Z  becomes 
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in which we define the Hamiltonian function:  
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Then, the variation *Zδ  of *Z  with respect to its variables is derived as  
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in which 
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function with respect to its corresponding variables.  
 
Applying the change of variables, dssdtst aa )()( ττ &=⇒= , the bounds of the integral are 
changed accordingly: )0(0 ats τ=⇒=  and )(TtTs aτ=⇒= .  
 
The variation with respect to [ ])(sg aa τ  can now be transformed to  
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in which )(saσ  is the time of entry to the link that leads to exit at time s.  
 
The time horizon T is taken such that it is long enough for all traffic to be cleared by the end 
of it, the integral on the right hand side in Equation (A-7) only need to be calculated up to 
time T as  
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Finally, *Zδ  becomes  
 



Dynamic system optimum with departure time choice 323 
 
 

[ ]

[ ]
[ ][ ] [ ]

∑∑∫∑∫

∑ ∫

∑ ∫∑∫∑

∀∀∀

∀

∀∀∀

+−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

+

⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
+

∂
∂

+

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

++−=

a
aod

a

T

a
a

a

T

a
a

a

a

a

T

a
aaaaa

aa

a

a

a
a

a

a

a

T

a
a

a

a
aaaa

TEdssE
ds

sd
dssx

ds
sd

sx
sH

dssg
ssg

sH
sg
sH

dssg
sg

H
dsse

se
sH

TETTxTZ

a

a

)()(
)(

)(
)(

)(
)(

           

)(
)(

1
)(

)(
)(
)(

           

)(
)(

)(
)(
)(

)()()()(

00

)0(

)0(

00

*

δνδ
μ

δ
λ

δ
στστ

σ

δδδμδλδ

τ

τ

&
. 

(A-9) 
 
The optimality is achieved when *Z  is stationary (i.e. 0* =Zδ ) with respect to all variations. 
This can only be guaranteed to happen when the following stationarity conditions are satisfied 
simultaneously: 
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aT oda ∀=− ,    0)( νμ .                                                                                           (A-15) 

  
We also have the following Karush-Kuhn-Tucker (KKT) conditions hold for the non-
negativity constraints on the control on all links and all times:  
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0)()( =sse aa ρ ;                                                                                                      (A-17) 

0)( ≥saρ .                                                                                                              (A-18) 
 
With equations (A-14) and (A-15), we can deduce that )(saμ  will remain constant at 

oda T νμ =)(  for all s within T since 0
)(

=
ds

sd aμ
.  



 324 Transportation and Traffic Theory 17 
 
 
 
Furthermore, equation (A-11) can be written equivalently as  
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and the evolution of the costate variable )(saλ  is governed by (A-12) and (A-13) for all s. 
Finally, combining (A-10) and the KKT conditions (A-16), (A-17), and (A-18), we then get 
the following conditions for system optimum for a single travel link represented by the whole-
link traffic model:  
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Using the costate equation (A-12) and the transversality condition (A-13), the costate variable 

)(saλ  for any time s can be calculated backward in time as  
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APPENDIX B: DERIVATION OF THE SENSITIVITY OF TRAVEL 
TIME WITH RESPECT TO LINK INFLOW 

This appendix derives equation (14).  
 
The traffic volume on the travel link, )(txa , at time t can be expressed as  
 

[ ] ∫
=

=−=−=
t

t
aaaaaaa

a

detEtEtGtEtx
)(

)()( )()( )()(
σκ

κκσ ,                                       (B-1) 

 
The expression for the time of exit for the entry time t then becomes  
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Considered that there is a small change us induced in the profile of inflow at a particular time 
s, the associated change in the value of the function of the time of exit at a time t can be 
deduced as  
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The first term is the bracket can be calculated directly. 
 
To calculate the second term in (B-3), we first apply the definitional relationship,  

 
 [ ] ttaa =)(στ .                                                                                                          (B-4) 

 
Differentiating the left hand side with respect to us and by using chain rule, the left-hand-side 
of (B-4) can be written as   
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Likewise, differentiating the right hand side with respect to us, it gives 
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which is because the time s is not affected by the change of us in the inflow.  
 
Hence, combining (B-5) and (B-6), it can be deduced that  
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Furthermore, since )(⋅aσ  is an inverse function of )(⋅aτ , it follows that  
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Therefore, combining (B-7) and (B-8), and after rearranging terms, it gives 
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Finally, substituting (B-9) into (B-3) gives  
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ON PATH MARGINAL COST ANALYSIS 
AND ITS RELATION TO DYNAMIC 
SYSTEM-OPTIMAL TRAFFIC 
ASSIGNMENT 

Wei Shen, Yu Nie, and H. Michael Zhang, Department of Civil and Environmental 
Engineering, University of California, Davis, USA 

SUMMARY  

This paper studies the problem of evaluating path marginal cost in system-optimal dynamic 
traffic assignment (SO-DTA) models. Through a series of examples, we demonstrate that path 
marginal costs are not simple additions of the corresponding link marginal costs unless the 
flow perturbation travels with the vehicle unit that initiated the perturbation. We further show 
that one can compute efficiently path marginal costs for networks with a special structure (i.e. 
mono-centric), and proposed an evaluation method that decomposes path marginal costs to 
link marginal costs for such networks. Our preliminary numerical experiments indicate that 
this solution scheme can generate numerical solutions close to analytical solutions where they 
are known. At present, our method applies to networks without diverges and the embedded 
traffic flow models are restricted to those not considering queue spillback. The relaxation of 
either aspect brings in additional challenges in predicting path flow perturbation propagation, 
hence additional difficulties in the evaluation of path marginal cost, and is worthy of further 
research. 

INTRODUCTION  

The system-optimal dynamic traffic assignment (SO-DTA) problem, which determines the 
time-dependent traffic evolution pattern in a transportation network resulting in the minimal 
total system cost, is of great importance to traffic congestion management. The minimal total 

Transportation and Traffic Theory 2007 
Edited by R.E. Allsop, M.G.H. Bell and B.G. Heydecker 
© 2007 Elsevier Ltd. All rights reserved. 



 328   Transportation and Traffic Theory 17 
 
 
system cost calculated from the SO-DTA problem provides the best network performance that 
can be achieved, serving as a benchmark to evaluate the benefits of practical traffic 
management measures. The resulting optimal traffic flow pattern, on the other hand, provides 
valuable insights for designing congestion alleviation strategies such as congestion pricing 
schemes, advanced traveler information systems (ATIS), advanced transportation 
management systems (ATMS), or staging and routing plans for emergency evacuations. 
 
Early SO-DTA studies focus on idealized networks, such as a single route network (Vickrey 
1969, Hendrickson and Kocur 1981), a network with parallel routes (Arnott et al. 1990) or a 
freeway corridor network (Munoz and Laval 2005). Elegant solutions can be derived by 
exploiting the special features of such networks. A major limitation of these studies is that 
their results and conclusions can hardly be extended to other networks with different topology 
types. This limitation has served as the primary motivation for studies to extend the SO-DTA 
problem to general networks. 
 
Following Merchant and Nemhauser’s (1978a, 1978b) pioneering work, the last decade 
witnessed the birth of a wide variety of SO-DTA models on general networks. The majority 
of these models, referred to as link-based analytical SO-DTA models, has a similar model 
structure represented by link flow variables, with the objective function minimizing the total 
system cost and constraints describing traffic dynamics and flow conservation. The major 
difference among various studies in this category is the traffic dynamics models incorporated, 
such as the exit flow function and its variants (Merchant and Nemhauser 1978a, b, Ho 1980, 
Carey 1986, 1987, Friesz et al. 1989, Wie et al. 1994, 1995, Wie and Tobin 1998, Wie 1998), 
the link performance function model (Carey and Subrahmanian 2000), and the cell 
transmission model (Ziliaskopoulos 2000, Li 2001). No matter what type of traffic flow 
model is embedded, these studies usually run into two obstacles: 1) the variables and 
constraints of the problem are proportional to the network size and taking advantages of 
network structures to improve the solution procedure is difficult, thus incurring prohibitively 
expensive computational overhead when applied to large-scale networks; 2) analytically 
representing traffic dynamics as convex constraints is not easy because the embeded traffic 
flow models and the first-in-first-out (FIFO) requirement (see Carey 1992) for multi-
commodities at the link level often call for non-linear equality constraints, which destroys the 
convexity of the constraint set. 
 
To avoid the aforementioned two sources of non-convexity, constraints describing traffic flow 
propagations in a link-based SO-DTA model are often relaxed into inequality constraints 
(e.g., Carey 1987, Ziliaskopoulos 2000) and most SO-DTA studies in this category are 
restricted to the many-origin-to-single-destination type of networks. The mathematical 
elegance and tractability of these relaxed models, however, do not come without a price. It 
substantially limits the application of the SO-DTA models within the category of networks 
with only a single destination. In addition, the relaxed models may lead to a traffic evolution 
pattern involving "vehicle holding", which is not practical since to arbitrarily hold vehicles on 
any link in a network is extremely labour-consuming if not impossible to implement. 
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In view of the intrinsic non-convexity resulted from traffic propagation rules, Chang et al.  
(1988) and Yang and Meng (1998) proposed a time-space expansion network (STEN) scheme 
to solve the SO-DTA problem. In their method, a STEN is carefully constructed to 
endogenously represent the deterministic queuing processes, and hence the SO-DTA problem 
is transformed into a static system-optimal traffic assignment problem. However, introducing 
this type of STEN gives rise to some new problems and difficulties, such as the high 
computational overhead associated with network expansions. In addition, as addressed by 
Yang and Meng (1998), the FIFO requirements for multiple commodities at the link level still 
cannot be ensured. 
 
In recent years, there is  a renewed interest in formulating the DTA problem directly with path 
flows and cast the traffic flow dynamics into a path cost mapping (Lo 1999). For the SO-DTA 
problem, the motivations of this redirection of efforts can be summarized as follows: 1) 
constraints formed with path variables concern with only flow conservation, making the 
feasible set polyhedral; 2) since both traffic propagation and FIFO can be taken care of by the 
path cost mapping, the model may have the potential to deal with problems with multiple 
destinations and to eliminate "vehicle holding" in the solution; 3) Special network structures 
can be exploited to improve the solution procedure by taking advantage of shortest path 
searching algorithms, thus leading to solution algorithms not sensitive to network size. 
 
Despite of the potential advantages of path-based SO-DTA models, research along this line is 
rather limited. The major reason is that solving path-based SO-DTA models usually requires 
gradients, here the change in the total system cost with respect to the unit change in the path 
flow, which we refer to as the path marginal cost (PMC) hereafter. Since the path cost 
mapping usually does not have an explicit functional form, the evaluation of PMC is not 
straightforward. Instead of numerically evaluating PMCs by perturbing the path flow pattern 
and performing a dynamic network loading (DNL), which is prohibitively expensive and may 
involve significant rounding errors, a detailed examination on how to exploit properties of the 
non-closed-form mapping (the path cost mapping in this case) to obtain PMCs efficiently may 
provide insights to the solution of not only the path-based SO-DTA problem but other time-
dependent optimization problems in transportation as well. Such problems could include the 
design of signal timing plans or ramp metering schemes, since the need to obtain gradient 
information for mappings without a closed form also lies in the core of these optimization 
problems in transportation. 
 
To date the only studies related to PMC evaluation are due to Ghali and Smith (1995) and 
Peeta and Mahmassani (1995).  Ghali and Smith (1995) proposed a PMC evaluation method 
by summing up the link marginal cost along the path according to link traversal times, and the 
link marginal cost was evaluated based on link cumulative curves obtained from DNL results. 
Peeta and Mahmassani (1995) adopted a similar evaluation procedure, except that the link 
marginal cost is evaluated by constructing approximate link performance functions based on 
DNL results. Unfortunately, because of their additivity assumption on PMC, severe 
deficiencies seem to exist in both methods, causing them fail to provide accurate path 
marginal costs even for simple networks. As we shall show later, although the additivity 
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assumption of PMCs seems to be a natural extension to that in the static case at the first 
glance, it turns out to be invalid in the dynamic case. 
 
In view of the drawbacks in the existing path-based SO-DTA studies, especially their PMC 
evaluation methods, this paper makes a thorough investigation of the path-based SO-DTA 
problem, including its formulation and solution procedures, with an emphasis on the 
evaluation PMCs. We  shall clarify misconceptions in current PMC evaluation methods, 
identify the associated difficulties and propose an improved PMC evaluation scheme for 
networks with a special structure. 
 
According to the definition, PMCs can be evaluated by adding an additional unit flow (i.e., a 
small flow perturbation) to the specific path flow and evaluate its impact on the total system 
cost. To avoid conducting DNL repeatedly, a natural simplification is to trace the propagation 
of the path flow perturbation over all the links and evaluate the travel cost change on all the 
links. The traditionally adopted additivity assumption assumes that the perturbation travels 
simultaneously with the additional unit of flow along the path. However, due to the bottleneck 
effect, this additivity assumption is actually not true because 1) for two sequential links or two 
successive links of a merge, the flow perturbation on the upstream link can not reach the 
downstream link as long as a queue is present on the upstream link; 2) for two sequential links 
of a diverge, the change in the inflow rate on the upstream link may not just affect the inflow 
rates of the downstream link on the perturbed path. I can also affect the inflow rates of other 
diverging branches as well. In view of the nature of these violations of additivity, a new PMC 
evaluation method for networks in monocentric cities (i.e., networks without diverges) can be 
designed by tracing the propagation of a path flow perturbation along the path (Note that at 
the current stage, our method excludes networks with diverges. Methods for more general 
networks with diverges will be reported elsewhere). This new PMC evaluation method can be 
embedded into the time-dependent minimal cost path (TDMCP) searching algorithm to find 
the time-dependent least marginal cost path, by replacing the link-traversal time in the 
compact STEN (Space-Time Extended Network) with the path flow perturbation propagation 
time lag. Many algorithms for solving equilibrium problems, such as the heuristic method of 
successive averages (MSA), can then be applied to solve the path-based SO-DTA problem. 
Through several numerical examples, we show that solving path-based SO-DTA models 
based on our new PMC marginal cost evaluation method can converge to results very close to 
analytical SO solutions. But the heuristic MSA algorithm based on the PMC evaluation 
method fails to converge to the analytical SO solutions. 
 
The remainder of this paper is structured as follows: Section 2 introduces the formulation of 
the path-based SO-DTA model. The optimal conditions that resemble Wardrop's second 
principle (Wardrop 1952) are provided and the importance of the PMC in solving path-based 
SO-DTA models is emphasized. The PMC evaluation problem is discussed thoroughly in 
Section 3, including the traditional additivity assumption, the deficiencies in the traditional 
evaluation method, as well as our new PMC evaluation method. Section 4 introduces the 
solution procedures for the path-based SO-DTA problem for mono-centric networks. The 
critical module of finding least marginal cost paths is also discussed. Computational results 
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and discussions are reported in Section 5, and Section 6 presents conclusions and future 
research directions. 

THE PATH-BASED SO-DTA MODEL 

We consider a general transportation network with multiple origin-destination (OD) flows. 
The whole study period  dT   is discretized into  T   intervals with length  δ  . We assume that  

dT   is long enough for all the traffic flows to clear the network. The goal of the model is to 
find the optimal departure time and path flow pattern such that the travel cost of the whole 
system including travel time cost and schedule delay cost is minimized. 
 
The following notations are used throughout this paper: 
 
 
a) Set notations 
 
 RS   set of OD pairs 
 Td   the whole departure time horizon, {1,2,..., }dT T=  

 Prs   set of routes connecting OD pair  rs   
 Ω  feasible set of path flows 
 
b) Indices 
 
 rs   OD pair, rs RS∈  
 p   route between OD pair rs , rsp P∈  
 t   index for departure time, dt T∈  
 
c) Variables to be determined 
 
 rs

ptf   flow entering path  rsp P∈   at time  t   
 f   path flow vector,  }{ rs

ptf=f   with dimension  || rs
RSrs PTn ∑= ∈   

 
d) Functions of path flow  f   
 
 )(frs

ptc   actual path travel time for flow entering path  rsPp ∈  during time t , which is a
unique mapping with respect to  f   

 )(frs
ptφ   generalized cost incurred by flow entering path  rsPp ∈   during time t , which

is a unique mapping with respect to  f   
 rs

tq   flow between OD pair  rs   departing during time t   
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e) Inputs and parameters 
 
 Qrs   total demand for OD pair  rs   during the study horizon 
 ( )sc t  schedule delay cost for travelers arriving at destinations during time t   
 st%  desired arrival time for travelers going to destination s ,  s

dt T∈%  
 sΔ  arrival time flexibility for travelers going to destination  s  , 0sΔ ≥  
 sα  unit cost of travel time for travelers going to destination  s , 0sα >  
 sβ  unit cost of schedule delay caused by the early arrival of travelers at destination

s  ,  0sβ >  
 sγ  unit cost of schedule delay caused by the late arrival of travelers at destination s , 

0sγ > . 
 
 
According to empirical data, s s sγ α β> >  (Small 1982), and we have the following 
relationships: 
 )]([)()( fff rs

pt
srs

pt
rs
pt ctcc ++= αφ , (3) 

 where the schedule delay cost function ( )sc t  is piecewise linear and can be represented by:  
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Using the defined path variables and functions, the SO-DTA problem optimizing both 
departure time and route choice can be formulated as the following minimization problem:   
 
[Model M1]    
 )()(min ff
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d
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Ω∈
 (5) 

subject to  
 d
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t
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TtRSrsqf
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∈∈∀=∑
∈

,,  (6) 

 RSrsQq rsrs
t

Tt d

∈∀=∑
∈

,(given)  (7) 

 drs
rs
pt TtKkRSrsf ∈∈∈∀≥ ,,,0 . (8) 

 
Note that for cases in which we do not consider departure time choice, the corresponding 
path-based SO-DTA model is similar to M1[(5)-(8)], except that we replace  )(frs

ptφ   in the 

objective function by  )(frs
ptc  , remove the constraints  rsrs

tTt Qq
d

=∑ ∈   and treat  rs
tq   as given. 

Namely, we have the following formulation:  
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]M2 Model[    
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t T rs RS p P

TC f c
∈Ω

∈ ∈ ∈

= ⋅∑ ∑ ∑f
f f  (9) 

 
subject to  

 d
rs
t

rs
pt

Pp

TtRSrsqf
rs

∈∈∀=∑
∈

,,(given)  (10) 

 drs
rs
pt TtKkRSrsf ∈∈∈∀≥ ,,,0  (11) 

 
Because of the similarity of these two models, our following discussions will only focus on 
the model optimizing both departure time and route choices, unless stated otherwise. 
 
As shown in Model M1 and M2, the feasible set in terms of path flows  }{ rs

ptf   is polyhedral, 
and the formulation itself is free of specific traffic dynamics models since the traffic dynamics 
is endogenously taken care of by the path cost mapping  )}({)( ffc rs

ptc=  . 
 
If we attach multipliers  rsμ   to constraints (7) and substitute constraints (6) into constraints 
(7), the Lagrangian of the model M1 is as follows:  
 )()(),( rs

pt
PpTt

rsrs

RSrs

fQTCL
rs

d

∑∑∑
∈∈∈

−+= μff μμμμ . (12) 

According to Karush-Kuhn-Tucker (KKT) conditions, the first-order necessary conditions of 
optimality for M1 are constraints (6) - (8) plus  tpsrf rs

ptf
Lrs

pt ,,,,0),( ∀=
∂

∂ uf   and  0),( ≥
∂

∂
rs
ptf

L uf  . 

Namely, 
 

 d
rsrs

rs
pt

rs
pt TtPpRSrs

f
TCf ∈∈∈∀=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

∂
∂ ,,,0)( μf  (13) 

 d
rsrs

rs
pt

TtPpRSrs
f

TC
∈∈∈∀≥−

∂
∂ ,,,0)( μf  (14) 

 RSrsQf rsrs
pt

PpTt rs
d

∈∀=−∑∑
∈∈

,0  (15) 

 drs
rs
pt TtKkRSrsf ∈∈∈∀≥ ,,,0  (16) 

 
To facilitate further discussion, we provide the mathematical definition for PMC below. 
 
Definition 1 (Path marginal cost) Given a specific path flow pattern  },,,{ rstpf rs

pt ∀=f  , 
the path marginal cost (PMC) for path  p   at time  t   represents the increase in the total 
system cost when the path inflow on  p   at time  t   is increased by one unit. Namely, 

 rs
pt

rs
p

rs
p

RSpRSrsT
rs

pt

rs
pt f

f

f
TCPMC d

∂

∑∑∑
=

∂
∂

= ∈∈∈
)()()(

fff
ττ

τ
φ

. (17) 
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Evidently, eqn (13) and eqn (14) convey the Wardrop second principle in terms of time-
dependent path marginal cost, i.e., at dynamic system optimum, the time-dependent marginal 
cost on all the paths actually used are equal and less than the marginal cost on any unused 
path. Consequently, if we can efficiently evaluate path marginal cost , , , ,rs

ptPMC r s p t∀ , 
algorithms for solving equilibrium problems may be applied to solve the SO-DTA problem, at 
least approximately1. 
 

PATH MARGINAL COST EVALUATION 

As shown in Sheffi(1985), the PMC in the static case is given by,  
( )( ) ( )rs rsa a

p a a a ap
a A a

dc xPMC c x x
dx

δ
∈

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑f  

where  ax   is the traffic flow on link  a , )( aa xc   is the corresponding link cost, and rs
apδ  is the 

path-link incidence indicator. Namely, the PMC is equal to the sum of the marginal cost of the 
links on that path. 
 
In the dynamic case, the evaluation of the PMC is much more complicated since path flows 
are not assigned to links simultaneously. However, for traffic dynamics models which do not 
consider queue spillback, such as the point queue, the exit flow function and the link 
performance function models, a decomposition scheme from path marginal cost to link 
marginal cost is still possible. To illustrate this, we further introduce the following additional 
notations: 
 
 aku  flow entering link  a   during time k   
 ua   link inflow vector { , }a ak du k T= ∀ ∈u   
 akc   link travel time for flow entering link  a  during time k  
 s

ku   flow arriving at destination  s  during time k   
 
For traffic dynamics models not considering link interactions,  akc   is uniquely determined by 

the inflow pattern ua  on link a . Hence, we can treat akc  as a function of ua , i.e., 
( )ak ak ac c= u . The total travel cost ( )TC f  can then be written as follows:  

 ( ) ( ) ( )
d d

s s
ak ak a k

a Ak T s S k T

TC u c u c k
∈ ∈ ∈ ∈

= +∑∑ ∑∑f u  (18) 

                                                 
1Since ( )rs

ptφ f  does not have an explicit functional form, its convexity property is unknown. Hence, the KKT 

condition may not be sufficient to guarantee a global optimal solution.  
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Substituting eqn (18) into eqn (17), we get  
 

 

( ) ( )
( )

( ) ( )

d d

d d

s s
ak ak a k

a A k T s S k Trs
pt rs rs

pt pt

s s
ak ak a k

k T k T
rs rs

a A s Spt pt

u c u c k
PMC

f f

u c u c k

f f

∈ ∈ ∈ ∈

∈ ∈

∈ ∈

∂ ∂∑ ∑ ∑ ∑
= +

∂ ∂

∂ ∂∑ ∑
= +

∂ ∂∑ ∑

u
f

u
  

Using chain rule, we obtain the following relationship, 

 

( ) ( )
( )

( )
( )

d d

d

d d

s s
ak ak a k

k T k Trs
pt rs rs

a A s Spt pt

sak ak a
k T sa

rs rs
a A T s S Ta pt pt

u c u c k
PMC

f f

u c u uc
u f f

τ τ

τ ττ

τ

∈ ∈

∈ ∈

∈

∈ ∈ ∈ ∈

∂ ∂∑ ∑
= +

∂ ∂

∂ ∑⎛ ⎞∂ ∂⎜ ⎟= +
⎜ ⎟∂ ∂ ∂
⎝ ⎠

∑ ∑

∑ ∑ ∑ ∑

u
f

u  (19) 

 
Before proceeding further, let us introduce two additional definitions to facilitate the 
discussion: 
 
Definition 2 (Link marginal cost) Given a specific link inflow pattern  { , }a ak du k T= ∈u   
for link  a  , the link marginal cost for link  a   at time  τ   represents the change in the total 
link cost when the link inflow at time  τ   is increased by one unit. Namely 
 

 
( )

( ) : , ,d
ak ak a

k T
a a d

a

u c
LMC a A T

uτ
τ

τ∈
∂ ∑

= ∀ ∈ ∈
∂

u
u  (20) 

 
Definition 3 (Path flow perturbation propagation index) Given a specific path flow 
pattern  f   and the corresponding link inflow pattern  u  , the path flow perturbation 
propagation index  ( )t

aprsInd τ f   represents the change in the inflow of link  a   at time  τ   when 
the path flow at time  t   is increased by one unit. Namely, 

 ( )t a
aprs rs

pt

uInd
f

τ τ∂
=

∂
f  (21) 

 
Using Definition 2 and 3, the PMC formula can be simplified as follows: 
 
 ( ) ( ) ( ) ( ) ( )

d d

rs rst s rst
pt a a ap sp

a A T s S T

PMC LMC Ind c Indτ τ
τ

τ τ

τ
∈ ∈ ∈ ∈

= +∑∑ ∑∑f u f f  (22) 

 
According to Equation (22), PMC for traffic dynamics models without queue spillback can 
still be regarded as additive as long as the path flow perturbation propagation is correctly 
captured. 
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The following two subsections discuss how to evaluate link marginal cost  ( )aLMC τ f   and 
path flow perturbation propagation index  ( )rst

apInd τ f  . 

Evaluation of link marginal cost ( ( )aLMC τ f ) 

As mentioned earlier, existing methods of evaluating  )( aatLMC u   include Ghali and Smith 
1995 and Peeta and Mahmassani 1995. Ghali and Smith (1995) provides a sound analytical 
formulation for LMCs based on the link cumulative curves for the point queue model. 
Suppose the cumulative curves at the downstream bottleneck of link  a   are what depicted in 
Figure 2, where  sT   is the time when the queue begins to form,  eT   is the time at which the 
queue vanishes, and  fT   is the link free flow travel time. If  [ , ]f s eT T Tτ + ∉  , i.e., the 
additional flow unit will not encounter a queue on the link, the LMC is equal to the free flow 
travel time of one flow unit; when the bottleneck is active, the LMC (the thick portion of line 
in Figure 12) includes the travel time of that additional flow unit ( ( )f fT c Tτ+ + ) and the 
incurred delay of later arrival flows ( [ ( )]e f fT T c Tτ τ− + + + ).  
 

 
Figure 1.  Ghali and Smith (1995)’s link marginal cost evaluation method 

 
Namely, 
 

 
 if [ , ]

( )
( )  if [ , ]

f f s e

a a f e f e f s e

T T T T
LMC

T T T T T T Tτ
τ

τ τ τ
⎧ + ∉

= ⎨
+ − + = − + ∈⎩

u  (23) 

                                                 
2 Using cumulative curves, the total link delay is the area between the arrival curve and departure curve. Hence, the incurred 
delay is the extra area due to the change in the curves. 
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Peeta and Mahmassani (1995) approached this problem based on a different idea. They 
assume that the link travel time  cat   for a vehicle entering link  a   during time τ   is only 
determined by the link inflow rate at time  τ  , namely, ( ),ak ak ak dc c u k T= ∀ ∈ . Then LMC can 
be simplified as follows:  

 

( ) ( )( )

( )( )

dk T ak ak ak a a a
a a

a a

a a
a a a

a

u c u u c uLMC
u u

dc uc u u
du

τ τ τ
τ

τ τ

τ τ
τ τ τ

τ

∈∂∑ ∂
= =

∂ ∂

= +

u
 (24) 

where  au τ   and  ac τ   are obtained from the DNL results (by traffic simulator 
DYNASMART). The link performance function (LPF) ( )a ac uτ τ   is constructed approximately 

to numerically obtain  ( )a a

a

dc u
du
τ τ

τ
, based on the loading results of  , 1 , 1( , )a au cτ τ− − ,  , ,( , )a au cτ τ , and  

, 1 , 1( , )a au cτ τ+ + . The major deficiency of this LPF model is that its link travel time for a vehicle 
entering link a  at time τ  is solely determined by the link inflow rate at time τ . This 
underestimate link travel time when the link is congested.  
 
In the development of our PMC evaluation procedure, we adopt Ghali and Smith's method as 
applied to the point queue model, because we believe that the point queue model is a 
reasonable comprise between mathematical tractability and  realism in capturing the main 
form of congestion: queuing at bottlenecks (see Nie and Zhang 2005a,b for a comparison of 
several link models used in dynamic traffic assignment and an in-depth analysis of the delay-
function based link model).  

Tracing the path flow perturbation ( ( )rst
apInd τ f ) 

The problem of tracing the path flow perturbation seems to be neglected in most existing 
path-based SO-DTA studies. Researchers (e.g., Ghali and Smith (1995), Peeta and 
Mahmassani (1995), etc. ) simply assume that the path flow perturbation travels along the 
path at the same speed as that of the additional flow unit. In other words, they assume that  

, , , , ,rst rst
ap ap rs d dInd a A rs RS p P t T Tτ τδ τ= ∀ ∈ ∈ ∈ ∈ ∈  

where rst
ap

τδ  is the dynamic path-link incidence indicator, i.e., rst
ap

τδ = 1 if traffic departing 
origin r  at time t  heading for destination on path rsp P∈  arrives link a during time τ , and 0 
otherwise. Correspondingly,  
 ( ) ( ) ( ) ( ) ( )

d d

rs rst s rst
pt a a ap p

a A T s S T

PMC LMC cτ τ
τ

τ τ

δ τ δ
∈ ∈ ∈ ∈

= +∑∑ ∑∑f u f f . (25) 

For narrative convenience, this PMC evaluation method is referred to as the link traversal 
time(LTT) method hereafter. Unfortunately, as we shall see in the following discussion, this 
assumption is actually NOT true in the dynamic case due to bottleneck restrictions. We 
demonstrate this claim by showing in three simple example networks how path flow 
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perturbation propagates along two sequential links, through a merge, and through a diverge, 
respectively. 
 
1) Propagation of a path flow perturbation in two sequential links 
 
To examine the propagation of a path flow perturbation along two sequential links, let's look 
at the following small example network (Figure 2). 
 

 
Figure 2.  Illustration network I with two sequential links 

 
The illustration network in Figure 2 contains two links, 1 and 2,  and each link has a 
bottleneck at its downstream end. The capacities of the bottlenecks at links 1 and 2 are  1c   
and  2c  , respectively, and free flow travel times of links 1 and 2 are  1

ft   and  2
ft  , 

respectively. During time  ],0[ T  , vehicles enter the network from link 1 at a constant flow 
rate q . We assume that  21 ccq >>  . Obviously, queues will develop at both bottlenecks. The 
cumulative curves for these two links are illustrated in Figure 3, where 1

et  and 2
et  represent the 

respective times that the queues on link 1 and link 2 vanish, and  N  is the total number of 
vehicles. 
 

 
Figure 3.  Cumulative curves for illustration network I 

 
 

According to the cumulative curves in Figure 3, the vehicle entering link 1 at time  ],0[1 dTt ∈   
will enter link 2 at time 2t  and leave at time 3t  . Suppose we want to evaluate the propagation 
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of the path flow perturbation at time t1  and to calculate )(
1

ftPMC 3,  ],0[1 Tt ∈  . To simplify 
the discussion, no schedule delay cost is considered. Based on the definitions, both the 
propagation of the flow perturbation and the PMC can be evaluated by constructing the new 
cumulative curves for links 1 and 2 with an additional flow unit entering link 1 at time 1t  
(Figure 4). 
 
According to Figure 4, the propagation of the flow perturbation cannot arrive at the same time 
when the additional unit of flow enters link 2. Instead, the perturbation reaches link 2 at the 
time when the queue on link 1 dissipates. Namely,  
 

 
Figure 4.  Path marginal cost for illustration network I 

 
 

 1 1

1
1

1 2

1  if 1  if 
,

0  otherwise 0  otherwise
t t et t

Ind Indτ τ
τ τ= ⎧ =⎧

= =⎨ ⎨
⎩ ⎩

  

Figure 4 also shows that the additional cost incurred on link 1 and link 2 are  1
1 tte −   and  

12
ee tt −  , respectively. Hence, 

 

1
2

12
1

1

,2,1

)()(

)()()( 1
11

tt

tttt

LMCLMCPMC

e

eee

ttt
e

−=

−+−=

+= fff

 (26) 

where 3 1t t−  is the cost incurred by the marginal user and 2
3et t−  is the cost imposed on others.   

However,  

 1 11 2
1 2

1  if 1  if 
,

0  otherwise 0  otherwise
t t

t t
τ τ

τ τ
δ δ

= =⎧ ⎧
= =⎨ ⎨

⎩ ⎩
  

 
                                                 
3Note that in this simple network, since there is only one OD pair  1 3−   and one path, the OD pair index rs and 
path index p is omitted for PMC; the same for Ind . 
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Hence, the LTT method yields  

 
1 1 2

1

1, 1 2, 2

1 2
1 2

( ) ( ) ( )

( ) .

t t t

e e

t

PMC LMC LMC

t t t t
PMC

′ = +

= − + −

>

f u u

f
 (27) 

Equations (26) and (27) show that )(
1

ftPMC   is larger than 
1
( )tPMC′ f    by  )( 2

1 tte − . In other 
words, the LTT method tends to overestimate the PMC for two sequential links in this simple 
network. The reason of the overestimation is that the path flow perturbation actually travels 
more slowly than the additional flow unit in two sequential links because of the capacity 
restriction at bottlenecks. More specifically, in the above simple network, the perturbation 
caused by an additional unit flow entering link 1 at time 1t  will not propagate onto link 2 so 
long there is a queue present on link 1.  
 
2) Path flow perturbation propagation through a merge 
 
How the path flow perturbation propagates through a merge is similar to the case of two 
sequential links. Again, we illustrate this by a simple network example (Figure 5). 
 

 
Figure 5.  Illustration network II with a merge 

 
The network consists of three links, 1, 2 and 3, and each has a bottleneck with capacity  

3,2,1, =ici   at its downstream end. The link free flow travel times are 3,2,1, =it i
f  , 

respectively. During time  ],0[ T  , vehicles enter the network from links 1 and 2 at constant 
flow rates 14q  and 24q , respectively. We further assume that 21

ff tt = , 114 cq > , 
,224 cq > 224114 // cTqcTq =  , and 1 2 3c c c+ >  . 

 
Since  114 cq > , 224 cq >  , there will be queues at both bottlenecks of links 1 and 2. Because  

21
ff tt =   and  224114 // cTqcTq =  , the inflow rate of link 3 will be  21 cc +   from time  1

ft   (or  
2
ft  ) to time  1

114
1 / fe tcTqt +=   (or  2

224
2 / fe tcTqt +=  ). Since  321 ccc >+  , a queue will also 

develop at the bottleneck of link 3. Figure 6 shows the cumulative curves for the three links. 
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According to the cumulative curves, the vehicle entering link 1 at time  ],0[1 Tt ∈   will enter 
link 3 at time  2t  . We now evaluate  )(14

1
ftPMC   by tracing the path flow perturbation in the 

network 4. The new cumulative curves with an additional one unit of inflow at time  1t   as 
well as the additional costs incurred in all the links are shown in Figure 7. 
 
Just like the case with two sequential links, the path flow perturbation will arrive at link 3 at 
time t e

1  when the queue on link 1 dissipates. Namely,  

 
1 1 1

1
11 2 3

14 14 14

1  if 1  if 
, 0 ,

0  otherwise 0  otherwise .
e

t t t

t t
Ind Ind Ind

= ⎧ =⎧
= = ∀ =⎨ ⎨

⎩ ⎩
τ τ ττ τ

τ   

Hence, the additional cost in link 1 and link 3 are  1
1 tte −   and  13

ee tt −  , respectively. Namely, 
 1

313
1

1 )()(14

1
ttttttPMC eeeet −=−+−=f .  

Again,  14 '14

1 1 1 2

1 3
1, 1 3, 3 1 2( ) ( ) ( ) ( )t t t t e ePMC PMC LMC LMC t t t t< = + = − + −f f u u  .  

 
 

 

 
Figure 6.  Cumulative curves for illustration network II 

 
 
                                                 
4 Since there is only one path for each OD pair, the path index p is omitted for PMC ; the same for  Ind .  



 342   Transportation and Traffic Theory 17 
 
 

 

 
Figure 7.  Path marginal cost for illustration network II 

 
 
3) Path flow perturbation propagation through a diverge 
 
How the path flow perturbation travels through a diverge is different from the cases of 
sequential links and of a merge. We use the following network (Figure 8) to illustrate this. 
 

 
Figure 8.  Illustration network III with a diverge 

 
 
The network is made up of three links 1, 2 and 3 with bottleneck capacities  3,2,1, =ici   and 
free flow travel time  3,2,1, =it i

f  . During time  ],0[ T  , vehicles originated from node 1 and 
heading to node 3 enters link 1 at a constant rate  13q  , and vehicles originated from node 1 
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and heading to node 4 enters link 1 at a constant rate  14q  . We further assume that  

312111413 1413

14

1413

13 ,, cccccqq qq
q

qq
q >>>+ ++  , and thus queues will develop on all the three links. 

Figure 9 shows the cumulative curves of all the three links. 
 
According to the cumulative curves, the vehicle entering link 1 at time  ],0[1 Tt ∈   and 
heading to node 3 will enter link 2 at time  2t  . Again, we want to evaluate  )(13

1
ftPMC 5 . First 

we draw the cumulative curves when there is an additional unit flow heading to node 3 at time  
1t   (Figure 10).  

 

 

 
Figure 9.  Cumulative curves for illustration network III  

 
 

The new cumulative curves show that the perturbation of the flow on the path made up of 
links 1 and 2 will not only cause flow surge on links 1 and 2 , but also affect the inflow rates 
on link 3. A quick calculation shows that ττ 2

13,
1

13, 11
, tt IndInd   and  τ3

13,1t
Ind   satisfies the following 

relationships: 

1 1 1

2
1 21 2 3 1

,13 ,13 ,13

1 if 
1  if 1 if 

, , 1 if 
0  otherwise 0 otherwise

0  otherwise
t t t e

t
t t

Ind Ind Ind tτ τ τ

τ
τ τ

τ
− =⎧

= =⎧ ⎧ ⎪= = = =⎨ ⎨ ⎨
⎩ ⎩ ⎪

⎩

 

                                                 
5Note that since there is only one path for each OD pair, the path index p is omitted for PMC; the same for Ind . 
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Figure 10.  Path marginal cost for illustration network III 
 
 

Consequently, the additional cost incurred links 1, 2 and 3 are  11 tte − , 2
2et t− , and  1

2( )et t− −  , 
respectively, and the path marginal cost is as follows:  

 1

1 2 1
12, 1 2 2

2
1

( ) ( ) ( )t e e e

e

PMC t t t t t t

t t

= − + − − −

= −

f
  

which is still larger than  
1 1 2

' 1 2
12, 1, 1 2, 2 1 2( ) ( ) ( )t t t e ePMC LMC LMC t t t t= + = − + −f u u   by  2

1 tte −  .  
 
Based on the analyses in three simple networks, we can see that the path flow perturbation 
may not travel along with the additional vehicle at the same speed, because on the upstream 
link the marginal vehicle already slightly delayed the vehicles joining the queue later. 
Summing the link marginal cost along the time-space path of the marginal vehicle omits this 
“knock-on” costs that persist after the marginal vehicle has exited from the queue. In fact, for 
networks without diverges, the perturbation will actually reach the corresponding downstream 
link at the time that the queue on the upstream link vanishes. For the network with a diverge, 
the conditions are far more complicated since the path flow perturbation also affects links that 
are not on the path.  
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A new path marginal cost evaluation method for networks without diverges 

The previous discussions on the evaluation of PMC reveals a major deficiency in the existing 
evaluation methods, i.e., the problematic assumption that the path flow perturbation will 
travel at the same speed as the additional unit of flow. In this subsection, we present a new 
path marginal cost evaluation method for networks in mono-centric cities, i.e., networks 
without diverges. The method for more general networks with diverges is much more 
complicated and will be reported elsewhere. 
 
As we have demonstrated earlier, to evaluate PMCs, we need to keep track of the path flow 
perturbation propagation on links. We now articulate this point in a mathematical manner. 
Suppose a path p  is made up of m  links 1, ma aK . Denote  )(td

ia   as the actual time that the 

perturbation of the path flow departing at time  t   reaches link  ai , and ( )sd t  as the time that 
the perturbation reaches the destination s , we have the following relationship: 
 

 
1  if ( ) 1  if ( )

( ) [1, ], ( )
0  otherwise0  otherwise

i

i

a srst rs t
a p p

d t d t
Ind i m Indτ τ

τ τ=⎧ =⎧⎪= ∀ ∈ =⎨ ⎨
⎪ ⎩⎩

f f  (28) 

 
Substituting these relationships into the PMC formula (23), we get: 
 

 )]([)()( )(,
1

tdcLMCPMC s
s

atda

m

i

rs
pt iiai

+= ∑
=

uf  (29) 

 
Namely, the PMC can still be regarded as "additive" according to the actual time that the path 
flow perturbation reaches link  ai  . We refer to this new PMC evaluation method as the path 
propagation time(PPT) method. 
 
Based on DNL results,  ( )

iad t   can be derived by the following recursive relationships: 
 

ttda =)(
1

   
mitdwtd

iii aaa ,,2)],([)(
11

K==
−−

 (30) 
)]([)( tdwtd

mm aas =   
 
where  )(tw

ia  is the earliest time after  
ia tt c+   when the queue on link  ia   vanishes. 

Evidently, ( ) ( )
i i ia a t aw t t LMC= + u . Below is a numerical procedure for deriving ( )aw t  (and 

( )at aLMC u  as well) from cumulative curves:  
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 [Algorithm 1] 
 
Step 0: Preprocessing: Perform a DNL and obtain the time dependent link traversal times  

, ,at dc a A t T∀ ∈ ∈  ; 
Step 1:  Deriving  )(twa  and ( )at aLMC u  

for  Aa ∈   
for  0t =   to  Td    
          let tτ =  

if  f
at ac t> (free flow travel time) , set  1+= tt  ;endif;  

( )a atw t cτ = + , ( ) ( )a a aLMC wτ τ τ= −u ;  
endfor  

endfor 
 

In summary, to evaluate the path marginal cost for a specific path and a specific departure 
time, we check from the first link of the path. If there is no queue present when the additional 
unit flow reaches the link's bottleneck, the path flow perturbation will enter the second link 
simultaneously with the additional flow unit; otherwise, the path flow perturbation will enter 
the second link at the time when the queue on link 1 vanishes. The same procedure is repeated 
for successive links till we reach the destination. 
 

A SOLUTION SCHEME FOR THE PATH-BASED SO-DTA 
MODEL 

The heuristic MSA algorithm 

Once PMCs are available, we can transform the path-based SO-DTA model into an 
equilibrium problem and solve it using solution methods for variational inequalities. It is well 
known that equilibrium conditions like the first order optimality conditions of the path-based 
SO-DTA model can be transformed into the following variational inequality (VI). 
 
 Ω∈∀≥− ∗∗

∈∈∈
∑∑∑ ff ,0])[( rs

pt
rs
pt

rs
pt

PpRSrsTt

ffPMC
rs

d

 (31) 

 
where  Ω   is a polyhedron defined by constraints (15) and (16). 
 
Since Friesz et al. (1993) and  Smith (1993) proposed the VI formulation for the predictive 
dynamic user equilibrium traffic assignment problem, the solution algorithms to this type of 
dynamic equilibrium problems in transportation have been studied extensively, and many are 
suggested, including heuristic algorithms (e.g., Tong and Wong 2000, Huang and Lam 2002, 
etc.), projection-type algorithms (e.g., Wu et al. 1998, Facchinei and Pang 2003, etc.), and 
algorithms based on ascend directions (e.g., Zhu and Marcotte 1993, etc.). Since the 
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comparison of the performance of different algorithms is beyond the scope of this paper 
(interested readers may refer to Nie and Zhang 2005 for detailed comparisons), in this study, 
we adopted the heuristic MSA algorithm to solve the path-based SO-DTA problem. 
 
We describe the complete steps of the MSA algorithm for solving the path-based SO-DTA 
problem in networks in mono-centric cities as follows: 
 
[Algorithm 2] 
 
Step 0: Select an initial path flow pattern  0f   and set the iteration index  0=k  ; 
Step 1: Load  kf   into the network; 
Step 2: For all  RSrs ∈  , search for the time-dependent path  ],[ ∗∗ tp   with the least marginal 

cost, i.e.,  
,

[ , ] arg min ( )
rs

d

rs
ptp P t T

p t PMC∗ ∗

∈ ∈
= f  ; 

Step 3: Obtain the auxiliary path flow pattern  )( kfg   by assigning all the demands  
RSrsQrs ∈∀,   onto  ],[ ∗∗ tp  ; 

Step 4: Set  k/1=λ   and update the solution by setting  )()1( kk1k fff gλλ +−=++++  ; 
Step 5: Check if  1kf ++++   satisfies the convergence criterion. If yes, stop; otherwise, set  

1+= kk   and return to step 1. 

The searching algorithm for time-dependent least marginal cost path 

One major step in the above heuristic MSA algorithm is to search for the time-dependent least 
marginal cost path. Algorithms searching for time-dependent shortest paths have been studied 
for a very long time. Many algorithms, such as algorithms based on extensions of static 
shortest path algorithms(Ziliaskopoulos and Mahmassani 1993), algorithms based on 
decreasing order of time (DOT) (Chabini 1998), algorithms based on space-time network 
expansion (STEN) (Pallottino and Scutell 1998), have been proposed, among which, the DOT 
algorithm by Chabini (1998), was proven to have the least computational complexity. Our 
time-dependent least marginal cost path searching algorithm is developed based on the DOT 
algorithm. Modifications are made to the original DOT algorithms to take care of the correct 
path perturbation propagation. We resort to the STEN to illustrate our modifications to DOT. 
 
It is well recognized that searching for the time-dependent shortest path is equivalent to 
searching for the minimal cost path in the STEN (either fully expanded or compacted). For 
example, suppose we have a simple network as illustrated in Figure 11, the corresponding 
time-space expansion network is shown in Figure 12. The time-dependent nodes are 
connected to adjacent nodes according to the time-dependent link traversal times. In our case 
of searching for the time-dependent least marginal cost path, however, the transitions between 
links are not according to atc  but ( )aw t t−  instead. Therefore, each link  [( , ), ( , )ijti t j t c+   in 
the original STEN is replaced by  ))](,(),,[( twjti ij  . For instance, for the simple network 
shown in Figure 13, the original links  12[(1, ), (2, )]tt t c+   and  23[(2, ), (3, )]tt t c+   (the solid 
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lines) are replaced by links  ))](,2(),,1[( 12 twt   and  ))](,3(),,2[( 23 twt   (the dashed links), 
respectively. Once this change is made, the DOT algorithm can still be applied to solve for the 
least marginal cost path problem. 
 
 

 
 

Figure 11.  An illustration network for constructing a STEN 
 
 

 
Figure 12.  The space-time expansion network  
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For completeness, we present our least marginal cost path searching algorithm as follows: 
 
[Algorithm 3] 
 
Step 0: Preprocessing: derive  ( ) and ( ), ,a at a dw t LMC a A t T∀ ∈ ∈u  using Algorithm 1; 
Step 1: Initialization: set  sitDi ≠∀∞= ,)(   and  TttDs <∀= ,0)(  , where  s   denote a 

destination node. Set  ttps ∀= ,0:)(  ; 
Step 2: Set  =:)(TDi   the static shortest path tree rooted at  s   with all costs defined by  

)(Tcij  . Furthermore, note that  TtTDtD ii ≥∀= ),()(  ; 
Step 3: for 1−= Tt   down to  0  

  for  Aji ∈),(    
if  )]([)()( twDtLMCtD ijjiji +>  ;   

( ) : ( ) [ ( )]i ij j ijD t LMC t D w t= + ;   
],[:)]([ titwp ijj =  ;  

endif  
endfor  

endfor 

NUMERICAL RESULTS 

In this section, we first validate the PPT method by comparing the PMCs generated by the 
PPT method with those by performing DNL repeatedly. Next, we give two numerical 
examples to demonstrate how the proposed algorithm for path-based SO-DTA models 
perform. All the algorithms are coded in MS-VC++ and run on a Windows-XP PC (Intel 
Pentium M 1.60 GHz, 768 MB of RAM) . 

Numerical validation of the PPT method 

The test network, shown in Figure 13. , consists of two sequential links. The demand pattern 
shown in Figure 14 is loaded onto the network. The PMCs corresponding to each time 
interval by the PPT method is depicted in Figure 15. For comparison, the numerical PMC 
generated by performing a DNL with a perturbed path flow pattern is also depicted. As shown, 
the PPT method produces results very close to the numerical PMC evaluation results 
especially when the amount of perturbed flow in the DNL method gets smaller.  
 

 
Figure 13. Test network for the PPT method validation 
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Figure 14.  Demand pattern for the test network 

 

 
Figure 15.  PMCs calculated by different methods 

 

SO-DTA Numerical Example I 

To demonstrate how the prediction of path flow perturbation propagation affects the accuracy 
of the final system optimum solution, an example network which contains two routes in 
parallel (Figure 16) is constructed. To simplify the discussion, in this example we only focus 
on the system optimal route choice, and the time-dependent departure rates are assumed to be 
given. The free flow travel times of route 1 and route 2 are 60 min and 12 min respectively. 
Vehicles depart from the origin at a constant departure rate 3000q =  veh/hr for one hour. 
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Route 1 does not have any bottleneck. Three scenarios which differ from each other in the 
number of bottlenecks on route 2 are designed. The capacity characteristics of the three 
scenarios are summarized in Table 1. We expect that the more bottlenecks on a route, the 
larger error incurred by the deficient PMC evaluation method. 
 
 

 

 

 
 

Figure 16.  Example network I 
 
 

Before presenting the numerical results, we first derive the analytical solution for this 
example network. In all the three scenarios, the smallest bottleneck is the one that locates at 
the downstream end of route 2, which controls the travel time on route 2. Hence, the 
analytical SO solution in terms of the route choice pattern for all the scenarios are actually the 
same. Hence, it suffices to derive the analytical solution for one scenario (scenario I, for 
instance). 
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Table 1.  Network characteristics 

route 1 no bottleneck, 60 minft =  Scenario I 
route 2 bottleneck I: 12min, 1500veh/hrft s= =  

route 1 no bottleneck, 60 minft =  
bottleneck I: 6 min, 2000veh/hrft s= =  

Scenario II 
route 2 

bottleneck II: 12min, 1500veh/hrft s= =  

route 1 no bottleneck, 60 minft =  
bottleneck I: 4.8min, 2000veh/hrft s= =  

bottleneck I: 8.4 min, 1800veh/hrft s= =  

Scenario III 

route 2 
bottleneck II: 12min, 1500veh/hrft s= =  

 
 
As we know, at system optimum the PMCs are the same on utilized paths. Since route 1 
always operates at the free flow condition,  60)(,1 ≡ftPMC  min  t∀  . According to the 

optimality conditions, we must have the following relationship (where  ∗t   is the last time that 
vehicles enter route 1):  
 ∗−=== ∗∗ tTPMCPMC e

tt ,2,1 min60  (32) 

 
From time  ∗t   to  60=T  min, the inflow rate on route 2 will always be  3000  veh/hr and the 
inflow rate on route 1 will always be  0  . From time  0   to time  ∗t  , it is obvious that route 2 
will move as much vehicles as possible. However, once the inflow rate on route 1 exceeds its 
capacity  1500=s  veh/hr, its path marginal cost will be larger than the path marginal cost on 
route 1 since  60)(,1 =−>−= ∗tTtTPMC ee

t f  min. Consequently, at system optimum, the 

inflow rate on route 2 during time  ],0[ ∗t   should be equal to its capacity  1500=s  veh/hr, 
and the inflow rate on route 1 is equal to  150015003000 =−  veh/hr. Now we only need to 
determine  eT   and  *t  . 
 
Since the queue on route 2 start to build up from time 12t∗ +  min. we have the following 
relationship for t∗  and  Te  :  

 )]12([
60

1500)60(
60

3000
+−=− ∗∗ tTt e  (33) 

 
Based on eqn (32) and eqn (33), we get  36=∗t  min, and  96=eT  min. In summary, the 
system optimal route choice for this example is as follows: 
 
 veh/hr1500)(,veh/hr1500)(:]min36,0[For 21 == tdtd   

veh/hr3000)(,0)(:]min60,min36[For 21 == tdtd   
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Both the PPT and LTT methods are applied and combined with the heuristic MSA algorithm 
to solve the SO-DTA problem. The convergence curves for both methods in the three 
scenarios are depicted in Figures 17 and 18. 
 

 
Figure 17.  Convergence curves for the algorithm based on the PPT method 

 
 

 
Figure 18.  Convergence curves for the algorithm based on the LTT method 

 
 
From Figures 17 and 18 we can see that the objective function, i.e., the total system cost, stop 
decreasing after about 100 iterations. Table 2 lists the total system cost for both methods in 
the three scenarios. Figures 19 and 20 visualize the resulting route choice pattern for both 
methods. All these solutions are obtained after performing 500 iterations of the corresponding 
algorithm. 
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Figure 19.  Numerical solutions based on the PPT method 
 
 

As we can see from Table 2, and Figures 19 and 20, in scenario I the numerical solutions 
based on both the PPT and LTT methods are identical and very close to the analytical 
solution. This is not a surprise because when there is only one bottleneck on route 2, the 
PMCs and LMCs are identical. In scenarios II and III, the PPT method can still achieve very 
good accuracy compared to the analytical solution, while the numerical solutions based on the 
LTT method have distinct deviations from the analytical solution. Nevertheless, we should 
point out that the PMC becomes discontinuous at the point where a queue just starts to form, 
and this slightly changes the convergence pattern near the optimal solution. A more rigorous 
treatment of this problem should apply variational analysis theory to obtain the subgradients 
at these points. With the subgradients, a more accurate solution procedure can be developed to 
solve the path based SO-DTA problem. Due to space limitations, the variational treatment of 
this problem will be reported elsewhere. 
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Figure 20.  Numerical solutions based on the LTT method 
 
 

Table 2.  Total system cost (Hrs) 
Scenario PPT LTT 

Scenario I 1597.92 (102.43%) 1597.92 (102.43%) 
Scenario II 1601.38 (102.65%) 1631.69 (104.60%) 
Scenario III 1584.04 (101.54%) 1623.04 (104.04%) 

Analytical solution 1560 1560 
 

SO-DTA Numerical Example II 

The second numerical example is designed to test whether the heuristic MSA method based 
on the PPT method can generate an accurate system optimal departure time pattern. The test 
network contains only one link (Figure 21) and our main objective is to derive the system 
optimal departure time pattern. The link free flow travel time is  10=ft  min, and there is a 
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bottleneck with capacity  1800=s  veh/hr at the downstream end of the link. The total 
demand is  1500  veh. The desired arrival time is  00:7~ =t  am. The schedule delay 
parameters are  2.1,8.0,1,0 ====Δ γβα  . 
 

 
 

Figure 21.  Example network II 
 
 
Similar as before, we first derive the analytical SO solution for this example. 
 
In order to achieve minimal system cost, it can be easily shown that whenever there are 
commuters traversing the bottleneck, no queue is present and the bottleneck serves at its 
capacity. Namely, during the morning peak, the system optimal departure rate is always 
constant and equal to  s  . Consequently, it suffices to only determine the starting time  t s   and 
ending time  t e   of the departure process, which can be obtained via solving the following 
optimization problem:  

 sdttttsdttttNTC ft

tt

ftt

ttt

e

f

f

ses

]~)[()](~[)(min ~

~

},{
−+++−= ∫∫ −

−
γβ   
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 sttN se )( −=   
 tttttt f

e
f

s
~,~ ≥+≤+ .  

 
The optimal solution is as follows:  

 am20:6~ =
+

−−=
s
Nttt f

s γβ
γ  (34) 

 am10:7~ =
+

+−=
s
Nttt f

e γβ
β  (35) 

 veh/hr1800)( rate Departure == sta . (36) 
 
The convergence patterns for both methods are very similar to those in numerical example I 
and hence are not shown here. We only show the optimal departure time choice patterns 
obtained based on both methods in Figure 22 (t = 0 corresponds to the time 6:00 am), in 
comparison with the analytical solution computed directly from eqn (34) - eqn (36). 
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Figure 22.  Numerical solutions based on both PPT and LTT methods 

 
 

As we can see from the results, the heuristic MSA algorithm based on the PPT method still 
converges to the analytical solution while the same algorithm based on the LTT method 
cannot. This is understandable because in the LTT method, its deficiency in predicting the 
propagation of path flow perturbation yields inaccurate marginal schedule delay at the 
destination D . 

CONCLUSIONS 

In this paper we have studied the path-based SO-DTA problem with an emphasis on its first-
order optimality conditions and the computation of its path marginal costs. Through a series 
of examples, we demonstrated that path marginal costs are not simple additions of the 
corresponding link marginal costs unless the flow perturbation travels with the vehicle unit 
that initiated the perturbation. We further show that one can compute efficiently path marginal 
costs for networks with a special structure (i.e., no diverges), and proposed an evaluation 
method that decomposes PMCs to LMCs for such networks. This decomposition scheme 
involves two major tasks: 1) the evaluation of LMC and 2) the trace of the path flow 
perturbation through the network. The former is accomplished with the assistance of 
cumulative flow diagrams, and the latter with DNL. Finally, we employed the method of 
successive averages with a modified time-dependent minimum cost algorithm to solve the 
SO-DTA problem for a mono-centric network.  
 
Our preliminary numerical results indicate that 
 
1) The proposed heuristic MSA algorithm based on our path marginal cost computational 
procedure can generate numerical solutions very close to analytical solutions for SO-DTA 
problems with and without departure time choice.  
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2) On the other hand, the heuristic MSA algorithm based on the path marginal cost 
computational procedure that directly sums up link marginal costs, fails to converge to the 
analytical solutions when there are more than one bottleneck on the path, or the problem 
involves departure time choice, because this path marginal cost evaluation procedure does not 
correctly track the path flow perturbation. 
 
It should be pointed out that our proposed algorithm for solving path-based SO-DTA models 
has its own limitations. At present the method can be applied to networks without diverges 
and the embedded traffic flow models are restricted to those not considering queue spillback. 
The relaxation of either aspect may bring in additional challenges in predicting path flow 
perturbation propagation and is worth further investigation. Moreover, the path cost mapping 
under certain traffic flow models may not be convex or even continuous, hence the KKT 
optimality conditions may not be sufficient to guarantee a global optimum solution when such 
models are used to describe traffic evolution. Finally, the computational efficiency of this 
method when applied to medium or large size networks is also worthy of a careful study. 
Nevertheless, we hope that our analysis of the SO-DTA problem and the evaluation 
procedures for PMCs for mono-centric networks can provide insights to the solution of the 
SO-DTA problem for general networks,  as well as other optimization problems in 
transportation that involve the computation of gradients of mappings without a closed form. 
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COMMUTING EQUILIBRIA ON A MASS 
TRANSIT SYSTEM WITH CAPACITY 
CONSTRAINTS 
 
 
 
Qiong Tian and Hai-Jun Huang, School of Management, Beijing University of Aeronautics 
and Astronautics, China; Hai Yang, Department of Civil Engineering, The Hong Kong 
University of Science and Technology,  China 
 
 
 
INTRODUCTION 
 
Urban mass transit system plays a vital role in reducing road traffic congestion through 
offering alternative means of travel. It in fact directly influences the quality of urban life. The 
planning and operation of transit systems have become important issues of long standing 
interests to economists and transportation scientists. In the end of 1960s, scholars started to 
optimize the inter-station spacing of a rapid transit system (Vuchic and Newell, 1968; Vuchic, 
1969). Mohring (1972, 1976) developed a microeconomic foundation for studying the public 
transportation services with fixed demand. He proposed the well-known ‘square root rule’ for 
the determination of optimal bus service frequency (i.e., the optimal bus frequency should be 
proportional to the square root of travel demand). This rule is in line with the work by 
Vickrey (1955) on the implications of marginal cost pricing for public utilities. De Cea and 
Fernandez (1993) proposed an equilibrium transit assignment model in the limited line 
capacity networks. In this model, for finishing a whole journey from origin to destination, a 
passenger must determine a sequence of transfer nodes, and the congestion cost at each 
transfer node is dependent upon both the boarding flow and the flow already on the line. The 
latest studies concerning the transit system modeling can be found in De Cea and Fernandez 
(2000), Guan et al. (2005) and Vuchic (2005). 
 
There are few attentions paid to the problem of modeling commuters’ departure time choice 
for urban transit services. Sumi et al. (1990) presented a stochastic model for optimizing 
commuters’ departure time and route choices in a mass transit system. They assumed that the 
departure time is mainly dependent on the system’s operational features and the travelers’ 
preferred time of arrival at the destination. Alfa and Chen (1995) examined a public 
transportation system with multiple origins and destinations and proposed an algorithm for 
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calculating the peak-hour departure time of commuters, where commuters ride on the first 
coming bus in a random order. Recently, Kraus and Yoshida (2002) and Kraus (2003) 
provided economic analyses about the time-of-use decisions of commuters in which the 
boarding behavior follows the first-in-first-out (FIFO) principle. Cascetta and Papola (2003) 
proposed a joint mode-transit model considering the choices of departure time and transit 
mode. Cominetti and Correa (2001) and Cepeda et al. (2006) investigated the congestion of 
transit system by means of a simplified bulk queue model.  
 
To explicitly take into account the effects of in-vehicle crowding on commuters’ departure 
time choice, Huang et al. (2004) introduced a in-vehicle crowding cost function for modeling 
urban mass transit services, i.e., ( ) ( ),C n g nτ = τ , where τ  is the in-vehicle riding time of a 

commuter, n  is the number of commuters in the vehicle, and ( )g n  is the average crowding 
cost per unit time. It is believed that the in-vehicle crowding cost is mainly contributed by 
privacy loss, body touch (uncomfortable physical proximity), air pollution and venture of 
being stolen, and can be regarded as an increasing function of ,n  with ( ) 0g n ≥  and 

( )0 0.g =  With this crowding cost function, commuters make a trade-off between increasing 
crowding cost from traveling closer to the peak of the rush-hour and reduced early/late arrival 
penalty cost at workplace in determining their optimal departure times. Using this function, 
Huang et al. (2004) developed an equilibrium departure time choice model for an urban mass 
transit system with a single origin and a single destination. In equilibrium, the individual’s 
total generalized cost is identical for all actually chosen transit services during the peak-
period. The crowding cost function adopted by Huang et al. (2004) is of the property that 

( )
0

limn N g n→ = ∞ , where 0N  is the maximum physical capacity of a transit run. Huang et al. 
(2004, 2005) further investigated the optimal pricing and service frequency of mass transit 
services with elastic demand in alternative market settings, such as monopoly and competitive 
transit services.  
 
Although the relative importance of radial travel toward the central business district (CBD) in 
urban areas has been decreasing in recent years, this movement remains the most concentrated 
one, in both space and time, and therefore represents one of the most critical urban 
transportation problems. With the use of in-vehicle crowding function, Tian et al. (2006) 
proposed a model to examine the equilibrium properties of the peak-period commuting in a 
mass transit system with multiple origins and a single destination. They obtained some 
important findings about the boarding behaviors of commuters deeply. However, this model 
doesn’t consider the physical and seat capacities explicitly, thus the effects of overflow 
queues at stations and the different discomforts experienced by sitting and standing 
commuters cannot be revealed. 
 
In this paper, we make one important step forward to the work of Tian et al. (2006) by 
explicitly formulating the vehicle capacity constraints into transit corridor commuting 
modeling with crowding effects. Two types of capacities, namely physical capacity (the 
maximum number of passengers that a vehicle can safely load) and seat capacity (the number 
of seats designed in a vehicle), are taken into account. By explicitly introducing the physical 
capacity constraint, we are able to model the effects of overflow queues at stations in a highly 
congested transit system. Commuters who want to board a capacitated transit run should 
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arrive earlier and wait for more time to get the boarding priority and thus experience peak-
period queuing at the stop. By introducing the in-vehicle seat capacity, we can investigate the 
asymmetric property of utilizing transit service, i.e., the different degree of discomfort 
experienced by sitting and standing commuters. Passengers who board a transit run at 
upstream stops can have seats and will not be affected by the crowding condition at 
downstream stops. This asymmetrical property is a challenging but important subject in 
transit modeling. 
 
In the next section, a basic mathematical programming model which incorporates the physical 
capacity constraint only is formulated. The model consists of multiple interrelated 
minimization problems, each correspond to one transit stop. We then derive some equilibrium 
properties of commuting by analyzing the model’s solution and give another mathematical 
programming model which considers the physical and seat capacity constraints 
simultaneously. A solution method for obtaining the equilibrium departure pattern of 
commuters is presented and tested in two examples. We finally compare the commuters’ 
travel costs and behaviors caused by physical and seat capacity constraints. 
 
 
THE MODEL 
 
As shown in Figure 1, we consider a mass transit line with multiple origins and a single 
destination. Transit runs depart from the most distant residential location H1 (original stop) 
and pass through H2, …, HK-1 and HK home locations or stops in the order of decreasing 
distance to the workplace/destination W. For simplicity and without loss of generality, we 
suppose each transit run consists of only one vehicle in this paper. In each morning 
commuting peak period, there are N1, N2, …, and NK commuters, who use the transit line from 
stops H1, H2, …, and HK all the way to workplace W, respectively. Each transit run vehicle 
has the same limiting physical capacity denoted by N0. Because of the physical capacity 
constraint, some transit runs may be fully occupied before they arrive at the destination stop 
W. We call these runs as “saturated runs” in this paper. With no fare variation across transit 
runs, the equilibrium entails such arrival patterns at stops that commuters who experience less 
schedule delay in “saturated runs” must wait for more time at the stop. 

Kτ 1K −τ 2K −τ
1τ

1H2H2HK −1HK −HK

 

Figure 1. The transit line with multiple origins and a single destination. 
 
If a transit run reaches this limiting capacity before arriving at a stop, the commuters 
originated from this stop would not board this run and have to wait until a subsequent 
unsaturated transit run arrives. Thus, not all commuters can choose their most desirable transit 
runs, even if they would like to wait at the stop for boarding. In this case, they will depart late 
or early and thus arrive at workplace late or early in order to avoid queuing at the stops.  
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The generalized commuting cost experienced by a commuter consists of waiting time cost at 
stops, in-vehicle travel time, in-vehicle crowding cost and penalty cost for early or late 
arrival. For having analytical tractability, we assume that all commuters are homogeneous in 
the sense that they have the same desirable arrival time, the same value of time and the 
valuation of in-vehicle crowding. Because a long-term commuting equilibrium is concerned, 
commuters are assumed to have full information about the transit system timetable. The 
generalized commuting cost of a commuter who ride on transit run j  at iH  is given by 

( )i i i i
j i j jTC p T jα λ δ ρ= + + + + , (1) 

where pi is the transit fare from Hi to W and is assumed to be a constant (time-varying fare is 
not considered), iTα  is the in-vehicle time cost, with α  being the unit in-vehicle time cost 
and Ti being the total in-vehicle moving time from Hi to W. Assume that the vehicle moving 
speed is constant, then the moving time in each line segment from H1 to W (including the 
stopping time at each station for boarding) is constant and denoted by 1 2, , , ,Kτ τ τL  

respectively. Clearly, Ki
mm i

T
=

= τ∑  is constant too. 
 
The third term i

jλ  in Eq. (1) is the total crowding cost of a commuter taking transit run j at 
stop Hi. The crowding cost is assumed to be a function of the degree of crowding effects and 
the in-vehicle travel time. We then have 

s

1

K
i m
j j s

s i m
g n

= =

⎞⎛λ = τ⎟⎜
⎝ ⎠

∑ ∑ , (2) 

where m
jn  is the number of commuters who take transit run j at Hm, sτ  is the in-vehicle 

moving time from Hs to Hs+1, and g(n) is the crowding cost function (crowding cost per unit 
in-vehicle travel time) which is assumed to be a monotonically increasing function of the 
number of commuters in the transit vehicle, n. The crowding cost is zero when the vehicle is 
empty (no passenger), i.e., g(0)=0. 
 
The fourth term ( )jδ  in Eq. (1) is the early/late arrival penalty when taking transit run j. 
Suppose in this study that the timetable of the transit system is predefined and the transit 
headways or departure time intervals from original stop are identical for any two successive 
runs. Because the moving time in each line segment from H1 to W is fixed to be 1 2, , , ,Kτ τ τL  
thus all transit runs arrive at workplace W at a uniform interval t. There exists a so-called one-
to-one mapping between the commuters’ platform departure times and destination arrival 
times. Let { }, ,2,1,0, 1, 2, ,Z = ξ − − −ζL L  be the set of transit runs arriving at the workplace, 
where ξ  and ζ  are sufficiently large to ensure that all commuters can arrive at the workplace 
during the rush hour considered. We can assume that only one transit run arrives at the 
workplace W on time (arrival at work-start time) and this run is denoted by 0 . In this way, j > 
0 denotes the runs arriving early and the early arrival time is j t× , while j < 0 denotes the 
runs arriving late and the late arrival time is j t× . In our study, ( )jδ  is given below 

( )
,      0

0 ,         0    ,
,    0

j t j
j j j Z

j t j

⎧ β >
⎪δ = = ∈⎨
⎪ γ <⎩

 (3) 
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where β  and γ  are the schedule delay penalties of unit early and late arrival time at 
workplace W, respectively. 
 
The fifth term i

jρ  in Eq. (1) is the aforementioned queuing time cost for taking transit run j at 

station Hi. If run j is unsaturated after leaving station Hi or 01

i s
js

n N
=

<∑ , then 0i
jρ = , i.e., 

commuters at Hi doesn’t bear (overflow) queuing time cost for riding on this run; if, however, 
run j is saturated after leaving Hi or 01

i s
js

n N
=

=∑ , then commuters at Hi may bear (overflow) 

extra queuing time cost or 0i
jρ ≥ . We thus have 

01

01

0,   if  
    ,  1, 2, ,

0,   if  

ii s
j js

ii s
j js

n N
j Z i K

n N

ρ

ρ
=

=

⎧ = <⎪ ∈ =⎨
≥ =⎪⎩

∑
∑

L . (4) 

 
Because all commuters have identical value of in-vehicle travel time α , for all commuters 
from the same station Hi, iTα  is constant. Like the transit fare pi, iTα  doesn’t affect the 
departure time choice of commuters departing from the same station. Without loss of 
generality, we can simply assume that 0i

ip T+ α = . Suppose all commuters attempt to 
minimize their individual total generalized commuting costs in choosing their departure times 
(or transit services). At equilibrium, commuters departing from the same station should have 
identical total generalized travel cost, no one has incentive to alter his/her departure time. 
Mathematically, this requirement can be expressed as 

,   if  0
    ,  1, 2, ,

,   if  0

i i i
j j
i i i
j j

TC TC n
j Z i K

TC TC n
⎧ = >⎪ ∈ =⎨ ≥ =⎪⎩

L , (5) 

where iTC  is the equilibrium total generalized commuting cost from Hi to W. This equation 
states that, for a given transit station Hi, the travel cost by run j is equal to the equilibrium cost 
if run j is utilized by some commuters from that station; and the travel cost by run j is not less 
than the equilibrium cost if it is not used by any commuters from that station. 
 
With a given transit timetable, the equilibrium departure distribution of the commuters from 
all stops, { }| 1, 2, , ,i

jn i K j Z= ∈L , can be obtained by solving the following K interrelated 
minimization problems 

( ) ( )
1 1 1

min ,     1,2, ,
K s K

m i
i j s j

s j Z m j Z i
L G n n j i K

= ∈ = ∈ =

⎡ ⎤⎞ ⎞⎛ ⎛
= τ + δ =⎢ ⎥⎟ ⎟⎜ ⎜

⎝ ⎝⎠ ⎠⎣ ⎦
∑ ∑ ∑ ∑ ∑n L , (6) 

subject to 
i
j i

j Z
n N

∈

=∑ , (7) 

0,    i
jn j Z≥ ∈ , (8) 

0
1

,
i

s
j

s
n N j Z

=

≤ ∈∑ , (9) 

where ( ) ( )
0

d
x

G x g= ω ω∫  and { }|i
i jn j Z= ∈n . The objective function (6) represents the sum 

of the integral of all commuters’ in-vehicle crowding costs over number of commuters and 
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their total late/early arrival penalty costs. Similar to the conventional user equilibrium model, 
the integral G(x) doesn’t have any economic interpretation. Constraint (7) states that the sum 
of the numbers of commuters using all transit services is equal to the total number of 
commuters during the whole rush hour. Constraint (8) is simply a nonnegative constraint for 
all decision variables and Constraint (9) is the physical capacity constraint. 
 
The above K minimization problems describe the optimal departure time (or transit service) 
choice decisions made by commuters at each stop when the departure patterns at other stops 
are given. Clearly, each minimization problem has a convex objective function and a convex 
set of constraints in its own decision variables, and hence has a unique solution of transit 
service choices. Note that the simultaneous optimization of K problems may have not unique 
solution. 
 
Now we show that the optimality conditions of the K minimization problems (6)-(9) 
constitute the equilibrium requirement (5). The first-order optimality conditions of the ith 
minimization problem are given as follows 

( ) 0,     i i i i
j j jn j u v j Z⎡ ⎤λ + δ + − = ∈⎣ ⎦ , (10) 

( ) 0,     i i i
j jj u v j Zλ + δ + − ≥ ∈ , (11) 

0
1

0,   
i

i s
j j

s
u N n j Z

=

⎛ ⎞− = ∈⎜ ⎟
⎝ ⎠

∑ , (12) 

0,     i
ju j Z≥ ∈ , (13) 

0
1

,     
i

s
j

s
n N j Z

=

≤ ∈∑ , (14) 

i
j i

j Z
n N

∈

=∑ , (15) 

0,     i
jn j Z≥ ∈ , (16) 

where iv  and i
ju  are the Lagrange multipliers associated with Constraints (7) and (9), 

respectively. Eqs. (10) and (11) indicate that if some commuters takes run j from stop Hi, i.e., 
0>i

jn , then their total generalized travel costs are identical and equal to iv , and otherwise, 

not less than iv . Thus, iv  can be regarded as the equilibrium commuting cost TCi defined in 
(5). Furthermore, Eqs. (12) and (13) describe the relationship between the station queuing 
time and the transit vehicle’s physical capacity. If 01

,i s
js

n N
=

<∑  i.e., the transit vehicle is 

unsaturated after leaving stop Hi, then the queuing time cost is zero (i.e., 0i
ju = ); otherwise, 

0i
ju ≥  if 01

i s
js

n N
=

=∑ . Therefore, the Lagrange i
ju  can be regarded as the equilibrium 

queuing time cost at stop Hi i
jρ  defined in (4).  

 
 
PROPERTIES OF THE EQUILIBRIUM 
 
Some theorems 
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We now examine the basic properties of the equilibrium solution by looking into the relation 
of departure times of commuters from the stops at various distances from the workplace. Let 

i
jc  denote the crowding and schedule delay cost for taking transit run j  at stop Hi, i.e., 

( )i i
j jc j= λ + δ . (17) 

Combining Eq. (17) with Eqs. (10)-(13) generates 

0
1

0
1

0
1

0
1

0,        if  0,

0, if  0,
    ,  1,2, ,

0,        if  0,

0, if  0,

i
i i i i s
j j j j

s
i

i i i i i s
j j j j j

s
i

i i i i s
j j j j

s
i

i i i i i s
j j j j j

s

c v u n n N

c u v u n n N
j Z i K

c v u n n N

c u v u n n N

=

=

=

=

⎧
= = > <⎪

⎪
⎪

+ = ≥ > =⎪⎪ ∈ =⎨
⎪ ≥ = = <
⎪
⎪
⎪ + ≥ ≥ = =⎪⎩

∑

∑

∑

∑

L , (18) 

where i
jn  is the number of commuters who board transit run j at stop Hi. When 0

1

i
s
j

s
n N

=

=∑ , 

we have i i i
j ju v c= − . Let 1−i

jn  denote the number of commuters who board transit run j at stop 
Hi-1, Ki ≤<1 . According to the definition (17), we have 

1
1

1
1

i
i m i
j j i j

m
c g n c

−
−

−
=

⎛ ⎞
+ τ =⎜ ⎟

⎝ ⎠
∑ . (19) 

 
We define some sets as follows. Let { }0,i i

jJ j n j Z= > ∀ ∈  be the set of transit runs having 

positive boarding passenger flows at Hi, 0
1

,
K

s
j

s
A j n N j Z

=

⎧ ⎫
= = ∀ ∈⎨ ⎬

⎩ ⎭
∑  the set of transit runs which 

are saturated when arriving at W in the peak period, 0
1

,
K

s
j

s
B j n N j Z

=

⎧ ⎫
= < ∀ ∈⎨ ⎬

⎩ ⎭
∑  the set of 

transit runs which are unsaturated when arriving in W; 0
1

,
i

s
i j

s
A j n N j Z

=

⎧ ⎫
= = ∀ ∈⎨ ⎬

⎩ ⎭
∑  the set of 

transit runs which are saturated when leaving the stop Hi, and 0
1

,
i

s
i j

s
B j n N j Z

=

⎧ ⎫
= < ∀ ∈⎨ ⎬

⎩ ⎭
∑  

the set of transit runs which are unsaturated when leaving the stop Hi. 
 
Theorem 1.  At equilibrium, ,  ,i ia A b B∀ ∈ ∀ ∈  0,  0i i

a bn n> > , we have ( ) ( )a bδ < δ . 
 
Proof.  According to Eq.(16) and the definitions of Ai and Bi, we have 0i

au ≥  and 0i
bu = . 

Combining with Eq. (18) leads to  
i i i
a ac u v+ = , (20) 
i i
bc v= . (21) 
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Using Eqs. (2) and (17), we rewrite the relation given by Eqs. (20) and (21) as follows, 

( ) ( )
s s

1 1

K K
m m i
b s a s a

s i m s i m
g n b g n a u

= = = =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
τ + δ = τ + δ +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
∑ ∑ ∑ ∑ . (22) 

The definitions of Ai and Bi give 

( )
s

0
1

K K
m
a s s

s i m s i
g n g N

= = =

⎡ ⎤⎛ ⎞
τ = τ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ ∑ ∑ , (23)  

( )
s

0
1

K K
m
b s s

s i m s i
g n g N

= = =

⎡ ⎤⎛ ⎞
τ < τ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ ∑ ∑ . (24) 

Substituting Eqs.(23) and (24) into Eq.(22), we have ( ) ( )b aδ > δ .   ■ 
 
Theorem 1 states that at equilibrium, if there are some transit runs leaving the stop Hi in 
saturated state, the commuters who can ride on these runs at this stop experience lower 
schedule delay cost. Clearly, this theorem continuously holds when i=K, which leads to the 
following result. 
 
Corollary 1.  At equilibrium, , ,a A b B∀ ∈ ∈  we have ( ) ( )a bδ < δ . 
 
Corollary 1 states that if there are some transit runs arriving at destination W in saturated 
state, these saturated runs would concentrate in a period around the work-start time so as to 
reduce the schedule delay cost. We define this period during which arrival transit runs are 
fully occupied as “saturated period”. 
 
Theorem 2.  At equilibrium, if there exists a stop ( 1)iH i >  such that ,iJ A ≠ ∅I  then 

1iJ A− ≠ ∅I . 
 
Proof. Since ,iJ A ≠ ∅I  for any ij J A∈ I , the following equations hold 

i i i
j jc u v+ = , (25) 

0i
jn > . (26) 

We provide a proof of the theorem by contradiction. Suppose 1iJ A− = ∅I , then 
1iJ B− ≠ ∅I . 1,  i ia J A b J −∀ ∈ ∀ ∈I , we have 0i

an > , 1 0i
bn − > , 1 0i

an − =  and then 
1

0
1

i
s
a

s
n N

−

=

<∑ , 

1

0
1

i
s
b

s
n N

−

=

<∑ . Combining these with Eq. (18) generates 

0i
an > , 0i

au ≥ , (27) 
0i

bn ≥ , 0i
bu = , (28) 

1 0i
an − = , 1 0i

au − = , (29) 
1 0i

bn − > , 1 0i
bu − = . (30) 

According to Eq. (18), we have 
i i
ac v= , (31) 
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i i
bc v≥ , (32) 

1 1i i
ac v− −≥ , (33) 

1 1i i
bc v− −= . (34) 

Substituting Eq. (19) into Eqs. (33) and (34) yields 
1

1
1

1

i
i m i
a a i

m
c g n v

−
−

−
=

⎛ ⎞
+ τ ≥⎜ ⎟

⎝ ⎠
∑ , (35) 

1
1

1
1

i
i m i
b b i

m
c g n v

−
−

−
=

⎛ ⎞
+ τ =⎜ ⎟

⎝ ⎠
∑ . (36) 

Comparing Eqs. (31) and (32), we have i i
a bc c≤ . Substituting this into Eqs. (35) and (36) 

yields 
1 1

1 1
1 1

i i
m m
a i b i

m m
g n g nτ τ

− −

− −
= =

⎛ ⎞ ⎛ ⎞
≥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ . (37) 

According to the property of the ( )g x , Eq. (37) becomes 
1 1

1 1

i i
m m
a b

m m
n n

− −

= =

≥∑ ∑ . (38) 

Substituting 1 0i
an − =  into Eq. (38) and noting 1 0i

bn − > , we have 
2 2

1 1

i i
m m
a b

m m
n n

− −

= =

>∑ ∑ . (39) 

Eqs. (33) and (34) state 1 1i i
a bc c− −≥ . Using the definition (19), we conclude 

2 2i i
a bc c− −> . (40) 

This means 2 0i
an − =  and 2 0i

bn − ≥ . Substituting this into Eq. (39) yields 
3 3

1 1

i i
m m
a b

m m
n n

− −

= =

>∑ ∑ . (41) 

Repeating the above process, we conclude 
0, 1s

an s i= ∀ ≤ − , (42) 
0, 1s

bn s i≥ ∀ ≤ − , (43) 
and 

1 1

1 1
0

i i
m m
b a

m m
n n

− −

= =

> =∑ ∑ . (44) 

This contradicts with Eq. (38). Therefore, 1iJ A− = ∅I  is impossible.   � 
 
Using Theorem 2, we can easily derive the following corollaries: 
 
Corollary 2.  At equilibrium, if there exists a stop ( )iH i K<  such that ,iJ A = ∅I  then 

1iJ A+ = ∅I . 
 
Corollary 3.  At equilibrium, if there exists a stop ( )iH i K<  such that ,iJ A = ∅I  then 

1iJ B+ ≠ ∅I . 
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Corollary 4.  At equilibrium, if there exists a stop ( )iH i K<  such that ,iJ A = ∅I  then 

sJ A = ∅I , s i∀ >  
 
Corollary 4 states that if there exits a stop where no commuter boards the saturated vehicles, 
then all downstream commuters of that stop would avoid commuting in the saturated period. 
This result is different from that given in the case without capacity constraint (Tian et al., 
2005). We here show that each upstream commuter has a priority of boarding the capacitated 
vehicles in the peak period. 
 
Theorem 3.  At equilibrium, if there exists a stop ( )iH i K<  such that ,iJ A ≠ ∅I  and a 

transit run ( )a A∈  such that 0
1

i
s
a

s
n N

=

<∑ , then 1iJ A+ ≠ ∅I . 

 
Proof.  We provide a proof of the theorem by contradiction. Suppose 1iJ A+ = ∅I , according 

to Corollary 4, we then have 1,  ss i J A∀ > + = ∅I . Thus 
1

0
K

s
a

s i
n

= +

=∑ . We have 

0
1 1 1

K i K
s s s
a a a

s s s i
n n n N

= = = +

= + <∑ ∑ ∑ . (45) 

This contradicts with the definition of set A, which needs 0
1

K
s
a

s
n N

=

=∑ . Therefore, 1iJ A+ = ∅I  

is impossible.   � 
 
Theorem 3 states that the upstream commuters would firstly board the transit vehicles which 
leave the original stop during the saturated period. 
 
Theorem 4.  At equilibrium, if there exists a stop ( )1iH i >  such that 

,iJ B ≠ ∅I 1 ,iJ B− ≠ ∅I  and a transit run ( )b B∈  with 0i
bn > , then 1 0i

bn − > . 
 
Proof.  We provide a proof of the theorem by contradiction. Suppose 1 0i

bn − = . Let c be such a 

transit run ( 1ic J B−∈ I ) with 1 0i
cn − > . Combining 0

1

K
s
b

s
n N

=

<∑  and 0
1

K
s
c

s
n N

=

<∑  with Eq. (18), 

we have 
i i
bc v= , (46) 
i i
cc v≥ , (47) 

1 1i i
bc v− −≥ , (48) 

1 1i i
cc v− −= . (49) 

Substituting Eq. (19) into Eqs. (48) and (49), yields 
1 1

1 1
1 1

i i
i m i m
b b i c c i

m m
c g n c g n

− −

− −
= =

⎛ ⎞ ⎛ ⎞
+ τ ≥ + τ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ . (50) 
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From Eqs. (46) and (47), we have i i
b cc c≤ . Substituting this into Eqs.(48) and (49), yields 

1 1

1 1
1 1

i i
m m
b i c i

m m
g n g n

− −

− −
= =

⎛ ⎞ ⎛ ⎞
τ ≥ τ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ . (51) 

According to the property of the function ( )g x , we have 
1 1

1 1

i i
m m
b c

m m
n n

− −

= =

≥∑ ∑ . (52) 

Because 1 1 0i i
c bn n− −> = , we can derive 

2 2

1 1

i i
m m
b c

m m
n n

− −

= =

>∑ ∑ . (53) 

Thus, we conclude that 
2 2i i

b cc c− −> , (54) 
and then, 

2 0i
bn − =  and 2 0i

cn − ≥ . (55) 
Thus, no commuter will take the transit run b at stop Hi-2. Repeating this process, it can be 
proved that no commuter will take run b at stop Hs ( 2s i≤ − ), i.e., 1

1
0i m

bm
n−

=
=∑ . So, 

1 1

1 1
0i im m

c bm m
n n− −

= =
> =∑ ∑ . This contradicts with Eq. (52). Therefore, 1 0i

bn − =  is impossible.   � 
 
Theorem 4 states that for the stops where commuters can not entirely board the saturated 
vehicles, the departure time duration of commuters is increasing monotonically with the 
distance of the boarding stops from the workplace. 
 
Theorem 5.  At equilibrium, if there exists a stop ( )1iH i >  such that iJ B ≠ ∅I  and a 

transit run ( )a A∈  with 0
1

i
s
a

s
n N

=

<∑ , then 0i
an > . 

 
Proof. We provide a proof of the theorem by contradiction. Suppose 0i

an = , ,a A∀ ∈  and 

0
1

i
s
a

s
n N

=

<∑ . Let b be a transit run, 0i
bn > , ib J B∀ ∈ I . According to Eqs. (16-19), we have 

i
a ic v≥ , (56) 
i
b ic v= . (57) 

As ,a A∈  then 0
1

K
i
a

i
n N

=

=∑ . Due to 0
1

i
m
a

m
n N

=

<∑ , there must exist an intermediate stop l (l > i) 

with 0l
an > . Denote this stop as { }min 0,s

al s n s i= > > . Then we have 
l
a lc v= , (58) 
l
b lc v≥ . (59) 

Substituting Eq. (19) into Eq. (58) yields 
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1

1

i l
i s
a l a m

s m i
c v g n

−

= =

⎛ ⎞
= + τ⎜ ⎟

⎝ ⎠
∑ ∑ . (60) 

Combining Eq. (60) with Eq. (56) yields 
1

1

i l
s

i l a m
s m i

v v g n
−

= =

⎛ ⎞
≤ + τ⎜ ⎟

⎝ ⎠
∑ ∑ . (61) 

Substituting Eq. (19) into Eq. (59) yields 
1

1

i l
i s
b l b m

s m i
c v g n

−

= =

⎛ ⎞
≥ + τ⎜ ⎟

⎝ ⎠
∑ ∑ . (62) 

Combining Eq. (62) with Eq. (57) yields 
1

1

i l
s

i l b m
s m i

v v g n
−

= =

⎛ ⎞
≥ + τ⎜ ⎟

⎝ ⎠
∑ ∑ . (63) 

From Eqs. (61) and (63), we have 
1 1

1 1

i l i l
s s
b m a m

s m i s m i
g n g n

− −

= = = =

⎛ ⎞ ⎛ ⎞
τ ≤ τ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑ , (64) 

and then 

1 1

i i
s s
b a

s s
n n

= =

≤∑ ∑ . (65) 

Because 0i
bn >  and 0i

an = , Eq. (65) leads to 
1 1

1 1

i i
s s
b a

s s
n n

− −

= =

<∑ ∑ . (66) 

Rewrite Eqs. (56) and (57) as follows 
1 1

1 1
1 1

i i
i s i s
b b i a a i

s s
c g n c g n

− −

− −
= =

⎛ ⎞ ⎛ ⎞
+ τ ≤ + τ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ . (67) 

Substituting Eq. (19) into Eq. (67) yields 
1 1i i

b ac c− −≤ . (68) 
Hence, 1 0i

an − =  and 1 0i
bn − ≥ . This means that no commuter takes the transit run a at stop Hi-1. 

Repeating this process, it can be concluded that no commuter will take transit run a at stop Hs 

( 1s i< − ), i.e., 
1

1
0

i
s
a

s
n

−

=

=∑ . Thus, 
1 1

1 1
0

i i
s s
b a

s s
n n

− −

= =

> =∑ ∑ . This contradicts with Eq. (66). Therefore, 

0i
an =  is impossible.   � 

 
Theorem 5 states that for the stops where commuters can not entirely board the saturated 
vehicles, the commuters of that stop will firstly manage to board the saturated vehicle if it is 
available. As a result, these commuters, boarding saturated vehicle, should arrive earlier and 
wait in queue for their desired vehicle at equilibrium. 
 
Extension to the case with seat capacity 
 
In reality, transit operator usually provides some seats in the vehicle. Just as Tian et al. (2006) 
have mentioned, the seats capacity can be regarded as a constraint in model. We now 
formulate another mathematical programming model which can consider the physical 
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capacity and in-vehicle seat capacity simultaneously. Suppose that the sitting passengers do 
not experience the in-vehicle crowding effect. With assumption that 0i

ip T+ α = , the total 
generalized travel costs of standing and sitting passengers who take transit run j at stop Hi are  

( )
1

δ
K s

i m i
j j s j

s i m
TC g n jτ ρ

= =

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
∑ ∑ , (69) 

( )i i
j jTC q j= + δ , (70) 

respectively. In Eq. (69), i
jn  is the number of passengers who take transit run j  at stop Hi but 

is standing in the vehicle and i
jρ  is the extra queuing time cost mentioned in previous section. 

As sitting is generally more comfortable than standing, here we assume that the sitting 
commuters do not suffer the in-vehicle crowding cost. In Eq. (70), i

jq  is the additional cost 

paid by a passenger in getting priority for a seat in the vehicle (Kraus and Yoshida, 2002). i
jq  

is similar to i
jρ  but larger than it under the FIFO queuing system. This reflects such a 

phenomenon in reality that some commuters in the front of the queue prefer to wait for 
boarding the next transit run when the current run has no seats available while some 
commuters standing behind them would like to board the run even they have to be standing 
during their journey. Thus, i

jq  exists only when all seats in the run j are occupied after leaving 
stop Hi and some commuters have to stand in it. 
 
Let i

jn  denote the number of passengers who take transit run j  at stop iH  and get seats in the 
vehicle, and sN  the number of seats designed in the vehicle. An equilibrium state is reached 
when no commuter can reduce his/her total generalized travel cost by unilaterally changing 
his/her choice of the transit services, which can be mathematically stated below 

,  if  0
,  if  0

   ,  1, 2, ,
,  if  0
, if  0

i i i
j j
i i i
j j
i i i
j j
i i i
j j

TC TC n
TC TC n

j Z i K
TC TC n
TC TC n

⎧ ≥ =
⎪ = >⎪ ∈ =⎨ ≥ =⎪
⎪ = >⎩

L , (71) 

where iTC  is a constant representing the identical equilibrium cost. The first two conditions 
in Eq. (71) are the same with that in Eq. (5). Note that the third condition in Eq. (71) covers 
two different situations: on the one hand, 1

1

i s
j ss

n N−

=
=∑  and then 0i

jn = , this means there are 

no seats available for commuters boarding at stop Hi, then i
jq  would be very large such that 

i i
jTC TC≥ ; on the other hand, 1

1

i s
j ss

n N−

=
<∑  but 0i

jn = , this means commuters do not board 
this run although there are seats available for them because the schedule delay cost of this run 
is very high such that i i

jTC TC≥  (although 0i
jq = ). 

 
With the above considerations, we can formulate a model which results in a commuting 
equilibrium of the transit services with both physical capacity and in-vehicle seat capacity 
constraints. For a given transit vehicle departure interval t, the equilibrium departure 
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distribution of the commuters from all stops, { }, | 1, 2, , ,i i
j jn n i K j Z= ∈L , can be obtained by 

solving the following K  interrelated minimization problems 

( ) ( ) ( )
1 1 1

min ,     1, 2, ,
K s K

m i i
i j s j j

s j Z m j Z i
L G n n n j i K

= ∈ = ∈ =

⎡ ⎤⎛ ⎞ ⎛ ⎞
= τ + + δ =⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑ ∑ ∑ ∑n L , (72) 

subject to 

( )i i
j j i

j Z
n n N

∈

+ =∑ , (73) 

0, 0,    i i
j jn n j Z≥ ≥ ∈ , (74) 

1
,   

i
s
j u

s
n N j Z

=

≤ ∈∑ , (75) 

1
,   

i
s
j s

s
n N j Z

=

≤ ∈∑ , (76) 

where ( ) ( )
0

d
x

G x g= ω ω∫ , { }, | 1, 2, , ,i i
i j jn n i K j Z= = ∈n L  and uN  is the physical capacity 

of standing in vehicle. Let κ  denote the transfer parameter of a seat space to standing space. 
The total vehicle size 0N  can be regarded as s uN Nκ +  standing position or /s uN N κ+  
sitting position. As sitting usually takes more space than standing, we hence set 1κ ≥  in this 
paper. It is easy to show that the first-order conditions of each stop’s minimization problem 
are equivalent to the equilibrium conditions (71) which govern the transit service choice at 
each stop.  
 
The model consists of multiple minimization problems, each having a unique solution. 
However, the simultaneous optimization of K problems, i.e., the whole model, may have not 
unique solution. It is not easy to analytically derive the equilibrium properties of the model 
with two types of capacity constraints as done in the case with physical capacity constraint 
only. In this paper, we will give a numerical example to explore some properties. 
 
 
SOLUTION ALGORITHM 
 
In this section, a multi-stage algorithm is developed to solve the model proposed in this paper. 
At every stage, a convex optimization problem associated with one stop of the transit line is 
solved. The mathematical programs of the examples presented in this paper are directly 
solved by a standard FMINCON function in the Matlab 6.5 Optimization Toolbox. The step-
by-step procedure of the multi-stage algorithm is given below. 
 
Step 1 Initialization. Set the iteration index m=1. For each transit stop and transit run, 

choose an initial boarding flow ( )mn . 
Step 2 Optimization and assignment. 

Step 2.1 Fix the boarding flows at all stops except the original stop H1, denoted by 

( )
( ) ( ){ }1 ,1m mi

jn j Z i K− = ∈ < ≤n , solve the minimization problem (6)-(9) and 

obtain the equilibrium boarding flow at stop H1, denoted by ( )1
1
m+n .  
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M  
Step 2.k Fixed boarding flows all stops except the stop Hk, denoted by 

( )
( ) ( ) ( ) ( ) ( ){ }1 11 1 1, , , ,m m m mm k k K

j j j jk n n n n j Z+ +− +
− = ∈n K K , solve the minimization 

problem (6)-(9) and get the equilibrium boarding flow at  Hk, denoted by 
( )1m
k

+n .  

Step 2.K With ( )
( ) ( ){ }1 ,1m mi

jK n j Z i K+
− = ∈ ≤ <n , solve the minimization problem (6)-(9) 

and denote the equilibrium boarding flow at stop Hk as ( )1m
K

+n .  

Step 3 Update. Set ( ) ( ){ }1 1 ,1m mi
jn j Z i K+ += ∈ ≤ ≤n . 

Step 4 The iteration terminates if ( ) ( ) ε<−∑ ∑≤≤ ∈
+

Ki Zj
mi

j
mi

j nn
1

1  ( ε =0.001 in this paper), 

otherwise, set m=m+1 and return to Step 2. 
 
 
NUMERICAL EXAMPLES 
 
In this section, we present numerical results on two examples for exploring the commuting 
characteristics. Example 1 is the case with physical capacity only. We will investigate how 
the capacity affects the departure behaviors of commuters from different locations. In 
Example 2, we fix the vehicle size and turn to investigate the impacts of in-vehicle seat 
capacity on travel behavior. Note that the total passenger capacity of a vehicle may change 
when seat capacity is changed. 
 
Example 1—with physical capacity constraint only 
 
This example sets the following input parameters: the number of stops in the transit line K=3 
(stops), the time interval of dispatching transit runs t=0.05 (h), the work-start time 

*t =8:00AM, the penalty cost of unit time arrival early β =10 (RMB/h), the penalty cost of 
unit time arrival late γ =30 (RMB/h), 1τ =0.25 (h), 2τ =0.2 (h), 3τ =0.3 (h), 

1 2 3 600N N N= = = (persons). A linear in-vehicle crowding cost function ( ) 010 /g n n N=  
(RMB/h) is adopted, where N0 is the physical capacity. Here, the symbol RMB (pronunciation 
‘RenMinBi’) stands for the monetary unit of the Chinese currency (8 RMB ≈ 1 US dollar).  

 
Figure 2 shows that the physical capacity can greatly influence the commuting costs of 
passengers. Note that the transit fare and the constant travel time cost are not included in these 
commuting costs. It can be seen that all commuters from different stops can benefit from 
increasing the vehicle capacity. However, the marginal contribution of capacity expansion is 
decreasing and the downstream commuters enjoy more cost reduction than the upstream 
commuters. This is because the upstream commuters have priorities for boarding, but these 
priorities are gradually weakened by the capacity expansions. In an extreme situation where 
the physical capacity is large enough so that all commuters along the corridor can be 
accommodated in one run to get the workplace on time, then, the boarding priority is identical 
for every commuter. 
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Figure 3 depicts the boarding flows of all transit runs at different stops when the physical 
capacity is 700. It can be seen that the physical capacity is not reached even for the on-time 
transit run. The transit run arriving at 8:00 serves 102, 160 and 400 passengers at stop 1, stop 
2 and stop 3, respectively, all amounting to 662 less than the capacity 700. This distribution 
pattern is identical to that shown in Tian et al. (2006) where no capacity constraint is 
considered in the model. Although the physical capacity of the on-time transit run is not 
completely utilized, some commuters turn to select other transit runs due to the increasing in-
vehicle crowding cost. 
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Figure 2. Equilibrium commuting costs with various physical capacities. 
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Figure 3. Boarding flows when the physical capacity is 700. 

 
Figure 4 give the result when the physical capacity is reduced to 400. Two transit runs, 
arriving at 7:57 and 8:00, are fully utilized. These two runs serve the same number of 
commuters at stop 1, but do not so at stops 2 and 3. It is verified again that the capacity 
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change greatly affects the boarding behavior of downstream commuters; the more the 
commuters live close to the workplace, the more their behaviors are affected by the capacity. 
In Figure 4, commuters from stop 2 can select transit runs according to their will since all 
transit runs have not fully utilized yet. But, some commuters from stop 3 are forced to use the 
runs excluding the two fully utilized ones, which makes the commuters who can board the 
two fully utilized runs have to spend queuing time at the platform for equalizing the 
individual costs among all commuter required by equilibrium condition. 
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Figure 4. Boarding flows when the physical capacity is 400. 

 
Figure 5 depicts the boarding flows of all chosen transit runs at the three stops when the 
physical capacity is further reduced to 200. It can be seen that the number of fully utilized 
transit runs increases to six. There are no commuters from stop 3 who can arrive at W on 
time. Note that the distribution of commuters at stop 1 is significantly different from that 
observed in Figure 4. The boarding priority for commuters from stop 1 is visible while some 
commuters from stop 2 cannot freely get on the two runs arriving at W at 7:57 and 8:00 (they 
have to spend waiting time). The boarding duration at stop 1 is the longest, lasting from 7:30 
to 8:09. 
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Figure 5. Boarding flows when the physical capacity is 200. 

 
More congested distribution can be observed if the physical capacity decreases further, as 
shown in Figure 6 where the capacity is 100. It can be seen that more transit runs are fully 
utilized and the boarding duration has to be extended (in Figures 5, only 14 runs are actually 
chosen by commuter, but 21 runs in Figure 6). Commuters from stop 1 board the runs which 
arrive at W at the times tightly close to the work-start time. These commuters certainly have 
such priorities. Commuters from Stop 3 board the runs which arrive at W at the times far to 
the work-start time. This is because small physical capacity strengths the boarding priority for 
upstream commuters. This explains the phenomenon shown in Figure 2, i.e., the downstream 
commuters like more the capacity expansion than the upstream commuters.  
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Figure 6. Boarding flows when the physical capacity is 100. 

 
 
Example 2—with both physical capacity and seat capacity constraints 
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In this example, we set the total transit vehicle size 0N =400 (seats) and vary the in-vehicle 
seat capacity sN  to investigate the model solutions. The in-vehicle standing capacity is 

( )0u sN N Nκ= −  where 1.5κ = . Other model parameters are: K=3 (stops), t=0.05 (h), 
*t =8:00AM, β =10 (RMB/h), γ =30 (RMB/h), 1τ =0.2 (h), 2τ =0.2 (h), 3τ =0.2 (h), 

1 2 3 1,500N N N= = = (persons). The linear in-vehicle crowding cost function, 

( ) 20 / ug n n N=  (RMB/h), is  adopted in this example.  
 
Figure 7 gives the equilibrium commuting costs of passengers boarding at different stops, 
against various seat capacities. Note that the transit fare and the constant travel time cost are 
not included in this commuting cost. It can be seen that if more seats are provided in the 
vehicle, commuters from stops 1 and 2 benefit while those from stop 3 suffer a light loose. 
This is explained as follows. With given total transit vehicle size, increasing the number of 
seats will lead the capacity for standing to come down. The upstream commuters have the 
priority to use the seats and the downstream commuters have to stand in the vehicle 
meanwhile experience more in-vehicle crowding costs with smaller space for standing (see 
Figures 9 and 10), or board the earliest and latest arrival transit runs (see Figures 10 and 11).  
 
Figure 8 depicts the boarding flows when there are 100 seats in each vehicle. The standing 
capacity becomes 450 and the total number of commuters that a vehicle can serve is 550. Stop 
1 has the longest commuting peak period [7:36, 8:06], all seats of the used runs are occupied 
by commuters from this stop and some ones have to be standing in their journeys. The 
commuters from other stops behave like that without any seats available. 
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Figure 7. Equilibrium commuting cost with various seat supplies. 
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Figure 8. Boarding flows when there are 100 seats in the vehicle. 

 
Figure 9 shows the result when there are 200 seats in each vehicle. The standing capacity 
becomes 300 and the total number of commuters that a vehicle can serve is 500. All 
commuters from stop 1 have seats and board the runs during a narrow period tightly close to 
the work-start time. Some commuters from stop 2 have seats too but board the runs arriving 
earlier or later than those runs chosen by commuters from stop 1. Even so, some commuters 
from stop 2 have to stand up. All commuters from stop 3 have to be standing in vehicle and 
endure the crowding costs. Moreover, the arrival time duration of commuters from stop 3 
extends from [7:42, 8:06] in Figure 8 to [7:39, 8:06] in Figure 9, which leads these commuters 
to endure more schedule delay cost. 
 
As shown in Figure 10, when there are 300 seats in each vehicle, the number of commuters 
that a vehicle can serve decreases further. More commuters from stop 2 can find seats. The 
earliest arrival run is utilized by commuters from stop 3. Commuters from stop 3 board all 
runs but few of them board the on-time arrival run which is occupied by commuters from 
stops 1 and 2. 
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Figure 9. Boarding flows when there are 200 seats in each vehicle. 
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Figure10. Boarding flows when there are 300 seats in the vehicle. 

 
If standing in vehicle is not allowed, the boarding flows are as shown in Figure 11 (there are 
400 seats in each vehicle). Commuters from upstream stops concentrate into the transit runs 
arriving at W around the work-start time in an order from inner to out. This distribution is the 
same with that given by Alfa and Chen (1995), not considering the in-vehicle crowding cost. 
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Figure 11. Boarding flows when there are 400 seats in each vehicle. 

 
 
CONCLUSIONS  
 
In this paper, we have investigated the morning peak-period commuting problem in a mono-
centric city on a transit system with capacity constraints. Commuters are assumed to choose 
their optimal time-of-use decision from various stops/home-locations to a single destination 
(workplace) by trading off the travel time and in-vehicle crowding cost against the schedule 
delay cost. Two types of capacities, namely physical capacity (the maximum number of 
passengers that a transit vehicle can safely load) and seat capacity (the number of seats 
designed in a transit vehicle), are taken into account. Mathematical programming models are 
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proposed to characterize the equilibrium properties of commuting, in which no commuter can 
reduce his/her total commuting cost by unilaterally changing his/her departure time or transit 
service. We compare the commuters’ travel costs and behaviors caused by different physical 
and seat capacity constraints. It is found that increasing physical capacity can benefit all 
commuters from different stops along the transit line and weaken the boarding priority of 
upstream commuters. However, providing more seats in the vehicle would strength the 
boarding priority of upstream commuters and may increase the commuting cost of 
downstream commuters. 
 
The work presented in this paper can be extended in several aspects. For example, the demand 
elasticity, variable transit service frequency and fare pricing can be incorporated into the 
equilibrium analyses. It is of interest to study the commuting equilibrium in a corridor 
network when transit vehicles and private cars share the road commonly (Huang et al., 2006). 
As our work is limited in the many-to-one transit system, extending it to general networks is 
valuable and challengeable. 
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OPTIMAL SINGLE-ROUTE TRANSIT-
VEHICLE SCHEDULING 

Avishai (Avi) Ceder, Transportation Research Institute, Civil and Environmental Engineering 
Faculty, Technion-Israel Institute of Technology 
 
 

 
INTRODUCTION 
 
The transit-operation planning process commonly includes four basic activities, usually 
performed in sequence: (1) network route design, (2) timetable development, (3) vehicle 
scheduling, and (4) crew scheduling. The output of each activity positioned higher in the 
sequence becomes an important input for lower-level decisions. However it is desirable for all 
four activities to be planned simultaneously in order to exploit the system’s capability to the 
greatest extent and to maximize the system’s productivity and efficiency. However, since this 
planning process, especially for medium to large transit fleets, is extremely cumbersome and 
complex, separate treatment is required for each activity, with the outcome of one fed as an 
input to the next. 
 
This work has two major aims: (1) to describe the task of vehicle scheduling and possible 
math-programming solutions for a single transit route; (2) to proffer a graphical technique that 
is easy to interact with and responds to practical concerns. Single transit routes deal with both 
fixed and variable schedules. In fixed schedules, departure times cannot be changed. In 
practical transit scheduling, however, schedulers should attempt to allocate vehicles in the 
most efficient manner possible, including the employment of small shifts in departure times.  
 
This work contains three main parts following an introductory section, and a literature review 
section. First, a formula is derived to find the minimum fleet size required for a single route 
without deadheading (DH) trips and for a fixed schedule. Second, a graphical person-
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computer interactive approach, based on a step function called deficit function, is proffered 
for minimizing single-route fleet size and creating vehicle schedules with DH trip insertions. 
Third, the formula and procedure to attain single-route minimum fleet size are extended to 
include possible shifts in trip-departure times for given shifting tolerances.  
 
 
 
LITERATURE REVIEW 
 
Vehicle scheduling refers to the problem of determining the optimal allocation of vehicles to 
carry out all the trips in a given transit timetable. A chain of trips is assigned to each vehicle 
although some of them may be deadheading (DH) or empty trips in order to reach optimality. 
Vehicle scheduling on fixed routes is also related to finding the best dispatching policy for 
transit vehicles. Thus, this section reviews two groups of research: (1) studies on dispatching-
policy problem, and (2) studies on vehicle scheduling models.  
 
The first group was investigated by, for example, Newell (1971), Osana and Newell (1972), 
Hurdle (1973), and Wirasinghe (1990, 2003). Newell (1971) assumed a given passenger-
arrival rate as a smooth function of time, with the objective of minimizing total passenger 
waiting time. He showed analytically that the frequency of transit vehicles with large 
capacities (in order to serve all waiting passengers) and the number of passengers served per 
vehicle each varied with time approximately as the square root of the arrival rate of 
passengers. Osana and Newell (1972) developed control strategies for either holding back a 
transit vehicle or dispatching it immediately, based on a given number of vehicles, random 
round-trip travel times with known distribution functions, and uniform passenger-arrival rates 
with a minimum waiting-time objective. Using dynamic programming, they found that the 
optimal strategy for two vehicles and a small coefficient of variation of trip time retained 
nearly equally spaced dispatch times. Hurdle (1973), investigating a similar problem, used a 
continuum fluid-flow model to derive an optimal dispatching policy while attempting to 
minimize the total cost of passenger waiting time and vehicle operation.  
 
Wirasinghe (1990, 2003) examined and extended Newell’s dispatching policy while 
considering the cost components initially used by Newell (1973). Wirasinghe considered the 
average value of a unit waiting time per passenger (C1) and the cost of dispatching a vehicle 
(C2) to show that the passenger-arrival rate in Newell’s square root formula is multiplied by 
(C1/2C2). Wirasinghe also showed how to derive the equations of total mean cost per unit of 
time by using both uniform headway policy and Newell’s variable-dispatching policy. 
 
The second group of studies that are related directly to vehicle scheduling, was researched by, 
for example, Dell Amico et al. (1993), Löbel (1998, 1999), Mesquita and Paixao (1999), 
Banihashemi and Haghani (2000), Freling et al. (2001), Haghani and Banihashemi (2002), 
Haghani et al. (2003), and Huisman et al. (2004).  
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Dell Amico et al. (1993) developed several heuristic formulations, based on a shortest-path 
problem, that seek to minimize the number of required vehicles in a multiple-depot schedule. 
The algorithm presented is performed in stages, in each of which the duty of a new vehicle is 
determined. In each such stage, a set of forbidden arcs is defined, and then a feasible circuit 
through the network is sought that does not use any of the forbidden arcs. Computational 
efficiency is obtained by searching for the shortest path across a subset of all arcs in the 
network, rather than searching the entire network. Several modifications to the basic 
algorithms are offered that save computer time by substituting parts of the full problem with 
problems of a reduced size. These modifications include, for instance, solving the re-
assignment of trips as a single-depot problem; an attempt to swap parts of duty segments; and 
an internal re-assignment of trips within each pair of vehicles associated with different depots. 
 
Löbel (1998, 1999) discussed the multiple-depot vehicle scheduling problem and its 
relaxation into a linear programming formulation that can be tackled using the branch-and-cut 
method. A special multi-commodity flow formulation is presented, which, unlike most other 
such formulations, is not arc-oriented. A column-generation solution technique is developed, 
called Lagrangean pricing; it is based on two different Lagrangean relaxations. Heuristics are 
used within the procedure to determine the upper and lower bounds of the solution, but the 
final solution is proved to be the real optimum. 
 
Mesquita and Paixao (1999) used a tree-search procedure, based on a multi-commodity 
network flow formulation, to obtain an exact solution for the multi-depot vehicle scheduling 
problem. The methodology employs two different types of decision variables. The first type 
describes connections between trips in order to obtain the vehicle blocks, and the other relates 
to the assignment of trips to depots. The procedure includes creating a more compact, multi-
commodity network flow formulation that contains just one type of variables and a smaller 
amount of constraints, which are then solved using a branch-and-bound algorithm. 
 
Banihashemi and Haghani (2000) and Haghani and Banihashemi (2002) focused on the 
solvability of real-world, large-scale, multiple-depot vehicle scheduling problems. The case 
presented includes additional constraints on route time in order to account for realistic 
operational restrictions such as fuel consumption. The authors proposed a formulation of the 
problem and the constraints, as well as an exact solution algorithm. In addition, they 
described several heuristic solution procedures. Among the differences between the exact 
approach and the heuristics is the replacement of each incorrect block of trips with a legal 
block in each iteration of the heuristics. Applications of the procedures in large cities are 
shown to require a reduction in the number of variables and constraints. Techniques for 
reducing the size of the problem are introduced, using such modifications as converting the 
problem into a series of single-depot problems. 
 
Freling et al. (2001) discussed the case of single-depot with identical vehicles, concentrating 
on quasi-assignment formulations and auction algorithms. A quasi-assignment is a reduced-
size, linear problem in which some of the nodes and their corresponding arcs are not 
considered. An auction algorithm is an iterative procedure in which neither the primal nor the 
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dual costs are obliged to show an improvement after each iteration. The authors proposed four 
different algorithms, and compared their performance: an existing auction algorithm for the 
asymmetric assignment problem; a new auction algorithm for the quasi-assignment problem; 
an alternative, two-phase, asymmetric assignment formulation (valid in a special case), in 
which vehicle blocks are determined first and combined afterwards; and a core-oriented 
approach for reducing the problem size. 
 
Haghani et al. (2003) compared three vehicle scheduling models: one multiple-depot 
(presented by Banihashemi and Haghani, 2002) and two single-depot formulations which are 
special cases of the multiple-depot problem. The analysis showed that a single-depot vehicle 
scheduling model performed better under certain conditions. A sensitivity analysis with 
respect to some important parameters is also performed; the results indicated that the travel 
speed in the DH trip was a very influential parameter. 
 
Huisman et al. (2004) proposed a dynamic formulation of the multi-depot vehicle scheduling 
problem. The traditional, static vehicle scheduling problem assumes that travel times are a 
fixed input that enters the solution procedure only once; the dynamic formulation relaxes this 
assumption by solving a sequence of optimization problems for shorter periods. The dynamic 
approach enables an analysis based on other objectives except for the traditional minimization 
of the number of vehicles; that is, by minimizing the number of trips starting late and 
minimizing the overall cost of delays. The authors showed that a solution that required only a 
slight increase in the number of vehicles could also satisfy the minimum late starts and 
minimum delay-cost objectives. To solve the dynamic problem, a “cluster re-schedule” 
heuristic was used; it started with a static problem in which trips were assigned to depots, and 
then it solved many dynamic single-depot problems. The optimization itself was formulated 
through standard mathematical programming in a way that could use standard software. 
 
 
FLEET SIZE REQUIRED FOR A SINGLE ROUTE 
 
This section considers a case in which interlinings and deadheading (DH) trips are not 
allowed and each route operates separately. Given the average round-trip time and chosen 
layover time, the minimum fleet size for a radial route can be found according to the formula 
derived by Salzborn (1972, 1974). Specifically, let Tr be the average round-trip time, 
including layover and turn-around times, of a radial route r (departure and arrival points are 
same). The minimum fleet size is equal to the largest number of vehicles that departs within 
Tr. 
  
Although Salzborn's model provides the base for fleet-size calculation, it relies on three 
assumptions that do not hold up in practice: (i) vehicle-departure rate is a continuous function 
of time, (ii) Tr is the same throughout the period under consideration, and (iii) route r is a 
radial route starting at a major point (e.g., CBD). In practice, departure times are discrete, 
average trip time is usually dependent on time-of-day, and a single transit route usually has 
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different timetables for each direction of travel. For that reason, this section broadens 
Salzborn's model to account for practical operations planning.  
 
Let route r have two end points: a and b. Let Tria and Trjb be the average trip time on route r 
for vehicles departing at tia and tjb from a and b, respectively, including layover time at their 
respective arrival points. Let nia be the number of departures from a between tia, in which 
departure ia is included, and ti'a in which departure i'a is excluded. Thus, ia arrives to terminal 
b, then continues with trip jb, the latter being the first feasible departure from b to a at a time 
greater than or equal to the time tia+ Tria; ti'a  is the first feasible departure from a to b at a time 
greater than or equal to tjb + Trjb. Similarly njb may be defined for a trip j from b.  
Lemma 1:  In the case of no deadheading (DH) trips, nia departures must be performed by 

different vehicles at a, and njb must be performed by different vehicles at b, for 
all ia and jb in the timetables of r. 

 
Proof:  The proof is actually based on a contradiction. Let us assume that the same vehicle 

can perform two departures included in nia at a. However, in order to complete a full 
round trip, including layover times, this vehicle can only pick up the i'a departure at 
a, which is not included (by definition) in nia; hence, it is impossible for same vehicle 
to execute two departures within nia.  Q.E.D. 

 
Theorem 1:  In the case with no interlining (between routes) and no DH trips, the minimum 

fleet size required for route r is 
   r

minN = max {maxi nia , maxj njb}  (1) 
 
Proof:  Based on Lemma 1, maxi nia and maxj njb represent the maximum number of vehicles 

required to execute the timetables at a and b, respectively. Consequently the 
minimum fleet size for r is the greater of the two.  Q.E.D. 

 
An example of deriving the required fleet size for a single transit route r is shown in Figure 1. 
In this figure, a single average travel time Tria = Trjb =15 minutes is used throughout the 
timetable for both directions of r. The timetables contain 12 departures at b and 10 at a. The 
calculations for nia and njb are shown by arrows; starting with the departures at a for nia (using 
Tria = 15), and starting at b for njb. The solid line in Figure 1 represents the direction from the 
starting time to the first feasible connection (after 15 minutes), and the dashed line in the 
opposite direction links to the first feasible connection (also after 15 minutes) from the 
starting point. This leads to a determination of both nia and njb, and eventually the minimum 
fleet size, r

minN =5, according to Equation (1). It should be mentioned that the same Tria and 
Trjb are used throughout the example only for the sake of simplicity. Varied Tria and Trjb can 
be utilized in the same manner for each departure. 
 
Vehicle chains (blocks) can be constructed by using the FIFO (first-in, first-out) rule. That is, 
a block will start at a depot for the first assigned scheduled trip, and then will make the first 
feasible connection with a departure (based on the route's timetable) at the other end point of 
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the route, and so on. The block usually ends with a trip back to the depot. The trips to and 
from the depot are often deadheading trips. In the example illustrated in Figure 1, the five 
blocks can be constructed starting with the first departure (5:00) at b and using the FIFO 
(first-feasible connection) rule, then deleting the departures selected and continuing with 
another block until all departures are used. At the start of each step (at b), a check is made to 
see whether the next (in time) departure can be connected to an earlier unused departure at a 
and, if so, whether this connection can be allowed. The five blocks, therefore, are as follows: 
[5:00(at b) – 6:00(a) – 6:30(b) – 6:45(a) – 7:05(b) – 7:20(a) – 7:40(b) – 8:00(a)] ; [5:30(b) – 
6:15(a) – 6:50(b) – 7:10(a) – 7:30(b)] ; [6:00(b) – 6:30(a) – 7:10(b) – 7:25(a) – 8:00(b)] ; 
[7:00(a) – 7:15(b) – 7:40(a)] ; [7:20(b)]. An earlier connection, linking the 7:15 departure at b 
to the 7:00 departure at a, is possible only in the fourth block. The above FIFO process can 
certainly start at a, as well. Note that the last block has only one trip; the five blocks can 
undergo changes, including swapping trips, between blocks. Each block can start and end at a 
depot or can be used as a segment in a larger block. 
 
Finally when deadheading (DH) trips between the ends of two routes and/or slightly shifting 
departure times are allowed, it is more complex to use the formulation developed above. 
Instead, the solution can be found using the graphical method presented in the next section. 
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Figure 1     Example of derivation of single-route fleet size with no deadheading trips 
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DEFICIT-FUNCTION MODEL WITH DEAD-HEADING  
TRIP INSERTION 
 
The minimum-fleet-size problem may be approached with and without DH trips. A DH trip is 
an empty trip between two terminuses and is usually inserted into the schedule (i) to ensure 
that the schedule is balanced at the start and end of the day and (ii) to transfer a vehicle from 
one terminal where it is not needed to another where it is needed to service a required trip. 
When DH is allowed, the counter-intuitive result of decreasing the required resources (fleet 
size) by introducing more work into the system (adding DH trips) is attained. This assumes 
that the capital cost of saving a vehicle far outweighs the cost of any increased operational 
cost (driver and vehicle travel cost) imposed by the introduction of DH trips. This section 
presents a graphical person-computer interactive approach, based on a step function called 
deficit function.  
 
Definitions and Minimum Fleet Size 
 
Let I = {i: i = l, ..., n} denote a set of required trips. The trips are conducted between a set of 
terminals K = {k: k = l, …,q}, each trip to be serviced by a single vehicle, and each vehicle 
able to service any trip. Each trip i can be represented as a 4-tuple ( )i

e
ii

s
i t,,t, qp , in which the 

ordered elements denote departure terminal, departure (start) time, arrival terminal, and 
arrival (end) time. It is assumed that each trip i lies within a schedule horizon [T1, T2] i.e., 

2
i
e

i
s1 TttT ≤≤≤ . The set of all trips ( ){ }Ii,K,:t,,t,S iii

e
ii

s
i ∈∈= qpqp  constitutes the 

timetable. Two trips i, j may be serviced sequentially (feasibly joined) by the same vehicle if 
and only if   (a) j

s
i
e tt ≤    and   (b) ji pq = .  

 
If i is feasibly joined to j, then i is said to be the predecessor of j, and j the successor of i. A 
sequence of trips i1, i2,…, iw ordered in such a way that each adjacent pair of trips satisfies (a) 
and (b) is called a chain or block. It follows that a chain is a set of trips that can be serviced 
by a single vehicle. A set of chains in which each trip i is included in I exactly once is said to 
constitute a vehicle schedule. The problem of finding the minimum number of chains for a 
fixed schedule S is defined as the minimum fleet- size problem.  
 
Let us define a DH trip as an empty trip from some terminal p to some terminal q in time 
τ(p,q). If it is permissible to introduce DH trips into the schedule, then conditions (a) and (b) 
for the feasible joining of two trips, i, j, may be replaced by the following:  

j
s

iii
e t),(t ≤τ+ pq     (2) 

Now let us introduce a deficit-function-based model.  
 
A deficit function (DF) is a step function defined across the schedule horizon that increases 
by one at the time of each trip departure and decreases by one at the time of each trip arrival. 
This step function is called a deficit function (DF) because it represents the deficit number of 
vehicles required at a particular terminal in a multi-terminal transit system. To construct a set 
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of DFs, the only information needed is a timetable of required trips. The main advantage of 
the DF is its visual nature. Let d(k,t,S) denote the DF for terminal k at time t for schedule S. 
The value of d(k,t,S) represents the total number of departures minus the total number of trip 
arrivals at terminal k, up to and including time t. The maximum value of d(k,t,S) over the 
schedule horizon [T1, T2], designated D(k,S), depicts the deficit number of vehicles required 
at k. 
  
The DF notations are presented in Figure 2, in which [T1, T2] = [5:00, 8:30]. It is possible to 
partition the schedule horizon of d(k,t) into a sequence of alternating hollow and maximum 
intervals ( )k

k
k

k
kkkkk

)(n)(n1jj110 H,M,...,M,H,..,H,M,H + . Note that S will be deleted when it is 

clear which underlying schedule is being considered. Maximum intervals k
jM =[s k

j ,e k
j ], 

j=1,2,…,n(k) define the intervals of time over which d(k,t) takes on its maximum value. Index 
j represents the j-th maximum intervals from the left; n(k) represents the total number of 
maximal intervals in d(k,t), where s k

j  is the departure time for a trip leaving terminal k and 

e k
j is the time of arrival at terminal k for this trip. The one exception occurs when the DF 

reaches its maximum value at k
k )(nM  and is not followed by an arrival, in which case e k

k )(n = 
T2.  

 
A hollow interval H k

j , j = 0,1,2,…,n(k) is defined as the interval between two maximum 

intervals: this includes the first hollow, from T1 to the first maximum interval, k
0H = [T1, s k

1 ]; 

and the last hollow, which is from the last interval to T2, k
k)(nH = [e k

k )(n , T2]. Hollows may 
contain only one point; if this case is not on the schedule horizon boundaries (T1 or T2), the 
graphical representation of d(k,t) is emphasized by a clear dot.  
 
The sum of all DFs over k is defined as the overall DF, ∑

∈

=
K

)t,(d)t(g
k

k . This function g(t) 

represents the number of trips that are simultaneously in operation; i.e., a count, from a bird’s-
eye view at time t, of the number of transit vehicles in actual service over the entire transit 
network of routes. The maximum value of g(t), G(S), is exploited for a determination of the 
lower bound on the fleet size. An example of a two-terminal operation, a fixed schedule of 
trips, and the corresponding set of DFs and notations is illustrated in Figure 2.  
 
Determining the minimum fleet size, D(S), from the set of DFs is simple enough - one merely 
adds up the deficits of all the terminals. In the example in Figure 2 without DH trips, D(S) = 
D(a) + D(b) = 4. This result was apparently derived independently by Bartlett (1957), 
Salzborn (1972, 1974), and Gertsbach & Gurevich (1977). It is formally stated as Theorem 2.  
 
Theorem 2:  If, for a set of terminals K and a fixed set of required trips I, all trips start and 

end within the schedule horizon [T1,T2] and no DH insertions are allowed, 
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then the minimum number of vehicles required to service all trips in I is equal 
to the sum of all the deficits.  

)t,(dmax)(DNMin
K

],T[Tt
K 21

k    k 
k

 
k

∑∑
∈

∈
∈

==   (3) 

Proof:  Let Fk = the number of vehicles present in terminal k at the start of the schedule 
horizon T1; let s(k, t) and e(k, t) be the cumulative number of trips starting and 
ending at k from T1 up to and including time t. The number of vehicles remaining at 
k at time t ≥ T1 is Fk - s(k, t) + e(k, t). 

 
In order to service all trips leaving k, the above expression must be non-negative; i.e., Fk ≥ s(k, 
t) - e(k, t), T1 ≤ t ≤ T2. The minimum number of vehicles required at k is then equal to the 
maximum deficit at k.  Min Fk = Maxt[s(k, t) - e(k, t)] = Maxtd(k, t). Hence, the minimum 
number of vehicles required for all terminals in the system is equal to the total deficit 

( )SD)(dMinFNMin
KK

=== ∑∑ ∈∈
k 

kkk
.  Q.E.D. 

 
 
DH Trip Insertion 
 
A DH trip is an empty trip between the ends of a single route. We start by asking, Where and 
when is such trip needed? Usually, a trip schedule received from operating personnel includes 
such deadheading trips, and it is easy to apply the fleet-size formula to determine the 
minimum fleet size, followed by the first in-first out rule to construct each vehicle's schedule. 
The assumption is that the trip schedule S has been purged of all DH trips, leaving only 
required trips. From this point, the question of how to insert deadheading trips into the 
schedule in order to further reduce the fleet size will be examined. At first, it seems counter-
intuitive that this can be achieved, since it implies that increased work (adding trips to the 
schedule) can be carried out with decreased resources (fewer vehicles). This section will show 
through an examination of the effect of such deadheading trip insertions on deficit functions 
that this is indeed possible. 

 
Consider the example in Figure 3. In its present configuration, according to the fleet-size 
formula, five vehicles are required at terminal a, and six at terminal b for a fleet size of 
eleven. The dashed arrows in the figure represent the insertion of DH trip from a to b. After 
the introduction of this DH trip into the schedule, the DFs at both terminals are shown 
updated by the dotted lines. The net effect is a reduction in fleet size by one unit at terminal b. 
In fact Ceder (2002, 2003) shows that a chain of DH trips may be required for the reduction 
of the fleet size by one.  
 
All successful DH trip chains follow a common pattern. The initial DH trip is introduced to 
arrive in the first hollow of a terminal in which a reduction is desired. This DH trip must 
depart from some hollow of another terminal. Moving to the end of this hollow, another DH 
trip is inserted, such that its arrival epoch will compensate for the departure epoch added by 
the first DH trip. This is followed by additional compensating trips; however, in order to 
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Figure 2 Illustration of two-terminal fixed schedule with associated deficit functions 
and their sum, including notations and definitions 
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avoid looping, no more than one DH trip will be allowed to depart from the same hollow. 
Each time a DH trip is inserted (from p to q) to arrive at the end of a hollow q

iH  from the start 

of a hollow q
jH , it must pass a feasibility test; i.e., qq qp, 1ij s)(e +≤ τ+ . If the inequality is true 

with <, then there will be some slack time, during which the DH trip can be shifted. Let this 
slack time be defined as )]([es jki qp,pq

pq τ+−=δ + . In practice, if the DH time plus the slack 

time are greater than or equal to the average service travel time, then a service trip may 
replace the DH trip. In this way, an additional service trip is introduced, thereby resulting in 
higher frequency (i.e., an improved level of service) at usually the same operational cost.  
 
The process ends when a final hollow of some terminal q is reached (i.e., q

q
q

)(ni HH = ), after 

which no compensation is necessary. It is possible to arrive at a point where no feasible 
compensating DH trips can be inserted, in which case the procedure terminates or one may 
back track to the arrival point of the last DH trip added and try to replace it with another. This 
procedure results in a sequence of DH trips known as a unit reduction dead-heading chain 
(URDHC) if it ends successfully (i.e., if it reduces the fleet size by a unit amount). Clearly, 
the continued reward for such a search must stop, and the Lower Bound Theorem (Ceder, 
2002) provides a condition when it is futile to continue this search; this lower bound is based 
on the sum of DFs, g(t), and its maximum value G(S). 

 
 

DEFICIT-FUNCTION MODEL WITH SHIFTS IN  
DEPARTURE TIMES 
 
A small amount of shifting in scheduled departure times becomes almost common in practice 
when attempting to minimize fleet size or the number of vehicles required. This section 
presents two methods by which single routes may realize a variable trip schedule in an 
efficient manner. The first method ascertains the minimum fleet size required for a given 
single route, taking into account possible shifts in departure times for given backward and 
forward shifting tolerances (in minutes) for each trip. The second method, based on the 
deficit-function model, develops a formal algorithm to handle the complexities of shifting 
departure times. The algorithm is intended for both automatic and man-computer 
conversational modes. A secondary objective considered (for both methods) is to minimize 
the length of the shifting within their given tolerances.  
 
 
Single-Route Minimum Fleet Size 
 
In practice, departure times are shifted without any systematic method. Shifting tolerances are 
usually determined by rule of thumb although it makes sense to correlate them with the 
headways between departures. A proposed method appears in Table 1, in which the length of 
the shifting tolerance is headway dependent. That is to say, the longer the headway, the 
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shorter is the tolerance. If the shifting is backward, the preceding headway is considered as H; 
if it is forward, the next headway is considered. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Figure 3 Example of a timetable of two-way route and its deficit functions; 
insertion of one DH trip reduces the required fleet size from 11 to 10 
vehicles  
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 Table 1   Shifting tolerances as headway dependent 

Headway 
(H, in minutes) 

Percentage of H for 
tolerance determination 

(%) 

Tolerance length as H- 
dependent (minutes) 

< 10 50 0.5H 
10-20 40 0.4H 

21-40 30 0.3H 
>40 20 0.2H 

  
A new process needs to be designed for applying the shifting capability of departure times on 
single routes. This process simply attempts, through possible shifting of the relevant departure 
times, to reduce the minimum fleet size required. We will use the same notation for route r as 
in the third section of this work, but the symbol r is deleted, because it is clear which 
underlying route is being referred to. Thus, a and b are the end points; Tia and Tjb are the 
average trip times on the route for vehicles departing at tia and tjb from a and b, respectively, 
including layover time at their respective arrival points; nia is the number of departures from a 
between tia, in which departure ia is included, and ti'a, in which departure i'a is excluded. Trip 
ia arrives at terminal b, then continues with trip jb, the latter being the first feasible departure 
from b to a at a time greater than or equal to the time tia+ Tia; and ti'a  is the first feasible 
departure from a to b at a time greater than or equal to tjb + Tjb. Similar notations are defined 
for a trip starting from b.  
 
Let [tia- )(i −Δ a , tia+ )(i +Δ a ] be the tolerance time interval of the departure time of trip ia, in 
which: )(i −Δ a = maximum advance of the trip’s scheduled departure time (the case of an early 
departure), and )(i +Δ a = maximum delay from the scheduled departure time (the case of a late 
departure). Note that tik+ )(i +Δ k < t(i+1)k and tik- )(i −Δ k > t(i-1)k, for all k∈K. The minimum fleet 
size, Nmin, is then attained by construction, using the procedure illustrated in a flow diagram 
in Figures 4(a) and 4(b). The procedure described fits the case of Equation (1), in which Nmin 
= maxi nia. For the case in which Nmin = maxj njb (determined by a trip starting from b), the 
same procedure is applied, but with b replacing a and j replacing i. The procedure first 
identifies the departure ia (or one of a few) referring to Nmin = nia; then it attempts through 
shifting tia to arrive at b before or at t(j-1)b, and most important - to arrive before or at t(i'-1)a. If 
the process manages to reduce nia by one or more units, it looks for the next nia = Nmin or njb = 
Nmin to continue. A successful process is that in which Nmin is reduced. In addition, the 
procedure depicted in Figures 4(a) and 4(b) minimizes the length of shifting departure times, 
except for the shifting of the first departure, tia.  
 
The interpretation of the shifting procedure may be assisted by the example in Figure 1. Here, 
Nmin = 5, resulting from the fifth and sixth departures from b. When b replaces a and j 
replaces i in Figures 4(a) and 4(b), we can then use the procedure described and start with the 
6:50b departure. Given )(50:6 −Δ b  = 5 minutes, then )(00:7 +Δ a = )(20:7 +Δ b = )(15:7 +Δ b = )(10:7 +Δ b  = 
3 minutes. The first check in the Figure 7.3 example, results in shifting 6:50 to 6:45 from b 
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having )(45:6 −Δ b = 0 minutes. Then from a, the first feasible connection is at 7:03 (including a 
forward tolerance). The second check, 7:00 ≥ 6:45+15, results in setting the departure time  
from a at 7:00 with )(00:7 −Δ a = 0. The third check, 7:00+15 ≤ 7:20+3, leads to finding the first 
feasible connection to 7:00 to be from a. That is, min [7:20+3, 7:15+3, 7:10+3] ≥ 7:15 is 7:18. 
In the fourth check, t(j'-1)b=7:15. Hence, n6:45b = 3, instead of the previously n6:50b = 5. 
We now move to the 7:05 departure from b, in which n7:05b = 5. Given are )(05:7 −Δ b = 0 
minutes and )(10:7 +Δ a = )(20:7 −Δ b = )(30:7 +Δ b = 5 minutes. In the first check, an early departure 
from a is impossible. The second check, 7:20−0+15 ≤ 7:30+5, results in setting t(j'-1)b=7:35, 
and n7:05b = 4. The result is a multi-case of Nmin= nia = njb = 4, but without any further 
possibility of improvement, because n7:05b cannot be further reduced; this case is based on the 
procedure constructed in Figure 4(a) and 4(b). 
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Figure 4 (a)   Flow diagram of the shifting departure-times process for reducing 
the minimum fleet size Nmin determined at terminal a (for terminal 
b, the same process is used with a change of symbols)   
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Figure 4 (b)   Flow diagram continued from Figure 4 (a)   
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Variable Scheduling Using Deficit Functions 
 
The second approach to handle possible shifting in departure time employs the DF model. A 
developed formal algorithm to deal with the complexities of shifting departure times appears 
in Ceder (2002). This section will discuss the characteristics of variable single-route schedule 
using simple examples.  
 
Let us look closely at the 22-trip example in Figure 3 while assuming that the tolerances of 
this example are 5)(i)(i =Δ=Δ −+  minutes for all trips in the schedule. The question arises as 
to whether D(a)=5 and D(b)=6 can be reduced by shifting departure times within the given 
tolerances. In terminal b the two trips that construct the maximal interval are [7:45 (from a) – 
8:30 (arrives to b)], and [8:25 (from b) – 9:05 (arrives to a)]. Because of the connection of the 
first trip to the maximal interval of terminal a, we shift the 8:25 departure forward by 5 
minutes (to arrive to a at 9:10). At the other terminal a four trips are related to the maximal 
interval, two of which arrive and depart at 7:50. The solution will be to shift backward and 
forward by 5 minutes the two trips which arrive and depart at 7:50. That is, the trip of [7:15 
(from b) - 7:50 (arrives to a)] becomes [7:10 – 7:45], and the trip [7:50 (from a) – 8:35 
(arrives to b)] becomes [7:55 – 8:40]. The three shifts created manage to reduce the fleet size 
from 11 to 9, without any DH trip insertion.  
 
Another seven-trip example of a single route is depicted in Figure 5. It demonstrates a 
possible chaining effect of shifting departure times. In this example, 10)(i)(i =Δ=Δ −+  
minutes. Hence, in the beginning, it is possible to reduce D(b) by one unit through the shifts 
of 3

st  to the right and 4
st  to the left. However, these shifts increase D(a) and the net saving is 

zero. Consequently, another iteration is needed in which 7
st  is shifted to the right. Only then, 

we obtain a total saving of one vehicle. Given the desire to reduce a maximal interval k
jM  by 

shifting maximum two trips, the following three cases exist (Ceder, 2002): (1) shift only trip i 
to the right, (2) shift only trip i' to the left, and (3) shift both trips i and i' in opposite directions 
(see Figure 1 for definitions used). 
 
 
CONCLUDING REMARK 
 
A common practice in vehicle scheduling is to use time-space diagrams. Each line in the 
diagram represents a trip moving over time (x-axis) at the same average commercial speed 
represented by the slope of the line. Although many schedulers became accustomed to this 
description, it is cumbersome, if not impossible, to use these diagrams to make changes and 
improvements in the scheduling. It is also difficult to use different average speeds for 
different route segments, in which the lines in the time-space diagram can cross one another; 
this is not to mention the inconvenience of using these diagrams manually for inserting 
deadheading trips and/or shifting departure times. These limitations of the time-space diagram 
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caused us to look more closely into more appealing approaches – those that are presented in 
this work.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
In practical single-route transit-vehicle scheduling, schedulers should attempt to allocate 
vehicles in the most efficient manner possible, including the insertion of deadheading (DH) 
trips and the employment of small shifts in departure times. For example, in Egged, Israel's 
national bus carrier (with 4000 buses), the schedulers consider a variable instead of a fixed 
schedule in addition to deadheading (DH) trip insertions. Moreover, some DH trip insertions 
are combined with small shifts in the departure times to allow these insertions; thus, reducing 
the fleet size and vehicle cost required. This work accentuates both DH insertions and shifts in 
departure times for single-route vehicle scheduling by two developed approaches: (1) math-
programming solutions; and (2) a graphical (deficit function) technique that is easy to interact 
with and responds to practical concerns. 

Figure 5 Example of two shifting iterations to reduce the required fleet size 
from 4 to 3 
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INTRODUCTION 

The pricing and rationing measures applied to discourage the use of private cars, in order to 
alleviate the increasing road congestion and the consequent worsening pollution, are not 
always coupled with a consistent policy aimed at improving the performance, or at least the 
capacity, of the transit system. As a result, in many modern cities the problem of full transit 
carriers is becoming increasingly prelevant. Although this situation should be avoided through 
a correct design of the transit network by suitably increasing the line capacities, it is still 
important to properly simulate the current scenario in order to justify the resources needed to 
carry out appropriate interventions. 
 
Thus, we are interested here in modelling the dynamic behaviours of heavy congested, urban, 
multimodal (transit and road) networks, where the service is so irregular or so frequent that 
there is no point for passengers to synchronize their arrival at the stop with the scheduled time 
of carriers, if any is published. Within this context, we aim at properly reproducing the 
important dynamic congestion phenomenon of the temporary over saturation of roads and 
transit lines; that is, both the formation and dispersion of car and transit carrier queues on road 
arcs, and the formation and dispersion of passenger queues at transit stops, where passengers 
wait for the first run of the chosen line actually available to them. 
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The frequency-based static assignment models commonly used to simulate and plan urban 
transit networks are suited to represent systems (metro, tramways, buses) where it is generally 
assumed that a passenger, after reaching a stop, waits for the first attractive carrier among 
some common lines. This leads to the concept of optimal strategy (Spiess and Florian, 1989) 
which can be formally expressed in terms of a shortest hyperpath (Nguyen and Pallottino, 
1988). These models allow to suitably represent the effect of congestion on travel choices and 
passengers flows, but cannot represent properly the dynamic congestion phenomenon 
introduced above. In fact, the traditional approach to reproduce this congestion phenomenon 
in a static framework is based on the concept of effective frequency (DeCea and Fernandez, 
1993), stating that the line frequency perceived by the passengers waiting at a stop decreases 
as the probability of not boarding its first arriving carrier increases. Since the residual 
capacity of a run available to passengers waiting at the stop depends on the number of people 
that are already onboard, who do not experience the cost of queuing, then, in order to apply 
properly the effective frequency approach, an asymmetric arc cost function is to be 
introduced, as in Bellei et al. (2003). 
 
An alternative and well established approach to represent transit systems, which are 
intrinsically discrete in time, adopts a diachronic graph (Nuzzolo et al., 2003), where each 
run is modelled through a specific sub-graph whose nodes have space and time coordinates 
according to the timetable. The main advantage of transit models based on diachronic graphs 
lays in the fact that, even with an explicit representation of the time dimension, they can be 
reduced to static assignments on space-time networks. Then, a similar approach to that of 
effective frequency can be adopted in order to represent congestion due to limited capacity on 
transit carriers (Crisalli, 1999; Nguyen et al., 2001); even though this makes it possible, as in 
the static case, to simulate the priority of passengers onboard, a distortion on the cost pattern 
is introduced: at the equilibrium, the cost for the passengers who board the arriving run is 
equal to that suffered by those who must wait at the stop for a successive run. Moreover, 
when using this approach a compromise is to be made between numerical convergence and 
accuracy in constraint satisfaction, because, if the waiting cost increases too strongly when 
the onboard flow approaches the residual capacity, then the assignment algorithm becomes 
unstable. Finally, when applied to congested multimodal urban network, these models present 
some significant drawbacks: 
- on the supply side, diachronic graphs are not suited to represent congestion effects on travel 

times, since the graph structure itself must vary with the flow pattern; 
- on the demand side, since in urban transit networks with high frequency passengers perceive 

lines as unitary supply facilities, it is not necessary to represent the single runs explicitly; this 
circumstance is widely exploited in the existing static models for transit assignment (De Cea and 
Fernandez, 1993; Wu et al., 1994; Nguyen et al., 1998); 

- on the algorithm side, the complexity of the assignment problem increases more than linearly 
with transit line frequencies, due to the grow of  graph dimension. 

 
These drawbacks are overcome in this paper, were we present a new model and algorithm, aimed at 
solving the multimodal Dynamic Traffic assignment (DTA). The proposed approach extends 
an existing DTA model for road networks, presented in Bellei et al. (2005) and in Gentile et 
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al. (2006), based on a macroscopic representation of time-continuous flows. Here, the 
multimodal DTA is regarded as a Dynamic User Equilibrium1 and is formalized as a system 
between a dynamic arc performance function and a dynamic Network Loading Map1 (NLM), 
thus avoiding the introduction of the Dynamic Network Loading1 (DNL) model and the need 
of explicit path enumeration. The equilibrium model results in a fixed-point problem in terms 
of arc flow and transit frequency temporal profiles, similar to the static multimodal 
equilibrium model presented in Bellei et al. (2003), and is schematically depicted in Figure 1. 
 

 
Figure 1. Scheme of the proposed multi modal DTA model 

The main innovation in the multimodal assignment model proposed here is to represent the 
dynamic behavior of transit supply using a frequency approach, instead of a run approach, 
thus not requiring a diachronic graph. By so doing, intra modal congestion effects can be 
efficiently and effectively simulated, particularly those produced by the capacity constraints 

                                                 
1 For reader’s convenience we recall that a) the Dynamic User Equilibrium is a state of the network where, at 
each instant, no user can reduce his perceived travel cost by unilaterally changing route, which implies that users 
associate to each path its actual cost (the cost that would be actually experienced travelling along the path), and 
then choose a minimum actual cost path between their origin and destination; b) the Network Loading Map is the 
problem of loading all user trips on the chosen paths yielding the arc inflows corresponding to the given arc 
travel time and cost pattern; c) the Dynamic Network Loading is the problem of loading the network with given 
path flows in such a way that the resulting arc flow temporal profiles are consistent, through an arc performance 
model, with the corresponding travel time temporal profiles. The latter problem, raised by the presence of the 
temporal dimension affecting the DTA, is so important that in the literature much attention has been devoted to 
its specific analysis (see, for instance, Xu et al., 1999). 
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of transit carriers, both in terms of waiting delays and passenger queues at stops. The 
proposed approach is simply to represent these phenomena within a suitable arc performance 
function, which yields waiting time temporal profiles, consistent with a FIFO representation 
of passenger queues, for any given passenger flow and transit frequency pattern. The detail of 
the waiting time of single runs at stops, which cannot be represented any more, is replaced 
here by the average line access time temporal profile, which indeed corresponds to the 
expected waiting time at a stop in a frequency-based transit service; this way, calculations are 
simplified, while no notable error is introduced when calculating waiting time temporal 
profiles, as will be clarified in the algorithm section. 
 
The road congestion will be simulated with a suitable macroscopic dynamic arc performance 
model, such as the one presented in Gentile et al. (2005).  Inter-modal congestion phenomena 
occurring whenever cars and transit carriers share the same facility are simulated, on the road 
side, through the concept of equivalent flows, representing the contribution of the transit 
system to road congestion; on the transit side, the dependence of line carriers travel times on 
road traffic conditions, which may affect transit frequencies and waiting times, is reproduced 
introducing a new transit frequency propagation model. 
 
The demand model, based on random utility theory, has two main choice levels: mode choice (Road 
and Transit) and route choice. With reference to the latter, we present both a deterministic and a 
stochastic Logit model, based on the results presented in Gentile and Meschini (2006) and in 
Bellei et al. (2005), respectively; moreover, we assume a completely preventive user’s behavior. 
While the above model has a time continuous formulation, its numerical solution requires, as 
usual, a time discretization. However, a key feature of the above approach is that it does not 
exploit the acyclic graph characterizing the corresponding discrete time version of the 
problem (Gentile et al., 2006), so that no upper bound is set on the interval length by the 
solution method itself; in fact, this approach is intended to work with time intervals of several 
minutes, and allows the modeller to choose the time discretization based on the best trade-off 
between results accuracy and calculation times. 
 
In summary, this model inherits from the existing dynamic traffic assignment model presented in 
Bellei et al. (2005) and Gentile et al. (2006) several key features, consisting of: 
- formalizing the problem as a system of two functions (namely, the NLM and the arc 

performance function), instead of as a system of a function and of the parametric solution to a 
problem (namely, the demand function and the DNL); 

- achieving, jointly with the equilibrium, both the temporal consistency of the supply model and 
the demand-supply consistency, since it is no longer necessary to achieve the first through 
a DNL;  

- formulating DTA through an implicit path approach; 
- the possibility of defining “long time intervals” (5-10 min), which allows overcoming the 

difficulty of solving DTA instances on large networks and long period of analysis; 
- devising, on these bases, an efficient dynamic assignment algorithm, whose complexity is equal 

to the one resulting in the static case multiplied by the number of long time intervals introduced. 
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Moreover, with respects to the representation of heavy congested multimodal urban transportation 
systems, it presents the following advantages and innovations: 
- the dynamic behavior of transit supply is represented using a frequency approach, instead 

of a run approach, thus not requiring a diachronic graph representation of transit supply; 
- intra and inter modal congestion effects can be efficiently and effectively simulated, 

particularly those produced by the capacity constraints of transit carriers and affecting 
waiting and travel times; 

- on the algorithm side, the complexity of the assignment problem is independent of the transit line 
frequencies. 

MULTIMODAL NETWORK FORMALIZATION 

The aim of this section is twofold: firstly, we want to achieve a representation of the 
multimodal network such that the relations between road and transit elements, which are 
necessary to formalize non-separable cost functions modeling intra and inter modal 
congestion, can be correctly and univocally identified; secondly, we want to define the 
minimum amount of information needed to apply the proposed multimodal assignment model, 
highlighting also the operation of converting the input data, usually organized in a GIS 
database, into the assignment graph handled by the model. Without loss of generality, in the 
following we will represent two travelling modes: the road mode R and the transit mode T, 
and we will refer to the generic mode m∈M = {R, T}.  
 
To this end, a base network is introduced, represented by a directed graph H = (V, E), where 
V⊂ℵ is the set of vertices (ℵ is the set of positive integer numbers), and E⊆V×V is the set of 
edges. The generic edge ε is univocally identified by its initial vertex IV(ε) and its final vertex 
FV(ε), that is ε = (IV(ε), FV(ε)). The set of origins and destinations of passenger and car trips, 
referred to as centroids, is a subset Z⊆V of the vertices. 
  
The generic vertex ν∈V is associated with a location in space that can be accessed by 
passengers or cars, which is characterized by geographic coordinates (λν, θν)∈ℜ2 (ℜ is the set 
of real numbers), while the generic edge ε∈E is characterized by a length Lε∈ℜ+ (ℜ+ is the 
set of non-negative real numbers).  
 
Not each edge is allowed for all modes belonging to the road and transit systems (that is: 
pedestrians, transit carriers, private cars); therefore, three Boolean car, pedestrian, transit line 
allowed-edge variables CAE(ε), PAE(ε), LAE(ε)∈{0,1} are introduced, where each one is 
equal to 1, if the corresponding mode is allowed on edge ε∈E, and to 0, otherwise. 
 
The road network is represented associating to each edge ε: CAE(ε) = 1 an exit capacity 
Qε∈ℜ++ (ℜ++ is the set of positive real numbers), which is the maximum vehicular flow that 
can exit it, an under saturation speed Sε∈ℜ++, which is the average speed on the edge when 
no queue is present on it, that is its outflow is below the exit capacity, and a road fare 
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RFε∈ℜ+, which can be time varying. The road network is also characterized by a car 
occupancy coefficient γ∈ℜ++, allowing us to express car flows as a function of user flows. 
 
The line network is represented by a set ℑ⊆ℵ of lines. The generic line ℓ∈ℑ is characterized, 
from a topological point of view, by an ordered sequence of σℓ∈ℵ progressive points, 
referred to as its route, each one corresponding to a different vertex: 
R(ℓ) = {rn(ℓ)∈ℵ: (IV(rn(ℓ)),FV(rn(ℓ)))∈E, LAE((IV(rn(ℓ)),FV(rn(ℓ))) = 1, n∈[1, σℓ]⊆ℵ} ⊆ V, 
where we assume that consecutive progressive points are always connected by an edge 
permitted for transit carriers. 
 
For any given vertex ν∈V and line ℓ∈ℑ, the function n(ν, ℓ) yields, if it exists, the index n 
such that rn(ℓ) = ν, and 0 otherwise. Without loss of generality, we assume that line stops 
correspond to progressive points; since not every progressive point is a stop, a Boolean is-a-
stop variable ISn

ℓ∈{0,1} is introduced, that is equal to 1, if the n-th progressive point of line ℓ 
is a stop, and 0 otherwise. We assume that the first progressive point of a route is always a 
stop, that is IS1

ℓ = 1. 
 
Line carriers are characterized by: 
- a carrier capacity Qℓ∈ℜ++, which is the nominal capacity, usually expressed by the 

number of available seats, if standing in the carrier is not allowed; otherwise, it expresses 
the maximum number of passengers that can physically fit in the carrier; 

- a boarding and alighting capacity BQℓ∈ℜ++ and AQℓ∈ℜ++, expressing the maximum flow 
of passengers that can get on/off the carrier; 

- a time needed to open and close the doors δ ℓ∈ℜ+ ; 
- a car equivalent coefficient λℓ∈ℜ++ , expressing the carrier contribution to road congestion 

in terms of an equivalent number of cars; 
- an operative free-flow speed Sℓ∈ℜ++ ; 
- an operative acceleration ACℓ∈ℜ++ ; and 
- an operative deceleration DEℓ∈ℜ++ . 
 
Each line ℓ∈ℑ is operated with a base frequency ψℓ(τ)∈ℜ++, expressing the instantaneous 
carriers departure frequency from the terminal (that is from vertex r1(ℓ)) at time τ∈ℜ+. 
 
Regarding the fare schema, we attach to the n-th section of line ℓ∈ℑ, from the vertex rn(ℓ) to 
the vertex rn+1(ℓ), with n∈[1, σℓ-1], a specific section fare SFn

ℓ∈ℜ+, which can be time 
varying, so as to obtain purely additive path costs, which allows implicit path enumeration in 
route choice computations.  
 
To each mode m∈M is associated a vector of attributes Xm∈ℜ and a corresponding vector of 
coefficient ββββm∈ℜ, characterizing it with respect to the modal choice performed by users. On 
this basis, the formal multimodal network handled by the assignment model can be 
represented by a directed graph G = (N, A), where N is the set of the nodes, and A is the set of 
the arcs. 
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The generic node x∈N is identified by an ordered couple, whose first element is the node line, 
denoted NL(x) ⊆ {0}∪ℑ, and the second element is the node vertex, denoted NV(x) ⊆ -ℑ∪ℑ, 
that is x = (NL(x), NV(x)). This lets us to distinguish 4 different types of nodes, as depicted in 
Figure 2: 
RN ={(0, v): v∈V} road nodes; 
PN = {(0, -v): v∈V} pedestrian nodes; 
LN =  {(ℓ, rn(ℓ): ℓ∈ℑ, n∈[2, … , σℓ] ⊆ ℵ}  line nodes; 
QN = {(ℓ, -rn(ℓ)): ℓ∈ℑ, n∈[1, … , σℓ-1] ⊆ ℵ, ISn

ℓ = 1} queuing nodes; 
so that we have: N = RN∪PN∪LN∪QN . 
 
As usual, the generic arc a∈A is identified by an ordered pair of nodes, referred to 
respectively as the tail, denoted TL(a) ⊆ N, and the head, denoted HD(a) ⊆ N; that is              
a = (TL(a), HD(a)). As depicted in Figure 2, we distinguish 6 different types of arcs: 
RA = {( (0, u) , (0, v) ): (u, v)∈E, CAE((u, v)) = 1} road arcs; 
PA = {( (0, -u) , (0, -v) ): (u, v)∈E, CAE((u, v)) = 1} pedestrian arcs; 
LA = {( (ℓ, rn(ℓ)) , (ℓ, rn+1(ℓ)) ): ℓ∈ℑ, n∈[1, σℓ-1] ⊆ ℵ} line arcs; 
QA = {( (0, rn(ℓ)) , (ℓ, -rn(ℓ)) ): ℓ∈ℑ, n∈[1, σℓ-1] ⊆ ℵ, ISn

ℓ = 1} queueing arcs; 
BA = {( (ℓ, -rn(ℓ)) , (ℓ, rn(ℓ)) ): ℓ∈ℑ, n∈[1, σℓ-1] ⊆ ℵ, ISn

ℓ = 1} boarding arcs; 
AA = {( (ℓ, rn(ℓ)), (0, rn(ℓ)) ): ℓ∈ℑ, n∈[2, σℓ] ⊆ ℵ, ISn

ℓ = 1} alighting arcs, 
so that we have: A = RA∪PA∪LA∪QA∪BA∪AA . 
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Figure 2. Generic portion of the base network and the corresponding modal graphs. 

Note that more than one line may stop at the same pedestrian node, and that the structure of 
the pedestrian network can be very simple or very complex, depending on the modeling 
choices; Figure 2 does not illustrate these facts. 
 
The proposed network formalization allows us to define the following relation among its 
elements: 
- Each arc a∈LA∪QA∪BA∪AA is univocally associated with a line ℓ(a)∈ℑ; specifically, if 

a∈AA, then ℓ(a) = NL(TL(a)), otherwise ℓ(a) = NL(HD(a)). Moreover, we can denote as 
n(a) = n(NV(TL(a)), ℓ(a)) the index of the associated route vertex; 
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- each arc a∈LA is associated with the unique road arc, if it exists, sharing the same edge, 
that is: 
LR(a) = {b∈RA: ( (0,VN(TL(a))) , (0,VN(HD(a))) ) = b} ⊂ RA∪∅; 

- each road arc a∈RA is associated with the set of line arcs sharing the same edge, that is: 
RL(a) = {b∈LA: ( (0,VN(TL(b))) , (0,VN(HD(b))) ) = a } ⊂ LA∪∅ ; 

- each arc a∈A is associated with an edge, that is ε(a) = ( VN(TL(a)), VN(HD(a)) ). 
Finally, we will denote with Nm⊆N and Am⊆A the subset of nodes and arcs allowed for mode 
m, with NT = PN∪LN∪WN, AT = PA∪LA∪QA∪BA∪AA, and NR = RN, AR = RA. 

THE ARC PERFORMANCE FUNCTION 

We first introduce the notation for arc usage and arc performance variables: 
fa(τ) inflow of users on arc a∈A at time τ; 
ea(τ) outflow of users from arc a∈A at time τ; 
ta(τ), ca(τ) exit time and cost for users entering arc a∈A at time τ; 
φℓ

n(τ) transit frequency at the n-th progressive point of line ℓ at time τ; 
In order to represent the inter-modal congestion phenomena occurring whenever cars and 
transit carriers share the same facility, we introduce the equivalent inflow ua(τ) and the 
equivalent outflow va(τ). With reference to the generic road arc a∈AR, we assume that its 
equivalent flows are a linear combination of car flows and transit frequencies of those lines 
using it, that is: 

ua(τ) = fa(τ) /γ +Σb∈RA(a) λℓ(b) ⋅φℓ(b)
n(b)(τ) , (1.a) 

va(τ) = ea(τ) /γ +Σb∈RA(a) λℓ(b) ⋅φℓ(b)
n(b)+1(τ) , (1.b) 

With reference to the generic transit arc a∈AT, the equivalent flows coincide with the user 
flows. 
 
Relations (1) can be expressed in a compact form by the following functional, expressing the 
equivalent flow model: 

[u, v] = Υ(f, e, φφφφ) (2) 

where the arc components of u, v, f, e and φφφφ are temporal profiles. On this basis, the arc 
performance function aims at determining the travel time temporal profile and the generalized 
cost temporal profile on each arc of the multimodal network as a function of the equivalent 
inflow and outflow temporal profiles and of the transit frequency temporal profiles of the 
adjacent arcs. 
 
Introducing the function Γ, the arc performance function can be thus expressed in compact 
form, as: 

[t, c] = Γ(u, v, φφφφ) (3) 

where the arc components of t and c are temporal profiles. 
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Function (3) will be specified in the following sections with reference to the different arcs 
introduced above, so as to obtain a macroscopic arc performance function representing, with 
respect to the road network, the effect of limited road capacities, and with respect to the 
transit network, the effects of transit service discontinuity and transit carrier capacities in the 
context of transit line representation as continuous vehicle flows. 

Road arcs 

With reference to road arcs, function (3) can be specified utilizing a suitable macroscopic 
dynamic arc performance model, such the spatially separable model presented in Gentile et al. 
(2005), where arc performances are evaluated through an approximate solution of the 
Simplified Theory of Kinematic Waves and a parabolic-triangular fundamental diagram, or 
such the spatially non-separable network performance model presented in Gentile et al. 
(2006), which extends the previous one in order to represent spillback congestion. 
 
Here, in order to focus on paper’s topics, we will specify function (3) with reference to a 
simple link model, where the generic road arc a∈RA represents a road link of length Lε(a); at 
the final section of the link we have a bottleneck with capacity Qε(a) constant in time, strictly 
positive and bounded. When there is no queue, the vehicles travel along the arc with a 
constant under saturation speed Sε(a), so that their travel time is Lε(a)/Sε(a). When the inflow 
ua(τ) exceeds the exit capacity Qε(a), an over saturation queue occurs; if the queue arises at 
time σ + Lε(a)/Sε(a), the exit time of a vehicle entering the arc at time τ ≥ σ is equal to that time, 
plus the time that takes for all the vehicles that entered the arc between σ and τ to pass 
through the bottleneck at the maximum rate Qε(a). Based on the results achieved in Gentile et 
al. (2005), as depicted in Figure 3, the worst case dominates the others. Then, we have: 
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Figure 3. Arc exit time for a link with fixed under saturation speed and fixed exit capacity. 
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This model is consistent with the simplified kinematics waves theory (Daganzo, 1997) 
assuming a triangular shaped fundamental diagram, like the one depicted in Figure 4; in fact, 
in Gentile et al. (2005) it is proved that the density and the queue speed corresponding to the 
bottleneck capacity (respectively, point B' and V(Qε(a)) in Figure 4) are meaningless with 
respect to the arc travel times. Moreover, the model respects the non-strict version of the 
FIFO rule, that is: 

txy(τ′) ≥ txy(τ) , for any τ′ > τ . (5) 

Indeed, if no vehicle enters the arc between any τ and τ′ > τ, that is ∫τ
τ′
fxy(t) ⋅ dt = 0 , while the 

queue is vanishing, that is txy(τ′) > τ′ + Lxy / Vxy , it results that txy(τ′) = txy(τ). 
 

 
Figure 4. The proposed link model for road arcs is coherent with a triangular fundamental diagram. 

The travel cost of the generic road arc a∈RA is given by the sum of its travel time multiplied 
by the value of road time χ∈ℜ+, and of the proper road fare: 

ca(τ) = χ ⋅ (ta(τ) - τ) + RFε(a)(τ). (6) 

Queuing and boarding arcs 

The queuing and boarding arcs of a given stop are aimed at representing the total waiting time 
suffered by a user in order to board the chosen line. In fact, when the line is congested, that is 
the flow willing to board is higher than the line available capacity at that stop, the waiting 
time results by  the sum of two components, modelled respectively by the queuing arc and the 
boarding arc: 
- the over saturation waiting time, which represents the time spent by users queuing at the 

stop and waiting that the service become actually available to them; it can be thought as the 
time spent by each user waiting until the next carrier arriving at the stop will be the one he 
can actually board; 

- the under saturation delay, which represents the average delay due to the fact that the 
transit service is not continuously available over time; it can be thought as the additional 
delay suffered by each user waiting until the carrier that he will board arrives at the stop. 
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Obviously, if the line is not congested, the over saturation waiting time is null and the total 
waiting time coincides with the under saturation delay. 
 
With reference to the generic boarding arc a∈BA, the under saturation delay is evaluated 
assuming it proportional to the inverse of the corresponding line frequency, evaluated at the 
boarding instant; thus we have:  

ta
-1(τ) = τ -αℓ(a) /φa(τ)  (7) 

where ta
-1(τ) is the entry time for the user exiting the arc a∈BA at time τ and αℓ(a) takes into 

account headway irregularity (in particular, αℓ(a) = 0.5 with uniform headway, αℓ(a) = 1 with 
Poissonian headway). 
 
Then, for a given entry time τ, the corresponding exit time is given by: 

ta(τ) = τ': ta
-1(τ') = τ (8) 

and the exit time temporal profile is simply the inverse of the entry time temporal profile: 

t[a] = [t[a]
-1]-1 (9) 

 
With reference to the generic queuing arc a∈QA, the over saturation waiting time is evaluated 
by means of a bottleneck with time variable exit capacity, whose exit capacity is related to the 
available capacity of line ℓ(a) at progressive point n(a). At a given time τ, the available 
capacity is given by the line capacity at that point, depending on the carrier capacity and on 
the line frequency at τ, minus the flow already onboard at τ, that is: 

AKn(a)(τ) = Qℓ(a) ⋅φℓ(a)
n(a)(τ) – [vb(τ) – uc(τ)] 

b∈LA: ℓ(b) = ℓ(a), n(b) = n(a) - 1 ,  c∈AA: ℓ(b) = ℓ(a), n(b) = n(a), (10) 

where the term in square brackets is the flow already onboard, which coincides with the 
onboard flow arriving at the stop minus the flow alighting at it (see Figure 2). 
At a given time τ, the capacity actually available at the end of the queuing arc is not the 
available capacity at the same time, because of the presence of the under saturation delay on 
the boarding arc. Then, the bottleneck exit capacity temporal profile can be obtained 
propagating backward in time the available capacity temporal profile accordingly with the 
under saturation delay, the FIFO and the capacity conservation (Cascetta, 2001), that is: 

ξa(tb
-1(τ)) = AKn(a)(τ) /∂(tb

-1(τ))/∂τ ,   b∈BA: TL(b) = HD(a) (11) 

Then, the problem of determining the exit time ta(τ) for a user that enters the queuing arc 
a∈QA at the generic time τ, in presence of a time-varying exit capacity ξa(σ) for each time σ, 
shall be addressed identifying firstly the cumulative exit flow temporal profile, whose value 
Ea(τ) at time τ is given by: 

Ea(τ) = min{Fa(σ) + Ξa(τ) - Ξa(σ): σ ≤ τ} ,  (12) 

where Fa(τ) denotes the cumulative inflow at the generic time τ, that is the number of users 
that entered the arc until time τ: 



 419 
 
 

( ) ( ) da aF u
τ

−∞
τ = σ ⋅ σ∫  , (13) 

and Ξa(τ) denotes the cumulative exit capacity at the generic time τ: 

( ) ( ) da a

τ

−∞
Ξ τ = ξ σ ⋅ σ∫  . (14) 

The above expression (12) can be explained as follows. If there is no queue at a given time τ, 
the travel time is null and the cumulative exit flow is equal to the cumulative inflow. If a 
queue arises at time σ < τ , from that instant until the queue vanishes the exit flow equals the 
exit capacity, and then, based on the FIFO rule, the cumulative exit flow Ea(τ) results from 
adding to the cumulative inflow at time σ the integral of the exit capacity between σ and τ, 
that is Ξa(τ) -Ξa(σ). Moreover, if there is no queue at time τ , the cumulative exit flow is the 
same as the case when the queue arises exactly at σ = τ. The actual cumulative exit flow at 
time τ is the minimum among each cumulative exit flow that would occur if the queue began 
at any previous instant σ ≤ τ . 
 
Based on the FIFO rule, the cumulative exit flow at the exit time ta(τ) of a user that enters the 
arc at τ is equal to the cumulative inflow at time τ , that is: 

Ea(ta(τ)) = Fa(τ) .  (15) 

However, in presence of intervals with null flow, the above implicit expression does not allow 
to obtain a univocal value of the travel time. To take this circumstances into account, once the 
cumulative exit flow temporal profile is known, the exit time temporal profile is calculated 
conventionally as: 

ta(τ) = max{0, min{σ: Ea(σ) = Fa(τ)}} . (16) 

Figure 5 depicts a graphical interpretation of equation (12), where the cumulative exit flow 
temporal profile Ea(τ) is the lower envelop of the following curves: a) the cumulative inflow 
Fa(τ); b) the family of functions Fa(σ) + Ξa(τ) - Ξa(σ) with τ > σ , for every time σ , each one 
obtained from the vertical translation of the cumulative exit capacity temporal profile that 
goes through the point (σ, Fa(σ)). No queue is present when curve a) prevails; therefore, the 
queue arises at time σ' and vanishes at time σ''. In the same framework, the calculation of the 
exit time based on the cumulative inflow and exit flow temporal profiles is shown using thick 
arrows. 
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Figure 5. Bottleneck with time-varying capacity. 

Finally, the cost for the generic arc a∈QA∪BA is given by its travel time multiplied by the 
value of waiting time μ∈ℜ+: 

ca(τ) = μ ⋅ (ta(τ) - τ) . (17) 

Line arcs 

The exit time from the generic arc a∈LA at a given entry time τ is determined by the sum of 
three terms: the dwelling time at the stop DTa, the uncongested travel time URTa, and the 
delay CDa due to road congestion, evaluated at time τ + DTa(τ) when the carrier leaves the 
stop, that is: 

ta(τ) = τ + DTa(τ) + URTa +CDa(τ + DTa(τ)) (18) 

 
The dwelling time is determined by the time needed for passengers to alight and to board the 
carrier, plus time needed to open and close the doors: 

ta(τ) = τ + (ub(τ) /φℓ(a)
n(a)(τ)) / AQℓ(a) + (vc(τ) /φℓ(a)

n(a)(τ)) / BQℓ(a) + 2 ⋅δℓ(a) , 

b∈AA: ℓ(b) = ℓ(a), n(b) = n(a), c∈BA: ℓ(c) = ℓ(a), n(c) = n(a) (19) 

where: b∈AA and c∈BA are respectively the alighting and boarding arcs corresponding to the 
same line and progressive point (see Figure 2),  while ub(τ) /φℓ(a)

n(a)(τ) and vc(τ) /φℓ(a)
n(a)(τ) are 

the corresponding numbers of alighting and boarding passengers at time τ. The above 
specification of the dwelling time assumes that the doors are used first by alighting 
passengers, and then by boarding passengers. Alternatively, if the door usage is specified, the 
following expression can be adopted in place of (19): 

ta(τ) = τ + max{ (ub(τ) /φℓ(a)
n(a)(τ)) / AQℓ(a) , (vc(τ) /φℓ(a)

n(a)(τ)) / BQℓ(a) } + 2 ⋅δℓ(a) , (20) 

where b∈AA and c∈BA are the same as above. 
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To be noticed that the alighting and boarding capacities can be dependent from the line carrier 
congestion. This can be represented multiplying AQℓ(a) and BQℓ(a) by a function decreasing 
with the line occupancy rate, such: 1 -α ⋅[ fa(τ) /(Qℓ(a) ⋅φℓ(a)

n(a)(τ))]β , α > 0. 
 
The uncongested travel time depends on the operative speed, the acceleration and the 
deceleration of the line carrier: 

URTa = La /Sℓ(a) + 0.5 ⋅Sℓ(a) ⋅(1 /ACℓ(a) +1 /DEℓ(a)) (21) 

 
The delay due to road congestion, which is present only if the line is operated on a road arc 
allowed for cars, is equal to the grow of the road travel time with respect to the road free-flow 
travel time: 

0 if ( )
( )

( ) , ( ) otherwisea
b b

LR a
CD

t su b LR a
= ∅⎧

τ =⎨ τ − τ − ∈⎩
 , (22) 

where tb(τ) and sub = Lε(b)/Vε(b) represent, respectively, the congested exit time and the under 
saturation travel time of the road arc associated with arc a. 
 
The cost for the generic arc a∈LA is given multiplying its travel time by the value of onboard 
time η∈ℜ+, and adding to it the proper section fare: 

ca(τ) = η ⋅ (ta(τ) -τ) + SFn(a)
ℓ(a)(τ). (23) 

Alighting arcs 

The exit time from the generic arc a∈AA at a given entry time τ is assumed to be determined 
by the time needed for passengers to alight the carrier, plus time lost to open the doors: 

ta(τ) = (ua(τ) /φℓ(a)
n(a)(τ)) / AQℓ(a) + δℓ(a) ,  (24) 

where ua(τ) /φℓ(a)
n(a)(τ) is  the number of alighting passengers at time τ. 

As for the dwelling arc, the alighting capacity can be made dependent from the line carrier 
congestion. 
 
The cost for the generic arc a∈AA is given by multiplying its travel time by the value of 
alighting time π∈ℜ+: 

ca(τ) = π ⋅ (ta(τ) -τ) . (25) 

Pedestrian arcs 

The uncongested exit time from the generic arc a∈PA at a given entry time τ is simply: 

ta(τ) = τ + Lε(a) /Sε(a) , (26) 

while its cost is given by multiplying its travel time by the value of walking time ζ∈ℜ+: 
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ca(τ) = ζ ⋅ (ta(τ) -τ) . (27) 

THE TRANSIT FREQUENCY PROPAGATION MODEL 

The transit frequency propagation model aims at finding line frequency temporal profiles as a 
function of the line frequency at terminal and of the line route travel time temporal profiles. In 
fact, contrary to the static case, the temporal profiles of the transit frequencies in general are 
not constant along the line. This is due, on the one hand, to the translation in space and time 
of the frequency at terminal due to the time needed by carriers to reach each line progressive 
point; on the other hand, to the variation in time of road arc travel times, which induces 
variations in the carrier headways (see the example in Figure 6). The variation of frequency 
temporal profiles along the line may be calculated based on road arc travel times, accordingly 
with the FIFO and  vehicle conservation rules (Cascetta, 2001) applied to transit carriers, as 
follows. 
 

 
Figure 6. Variation of frequency temporal profiles along the line due to line travel times. 

First, the instant Tℓ
n(τ) when the carrier operating line ℓ and departed from the first 

progressive point r1(ℓ) at time τ reaches the n-th progressive point rn(ℓ) can be determined 
recursively on the basis of the line arc exit times: 

Tℓ
1(τ) = τ,   Tℓ

n(τ) = ta(Tℓ
n-1(τ)),  n∈[2, σℓ]⊆ℵ,  a∈LA: ℓ(a) = ℓ, n(a) = n -1 (28) 
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Then, since the line frequency can be regarded as the flow of carriers operating the line, its 
propagation along the line route can be determined with the following expression, which is 
derived from the FIFO and vehicle conservation rules (Cascetta, 2001): 

φℓ
n(Tℓ

n(τ)) = ψℓ(τ) /(∂Tℓ
n(τ)/∂τ),  n∈[1, σℓ]⊆ℵ , (29) 

expressing the line frequency observed at the n-th progressive point as a function of the line 
frequency at terminal, and of the travel time from the terminal to that progressive point. 
Relations (28) and (29) can be expressed in a compact form by the following functional: 

φφφφ = φ(t) , (30) 

where the arc components of φφφφ and t are temporal profiles. 

THE NETWORK LOADING MAP 

The network loading map (NLM) is complementary to the arc performance function in the 
sense that it aims at determining the inflow temporal profiles as a function of the travel time 
temporal profiles and of the generalized cost temporal profiles. We will outline two NLM, 
both allowing for implicit path enumeration: the one proposed in Bellei et al. (2005) for DTA 
on road networks, considering a Logit route choice model solved with a dynamic extension of 
the Dial’s algorithm, and the formulation proposed in Gentile and Meschini (2006), 
considering a route choice model based on dynamic shortest path computations. In both cases, 
for seek of brevity we will simply present the resulting formulations, addressing the reader to 
the quoted papers for any insight on the models. 

The route choice model 

Dealing with implicit path enumeration, we have to introduce: 
wx

md(τ) node satisfaction, which is the opposite of the expected value of the minimum 
perceived cost to reach the destination d∈Z with mode m∈M being on node x∈N∪Z 
at time τ; 

pa
md(τ) arc conditional probability, which is the probability of choosing arc a∈A to 

continue the trip towards the destination d∈Z with mode m∈M being on node 
TL(a)∈N∪Z at time τ. 

 
In order to specify node satisfactions and arc conditional probabilities accordingly with a 
Logit route choice model, as in any Dial-like model we assume that users travel only on 
efficient arcs, that is they always near the destination with respect to a given node topological 
order TOx

md, with x∈N, d∈Z, m∈M. Let then FSE(x, d, m) = {a∈Am: TL(a) = x, TOx
md > 

TOHD(a)
md} and BSE(x, d, m) = {a∈Am: HD(a) = x, TOTL (a)

md > TOx
md} be the efficient forward 

and backward star of node x with respect to destination d and mode m, respectively. 
 
Based on the results achieved in Bellei et al. (2005), it is possible to express the node 
satisfactions and the arc conditional probabilities through the following recursive equations: 
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wx

md(τ) = θm ln(∑a∈FSE(x,d,m) exp((-ca(τ) +wHD(a)
d(ta(τ))) /θm)) ,  x∈Nm∪Z (31) 

pa
md(τ) = exp((-ca(τ) +wHD(a)

md(ta(τ)) -wTL(a)
d(τ)) /θ 

m) ,  a∈Am , (32) 

where θm is the Logit parameter. Since users choose only efficient paths, the above system of 
equations can be solved by processing the nodes in topological order, while time instants may 
be processed in any order for each node. 
 
The deterministic specification of the route choice model can be achieved as in Gentile and 
Meschini (2006). Again, let FS(x, m) = {a∈Am: TL(a) = x} and BS(x, m) = {a∈Am: HD(a) = x} 
be the forward and backward star of node x with respect to mode m, respectively; then, the 
node satisfactions and the arc conditional probabilities are expressed through the following 
recursive equations: 

wx
md(τ) = min{ca(τ) + wHD(a)

d(ta(τ))}: a∈FS(x, m)} ,  x∈Nm∪Z (33) 

pa
md(τ) ⋅ [ca(τ) + wHD(a)

d(ta(τ)) - wTL(a)
d(τ)] = 0 ,  a∈Am (34) 

∑ (a)∈FS(x, m) pa
md(τ) = 1 , (35) 

pa
md(τ) ≥ 0 , (36) 

The above system of equations can be solved processing time instants in reverse 
chronological order, while nodes may be processed in any order within each time instant. We 
can express the solution of the Logit route choice model (31)-(32) in compact form through 
the following functions: 

w = wL(c, t) (37) 

p = pL(w, c, t) , (38) 

With reference to the deterministic case, since when there is more than one arc exiting from a 
given node that yields the minimum cost to reach a destination, the arc conditional probability 
pattern solving the system (33)÷(36) is not unique, the deterministic route choice model is  
formally expressed through the following functional and point-to-set map: 

w = wD(c, t) (39) 

p ∈ pD(w, c, t) . (40) 

In both cases, the node components of w and the arc components of p are temporal profiles. 

The mode choice model 

With reference to users travelling from orgin o∈Z toward the destination d∈Z, we define the 
following: 
Vm

od(τ) systematic utility of mode m for users departing at time τ 
Pm

od(τ) choice probability of mode m for users departing at time τ 
Dod(τ) demand flow departing at time τ 
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dm
od(τ) demand flow departing at time τ using mode m 

Since we have only two alternatives, it is classical to reproduce the mode choice through a 
multinomial Logit model with parameter θM, that is: 

Pm
od(τ) = exp(Vm

od(τ) /θM) /∑m∈M exp(Vm
od(τ) /θM) (41) 

As usual, we assume: 

Vm
od(τ) = ββββm

T ⋅Xm +wo
md(τ) , (42) 

where the node satisfaction wo
md(τ) plays the role of the inclusive utility associated to the path 

choice. The demand flow departing at time τ using mode m is: 

dm
od(τ) = Dod(τ) ⋅Pm

od(τ) (43) 

Based on equations (41)÷(43), the mode choice model is expressed in a compact form by the 
following functional: 

d = d(w, D) , (44) 

where the origin-destination components of d and D are temporal profiles. 

The network flow propagation model 

To formulate the network flow propagation model, it is useful to introduce inflow and outflow 
variables referred to passengers travelling toward a specific destination d∈Z: 
fa

d(τ) inflow of arc a∈A at time τ directed to d ; 
ea

d(τ) outflow of arc a∈A at time τ directed to d ; 
 
With reference to the Logit formulation, the inflow fa

d(τ) on arc a∈Am at time τ directed to 
destination d∈Z is given by the arc conditional probability pa

md(τ) multiplied by the flow 
exiting from node TL(a) at time τ. The latter is given, in turn, by the sum of the outflow eb

d(τ) 
from each arc b∈BSE(TL(a), d, m) entering TL(a), and of the demand flow dm

TL(a)d(τ) from 
TL(a) to d on mode m, which is null if  TL(a)∉Z. Then, we have: 

fa
d(τ) = pa

md(τ) ⋅[dm
TL(a)d(τ) +∑b∈BSE(TL(a), d, m) eb

d(τ)] ,  a∈Am (45) 

 
Similarly, with reference to the deterministic formulation, the inflow fa

d(τ) on arc a∈Am at 
time τ directed to destination d∈Z is given by the arc conditional probability pa

md(τ) 
multiplied by the flow exiting from node TL(a) at time τ. The latter is given, in turn, by the 
sum of the outflow eb

d(τ) from each arc b∈BS(TL(a), m) entering TL(a), and of the demand 
flow dm

od(τ) from o to d on mode m, which is null if  TL(a)∉Z. Then, we have: 

fa
d(τ) = pa

md(τ) ⋅[dm
TL(a)d(τ) +∑b∈BS(TL(a), m) eb

d(τ)] ,  a∈Am (46) 
 
In both cases, applying the FIFO and flow conservation rules (Cascetta, 2001) the outflow at 
time τ can be expressed in terms of the inflow at the entry time tb

-1(τ): 

eb
d(τ) = fb

d(tb
-1(τ)) / [dtb(τ)/dτ] (47) 
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while the total flows entering and exiting arc a∈A at time τ are: 

fa(τ) = ∑ d∈Z fa
d(τ) ;   ea(τ) = ∑ d∈Z ea

d(τ) (48) 
 
Based on (45), (47) and (48), the Logit network flow propagation model is expressed by the 
following functional: 

[f, e] = ωL(p, t, d) , (49) 

while (46), (47) and (48) yield the deterministic network flow propagation functional: 

[f, e] = ωD(p, t, d) , (50) 

THE DYNAMIC EQUILIBRIUM MODEL 

Extending to the dynamic case Wardrop’s first principle, the DTA problem is here regarded 
as a Dynamic User Equilibrium (DUE), where no user can reduce his perceived travel cost by 
unilaterally changing path, under the assumption that the path cost is that actually experienced 
by the passenger while travelling on the network consistently with time-varying travel times 
and generalized costs. The formulation based on implicit path enumeration of the DUE model 
is synthetically depicted in Figure 7, which immediately highlights the possibility of 
formulating the model as a fixed point problem in terms of the arc inflow and outflow and 
line frequency temporal profiles f, e and φφφφ. 
 

 
Figure 7. Formulation of the Logit (left) and deterministic (right) Dynamic User Equilibrium with 

implicit path enumeration. For the deterministic case, the dashed arrow indicate any solution of the 
choice map. 
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Specifically, combining the route choice model (37)-(38) and the mode choice model (44) 
with the flow propagation model (49) and the transit frequency propagation model (30) yields 
the formulation of the Logit NLM based on implicit path enumeration: 

[f, e, φφφφ] = [ωL(pL(wL(c, t), c, t), t, d(wL(c, t) ; D)) , φ(t)] = f L(c, t ; D) , (51) 

while combining the route choice model (39)-(40) and the mode choice model (44) with the 
flow propagation model (50) and the transit frequency propagation model (30) yields the 
formulation of the deterministic NLM based on implicit path enumeration: 

[f, e, φφφφ] ∈ [ωD(pD(wD(c, t), c, t), t, d(wD(c, t) ; D)) , φ(t)] = f D(c, t ; D) . (52) 

Combining the equivalent flow model (2) with the arc performance function (3) yields the 
formulation of the arc performance model: 

[t, c] = Γ(Υ(f, e, φφφφ), φφφφ) . (53) 

Finally, combining the Logit or deterministic NLM (51) or (52) with the arc performance 
model (53), we have respectively: 

[f, e, φφφφ] = f L(Γ(Υ(f, e, φφφφ), φφφφ) ; D) = ΦL(f, e, φφφφ) , (54) 

[f, e, φφφφ] ∈ f D(Γ(Υ(f, e, φφφφ), φφφφ) ; D) = ΦD(f, e, φφφφ) . (55) 

SOLUTION ALGORITHM 

To implement the proposed model, the simulation period is divided into I time intervals 
identified by the sequence of instants ττττ = {τi∈ℜ: i∈[0, I]⊆ℵ}, with τi < τj for any 0 ≤ i < j ≤ I. 
For computational convenience, we introduce also an additional instant τI+1 = ∞. In the 
following we approximate the generic temporal profile g(τ) of the performance and flow 
variables introduced in the previous sections, respectively, through a piecewise linear and a 
piecewise constant function, defined by the values gi = g(τi) taken at each instant τi∈ττττ. Under 
this assumption, for τ∈[τi, τi+1), with 0 ≤ i ≤ I, in the two cases we have, respectively:  

g(τ) = gi + (τ - τi) ⋅ (gi+1 - gi) / (τi+1 - τi) , (56.a) 

g(τ) = gi . (56.b) 

This way, the generic temporal profile g(τ) can be represented numerically through the         
(1 × I+1) row vector g = (g0, … , g i, … , g I). 
 
The state of the network at time τ0 is assumed to be known; here, without loss of generality, 
an initially unloaded network is considered. Note that, since we assumed that time intervals 
are in the order of minutes, and thus comparable with urban transit headways, the error 
introduced assuming within each time interval a constant average line access time is 
negligible. 
 
In this paper, we will present only the numerical methods solving the arc performance 
function, the transit frequency propagation model, and the mode choice model; in fact, 
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procedures solving the route choice model and the network flow propagation model coincide 
with those presented in Bellei et al. (2005) and in Gentile and Meschini (2006) for the Logit 
and the deterministic NLM, respectively. 

Arc performances 

Given the flows and the frequencies f, e and φφφφ, the computation of the equivalent flows and of 
the arc exit times and costs is straightforward, except for road, boarding and queuing arcs. 
 
function Υ(f, e, φφφφ) 
  for each arc a∈A 
    for each instant τi∈ττττ 
      compute ua

i and va
i based on (1) 

 
function Γ(f) 
  for each arc a∈RA   
    ta

0 = τ 0 + Lε(a) / Vε(a)   ;   ca
0 = χ ⋅ (ta

0 - τ 0) 
    for each instant τi∈ττττ \ τ 0 in chronological order 
 ta

i = max{τi + Lε(a) / Vε(a) , ta
i-1 + (ua

i - ua
i-1) / Qε(a)} (57) 

      compute ca
i based on (6) 

  for each arc a∈LA 
    for each instant τi∈ττττ 
      compute ta

i and ca
i based on (18) and (23) 

  for each arc a∈AA 
    for each instant τi∈ττττ 
      compute ta

i and ca
i based on (24) and (25) 

  for each arc a∈PA 
    for each instant τi∈ττττ 
      compute ta

i and ca
i based on (26) and (27) 

  for each arc a∈BA 
    for each instant τi∈ττττ in reverse chronological order 
 ta

-1 i = min{τi - αℓ(a) / φa(τi) , ta
-1 i+1} (58) 

    j = 0 
    for each instant τi∈ττττ in chronological order 
 until ta-1 j ≥ τ i do j = j+1 (59) 
 ta

i = τ j-1 +(τ j - τ j-1) ⋅ (τi - ta
-1 j-1) / ( ta

-1 j - ta-1 j-1) (60) 
      compute ca

i based on (17) 
  for each arc a∈QA 
    for each instant τi∈ττττ 
      compute AKn(a)

i accordingly with (10) 
 ξ'ai = AKn(a)

i ⋅ (τ i - τ i-1) / ( ta
-1 j - ta

-1 j-1) (61) 
    ξξξξa = spread(ξξξξ'a, ta

-1) 
    Fa

0 = 0, Ea
0 = 0 

    for each instant τi∈ττττ \ τ0 in chronological order 
      Fa

i = Fa
i-1 + ua

i ⋅ (τ i - τ i-1) 
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 Ea
i = min{Fa

i , Ea
i-1 + ξa

i ⋅ (τ i - τ i-1)} (62) 
    ta

0 = 0, j = 0 
    for each instant τi∈ττττ \ τ0 in chronological order 
 until Ea

 j ≥ Fa
i do j = j+1 (63) 

 ta
i = max {τ i , τ j-1 + (Fa

i - Ea
 j-1) ⋅ (τ j - τ j-1) / (Ea

 j - Ea
 j-1)} (64) 

      compute ca
i based on (17) 

 
With reference to road arcs, the recursive equation (57) determining the exit times is a 
specification of (4) complying with piecewise constants inflows, as for hypothesis (56.b). 
 
With reference to boarding arcs, firstly the entry time temporal profile is computed by means 
of equation (58), which is a slight modification of (7) ensuring respect of the FIFO rule. Then, 
the exit time temporal profile is computed as the inverse of the entry time temporal profile; 
this is done with the line search (60) over the entry time profile, once the appropriate index  j: 
τi ∈ (ta

-1 j-1 , ta
-1 j ] is identified by (59). As depicted in Figure 8, the resulting exit time profile 

(dashed line), complying with hypothesis (56.a), is not coincident with the entry time profile, 
yet it ensures the FIFO rule. 
 

 
Figure 8. Piece-wise linear entry and exit time temporal profiles of the generic boarding arc. 

With reference to queue arcs, first the temporal profile of the available capacity at the stop 
point is propagated backward to the head of the queuing arc by means of equation (61), which 
is a specification of (11) exploiting hypothesis (56) on exit capacity and entry time profiles. 
(61) yields a profile ξξξξ'a which is piecewise constant over instants ta

-1, thus not complying with 
(56.b); then, ξξξξ'a is transformed into an equivalent profile ξξξξa piece-wise constant over instants 
ττττ, preserving vehicle conservation, by means of the function spread explained below. Then, 
the cumulative exit flow profile is determined by means of recursive equations (62), which is 
a specification of (12) exploiting hypothesis (56.b) on inflow and exit capacity profiles. 
Finally, as depicted in Figure 9, the exit time profile is determined by means of the line search 
(64), which is a specification (16) exploiting hypothesis (56.a), once the appropriate j: Ea

 j-1 < 
Fa

i ≤ Ea
 j is identified by (63).  
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Figure 9. Exit flow and exit time for given piece-wise linear cumulative inflow and outflow. 

The function spread evaluates the contribute that the i-th element xi of a generic profile x, 
piece-wise constant over a set of instants t, gives to the generic j-th element y j of a generic 
profile y, piece-wise constant over predefined instants ττττ, proportionally to (t i-1, t i] ∩ (τ j-1, τ j], 
i = 1, …, I, j = 1, …, I. A graphical representation of this function is given in Figure 10. 
 

 
Figure 10. Graphical representation of the function spread 

function spread(x, t) 
  j = 0 
  until τ j ≥ t 0 do j = j+1 
  for each instant τi∈ττττ \ τ 0 

    if τ j ≥ t i then 
      y j = y j + x i ⋅ (t i - t i-1) / (τ j - τ j-1) 
    else 
      y j = y j + x i ⋅ (τ j – t i-1) / (τ j - τ j-1) 
      j = j + 1 
      until τ j ≥ t i do 
        y j = y j + x i 
        j = j + 1 
      y j = y j + x i ⋅ (t i - τ j-1) / (τ j - τ j-1) 

Transit frequency propagation 

Given the exit times and the headway frequencies t and ψψψψ, the computation of the transit 
frequencies at stops is as follows: 
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function φ(t) 
  for each ℓ∈ℑ 
    for each instant τi∈ττττ 
      Tℓ

1i = τi 
    for each progressive point n∈[2, σℓ] in the natural order 
      j = 0 
      for each instant τi∈ττττ 
        until τ j ≥ Tℓ

n-1 i do j = j+1 
 Tℓ

n i = ta
 j-1 + (ta

j - taj-1) ⋅ (Tℓ
n-1 i - τ j-1) / (τ j - τ j-1) (65)  

 φ'ℓn i = ψℓ
i ⋅ (τ i - τ i-1) / (Tℓ

n i - Tℓ
n i-1) (66) 

      φφφφℓ
n = spread(φφφφ'ℓ

n, Tℓ
n) 

 
The arrival times at progressive points and the corresponding frequency temporal profiles are 
determined through equations (65) and (66), which are a specification of (28) and (29), 
respectively, exploiting hypothesis (56.a), once the appropriate j: τ j-1 < Tℓ

n-1 i ≤ τ j is 
identified; then, since φφφφ'ℓ

n yielded by (66) is piece-wise constant over the set of instants       
Tℓ

n = {Tℓ
n i∈ℜ: i∈[0, I]⊆ℵ}, an equivalent transit frequency profile φφφφℓ

n complying with 
hypothesis (56.b) is evaluated by means of the function spread already introduced. 

Mode choice 

Given the node satisfaction and the demand w and D, the computation of the mode flows is 
straightforward 
 
function d(w, D) 
  for each node d∈Z 
    for each node o∈Z 
      for each instant τi∈ττττ 
        for each mode m∈M 
          compute mode systematic utility accordingly with (42) 
        for each mode m∈M 
          compute mode choice probability accordingly with (41) 
          compute mode flows accordingly with (43) 

Equilibrium 

The dynamic equilibrium, expressed as a fixed point problem, can be solved through the 
following MSA algorithm, where ε and mmax are, respectively, the maximum relative error  
and the maximum number of iterations. The relative error is defined as c ⋅(f -y) / c ⋅f for the 
deterministic model, and as ||f -y||∞ / f for the stochastic Logit model 
 
function DUE 
  m = 0, f = 0, e = 0, φφφφ = 0     initialization 

Afrequencybasedtransitmodel
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  until m > mmax do        stop criterion 
    m = m + 1        new iteration 
    [u, v] = Υ(f, e, φφφφ)      equivalent flows 
    [t, c] = Γ( u, v, φφφφ)     arc performance function 
    w = wL(c, t) | wD(c, t)     Logit|Deterministic node satisfactions 
    p = pL(w, c, t) | pD(w, c, t)   Logit|Deterministic arc conditional probabilities 
    d = d(w; D)       mode choice 
    [x, y] = ωL(p, t, d) | ωD(p, t, d) Logit|Deterministic network flow propagation 
    ϕϕϕϕ = φ(t)         transit frequency propagation 
    e = e + 1/m ⋅ (x - e)     update arc outflows with MSA 
    f = f + 1/m ⋅ (y - f)     update arc inflows with MSA 
    φφφφ = φφφφ + 1/m ⋅ (ϕϕϕϕ - φφφφ)     update line frequencies with MSA 
    if Logit_path_choice then 
     if ||f-y||∞ / f  < ε then end  Logit stop criterion 
    else 
     if c⋅(f-y) / c⋅f  < ε then end  Deterministic stop criterion 
 

NUMERICAL RESULTS 

The proposed algorithm was applied to a multimodal network (Sioux Falls), schematically 
depicted in Figure 11, consisting of 24 centroids, 76 road arcs and 5 transit lines operated by 
carriers having capacity of 2000 users and departure frequency from terminals of 8 veh/h. An 
available static demand matrix was multiplied by a suitable temporal profile simulating a 
morning peak hour, yielding a total demand of 901251 users. 
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Figure 11. The multimodal Sioux Falls graph. 

A deterministic DTA with mode choice between road and transit modes was performed over a 
period of analysis of 5 hours, which was divided into 30 time intervals of 10 min. A stop 
criterion ε ≤ 0.01 was achieved with 186 iterations, while the calculation time was 22 sec on a 
PC with a 3.0 Ghz CPU. 
 
With reference to the most loaded line, Figure 12 presents the frequency temporal profiles on 
some of its critical stops (left hand side), and the corresponding congestion delays between 
successive stops (right hand side). It can be noticed that the increment of travel time between 
stops 4 and 5 (due both to road congestion and to boarding and alighting congestion) induces 
a perturbation on carrier frequencies propagating in time forward along the line. 
 

line 1 
line 2 
line 3 
line 4 
line 5 

road link

centroid 

Afrequencybasedtransitmodel
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Figure 12. line frequency propagation between different stops. 

 

 
Figure 13. State evolution over time of a congested queuing arc. 

Figure 13 represents the state evolution over time of a queuing arc where over saturation 
occurs. As long as the passenger’s inflow remains below the available capacity (interval A-
B), no queue is present; thus, the arc travel time is null and the outflow is equal to the inflow. 
When the inflow equals the available capacity a queue grows, along with the travel time, 
while the inflow is greater than the available capacity (interval B-C), and vice-versa decreases 
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(interval C-D); as long as the queue is present, the outflow is equal to the available capacity. 
When the queue vanishes, the arc travel time returns to be null and the outflow is again equal 
to the inflow (interval D-E). 
 
The above numerical results confirm that the approach proposed in this work in order to solve 
multi mode dynamic traffic assignment is valid: in fact, all congestion effects are properly 
taken into account, and calculation times are reasonable also on realistic networks. 
However, more work is to be done in the future in order to improve the convergence of the 
proposed algorithm. 
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A THEORY ON MODELLING
COLLABORATION IN LOGISTICS
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INTRODUCTION

The evolution of logistics networks during the last decades can be characterized by a strong
rationalization of business processes. It has led to a constant search for economies of scale in
the supply chain, which has been an important parallel development in line with the changes
in globalisation and manufacturing. Companies can search for these economies of scale (and
scope) in their own organization, they can benefit from the scale a third party can bring
together, they can obtain scale through mergers and acquisitions or, finally, scale can be
achieved through collaboration. The latter form is the subject of this paper. The choice
between in-house organization, outsourcing, and collaboration is a fundamental decision in
the logistics network and firms are naturally reluctant to transfer responsibility for an
operational area as vital as logistics to a third party. Therefore an answer to the question:
"under what circumstances will organizations decide to collaborate with third parties?" is
crucial in order to be able to design a joint logistics network in which the different actors
collaborate.

In the paper we focus on collaboration in logistics and transportation networks, hub network
design and transaction costs economics. We extend on earlier work on collaboration in
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logistics by Lambert et al. (1997), on hub network design by of O'Kelly and Miller (1994) and
Abdinnour-Helm (1998), and on transaction costs by Williamson (1975; 1981; 1985). We
present a new modelling framework in which we combine Network Design Theory and
Transaction Cost Economics (TCE) into a comprehensive network design approach suitable
for dealing with collaboration among shippers (Groothedde, 2005). This design approach is
based on economic objectives such as minimizing total logistics costs, minimizing the user-
costs, and the preferred levels of service set by participants. In addition however, we
incorporate the transaction costs of the involved actors (shippers, carriers, etc.) that influence
their decision to participate in a collaborative network, seek an in-house solution, or outsource
the activity. The logistics costs are of great importance in this choice. But when a company
decides to switch from the current situation to the new network solution, costs are made to
make this switch possible. Factors influencing this switch are for example the investments
necessary for the alternative that is under consideration (referred to as asset specificity).

Another important factor is the frequency with which the decision needs to be reviewed and
of course the uncertainty of the considered alternative. A methodology that can be used in this
context is TCE, which is concerned with the minimization of the sum of production and
governance costs. The set-up of the paper is as follows. We first describe a number of options
for collaboration in logistics. Then, the factors determining the transaction costs of a firm due
to switching from the current situation to a possible collaborative form are discussed. These
costs play a crucial role in the firm’s decision to participate in a collaborative undertaking.
Using these basic notions a network design model is established for optimising the structure
and capacities of a logistics service network given one or more options for collaboration
among shippers. This design model is then adopted in two real-life cases to demonstrate the
impacts of different forms of collaboration on the structure of the logistics networks and
related business costs.

SEARCHING ECONOMIES OF SCALE

Companies have become more aware of the impact that their logistics organization can have
on the costs of doing business and on the degree of satisfaction of their customers. This
ongoing rationalization has led to a constant search for economies of scale in the supply
chain, which has been an important parallel development in line with the changes in
globalisation and manufacturing. The survey 2005 third-party logistics (Cap Gemini et al.
2005) shows that there is an increasing pressure to reduce costs and enhance the customer
service. For example, in 1996 87% of logistics executive’s perceived pressure to reduce
logistics costs, in 2005 96% indicated to perceive this pressure. In today’s logistics market in
Europe it looks as if it is to take-over or be taken-over. For example, Kuhne+Nagel acquired
ACR Logistics, Exel was taken over by Deutsche Post, and the ambitions of UPS with the
take over from TPG. A strategy that has become more and more apparent is seeking
collaboration with partners in order to achieve the necessary scale and scope. When analysing
its own performance a company should constantly look at the scale and scope they can attain
and what a third party can bring about. When weighing these options there are several key
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issues to consider: what are the specific investments needed and with what frequency do we
need to review this decision. What is, for example, the contract term? What are the uncertain
factors in the market and in the relationship itself? For a company to weigh these options ex-
ante is very important as theses decisions have far-reaching impact on the way of doing
business, market share, and network structure. In Figure 1 we distinguish different options
open to a company seeking economies of scale and scope. The first option is for a company to
outsource its activities and hereby making use of the scale of this third party. When seeking a
partner there are three options available. The first one is a Type I collaboration (operational
partnership) that consists of organizations that recognize each other as partners and, on a
limited basis, coordinate their activities and planning. The partnership usually has a short-
term focus and involves only one division or functional area within each organization.

Logistics 
activity

Type I

Outsourcing Operational 
collaboration

Coordination 
collaboration

Strategic 
collaboration

Network 
collaboration

Merger
Acquisition

Type II Type IVType III

Seek a 
partner?

In-house 
solution?

Option   1

Outsource 
to third 
party?

Option   2 Option   3 Option   4

Seek a network 
partners?

 
Figure 1: A selection of fundamental options open for a company to
achieve economies of scale.

The second one is a Type II partnership (coordination partnership) in which the organizations
progress beyond the coordination of activities to the integration of activities. Although not
expected to last forever the partnership has a long-term horizon. Multiple divisions and
functions within the firm are involved in the partnership. The third form we distinguish is a
Type III partnership (strategic partnership), in which the organizations share a significant
level of operational integration. Each party views the other as an extension of their own firm.
Typically no end date for the partnership exists.

Finally, a fourth type of collaboration is introduced (network collaboration) that goes one step
beyond a Type III collaboration in the sense that this type of collaboration is not only
structural in nature but extends throughout the logistics network and involves multiple actors.

From Collaboration to a Hub Network Design

The question arises how to translate these different options into feasible logistics networks
and what the impact of these different types of collaboration is on the performance of these
networks (hub networks as we focus on these types of networks). We present a design
methodology that is capable of translating these different options presented in Figure 1 into
their consequences for the individual companies involved, providing an answer to the
individual companies about the type of collaboration that suits their purposes.
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Before the actual hub network design can start several key characteristics of the collaboration
need to be listed. We distinguish the following characteristics: (1) The Objective of the
relation (either asset or cost efficiencies; customer service, marketing advantage, or profit
stability or growth); (2) the Type of collaboration (see Figure 1 for the four types we
distinguish); (3) Asset specificity, in any collaboration the asset specificity for the participants
is a key determinant and is the degree to which investments are specific for a certain relation.
Asset specificity is usually defined as the extent to which the investments made to support a
particular transaction have a higher value to that transaction than they would have if they were
redeployed for any other purpose. Williamson (1975, 1985) argued that transaction-specific
assets are non-redeployable physical and human investments that are specialized and unique
to a task. There is a trade-off between the cost savings and the risk due to the assets' non-
salvageable character; (4) Uncertainty, another important determinant is uncertainty and is
considered to be a key determinant of the height of the transaction costs; (5) Frequency, refers
to the frequency of occurrence and is considered an important attribute, from the point of
view that the costs of specialized, expensive, governance structures will be easier to recover
for large transactions of a recurring kind; (6) Dominance reflects its potential for influencing
the actions and decisions of individuals and firms in the network and is a key issue in business
logistics; and (7) Transparency, refers to the trust between the participating actors and the
measurability of the costs, benefits, performance in the logistics network.

A preferred strategy, for example, to achieve economies of scale is to operate in a hub
network in which the flows are consolidated and scale can be achieved. In these networks
serving many origins and many destinations, one important function of the hubs or
transportation terminals is to consolidate small shipments into vehicle loads. As O’Kelly and
Bryan (1998) so aptly put it: "economies of scale, due to the amalgamation of flows, provide a
raison d’etre for hub systems". Consolidation in these types of networks allows for more
efficient and more frequent shipping by concentrating large flows onto relatively few links
between hubs. Although use of indirect (that is via a hub) shipment may increase the distances
travelled, the economies of scale due to the larger volume can reduce the total cost. These
configurations can reduce and simplify network construction costs, centralize commodity
handling and sorting and allow carriers to take advantage of economies of scale making the
hub network well suited for collaboration.

To make the discussed translation between the type of collaboration and a hub network design
possible we developed a network design methodology yielding feasible hub network solutions
that has been applied in several network design projects two of which will be discussed in this
paper. The first application is the Ricoh Family Group case, in which the European logistics
network was designed and implemented. This is a typical example of an outsourcing relation.
The second case study is the design and implementation of a collaborative logistics network
in the Netherlands.
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THE INTEGRAL LOGISTICS COSTS+ APPROACH

First we will elaborate on the logistics costs and the costs incurred of switching between
different network alternatives. For example, the choice between the current logistics network
solution and a collaborative network should be based on what we refer to as the integral
logistics costs+. Looking at these different options the impact an alternative solution has on
the logistics activities should be analyzed. When considering the different options open to a
company (Figure 1), the logistics costs of these options should be considered but in addition
the transaction costs should be incorporated (Figure 2). Transaction costs are the costs made
in trying to attain a specific service not the costs of the service itself. Transaction costs
economics (TCE) is concerned with the minimization of the sum of production and
governance costs. Production costs are the costs for producing the product or service (wages,
materials costs, equipment, etc.), while the governance costs represent both the bureaucratic
costs of internal governance and the corresponding governance costs of markets, i.e.
transaction costs.

Transportation Costs
26%

Inventory Costs
19%

Transaction Costs
18%

Warehousing
22%

Administration
7%

Customer Service
4%

Order Entry
4%

 
Figure 2: Typical breakdown of the total logistics costs of a company
including the transaction costs when switching between alternatives.
(Groothedde, 2005).

In the logistics context this would mean a minimization of the logistics costs (transportation,
handling, and inventory) and the costs concerned with the governance of the network.
Williamson (1975; 1981; 1985) presented a framework to analyse the costs mentioned above,
which is based on economics, organization theory, and contractual law literature. The basic
unit of analysis of TCE is the transaction laid down in a contract between two parties.
According to the transactional view, a transaction can take place in the institutional
framework of the market (using the price mechanism), or of a hierarchy (which requires a co-
ordination of efforts), whatever allows it to be executed most efficiently (Kleas, 2000). The
parcel delivery services of carriers like UPS, FedEx or DHL form a typical example of a hub
network structure where economies of scale can be achieved. If a company decides to ship a
single parcel, the economies of scale that can be achieved by UPS, FedEx or UPS usually
outweigh the governance costs and transaction costs when outsourcing the delivery of the
parcel to one of these companies.
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In our definition the transaction costs consist of two parts: I II
i im imδ δ δ= + where index i refers

to company i and index m refers to a considered business option by company i. The first
( )I

imδ is caused by the first round of information problems, while the second part ( )II
imδ

indicates the consequential costs arising after the transaction has taken place. In Figure 3
Finding a partner, Negotiation, Governance, Lawyer, External Advice make up for the first
round transaction costs (ex-ante) while the costs incurred for the Increased Bid and Law-Suits
constitute the second round transaction costs (ex-post). The essence of the foregoing
argument can be illustrated using simple example in which we consider only two
organizational alternatives are considered: either a firm ships a parcel itself or it pays another
company to do so. As goods and service become very close to unique (i.e. the asset specificity
is high), economies of scale will no longer be realized in the market. The cost penalty for
using internal organization can be severe however for standardized transactions for which
market aggregation economies are great and where is low, as is the case in the example of the
parcel delivery services. Next to outsourcing participation in a collaboration could be an
option. If a partner is sought and the investments can be shared the asset specificity can be
reduced.

Finding a partner,
€50,000

Increased bid,
€200,000

Governance, €45,000

Lawyer, €23,000

External advice,
€40,000

Negotiation, €85,000

Law-suit, €120,000

 
Figure 3: Typical breakdown of the transaction costs of a company when
switching between two alternatives (Groothedde, 2005).

It is assumed that operating in a collaboration will lead to higher governance costs due to the
increased number of partners (higher transaction costs). Then the type of collaboration highly
influences the way in which the asset specificity and governance costs are divided amongst
the individual participants. This in turn influences the potential cost reduction that can be
achieved by a company when joining a collaboration and the structure of the logistics network
(as we shall see later on in this paper).

THE DECISION TO PARTICIPATE

The key issue in modelling the choice of a candidate participant n to participate in
collaboration m is the trade-off between the potential cost reduction ( imcΔ ) that can be
obtained by joining a specific network solution and the costs incurred ( )I

imδ for making the
switch from the current network to the newly designed network solution m. This trade-off is
captured in the threshold imcΔ depicted in Figure 4, where the curves denote the minimum
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level of imcΔ that needs to be achieved before joining a collaboration. The different levels of
uncertainty are denoted by 1Prob and 2Prob . This figure depicts the cost advantage or
disadvantage and revenue advantage or disadvantage a firm can have by deciding to join a
collaborative network. If the effect of participating is a cost advantage the network solution
can be positioned in either quadrant I or II. If there is a revenue advantage, the network
solution can be positioned in either quadrant II or IV. If positioned in quadrant II there is a
cost advantage as well as a revenue advantage. In this example the area indicates the cost-
revenue ratio with which the firm decides to participate. It can be argued that if no cost and
revenue advantages are to be gained, the firm is not willing to participate; a certain minimum
level of benefits ( imcΔ ) needs to be present given the ratio between revenue and costs.

Next, due to the mentioned transaction costs ( )imδ , based on the asset-specificity, frequency,
etc. a company makes a decision to participate or not. We assume however, that there is a
certain additional resistance to switch that firms have (not incorporated in the transaction
costs) due to uncertainty, dominance and transparency issues, denoted ( )im∈ . If the cost
advantage exceeds the revenue disadvantage or the revenue advantage exceeds the cost
disadvantage a firm is still willing to participate. However, as the cost advantage and revenue
disadvantage increase or the revenue advantage and cost disadvantage increase, yielding the
same ratio, a firm becomes more hesitant to participate (under the same condition of
uncertainty, 1Prob ), resulting in 2 1i ic cΔ > Δ . We illustrated two different levels of uncertainty.
These different levels of uncertainty could be caused by for example, different market
characteristics, types of collaboration, or other external circumstances. If uncertainty increases
( 2Prob ) it follows that the reluctance to participate increases and the threshold rises
accordingly ( 3 1i ic cΔ > Δ ). In our example the uncertainty has an increasing effect on the imcΔ but
in addition we assume that imcΔ increases as the dominance of a trading partner increases, and

imcΔ increases as well if transparency decreases (e.g. it becomes more difficult to measure the
transaction and there is little trust between partners that information exchanged is accurate).
The decision to participate in our framework is based on imcΔ and functions as a threshold.
The ratio between the costs and revenues (the total net benefits) therefore determines the
decision to participate.
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Figure 4: The trade-off between costs and revenues from the
perspective of collaboration. Source: Ruijgrok and Groothedde
(2005).

The level of imcΔ is determined by the costs of the current network solution (denoted 0ic ), and
in the example of a collaborative hub network the shipment costs for using the hub network
(denoted hubc ), and the transaction costs associated with switching between alternative
network solutions ( )imδ . In addition we distinguish additional resistance ( )im∈ that is
associated with uncertainty, dominance and transparency. This final parameter can differ
between participants, depending on their role in the logistics network (retailer, manufacturer,
carrier, or logistics service provider) and the cost and or revenue advantage that is to be
gained by participating in the collaboration. In Figure 5 the trade-off between the
disadvantages and advantages is illustrated for the four actors in the network. In our example
the service provider has the highest resistance to participate ( LcΔ ) due to the high asset
specificity and uncertainty. The fact that the retailer has a dominant position in this
constellation also increases the resistance of the other participants. It is therefore quite logical
that the service provider will want safeguards.
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LcΔ

McΔ

RcΔ

Figure 5: trade off between cost advantage and revenue advantage
based on the role of the actor.

The two curves of both manufacturers are not similar due to the different situations they are in
(in terms of volume, frequency, products) and therefore the costs and benefits will differ. To
be able to understand whether participation at any point in the logistics network or a
collaborative network is desirable or practical requires that the actors (retailers,
manufacturers, service providers, etc.) understand whether the ownership and control of
particular network resources will generate a sufficient financial return to make participation
worthwhile. Thus, when optimising the logistics network of a focal company it is necessary to
analyse its relations and interactions with other actors in the network, but also its position in
the network and the dominance of other actors, both up and downstream. In our modelling
approach these different roles of the participants (i) and accompanying thresholds are used to
model the individual choice to participate in a hub network collaboration (m) and thus leading
up to different entry levels for the different participants. In our case-studies we also used
different roles and their influence on the resulting network.

THE LINK WITH NETWORK DESIGN THEORY

Our primary objective is to develop and demonstrate a design and evaluation methodology for
logistics and transportation networks in which the participants collaborate, in particular, a
collaborative hub-network. Generally speaking, the objectives we focus on in our network
design methodology are cost minimization and service maximization, and in order to reach
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this objective we need to incorporate the following primary decision (design) variables: the
number and location of the hubs, the services between these hubs, capacity of the hubs and
services, inventory positions, and routing of the shipments.

Our network design procedure generates an ‘optimal’ network configuration given a particular
type of intended collaboration. Collaboration thus is not an endogenous variable. Based on the
type collaboration, for example a long term partnership, the implications on the transaction
costs ( I II

i im imδ δ δ= + ) are derived for all individual potential participants. In addition, during
the network design procedure these are constantly updated; based on the imδ , im∈ , and the

imcΔ , the difference between the current situation (not participating) and the costs associated
with participating in the generated network solution by the network design procedure.

There is considerable literature on a variety of problems closely related to discrete hub
location problems. This includes research on continuous space hub location problems, where
the hub locations are allowed to be located anywhere in a continuous region (Aykin, 1995;
Aykin and Brown, 1992; O'Kelly, 1986; O'Kelly, 1992; O'Kelly and Miller, 1991, Suzuki and
Drezner, 1997). One large area that is related to hub-network design is the research on
designing hub network, but without the hub location component. The relevant models
generally are those with two or model levels where the different levels form a hierarchy.
There is considerable literature on network design problems in which the location of the hub
(backbone) nodes is specified (Crainic et al. 2000; 1999; Klincewicz, 1998; Groothedde,
2005). We extend the existing hub-network design models by introducing capacity
restrictions on the hub and on the inter-hub transfer and incorporate service network design
techniques. In particular collaboration costs and benefits are introduced. In the following
section we will present the overall network design approach, followed by a formal model
formulation and a discussion on the extensions we made on existing hub network design
approaches.

The model structure

In Figure 6 the structure of the overall modelling approach is illustrated. We distinguish seven
steps, starting with the input data to acquire an accurate picture of the current network
performance, ending with the implementation of the new network structure. The design starts
with the description of the current situation of the candidate participants in terms of locations,
flows, product characteristics and mode information of the potential participants, resulting in
a description of the current logistics networks of potential participants. This description is
used as a reference for the network design phase. Based on this input, the costs of the current
situation are then calculated in step 2 (e.g. inventory, transportation, handling, warehousing,
administration costs) for each individual participant. Given the mode of transport used on the
origin-destination relations, the appropriate cost function to calculate the costs is used. Next
to the transportation costs the facility, inventory, and handling costs are calculated. Resulting
in an estimate of the total logistics costs which are then validated using information provided
by the potential participants n (denoted A in Figure 6). The next step is to describe the type of
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intended collaboration m (B) and to translate the characteristics of non-tangible model
parameters for all potential participants (e.g. translated into the transaction costs ( )imδ , and
the additional resistance, ( )im∈ . Note that these are indexed because the impact for all
potential participants n is estimated for every business option m considered by company i.

,im imδ ∈

Figure 6: Comprehensive network design procedure for a collaborative
logistics networks.

I) The methodology to calculate these costs is based on activity based costing and available
benchmarks (NEA 2005; AC-Nielsen 2003).
II) These costs are expected to be provided by the participating firms and are used to validate and
calibrate the cost functions used. If necessary the model is calibrated.
III) Based on the type of coordination, asset specificity, uncertainty, frequency, dominance, and type
of contract. The type of collaboration (See Figure 1) is denoted m. Note that the index m is no longer
used in the problem model formulation.
Having estimated the impact of the collaboration on the transaction costs and resistance it is
then possible to estimate the costs and other implications of a new network solution for all
potential participants facilitating to model their choice behaviour between the current
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situation and the new network solution. This choice behaviour can either be modelled
deterministic or probabilistic (C). The fourth step consists of the procedure for the actual
design of the network using a search procedure to find a feasible hub network. Every time an
alteration is made to the network the implications of this new network solution on the use of
the network is calculated followed by: (1) the transaction costs ( )imδ , (2) the resistance ( )im∈ ,
(3) the costs of participation ( hubc ), and (4) the resulting use (based on the costs) of the new
network solution again needs to be calculated (step 5 in Figure 6). This is an iterative process
resulting in the use of the network solution, the transaction costs ( )imδ , and the resistance
( )im∈ per individual participant i. For this search procedure the simulated annealing
methodology may be used. For information on the solution procedure and performance on
this large scale problem we refer to Groothedde (2005).

Once the criteria are met, or a stable solution is found the network is evaluated using the
simulation module (6), for example the maximum number of iterations is reached or the
improvement solution w and w+1 is smaller than the predefined criteria. In this module the
solution is tested and validated to assess the reliability, robustness and cost-effectiveness of
the network solution based on actual order-information.

Finally in step 7 the network is implemented. This step is outside the scope of this paper
though it is crucial to mention this phase since our objective is to find a feasible network
solution but we also want to find a feasible network development, which is used during the
implementation.

Model formulation

In addressing the hub network design question we make use of the standard formulation of a
hub network problem, Our approach differs from most hub network design models in that we
not only focus on the feasibility of the final network solution but are also interested in the
development path towards this final configuration . We also incorporate restrictions on the
path towards this final network solution in terms of the initial cost reduction, the capacity
available, and the admittance of a new participants by the consortium. The underlying design
problem can be formulated as a standard hub network problem in which the total logistics
costs and transaction costs need to be minimized. In this section we present our formulation of
the capacitated multiple allocation hub location problem. In this formulation there is also cost
associated with the establishment of a hub. Consequently, the number of hubs for any given
problem needs to be derived by the mathematical decision model. In Ebery et al. (2000) a
capacity restriction is placed on the volume of traffic entering the hub via collection. In our
version of the model we introduce capacity restrictions on the flows entering and leaving the
hubs and on the inter-hub flows. Below the different types of variables are listed. The key
design variables are the opening of the hubs, the sequences, the capacity of the hubs and
sequences, and direct/hub shipments. In addition, the endogenous and exogenous variables are
presented.
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Design variables
opening hubs locations of the hubs (and consequently their number)
sequences the inter-hub services connecting the hubs
capacity of the hubs transshipment capacity in loading units/time unit
capacity of the sequences the capacity deployed on the inter-hub services
direct/hub shipment the choice between direct and the hub-network
participants the actors joining the consortium

Endogenous variables
integral costs/item total cost (transport, handling, transaction costs, etc.)
lead-time total shipment time between origin and destination
utilization of assets the utilization of vehicles, equipment and assets
direct/hub shipment fraction of the flow sent directly or via hub-network
choice to participate the decision candidate participants to join the collaboration

Exogenous variables
potential participants the individual actors that can join the consortium
type of collaboration type I, II, and III
potential hub locations the nodes where a hub can be located
transport rates road transport labour costs/hour, fuel costs, etc.
hub-network investments investment in equipment, information technology,etc.
transaction cost frequency, distribution of the asset specificity
additional resistance additional costs incurred based on the collaboration
network characteristics the network description, nodes, links, type, etc.
facility costs investment costs in cost/m2
transshipment characteristics technique and capacity on the hub
product characteristics value, volume, weight, loading unit

We define the graph ( , )=G V E where {1,..., ,..., }v=V V is the node set of all origin and destination
nodes. 2=E V is the set of directed arcs while the set of potential hub nodes is ⊆K E . The set of
origin-destination pairs (OD) is 2⊆W V and we consider a situation in which there are

(1,..., ,..., )i=I I origins and J destinations indexed (1,..., ,..., )j=J J Each potential participant is
associated with an origin i. The volume on origin-destination pair ( ij ) is denoted ijd . The cost
of shipping ijd units directly form origin i to destination j is denoted ijc and is usually
proportional to the distance between origin i and destination j . So as an alternative to direct
origin node-to destination-node shipment there are (1,..., ,..., )k=K K possible hubs of which

(1,..., ,..., )s=S S sequences can be made from the access-hub k near the origin (i) to the egress-
hub l , (1,..., ,..., )l=L L near the destination (j), =L K . Let ⊂s K denote a sequence of hubs K .
Sequence s consists of one or more segments a, and each sequence s consists of one or more
hubs k.. The cost per unit flow for collection is denoted ikc , for the transfer hub

sc and
distribution ljc . In the hub network optimisation model (1-12) the decision variable

ijklX denotes the fraction of flow that travels from node i to j via hubs located at k and l , the
decision-variable ijX denotes the fraction of flow from node i to j that is shipped directly
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( 1+ =ijkl ijX X ), the variable iX , ∀ ∈i I is defined by 1iX = if a fraction of the flow of
participant i is shipped via the hub network and 0iX = , if otherwise.
This design variable indicates if a participants is joining the network. The decision-variable

kY , ∀ ∈k V is defined by 1kY = if node k is a hub and 0kY = otherwise. kF is the fixed cost
associated with the establishment of a hub at node k and χk is its capacity. The decision
variable sZ , ∀ ∈s S is defined by 1=sZ if sequence s is present in the network and 0=sZ

otherwise. φs is the capacity on sequence s .
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In our problem formulation these costs are dependent of the flows and thus dependent of the
decision variables ( ijX , ijklX , and kY ). In turn, the decision to participate (captured by the
decision variable) is determined by the costs. In our problem formulation we use the notation

( )ikc X , ( )hub
sc X , and ( )ljc X to indicate that the costs ( ikc , hub

sc and ljc ) are a function of the
decision variables, denoted by X without subscript. The number of hubs open on a sequence
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s is given by the cardinality of the set K . Paths in the graph are identified as a sequence of
the nodes traversed.

In objective function (1) the first term represents the costs of shipping directly between origin
and destination without using the hubs. These shippers do not participate in the collaboration.

The second terms represents the costs of collection when shipping through the hub network.
The third term ( )hub

sc X represents the total costs of the inter-hub-transfer. Note that these costs
depend on the decision variables. The fourth term in our formulation represents the
distribution costs (from the hub to the final destination). The fifth term in this formulation
represents the costs of opening a hub in the network and incurs the associated fixed costs. In
the previous sections the importance of the transaction costs ( iδ ) and additional resistance
( iε ) to participate was discussed. In order to implement the effects of these factors on the
network design and development path of the network, we introduce the hub design
formulation including iδ and iε presented in formula (1). In this formulation the costs of
participating are incurred if 1=iX , if potential participant i does not join the collaborative hub
network 0=iX .

Conservation equations (2) ensure that the total flow ( ijd ) from i to j is transferred either
through the hub network or using direct shipment from i to j , while equations (3) and (4)
guarantee that transfers only occur via valid hubs. These equations (2)-(4) ensure that the total
demand is sent through the network. Equation (5) ensures that the capacities on the hubs are
being adhered to. Equation (6) ensures that the capacity on the sequences connecting the hubs
is adhered to. Restrictions (7)-(12) define the decision variables.

With this model, the hubs are capacitated and there is a fixed cost associated with establishing
a given node as a hub. Next to the capacity restriction on the hubs we introduce capacity
restrictions on the inter-hub connections. In order to take into account the cost reductions that
are obtained by consolidation at hub nodes, the technique used in the standard linear hub-
location model has been to apply a so-called discount factor on the inter-hub links of the
network, so that the per-unit price on inter-hub links is lower than that on external links of the
network. It is clear, however, that the use of a linear cost function does not model scale
economies, which requires that the marginal price decreases with increasing flow, in which
case the cost function must be strictly concave increasing, rather than linear. Clearly, this
simplification is costly in terms of accuracy of the solution since large and small flow values
all receive the same discount. We explicitly incorporate economies of scale in our cost-
functions ( ijc , ikc , hub

sc , and ljc )1.

1 The costs for shipping via the hub network, denoted hub
sc , comprise the fixed costs ( f

sc ) per time unit multiplied

by the sum of the transport time and handling ( sT ), the variable costs per time unit ( v
sc ) multiplied by the

transport time ( st ), and the utilization of the capacity available on sequence s ( μs ). We can formulate these costs

as follows: ( )( )hub f s
s s S s s sc c T c t μ= + . An important determinant of the costs for shipment via the hub network is the
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THE DIFFERENT BUSINESS MODELS

As we have seen relationships between organizations can range from arm’s length
relationships to complete vertical integration of both organizations. To illustrate the impact
the type of relationship between firms has on the decision-making process and network design
outcome we present two examples: (1) optimisation of the network with no transaction costs
incurred, referred to as the lower bound (LB), and (2) a Type II collaboration with transaction
costs. Let us first introduce the network design problem that was used to illustrate the impact
of the transaction costs on the network design.

We start with a complex network of 700 locations (production facilities, warehouse locations,
customers, and transport hub locations). The orders, volumes and shipments of 6 companies
were included. These flows consist of apparel, consumer electronics, printers, faxes, parts,
and components. The total flow between these origins and destinations is 1,578,000
shipments/year and a calculated average of €78.40/shipment. The shipment sizes range from
0.10 m3 to 1.5 m3 and the total calculated costs are €123,000,000 annually.

Using the model we first calculated the current situation (step 1 and step 2 in Figure 6)
resulting in the routes, distances and logistics costs associated with the current network. These
costs were then validated using the actual costs (inbound, outbound transportation costs,
inventory costs, handling costs, warehousing costs).

 
Figure 7: Logistics network design with no transaction costs incurred.

utilization factor of the deployed equipment, denoted μs , a variable dependent of the capacity that is available on

sequence s and the combined use of all participants. Using these costs hub
sc and ijc combined with the

mentioned transaction costs
im

δ and im∈ , the
im

cΔ is calculated to model the decision to participate. See for

additional information on the incorporation of the economies of scale Groothedde (2005).
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The objective of the algorithm is to minimize the total logistics costs and the decision-
variables in this example are the number and location of the hubs, the inter-hub services, and
direct or hub-shipment (in total 50 potential hub locations are used). The network design
problem was solved using our Simulated Annealing Heuristic described in detail in
Groothedde, 2005. The outcome of the hub network design phase without the transaction
costs incurred is a hub network with 5 hub locations and total logistics costs of
€98,000,000/year, yielding a cost reduction of €25,000,000/year, (-20%). The fraction of the
shipments that is accommodated by the hub-network is 78% of the total 1,578,000. In total 5
hubs are included (Madrid, Paris, London, Düsseldorf, and Bologna), with 16 inter-hub
services, of which 14 services directly connect 2 hubs, and 2 services make an intermediate
stop (Madrid Paris Düsseldorf and Düsseldorf Paris Madrid).

In Figure 7 the logistics network solution is presented. The next step was to introduce
transaction costs for the individual participants under the assumption that a Type II
collaboration is started. The potential participant needs to invest in the network, based on
volume, negotiate, search for partners, gather information and commit themselves for a period
of 3 years (transaction costs vary between the €18,000 and €34,000). Figure 8 depicts the
results of the design procedure when transaction costs for the individual participants are
incurred. For certain (potential) participants the hub network is no longer a feasible network
solution. The lower-bound calculation yielded a network solution in which the final network
solution accommodated 78% of all flows. The network with the transaction costs yielded a
result in which 54% of the flows are accommodated. The total reduction in this network
solution is € 19,100,000 (-15.6%).

 
Figure 8: Network design with transaction costs (Type II
collaboration).

In this case from the 468 participants only 270 remain (a reduction of 43%), illustrating the
impact the transaction costs have on the structure and performance of the network. The
number of inter-hub services is reduced from 18 services to 12 services. In addition to the



454 Transportation and Traffic Theory 17

Type II collaboration a Type I (coordination collaboration) and a Type III (strategic
collaboration) were calculated and again the implications of the type of collaboration, in terms
of asset specificity, contract term, and transaction costs were calculated for the individual
participants. In Figure 9 we see the total reduction of the costs that can be achieved in these
scenario’s.

The lower bound (LB) in which no transaction costs are incurred yields a reduction of the
total logistics costs of €25,746,000. A Type III collaboration €12,378,000 (with 252
participants). If we look at the average cost reduction for the individual participants we see
that the highest average cost reduction can be obtained in a Type II collaboration. So although
the Type I yields the highest total costs reduction a Type II is more feasible in terms of cost
reduction per participant. The Type III collaboration (strategic collaboration) results in the
lowest total cost reduction and lowest average cost reduction. It is likely to be the most
difficult collaboration to be implemented.

Illustrating the value of an instrument capable of assessing these options ex-ante and not only
providing an indication of the cost reductions but also provides the network structure needed
to achieve these cost reductions. In the next section we will illustrate the design methodology
by presenting the results of two real life projects in which the methodology was used, leading
up to the implementation of two logistics networks. The first case is the European logistic
network design and implementation of the Ricoh Family Group, one of the largest
manufacturers and supplier of office equipment. Te second example is a collaborative
network in the Netherlands specifically designed to handle Fast Moving Consumer Goods
(FMCG).
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Figure 9: Total annual cost reduction depending on the type of
collaboration.
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Average cost reduction
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Figure 10: Average cost reduction for the individual participants in the
network depending on the type collaboration.

APPLICATION OF THE METHODOLOGY

The first application of the model we discuss here is a project in which the European Logistics
Network of the Ricoh Family Group was designed using the developed hub network design
methodology. The Ricoh Family Group (RFG) is one of the world’s largest manufacturers of
office equipment with well known brands like Ricoh, Lanier and Nashuatec, RexRotary and
Gestettner. With a total of €13.6 billion net sales (y/e march 2004), 73,000 employees, and 50
manufacturing and R&D facilities worldwide (Abeelen, 2005). RFG decided to reduce the
complexity in their European distribution network structure through centralization of
inventory in one new central European distribution center, and improving European
manufacturing capabilities. The objective was to minimize the logistics costs of the European
logistics network that consisted of 3 EDC operations, over 16 country warehouses and in
addition improve the service levels: based on (1) the integral logistics costs of the European
network, and (2) the service requirements set by Ricoh's customers the new hub network was
designed. Using detailed order information, actual shipments to all RFG customers in Europe,
the inbound from Asia and European manufacturing sites the current network structure was
determined. These logistics costs and performance indicator were used as benchmark to
assess the newly design network structures.
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Figure 11: The Ricoh Logistics Network Design (Abeelen and Guis, 2005)

Based on the service requirements set by the customers of RFG the new network structure
was designed. In Figure 11 an overview of the resulting network design is presented
(Abeelen, 2005). This structure consists of a central hub location in Bergen op Zoom
(covering 52% of the customers within a 24 hour radius) and 4 satellite locations (in
Zaragoza, Padova, Magdeburg, and Wolverhampton). Different types of networks were
evaluated but given the nature of the activities (transport, warehousing, and handling)
outsourcing was found the most cost efficient option and make use of the economies of scale
of several logistics service providers. In January 2003 the implementation was started, in
October 2003 the construction of the central hub commenced, and in October 2004 the central
hub location in Bergen op Zoom was fully operational. Since this milestone the remaining
satellites are being implemented (Abeelen and Guis, 2005).

The second application of the model we discuss here consists of a collaborative network in
which the necessary economies of scale could only be achieved through collaboration. This
consisted of a network in the fast moving consumer goods’ market. In the this project the aim
was to develop an intermodal hub network with relatively small barges, capable of handling
pallets, the loading unit most frequently used in the distribution of products in the FMCG
sector (Groothedde et al., 2005).
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Figure 12: The retail distribution centers and production locations of
the focus group. Source: Groothedde et al. (2005).

The group of companies that provided the information, used to conduct a detailed analysis of
the hub network design methodology, consisted of nine key manufacturers in the Netherlands,
two logistics service providers and the inland shipping carrier. In Figure 12 the locations of
the manufacturing sites, production warehouses, retailers and additional customers are
depicted. They provided detailed information on the orders and product flows between the
manufacturing locations (20) and retail warehouses of four of the largest retailers in the food.
Albert Heijn, Schuitema, Aldi, and Laurus, wholesalers, and additional customers, add up to
in total 100 customer locations.

In total this detailed data set included 6,310,000 million pallets per year. The average sales (in
pallets per week) of the focus group is on average 119,000, with a peak in week 32 of 25%
above average and -25% below average in week 8.

Based on the flows and orders of these companies new hub networks were designed and
different types of collaboration were evaluated. For a complete overview of the different types
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of collaboration that were evaluated we refer to Groothedde, (2005). It was found that the type
II collaboration was the most cost efficient and provided the necessary lead-times. In this
network, the average drop was 14.4 pallets with an average value of €1600/pallet. In total 12
hubs and 6 inter-hub services were calculated and 8% of the volume is sent through the
collaborative hub network. The transaction costs are on average €63,000.

CONCLUSIONS

In this paper we presented a methodology in which the combination is made between
transaction costs economics and network design theory that allows us to provide an answer to
the question whether a company should outsource, seek a partner, or keep an in-house
solution. Based on a literature survey, it was concluded that the existing network design and
evaluation models were not sufficient. Instead of solely minimizing the total costs in the
logistics network, or minimizing the costs of individual companies when designing a network,
we incorporate the scope of the relationship and the type of relation, and then include the
implications of the type and scope of the collaboration in the network design.

We developed a comprehensive framework that is based on economic objectives such as
minimizing the total costs, minimizing the user costs and the preferred levels of service set by
these users. We analyzed collaboration in logistics networks and the impact the different types
of collaboration have on the network design and performance in terms of costs, lead-time and
reliability. The elements of a specific collaboration (for example the scope, objective,
frequency, uncertainty, transaction costs, etc.) are incorporated in the network design
procedure. From a number of applications it can be concluded that these aspects appear to
have a great impact on the optimal network configuration.

The hub network design problem we focused on is a multiple assignment problem (customers
can use more than 1 hub), combined with direct transportation. We introduce capacity
restrictions on the hubs and on the inter-hub transfers. In addition, we incorporate transaction
costs that influence the decision to participate in the hub network of the actors, based on the
performance of the network solutions (e.g. costs, lead-time, and reliability). This design
methodology, yielding feasible network solutions and development paths, is new and is a
considerable extension on the current network design approaches. When we compare the
results of the network design when no transaction costs are incurred (lower-bound variant),
the number of participants is relatively high. Introducing transaction costs changes the
network structure and some participants then decide not to join this new network because of
the higher logistics costs (excluding the transaction costs).

In our analysis we estimate these costs based on the interviews and information provided by
the participants and were able to derive founded conclusions using a bandwidth for these
costs. It is however, recommended that a stated preference survey or similar instrument is
used to systematically list these costs.
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Second, the impact of the distribution of the benefits within the consortium is of great
importance. If we combine our network design framework with a gain-sharing instrument,
optimizing the distribution of the benefits of the consortium, the participants or service
providers know exactly what the optimal offer should be to maximize the cost reduction for
the total consortium or of course, in a commercial setting, maximize their own profit.

A third recommendation is to apply this modeling framework in other network sectors. For
example in the telecommunication sector, were customer switch between different networks
and make this decision based on costs, service, but, in addition, on the transaction costs.
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INTRODUCTION AND BACKGROUND

In emergency situations, a high priority must be placed on saving life. When there is an
incident, emergency services, comprising police, fire fighters and ambulance services, must
be provided at the scene as quickly as possible. This paper concerns ambulance dispatching.
In many cities, there is a statutory obligation for the ambulance service to arrive on scene
within a certain time limit. For example, the United States Emergency Medical Services Act
requires that in urban areas 95% of requests should be reached within 10 minutes, while those
in rural areas should be served within 30 minutes (see Ball and Lin, 1993). In United
Kingdom, the target set by the London Ambulance Services for immediate life-threatening
calls is 8 minutes (Thakore et al., 2002). In Japan, average time of ambulance arrival on site is
about 6 minutes. To help meet these targets, ambulance location, allocation and relocation
models are necessary. In general, location models determine the server or facility locations
where the ambulances are dispatched from; allocation models decide which vehicle to be
dispatched for a specific call; and relocation models reposition idle vehicles to cover areas
which are unprotected.

Ambulance location and relocation models were studied since 1970’s, and can be broadly
classified into deterministic models and probabilistic models (Brotcorne et al., 2003; Galvao
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et al., 2005). Deterministic models are usually used in the planning stage. An early model of
this type is the location set covering model due to Toregas et al. (1971), with the objective of
minimizing the number of ambulances needed to cover all demand points. Their model
considers a set of demand points and a set of potential vehicle locations. Each demand point
represents a geographic area to which service must be provided, and it is to decide the
minimum number of locations that can cover all demand points within a specified distance
and hence response time. A shortcoming of the model is that it ignores the unavailability of
the ambulances when one is dispatched for a request. To rectify this limitation, Church and
ReVelle (1974) suggested an alternative approach. In their maximum covering location model,
the objective is to maximize the sum of demand covered. Since the number of ambulances is
limited, the model may allow some of the demand points not to be covered. These were later
extended for the case of multiple-coverage by Schilling et al. (1979), so vehicles of several
types may be dispatched to the scene of an incident. To guarantee a better service with limited
resources, Gendreau et al. (1997) suggested a double standard model. While all demand in the
area concerned should be reachable within an acceptable time or distance, a certain proportion
of the area must be reachable within a higher standard.

In contrast, probabilistic models are used at the operational level. Parameters, for example
travel times, the locations of patients, the demand for and the availability of ambulances, are
treated as random variables. One of the first probabilistic models for ambulance location is
due to Daskin (1983), who maximized the expected coverage of the ambulances, each of
which has a probability of being unavailable to answer a call. ReVelle and Hogan (1989)
maximized the demand covered with a given probability.

With the designed positions and dimension of the vehicle fleets, such ambulance or
emergency management system is usually operated with a decision support tool, having two
sub-problems: an allocation problem and a redeployment problem (Gendreau et al., 2001).
The allocation problem, which is sometimes referred to as the dispatch problem, considers
which ambulance to send to a patient or request. In the literature, heuristic rules are normally
used for the dispatching decision. Assuming all incoming requests are urgent and of the same
priority, an intuitive decision would be to send the nearest or quickest ambulance to the
requests without any delay. Less urgent calls may be held manually or serviced subject to
longer maximum waiting. To help meet the targets of adequate coverage and minimum
service, a redeployment problem is employed to relocate the ambulances when idle.

There are many applications that motivate research in the field of real-time vehicle routing
and dispatching. Such applications include dynamic fleet management, couriers, dial-a-ride,
emergency services (police, fire fighting and ambulance services), and taxi cab services
(Ghiani et al., 2003). There are important similarities but also differences between these
operations. Emergency and ambulance services are classified as strongly dynamic where
response time should be minimized (Larson, 2000). With the latest advancements in
Information and Communication Technologies (ICT) and Geographic Information Systems
(GIS), it is now possible to develop efficient dispatching systems by using real-time, high
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quality and reliable positional information. The management centre can trace the coordinates
and deploy the vehicles to strategic locations, through reposition or diversion. In recent years,
ambulance relocation models have been extended to the dynamic case (Gendreau et al.,
2001). To insure a good coverage at all times, the vehicles are periodically relocated. In
practice, ambulances are often repositioned between locations, like hospitals and medical
service stations, when idle. Redeployment scenarios, which allow immediate decision-making
when calls are received, are pre-computed. Tabu search, which was originally developed for
static cases, has been extended for dynamic updating with re-optimization. Other models may
consider diverting an ambulance to a more urgent call (Ichoua et al., 2000).

MEDICAL PRIORITY DISPATCH SYSTEM

Ambulance services are set up to provide an immediate response to patients with life-
threatening injuries or illnesses. To rectify the imbalance that exists between demand for and
available resources of medical services, there is a need for prioritization of calls (Thakore et
al., 2002). Dispatching is often on a First-Come-First-Served basis. As a result, patients with
critical illness who call later may have to wait whilst less serious cases are taken to hospital
first. It is known that for patients with no heart beat, there is a 10% decrease in the chance of
survival for every minute delay in treatment. Actually, by local and international standards,
less than 50% calls require an immediate ambulance response, and on arrival at hospital less
than 20% patients require to see a doctor immediately. Over 60% of ambulance patients can
wait at least 30 to 60 minutes before seeing a doctor, and 30% can wait hours. Thus there is a
need for the triage of patients, by prioritizing their need for an ambulance service.

In a Medical Priority Dispatch System (MPDS), all calls for ambulance services are
categorized according to the seriousness of the patient's illness or injury. A priority-based
dispatch system could reduce response times to those who are seriously ill. Such systems have
been tested and tried in countries such as USA, UK and Australia, and have been found to be
safe and effective. A key to the success is a centralized dispatch protocol system, hinging on
the appropriateness and correctness of the priority assessment assigned by dispatchers
(Palumbo et al., 1996). While the process of determining the severity of the incident and its
priority must be done by well-trained and experienced telephone operators, a quick and
reliable computer-based dispatching system is necessary along with ambulance tracking to
provide efficient dispatching and acquire historical information.

The existing literature on ambulance dispatching and repositioning has not discussed the
above-mentioned issue of the prioritization of patients, or simply taken the subject into
account in a heuristic way. On ambulance dispatching, Andersson and Varbrand (2006)
considered the priorities of patients explicitly in their dispatch decision, solving iteratively
with a relocation model. In their relocation model, preparedness was defined as a qualitative
measure for each potential demand zone evaluating the ability to serve potential demand in
the future. Without a call rejection mechanism, as acknowledged in their study, their model
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may fail to provide a solution when the call volumes are higher than the system can accept.
Our approach, instead, is to develop a model with user urgency levels, which not only can
decide which vehicle to dispatch but also if the service requested needs to be prolonged or
rejected.

DYNAMIC DISPATCHING

In this paper we are interested to develop a dynamic dispatching model which solves the
allocation and relocation subproblems simultaneously. Most of the previous research focused
on the relocation of ambulances, while the decision on which ambulance to assign to a request
is based on heuristic rules. When a call arrives, the natural dispatching rule is to send the
ambulance which can arrive first, known as a Nearest Neighbourhood (NN) heuristic, when
the objective is to minimize the response times. The First-Come-First-Served process is
clearly not optimal (Carter et al., 1972), especially in a priority-based dispatching system. By
the same token, the NN heuristic is myopic and does not guarantee optimality under limited
resources. In practice, the number of ambulances available is varying over time, and therefore
to keep re-optimizing the relocation or redeployment model may not yield the best solution.

Ambulance dispatching is similar to taxi dispatching, in the sense that the locations of future
requests are predictable probabilistically, and the requests normally ask for immediate service.
Efficient dispatching strategies for taxi services have been developed in Bell et al. (2005) and
Wong and Bell (2005). They utilize a rolling horizon approach to dispatching, whereby the
next n dispatches are calculated to minimise expected passenger waiting time. Since the
solution of an intractable dynamic programming problem was involved, a number of simple
heuristics have been devised, and simulation experiments have shown that the number of jobs
a given fleet can handle may be increased by about 10 percent through use of lookahead
heuristics.

The objective of this paper is to develop a tool which helps dispatching vehicles efficiently
for emergency medical services. A dispatching model is considered in a dynamic
programming context, with the consideration of vehicle location and relocation, patient
prioritization, and historical information about the locations of calls.

MODEL FORMULATION AND SPECIFICATION

On the supply side of the emergency medical services, we assume that in the planning stage
the set of vehicle locations or medical centres have already been identified, and there are a
limited number of ambulances associated with each of these medical centres. When a call is
received, the EMS dispatching centre decides which ambulance or ambulances from which
locations to assign to the call (we do not differentiate between the ambulances from a station
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or skills of medical crew). Once an ambulance is dispatched for a task it is not available until
it finishes the task and returns to the centre. There is also a schedule of working hours for the
medical crew. Therefore, the number of available ambulances varies over time. The vehicles
may also be redeployed to another centre for improving the backup coverage.

The requests for medical services arrive over a day. Typically, a call arrives at the EMS
dispatching centre, and the status of the patient is evaluated and prioritized for their level of
severity. This triage process is different between countries or authorities. A typical procedure
is to categorize the calls into three levels (Gendreau et al., 2001; Andersson and Varbrand,
2006); urgent and life-threatening calls, less urgent calls which are not life-threatening, and
non-urgent calls. A priority-based dispatch system responds urgent calls immediately,
meeting the coverage target as set out by law. Less urgent calls and non-urgent calls can be
treated with a looser response-time restriction, being revised periodically in practice. We
assume that each of the requests is completely independent, but there is a tendency for the
locations of future requests to be predictable probabilistically from historically data about past
requests. The rate of calls is not constant, as there could be peak and non-peak periods in a
day. Demands in future time periods can be forecast spatially and temporally in a stochastic
manner.

Variable definitions

The dynamic problem is considered in a discrete time fashion over the discrete time instants
{ }Tt ,...,1,0= , where T is the length of planning horizon and 0 specifies the current stage.

Assume a set of locations Ii ∈ where ambulances are dispatched from and a set of potential
demand zones Jj ∈ . A task (task and call for service will be used interchangeably) Aa ∈ ,

located in Jja ∈ , calls to the EMS dispatching centre requesting a service at a time t . We

can further partition the set of tasks by their time of calling, as AAt ∈ . In the notation of

Dynamic Programming, t is the stage and i is the state of the system. Let

T = the number of periods in the planning horizon
t = discrete time instant, with t = {0,1,…,T}
I = the set of locations where ambulances are dispatched from, indexed by i
A = the set of tasks over the planning horizon, indexed by a
J = the set of potential demand zones, indexed by ja

tA = the set of tasks which arrive at time t, with AAt
Tt

=
∈
∪

The decision variables of the model are the flows of vehicles to tasks and vehicle
repositioning to another location or idling in the same location. Movement of vehicles
involves a cost, and rewards are received if a task is served by a vehicle. New resources of
vehicles may become available over time with the work schedule of the day. For each Iki ∈, ,

tAa ∈ and Tt ∈ , we define
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iatx = the number of ambulances from location i assigned to task a at time t

ikty = the number of empty ambulances from location i repositioned to location k at time t

iatτ = the service time for an ambulance from i serving task a at time t

iktτ = the travel time for an ambulance travelling from location i to location k at time t

iatc = the reward for assigning a vehicle from i to servicing a task a at time t

iktd = the costs of relocating a vehicle from i to k at time t

itR = the number of new ambulances becoming available at location i at time t (i.e.

schedule of workforce)

The value of iatx takes a binary form of { }1,0 since we assume that only one vehicle is

needed for each task. This can be relaxed by allowing a task to call for more than one vehicle,
and in that case all vehicles must be originating from a same location. Otherwise we can
model the task as a number of sub-tasks of one vehicle.

A deterministic model

Firstly we will present a deterministic dynamic model which incorporates both current and
future demands. All demands in the first (i.e. the current) period are known, and that all
demands in future time periods are forecast. While the locations of ambulances are associated
with a set of medical centres, it is difficult to model the exact location of each forecast
demand. For modelling purpose, the potential locations of forecast demand are aggregated
into zones. The assignment of ambulances to requests and the reposition of ambulances to
other locations can be captured by an assignment model as follows
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iatx , tAa ∈ , Tt ∈ (3)

0, ≥iktiat yx Iki ∈, , tAa ∈ , Tt ∈ (4)

The above model is specified in a simultaneous form. The objective function Eq. (1) is to
maximize the overall benefit or rewards of the job assignment minus costs of vehicle
repositioning with a policy ( )iktiat yx , over the planning time horizon. Eq. (2) defines the

conservation of vehicles during each time instant, where the number of assigned and relocated
vehicles in each location should be equal to total available resources, including newly
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available vehicles and also those which completed their tasks or relocated from the previous
time periods. It is assumed that a vehicle, once it has finished its task, returns to the centre
from which it is dispatched. Eq. (3) guarantees each task will not be serviced more than once,
and Eq. (4) is the non-negativity constraint of the control variables. The model also allows a
call to be rejected if it is in a lower priority and the number of available ambulances is low.
Since our aim is to determine the assignment policy at t = 0, as the demand for 0>t is
forecast, a large T would produce a good enough approximation on a rolling horizon basis. An
example with a horizon of three is illustrated in Fig. 1.

Figure 1. A dynamic ambulance allocation and relocation model

Each of the calls is associated with a priority or level of urgency. From the point of view of
the dispatcher, the prioritization of calls can be weighted with the parameter iatc , which

defines the reward for assigning a vehicle from i for servicing a task a at time t. A typical aim
of a dispatching centre is to minimize the overall delay to all calls, and therefore an intuitive
definition of the reward is a reward for handling a task related to its priority minus a function
of the delay from i to aj . Let

aq = the priority of task a, { }3,2,1=aq

aqr = the reward for handling a task of priority aq

t = 0 t = 1 t = 2 t = 3

Available ambulance

Relocated ambulance

New request

Held request

Assigning a vehicle for a
task

Relocating a vehicle

Holding a task (non-urgent
call)
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iath = the travel time from location i to location aj to serve task a at time t, converted into

the unit of reward. We have

iatqiat hrc
a

−= , Ii ∈ , tAa ∈ , Tt ∈ (5)

The setting of iatc should be positive for major elements. There must be some values of iatc

for specified a and t to be positive (i.e.
aqr must be greater than some of iath for all Ii ∈ ),

which implies that all possible ja are adequately covered. The elements of iatc could be zero

or negative in the case that the priority of a task a is low and the distance from sending a
vehicle from i to ja is too far, such that the vehicle is better to be used for repositioning.

Predicted dynamic travel time information can be handled in our model as Eq. (5) is defined
with a time index t. For the case of static travel times, the time index can be ignored. The
dynamic model presented is equivalent to minimizing the response time to calls with
prioritization.

Alternatively the model can be formulated as a recursive form, which will facilitate the
analysis later on. Let itS be the total number of vehicles to be available in location i at time t

from all sources, and we have
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Define J to be the expected cost of a dispatching policy. The model can be specified
recursively as follows
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where { }IiSS itt ∈= , .
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So far we have presented a dynamic model which captures simultaneous vehicle allocation
and relocation, together with patient prioritization, capturing both actual demands (in current
period) and forecast demands (in future planning horizon). The decisions between allocating
and relocating vehicles are weighted by the reward points that would be received. It is always
a dilemma to ask if we should service a current non-urgent call or reserve the capacity for
possible future urgent needs, and this is open to the operators. As will be discussed later in the
solution algorithm, the model can dispatch vehicles for tasks if there will be more resources
than requests in the future, or reject requests with less urgency if many of the vehicles have
already been dispatched and are expected not to return in the short term. In contrast to
previous models, we have a possibility of rejecting or holding a call, which will be practically
kept track of by the operator in revising their priorities.

A stochastic model

In this section a stochastic model is introduced to handle uncertainties in forecast demand.
Randomness in the demand is introduced as probabilistic locations of a call arriving in the
future. The framework takes the recursive form so that the recourse function can be
approximated in various ways in the solution algorithm. We will define the following
additional variables:

0iax = the number of ambulances from location i assigned to task a in current period

0iky = the number of empty ambulances relocated from i to j in current period

itS = the total number of vehicles to be available in location i at time t. This is the state

variable of the system at the beginning of t, capturing the history of vehicle flows up to t; and
{ }IiSS itt ∈= ,

jtp = the probability of a call arriving in period t being located in demand zone j; it

represents a realization of the task tA , i.e., ( )tt pA , where { }Jjpp jtt ∈= , , and it is assumed

that 1=∑
∈Jj

jtp

The stochastic model for the dynamic vehicle allocation and relocation can be written as
follows
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0, 00 ≥ikia yx Iki ∈, , 0Aa ∈ (14)

where itS is specified in Eq. (6) and [ ]⋅E is the expectation of the function. tS defines the

state of the system, which depends on the history of the process and decisions up to time t,

and tp represents a predicted distribution in generating the locations of tasks tA . ( )ttt pSJ ,

is the recourse function, taking the state of the system and the estimated probability
distributions in future tasks as the input, and is defined as follows.
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In the above program, ( )[ ]ttt pSJE , is an expected recourse function. Given recursive

structure of the model, Bellman’s decomposition may be applied. However, finding the
solution that maximizes the expected rewards (or minimizing the total delay time) over the
rolling horizon remains computationally very demanding, and for large attribute spaces is
impractical in real time due to Bellman’s “curse of dimensionality”. Exact solution is difficult
to obtain, and a solution methodology is presented next for approximating this expected
recourse function.

SOLUTION METHODOLOGY

A possible approach in solving dynamic programming model is to calculate the recourse
function explicitly for each state. However, computational complexity of the presented model

is ( )( )TT JSIO ⋅ , and solving the model in practice is computational intractable. Algorithms

for an approximate solution are usually used, and an efficient solution algorithm would be
built upon how to approximate the expected recourse function in a neat way. A widely used
method for approximating Eq. (11) is to replace the recourse function with a linear and
separable approximation (see Bertsekas, 1995; Powell, 1996; Spivey and Powell, 2004).
Spivey and Powell (2004) suggested a solution strategy for problems with small attribute
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spaces for the dynamic assignment problem, in which the recursive expression

( )111 , +++ ttt pSJ can be replaced with an approximation of the form

( ) ( )11111
ˆˆ, +++++ +⋅= t

D
t

S
ttt pJSJpSJ (19)

where SĴ and DĴ are, respectively, the vectors of S
tiJ 1,

ˆ
+ and D

tjJ 1,
ˆ

+ , consisting of the vehicle

and task value approximations. The dynamic of state variables depend on Eq. (6) in which the
available vehicles at time t depend on the allocation

ijttisx τ−, and relocation
kittkiy τ−, before t.

Since 1+tS is the action variables of our problem, we are interested to derive the gradient of

our vehicles as S
tt JSJ ˆ/ 11 =∂∂ ++ . For the stochastic gradient of the task value DĴ , the

arrival of future demands is not related to our action variables, i.e., decisions of dispatching
and repositioning, and it is very difficult to obtain. For the case of the deterministic problem,
this gradient vanishes immediately. Several ways have been proposed for approximating this
stochastic gradient in the literature. Powell (1996) mentioned that the problem can be
formulated as a pure network if the random terms are discrete (which is true in our case of
probabilistic locations). The expected recourse function can be represented by a cluster of
“recourse links” which capture the expected marginal reward of each unit of task calling for a
location at a time period. This method is analogue to the “one-step look ahead” policy in the
general dynamic programming solution strategy, when we count only the next time step in the
recourse links. It does not look deeper into the future, and we think this is not particularly
useful in our problem. A solution strategy proposed by Godfrey and Powell (2002) looks
more attractive to our stochastic problem. The idea is that the task gradient is not
approximated directly, but the model is trained stochastically with a different Poisson sample
drawn from the given probability at each iteration. The benefit is that it explores the whole
solution set to a broader extent, but it may require more iterations to produce a good solution.

For notational simplicity and ease of presentation, we assume the travel time for each
relocation takes one time interval. This is a reasonable assumption since the dispatcher may
not like to relocation a vehicle to a distant location so that the vehicle is able to respond on the
way. We further assume that the service time for a particular service is long and unknown
before the request is actually received. In other words, it is difficult to determine when a
vehicle will be next actionable at the time it is sent out. This is because it is normally not
practical to assign a task to an ambulance which is still on duty. Nevertheless, this is not
limited to the model and we do not restrict the duration between t and t + 1. Assuming iatτ to

be a large value and iktτ to be one, we can reformulate Eq. (6) as
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When maximizing the expectation of the recourse function, some terms will be dropped. This
leads to an approximation of Eq. (15) as
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( ) ∑ ∑∑∑
∈ ∈∈∈ ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−=

Ii Ik
ikt

S
kt

Ik
iktikt

Aa
iatiat

yx
tt yJydxcSJ

t
iktiat

ˆmax
,

(21)

where the expectation has vanished. This simplifies the expectation which caused

computational intractability. Now we can see that a quantity S
itĴ is added to the objective

function for each ambulance held or relocated, which represents the marginal value of an
additional vehicle in a medical centre in the future. We can treat this as the contributions for

not assigning the vehicles. The rest of the problem is to approximate the values of SĴ .

An adaptive dynamic programming algorithm

An algorithm using the gradient approximation developed above is presented as follows.

Step 0. Set a maximum number of iterations N, Set 0ˆ 0, =S
itz and 00, =S

itz . Set n = 1

and t = 0.

Step 1. Forward pass. For the current n and t, solve the allocation and relocation
problem:

( ) ( )∑ ∑∑
∈ ∈

−
+

∈ ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−=

Ii Ik
ikt

nS
tkikt

Aa
iatiat

yx
t

k
t yzdxcSJ

t
iktiat

1,
1,

,
max

~
(22)

subject to

it
Ik

ikt
Aa

iat Syx
t

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+ ∑∑

∈∈

, Ii ∈ (23)

1≤∑
∈Ii

iatx , tAa ∈ (24)

0, ≥iktiat yx Iki ∈, , tAa ∈ (25)

Step 2. Once the iatx and ikty in Step 1 is determined, update 1+tS ; if t < T, then t = t

+ 1 and go back to Step 1. If t = T, go to Step 3.

Step 3. Backward calculation of gradients. For the current n and t, we update nS
itz ,ˆ

with ( ) ( )21
, ,,ˆ cSCcSCz tt
nS

it −= , where ( )cSC t , is the maximum total rewards

of vehicle assignment, for given vehicle repositioning from the previous
iteration and tS for the current iteration. We can obtain left or right gradient at

the point of solution with 1c and 2c settings, which are vectors in the form of
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{ }Iicc i ∈= , . If there are no vehicles repositioned to location i at time t-1, i.e.

01, =∑
∈

−
Ik

tkiy , nS
itz ,ˆ stands for the additional benefit of having an extra vehicle

in location i at time t, and we have ( )0,,1,,01 ……=c with 1 for the ith element

and 0 otherwise, and ( )0,,02 …=c . If 01, >∑
∈

−
Ik

tkiy , nS
itz ,ˆ is computed as the

negative consequences of removing a repositioned vehicle, by letting
( )0,,01 …=c and ( )0,,1,,02 …… −=c with -1 for the ith element and 0

otherwise. ( )cSC t , is obtained by solving the maximization problem:

( ) ∑ ∑
∈ ∈

=
Ii Aa

iatiat
x

t

t
iat

xccSC max, (26)

subject to

iit
Aa

iat cSx
t

+≤∑
∈

, Ii ∈ (27)

1≤∑
∈Ii

iatx , tAa ∈ (28)

0≥iatx Ii ∈ , tAa ∈ (29)

Step 4. Smoothing. Set ( ) 1,,, 1ˆ −−+= nS
it

nnS
it

nnS
it zzz αα .

Step 5. If t > 0, then t = t - 1 and go back to Step 3.

Step 6. Terminate if n = N; otherwise set n = n + 1 and go to Step 1.

In Step 3 above, we can see that the value of nS
itz ,ˆ will be large when the certain region or

whole of the system is busy in the next time period. However, nS
itz ,ˆ is not larger than the

maximum setting of iatc in any case, because an actual call is more important than a predicted

one of the same priority in the future. On the other hand, if the system is not busy and there

are plenty of vehicles idle, the value of nS
itz ,ˆ is diminishing. Step 4 adopts a stepsize

smoothing function nα in smoothing the approximation. It is a quantity between 0 and 1, and
is referred to as the smoothing constant. A typical choice of the stepsize is n/1 , a declining
function with the iteration number.

The approximation of gradient using a linear marginal contribution function, instead of a
nonlinear one, is important. It allows us to optimize the dispatching decisions without
considering jointly the decision being made in other centres. The simplification will allow the
model to be optimized in real time for problems of realistic size. The maximization problem
of Forward Pass and Backward calculation can be solved easily with any off-the-shelf
simplex code for linear programming. With the approximated gradient of the expected
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recourse function, a feature of the proposed iteration based algorithm is that the algorithm
(and all LP subproblems) returns integer solutions naturally. This can be shown by the fact
that both the objective and the constraints are linear with coefficients of one, while the right
hand side of the constraints are integers. Therefore there must be an integer solution, or at
least one integer solution (for the case of multiple solutions), for the subprograms. The
Pseudo code of the proposed algorithm is shown in Table 1.

Table 1. Pseudo code of the adaptive dynamic programming algorithm

Initialize 0,ˆS
itz and 0,S

itz to be zero.

FOR n = 1 to Maximum number of iterations
FOR t = 0 to Number of time periods

Solve Forward Pass to obtain iatx and ikty , with 1,
1,
−

+
nS

tiz .

Update 1+tS .

END FOR
FOR t = Number of time periods down to 1

Solve Backward calculation of gradients to obtain nS
itz ,ˆ .

Calculate nS
itz , by smoothing nS

itz ,ˆ with 1, −nS
itz

END FOR
END FOR

EXPERIMENTAL RESULTS

To demonstrate the relative performance of the proposed methodology, a simulation model is
setup to test against different scenarios. We will test the model against deterministic as well as
stochastic settings of the problem. To capture the spatial manner of the ambulance dispatching,
a network is created, in which nine potential demand zones and four medical centres are
located as shown in Fig. 2. Once there is a call to the dispatching centre, the dispatcher will
assign ambulances from one of the medical centres for the call (or reject it). Travel time on
each of the links is assumed to be one unit (5 minutes here), and therefore all potential
locations are covered by a quickest response of 5 minutes. The corners are subject to less (but
acceptable) coverage than those on the boundary or in the centre of the network.

The experiment is simulated for a total period of 4 hours, with each time interval set at 5
minutes. Calls are generated randomly with assumed distributions for corresponding zones,
with different levels of urgency. The probabilities of a call being Urgent, Less Urgent and
Non-Urgent are assumed to be 0.2, 0.3 and 0.5 respectively. There are 10 ambulances located
in each of the medical centres in the beginning of the simulation. Travelling between adjacent
centres for repositioning takes one time interval (5 minutes), and an ambulance handling a
request is assumed to take 6 intervals (30 minutes) of service time before returning to the
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centre. To discourage unnecessary repositioning, there is a cost of one fifth the travelling time
for vehicles moving idle. We are interested to know the performance of the proposed model in
relative to the myopic strategy, which is commonly used in practice, for different levels of
demand level. The problem is tested against different numbers of calls, from 50 to 700, during
a simulation period. The objective of the dispatcher is to minimize the delay to calls, but since
calls are prioritized, we can transform the problem into a reward maximization problem. Each
acceptance of a call receives a reward, which is an increasing function with the level of
urgency and decreasing function with the delay to the call. We assume the rewards for
handling a call of priority Urgent, Less Urgent and Non-Urgent to be 50, 20 and 10 units
respectively, followed by one unit of decrease for each minute of delay reaching the patient.

Medical centre (where ambulances locate)

Potential demand location

Bidirectional link of unit travel time

Figure 2. An example network

Deterministic runs

We first perform experiments on deterministic datasets. The dispatcher solves the whole
period problem using forecast demand which is assumed to be deterministic. The gradients
used in the adaptive algorithm are estimated from 50 training iterations. To eliminate the
variation due to randomness, the evaluation of the solution in this section is computed from an
average of 20 runs. Fig. 3 shows the total reward received in a simulation period against
different demand intensity for myopic and adaptive strategies. Since the optimal solution is
unknown to us, the reward is expressed as a percentage against the maximum possible reward
received if no requests are rejected. The maximum possible reward is about linear to the
number of requests. Both myopic and adaptive strategies reach 100%, i.e., the optimal
solution, at a number of calls of 50. As the number of requests increases, the system is
overloaded and not able to take up all the calls, and therefore the percentage of gain decreases,
in which the rate of drop for the myopic strategy is steeper than that for the adaptive strategy.
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Figure 3. Percentage of maximum possible reward received against the demand intensity:
Deterministic cases

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800

Number of calls

P
er

ce
n

ta
g

e
o

f
to

ta
lc

al
ls

se
rv

ed

Myopic
Adaptive

Figure 4. Percentage of total calls served against the demand intensity: Deterministic cases

The adaptive strategy outperforms the myopic one by improving the overall efficiency. It is
shown in Fig. 4 that the adaptive algorithm can consistently service more calls compared to
myopic. This is probably due to the relocation of ambulances, which can save the travel times
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in the future operations. Table 2 displays the quality of services for Urgent calls, represented
by a target of waiting period for the both strategies tested. We can roughly estimate the
capacity of the medical system as 320 calls, which is an overestimation of 40 vehicles each
taking maximum 8 tasks in 4 hours without idling. At the demand level of 300, 96.5% and
98.8% of Urgent calls can be reached within 5 minutes and 10 minutes respectively with the
adaptive strategy. These percentages are 80.9% and 96.1% with the myopic algorithm. When
the demand is increased to 600, with the adaptive strategy the percentage for urgent calls
dropped slightly to 92.9% and 97.9%, in contrast to the heavy decline to 56.1% and 66.7% for
the myopic one. This confirms the purpose of our dynamic model that suggests holding
resources for future critical instances, without sacrificing too much the benefit of the current
events.

Table 2. Target of waiting period of 5 minutes and 10 minutes for Urgent calls: Deterministic
cases

Number of
calls

Myopic,
5 mins

Myopic,
10 mins

Adaptive,
5 mins

Adaptive,
10 mins

50 100 100 100 100
100 97.5 97.5 97.5 97.5
150 92.2 94.0 95.3 97.1
200 83.7 93.3 95.5 98.7
250 83.1 94.9 95.8 98.9
300 80.9 96.1 96.5 98.8
350 78.1 93.6 94.4 99.4
400 72.7 89.8 93.7 99.6
450 68.2 85.5 93.3 99.0
500 63.2 75.5 92.3 98.5
550 58.3 71.7 93.1 98.4
600 56.1 66.7 92.9 97.9
650 52.4 61.6 92.2 97.8
700 49.4 58.3 92.4 98.0

Stochastic Runs

We are more interested in the capability of the model in stochastic environment. In this
section the runs were performed under uncertainty in forecast demand. The sets of future
tasks are now given in probability and therefore unknown to the dispatcher at the time of
making decisions. For the stochastic training, the problem is solved using resampling with a
different Poisson sample at each iteration, where the Poisson samples are randomly generated
with the given arrival probability. For each simulation, we performed 100 training iterations, a
larger number than that in the deterministic case, before executing the simulation to solve the
problem dataset which is drawn from the probability set. In fact we have tried different
number of training iterations for the deterministic and stochastic tests, and found that the
benefit of introducing more iteration for the deterministic problem diminishes fairly quickly,
while the stochastic model needs more training since the time stage and space state are large.
The results presented below are computed from an average of 20 runs.



478 Transportation and Traffic Theory 17

Similar figures are computed as in the Deterministic runs. Fig. 5 displays the total reward
received in a simulation period against different demand intensity. In general the adaptive
strategy outperforms the myopic one, and compared to the deterministic cases as in Fig. 3, the
improvements by adaptive strategy are very obvious when the number of calls is below 200.
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Figure 5. Percentage of maximum possible reward received against the demand intensity:
Stochastic cases

Table 3. Target of waiting period of 5 minutes and 10 minutes for Urgent calls: Stochastic
cases

Number of
calls

Myopic,
5 mins

Myopic,
10 mins

Adaptive,
5 mins

Adaptive,
10 mins

50 100 100 100 100
100 97.5 97.5 100 100
150 92.2 94.0 99.8 100
200 83.7 93.3 97.6 99.8
250 83.1 94.9 96.2 99.6
300 80.2 95.8 93.2 99.4
350 77.6 93.3 91.2 99.5
400 72.1 89.4 90.3 99.4
450 68.1 85.6 89.4 99.2
500 63.0 75.5 89.7 98.7
550 57.0 71.4 89.0 98.5
600 54.9 64.8 86.6 97.6
650 51.8 60.9 88.4 97.1
700 50.0 58.7 88.2 98.2
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Table 3 summarizes the quality of services for Urgent calls, with the target of 5 minutes and
10 minutes. The adaptive algorithm performs near-optimally for low demand cases when the
number of calls is below 200, and the percentage of calls with delay under 5 minutes drops
with the number of calls down to 93.2% at demand level of 300 and to 86.6% at demand level
of 600. Coverage of 10 minutes is maintained for more than 97% for all cases.

Comparing the results between the deterministic cases and stochastic cases, it is interesting to
see that, for the adaptive algorithm, more calls can be maintained at the 5 minutes target for
the deterministic cases, while it provides a better coverage at the 10 minutes level in the
stochastic experiments. A possible explanation for this is that the deterministic training
estimates the dispatching action maximizing the overall reward targeting on the calls with
‘highest value’, i.e. nearest ambulances for most urgent calls. Benefiting from the random
sampling, the stochastic training, on the other hand, distributes the available vehicles so
strengthening the average coverage. Therefore, even though the total rewards received for the
two experiments are very close, we can see that there exist differences in their inherent
distributions of delay to patients. The stochastic model spreads out the opportunity cost of
making a decision if it is incorrect, including the waste of vehicle times in repositioning and
the extended delay of demand in the future.

On the computational efficiency, the number of computing steps of the adaptive algorithm is
proportional to the number of training iterations and length of time horizons. In our numerical
experiment, each run took 25 seconds for the stochastic case and 18 seconds for the
deterministic case, executing on a Pentium 4 3.0GHz personal computer. The myopic scheme
is similar to the adaptive scheme with only one iteration.

SUMMARY AND CONCLUSIONS

A dynamic allocation and relocation model is presented for ambulance dispatching with the
consideration of patient triage, which is important when the need for medical services is more
than the resources available. Prioritization of requests is becoming a standard procedure in
practice, and this paper is one of the first in trying to incorporate this component into the
ambulance dispatch problem. In the near-capacity situation, it is suggested that keeping or
relocating vehicles to strategic locations could benefit the demand in the future. We formulate
the problem with the objective of maximizing the reward gained for serving a request, showed
as equivalent to minimizing the total delay incurred. The problem is formulated in a dynamic
programming context, which suffers from the “curse of dimensionality” in applications of
practical size. We propose a dynamic adaptive algorithm for solving the problem,
approximating the gradient of the recursive subproblem in a linear form. Deterministic and
stochastic settings of the problem are experimented with.

Previous models for locating emergency services focused on the case with the average
number of calls, and may fail to provide a solution when the call volumes are high. This issue
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was acknowledged and can be unrealistic in practice. Our model provides a guideline for
accepting or not a current call with the computation of values of resources currently and in the
future. Of course, rejected calls which are lower in priority would be kept track of by the
operators for possible upgrading if needed. This model is particular useful in near-capacity
conditions of dispatching, in which the tactical locations of medical centres and fleet of
ambulances are already fixed.
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A MARKOV PROCESS MODEL FOR
CAPACITY CONSTRAINED TRANSIT
ASSIGNMENT

Fitsum Teklu, David Watling and Richard Connors, Institute for Transport Studies, University
of Leeds, UK

SUMMARY

Representing the finite capacity constraints of vehicles in a transit assignment model, for

networks where the vehicle capacities are small and the buses do not operate to timetables,

requires an accurate representation of the impacts on passenger costs and flows as well as

their day-to-day variability. This paper presents a composite frequency-based and schedule-

based Markov process model for transit assignment that considers the day-to-day dynamics of

the transit network, whereby line frequencies are used to parameterise distributions of vehicle

arrivals and the passenger flows are constrained to the individual vehicle capacities. A proof

of the model’s Markov property and regularity, its sensitivity to some parameters, and

comparisons with the Cepeda et al. (2006) model are presented using a test network.

INTRODUCTION

The use of small (~12-20 passenger capacity) transit vehicles is common in some cities of the

world. In such environments, it is often the case that passengers are unable to board a bus of

their choice because of capacity constraints. It is also common, in some cities, for these

services to not run to timetables. This study is concerned with such transit networks.
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Frequency-based (FB) transit assignment models use a transit supply system represented in

terms of average line frequencies and forecast passengers’ cost and route choices (e.g. Spiess

& Florian, 1989). On the other hand, schedule-based (SB) transit assignment methods

consider each run of a transit line using timetables for forecasting route flows and costs (e.g.

Nuzzolo et al., 2001). An assignment model for networks of the type described above needs to

represent the impact of the strict vehicle capacities on waiting times and route flows, and the

absence of timetables for passengers to base their route choices on.

In recognition of parallel services that might be available to passengers in transit networks,

Spiess & Florian (1989) introduce the notion of optimal strategies that assumes passengers

choose a strategy: i.e. they have a fixed subset of attractive lines for every stop they might

encounter on their trip, and (at each stop) board the first arriving bus from that set. The

attractive lines are identified by assuming passengers only consider lines that minimize their

expected travel time. Nguyen & Pallottino (1988) provide a graph theoretic framework for

Spiess and Florian’s work that represents a strategy as a hyperpath. Albeit using a different

network representation based on timetables, passengers’ strategies have been included in SB

models for high-frequency services as well (e.g. Nuzzolo et al., 2001). Slightly differently, De

Cea & Fernandez (1989) define a route as a (fixed) sequence of transfer stops. The set of

attractive lines is chosen between each pair of transfer stops to minimize expected travel time,

making up what are called route-sections. This method only considers transit lines that ‘visit’

both ends of the route-section in the attractive lines set.

Passenger route flows and costs vary from day-to-day. On some days passengers will find it

easier to get the bus of their choice, with spare capacity, than on some other days. Static

models, although accounting for variations in waiting times through assumed headway

distributions for passengers and buses, only use a deterministic representation of user costs

and passenger flows. Information on the variability of these quantities helps planners make

more informed decisions. This is especially true when the vehicle capacities are small and the

lines are not operating to timetables.

Most FB models aiming to account for capacity constraints do so by using analytic congestion

functions to constrain assigned flows to the aggregate capacity over some modelling period,

without considering whether or not individual bus’ capacities were exceeded. SB models that

consider each run of a transit vehicle, on the other hand, provide a logical base for that but

require timetable information to represent transit supply which is not available in networks of

the type considered here.
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Stochastic process (SP) models represent the day-to-day evolving interaction between transit

system costs and passengers’ information acquisition and choice processes based on

assumptions of passengers’ choice updating behaviour as well as learning and forecasting

mechanisms. They have been applied in road traffic assignment (e.g. Cantarella & Cascetta,

1995) and are shown to subsume static and stochastic user equilibrium solutions as particular

cases (Davis & Nihan, 1993). However, they have not had much application in transit

assignment modelling. Nuzzolo et al. (2001) discuss the application of a similar approach for

SB transit assignment. Markov process models are special classes of such models where the

conditional probability distribution of the future states (describing the transit supply-demand

interaction), given the present and all the past states, depends only upon the current state – the

so called Markov property. Processes that are regular are guaranteed to have a stationary

distribution of the state variable, and to converge to that distribution regardless of the initial

conditions.

This paper presents a Markov process model for transit assignment that has strict capacity

constraints and accounts for stochastic bus headways. Using a composite FB and SB

approach, the proposed model uses aggregate line frequencies to parameterise bus headway

distributions and a micro-simulator to enforce capacity constraints on individual vehicles and

to model the variability in passengers’ experience. The next chapter reviews models for

capacity constrained transit assignment. In the following chapter, detailed discussion of the

proposed model, the Monte Carlo simulation based approach developed to evaluate it, and a

proof of its Markov property are given. Numerical experiments, sensitivity tests to model

parameters, and a model comparison are then presented in the penultimate chapter after which

conclusions are made.

HANDLING CAPACITY CONSTRAINTS

Most models of capacity constrained FB transit assignment employ passenger flow dependent

congestion functions to represent effects on passenger waiting costs. BPR-type increasing

functions, relating waiting costs with passenger flow to capacity ratios are proposed in De Cea

and Fernandez (1993) and Wu et al. (1994). Considering the asymmetric nature of transit

assignment problem, due to the dependence of passengers’ waiting cost on the number of

people in the buses from upstream stops, they include all passengers in the lines when

computing the flow to capacity ratio. Wu et al. (1994) also use BPR-type in-vehicle travel

cost functions to model crowding impacts. However, these models do not guarantee the

capacity of the lines is not exceeded. They also use nominal frequencies to distribute

passengers onto the attractive lines. Besides forecasting line flows inaccurately, this leads to
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erroneous calculation of passenger costs especially when the attractive lines offer different in-

vehicle costs; this is carried through to the equilibrium calculations.

Hamdouch et al. (2004) account for the priority of passengers already in the buses and assume

passengers’ strategies specify an ordered set of attractive lines, at each stop, where the

probability of boarding a line is proportional to the residual-line-capacity to demand ratio.

Kurauchi et al. (2003) present a Markov chain absorbing method to incorporate line capacity

constraints through failure-to-board probabilities for a FB network. To meet capacity

constraints when demand exceeds capacity, passengers are sent on a “failure arc” to the next

time period. However, both these models do not explain increased passenger waiting times

due to congestion.

Cominetti & Correa (2001) make use of differentiable flow-dependent frequency functions,

called effective-frequency functions, that fall with increasing passenger flow to model

capacity constraints. Impacts on waiting times and passengers distribution onto attractive lines

are included by using the effective frequencies instead of nominal frequencies. A queue

theoretic support for the model for when there is only one strategy carrying equilibrium flow

from each stop. Because of the complex dependency of waiting times on the whole strategy

flows vector (due to the asymmetric nature of the problem) they comment the model is

mathematically incorrect if that is not satisfied; however, they add the resulting errors are

relatively small. Cominetti & Correa did not obtain a closed form solution for the effective

frequency function. Cepeda et al. (2006) provided a Method of Successive Averages based

solution algorithm for using the method on large networks. They also propose an effective

frequency function in the paper – without any proof.

All the models above constrain passenger flows to aggregate capacity. For a (with-in day)

dynamic, SB network, Poon et al. (2003) consider constraining passenger flows to individual

vehicle capacities based on a simulation model. They propose an iterative procedure whereby

the waiting times are calculated from passenger arrival and departure profiles at the different

stops and passengers are assigned on minimum cost paths. The model’s application on large

scale networks is also presented. They, however, do not consider the stochasticity in bus

arrival times and passenger strategies at transit stops.

In conclusion, analytic approaches used in FB methods suffer from the difficulty in

calibrating congestion functions to consistently represent impacts on waiting times and

passenger distributions throughout the network. Most models concentrate on capturing a

particular impact of congestion, compromising some others. SB models that enforce strict

capacity constraints on individual vehicles have been applied on large scale networks but they
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do not account for passenger strategies and bus headway stochasticity. The impacts on the

day-to-day variability of passengers’ cost experiences and flows have not had much

consideration in the literature.

MODEL DESCRIPTION

As mentioned earlier, SP models have been shown to converge to unique stationary

probability distributions without imposing any equilibrium conditions. They are particularly

attractive for modelling asymmetric problems with multiple equilibria (Watling, 1996). In this

chapter, SIMTRANSIT, a Markov process model for capacity constrained transit assignment,

that uses Monte Carlo simulation to provide pseudorandom observations of the demand-

supply interaction, is presented. The proposed model, shown in Figure 1, uses a micro-

simulation based network model, explicitly considering demand and supply stochasticity.

Each day, the cost experiences on the alternative routes, obtained from the network model, are

used to update passengers route cost expectations through the learning process model. Based

on the passengers’ route cost expectations a random utility model is used to forecast

passenger route choices assuming they perceive route costs differently. A detailed discussion

of each of these components and the theoretical proof of the Markov property and regularity

of this model are given in this chapter.

Figure 1 Model Framework

Network simulation model

A micro-simulation approach is used to model the buses’ and the passengers’ movements.

This allows separate simulation of the different lines’ runs (i.e. without aggregating all the

runs over the modelling period) enabling better representation of the passengers’ experiences.

Using a simulation time step-length of ω , the model processes bus arrivals, passenger

arrivals, and bus departures sequentially; each initiating the different procedures briefly

described as follows. Firstly, at each time step, τ , due passengers and buses are generated

network simulation model
stochastic demand and supply

strict capacity constraint

learning process model

passengers’ cost experiences

stochastic route choice

next day

until
convergence
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based on assumed headway distributions. Then, the program checks if there are any buses

arriving at the different stops. For each bus arriving at a stop, alighting passengers are allowed

to get off, after which bus departure times would be assigned. Transferring passengers join the

queue for their next service. Next, newly generated passengers are made to choose their route

and join the back of the queue. Finally, a check for buses departing from the each stop at τ is

made. For each departing bus, passengers queuing at the stop are made to board following the

first-in-first-out rule, if the bus is in their attractive lines set and has spare capacity. Bus dwell

times are linearly dependent on the number of passengers alighting and boarding through, the

passenger service time parameter, π – a constant multiplier, that could be obtained from

roadside surveys. The buses are then assigned arrival times to the next stop in their itinerary

by adding the dwell times and stop-to-stop travel times. Although stochastic travel times

could easily be incorporated, a constant stop-to-stop travel time is assumed in this paper. It

should be noted that the bus headway distributions are used only at the first stops in the buses’

itinerary, and the arrival distributions are not identical across all the stops. This cyclic process

continues by incrementing τ by ω until the total simulation period, Γ , is reached.

Figure 2 SIMTRANSIT flow chart
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Route choice model

In this study, the network supply representation presented in De Cea & Fernandez (1993) is

used. As noted earlier, this approach assumes passengers’ routes are defined by a sequence of

transfer stops between which alternative route-sections representing the attractive lines set for

that leg of a journey are identified. Passengers are not allowed to change their choice of

transfer stops once they set off on their journey. Consider the small test network shown in

Figure 4a. Figure 4b shows all the route-sections for all the transfer stop pairs. For example,

passengers on single line route-sections B and D only use the RED and GRN lines,

respectively, to go from S1 to S2; those on C use whichever one comes first. The sensible

routes, for the different OD pairs, are enumerated in Figure 4c. For example, passengers on

route 2 wait for, and board the RED line at S1, alight at S2, and board the GRN line to

complete their journey. Routes such as B & F and C & E, for travelling from S1 to S4, are not

included in that set assuming passengers would rather choose A and L, respectively, which do

not require ‘alighting’ from a route-section only to ‘board’ another one, with an identical

attractive lines set, to finish their journey.

A stochastic route choice model is proposed assuming passengers do not have an exact

knowledge of the line travel times and perceive waiting times differently. The set of routes

considered is thus based on an all route-sections choice menu. Especially in multimodal,

multi user class networks, passengers may perceive the different lines to be different choices

due to different in-vehicle costs (e.g. travel time and fares). For example, including B, C, & D

for the test network (Figure 4) allows passengers that perceive travel times between S1 and S2

differently, to choose their route accordingly. The active route-sections are determined

through the Markov process model.

The stochastic transit assignment model is specified as follows. Let D = vector of OD pairs

and hR = set of routes for OD pair h ∈ D . For each route hr ∈ R , passengers’ perceived cost

( rPC ) is the sum of the deterministic generalised cost ( rGC ) and an error term ( rξ ) as:

,r r r hPC GC rξ= + ∀ ∈ R (1)

, for which the route choice probability could be written as:

Pr( ) Pr( ),r r j jr GC GC j rξ ξ= + < + ∀ ≠ (2)

, where: , hr j ∈ R .

The deterministic generalized cost is composed of in-vehicle travel cost (T ), waiting cost

(W ), and fares ( F ), see equation (2).

( ) ( )r t r w r rGC T W Fγ γ= ⋅ + ⋅ + (3)
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where, ( )tγ and ( )wγ are the values of travel time and waiting time, respectively.

To obtain democratic cost sampling for rGC across the alternative routes, ghosts (probes) are

generated at a constant rate and made to travel along them – experiencing the costs without

contributing to congestion. In SIMTRANSIT’s bus and passenger simulation model, the

ghosts are treated in the same way as the passengers, except in the buses where they are

assumed not to take up space. As long as they do not have a “real” passenger ahead of them in

the queue, they are allowed to board a full service. It is noted that although it would,

alternatively, be possible to use real passenger experiences (rather than the ghosts) to build up

the day-by-day travel costs, such an approach produces extremely slow convergence. This is

due to the fact that a route, perceived in an initial period as unattractive, is not used for a long

period by travellers sequentially, giving no data on which to update its costs, until some low

probability random disturbance causes a traveller to experiment with it.

To maintain realism, the route choice model should consider the cost dependencies (in mean

and variance) of the passengers’ perceptions, starting from that between the different route-

sections for each pair of transfer stops to that between the different routes for each OD pair.

For example, a passenger’s perceptions of the waiting and travel costs of route-sections that

contain a particular line (for example, the RED line in route-sections B and C in Figure 4)

should intuitively be correlated since the perceived quality of the RED line service will be of

a significant contribution to the way both route-sections will be viewed by a passenger.

Likewise, as a route-section could itself be part of different routes, the costs of the routes that

contain it should be correlated as well; consider routes 3 and 4 in Figure 4. These

requirements negate the use of discrete choice models such as the multinomial Logit model

which suffer from the IIA property.

The ghosts automatically extract the cost dependencies in the mean costs of route-sections and

routes. The variance in passengers’ perceived costs is modelled using error terms starting

from the lines, through the routes-sections, up to the routes as follows. Let rK = the vector of

route-sections for route hr ∈ R and kA = the set of attractive lines that constitute the route-

section rk ∈K . Then, the variance in the perceived cost on route-section rk ∈K , 2
kσ , is

given by equation (3). Assuming uniformly and exponentially distributed passenger and line

headways1, respectively, the average uncongested waiting costs and frequency-weighted

average line travel costs are used as a basis for calculating 2
kσ :

1 Note that this assumption is only made in order to get some kind of statistical model of cost mis-perceptions;
such an assumption is not an integral part of the network loading module described later.
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where, 0η > , lf = frequency of line l, and lt = in-vehicle travel time on line l. Here η is a

model parameter which can be interpreted as the variance of the perceived costs over a route-

section of unit cost; it is exogenously defined. Admittedly, equation (4) neglects a third form

of correlation, assuming that perceived waiting times for lines that are included in multiple

route-sections are independent, which might not be realistic; this is an outstanding research

issue which is not addressed in this study.

For simplicity of calibration, assuming the perceived costs of the non-overlapping route-

sections of the alternative routes are independent, the elements of the covariance matrix for

the routes are given by:
2cov( , ) , , ,

r s

r s k h
k

r s hξ ξ σ
∀ ∈ ∩

= ∀ ∈ ∀ ∈∑
K K

R D (5)

and the variance in a route’s perceived cost is given by:
2 2cov( , ) ,

r

r r r k h
k

rρ ξ ξ σ
∀ ∈

= = ∀ ∈∑
K

R . (6)

Assuming additionally that the perception errors for the route-sections are independent and

normally distributed, it follows that the joint distribution of the perception errors across all

routes is multivariate normal, i.e. (0, )MVN Ω - where, Ω is the covariance matrix with

elements given in (5) and (6). In this study, it is assumed that the covariance matrix is

constant through out the evolution of the SP.

Learning process model

The basic assumption behind SP models is that the state of the system on a particular day n is

random. In SIMTRANSIT, the random vector of the expected cost on the alternative routes,
nC , which is based on the ghosts’ experiences, is chosen to describe the state of the system on

day n . The route flow probabilities vector nP is based on 1n−C , according to a random utility

model. A Monte Carlo simulation model approach is followed to simulate the nP ’s and nC ’s

over a long period, from which the stationary route flow and cost distributions are calculated.

The learning process model employs simple weighted averages to update +1nC using the

ghosts experiences from the previous day, nG . This captures the effect of passengers choices

on day n on the route costs based on which passengers’ update their expected costs. For a
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particular route hr ∈ R , n
rG is calculated as a simple average of the experiences of all ghosts

that used the route, as shown in equation (8). Using a “learning parameter” (φ ) as weight,
nG is used to update n+1C , for the next day, as shown in equation (7). Even though, past

experiences will have increasingly lesser impacts as the process evolves, all previous

experiences influence future decisions through a nested functional dependence.

. (1 )n+1 n nφ φ= + − ⋅C G C (7)

where, 0 1φ< < . The value of learning parameter, φ , represents the frequency with which

passengers revise, on average, their route cost perceptions.

1

n
rg

n n n
r r rG GC g=∑ (8)

where, n
rg = number of ghosts finishing their journey on route r on day n. Fig. 2 shows how

the models described in this chapter are integrated to provide estimates of route flow

proportions and costs considering the day-to-day variation in system costs. The learning

process model updates +1nC and outputs nG and nP at the end of each day. In this model, a

day is represented by one simulation hour to correspond with the passenger demand and line

frequency data.

Frequency-based and schedule-based analyses

The approach adopted in the present paper is a composite between the FB and SB approaches.

On the one hand, it takes as input aggregate line frequencies, which are used to parameterise

the distributions of vehicle arrivals. When demand is sufficiently low that the capacity

constraints are not active, then this approach follows De Cea & Fernandez (1989) in terms of

its computation of travel costs and assignment of passengers to routes, the differences being

an algorithmic one in that a simulation method is used here, rather than an analytic

formula. Even in the under-capacity case, the proposed method differs in the way that it

assigns passengers to attractive lines. In this model, the assignment onto routes is integrated

with the assignment onto lines based on a consistent definition of travel costs, whereas in the

typical FB models the strategy/route-section flows are divided onto the attractive lines based

on frequencies. This distinction becomes especially important as demand is increased, when

capacity constraints become important. In this case, the proposed method deviates from the

FB philosophy in its handling of the capacity constraints. In particular, the constraints are

applied at the disaggregate level of particular (simulated) vehicles, and not at an aggregate

level, with no modification to the approach required to handle the capacity constraints; in

contrast, adaptations are needed in the traditional FB approaches to deal with capacity

constraints, introducing assumptions (e.g. about 'effective frequencies') that may not be



Capacity constrained transit assignment 493

consistent with the underlying model of strategy costs and strategy/line choices; this is a point

we shall return to in the numerical experiments chapter. In this respect, the proposed approach

has more similarities with the SB approaches, even though the method fundamentally takes as

input, aggregate frequencies to parameterise a distribution. In fact, if a detailed timetable were

available, this approach could be readily adapted to incorporate such information, and in that

case be a pure SB approach. However, we have applications in mind where such a timetable

may not be available (e.g. longer term forecasting or services not operating to a timetable),

and have favoured the basic premise of using frequencies as the input. This discussion means

that the approach is somewhat difficult to classify as either FB or SB, in the conventional

understanding of these terms.

The Markov property

Adapting the approach used in Cantarella & Cascetta (1995) for road traffic assignment, this

chapter gives a theoretical discussion of the Markov property of the model described in the

preceding section.

Let ()V be the experienced route cost filter, proxied by the ghosts as shown in equation (8)

and ()L the pooled passengers’ learning filter (equation 7). Also let ()S be the passengers’

route choice filter given by equation (2). The filters are assumed to be independent of time

and stable over the SP – i.e. the flows and costs may change, but not the way in which they

relate.

Figure 3 Dummy period extensions to allow ghosts finish their journeys

The state of the system at any day n is completely described by the average expected (i.e.

forecasted) route costs vector, nC – it drives passengers’ route choice decisions and contains

information on their past cost experiences. At the end of each day, it is calculated from the

ghosts after the dummy period extensions are completed through the learning filter (equation

7). Dummy period extensions, Figure 3, are added at the end of each day to allow ghosts that

started their journeys in the one-hour demand period, to reach their destination. This allows a

full information on the days costs to be available in nG . Ghosts are not generated within the

dummy period but passengers continue to be generated and travel the routes so that the ghosts

“normal” day n n+1
simulation time

n-1

dummy period extensions
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en route experience the appropriate costs. Thus nC has full cost information for the day. The

distribution of the expected costs around the mean values is taken into account through

random residuals in the route choice model, as shown in equation (6). The control parameters

are the parameters in the simulation model – i.e. η and φ . The SP model is described by a

recursive function (or set of functions) relating the state of the system on day n to that on day

1n − called the transition function, say 1( )n nψ −=C C .

For each h ∈ D , the number of passengers on the different routes on day n , n
hX , is modelled

as a discrete random vector. It is assumed that each day n user, independently chooses a route

hr R∈ regardless of the routes chosen by other individuals on the previous day. This implies,

conditional on the forecasted travel costs, the route flow vector can be seen as the sum of hR

multinomial random vectors, one for each OD pair, h ∈ D . The whole stochastic process can

be specified as:

1 1( )n nV− −=G X [network loading] (9)

1( , )n n n-1L −=C C G [learning filter] (10)

| ~ ( , ( ))n n n
h h hMultinomial q SX C C [route choice model] (11)

Once an initial state ( 0C ) is given, this stochastic process can be easily solved by using the

Monte Carlo simulation model described in the preceding chapters.

Let NZ ⊂ � be the set of all feasible route costs, where hh
N R

∈
=∑ D

. The learning filter is

defined over the set Z Z× . n Z∈C describes the system state at day n .

The SP is a discrete-time continuous-space Markov process since the costs are updated every

day (i.e. not continuously) and the expected route costs are continuous variables. Based on the

probability distribution of the system state, it allows, at least theoretically, an investigation

into the type of the convergence of the Markov process to be made – see for example,

Cantarella & Cascetta (1995) and Stokey & Lucas (1989).

A stochastic process is called stationary if at least one stationary probability distribution

exists. It is ergodic if stationary and exactly one stationary probability distribution exists, and

it is regular if ergodic and its probability distribution converges to the one stationary

probability distribution whatever the starting distribution (Meyn & Tweedie, 1993). As noted

by Cantarella & Cascetta (1995), the regularity of the process ensures that one probability

distribution of the system states can be associated to each system, independently of the
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starting configurations, and allows all statistical descriptions of the system state to be obtained

from one pseudo realization of the process.

A necessary and sufficient condition for a Markov process to be regular is that the probability

of a transition in a finite number of days, from any feasible state to any subset of the state

space (or its complement) is greater than zero. For a given Markov process, let ( )Pr , Eτ C be

the probability of a transition inτ days from state Z∈C to the subset E Z⊆ .

The Markov process is regular if and only if 0, 1: E Zε τ∃ > ≥ ∀ ⊆ , ( )Pr , ,E Zτ ε≥ ∀ ∈C C or

( )Pr , ,Z E Zτ ε− ≥ ∀ ∈C C , where Z E− is the complement of Z with respect to E .

Theorem: assuming each OD pair is connected by at least one route; the learning filter, L, is

continuous (over Z x Z); and the cost filter, V, is continuous over the compact set of feasible

route flows, then the resulting stochastic process is regular.

Proof: Each route flow is bounded below by zero, and above by the route capacity; the set of

feasible route flows is therefore compact. The Probit-based stochastic route choice model

ensures the transition probability to any nonempty set of path flow vectors from a given

previous day state is positive. If B is a neighbourhood of X1 then

0 1 0 1 1Pr( | , ) 0Z B∀ ∈ ⇒ ∈ > ∀C X C X X (12)

This is to say, since the Probit model assigns non-zero probability to any (set of) route flows

regardless of the forecasted costs, it satisfies the state transition requirement above over just

one day.

Given the previous day state, the corresponding cost (ghosts’ experience) vector belongs to

the set of feasible cost vectors:

0 1 0( ( ))Z V X Z∀ ∈ ⇒ = ∈C G C (13)

By continuity of V, mapping route flows to route costs, and the continuity of the learning

process mapping, L; the composite map ( )( )0 1,L VC X from the compact space of feasible

route flows to Z is continuous. Therefore, the transition probability from any initial cost

vector 0C to E (or Z-E) is positively lower bounded by:

( )( ) ( )( ){ }1 0 1 0 1 1 0 1 0 1max Pr | , : , , Pr | , : ,L V E L V Z Eε ⎡ ⎤ ⎡ ⎤= ∈ ∈ −⎣ ⎦ ⎣ ⎦X C X C X X C X C X (14)
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Each term in the max operator corresponds to an integral of the Probit model; the first term is

the total Probit probability of generating any route flows that map into E under the learning

process, when starting from initial route costs 0C .

In this chapter a composite FB and SB Markov process model for capacity constrained transit

assignment is presented. The stochastic route choice model is based on an all-route-sections

menu and accounts for cost correlations between alternative routes and route-sections.

Although expensive in terms of the time it requires, the Monte Carlo simulation based

approach provides a realistic estimate of user costs and flows considering the dynamic nature

of demand-supply interaction. It is not a simple micro-simulation model either; it has some

important mathematical properties as shown above, that provide the basis for developing

analytical approximation to the model.

NUMERICAL EXPERIMENTS

In this chapter numerical experiments using the proposed model are presented for the test

network shown in Figure 4a. The network has four stops that are served by two lines: RED

and GRN with average frequencies of 8/hr and 10/hr, respectively. The 5 line sections, which

are parts of the lines between adjacent stops, and their travel times are shown in Figure 4a.

The buses have a maximum capacity of 20. Figure 4b shows all available route-sections that

passengers could consider using between transfer stops. For the two OD pairs, S1-S4 and S2-

S4, considered in this study, the average hourly demand is 100 and 200 passengers,

respectively. It is worth noting that total demand does not exceed total capacity; the

congestion impacts observed are due to capacity constraints on individual vehicle capacities

and stochasticity in bus headways. Figure 4c lists all the sensible routes, defined as route-

section sequences.

Figure 4 Test network
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Exponential inter-arrival headway distributions are used for the buses and passengers. To

maintain realism, the bus headways are truncated to a maximum of three times the average;

for a line with an average frequency of 10/hr, the corresponding maximum headway is 18

minutes. Unless stated otherwise, the following parameter values are used for the different

tests discussed hereafter: 1w tγ γ= = , 0.1φ = , 0.2η = , and 0π = . The ghosts are generated

every 3 minutes.

Figure 5 Evolution of the Markov process model
SIMTRANSIT is run for a total of 840 days; the day-to-day evolution of the system state

variable, nC , is shown in Figure 5. Assuming the model has converged after a burn-in period

of 300 days, the route cost expectations, costs experiences, and flow proportions afterwards

are used to calculate the probability distributions of the same considering the day-to-day

dynamics in the network. It is observed that passengers boarding at S1 only experience lower

variability in their route cost expectations than those boarding at S2; this is because

passengers from S1 only experience the stochasticity in the line headways while those

boarding at the downstream stop, S2, experience the stochasticity in spare capacity, in

addition.

Table 1 shows the forecasted route flow, expected cost and experienced cost (put simply as

‘costs’ in the tables) distributions and their sensitivity to initial conditions. It shows the mean

values of these distributions and their standard deviations (in brackets) – this approach is

adapted to represent such distributions in this paper. The difference in the three initial

conditions is in the initial seed used and level of network congestion over the first 80 days.

About 99% of S1 to S4 passengers use routes 6 and 7 – the latter (GRN line) is chosen by

slightly more passengers. The remaining few use the more expensive route 1, perhaps not
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knowing of the cheaper routes that exist. About 68% of S2 to S4 passengers choose to board

the first one of either the RED or GRN lines while the rest choose routes 9 and 10, and wait

for only one of the lines. It is also observed that the Markov process model has converged to a

stationary distribution regardless of the different initial conditions; the route cost expectations,

the system state variable, have nearly identical distributions.

Table 1 Route costs and flow proportion variability* and sensitivity to initial conditions

OD S1-S4 S2-S4Initial
conditions Route 1 6 7 8 9 10

Costs - pence
56.77
(1.37)

47.81
(1.11)

49.57
(1.25)

39.85
(8.28)

43.23
(8.23)

42.80
(9.98)

Flow
proportions -%

1.0
(0.7)

64.6
(3.7)

34.4
(3.7)

68.8
(4.5)

14.0
(3.3)

17.2
(5.4)

I

Cost expectations
- pence

56.8
(0.3)

47.8
(0.2)

49.6
(0.3)

39.8
(2.3)

43.2
(2.3)

42.8
(2.4)

Costs - pence
56.85
(1.35)

47.78
(1.19)

49.49
(1.32)

39.86
(8.68)

43.20
(8.61)

42.71
(10.95)

Flow
proportions -%

0.8
(0.6)

64.5
(3.7)

34.6
(3.7)

67.9
(4.6)

14.3
(3.3)

17.9
(5.3)

II

Cost expectations
- pence

56.9
(0.3)

47.8
(0.3)

49.5
(0.4)

39.8
(3.1)

43.2
(3.1)

42.7
(3.4)

Costs - pence
56.88
(1.32)

47.88
(1.16)

49.62
(1.35)

39.74
(8.04)

43.06
(7.95)

42.57
(9.55)

Flow
proportions -%

0.9
(0.7)

64.8
(3.6)

34.3
(3.5)

68.0
(4.4)

14.4
(3.0)

17.6
(4.6)

III

Cost expectations
- pence

56.9
(0.3)

47.9
(0.2)

49.6
(0.3)

39.7
(2.0)

43.0
(2.0)

42.5
(2.2)

* The standard deviations are given in brackets, under the mean flow proportions and costs.

Sensitivity to the Probit variability parameter

To test the sensitivity of the route flows and costs to η, the model is run with η = 0.05 and η =

0.5 (Table 2); η = 0.2 for the ones in Table 1. It is observed that the passengers are distributed

on more routes with increasing values of η: albeit small, the more expensive routes 3, 4, and 5

carry some flow for η = 0.5.

Table 2 Sensitivity of route flows and costs to the Probit variability parameter, ηηηη

OD S1-S4 S2-S4
η Route 1 3 4 5 6 7 8 9 10

Cost - pence 56.83
(1.33)

65.01
(8.30)

63.52
(10.06)

64.15
(8.66)

48.01
(1.32)

49.75
(1.45)

39.78
(8.35)

43.07
(8.39)

42.60
(9.72)

0.05
Flow
proportion - %

0.0
(0.0)

0.0
(0.0)

0.0
(0.0)

0.0
(0.0)

78.4
(3.6)

21.6
(3.7)

89.7
(4.2)

3.4
(1.6)

6.9
(4.5)

Cost – pence 56.83
(1.33)

64.79
(8.26)

63.44
(10.16)

63.95
(8.61)

47.82
(1.11)

49.59
(1.36)

39.55
(8.26)

43.07
(8.36)

42.47
(9.76)

0.5
Flow
proportion - %

5.0
(1.5)

0.2
(0.3)

0.4
(0.6)

0.4
(0.5)

56.4
(3.4)

37.5
(3.4)

56.5
(3.8)

19.9
(3.1)

23.6
(4.7)
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Sensitivity to the learning parameter

To test the sensitivity of the model to the learning parameter, φ, the model was run with

parameter values of 0.02, 0.1 and 0.2. Figure 6 shows the evolution of cost expectations for

routes 6 and 8 – the two routes are typical of the uncongested and congested routes in the

network, respectively. It is observed that the process reaches the “true” cost of the routes

relatively early when using high values of φ; relatively longer burn-in periods might be

required when using low values of φ. It is also observed that higher values of φ are associated

with higher variability in the evolution of the system and the route cost expectations. This

variability is pronounced in congested cases (for e.g. route 8 with φ = 0.2) and may lead to

unstable evolution of the system in some cases. There is not much effect on the distribution of

flows and costs due to the different values of φ.

Figure 6 Sensitivity of the Markov process evolution to the learning parameter

Sensitivity to bus headway distributions

To test the effect of the stochasticity in bus headway distributions on the evolution of the

system, the model was run assuming the buses travel at constant headways. It is observed that

the evolution of the system (Figure 7) is less variable than when the bus headways are

exponentially distributed (Figure 5). The route flow and cost distributions are given in Table

3. Especially when considering the congested routes (8, 9, & 10) the route costs are

significantly smaller and less variable than when the bus headways are exponentially

distributed.
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Table 3 Route flow and cost distributions with constant bus headways

OD S1-S4 S2-S4

Routes 1 4 5 6 7 8 9 10

Cost – pence
54.67
(0.42)

53.63
(1.27)

53.68
(0.97)

45.88
(0.85)

48.34
(1.59)

32.83
(0.66)

34.68
(0.36)

32.85
(1.13)

Flow
proportion - %

1.0
(0.7)

1.8
(0.9)

2.0
(1.0)

68.0
(3.4)

26.9
(3.3)

41.8
(2.6)

17.1
(1.9)

41.2
(2.6)

Figure 7 Evolution of the system with constant bus headways

Model Comparison

SIMTRANSIT is also compared with a Probit SUE version of the model presented in Cepeda

et al. (2006) that uses the effective frequency approach – referred to as SUE_EF. Although

they use the more general hyperpath based network representation (Nguyen & Pallottino,

1988) in that paper, for the test network considered (Figure 4) all sensible hyperpaths that

passengers could be on are represented. This is because the attractive lines passengers might

consider from the different stops, share the exit stops as well.

( )1a a aef f b β= ⋅ − (15)

( )
60 60

1
k k

k
aa A a aa A

w
ef f bβ

∈ ∈

= =
⋅ −∑ ∑

(16)

where, ba = number boarding / (capacity – line section volume + number boarding) for line-
section a ; aef & af are effective and nominal line section frequencies; and kw is the route-
section waiting time.
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Before making the model comparisons with SUE_EF, it is necessary to calibrate the effective

frequency functions and obtain the value of the parameter β for the line sections, see equation

(15). That is done by using the waiting times for single line route-sections such as A and J

(see Figure 4b) which are defined as inverses of the effective frequencies as shown in

equation (16). Running SIMTRANSIT with different demand levels, the number of

passengers that boarded each line section, the total line section flow (including passengers

that stayed on from the preceding section of the same line), and the waiting times at the end of

each day are recorded. As could be observed in Figure 8a, a value of β=0.2 used in Cepeda et

al. (2006) overestimates the waiting times across the different values of b. A regression curve

is fitted using the sequential quadratic programming algorithm in the SPSS software to better

represent the relationship between w, the waiting time, and b. Table 4 gives the values of β
along with their associated standard error. It is observed that the value β decreases

downstream indicating the higher waiting times experienced by passengers due to capacity

constraints. The waiting times for multi-line route-sections (e.g. E) are defined as the inverse

of the sum of the constituent lines’ effective frequencies, equation (16). To check whether the

values of β, calibrated using single line route-sections, also represent waiting times of multi-

line route sections a 3D waiting time surface for route-section E is plotted against bii and bv,

corresponding to line-sections ii and v (Figure 8b). As could be seen in the figure, the surface

compares well with the waiting times obtained from SIMTRANSIT for the different values bii

and bv.

Figure 8 Effective frequency function calibration

Table 4 Calibrated values of β
Line section i ii iii iv v

β
(standard error)

5.669
(0.211)

3.095
(0.078)

1.739
(0.100)

4.261
(0.104)

2.538
(0.081)

(a) single line route-section (b) two lines route-section
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After obtaining the values of β for the different route-sections, a Probit SUE version of the

deterministic route choice model presented in Cepeda et al. (2006), presented below, is used.

i. Initialization: line-section flows vector 0μ , set counter h=0
ii. compute line-section effective frequencies, aef

iii. sample the perceived line-section travel times vector t assuming
~ ( , )a a at Normal t tη′ ′⋅ , where at′ is the mean travel time for line section a

iv. compute shortest hyperpaths to each destination
v. assign total demand onto minimum cost hyperpaths

vi. determine induced line-section flows ( ′μ ) using the effective line-section frequencies
as weights

vii. update hμ using method of successive averages
viii. if h < maximum number of iterations, h=h+1, go to (ii)

After initialization, the method computes transit network equilibrium for the network at each

iteration, obtained by fixing the effective frequencies at the values determined by current

flows. In step (iv) total travel costs are calculated from the destinations to upstream stops,

identifying the minimum perceived cost hyperpaths from each upstream stop. Waiting times

are calculated using equation (16). At each stop, newly arriving passengers as well as those

continuing their journeys from upstream line sections are aggregated together assigned to the

identified minimum cost strategies from the origins to the destinations (step v). Following

Sheffi and Powell (1981), a single sample of perceived line-section costs is used in step (iii),

and step (v) is an all-or-nothing assignment. The model was run for 25000 iterations to ensure

the convergence of the Monte Carlo simulation based Probit model. Check for convergence is

done using different initial random number seeds.

Table 5 Route costs from SUE_EF

S1-S4 S2-S4
Route 1 6 7 8 9 10

Cost 57.5 48.0 48.9 34.8 44.3 38.8

Table 6 Line-section flow comparisons (passengers/hr)

Line-section i ii iii iv v

SIMTRANSIT 17.09 131.61 131.61 86.47 178.69
SUE_EF 44.53 135.38 135.38 55.47 164.62

Table 5 shows the costs obtained from SUE_EF; these are different from the ones from

SIMTRANSIT (Table 1) – the magnitude of these differences is larger in the congested parts

of the network (routes 8, 9, and 10). This is despite the effective frequency functions being

calibrated using SIMTRANSIT to account for the capacity constraints of individual vehicles.
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The main reasons for the difference are the inability of the calibrated curves, which are

applied on aggregate capacity, to represent the waiting times accurately at the different values

of b, and the structural differences (e.g. static vs. dynamic model and link based costing vs.

route based costing used in SUE_EF and SIMTRANSIT, respectively) in the two approaches.

The line flows obtained from SIMTRANSIT and SUE_EF – the former of which is calculated

from the average loading on each bus – are also different (Table 6) due the errors in the costs

and the abovementioned issue with the calibrated curves.

CONCLUDING REMARKS

A composite frequency based and schedule-based, Markov process model for capacity

constrained transit assignment is presented in this paper. It accounts for the day-to-day

dynamics of a transit network and outputs a stationary probability distribution of route flows

and costs. Line frequencies are used to model transit supply. Passenger flows are constrained

to individual vehicle capacities using a micro-simulation model. Based on an all route-

sections choice menu, a Probit based stochastic route choice model that considers the cost

correlations between alternative routes is used to model passengers route choice. A proof of

the Markov property of the stochastic process model and its regularity are given; these

guarantee the model’s convergence to a stationary equilibrium distribution regardless of the

initial conditions. This was confirmed when the model was tested using three different initial

conditions using a small test network.

Using the small test network, it was observed that passengers in the congested section

experience highly variable costs, especially when the bus headways are random. This is

because of the stochasticity associated in finding spare seats. The evolution of the Markov

process is sensitive to the value of the learning parameter used, especially in congested

networks. higher values of the Probit dispersion parameter seem to distribute passengers on

more routes. In congested sections of the network, passengers were observed to incur higher

costs and higher variability in their experiences due to higher stochasticity in the bus

headways.

The model was also used to calibrate the effective frequency function proposed by Cepeda et

al. (2006). The calibration showed the difficulty in consistently representing the impacts of

capacity constraints across for different levels of congestion and across the network. The two

models forecasted different route costs and line flows as well. Besides systematic differences

between the two approaches, the main reason for the difference is the inability of the

calibrated functions to represent, consistently, capacity constraints at the level of individual

vehicles. More tests, with different types and sizes of network, are needed to confirm this.
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Further research needs to look at convergence properties and stability of the resulting

equilibrium distribution of the Markov process, particularly in congested conditions – perhaps

for different route choice and learning process models. To enable the application of the model

on networks of realistic size, a path selecting algorithm is also needed. The proposed,

simulation-based, model is time consuming in nature; studies on its analytic approximation

would help solutions to be obtained faster.
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SUMMARY 

This paper develops a novel iterative evolving fuzzy logic controller, called ant-genetic fuzzy 
logic controller (AGFLC), for transit signal preemption (TSP) wherein variation of traffic 
conditions and ambiguity of expert judgment are accounted for. The core logics of this 
iterative evolving AGFLC algorithm include learning the combination of rules by ant colony 
optimization and tuning the shapes of membership functions by genetic algorithm. We 
propose an AGFLC-based TSP model that provides conditional signal priority to the actuated 
transit vehicles to minimize the total person delays of the intersections studied. To realize the 
control performance, both exemplified and field cases are tested at an isolated intersection and 
consecutive intersections along an arterial. Compared with other models, including genetic 
fuzzy logic controller (GFLC)-based TSP model, net-benefit conditional TSP model, 
unconditional TSP model, and pre-timed signal without TSP, the results show that the 
proposed AGFLC-based TSP model has outperformed under different circumstances. 

INTRODUCTION 

Transit signal preemption (TSP) gives preferential treatment to transit vehicles, such as trams 
and buses, passing through signalized intersections on the surface roads. It has become 
prevalent in many metropolitan cities around the world since its first field implementation in 
1968. The major benefits of TSP include reduction of transit operating costs and emissions 
and increase of transit operating efficiency and schedule reliability. However, TSP can also 
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cause remarkable delays to the competing traffic. Without detailed timing design and careful 
evaluation, the benefits of TSP may be largely offset by its negative impacts. Although 
numerous TSP analytical models have been proposed andlor implemented (see, for example, 
Jacobson and Sheffi, 1981; Khasnabis et al., 1993; Sunkari et al., 1995; Cisco and Khasnabis, 
1995; Chang et al., 1996; Wu and Hounsell, 1998; Dion et al., 2004), very few have been 
devoted to the optimal design of its signal timing due to the difficulty of developing an exact 
mathematical model. Whether or not to give TSP is a complex decision problem that may be 
viewed as a knowledge representation of uncertainty and imprecision. As the traffic 
compositions and volumes from different approaches are changing over time and the 
occupancies of different vehicle types are also varying, it is difficult to develop an exact 
mathematical model to determine the optimal timing for TSP. Fuzzy logic, first introduced by 
Zadeh (1973), has been effectively used in various fields in dealing with the knowledge 
representation problems, especially in a context of uncertainty and imprecision. One 
promising application of fuzzy logic in TSP timing design is perhaps the development of an 
adaptive fuzzy logic controller (FLC) that can make better decision in determining the signal 
changes in response to variation of traffic conditions. The underlying logic for an FLC-based 
TSP model is to use fuzzy logic rules to form a preferential signal control mechanism to 
approximate better judgment under given conditions. 

A typical FLC system contains four major components: rule base, data base, inference engine, 
and defuzzification. The rule base is composed of finite IF-THEN rules from which an 
inference mechanism is formed. The data base is formed by the specific membership 
functions of linguistic variables that transform crisp inputs into fuzzy ones. The inference 
engine is formed by the operators within the logic rules. Defuzzification is for making 
decisions, the synthesis of inference results of all activated logic rules into crisp outputs. The 
methods used in inference engine and defuzzification are rather consistent in previous 
literature; however, the methods for formulating the rule base and data base are still too 
subjective in previous works. It was argued that without appropriately setting the rule and 
data bases, the performance of an FLC system can be greatly reduced, and its applicability 
can be limited. Therefore, the task of automatically defining the fuzzy rules and membership 
functions for a concrete application is considered a challenging issue, and a large number of 
new methods have been proposed, such as ad hoc data-driven methods (Bhdossy and 
Duckstein, 1995), neural networks (Gupta and Gorsalcany, 1992; Esobgue and Murrell, 1993; 
Nauck and Kruse, 1993; Du and Wolfe, 1995; Nauck et al., 1997), fuzzy clustering (Babuika, 
1998), genetic algorithms (Wang and Mendel, 1992; Linkens and Nie, 1993; Bonissone et al., 
1996; Hwang, 1998; Cord6n et al., 2001; Chiou et al., 2003, 2005), and ant colony 
optimization (Casillas et al., 2000, 2005; Parpinelli et al., 2002). 

Chiou et al. (2003, 2005) proposed genetic fuzzy logic controller (GFLC)-based TSP models 
to enhance the control performance and self-learning capability of an FLC. The core logic of a 
GFLC-based TSP model is to select the logic rules and tune the membership function by 
genetic algorithms (GAS) sequentially and iteratively so as to minimize the total person- 
delays at an isolated intersection and consecutive intersections along an arterial. In view of 
the potential superiority of ant colony optimization (ACO) technique in solving a 



Fuzzy Logic Controller for Transit Preemption 509 

combinatorial optimization problem, this paper attempts to further develop an ant-genetic 
fuzzy logic controller (AGFLC)-based TSP model, which employs ACO to select the 
combination of logic rules and then uses GAS to tune the membership functions. To test the 
performance of our proposed AGFLC-based TSP model, exemplified examples and field 
cases are conducted at an isolated intersection and consecutive intersections along an arterial. 
The control performances for five strategies -- pre-timed signal without TSP, unconditional 
TSP, net-benefit (NB) conditional TSP, GFLC-based conditional TSP, and AGFLC-based 
conditional TSP, are compared. 

The rest of this paper is organized as follows. Section 2 describes the rationales for TSP and 
FLC. Section 3 formulates the AGFLC-based TSP model. Section 4 validates the 
effectiveness of the proposed model at an isolated intersection. Section 5 further evaluates the 
performance of the proposed model at consecutive intersections along an arterial. Finally, the 
concluding remarks and suggestions for future studies are addressed. 

RATIONALE FOR TRANSIT SIGNAL PREEMPTION 

A variety of signal priority strategies, including passive priority, green extension, red 
truncation (early green), actuated transit phase, phase insertion, phase rotation, and 
adaptivelreal-time control, have been proposed or implemented while designing a TSP system 
(ITS America, 2004). This paper focuses only on the most commonly used ones -- green 
extension and red truncation strategies. The rationales for implementing green extension and 
red truncation strategies under unconditional and conditional TSP respectively are briefed 
below. 

Figure 1 depicts the control logic for unconditional TSP. In the green phase, IF GR < H, 
THEN implement green extension strategy and let G, = H - GR, where GR represents the 
remaining green time at the moment when a transit vehicle actuates the detector. H represents 
the time needed for a transit vehicle travelling from the detector to the far-side stop line of the 
intersection. G,,, represents the green extension time. In the red phase, IF (RR + AR) > L, 
THEN implement red truncation strategy and let R, = RR + AR - L, where RR represents the 
remaining red time when a transit actuates the detector; and AR represents the all-red time. L 
represents the time needed for a transit vehicle travelling from the detector to the near-side 
stop line of the intersection. R, represents the red truncation time. 

To avoid a serious distortion of original signal timing plans, these two strategies are 
implemented under the following conditions: ( I)  If the phase comes to a transition period, 
such as all-red, it will not activate any strategy. (2) The total green extension time should not 
exceed the maximal green time (Gm). (3) The red time after truncation should not be less 
than the minimal green time (Gmi,). (4) No compensation mechanism is provided. All 
parameters including H, L, AR, Gm, and Gmi, are given. 
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Green phase Phase line 1 I Efi I ~ & d  phase I i:: 1 Green phase \ 
GmLn 

Decision line 

Notes: m: Implement green extension strategy while transit actuates detector during this period. 

m: Implement red truncation strategy while transit actuates detector during this period. 

0: Do not implement any transit-preemption strategy while transit actuates detector during this period. 

Figure 1. Unconditional TSP control logics. 

In contrast to the above unconditional TSP control logics, our proposed AGFLC-based TSP 
model will provide conditional priority to the actuated transit vehicles. It concludes a decision 
by considering traffic situations in all approaches to minimize the total person delays of the 
intersection(s). Our proposed AGFLC-based conditional TSP control logics are depicted in 
Figure 2. In the green phase, IF GR < H AND NE t N,, THEN implement the green 
extension strategy and let G,,, = H - GR, where NE represents the degree of necessity to 
implement TSP, which is concluded by the AGFLC with a value ranging from 0 to 1. Nt 
represents the threshold value preset to determine whether the priority is provided or not. In 
the red phase, IF (RR + AR) > L AND NE 2 Nt, THEN implement the red truncation strategy 
and let R, = RR +AR - L. 

Note that the AGFLC inference in Figure 2 forms a control mechanism to approximate expert 
judgment under given information. Its rule base is composed of finite IF-THEN rules with 
state and control variables. In the present paper, we use total traffic flows (TF) at all 
approaches in the green phase and total queue length (QL) at all approaches in the red phase 
as the state variables and the degree of necessity for implementing TSP (NE) as the control 
variable to form the AGFLC. All of these variables are assumed with five linguistic degrees 
(NL: negative large, NS: negative small, ZE: zero, PS: positive small, PL: positive large) and 
are represented by triangular membership functions. This makes a total of 25 combinations in 
the antecedent part of the logic rule base. Moreover, the logic rules use AND as the 
connecting operator between the state variables. As such, the rule base is illustrated below: 

Rule 1: IF TF = NL AND QL = NL THEN NE = B1 
Rule 2: IF TF = NL AND QL = NS THEN NE = B2 
Rule 3: IF TF = NL AND QL = ZE THEN NE = B3 

Rule 25: IF TF = PL AND QL = PL THEN NE = B25 
Where, B, E {NL, NS,ZE, PS, PL) , i = 1 - 25 . 
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w k- 
Phase line Green phase I :Li 1 R R & ~  phase I ki 1 Green phase \ 

Actuated line 

Control Interface 

N$=N~ 

Decision line Implement TPS Implement TPS 

Notes: : Implement AGFLC inference while transit actuates detector during this period. 

: Implement AGFLC inference while transit actuates detector during this period. 

0 : Do not implement any AGFLC inference while transit actuates detector during this period 

Figure 2. AGFLC-based conditional TSP control logics. 

The implementation of the proposed AGFLC requires some real-time traffic information: 
arrival of transit, traffic flow in the green-phase direction, and queue length in the red-phase 
direction. Thus, the transit vehicles may require equipped with positioning devices, such as 
global positioning system (GPS), to provide the information on arrival. On the other hand, in 
order to collect the information on traffic flow and queue length of other vehicles, two sets of 
detectors, acting as check-in and check-out points, are also required on all lanes in all 
approaches. The former detector set can be located near the stop line of the intersection to 
count the number of departing vehicles; whereas the later detector set can be at a certain 
distant point from the stop line to count the number of arriving traffic. The queue length is 
thus determined by the difference between these two counting results. In practice, the distance 
between these two sets of detectors requires a proper design to accommodate the possible 
maximum queue length. With the emerging innovative detection and communication 
technologies, numerous advanced detectors are introduced that could facilitate the 
implementation of more sophisticated TSP systems. 

THE ITERATIVE EVOLVING ALGORITHM 

Our proposed iterative evolving AGFLC algorithm employs ant colony optimization (ACO) 
to select the logic rules and then utilizes genetic algorithm (GA) to tune the membership 
functions in an iterative manner. The steps are detailed below. 

Step 0: Initialization. Set the values of all parameters and let evolution epoch V = 1. 

Step 1: Rules selection. Select logic rules by ACO. 

Step 1-1: Network formation. In order to adapt ACO to a rules selection problem, we 
reformulate the problem into a clustering problem, which divides the potential antecedents of 
logic rules into clusters that represent the consequents of logic rules. The object to be 
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clustered is denoted as ARi, i=l, ..., I. I represents the total number of antecedents. Table 1 
shows an example of two state variables, xl and x2, each assumed with five linguistic degrees; 
thus, there are in total 25 potential antecedents. 

Table 1 Antecedents of two state variables with five linguistic degrees 

x2 4 
NL NS ZE PS PL 

NS AR2 AR7 ARlz ARI7 AR2z 
ZE AR3 AR8 ARI3 ARI8 AR23 
PS AR4 ARg ARI4 ARI9 ARZ4 

Note: NL: negative large, NS: negative small, ZE: zero, PS: positive small, PL: positive large. 

The potential antecedent ARi will be linked to any one of the possible consequents, denoted 
Cj, j=l, 2, ..., J.  J is the number of linguistic degree of control variable. To exclude badly 
defined or conflicted rules, the antecedent ARi could be possibly assigned to a cluster set, 
called exclusion set (CJ+~). Taking two state variables and one control variable as an example, 
if each variable has five linguistic degrees, a total of 25 objects (potential antecedents) can be 
grouped into six clusters, where Cj, j=l, 2, ..., 5, stand for the consequents of y=NL, y=NS, 
y=ZE, y=PS, y=PL, respectively, and C6 represents the exclusion set. All objects are fully 
connected to these six clusters as depicted in Figure 3. 

Step 1-2: Pheromone initialization. For a minimization problem, the initial pheromone 
value (zO) can be set as the reciprocal of an objective function (E) of any initial solution 
(namely the predetermined rule base). For a rules learning problem with an input-output 
training dataset, the objective function could be to minimize the error between the observed 
outputs and the outputs concluded by the AGFLC. For a rules learning problem without the 
training dataset, the objective function could be defined as the performance index of the 
control system. 

Figure 3. Clustering network of two state variables and one control variable 
(each with five linguistic degrees). 
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Step 1-3: Tour construction. To construct a complete solution, each ant successively visits 
each potential antecedent and chooses a consequent with transition probability depending on 
the heuristic information and pheromone level. Initially, each ant is put on one antecedent. 
That is, the number of ants is equal to the number of antecedents. After assigning an 
antecedent to a consequent for each ant, the ants move to the next antecedent in parallel. 
Thus, the choice of each ant would be affected by the previous tour construction step because 
of the local pheromone update rule. 

In this paper, the reasonability of linking one antecedent to a consequent is taken as the 
heuristic information for tour construction. The reasonability information (8,) is defined as 

the degree of similarity of assigning the result of a specific antecedent to a consequent with a 
predetermined assigning result. Thus, to obtain the reasonability information, a predetermined 
rule table must be established in advance. A higher information value shows that the selection 
result is more similar to the predetermined rules. For instance, assuming that AR21 (i.e., IF 
xl=PL and xz=NL) is connected to cluster Cs (y=PL) in the predetermined rule table, the 
reasonability information on this arc would have the highest value, followed by the arc 
connecting to C4 (y=PS), C3 (y=ZE), C2 (y=NS), while the arc connecting to cluster C1 (y=NL) 
would have the least value. In this paper, the value of reasonability information on the arc 
connecting to cluster C6 is preset, and this value will serve as the threshold to exclude the 
rules. Without loss of generality, we assume that the maximum value of reasonability 
information equals to 1 and that the value is decreased by 11J ( J  stands for the number of 
linguistic degrees of control variable) for each additional linguistic degree gap. If an 
antecedent ARi is assigned to consequent Cj, but ARi is connected to consequent C, in a 
predetermined rule table, then the reasonability information can be expressed as 

1.i- P I  8.. =I-- 
J 

(1) 

where qj represents reasonability information value on the arc connecting ARi and Cj. Take 

2-41 
J=5, Cj= Cz (y=NS) and C,= C4 (y=PS); for instance, 0, = 1 -L - - 0.6. 

5 

After defining the reasonability information, ant k in antecedent r choosing consequent s can 
be determined by the following equations: 

J + l  

s = arg ma~{[B, ]~[z , ]~} ,  if q 5 qo (exploitation), 
j=l 

(2)  

or visit s with P: , if q q, (exploration), where 

where z, is the amount of pheromone on the arc connecting AR, and Cj. The symbols a and 

1 are parameters that determine the relative importance of reasonability and pheromone, and 

P: is the probability of ant k assigning the antecedent r to consequent s. 
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Step 1-4: Pheromone updates. In this proposed AGFLC model, the pheromone levels on 
arcs are updated both locally and globally. The local pheromone update rule is applied 
immediately after one ant has crossed an arc (i, j)  during the tour construction. It can be 
represented by 

z, t (1-t)z, +bO (4) 

where E (0,l) is a parameter making the pheromone not going too far beyond zO. After all 
ants have completed their tours, the global updating rule is to deposit a certain amount of 
pheromone (Az , )  on the arcs belonging to the best-so-far tour (T*(t)) constructed by the best- 

so-far performed ant. The pheromone level of the tth iteration is updated by 

z, ( t  + 1) t (1 - p )  z, ( t )  + A?, ( t )  if arc(i, j )  E T * ( t )  (5) 

where z,(t) and z,(t +1) are the pheromone levels of the incumbent iteration and next 

iteration on the arc (i, j) ,  respectively. Azij(t) = 1 /E*  ( t ) ,  where E*(t) is the objective function 

of T*(t). Finally, p E (0,1] is a parameter governing the evaporation of the pheromone trail. 

Step 1-5: Incumbent tour updating. After an iteration (global updating) has been 
completed, the incumbent optimal solution is tested and updated as follows: If 
min{E,(t)} = ~ + ( t )  < E * , then let E*=g(t)  and ~*=7*(t); otherwise, E* and T* remain 

unchanged, where Ek(t) is the value of the objective function of ant k of iteration t; @(t) is the 
value of objective function of the best tour T ( t )  of iteration t; T* is the best-so far tour, and E* 
is its objective function. 

Step 1-6: Testing of the stop condition. If the maximal iterations t,, has been reached, 
proceed to Step 2. Otherwise, go back to Step 1-3. 

Step 2: Tuning membership function by GAS. This paper tunes the membership functions 
with the method proposed by Chiou and Lan (2005). It is briefly narrated as follows. 

Step 2-1: Encoding membership function. Assume that the first and last degrees of fuzzy 
numbers are left- and right-skewed triangles, respectively, and that the others are isosceles 
triangles as shown in Figure 4. Therefore, a variable with five linguistic degrees has eight 
parameters to be calibrated, and their orders are: 

where c,,, and c,i, are the maximum and minimum values of the variable, respectively. The 
orders between c: and c;, ci and c,', as well as c: and c; are indeterminate. In order to tune 

these eight parameters, nine position variables rl - rg are designed as follows: 
c; =c,,+r,xw (8) 
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Each position variable is represented by four real-coding genes which are also depicted in 
Figure 4. 

. . . rfr, g, g, . g,, g,, 

N0tE g, = 0 - 9 

Figure 4. Encoding method for membership functions. 

Step 2-2: Generating initial population. Randomly generate an initial population with p 
chromosomes. For an FLC with N state variables and one control variable, each chromosome 
has 36(N+1) genes, and each gene randomly takes one integer from [O, 91. 
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Step 2-3: Calculating fitness values. The fitness value set as the reciprocal of the objective 
function (E) of the problem to be minimized. The fitness value of each chromosome is 
calculated for the evaluation of the next step. 

Step 2-4: Selection. Select the chromosomes for crossover and mutation by evaluating their 
fitness values with the Monte Carlo wheel method. 

Step 2-5: Crossover. The max-min-arithmetical crossover proposed by Herrera et al. (1995) 
is employed. Let G,' ={ gWlt ,..., gW; ,..., gW2 } and G," ={ g,l\ ..., gv; ,..., gvKf } be two 
chromosomes selected for crossover, and the following four descendants will be generated: 

GI"" = aG,' + (1 -a)G; 
GzfC1 = aG; + (I-a)G,' 
GPI with g3p1=min{gwkf, gvkf} 
G4"f1 with g ~ ~ l = m a n { g w ~ ,  gVkf) 

where a is a parameter (0 c a c I ) ,  and t is the number of generations. 

Step 2-6: Mutation. The non-uniform mutation proposed by Michalewicz (1992) is 
employed. Let G, = { glt ,..., g; ,..., g2  } be a chromosome and the gene gkf be selected for 
mutation (the domain of gkf is [g:, gkU]); the value of g p 1  after mutation can be computed as 
follows: 

gkt+l  =( gkf  + A(t, g; - g k t )  if b = 0 
gkf  -A(~,&I -g: )  if b=l 

(20) 

where b randomly takes a binary value of 0 or 1.  The function A(t,z) returns a value in the 
range of [0, z] such that the probability of A(t,z) approaches to 0 as t increases: 

A(t, Z )  = ~ ( 1 -  r ( ' - ' ~ ~ ) ~  ) 
(21) 

where r is a random number in the interval [O,l], T is the maximum number of generations, 
and h is a given constant. In Equation (20), the value returned by A(t,z) will gradually 
decrease as the evolution progresses. 

Step 2-7: Testing the stop condition. The stop condition is set based on whether the mature 
rate has reached a given constant S . If so, proceed to Step 3; otherwise, go back to Step 2-4. 

Step 3: Testing the stop condition. If ( fv - fv-,) 5 E ,  where fv and fv.l are the best values of 

energy function for the vth and V-l'h evolution epoch, respectively, and E is an arbitrary small 
number, then stop. The incumbent logic rules and membership functions are the optimal 
learning results. Otherwise, let V=V+l, and go to Step 1. 
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EXPERIMENTS AT AN ISOLATED INTERSECTION 

An Example 

Data and parameters 

To investigate the effectiveness of the proposed AGFLC-based TSP model, an exemplified 
case is first conducted at an intersection with configuration shown in Figure 5. Assume that 
the intersection has two lanes in each approach with a saturation flow of 1,800 pculhrllane. 
Ten-hour five-minute flow rates in the TSP control directions and the non-TSP directions are 
randomly generated at the range of 0.4 to 0.6 and 0.2 to 0.3 degree of saturation separately. 
Transit vehicles (i.e. buses) are assumed to be arriving in Poission distribution with 1 = 0.17 
vehlsec. The loading factors for a passenger car and a bus are assumed to be 2 and 40 persons, 
respectively. The cycle length and green time of the pre-timed signal are determined by 
Webster's minimum delay model as 156 and 100 seconds. The other parameters are set as 
Gm=130 seconds, Gmi,=20 seconds, AR=3 seconds, H=13 seconds, and L = 10 seconds. 

~psddrad~ar  --t Nanl- 

Figure 5. Configuration of an exemplified isolated intersection. 

Under equally distributed membership functions, the learning results of ACO with various 
settings of parameters are investigated. The most appropriate values of these parameters are 
suggested as a! =2, ,8 =5, 8 =0.1, p =0.1, and qo=0.3. The number of ants (K) is 25 (equal to 
the number of antecedents), and the maximal iteration (tm) is 100. The predetermined rule 
table for computing the heuristic information, represented by the reasonability index, can be 
defined as Table 2 by referring to the MacVicar-Whelan rule base (MacVicar-Whelan, 1976). 
In this table, TF is regarded as having a positive proportion to NE and QL a negative 
proportion to NE. Furthermore, the initial pheromone (zO) is set as a reciprocal of the TPD 
performed by the predetermined rule table with equally distributed membership functions, and 

the heuristic information on the arcs connecting exclusion set with all antecedents (%) is 
assumed as 0.5. The parameters of the tuning membership function by GAS are set the same 
as those of Chiou and Lan (2005) which are as follows: population size=100, crossover 
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rate=0.9, mutation rate=0.1, a=0.35, h=0.5, &=SO%, E =0.001, NE,=O.5, and the center of 
gravity method is employed for defuzzification. 

This paper employs an analytical fluid approximation to estimate vehicle delays for each 
cycle under different TSP strategies for the exemplified isolated intersection. The estimation 
is depicted in Figure 6. Bus delays are evaluated one-by-one depending on whether they are 
stopped at the intersection or not. Then person delays can be calculated by multiplying the 
loading factors. 

Velucle pueue 
of MU stet h A 
Velucle @eve 
of Minor street 

(a) Without bus-preemption 

veluc1e pueue 
af MU Street 

- - - - - - - - - 

Vehicle Queue 
of &or street 

(b) Green extension strategy 

Vehcle pueue 
of &or Street 

(c) Red truncation strategy 

Figure 6. Estimation of vehicle delays for the exemplified isolated intersection. 

Table 2. Predetermined rule table for heuristic information 
I 

Note: NL: negative large, NS: negative small, ZE: zero, PS: positive small, PL: positive large. 
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Learning results 

To begin with equally distributed membership functions, which are intuitively designed, 
Figure 7 depicts the evolving processes of applying the AGFLC model to the green extension 
and red truncation TSP strategies. In green extension, the AGFLC converges after three 
iterative evolutions with a total of 346 ant iterations and genetic generations. The value of 
TPD slightly decreases from 1371.2 to 1350.0 person-hours; while in red truncation, the 
AGFLC converges after three iterative evolutions with a total of 376 ant iterations and genetic 
generations where the value of TPD considerably decreases from 2131.1 to 1276.0 person- 
hours. The evolving processes indicate that the converging variation of TPD in the learning 
processes is larger in the red truncation than in the green extension strategy. 

Figure 7. Evolving process of the exemplified isolated intersection. 

Comparisons 

To investigate the performance of the proposed AGFLC models, pre-timed signal without 
TSP, unconditional TSP, NB conditional TSP and GFLC-based conditional TSP are also 
simulated under the same contexts. The control logic of the NB conditional TSP is non-fuzzy 
wherein the transit priority is provided when the net benefit of extending the green phase or 
truncating the red phase is positive. The net benefit equals to the difference of person delays 
between the beneficial vehicles (including the approaching trams or buses) and the impaired 
vehicles due to the provision of transit priority. The GFLC-based conditional TSP is the same 
as the one in Chiou et al. (2003). Table 3 shows the simulation results of the green and red 
truncation. Comparing to a pre-timed signal, the AGFLC can curtail TPD by 8.17% and 
13.20% in the green extension and red truncation, respectively, while the GFTG can reduce 
TPD by 8.1 1% and 13.01% and the NB can reduce TPD by 7.17% and 4.16%. Unconditional 
TSP can curtail TPD by 3.97% in green extension; however, it increases to more than six 
times of TPD when implementing red truncation due to incredible increase of person delay to 
other vehicles. The results indicate that the three conditional TSP approaches (AGFLC, 
GFLC, and NB) perform better than the unconditional TSP, of which the AGFLC performs 
even better than the GFLC and the NB. As anticipated, the fuzzy control methods perform 
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better than non-fuzzy method, because they can synthesize all of the firing fuzzy rules to 
produce a continuous control output in a more diligent way, where non-fuzzy method can 
only deliver a discrete control output from one corresponding firing rule. In terms of bus 
person delay, unconditional TSP curtails person delay by 20.69% in green extension and 
52.75% in red truncation. The red truncation strategy could curtail a larger transit person 
delay due to a great deduction in red time of arriving buses. 

Table 3. Comparison of different TSP models (the exemplified isolated intersection) 

TSP Typesof Without 
With .ISP 

Smtepy Vehicler TSP llncondirional Conditional 
h'R GF1.C: AGFLC 

Buces 563.2 446.7 (10.69%) 417.3 (24.13%) 415.2 126.18%) 410.4 (27.13%) 
r.G"?en-.. Other vehicles 906.8 965.0 (-6.42%) 937.3 (-3.36%) 935.6 (-3. 1 8 9 )  939.5 (-3.61%) 
r,F.,nl>l"II 

All vehicles 1470.0 I41 1.7 (3.974) 1364.6 0.17%) 1350.8 (8.1 1%) 1349.9 (8.17Cr) 

- - >  Ij,~,e, 5h 3.2 6 1 . 7  0 7 . 4  403.2 I2S.4lr) 1 414.7 12h.37';) 
nea 

Truncation 0th" \~chiclcc 9N.8 l09V7.3 (-1 l I?<?) 879.1 (3.05'9) 875.5 (3.45<,>) 861.3 (5.02';) 
All vehicle.; 1170.0 11163.4 (-666%) 1400.1 (4.768) 1178.7 (13.01%) 1276.0 (13.204) 

Note: The u n ~ t  of perron delay i\ perron-hour. I-~zurer in parenthe\ir reprerent the percentage\ of penon delay 
reduced In comparing to that of  without TSP model. 

Sensitivity analyses 

To examine the robustness of the proposed model, sensitivity analyses on various traffic 
scenarios and bus loading factors are conducted. Traffic flow rates increase by 20% (called 
high traffic scenario) and decrease by 20% (called low traffic scenario), and the average bus 
loading factors are varied as 20, 30, 50, and 60 persons per bus. Table 4 shows the simulation 
results of green extension and red truncation for various traffic scenarios. When implementing 
green extension, as comparing to the pre-timed signal, the AGFLC model can curtail TPD by 
6.16% to 12.34%, while the GFLC can reduce TPD by 5.98% to 12.27%. The NB can reduce 
TPD by 4.45% to 10.40% under medium and low traffic and slightly increase TPD by 0.48% 
to 3.21% under high traffic. The unconditional TSP can only reduce TPD by 3.97% to 
10.11% and even increase TPD by 63.98% under high traffic. Note that both unconditional 
TSP and conditional TSP (including AGFLC, GFLC, and NB) perform better in low traffic 
than in high traffic when implementing green extension. These results reveal that the AGFLC 
outperforms in all scenarios, followed by the GFLC and the NB. When implementing red 
truncation, similar results are obtained. Moreover, focusing on the difference between green 
extension and red truncation, with the increase of traffic, green extension would perform 
better than red truncation due to the fact that the latter would cause a larger impact on the 
competing approaches as traffic increases. This indicates the advantages of implementing 
green extension under high traffic and red truncation under low traffic. Furthermore, Table 5 
shows the person delay of green extension and red truncation for different bus loading factors. 
Comparing to the pre-timed signal without TSP, the AGFLC can curtail the largest percentage 
of TPD, followed by the GFLC and the NB under both green extension and red truncation. 
Unconditional TSP even worsens TPD when implementing red truncation. As expected, when 
the bus loading factor gets higher, the effectiveness in reducing TPD would be further 
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enhanced for all unconditional and conditional TSP examined. It supports the advantage of 
implementing TSP in a high bus loading factor situation. 

Table 4. Comparison of different TSP models under various scenarios 
(the exemplified isolated intersection) 

TSP 
With TSP 

Types o f  Without 
Strategy Vehiclm TSP Unconditional 

Condir 
NB GFLC AGFLC 

Buw.; 685.9 488.2 (28.824) 541.8 (21.014) 560.1 (18.34%) 5Sh.7 (18.84%) 
High Traffic Other vehicles 1824.8 3628.8 (- 1981.0 (-8.56%) 1800.4 (1.344) 1799.3 (1.40%) 

All vehicle.; 2510.7 41 17.0 (- 2522.8 ( -0 .47)  2360.5 (5.989) 2356.0 (6.16%) 
1311%\ X3.2  44(1,7 i20.6Wi) 427.3 424.1 3<; I 417.2 1?(1.2Sr>! 410.4 127.1.3ri) E,C'ezyon !,!::: Other vehicle.; 906.8 965.0 (-6.42'4) 937.3 (-3..3hci) 935.6 (-3.1 3%) c139.5 (-3.61 '$3 

All vehicle.; 1470.0 141 1.7 (3.97%) 1364.6 (7.17P) 1350.8 (8.1 1%) 1349.9 (8.17%) 
Burr, 465.1) .%34,0 i28,2Wi) .$.;(>,8 427.00'; I 321 ,0 (31 , O O r i !  320.3 1.31 , 2 I r i ]  

Low Traffic Other >eh~cle\ 522 3 554 0 (-6.07'C) 548 4 (-5.00'~ I 54.5 7 (4 48'4 ) 535.7 (-4.481) 
All \cchiclc\ 987.9 888.0 (l0,tlPrr) 885.2 (10.407) 866.7 (12.27%) 866.0 (12.33%) 

Ilu\e\ hS5.9 280.'! tSO.Ofi'.; i 6.3 3 . S  17.(>ll'i ! (725. ' )  ( X . 7 5 ' i  ! h? l .') l9. i i ' i  I 
Hieh Traffic Other ~eh~cle, 1824.8 68697.0 (-36W'Fr 1q57.5 1-7.27'i)  17'11.4 11.839) 1794.5 ( I  , 6 6 3 )  

1\11 vehicle.; 2510.7 68977.9 (-2647%) 2591.3 (-3.21 4) 2417.3 (3.72%) 2416.4 (3.76%) 

Red 
I3n\c.\ 5 h i . l  266.1 (52.751; ) 521 .O 47.LL)'i I 403.1 11X.JI'i I 414.7 11h..i7';) 

TNncalion y::: Other ~ehicles 906.8 1(rY)7.3 (-1 1 13 I 579.1 (3.05';) 875.5 (3.459) 861.3 (5.02'i) 
All vehicle.; 1470.0 11263.4 (-h66Q) 1400.1 (4.76%) 1278.7 (13.01%) 1276.0 (13.20'k) 

Hl~rc, 467.6 .%77, I i I~),Ol%! U 0 , I l  IS.~I!~; I .%46.11 1?>.6Y;! 34 1.6 12h.21Ir~l 
LowTraffic Othcr vchiclch 522.3 486.5 (6.851) 303.9 (3.52'1 1 485.0 (7.1.1G) 485.9 (6.97';) 

All vehicle.; 987.9 863.6 (12.58%) 943.9 (4.45%) 831.0 (15.88%) 829.5 (16.03'k) 
Note: The unit o f  penon dclay i\ pcr\on-hour. Fipuru\ in  parcnthu\i\ rcprcwnt t l ~ c  pclrc~i tupc\  o l  p u r \ o ~ ~  rlcluy 

reduced in conlparillp to thnt o f  u'ithout TSP rllodcl. 

A Field Case 

For investigating the applicability of the AGFLC, a field case is conducted at the intersection 
of Hsin-I road and Ta-An road in Taipei City. Figure 8 demonstrates the basic configuration 
of this intersection. There are a total of six lanes containing two bus-exclusive lanes on Hsin-I 
road and two lanes on Ta-An road. The traffic data on bus, car, and motorcycle are collected 
by video cameras from 4:00 pm to 5 0 0  pm and then transformed into five-minute traffic flow 
data. The current signal phase of this intersection is pre-timed with green 140 seconds and red 
60 seconds in the Hsin-I approaches. The parameters of ACO and GA, the predetermined rule 
table, the initial pheromone, and the loading factors of passenger cars and buses are assumed 
the same as those in the exemplified case. Referring to the current timing plan at the field 
intersection, the maximal and minimal green time is set as 170 seconds and 30 seconds, 
respectively. 
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Figure 8. Configuration of the field isolated intersection. 

Table 5. Comparison of different TSP models under various bus loading factors 
(the exemplified isolated intersection) 

TSP Loading T w s o f  Without 
With TSP 

Stntcgy Factor Vchicle'i TSP Unconditional Conditional 
NR GF1.C AGF1.C 

Burcr 2816 223.4 (20.69%) 228.4 (18.89%) 205.S 12h.YZ9) 205.7 (20.95%) 
20 Other vehicle< 906.8 965.0 (-6.41%) 933.0 (-2.898) 935.5 (-3.16%) 935.3 (-3.14%) 

A l l  vehicles 1 188.4 1188.4 (0.00%) 1161.4 (2.27%) 1141.3 (3.969) 1141.0 (3.994) 
Bu\c\ 422.4 3 . 0  2 0 . 0 - I  I I O r  I 3111.7 126.44'rl 30s 2 l27.IlJ5>) 

30 Other reliicler 906.8 965.0 (-6.42';) 97.6 0 j 7 .  - 3 . 5 )  938.7 ( -3.525 ) 
A l l  vehicles 1329.: 1.2 (4.519) 1247.9 (6.12%) 1246.9 t6.199) 

llu\r.\ 5b.3 . ,?(24,1.3r, I .115,2(2(>,2S',I Jl i l ,4 127,1.iri) EzELn 40 Olher r eliiclc.; c,O(>.> ,3 (-3,36',: j V35.6 (-3.1s'; ) c > 3 c ) , S  (-3,blrZ ) 
A l l  vchiclcs 14701 ..6 (7.17%) 1.150.8 (8.1 1 9 )  1349.9 (8.17%) 

lluw, 704 0 5iS.4 (20 (J')', I 5 3(? 7 (23.7bf, I 51 i i (27.O1J', 1 5iI{,S (2S.4.I'; 
50 Other trhicle.; 90h.R 90.5.0 (-B.J2r: ) 941.0 (-3,77<: j 930.5 [-3,14c; ) 937.4 (-3.377) 

A l l  vchicles 1610.8 1523.4 (5.43%) 1477.7 (8.26%) 1449.8 (10.00%) 1441.2 (10.53%) 
Ilu\c\ S.14 S 0 . l  2 1 '  I 031.7 (25.22'; I (>?O.O t7h.hl'r I h l i l .3  i27.7h'.; ) 

60 Olhe~ vrliicle< 9Oh.R 9 . 0  ( 0 . 4 2  9 4 2  ( - 3 . 9  37 .5  3 . 3 9 )  941.3 (-3.805) 
A l l  vehicles 1751 h 1635.1 (6.65%) 1572.9 (10.20%) 1557.5 (1 1.089) 1551.6 (1 1.428) 

l311\<\ 2Sl.h l3,q.l (52,:i';) 3 5 , i  (2.1Clt;) >I(>,< ( X I > ' ,  I 213,l I~J,.;,:~;) 
20 Other \.rhicle.; 906.8 10997.3 (-1 1125) 883.2 (2.MIS) RF.5 ( 5 6 0 7 )  8SF;.(1 (5.321 j 

A l l  vehicles I 188.4 11 130.4 (-836%) 1158.9 (2.48%) 1071.9 (9.804) 1071.7 (9.824 ) 

Hu\c, 4 I '  I I l l  6 I 318.5 (2-I.Dli', 1 301.6 I?Y.60', ) 
30 Othcr \cbiclc\ 0IK.X 10907.3 1- 1 l l l C i )  481.7 (2.775) 858.0 (5.?Sr> I 873.3 (3.4.55) 

A l l  vehicles 1329.2 1 1 196.9 (-742%) 1287.8 (3.1 1 %) 1 177.4 (1 1.42%) 1 177.1 (1 1.449) 
IIII\CI 563.2 2td1,l (52.75't 1 521,0{7.4[)'; 1 40.:,2 (2S, I l ' ;  1 4 l 4 , i  12(1,.>7'; I 

Tru:$ion 40 Othcr \-chicle, 9116.8 10907.3 1. I 111'6) 879.1 {3.05?>1 875.5 (3.4 iCi  I 861.3 (5.025 I 
A l l  vehicles 1470.0 11263.4 (-666%) 1400.1 (4.764) 1278.7 (13.01%) 1276.0 (13.204) 

HI I \~\  704.0 3 . 0  5 . 7 '  ) t . I . 7 4 l '  I 504.9 (2~.2S', I 5115 s ( X I S ' ; )  
5 0  Other \r.liiclc\ 906.4 10997.3 1- 1 l l ? c i )  475.8 (3.425) 881.1 (1.83'; I 877.9 (3.105) 

A l l  vehicles 1610.8 11329.9 (-603q) 1527.7 (5.15%) 1386.0 (13.964) 1383.7 t 14.1043 
Huw, S.14 S 3 . 2  5 7 ;  I 0 . 0  ( 7 . 7 '  I (708.') 17.')7', I b02.3 ilY.7Ic.i ) 

60 Other reliiclcs 1,Ob.E 10')')7.3 (-1 1 I?';) 7 3 . 5 0  87s.') (3.0s'; I 878.5 (3.12'; 1 
A l l  vehicles 1751.6 11396.5 (-5509) 1655.1 (5.519) 1487.8 (15.06%) I 480.8 (15.469) 

Note: The unit of pcr\ori <lc.l;~\; i \  pcr\ori- l~our. I.lpurc\ III parcntl icr ir rcprc\clil ~ h c  pcrccnt;~pc\ oC pcr\nri dc.l;ry 
reduced in comp;iring t u  that of \v~thcrut TSI' model. 

Table 6 shows the simulation results of this field case. Comparing to the current pre-timed 
signal timing plan without TSP, the AGFLC can curtail TPD by 52.01% and 54.80% in green 
extension and red truncation, respectively; while the GFLC can reduce TPD by 51.50% and 



Fuzzy Logic Controller for Transit Preemption 523 

53.26%, the NB can reduce TPD by 48.50% and 45.94%, and unconditional TSP can curtail 
TPD by 47.91% and 34.07%. The results indicate that the implementation of three different 
TSP could have a significant reduction on the TPD. However, the AGFLC still outperforms, 
followed by the GFLC and the NB. When implementing unconditional TSP, the performance 
of the green extension strategy is superior to red truncation strategy. When implementing 
conditional TSP approaches, however, the performances of the green extension and red 
truncation strategies do not significantly differ. As expected, unconditional TSP curtails more 
person delay for buses than conditional TSP because the latter does not provide absolute 
priority treatment to buses. 

Table 6. Comparison of different TSP models (the field isolated intersection) 

TSP Types of ~ . ! ~ ! ~  With TSP 

Strategy Vehicles (Witho,lt TSP) Ilnmnditirmal Conditional 
NB GFLC AGFLC 

R u e s  14.1 0.9 (93.66%) 4.5 (68.31%) 3.8 (73.24%) 1.7 (80.99%) E:z:Ln Other vehicle% 122.3 70.2 (42.60%) 65.8 (46.208) 62.4 (48.98%) 62.8 (48.65%) 
All vehicles 136.5 71.1 (17.91 4) 70.3 (48.50%) 66.2 (5 t.50SC) 65.5 (52.014) 

Red Ru\e\ I I.? 0.7 rt15.07'i 1 S.Il ( 3 7 . 3 2 ' i )  3.5 175..?5'< I 3. l 17s. 17';) 
Truncation Other vehiclec 122.3 89.3 (26.Wr+) 61.9 (46,934)  60.3 (S0.7Or+) 58.6 (52.(HF+) 

All vchiclc.i 136.5 90.0 (34.07%) 63.8 (53.26%) 73.8 (45.938) 61.7 (54.80%) 

Note: The unit o f  person delay is person-hour. Figures in parenthe\i\ represent the percentages of  per\on delay 
reduced in comparing to that of  without TSP model. 

EXPERIMENTS ALONG AN ARTERIAL 

An Example 

Data and parameters 

To further investigate the performance of the proposed model to implement the TSP along an 
arterial, an exemplified case with two assumed consecutive intersections is conducted, which 
geometry configuration is shown in Figure 9. To synchronize the signal control of the 
consecutive intersections, three coordinated signal systems, simultaneous, alternate, and 
progressive, are considered. For ease of comparison, the cycle times of these three systems 
are assumed identical. The TSP strategy is implemented to determine the timing plan at the 
first intersection, while the timing plan at the succeeding intersection is determined by the 
coordinated system. The traffic flow conditions of downstream intersection are determined by 
the upstream traffic flows and upstream signal control results. The analytical fluid 
approximation is employed to estimate the total vehicle delays, which is the entire area 
between cumulative arrival and departure curves, as illustrated in Figure 10 with the case of 
simultaneous signal system. To simplify the analysis, this paper simply neglects the turning 
traffic and assumes the arrival traffic patterns at downstream intersections the same as the 
departure traffic patterns at upstream intersection. Then person delays can be acquired by 
multiplying the preset loading factors. Offset for progressive coordinated signal is assumed to 
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be 20 seconds which is equal to the travelling time between the two intersections. The other 
parameters are set the same as those in the isolated intersection case. 

Arterial cmdinntive direction; - 
Figure 9. Configuration of the exemplified consecutive intersections. 

v 
- Arrival curve at upstream intersection 

-Departure curve at downstream intersection 
-----Arrival curve at upstream intersection 
-Departure curve at downstream intersection 

........ 
. ,  , , .  . . ,  , , .  . , . ,  , , .  . 

Simultaneous coordinated direction 

Figure 10. Estimation of vehicle delays for the exemplified consecutive intersections. 

Learning results 

The AGFLC conditional TSP is implemented under three coordinated signal systems and two 
TSP strategies (green extension and red truncation). Thus, six sets of AGFLC are required for 
optimization. Taking progressive system for instance, the learning processes of green 
extension and red truncation are depicted in Figure 11. In green extension, the AGFLC 
converges after two iterative evolutions with 243 ant iterations and genetic generations 
progressed. The value of TPD decreases from 2016.7 to 1992.1 person-hour. In red 
truncation, the AGFLC converges after five iterative evolutions with a total of 562 ant 
iterations and genetic generations where the value of TPD decreases from 2078.7 to 1993.4 
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person-hour. The evolving processes also indicate that the converging variation of TPD in the 
learning processes is larger in the red truncation than in the green extension strategy. 

- Green Extension ' ' ' Red Truncation 

Figure 11. Evolving processes of the exemplified consecutive intersections. 

Comparisons 

To compare the control performances of the proposed AGFLC models, pre-timed signal 
without TSP, unconditional TSP, NB conditional TSP and GFLC-based conditional TSP are 
also simulated with the same traffic data under simultaneous, progressive, and alternate 
coordinated signal systems. Table 7 shows the simulation results of green extension and red 
truncation, respectively. In terms of total person delays, the progressive system outperforms, 
followed by the simultaneous system, and then by the alternate system. As comparing to the 
pre-timed signal without TSP, the AGFLC can curtail TPD at the largest amount, followed by 
the GFLC and the NB under simultaneous and progressive systems. While under the alternate 
system, the optimal control results determined by the AGFLC and GFLC are the same as the 
result of the pre-timed signal because providing priority to buses would not improve any 
system performance. These results reveal that the proposed AGFLC model could achieve an 
optimal control under three coordinated signal systems without deteriorating the system 
performance of the pre-timed signal timing plan. The results also show that the NB 
conditional TSP under alternate signal system and the unconditional TSP under those three 
coordinated signal systems would deteriorate the system performance. 

Sensitivity analyses 

Scnsitivity analyscs on various traffic scenarios and bus loading factors arc also conductcd 
under the progressive coordinated system. Tables 8 and 9 show the results for various traffic 
scenarios and for various bus loading factors. respectively. It is found that the results in the 
case of two consecutive intersections are consistent to those in the isolated intersection. 
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Table 7. Comparison of different TSP models under various coordinated systems (the 
exemplified consecutive intersections) 

T,SP c:EE Without 'ISI~ Siratcpy sptcms Ilncmladi~ional 
KR nc;v 1. 

,+.. u,. 3 

..., . ,. 
I3uw-i I .  XXh.3 (3.15'4) X42.3 (7.l)h'tl . w ~ r . u  ~h.u*.aj *,.,,a IX,?><G I 

Simullancous Other vchicks 151F1.3 1635.8 (-K3Xr4) 1582.4 (4.84'6) IS44 4 (-?.33"<) I547 11 (-2.SO<O 
AU V C ~ ~ C I ~  2424.4 2~22.1 (-4.mri 2424.7 i<).ola) z3xs.o (1.679 1 2 ~ w . 1  i1.66~6) 

l l ~ ~ ~ v \  . 4.h7 r l ( lhY,  I -4z7 1 , 2 4 . I l 4 ,  t 4qOl 4?!!(X>'r! -1Iq 312021,', $ I::t%:a,n Progrcmive Othcr \chlr.lc\ l5 l~~.O 1634 0 (-7 7Xfi I l5%2.,1 (4.35,~ , 1546 7 ( - 2  413,; I Ii7(1.8 (4.fJlr, 1 
All !+ehiclr~ ?Oil).2 ?[#([1.7 (-[Lln? 2oW.3 (3.?hri 1 IYK?) (3.Wr< ) lV)2. I (4.1cJr6 I 

HIB\Z\ 4 I I A , 4 ,  1 1127 2 I 1 ;?', I 45XX 4(l,lf'8,, ! i q X X  1, IO IK I ' ,  4 

Al1cm;ltc Othcr \chtclc, 13JX117 1 I l l lhl0.5 1 -1  1 .7:lr; I IJ(LW.I (.h i'l', I I3JXIC.l lO.lX)'r I I34liO7.1 10lKl'r I 
All vehiclt- IZX3M.O 154321 .X (-1 1 . ? I f i )  I4Wl I .3 i-X.???) I3XZ'Jh.l) i l l . l X l ?  I 13XZo6.(l (O.(X111 

Hu\c'\ 'Vli 1 ~41I.5 tJ1.II1'. I XJ7.X 17 4 i ' ,  1 I I '  727.1 ,211 <J ' ,  I 

Simullmous Other rchaclc\ 11[11 1 Ih7V R t.IIlIOr~ 1 I JU)?  (I 277) I<Xl,? 4.0,7?7:) I%!<) I (0 i l lT ,  I 
All vchir lr~ 2424.4 17285.3 I-hl??) 2338.0 t3.56'0 22ZX.D (7.69%) 2236.2 (7.76'0 

llu\i.\ < ( , I >  1144(4 i  IS',l : l 1 7 4 ' 1 ' , (  J lh 1420 IJ',! l I h ' ~ 1 2 ~ 1 ~ ~ ' ~ ~  
Tm:L*,inn hogwsive 0 t h ~ ~  \CIIICIC\ l i l h  11 7 I M U  ) IJhS.4 (I h?'i  I I-IS5.5 12.111'; I l?l4,5 (O.llJ', , 

All vehicle* 2079.2 17lPh.4 (-7205) 2iXn.l (3.36? 1 1033.6 (7.tn~: I 1933.4 (7.01'6 I 
Iilt\i.r 3<\hC, 1::: (X,(?X', l 1Vl .1 4 I 11', 15X.V,hJ l(!,lV>', ) 15Sh8i ( t l l N I ' ,  J 

Altcmatc Other tchnclc\ l.UXi17.l 212674 3 (-?7.7hri I IUx3x.l (- i .Ur, I I24Xll7.l lO.lX)'i I 13JX(17.1 I O . I X ! ~ ~  I 
All vehicln 13X3cX~.0 ?I59520 (-?h.(WrI 14837').4 (-7.215 1 1383'Nv.O (ll.(XlT< I 138396 (1 iO . (X l1  I 

Note: The unit o f  pen1111 tlcl;ly I\ pcr\on-hour. f.igurc\ ill p;~rcnttic\t\ rcpre\ent the pcrcc~i~;t:c* uf p r r u l n  dul;ty 
reduced i n  cumparing to th;~t of \rSilhout TSI' model. 

Table 8. Comparison of different TSP models under various scenarios 
(the exemplified consecutive intersections under progressive coordinated system) 

TSP T y p  of W i t h o ~ ~ t  
With TSP 

Smnegy SCe"os Vehicle< TSP Uncondit imd Conditional 
NB (iFU: AGFLC 

R u r e ~  685.9 488.2 (28.82%) 541.8 (21.019) 561.5 (18.149) 558.0 (18.529) J!$tm Other vchiel*i 2812.7 4906.4 (-74.44%) 3091.7 (-9.92%) 2813.3 (-0.02%) 2815.4 (-0.10%) 
L l d l l l C  

A l l  \.chicle? 3194.6 5394.6 (-54.19%) 3633.5 (-3.86%) 3374.8 (3.549) 3374.3 (3.556) 

Green 
R u r r  503.2 440.7 2 427.3 (21.13'; 1 450.2 120 (HI';) J l i 3  (2(1.2(1'; ) 

Extension ~~~~~ Other veliiclm 151h.0 1634.0 (-7.7XSi) 1582.0 (.4.35<;) 1540.7 (-2.035) 1576.8 (.4.01fi) 
A l l  vehicle? 2079.2 2080.7 (-0.07%) 2 W . 3  (3.36%) 1996.9 (3,%%) 1992.1 (4.19%) 

R u r r  40 .0  33-1.0 (22 20 ' ; )  I S 7 . 0  1 330.0 (25 '14'; ) 330 0 (2S.')')'; 1 
Lnw 
, ... Other r,eliicle\ 903.4 7 I ) 9IJ.7 (4.791; ) 959.0 (.(>.IS!;) 959.0 (-0.15'; I 

nlgn 
Other r,r l~iclrs 2812.7 126408.0 (-43945i) 3 IW.J (-10.37"r) 2810.2 iO.W!: I 2807.1 (0.20': ) 

A l l  vehicle? 3494.6 126688.9 (-3521%) 3738.2 (-6.85%) 3149.2 ( I  ,419)  3444.3 (1.55%) 
HIIW,, 0 .  I . I .  ( 4 4 . 1 )  5 l . O  J '  I-1%. 1 (20.41'; 1 -I lS.'J (?5,hl'; 1 

Tm~~, ion  Other r,ehicle\ I5lh.O 16742." (. lw':) I-1RR.J (1.823) 1485.5 (2,015 j 1514.5 iO.lW; I 
A l l  vehicles 2079.2 17056.4 (-7204) 2 0 0 . 1  (3.366) 1933.6 (7.005F) 1933.4 (7.014) 

HIIW,~ ? I I ~ I )  I .  7 . 0 '  Z31.K i?-1.23'; 1 .;5?.1 1?4..1X'; l 
Low 

Other r,cl~icle\ ')Oi.J 869.6 i3.7IC:) 885,9 (I.'N1: J 8(19.4 i3.70C'r) 8b11.8 (3.72'; 1 
A l l  vehicle? 1369.0 1246.7 (8.93'3) 1318.8 (3.676) 1212.2 (10.71%) 1221.9 (10.754) 

Note: The unit of Denim t l c l : ~ ~  I\ m.r\on-hour. I.icurc.\ 111 ~ ; ~ r c n t l i c \ i ~  rcnrc\cnt the oerccnmrc\ n l  nen011 dcl;lr , . . . 
reduced i n  cumparing to th;~t ot without TSf' model. 
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Table 9. Comparison of difference TSP models under various bus loading factors 
(the field consecutive intersections under progressive coordinated system) 

TSP Loading Types of Without 
With TSP 

Strategy Factor Vehicles TSP Unconditional Conditional 
NB CiI,LC ACIiLC 

Buses 281.6 223.4 (20.699) 228.4 (18.894) 230.') (IY.OO%) 227.1 (19.354) 
20 Other vehicles 1516.0 1634.0 (-7.78%) 1573.3 (-3.78%) 1541.6 (-1.69%) 1544.7 (-1.89%) 

All vehicle\ 1797.6 1857.4 (-3.3253 ) 1801.7 (-0.2353) 1772.5 (1.40%) 1771.8 (I .44%) 
Ilurc\ 422.4 5 0  0 I I I 5  1 3J7.X t l7.hh';) 110.1 (2h.5')'; I 

30 Other r.cliicle\ 1516.0 1634.0 (-7.78'2 ) 153 1.3 (-4.31'; ) 1544.0 (-1.85%) 1577.9 (-4.08';) 
All vehicle\ 1938.4 1969.0 (-1.58%.) 1912.9 (1.32CG) 1891.8 (2.409.) 1888.0 ( 2 . m  ) 

Green 
Hurt\ 5i13.2 14i1.7 120.(>OCi 1 427.3 (24.1 3<, 1 150.2 (2(1.(1(>'i l 115 3 (20.2Ori I 

Ertcnrion 40 Othcr rcliiclc\ 1516.0 3 4 0  - 7 7  lfiS2.0 (-4.355) 1540.7 I-2.03FI 1570.8 (-4.lllC;) 
All vehicle\ 2079.2 2080.7 (-0.075) 20M.3 (3.36%) 1996.9 (3.969) 1992.1 (4.19%) 

Hurc, ,010 5 5 . 4  1 2 0  1 53h.7 (23.7OC;l 5l').X (2h.lh';l 5 l i O  (2h.Sj'i I 

50 Othcr rchiclcz 1516.0 1034.0 (-7 7x9;) lfiSX.6 (-4.79';i) 1579.3 I.4.ISG) 1583.8 (.4.47Ci) 
All vchiclec 2220.0 2192.4 (1.24%) 2125.3 (4.279) 2099.1 (5.454) 2098.8 (5.46%) 

IIurc\ h 4 l S  0 2 0  h31.7 (25.22<;1 (124.3 (?h.l(l';l 622.3 (2h.34'; I 

60 Othcr rchiclcz 1516.0 1031.0 (-7 785'~) IfiX1.7 (-4.93%) 1577.1 (-4.03%) 1577.7 (.4.07Ci) 
All vchiclcc 2360.8 2304.1 (2.40%) 2222.4 (5.86%) 2201.4 (6.75%) 22N.0 (6.814) 

Hhlrc, I I 4 . S  2 . 7  1 2 . 1 0  I 231.h 1 17.71Fi) 227.3 11'1.2Sf: I 
20 Othcr vchiclcz I5I6.O 16712.0 (-1(X)44) 1494.5 (I.4ZCil 1476.2 (2.63%) 1470.2 (2.67': I 

All vehicle\ 1797.6 16FS9.2 (-8404) 1770.2 (1.529) 1707.8 (5.00'3) 1703.5 (5.234) 
Hhlrc\ 122.4 2 .  1 4 4 l S  I S I 333.7 (I*i.S2<4) 332.5 121.2s': I 

30 Other reliicleu I5l(r.O 16742.0 ( - I N T )  1492.9 (l.5Z'i) l4W.3 ( I  ,%>5;) l4X0.3 ( I  .9W; I 
All vehicle\ 1938.4 16977.8 (-7754) 18W.0 (2.03%) 1825.0 (5.85%) 1818.8 (6.174) 

Rurc\ 503.2 314.4 144.1 S<i 1 32I.fl (7.40'; ) 143.1 (20.44'4) 41x9 125.(12': I 

40 Other reliicleu I5l/r.O 16742.0 ( - I N q )  14SX.1 (1.82'i) 1485.5 (2 015;) 1514.5 (0 . lK; )  Tmncarion 
All vehicle\ 2079.2 17056.4 (-7204) 203 .4  (3.36%) 1933.6 (7.00'3) 1933.4 (7.01%) 

Hllrc\ 704.0 3<).:.0 144.1 SC; 1 (bql.0 17.4(Ir< I 523.0 (21.'11c: ) -529 L) 124.7.3~: I 
50 Other rrliicleu 1516.0 16742.0 (-100-t1?) 1488.8 (1.74'; ) 1518.0 (-0.139) 1512.5 (0.237) 

All vehicle\ 2220.0 17135.0 (-6719) 2140.7 (3.579) 2046.6 (7.81%) 2W2.4 ( 8 . m )  
I h-14.8 4 I I I S f  1 ?SO.(I 17.67, I 034.7 (?4,S7'>) 010,4 1?S,50r; I 

60 Other rrliicle'; 1510.0 16742.0 (-INq) 1487.9 (I.85'i) 1.507.7 (0  5-55; ) lSM.5 (1.025: I 
All vehicle\ 2360.8 17213.6 (-6?9%) 2267.9 (3.94%) 2142.4 (9.259) 2129.9 (9.78%) 

Notc: The unit of pcrhorl rlcli~) I \  ycrw~~- l~or l r .  I y l ~ r c \  i r ~  p;~rcll~lrc\i\ rcplncnr  Ihc pcrccnritgch ut pcrholl rlclt~y 
reduced in co~npnring to that of \vithout TSP model. 

A Field Case 

To examine the applicability of the proposed AGFLC along an arterial, a field case study is 
conducted in Ren-ai arterial intersected with Jinshan South Road and with Hangzhou South 
Road of Taipei City. Figure 12 depicts the configuration of the successive intersections, in 
which Ren-ai Road is a westbound one-way arterial, currently with eight lanes including two 
bus-exclusive lanes (one of which is in contra-flow direction); Jinshan S. Rd. has three 
northbound lanes and four southbound lanes; while Hangzhou S. Rd. is a northbound one-way 
street with three lanes. Five-minute flow rates during the morning peak hours from 7:00 a.m. 
to 9:00 a.m. are surveyed. The current timing plan in Ren-ai arterial is a progressive 
coordinated system with 60 seconds green, 50 seconds red, 3 seconds all-red, and 20 seconds 
offset. Referring to the current timing plan at the field intersections, the maximal and minimal 
green times are set 90 seconds and 20 seconds, respectively. 
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Ancrial mnlinaliw dirmim: + 
Figure 12. Configuration of the field consecutive intersections. 

The simulated results are presented in Table 10. Comparing to the current progressive 
coordinated timing plan of the field case, the unconditional TSP model can curtail a 
considerable amount of person delays for buses; however, the overall performance 
deteriorates by 13.70% (green extension) and by 94.09% (red truncation) if all vehicles are 
taken into account. In contrast, the AGFLC can curtail TPD by 7.60% and 11.30% in green 
extension and red truncation, respectively, while the GFLC can reduce TPD by 7.10% and 
10.61% and the NB can reduce TPD by 2.98% and 4.03%. The results indicate that the 
AGFLC and GFLC could perform better than the NB and the AGFLC is slightly superior to 
the GFLC. 

Table 10. Comparisons of different TSP models (the field consecutive intersections under 
progrcssivc coordinated systcm) 

TSP Typec o f  ;y:n: With TSP 

Strategy Vehicles (Without TSP) Unconditional 
Conditional 

NB CFLC AGFLC 
Buaes l01..3 71.2 (29.714) 70.7 (30.2IS) 71.6 119.324) 72.1 (28.83%) 

Extension Other vehicle 260.7 340.3 (-30.53%) 280.5 (-7.59%) 264.7 (-1.530) 261.4 (-0.65%) 
Al l  vehic1e.i 362.0 11 1.5 (-13.674) 351.2 (2.98%) 336.3 (7.104) 334.5 (7.60%) 

Red rlu\e, 101.3 5 I S  7 3 )  75.3  (25 .h7 ' ; )  73.h (27..:4'4 1 
Other vehicle.; 260.7 643.7 (-1463) 274.9 (-5.454,) 248.2 (J.79'X) 247.5 ( 5 . W 3 j  

All  vchiclcs 362.0 702.6 (-94.09%) 347.4 (4.03%) 323.5 (10.644) 321.1 (1 1.30%) 
Note: The unlt ot'pcr\on delay I \  pcr\c>n-htwr. Fi;urc\ in parcnthr.\i:. I-cpixsenr thc perccntageh ot'prr+c>n (lclay 

reducetl in comparing to  that c>f without TSI' model. 
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CONCLUDING REMARKS 

This paper has developed a novel AGFLC-based TSP model by considering the traffic 
conditions on all approaches at the signalized intersections to minimize the total person 
delays. Two TSP strategies including green extension and red truncation are analyzed. 
Exemplified and field cases are both tested at an isolated intersection and at consecutive 
intersections along an arterial. The control performances of five control strategies, without 
TSP, unconditional TSP, NB conditional TSP, GFLC-based conditional TSP, and the 
proposed AGFLC-based conditional TSP, are compared. The results have consistently shown 
that the AGFLC model outperforms in both tested contexts. The sensitivity analyses show that 
unconditional and conditional TSP would perform better in light traffic than in heavy traffic 
and better in high bus loading than in low loading. Moreover, green extension strategy 
performs better than red truncation strategy in heavy traffic; in contrast, red truncation has 
better performance than green extension in light traffic for both unconditional and conditional 
TSP. In any circumstances, our AGFLC model can perform slightly better than the GFLC 
model recently proposed by Chiou and Lan (2005), suggesting that it is more appropriate to 
optimally select logic rules by ACO than by GA. 

Some directions for future studies can be identified. Firstly, the improvement of AGFLC over 
GFLC can vary depending on such factors as traffic composition and volume from different 
approaches and occupancy of different vehicle types; thus, testing for other intersections and 
for other times of day deserve further study. Secondly, it deserves to investigate the 
performance by further employing ACO to tune the membership functions, instead of GA. 
However, due to the network-based searching behaviours of ACO, remarkable modifications 
in algorithms of ACO might be needed. Thirdly, the proposed AGFLC model defines 
reasonability as the heuristic information in the tour construction of an ant. Other definitions 
of heuristic information might also be worthy of further exploration. Fourthly, to avoid time- 
consuming traffic simulation, the present paper employs analytical fluid approximation to 
estimating total person delays and simulating traffic behaviours. Other macroscopic traffic 
simulation models, such as cell transmission model proposed by Daganzo (1994), can be 
attempted to more accurately simulate the traffic flow behaviours. Fifthly, if TSP is solely 
from the transit agency's standpoint without considering the negative impacts to other private 
vehicles, minimization of bus delay or maximization of bus schedule reliability can serve as 
the objection function, which is easily incorporated into the proposed models to generate a 
more appealing control scheme. Last but not least, the interpretations of learning results of the 
proposed models, including the selected logic rules and tuned membership functions, are 
worthy of further investigation. 
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SUMMARY

Reserve capacity is a commonly used performance indicator for a signal-controlled system
that can be obtained by maximizing a common flow multiplier. Transient overloading is very
common in urban signal-controlled systems in which the peak demand may last a very short
period of time. The reserve capacity could be overestimated in conventional point queue
modeling framework assuming infinite holding capacities along road links. More realistically,
vehicles are able to be held up in the form of spatial queues and fully dissipated if sufficient
green times are provided. To model the effect of physical queuing, a signalized cell
transmission model (CTM) is employed and a multi-phase signal optimization algorithm is
integrated for determining the reserve capacity of a linked signal system. Starts of red and
green times and their durations are key decision variables. The problem is formulated as a
Binary-Mix-Integer-Linear-Program (BMILP) that can be solved by standard branch-and-
bound routines. Optimization heuristics are also developed to speedup the solution process. A
staggered junction with short link connections is given as a numerical example for
illustrations.
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INTRODUCTION

Reserve capacity has been established as an important engineering measure of the overall
performances of signal-controlled junctions. It dedicates the maximum demand level that can
enter a signal-controlled system in which all signal phases operate within certain given
acceptable degree of saturation. The reserve capacity in the planning stage is always
maximized in order to allow the largest flow increment in the system during practical
operation with respect to the existing levels of design flows. The implementation of the
resultant signal settings ensures that the random flow fluctuations can be well controlled
without impairing the system. Only with positive reserve capacity, total delay incurred in the
entire signal-controlled system can be maintained at a satisfactory level. Webster and Cobbe
(1966) were first to calculate the reserve capacity by explicit formulae. Allsop (1972) then
introduced a common flow multiplier, which is to be maximized, into a mathematical program
for isolated signal-controlled junctions within the stage-based design framework. The largest
common flow multiplier that can be found in the linear programming optimization, so that the
degrees of saturation of all traffic streams do not exceed a prescribed level, represents the
reserve capacity of the signal junction. Gallivan and Heydecker (1988) developed reserve
capacity optimization in a more flexible group-based design context for isolated signal-
controlled junctions. The concept was extended to roundabouts and priority junctions (Wong,
1996), and signal-controlled networks (Wong and Yang, 1997). All of these studies took the
time-stationary traffic demands as inputs for analysis, and only fixed-time signal plans could
be produced for operation. The reserve capacity so optimized may not be able to reflect the
realistic junction performance under time-varying traffic conditions. Transient overloading
are common phenomena during peak periods but the highest demand may temporarily occur
during a very short period of time. In the static design framework, a very low or even negative
reserve capacity could be obtained for the system which may underestimate its actual
performance. More realistically, the excess demand flow could be held up in the form of
spatial queues and could then be fully released in the next signal cycle when sufficient green
duration is provided. In this case, the overall performance of the signal-controlled system is
acceptable without inducing severe delays. A dynamic reserve capacity concept will be
introduced in the present study to give a more accurate assessment for signal-controlled
systems under the time-varying demand conditions.

The point queue modeling paradigm has been used to analyze and design traffic signal
control. It is simple and convenient, and can draw upon results from classical queuing theory
for analysis. However, the point queue approach assumes an infinite holding capacity for each
road link in which vehicles in a queue are stacked vertically rather than spreading horizontally
along the link, and the spillback effect that is caused by a long queue is not explicitly
considered. This may overestimate the amount of traffic that can be held between two
adjacent junctions, especially for short roadways. In such a case, the queue length and holding
capacity become critical parameters to be considered in the signal optimization framework,
especially for congested networks with relatively short roadways wherein spillback and
blockage are not uncommon. To achieve this, one must encapsulate traffic flow models in the
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signal optimization that explicitly capture these physical queuing effects. One good traffic
flow model for this purpose is the hydrodynamic theory of traffic flow.

Based on the hydrodynamic theory of traffic flow, the macroscopic Lighthill-Whitham-
Richards (LWR) model was formulated by incorporating the continuity (or conservation)
equation in the form of a partial differential equation and the fundamental relationship
between flow and density (Lighthill and Whitham, 1955; Richards, 1956). Daganzo (1994,
1995a) developed a cell transmission model (CTM) for the LWR continuum model with a
triangular or trapezoid fundamental diagram. In the CTM, a highway is divided into a number
of homogeneous sections or cells, and the time horizon is partitioned into intervals or steps.
The traffic flow that is transmitted from the upstream cell to the downstream cell is prescribed
by relevant receiving and sending functions in terms of the free-flow speed, inflow capacity,
jam density, and speed of backward shock wave. The concepts of merge and diverge cells in
the CTM were introduced to replicate traffic movements across a junction, based on which a
road network was constructed and represented by a series of cells, and a network traffic with
multiple origin-destination pairs was modeled (Daganzo, 1995b). Lo (1999, 2001) further
developed a mathematical programming approach to the CTM by introducing basic
constraints for signal controls, in which the exit flow capacity of a signal cell was defined and
controlled by the signal settings. Effective green durations were the key decision variables for
network delay optimization. A dynamic intersection signal control optimization (DISCO)
model that is based on the CTM was also developed and applied to practical designs (Lo et
al., 2001). In contrast, Lin and Wang (2004) used a set of binary variables to represent the
right-of-way between two conflicting traffic movements. However, all of these methods only
considered two signal phases, and the intergreen structure for separating conflicting traffic
movements was not explicitly specified. The difficult problem of signal sequencing for
complicated junctions was also not effectively dealt with in their optimization framework.
Gallivan and Heydecker (1988) and Heydecker (1992) developed a group-based optimization
method for complicated signal-controlled junctions, in which a sophisticated mathematical
programming approach was used to optimize the signal sequencing and other signal aspects.
Wong and Wong (2003) and Wong et al. (2006) further extended the group-based
optimization method to the lane-based method, in which both road markings and signal
settings were simultaneously optimized in a mixed-integer mathematical program. The mixed-
integer programming approach was also applied to model and solve the signal coordination
problem on a two-lane highway with two closely spaced work zones, with each work zone
having one lane to serve both directions of traffic that were controlled by traffic signals
(Wong et al., 2005, 2006).

However, little research has been devoted to the definition of a reserve capacity in a CTM
system. Maher (2005) made a first attempt to develop a trial-and-error procedure to estimate
the reserve capacity for a traffic stream with respect to a fixed signal plan, in which the largest
common flow multiplier was searched for until the degree of saturation of the traffic stream
converged to a given limit. The maximum common flow multiplier depended largely on the
chosen offset between two closely spaced signalized junctions.
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In this study, we optimize the signal settings for maximizing the common flow multiplier and
in turn the reserve capacity of a signal-controlled network using the CTM as the modeling
platform. Time-varying traffic demands are taken into consideration. Due to the stochastic
nature of traffic demand, a maximum acceptable degree of saturation is usually set in the
design framework to provide a buffer to accommodate the short-term flow increase, without
which substantial overflow delay may be incurred in successive signal cycles. Conventionally,
maximum thresholds are specified for the flow-to-capacity (v/c) ratios for traffic streams. In
the present CTM, maximum thresholds for the spatial occupancy of a link are adopted, which
will provide spatial buffers for all the links especially the short links with a maximum holding
capacity to reduce the chance of blocking back due to random flow fluctuations.

The formulation for traffic signal controls also, will be enhanced, whereby the right-of-way of
each signal group in each time step will be defined as a binary variable (green = 1; red = 0),
based on which the constraints for the start of green, minimum green, minimum red, clearance
time, and maximum acceptable occupancy will be formulated in the form of linear
inequalities. Apart from preserving the group-based control features, the binary-integer
approach to the specification of a signal plan will provide a high degree of flexibility for the
optimization of signal sequencing and other signal aspects, including the possibility of
double-green in a signal cycle. Only starts and durations of green are required and defined as
control variables in the present formulation.

With the holding capability in the CTM, vehicles in the form of a spatial queue can be packed
and stored in cells in front of a traffic signal during the red period, and then discharged when
the signal display changes to green. A longer green period implies the greater discharging
capability of a signal group, and thus more vehicles can be stored during the red period. As a
result, a larger common flow multiplier can be achieved. Cycle length is no longer a fixed
parameter or is not needed as a design parameter in the present formulation because green
durations, signal sequences, and offsets between the upstream and downstream signals, which
will be optimized endogenously, all become critical parameters in the determination of the
maximum reserve capacity of the signal-controlled system.

LIST OF SYMBOLS

l Road link.
'l Downstream road link (relative to road link l).
*l Upstream road link (relative to road link l).

O Set of all demand input link(s).
D Set of all exit link(s).
T Total number of time steps in the study period.

'T Total number of time steps to be considered in the optimization framework.
t Time step (interval) where t∈[0,T].

ji, Traffic signal phase (i and j are two signal phases).
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ψ Set of conflicting traffic signal pairs ( ji, ) ∈ ψ if i and j are mutually
incompatible phases.

k Cell.

lK Total number of cells on a road link l.

ti,δ Signal display of phase i at time step t in which 1 represents green and 0

represents red.

ti ,Δ Given signal setting of phase i at time step t in which 1 represents green and 0

represents red (a fixed parameter used in the optimization heuristics).

l,tq Traffic demand in time step t on a road link l.

is Saturation flow at signal phase i (the maximum number of vehicles that can move

across a traffic signal in a green interval ti,δ ), i.e. the exit flow capacity of a

signal cell in the CTM, expressed as the number of vehicles.

lχ Saturation flow of a road link l (the maximum number of vehicles that can pass a

point along the road link in a time interval t), i.e. the exit flow capacity of an
ordinary cell in the CTM, expressed in number of vehicles.

lρ Maximum acceptable spatial occupancy on a road link l.

tl ,σ Sent flow at the end of a road link l at time step t.

ig Minimum green at signal phase i expressed as an integral number of time

intervals.

ir Minimum red for signal phase i expressed as an integral number of time intervals.

jic , Clearance time (or intergreen) between signal phases i and j expressed as an

integral number of time intervals.

tklN ,, Cell holding capacity in cell k on link l at time step t.

tkln ,, Number of vehicles in cell k on link l at time step t.

tklQ ,, Exit flow capacity in cell k on link l at time step t.

V Free flow speed.
W Backward wave speed.

tklf ,, Inflow to cell k on link l at time step t.

μ Common flow multiplier.

)(lΓ Function of l to identify all downstream link(s) 'l connecting to link l.

)(lΛ Function of l to identify all upstream link(s) *l connecting to link l.
)(lZ Function of l to identify the associated signal phase i installed at the end of link l.

',llp Proportion of the sent flow from the end of a single upstream link l to enter all

connecting downstream link(s) 'l given by )(lΓ .

*,ll
λ Proportion of the sent flow from the end of all upstream link(s) *l given by )(lΛ

to enter a single downstream link l.
L Arbitrary large integer number used in linear constraints.
ω Given numerical parameter.
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CONSTRAINT SETS OF THE SIGNALIZED CELL
TRANSMISSION MODEL

Minimum Red Duration in Signal Displays

To ensure safety, a minimum red time is usually required for traffic losing the right-of-way
and to avoid frequent changes from one state to another (green to red, or red to green) in
signal control. The constraint sets for the minimum red are given as follows.

),1()1( 1,,,2,1,, −−≥++≥−−− ++++ titirtitititi LL
i

δδδδδδ … irTt i ∀−= ;,,1… (1)

Minimum Green Duration in Signal Displays

The duration of green display in signal phase i also, is subject to minimum value ig . The

constraint can be set as

),1(1)1( ,1,,2,,1, −−≥−−−−≥−−− ++++ titigtitiititi LgL
i

δδδδδδ … igTt i ∀−= ;,,1… . (2)

Clearance Time

To allow sufficient separation time for any pair of conflicting traffic movements controlled by
signal phases i and j to clear the common area in the junction, the following clearance time
constraint sets are required.

( ) ( )1...1 1,,,2,1,1,, ,
−−≥+++≥−−− +++++ titictjtjtjtiti LL

ji
δδδδδδδ ,

ψ),(;,...1 , ∈∀−=∀ jicTt ji (3)

( ) ( )1...1 1,,,2,1,1,, ,
−−≥+++≥−−− +++++ tjtjctitititjtj LL

ij
δδδδδδδ ,

ψ),(;,...1 , ∈∀−=∀ ijcTt ij (4)

Once the signal display is changed from green to red in two consecutive time steps, constraint
sets (3) and (4) become effective in providing sufficient red times to separate the conflicting
signal phases by forcing all of its related δs to be 0. This ensures that the conflicting
movement is prohibited in the following jic , intervals, and thus a safety gap between the end

of green in one signal phase and the start of green in another is created. ψ defines the set of

conflicting traffic signal pairs.
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Single Allowable Right-of-Way

The green times of any pair of conflicting signal phases must be displayed exclusively.
Otherwise, the two involved traffic movements will receive the green signals and move into
the common area of a junction simultaneously. The following constraint sets have to be given
to ensure a single right-of-way among the conflicting signal pairs.

1,, ≤+ tjti δδ , ψ),(;,...1 ∈=∀ jiTt (5)

Total Travel Demand

The first cell of a demand input (source) link acts as a large hypothetical parking lot, which
means that it stores the total demand that is scheduled to enter the signalized CTM system.
Mathematically, the following constraint set is formulated,

∑
=

=
T

t
tll qn

1
,1,1, μ , Ol ∈∀ , (6)

where 1,1,ln denotes the number of vehicles in cell 1 of link l at time step t = 1. A common

flow multiplier is applied to scale the total demand flows so that the reserve capacity of the
signalized CTM system can be evaluated.

Scheduling the Traffic Demand Input

In the CTM, the traffic demand pattern that enters the system can be controlled by the exit
flow capacity of the first cell, which already stores all of the traffic demands. A time-varying
traffic demand pattern can simply be modeled to require time-varying exit flow capacities.
With the following constraint sets, vehicles from different sources can enter the signalized
CTM system according to their observed demand patterns,

tltl qQ ,,1, μ= , OlTt ∈∀= ;,...,1 , (7)

where tlQ ,1, is the exit flow capacity of cell 1 on link l at time step t. As a common flow

multiplier has been applied to scale the total traffic demands, it also applies here for
consistency.

Infinite Cell Holding Capacity at Exits

The last cell Kl on every exit link l ( D∈ ) serves as a large reservoir to store all of the vehicles
leaving the system. Its holding capacity is thus set to infinity to maintain a clear exit path on
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which vehicles can leave the signalized CTM system. The effect of limited space at the exit of
a system can also be introduced by assigning a finite capacity. That is,

∞=tKl l
N ,, , DlTt ∈∀= ;,,1… . (8)

Holding Capacity of Ordinary Cells

Except the last cells on various exit links with infinite holding capacities, a specific cell
holding capacity ω should be assigned in all other cells in the signalized CTM system to
model the physical spatial limit of a road link. The following three constraint sets are
required.

ω=tklN ,, , OlKkTt l ∈∀== ;,...,2;,,1… (9)

ω=tklN ,, , DlKkTt l ∈∀−== ;1,...,1;,,1… (10)

ω=tklN ,, , }{ DOlKkTt l ,;,...,1;,,1 ∉∀== … (11)

Sent Flow at the End of Link

In the signalized CTM system, traffic is able to turn in different directions onto different
downstream links through the junctions. Except the exit links that traffic is considered to
leave the system while reaching the last cells, sent flows σ are defined in the last cells of
other road links. To simplify the network representation in the present formulation, only one
link is used to model a roadway that may consist of more than one traffic lane. When two or
more traffic directions are permitted at the end of a link, a proportion ',llp is applied to split

the sent flow accordingly. l specifies the upstream link and function )(lΓ identifies all

connecting downstream link(s) 'l . W and V are the backward wave speed and free flow speed,
respectively.

tKltl l
n ,,, ≤σ , DlTt ∉∀=∀ ;,,1… (12)

tKltl l
Q ,,, ≤σ , DlTt ∉∀=∀ ;,,1… (13)

( )
tltltlll

nN
V

W
p

,1,,1,,, ''' −≤σ , ( )llDlTt Γ=∀∉∀=∀ 'and;,,1… (14)

Flow Transmission in Consecutive Cells along a Link

In a system without turning movements, the CTM originally uses two nonlinear equations
with an embedded minimization. The direct inclusion of constraints makes the program
difficult to solve, but a commonly accepted way to avoid nonlinear constraints is to replace
them with appropriate linear constraints (Lo, 1999). The following sets of linear constraints
are standardized to ensure smooth flow transmission across consecutive cells, either along a
road link or between two connecting links.
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,,1,,,,,1,, tkltkltkltkl ffnn ++ −+= OlKkTt l ∈∀−=−= ;1,...,1;1,,1… (15)

,,,,,,1,, tltKltKltKl lll
fnn σ−+=+ DlTt ∉∀−= ;1,,1… (16)

,,,,,1,, tKltKltKl lll
fnn +=+ DlTt ∈∀−= ;1,,1… (17)

,,1,,, tkltkl nf −≤ lKkTt l ∀== ;,,2;,,1 …… (18)

,,1,,, tkltkl Qf −≤ lKkTt l ∀== ;,,2;,,1 …… (19)

( )( ),/ ,,,,,, tkltkltkl nNVWf −≤ lKkTt l ∀== ;,,2;,,1 …… (20)

,
*

** ,,,1, ∑=
l

tllltlf σλ )(and;,,1 * llOlTt Λ=∉∀= … (21)

Again, the present CTM formulation permits different turning directions, and therefore, the
inflow f of the first cell on a downstream link may come from more than one upstream link
through the corresponding sent flow σ . *,ll

λ denotes the specific sent flow proportion from

the end of all upstream link(s) *l , identified by the function )(lΛ , to enter a single

downstream link l.

Exit Flow Capacity

The exit flow capacity, that denotes the maximum possible number of vehicle passage, of all
signal and ordinary cells can be set in the following constraint sets. Except for the exit links,
the exit flow capacity at the end of a link is controlled by the signal display. If the signal
display is green, then full exit capacity of the signal cell will be given. Conversely, the exit
flow capacity becomes zero and vehicles must be stopped if the signal is red. The function
Z(l) is developed to identify the signal set at the end of link l.

ititKl sQ
l ,,, δ= , )(and;,,1 lZiDlTt =∉∀= … (22)

ltklQ χ=,, , lKkTt l ∀−== ;1,...,2;,,1… (23)

ltlQ χ=,1, , OlTt ∉∀= ;,,1… (24)

Maximum acceptable spatial occupancy on links

To prevent overflowing due to the stochastic nature of traffic demand, a maximum acceptable
degree of saturation, the flow-to-capacity (v/c) ratio of traffic streams, is usually set in
conventional design frameworks to provide a buffer that accommodates the short-term flow
increase. In this study, we focus on analyzing the physical queue dynamics. It is more
meaningful to introduce a maximum threshold for the link spatial occupancy, which will
provide a spatial buffer for all the road links with a maximum holding capacity during the
whole study period. The following constraint sets are developed to ensure that the maximum

spatial utilization of a link, given by
∑
∑

N

n
, is always under a given limit lρ .
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OBJECTIVE FOR OPTIMIZATION

The main objective of this study is to maximize the reserve capacity of an entire signal-
controlled system, taking the spatial queue limitation into account. In the formulation, the
total traffic demands have been given and stored in the first cells of the input links. The time-
varying demands entering the CTM system, through corresponding input links, are governed
by the relevant exit flow capacity constraints that are given in (7). A common flow multiplier
has been explicitly introduced into the mathematical formulation as a flow scaling factor by
which the existing flow levels are multiplied. Consequently, the maximum common flow
multiplier can be achieved automatically by maximizing the total flow leaving the CTM
system, which is the sum of flows in the last cells on all exit links at the end of study period T
as given in (28) below, subject to all of the required constraint sets (1-27).

∑
∈Dl

TKl l
n ,,Maximize (28)

The problem is formulated as a Binary-Mix-Integer-Linear-Program (BMILP) that can be
solved by a standard branch-and-bound technique. To simplify the presentation of the
optimization heuristics outlined in the next section, the term “BMILP” is used to represent
this linear programming problem. If the optimized common flow multiplier μ *, by solving
the BMILP, is greater than 1, then the system is considered to have ( μ * – 1)*100% reserve
capacity. Conversely, if μ *  is less than 1, then the system is overloaded by (1 – μ *)*100%.

OPTIMIZATION HEURISTICS

In previous sections, the objective function and relevant governing constraints have been
presented to design the signalized CTM system, taking the spatial queue limit and time-
varying traffic demand into considerations. A deterministic solution can be achieved by
solving the complete BMILP directly using standard routines. One imminent challenge is to
apply the present formulation to design a dynamic signal plan under a time-varying traffic



Reserve capacity of a signal-controlled network 543

condition. In general, traffic demand pattern for analysis should consist of pre-peak, peak, and
post-peak periods. Sufficient modeling time must be given to put forward the vehicle queue
formation and dissipation across these periods. In the present formulation, no mathematical
constraint is developed to restrict the length of the whole study period T. Practically, if a finer
time step (say 2 seconds/time step) is adopted to preserve a high precision in modeling, huge
number of binary variables is required to define the signal settings. The resultant BMILP
problem may require substantial computation efforts to be solved. To reduce this
computational difficulty, the original optimization problem is divided into a series of smaller
sub-problems and each of them contains only a manageable subset of the signal variables with
a sub-period length of 'T for optimization. The signal variables within the sub-period 'T are
to be optimized and those outside the sub-period (but still within the study period T) are held
fixed. After one batch of signal variables is optimized, the resultant signal settings become
fixed parameters and the following batch of signal parameters is relaxed as variables for
optimization. The procedure repeats until the whole study period T is optimized. Detailed
steps of the solution algorithm for the reserve capacity optimization are summarized below.
Since the algorithm continuously modifies a subset of signal variables, a feasible signal plan
has to be given as initial settings. Epoch is a counter to activate different batches of signal
parameters as variables for optimization.

Step 0: Prepare a feasible signal plan such as the minimum green setting to be the fixed
signal setting ti ,Δ in the whole study period, set Epoch = 0, and evaluate the

common flow multiplier as an initial reference
Step 1: Set Epoch = 1

Step 2: If Epoch <
'T

T
, then

Solve the BMILP with
}{ Epoch)(,,...11)Epoch(,, ''

,, TTtititi +−∉∀Δ=δ

Collect the common flow multiplier μ (Epoch) and the optimization results;

update and set
}{ Epoch)(,,...11)Epoch(,, ''

,, TTtititi +−∈∀=Δ δ

Step 3: If Epoch >
'T

T
, then

Solve the BMILP with

2
)Epoch(,,...1

2
1)

'
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'
'

'

'
'
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⎩
⎨
⎧

⎭
⎬
⎫
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Collect the common flow multiplier μ (Epoch) and the optimization results;

update and set
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Step 4: Set Epoch = Epoch +1

Check if Epoch <
'

2

T

T
, then return to Step 2.

Step 5: Stop

Further implementation details are referred to in the numerical example section.

NUMERICAL EXAMPLE

Geometric layout of the signal-controlled system

To demonstrate how the reserve capacity of a signal-controlled system can be optimized,
taking into account the effect of physical queuing, the cell transmission model (CTM) is
applied to model a staggered signal-controlled junction system as shown in Figure 1. The
staggered junction system contains 8 road links, in which links L3 and L8 are short links.
Traffic signals are installed at the end of links L1, L2, L3, L6, L7, and L8 (the two exit links
L4 and L5 are excluded) to control the conflicting movements involved. The arrows represent
the lane markings that show the directions which are permitted on different road links. L1, L2,
L6, and L7 are input (source) links on which traffic demands are generated and entered into
the signalized CTM system.

Figure 1 Example staggered junction.

In the CTM, each road link is discretized and represented by a series of homogenous cells, as
given in Figure 2. Vehicles that are scheduling to enter a road link are stored in the first cell
(Cell 1) of that link. After one time interval, those vehicles that are already in the first cell will
move to the next downstream cell (Cell 2). Vehicles in Cell 2 will move to Cell 3 and so on
up to Cell Kl-1 to Cell Kl. The amount of traffic that can proceed forward depends on the
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downstream spatial availability and the link saturation flow. Instead of moving forward to
next downstream cells, vehicles must hold up and stay in the current cell if there are not
sufficient spaces available. Upstream traffic will even be blocked and held up simultaneously.
A physical vehicle queue may then develop to realize the congestion effects.

Figure 2 Cell representation of road link l.

The modeling details of the road links that are used in the example staggered junction are
given in Table 1. Five cells are used to model all input links (L1, L2, L6, and L7). Three cells
are given for all exit links (L4 and L5). Road links L3 and L8 are defined as short links that
contain only a single cell. For all of the road links (except the two exit links) in the system,
there are traffic signals, given by a function Z, installed at the ends of the associated links to
control the conflicting junction traffic. Two other functions, Γ and Λ , are employed to
identify, for different road links, all respective downstream and upstream connecting road
links.

Table 1 Modeling details of the road links in the example junction system.
Link, l Total no. of

cells, Kl

Signal in
cell no.

)(lZi = )(' ll Γ= )(* ll Λ= Remarks

1 5 5 1 3 Input link, O∈
2 5 5 2 3,5 Input link, O∈
3 1 1 3 4 1,2 Short link
4 3 N/A 3,7 Exit link, D∈
5 3 N/A 2,8 Exit link, D∈
6 5 5 4 8 Input link, O∈
7 5 5 5 4,8 Input link, O∈
8 1 1 6 6 6,7 Short link

Input assumptions

Referring to the left-hand T-junction in Figure 1, it can be observed that traffic movements on
link L7 contain both left and right turns that are conflicting with those on links L3 and L6.
Correspondingly, a minimum 6-second (= 3 time steps) clearance time is assigned for the
signal pairs }{ )4,5(),5,4(),3,5(),5,3(),( =ji . With these signal settings, only one signal

sequence can be chosen for practical implementation. To demonstrate the design capability of
the present formulation to deal with complicated signal sequences and settings, traffic signals
S1, S2, and S6 are not allowed to display green signals concurrently in the right-hand T-
junction. This implies that the traffic on links L1, L2, and L8 can only move across the
junction exclusively. In this way, the feasible combinations and possible choices of signal
sequences are increased. It is thus expected that a more complex signal sequence can be
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produced in the optimization framework. Details of the minimum clearance time that is
adopted in the present design problem are tabulated in Table 2.

Table 2 Minimum clearance time matrix jic , (in time intervals)

Signal phase j
jic ,

1 2 3 4 5 6
1 3 3
2 3 3

Signal 3 3
phase i 4 3

5 3 3
6 3 3

Note: Signal pair 0if),( , >Ψ∈ jicji .

Another key input for the present signal optimization problem is the traffic demand pattern.
The demand flows that enter the signalized CTM system through different input links are
time-varying, covering pre-peak, peak, and post-peak periods, as used in the computer
package OSCADY 5 developed by TRL (Binning and Meikle, 2003). The demand flow
profile is synthesized and supposed to be survey data, whereby the pre-peak period and post-
peak periods occur in the first and last 15 minutes respectively, at constant demand level,
taking up only 75% of the hourly flow rate. The peak demand, occurring exactly at the middle
of the study period, is 1.5 times higher than the pre- and post-peak demand levels (or 1.125
times higher than the hourly flow rate). The flow inputs are given in Table 3 below. Having
identified the pre-peak, peak, and post-peak demand levels and their corresponding times of
occurrence, a normal curve is fitted to generate a time-varying flow profile for every minute
during the peak period. The demand flow starts to rise after the first 15 minutes (the pre-peak
period) and reaches the peak at exactly the middle of the study period. After the peak, the
demand flow drops immediately and remains constant for the last 15 minutes as the post-peak
period. A minute-by-minute demand flow profile is constructed as an input into the signalized
CTM system. A fixed proportion of 75% and 25% of the demand flow from link L2 will turn
into downstream links L5 and L3, respectively. Similarly, 75% and 25% of the demand flow
from link L7 will turn into links L8 and L4, respectively. It is also assumed that links L2 and
L7 contain a single shared lane for both left- and right- turn traffic and thus all turning flows
will be blocked if either one of the associated downstream cells are fully occupied.

Table 3 Input demand pattern.
Input link L1 L2 L6 L7
Existing hourly flow rates (veh/hr) 225 250 300 250
Pre-peak and Post peak demands (veh/min) 2.81 3.13 3.75 3.13
Peak demands (veh/min) 4.22 4.70 5.63 4.70

In this example, we model and optimize the traffic flow pattern and signal settings for 1-hour
comprising 1,800 time steps (= 3,600 seconds). The problem has been formulated as a
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BMILP. To model the 6 signal phases for the present numerical example, 10,800 (= 1800 x 6)
binary variables are required. This problem size is difficult to be solved computationally.
From trial experiences, the optimization problem is still manageable if the problem size is
trimmed to cover 180 time steps (= 6 minutes) at a time. Hence, the optimization heuristics
are implemented with T = 1,800, 'T = 180, and minimum green settings as the initial signal
plan. Each of these reduced sub-problems, 389,393 linear constraints, 201,598 continuous
variables, and 1,080 binary variables are defined. The required computation time is around 20
minutes running on a Pentium D processor of 3.6G Hz.
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Figure 3 Optimization trend of the common flow multiplier.

Optimization results

Figure 3 plots the optimization trend of the maximized common flow multiplier against each
epoch. At the initial epoch, the minimum green setting is applied to control the example
junction system throughout the entire study period. The evaluated common flow multiplier is
0.85, thus indicating that the whole system is overloaded by 15.0%. This simply verifies that
the minimum green setting is not good enough to control the given traffic demands in the
example junction system. The proposed optimization heuristics then start to modify this initial
signal setting. It can be observed that the maximized common flow multiplier rises after the
third epoch and increases continuously until the seventh epoch. Within these time steps from
541 to 1,260, the traffic demands, scheduled to enter the signalized CTM system, are greatest
according to the normal distributed demand profiles. During this critical period, the total
number of vehicles inside the entire signalized CTM system is also the highest. This trend can
be roughly traced from Figure 4, which provides the variation of the total number of vehicles
against the time step. Once the signal settings are effectively optimized during this peak
demand period to let the highest incoming traffic leave the system smoothly without inducing
serious congestion, then the overall system capacity in terms of the common flow multiplier
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can be maximized. Still, a very slight increase in the common flow multiplier is found from
the seventh to tenth epochs as the peak demands are prepared to leave the system and the
lower post-peak traffic is again not critical enough to affect the maximized common flow
multiplier. From the eleventh to the final epochs, the optimization heuristics are specifically
designed to refine the signal settings across the transition periods (the break points between
two successive epochs over the first ten epochs). Hence, only steady and marginal
improvements on the overall system performance are perceived in terms of the maximized
common flow multiplier. After completing the proposed solution algorithm, the common flow
multiplier is found to be increased from 0.85 to 1.29, thus implying that the example
staggered junction system possesses 29% reserve capacity with the implementation of the
optimized signal setting.
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Figure 4 Total number of vehicles in the signalized CTM system.

Table 4 gives the details of the optimized cell contents from Links L1 to L4 during the most
congested minute (the network contains the greatest number of vehicles within 30 time steps
over the whole study period). During this most congested period, 4.44 (140.56-136.12) and
4.96 (157.43-152.47) vehicles enter the system through input links L1 and L2 respectively,
and 5.75 (125.33-119.58) vehicles leave the system via exit link L4.

To further demonstrate the modeled queue dynamics in the most congested period (minute),
variations of the queues on the two short links L3 and L8 are also plotted in Figure 5. Because
the maximum acceptable spatial occupancy ρ takes on 1.0 and the cell holding capacity N

equals 4.0 in the present example, the highest number of vehicles that appear on the short link
L8 is 4.0 during time intervals from 741 to 742. As also given in Table 4, the maximum
vehicle queue in the most congested period on link L3 is only 3.75 during time intervals from
739 to 746. For the whole study period (1,800 time intervals), there are 248 time intervals in
which a maximum queue (= 4.0 vehicles) is formed on link L8. However, there are only 13
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time intervals with a maximum queue on link L3. The average queues observed on links L3
and L8 are 0.86 and 1.76 vehicles respectively within the whole study period. With the
current input demand profiles, it is consistent that short link L8 will be more congested and
critical than short link L3 under the present control system.

Table 4 Partial flow pattern during the most congested minute (30 time steps).
t Link L1, Cell Link L2, Cell Link L3,

Cell
Link L4, Cell

1 2 3 4 5 1 2 3 4 5 1 1 2 3
723 140.56 0.15 0.15 3.29 4.00 157.43 0.34 0.00 2.71 4.00 1.00 0.75 0.00 119.58
724 140.41 0.15 0.15 3.44 4.00 157.26 0.51 0.00 2.71 4.00 1.00 0.00 0.75 119.58
725 140.25 0.15 0.15 3.59 4.00 157.09 0.68 0.00 2.71 4.00 0.00 1.00 0.00 120.33
726 140.10 0.31 0.00 3.75 4.00 156.92 0.17 0.68 2.71 4.00 0.00 0.00 1.00 120.33
727 139.95 0.15 0.31 3.75 4.00 156.75 0.17 0.86 2.71 4.00 0.00 0.00 0.00 121.33
728 139.79 0.15 0.20 4.00 4.00 156.58 0.17 1.03 2.71 4.00 0.00 0.00 0.00 121.33
729 139.64 0.15 0.36 4.00 4.00 156.41 0.17 0.20 3.71 3.00 0.25 0.00 0.00 121.33
730 139.49 0.15 0.51 4.00 4.00 156.24 0.17 0.17 2.91 3.00 0.50 0.00 0.00 121.33
731 139.33 0.15 0.66 4.00 4.00 156.06 0.17 0.17 2.08 3.00 0.25 0.50 0.00 121.33
732 139.18 0.15 0.82 4.00 4.00 155.89 0.17 0.17 1.25 3.00 0.50 0.50 0.00 121.33
733 139.03 0.15 0.97 4.00 4.00 155.72 0.17 0.17 0.42 3.00 0.75 0.50 0.00 121.33
734 138.88 0.15 1.12 4.00 4.00 155.55 0.34 0.00 0.17 3.42 0.75 0.50 0.00 121.33
735 138.72 0.15 1.27 4.00 4.00 155.38 0.17 0.34 0.00 3.60 0.75 0.50 0.00 121.33
736 138.57 0.15 1.43 4.00 4.00 155.21 0.17 0.17 0.34 3.60 0.75 0.50 0.00 121.33
737 138.42 0.15 1.58 4.00 3.00 155.04 0.17 0.17 0.17 3.94 1.75 0.50 0.00 121.33
738 138.26 0.15 1.73 3.00 3.00 154.87 0.17 0.17 0.28 4.00 2.75 0.00 0.50 121.33
739 138.11 0.15 0.89 3.00 3.00 154.69 0.17 0.17 0.45 4.00 3.75 0.25 0.00 121.83
740 137.96 0.15 0.15 2.89 4.00 154.52 0.17 0.17 0.62 4.00 3.75 0.25 0.25 121.83
741 137.81 0.15 0.15 3.04 4.00 154.35 0.17 0.17 0.79 4.00 3.75 0.25 0.25 122.08
742 137.65 0.15 0.15 3.19 4.00 154.18 0.17 0.17 0.97 4.00 3.75 0.25 0.00 122.33
743 137.50 0.15 0.15 3.34 4.00 154.01 0.17 0.17 1.14 4.00 3.75 0.25 0.00 122.33
744 137.35 0.15 0.15 3.50 4.00 153.84 0.17 0.17 1.31 4.00 3.75 0.00 0.25 122.33
745 137.19 0.15 0.15 3.65 4.00 153.67 0.17 0.17 1.48 4.00 3.75 0.00 0.00 122.58
746 137.04 0.15 0.15 3.80 4.00 153.50 0.17 0.17 1.65 4.00 3.75 0.00 0.00 122.58
747 136.89 0.15 0.15 3.96 4.00 153.33 0.34 0.17 1.65 4.00 3.00 0.75 0.00 122.58
748 136.74 0.15 0.26 4.00 4.00 153.15 0.17 0.34 1.82 4.00 2.00 1.00 0.75 122.58
749 136.58 0.15 0.41 4.00 4.00 152.98 0.17 0.17 2.16 4.00 2.00 0.00 1.00 123.33
750 136.43 0.15 0.57 4.00 4.00 152.81 0.17 0.17 2.33 4.00 1.00 1.00 0.00 124.33
751 136.28 0.15 0.72 4.00 4.00 152.64 0.17 0.17 2.51 4.00 1.00 0.00 1.00 124.33
752 136.12 0.16 0.87 4.00 4.00 152.47 0.17 0.17 2.68 4.00 1.00 0.00 0.00 125.33

As for the optimized signal settings, details of a 2-minute signal setting in three different time
periods are extracted from the optimization results for discussion. Table 5 shows the timing
details of the six signal phases during time steps 451-510, covering 120 seconds just after the
pre-peak period. Table 6 gives the signal settings during time steps 871-930, which are
another 120 seconds that exactly covers the highest peak in demand inputs. Table 7 illustrates
the signal timings during time steps 1351-1410 at the beginning of the post-peak period. Very
different signal settings are observed without fixed cycles and signal sequences. For instance,
referring to the minimum clearance times given in Table 2, exclusive rights-of-way in signal
phases 1, 2, and 6 are all separated by at least 3 time steps (= 6 seconds). The optimized signal
sequence is [6-1-6-2] in the first two minutes when the peak period commences. The signal
sequence becomes [6-2-6-1-2-1] right at the peak, and a more complicated signal sequence [6-
1-2-6-2-6-1-6] occurs just after the peak period. Green duration patterns also vary greatly in
all six signal phases. A minimum of 3 time steps (= 6 seconds) and a maximum of 18 time
steps (= 36 seconds) of green durations are assigned in Signal 6 in different time periods.
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Figure 5 Variations of queues on the two short links in the most congested minute.

Table 5 Optimization results of signal settings when the peak demand period commences.

Signal

phase 450
Time steps

510

1 478 482 508

2 500

3 465 479 505

4 457 472 490 502

5 454 462 469 475 485 493 496

6 494

491 497

Table 6 Optimization results of signal settings right at the peak demand period.

Signal

phase 870
Time steps

930

1 886 909 915 925

2 878 889 900 912
918 922 928

3 873 893 916

4 882 888 891

5 876 904 907

6 875
903 906
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Table 7 Optimization results of signal settings upon the end of the peak demand period.

Signal

phase 1350
Time steps

1410

1 1355 1359 1368 1377 1384 1393

2 1373 1392 1398
3 1354 1363 1381 1405

4 1366
1376 1394

5 1360 1370 1384 1408

6 1374
1390

1371 1387 1401

Very different offset patterns are observed between upstream and downstream signals. All of
these clearly demonstrate that the present optimization procedures produce a very effective
dynamic signal plan to control the time-varying traffic demands.

CONCLUSIONS

A reserve capacity optimization concept is applied in this study to design a signal-controlled
network. The signalized cell transmission model is used as the modeling platform, taking the
time-varying traffic demands and spatial queue dynamics into considerations. A common
flow multiplier is defined as a flow scaling factor and introduced into the mathematical
formulation. The maximum flow multiplier that represents the reserve capacity of a signalized
system can be obtained by maximizing the total number of vehicles leaving the signalized
CTM system at the end of the study period, which has been adopted as an objective function
for optimization. Starts and durations of green are defined as control variables. The model
constraints, including the control of the flexible group-based design parameters and relevant
flow transmission in consecutive cells within the CTM, are developed in a linear framework.
To realize the properties of the spatial queue limitation on short roadways, a set of constraints
for the maximum acceptable spatial occupancy are included. The design problem is
formulated as a Binary-Mix-Integer-Linear-Program (BMILP) problem that can be solved by
standard branch-and-bound routines. Another challenge in the present study is to consider a
large set of binary variables for the signal settings, which may create certain computational
difficulties. Hence, optimization heuristics by considering a manageable subset of binary
variables at a time until the whole study period is optimized are proposed which enhance the
practical applicability of the formulation. A staggered junction with 8 traffic links and 6 signal
phases is used as a numerical example for demonstrations. Promising solution results are
obtained. Completing the present study, a reserve capacity of a signal-controlled system can
be evaluated with the considerations of the spatial queue limitation along roadways. Vehicles
can be held up and waiting for suitable green signals for dissipations. Traffic demands
generated during peak periods can leave the system at the end utilizing some post-peak spare
capacities. The reserve capacity can therefore be traded with the length of a given study
period. A single reserve capacity may only represent one particular case. Should we consider
in the future expanding the reserve capacity into a time series representation in order to give a
more comprehensive assessment for a signal-controlled system?
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TIME DEPENDENT DELAY AT
UNSIGNALIZED INTERSECTIONS

Werner Brilon, Ruhr-University Bochum, Germany

SUMMARY

Calculation of intersection delay is usually based on methods obtained from queuing theory.
Due to the variability of traffic demand over time the estimation of delays for time-dependent
flow and capacity, where also a temporary overload is allowed, is of primary interest. For
solving this problem a variety of methods is used in current practice. All of these solutions are
only approximations. One first step of approximation is the assumption that the priority
system can be modeled by an M/M/1-queue. The second step is the so-called coordinate
transformation technique. For this method three sub-groups can be defined. The paper
investigates the background of the possible solutions and the quality of approximation. As a
basis, a classification of potential delay formulas is defined. This classification accounts for
the kind of sophistication of the approximation and for the kind of delay definition, which is
treated as the average. Over all, nine useful classes of formulas can be defined. For each of
these classes delay formulas are derived. Some of them correspond to well-known results.
However, in addition to that the complete set of results offers new solutions - also for more
realistic cases. Thus, also initial queues at the beginning of the observed peak period as well
as different conditions in the post-peak period can be described. As methods for validating
these formulas a Markov-chain formulation has been developed to produce numerically exact
results. Also stochastic simulations and empirical data are used for comparison to check the
approximate solutions against reality. As a result, a set of equations is available which can be
applied to estimate average delays at unsignalized intersections for well-defined traffic
conditions. The paper makes clear that instead of an uncritical use of delay formulas a well
sophisticated selection of the adequate equation is also required in practice.
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INTRODUCTION

For unsignalized intersections the average delay has been chosen as the representative
measure of effectiveness for characterizing the performance of traffic flow by most of the
guidelines used in practice (USA: HCM 2000, chapter 17; HBS 2001, chapter 7). Therefore a
reliable and realistic estimation of average delay is of significant importance in traffic
engineering. Guidelines use several different methods for calculating delays; e.g. the HCM
uses the Akcelik, Troutbeck (1991) method whereas the German HBS recommends the rather
complex formula proposed by Kimber, Hollis (1979; eq. 22). Both lead to different results.
There is no clear insight, which of both is more correct or if alternative solutions might be
even better.

The important aspect of the average delay estimation at intersections is the treatment of a
temporary oversaturation. Here delay estimation turns out to be one specific application of a
more general problem of mathematical queuing theory. The unfortunate fact is that useful
analytical solutions are not offered from mathematical theory. Therefore engineering
scientists have developed approximate formulas (Kimber, Hollis 1979; Akcelik, Troutbeck
1991 and other publications by Akcelik; Brilon, 1995).

Most of these approaches use the derivation of time dependent patterns for queue length as a
starting point. A rather precise but still approximate method to estimate time-dependent queue
length distributions are the differential equations given by Newell (1982; see also Troutbeck,
Blogg 1998) derived from his so-called diffusion theory. Such time-dependent queue length
functions can be integrated to derive delay parameters like average delay. Such an approach
seems, however, to be too complicated for practical application. Moreover, if all solutions are
still of approximate nature then for the sake of easy application it seems to be desirable to find
solutions directly on the scale of delays.

This paper shows that the well-known solutions for average delays at unsignalized
intersections are specific members of a larger family of approximate solutions, where other
elements of the whole set of delay equations provide more advantages. A classification of
different possibilities for average delay definition is also offered. Among all possible cases
the traditional formulas only constitute a solution for rather specific and unrealistic cases.
These considerations also make clear that a sound understanding of the formulas’ background
is crucial for a correct application. The key to the assessment of a useful delay estimation
technique is, however, the comparison with exact results, which for this paper have been
elaborated using Markov chain techniques, simulations, and some empirical data.

THE BASIC MODEL

Our considerations are concentrated on the simple case of one major stream and one minor
stream where the vehicles from the minor stream have to give priority to major street vehicles
(= “priority system”; cf. Figure 1). This priority system can be modeled by a queuing system
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where the first space for a vehicle next to the stop line is treated as the service counter
whereas the further waiting positions for minor street vehicles form the queue. For the
terminology within the paper we use:

s = service time = time spent by vehicles in the first position (= 1 / c , if we
represent the priority system by a M/M/1-queue)

d = delay = time spent by vehicles in the queue (without the first position)

w = waiting time = time spent by minor street vehicles in the priority system
= d + s (definition following Heidemann’s (2002) proposal)

We denote the averages by small letters, whereas capitals stand for the sum of all delays (D)
and the sum of all waiting times (W) respectively.

Figure 1: The “priority system”

There are different basic methods for estimating the capacity c , i.e. the maximum possible
throughput for the minor stream, like the empirical regression theory (Kimber, Coombe,
1980), the critical gap theory, or - more recently - the conflict method (Brilon, Wu, 2002;
Brilon, Miltner, 2003). These methods become even more complex if lower rank movements
(e.g. left turning minor street movement) are treated. A good overview is given by Troutbeck,
Brilon (2000) or Luttinen (2004). These methods should not be discussed here in detail. It is,
however, desirable that the estimation of delay should become independent from the way of
capacity calculation. Otherwise the solutions will become too complicated.

For undersaturated conditions, i.e. demand q is less than capacity c, the approximation of the
priority system by an M/M/1-queue is rather popular among researchers (cf: Kimber, Hollis,
1979, Kimber et al (1986), or Heidemann, 2002). Figure 2 shows that the M/M/1-delay is not
necessarily equal to the priority system delay. For this example illustration the average
waiting time has been calculated based on gap acceptance theory using a set of equations
given by Kremser (1962, 1964) and arranged as an equation for average waiting time by
Brilon (1988). This arrangement is based on Yeo's results (Yeo, 1962; see also comments in
Brilon, 1995). Kremser's equations have later been improved by Daganzo (1977). This
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improvement has not been used for this example due to the rather complicated form of the
equations. For this comparison the following parameters have been chosen: tc = critical
gap = 6 s, tf = follow-up time = 3 s, qp = major street volume = 350 veh/h (Figure 2, left side)
and qp = 600 veh/h (right side).

For the M/M/1-queue the average time of customers in the system (i.e. the waiting time) is

( )xcqcR
w

−⋅
=

−
==

1

111
(1)

The average delay for the M/M/1-queue is
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1
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x

c
wd

−⋅
=−= (2)

where

w = average waiting time [s]

d = average delay [s]

R = reserve capacity = c - q [veh/s]

c = capacity [veh/s]

q = demand volume [veh/s]

x = degree of saturation = q/c [-]

Figure 2 Comparison of the M/M/1-waiting time with the waiting time calculated by the
Kremser/Brilon-method (K/B); left side: qp = 350 veh/h, right side: qp = 600 veh/h

Figure 2 shows that there are cases of complete compliance of average waiting time between
the M/M/1-solution and the priority system. However, also significant differences might be
possible where the difference could be even larger than Figure 2 suggests, depending on the
driver's behavior characteristics (expressed by the critical gap tc and the follow-up time tf)
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and on major street traffic volumes. Nevertheless, due to the similarities there is no useful
alternative than to represent the priority system by a M/M/1-queue, if parameters of traffic
performance like delays or queue lengths are to be described. Thus, the use of rather
complicated equations for steady state priority delay is avoided. Moreover, the delay
estimation becomes independent from the method of capacity calculation. It should, however,
be noted that the representation of the priority system by the M/M/1-queue can cause a bias,
especially for large major traffic volumes, i.e. for small capacities.

THE COORDINATE TRANSFORMATION METHOD

With this approximation by the M/M/1-queue only undersaturated conditions (i.e. x = q/c < 1)
can be described. For practical purposes it is, however, also necessary to estimate delays for
situations where the demand volume (q) is variable over time and where it could even exceed
the capacity c during a specific peak period. To describe the average delay suffered by minor
street drivers during such an oversaturated period no solutions which are based on an exact
statistical theory are in use since they – if a solution would be available – would become too
complicated. Instead, rather pragmatic approximations are in use.

These approximations go back to an idea by a researcher named Whiting who contributed
much to traffic research but did not publish in his own name due to personal reasons (Kimber,
Hollis, 1979, p. 6; Allsop, 1992). The idea was developed fully by Kimber, Hollis (1979). The
method is also characterized as coordinate transformation by several authors. It is illustrated
in Figure 3. There we see the M/M/1-waiting time (eq. 1) as a function of the degree of
saturation ( = x = q/c ) and the deterministic delay dd. The deterministic delay is valid for a
D/D/1-queueing system. The idea for the approximate assumption is:

• For very low saturation of the system the time-dependent effects do not play a role since
the relaxation time, during which the system adapts to a changing demand is very small
compared to the duration T of the peak period. Thus, the time-dependent solution will be
very close to the stationary solution which is represented by the M/M/1-queue.

• For extreme oversaturation (i.e. large x and long period T of oversaturation) the
randomness of the system becomes less important. Effects of randomness then constitute
only a very small part of the total delay. Thus, the average delay approaches the
deterministic delay.

Therefore, the solution for the average delay in the time-dependent system should be a
transition between the steady state delay (M/M/1) and the deterministic delay. This transition
curve, since a solution determined by stochastic theory seems to be too complicated, is then
based on an approximation.
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Figure 3: Illustration of the method of
approximation on the x- axis

Figure 4: Illustration of the method of
approximation on the R-axis

Three kinds of approximation may be used. The solution for each approach is derived from
one of the following cases.

A1. additive; x-axis (see Figure 3) βα =

A2. multiplicative; x-axis (see Figure 3)
Dx

βα
=

1

A3. additive; R-axis (see Figure 4) ∗∗ = βα

where

x = degree of saturation = q / c [ - ]

R = reserve capacity = c – q [veh/h]

α, β, α*, β* : parameters, see Figure 3 and 4

A potential fourth case, a multiplicative R-based approach gives no sense.

Each of these assumptions, constituting the fundament for the approximation, reveals a
specific solution. There is no reasoning to prefer one of these approximations with regard to
the basic sophistication.

DETERMINISTIC DELAY

To use the method of approximation we need to describe the deterministic delay in Figure 3
and Figure 4. As the D/D/1 system we understand a queuing system where all customers
arrive with a headway of 1/q (q = demand volume) and where they are served with a constant
service time of s = 1/c (c = capacity). For x = q/c < 1 (i.e. R > 0) there are no delays for
customers in such a system. The only time which they spend in such a system is the service
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time. The reason why the D/D/1-system is treated, is the fact that for a D/D/1-system also
delays for a temporary oversaturation can be determined.

In each queuing system the sum of all delays is the area between the cumulative arrivals and
cumulative departures each represented by their function over time. Figure 5 gives an
illustration.

Figure 5a shows the demand volume q over time versus the capacity c , which is assumed to
remain constant here. We see that during a peak period of duration T the demand exceeds the
capacity, whereas the demand is assumed to be zero before and after the peak period. Then
the sum of all arrived and departed vehicles, each as a pattern over time, is given in Figure 5b
with a maximum difference NT at the end of the peak period. The delay d for a vehicle
arriving at time t can be obtained as the horizontal difference between the two curves. That
means: the area included between both curves is the sum of all delays. The vertical difference
between both curves, i.e. the queue length, is given in Figure 5c. Since the area between the
two curves in Figure 5b is equal to the area under the queue length curve in Figure 5c, the
sum D of all delays is the area below the curve for the length of the queue (Figure 5c).

Simple geometric considerations within Figure 5 reveal:
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Then the delay per vehicle averaged over all arriving vehicles for the deterministic case is
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With approximation A1 we get a time-dependent solution for delay as:
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where

ω = average delay d or average waiting time w [ s ]

D = sum of total delay [ s ]

x = degree of saturation = q/c [ - ]

T = duration of the peak period [ s ]

q = demand traffic volume [ veh/s ]

c = capacity [ veh/s ]

z = parameter [ - ]
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a)

b)

c)

Figure 5: Derivation of the deterministic delay for the simple case

With z = 1 we get a function for ω(x) which constitutes a transition from waiting time w for
undersaturated conditions to delay d for large x. On the other side, for z = x eq. 6 converts
into the well-known delay equation by Akcelik-Troutbeck (1991). This can be derived as a
transition from random delay d for small x to deterministic waiting time w for over-
saturation. Since the approximation converges on a term of different nature for both sides of
the function (different for x → 0 and for x → ∞) this kind of solution shows a significant
degree of inconsistency. This problem could be solved with the set of assumptions :

target function : x < 1 x > 1

ω = delay d z = x z = 1

ω = waiting time w z = 1 z = x

In addition, it is worth to notice that eq. 6 for any parameter z is only valid for the unrealistic
case of no arriving traffic before and after the peak period as well as constant capacity.

The more general case for the traffic demand pattern over time is illustrated in Figure 6. For
these more general circumstances also the capacity c is varied by a stepwise function. In
addition an initial queue of length N0 is assumed. Another difference to the previous case is
that also after the observed peak period of duration T a continued traffic demand q1 is
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assumed. Since we concentrate on peak intervals with a potential temporary oversaturation the
conditions

qq

cq

<

<<≤

1

110
(7)

should be valid.

Two different clearance times for the queue can be defined. Period a is the time after which
the last vehicle arriving during the peak departs. a1 is the time after which the expected length
of the deterministic queue becomes zero.

a)

b)

Figure 6: Deterministic delay for the general case.

Again, also in Figure 6 (like in Figure 5) the total delay is the area between the two
cumulative curves. There are, however, several possibilities which part of the area should be
regarded as the relevant sum of delays. Here, different cases for the deterministic delay DD

can be distinguished (table 1). As a general formula for the sum DD of all delays we can use:
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where

NT = maximum queue length (deterministic) [ veh ]

N0 = initial queue length [ veh ]
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a = time to dissolve the queue due to oversaturation
(according to table 1) [ s ]

Table 1: Cases for the classification of total delay

case
D

area in
Figure 6b

equation for the term a
(for the calculation of DD)

D1 A B C F 0=a

D2 A B C E F
1c

N
a T=

D3 A B C D E F ( )11
1 qc

N
aa T

−
==

Each case has advantages for specific purposes:

D1 This definition restricts the consideration on delays which do occur exactly during the
relevant peak interval. This definition is the only one to be applied when delays from
successive intervals are added, e.g. over all hours of a whole day.

D2 This is the delay, which engineers usually define, when they estimate delays by
empirical methods. It avoids to integrate delays experienced by vehicles arriving after
the peak. But the D2-definition contains delays experienced after the end of the peak
period. For the special case of N0 = 0 this definition is closely related to the solution of
eq. 6.

D3 This is the total delay which is induced into the system by the temporary overload. But
it contains delays experienced after the end of the peak. Even delays for vehicles
arriving after the considered peak period are involved into the total delay. For an
economic assessment of delays, caused by specific peak periods, this definition is the
preferential one, since it represents the total consequences of the overload happening
during the peak period.

It should be noted again that DD covers delays – not waiting times.

From the sum DD of total deterministic delay the average delay d has to be derived relating
DD to those vehicles which are exposed to become involved into the queue of waiting
vehicles. This means

N

D
d D

D = (10)

where

dD = average deterministic delay [ s ]
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DD = sum of all deterministic delays [ s ]

N = number of vehicles exposed to contribute to DD [ - ]

For undersaturated conditions (i.e. x < 1) N contains all vehicles which arrive during the
relevant time period T with the consequence that TqN ⋅= .

For temporary oversaturation the calculation of N is not self-evident. Then N could comprise
all vehicles which could be affected by the queue which is formed due to the oversaturation.
Therefore, three cases can be formulated for the derivation of N:

N1: N contains those vehicles arriving during the time interval (t, t + T); i.e. TqN ⋅=

N2: N contains vehicles which arrive during the time of an existing queue;
i.e. ( )aTqN +⋅=

N3: idem; ( )1aTqN +⋅=

Of course, case N2 can only be combined with D2 and case N3 gives only sense with D3,
whereas N1 can be combined with case D1, D2 and D3. Here it is preferred to relate all delays
to the vehicles arriving during the peak period of duration T; i.e. we restrict ourselves to case
N1.

One example for the deterministic delay depending on the degree of saturation x is shown in
Figure 7. In Figure 8 the deterministic delay is shown how it depends on the reserve capacity
R . In both figures the limiting case
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is marked. This is the point which - as a maximum - enables a dissipation of the initial queue
(length N0) within the peak period of duration T. Beyond this point (i.e. for x > xg or for
R < Rg) the queue at the end of the peak period will be > 0 for the deterministic system. We
see that N0 has an influence on the shape of the curves for small x (i.e. x < 1). For N0 > 0 the
value of d increases to infinity for x → 0, since due to N0 there is always some delay
experienced in interval (t , t+T). With eq. 10, for small x the number of N is also small. This
will need some special treatment later in this paper. Only for N0 = 0 the deterministic delay
starts from the point (x = 1, dD = 0). For case D2 the relation DD = Function(x) is always
nearly linear. D3 is identical with D2 for q1 = 0. With increasing q1 the D3-curve becomes
increasingly concave. In the limiting case of q1 = c1 the curve for case D3 grows to infinity at
x = 1. The D1-curve is always convex.

It would now be desirable to conduct each of the approximations A1 - A3 for every definition
D1 to D3 of deterministic delay. This may, in principle, be a possible option. In practice this
is, however, nearly impossible and it gives no real sense. The reason is: Equations 8 and 9
combined with Table 1 reveals rather complicated equations. For the approximations these
equations have to be solved for x (and R in case A3). This will give extremely complicated
solutions. Then, from the equations in Table 1 we get another set of equations which have to
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Figure 7: Deterministic delay as a function of x. For this example N0 has been chosen as 20
(left side) and 0 (right side; both figures: c = 600 veh/h; c1 = 600 veh/h;
q1 = 550 veh /h; T = 1 h).

Figure 8: Deterministic delay as a function of the reserve capacity R. For this example N0

has been chosen as 20 (left side) and 0 (right side; both figures: c = 600 veh/h;
c1 = 600 veh/h; q1 = 550 veh /h; T = 1 h).

be solved for the delay d. The resulting equations will become even more complex, if all
variables are used. It is, however, not very reasonable to develop extremely complex solutions
if the result is still only an approximation.

Therefore, as a first approach we concentrate on the simple case where N0 = 0 (i.e. no initial
queue) and c1 = c (i.e. constant capacity). This simplified case is not relevant for case D1 and
D3. Thus, first of all we can derive equations representing the average delay for case D2,
which then will be used as a reference.

Case D2 + A1:

( ) ( )( ) ⎥⎦
⎤

⎢⎣
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⋅
= Tcx81xTc21xTc2
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d 2 (12)

This equation should be identical with the Akcelik-Troutbeck equation, which is not the case.
The reason is: this equation is derived from the delay d , both within the M/M/1-queue and
within the deterministic system. The original Akcelik-Troutbeck equation is derived as a
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transition from waiting time w in the M/M/1-case to the delay d in the deterministic case (see
text in connection with eq. 6).

Case D2 + A2:
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The surprising result is that this equation - resulting from the multiplicative approximation A2
- is exactly the Akcelik-Troutbeck equation.

Case D2 + A3:
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This equation is different from the corresponding solution by the author (Brilon, 1995, eq.
2.20). The reason is again that the older solution has been obtained by a transition from the
waiting time w in the M/M/1-solution to the delay d in the deterministic case, which was not a
consistent solution.

Even if these formulas look quite different from each other, the numerical results are rather
similar. This is pointed out in Figure 9 for one example. But also with these small differences
it is of interest which approach is the more realistic one. This is tested in the next section of
this paper.

Figure 9: Average delay d as a function of the degree of saturation x (left side) and in
relation to the reserve capacity R (right side). The figures compare the three kinds
of approximation A1 – A3. Also the Markov chain results are indicated.
Parameters for this example: N0 = 0, c = c1 = 600 veh/h.

ANALYTICAL SOLUTIONS

To check the desired approximate solutions for their correctness, methods for the
determination of exact solutions for the time-dependent M/M/1-queue are desirable.
Mathematical literature provides several solutions for the state probabilities or for the
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distribution function of the number of customers in the system also for dynamic (i.e. time
dependent) queuing systems. One approach has been given by Heidemann (2002) by using
LaPlace transformations for queue length distributions and delay distributions. With this
approach Heidemann confirmed the Akcelik-Troutbeck solution. He did not, however,
envision the other potential options for approximate equations. This analytical result contains
the problem that no explicit formulas are used. Instead the LaPlace transforms have to be
solved numerically to get applicable results.

Other candidates for equations to describe time dependent state probabilities within time
dependent queuing systems can be found in Takacs (1960), Morse (1958/1976), or Tarabia
(2000). They offer rather complicated equations containing trigonometric functions (sin,
cos, …). The critical point for all of these solutions is, however, that they do not allow input
volumes q exceeding the capacity at any time. Thus, for temporary oversaturation the
conditions for the analytical derivations are not fulfilled. As a consequence these analytical
solutions are only of limited usefulness for application in traffic engineering, since here a
temporary oversaturation of the system is the crucial case for application.

Newell (1982) proposed the so-called diffusion theory to estimate the average queue length as
a pattern over time for a given capacity and demand pattern. Also the standard deviation of
queue lengths can be determined. Troutbeck, Blogg (1998) have tested this approach. They
confirm the quality of Newell’s formula based on comparisons to stochastic simulations.
However, they also underline the approximate nature of Newell’s solution which produces
biased results for small queue lengths. Troutbeck, Blogg do also identify the limits of the
solution for the time dependent queue length estimation according to Kimber et al (1986). In
any case all analytical solutions aim at an estimation of queue length from which average
delays must be determined. Non of these approaches claims for an analytically exact solution
neither for queue length nor for delays. It is, however, not desirable to check one approximate
solution against another approximation as a reference.

MARKOV-CHAINS

Even if an analytical solution is not visible, there are possibilities to get exact results for the
delay within each queuing system by using numerical methods. These are based on the
Markov-properties of the priority process which are especially valid for the M/M/1-
approximation.

The average number of vehicles in the system can be estimated by the following procedure.
We observe the queuing system in intervals of ∆t = 1 minute duration. Since arrivals and
possible departures are Poisson, we get
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where

ai(t) = probability of i arrivals during the interval (t, t+∆t) [-]

bi(t) = probability that i departures are [-]
possible during the interval (t, t+∆t)

q(t) = traffic volume [veh/min]

c(t) = capacity [veh/min]
(q(t) and c(t) are assumed to remain constant
with sufficient degree of approximation during the interval (t, t+∆t).

∆t = duration of the time interval (here: 1 minute). We assume that T=k*∆t
where k is any integer number.

From the ai and bi we form two quadratic matrices A and B with the dimension n.
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Then the transition probabilities are given by the matrix BAP ⋅= . This means: each term pij

of the matrix P is calculated as
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(18)

where

pij(t) = probability that the number of vehicle in the queue changes from i to j
within the interval (t, t+∆t)

aik(t) = term of the matrix A at time t in row i and column k

bkj(t) = term of the matrix B at time t in row k and column j

n = number for the range of numerical calculations. n should be significantly
larger than the maximum possible queue length.

Then the state probabilities of the system will change over time according to
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The equation makes it possible to calculate each of the state probabilities pi at any time t + 1
out of the previous state probabilities at time t.

Then the average number N(t) of vehicles in the system at time t is
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This is a numerically exact calculation for the dynamics of the expected number of vehicles in
the system. Again – like in the case of the deterministic system – the area below the curve for
N(t) is the sum of all delays.
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Or with stepwise constant demand q(t) and capacity c(t):
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This sum of delays then can be related to the number of arrivals during the peak period of
duration T to estimate the average delay d.
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Here tmax is the number of the final interval (duration Δt) where N(t) becomes 0 if case D3
(Table 1) is applied. For case D1 tmax = T / Δt. Case D2 can be constructed by setting
q(t) = q1(t) = 0 after time T.

Markov-chain calculations have been performed for several examples. Results for average
delay according to case D2 were evaluated for several combinations of c and T with
emphasis on longer peak periods in the range of T ~ 1 h. It turned out that on the scale of
Figure 9 the relation for d = F(x) or d = F(R) estimated by eq. 12 – 14 matched quite well
with Markov-chain results. The differences are so small that on the scale of Figure 9 they are
not visible. To notice the differences between eq. 12 – 14 and Markov-chain results Figure 10
has been plotted. Here we see that the differences are quite small in absolute terms (upper part
of the figure). The differences may become quite significant if we treat them in relative terms
(bottom part of the figure). But the extremely large relative differences for small x-values are
in the area of nearly zero delays, so that here the absolute differences are very small. Even if a
remarkable deviation of the estimated average delays from the exact values could occur, the
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Table 2: Comparison of results for average delay d: Residual standard deviation
for Case D2, Cases A1 - A3 and eq. 6

capacity A1 A2 A3 eq. 6

c = 100 14.63 13.24 24.38 15.75

c = 300 9.36 4.31 3.07 2.02
compared to

Markov-chain
calculation 1)

c = 600 7.84 5.38 3.58 4.02

c = 100 81.7 76.8 70.8 78.0

c = 300 42.9 40.8 39.3 41.1
compared to
simulation 2)

c = 600 28.0 27.4 27.1 27.8

veh/h s

1) values = standard deviations for the difference between the result from eq. 12 - 14
and the Markov-chain result; compared over each x ∈ {0.5 (0.05) 1.2}

2) values = standard deviations for the difference between results from eq. 12 - 14
and the simulated average delay; compared for 1000 1-hour simulation runs with
various combinations of q and c within the interval (x= 0.5, 1.2)

degree of approximation seems to be quite acceptable for practical application. Similar figures
can be plotted for other combinations of parameters. The tendency of the 3 curves remains
similar, the absolute value of the differences may, however, vary. They become rather
significant if the capacity has very low values.

In any case the A1- approximation (i.e. the additive approach over x) turns out to be of lowest
quality. It is not very clear, which of the A2 or A3 is better. They seem to be equivalent with a
small advantage for A3, the additive reserve capacity based solution. Also the solution for
delays d according to eq. 6 shows a rather good performance.

SIMULATION

Another method for comparing the approximate results with "true" values is to use stochastic
simulation. A computer program for simulating the priority system with constant critical gaps
tc = 6 s and tf = 3 s has been written where drivers behaved in a consistent and homogeneous
way. The program evaluates the average delay in peak periods of duration T (here T = 1 h)
according to approach D2. A large number of repetitions is possible. Figure 11 shows that the
delays do - on average - follow the calculated curves. The results for the 1-hour average of
delay do, however, vary over a quite remarkably wide area. The standard deviation of delays
(standard deviation between average delays over 1-hour intervals) is always in the range of
0.7 of the mean of the average delays.

The three curves represent the approximations for case A1 (upper curve, eq. 12), A2 (eq. 13),
and A3 (lower curve, eq. 14). The residual standard deviations for the simulated points
(relative to eq. 12 – 14) are also given in Table 2. If we try to interpret the small differences
the results support the A3-solution. The difference to the A2-solution is, however, only quite
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Figure 10: Difference in average delay d between Markov-chain results and the approximate
solutions A1 - A3 as a function of the degree of saturation x. Parameters for this
example: T = 1 h; N0 = 0, c = c1 = 600 veh/h (left side) and c = c1 = 300 veh/h
(right side).

small. With respect to the large variance of the average delay such small differences become
meaningless in practical terms. Also eq. 6 provides an adequate degree of approximation.

All equations compared to simulation results show a tendency to slightly overestimate
average delays in the range of x = 1. The validity of all equations might be improved if for the
basic equations of approximation (cases A1 to A3) a factor would be used relating the values
of a and b (or a* and b*) against each other. This may be subject of further research.

At this point it can be stated, also on the background of more example calculations, that the
approximation method A3 gives the best correlation to simulation and Markov-chain results.
The method A2 is, however, very close up. Based on this experience and knowing that the
same result must not necessarily be obtained also for cases D1 and D3, method A1 is not
further treated here.
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Figure 11: Simulation results for the priority system. Each point represents the average delay
over a 1-hour-peak period according to case D2 in relation to the degree of
saturation x. The larger points represent the standard deviation between the results
for average delay in the corresponding range of x. Parameters for this example:
T = 1 h; N0 = 0, c = c1 = 600 veh/h (left side) and c = c1 = 300 veh/h (right side).

EFFECT OF N0

Up to now we have studied the unrealistic simplified case of N0 = 0, c1 = c, and x1 = q1/c1 = 0.
To adjust the solution to more realistic circumstances N0, the initial queue length, should be
allowed to have any positive integer value. Then the sum of deterministic delays assumes a
function over x or over R like it is illustrated in Figure 12. The direct application of the
principle of approximations A1 - A3 does not lead to useful results. Besides the fact that the
equations assume unreasonable complicated functions, there is also the problem that the
average delay does not only increase for large x (or small R) but also in the vicinity of x→ 0
(i.e. R→ c) due to eq. 10. If x = 0 the term N = q • T = x • c • T in the numerator of eq. 10
becomes 0 , such that with

c

N
D

⋅
=

2

2
0

0 (24)

where

D0 = sum of delays for the case of no traffic arriving during the interval (t , t+T)

there will be a minimum sum of delay in the denominator. Such a function is not accessible to
approximation A1 - A3.

One solution might be to perform the same type of approximation on the scale of D, i.e. with
the sum D of delays instead of the average individual delay d. Trying this, the result is quite
discouraging because the equations become unacceptably complicated including irrational
functions. Nevertheless, a useful solution was found via the treatment of the sum of delays
calculated from eq. 13 and 14 by multiplication with N = q • T = x•c•T, which is the number
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of vehicles arriving during the peak interval (t , t+T). In addition to this sum of delays, the
minimum amount of delays D0 which goes back to the initial queue, has to be added. It can
be obtained from Figure 7, that also the asymptote for the deterministic delay has to be
transformed from dD = T/2•(x-1) (in case D2; N0 = 0) to dD = T/2•(x- x̂ ) where

0
0
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Thus, the sum of delays can be described with a rather good approximation by the equation
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where

x̂xx −=Δ

Figure 12: Average delay according to eq. 26 for an initial queue of N0 = 20 depending on x
and according to eq. 27 depending on R. Parameters for this example: T = 1 h;
N0 = 20, c = c1 = 600 veh/h. The figures on the left show results for the full scale
of x and R whereas the right side is focusing on the more interesting area close
to x = 1 (R = 0).
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The similar result can be obtained by approximation A3 using the reserve capacity R.
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Then the average delay d is calculated from eq. 10 with D from eq. 26 or 27 and
N = q • T = x•c•T. Figure 12 shows the resulting average delay d for one example. This
picture and other examples show: There is a rather good correspondence between the
approximate formulas and the exact values represented by Markov-chain results. Only in the
range of x = 0.3 to 0.7 there are smaller differences which increase if N0 grows into
unrealistic large values (e.g. above 30 vehicles). In any case the preciseness is quite sufficient
for practice. For larger x the degree of approximation is quite good for any N0-value.

EFFECTS OF THE POST-PEAK PERIOD

There is still one case which has not yet been solved. This is the influence of the capacity and
demand, which is prevailing after the peak period and which has an influence on the delay for
the vehicles arriving during the peak interval (t , t + T) in cases D2 and D3.

At first, for case D2 the effect of the post-peak capacity c1 (which may be different from the
peak period capacity c) can be taken into account by adding the difference in deterministic
delay to the sum of all delays. As a consequence, the sum of delays (eq. 26 and 27) has to be
modified as
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where

Dc1 = sum of delays for c1 ≠ c [s]

D = sum of delays for c1 = c (eq. 26 or 27) [s]

q1 = post peak traffic demand [veh/s]

c1 = post peak capacity [veh/s]

NT = max. deterministic queue length
at the end of the peak period (cf. eq. 10) [-]

In the similar way the additional sum of delay which is due to definition D3 is given by
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where

x1 = degree of saturation after the peak period = q1/c1 [-]

R1 = reserve capacity after the peak period = c1-q1 [veh/s]

Finally, the whole set of equations, which can be equally recommended based on approxi-
mations A2 and A3, is given in Table 3 as an overview. The formulas in both columns of the
table are alternative to each other. Here, the average waiting time w is calculated from the
average delay d by adding the weighted average of the service times (s = 1/c = peak period
service time, weighted by c•T, and s1 = 1/c1 = post-peak service time, weighted by c1•a ).

Table 3: Formulas for application
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CASE D1

To describe case D1 by the similar degree of precision it turned out to be insufficient just to
correct the D2-results by some specific terms. Thus, just the similar derivations like for case
D2 had to be performed with special attention to the D1-conditions. As result the following
equations for the average delay can be given for case D1 – A2.
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The solution for the case D1 – A3 is not possible. For the generalized case it leads to an
undefined area in the vicinity of RR ˆ= .

EMPIRICAL EVIDENCE

The measurement of average delays at unsignalized intersections is not a trivial task. For
comparisons, due to the wide variance of delays, a large sample size is required. Thus, to get
useful measurement data, long periods with constant traffic volumes would be needed which
does hardly occur in reality. Moreover, it is not easy to find oversaturated priority inter-
sections since under high traffic demand junctions usually are signalized. The observation of
delays requires also a rather good overview since the end of the queue always has to be under
control. Such observations have been performed and described by Brilon, Weinert (2002). In
their sample there were 4 intersections (all T-junctions) at rural two-lane highways with a
temporary overload. Here the left turner from the minor road (LTMR) was observed regarding
delays. All the other movements were counted simultaneously. The comparisons here are
made on the basis of 5-minute intervals (T = 5 minutes). To estimate x in each time interval
the capacity c for the LTMR was estimated on the basis of the method in the German HCM
(HBS, 2001). The calculation of average delays is according to definition D2 – A2.

We see an agreement of empirical and calculated delays as it could be expected on the
background of the wide variance of waiting times during relatively short time slices.
Apparently, at point 28 (left upper part of Figure 13) the calculation fails, since for higher
degree of saturation the measured delays remain much below the calculated values. The
videos from the measurements, however, made clear that a remarkable amount of gap forcing
takes place at this junction during overloaded periods which, of course, reduces delays
significantly below the modeled results. On all the other points a sufficient correspondence
between measured and calculated delays is observed. A closer coincidence can not be
expected, because of the large variation of delays and due to the fact that the estimated
capacities must not necessarily represent the true maximum potential throughput during the
observations correctly.
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Figure 13: Comparison of measured waiting times with calculated values. The dark dots
represent the average waiting time measured according to definition D2. The
small circles represent the calculated waiting time for case D2-A2 for the same
traffic data as during the measurement interval (T = 300 s).

OTHER CONSIDERATIONS

Of course, methods for the derivation of queue lengths are closely related to the subject of this
paper. By Little’s well-known formula (λ = q•d) there is a relation between the average delay
d and the average queue length λ . This formula is, however, only valid for stationary queues,
i.e. for constant capacities c and demand flows q plus x < 1. As shown above (cf. Figure 5
and Figure 6) the queue length is not a steady state variable in case of time dependent demand
and/or capacity and especially not during oversaturation, since then it is continuously
growing. Thus, it gives only sense to describe the function λ (t). To estimate this function
several theoretical approaches have been published, e.g. Newell’s diffusion equations
(Newell, 1982) or Kimber’s method (Kimber et al, 1986) (for comparisons see Troutbeck,
Blogg, 1998) where Newell’ method allows also to estimate standard deviations of the queue
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lengths based on approximate assumptions. For numerical calculations it is, however, more
convenient to evaluate the exact results based on Markov-chain calculations. For one example
this function λ (t) is illustrated in Figure 14. In addition to the expected queue length (in veh;
without the vehicle in service) also percentiles of the queue length are given as a function of
time.

It can be seen that the linear shape of the queue length over time, like it is assumed in Figure 5
and Figure 6, is not realistic. Instead the function λ (t) has a curved shape (cf. Troutbeck,
Blogg, 1998). It is also questionable which parameter of these curves should be indicated by
formulas for application in practice. Should it be the maximum of the percentile curves or
some average of these curves? Estimations of queue length percentiles in practice are mainly
based on Wu (1994) (cf. HCM, 2000 or HBS, 2001). It is imaginable that also queue length
estimations might be accessible to another new consideration of systematic classification for
time-dependent conditions.

Moreover, it will be desirable to extend the considerations in this paper to a fourth case D4, in
which the pattern of traffic demand over time has also a time-dependency during the peak
period.
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Figure 14: Profile of the average queue length and the 50-, the 95-, plus the 99-percentile
queue length for T = 1 h, c = c1 = 600 veh/h, q = 600 veh/h, q1 = 0, N0 = 0.

CONCLUSION
Average delay at unsignalized intersections for temporarily oversaturated conditions is
usually calculated by approximate equations. On the one hand these approximations, in
principle, do very well match with more precise estimates for average delay. The set of
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possible solutions is, however, wider than usually assumed. The most commonly applied
formulas are just one special case out of a set of equally valid solutions. It must also be
noticed that the most popular solutions, like the Akcelik-Troutbeck equation, are only valid
for rather significantly simplified conditions which are not too representative for real world
conditions.

The systematic classification of definitions for the average delay (case D1 - D3) and of the
sophistication for the approximation (case A1 - A3) leads to some differentiation among the
complete set of possible solutions. As a consequence, each application of such a delay
formula needs some understanding of the background in definitions.

Each numerical calculation of performance measures at unsignalized intersections is based on
a representation of the "priority system" by an M/M/1-queue. This first step of approximation
does not produce a perfect fit but it is justified as a solution sufficient for practical application,
since any alternative would provide a lack of practicability.

For the time-dependent M/M/1-queue the average delay can be calculated exactly by a
numerical evaluation of the Markov-chain concept. Comparisons with the approximate
equations show that the conventional additive concept A1 for the approximation
sophistication is not the best. The best fit is achieved for concept A3; i.e. an additive concept
using reserve capacity R. This is closely followed by concept A2 (multiplicative concept
using x = degree of saturation).

These results are also confirmed by stochastic simulation. Here, we also get information about
the high values of standard deviations of delays with a coefficient of variation for the 1-hour
average delay in a range of 0.7 . Even if the precise measurement of average delays needs
quite an effort, it can be shown that empirical observations are in coincidence with the
theoretical results.

The extension of the simplified case D2 (no traffic before and after the peak period) is able to
take into account the traffic conditions before (by the initial queue N0) and after the peak
period. Here formulas can be found which are only slightly more complicated than the
traditional equations for the simple case. These approximate equations reveal a precision
which is comparable to the traditional Akcelik-Troutbeck equation. Thus, they offer an
extension of the traditional formulas into areas of more realistic conditions for practical
application. Equations which are recommended for practical application are arranged in table
3. The Akcelik-Troutbeck formula receives an improvement by the use of eq. 6. This version
is proposed instead of the addition of the service time (like in Akcelik, Troutbeck, 1991, eq.
5.4 - 5.6 and the HCM 2000, eq. 17-38).

As a result of the investigations a set of delay equations is available, which can be applied to
estimate average delays at unsignalized intersections for well-defined traffic conditions. The
paper makes clear that instead of an uncritical use of delay formulas a well sophisticated
selection of the adequate equation is required also in practice.
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PROPERTIES OF A MICROSCOPIC
HETEROGENEOUS MULTI-ANTICIPATIVE
TRAFFIC FLOW MODEL
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Saskia Ossen, Transport & Planning Department, Delft University of Technology
Marco Schreuder, Traffic Research Centre, Ministry of Transport, Public Works and Water
Management, the Netherlands

INTRODUCTION

Realistic models describing the car-following task are important for many applications. In the
last few decades, significant improvements have been achieved to better describe driver
behavior and the resulting traffic flow dynamics. Good examples of such improvements are
Zhang (1998), Lenz (1999), Tampère et al (2005), Kerner (2005), and Treiber et al (2006).
The microscopic validity of these improvements is difficult to assess due to the absence of
sufficient empirical microscopic data, which are furthermore accurate in terms of time and
space. However, with advancing data collection technology, such data have become more
widely available.

In a recent work, we have considered one specific mechanism the inclusion of which will
make modeling more realistic, namely multi-anticipative car-following behavior
(Hoogendoorn and Ossen, 2005), (Hoogendoorn et al, 2006). This behavior entails the fact
that drivers anticipate traffic conditions further downstream by considering vehicles further
downstream (besides the direct leader). The notion of multi-leader anticipation reaches back
to the late sixties, when the well known car-following model of (Gazis et al, 1961) was
extended by (Herman and Rothery,1965) and later by (Bexelius, 1968) to include multi-leader
stimuli in the equations describing the response behavior of a driver. More recently, Lenz et
al. (1999) extended the model of (Bando, 1995) to include multiple vehicle interactions.
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Treiber et al. (2005) take a similar view and extend the Intelligent Driver Model (IDM) with
(among other things) multi-vehicle interaction behavior.

In (Hoogendoorn et al, 2006), we have taken the models of (Chandler et al, 1961) and (Helly,
1959) as a starting point to investigate multi-anticipative car-following behavior from
empirical trajectory data. In doing so, statistical evidence of multi-anticipative car-following
behavior was provided, as well as insight into the kind of multi-anticipative stimuli to which
drivers react. Furthermore, analyses of microscopic data led to the quantification of the inter-
driver differences in the car-following parameters, which turned out to be very important to
correctly describe multi-anticipative car-following behavior. The results presented in
(Hoogendoorn et al, 2006) show that incorporating multi-anticipative behavior substantially
improves the extent in which the models can explain driver behavior microscopically, while
the best performing models include up to three leaders.

This contribution builds further upon these results, by showing that multi-anticipative
behavior cannot be described by one, general car-following modeling paradigm: different
classes of multi-anticipative car-following models are needed to correctly describe inter-
driver driver differences in car-following, or that drivers may drive in different driving
regimes (intra-driver differences). Based on variability in the parameter estimates for each
considered model class, we show that differences between drivers whose behavior can be
described by the same model class are also large. From this we can conclude that the extent in
which drivers react to the second and the third leader can vary substantially between drivers.
Also the differences in the reaction times are substantial.

Based on the estimation results, we propose a new heterogeneous (or mixed-model) modeling
approach that includes the features identified from analyzing the trajectory data. The
proposed model includes multi-anticipative behavior, as well as the inter-driver differences in
sensitivity to the different stimuli. The model also includes the different modeling types
required from a statistical point of view to correctly describe individual driving behavior, in
particular including different versions of the Generalized Helly model (Hoogendoorn et al,
2006) and the modified model of Lenz (1999). The main properties of the resulting
microscopic model will be analyzed. In particular, the equilibrium behavior will be
considered (speed - density and flow - density curves). Besides the static model properties, we
will furthermore briefly show the dynamic characteristics of the model. This will entail
performing a stability analysis where the amplitude of a disturbance propagating through a
platoon is analyzed. Finally, we will identify the different congestion patterns that occur for
different main road demands – on-ramp demand scenarios.

Besides furthering empirical proof of multi-anticipative behavior and driver heterogeneity,
and the car-following modeling it entails, the main contributions of the work presented here is
that insight is gained the macroscopic characteristics of the stochastic multi-anticipative car-
following model. It is shown that the estimated model is asymptotically stable. We also show
that part of the scatter in the fundamental diagram can be explained by the modeled inter-
driver differences.
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MULTI-ANTICIPATIVE CAR-FOLLOWING MODELING

In (Hoogendoorn et al, 2006), we considered multi-anticipative car-following models of the
generalized Helly type. Parameters were determined by fitting the models on empirical
trajectory data collected from a helicopter. In this contribution, we will further study this
model, as well as the so-called modified Lenz model. In this section, we briefly consider both.

Generalized Helly models

The different multi-anticipative models proposed in (Hoogendoorn et al, 2006) can be
described by a single, generic model. This model describes car-following behavior, based on
the difference between desired distance Sj(v) of a driver having speed v with respect to the j-
th vehicle ahead, and relative speeds w as follows:

( )
1 2m m

c.f . j j r j j r j
j 1 j 1

a (t) w (t T ) s (t T ) S (v)
= =

= α − + β − −∑ ∑ (1)

where ac.f.(t) denotes the retarded car-following acceleration, with delay Tr. In Eq. (1), wj

denotes the relative speed of a vehicle with respect to the j-th vehicle ahead, for j = 1, …, m1;
Sj denotes the desired distance between the considered vehicle and the j-th vehicle ahead. For
the desired distance, we generalize the model of Forbes (1958) to include multi-anticipative
behavior as follows:

j 0S (v) s j Tv= + ⋅ (2)

where T denotes the minimum time headway, and s0 denotes the gross stopping distances.

Based on the estimation results shown in (Hoogendoorn et al, 2006), we assume that the
parameters of the generalized Helly model are in fact driver-specific parameters describing
the heterogeneity in the driver population. Although intra-driver variations also have been
observed (Tampère et al, 2005), (Hoogendoorn et al, 2005), these will not be considered
explicitly in the remainder of this contribution.

Modified Lenz model

Lenz et al. (1999) consider a multi-leader generalization of the (Bando, 1995) model:
m

j
j

j 1

s (t)
a(t) V v(t)

j=

⎧ ⎫⎛ ⎞⎪ ⎪
= κ −⎨ ⎬⎜ ⎟

⎪ ⎪⎝ ⎠⎩ ⎭
∑ (3)

where V(s) is an equilibrium speed function describing the speed of the follower in relation to
the distances to the vehicles ahead; the parameters κj denote the sensitivity to the jth leader.
Please note the direct relation with the fundamental diagram describing the macroscopic
properties of traffic flow.

Hoogendoorn and Ossen (2005) showed poor average model performance compared to the
other car-following models. To improve performance, we propose here to include a true
reaction time Tr as follows (Modified Lenz model):
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m
j r

ML j r
j 1

s (t T )
a (t) V v(t T )

j=

⎧ − ⎫⎛ ⎞⎪ ⎪
= κ − −⎨ ⎬⎜ ⎟

⎪ ⎪⎝ ⎠⎩ ⎭
∑ (4)

The following specification for the equilibrium speed V is used (Lenz et al, 1999) :
1

9
0

1000 10
V(s) v 1 exp 5.34 10

s 2.1

−

−
⎧ ⎫⎧ ⎫⎛ ⎞⎪ ⎪

= + − − ⋅⎨⎨ ⎬ ⎬⎜ ⎟
γ ⋅⎝ ⎠⎩ ⎭⎪ ⎪⎩ ⎭

(5)

Where v0 (free speed) and γ are parameters to be estimated from the data

Heterogeneous multi-anticipative theory and model

Inter-driver differences in car-following behavior are determined by many factors, such as
experience and driving ability, trip purpose, vehicle characteristics, age, gender, attention
level, etc. Note that the attention levels can vary between the drivers, but that the attention
level of a single driver can also very during the trip (e.g. due to changing traffic conditions,
increasing fatigue, etc.; see (Hoogendoorn and Ossen, 2005)). The latter will however not be
considered further in this contribution.

As will be shown in the following section, car-following behavior of all drivers in a
population cannot be captured by either the generalized Helly model or by the modified Lenz
model alone. In the model proposed here, inter-driver differences are reflected by:
• Inter-driver differences in car-following models
• Inter-driver differences in parameters between drivers whose behavior can be described by

the same model

To gain indication of the inter-driver differences in parameters, Figure 1 shows an example of
estimating the parameters of the GH-1-1 model resulting from application of the estimation
approach described in Hoogendoorn et al (2006) on the data described in the ensuing. Clearly,
the inter-driver differences in the estimated parameter values are considerable.
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Figure 1 Example of parameter distributions for the GH-1-1 model, showing the individual-level
estimates of the considered drivers. Note that especially the parameter ββββ is skewed.
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We propose the following HEterogeneous Multi-Anticipative car-following model HEMA,
describing the behavior of driver i:

(i) (i) (i) (i) (i)
GH GH ML MLa (t) (1 ) a (t | ) a (t | )= − χ ⋅ θ + χ ⋅ θ

� �
(6)

where χ(i) follows a Bernouilli distribution with Pr(χ(i)=1) = θ and Pr(χ(i)=0) = 1-θ describing

the binary choice for the one model or the other, and where the parameters (i)
GHθ
�

and (i)
GHθ
�

of

the generalized Helly model and the modified Lenz model are randomly distributed. It is
emphasized that the parameters are fixed for one driver, but vary amongst the drivers.

In the ensuing we will deal consecutively with the identification of the parameters of the
HEMA model Eq. (6), and the resulting model properties. Note that the result will yield
models that fit empirical trajectory data. Unlike for instance the model of Zhang et al. (1998),
the model does not explain why the one submodel describes the behavior of the one driver,
and the other submodel the behavior of the other. Furthermore, given the limited dataset that
will be used for model identification, not all features of traffic flow dynamics can be
reproduced.

PARAMETER IDENTIFICATION

Hoogendoorn et al. (2006) propose a new approach to identify the parameters of car-
following models based on data from individually traced vehicles. The parameter
identification approach entails estimating the parameters best describing the car-following
behavior of individual drivers. The goodness-of-fit used for optimization is the likelihood of
the individual samples.

In this contribution, we have further generalized the procedure to improve the suitability of
the estimation results for simulation purposes. This is explained in the ensuing of this section.

Maximum Likelihood approach to parameter identification of car-following models

In (Hoogendoorn et al., 2006), the unknown parameters θ
�

of the considered car-following
model are estimated by minimization of the likelihood of the observed speeds vobs(tk) of a
driver at instants tk = kΔt, where Δt is the observation time step. The approach is based on the
assumption that the observed speeds and the predicted speeds are related as follows:

obs k 1 pred k 1 k kv (t ) v (t | t , ) (t )+ += θ + ε
�

(7)

The error term ε(t) is introduced to reflect errors in the modelling, similar to the error term
used in multivariate linear regression. We assume that the error term is normally distributed
with mean zero and (unknown) standard deviation σ. Based analyses of the residuals (after
estimation), this choice is justifiable.

Hoogendoorn et al. (2006) propose that the maximum likelihood estimates can be determined
by (constrained numerical) optimization:

* *{ , } arg max L( , )θ σ = θ σ
��

(8)
with the log-likelihood defined by:
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( ) ( )
n 2
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i k 1 pred k 1 k2

k 1

n 1
L( , ) ln 2 v (t ) v (t | t , )

2 2 + +
=

θ σ = − πσ − − θ
σ
∑

� �
(9)

where n denotes the number of observations of the vehicle speed and position, and where

pred k 1 kv (t | t , )+ θ
�

denotes the one-step ahead prediction of the speed by the car following

model, using the set of parameters θ
�

based on the observed vehicle positions and speeds at
time instants tk, tk-1, …, t0. Note that the standard deviation can be determined analytically
easily:

( )
n 2

2 obs
i k 1 pred k 1 k2

k 1

L( , ) 1
0 v (t ) v (t | t , )

n + +
=

∂ θ σ
= ⇒ σ = − θ

∂σ
∑

� �
(10)

Hoogendoorn et al. (2006) show how the approach can be adapted to correct for the serial
correlation in the data. It is also shown how the covariance matrix of the estimated parameters
can be estimated using the so-called Cramér-Rao lower bound. Different models (of different
model complexity) are cross-compared by application of the likelihood ratio test. By doing so,
we can assess whether the one model is best compared to the others in a statistically
significant way (see results in Table 1).

From local to global optimization

The log-likelihood (9) is determined based on one-step-ahead predictions. If the model is to
be used for simulation purposes, the car-following model should not only reproduce the short-
term dynamics, but rather yield the correct global, longer-term dynamics. This is why we
propose a global, rolling horizon approach, where the K-step-ahead prediction is used to
determine model performance. The proposed approach entails maximization of the modified
log-likelihood function:

( )
n / K K 2

obs kK p pred kK p kK
k 1 p 1

n 2 n
L( ) ln v (t ) v (t | t , )

2 nK 2

⎢ ⎥⎣ ⎦

+ +
= =

⎛ ⎞π
θ = − − θ −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑

� �� (11)

where pred k p kv (t | t , )+ θ
�

denotes the p-step ahead prediction, for p = 1, …, K.

The integer K defines the number of time steps between updates of the prediction. In this
case, an update means that the predicted speed is replaced by an observed speed. In
illustration, K = 1 implies that only one-step ahead predictions are made. On the other hand,
K = n implies that only the initial speed of the modeled driver is used, and the predictions are
not updated anymore.

Note that in line with (Hoogendoorn et al., 2006) we have used the differences between
observed and predicted speeds to assess the performance of the model, to enable cross-
comparison between the estimation results. Other criteria are however possible as well (e.g.
differences in measured and predicted distances, accelerations, or combinations thereof).

Data used for model identification

The vehicle trajectory data used here was collected using a new data collection approach
(Hoogendoorn and Van Zuylen, 2004) using an air-borne observation platform (a helicopter),
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mounted with a high-frequency digital camera and frame grabber. Using image processing
software, the vehicles are detected and tracked as they move along the roadway. This yields
trajectory data covering approximately 500 m of motorway stretch; the spatial resolution is
smaller than 40 cm, while the temporal resolution is 0.1 s. The raw data is smoother using a
Kalman filtering approach described in (Hoogendoorn and Van Zuylen, 2004), enabling
derivation of smooth speed profiles from the data.

The dataset considered here was collected at the A2 motorway near the Dutch city of Utrecht
and is characterized by stop-and-go flow conditions (see Figure 3). Figure 1 shows a sample
from the dataset. The total dataset consist of 315 vehicle trajectories. Not all of these could
however be used for estimation purposes, because many contain too little information to
enable model identification (e.g. speeds which are nearly constant during the entire
observation period, or observation period in which composition of the four vehicle platoon
needed to estimate the parameters of a three leader multi-anticipative model was deemed too
short). In the end, 144 trajectories were selected for further analysis.
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Figure 2 Sample of vehicle trajectories for data collected at A2 site. The small dots represent
time instants which are 2.5 second apart; data is collected at a temporal resolution of 0.1 s.
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Figure 3 Space-mean speeds during the observation period (per lane), where ‘lane one’ is the
median lane, ‘lane two’ is the right lane, and the ‘peak hour lane’ is a shoulder lane, used as
a regular lane during peak hours.

Estimation results: model performance

The trajectory data were used to estimate different models of the generalized Helly type Eq.
Error! Reference source not found. for different values of m1 and m2 (see Eq. (1)) and of
the Lenz type (4). The different models are cross-compared using the likelihood-ratio test
(Hoogendoorn et al., 2006). Note that this test favors models with fewer parameters, so that
there is a trade-off between the self-evident performance increase of the more complex
models and the number of parameters.

Table 1 provides an overview of the main estimation results for the cases for K = n (see Eq.
(11)). Column (a) shows the percentage of all drivers for which the model performed best
(based on the likelihood ratio test); column (b) shows the frequency with which the model
was second best. Column (c) shows the average log-likelihood. The remaining columns
pertain only to the situations in which the considered model performed best: column (d) and
(e) respectively denote the average improvement compared to the default reference model
(GH-1-0) and to the second best model; column (f) indicates the 2nd best model that occurred
most frequently.

For instance, for the 19% of the situations in which the GH-3-1 model performed best. This
means that the likelihood ratio test comparing the best and the second-best model was passed
(in other words, the model is ‘best’ from a statistically significant viewpoint). The average
improvement over the reference model was 214.3; the average improvement over the 2nd best
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model for these 19% was 29.1. The latter means that on average, the difference in
performances of the best and the second best model is considerable. Furthermore, when the
best model is the GH-3-1 model, the second best model is the GH-2-1 model most frequently.
This is to be expected given that these models are alike, except for the inclusion of the driver
reaction to the third leader.

Table 1 Estimation results for multi-anticipativemodels for K = n.

(a) (b) (c) (d) (e) (f)

Model
% best % 2nd best LL LL-LLref LL-LL2nd

Most freq.
2nd best

GH-1-0 (reference) 0% 0% -561.6 n/a n/a n/a
GH-2-0 (Bexelius) 1% 3% -506.2 218.8 -1.1 GH-1-1
GH-1-1 (Helly) 10% 7% -394.0 283.7 0.2 GH-2-1
GH-2-1 10% 24% -358.4 285.9 -0.3 GH-3-1
GH-3-1 19% 11% -348.4 214.3 29.1 GH-2-1
GH-1-2 13% 14% -366.4 259.9 0.1 GH-1-3
GH-1-3 0% 13% -368.0 n/a n/a n/a
GH-2-2 15% 13% -391.3 302.7 24.2 GH-2-1
Bando 3% 10% -495.9 260.2 53.8 Lenz
Lenz 29% 4% -391.3 232.1 25.7 Bando

100% 100% 198.4 27.3

Without going into detail, Table 1 yields the following, generic conclusions:
• Including multi-anticipative behavior strongly improves the descriptive performance of

the car-following models. This holds for both Helly and Lenz type models.
• The behavior of the individual drivers can only be captured by considering both the

generalized Helly model family and the modified Lenz model family.
• Driver behavior of a specific driver is often best described by either of the model families

(Helly or Lenz). E.g.: when the Lenz model best describes driver behavior, in many cases
the Bando model is the second best model.

• For the Helly type models, including the relative speed of both the second and third leader
(GH-3-1) on average yields the largest improvement.

Estimation results: parameter estimates

Let us now take a closer look at the parameter estimates. We will present the estimation
results in two ways. First, we will show the average parameter value for a specific model
averaged for all drivers (Table 1). Secondly, we will consider the average parameter value for
all drivers for which the considered performed best (Table 2).

Note that the estimates shown in the two tables are quite distinct. On the one hand, this is
caused by the fact that the averages in Table 2 are based on a smaller sample than those in
Table 1. On the other hand, the average parameter values in Table 1 represent the values for a
model that is ‘forced’ to describe behavior which another model describes better. In
illustration: the average estimates for the GH-3-1 model for all drivers (Table 1) show that the
sensitivity to the relative speeds of the vehicles ahead decreases when looking further
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downstream (sensitivities of 0.29s-1, 0.08s-1 and 0.06s-1 for speed difference with the first,
second and third leader). Considering only the drivers for which the GH-3-1 model
outperforms the other models (Table 2) yields a different result: in this case, the sensitivity to
the third leader is just as large as the sensitivity to the second leader (both 0.10s-1).

The tables also provide insight into the magnitude of the reaction times for the different car-
following models. Note that the reaction times are relatively small for the modified Lenz
models (around 0.8s), compared to the generalized Helly models (around 1.0s).

Table 2 Average parameter values for the different estimated models determined by considering
the individual estimations of all drivers in sample, irrespective of the predictive performance
of that model.

Model type Tr α1 α2 α3 β1 β2 β3 s0 T n
GH-1-0 1.01 0.79 8.69 2.16 134
GH-2-0 1.16 0.47 0.16 8.70 2.44 134
GH-1-1 0.94 0.58 0.09 8.78 2.43 134
GH-2-1 1.06 0.30 0.14 0.06 8.82 2.26 134
GH-3-1 1.15 0.29 0.08 0.05 0.06 8.80 2.35 134
GH-1-2 0.96 0.41 0.07 0.03 8.89 2.42 134
GH-1-3 0.97 0.41 0.06 0.03 0.01 8.87 2.40 134
GH-2-2 1.09 0.29 0.12 0.06 0.02 8.86 2.37 134

v0 κ1 κ2 γ 

Bando 0.76 26.23 0.66 0.00 7.95 134
Lenz 0.79 28.13 0.36 0.30 5.19 134

Table 3 Average parameter values for the different estimated models determined by considering
only the drivers for which the specific model outperforms the other models.

Model type Tr α1 α2 α3 β1 β2 β3 s0 T n
GH-1-0 - - - - - - - - - 0
GH-2-0 1.00 0.44 0.11 9.37 1.81 1
GH-1-1 0.83 0.35 0.09 8.56 2.61 13
GH-2-1 1.10 0.37 0.16 0.07 8.41 1.60 13
GH-3-1 1.09 0.25 0.10 0.10 0.07 8.87 2.03 26
GH-1-2 0.88 0.28 0.03 0.02 8.75 2.71 18
GH-1-3 - - - - - - - - - 0
GH-2-2 1.25 0.27 0.17 0.03 0.04 8.85 2.42 20

v0 κ1 κ2 γ 

Bando 1.55 31.61 0.17 17.31 4
Lenz 0.83 26.74 0.22 0.28 5.83 39

It is also noticed that the inter-driver co-variances of the model parameters are considerable.
In illustration, Table 4 shows the estimation results for the GH-3-1 model for the 26 drivers
for which the GH-3-1 model outperformed the other models. From the table, the large
variability in the model parameters between the different drivers becomes clear. The
correlation between the parameters is relatively small.
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Table 4 Estimation results for GH-3-1 model. Table shows the average parameter estimates, the
standard deviation and the inter-driver parameter correlations.

Tr α1 α2 α3 β1 

average 1.09 0.25 0.10 0.10 0.07

std. dev. 0.28 0.31 0.11 0.13 0.08

Tr α1 α2 α3 β1 

Tr 1.000 -0.300 -0.138 -0.027 -0.255

α1 1.000 -0.161 -0.027 -0.056

α2 1.000 -0.159 0.179

α3 1.000 -0.100

β1 1.000

In the remainder of this contribution, we will consider the characteristics of the traffic flow
dynamics that the models discussed here will result in. This means that for each driver i = 1,
…, n, first the model - say model j - is determined (the probability that a model is chosen is
determined directly from the relative number of times it was appointed being ‘best’), after
which the model parameters are determined from the estimated parameter distributions for
model j.

The analyses in the ensuing are performed is largely by means of simulation using the
parameters estimated from the trajectory data. When necessary, hypothetical parameter
settings will be considered to investigate the effect of specific model parameters.

FUNDAMENTAL DIAGRAM AND PHASE-SPACE PLOTS

We will start by considering the fundamental diagram of the heterogeneous multi-anticipative
model. This can be done both analytically (by assuming a(t) = 0, in particular for the case of
homogeneous platoons) and by means of simulation.

Equilibrium relations for the generalized Helly model

For the generalized Helly model, the fundamental diagram is determined directly by the
relation between speed and distance headway under the assumption of stationary conditions:

( )c.f . freea(t) min a ,a 0= = (12)

This implies that:

( )
1 2m m

0
j j r j j r j

j 1 j 1

w (t T ) s (t T ) S (v) 0 for v(t) v
= =

α − + β − − = <∑ ∑ (13)



594 Transportation and Traffic Theory 17

Let us consider the deterministic case, i.e. car-following parameters are the same for all
drivers i = 1, ..., n. If we consider the situation that all vehicles are driving at the same speed u
(implying wj = 0 by necessity), we have:

( )
2m

(i)
j j 0

j 1

s s j Tu 0 i
=

β − − ⋅ = ∀∑ (14)

Eq. (14) will hold for all drivers i, so we have:

( ) ( )
2 2m mn n

(i) (i)
j j 0 j j 0

i 1 j 1 j 1 i 1

s s j Tu s s j Tu 0
= = = =

β − − ⋅ = β − − ⋅ =∑∑ ∑ ∑ (15)

Note that on average, we have:

j

j
s

k
= (16)

where k denotes the density in veh/m. In combining Eq. (14) and Eq. (16), we find the
following expression for the equilibrium relation between the density and the speed:
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where the parameters B0 and B1 are defined by:
2 2m m

0 j 1 j
j 1 j 1

B and B j
= =

= β = β∑ ∑ (18)

From Eq. (17), we see that for low speed values, the density will predominantly be
determined by the stopping distances s0, while for larger speeds, the minimum headway T and
the speed risk factor will be the determining parameters.

We can easily invert Eq. (17) yielding the following relation between the mean speed u and
the density k:

0 c

1
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0 c 0 1 0 0
1

u k k
B

u(k) where kB1 1
s k k u TB s B

T k B
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⎪
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⎝ ⎠⎩

(19)

In turn, we find the following expression for the equilibrium volume q(k):
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The capacity and the jam density respectively equal:

0 1
jam

0 1 0 0 0

u B 1 1
C and k

u TB s B T s
= ≈ =

+
(21)

Let us now consider a platoon of n drivers, whose car-following parameters are instances of
random variables. The platoon leader is driving at speed u, as are the other vehicles in the
platoon (stationary conditions). The total platoon length – determining the average density
k(u) in the platoon – is now determined directly by the car-following parameters of the
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individual drivers i, in particular u0
(i), s0

(i), T(i) and βj
(i). As a result, the parameters of the

fundamental diagram q(k) (Eq. (20)) are in fact also random variables, the standard deviation
of which is determined by the number of cars n in the platoon, and the distributions of the
parameters.

Equilibrium relations for the modified Lenz model

In the deterministic case, the modified Lenz model acts the same as the original model of
Lenz et al (1999) under stationary conditions; the equilibrium speed is thus given by:

u(k) V(1/ k)= (22)
For the stochastic case, we will again see that the parameters describing u(k) (and
consequently of q(k)) are in fact random variables stemming from the car-following
parameters of the individual drivers.

Fundamental diagrams for mixed models without inter-driver parameter differences

In the remainder, the fundamental diagram is determined using simulation: the speed of the
platoon leader uleader is chosen equal to a specific value (e.g. 2, 4, …, 32 m/s) and the behavior
of the followers is simulated. After a while, the speed of all vehicles is equal to uleader (in case
of convergence, which appeared to occur in all cases described here); the distances between
the vehicles are then used to determine the platoon density.

Figure 4 shows the fundamental diagram for the mixed generalized Helly model based on the
average parameter estimates shown in Table 3. The probability that a specific vehicle is
driving according to a specific car-following model is determined from the probability that
the model outperforms the other models (see Table 1) (compared to the other Helly type
models, that is). From the figure, we see that especially the capacity predicted by the model is
substantially less than the capacity of one lane of a two-lane motorway (which is around 2200
veh/h in the Netherlands) due to the fact that the high estimated value for T (around 2.4s).
This may be caused by the fact that all observations used for the estimation were collected
during congestion, while drivers have adopted to a less efficient driving style (Tampère,
2004). Furthermore, the dataset consisted only of 134 drivers. The predicted jam density (of
approximately 140 veh/km) is reasonable.
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Figure 4a) speed – density and b) flow – density relation for the mixed generalized Helly model.
Each dot indicates the average speed, density, and flow of the simulated platoon. Note that in
all cases, the simulation converged to stationary conditions.

The same analysis has been performed for the modified Lenz model. Figure 5 shows the
resulting fundamental diagram. We can again observe that the predicted capacity of around
1500 veh/h is low, but is consistent with the mixed Generalized Helly model. Note the large
differences in the shapes of the resulting fundamental relations, in particular at high densities.
This can partly be explained by the data that has been used for estimation of the parameters,
featuring a speed range approximately 20 km/h and 80 km/h. The estimation procedure aims
to reproduce the driver behavior in particular in this speed range. As we can see by comparing
Figure 4 and Figure 5, the fundamental diagrams of both models are very alike in this speed
range. Apparently, when extrapolating the models to other traffic conditions, they become
quite dissimilar.

Figure 6 shows the fundamental diagram that results when both model types are combined,
yielding the heterogeneous model presented in this contribution. Note that due to the random
nature of the model, scatter is present especially in the congested branch of the fundamental
diagram. Note that only the type of model is drawn randomly. For the model parameters, the
average values in Table 2 are used. Note that the model will predict ‘horizontal scatter’ in the
speed-density plane: for a fixed speed of the leading vehicle, different densities are predicted
(due to the differences in car-following distances predicted by the two models); also see
Figure 7 and Figure 8.
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Figure 5 a) speed – density and b) flow – density relation for the modified Lenz model. Each dot
indicates the average speed, density, and flow of the simulated platoon. Note that in all cases,
the simulation converged to stationary conditions.
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Figure 6 a) speed – density and b) flow – density relation for the HEMA model (with
deterministic parameters per submodel). Each dot indicates the average speed, density, and
flow of the simulated platoon. In all cases, the simulation converged to stationary conditions.

Fundamental diagrams for mixed models with inter-driver parameter differences

We will now consider the case where the car-following parameters of the drivers are
stochastic rather than deterministic (i.e. different for each driver, but constant per driver). We
will in particular focus on the Helly type models, in particular on the impact of stochastic
values of the stopping distances s0 and the minimum headway T. The results are shown in
Figure 7 and Figure 8. Note that the impact of randomness in T is much more profound than
the impact of randomness in s0.

For the figures we can conclude that the observed heterogeneity of the model parameters as
identified from the microscopic estimation to a certain extent explains the scatter in the
empirically established phase-space plots. In this line of thought, the fact that the congested
branch is a region rather than a line (see e.g. (Kerner, 2005)) could partly be explained by
driver heterogeneity. Note that in contrast to the phases described by (Kerner, 2005),
transition between phases in completely random in our case (since the phase is only
determined by the coincidental composition of the platoon).
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Figure 7 Effect of random stopping distances s0. Note that the scatter becomes more profound at
low speeds and high densities. The yellow line shows the equilibrium relation in case of
deterministic parameters (from Figure 1).
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Figure 8 Effect of random minimum headways T. The yellow line shows the equilibrium relation
in case of deterministic parameters (from Figure 1).

STABILITY ANALYSIS

In this section, we will consider the issue of stability. Recall that two types of stability can be
distinguished. For the present study, we consider platoon (or string, or asymptotic) stability.
This type of stability describes the way a disturbance propagates through the subsequent
vehicles of a platoon. When the distribution damps out, we have platoon stability. Vice versa,
when the perturbation grows, the platoon is unstable. For platoons of finite size, platoon
instability does not necessarily imply that the disturbance will not damp out in the end.

A car-following model can also be locally unstable, depending on the dynamic response of a
follower to the behavior of the leaders. The response can be damped, damped oscillatory, and
undamped oscillatory (unstable). It is a well known fact that local stability is a necessary
condition for platoon stability. Since local instability only has theoretical relevance - in
practice all car-following will be locally stable - we will consider platoon stability only.
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Platoon stability will be analyzed by means of simulation: a disturbance is applied (e.g. the
speed of the lead vehicle is reduced temporarily) and the dynamic responses of the subsequent
vehicles are monitored. The so-called amplitude Ai of the resulting response signal is
determined for each vehicle i. Note that the platoon stability is guaranteed when Ai decreases
over the platoon. Let us first mathematically define these indicators. The approach was
thoroughly verified to ensure that influences of discretisation were kept sufficiently small.

Indicators for platoon instability

We consider a platoon of n vehicles. The speed dynamics of the leader are given. We assume
that the leader will start at a certain speed u0, and will instantaneously reduce his speed
temporarily to u1 between t0 and t1 with a fixed value (5 m/s). The car-following behavior of
the following vehicles is determined by the car-following laws described in the preceding
sections, considering up to three leaders. Note that the second vehicle and third vehicle in the
platoon are treated differently, since these only have one or two leaders. The behavior of these
vehicles will be the same for all considered experiments (irrespective of the considered
models). These drivers are not considered in the analysis.

The amplitude of driver i is determined by the changes in the speed. More specifically,
starting for equilibrium conditions (vi(t) = u0) – which are assumed to occur for t = t' onwards
– the amplitude Ai is defined by:

i i it tt t
A max v (t) min v (t)

′′ >>
= − (23)

For the platoon, the mean amplitude growth factor is given by:
N 3

i 1

i 1 i

A1

N 3 A

−
+

=

ρ =
−
∑ (24)

Note that we have skipped the first three vehicles in the platoon, since their behaviors are not
described by the multi-anticipative car-following models that we aim to analyze. Furthermore,
we compute the maximum amplitude growth factor over the platoon by:

( )max i N 2
i 1,...,N 3
max A / A −

= −
ρ = (25)

We will also check if collisions occur (note that emergency braking was not included to
ensure that the characteristics of the car-following models are studied, and not the
characteristics of the emergency braking law). In case of random car-following parameters,
the probability of a collision is computed. Note that although an unstable model will generally
yield collisions (if the platoon is sufficiently long), a collision does not imply that the model
is unstable (in a mathematical sense). On the contrary, in some cases a collision occurs
because the car-following model is insensitive to the behavior of the leaders.

Stability analysis results

The model estimations will form the basis of our stability analysis. In particular, we will
consider the stability of the individual models, and of the mixed model, with the parameters
estimated from the empirical trajectory data. Additional analyses have been performed with
hypothetical parameter values, with the aim to gain more insight into which of the factors
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influence platoon stability. In particular, the impact of the sensitivity parameters α, β, κ and
the reaction time Tr have been considered.

Table 5 below shows an overview of the results of the stability analysis for the different
models considered in this contribution, both in case of deterministic parameters. Note that for
the specific models, the parameters used for the stability analysis are the average model
parameters shown in Table 2, i.e. for all drivers in the sample. Also note that only the mixed
HEMA model is in fact stochastic, since the model which is used to simulate driver behavior
is drawn randomly.

Note that four of the calibrated car-following models have platoon instability (as can be seen
from the value of the mean amplitude growth factor), namely the GH-1-0, the GH-2-0, the
Bando model and the Lenz model. The mixed model has platoon stability.

Table 5 Overview stability analyses results for 50 vehicle platoon, with initial speed of 15 m/s.
The speed drop used in the simulation is equal to 5 m/s.

Model ρ maxρ Pcoll icoll

GH-1-0 1.019 5.468 0 0
GH-2-0 1.018 5.488 1 85
GH-1-1 0.982 0.967 0 n/a
GH-2-1 0.979 0.945 0 n/a
GH-3-1 0.977 0.904 0 n/a
GH-1-2 0.984 0.971 0 n/a
GH-1-3 0.984 0.973 0 n/a
GH-2-2 0.981 0.939 0 n/a
Bando 1.031 5.447 1 96
Lenz 1.017 4.854 0 n/a

HEMA model 0.985 1.142 0 n/a

Let us now further consider the impacts of the different aspects that were found during model
identification (in particular: multi-leader behavior, inter-driver differences, and model
heterogeneity).

Single-leader vs. multi-leader

In general, inclusion of multi-anticipative behavior increases the stability of the car-following
model (see (Bexelius, 1968), (Lenz et al, 1999), (Treiber et al, 2005)). Based on the analyses
presented in this contribution, we can conclude the same: both the mean amplitude growth
factor and the maximum amplitude growth factor decrease when multiple leaders are
included. For instance, Table 5 shows that the GH-3-1 model features increased stability
compared to the GH-2-1 and the GH-1-1 models (traditional Helly model). Additional
simulations with different parameter settings support this finding.
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Impact of stochastic parameters

We have also considered the effect of randomizing the car-following parameters on model
stability. Overall, the impact of random parameters on platoon stability is present. When noise
is applied to the sensitivities (i.e. αj, βj and κj), a decrease of the platoon stability is observed.
In illustration: we have considered the case where the parameter α1 of the GH-1-1 model was
drawn from a uniform [0.2, 0.6] distribution and compared it to the case where α1 = 0.4s-1

(with β1 = 0.1). It turned out that randomizing α1 increased the mean amplitude growth factor
from 1.015 to 1.022. To illustrate the impact of this increase, note that by the time the
disturbance reached the end of the platoon, its amplitude increased by a factor of 1.022100 =
8.81, while in the deterministic case, it increased by 1.015100=4.42.

Apart from the increase in the average amplitude, note that the stability itself becomes a
random variable. In other words, when multiple simulations are performed, some may yield
platoon stability while others will not. This is caused by the coincidental order of the vehicles
and their respective parameters. In the same line of thought, it was also found that random
sensitivities increase the risk of a collision, due to possibility of an unsafe combination of
subsequent drivers who are sensitive and insensitive to disturbances.

The findings are in line with the results reported in Ossen and Hoogendoorn (2006).
Focussing on the GH-1-0 model (and comparing the results with analytical stability analysis
resutls), clear differences between homogeneous platoons (deterministic values of α1) and
heterogeneous platoons (stochastic values of α1) were found.

Sensitivity of stability to parameter values

To gain more insight into the stability characteristics of the mixed model, we have performed
a sensitivity analysis by changing the magnitude of the different parameter types. Focusing on
the heterogeneous generalized Helly model, we have applied different factors to the
parameters αi, βi and Tr.

Figure 9 shows some of the results of this stability (for the heterogeneous Helly model). Note
that since the model is in fact stochastic, multiple runs are required to get the average result
for each case. The three pictures show the stable and unstable regions for fixed factors for Tr

(in this case, Tr is multiplied by 0.5, 1.0 and 1.375 respectively). The thick black line indicates
the approximate boundary between the stable and unstable regions.

From the figure, we can conclude that the heterogeneous generalized Helly model is unstable
for small values of {αi}. This is to be expected, since for αi = 0 and βi > 0, it can be
mathematically proven that the model is (locally) unstable for all reaction times large than
zero. In fact, the sensitivities to the relative speed have (at first) a damping effect. However,
when the parameters {αi} become too large, the model again becomes unstable. This becomes
in particular apparent for larger reaction times (see Figure 9c).

For the parameters {βi}, we see that in combination with small values of {αi}, the impact on
platoon stability is moderate (the stability boundary on the ‘left’ of Figure 9a-c). For larger
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values of {αi}, the impact of changing {βi} is more profound. Figure 9c shows clearly that
when the values of {βi} are increased, larger values of {αi} will still ensure stability.
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Figure 9 Stability analysis for different values of the sensitivities and reaction times for the
heterogeneous generalized Helly model.

For the Lenz model, similar results holds: too large sensitivity values and / or reaction times
cause platoon instability. This is not elaborated further here.

Impact of model heterogeneity

Figure 10 shows the stability analysis results for HEMA model (that is, including the Lenz
model). For the sake of simplicity, the parameters of the Lenz model were kept constant. The
figures clearly show how the stability of the model changes when incorporating the Lenz

a.

b.

c.
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model. In illustration, Figure 10b (default value of the reaction time) shows a clear change of
the stable region compared to Figure 9b. This is caused by the fact that the Lenz model is in
fact unstable (recall results depicted in Table 5). Note especially that for larger reaction times
(factor of 1.25), the stable region becomes very small indeed.
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Figure 10 Stability analysis for different values of the sensitivities and reaction times for the
heterogeneous mixed model (Helly and Lenz).

CONCLUSIONS

This contribution considered heterogeneous multi-anticipative car-following modeling
established by estimating car-following models using empirical trajectory data. Based on the

a.

b.

c.
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estimation results, we conclude that including multi-anticipative behavior strongly improves
the descriptive performance of car-following models at the microscopic level. Furthermore,
we have shown that the behavior of the individual drivers can only be captured by considering
different car-following modeling paradigms, in this case the generalized Helly model family
and the modified Lenz model family. Finally, it was concluded that the inter-driver
differences were not only expressed by the suitability of different model types, but also by the
large variability in the driver-specific car-following parameters. Based on this result, we
proposed a HEterogeneous Multi-Anticipative (HEMA) model that includes the generalized
Helly model and the modified Lenz model.

Given these microscopic results, we have established the traffic flow operations that result
from application of the car-following models identified from the microscopic data. More
specifically, we have shown to which extent specific aspects such as multi-anticipative
behavior and driver heterogeneity (which turned out very important on the microscopic level)
affect traffic operations on the macroscopic level. More specifically, we have established the
impact of random parameters as well as multi-leader anticipation on the fundamental diagram,
and asymptotic model stability.

With respect to the fundamental diagram, we know from empirical studies that especially in
the congested branch of the fundamental diagram, flow-density points are very scattered. We
have shown that this scatter can in part be explained by differences in driver behavior, in
particular differences in the minimum time-headways maintained by drivers and the minimum
stopping distances. Note that we have not considered the causes for these differences or
whether these are intra- or inter-driver differences, but merely looked at the results from
statistical fitting the car-following models on the microscopic data.

The stability analysis clearly shows the impact of including spatial anticipation on platoon
stability: whereas the single-leader models estimated from the data are unstable, the multi-
anticipative generalization of these models all feature enhanced platoon stability. Inclusion of
randomness on the model parameters (in particular the sensitivities) has a considerable effect
on platoon stability. The modified Lenz model alone appeared unstable. However, the HEMA
model – mixing the generalized Helly model and the modified Lenz model – turned out to be
stable again.

Overall, the macroscopic properties of the microscopically identified HEMA model are
plausible1. The estimated capacity values are however small. Although this can be caused by
the traffic regime under which the microscopic data was collected and the relatively few
drivers considered in the analysis, the unrealistic capacity estimates point out that some care
needs to be taken when scaling up the microscopic model to a macroscopic model.

1 Note that additional experiments have been performed focusing on discontinuities. From these experiments, it
turns out that the HEMA model features different congestion patterns, depending on the ratio between main-road
and on-ramp flow, such as temporary disturbances, local non-moving cluster, moving localized cluster (start-stop
waves in free-flowing traffic), oscillating congested traffic (start-stop waves in congested traffic) and
homogeneous congested traffic.
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ANTICIPATIVE VEHICLE CONTROL
ALGORITHM MITIGATING TEMPORAL
INFORMATION DELAY

Yu Liu and François Dion, Department of Civil and Environmental Engineering, Michigan
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SUMMARY

This paper evaluates the impacts of information delay on automated vehicle control and
explores the possibility of mitigating such impacts by considering information from multiple
downstream vehicles in the vehicle control decision process. This evaluation is done through
the use of a microscopic traffic simulation model that has been specifically developed to
enable the simulation of information delays that may occur with Intelligent Transportation
Systems (ITS) applications using onboard vehicle sensors or wireless communications. The
impacts of communication delays are assessed through vehicle responses to simulated traffic
events in three car-following scenarios: single-file platoon accelerating from standstill,
vehicles responding to a slowdown by the platoon’s lead vehicle, and vehicle responding to
the sudden immobilization of the platoon’s lead vehicle. These scenarios are first applied to
situations in which only information about the vehicle immediately ahead is available, and
then, to situations in which information is obtained from a specific number of lead vehicles.
The simulation results reported in the paper clearly demonstrate that information delay has a
negative impact on vehicle control, particularly when information from only one lead vehicle
is considered. The results further show that improved vehicle control and reduced sensitivity
to delays can be achieved by developing control systems considering information from at
least two lead vehicles.
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NOTATION

ades
n(t) Desired acceleration of vehicle n at time t

amin
n Maximum deceleration (braking capability) of vehicle n

amax
n Maximum acceleration (full throttle) of vehicle n

an-i (t) Acceleration of the ith vehicle ahead of vehicle n at time t

fa Coefficient to incorporate vehicle acceleration in constant time headway model

fn,i(t) Adjustment factor for the desired time headway of vehicle n, based on its ith

preceding vehicle at time t

hdes
n Desired time headway for vehicle n, constant time headway model

hdes,adj
n Adjusted desired time headway for vehicle n, constant time headway model

ln-i Vehicle length of the ith leader in front of vehicle n

T Simulation time step

vn (t) Speed of vehicle n at time t

vn-i (t) Speed of ith vehicle ahead of vehicle n at time t

vn
des Desired speed of vehicle n

xn (t) Position of front bumper of vehicle n at time t

xn-i (t) Position of the ith vehicle ahead of vehicle n at time t, relative to front bumpers

Δx (n-i)(t) Distance between vehicle n and ith vehicle ahead at time t

Δxdes
(n-i)(t) Desired distance between vehicle n and ith vehicle ahead at time t

Δxmin
(n-1) Minimum safe distance between vehicle n and its preceding vehicle

ε(n-i)(t) Error between the positions of vehicle n and the ith vehicle ahead at time t

λ Sliding coefficient in sliding mode control model

τ Vehicle delay coefficient in first-order actuator delay model
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INTRODUCTION

In an effort to provide enhanced driving experience and improve safety, the automobile
industry is increasingly promoting the use of Intelligent Transportation Systems (ITS)
applications designed to assist motorists with their driving tasks. Among the most prominent
emerging applications in this area are adaptive cruise control systems. These systems are
enhancements to existing fixed-speed cruise control systems in that they allow a vehicle to
automatically adjust its speed to that of the vehicle ahead. In most cases, speed adjustments
are based on a need to maintain a preset minimum distance with the vehicle ahead.

While range sensors are typically used to measure distance to vehicles ahead, vehicle control
applications based solely on this technology may negatively impact traffic capacity and
performance. This is due to the fact that drivers commonly maintain time gaps with vehicles
ahead that are shorter than what is required for safe driving. For instance, drivers have often
been observed to maintain headways around 1.3 s (Reichart et al., 1997), with values as low
as 1 s (Ayres et al., 2001). A safe following rule imposing a minimum headway ranging
between 1.4 s and 2 s (Shladover et al., 2001), as is commonly adopted by vehicle control
systems, could then significantly reduce roadway capacities and lead to increased congestion
when compared to current traffic behaviour. Another problem associated with large
headways is to invite vehicle cut-ins, particularly on busy roadways with aggressive driving.
In addition to increasing risks of collisions, frequent cut-ins may negatively be perceived and
lead to reduced acceptance of the technology by the public.

Another limitation is the inability of range sensors to see past the vehicle immediately ahead.
Many drivers do not typically concentrate their attention on only one vehicle but rather
consider what the two, three or four vehicles ahead are doing, depending on how far they can
see. As an example, drivers often ignore small speed fluctuations by the vehicle immediately
ahead when it is apparent that those fluctuations are not reflective of general traffic behaviour.
However, a vehicle control system may interpret these fluctuations differently if it has no
information about the general traffic behaviour. In such a context, designing control logics
relying on the monitoring of a single vehicle may create overly reactive systems that may in
turn lead to less stable traffic flow patterns.

One potential solution is to develop cooperative control systems in which wireless
communication technologies are used to obtain information from surrounding vehicles. In the
simplest systems, data exchanges would only occur between vehicles present within a direct
communication range. In more complex systems, data could be propagated along or across
traffic streams by using vehicles as intermediary transmission nodes. In both cases, the ability
of communicating with surrounding vehicles would allow vision beyond the vehicle
immediately ahead and enable more complex anticipative decision-making processes. This
extended vision range could in turn translate into an opportunity to reduce required headways
between vehicles and an ability to increase roadway throughput and capacity.
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Although wireless technologies allow traffic data communication among nearby vehicles,
vehicle control algorithms that could utilize the transmitted data to improve traffic flow are
still under development. Most identified studies in the field of multiple vehicle coupling have
been focused on the development of car-following model attempting to capture the
aforementioned multi-anticipative driver behaviour. For example, Herman et al. (1959)
discussed the stability of car-following models with all vehicles in platoon identical and each
reacting to the two nearest vehicles ahead according to relative velocity law. Similarly,
Bexelius (1968) studied the expansion of the Gazis-Herman-Rothery model (Gazis et al.,
1961) to preview two preceding vehicles. Both studies established stability criteria expressed
in terms of sensitivity parameters and reaction delay, which would allow perturbations
propagated along vehicle platoon to diminish. More recent studies on multi-anticipative car-
following model include an expansion of the Optimal Velocity model (Bando et al., 1995) by
Lenz et al. (1999) and an expansion of the IDM model (Treiber et al., 2000) by Treiber et al.
(2004), both to consider multiple preceding vehicles. Compared to single leader models,
these recent multi-anticipative models have better stability characteristics and could replicate
more closely the synchronized traffic flows (Kerner and Rehborn, 1997) that are observed in
reality.

Although wireless technologies allow direct communication links between vehicles, these
links typically never provide instantaneous data exchanges. While communication delays are
generally not a concern when collecting informational data, such as travel maps or business
directories, such delays can critically impact vehicle safety when the collected information is
used to control the speed and position of the vehicle. Previous studies on communication
delays have already revealed that information delay between a pair of vehicles could range
from a few milliseconds to a few seconds (Biswas et al., 2006). While a delay of a few
milliseconds may not significantly affect vehicle control, delays close to one second may
introduce significant errors between the reported and actual position of a vehicle. Increased
collision risks could for instance arise from a simple delay in the application of brakes based
on an erroneous assessment of the true location of the vehicle ahead. This may be particularly
significant at high-speeds, when delayed breaking may lead to the need to impose harsh
deceleration rates beyond the capability of the host vehicle.

While previous research has lead to the development of car-following models considering
multiple preceding vehicles, these models primarily focused on characterizing human driver
behaviour. None of these models are suitable for application in automated control situations
in which information about surrounding vehicles may be characterized by some reception
delay. A first objective of this paper is thus to evaluate how information delay may affect the
operation of automated vehicle control systems. This is accomplished by using simulation to
compare how vehicles equipped with an automated controller considering a single lead
vehicle respond to specific traffic events in the absence and presence of information delay. A
second objective is to evaluate whether information delay impacts can be mitigated by
increasing the number of lead vehicles considered by the vehicle controller.
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All the investigations are conducted using a specialized microscopic traffic simulation model
that was designed to enable the simulation of wireless-based ITS applications. At the center
of this model is the ability to simulate various communication setups. Vehicles may be
allowed to communicate only with the vehicle immediately ahead, thus effectively simulating
the use of onboard range sensors, or with any vehicle present within a specified
communication range or number of communication hops. Another unique feature is its ability
to simulate collisions that may result from the application of improper acceleration and speed
control decisions. Vehicle control can finally be simulated using traditional driver behaviour
models (for instance, Gipps (1981)) or custom-built automated control algorithms.

The remaining sections of this paper successively describe the automated vehicle controller
used in this study, the simulation model used to conduct the evaluations, the simulation
scenarios and evaluation parameters that were selected to perform the analysis, the results of
the simulations, and the main conclusions of the study.

AUTOMATED VEHICLE CONTROLLER

The vehicle control algorithm used in this study is based on the principles of sliding mode
control. Sliding mode control is a type of variable control structure with feedback in which
high-speed switching control commands are used to adjust the dynamics of a nonlinear
system to approach a desired status and then stay close to this status. The advantage of
sliding mode control over traditional closed-loop control is the independence of system
performance from system modelling accuracy. This allows mitigating the effects of potential
mismatches between a mathematical model used to describe a particular system and the
system’s reality. In this case, the development of a vehicle control logic based on sliding
mode control avoids more specifically the difficulty introduced by the potential need to
consider variable wireless communication delays. As such, this approach is recognized as a
promising one to realize stable vehicle control in the presence of information delay.

Single-Lead Model

To illustrate how sliding mode control principles were used to develop the study’s vehicle
control logic, first consider a situation in which a vehicle is following another one on a given
roadway. For this situation, the spacing between the rear bumper of the lead vehicle and the
front bumper of the following vehicle at time t is defined by:

intntintin lxxx −−− −−=Δ )()())(( , (1)

where n is the index of the vehicle for which vehicle control is being determined, and i
denotes the ith vehicle ahead of vehicle n. When i is equal to 1, Equation 1 simply calculates
the distance between a pair of succeeding vehicles.
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When constant time headway is adopted as a following rule, each vehicle tries to maintain a
separation distance with the preceding vehicle that generally increases with speed. In its
simplest form, the desired separation distance under such a rule is calculated as:

)())(1( tn
des
n

des
tn vhx =Δ − . (2)

If information about the current acceleration level of the following vehicle is known, Equation
2 can be expanded into Equation 3 to account for the tendency of this vehicle to either
increase or decrease its following distance from one time interval to the next.

)()())(1( tnatn
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n

des
tn afvhx +=Δ − . (3)

In Equation 3, the second term on the right increases the desired following distance when the
following vehicle is accelerating and decreases it when the vehicle is braking. The factor fa is
used to convert the observed acceleration at time t into a following distance adjustment. This
factor can take various forms, depending on the importance put on the effect of vehicle
acceleration and on the model being considered.

At any given time, the error in the following distance between two vehicles can be defined as
the difference between the actual and desired distances between the two vehicles. Using the
definition of desired following distance provided by Equation 3, the error in following
distance at time t can then be mathematically expressed as:

)())(1())(1())(1())(1( tnan
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The ultimate goal of well-designed vehicle control logic is to reduce the value of ε and
maintain it as close as possible to zero. In the context of sliding mode control, the
minimization of vehicle spacing error is realized by choosing a sliding surface along which ε
would tend to zero or some negligible value. The sliding surface is defined here as:

))(1())(1( tntn −− −= ελε� , (5)

where λ is the sliding coefficient and its value is always positive to allow the gradient of ε to
always points to zero.

While the above equations represent the fundamental principles of sliding mode vehicle
control, vehicle actuator lag should also be considered. A commonly adopted form is the first-
order delay model shown in Equation 6, where τ is the vehicle delay coefficient.

des
tntntn aaa )()()( =+�τ . (6)

Differentiating Equation 4 with respect to time yields:
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Rearranging Equation 6 and substituting into Equation 7 further yields:
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Substituting Equation 5 into Equation 8 then yields:
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Finally, rearranging Equation 9 for ades
n produces the following relationship:
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This is the vehicle control logic used by Zhou and Peng (2004) in a previous study on
adaptive cruise control logic. It represents a basic vehicle control logic considering
information from a single lead vehicle. The relationship of desired acceleration and actual
acceleration achieved on vehicles is specified by Equation 6. The actual acceleration can be
expressed by solving Equation 6, which leads to the following relationship:
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Using the definition of Equation 10, the final vehicle control algorithm used to update vehicle
acceleration is given by Equation 12.
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In a last step, calculated vehicle accelerations are checked with vehicle acceleration and
braking limits. If a calculated acceleration or deceleration exceeds the physical limit of a
vehicle, the actual vehicle acceleration is replaced with either its maximum acceleration amax

n

or maximum deceleration amin
n, depending on whether the vehicle is accelerating or braking.

In addition to maximum acceleration and deceleration rates, the rate of change in acceleration
is also restricted by a deceleration jerk limit. This parameter represents the harshest braking
action possible by a vehicle attempting to avoid a collision.

Multiple-Lead Model

When data from multiple downstream vehicles become available, there is hypothetically
better chance to improve vehicle control performance if the additional information is
appropriately used. However, few studies have been found on multiple vehicle following. In
this study, the approach selected to incorporate traffic information from multiple downstream
vehicles is to use an adjustment factor applied to the desired headway, hdes. The headway
adjustment factor fn,i(t) used for this purpose is defined as:
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where vehicle i is again the ith lead vehicle ahead of vehicle n. The sign of factor f is positive
when a specific preceding vehicle is accelerating and negative when braking. The absolute
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value of factor f indicates the magnitude of the acceleration or braking of the corresponding
preceding vehicle. Its value reverts zero when the preceding vehicle in question is stopped or
moving at constant speed. For a given subject vehicle, there may exist one or more adjustment
factors, depending on the number of lead vehicles whose traffic data are accessible. In such a
case, the factor to apply is obtained by taking the average of all the individual factors. The
resulting factor is then used to adjust the desired headway of the subject vehicle according to
Equation 14.

( )( ))(,
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The average of headway adjustment factors allows a host vehicle to recognize the general
acceleration or deceleration pattern exhibited by preceding vehicles within data accessible
range. Other type of evaluation functions selecting either the maximum or minimum of
headway adjustment factors can also be used. However, these functions would typically
result in excessively aggressive or conservative vehicle control.

When compared to its nominal value, the desired time headway is generally shortened when
the lead vehicles are exhibiting accelerating patterns, to counteract the fact that the
accelerations tend to increase following distances, and elongated when the lead vehicles are
braking, to counteract the tendency to push vehicles closer. Within this context, it is
anticipated that using lead vehicle information may allow a control logic to be more proactive
than if it were to consider only one lead vehicle.

Introducing the adjusted desired headway in Equation 12, Equation 15 is finally obtained to
delineate vehicle acceleration with the use of information from multiple lead vehicles.
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At equilibrium, the values of all acceleration terms are zero, all vehicles share the same speed,
and all headway adjustment factors are one. In such a context, it can easily be seen that
Equation 15 then reduces to the basic expression of constant time headway logic.

TRAFFIC SIMULATION MODEL

Well established models for the evaluation of emerging transportation applications include
AIMSUN, VISSIM and PARAMICS. These models all feature an application programming
interface (API) allowing the addition of functionalities enabling data retrieval from the
simulation and interactions with various driver behavior processes. Despite these features, the
modeling of vehicle-to-vehicle wireless communications remains a difficult task within each
model, as exemplified by the following elements:

• Since access to simulation code is generally restricted, wireless communication
functionalities must typically be developed outside the traffic simulation environment.
This may create problems if the API functions available to do not allow all the desired
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data to be retrieved from the simulation or restrict which parameters can be passed to
the simulated vehicles. Another difficulty is the need to develop external databases
tracking the information received and stored by each simulated vehicle.

• Vehicle status is typically updated using a sequential process. The process starts with
the most downstream vehicle in the network and ends with the most upstream one.
For each vehicle, control decisions are based on the status of the vehicle in the
previous time step and the status of the vehicles ahead in the current time step. In this
case, the use of information from the current time step is equivalent to assuming that
instantaneous data exchanges occur between vehicles, which may not be correct.

• The shortest time step is typically 0.1 s, or 100 ms (Gettman and Head, 2003). Since
delays of less than 100 ms can be observed, a minimum interval of 100 ms may
already be too long for adequately evaluating the impacts of information delays
associated with ITS applications. In addition, existing simulation models also often do
not typically allow data retrievals at intervals of less than 1 s, which further question
the adequately of the models in simulating communication delays.

• All established models are finally intrinsically collision-free. Accidents can typically
only be staged by putting invisible static vehicles on the roadway at specific times.
While this is appropriate for evaluating the impacts of incidents on traffic operations,
it does not allow use of the models for the development of automated vehicle control
algorithms, where the ability to simulate accidents may be valuable in identifying
inadequate vehicle control decisions.

The need to use a simulation model in which all simulation processes would be accessible and
addressing the above problems resulted in the development of the Communication and Traffic
Simulation (CATSIM) microscopic traffic simulation model. This a Java-based model that is
built upon the open-source Intelligent Driver Model (IDM) microscopic traffic simulation
model developed by Treiber et al. (2000) and Treiber and Helbing (2002). Using the available
code as a starting point, various modifications were made to the original IDM model to
develop the functionalities described below. Only the most important model features relevant
to this study are described below.

Communication delay within the CATSIM model is modelled by a process allowing data
retrieval from preceding simulation time slices. Figure 1 illustrates the three-dimensional
data array used for this process. This array stores vehicle parameters along its depth,
information about different vehicles along its width, and data from successive time steps
along its height. The figure illustrates more specifically how communication delay would
affect control decisions for the nth vehicle in the current time step. As indicated, the vehicle’s
desired speed and acceleration would first be based on its status So in the previous time step.
If it is hypothetically assumed that information about the two vehicles immediately ahead can
be received after a delay equal to one simulation time step, the statuses S1 and S2 from the
previous time step will then be considered for vehicles n-1 and n-2. However, if additional
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delay is assumed to exist, as is the case for vehicles n-3 and n-4, the corresponding data will
instead be retrieved from time steps that are further back in time. In all cases, the time step
from which data will be retrieved will correspond to the level of communication and/or
processing delay assumed to exist.

Figure 1. CATSIM model data structure

To remove constraints imposed by minimum time step durations, the CATSIM model is
further allowed to simulate traffic with time steps as short as 0.01 s, or 10 ms, and definable
in increments of 0.01 s. A routine has also been embedded into the model to determine
whether following vehicles collide with each other. The routine assumes that collisions occur
when the predicted spacing between a vehicle and its predecessor would fall in the next time
step below a threshold corresponding to the physical length of the lead vehicle. If a collision
is deemed to occur, the two vehicles involved are immediately assumed to stall and become a
static obstacle for the approaching traffic for an indefinite or user-defined period.

The CATSIM model was validated by examining the speed-flow diagrams produced by the
model when using various car-following models. Attention was more particularly put on the
diagrams produced when using traditional models reflecting human driver behaviour. An
example of a speed-flow diagram resulting from the use of the Gipps model (Gipps, 1981) is
shown in Figure 2. This diagram was produced for a scenario considering traffic travelling
along a one-mile circular highway. Multiple runs were executed with different flow levels to
achieve various traffic densities. In each case, traffic was simulated until traffic equilibrium
was achieved, i.e., until all vehicles had speed falling within a narrow range. Reported results
do not include data from the first 80 s of each run to ensure that traffic instability in the initial
portion of each simulation did not affect the validation. As can be observed, the resulting
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speed-flow diagram replicates the well-known shape of the relationship, consisting here of a
parabolic bottom and an almost flat top portion.
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Figure 2. Simulated speed-flow diagram based on Gipps’ model

EVALUATION SCENARIOS

Three car-following scenarios were developed to investigate the impacts of information delay
on vehicle and traffic flow behavior. All scenarios consider a platoon of 40 vehicles
travelling in a single file. Each scenario simulates various traffic events to test specific types
of vehicle responses. These three scenarios are illustrated by the speed profiles of Figure 3,
which each illustrates the speed trace of the lead and first 15 following vehicles in the
platoon. These scenarios are explained in greater details in the following paragraphs, with
Table 1 providing numerical values associated with the main scenario parameters.

The first scenario considers vehicles travelling in a single file on a one-lane circular road. Its
purpose is to evaluate how quickly equilibrium can be achieved by a given control logic under
various communication delay and information sharing assumptions. All vehicles are assumed
to be initially immobilized. At a given time, the first vehicle in the platoon starts to accelerate
and continue to do so with a parabolically diminishing rate until it reaches its desired speed.
In turn, all the vehicles behind the lead vehicle start to accelerate, considering both their
desire to attain a certain speed and the constraints imposed by the vehicles ahead.

The use of a circular road implies that at some point the lead vehicle in the platoon will start
to interact with the last vehicle in the platoon. In most cases, this results in a need for the lead
vehicle to decelerate as it generally travels across the circular path before the last platoon
vehicle has fully accelerated. This creates a complex situation in which shockwaves created
by accelerations and decelerations along the road keep propagating around the circle, thus
creating the oscillation speed pattern observed in Figure 3(a). To achieve equilibrium in such
a situation, a control algorithm must have the ability to dampen shockwaves. Equilibrium is
assumed to be reached when the speeds of all vehicles in the platoon are maintained within
±0.5 m/s of the space mean speed of all vehicles in the platoon.
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Table 1. Vehicle control and simulation parameters.

Variable Standstill to
Equilibrium

Emergency
Braking

“Brick Wall”
Collision

Initial vehicle speed 0 m/s 30 m/s 30 m/s
Initial headway -- 1.0 s 1.0 s
Road length 1000 m -- --
Platoon size 40 veh
Desired speed 30 m/s
Desired headway 1.0 s
Spacing between stopped vehicles 4.0 m
Vehicle length 6.0 m
Maximum Acceleration 0.8 m/s2

Maximum Deceleration -5 m/s2

Maximum Braking Jerk -30 m/s3

Information delay (wireless communication
delay + on-board device processing time)

0.3 s

Sliding mode model parameter (Ta) 0.1
Sliding mode model parameter (τ) 0.8
Sliding mode model parameter (λ) 0.3
Critical time-to-collision (TTC*) 5 s

The second scenario simulates emergency braking along a straight, open highway section. Its
purpose is to evaluate the ability of vehicles to respond to typical collision threats and return
traffic to equilibrium following a sudden disturbance. As illustrated in Figure 3(b), all
vehicles are initially assumed to travel at a constant speed. At a given time, the lead platoon
vehicle initiates a harsh deceleration. The vehicle decelerates at a constant rate until it
reaches a speed of half its initial speed. Following a few seconds of travel at a constant speed,
the vehicle starts accelerating again until it reaches back its desired speed. All following
vehicles then successively respond to the deceleration and acceleration of the lead vehicles
according to their imbedded control logic.

The third scenario pushes the threat of collision to the highest level by staging a so-called
“brick wall” collision scenario. This scenario is similar to the second one, except for the fact
that the lead platoon vehicle is assumed to come to an instantaneous stop following a
hypothetical collision with an object on the road. After this event, all following vehicles will
then try to decelerate to avoid colliding with the lead vehicle. However, given the suddenness
of the stop, it is expected that a certain number of vehicles will be unable to avoid colliding.
In Figure 3(c), colliding vehicles are those for which the corresponding speed trace line
suddenly ends and is completed by a dotted line. By comparing the number of vehicles
colliding and the speed at which they collide, the effectiveness of various vehicle control
logic in anticipating deceleration needs can then be assessed.
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The communication delay associated with a given situation generally depends on a number of
parameters. Among the most prominent are: the number of simultaneous broadcasts being
attempted in a given area, the robustness of routing protocols, the rate of communication
errors at transmission nodes requiring rebroadcasts, and the level of background data traffic
from other applications using the same communication channel. In all scenarios, it is assumed
for simplicity that communication delays can be modeled as an arbitrary fixed 0.3 s delay per
communication link. Variable delays are not considered due to the high level of complexity
associated with such a situation, although future studies on the topic are being planned.

EVALUATION PARAMETERS

The impacts of communication delays on vehicle control are evaluated by considering both
performance and safety parameters. For the evaluation of performance, the following two
parameters are considered:

• Time to equilibrium, and
• Equilibrium speed.

For the safety assessment, a number of evaluation parameters based on the concept of time-to-
collision (TTC) are used (Liu et al., 2006):

• Number of vehicles collided and collision velocity,
• Time-to-collision (TTC) and critical time-to-collision (TTC*),
• Time exposed time-to-collision (TET) and time integrated time-to-collision (TIT),
• Cumulative threatening frequency (CTF),
• Cumulative jerk frequency (CJF), and
• Acceleration noise.

Each of the above parameters is described in more details in the paragraphs that follow.

Time to Equilibrium

The time to equilibrium measures the ability to quickly adjust to changing traffic conditions
or dampen unstable conditions. Vehicle control logics exhibiting shorter time to reach
equilibrium, particularly in the presence of information delay, will then be more desirable
than those exhibiting longer time to equilibrium.

Equilibrium Speed

For a given situation, different control algorithms may lead to the establishment of traffic
equilibriums with different average traffic speeds. Within this context, the most efficient
algorithms will tend to create equilibrium at speeds that are the closest to the desired speed.
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Number of Vehicles Collided, Collision Velocity

Soundly designed vehicle control systems should be intrinsically collision-free. However,
since it is typically not possible to control all factors that can cause vehicles to collide,
another important feature should be an ability to reduce the severity of unavoidable accidents.
Any reduction in the speed at which collisions occur could then be interpreted as a positive
sign even if there is no reduction in the number of collisions.

Time-to-Collision and Critical Time-to-Collision

To help assess the risks of potential collisions, Hydén (1996) defines the time-to-collision
(TTC) as the time that remains until a potential collision between two vehicles if the vehicles’
current courses and speed differences are maintained, as shown in Equation 16. A small TTC
is representative of an imminent collision due to small vehicle spacing or a large speed
difference. A desirable situation would thus be one in which the TTC is as high as possible.
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To differentiate between risk levels, the critical time-to-collision (TTC*) is defined as a
threshold above which a vehicle may not be considered facing an imminent collision threat.
Typical choices for TTC* vary between 2 s and 4 s (Hirst and Graham, 1997; Minderhoud
and Bovy, 2001). Such values are selected to reduce the number of false warnings while
maintaining a certain level of efficiency. In this study, since false warnings are of no concern,
the TTC* is set at 5 s to ensure adequate consideration of all safety-critical events.

Time Exposed Time-to-Collision, Time Integrated Time-to-Collision

To measure exposure to collision risk, the time exposed time-to-collision (TET) is defined as
the summation of all time periods for which TTC is below TTC* (Minderhoud and Bovy,
2001). However, while TTC measures the total period for which a collision threat exists, it
does not fully reflect the severity of potential hazards. For instance, it does not indicate
whether a vehicle faced several mild risks that could be avoided with relative ease or a
significant threat that required significant effort, such as a harsh deceleration, to avoid.

To incorporate threat severity, the time integrated time-to-collision (TIT) is defined as the
summation of differences between TTC and TTC* multiplied by the duration of intervals
during which TTC is below TTC*, as shown in Equations 17 and 18. Since potential hazards
become more severe with lower TTC values, a large TIT would thus be indicative of collision
threats for which significant efforts are required to avoid.
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Cumulative Threatening Frequency

While TET and TIT consider the number of intervals in which TTC is below a critical value,
they do not assess how frequently collision threats occur. This assessment is provided by the
cumulative threatening frequency (CTF), which counts the number of times the TTC drops
from a value above TTC* to a value below TTC*. Well-designed control systems should
produce CTF values as low as possible. Since this study considers a single hazard, vehicles
should experience at most one potential threat and a CTF of 1. Greater values would indicate
multiple threatening situations due to inappropriate responses from the vehicle control system.

Cumulative Jerk Frequency

The cumulative jerk frequency (CJF) counts the number of times a vehicle switches between
acceleration and deceleration commands. Well-designed vehicle control systems should
produce CJF values close to zero or reflective only of necessary speed changes.

Acceleration Noise

While CJF measures the number of times a vehicle switches between acceleration and
deceleration, the vehicle’s overall stability is reflected by the acceleration noise, which is a
measure of the magnitude of speed changes over time (Jones and Potts, 1962). The
mathematical expression of this parameter is given by Equations 19 and 20.
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Acceleration noise is always positive, with a lowest value of zero representing constant speed,
constant acceleration, or deceleration, over the entire evaluation period. Systems with low
acceleration noise will then tend to generate smoother riding than systems with high values.

IMPACTS OF INFORMATION DELAY ON SINGLE-LEAD
VEHICLE CONTROL

This section presents the results of the evaluations focusing on the impacts of information
delay on vehicle control when decisions are based uniquely on information about the position,
speed and acceleration level of the vehicle immediately ahead. Results are presented for the
three scenarios described earlier.
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Scenario 1: Standstill to Equilibrium

For the standstill to equilibrium scenario, Table 2 shows that the time for the simulated
platoon to reach equilibrium is more than doubled when an information delay of 0.3 s is
introduced into the control loop. In the absence of delay, equilibrium, as defined by a speed
differential of less than 0.5 m/s, is reached in just over 5.5 minutes. With a delay of 0.3 s, it
takes more than 11 minutes to reach the equilibrium from an identical initial condition. An
analysis of simulation results clearly indicate that this extended time is primary the result of
the inability of individual vehicles to obtain precise information regarding the position, speed
and acceleration of its lead vehicle in the presence of information delay. This results in
situations in which control decisions more frequently overshoot or undershoot their true
target, thus creating a need for extra time to reach equilibrium.

Table 2. Time to reach equilibrium from standstill, following single leader scenario.

Number of
Lead Vehicles

Information
Delay (ms)

Duration to Reach
Equilibrium (s)

Equilibrium
Speed (m/s)

1 0 331 15.0
1 100 438 13.6
1 200 555 12.5
1 300 684 11.5
1 400 880 10.7
1 500 1040 10.0

Another interesting result is a reduction of the average vehicle speed at equilibrium. In the
absence of information delay, the equilibrium speed is 15.0 m/s (54.0 km/h). With a delay of
0.3 s, the speed drops to 11.5 m/s (41.4 km/h). This reduction is again explained by the use of
erroneous information in the control loop. With a 0.3 s communication delay, vehicle control
decisions are typically based on the position that the each preceding vehicle occupied 0.3 s
ago. At a speed of 11.5 m/s, this translates into assuming that lead vehicles are 3.5 m closer
than they are in reality. To maintain a desired headway, a speed reduction is then imposed to
increase spacing with the lead vehicle, thus leading to a lower equilibrium speed.

An interesting coincidence in the data of Table 2 is that the difference in distances travelled in
1 s at equilibrium with and without information delay equals the distance that a vehicle
experiencing information delay travels during the assumed information delay. For example in
the scenario of 0.3 s delay, the difference in distance, ( ) mssmsm 5.315.1115 =×− ,

corresponds to the distance that a vehicle experiencing information delay travels during the
assumed information delay, mssm 5.33.05.11 =× . Further tests considering varying levels

of information delay also support this apparent relationship.
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Scenario 2: Emergency Braking

The focus of the emergency braking scenario is on the safety impacts of information delay.
Table 3 presents for this scenario the results of the evaluation of the surrogate safety measures
described earlier. Only TTC and acceleration noise values are shown as the TTC values
produced for each vehicle were all above 5 s. Since the critical time-to-collision (TTC*) is set
at 5 s, this results in all TTC-based indicators having a value of zero.

For each parameter, Table 3 shows the values associated with the vehicles returning the
lowest TTC or highest acceleration noise, as well as cumulative sums reflecting the values
assessed for all vehicles in the platoon. Vehicles are identified according to their position in
the platoon relative to the lead vehicle. From these results, it can be observed that the
introduction of communication delay unexpectedly results in higher TTC values and in an
assessment that information delay may potentially improve traffic safety. Although such an
assessment is contradictive to the common assumption of negative impacts, it should be noted
that safety-critical situations did not occur in both simulated alternatives. The true cause of
the increases in TTC is related to the weights assigned to the errors regarding vehicle spacing
error and speed in the control algorithm. In the absence of information delay, vehicles have
few difficulties maintaining a given spacing to satisfy the constant 1-s headway separation
rule. However, as was explained before, vehicles tend to perceive shorter vehicle spacing
with information delay, thus pushing them to maintain longer separation distances. This
increase in separation distance then results in lower collision threats and increased assessed
TTC values.

For this scenario, a better performance indicator seems to be the acceleration noise, as this
parameter focuses on risks created by speed variations and is not dependent on the presence
of particular safety threats. In Table 3, it can indeed be observed that the acceleration noise
expectedly increases with the introduction of information delay, indicating an increase in
speed variations and higher collision risks that contradict the TTC evaluations.

Table 3. Selected surrogate safety measures, following single leader and emergency
braking scenario.

TTC Acceleration NoiseInformation
Delay Lowest Sum Highest Sum

(s) Veh (s) (s) Veh (m/s2) (m/s2)
0 2 6.1 330 18-39 0.6 21.9

0.3 3 6.8 420 39 0.8 25.5

Figure 4 presents another look at the impact of information delay on acceleration noise. This
figure shows the impact on each vehicle in the platoon. The figure clearly indicates that
acceleration noise is almost the same with or without information delay for the first few
vehicles. However, as we move further back into the platoon, vehicles are observed to
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experience marked increases in acceleration/deceleration activity. For the most part, these
results can be explained by differences in shockwave propagation speed that are introduced by
communication delay.

To illustrate the above effect, Figure 5 compares the trajectories of all simulated vehicles in
the alternatives with and without information delay. As can be observed in Figure 5(a), the
shockwaves created by the deceleration/acceleration cycle of the lead platoon vehicle meet in
the absence of delay before reaching the end of the platoon. Consequently, no vehicle beyond
the 20th platoon vehicle is affected by the deceleration/acceleration event of the lead vehicle.
In Figure 5(b), which presents the alternative with information delay, the shockwaves are
clearly seen extending throughout the entire platoon as a result of slower propagating speeds.
Similar to the first scenario, this reduction in shockwave propagation can be explained by the
increased difficulty to achieve equilibrium or quickly respond to traffic events caused the by
the use of slightly erroneous data in the vehicle control process.
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Figure 5. Vehicle trajectories in the emergency braking scenario

Scenario 3: “Brick Wall” Collision

The third scenario focuses on the safety impacts of information delay in extreme
circumstances. For this scenario, the simulation results indicate that 12 vehicles collide with
each other following the sudden immobilization of the lead platoon vehicle in the presence
and absence of information delay. As indicated by Table 4, collision speeds do not
significantly change with the presence of information delay. This leads to an apparent lack of
impacts on safety and this result is again explained by errors in vehicle information
introduced by information delay. In the two previous scenarios, information errors caused
vehicle controllers to believe that the lead vehicles were closer than they were in reality. This
perception pushed for an increased in following distance. While the same perception exists
here, information errors also lead control systems to believe that the vehicles ahead are
travelling faster than in reality and that higher vehicle speeds may be allowed. While the
perceived closer spacing pushes on one hand for a reduction in vehicle speed, the perceived
higher speed of vehicles ahead pushes on the other hand for an increase in vehicle speed, thus
muting the impacts of increased or reduced information delays.

Table 5 summarizes in a format similar to Table 3 the values estimated for the surrogate
safety measures described earlier. In this case, the introduction of vehicle control delay
clearly results in reduced safety. For instance, the introduction of information delay lowers
the TTC value for the vehicle having the highest collision risk (13th platoon vehicle) from 2.1
to 1.9 s. Higher individual TET and TIT values are also produced, while no apparent changes
are observed in individual CTF and CJF values. While the platoon TTC and CJF show
improvement with information delay, all other parameters indicate an increase in safety risks
consistent with the individual values. The improvements in cumulative TTC and CJF values
with information delay are again explained by effects of erroneous information on vehicle
control decisions.
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Table 4. Colliding speeds, following single leader and “brick wall” collision scenario
Colliding Speed (m/s)Vehicle Position

in Platoon No Delay 300 ms Delay
1 25.0 25.0
2 23.0 23.0
3 21.5 21.5
4 20.1 20.1
5 18.7 18.8
6 17.4 17.5
7 16.2 16.2
8 14.4 14.5
9 12.7 12.8

10 11.0 11.0
11 8.8 8.9
12 5.6 5.7

Table 5. Surrogate safety measures, following single leader and “brick wall” collision scenario.

TTC TET TIT CTF CJF
Setup Lowest Sum Highest Sum Highest Sum Highest Sum Highest Sum

n Veh (s) (s) Veh (s) (s) Veh (s2) (s2) Veh (#) (#) Veh (#) (#)

1 (a) 13 2.1 152 13-19 2 16 13 3.7 14.1 13-21 1 9 14-16 2 6

1 (b) 13 1.9 184 13-21 3 33 13 6.5 30.9 13-25 1 13 14,15 2 5

(a) without delay; (b) 300 ms information delay

A comparison of the TTC evaluation results of Table 5 to those of Table 3 clearly indicates
that the brick wall scenario presented higher safety risks than the emergency breaking
scenario. This is an expected result that validates the use of selected performance measures.
When going from the emergency to the brick wall scenarios, the lowest individual TTC drops
from roughly 6 s to roughly 2 s. The cumulative platoon value also shows a similar drop,
with a reduction from an initial range of 300-400 s to a range of 150 – 200 s.

IMPACTS OF MULTIPLE LEAD VEHICLES

This section presents the results of the evaluations focusing on the impacts of information
delay on vehicle control when control decisions are based on information about a number of
lead vehicles.

Scenario 1: Standstill to Equilibrium

For the standstill to equilibrium scenario, Table 6 shows that traffic equilibrium can be
reached much faster in the presence of information delay by incorporating in the control logic
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information from a number of lead vehicles. These gains are primarily obtained by extending
system vision from the vehicle immediately ahead to the first two lead vehicles. Extending
vision beyond the first two vehicles did not provide additional benefits. Each increase in the
number of lead vehicles considered resulted here in an identical equilibrium speed and a slight
increase in time to reach equilibrium. The longer time to reach equilibrium is attributed to the
increased complexity of achieving stability when having to deal with an increasing number of
variables each marked with a certain degree of error.

Table 6. Time to reach equilibrium from standstill, following multiple leaders scenario.

Number of
Lead Vehicles

Information
Delay (ms)

Duration to Reach
Equilibrium (s)

Equilibrium
Speed (m/s)

1 300 684 11.5

2 300 136 11.5

3 300 142 11.5
4 300 146 11.5
5 300 149 11.5

Scenario 2: Emergency Braking

Similar to the emergency braking scenario with a single-lead vehicle, all individual vehicle
TTC evaluations produced values above 5 s, thus resulting in zero values for all other TTC-
based surrogate measures. In this case, the results of Table 7 clearly show that including
information about additional lead vehicles can lead to safety improvements. This is
demonstrated by the higher TTC and lower acceleration noise values produced for the
alternatives with two or more lead vehicles. However, similar to the results of Table 6, the
maximum benefits appear to be when system vision is extended from one to two lead vehicles
only, as TTC values start to decrease while acceleration noise start to increase again when
considering three or more lead vehicles.

Table 7. Selected surrogate safety measures, following multiple leaders and emergency
braking scenario.

TTC Acceleration Noise
Setup Lowest Sum Highest Sum

N Veh (s) (s) Veh (m/s2) (m/s2)
1 3 6.84 420 39 0.80 25.5
2 1 7.65 757 39 0.55 18.7
3 1 7.66 709 39 0.56 18.9
4 1 7.66 679 39 0.57 19.1
5 1 7.66 619 39 0.59 19.6
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The estimated acceleration noise values for each vehicle in alternatives considering one and
two lead vehicle are compared in Figure 6. This figure clearly shows that all vehicles
experience a reduction in acceleration/deceleration activity, and thus less instability, when
two lead vehicles are considered instead of one. Similar to Figure 4, the impact appears
cumulative as moving back into the platoon, with vehicles further behind experiencing a more
pronounced reduction in acceleration noise. When compared to Figure 4, it can further be
observed that the acceleration noise with a control system considering two lead vehicles in the
presence of 0.3 s delay is even lower than for a system considering a single lead vehicle with
no delay. This is yet another strong indication of the potential safety benefits of designing
vehicle control system considering information from more than one vehicle ahead.
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Figure 6. Acceleration noise on vehicles following one lead vehicle
and two lead vehicles with information delay

Scenario 3: “Brick Wall” Collision

For the “brick wall” scenario, considering more than one lead vehicle results in a reduction of
the number of vehicles colliding from 12 to 2. The change primarily occurs when expanding
the control logic to consider two lead vehicles. This indicates a marked improvement in
safety. The surrogate safety measures of Table 8 emphasize once more that the consideration
of multiple lead vehicles has positive impacts on safety. For TTC, the best results in terms of
individual vehicle performance are obtained when considering four or five lead vehicles,
while the best platoon performance is with only two lead vehicles. For TET, the best
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individual performance is for three or four lead vehicles while the best platoon performance is
for two lead vehicles. For TIT, a four lead vehicle setup is best, while a two-vehicle setup is
best for CTF. The deterioration of CJF value with multiple lead vehicles is largely attributed
to the chattering effect of sliding mode control around its sliding surface. While these
differing results may be indicative of random and simulation effects, they again clearly
demonstrate the potential safety benefits of including more than one lead vehicles in the
vehicle control loop in scenarios considering information delay.

Table 8. Surrogate safety measures, following multiple leaders and “brick wall” collision scenario.
TTC TET TIT CTF CJF

Setup Lowest Sum Highest Sum Highest Sum Highest Sum Highest Sum

n Veh (s) (s) Veh (s) (s) Veh (s2) (s2) Veh (#) (#) Veh (#) (#)

1 13 1.9 184 13-21 3 33 13 6.5 30.5 13-25 1 13 14,15 2 5

2 3 2.4 415 3 3 6 3 6.8 9.0 3,5,6 1 3 (a) 36 144

3 3 2.9 365 6-9 2 9 6 3.2 8.0 (b) 1 5 35,39 27 496

4 7 3.3 357 7-9 2 7 7 2.8 6.4 (c) 1 5 (d) 19 361

5 8 3.3 305 9 3 12 8 3.3 10.6 (e) 1 6 38 23 326
(a) 26,34,35,37; (b) 3,6,7,8,9; (c) 3,7,9,
9,10; (d) 33,34,36,37,38; (e) 3,8,9,10,11,12.

CONCLUSIONS AND RECOMMENDATIONS

The objective of this paper was to demonstrate in a first stage the impacts that information
delay may have on vehicle behavior and safety, and in a second stage, the benefits that can be
achieved by including information from more than one lead vehicle in the control loop.
These impacts were evaluated using a simulation model specifically designed to consider
wireless communication effects and simulation scenarios testing how quickly vehicles with
automated control can reach equilibrium or reduce the safety impacts of a sudden deceleration
or immobilization of the lead platoon vehicle.

As anticipated, the simulation results clearly showed that wireless communication delay has a
significant impact on the performance of vehicle control system considering only information
from the vehicle immediately ahead. These impacts typically results in an increased time to
reach equilibrium, a lower equilibrium speed, and a reduction in the ability to avoid severe
collisions or reduce traffic instability. However, in unavoidable collision incidents, the
severity of crash is irrelevant to communication delay as colliding speed does not change with
varying communication delay. Benefits were then obtained by extending the control logic to
consider information from more than one lead vehicle, i.e., by increasing the vision space and
anticipative nature of the system. The greatest benefits were obtained by extending the
control logic to consider the nearest two lead vehicles. The inclusion of more than two lead
vehicles generally resulted in significantly lower incremental gains, while some parameters
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even show decreased performance due to the complexity of reaching equilibrium or
adequately responding to traffic events when considering information from multiple vehicles
each marked with a certain degree of inaccuracy.

While the results of the study clearly show the benefits of designing vehicle control systems
considering information from at least two lead vehicles and developing algorithms
considering the potential impacts of information delay, it is suggested that further experiment
be conducted to paint a clearer picture of the problem. In particular, the study did not look at
the impacts of varying wireless delays. As indicated, various parameters may affect the
delays associated with wirelessly data transmission. Depending on the situation, longer or
shorter information delays may thus prevail from one moment to the next, leading to
increased or decreased impacts on vehicle control systems. An important question to answer
is then how much delay a control system can tolerate before its reduction in efficiency or
safety reaches a critical point.

Another important factor not considered in the study is lane changing. The addition of a lane
changing module in the simulation model would allow the testing of more complex vehicle
control algorithms, including lane-changing functions. While it is anticipated that automated
vehicle controls with both longitudinal and latitude functions are likely to be more promising
than longitudinal control alone in promoting safety improvement on multi-lane roadway
segments, uncertainty remains regarding the impact of information delay on lane changing
safety.

A final element that should be explored is whether variations in the behaviour of preceding
vehicles would affect the main results of the study. The current study essentially assumed
that all vehicles would behave similarly. In reality, drivers exhibit slightly different
behaviour that may translate into random accelerations and decelerations. Any robust vehicle
control algorithm should then be able to identify these variations in behaviour and ignore
them.
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A NEW CONCEPT AND GENERAL
ALGORITHM ARCHITECTURE TO
IMPROVE AUTOMATED INCIDENT
DETECTION

Kun Zhang and Michael A P Taylor, Transport Systems Centre, University of South Australia,
Adelaide, Australia

INTRODUCTION

Road incidents and incident induced traffic congestion are a threat to the mobility and safety
of our daily travel. Incidents are defined as random and nonrecurring events such as accidents,
disabled vehicles, spilled loads, temporary maintenance and construction activities, and other
unusual events that disrupt the normal flow of traffic. Timely and accurate incident detection
using automated incident detection (AID) systems is essential to effectively tackle incident
induced congestion problems and to improve traffic management. The core of an AID system
is the incident detection algorithm which interprets real time traffic data and makes decision
on incidents. The AID algorithms discussed in this paper aim to detect lane-blocking incidents
when their effects are manifested by certain types of deterioration in traffic conditions. An
incident that blocks the entire roadway (we call it link-blocking) is an extreme case of lane-
blocking incidents.

The performance of AID algorithms is normally evaluated against three measures: detection
rate (DR), false alarm rate (FAR) and mean time to detect (MTTD). The DR is defined as the
ratio of the number of detected incidents to the recorded number of incidents in the test data
set. The FAR is the ratio of the number of false alarms to the total number of intervals to
which the algorithm is applied. These two measures are used to evaluate the effectiveness of
an AID algorithm. The MTTD is the average time difference between the time an incident is
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detected by the algorithm and the actual time the incident occurs. The MTTD measures the
efficiency of the algorithm.

The early California algorithms (Payne and Tignor 1978), the McMaster algorithm (Gall and
Hall 1990; Hall et al. 1993) and the detection logic with smoothing (DELOS) algorithms
(Chassiakos and Stephanedes 1993) were built on theoretical understanding about incidents
on freeways. Incident detection based on these methods was performed in a serial fashion
using detection rules. Following rapid development of computer technology, artificial neural
networks were intensively applied to freeway incident detection to improve AID algorithm
performance (Abdulhai and Ritchie 1999; Cheu and Ritchie 1995; Dia and Rose 1997; Jin et
al. 2001; Ritchie and Cheu 1993; Srinivasan et al. 2004). More recently, the support vector
machine (Yuan and Cheu 2003) and wavelet technique (Teng and Qi 2003) have been
proposed for freeway incident detection. Despite the above improvements, high performance
and strong transferability remain common issues concerning freeway AID algorithm
development.

Urban arterial roads feature interrupted traffic flow, turning movements and a variety of
traffic signal controls, and therefore provide a more challenging environment for incident
detection. Early arterial road AID algorithm development focused on simple comparison
methods using raw traffic data (Bell and Thancanamootoo 1988; Han and May 1989;
Stephanedes and Vassilakis 1994). To enhance algorithm performance and to achieve real-
time incident detection, advanced methods were suggested, which included image processing
(Hoose et al. 1992), vehicle positioning (Sermons and Koppelman 1996), artificial neural
networks such (Khan and Ritchie 1998; Thomas et al. 2001), support vector machines (Yuan
and Cheu 2003) and data fusion (Ivan 1997; Thomas 1998). Although these published new
methods represent significant improvements, algorithm performance stability remains a big
issue concerning existing arterial road AID algorithms.

This paper introduces a new concept and general AID algorithm architecture to enhance the
performance of incident detection on both freeways and urban arterial roads, and to improve
algorithm transferability. We treat incident detection as a decision making problem rather
than as pattern recognition. Hence, the focus of the AID algorithm design is shifted from
precise incident pattern description and reduced traffic pattern misclassification to effective
traffic knowledge representation and strong evidential reasoning capability of the algorithm.
We use the Bayesian network technique to manage existing traffic knowledge and to perform
coherent evidential reasoning for incident detection. Two new AID algorithms are presented
in this paper, the TSC_fr algorithm (Zhang and Taylor 2004a; Zhang and Taylor 2006a) for
freeways and the TSC_ar algorithm (Zhang and Taylor 2004b; Zhang and Taylor 2006b) for
arterial roads. ‘TSC’ stands for Transport Systems Centre where the algorithms were
developed. These two algorithms are used in this paper to demonstrate the feasibility and
effectiveness of applying the new concept to AID algorithm development.

The paper is organized in six sections. The first section discusses the importance of “decision
making”, the new concept used to improve AID algorithm performance. The reasoning tool
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used to support this concept is Bayesian networks, which is detailed in section two. In the
third section, the general AID algorithm architecture and the basic function specification of its
building blocks are outlined. This algorithm architecture leads to two AID algorithms: the
TSC_fr for freeways and the TSC_ar for urban arterial roads, whose main features and
performance are discussed in the following two sections. In section six, conclusions are drawn
on testing results of the above two algorithms, and our future research directions are
indicated.

METHODOLOGY

Pattern Recognition

Incident detection is traditionally treated as a pattern recognition / classification problem. The
well established freeway AID algorithms, such as the California algorithms, the DELOS
algorithms and the McMaster algorithm, use detection rules to identify incident patterns from
traffic data. A rule-based system consists of a library of rules (e.g. If A then B). These rules
reflect essential relations within the domain under investigation, or ways to reason about the
domain. When specific information about the domain becomes available, the rules are used to
draw conclusions and to point out appropriate actions, which take place as a chain reaction. In
incident detection application, detection rules and their associated thresholds attempt to form
one general incident pattern for a specific road. If real time traffic data match this pattern after
a serial rule testing, then an incident alarm is declared. Traffic systems are dynamic and
stochastic, which implies that the causal relations reflected by detection rules are not
absolutely certain. Meanwhile, gathered traffic information for inference is often subject to
uncertainty as well. The combination of uncertainty and temporal variation is no longer a
local phenomenon for which each detection rule is tailored; and it is challenging for rule-base
AID algorithms to maintain performance stability by operating in a serial fashion. In addition,
the strong site specific features of this type of algorithm tend to hamper algorithm
transferability.

Neural networks perform pattern recognition / classification. Through proper training, neural
networks can be used in domains that require uncertainty handling capability. The parallel
processing mechanism and fast learning capability of neural networks made them popular for
incident detection during the last decade. Apart from the relatively fixed architecture of a
neural network (the number of layers and the number of nodes in each layer), the weights and
thresholds actually determine the behaviour of the network. Incident pattern description in a
neural network is vague as each perceptron1 in the hidden (pattern) layers only has a meaning
in the context of the functionality of the network. We will not know what assumptions about
the traffic system have been made by the neural network and why a certain pattern fit value
has been suggested from the observed traffic data. These assumptions (prior traffic

1 A perceptron is a node along with its in-going edges.
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knowledge) are crucial for traffic operators to make decision on an incident and to form
appropriate responses to the incident. The key weakness of the neural network approach is
that we are unable to utilize the expert traffic knowledge we might have in advance. Although
probabilistic neural network (PNN), support vector machine (SVM, equivalent to PNN) and
constructive probabilistic neural network (CPNN) do improve the adaptability of basic multi-
layer feed-forward neural network (MLF) in terms of network retraining, the neural network
still require substantial site specific training to establish appropriate weights and thresholds.

Decision Making

A freeway lane-blocking incident tends to block the upstream traffic and free the downstream
one, if the reduced roadway capacity due to the incident could not handle the traffic demands.
This fairly general incident pattern may vary substantially on urban arterial roads because of
interrupted traffic flow, low speed manoeuvres, turning movements plus different traffic
signal control strategies. Therefore, the basic question which an AID algorithm has to answer
would be ‘based on our prior knowledge, how likely is it that an incident might happen given
the observed traffic data’ instead of ‘how well do the observed traffic data fit in with certain
predefined incident patterns’. The fundamental difference between the above two questions
is that the former places an emphasis on evidence based reasoning, while the latter focuses on
pattern matching which heavily relies on precisely defined incident patterns. For incident
detection, evidential reasoning is more stable because both the prior traffic knowledge and the
observed traffic data interact with each other to produce a certainty measure (likelihood)
associated with each decision making on incidents. Meanwhile, evidential reasoning is
dynamic as a clearly described and fully accessible knowledge base can be easily adapted to
different traffic sites.

We treat incident detection as a decision making process. The focus of AID algorithm design
is then shifted from precise incident pattern description and reduced traffic pattern
misclassification to effective traffic knowledge representation and strong evidential reasoning
capability. We are seeking an effective way to represent existing traffic knowledge about
incidents and subjectively build them into the algorithm rather than learn them from incident
data. Meanwhile, we are trying to describe traffic condition in a more general and concise
manner using real time traffic data, based on which evidential reasoning can be performed
coherently using general traffic knowledge.

Experienced traffic operators can accurately detect incidents from data. In the human
reasoning process, operators’ general traffic knowledge are used to build a causal structure in
which relations between traffic parameters (e.g. volume, occupancy, etc.) and traffic events
(e.g. incident) are quantitatively described. Real time traffic measurements are used to
determine the state of each traffic parameter, which is mainly based on their experience (site
specific knowledge). Using traffic states as evidence, the likelihood of an incident can be
sought from the causal structure. Clearly, the estimated incident probability given observed
traffic data forms the base of each decision making. To mimic such human reasoning, we use
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a Bayesian network (Jensen 1996; Pearl 1988) to store prior traffic knowledge and to perform
evidence based inference in our proposed AID algorithm architecture. Bayesian networks are
causal probabilistic networks which are also called belief networks. The ability of the
Bayesian network to coordinate bi-directional inferences filled a void in expert systems
technology in early 1980s, and this method subsequently emerged as a general representation
scheme for uncertain knowledge (Pearl 1988).

BAYESIAN NETWORK

In this section, we start with Bayesian inference and its key theorem (Bayes’ theorem) which
forms the mathematical basis for probability updating in the Bayesian networks.

Standard Statistical Inference vs Bayesian Inference

The standard statistical inference is widely used in the scientific community including
transportation research. This method was developed largely by Ronald Fisher, Jerzy Neyman
and Karl Pearson during the 1920s and 1930s, and aims to provide objective mathematical
tests capable of falsifying theories (Matthews 1998). Statistical inference tries to work out
P(data | null hypothesis), which is the probability of getting at least as impressive data from
an experiment given the null hypothesis.

Before the 1920s, another approach to statistical inference (Bayesian inference) was in
general use. Bayesian approach is based on a result that flows directly from the axioms of
probability. The key theorem behind it is Bayes’ theorem:
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In Bayes’ theorem, P(B | A) is the posterior probability distribution of event B given that
information about event A is available, P(A | B) is the conditional probability distribution of
A given B, which represents expert knowledge about the domain under investigation, and
P(B) and P(A) are the prior probabilities of B and A respectively. Bayes’ theorem becomes the
basis of Bayesian inference when B is the event of a specific hypothesis being true, and A as
the event of observing specific data. The power and importance of the Bayesian inference is
immediately apparent in its solution to one of the central problems of standard statistical
inference, which is that standard statistical inference does not tell us P(hypothesis | data), the
probability that the hypothesis really is correct given the data they observed, which is what
incident detection is all about.

In earlier AID research (Thomas 1998), the Bayesian classifier was used to improve accuracy
of traffic pattern classification by minimizing the conditional misclassification cost. The
precision of traffic pattern description using traffic parameters for each class is crucial for this
application. In contrast, the Bayesian network technique uses the Bayesian rule (theorem) to
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perform evidence base reasoning which relies on the clearly defined and quantified
knowledge base (conditional probability tables of the network). This technique enable us to
subjectively build prior traffic knowledge into the Bayesian network and modify them at any
stage of AID algorithm implementation to cope with traffic environment changes. Hence, the
Bayesian network approach for incident detection is a more advanced use of the Bayesian rule
to enhance evidential reasoning capability of the AID algorithm

Bayesian Network

Bayesian networks are causal probabilistic networks. As shown in Figure 1, a Bayesian
network consists of a set of nodes (the variables of interest) and a set of directed links
between these nodes. Each variable has a finite set of mutually exclusive states. Links reflect
cause-effect relations within the domain which the network models. Since these effects are
normally not completely deterministic, the strength of an effect is modelled as a probability.
The nodes together with the directed links form a directed acyclic graph (Jensen 1996).

Figure 1 Bayesian network

All nodes of a Bayesian network represent concepts that are well defined with respect to the
domain under investigation. If a node in a Bayesian network does not have any parents (i.e.
no links pointing towards it), the node will contain a marginal probability table, a probability
distribution over the states of the variable which the node represents. If a node does have
parents (i.e. one or more links pointing towards it), the node contains a conditional
probability table (CPT). Each cell in the CPT contains a conditional probability for the
variable, which the node represents, being in a specific state given a specific configuration of
the states of its parents. The CPTs of a Bayesian network are used to quantify the causal
relations described in the network.

Fundamentally, a Bayesian network is used to update probabilities of certain variables
whenever information on the other variables of the network becomes available. The inference
(probability updating) in a Bayesian network can be thought of a message passing process. A
message (e.g. e in Figure 1, which is the available state of variable A) can be passed along
links in both directions. The tool for inferring in the opposite direction (e.g. from A to B) is
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Bayes’ theorem (1). The message passing process may be described mathematically as
follows:

Let U be the universe of variables in the Bayesian network, U = {A1, …, An}. Here, A1 to An

could be thought as variables A to H in Figure 1. Let information e be the statement

“the joint configuration of A1, … , An is (a1, …, an), which consists of information of
several variables, and the information about each variable can be entered separately”.

The posterior probability distribution P(X | e) for all variables X in U (X represent the
variables of our primary interest, such as incident), which is updated beliefs on X given
information e, is calculated in the following way:

1. Use the chain rule (2) (Jensen 1996) to calculate P(U), the joint probability table that
provides the probabilities of all possible configurations of the universe U .

∏=
i

ii ApAPUP ))(|()( (2)

where p(Ai) is the parent set of the node Ai, and ))(|( ii ApAP is the conditional

probability table of Ai.

2. Enter information e, e = (a1, …, an) into the Bayesian network to form P(U,e), the
part of P(U) corresponding to the configuration (a1, …, an).

naaUPeUP ⋅⋅⋅⋅= 1)(),( (3)

where ai is a m-dimensional table of zeros and ones corresponding to the information ai

on variable Ai which may have m possible states.

3. Marginalize P(U, e) down to P(X,e) for the variables X in U. For each state x of X,
sum up all entries in P(U,e) with X in state x

∑=
}\{

),(),(
XU

eUPeXP (4)

4. P(X | e) is the result of normalizing P(X,e), which is dividing P(X,e) by the sum of all
its entries. The Bayesian theorem (1) supports this calculation.
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Hugin Propagation

The first algorithm proposed for probabilistic calculations in Bayesian networks used such
message-passing architecture and was limited to trees (Kim and Pearl 1983). If the Bayesian
network is not a tree, which is the case in Figure 1, the independence properties in the
network need to be analysed to establish a set of clusters of variables and to construct a tree
over the clusters. The resulting tree will have the junction tree property: for each pair of nodes
V, W in the tree, all nodes on the path between V and W contains their intersection WV ∩ .
Figure 2 shows the junction tree corresponding to the Bayesian network presented in Figure 1.
The node BAE represents a node cluster that contains the variables A, B and E in the Bayesian
network. Inside the cluster, the causal dependencies among the three variables are organized
in a tree structure. For each pair of nodes in the junction tree, such as the node pair BAE and
DEH, the node ADE (in the path between the node pair) contains their intersection. The Hugin
method (Jensen et al. 1990) for probability updating in the Bayesian networks, which is used
in this research, is similar to the early tree propagation (Kim and Pearl 1983) but for junction
trees. This method is a modification of a general method presented in Lauritsen and
Spiegelhalter (1988).

Figure 2 Junction tree and Hugin propagation

In Figure 2, each arrow and its associated number indicate the direction and the order of one
specific message passing procedure that takes place in the corresponding link. The Hugin
propagation starts with the root node Rt (i.e. the node BAE in this example) asking all its
neighbours to send it a message. Note that a node X can send a message to a neighbour Y if X
has received a message for all its other neighbours. If they are not allowed to do so, they
recursively pass the request to all neighbours except the one from which the request came.
This process is called CollectEvidence, which consists of message passing procedure 1 to 3.
Then, Rt sends messages to all of its neighbours who recursively send messages to all
neighbours except the one from which the message came. This process is called
DistributeEvidence, which consists of message passing procedure 4 to 6. Whenever the Hugin
propagation takes place, CollectEvidence (Rt) is called followed by a call of
DistributeEvidentce (Rt). When the calls are finished, the tables are normalized so that they
sum to one. The Hugin method for probability updating in Bayesian networks uses a global
perspective. Any node in the Bayesian network can receive information as the method does
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not distinguish between inference in or opposite to the direction of the links. Also,
simultaneous input of information into several nodes will not affect the probability updating
performance.

GENERAL AID ALGORITHM ARCHITECTURE

In the previous section, the discussions on the Bayesian networks concentrate on domain
knowledge representation (causal structure and its CPTs) and evidential reasoning
mechanism. The AID algorithm architecture design focuses more on efficient traffic
knowledge management, which aims to improve performance stability and transferability of
the algorithm. As shown in Figure 3, our proposed AID algorithm architecture consists of two
modules: data processing module (DP) and incident detection module (ID).

Figure 3 General AID algorithm architecture

The DP module could be treated as a traffic state generator. Real time traffic measurements
on traffic parameters (e.g. volume, occupancy, etc.) are processed in the module and then are
converted into their corresponding states (e.g. volume is High, Medium or Low). Site specific
traffic knowledge (operators’ experience about the specific road) is used in the module to set
up the thresholds for traffic measurements conversion at each detection interval.

The ID module works as an inference engine. The Bayesian networks form the core of this
module, which quantitatively model the causal dependencies among traffic parameters and
traffic events (e.g. incident). Using the traffic state as evidence, the Bayesian networks
continuously update the incident probability. If the estimated incident probability exceeds the
predefined incident decision threshold, an incident alarm will be issued. General traffic
knowledge about incidents is used to construct CPTs of the Bayesian networks, which could
be shared between different sites.

Two direct benefits gained from this design are (1) both the general knowledge base and the
evidential reasoning process are independent of site specific data processing, which makes the
ID module universal, and (2) the conversion of traffic measurements into traffic states only
requires local traffic knowledge, which could substantially reduce the algorithm
implementation needs. This general algorithm architecture was used to develop two AID
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algorithms, the TSC_fr algorithm for freeway and the TSC_ar algorithm for urban arterial
roads. The discussions in the following two sections will focus on the key Bayesian networks
used in these two algorithms and the performance of these algorithms.

FREEWAY AID ALGORITHM TSC_fr

Detector Configuration and Data Processing

The TSC_fr algorithm was originally developed on Southern Expressway (SX) in Adelaide,
Australia. The typical traffic detector configuration for incident detection on the SX is shown
in Figure 4. Detector stations are evenly located (i.e. 500 metres apart) along the freeway.
Each detection zone covers the road segment between each pair of detector stations (e.g. DS2

at upstream and DS3 at downstream). Lane volume, occupancy and speed at both upstream
and downstream detector station are collected over each 20 seconds using loop detectors. The
same data aggregation and transmission interval was also found on Tullamarine Freeway and
South Eastern Freeway in Melbourne (Dia and Rose 1997). The detection interval for the
TSC_fr algorithm was set to 20 seconds.

Figure 4 Traffic detector configuration for freeway incident detection

As shown in the algorithm architecture (Figure 3), raw traffic measurements (lane volume,
occupancy and speed) are processed in the DP module. The link average of each traffic
parameter is calculated at each detection interval. It is then compared with the predefined
thresholds to determine the state of that parameter. The selected traffic parameters (not every
one) with their states form an input for the DP module at each detection interval. The traffic
parameter selection process will be discussed in the later section.

Typical Bayesian Network – Spatial Traffic Information

In the ID module of the TSC_fr algorithm, a typical Bayesian network is constructed to deal
with the classic freeway incident detection. As shown in Figure 5, the variables of the
Bayesian network include two traffic events (incident: Inc1_1, congestion: Con1_1) and
seven traffic parameters (volumes: Vol1_1 and Vol2_1, occupancies: Occ1_1 and Occ2_1,
speeds: Spd1_1 and Spd2_1, and the occupancy difference between upstream and
downstream: Docc_1). Here, ‘_1’ stands for the 1st detection interval. The two traffic events
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are parent nodes. The impact of any traffic event can be observed from both upstream and
downstream traffic parameters. The special traffic parameter Docc_1 is also included in the
Bayesian network, because both traffic events have great impact on its values but in different
ways.

Figure 5 Typical Bayesian network for freeway incident detection

Prior traffic knowledge about incident detection is stored in each CPT of the Bayesian
network. Table 1 shows the CPT of the variable Spd1_1. The first entry of the table (0.0,
upper left hand corner) means that given an incident happened in the detection zone which
was followed by incident induced congestion, it is almost impossible that the upstream speed
would be high without any other reasons. This example shows how we convert existing traffic
knowledge into each CPT.

Table 1 Conditional probability table of variable Spd1_1

Inc1_1 Yes No
Con1_1 Yes No Yes No

High 0.0 0.1 0.0 0.6
Medium 0.2 0.6 0.2 0.3

Low 0.8 0.3 0.8 0.1

From above description of the Bayesian network and its CPTs one can see that the Bayesian
network is a transparent causal structure. It constitutes a model of general environment and
simulates the mechanism that nine variables act in the environment. That is the reason why
the knowledge base of the Bayesian network can be easily adapted to new traffic environment
through simply modification of the existing CPTs using site specific knowledge (if needed).
Currently, we assign two states (Yes or No) to each traffic event, and three states (High,
Medium, and Low) to each traffic parameter. This arrangement aims to simplify CPT
construction and make the ID module of the algorithm more general.
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Inc1_1 Docc_1 Con1_1Yes / No
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The basic function of the Bayesian network is to update incident probability at each detection
interval. Spatial traffic information, the state of volume, occupancy and speed at both
upstream and downstream detector stations, is used by the Bayesian network as evidence to
perform evidential reasoning. As shown in Figure 5, both congestion and incident
probabilities are calculated at the same time. The updated congestion probability is not used
as the precondition of incidents but the supporting information for decision making on
incidents. In addition, the parallel two-way inference takes place in the Bayesian network,
which makes use of all available states of traffic parameters simultaneously.

Dynamic Bayesian Network Structure – Temporal Traffic Information

The general way to reduce the FAR of an AID algorithm is the persistence test, which raise an
incident alarm after multiple incidents have been detected by the algorithm at several
consecutive detection intervals. To improve the efficiency of the TSC_fr algorithm, we use
the dynamic Bayesian network structure as an alternative. As shown in Figure 6, the dynamic
Bayesian network consists of two time slices. Each time slice represents one detection interval
(t-1 or t). The basic Bayesian network used in each time slice for incident probability updating
is identical (see Figure 5). To make the following discussion simpler, the details of the basic
Bayesian network topology for each time slice is hidden.

Figure 6 Dynamic Bayesian network structure

The causal links between the nodes in two different time slices try to model the evolving
patterns of traffic events (incident or congestion) at two consecutive detection intervals. For
time slice t, the incident probability updating is performed using both the states of traffic
parameters at current interval t and the estimated incident and congestion probabilities at t-
1(which are again based on the traffic states at t-1). Taking the advantages of bi-directional
reasoning capability of the Bayesian network, similar reasoning can be performed for time
slice t-1, which means the future states of both incident and congestion at next detection
interval can be used to adjust the current incident probability estimate and make it more
reliable. This is how temporal information is used in the TSC_fr algorithm to perform joint
reasoning for incident detection.
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In addition to the dynamic Bayesian network structure, we use estimated incident probability
at the previous detection interval t-1 as the traffic condition indicator for interval t. In the DP
module, we select the most appropriate traffic parameters to perform incident detection at the
current detection interval t based on the state of the traffic indicator (Zhang and Taylor
2006a). For example, if the estimated incident probability at t-1 is very high, we may use both
speed and occupancy data to detect incident at t and ignore the volume data for that interval.
Lin and Daganzo (1997) proposed another effective method to improve incident detection
reliability on homogeneous freeway segments. The cumulative occupancy data were used in
the method to detect delay-inducing incidents whose disturbance generates congestion. This
method is particular good for incident verification even though longer incident detection time
might incur.

TSC_fr Algorithm Testing Results

The TSC_fr algorithm was first tested on Southern Expressway (SX) in Adelaide using
simulated incident data (Zhang and Taylor 2004a). The SX is a novel one-way reversible
direction expressway on which the TSC_fr algorithm was developed. Under the prevailing
tidal flow nature, the SX is designed to operate northbound in the morning and southbound in
the evening to relieve peak flow traffic on an alternative arterial route (Main South Road). A
full description of the SX and its traffic control system is given in Taylor (2005). To compare
the congestion parameters and emissions of the SX and Main South Road, and to investigate
the impact of advanced traffic management implementation on the SX, a micro-simulation
traffic model of the SX was constructed using the Paramics microsimulation package
(Woolley et al. 2001b). The SX model has been validated using field operational data. A total
of 36 different types of lane-blocking incidents were simulated using the SX model under
different traffic conditions for algorithm testing. One incident was generated during each 45-
minute simulation run. Incident duration varied from 15 to 25 minutes.

Following the simulation studies, a large number of field incident data sets obtained on
Tullamarine Freeway and South Eastern Freeway (SEF) in Melbourne were used to evaluate
the TSC_fr algorithm (Zhang and Taylor 2006a). This high quality incident database of real
incidents had been used in early research to develop the neural network based MLF
(multiple-layer feed-forward) algorithm (Dia and Rose 1997). The Tullamarine-SEF incident
database contains 100 incidents which were collected on the Tullamarine (85 incidents) and
the SEF (15 incidents) between February 1992 and March 1995. To meet the neural network
training needs, the starting time of each incident in the database was estimated, which was
based on both the manual inspection of each incident data set and on its corresponding
descriptions recorded in operators’ logs (Dia and Rose 1997).

TSC_fr Algorithm Performance

The performance of the TSC_fr algorithm on SX data and Tullamarine-SEF data is shown in
Table 2. The simulation studies on the SX indicated that the TSC_fr algorithm had a perfect
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DR (100 per cent) and a low FAR (0.07 per cent) when the decision threshold was set to 70
per cent. The FAR was calculated using the total number of incident free intervals of the 36
incident data sets. Meanwhile, the MTTD produced by the algorithm was 117 seconds, which
was reasonably fast for field application.

Table 2 Performance of the TSC_fr Algorithm on SX Data (simulated) and Tullamarine-SEF
data (real)

Incident detection performance

Test site

Incident
decision
threshold

(%)
DR (%) FAR (%)

MTTD
(second)

60 100 0.35 117
70 100 0.07 117

SX
(36 incidents)

85 100 0.07 128
55 92 0.143 158
60 92 0.103 165

Tullamarine
& SEF

(100 incidents) 70 92 0.087 175

When the Tullamarine-SEF data were used to test the TSC_fr algorithm, a very consistent
algorithm performance was obtained: the DR was 92 per cent and the FAR was 0.087 per cent
when the decision threshold was set to 70 per cent. The MTTD of the algorithm increased by
about one minute (from 117 to 175 seconds) compared with the simulation results. Note that
the estimated incident start time was used to calculate the MTTD instead of using the time
that appeared in operator’s log. As noted in Dia and Rose (1997), inspection of the log times
corresponding to the evaluation data set (40 incidents) revealed that two incidents were
detected by the operators before their impact on traffic was confirmed from the detector data.
Only seven of the remaining 38 incidents were detected by the operators within 3 minutes of
their occurrence. The average time taken by the operators to detect the 38 incidents was 6.9
minutes after their estimated occurrence times. This suggests that the TSC_fr algorithm has
the potential to provide more than 50 per cent improvement in efficiency compared to the
average time taken by the operators to detect incidents.

The eight undetected incidents belong to Tullamarine Freeway, which occurred at six
different freeway sections. Five of them happened during peak periods. Visual inspection of
the five peak-period incident data sets revealed a few common traffic features: (1) the average
lane volume was still very high (around 1800 veh/h) during incident periods, (2) the average
lane occupancy difference between the upstream and downstream detector was small (e.g. this
value exceeded 0.05 for one incident only), and (3) the speed drops were experienced by both
the upstream and downstream detector, no significant speed difference between the two
detectors was observed (only one incident created a 15 km/h speed difference). For the three
undetected off-peak incidents, one happened at early morning (6:03 am), another one
occurred at evening (7:42 pm), and these two incidents did not generate apparent traffic
disturbance. The third off-peak incident created a huge speed drop (from 90 km/h to 30 km/h)
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at both the upstream and downstream detectors, however, the volumes and occupancies
experienced by the detectors were not changed.

The most distinct feature of the TSC_fr algorithm performance on Tullamarine-SEF data was
that the DR was not sensitive to the decision threshold settings. When the decision threshold
was set between 55 and 70 per cent, a stable DR of 92 per cent was obtained. Meanwhile, the
FAR was slightly affected by the decision threshold, decreasing with the increasing values of
the decision threshold (see Table 2). This feature was also found from the algorithm
performance on SX data, which confirmed our belief that dynamic and concise traffic pattern
description, general knowledgebase and strong evidential reasoning capability of the TSC_fr
algorithm are the key to achieve stable incident detection.

As discussed in the first section, strong transferability is essential for any successful AID
algorithm. Table 2 indicates a very consistent performance of the algorithm on two different
incident databases. This result demonstrates a strong transferability of the TSC_fr algorithm.
Note that when we adapted the original TSC_fr algorithm from the SX to the Tullamarine, no
retraining was performed on the ID module, which means the original Bayesian network and
its CPTs used by the original ID module were unchanged. Since we had little prior knowledge
about the normal traffic on the two Melbourne freeways, we had to use field incident data to
extract site specific knowledge for the DP module adaptation. We selected ten out of 85
Tullamarine Freeway incidents for manual inspection. Based on that, the original thresholds
used for traffic data processing were adjusted. Alternatively, experienced traffic operators
could perform such tasks without looking at those incident data sets. No further threshold
modification was performed when the algorithm was tested on the SEF data. As such, the
TSC_fr algorithm adaptation / implementation requirements had been reduced substantially.

Comparison Studies

To assess the competitiveness of the TSC_fr algorithm, we compare its performance against
the most advanced freeway AID algorithms including the MLF, the PNN (probabilistic neural
network), the CPNN (constructive probabilistic neural network), and the SVM_P (support
vector machines with polynomial kernel function) algorithm. The direct performance
comparison between the TSC_fr algorithm and the MLF algorithm is performed using the
Tullamarine-SEF database (the evaluation set). This original evaluation data set contained 40
incidents, 25 from the Tullamarine and 15 from the SEF. None of these incidents had been
used to train the MLF algorithm or to adapt the TSC_fr algorithm to the Tullamarine.

In general, it would be inappropriate to compare the performance of algorithms obtained on
different data sets, especially when incident data based training and adaptation plays a
significant role in algorithm performance. To assess the TSC_fr algorithm in a broad base, we
cite a recent work in which three neural network models (MLF, PNN and CPNN) for freeway
AID were compared directly on the same AYE databases from Singapore (Srinivasan et al.
2004). The Ayer Rajar Expressway (AYE) database contained 300 simulated incidents. This
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data set was used to evaluate the performance of the three neural network based algorithms.
All three algorithms were thoroughly trained using half of the 300 incidents before they were
tested on the other half of the incidents from AYE database. Using the MLF algorithm as a
bridge, we may perform indirect comparison between the TSC_fr algorithm and the PNN and
CPNN algorithms. In addition, we also include the performance of the SVM_P algorithm on
the I-880 Freeway database from California, USA (Yuan and Cheu 2003) into our comparison
studies. The I-880 Freeway database consisted of 45 field incidents. A total of 22 incidents
from this database were used for the SVM_P algorithm training. The remaining 23 incidents
were used to test algorithm performance. The performance of the above mentioned algorithms
is shown in Table 3.

The figures in Table 3 indicate that, on the basis of the available data sets, the TSC_fr
algorithm performed better than the MLF algorithm, no matter which decision threshold value
(between 55 to 70 per cent) was selected. Given the similar low FAR (e.g. FAR < 0.07 per
cent), both the DR and MTTD of the TSC_fr algorithm were superior than those of the MLF
algorithm. Meanwhile, the TSC_fr algorithm was more stable in terms of the reduced positive
correlation between the DR and FAR. As can be seen in Table 3, the DR of the TSC_fr
algorithm was not sensitive to the decision threshold compared with the MLF algorithm, and
the FAR of the TSC_fr algorithm improved slightly with increasing values of the decision
threshold. The SVM_P algorithm also exhibited a superb performance which was comparable
with that of the TSC_fr algorithm. However Yuan and Cheu (2003) noted that the speed of
SVM_P training was found to increase exponentially with the number of training vectors in
the data set. This fact might limit the SVM_P algorithm training and optimization process
when a large number of field incident data are available. The performance of the former three
algorithms is indicated in Figure 7.
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Table 3 Performance of the TSC_fr, MLF, SVM_P, PNN and CPNN algorithm

Performance

Algorithm Source Data set
Number of
incidents

Incident
decision

threshold /
Number of
persistence

test

DR
(%)

FAR
(%)

MTTD
(sec)

55 % 92.5 0.072 150
60 % 92.5 0.057 163TSC_fr

Zhang and
Taylor
2006a

Tullamarine

& SEF 40 (field)
70 % 92.5 0.05 170
0.4 90 0.442 170
0.5 87 0.273 181MLF

Dia and
Rose 1997

Tullamarine

& SEF
40 (field)

0.64 82.5 0.065 203
0 91.3 0.17 138

SVM_P
Yuan and

Cheu 2003
I-880 23 (field)

1 91.3 0.13 135
1 90.2 0.18 139

MLF
Srinivasan
et al. 2004

AYE
150

(simulated) 2 86 0.05 163
1 87.3 0.46 147

PNN
Srinivasan
et al. 2004

AYE
150

(simulated) 2 85.3 0.21 172
2 92 0.81 170

CPNN
Srinivasan
et al. 2004

AYE
150

(simulated) 3 86 0.34 188

Table 3 also shows that the MLF algorithm performed the best among the three neural
network based algorithms on AYE data in terms of DR and FAR. Meanwhile, it produced a
shorter MTTD when compared with the other two algorithms. Given the fact that the MLF
model used in this work shared the same network structure and network training scheme with
that in Dia’s work (Dia and Rose 1997), the above results imply that the TSC_fr algorithm is
also very competitive against both PNN and CPNN based algorithms.
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URBAN ARTERIAL ROAD AID ALGORITHM TSC_ar

Detector Configuration and Data Processing

The TSC_ar algorithm was developed on Cross Road in Adelaide. As shown in Figure 8, the
incident detection zone used in this research covers the upstream intersection and the roadway
between the two adjacent intersections (between detector station a1 and a2). Under the SCATS
(Hicks and Carter 2000; Lowrie 1982) signal control systems which are dominant in major
Australian cities, traffic detectors are located on the approach side of the signalized
intersection just next to the stop line (i.e. b1 and b2 in Figure 8). We propose the incident
detectors to be located 50 metres away from the stop line further upstream for incident
detection. The rationale for such detector configuration is that the detector a1 can monitor the
queue evolution during each signal cycle and it can indicate traffic demand better than stop-
line detectors. In practice, one set of the currently available video detector (Nelson 2002) can
provide such flexibility to monitor multiple loop detector zones of one approach (e.g. cover
both a1 and b1) through on-screen detection zone configuration.

In the TSC_ar algorithm, we use the major traffic stream at the upstream intersection as an
indicator to detect incidents downstream for each signal cycle. Traffic signal settings of both
upstream and downstream intersection are incorporated into the DP module to perform traffic
data extraction. The upstream traffic volume that corresponds to the major traffic stream of
each signal cycle is extracted from b1 data. Meanwhile, the upstream occupancy during the
same major phase is extracted from a1 data to provide the algorithm with concurrent queuing
conditions. We only use a2 data to extract downstream volume and occupancy which
corresponds to the same traffic stream from upstream intersection. Incident detection interval
for the TSC_ar algorithm depends on upstream traffic signal cycle time.

Figure 8 Detector configuration for arterial road incident detection
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Major traffic stream
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Our proposed detector configuration is different from traditional one (Khan and Ritchie 1998;
Thomas et al. 2001; Yuan and Cheu 2003), in which the incident detection zone was defined
as the road section between a3 and a2 (see Figure 8). Under the traditional detector
configuration, traffic data processing is simpler, and incident detection can be performed at
fixed time step (like freeway AID) without considering the actual traffic signal plans for the
intersections. However, it is well known that the traffic signal plays an important role in
traffic pattern formation (for both incident and incident-free patterns). It is very difficult to
precisely describe incident patterns using both a3 and a2 data without considering the traffic
signal plans and its impact on incident evolution, especially when adaptive traffic signal
control is implemented at the intersections.

Basic Bayesian Network

The basic Bayesian network used in the ID module for arterial road incident detection is show
in Figure 9. The network consists of three traffic events (incident: Inc1_1, congestion at both
upstream and downstream intersection: Con1_1 and Con2_1) and five traffic parameters
(turning count at the upstream intersection: Turn1_1, volumes of both intersections: Vol1_1
and Vol2_1 (representing the major traffic stream), and occupancies of both intersections:
Occ1_1 and Occ2_1). Similar to the typical freeway Bayesian network, each traffic parameter
has three states (High / Medium / Low) and each traffic event has two states (Yes / No).

Figure 9 Basic Bayesian network for arterial road incident detection

Note that an arterial road traffic congestion is often characterized by queues surrounding
certain intersections, the key points of an arterial road network (Taylor 1992). To better
represent this feature, the concept of node congestion instead of link congestion is used to
construct the Bayesian network. As shown in Figure 9, the node Con1_1 and Con2_1 are used
to represent congestion at the upstream and downstream intersection respectively. Through
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this treatment, the impact from incident to two individual intersection congestion situations
can be modelled.

An arterial road incident does not always block upstream traffic and free downstream one as
the typical freeway incident does. In case of a mid-block lane-blocking incident, a certain
proportion of the platoon, which was released from the upstream intersection and is
interrupted and delayed by the incident, may encounter red signal at the downstream
intersection (whereas normally it does not). Hence the incident induced long queue may
appear downstream first. In addition to incidents themselves, the preceding traffic condition
and the traffic signal control at both upstream and downstream intersections also influence
incident pattern formation. To model these more complicated arterial road incident scenarios,
the causal link between each pair of upstream-downstream traffic parameters (e.g. Occ1_1
and Occ2_1) and the links from Con1_1 to both Occ2_1 and Vol2_1 are built up. In addition,
abnormal turning movements upstream are an important indicator of possible incidents, the
node Turn1_1 is included into the basic Bayesian network, whose value is extracted from
upstream stop-line detector (b1) data where possible.

Scenario-specific Bayesian Network

A link-blocking incident on arterial roads usually generates a distinct traffic pattern which is
similar to the severe freeway incident pattern. However, this pattern differs from a normal
capacity-reducing lane-blocking incident pattern. To pick up both lane-blocking and link-
blocking incidents and to reduce the false alarm rate of the TSC_ar algorithm at the same
time, we create two incident scenario specific Bayesian networks which work in parallel in
the ID module. The two scenario specific Bayesian networks share the same network
topology (see Figure 9), but each network has its respective CPTs.

Inside the ID module, the Bayesian network tailored for link-blocking incident scenario works
as the main inference engine. The updated incident and congestion probability in this network
will automatically be used to produce the final estimate of incident probability for each
detection interval. Meanwhile, the updated incident probability in the other network (lane-
blocking incident specific network) is used as a switch. If its value is higher than the
predefined threshold and the incident probability produced by the link-blocking specific
Bayesian network is not high enough, then the two Bayesian networks will swap at the next
detection interval. The incident report will then be based on the reasoning results from the
lane-blocking specific Bayesian network. The reason for this design is that the link-blocking
incident scenario can be more clearly described. In addition, we can apply a narrowed
tolerance region to some entries of the CPTs for the link-blocking specific Bayesian network
with little ambiguous interpretation, which could reduce the MTTD without a large increase
in false alarms.
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TSC_ar Algorithm Testing Results

TSC_fr Algorithm Performance

In our early research (Zhang and Taylor 2004a; Zhang and Taylor 2005), microscopic traffic
simulation with Paramics was the major tool used to develop the freeway AID algorithm
TSC_fr. When the algorithm was evaluated using a large number of field incident data sets,
its performance was very consistent with the one obtained from simulation study. Given the
scarcity of high quality arterial road incident data and encouraged by the above results,
simulated arterial road incident data were used to test the TSC_ar algorithm at the current
stage of algorithm development (Zhang and Taylor 2006b). The test site was Cross Road, an
urban arterial road in Adelaide, Australia. Cross Road is located in the Unley municipality
which sits next to Adelaide CBD. As shown in Figure 10, our targeted road section is between
Unley Road and Fullarton Road, which includes of three signalized intersections.

Figure 10 Targeted arterial road section of Cross Road

The Cross Road micro-simulation traffic model used in this research was part of the validated
Paramics micro-simulation model that covered the entire Unley road network (Woolley et al.
2001a). This model was constructed for evaluating the 40 km/h urban speed limit scheme
applied to residential streets in that area. Total 40 different types of arterial road incidents
were simulated using the Cross Road model. One incident was generated during each one-
hour simulation run, and incident duration varied from 10 to 35 minutes. We intended to limit
the scale (not the complexity) of the algorithm test, as our primary interest was to know how
effective our new approach for arterial road AID would be at this initial stage of algorithm
development. The algorithm performance is shown in Table 4.
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Table 4 TSC_ar algorithm performance on Cross Road data (simulated)

Incident detection performanceIncident
decision
threshold

(%)
DR (%) FAR (%) MTTD (second)

65 88 0.78 175
70 88 0.62 178
80 83 0.57 203

The DR produced by the TSC_ar algorithm was 88 per cent and the FAR of the algorithm was
0.62 per cent when the incident threshold was set to 70 per cent, which were very
encouraging. The MTTD of the algorithm (178 seconds) was reasonable for field application.
Most excitingly, the DR of the TSC_ar algorithm reached a stable region (DR > 80 per cent)
when the incident decision threshold was set between 65 and 80 per cent; meanwhile, the
FAR of the algorithm was no longer sensitive to the decision threshold settings and improved
slightly with the increases of the decision threshold. The above findings are very consistent
with the performance of the TSC_fr algorithm, which demonstrates the capability of the
Bayesian network approach in achieving the enhanced incident detection on arterial roads.

Comparison Studies

To assess the competitiveness of the TSC_ar algorithm, the Bayesian network method is
compared with several advanced incident detection methods which include the vehicle
positioning method (Sermons and Koppelman 1996), the neural networks method (Khan and
Ritchie 1998; Thomas et al. 2001), support vector machine (Yuan and Cheu 2003), and the
data fusion method (Ivan 1997). The review of the above literature suggested that detector
configuration used for incident detection varied from site to site. Meanwhile, different traffic
signal controls made arterial road incident detection even more site specific when compared
with freeway incident detection. It is very difficult to perform a stringent performance
comparison between two algorithms on the same data set, especially when they have different
theoretical foundations. Hence, the algorithm performance shown in Table 5 was obtained
from research literature which represented the best results of those methods. These figures
only provide a fairly general indication on the effectiveness of these mentioned arterial road
AID algorithms. To test the vehicle positing based algorithm, the short-term lane closures
were substituted for spontaneous incidents. Except for this algorithm, the performances of the
other algorithms shown in the table were produced using simulated incident data.
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Table 5 Performance of the TSC_ar, MLF (basic and modular), PNN, SVM_P, vehicle
positioning and data fusion algorithm

Algorithm performance

Algorithm Source Data set
Number

of
incidents

Incident
decision
threshold

/
Persistenc

e test

DR
(%)

FAR
(%)

MTTD
(sec)

TSC_ar
Zhang and

Taylor
2006b

Cross Rd. 40 70 % 88 0.62 178

MLF PT=1 60.2 0.24 156
PNN PT=1 77.2 0.89 155

SVM_P

Yuan and
Cheu 2003

Ave west-
Clementi 324

PT=1 88.9 0.22 149
MLF

(modular)
Thomas et
al. 2001

Coronation
Dr

13 PT=2 85 0.64 114

PT=0 76 1.16
205

(1.63
cycle)

MLF
(Basic)

Khan and
Ritchie
1998

Anaheim 108

PT=1 60 0.23
(2.63
cycle)

Vehicle
positioning

Sermons
and

Koppelman
1996

Chicago 56
Incident
prior <

0.3
68 0 -

Data fusion Ivan 1997 Chicago
90

(training)
93 0 -

The neural network based data fusion algorithm produced the best DR of 93 per cent with a
zero FAR (Ivan 1997). Both fixed detector data and probe vehicle data were used for incident
detection. The result implied a great potential of the data fusion method in tackling arterial
road incident detection problems. Since this work focused on the algorithm output fusion
network topology comparison, the algorithm performance shown in Table 5 was the best
network training results rather than algorithm evaluation results. In addition to data fusion, the
vehicle positioning based algorithm also produced the lowest FAR of zero. However, the
relatively low DR of 68 per cent was generated by the algorithm at the same time when the
incident prior was set to 0.15 to minimize the number of false alarms (Sermons and
Koppelman 1996). It was also reported in the same literature that ‘it would not be appropriate
to increase the incident priors to enhance the DR as this would generate a large number of
false alarms in an application to new data’.
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The basic MLF algorithm had also produced the low FAR of 0.23 per cent by performing
one-step persistence test (Khan and Ritchie 1998). On the other hand, the resultant DR of the
algorithm became low (60 per cent) as well. This result was consistent with Yuan’s later work
(Yuan and Cheu 2003). To improve the DR of the algorithm and to maintain the low FAR, the
modular neural networks was proposed by Khan and it was reported that the DR was
improved to about 70 per cent (based on Figure 6 in that paper). This modular neural network
architecture was used later in Thomas et al. (2001), in which both loop detector data and
probe vehicle data were used to detect incidents, and the resultant DR was improved to 85 per
cent.

The TSC_ar algorithm produced a good DR of 88 per cent, which was comparable with the
SVM_P algorithm on fixed detector data and the modular MLF algorithm on multiple data
sources. Meanwhile, the FAR was maintained at 0.62 per cent. The distinct feature of the
TSC_fr algorithm was the DR of the TSC_ar algorithm reached a stable region (DR > 80 per
cent) when the incident decision threshold was set between 65 and 80 per cent. We think this
feature stems largely from the general knowledge base of the algorithm (CPTs of the
Bayesian networks) and its strong reasoning capability. The transparent causal structure and
fully accessible CPTs of the Bayesian networks could also facilitate the algorithm transfer
from site to site, which is the other strength of our new approach to arterial incident detection
and will be tested in our future research.

CONCLUSIONS

In this research, we treat incident detection problem as a decision making problem rather than
pattern recognition. The focus of AID algorithm design is shifted from precise incident
pattern description and reducing pattern misclassification to effective traffic knowledge
management and strong evidential reasoning capability of the algorithm. We design a general
incident detection module in which Bayesian networks are used to store general traffic
knowledge and work as an inference engine for decision making on incidents. Incident reports
are based on the updated incident probability estimated by the Bayesian networks at each
detection interval. Meanwhile, we develop another site specific data processing module to
convert real time traffic data to traffic states. This module provides the Bayesian networks
with dynamic and concise traffic state information for evidential reasoning.

Two new AID algorithms, the TSC_fr algorithm for freeways and the TSC_ar algorithm for
arterial roads, were developed from the above AID algorithm architecture. The TSC_fr
algorithm was evaluated using high quality field incident data sets, and the TSC_ar algorithm
was tested using simulation data. The TSC_fr algorithm demonstrated how the dynamic
Bayesian network structure could make use of both spatial and temporal traffic information to
perform fast and stable incident detection. Meanwhile, the TSC_ar algorithm showed the
capability of multiple scenario-specific Bayesian networks approach in dealing with
complicated arterial road incident detection problems. Most importantly, the performance of
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the two algorithms was very consistent, which demonstrated the effectiveness of our new
concept for incident detection and the feasibility of the general AID algorithm architecture.

We are currently seeking opportunities to test the TSC_fr algorithm online. As mentioned in
the previous section, the TSC_ar algorithm testing was restricted to one section of Cross Road
at current stage of algorithm development. We are looking at more simulation studies at
different road sections with varying traffic signal settings to test the stability and
transferability for which the TSC_ar algorithm was designed. Incident detection is a decision
making process under uncertainty. “More information less uncertainty” is also true for
incident detection. The data fusion potential of the Bayesian network approach will be
exploited further in our future research, not only in incident detection and management field,
but also in our proposed proactive traffic signal control systems.
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SUMMARY 
 
A multi-lane traffic flow model based on stochastic noise driven dynamics is introduced and 
analyzed. The model employs conservative anisotropic Arrhenius spin-exchange (surface 
diffusion) dynamics. We generate an asymmetric simple exclusion process to model vehicle 
interactions. Vehicles react and advance based on the energy profile of their surrounding traffic 
through a novel look-ahead asymmetric interaction potential. The resulting vehicular traffic 
model is numerically implemented via kinetic Monte Carlo simulations and scrutinized under 
basic traffic flow situations. 
 

 

INTRODUCTION 
 
Modeling traffic during congested conditions is a long standing open problem which has 
intrigued and puzzled researchers and government officials alike. Although the first attempts in 
obtaining a traffic flow model date as far back as 1934, Greenshields (1934), the problem of 
describing the flow and overall behavior of traffic, for more than just a light traffic stream, still 
remains largely unsolved. The challenge is to accurately resolve the motion of a large number of 
interacting vehicles. 
 
A traffic flow model which is capable of describing the state of traffic flow at all concentration 
regimes in real time would therefore be invaluable in analyzing problems, before they arise, and 
subsequently allowing for the appropriate course of action. A model of this type can also be 
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useful in the planning or decision stages of building highways by allowing engineers to test the 
capacity of a given highway before it is even build. Although no such model currently exists 
there have been several efforts towards that direction in recent years in CA modeling (Nagel and 
Schreckenberg 1992; Knospe et al. 2000, 2002; Nagel and Paczuski 1995; Barlovic et al. 1998) 
in macroscopic PDE models (Whitham 1974; Newell 1961; Muramatsu and Nagatani 1999; 
Komatsu and Sasa 1995; Nagatani 2002; Kerner and Konhauser 1994; Jin and Liu 1994) or other 
types of models (Klar and Wegener 2000; Illner et al. 2003; Helbing and Treiber 1998; Treiber et 
al. 1999; Sopasakis 2003, 2002; Muramatsu and Nagatani 1999; Bando et al. 1995; Treiber et al. 
1999) each of which can produce partially satisfying results depending on a specific range of 
prevailing traffic conditions for which the model is valid. 
  
In this work we attempt a new approach to traffic modeling which results in a stochastic model 
for multi-lane vehicular traffic. The multi-lane model which we propose here is based on the 
principles first introduced in Sopasakis (2004). We construct a novel energy driven stochastic 
noise process in conjunction with an anisotropic type interaction potential in an attempt to 
describe the different phases of traffic and the vehicular behavior which arise for high 
concentration regimes. The resulting multi-lane model displays important similarities when 
compared to observed behavior from actual traffic data and as we will show is able to predict a 
number of key characteristics of vehicular traffic. 
 
Although traffic states are quite complex we can, based on observations (Helbing 2001; Helbing 
et al. 2002; Kerner and Klenov 2002; Schadschneider 2002), categorize them into a small number 
of main phases: free flow, synchronized traffic, wide moving jams and congested traffic. Most 
everyone is familiar with free flow and congested traffic in road networks. Figure 1 depicts these 
well-known traffic states in a simple diagram. Congested traffic however has several different 
forms and includes the so called wide moving jams and synchronized traffic phenomena. In short, 
a wide moving jam, is a localized structure, such as traffic a waves, with width which is larger 
than its front and propagates unchanged against the direction of traffic. Synchronized traffic, on 
the other hand, is characterized by high vehicle flows which surprisingly can sustain also 
increasing vehicle velocities. Naturally this is a recipe for disaster since sooner or later the traffic 
must break down with a number of other interesting traffic states yet to be discovered. A meta-
stable region, as also marked on our diagram in Figure 1, is a result of a type of synchronized 
traffic phenomenon where drivers try to attain their desired speed even though vehicle densities 
are increasing. Once again the observed capacity drop is inevitable.  
 
It seems daunting for any deterministic type model of vehicular traffic (Nelson 2000; 
Schadschneider 2002; Helbing 1995; Phillips 1979) to manage and capture these multivalued and 
transitional effects observed for concentrations above ccrit . This is probably the reason that a 
number of such models have been criticized (Daganzo 1995; Nelson 2000; Rathi et al. 1987; 
Ross 1988; Newell 1989) thus leading to subsequent improvements more recently (Aw and 
Rascle 2000; Sopasakis 2003; Illner et al 2003). Nevertheless due to their nature deterministic 
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models lack the descriptive effects which are possible through a stochastic model, and which we 
hope to entertain here.   
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Figure 1. The fundamental diagram (flow-density relationship) 
depicting some of the major traffic states. 

 
In contrast cellular automaton (CA) models, due to their microscopic structure, exhibit a number 
of these traffic phases with promise (Schreckenberg and Wolf 1998; Nagel and Schreckenberg 
1992; Jiang and Wu 1998). CA models are discretized in space, time and (usually) velocity and 
rely heavily on computational resources while simple updating mechanisms trace the traffic 
conditions which prevail in time. To further enhance interactions and complex behavior however 
recent CA models include a small amount of ad hoc stochastic noise thus leading to more 
realistic and interesting traffic behavior (p159 of Schadschneider 2002).  
 
The work is outlined as follows: we start by building all of the necessary mathematical tools for 
vehicle interactions in the next two sections. Overall we introduce an asymmetric simple 
exclusion process (ASEP) (Evals et al. 1998; Krug and Ferrari 1996; Landim and Kipnis 1999), 
guaranteeing that vehicles do not occupy the same site. Further vehicles are forced to move 
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toward one direction since the dynamics, depending on spatial forward Arrhenius interactions, 
implement one-sided potentials and a look-ahead feature. A variety of ASEP models without 
look-ahead Arrhenius interactions have been studied by Gray and Griffeath (2001). The effects of 
passing and lane changing are relatively less near jam density than in near critical density. 
Clearly this is not the case in free flow traffic with few vehicles. A major advantage which 
further differentiates this model is that it relies on a small number of parameters which are 
directly linked to observed physical traffic characteristics. Therefore due to its simplicity this 
model can also lend itself to analysis. 
 
Based on scaling and limit arguments as well as asymptotic expansions we show in the fourth 
section that up to leading order term our model is equivalent in form to Lighthill-Whitham-
Richards, integrodifferential Burgers or higher order dispersive type PDE depending on the order 
of expansion carried out. 
 
Last in order for any model of traffic flow to even have a chance of producing results resembling 
real traffic it must take into consideration the actual method used for data collection. There are 
several different methods for collecting traffic data depending on which traffic observables the 
researchers are interested in obtaining during their experiment. For comparison purposes 
therefore the simulated data must be collected in similar manner as actual data in order for 
differences or similarities to be detectable. The link between actual data collection and simulated 
traffic sampling is therefore important and is examined in the fifth section. The developing theory 
therefore also examines and account for measurement capability (Hall 1996). 
 
Further this model can be implemented numerically in order to produce realistic traffic flow data 
via use of a kinetic Monte Carlo simulation. The resulting algorithm can handle heavy traffic and 
produces predictions in real time. Numerical simulations and test cases are presented in the fifth 
section. We test the resulting model under a variety of common traffic situations and observe or 
compare the developing flow against similar other models or equivalent data from Helbing et al. 
(2002); and Wiedemann (1974). Our findings are summarized in the conclusions section.  
 
 
MICROSCOPIC MECHANISM 
 
In this section we present the basic stochastic spin exchange dynamics which represents the 
vehicles on the highway and how they interact with each other and the environment. We start by 
providing the relevant notation. We define our physical space as a two-dimensional, periodic 
lattice, which is partitioned into n x m cells via, 

22 ]1,0[1
∩= Z

nm
L  
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where Z denotes the positive integers. The identification from particle dynamics to vehicles is 
understood in the simplest possible setting: on each of the lattice points  Lx ∈  we define an order 
parameter )(xσ  via,  

⎩
⎨
⎧

=
 vehicles)(noempty  is at  site if     0

 site occupies  vehiclea if             1
)(

x
x

xσ   (1) 

A spin configuration σ  is an element of the configuration space L}1,0{=Σ  and we write 
{ }Lxx ∈= :)(σσ  denoted by )(xσ  the spin at x.  

 
We extend the usual Ising type particle interactions to vehicles and derive a corresponding 
microscopic stochastic model. This procedure should be successful assuming we understand and 
can correctly capture and describe mathematically the interaction potential between vehicles.  
 
We start by obtaining suitable interpretations of many of the usual parameters of Ising systems 
and in many instances absorb as many of those parameters as possible in order to simplify our 
model and adapt it better to vehicular traffic.   
 
Since there are |L| sites on the lattice then the system can be in any of L2  possible states. The 
local situation at each of those states is appraised by the interaction potential J. We let J denote 
an asymmetric short range inter-vehicle interaction potential, 

LyxyxVyxJ ∈−= ,for         ,))((),( γ    (2) 
where L/1=γ  is a parameter prescribing the range of microscopic interactions and therefore L 
denotes the potential radius. Here we let RRV →:  and we set, 

1for         0)(        and          ,0)( ≥=∈= − rrVRrrV  
In the simulations we choose a simple constant potential of the form, 

⎩
⎨
⎧

=
otherwise         ,0

10   if   ,
)( 0 pp rJ

rV     (3) 

where 0J  is a parameter which based on its sign describes attractive, repulsive or no-interactions 
(note that we can adapt a non-constant value of 0J  which would be more realistic, such as a 
Maxwellian, or otherwise). Since naturally vehicles try to move toward the empty space in the 
highway we must implement repulsive interactions. In this work we implement, piecewise 
constant, 10 =J , short range local interactions. At the same time (3) indirectly enforces simple 
but necessary rules for vehicles, such as no negative speeds (since V is zero for moves backward). 
Similarly it is seen that vehicles only react to local, and based on the above discussion forward, 
traffic conditions and stimuli, as would be expected in real traffic situations, since we set 

10 pp r  (i.e. no long range interactions). It is possible and in fact easy however to change the 
potential so that interactions with vehicles behind can also be accounted for. This would be 
particularly interesting in the case of lane changing for instance. In the simulations which will 
follow we let L=4. This potential radius in effect corresponds to vehicles (or drivers) being able 
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to ‘look ahead’ for up to 4 cells in order to evaluate the status of traffic in front of them and make 
a more sensible decision as to which cell to move to next based on the potential strength, (2).  
 
 
Conservative Arrhenius dynamics  
 
In this model we implement spin-exchange Arrhenius dynamics. We refer to Sopasakis (2004) 
and Liggett (1985) for other possibilities. Under this engine the simulation is driven based on the 
energy barrier a particle has to overcome in changing from one system state to another. During 
such a spin-exchange between nearest neighbor sites x and y the system will actually allow the 
order parameter )(xσ  at location x to exchange sign with the one at y. This is understood as 
advancing a vehicle from x to y=N(x) where by N(x) we denote the nearest neighbors of Lx ∈ . 
The rate at which a process will do this for spin-exchange Arrhenius dynamics is defined Liggett 
(1985) as, 

⎩
⎨
⎧ ==−

=
otherwise                                               ,0

0)(   and   1)( if   )](exp[
))(,,( 0 yσxσxUc

xyxc σ   (4) 

The parameters and variables comprising this exchange rate are as follows, 
τ/10 =c       (5) 

with τ  the characteristic or relaxation time for the stochastic interaction process. As will become 
clear in the simulations section the two free parameters 0c  (or τ ) and 0J  are directly related to 
known traffic observables and are therefore easy to calibrate. In (4) U(x) denotes the inter-particle 
vehicle interaction potential and is comprised of contributions from short range exchange 
interactions eU , and an external potential h(x),  

)()()( xhxUxU e +=      (6) 
Note that the external potential h(x) could vary in both space and also time if so desired. In that 
case h can account for temporal and spatial traffic situations which in effect may simulate 
phenomena such as rush hour traffic, local weather anomalies etc. Although feasible we do not 
present any simulations with the influence of the external potential in this work. We set, 

)(),()( zzxJxU

xz
Lz

e σ∑
≠

∈

=     (7) 

with J as in (2). 
 
Clearly for one-lane traffic y in (4) corresponds to x+1. Note that the exchange, due to the 
specific construction of the interaction potential J in (2), can take effect if and only if the location 
at x is occupied while the adjacent location at y is not. In that respect vehicles are restricted from 
performing an exchange move backward – an unrealistic move for vehicular traffic. Similarly 
vehicles are only restricted to move to their nearest cells and no further. 
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Overall given (4) and the dynamics just described the probability of spin-exchange between x and 
y during time ],[ ttt Δ+  is, (Liggett 1985) 

)(),,( 2tOtyxc Δ+Δ=σ     (8) 
In terms of traffic this is understood as the probability for a vehicle at location x to move to 
location at y. Note that if indeed there is already a vehicle at location y the corresponding 
probability will be zero, since we have designed an exclusion process, and therefore there will be 
no chance for this move to occur.  
 
The stochastic process }{ 0≥ttσ  is a continuous time jump Markov process on );( RL Σ∞  with 
generator (Liggett 1985), 

∑
∈

−=
Lyx

yx ffyxcMf
,

, )]()()[,,())(( σσσσ    (9) 

for any bounded test function );( RLf Σ∈ ∞  with ),,( σyxc  defined in (4). Here yx,σ  denotes the 
configuration after an exchange of the spin between x and y, 
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Therefore observables f (test functions) evolve with the rule (Liggett 1985) 

))(()( σσ MfEEf
dt
d

t =     (10) 

which is equivalent to the well known Dynkin's formula.  
 
Considering a multi-lane highway requires different dynamics than those used in the one-lane 
case by Sopasakis (2004). Special attention to application of the proper vehicle interaction 
potentials is needed. We undertake this task next. 
 
 
MULTI-LANE EXTENSIONS 
 
In this section we develop the mechanism for lane changing. The lane changing dynamics which 
will be presented here can be adjusted for highways with American, European or other standards. 
The main difference being whether a vehicle is allowed to pass only on the left lane or on either 
lane. We follow ideas from Nagel et al. (1998) and Sparmann (1978) in terms of developing 
schemes which agree with observations of lane changing behavior.  
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Lane changing rules 
 
There are two possibilities for passing. Either the drivers must use only the left lane at all times 
or, for example, an American type system, where the driver may also use the right lane for 
passing. In the first case we have a so-called asymmetric lane changing rule while in the second 
case we have a symmetric type of rule. Both such rules can be adapted in our model via a simple 
modular mechanism. 
   
Lane changing can be incorporated in our model by essentially adjusting the vehicle interaction 
potential U to contain an extra anisotropic term.  
 
Overall the interaction potential (6) is adjusted to differentiate between two possible directional 
mechanisms: forward or sideways streaming. This overall lane changing mechanism is included 
in (6) by augmenting the interaction potential with anisotropy interactions αU  

)()()()( xhxUxUxU e ++= α     (11) 
where h(x), as before, can account for both spatial and temporal effects in traffic and )(xU e  as in 
(7). We define the anisotropy potential to be 

∑
=

=
nny

yxxU ),()( ψα      (12) 

where nn signifies nearest neighbor and ψ  denotes the preferred direction of the vehicle. Since 
vehicles may choose to move in three possible directions (forward, left and right) we set 
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Here n is the number of lanes and rl kk ,  and fk  are anisotropy constants whose values influence 
how often drivers change lanes. If y = x+1, this corresponds to a vehicle switching into the lane to 
its left, if y = x-1, this corresponds to a right move, and if y = x+n this signifies a move forward 
(without switching lanes). For realistic traffic conditions we always choose lf kk >>  and 

rf kk >>  which enforces the desire of motorists to move forward rather than switching lanes. 
Therefore, when cars have all possible choices of moving (left, right or forward), they would 
almost always elect to move forward.  
 
Similarly we take here rl kk >>  which simulates the driver's preference to switch into the left 
rather than the right lane, ensuring the asymmetric lane-changing behavior which we wish to 
implement. Drivers will remain in the right lane until they meet a slow car, at which time they 
will most probably, but not always, move into the left lane based on (11). This also results in the 
natural division of the highway into slow and fast lanes. Note that we can modify (13) to 



Stochastic modelling and simulation of multi-lane traffic  669 
 
 

implement symmetric lane-changing rules for American highways by setting rl kk = . In this way, 
a driver has equal probability of changing to either lane, given equivalent conditions in each lane.  
 
In our simulations, three possible spin exchanges were permitted (left, right and forward) and the 
way vehicles move can therefore be compared to the simulations in Nagel et al. (1998) or 
Wiedemann (1974). Nevertheless our simulations can be very adapted to allow other exchanges, 
such as diagonal moves. This can be understood as a vehicle advancing forward and switching 
lanes simultaneously.  
 
 
MACROSCOPIC MODEL EXTENSIONS 
 
We now develop macroscopic PDE models of traffic based on our microscopic traffic model. The 
techniques and analysis from Sopasakis and Katsoulakis (2006) can also be applied here as 
follows: from our definition of a generator (9) we pick )()( zf σσ =  for z fixed in M and expand 
while simplifying as in Sopasakis and Katsoulakis (2006) to obtain the relation, 

),1(
0

),(
0 ))(1)(1())1(1)(()( σσ σσσσσ −−− −−++−−= zUzU

t ezzEcezzEczE
dt
d   (14) 

Note that relation (14) is exact and can be used to evaluate the closures discussed below. 
However it is not yet a closed equation for )1)((Prob)( == xxE tt σσ .  
 
 
Finite Difference Scheme  
 
Suppose now that J (for 0J  fixed) in (6) has fairly long and weak interactions. We may assume 
that the stochastic process in (9) is a ‘perturbation’ of the simple exclusion process considered in 
Landim and Kipnis (1999). This process has a Bernoulli product invariant measure, thus at local 
equilibrium the probability measure is expected to be approximately a product measure. As in 
Penrose (1991) we assume ‘propagation of chaos’ for the microscopic system, in which case the 
fluctuations of the spins });({ Lxx ∈σ  about their mean values are independent and the law of 
large numbers formally applies. Thus the fluctuations of ∑

≠

−
xy

yxyJ )()( σ  about their mean will 

be small such that in the long range interaction limit we have (Sopasakis and Katsoulakis 2006) 
the following semi-discrete finite difference scheme  

)),1(*exp()),(1)(1(),(,0),(),1(),(
0 tzuJtzuzuctzwhereFtzFtzF

dt
tzdu

−−−−==−++   (15) 

where )(),( zEtzu tσ=  denotes the  probability that site z is occupied at time t. 
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Partial Differential Equation Limit  
 
The resulting PDE can now be obtained by simply expanding the spatial variables in Taylor 
series. We also set xh Δ=  and rescale time htt /→ . Omitting the O(h2) terms we have 

0)]*exp()1([/ 0 =−−+ zuJuucdtdu , for Rz ∈  and ∫
∞

−=
z

dyyuzyJzuJ )()()(* . The transport 

equation obtained is, 
)*exp()1()(      where0)( 0 uJuucuFuFu zt −−==+    (16) 

It is also interesting to point out here that the flux F above under the simplest case of no 
interactions ( 00 =J ) corresponds to a commonly used Lighthill-Whitham (Whitham 1974; 
Lighthill and Whitham 1955) type convex flux )(ρρu  where ρ  denotes density and )(ρu  
denotes equilibrium velocity. Note that this type of flux F in (16) produces a traffic stream 
formulation equivalent in form to Burgers equation 0)2/( 2 =+ zt uu . 
 
Note that in fact (15), when fully discretized, provides a natural finite difference scheme for the 
PDE (16) above, 
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  (17) 

 
 

L 240 100 50 10 4 1 
Error  Relative 1l  .0013 .0029 .0051 .0066 .0126 .02 

 
Table 1. Relative error of final solutions.   We compare the semi-discrete FD scheme (15)  

against the stochastic model (14) for different sizes of the potential radius L.  
The stochastic solution has been averaged over 500 realizations for this calculation.  

Other parameters: 23.=τ  and 60 =J . 
 
In Table 1 we display the 1l  relative error estimates of the solutions for the semi-discrete (15) and 
stochastic model (10) based on different sizes of the interaction potential L at a given final time. 
To calculate the corresponding stochastic density stochu  at that time we averaged over 500 
realizations. We observe the smallest relative errors in Table 1 for the case of L=240. This is 
expected based on our assumption of long ranged potentials. We compare further the resulting 
stochastic microscopic (10) and finite difference models presented here against each other and 
provide possible connections with other well known traffic flow models in the following section. 
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Connections and comparisons between models and parameters 
 
We now present connections between our microscopic, PDE and finite difference models (10), 
(16) and (17) respectively with other well known traffic flow models. We refer to Sopasakis and 
Katsoulakis (2006) for details in the one lane case. 
 
We first present hierarchical connections with other well-known traffic flow models based on 
expansions of our underlying macroscopic equation (16). Expanding the convolution term J*u in 
(16) gives the following higher order traffic flow model, 

zzzzzzt uuJuuJcuuJuuJcuJuucu ])exp()1([])exp()1([)]*exp()1([ 0200100 −−+−−=−−+   (18) 
with 10 , JJ  and 2J  from the Taylor expansion of our potential. Note that (18) is a third order 
dispersive PDE with diffusion which is similar in form to the PDEs derived from optimal 
velocity models and usually referred to as ‘modified’ Korteweg-de-Vries (KdV) in Muramatsu 
and Nagatani (1999); Nagatani (2002); Newell (1961). We make general remarks below about 
the behavior of (18) as well as the equivalent but more general (16) under different scales and/or 
parameters: 

a) Assuming first that there are no interactions J = 0 in the potential F of (16) we obtain 
)1()( 0 uucuF −=  which gives a commonly used (for traffic flow) version of the diffusive 

Lighthill-Whitham or Burgers equation flux. 

b) In the opposite case however of long range interactions between vehicles, L=N, we obtain the 
following non-local flux from,  

).exp()1()( 00 uJuucuF −−=     (19) 
Based on Figure 2 under this long range interaction case the flux of the stochastic model and that 
of the PDE (16) agree. 

c) Note further that the hyperbolic equation obtained by including terms up to 0J  in the 
convolution at (18), (disregarding 1J  etc...), 

0)]exp()1([ 00 =−−+ zt uJuucu     (20) 
has a non-convex flux. Indeed the right hand side in Figure 2 shows that if 30 ≥J  the flux is 
neither convex nor concave.  

d) If on the other hand we include terms up to order 1J  in (18) then (18) takes the form of a 
nonlinear Lighthill-Whitham type equation with diffusion (Whitham 1974; Newell 1961; 
Nagatani 2002).  
e) Returning to the higher order dispersive PDE (18) we note the similarities with other usual 
higher order traffic flow models found in Komatsu and Sasa (1995); Muramatsu and Nagatani 
(1999); Nagatani (2002); Kerner and Konhauser (1994); Kurtze and Hong (1995) although the 
coefficients obtained here include nonlinearities.   Coherent structures can emerge as solutions of  
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Figure 2. Long time averages. On the top, comparing flux (21) changes with respect to increasing L.  

On the bottom, comparing the influence of potential strength 0J  in the stochastic flux (21).  
We set 23.,60 == τJ  and run all microscopic simulations for the same total time and under the same 

initial conditions before plotting the flow per concentration.  
Note that for long range interactions we observe that the PDE flux (16) coincides with the long range 

interaction (L=240) microscopic model flux (19) which fluctuates around it. 
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(18) which are similar to traffic waves or wide moving jams. It is known that traveling wave 
solutions of the Payne-Whitham model Kuhne (1984); Kerner and Konhauser (1994) with non-
concave fundamental diagrams, which resemble the form of our higher order PDEs, are 
asymptotically stable under small perturbations for a sub-characteristic type of condition (Li and 
Liu 2005). It would be interesting to further examine traveling wave solutions of (16) as well as 
the higher order approximation (18) and compare them with observed soliton, kink-antikink or 
mixtures of other density solutions as have been noted in Komatsu and Sasa (1995); Muramatsu 
and Nagatani (1999); Kerner and Konhauser (1994). 

f) Further, we remark that equations similar in form to (18) have also been studied in Jin and Liu 
(1994).  
 
 
MONTE CARLO SIMULATIONS 
 
We implement a kinetic Monte Carlo (KMC) algorithm (Bortz et al. 1975) and refer to Sopasakis 
(2004) for all the implementation details of this type of algorithm. Overall the spin-exchange 
algorithm with Arrhenius dynamics has the following form: we start by calculating all the 
transition rates for each vehicle based on (4) for moves to nearest neighbor locations. Note that 
automatically based on our design (2) the moves to occupied locations will always have rate 0. 
We calculate the total exchange rate for all vehicles (so as to create a measure) and we use a 
random number in order to choose one from among them. We perform the chosen move between 
locations x and y and update the simulation time by tΔ  which is equal to the inverse of the 
(already calculated) total rate for all vehicles. We repeat this process from the beginning until we 
have captured the dynamics of interest or simply have reached the end of time for our simulations 
(equilibration).  
 
One of the biggest benefits of a KMC algorithm (Bortz et al. 1975) over a usual MC algorithm  is 
that it produces no ‘null’ steps and therefore every iteration is a success. This is quite useful for 
the cases of high densities of vehicles or while reaching equilibration since in either of these 
situations a Monte Carlo algorithm would progressively slow down and move less and less often 
staying idle for long periods of time. In contrast the KMC algorithm continues to choose and 
move vehicles at every step by skipping the idle waiting and simply adjusting the simulation time 
by the appropriate amount (Sopasakis 2004), as if it had waited for that long. 
 
The method used for recording and analyzing traffic observables in order to compare them to 
theoretical simulations is of paramount importance if we are to obtain conclusive statistics and 
must be clearly explained. In that respect we record quantities of interest such as flow, density 
and velocity from our simulations as shown in Sopasakis (2004). We formally follow studies 
which have been carried out by Athol (1972) and more recently Hall (1996); McShane and Roess 



674  Transportation and Traffic Theory 17 
 
 
(1990); Nelson (2004) regarding proper data collecting procedures and underlying assumptions 
put forth in theory and in practice.  
 
Regardless of detection method, the flow is measured as the number of vehicles )(τn  passing a 
detector at a given time interval τ  via, 

)(1
τ

τ
nq =      (21) 

Based on this formulation flow cannot be found from a single snapshot of vehicles over an 
interval. Also note that another common point of contention is that usually flow is reported in 
units of number of vehicles per hour even though the actual time length of recorded observation 
is much smaller (1/2 to 2 minutes). As a result some concerns have been raised regarding 
sustainability of such high volumes when data corresponds to measurements over time intervals 
which are less than 15 minutes long (HCM 1985).  
 
One of the most important quantities which we must account for in any data collection scheme is 
density. Density is a quantity which is quite hard to measure empirically (McShane and Roess 
1990) and can only be measured along a length (Hall 1996). Based on the collection methods 
described above for flow and space mean speeds it is not uncommon to estimate the density from 
the well known macroscopic formula (‘fundamental identity’) as originally developed by 
Wardrop (1952),  

vcq =       (22) 
The Monte Carlo simulations which we undertake here further allow for virtual detectors in an 
effort to reproduce real traffic data collection procedures during the simulation. Therefore it is 
actually possible to collect data from our simulations in the same manner as done in actual 
highways. We place our virtual detector across the highway so that data is collected for all lanes 
at that location. As an extra advantage which allows for more detailed information we could also 
record data per lane in our simulations which is usually not the case for usual traffic data 
gathering. In this way, flow can be calculated for each individual lane and data can be compiled 
to compute the overall flow for the highway. It is an advantage of the use of simulations that 
allows us to report both observables for all lanes in the highway as well as for individual lanes as 
in Figure 6. Specifically we compute flow from (21) while density is found through calculation of 
occupancy as explained above and in the same fashion as done in Nagel and Schreckenberg 
(1992). The data is averaged over small intervals of time as in real traffic data collection 
practices. We give all the details of the parameters used in each of the simulations which are 
examined in this section.  
 
In this work we simulate a closed round road without entrances or exits which we initialize with a 
specified total density of randomly distributed vehicles. The fundamental diagrams (density-flow 
graphs) are constructed by collecting flow data for a given density. These diagrams therefore 
require several simulation runs in order to complete the complete density spectrum possible. 
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Calibration of parameters 
 
Physically we let the actual length of each cell to be 22 feet. This allows for the average vehicle 
length plus safe distance. Therefore for a vehicle which has an average speed of 60 miles per 
hour we obtain a natural estimate of time to cross a cell, 

second
hourmiles

feetcellt
4
1

/60
22)( ==Δ  

In all the one-lane examples considered below we allow L=4 nearest neighbors in the calculation 
of the interaction potential, U(x). Given the structure of this potential (one-sided) this implies that 
drivers are able to perceive traffic densities which are up to 4 vehicle lengths (plus safe distance) 
ahead of their vehicle (or 4x22 feet = 88 feet ‘look ahead’). In the multi-lane examples, we 
multiply L by the number of lanes, so that drivers can ‘look ahead’ up to four vehicle lengths in 
each lane. However we have also run simulations (not presented here) with a ‘look ahead’ of 3 
and 2 vehicle lengths and in the majority similar results were observed.   
 
There are two free parameters 0J , and τ  which we must calibrate before we start our 
simulations. The calibration itself is performed by simulating a free flow regime where we expect 
all vehicles to drive at their desired speed. We set such a speed to be 65 miles per hour. This is 
accomplished by the characteristic time τ  which allows us to calibrate the maximum velocity 
vehicles would like to drive at assuming no other vehicles ahead. Naturally due to the 
stochasticity inherent in our simulation some vehicles will drive faster while some will drive 
slower than the set limit of 65 miles per hour. As pointed out earlier the free parameter 0J  
indirectly influences how drivers react to conditions in front of them and subsequently allows us 
to set the velocity of an upstream front (which for some highways is found to be approximately 

515 ±−  km/hour (Helbing et al. 2002; Schadschneider 2002; Kerner and Rehborn 1997).  
 
Note that for the chosen parameters 23.=τ  and 60 =J  we obtain the desired velocity of 65 miles 
per hour and velocity out of a jam of approximately –10 miles per hour for one lane traffic. Also 
note that other pairs of τ  and 0J  are possible which adjust the traffic model for different 
standards set in other countries or regions. 
  
We will now adjust our dynamics for a two-lane highway. We start by calibrating our code for 
the free parameters 0J , and τ  by simulating a free flow regime where we expect all vehicles to 
drive at their desired speed. We pick 8.1=τ  so that the desired vehicle speeds are approximately 
71 miles/hour. Similarly we pick a value for 10 =J  so that the upstream shock velocity is 
approximately –11 miles per hour in agreement with Wiedemann (1974); Helbing (2001). The 
resulting simulation for this calibration is shown in Figure 3.  
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Note that the necessary safety distance, or gap, between moving vehicles is also automatically 
accounted for in Figure 3 by the potential (11). In fact, fast vehicles approaching a slow group 
will slow down thus keeping the proper safety distance up front. Mathematically this is 
implemented through (11) since an increased value of the potential will make it less likely for the 
vehicle to move to the free cell in front of it. This is interpreted as a slow down. 
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Figure 3. Calibration of parameters for a two-lane highway.  
We choose τ  and 0J  so that the desired vehicle speeds are set at approximately 71 miles/hour  

for free flow while the upstream shock velocity is set approximately at –11 miles/hour in order 
 to agree with observations in Wiedemann (1974). Initially we assume a traffic release type condition. 

 
 
We can calibrate for the parameters τ  and 0J  in advance for any number of lanes as can be seen 
in Table 2. Note that these parameters once chosen do not need to be further adjusted and can be 
implemented in any traffic simulation which is described by these basic underlying 
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characteristics. In the next few sections we will use the appropriate parameters in order to give 
examples of traffic behavior under a variety of traffic lanes and desired speeds. Also note that we 
have chosen the following values for 2  ,5.2 == rl kk  and 5.7=fk  although statistical testing 
must be undertaken here in order to identify the correct range for these parameters in actual 
highways. These values of lr kk ,  and fk  are used throughout our simulations in this work. 
 

Number of Lanes 1 2 3 4 
τ  .23 1.1 1.85 1.9 

0J  6 .7 .7 .5 
Desired Velocity (mph) 65 62 68 72 
Upstream Velocity (mph) -10 -11 -12 -9.6 

 
Table 2. Calibrated parameters τ  and 0J  for multi-lane traffic  

with the resulting desired vehicle velocities for free flow and upstream front velocities.  
The look ahead parameter is chosen, based on physical considerations, to be L = 4,  

while the anisotropy constants for lane changing are 2  ,5.2 == rl kk  and 5.7=fk . 

 
 
One-lane example 
 
Using the corresponding one-lane calibrated parameters for 0J  and τ  from Table 2 we now 
obtain the fundamental diagram (see the beginning of this section for details on collecting and 
reporting data from observations and simulations), the density-flow relationship, in Figure 4. In 
general we can implement a number of different types of initial conditions which we make 
specific for each example considered. For these figures we use a random initial vehicle 
distribution and observe the behavior of the traffic stream as density increases incrementally. 
 
There is a number of very interesting observations that can be made from Figure 4. We compare 
our results with those of Nagel and Schreckenberg (1992) for one-lane traffic but also with 
observations from Wiedemann (1974) and observe qualitative agreement. Specifically, the region 
of free flow is clearly displayed up to approximately 50 vehicles/mile. Note here that the value of 

50=critc  vehicles/mile is not forced on our simulation but instead is naturally created by the 
process dynamics through the calibration of the two parameters 0J  and τ . Similarly we observe 
a maximum vehicle flow of approximately 1900 vehicles/hour which also agrees with 
observations in Wiedemann (1974); Nagel et al. (1998) and Figure 1(b) from Helbing et al. 
(2002). The aggregation time of 1.65 minutes was selected so that we can compare with observed 
data in Nagel et al. (1998). The fluctuations in vehicle flows shown in Figures 4 are sizable for 
densities above critc  and display a widely meta-stable ‘stop and go’ region.  
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Figure 4. The flow versus density (fundamental diagram) relationship for 1-lane highway.  
Spatial periodic length of 1 mile, relaxation time 23.=τ , interaction strength 60 =J   

and ‘look-ahead’ L = 4 cells. The aggregation time of 1.6 minutes was selected  
so that we can compare with observed data in Nagel et al. (1998). 

 
 
Multi-lane examples 
 
Using the parameters from the calibrated simulations presented in Table 2 we can now examine 
multi-lane highways. In the case of a 2-lane highway we present the fundamental diagram (the 
density-flow relationship) in Figure 5(a) and the corresponding velocity-flow relationship in 
Figure 5(b). There is a number of very interesting observations that can be made from this 
diagram. Note that once again we do obtain realistic values for critc  and critq  which are in 
agreement with equivalent 2-lane highway data.  
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Figure 5(a). Flow versus concentration (fundamental diagram) for a 2-lane highway.  
Spatial periodic length of 2 miles, relaxation time 1.1=τ ,  

interaction strength of 7.0 =J  while the look ahead is maintained at L = 4.  

Since the spatial distance is chosen to be 2 miles here there are 480 cells per lane.  
The form of these figures compares favorably with observations in Wiedemann (1974),  

Nagel et al. (1998) and Figures 2.10 and 2.14 in Hall (1996). 
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Figure 5(b). Velocity-flow relationship for the situation represented in Figure 5(a) 
 
 
 
Similarly in the case of four lanes we obtain the results of Figures 6(a) and 6(b). As usual we 
have adjusted accordingly our main parameters for this four lane highway with a desired vehicle 
velocity for free flow at 72 miles per hour. Quantities of interest such as flow, velocity and 
density seem to agree both quantitatively and qualitatively with data. 
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Figure 6(a). Flow versus concentration relationships for the individual lanes of a 4-lane highway.  
Spatial periodic length of 1 mile and ‘look-ahead’ of L = 4 cells.  

We pick the relaxation time τ  and interaction strength of 0J  accordingly  

so that the desired vehicles speeds and upwind shock velocity are the same as before. 
 
 
An incident test case 

 
In this subsection we examine a case of an incident occurring on the highway in order to examine 
the effects of congestion. It is known that traffic congestion depends on road inhomogeneities as 
well as the history of previous perturbations due to hysteresis effects (Helbing et al. 2002). In this 
particular incident we will examine how congestion develops by simulating the distribution of 
traffic in the case of an accident for a three lane highway. A car in lane one crashing into a car in 
lane two was simulated by blocking one cell in each lane.   
 

 



682  Transportation and Traffic Theory 17 
 
 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

6000

7000

Fundamental Diagram

F
lo

w
 (

ve
h/

ho
ur

/4
 la

ne
s)

Normalized Density (veh/mile/4 lanes) 4−lane highway

4 Lanes 
τ
0
=1.9, J

0
=0.5

K
r
=2, K

l
=  2.5

Simulated time 1.5314 min.
Periodic distance 1 mile

 
 

Figure 6(b). Flow versus concentration relationship for the whole traffic stream of the 4-lane highway in 
the situation represented in Figure 6(a). 

 
It is very simple for the Monte Carlo simulation to impose this incident of an accident and 
closure of two lanes. To do this we first calculate the transition rate for each vehicle based on 
(11) and (4). Note that the rate for empty cells is zero by the construction of the interaction 
potential. For this purpose we select a specific cell in lane one and the adjacent cell in lane two 
and set their rates to zero for the duration of the simulation. Then we compute the total exchange 
rate for all vehicles and the simulation proceeds as outlined at the beginning of this section. Note 
that the vehicles which are initially placed into those two cells will be therefore automatically 
trapped and will never be able to move out since their rates are set to zero. Also, due to the built-
in exclusion principle, no other vehicles will move into those two cells. We have therefore 
effectively simulated a car crash between these two vehicles. 
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As can be seen in Figures 7, 8 and 9, a number of shocks and rarefactions are generated as a 
result of this bottleneck on the highway. As expected the flow has dropped dramatically since 
vehicles try to change lanes and escape through the third lane. In general the overall traffic 
behavior of the simulated vehicles, once again, agrees with expectations. 
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Figure 7. Lane 1 for the incident.  
Note that the accident occurred at spatial location 0.3 and blocked lanes 1 and 2 of our 3 lane highway. 

Parameters: 7.  ,85.1 0 == Jτ  so that free flow speed is approximately 68 mph.  

In this example vehicles were randomly initialized. 
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Figure 8. Lane 2 for the incident 
Note that the accident occurred at spatial location 0.3 and blocked lanes 1 and 2 of our 3 lane highway. 

Parameters: 7.  ,85.1 0 == Jτ  so that free flow speed is approximately 68 mph.  

In this example vehicles were randomly initialized. 
 
 
CONCLUSIONS 
 
In this work we developed a multi-lane stochastic traffic flow model which relies on microscopic 
conservative Arrhenius dynamics in order to realistically reproduce the behavior of actual traffic. 
Driver behavior and their reaction times toward their surrounding traffic are indirectly 
represented through the interaction potential. The model relies on only two calibrated traffic 
parameters 0J  and τ  which directly link to known values from traffic observations. We further 
provide Monte Carlo simulations and produce solutions which compare favorably with similar 
real traffic data. 
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Figure 9. Lane 3 for the incident.  
Note that although the accident occurred at spatial location 0.3 it has not blocked but 

 nevertheless affected lane 3 of our 3 lane highway. 
 Parameters: 7.  ,85.1 0 == Jτ  so that maximum free flow speed is set to be approximately 68 mph.  

In this example vehicles were randomly initialized. 
 
The multi-lane stochastic model presented here has been shown to have several important 
properties and advantages such as: a) lends itself to mathematical analysis in order to produce 
macroscopic traffic flow models (Sopasakis and Katsoulakis 2006) b) no ad-hoc noise is 
introduced c) timely braking d) retarded acceleration.  
 
The stochastic model presented here can further be adapted in future work to account for even 
more realistic behavior. As an example we can calculate the interaction potential (11) through a 
bell-shaped (Gaussian) curve instead of the currently used uniform shape. In that respect the local 
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interactions present in traffic flow would be stronger and therefore produce a much more realistic 
effect. At the same time interactions with vehicles behind can also be accounted for and in fact 
enhance the realism of the model especially in terms of lane changing. 
 
As another interesting extension of the current model we propose to include entrances and exits. 
To do this, spin flip as well as spin exchange Arrhenius (adsorption/desorption) dynamics would 
be utilized to allow for different numbers of vehicles.  
 
Furthermore another possible modification which can make this model even more realistic is to 
allow the look ahead parameter, L, to be a variable instead of a constant. It would be more 
realistic to have L vary with respect to the density of vehicles on the road. For example, if there is 
a low density of vehicles, then drivers can conceivably see further ahead than in a high density 
section of highway where vehicles are bumper-to-bumper.  
 
Another consideration is how our model could handle non-homogeneous traffic. This distinction 
of different types of vehicles could potentially allow us to reproduce the empirical data from 
Wiedemann (1974) (which includes 10% trucks) even more realistically. There are two possible 
methods to incorporate this into our dynamics: we could count each truck as multiple passenger 
cars as is often done, or we could model the effect of trucks by giving 10% of vehicles a lower 
maximum velocity as is done in Nagel et al. (1998). Our model could be adapted for the latter 
approach through the parameter τ . 
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FREEWAY TRAFFIC OSCILLATIONS AND 
VEHICLE LANE-CHANGE MANEUVERS 

Soyoung Ahn, Arizona State university', USA 
Michael J. Cassidy, University of California, Berkeley, USA 

SUMMARY 

This work unveils the influence of vehicular lane-change maneuvers on oscillations in real 
freeway traffic. Measurements made upstream of bottlenecks reveal that oscillations formed in 
individual lanes when drivers squeezed their way in from neighboring lanes. Once oscillations 
had formed, moreover, lane changing caused the oscillations to at times grow in amplitude as 
they propagated upstream through queues. 

The findings show that on (multi-lane) freeways where lane changing abounds, these maneuvers 
seemingly exert greater influence on the formation and growth of oscillations than do driver 
interactions that spontaneously arise in single-lane traffic. This is notable in light of the many 
attempts to explain oscillations as strictly a car-following phenomenon; and the findings motivate 
the need for theories of multi-lane traffic that describe lane changing in conjunction with car 
following. 

Work by the first author was performed at the University of California, Berkeley and at Portland State University. 
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INTRODUCTION 

The present work solves some long-standing puzzles on the nature of oscillatory or "stop-and-go" 
driving conditions in real freeway traffic. Oscillations were observed to form in freeway queues 
due to vehicular lane-change maneuvers. Lane changes made into small vehicle spacings were 
especially prone to be the triggering events. Most formations occurred short distances in advance 
of bottlenecks. Once oscillations had formed, moreover, lane changing similarly caused the 
oscillations to grow in amplitude as they propagated upstream through queued traffic. 

No evidence was found that oscillations formed or grew due to driver interactions that arose 
spontaneously in single-lane traffic, independent of vehicles in adjacent traffic streams.' The 
finding is incompatible with previous attempts to explain oscillations as strictly a car-following 
phenomenon. Theories formulated and used in some of these past attempts are reviewed in the 
following section of the paper. Observations from some additional studies are used here as well 
to tease-out clues that support our present findings. 

Data for the present work were collected from two extended portions of queued freeway. 
Measurements came both from inductive loop detectors and from video images, as described in 
the third section. 

Macro-level analyses of the loop data are provided in the fourth section. These analyses not only 
confirm some previously observed features of oscillatory traffic, they further imply that 
oscillations formed and grew due to events in individual lanes. 

The nature of these events is unveiled in the fifth section by means of more detailed, micro-level 
analyses of the data taken from videos. We present the systematic method used to mine these 
data so as to pinpoint when and where oscillations formed or grew. We then furnish vehicle 
trajectories (measured from videos) to show that lane-change maneuvers were the triggering 
events. 

Final remarks are offered in the sixth section. These include discussion on certain details of 
oscillatory traffic in need of further study. Implications of the present findings on traffic theory 
are discussed as well. 

Much like lane changing, vehicle merging and diverging maneuvers near ramps were observed to affect oscillation 
growth. Description of these merging and diverging effects is saved for a future paper. 
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BACKGROUND 

Traffic theorists have long sought to describe oscillations using models of how a driver responds 
to the motion of the vehicle immediately in front. Some of the earliest of these car-following 
models have each driver responding to her spacing (Kometani and Sasaki, 1958) or to changes in 
her leader's speed (Chandler et al., 1958). Responses occur following a reaction time and the 
magnitude of a response depends upon the driver's "sensitivity," a parameter calibrated to data. 
These early models have undergone various modifications: New parameters have been introduced 
and model forms have been altered in attempts to match model predictions with real observations 
(e.g. Gazis et al., 1959; 1961; Edie, 1960). 

The above-cited models exhibit instabilities: For certain values of the sensitivity parameter and 
the reaction time, the magnitude of driver responses successively amplify as each driver passes 
through a disturbance (Herman and Montroll, 1959). Other classes of car-following models 
display instabilities as well. Models that assume drivers continuously choose their speeds so as 
to eliminate the possibility of collision (e.g. Kometani and Sasaki, 1959) generate instabilities 
when drivers over-estimate the decelerations of their leaders (Gipps, 1981). Instabilities also 
arise in yet another model class whereby each driver presumably seeks to maintain both a speed 
equal to that of her leader and her desired spacing for that speed (Michaels, 1963). Within this 
latter theoretical framework, a driver's inability to promptly perceive speeds and spacings can 
cause her to enter into a perpetual cycle of accelerating and decelerating without ever reaching a 
steady state (Wiedeman, 1974). 

These instabilities are commonly taken as descriptions of oscillatory traffic. However, model 
predictions of the former do not always match real measurements of the latter. For example, 
previous observations of real freeway traffic indicate that oscillations exhibit acceleration and 
deceleration periods that are several minutes in duration (Kemer and Rehbom, 1996; Mauch and 
Cassidy, 2002), and this is confirmed in the present work. Car-following models, on the other 
hand, reportedly produce instabilities with periods on the order of a driver reaction time (only 
several seconds; see again Herman and Montroll, 1959). 

The earlier freeway studies just cited further report that oscillation amplitudes grew in the 
vicinity of busy ramps. This finding suggests that vehicle merging and diverging maneuvers play 
a role here (and we have unveiled additional details on this matter; see footnote 2). 

Further clues concerning the nature of oscillations are evident in data presented in Treiterer and 
Myers (1974). In this latter work, the motions of platooned vehicles in a single freeway lane 
were traced from aerial photographs. Drivers reportedly exhibited little change in their spacings 
(densities within the platoons remained high) as they underwent accelerations. These 
measurements have been used to support various car-following models that assume drivers 
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behave differently while accelerating than while decelerating (e.g. Aron, 1988; Ozaki, 1993). As 
it turns out, however, lane changing may have been the greatest influence here; Daganzo (2002) 
offers the following alternative interpretation of the Treiterer and Myers data. 

During acceleration cycles, densities in the single-lane platoons stayed high because (i) drivers 
from the neighboring lane inserted themselves into the platoons (an observable detail in the data); 
and (ii) drivers in the platoons may have chosen to follow vehicles at tight spacings in attempts to 
ward-off these insertions. It further seems that a large disturbance in one of the platoons - 
formerly regarded as a puzzle - can be traced back to vehicle lane changing into and out of the 
platoon; this becomes evident by scrutinizing Figure 1 of Treiterer and Myers. 

It is true, on the other hand, that oscillations have been observed on single-lane roads and test 
tracks (Smilowitz et al., 1999; Sugiyama et al., 2003) and in tunnels where lane changing was 
prohibited (Edie and Baverez, 1958). On these and perhaps other facilities, oscillations might be 
explained by the driver interactions described by car-following models (or something at least akin 
to these descriptions). What we provide in the present paper, however, is evidence of an 
important role played by lane-changing maneuvers on (multi-lane) freeways where these 
maneuvers abound. To our knowledge, it is the most compelling evidence of its kind offered to 
date. 

DATA 

Traffic data were collected in both travel directions of the freeway site shown in Fig. 1, a 6-km- 
long stretch of Interstate 80 in California's San Francisco Bay Area. During afternoon rush 
periods, vehicles in both directions encountered downstream bottlenecks, as labeled in the figure. 
The resulting queues filled the regular-use freeway lanes for much of the rush.3 Freeway flows 
within these queues varied with location (from about 7,000 to 8,000 vph) due to inflows and 
outflows from the ramps. 

Measurements came from two sources, the first being inductive loop detectors. These are located 
in every travel lane at (slightly irregular) intervals of about 0.5 km. Detector stations are 
numbered 1 - 8 in the figure. Vehicle counts, occupancies and time-mean speeds were collected 
over 30-sec sampling intervals and were used for the macro-level assessments presented in the 
following ~ e c t i o n . ~  

The high-occupancy vehicle lanes (labeled with diamond-shaped icons in Fig. 1) remained freely flowing during 
much of the rush and were therefore excluded from analyses. 

Due to detector malfunctions, these data were not available for eastbound and westbound traffic in the shoulder 
lane at station 3 and for eastbound traffic in one of the center lanes at station 1. 
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Figure 1: Interstate 80 near San Francisco, California 

Additionally, a video surveillance system provided unobstructed views of traffic over the 
westem-most freeway portions, as demarcated with dashed lines in Fig. 1. Traffic data extracted 
from these videos were used for the micro-level assessments in a later section. 

MACRO-LEVEL ANALYSES 

Next presented are features of oscillatory traffic observed in the loop detector data. We found 
that oscillations tended to form just upstream of bottlenecks. As in earlier studies, the 
oscillations exhibited periods of rather extended duration; they propagated upstream through 
queued traffic at a (nearly) constant wave speed; and they often grew in amplitude while doing 
so. Beyond confirming the above, we found that oscillations displayed certain patterns that were 
distinct across lanes. 
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These distinctions are clues to the lane-specific events (lane changing) that triggered formations 
and growths. The following macro-level analyses confirm the general features of oscillatory 
traffic described above and unveil the clues concerning the triggering mechanism. 

Fig. 2(a) presents time series curves of vehicle speeds in the westbound travel direction. These 
were measured in each lane and at each detector station during a 50-minute period (on Aug. 19, 
2002) when queues had filled the regular-use lanes. The freeway geometry for westbound travel 
is schematically shown left of the figure as a convenience for the reader. The numbering scheme 
used for the detectors is re-presented there as well. 

The speed data in Fig. 2(a) were filtered to eliminate noise caused by driver differences and to 
retain longer-run trends. This was achieved in a simple way by plotting the vertical deviations 
between cumulative values of (time-mean) vehicle speeds at time, t, s(t), and the quantity S (t)x(t 
- to) at all t, where S (t) is a longer-run average of the 30-sec time-mean speeds and to is the start 
time of this 50-minute observation period.5 

The resulting wiggles in each "speed deviation" curve are oscillations; they mark periods when 
vehicle speeds were higher (positive slopes) and lower (negative slopes) than the longer-run 
average. These wiggles confirm that oscillatory periods can persist for several minutes, and not 
just for short durations comparable to a driver reaction time. 

Dotted arrows in the figure trace some kinematic waves. These appear straight and parallel, 
consistent with past reports that wave speed is independent of flow in queued traffic (e.g., 
Windover and Cassidy, 2001; Mauch and Cassidy, 2002). 

Marked differences in oscillation amplitudes are evident when comparing wiggles at 
downstream-most detector 8 with those, for example, at detector 1. This indicates that 
oscillations generally grew as they propagated upstream. The trend is confirmed in Fig. 2(b). It 
shows for each detector station the Root Mean Squared Error (RMSE) of speed deviations 
measured for the 50-minute period.6 Two curves display RMSEs in each of the center lanes; a 
third curve, shown in bold, is the average of all four regular-use lanes. 

Inspection of the latter (bold) curve shows that the upward trend in (average) growth was 
interrupted only at detector 3. We attribute this interruption to high vehicular merging activity at 

The S(t) was computed as a moving average over a 5-minute period spanning each t; (t - 2.5 mins, t+2.5 mins). 
By using a moving average, we present shorter-run deviations from averages that gradually, but systematically, 
changed over time. - 

Each RMSE was computed using 30-second samples as , where here T = 100 since the 50- 
T t=o 

min period shown in Fig. 2(a) is composed of 100 thirty-second intervals and s(t) and S(t) are as previously defined. 
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the nearby on-ramp (see footnote 2). All three curves in Fig. 2(b) show relatively small RMSEs 
at downstream detector 8, suggesting that this location is about where most oscillations formed. 

The reader will further note the distinctions in each of these RMSE curves. These distinctions are 
clues that oscillation growth was triggered by events in individual lanes. 

Clues that lane-specific events also triggered oscillation formations are evident in the data as 
well. Referring again to Fig. 2(a), we see that speed deviation curves at downstream detector 8 
reveal asynchronous oscillatory patterns across lanes; i.e., the emerging wiggles at this 
downstream location are not aligned across curves. Oscillations became more synchronized only 
after propagating to upstream detectors. 

This synchronization pattern is also visible in Fig. 2(c). The figure displays correlation 
coefficients of speed deviations for all pairs of neighboring (regular-use) lanes; the values shown 
are averages of the pair-wise correlations over the 50-minute observation period. The relatively 
low correlation at detector 8 (where oscillations formed) implies that oscillations separately 
emerged in each lane, such that emergence was a result of the conditions in individual lanes. (A 
slight reduction in correlation near station 3 can again be attributed to large inflows from the on- 
ramp.) 

Oscillations in the opposing (eastbound) travel direction display features that are qualitatively 
like those just described. Visual inspection of Figs. 3(a) - (c) attests to these similarities; each of 
these figures was constructed from detector data taken over a 1-hour period of queued traffic (on 
June 25,2003). 

These figures indicate that wiggles in the eastbound travel direction were more developed and 
more synchronized across lanes, even at downstream detectors (stations 1 and 2 for eastbound 
travel), than were their counterparts in westbound traffic. This difference was to be expected. 
The bottleneck for eastbound traffic resides relatively far downstream of the detectors (see Fig. 
1). Thus upon their arrivals to these detectors, the oscillations in eastbound traffic had already 
become more fully formed and better synchronized. 

The distance between detectors and bottleneck notwithstanding, the RMSEs (Fig. 3(b)) increase 
just upstream of detector 1 and display differences across lanes. And although the (average) pair- 
wise correlations (Fig. 3(c)) were already high at downstream detectors 1 and 2, these 
correlations increase at upstream locations. The features suggest that, once again, formations and 
growths were triggered by lane-specific events. The nature of these events is presented next. 
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MICRO-LEVEL ANALYSES 

An oscillation's formation is revealed when a vehicle's speed begins to vary while its leader's 
speed does not. Oscillation growth is revealed when a kinematic wave carries speed variations 
that increase at upstream locations. 

To pinpoint when and where the above indicators of interest occurred, vehicle speeds were 
individually measured (from video) over short, contiguous freeway segments and were then 
compared across segments in ways that would detect all but perhaps the most subtle systematic 
variations. Lastly, vehicle trajectories were constructed for each time-space region that contained 
the indicators of formation or growth. These trajectories showed that lane changes were always 
the triggering events. Illustrations are provided below. 

Formation 

Fig. 4(a) illustrates a portion of westbound freeway near the downstream bottleneck; this is a 
location where oscillations often formed. Vehicles involved in formations were identified by 
measuring their speeds (trip times divided by distance) over contiguous 100-meter-long 
segments. Two such segments (labeled "upstream" and "downstream") are shown in the figure. 

As an illustration, Fig. 4(b) displays speeds for 46 vehicles that were separately measured on the 
upstream segment (shown with circles) and on the downstream one (squares). These were 
measured in lane 2 (see Fig. 4(a)) and the vehicles represented in Fig. 4(b) are numbered 0 - 45 
in the order of their entries into the upstream segment. (Only vehicles that traversed the upstream 
and downstream segments without changing lanes are represented in this figure so as to simplify 
the numbering scheme.) The dark line in the figure displays moving averages of speeds on the 
upstream segment; the lighter line shows moving averages on the downstream segment; and the 
moving average for each vehicle n was computed from the speeds in the vehicle set numbered 
(n-2, n+2). 

The figure reveals the formation of an oscillation. Speeds on the upstream segment fell and then 
rose back to their initial values, as is characteristic of an oscillation. Visual inspection of the 
figure shows that this cycle began with a marked reduction in the speed of vehicle 11. Notably, 
no such cycle is evident on the downstream segment, indicating that the oscillation emerged on 
the upstream one. 

Vehicle trajectories not only confirm this formation, but unveil its cause. Fig. 4(c) displays the 
trajectories for the vehicles numbered 2 - 26 and for an additional vehicle that triggered the 
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formation by changing lanes.7 The latter, drawn in bold, inserted itself directly in front of vehicle 
11. From the trajectory of vehicle 1 I, we see that its driver decelerated soon after the insertion 
and then accelerated once she had recovered (approx) her earlier spacing. 

One further sees in Fig. 4(c) that decelerations were amplified among higher numbered vehicles. 
These amplifications indicate that driver car-following behavior can contribute to oscillations. 
The point we make is that the formation was triggered by a lane change (the insertion in front of 
vehicle 11) and did not arise spontaneously. 

The amplifications noted above caused speeds on the upstream segment to diminish from one 
vehicle to the next. This state gradually propagated backward and was eventually no longer felt 
on the upstream segment. The trajectories also show that the oscillation imparted little or no 
speed variations to vehicles on the downstream segment. 

The reader will note that these effects so clearly evident in the trajectories are conveyed in Fig. 
4(b) as well. Moving average speeds, like those in the latter-cited figure, were therefore used to 
search the data for instances of formations. In all, more than 1470 vehicle speeds were measured. 
These measurements were made in lanes 2 and 3 (see again Fig. 4(a)) and were taken over three 
contiguous 100-m-long segments. We judged that a formation occurred when the following two 
criteria were satisfied. 

(i). The greatest difference in the moving average vehicle speeds on some segment (measured 
from the zenith to the nadir of a cycle like the one shown with the dark line in Fig. 4(b)) 
had to exceed 7 kmlhr. Cycles marked by smaller differences showed no signs of 
propagating to upstream segments, leading us to conclude that these were merely 
statistical fluctuations. 

A second criterion was established to ensure that instances of (i) actually emanated within the 
segment from which the measurements came, and had not instead formed downstream and 
propagated back to the subject section. 

(ii).Where (i) was satisfied and the greatest speed variation was displayed by the moving 
average for vehicle n (e.g. n = 23 in Fig. 4(b)), we verified that (i) was not measured on 
the downstream segment among vehicles in the set numbered (n-20, n). 

Limiting our check for (ii) to 20 vehicles seemed appropriate. Given the kinematic wave 
velocity estimated from our data, one would expect that a wave would, on average, propagate 

' Each trajectory was constructed by measuring the vehicle's arrival times at a series of fixed reference points spaced 
at 15 m increments. 
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through less than 15 vehicles per 100 m (see Newell, 1993). The data further indicated that 
extending the check for (ii) beyond 20 vehicles ran a risk of inadvertently measuring the 
effects of a kinematic wave that carried some other oscillation. 

Ten instances of formation were detected in the above fashion.' The trajectories then constructed 
for each time-space region containing a formation showed that lane changes were always the 
triggering events. There were no exceptions. (Trajectory plots for many of these formations are 
provided in Ahn, 2005.) 

Finally, the lane changes that triggered formations tended to be those made into vehicle spacings 
that were small. As evidence, Fig. 5 shows the distributions of spacings filled by lane-change 
vehicles during a 10-minute period when video images were surveyed for lanes 2 and 3 of the 
freeway portion previously shown in Fig. 4(a). The darkened bars in Fig. 5 correspond to 
spacings that, when filled by a lane-change vehicle, triggered formations (9 observations in this 
period). The unshaded bars display all (other) spacings that were filled during the period without 
triggering formations or growths (18 observations). The median of the former is 27 m, while the 
median of the latter is 40 m. (The means are 32 m and 43 m.) The difference in these medians is 

- . ; ; - - -  
Insertions that tr~ggered forrnat~ons 

. --------------.---------------------- -r Other insertions 
- 

- - -  - - - - - - - -  -.---------------------- 

Spacing filled (rn) 

Figure 5: Distributions of Spacings Filled (Westbound 1-80) 

Our search was limited by the time and cost of extracting data from videos. 
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statistically significant, as determined by the Wilcoxon two sample test at the 95% confidence 
level; see Rice, 1994~. This difference indicates that oscillations tended to emerge when drivers 
"squeezed their way" into neighboring lanes. 

Growth 

Details of oscillation growth were unveiled by studying eastbound traffic on the freeway portion 
shown in Fig. 6(a). Queued traffic at this location was commonly marked by well-formed 
oscillations that sometimes grew in amplitude as they propagated upstream. Vehicle speeds were 
once again measured over short, contiguous segments, including the two labeled "upstream" and 
"downstream" in the figure. 

Fig. 6(b) displays the speeds of 51 vehicles in lane 2 on these two segments. The solid lines are, 
once again, moving averages taken over 5 vehicles. 

Speeds on the downstream segment (squares) chart the fall-and-rise cycle that characterizes an 
oscillation. The speeds on the upstream segment (circles) do so as well. The reader can verify 
how speed changes downstream tend to be passed upstream to vehicles of higher arrival number, 
indicating that the oscillation propagated backward through traffic. 

Notably, speeds on the upstream segment drop to lower values than do their downstream 
counterparts. This pattern indicates that the oscillation's amplitude increased (i.e., the oscillation 
"grew") as it propagated from one segment to the next. Further visual inspection of Fig. 6(b) 
shows that vehicle 29 was the first to display a speed on the upstream segment that was lower 
than any observed on the downstream segment. 

The trajectories in Fig. 6(c) unveil the cause of this growth.10 Two consecutive vehicles, shown 
with bold trajectories and labeled A and B, were inserted in front of vehicle 29. The (lightly 
drawn) trajectories of lower arrival number confirm that vehicles were already undergoing 
oscillatory motions prior to these insertions; e.g. the trajectory of vehicle 28 clearly displays a 
deceleration-acceleration pattern, though it was not affected by the insertions of A and B. What 
these insertions did was to amplify temporarily the (pre-exiting) decelerated state; the driver of 
vehicle 29 temporarily adopted a lower speed in response to the insertions and the resulting state 
propagated upstream through vehicles of higher arrival number. 

The Wilcoxon test was used in light of the small sample sizes. 
lo These trajectories were constructed from video images, as described in Hranac et al. (2004). 
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The eventual insertion of a third vehicle (labeled C in the figure) took place within a relatively 
large spacing and did not induce the drivers of upstream vehicles, such as vehicle 35, to adopt an 
even lower speed. The insertion did, however, prolong the period over which vehicles traveled at 
a lower speed; i.e., it displaced the acceleration wave in time, as shown with dotted lines in Fig. 
6(c). It seems that lane changing may explain the relatively long oscillatory periods observed in 
real traffic, though the evidence of this is limited at present. 

Our search for instances of growth consisted of measuring more than 1500 speeds. 
Measurements were taken from four contiguous segments and in four lanes (lanes 2 through 5). 
Oscillation growth was judged to have occurred when the moving average speeds satisfied the 
following. 

(i). The greatest differences in the vehicle speeds on each segment (again measured from the 
zenith to the nadir of a cycle) exceeded 7 km/hr. 

(ii).To ensure that instances of (i) grew systematically in amplitude as the oscillation 
propagated, we compared the lowest speed measured on a given segment with the lowest 
speed on the upstream neighboring one. Where the former was displayed by the moving 
average of vehicle n (n = 26 in Fig. 6(b)), we surveyed speeds on the upstream segment 
for vehicles in the set numbered (n, n+20). The difference between the two minimum 
speeds across the two segments had to be at least 1 kmhr. 

With this threshold of 1 km/hr adopted in (ii), the lowest speed in an oscillatory cycle would 
diminish by less than 8.5 kmlhr with every kilometer traveled by the kinematic wave. This 
constitutes very subtle growth; e.g. when emerging in lightly queued traffic where vehicle speeds 
approach free flow rates, an oscillation growing in this fashion would propagate at least 10 
kilometers before devolving to a jammed state. Hence our threshold would fail to detect only the 
smallest and most subtle oscillatory growth. 

Eleven separate instances of growth were thus detected. Trajectory plots showed that every 
instance was triggered by lane changing; Ahn (2005) presents plots for most of these instances. 

The data indicate that growth was more likely to be spurred by lane changes made into spacings 
that were small. Fig. 7 presents distributions of spacings filled by lane-changing vehicles during 
a 10-minute period. These were measured in lane 2 of the freeway portion previously shown in 
Fig. 6(a). The darkened bars in Fig. 7 correspond to spacings that, when filled by a lane changer, 
triggered growth (8 observations). The unshaded bars are all the other spacings filled by lane 
changes in the period (41 observations). The median of the former is 30 m, while the median of 
the latter is 45 m. (The means are 34 m and 54 m.) As in the case of formation, these two 
medians were statistically different at the 95% confidence level (see footnote 9). 
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CONCLUSIONS 

The findings unveil a causal relation between vehicle lane-changing maneuvers and oscillatory 
traffic. Rational criteria were established to detect oscillation formations and even subtle 
instances of growth; and lane changing triggered every formation and growth thus observed (10 
and 11 observations, respectively). Data illustrate how car following behavior also contributes to 
oscillation formation and growth. The point is that lane changing maneuvers always initiated 
these phenomena. We observed no instances of spontaneous formation or growth. 

In retrospect, the findings may seem unsurprising; i.e., that stop-and-go conditions can be 
triggered by exogenous events like lane changing may even be what much of the driving public 
intuitively suspects. We argue, however, that the findings are notable in light of the large 
(scientific) literature that ignores any role of lane changing and instead views oscillations solely 
in terms of car-following. By having shown the need for theory that considers lane changing in 
conjunction with car following, we hope the present work will re-direct this line of thinking 
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reflected in the literature. We believe that this, in itself, would constitute a meaningful 
advancement in traffic flow theory. 
Already a few theories of driver lane-changing behavior have been developed for multi-lane 
traffic (e.g. Gipps, 1986; Kerner, 2005). One such theory with notably few parameters (Laval 
and Daganzo, 2006) shows that lane changes in dense traffic can create voids between vehicles 
and that these voids can propagate forward through bottlenecks. The theory can thus explain the 
reductions in discharge flows that are commonly measured when certain types of freeway 
bottlenecks become active. In fact, the theory has been shown to match discharge rates and other 
traffic details at an active merge bottleneck (Laval et al., 2005). Faithful descriptions of the 
oscillatory conditions that arise upstream of bottlenecks might come from a model of this kind, 
once it has been suitably refined for this purpose. 

Identifying the needed model refinements might, however, require further observation and 
experiment. After all, certain details of oscillatory traffic remain puzzling. We have, for 
example, only very limited evidence that lane changing causes the relatively long oscillatory 
periods observed in this and other studies. Further, we do not yet know the mechanism by which 
propagating oscillations gradually synchronize across lanes, though here again lane changing 
could play an important role. Studies on these matters are ongoing. 
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INTRODUCTION

Driving behaviour models are used within microscopic traffic simulations to predict driving
manoeuvres. With the increasing popularity of such tools, there has been extensive research in
improving the key driving behaviour models: acceleration, lane changing and route choice.
Existing models usually assume that drivers react to current traffic conditions and make
instantaneous decisions. However, in reality, drivers may plan a set of actions based on
previous, current and anticipated future conditions and make a sequence of choices to execute
the chosen plan. For example, a driver who has decided to change lanes but cannot do that
immediately may continue to attempt to change lanes by selecting a target gap and adapting
his acceleration to facilitate lane changing into that gap. The actions of the driver are thus
implementations of the prior decision to change lanes and the decision tree is state dependent.
However, in most cases the decision state of the driver (e.g. the decision to attempt to change
lanes) is unobserved and only lane action and acceleration manoeuvres of the driver are
observed.

In most of the existing driving behaviour models, the drivers are assumed to be myopic
(Gipps 1986, Benekohal and Treiterer 1988, Yang and Koutsopoulos 1996, Zhang et al. 1998,
Ahmed 1999, Choudhury 2005). A ‘partial short-term plan’ based decision framework for
lane changing and acceleration was proposed by Toledo (2003), where the effects of a driver’s
short term plan to execute a lane change through a chosen gap is reflected on his acceleration
decisions. However, state dependency has been ignored in this model and it is assumed that
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the driver revaluates his short term plan at every instant regardless of his current or previous
state. Wang et al. (2005) tested the sensitivity of model parameters for a similar partial short-
term based gap selection and acceleration model for freeway merging situation within a
simulation framework.

The above mentioned state dependency is thus not captured in existing lane changing models.
As a consequence, application of these models in micro-simulation tools often result in
unrealistic traffic flow characteristics in congested and incident situations where the decisions
of the driver involve significant planning, cooperation and risk taking.

This paper presents a framework for modelling state dependency in lane changing behaviour
of drivers and demonstrates it through an on-ramp merging model for congested freeway
situations. The proposed model explicitly considers the anticipation of future conditions as a
basis of decision-making and incorporates state dependence to capture the effects of past
decisions the driver has made on his current decision-making process. The paper is structured
as follows: the structure of the state dependent merging model is described first. The
estimation data and the estimation methodology are presented next followed by the estimation
results. The improvements in the proposed model are demonstrated by statistical comparisons
of the model against an instantaneous model that is estimated with the same dataset ignoring
state dependency.

MODELING STATE DEPENDENCE IN FREEWAY MERGES

Model Framework

In congested situations, acceptable gaps are often not available and more complex merging
phenomena are observed. For example, drivers may merge through courtesy of the lag driver
in the target lane or become impatient and decide to force in, compelling the lag driver to
slow down. The execution of all types of merges involve acceptance of available gaps. The
definition of acceptable gaps may depend on the merging mechanism.

Normal merge occurs when the available adjacent gaps are immediately acceptable and is
therefore an instantaneous process. However, in case of courtesy lane change and forced
merge, even after the driver has initiated the merge, the actual lane change may not be
possible immediately. A driver who has initiated a forced (or courtesy) merge remains in the
initiated forced (or courtesy) merge state and continues to evaluate the adjacent gaps for the
chosen merging mechanism until they are acceptable. Thus the gap acceptance decisions the
driver makes at any instant depend on his state.

The deicision to select the merging mechanism is a sequential process. The decision
framework of the driver is summarized in Figure 1. The model hypothesizes four levels of
decision-making: normal gap acceptance, gap anticipation and aniticipated gap acceptance (or
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decision to initiate a courtesy merging), decision whether to initiate a forced merging or not,
and gap acceptance for courtesy/forced merging. The decision process is latent and only the
end action of the driver (lane change to the target lane) is observed. Latent choices are shown
in ovals and observed actions are shown in rectangles.

The merging driver first compares the available lead and lag gaps in the mainline to the
corresponding minimum acceptable gaps (critical gaps) for normal gap acceptance. Critical
gaps are modeled as random variables, their means being functions of explanatory variables.
If both the lead and the lag gaps are greater than the critical gaps, a lane change can be
executed using the existing gaps.

If the gaps are not acceptable, the merging vehicle evaluates the speed, acceleration and
relative position of the through vehicles and tries to evaluate whether or not the lag driver is
providing courtesy to him. The courtesy or discourtesy of the lag driver is reflected on the
anticipated gap. If the lag driver has decided to provide courtesy to a merging vehicle and has
started to decelerate, the anticipated gap increases. The anticipated gap of a particular driver
also depends on the length of the time horizon over which the gap is estimated. Differences in
perception and planning abilities among drivers are captured by the distribution of the length
of the time horizon. If the anticipated gap is acceptable, the merging driver perceives that he
is receiving courtesy from the lag driver and initiates a courtesy merge.

Figure 1: Framework of the merging model

If the anticipated gap is unacceptable, the driver decides whether to force the lag driver to
slow down or not by nosing in. This decision can depend on the urgency of the merge, driver
characteristics (e.g. risk averseness) and traffic conditions. If the driver does not initiate a
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courtesy or forced merge, he remains in the normal merging state and the entire decision
process is repeated in the next time step.

A driver who has initiated a courtesy lane changing, compares the adjacent gaps against the
courtesy merging critical gaps and makes the lane-change once these gaps are acceptable.
The driver remains in the initiated courtesy merge state until the lane change is executed or
the driver is adjacent to a new gap. Similarly, a driver who has initiated a forced merge
remains in initiated forced merge state until the adjacent gaps are acceptable to execute the
forced merge or the adjacent gap changes.

Therefore, the observed lane change (or no change) action at any instant is state dependent
and can be the outcome of many possible decision sequences. Both the state of the driver and
the decision sequence that led to the state are however unobserved/latent.

This paper focuses on formulation of the decision framework of the merging driver. The
decisions of other drivers (e.g. decisions made by the lag driver whether or not to provide
courtesy) are treated as external/observed variables in the model.

Model Components

Normal gap acceptance

Normal gap acceptance model indicates whether a lane change is possible or not using the
existing gaps. The definition of related variables is presented in Figure 2. An available gap is
acceptable if it is greater than the critical gap. Critical gaps are assumed to follow lognormal
distributions, the mean gap being a function of explanatory variables. This can be expressed
as follows:

( ) { }ln ,
TMg Mg Mg Mg

nt nt n ntG X g lead lagβ α υ ε= + + ∈ (1)

where Mg
ntG is the critical gap g of individual n at time t for normal gap acceptance (M),

{ },g lead lag∈ , ntX are explanatory variables, Mgβ is the corresponding vector of parameters

for normal gap acceptance, nυ is the individual specific random effect: ( )~ 0,1n Nυ and Mgα

is the coefficient of the individual specific random term for normal gap acceptance, Mg
ntε is the

random term for normal gap acceptance of individual n at time t: ( )2~ 0,Mg
nt MgNε σ .
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Figure 2: Vehicle relationships in a merging situation

The gap acceptance model assumes that the driver must accept both the lead and the lag gap to
change lanes. If a merging vehicle is in normal state ( 1ts M− = ), i.e., he has not initiated a

courtesy or forced merge, the probability of a lane change through normal gap acceptance,
conditional on the individual specific term nυ can be expressed as follows:

( )
( ) ( )
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where, for driver n at time t, tl is the lane changing indicator, 1 if a lane-change is performed,

0 otherwise. ts denotes state of the driver (M=normal, C=courtesy, F=forced), lead
ntG and lag

ntG

are the available lead and lag gaps respectively.

Assuming that critical gaps follow lognormal distributions, the conditional probabilities that
gap { },g lead lag∈ is acceptable can be expressed as follows:

( )
( ) ( )( )

( ) ( )
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1
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(3)

[ ]Φ ⋅ denotes the cumulative standard normal distribution.

If a driver has already initiated a courtesy or forced merge in a previous time step, he cannot
decide to merge to the same adjacent gap under normal gap acceptance. Therefore, if a

,lag lag
nt ntv a ,lead lead

nt ntv a

,nt ntv a

lag
ntG lead

ntG
nL



merging vehicle is in initiated courtesy/forced merging state at time (t-1), the probability of a
lane change through normal gap acceptance at t is zero, unless there is a new adjacent gap.

Anticipated gaps and decision to initiate courtesy yielding

If the adjacent gaps are not acceptable to make a normal merge, the merging vehicle evaluates
the speed, acceleration and relative position of the through vehicles and approximates an
expected/anticipated gap that is going to open up after time nτ . Because of the difference in

perception among individuals, the anticipation time nτ may vary among individuals.

The anticipated/expected gap for individual n at time t can be expressed as follows:
21

( ) ( ) ( )
2

lead lag lead lag lead lag
nt n nt nt n n nt nt n nt ntG G G L v v a aτ τ τ= + + + − + − (4)

where, for individual n at time t, ntG is the anticipated gap, nL is the length of the vehicle,
lead

ntv and lag

ntv are the speeds of the lead and lag vehicles, lead

nta and lag

nta are the acceleration of

the lead and lag vehicles respectively (Figure 2).

If this anticipated gap is acceptable, the driver decides to initiate a courtesy merge. The
critical gap of the driver for the anticipated gap acceptance is assumed to follow a lognormal
distribution and can be expressed as follows:

( )ln
TA A A A

nt nt n ntG Xβ α υ ε= + +
(5)

where, individual n at time t, A
ntG is the critical gap for anticipated gap acceptance, Aβ is the

corresponding vector of parameters, A
ntε is the random term for anticipated gap acceptance:

( )2~ 0,A
nt ANε σ .

If the driver has already initiated a courtesy merge in a previous time step and the adjacent
gap has not changed, the probability of being in initiated courtesy merge state is 1. If the
driver has already initiated a forced merge to the same gap in a previous time step, the
probability of being in initiated courtesy merge state at current time step is 0. However, if the
driver cannot complete the inititated courtesy merging within the time he is adjacent to the
same gap and is adjacent to a new gap, the state of the driver is reset to the normal (not
initiated courtesy or forced merging) state. This can be expressed as follows:

( ) ( )

( ) ( ) ( )
( )

1 1

1 1 1

1

| , , | , , (1 )

| , , | , , 1- 1 ,

| , , 0

n t t n n nt n t t n n nt

A
ntn t t n n n nt t n n n t t n

n t t n n

P s C s C P s C s M

P s C s M P G G s M P l s M

P s C s F

υ τ δ υ τ δ

υ τ υ τ υ

υ τ

− −

− − −

−

= = = + = = −

⎡ ⎤= = = > = = =⎣ ⎦

= = =

(6)

where ntδ =1 if driver n is adjacent to the same gap at time (t-1) and t, 0 otherwise.
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The anticipation time is assumed to be truncated normally distributed with truncation on both
sides. The distribution is given by:

min n max

max min

1

if
( )

0 otherwise

n

nf

τ

τ τ

τ τ

τ τ

τ μ
φ

σ σ
τ τ τ

τ τ μ τ μ

σ σ

⎧ ⎛ ⎞−
⎪ ⎜ ⎟

⎝ ⎠⎪ ≤ ≤⎪
= ⎛ ⎞ ⎛ ⎞− −⎨

Φ − Φ⎜ ⎟ ⎜ ⎟⎪
⎝ ⎠ ⎝ ⎠⎪

⎪⎩

(7)

where, ,τ τμ σ are the constant mean and standard deviations of the untruncated

distribution, minτ and maxτ are the minimum and maximum values of nτ respectively. ( )φ is

the probability density function of a standard normal random variable and ( )Φ is the

cumulative distribution function of a standard normal random variable.

The advantage of using a truncated normal distribution is that it is not restricted to be skewed
to a particular direction. This ensures that no a priori assumption is made on the probability
of a driver being myopic or not.

Decision to initiate a forced merge

If the normal gaps are not acceptable and the driver perceives that he cannot merge through
courtesy yielding (anticipated gap is not acceptable), he considers the decision whether to
initiate forced merge ( )ts F= or not ( )ts M= .

By initiating a forced merge, the merging driver takes a risk and imposes a deceleration on the
lag vehicle in the mainline. The utility of initiating a forced merge can be expressed as
follows:

TF F F F
nt nt n ntU Xβ α υ ε= + + (8)

where, for individual n at time t, F
ntU is the utility of initiating a forced merge, Fβ is the

corresponding vector of parameters, F
ntε is the random term for initiating forced merging, Fα

is the coefficient of the driver specific random term for forced merging.

By assuming that the random error terms F
ntε are i.i.d. Gumbel distributed, this decision can

be modelled as a logit model.

Similar to the initiation of the courtesy merge, the probability of the driver being in initiated
forced merge state is conditional on his previous state: the probability being 1 if the driver
had already initiated a forced merge to the same gap in a previous time step and 0 if the driver



had already initiated a courtesy merge to the same gap in a previous time step. However, if the
driver cannot finish the initiated forced merging within the time he is adjacent to the same gap
and is adjacent to a new gap, the state of the driver is reset to the normal (not initiated
courtesy or forced merging) state.
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(9)

where ntδ =1 if the driver is adjacent to the same gap at time (t-1) and t, 0 otherwise.

Decision to make a courtesy/forced lane change

Even though a driver decides to initiate a courtesy/forced merge, the completion of the merge
may take some time. That is, the actual merge is executed only when the available gaps are
acceptable in comparison with the critical gaps for the respective merge. From the moment a
driver initiates a forced merge up to nT (the last time step the vehicle is observed as a merging

vehicle), he is considered to be in initiated courtesy/forced merging state.

The functional form and variables influencing the critical gaps for courtesy and forced
merging are assumed to be the same as in merging under normal gap acceptance, but the
parameters are likely to be different.

State Transitions

At time t given an adjacent gap, driver n, can be in any one of the following states:
� Initiated courtesy merging ( ts C= )

� Initiated forced merging ( ts F= )

� Have not initiated courtesy/forced merging: normal ( ts M= )

Once a driver has initiated forced merging to an adjacent gap, he does not consider courtesy
merging or normal gap acceptance in the subsequent time steps unless the gap changes. The
decision in the subsequent time steps is only to decide whether or not to complete the forced
merge in that time step. Thus once a transition is made from normal to forced merging state,
the state cannot go back to normal and it cannot change to the initiated courtesy merging state
unless the gap changes. Similarly, for a particular adjacent gap, once a transition is made from
normal to initiated courtesy merging state, the state cannot change to initiated forced merging
or normal. When the driver moves to a new adjacent gap, the state is reset to normal.
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The possible decision state sequences are illustrated in Table 1 with two examples.

Table 1: Possible Decision State Sequences

Case 1: Same Adjacent Gap

Time
Period

Observed
Lane

Lane
Action

State Sequences

1 2 3 � Tn-1 Tn Tn+1 Tn+2 Tn+3 2Tn-1 2Tn 2Tn+1

1 CL 0 C MM� M M F M M � M M M
2 CL 0 C C M� M M F F M � M M M
3 CL 0 C C C� M M F F F � M M M
� � � � � � � � � � � �

nT -1 CL 0 C C C� C M F F F � F M M

nT CL 1 C C C� C C F F F � F F M

nT 1+ TL

Case 2: Two Adjacent Gaps

Gap Time
Period

Observed
Lane

Lane
ACTION

State Sequences

1 2 3 � Tn-1 Tn Tn+1 Tn+2 Tn+3 2Tn-1 2Tn

1 CL 0 C MM� M M F M M � M M
2 CL 0 C C M� M M F F M � M M

1 3 CL 0 C C C� M M F F F � M M
� � � � � � � � � � �

1
nT -1 CL 0 C C C� C M F F F � F M

1
nT CL 0 C C C� C C F F F � F F

1 CL 0 CMM� M M F M M � M M

2 CL 0 C C M� M M F F M � M M
2 � � � � � � � � � � �

2
nT CL 0 C C C� C C F F F � F F

Tn+1 TL

C = Initiated courtesy merge
nts C= , F = Initiated forced merge

nts F= ,

M = Normal (Had not initiated a courtesy or forced merge) nts M= ,

CL = Current Lane, TL = Target Lane, 0 = No change, 1 = Change,
Pn = Total number of adjacent gaps of individual n (2 in this case),
Tn = Time individual n is observed as a merging vehicle,

1 2
n n n nT Time individual is adjacent to gap T T T in this casep n p,= = + .



As observed in the table, when the driver is adjacent to the same gap in two subsequent time
instants, the following state transitions are possible:

• Normal to Normal ( 1|t ts M s M−= = )

• Normal to Courtesy ( 1|t ts C s M−= = )

• Normal to Forced ( 1|t ts F s M−= = )

• Courtesy to Courtesy ( 1|t ts C s C−= = )

• Forced to Forced ( 1|t ts F s F−= = )

When the driver is adjacent to a new gap, the following transitions are possible.

• Normal to Normal ( 1|t ts M s M−= = )

• Courtesy to Normal ( 1|t ts M s C−= = )

• Forced to Normal ( 1|t ts M s F−= = )

The probabilities of each of these transitions can be calculated using equations (6) and (9).

MODEL ESTIMATION

Data

The disaggregate data used for estimating the merging model was collected from the
northbound direction of Interstate-80 (I-80) in Emeryville, California (Figure 3). The data was
collected and processed as part of the Federal Highway Administration’s Next Generation
Simulation (NGSIM) project. Vehicles were tracked over a length of 503 meters (merging
needs to be completed by 200 meters). The vehicle trajectory data containing the coordinates
of the various vehicles in the section were used to derive the required variables for estimation.
The merging drivers entering from the on-ramp to the rightmost lane of the mainline were
used for estimation. The resulting dataset included 17352 observations at a 1 second time
resolution of 540 vehicles.

Figure 3: Data collection site
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It may be noted that it was not possible to uniquely identify the state of the driver from the
estimation data. For example, if there is an observation involving gap creation through
deceleration of the lag vehicle, it is not difficult to determine whether it is the result of
courtesy by the lag or the response to the merging vehicle forcing its way in. This motivated
the latent choice formulation that has the flexibility to account for the various merge
mechanisms without explicit knowledge of the mechanism that the driver has used.

Detailed analyses of the data and data processing methodology are presented in Cambridge
Systematics (2005) and Choudhury et al. (2006a).

Likelihood of the Trajectory

All model parameters were estimated jointly using a maximum likelihood technique. The
likelihood function that was maximized is presented in this section.

At any time t, an individual can be in courtesy merging ( ts C= ), forced merging ( ts F= ) or

normal ( ts M= ) state. The lane changing decision of the driver depends on his state. The

state of the driver at any instant depends on his previous state and the lane changing decision
at that state.

According to the first-order Markov assumption: the probability of individual n being in a
particular decision state j at time t only depends on his decision state at time (t-1).

Therefore, the fact that a person is in state j at time t, where t<Tn, indicates the following:

• He has made a transition to state j from state i at tth time step , where , , ,i j M C F∈

• He was at state i at time t-1

• He has not made any lane change when he was at state i at time t-1 (since the
observation for an individual ends when he makes a lane change)

The probability of being in state ts j= is therefore the product of probability of a transition

from state i to state j at time t, the probability of being in state i at time (t-1) and is conditional
on the lane actions at previous time periods. This can be expressed as follows:

1 1 1 1 2
( | , ) [ ( | , , , ) ( | , )]

, , ,

, ,
t t n n t t n n t t n n

i

tn n nP s j l = P s j s i l P s i l

i j M C F

υ τ υ τ υ τ
− − − −−

= = = =

∈

∑
(10)

It may be noted that ( )n tP s j= is thus the sum of probabilities of all possible paths to

ts j= (Figure 4).
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Figure 4: Decision state sequences

The state of the driver can thus be calculated recursively, the state of the driver at time t = 0
(when the driver first approaches the merging section) being normal.

Probability that at time t driver n executes lane changing decision lt at state st is given by:

1 1
( , | , ) ( , , ) ( , ), | | ,

t t t n n t t n n t t n nn n nP l s l P l s P s lυ τ υ τ υ τ
− −

= (11)

The state of the driver is not observed and only the lane changing actions are observed.
Therefore, probability that driver n executes lane changing decision lt at time t is given by:

1 1
( | , ) ( , | , ), ,

t t n n t t t n n

j

n nP l l P l s j lυ τ υ τ
− −

= =∑ (12)

If driver n is observed over a sequence of Tn consecutive time intervals, the probability of
observing his entire trajectory is the product of the probabilities given in equation (12) and
can be expressed as:

1

1

( | , ) ( | , ),
n n n n t t n n

nT

t

P P l lυ τ υ τ
−

=

= ∏l (13)

The unconditional individual likelihood is given by:

( )| , ( ) ( )
n n nnL P f f d d

υ τ

υ τ υ τ υ τ= ∫ ∫ l (14)

where,
( )f υ is the standard normal probability density function, ( )f τ is the probability density

function of a doubly truncated normal distribution with mean τμ and variance 2
τσ .

Maximum likelihood estimators of the model parameters can be found by maximizing this
function.
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Estimation Results

The estimation results estimated using the statistical estimation software Gauss7.0 are
summarized in Table 2. The final log-likelihood is -1609.65 and the adjusted rho-bar square is
0.88.

Table 2. Estimation Results of State Dependence Model

Variable Parameter Value t-statistic 

Normal Lead Gap 

Normal lead constant -0.230 -0.33 

*Relative average speed (positive) (m/sec) 0.521 0.81 

*Relative lead speed (m/sec) -0.505 -3.13 

Relative lead speed (negative) 
(m/sec) 

1.32 3.64 

Remaining distance to MLC point 
(10 m) 

0.420 0.89 

*Remaining distance function 

Remaining distance constant 0.355 1.68 
MLeadσ  3.42 9.67 

MLeadα  -0.819 -3.12 

Normal Lag Gap 

Normal lag constant 0.198 2.87 

*Relative lag speed (positive) (m/sec) 0.208 1.78 

*Relative lag speed (negative) (m/sec) 0.184 1.63 

*Remaining distance function Remaining distance to MLC point 
(10 m) 

0.439 5.09 

 Remaining distance constant 0.0242 0.03 

 RemDisLagα  0.000180 0.03 

*Lag acceleration (positive) (m/sec2) 0.0545 0.61 
MLagσ  0.840 3.03 

MLagα  -0.0000776 -0.01 

Initiate Courtesy Merge 
Anticipated gap constant 1.82 1.00 

Relative average speed (positive) (m/sec) 1.82 2.13 

Relative lead speed (m/sec) -0.153 -0.97 

Remaining distance function Distance to MLC point (10 m) 0.244 1.50 

 Constant 0.449 0.49 

 RemDisAα  0.360 0.18 

Aσ  0.0106 0.07 



Variable Parameter Value t-statistic 
Aα  -0.231 -1.90 

τμ  1.87 9.51 

τσ  1.44 17.71 

Courtesy Lead Gap 

Courtesy lead constant -0.582 -0.20 

*Relative average speed (positive) (m/sec) 0.521 0.81 

*Relative lead speed (negative) (m/sec) -0.505 -3.13 

*Remaining distance function Distance to MLC point (10 m) 1.32 3.64 

 Constant 0.420 0.89 

 RemDisLeadα  0.355 1.68 

CLeadσ  0.0109 0.08 

CLeadα  -0.0540 -0.03 

Courtesy Lag Gap 

Courtesy lag constant -1.23 -0.07 

*Relative lag speed (positive) (m/sec) 0.208 1.78 

*Relative lag speed (negative) (m/sec) 0.184 1.63 

*Remaining distance function Distance to MLC point (10 m) 0.439 5.09 

 Constant 0.0242 0.03 

 RemDisLagα  0.000180 0.03 

*Lag acceleration (positive) (m/sec2) 0.0545 0.61 

CLagσ  0.554 0.05 

CLagα  -0.0226 -0.04 

Initiate Forced Merge 

Initiate force constant -6.41 -4.63 

Heavy lag vehicle dummy -1.25 -0.63 
Fα  5.43 3.26 

Forced Lead Gap 

Forced lead constant 3.11 2.11 

*Relative average speed (positive) (m/sec) 0.521 0.81 

*Relative lead speed (m/sec) -0.505 -3.13 

*Remaining distance function Distance to MLC point (10 m) 1.32 3.64 

 Constant 0.420 0.89 
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Variable Parameter Value t-statistic 

 RemDisLeadα  0.355 1.68 

FLeadσ  7.95 5.82 

FLeadα  -0.0401 -0.07 

Forced Lag Gap 

Forced lag constant -2.53 -3.42 

*Relative lag speed (positive) (m/sec) 0.208 1.78 

*Relative lag speed (negative) (m/sec) 0.184 1.63 

*Remaining distance function Distance to MLC point (10 m) 0.439 5.09 

 Constant 0.0242 0.03 

 RemDisLagα  0.000180 0.03 

*Lag acceleration (positive) (m/sec2) 0.0545 0.61 
FLagσ  0.465 2.49 

FLagα  -0.0239 -0.19 

* same coefficients in normal, courtesy and forced gap acceptance levels

The lead critical gap is a function of the average speed in the mainline relative to the subject
vehicle’s speed, the relative speed of the lead with respect to the subject and the remaining
distance to the mandatory lane changing point. The lag critical gap is a function of the subject
relative speed with respect to the lag vehicle, the remaining distance to the mandatory lane
changing point and the acceleration of the lag vehicle.

The estimated lead and lag critical gaps for the normal gap acceptance are given by:

( )

( ) ( )
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0.0545 0,

MLead lead Mlead
nt nt nt nt n nt

n

lag lag
nt nt nt

MLag
nnt

lag
nt

G V Min V d

Max V Min V d
G

Max a

υ ε
υ

υ

⎛ ⎞
⎜ ⎟
⎝ ⎠

= − + − Δ + − +
+ +

+ Δ + Δ +
+ +=

+ 0.840 Mlag
n ntυ ε

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠− +

(15)

where, Mlead
ntG is the lead critical gap for the normal gap acceptance level (m), Mlag

ntG lag

critical gap for the normal gap acceptance level (m), '
ntV is the relative average speed factor

(m/sec), lead
ntVΔ relative speed of the lead vehicle with respect to the subject (m/sec), ntd is the

remaining distance to the mandatory lane changing point (10m), lag
ntVΔ relative speed of the

lag vehicle with respect to the subject (m/sec), lag
nta acceleration of the lag vehicle,

Mlead Mlag
nt ntandε ε are random error terms with ( )2~ 0,3.83Mlead

nt Nε and ( )2~ 0,0.532Mlag
nt Nε .



The lead critical gap increases with the increase in average speed of the mainline. As the
mainline average speed increases, the driver needs larger critical gaps to adjust his speed to
the speed of the mainstream. However, critical gap does not increase linearly with increasing
average speeds in the mainline (Figure 5a), it rather increases as a diminishing

function 'Mavg
ntVβ , where,

( )( )
' 1

1
1 exp 0,

nt avg
nt

V
Max V

⎛ ⎞
⎜ ⎟= +
⎜ ⎟+ − Δ⎝ ⎠

, avg
ntVΔ being the relative speed

of the average mainline speed with respect to the subject (m/sec).

The lead critical gap is larger when the lead vehicle is moving slower than the subject since
the driver perceives an increased risk when the lead is slowing down and he gets closer to the
lead vehicle (Figure 5b).

The lag critical gap increases with the relative lag speed: the faster the lag vehicle is relative
to the subject, the larger the critical gap is (Figure 5c).The lag critical gap increases as the
acceleration of the lag vehicle increases (Figure 5d), due to the higher perceived risk into
merging onto the mainstream when the lag vehicle is accelerating.

Both the lead and lag critical gaps decrease as the remaining distance to the mandatory lane
changing point decreases. This is because as the driver approaches the point where the ramp
ends, his urgency to make the merge increases and he is willing to accept lower gaps to merge
in to. To capture drivers’ heterogeneity, an individual specific random term has been
introduced in the coefficient of the remaining distance. Aggressive and timid drivers can thus
have different critical gaps, the remaining distance being equal. The aggressiveness/timidness
of the driver basically captures the heterogeneity among the driver population and is assumed
to have a continuous distribution (truncated normal in this case) rather than discrete having a
discrete class membership. For example, all other variables having no effect, the lead and lag
critical gaps as a function of remaining distance for the aggressive drivers are much smaller
than the gaps of timid drivers. Thus, aggressive drivers can find lead and lag gaps to be
acceptable even when they are far from the MLC point. On the other hand, timid drivers have
large critical gaps till they reach the end of the ramp, implying that they do not consider lane
changes in the beginning of the on-ramp. The sensitivity of the lead and lag critical gaps as a
function of the remaining distance according to the individual characteristics of the driver is
shown in Figure 5e and Figure 5f respectively. The t-statistics for the linear part of the
coefficient of remaining distance is found to be very significant both for lead and lag gaps.

Estimated coefficients of the unobserved driver characteristics ( nυ ) are negative for both the

lead and lag critical gaps. This implies that an aggressive driver requires smaller gaps for lane
changing as compared to a timid driver.
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Figure 5: Median Lead and Lag gap variations
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The anticipated gap acceptance (initiating courtesy) depends on lag speed, remaining distance
and density of the traffic stream. The estimated critical anticipated gap is given by:

( ) 0.244
exp 1.82 1.81 0, 0.153 0.213

1 exp(0.449 0.360
A lag A
nt nt nt nt n nt

n

G Max V dρ υ ε
υ

⎛ ⎞
= + Δ − + − +⎜ ⎟

+ +⎝ ⎠
(16)

where, A
ntG is the critical anticipated gap for initiating courtesy merge (m), ntρ is the density

in the rightmost lane of the mainline (veh/10m), ( )2~ 0,0.0106A
nt Nε

Similar to normal critical gaps, the critical anticipated gap is higher at higher lag speeds. It
decreases as the remaining distance decreases and it is smaller for aggressive drivers as
compared to timid drivers. Courtesy yielding/merging more commonly occurs in dense traffic
conditions and hence the probability to merge through courtesy increases as the density of
traffic in the mainline increases. The critical anticipated gap therefore reduces with density of
traffic in the rightmost lane of the mainline. Median critical anticipated gap as a function of
density is presented in Figure 6.
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Figure 6: Median critical anticipated gap as a function of density in target lane

The decision to initiate a forced merge is dependent on whether the lag vehicle is a heavy
vehicle or not. If the lag is a heavy vehicle, the probability of initiating a forced merge
decreases, as the driver perceives a higher risk in undertaking such a manoeuvre.

The probability of initiating a forced merge is given by the following equation:

( )
1

1 exp 6.41 1.25 5.43
F

nt hv
nt n

P
δ υ

=
+ + −

(17)

where, hv
ntδ is the heavy lag vehicle dummy, 1 if the lag vehicle is a heavy vehicle, 0

otherwise. It may be noted that the coefficient of aggressiveness has a significant impact on
the decision to initiate a forced merge.

On initiating a courtesy/forced merge, the driver decides whether to complete the merge by
accepting the available gap or not based on his respective lead and lag critical gaps. For
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identification purposes, except for the constant and the unobserved driver characteristics, the
coefficients of variables in these levels are restricted to be the same as for the normal gap
acceptance level.

Thus, the estimated lead and lag critical gaps can be given by the following equation:

( )

( ) ( )

( )

' 1.32
exp 0.582 0.521 0.505 0, 0.054

1 exp(0.420 0.355 )

1.23 0.208 0, 0.184 0,

exp 0.439
0.0545 0,

1 exp(0.0242 0.00018 )

CLead lead Clead
nt nt nt nt n nt

n

lag lag
nt nt

CLag
nt lag

nt nt
n

G V Min V d

Max V Min V

G
d Max a

υ ε
υ

υ

⎛ ⎞
= − + − Δ + − +⎜ ⎟

+ +⎝ ⎠

− + Δ + Δ

=
+ +

+ +
0.554 Clag

n ntυ ε

⎛ ⎞
⎜ ⎟
⎜ ⎟

− +⎜ ⎟
⎝ ⎠

(18)

( )

( ) ( )

( )

' 1.32
exp 3.11 0.521 0.505 0, 0.0401

1 exp(0.420 0.355 )

2.53 0.208 0, 0.184 0,

exp 0.439
0.0545 0,

1 exp(0.0242 0.00018 )

FLead lead Flead
nt nt nt nt n nt

n

lag lag
nt nt

FLag
nt lag

nt nt
n

G V Min V d

Max V Min V

G
d Max a

υ ε
υ

υ

⎛ ⎞
= + − Δ + − +⎜ ⎟

+ +⎝ ⎠

− + Δ + Δ

=
+ + −

+ +
0.0239 Flag

n ntυ ε

⎛ ⎞
⎜ ⎟
⎜ ⎟

+⎜ ⎟
⎝ ⎠

(19)

where, Clead
ntG and Flead

ntG are lead critical gaps for the courtesy and forced gap acceptance

levels (m) respectively, Clag
ntG and Flag

ntG are lag critical gaps for the courtesy and forced gap

acceptance levels (m) respectively, , ,Clead Clag
nt ntε ε Flead Flag

nt ntandε ε are random error terms:

( )2~ 0,0.0109Clead
nt Nε and ( )2~ 0,0.554Clag

nt Nε , ( )2~ 0,7.95Flead
nt Nε and

( )2~ 0,0.465Flag
nt Nε .

The estimation results showed that all other things held constant, a driver is more willing to
accept smaller lead and lag gaps when he is in the courtesy merging state than in normal or
forced merging state. This is intuitive since in case of courtesy merging, the lag vehicle is
slowing down and therefore, a smaller buffer space is sufficient.

The constant term for the lag critical gap for forced merging is the smallest. However, the lead
critical gap for the forced merging case is relatively large reflecting the fact that once the
driver has initiated a forced merge (pushed his front bumper establishing his right of way), the
merge is completed only when the lead gap is sufficiently large since the manoeuvre involves
significantly higher risk as compared to the normal gap acceptance.

The anticipation time is normally distributed within 0 to 4 sec.1 The estimated distribution of
anticipation time is

1 Different values between 0 to 6 sec were tested as the upper limit of anticipation time and the selected
value (4 sec) provided the best goodness-of-fit.   



n

1.871
if 0 4

( ) 0.833 1.44

0 otherwise

n

nf

τ
φ τ

τ

⎧ −⎛ ⎞
≤ ≤⎪ ⎜ ⎟= ⎨ ⎝ ⎠

⎪
⎩

(20) 

Figure 7: The distribution of anticipation time

MODEL COMPARISON

The state dependent merging model is compared against a simpler instantaneous model (Lee
2006) that does not capture the persistent behaviour of drivers and ignores state dependency.
The instantaneous model aims at capturing the normal, forced and courtesy behaviour of
drivers through a single gap acceptance level by including variables relevant to all three types
of merges in a single critical gap function. The model structure is shown in Figure 8. The
model is estimated with the same trajectory data.

Figure 8: Framework of single level/instantaneous merging model (Lee 2006)

The state dependent model is an extension of the instantaneous model. The summary statistics
of the estimation results for the two models, presented in Table 3, show a significant
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improvement in the fit of the model, even when accounting for the larger number of
parameters in the state dependent model.

Table 3 – Model Comparison

Model Likelihood Function Value Number of Parameters

Instantaneous -1639.69 17

State dependent model -1609.65 42

( ) ( ) 2
1 ,2 ~

U Rk kLR L U L R αχ − −= −⎡ ⎤⎣ ⎦
2
(0.95,25)60.08 37.65LR χ= > =

A likelihood ratio test was performed to select between the two alternative models. The
likelihood ratio test results, also presented in Table 3, indicate that the unrestricted (U) state
dependent model is significantly better than the restricted (R) instantaneous model. Therefore,
the instantaneous model can be rejected as incorrect at 95% confidence interval.

The simulation capability of the state dependent model was compared with the performance of
the instantaneous model within the microscopic traffic simulator MITSIMLab (Yang and
Koutsopoulos 1996). Both models were implemented in MITSIMLab and the same merging
section used for the model estimation (Interstate 80, California) was simulated. The
comparison of the distribution of the actual travel time in the section and MITSIMLab
simulations using each of the models are presented in Figure 9.
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Figure 9: Observed and simulated travel times in the Interstate-80

As observed in Figure 9, the instantaneous model over predicts congestion in the merging
section while the state dependent model has a much better replication of the reality. An
extensive validation study to compare the simulation capability of the state dependent model



using aggregate trajectory data collected from another site with a different ramp configuration
is presented in Choudhury et al. (2006b).

CONCLUSIONS

In this paper, a methodology to model state dependency in lane changing behaviour has been
demonstrated by applying it to model the merging behaviour of drivers in a congested
freeway. The model has explicit normal, courtesy and forced merging components sequenced
in a single decision framework. The decision to initiate a merge and the acceptance of gaps to
complete the merge are affected by the decision state of the driver as well as neighbourhood
variables and driver characteristics (agent effect). The model parameters for state-transition
are estimated simultaneously with the parameters of the gap acceptance models with detailed
vehicle trajectory data using maximum likelihood estimation technique.

The statistical model selection criteria using the estimation results showed that the proposed
state dependent merging model is superior to a single level instantaneous model estimated
with the same data ignoring state dependency. This result was further strengthened by a
validation case study, which compared the results obtained from simulation runs from each of
the model implementations in the microscopic traffic simulator MITSIMLab.

In the current model, only lateral decisions involved with the merging decision was modelled.
The extent of the improvements obtained by incorporation of state dependency in the structure
indicates the possibility of further enhancements through extension of the model to explicitly
capture the state dependency between lane changing, target gap choice and acceleration
decisions of the driver.

It may be noted that the methodology presented in this paper to model state dependency in
merging behaviour can be extended to other driving behaviour models as well and this will be
explored in future research.
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THE LAGRANGIAN COORDINATES AND 

WHAT IT MEANS FOR FIRST ORDER 

TRAFFIC FLOW MODELS 

Ludovic Leclercq, Jorge Laval and Estelle Chevallier, Laboratoire d’Ingénierie Circulation 

Transport (ENTPE/INRETS), Vaulx-en-Velin, France. 

 

INTRODUCTION 

Traditionally, first order traffic flow models have been formulated in Eulerian coordinates 

(x,t) as a scalar conservation law, namely the LWR model of Lighthill and Whitham (1955), 

and Richards (1956): 

 ( ) 0t xk kv∂ + ∂ = . (1) 

This model is fully described by vehicle density k. The speed v and the flow q can be derived 

from a fundamental diagram (FD) v=V(k) or q=Q(k)=kV(k). This model is appealing because 

of its simplicity, parsimony and its robustness to replicate basic traffic features. Its solution is 

usually computed with the Godunov scheme (Godunov, 1959), which is based on iterative 

solutions of Riemann problems (Daganzo, 1994, Lebacque, 1996). Unfortunately, this scheme 

is known to introduce important numerical viscosity. 

 

Alternatively, Newell (1993) proposed the use of the cumulative count function N(x,t) and 

conjectured that the LWR solution is the lower envelope of the multiple values of N(x,t) 

obtained from proper boundary and initial data. Recently, Daganzo (2005) proved Newell’s 

conjecture using variational theory, which reduces the LWR model to the solution of the 

Hamilton-Jacobi equation: 

 ( )t xN Q N∂ = −∂  (2) 

derived from q=Q(k) since k=-�xN and q=�tN. This new approach opened the door to powerful 

numerical methods based on shortest-path algorithms in (x,t) coordinates (Daganzo,2005b). 
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The aim of this paper is to go further into the use of the N-function by formulating the LWR 

model in the transformed coordinate system (N,t). These Lagrangian coordinates are fixed to a 

given fluid particle and move with it in space-time. In this new coordinate system, the 

purpose is no longer to determine the local density k but the position X(n,t) of vehicle number 

n. Note that in the continuum, n is not necessarily an integer. In the remainder of the paper, 

capital N (respectively X) will stand for the N(x,t) (respectively X(n,t)) function while n 

(respectively x) will define a value taken by this function. 

 

This paper is organized as follow: section 2 formulates the LWR model in Lagrangian 

coordinates as a conservation law and as a variational principle; it also derives relevant 

numerical schemes. Section 3 analyses the errors introduced by the Godunov scheme in 

Eulerian coordinates in order to gain some insights about its nature. Section 4 shows how to 

implement existing and novel extensions using the Lagrangian approach. Finally, section 5 

presents a discussion. 

 

THE LWR MODEL IN LAGRANGIAN COORDINATES 

This section presents the continuum formulation of the LWR model in Lagrangian 

coordinates, as a conservation law and as a variational principle. Numerical schemes derived 

from each formulation will then be proposed. The equivalence between both numerical 

schemes will be proven under specific assumptions. 

Continuum formulation 

Lagrangian conservation law 

The conservation law in Lagrangian coordinates was first introduced by Courant and 

Friedrich (1948) in the case of gas dynamics. In traffic flow, equation (1) becomes: 

 0
t n
s v∂ + ∂ =  (3) 

where the spacing s corresponds to 1/k. The corresponding fundamental diagram V
*
 can be 

expressed as a concave function of s, v=V
*
(s)=V(1/s). Therefore, the LWR model in 

Lagrangian coordinates corresponds to the following hyperbolic equation in s: 

 *( ) 0
t n
s V s∂ + ∂ = . (4) 

Wagner (1987) has proven the equivalence between (4) and (1) for weak solutions, even in 

vacuum cases where s is not defined; i.e., when k=0. 

Lagrangian variational principle 

The reader should refer to (Daganzo, 2005; 2005b) for a complete description of this theory in 

Eulerian coordinates. For simplicity, we will study here homogeneous problems but 

inhomogeneous ones can be treated similarly as in (Daganzo, 2005). Special inhomogeneous 

problems will be exemplified in section 4. 
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What follows shows that the transformation to Lagrangian coordinates preserves the nature of 

the problem; i.e. that a partial differential equation similar to (2) has to be solved: 

 ( )*

t nX V X∂ = −∂  (5) 

derived from *(1/ ) ( )v V k V s= = . To prove the existence of �tX and �nX, we only need to 

show that X exists and is differentiable. To this end, we note that the function X(n,t) can be 

obtained by inverting N(x,t); i.e., solving for x in n=N(x,t). Two cases may arise: 

(a) non-vacuum (k=�xN�0): in this case, N is continuous and strictly decreasing in space. 

Hence, N(x,t) is bijective and the inversion is possible. Thus, X(n,t) exists, is 

continuous and strictly increasing in n. Furthermore, as N is differentiable except on 

shockwaves, X verifies the same property. 

 

(b) vaccum (�xN=0 and �nX=+�): this case corresponds to step-jumps in the X-profile 

with respect to n; i.e., voids in traffic flow. Intuitively, these jumps should not be a 

problem because a void separates two independent LWR problems: the solution of one 

does not influence the solution of the other. Reassuringly, Wagner’s results (1987) 

imply that the general problem remains well-posed even when N is not invertible. 

 

Therefore, it is possible to formulate the Lagrangian variational principle analogously to the 

Eulerian one; i.e., it can be treated similarly as in (Daganzo, 2005). One just has to transpose 

variables using Table 1.  

Table 1: Correspondence between the Eulerian and Lagrangian variational principles 

 Eulerian 

coordinates 

Lagrangian 

coordinates 

Unknown function N X 

Main variable k=-�xN s=-�nX 

Flux q=�tN v=�tX 

FD Q(k) V
*
(s) 

 

 

All the results proven in (Daganzo, 2005 ; 2005b) can thus be applied to the Lagrangian 

variational formulation of the LWR model. Notably, the value of X at a point P in the (n,t) 

plane, XP, can be expressed as a least-cost path problem: 

 

( )( )

( )

: set of all valid paths

: set of all path from the boundary condition to 

:  value at the beginning of the path

: cost of path 

min : , where

P

P P

P

B X

X B

Δ

= + Δ ∀ ∈ ∩

V

P

V P

�

�

� �

� �

 (6) 
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Analogously to (Daganzo, 2005), “waves” in (n,t) coordinates are characteristics where s is 

constant, they have slopes u=�sV
*
(s) representing a passing rate. We define two types of 

passing rates: (a) u is a “possible passing rate” if there exists s such that u=�sV
*
(s); (b) û is an 

“allowable passing rate” if min(�sV
*
(s)) � û � max(�sV

*
(s)). “Valid paths” are continuous and 

piecewise differentiable paths n(t) in the (n,t) plane whose slopes n’(t) are allowable passing 

rates. “Wave paths” are valid paths whose slopes are possible passing rates and are thus 

composed of a succession of waves. 

 

The cost rate r on a wave path is given by dtX. The scalar r represents the speed of the 

Eulerian characteristic associated to the passing rate u. 

 d
t t n t

r X X X n v su= = ∂ + ∂ ∂ = − . (7) 

 

As (5) holds and V
*
 is concave, one can express r only as a function R(u) using the Legendre 

transformation as in (Daganzo, 2005): 

 ( ){ }*( ) sup
s

r R u V s su= = − . (8) 

 

The cost on a Lagrangian valid path � from B to P is thus: 

 ( ) ( )'( )
P

B

t

t
R n t dtΔ = �� . (9) 

 

In the next section, we will show how the Lagrangian variational principle makes it possible 

to construct a numerical scheme which is exact under few restrictive assumptions. 

 

Numerical resolution 

Godunov scheme 

In the Godunov scheme, the spacing s is approximated by a constant value, si
t
, between n and 

n+�n and is calculated every time step �t; see Figure 1. Since the flux function V
*
 for 

equation (4) is non-decreasing in s, the characteristic speed is always non-negative (traffic 

anisotropy). The Godunov method reduces in this case to the upwind method: 

 ( ) ( )( )* *

1

t t t t t

i i i i

t
s s V s V s

n

+Δ
−

Δ
= + −

Δ
 (10) 
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Figure 1: Lagrangian grid 

 

 

The Courant-Friedrich-Lewy’s (CFL) condition (11) defines the stability domain of (10). As 

the Godunov scheme is consistent and conservative, this also guarantees that it converges 

(Leveque, 1992). 

 ( )*max ( )
s

s
n V s tΔ ≥ ∂ Δ  (11) 

Notice that non-negative wave speeds imply that Lagrangian rarefaction waves never 

influence flux values at cell boundaries. The entropy condition is therefore naturally handled 

in the numerical scheme; i.e., it is not necessary to explicitly include the entropy condition in 

the numerical solution method. 

 

The Lagrangian Godunov scheme can also be expressed in terms of X(n,t) by noting that the 

flux *( )t

i
V s  at a boundary n of a cell i is: 

 * *( , ) ( , ) ( , ) ( , )
( )t

i

X n t t X n t X n t X n n t
V s V

t n

+ Δ − − − Δ� �= = −� �Δ Δ� 	
. (12) 

 

If we suppose now that Q is triangular as in Figure 2a, V
*
 can be expressed as: 

 ( ) ( )( )* min , 1m mV s v w k s= − , (13) 

where vm is the free-flow speed, w, the wave speed and km, the jam density; see Figure 2b. 

After simplification (12) becomes: 

 ( ) ( ) ( ) ( ) ( )( ), min , , 1 , ,mX n t t X n t v t X n t X n n t w tα α+ Δ = + Δ − + − Δ − Δ , (14) 

where �=wkm�t/�n. If the CFL condition (11) is satisfied as an equality, then �n=wkm�t and 

�=1. In this case, equation (14) reduces to: 

 ( ) ( ) ( )( ), min , , ,mX n t t X n t v t X n n t w t+ Δ = + Δ − Δ − Δ . (15) 

When n is an integer and �n=1 then X(n,t) corresponds to the position t

n
x  of vehicle n at time 

t and X(n-1,t) to the position 1

t

n
x −  of its leader at the time t. Notice that equation (15) reduces 

to Newell’s simplified car-following model (Newell, 2002) (Daganzo, 2006): 
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 1

1
min ,t t t tm

n n n

m m

v
x x x

wk k

+Δ
−
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� 	
. (16) 

 

We will show that this scheme is exact using the Lagrangian variational principle. 
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Figure 2: Triangular fundamental diagram 

 

 

Lagrangian variational principle 

Daganzo (2005b) proposed efficient methods to solve the LWR model using the concept of 

“sufficient networks”. A “network” is defined as a directed graph of nodes and arcs in the 

relevant plane (Eulerian or Lagrangian), where arcs are valid paths. A network is “sufficient” 

when the least-cost path through the network between every valid pair of nodes is an optimum 

path. A pair of nodes is said to be “valid” if a valid path exists between them. Notice that this 

valid path may not necessarily be included in the network. An “optimum path” between a 

valid pair of nodes is a least-cost valid path between these two points. Notice, again, that this 

optimum path may not be included in the network and this may introduce errors. In a 

sufficient network, the solution is exact at every node provided that the initial data is linear 

between two consecutive initial nodes. 

 

Next, we will apply this method in Lagrangian coordinates to the variational principle (5) 

supposing that Q is triangular. In this case, waves have only two possible velocities: u1=0 

(free-flow) and u2=wkm (congestion). The resulting cost rates (8) are: R(u1)=vm and R(u2)=-w; 

see Figure 2b. It can be shown, following the derivation in (Daganzo, 2005b), that any 

geometric network formed by two families of parallel equidistant lines with slopes u1 and u2 

and separated by �n1 and �n2 is sufficient; see Figure 3a. Therefore, with appropriate initial 

data, the solution at nodes is exact. 

 

Since u1=0 nodes are always lined-up along rows where n values are constant. Furthermore, if 

one sets Δn1=Δn2=Δn nodes also line-up along “time-columns”; see Figure 3b. This defines a 
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rectangular lattice in the (n,t) plane with Δt=Δn/wkm, which is very practical for computational 

implementation. Furthermore, with only two incoming arcs per node, the computation of (6) 

at each node is straightforward; i.e.: 

 
( ) ( ) ( ) ( ) ( )( )

( ) ( )( )
( , ) , ( , ) ,

, min , , ,

min , , ,

n t n t t n n t n t t

m

X n t t X n t X n n t

X n t v t X n n t w t

→ +Δ −Δ → +Δ+ Δ = + Δ − Δ + Δ

= + Δ − Δ − Δ
 (17) 

where ( , ) ( ', ')n t n t→Δ is the cost of the arc between the two grid-points (n,t) and (n’,t’). 
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Figure 3: Geometric networks associated to the Lagrangian variational principle 

 

 

Notice that (17) and (15) are identical. Therefore, the Godunov and the variational schemes 

are equivalent when Q is triangular and the CFL condition (11) is satisfied as an equality; i.e., 

when Δn=wkmΔt. In this case, the Godunov scheme computes the exact solution and no 

numerical viscosity appears. This will be illustrated in the next section. 

 

NUMERICAL ERRORS OF THE GODUNOV SCHEME IN 

EULERIAN COORDINATES 

This section expresses the Godunov scheme in terms of the N-function in order to obtain 

insights about the nature of the numerical viscosity introduced by this scheme in Eulerian 

coordinates. This manipulation will allow us to quantify a bound for the global error. These 

results enhance the interest of the Lagrangian approach, which induces no numerical errors. 

Note that Q is supposed triangular in this section. 

The Godunov scheme in Eulerian coordinates 

In (x,t) coordinates, a highway is partitioned into small sections of length �x and time into 

time-steps of duration �t. The density of cell i at time t is approximated by a constant value, 
t

i
k . The Godunov scheme expresses the exit flow t t t

i
q

→ +Δ  of cell i between time t and t+�t as: 
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 ( ) ( )( )1min ,t t t t t

i i i
q k kλ μ→ +Δ

+= , (18) 

where λ and μ correspond to the demand and supply functions; i.e.: 

 ( ) ( )( ) min ,   and  ( ) min ( ),m m m mk v k q k w k k qλ μ= = − , (19) 

where qm is the capacity. This scheme requires the CFL condition to be satisfied: 

 
m

x v tΔ ≥ Δ . (20) 

The density t t

i
k

+Δ  is updated as usual considering the vehicle conservation law: 

 ( )1

t t t t t t t t t t

i i i i

t
k k q q

x

+Δ +Δ → +Δ → +Δ
−

Δ
= + −

Δ
. (21) 
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Figure 4: Comparison of the Eulerian and Lagrangian Godunov schemes 

 

 

It is well known that this scheme induces numerical viscosity especially for shockwave 

propagating backwards a transition between a low density l and a higher density h. Viscosity 

appears even if the shockwaves speed ws is equal to -w and the CFL condition  is satisfied as 

an equality. This is illustrated in Figure 4a where we used vm=20 m/s; w=4 m/s; 

km=0.15 veh/m; l=0.025 veh/m; h=0.1 veh/m; ws=-4 m/s; �t=1.67 s and �x=33.3 m. Figure 4b 

shows the same experiment (using �n=1) solved with the Lagrangian Godunov scheme of 

section 2, which is exact. 

 

Notice in Figure 4a that the shockwave (shown as a solid slanted line) is increasingly 

smoothed out as time evolves; dotted lines have been added in the figure to indicate how the 

time-space region where errors occur grows in time. The exactness of the Lagrangian 

Godunov scheme is apparent from Figure 4b, as trajectories—represented by solid lines—

change speeds precisely on the shockwave; shades of gray have been added to the figure to 

distinguish both traffic regimes. 
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Nature of the errors 

Even though local truncation errors have been extensively analyzed in the mathematical 

literature (Leveque, 1992), no analytical expressions for the global errors have been 

published. The global error is defined here in L� metric for all x and all t. To quantify this 

error, let us reformulate (18) in terms of N(x,t) using k=-�xN and q=�tN: 

( ) ( ) ( ) ( ) ( ) ( ), , , , , ,
min ,

N x t t N x t N x t N x x t N x x t N x t

t x x
λ μ

� �+ Δ − − − Δ + Δ −� � � �
= − −� �� � � �� �Δ Δ Δ� 	 � 	� 	

. (22) 

 

Combining (19) and (22) gives the variational form of the Godunov scheme: 

 ( ) ( ), min , ,   whereA B m C mN x t t N N wk t N q t+ Δ = + Δ + Δ  (23) 

 

( ) ( ) ( )
( ) ( ) ( )

( )

1 ' , ' ,

1 , ,

,

/   and  ' /

A

B

C

m

N N x t N x x t

N N x t N x x t

N N x t

w t x v t x

β β

β β

β β

= − + − Δ

= − + + Δ

=

= Δ Δ = Δ Δ

 (24) 

 

Note that N(x, t+�t) is calculated as the minimum between three wave paths
1
, coming from 

the points A, B and C; see Figure 5a. Their slopes are respectively vm, -w and 0, and their 

Eulerian cost rates are 0, wkm and qm. The N-values at these points are NA, NB and NC, 

respectively. 

 

It is clear from Figure 5a that the Godunov scheme is exact only if NA and NB are known 

exactly. However, this is not true in general as A and B are generally not grid-points. Actually, 

as can be seen from (24), the N-value at these points is a weighted average of the N-values at 

the endpoints of their associated cell; see Figure 5b. Notice that NA is known exactly when the 

CFL condition (20) is satisfied as an equality: i.e., �x=vm�t. This implies that �’=1 and A is 

the grid-point (x-�x,t). However, NB is known exactly only when Q is an isosceles triangle. In 

this case, w=vm, �=1 and B is the grid-point (x+�x,t). 

 

With the exception of isosceles FDs – which are not realistic –, numerical errors always arise 

when NB is the minimum in (23). This happens for shockwaves propagating backwards. 

Shockwaves propagating forwards do not induce numerical errors when the CFL condition 

(20) is satisfied as an equality because NA or NC are the minimums in (23). 

 

                                                 
1
 Notice that horizontal paths are not wave paths in general but when Q is triangular they are optimum paths. 

Thus, they may be considered as wave paths here. 
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Figure 5: Formulation of the Eulerian Godunov scheme under a variational form 

Quantification of the errors 

We will now estimate analytically the numerical errors induced by the Godunov scheme, 

which is possible using equation (23). Let us consider two consecutives cells i and i+1 with 

densities l and h as shown in Figure 6a. A shockwave appears at time t0 at the boundary x1 

between these two cells and propagates backwards at a velocity –w. For simplicity, we 

suppose that �x=vm�t and that the ratio j=vm/w is an integer
2
. Thus, the shockwave crosses the 

upstream boundary x0 of cell i at time tj after j time-steps; see Figure 6b. At time tp (1� p �j), 

the numerical error, ep, at x0 between the numerical solution, N� , and the exact one, N , is 

given by: 

 ( ) ( )0 0, ,
p p p

e N x t N x t= −� . (25) 

In this case, NB is the minimum in (23). Thus, ep can be expressed as: 

 
( ) ( )
( ) ( ) ( ) ( ) ( )

0 1 0 1

1 1 1 1 1

, ,

, , 1

p p p

p p p

e N x w t t N x w t t

N x t l x w t N x t p hw t x pw t l

− −

− − −

= + Δ − + Δ


 �= + Δ − Δ − + − Δ + Δ − Δ� 

�

�
 (26) 

where lp-1 represents the estimated density in cell i at time tp-1. Note that 1 1( , )pN x t −
�  and 

1 1( , )
p

N x t −  are identical because the flow calculated by the Godunov scheme at the boundary 

x1 is always equal to qh, which is the exact solution. It follows that ep becomes: 

 ( ) ( ) ( ) ( )11 1
p p

e x l l p x h lα α−= Δ − − − − Δ − , (27) 

where α=w�t/�x=w/vm. 

 

At time tp, the estimated density lp can be expressed by the following recursion: 

 ( ) ( )( ) ( )11 1 1 1
p p

p pl l h h lα α α α−= − + = − − + − . (28) 

 

 

                                                 
2
 if it is not the case, it can be shown that the global error computed in this subsection is an upper bound. 
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By replacing lp-1 in (27), ep becomes: 

 ( ) ( )1 1
p

pe p h l xα α
 �= − − − + − Δ
� 

. (29) 

Finally, as j=1/α, ej is given by: 

 ( ) ( )1/
1

j
e l h x

α
α= − − Δ . (30) 

 

As expected, the error is proportional to �x and to the density difference l-h. Interestingly, the 

error is also decreasing in α, which means that the more the congested branch of the FD is flat 

the more the errors are important. Notice that the error contribution of α can be bound by 

exp(-1); i.e. |ej| � 0.37|l-h|�x. Actually, this bound is rather tight for typical values of α 

(4 � 1/α � 8). Notice too, that ej is an upper bound for the global error (i.e., for all t�tj and all 

x�x0) since the Godunov scheme is a contraction mapping and ej represents the maximum 

error at x0 for all t. 
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Figure 6: Global error induced by the Godunov scheme for shockwave propagation 

backwards 

 

 

Finally, in the more general case of a shockwave, where the upstream density corresponds to 

a free-flow traffic state (e.g., f in Figure 6a), it can be shown that (30) represents an upper-

bound to the global error provided that l corresponds to the congested density associated to 

the flow vmf; see Figure 6a. 

 

EXTENSIONS USING THE LAGRANGIAN VARIATIONAL 

PRINCIPLE 

This section examines how to incorporate existing extensions to the LWR model into the 

Lagrangian variational principle. In this section, we will suppose that Q is triangular and that 

�n=1. 
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Moving bottlenecks 

In analogy with the Eulerian case, exogenous moving bottlenecks (see Newell, 1998, 

Lebacque et al, 1998; and Leclercq et al, 2004 for a review) can be represented as moving 

boundary conditions. Thus, they represent shortcuts in the solution network (Daganzo and 

Menedez, 2005). As described in section 2, the cost rate of each arc of the shortcut becomes 

the speed of the bottleneck, vb, while the slope of the arc in (n,t) is the bottleneck’s passing 

rate, rb; see Figure 7a. 

 

The only caveat is that in multilane/single-pipe highways rb is not know a priori and therefore 

the arc cannot be introduced in advance. Note that in single-lane highways (or 

multilane/multi-pipe) this problem does not exist since rb is always equal to 0. In fact, this 

problem only arises in multilane/single-pipe highways when the moving bottleneck is not 

active. In this case rb depends on traffic conditions, i.e. rb=q-kvb; when it is active rb is set to 

its maximum value, 
b̂

r . 

 

A general numerical solution method including moving bottlenecks may be described as 

follows between times t and t+�t: 

(i) include the shortcut arc (arc as in Figure 7b ) assuming rb = 
b̂

r ; let Bj be the point 

of intersections of the shortcut and the network. Notice that this point may 

intersect either arc a1 with slope u1=0 (case a in Figure 7b) or arc a2 with slope 

u2=wkm (case b in Figure 7b). 

 

(ii) calculate the value of X at the point Bj by applying (6) to the two possible paths: 

Bj-1→Bj and (n,t) →Bj (case a) or (n-1,t) →Bj (case b). 

 

(iii) if the optimum path to Bj does not include the shortcut arc then set rb such that the 

value of X at Bj is the same on both paths; this condition ensures that rb is 

consistent with traffic conditions and that the bottleneck is not active. 

 

(iv) calculate the value of X at the grid-point (n,t+�t) by applying (6) to the two 

possible paths: Bj→ (n,t+�t) and (n-1,t) → (n,t+�t) (case a) or (n,t) → (n,t+�t) 

(case b). 

 

In the case of a single-lane, the above numerical method simplifies significantly. Only case b 

in Figure 7b can take place with a horizontal bottleneck trajectory as shown by the dotted line 

in the figure. Notice that the bottleneck is introduced at a “distance” �nb from its leader; this 

distance is determined when the bottleneck is first introduced, and is constant thereafter. 
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Figure 7: Moving bottlenecks 

 

 

It can be shown that the position of the bottleneck and its follower are given by: 

 

( )

( )

1
min( , 1, )  (bottleneck)

1
, min( ( , ) , )   (follower)

j j

j

b
B B b

m

b
m B

m

n
X X v t X n t

k
n

X n t t X n t v t X
k

−

Δ
= + Δ − −

− Δ
+ Δ = + Δ −

 (31) 

Finally, it is worth to note that fixed bottlenecks can be treated in the same way described 

above by setting vb=0 and noting that passing rates correspond to the flow crossing the 

bottleneck. Again, except in cases where rb can be determined exogenously (e.g., a traffic 

signal in red phase) the general procedure described above must be utilized. 

Self-similar highways 

A self-similar highway is composed of successive segments whose FDs are scaled versions of 

each other; e.g., a highway where the number of lanes varies in space. This means that the set 

of wave speeds is the same on all segments and that maximum passing rates are multiples of 

each other. Unfortunately, as opposed to Eulerian coordinates, this problem is harder to treat 

in Lagrangian coordinates because: 

(a) the Lagrangian trajectory of boundaries between segments is not known a priori (for 

the same reasons than for bottlenecks). 

(b) maximum passing rates are different on each segment, which makes it hard to define 

the network for the whole highway. 

(c) if the ratio between different FDs is not a rational number, a sufficient network does 

not exist and therefore exact solutions can not be found. 

Intersections 

Existing intersection models split the supply (available capacity) of an outgoing link 

considering demands on incoming links (see Lebacque and Koshyaran, 2005 for a review). 

Different models differ in the way they treat demands, but the inputs are the same. Therefore, 
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in the Lagrangian variational principle all one needs to do is computing supplies and 

demands. This can be accomplished using (19) and properly defining the densities. To this 

end, we use the method in (Leclercq, 2006) where supplies and demands are computed 

whenever a vehicle crosses the intersection boundary. It can be shown that in this case the 

density for computing demands is the inverse of the upstream spacing; the density for 

computing supplies is the inverse of the downstream spacing. Next, one only has to apply the 

desired intersection model and incorporate the resulting flow allocation as a fixed boundary 

condition in space. This boundary corresponds to a bottleneck at the downstream end of each 

incoming link, and to initial data at the entry of each outgoing link. 

 

The method remains exact as long as the numerical grid-points of every link coincide; i.e., 

when the FD is the same on all links. Otherwise, one would need to interpolate between grid-

points and this would introduce numerical errors that will propagate, and which may or may 

not grow when passing through neighbouring intersections. 

Vehicle characteristics 

The Lagrangian framework is the natural environment for introducing vehicle characteristics 

since it is a coordinate system that “moves” with the flow. Furthermore, if we consider (as in 

this subsection) a single lane, then X(n,t) represents the trajectory of vehicle n since �n=1. In 

this case, the inclusion of vehicle-specific characteristics becomes straightforward. For 

example, information such as origin and destination (O/D), vehicle number or drivers' value 

of time are trivial to incorporate because it does not modify the network (and thus the car-

following rule). However, for incorporating characteristics such as maximum desired speed, 

vehicle acceleration capabilities or driver-specific FDs one must modify the network. Some 

examples are given next. 

 

 

Different free-flow speeds 

If drivers have different free-flow speeds one may simply change the cost rate of the 

horizontal arcs of the solution network to the free-flow speed of the particular driver. This is 

illustrated in Figure 8a, where 
n

m
v  is the desired free-flow speed of vehicle n. Notice that this 

implementation is straightforward because the network geometry remains unchanged. Only 

the costs are modified. 

 

 

Different reaction times  

If drivers have different reactions times, they will exhibit different values of w. In this case, 

the network geometry changes because the slope of the slanted arcs between two consecutive 

vehicles varies. This is illustrated in Figure 8b where 
n

w  is the wave speed of vehicle n. The 

time-step implementation of this extension is not straightforward as grid-points are no longer 
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aligned on a regular lattice as shown the by the dotted lines in the figure. It is possible that 

event programming or approximating wn by rational numbers may streamline the solution 

method. 
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Figure 8: Examples of network for incorporating vehicle characteristics 

 

 

Bounded vehicle acceleration 

In the literature (Lebacque, 2003, Leclercq, 2006) this extension has been conceived for 

obtaining realistic acceleration profiles when transitioning to a less congested traffic state, as 

opposed to the infinite accelerations produced by the LWR model. 

In Lagrangian coordinates, this can be accomplished similarly as in the case of different free-

flow speeds presented above. The only difference is that ( )n n

m m
v v t= ; i.e., 

 ( ) ( ) ( )n n

m m
v t t v t a t t+ Δ = + Δ , (32) 

where a(t) is the desired acceleration of vehicle n at time t which may depend on vehicle type, 

roadway geometry, current speed, etc. 

Multi-pipe solution method 

We refer to a multi-pipe approach when each freeway lane is considered as an independent 

unit that interacts with adjacent lanes via lane changes. In this case, the solution method for 

including bottlenecks simplifies significantly compared to multilane/single-pipe highways. 

This happens because in a single lane bottleneck passing rates are zero, and so are shortcut arc 

slopes. This implies that one may construct the solution network beforehand without having 

to modify it due to varying passing rates. 

 

Furthermore, bottlenecks can be used to represent the blockage effect of lane-changing 

vehicles on the target lane as in Laval and Daganzo (2006). The only complication is the 

incorporation of forced lane-changing manoeuvres when drivers accept very short non-

equilibrium gaps and force their way into the target lane. This phenomenon—commonly 
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observed in the field—can be incorporated using the framework proposed in this paper via the 

relaxation procedure proposed in Laval and Leclercq (2006). This procedure allows drivers to 

accept short gaps while gradually attaining safer equilibrium ones. 

 

DISCUSSION 

From the authors’ point of view, the main advantage of the Lagrangian approach is its 

exactness when Q is triangular. This is important because a triangular Q is parsimonious 

while being an accurate representation of reality. Although exactness for triangular FDs is 

shared by the Eulerian variational numerical methods, further extensions are much easier to 

incorporate in Lagrangian coordinates provided that a multi-pipe approach is used. This is 

illustrated in Table 2, which shows the easiness of implementation for the extensions 

discussed in section 4. Notice that in Lagrangian coordinates, there is only one column 

because the Godunov and the variational schemes are equivalent when Q is triangular; see 

section 2. The double entries in the table highlight that a multilane/single-pipe representation 

makes it difficult to incorporate some extensions in Lagrangian coordinates. Again, this is not 

the case in the multi-pipe representation because passing rates are known a priori. 

 

Table 2: Extension implementation complexity by approach  

(++: very easy; + easy; - not so easy; -- difficult; ? not known as yet) 

 Lagrangian approach Eulerian approach 

Extensions 
Godunov/variational 

schemes 
Godunov scheme Variational method 

Moving 

bottlenecks 

++ (multi-pipe) 

-- (multilane / single-pipe) 

+ (Daganzo and Laval, 2005a) 

- (Daganzo and Laval, 2005b) 
++ 

Fixed bottlenecks 
++ (multi-pipe) 

-- (multilane / single-pipe) 
++ (Lebacque, 1996) ++ 

Self-similar 

highways 

++ (multi-pipe) 

-- (multilane / single-pipe) 
++ (Lebacque, 1996) ++ 

Vehicle 

characteristics 

(same FD) 

++ 
- for O/D 

(Daganzo, 1995) 
? 

Vehicle 

characteristics 

(modified FD) 

++ (multi-pipe) 

? (multilane / single-pipe) 

- for bounded acceleration 

(Leclercq, 2006); ? otherwise 
? 

Lane-changing - - (Laval and Daganzo, 2006) ? 

Intersections + + (Lebacque et Koshyaran, 2005) + 
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Table 3 presents a summary of the exactness of the different approaches analysed in this 

paper. At a glance, the superiority of the Lagrangian approach is apparent as it remains exact 

in all cases but the Godunov scheme when Q is piecewise linear with more than two wave 

speeds (PWL). The nature of the error in this case is similar to the Eulerian Godunov case in 

section 3; i.e., X needs to be interpolated between grid points. We note that when Q is PWL 

the Eulerian variational numerical method introduces errors because one is forced to introduce 

horizontal arcs (see Daganzo, 2005b, §3.1) which are not necessarily wave paths. 

Interestingly, in the Lagrangian counterpart, horizontal arcs are also needed but correspond to 

wave paths. Therefore, no numerical errors are introduced. Another interesting advantage of 

the Lagrangian variational method is that it does not require vm/w=j to be an integer in order to 

have a rectangular lattice; in the Eulerian counterpart, this is not only necessary but one has to 

memorize for the j time-steps preceding the current simulation time. 

 

Table 3: Exactness by approach (√:exact; ×: non exact) 

Lagrangian approach Eulerian approach 

 Godunov 

scheme 

Variational 

method 

Godunov 

scheme 

Variational 

method 

Q triangular + 

rectangular lattice 
√  √ × 

√ only if vm/w is an integer 

and memory is used 

Q triangular √ √ × 
√ only for geometric 

networks 

Q PWL × √ × × 

 

 

With respect to the computational cost for the Godunov scheme, consideration of (15) and 

(18) reveals that a Lagrangian cell imposes approximately a third of the elementary operations 

imposed by an Eulerian cell. For the variational approach, the number of elementary 

operations is roughly equivalent in Lagrangian and in Eulerian coordinates. To have an idea, 

let us define congestion as a mean density higher than (kc+km)/2. For a given �t, the 

Lagrangian approach is more efficient than the Eulerian variational method as long as less 

30% of the network is congested; it is always more efficient than the Eulerian Godunov 

method under this definition of congestion. 

 

Finally, further research is needed to ensure that when coupling together different extensions 

in Lagrangian coordinates no compatibility problems arise. For example, provided that 

different reaction times imply uneven time-steps, conflicts may arise with bottlenecks or 

intersections models. The use of memory in Lagrangian networks may provide a solution for 

such compatibility problems. 
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GENERIC SECOND ORDER TRAFFIC
FLOW MODELLING

Jean-Patrick Lebacque, Salim Mammar, Habib Haj Salem,
INRETS/GRETIA, Arcueil France.

SUMMARY
The paper presents a generic second order family, which generalizes the ARZ (Aw-Rascle-
Zhang) model. This family, called EARZ (Extended Aw-Rascle-Zhang) is characterized by a
variable fundamental diagram, by the presence along car trajectories of an invariant related to
the fundamental diagram, and by a wide scatter of traffic data in the congested domain. It is
shown that the resolution methods developed for the ARZ model can be suitably extended to
the EARZ family. A bi-phase traffic flow model introduced recently by Colombo is shown to
be close to a model belonging to the EARZ family. The properties of this model are easily
deduced from those of the EARZ models.

INTRODUCTION
The Payne-Whitham second order traffic flow model (Payne 1971), a hyperbolic system with
relaxation, has been used in many applications. Some of its deficiencies (violation of the
anisotropic character of the traffic, Daganzo 1995) have led to the development, by Aw and
Rascle 2000, and later but following a different rationale, by Zhang 2002, of a new model,
called ARZ in the paper. The ARZ model is also a hyperbolic system of two conservation
laws with relaxation.

It can be expressed by the following system:

( ) 0=ρ∂+ρ∂ vxt (1a)

( ) ( )
τ

ρ
−=ρ∂+ρ∂

L
LvL xt (1b)
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The conserved variables of this model are the density ( )tx,ρ and relative flow, i.e. the

difference between the actual flow and the equilibrium flow:

( ) ( ) ( ) ( )( )( )xtxVtxvtxtxL e

def

,,,,, ρ−ρ=ρ (2)

(with: x, t : the position and time, ( )tx,ρ : the density at time t and location x, v (x,t) the speed

at time t and location x, ( )xVe ,ρ the equilibrium speed (at location x) ). L is the relative speed

( )( )txVtxvtxL e

def

,),(),( ρ−= .

It can be shown (Mammar et al 2005) that L is an invariant of the traffic flow in the sense that
it is constant along vehicle trajectories resp. exponentially decreasing if the relaxation term is
taken into account. It can also be shown (Lebacque et al 2005) that the ARZ model is very
close to the classical LWR (Lighthill-Whitham-Richards) first order model, Lighthill-
Whitham 1955, Richards 1956. Indeed, one can consider locally that the ARZ model is
equivalent to a LWR model with a shifted fundamental diagram, the shift being the product

Lρ .

The physical interpretation of this invariant is not obvious. Indeed the invariant L of the ARZ
model is attached to drivers. For instance a driver with a negative L could be expected to drive
eventually at negative speed. It can be shown that this does not occur, which shows that the
invariant L is also related to global flow properties. Further, experimental validation has still
to be carried out.

The idea of this paper is to introduce a generic family of second order models, the EARZ
family, which generalizes the ARZ model in the sense that the ARZ invariant L is replaced by
a generic invariant attached to vehicles, and dependent on density and velocity. The purpose
of such a generalization is to define a whole family of models, with fundamental diagrams
varying as a function of traffic state, in order:

• to find the invariants that fit best experimental data,
• to be able to choose the best model among a complete family of models,
• to develop a comprehensive theory of a large family of second order models based on

common analysis methods.

The outline of the paper is the following. After introducing the generic second order traffic
flow model, we show that the methods developed for the ARZ model (Lebacque et al 2005,
Mammar et al 2005) can be extrapolated with suitable modifications to the generic family.
Numerical solution methods based on the Godunov scheme and on a particle discretization
are developed for the generic family. Finally, it is shown that the bi-phase model of Colombo
2002, a model difficult to analyze, can be slightly modified in order to fit into the EARZ
family. Its properties are then easily deduced. The model reproduces well the scatter of traffic
data in the congested domain.
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DEFINITION OF THE GENERIC SECOND ORDER MODEL

Definitions

We propose to replace in the ARZ model (1a), (1b) the invariant L by a generic invariant I:

( ) ( ) ( )( )txvtxtxI
def

,,,, ρ= I . (3)

A generic family of second order models suggests itself, which extends the ARZ model:

( ) 0=ρ∂+ρ∂ vxt (4a)

( ) ( ) ( )IfvII xt ρ−=ρ∂+ρ∂ (4b)

with ∂t , ∂x the partial derivatives with respect to time and space variables. (4a) means
conservation of vehicles, and (4b) means that the quantity ( )txI , is conserved (or relaxed)

along trajectories:
( )IfIvII xt −=∂+∂=� . (5)

The functional form of the model’s invariant I , and the relaxation function ( )If , can be

chosen so as to best fit field data and driver behavior. The ARZ model is characterized by the
identities ( )ρ−= eVvI and ( ) τ= /IIf (Aw and Rascle 2002), that is to say LI ≡ .

The system (4) can be rewritten as:

( )⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ

ρ

∂

∂
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ

ρ

∂

∂

IfvI

v

tIt

0

The system (4) without relaxation is a system of conservation equations with conserved

variables ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ρ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ρ

ρ
=

yI
U

def

and flux ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ρ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ρ

ρ
=

vy

v

vI

v
UF . We will call the model (4) without

relaxation the homogeneous EARZ model. Model (4) with relaxation term will be called
inhomogeneous EARZ model.

It is necessary to express the speed v as a function of � and y . We define

( ) ( ) ( )IIvvI
def

v ,,, 1 ρℑ=ρ=⇔ρ= −II (6)

the speed function ℑ of model (4). Actually (6) expresses two different but equivalent points
of view. From a microscopic perspective, there is a “property” I attached to vehicles and
drivers, measuring how far the driver’s behaviour is from equilibrium. From a macroscopic
perspective the fundamental diagram depends locally on this disequilibrium measure I.

Now the flux function F can be expressed in terms of the components ( )y,ρ of U as

( )
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞⎜

⎝
⎛

ρ
ρℑ

⎟
⎠
⎞⎜

⎝
⎛

ρ
ρℑρ

=
yy

y

UF
,

,
(7)
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In the case of the ARZ model the speed function is given by: ( ) ( ) IVI e +ρ=ρℑ , , since for this

model ( ) ( )ρ−=ρ eVvvI , . The speed function for the ARZ model and for an interpolated

model (interpolating the Cremer model (Cremer 1979) with the Aw-Rascle model, Aw and
Rascle 2000) is illustrated by the following figure 1 (for various values of I):

Figure 1: Examples of speed functions (basic units: vehicle, meter, second)

We can now define the flow function ℜ of the EARZ model (4) as:

( ) ( )II
def

,, ρℑρ=ρℜ . (8)

In the case of the ARZ model, the flow function is given by
( ) ( ) ρ+ρ=ρℜ IQI e,

with ( ) ( )ρρ=ρ e

def

e VQ the equilibrium flow-density relationship. In other words the flow

function of the ARZ model is the shifted equilibrium flow-density relationship. The flow
function for the ARZ model and for the interpolated model (interpolating the Cremer model
with the Rascle model) is illustrated by the following figure 2.

Figure 2: Examples of flow functions (basic units: vehicle, meter, second)
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Calculation of eigen-elements

Let us consider in the present sub-section the homogeneous EARZ model. This model can be
expressed as:

( ) 0=∂+∂ UFU xt . (9)

The characteristic speeds of (9) constitute the basic tool for describing the propagation of
small perturbations, or of large self-similar waves (shock waves or rarefaction waves). Their
calculation is standard and has been described in relation to the ARZ model in many
publications (Aw Rascle 2000, Aw et al 2002, Zhang 2002, Mammar et al 2005, Lebacque et
al 2005). The only problem to be solved is how to overcome the difficulties resulting from the
more general setting, i.e. (6), (7). Instead of the variables U we shall use a more practical set
of variables:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ρ
=

v
W , hence ( )

( )⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛
ρρ

ρ
==

v
WRU

def

,I

and the flux function expressed in variables W:

( ) ( )( ) ( )
( )⎟

⎟
⎠

⎞
⎜⎜
⎝

⎛
ρρ

ρ
===

vv

v
WGWRFUF

def

,I
.

The differential form of (9):
( ) 0. =∂∇+∂ UUFU xUt

is equivalent to

( ) ( )( ) ( ) 0...1
=∂∇∇∇+∂

− WWRWRFWRW xWUWt . (10)

It follows that the characteristic speeds 21, λλ of (9) are the eigenvalues of

( ) ( )( ) ( ) ( ) ( )WGWRWRWRFWR WWWUW ∇∇=∇∇∇
−− ... 11

and that the eigenvectors 21, WW of the matrix ( ) ( )WGWR WW ∇∇
− .1 are related to the

eigenvectors 21, UU of ( )UFU∇ by the relationship:

( ) ( )( )WQWR iWi UW .1−
∇= (11)

The calculation is straightforward:

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂ρ∂ρ+

=∇
ρ II v

W I
WR

01
( )

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

∂

∂
ρ−

ρ

=∇∇= ρ
−

I

I

v

WW v

v
WGRA 0.1 .

The eigenvalues of A are given by

( ) ( ) vvvv
v

=ρλ
∂

∂
ρ−=ρλ ρ ,and, 21 I

I
.     (12)

It follows from (6) that:

I

I

v∂

∂
−=ℑ∂ ρ

ρ (13)

and therefore the first characteristic speed ( )v,1 ρλ can also be expressed as

( ) ℜ∂=ℑ∂ρ+=ρλ ρρvv,1        (14)

(by (8) for the expression of ( )v,1 ρλ in terms of the flow function ℜ ).



760 Transportation and Traffic Theory 17

In the rest of the paper we assume that ℑ is a decreasing function of the density ρ . This is a

natural hypothesis: if the traffic is homogeneous with respect to invariant the I, the speed of
traffic flow should decrease with density. Thus the velocity of 1-waves cannot exceed the
velocity of 2-waves:

( ) ( ) WWW ∀λ≤λ 21 .

Thus the generic model respects the anisotropy of traffic flow.

The eigenvectors 21, WW are given by:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂−
=

ρ 0

1
, 21 WW

I

Iv
. (15)

Expressions (12), (14) and (15) generalize the expressions obtained for the ARZ model (Aw
Rascle 2000, Aw et al 2002, Zhang 2002, Mammar et al 2005, Lebacque et al 2005).

1- and 2-waves

In order to check the nature of the 1- and 2-waves associated to the eigen-elements 11, Uλ and

22,Uλ , it is necessary to calculate the derivatives:

2,1,. =λ∇ iiiU U .

Formula (11) shows how the eigenvectors change by coordinate change, and it follows that
the two eigenvectors constitute two fields, and that the derivatives 2,1,. =λ∇ iiiU U are the

Lie derivatives of the eigenvalues with respect to these fields. Therefore
2,1,.. =∀λ∇=λ∇ iiiWiiU WU (16)

The derivatives in W coordinates are easily obtained:

⎜
⎜
⎜

⎝

⎛

=λ∇=λ∇
∂

ℜ∂
−=λ∇=λ∇

ρρ

0..

..

2222

1111

WU

WU

WU

v
WU I (17)

with: ( )KKKK v∂+∂ρ+=ℜ∂ ρρρ 2 and ( )
I

I

v

def

vK
∂

∂
−=ρ ρ, .

I is constant along 1-field lines, since ( ) 0.. 1 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂−
∂∂=∇

ρ
ρ I

I
IIW v

vW I .

Thus in the ( )v,ρ plane, an integral line of the 1-field is the graph of the speed function ℑ for

a given value of I. Figure 3 below illustrates these results.

Two traffic states Ul and Ur are connected by a 2-wave if they have the same value of the
invariant I, i.e.

( ) ( )rrrlll vIvI ,, ρ==ρ= II .
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If the flow function ℜ is strictly concave the 1-field is completely non linear, then
0. 11 >λ∇ WW and there is a 1-rarefaction wave connecting Ul to Ur if the 1-field is oriented

from Ul to Ur . Thus, by (17), under the assumption that the flow function ℜ is concave, 1-
rarefaction waves are identical to acceleration waves (and 1-shock waves are deceleration
waves). Actually the 1-waves of this model are to be interpreted as the kinematical (LWR-
like) waves of the model.

Figure 3: 1-fields, interpolated model (basic units: vehicle, meter, second)

The 2-field is linearly degenerate. 2-field lines are horizontal (constant v), following (15).Two
traffic states Ul and Ur are connected by a 2-wave if their speeds vl and vr are equal.
The 2-waves of the model can be interpreted as follows: they carry the discontinuities of the
invariant I. It should be recalled that 2-waves always travel faster than 1-waves.
All results obtained in this sub-section generalize results obtained previously for the ARZ
model.

Figure 4: 1- and 2-waves

Density

Speed v

1-wave

2-wave

Direction of
rarefaction wave

Ul

Ul

Ur

Ur
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Shock-waves

Let us consider a shock-wave, with upstream state Ul and downstream state Ur . The Rankine-
Hugoniot conservation condition can be expressed as: ( ) ( ) ( )rlrl UUsUFUF −=− with s the

velocity of the shock. It follows that:

( ) ( )
rrllrrrlll

rlrrll
rlrl IIIvIv

vv
UUUFUF

ρ−ρρ−ρ

ρ−ρρ−ρ
=−−= detdet0

i.e. : ( )( ) 0=−−ρρ rlrlrl IIvv . The Rankine-Hugoniot conservation condition yields the

following three cases:
• 0or =ρρ rl (degenerescence at vanishing density)

• 0=− rl vv (2-wave, contact discontinuity)

• 0=− rl II (1-wave).

The analysis of the Rankine-Hugoniot condition confirms the results obtained in the previous
subsection by analyzing the eigen-elements of (4).

Under the assumption that the flow function ℜ is concave, there exists a 1-rarefaction wave
connecting a traffic state Ul to a state Ur if the 1-field is oriented from Ur to Ul .

Concluding remark: connection between the LWR and the homogeneous EARZ models

Let us assume that there is no relaxation ( 0=f ) and that the initial condition of (4) is such

that the invariant I is initially piecewise constant. Let pIII ,,, 21 … be the values taken

initially by I. The invariant I is conserved along vehicle trajectories; it follows that I stays
piecewise constant at all times t > 0 .

Thus there are p domains in the ( )tx, plane, say ( ) ( ) ( )pDDD ,,, 21 … , in which I is uniform:

( ) ( ) ( ) pkDtxItxI kk ,...,1,, =∀∈∀= .

In domain ( )kD , the speed is a function of density:

( )kIv ,ρℑ=

hence by (8), model (4) reduces to

( )( ) 0, =ρℜ∂+ρ∂ kxt I . (18)

Equation (17) expresses that in domain ( )kD the dynamics of traffic flow follow a LWR

model, the fundamental diagram of which is ( )kI,ρℜ . This remark applies of course to the

special case of the Riemann problem.

The models of the EARZ family can be conceived of as first order models with variable
fundamental diagram.
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DISCRETIZATION METHODS FOR THE GENERIC EARZ
MODEL
Inhomogeneous Riemann problem, shifted supply and demand

The basic properties of the EARZ model generalize with no significant modification the
corresponding properties of the ARZ models. Thus using the definition of the shifted supply
and demand and the solution of the inhomogeneous problem (Lebacque et al 2005), the
Godunov scheme can be easily adapted to the EARZ model from the ARZ model. In this
section we will therefore simply state the main results and we will only provide proofs
inasmuch as they have not been published elsewhere.
The solution of the inhomogeneous Riemann problem is crucial for

� �specifying boundary conditions, an absolute prerequisite for network modelling:
network entry/exit points, intersections…,

� �developing the Godunov discretization scheme.

Figure 5: Initial conditions for the inhomogeneous Riemann problem

Let us consider the inhomogeneous Riemann problem, with initial data the traffic states (Ul)
and (Ur) on the left- and right-hand side of the origin (see figure 5). Let us recall that a
Riemann problem is called inhomogeneous when the speed and flow functions on the left- and
right-hand side of the origin are different: ( ) ( )rrll ℜℑ≠ℜℑ ,, . A self-similar solution of (4)

with this initial condition is required. It is convenient to describe these states by the values of

their density and invariant I: ( ) ( )ll

def

l IV ,ρ= , ( ) ( )rr

def

r IV ,ρ= .

The crucial fact is that the invariant’s value I is not changed while traffic crosses the origin.
Indeed, the origin may be viewed as a fixed discontinuity and the Rankine-Hugoniot
relationship applies, with [.] the jump of any quantity across the discontinuity:

[ ]
[ ]

[ ]
[ ]I

vIv

ρ

ρ
=

ρ

ρ
=0 .

� ��I

�

�I

( )ll ℜℑ , ( )rr ℜℑ ,

(Vl)
(Vr)

(l) (r)

x
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It follows: [ ] 0=ρv , hence [ ] [ ] 0=ρ=ρ IvvI , and [I] = 0. Another way to interpret this result is

to state that I, as an invariant of vehicle trajectories, is unaffected by the presence of fixed
discontinuities. Thus the initial discontinuity of I at the origin propagates, and at > 0 time
there is no discontinuity of I left at the origin.

The solution to the Riemann problem has only two values of I at any time, I = Il and I = Ir .
These values are carried along vehicle trajectories. The discontinuity of this invariant is a 2-
wave, which travels at speed vr . By anisotropy of traffic flow ( ) ( ) WWW ∀λ≤λ 21 , this

wave travels faster than all other waves of the solution. On the right-hand-side of this 2-wave
the traffic state is (Vr), and let (V0) be the traffic state immediately on the left-hand side of this
wave.

In order to calculate this state (and others) we need to introduce the following inverses:
( ) ( ) ( ) ( )IvIvIvIv rrll ,,and,, 1

,
1
,

−
ρ

−
ρ ℑ=ρ⇔ρℑ=ℑ=ρ⇔ρℑ= . (19)

This definition is correct under the assumption that the speed function is a strictly decreasing
function of density.

The traffic state (V0) is characterized by its speed v0 = vr and its invariant I0 = Il. It follows
that (V0) is given by

( )
⎜
⎜
⎝

⎛

=

ℑ=ρ −
ρ

r

lrr

vv

Iv

0

1
,0 ,

(20)

Now in the sector (S) limited on the right by the 2-wave, the invariant I is constant and equal
to Il , and the system (4) reduces to a standard LWR problem:

( )( ) 0;, =ρℑρ∂+ρ∂ xIlxt (21)

(note that ( ) ( )IxI l ,;, ρℑ=ρℑ if x < 0 , and ( ) ( )IxI r ,;, ρℑ=ρℑ if x > 0).

Figure 6: General structure of the Riemann problem solution

In sector (S), the inhomogeneous Riemann problem can be solved for the LWR model (21),
with initial conditions (Ul) on the left and (U0) on the right-hand side of the origin. The
methodology is well known (Lebacque 1996, Lebacque et al 2005).

(S)
x

t

(Ul)

(U0l) (U0)

(Ur)

(U0r)
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The main elements of the solution to be determined are:

� �the flow q0 at the origin,

� �the traffic states immediately on the left- and right-hand side of the origin, (U0l) and
(U0r), characterized by their densities rl 00 , ρρ (the values of their invariant I are: I0l =

I0r = Il ).

Figure 7: Shifted demand and supply functions: ARZ model I varying from – 12 to +12 m/sec
(basic units: vehicle, meter, second)

Let us first defined the shifted supply and demand functions (see Figure 7):

( ) ( )

( ) ( )⎜
⎜
⎜

⎝

⎛

=∀ςℜ=ρΣ

=∀ςℜ=ρΔ

ρ≥ς

ρ≤ς≤

rliIxI

rliII

i

def

i

i

def

i

,,Ma,

,,Max, 0 (22)

With I = Il , the shifted supply and demand defined by (22) are the supply and demand
associated to model (21) by the usual formulas.

Now we define the upstream demand lδ and downstream supply rσ at the origin:

( )

( ) ( )( ) ( )( )( )⎜⎜
⎜

⎝

⎛

ρℑℑΣ=ℑΣ=ρΣ=σ

ρΔ=δ

−
ρ

−
ρ llrrrrrllrrrlr

def

r

lll

def

l

IIIIIvI

I

,,,,,,

,
1
,

1
,0

(23)

the flow at the origin is given by:
( )rlq σδ= ,Min0 . (24)

The states (U0l) and (U0r) are now given by the following expression
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( )
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with
( ) ( )

( ) ( ) rlivqvq

rlivqvq

ii

ii

,,,

,,,
1
,

1
,

=∀ρΣ=⇔Σ=ρ

=∀ρΔ=⇔Δ=ρ

−
ρ

−
ρ

(the standard inverse supply and demand functions).

Finally the solution of the inhomogeneous Riemann problem is completed by calculating the
waves ( ) ( )ll UU 0→ and ( ) ( )00 UU r → which can be viewed either as waves of the LWR

model (21) or as 1-waves of the EARZ model (4). The ( ) ( )00 UU r → wave is the 2-wave

carrying the rl II − discontinuity and propagating at speed vr, which bounds the domain (S) on

the right, as already mentioned. Figure 11 illustrates (for the 1-phase Colombo model) the
resolution of the Riemann problem.

Godunov scheme

The principle of this scheme is well-known. Consider for instance the discretization of traffic
flow on a stretch of motorway. Time is divided into time-steps ( ) ( )[ ]ttttt Δ+Δ= 1, , the

motorway is divided into cells (c) of lengths cxΔ , the traffic state on each cell is

approximated by a average cell traffic state ( )t
c

t
c

t
c IU ,ρ= . The flux between consecutive cells

during time-step (t) is obtained by solving an inhomogeneous Riemann problem at the cell
boundary, i.e. applying (22), (23), (24).

Figure 8: Godunov scheme

It is assumed that there are bounds on I, +− ≤≤ III , a natural hypothesis: the deviation of

traffic from its average behaviour is bounded.

Following Lebacque et al 2005, let us express the scheme for the model without relaxation i.e.
f = 0 :

t
c

t
c I,ρ t

c
t
c I 11, ++ρ

cxΔ

Cell ( )c Cell ( )1+c

t
c

t
c

t
c

Iq

q

.
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• ( )t
c

t
c

c

t
c

t
c qq

x

t
−

Δ

Δ
+ρ=ρ −

+
1

1 : conservation of vehicles.

• ( )t
c

t
c

c

t
c

t
c pp

x

t
yy −

Δ

Δ
+= −

+
1

1 : conservation of the quantity of invariant I .

• ( ) ( )( )( )[ ]t
c

t
c

t
c

t
cccc

t
c

t
c

t
c IIIIq ,,,,,Min 111

1
,11c +++

−
ρ++ ρℑℑΣρΔ= : flow of vehicles, given as the

minimum of the shifted supply of cell (c+1) and shifted demand of cell (c), following
(23) and (24).

• t
c

t
c

t
c Iqp = : the flux of invariant I .

• [ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ

=
+− t

c

t
c

II
t
c

y
I ,P : relationship between the invariant I and the quantity of invariant y.

[ ]+− II ,P denotes the projector on the interval [ ]+− II , .

• Boundary conditions at entry / exit points are given by (23), (24).

The various technical difficulties, the extension to the model with relaxation, and the exact
specification of the CFL condition are beyond the scope of this paper. Let us simply mention
that under mild hypotheses, the CFL condition can be expressed as:

( )+≥ρ ρℑΔ≥Δ Itxc ,Max. 0 . (26)

Particle discretization

Another approach to the discretization of (4) is the particle (or lagrangian) discretization
method, proposed in the context of the ARZ model by Aw et al 2002, Rascle et al 2003.

The idea of this model is to express (4) as:
( )

( )⎜⎜
⎝

⎛
−=

ρℑ=

IfI

Ix
�
� ,

(27)

and to consider the cumulative flow function N(x,t). Let ( )txn denote the trajectory of the n-th

vehicle in the system, i.e. the line ( ) ntxN =, . The system (27) can be discretized as

( )
( ) ( )

( )

( ) ( )( )⎜
⎜
⎜

⎝

⎛

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

ℑ=
−

.

,
1

1

tIftI

tI
txtx

tx

nn

n
nn

n

�

�
(28)

The quantity ( )tIn denotes the invariant attached to vehicle n. Notice that the local density is

approximated as

( )
)()(

1
)(

1 txtx
tx

nn
n

−
≈ρ

−

(the inverse of the inter-vehicular distance). Finally, (28) can be discretized time-wise by the
following
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( ) ( )
( ) ( )

( )

( ) ( )( )⎜
⎜
⎜

⎝

⎛

Δϕ=Δ+

⎟⎟
⎠

⎞
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⎝

⎛
−

ℑ+=Δ+
−
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tI
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txttx

nn

n
nn

nn

,

,
1

1
(29)

with ( )τϕ ,0I the solution at time τ of ( )If
d

dI
−=

τ
, 00 II ==τ .

In order for vehicles to respect a minimum inter-vehicular distance, a CFL-like condition
must be respected. Indeed, (29) can be interpreted as the Godunov scheme for the lagrangian
expression of the EARZ model.

Under relatively mild hypotheses, this condition can be shown to express itself as:

( ) ( )++ρ
≤Δ

IWI
t

axmaxm

1
(30)

with ( )Ixmaρ the maximum density for which ( ) 0, ≥ρℑ I and ( ) ( ) ( )Ixma xma
IIW ρ=ρρ ρℑ−∂= , .

I+ is defined as for the Godunov scheme, as the greatest value taken by the invariant I. This
value depends on the initial conditions, the input and the function�ϕ .

The rigorous justification of this scheme, its convergence and the CFL condition (30) are
beyond the scope of this paper.

The Godunov scheme and the particle discretization yield similar results for comparable
initial and boundary conditions. The Godunov scheme is faster, the particle scheme more
flexible (it is possible to assign to each vehicle a value of I ).

ANALYSIS OF THE 1-PHASE COLOMBO MODEL

Description of the original 2 phase Colombo model

This model was introduced by Colombo 2002. It is a bi-phase model, designed to explain
observations of traffic flow dynamics on Italian motorways (Lombardy), with a phase specific
of congested traffic flow, and a phase specific of fluid traffic flow. Each of the phases is
associated to a specific density-speed domain.

The model equations are given by
• Fluid phase:

( )⎜⎜
⎝

⎛
=

=∂+∂

.

0

ρ

ρρ

f

xt

vv

v
(31)

Domain: ( ){ }Vv ff
ˆ/ ≥ρρ=Ω .

The notations are those of the original paper of Colombo. ( )ρ= fvv denotes an

equilibrium speed density relationship assumed to be linear:

( ) βρ−=ρ Vv
def

f with

V the free speed and
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β a coefficient given by
R

VV
ˆ

ˆ−
=β

V̂ and R̂ some critical speed and density.

It can be noted that (31) is a LWR model with equilibrium relationship ( )ρ= fvv .

• Congested phase:

( )( )⎜⎜
⎝

⎛
=−∂+∂

=∂+∂

.0

0

* vqqq

v

xt

xt ρρ
(32)

The speed v is given by:

( ) ( )ρ
ρ

=ρ= 0, v
q

qvv
def

c and ( )
R

v
ρ

−=ρ 10 (with R: jam density).

(32) is a second order model, a system of conservation equations with conserved
variables ( )*, qq −ρ . The notations are again Colombo’s original notations. It must be

noted that q is not the flow (which is given by the product ρv ), although q has the

dimension of a flow. Indeed
( )ρ

ρ
=

0v

v
q . Note that q* is a parameter of the model. The

domain of the congested phase (32) is given by

( ) [ ] [ ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −−

∈
−

≤ρ+∞×∈ρ=Ω
R

qQ

R

qQ

R

qq
VqvRq cc

*2*1* ,,ˆ,/,0,0, ,

with Q1, Q2 two parameters such that 2*10 QqQ ≤≤≤ .

This model is difficult to analyze, because of the interactions of the two phases. The main
difficulties that need be overcome are the analysis of the Riemann problem and the
determination of the trajectories of the interfaces between phases.

Trajectory invariant associated to the Colombo model, introduction of a 1-phase model

The second equation of (32) can be rewritten as:
( ) ( )( ) 0** =−∂+−∂ qqvqq xt

from which it follows that the congested phase admits the following trajectory invariant:

( )
( ) ρ

−
ρ

=
ρ

−
=ρ *

0

* q

v

vqq
v,I . (33)

The speed function associated to this invariant is given by

( ) ( )ρ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ

+=ρℑ 0
*, v

q
II . (34)

All known properties of the congested flow (32), as determined for instance in (Colombo
2002), can easily be deduced from the theory elaborated at the beginning of the paper. As an
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example let us consider the calculation of the smaller characteristic speed

ℑ∂ρ+=
∂

∂
ρ−=λ ρ

ρ vv
v I

I
1 (by (12), (13), (14) ).

It follows:

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ

+ρ+ρ
ρ

−=ℑ∂ρ
*

002
* '

q
Ivv

q
(35)

in agreement with the expression (3.1): ( )
R

q
qq

R
*

*1

12
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ρ

−=λ , given in Colombo 2002.

Since ( )ρ0v is a positive decreasing function a sufficient condition for v≤λ1 i.e. 0≤ℑ∂ρ is

R

q
I *−≥ ,

which is automatically satisfied in the domain cΩ in which 1II ≥ and
R

Q

R

q
I 1* ≥+ .

Figure 9: Speed function of the 1-phase Colombo model
(basic units: vehicle, kilometre, hour)

This speed function (34) is only valid in the domain cΩ . We propose to prolong it to the

domain fΩ by vf , in order to obtain a 1-phase model behaviourally very close to Colombo’s

2-phase model.

Since, depending on the slope β of vf , the curve v = vf can intersect the curve ℑ=v at one or
two points in the interval [ ]R,0 , it is necessary to determine the smallest intersection point

( )Icrit

def

ρ=ρ of the two curves by solving ( ) ( )Iv f ,ρℑ=ρ . Some basic algebra yields:
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−+−−+
−β

=ρ R
IqI

R

q
VI

R

q
V

R
I

Icrit *

2

** 4
2

1
. (36)
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Thus we propose the following speed function

( )
( ) ( )

( ) ( )⎜
⎜
⎜

⎝

⎛

ρ≥ρρ⎟⎟
⎠

⎞
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⎛
ρ

+

ρ≤ρρ

=ρℑ=
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q
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Iv

Iv
ritc

ritcfdef

if

if

,
0

* (37)

This speed function is described by figure 9 above. The resulting model can be written as:
( )( )

( ) ( )( ) ( )⎜⎜
⎝

⎛
−=ℑ∂+∂

=ℑ∂+∂

.or0,

0,

ρρρρ

ρρρ

IfIII

I

xt

xt (38)

In this expression, I is an invariant of trajectories (vehicles) which is a function of position x
and time t (and not ρ and v ), the conserved variables being ρ and ρI . The traffic speed v is
given by ( )Iv ,ρℑ= . I is bounded (definition of domain Ωf ):

R

qQ
III

R

qQ *2
21

*1 −
=≤≤=

−
.

Basic properties of the 1-phase model (38)

The model (37), (38) is of the generalized EARZ type, and its properties can be deduced from
the theory outlined in the first sections of this paper. The model is entirely expressed using the
flow function:

( ) ( )II
def

,, ρℑρ=ρℜ i.e.:

( )
( ) ( )
( ) ( ) ( )⎜⎜

⎝

⎛
ρ≥ρρ+ρ

ρ≤ρρρ
=ρℜ

IvqqI

Iv
I
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,

0*0

(39)

with ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ ρ

−ρ=ρρ=ρ
R

vq
def

100

The flow function ℜ is described by figure 10, left diagram.

Figure 10: Flow function of the Colombo model, 1-phase and 2-phase
(flow in vh/hr, density in vh/km)
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The main advantage of the 2-phase model (Figure 10 above, right diagram) over the 1-phase
model (Figure 10 above, left diagram) lies in the possibility of extending the fluid phase
beyond the density range of the congested phase.

Note that ( )ρρ fv , ( )ρ0q , are concave and ( )ρ0v is linear, thus ℜ is concave in the fluid

domain, and is concave or convex in the congested domain when I is positive respectively
negative. The model predicts a wide scatter of traffic data in the congested domain, due to the
range of the dynamic variable I ( 21 III ≤≤ ).

Thus for negative I values the model predicts acceleration shock-waves, a property which can
only be understood by assuming that the distance required for car acceleration is neglected.
Such behaviour is very close to the 1-phase approximation of bounded acceleration models
(Lebacque 2003).

Remarks

a. The model (37) is not invertible in the sense of (6): it is not possible to define the invariant
I as a function I of density and speed. Nevertheless, by perturbing slightly the fluid part of
model (37), it is possible to construct an invertible model. Such a modification would predict
scatter of traffic state points in the fluid domain. It is beyond the scope of this paper.

b. All properties established for the EARZ family apply without change to the 1-phase
Colombo model, because they rely on the existence and properties of the function ℑ rather
than on the function I.

c. The 1-phase Colombo model can be modified by using other speed density equilibrium
functions than the function ( )ρ0v .

Example of resolution of a Riemann problem

The Figure 11 below shows an example of resolution of a Riemann problem with initial
conditions.

Using (24), (25), it follows ( ) ( ) ( )rl UUU 000 == and ( )rlrq σδ=σ= ,Min0 . The solution

includes a 1-rarefaction wave and a 2-wave carrying the discontinuity of invariant I.
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Figure11: Example of Riemann problem for the 1-phase Colombo model

Numerical test results

In order to illustrate the potential of the 1-phase Colombo model, (37), (38), the following
numerical experiment was carried out. A stretch of motorway of length 6 km, with two lanes,
is considered. The initial data includes some heavy congestion (see figure 12). The entry flow
is less than the jam outflow. The simulation is based on the particle discretization (29). The
Godunov scheme yields similar results, with reduced scatter. The values of the invariant I are
taken randomly in the set [ ]21 , II , with m/s45.312 =−= II , emulating the distribution of

measurement values from A6 south of Paris. Density and flow are measured at a point located
inside the jam at a distance 2 km from the entry point. The result (Figure 13) shows a wide
scatter of the data points representing the simulated traffic measurements, well in agreement
with observed scatter plots.

Figure 12: Initial conditions, density dynamics.
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Figure 13: Simulated scatter plot flow vs density

Although the nature of the simulation (particle discretization) and the dispersion of the values
of the invariant I in the boundary conditions definitely contribute to this result, the experiment
shows the model’s potential for reproducing observations. The ARZ model as well as the
interpolated model (Figure 2) would obviously do worse, considering their flow function ℜ .

CONCLUSION

The EARZ model family provides a framework general both in its functional form and in its
parameters. The aim of the proposed approach is to obtain, thanks to this flexibility, a better
fit with data measurements and better model predictions, while retaining the desirable
properties of 2nd order modeling and the solvability of first order LWR type models. The
paper provides some essential technical tools: basic model properties, and discretization
techniques.

The ARZ family and the 1-phase Colombo model provide two examples of models fitting into
the EARZ framework. Other families are conceivable (interpolation for instance). The 1-
phase Colombo model likely reproduces best traffic measurements.

By choosing an appropriate family of fundamental diagrams (the flow function ℜ ) it is
possible to reproduce any set of traffic measurements, including for instance inverse lambda
shapes (Figures 10 and 13). Boundary conditions and simple intersection models can readily
be added to the model following for example Lebacque and Khoshyaran 2005.

Nevertheless the EARZ family is at this point purely descriptive in a macroscopic way. Such
elements as lane changing, on and off ramps, weaving etc are not accounted for. Actually, the
lagrangian discretization as introduced in Aw and Rascle 2000, Rascle et al 2003, and adapted
in the present paper, is by essence not designed for modelling refined microscopic behaviour.
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Further modelling efforts should target the invariant I. The way EARZ models emulate field
measurement scatter plots depends much on the initial and boundary values of I, which are
exogenous. The relaxation model for ( )If suggested by Aw and Rascle 2000, Aw et al 2002,

is probably incorrect, as it implies a concentration of the scatter plot on the central (I = 0)
fundamental diagram. Other models should be developed, in order to account for the effects
of vehicle manoeuvres, either deterministic, or stochastic. The latter would recapture the
element of randomness in the interactions between drivers.
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SUMMARY

Observations from different freeways indicate that traffic breakdowns do not necessary occur
at maximum flow and can occur at flows lower or higher than those traditionally accepted as
capacity value. The notion breakdown means a stochastic transition from an uncongested
traffic state to a congested state which is comparable with a phase transition in nature between
different states of matter.

Suggested by recent studies quoting data from German freeways the paper addresses the
probabilistic approach for understanding of traffic breakdown. The phenomenon will be
described by a balance equation which models the dynamics of jam formation similar to
nucleation by two contributions only, called inflow or adhesion rate mainly depending on the
traffic volume of the considered road section and discharge rate depending on the length of
the congestion.

With this balance equation it is feasible to calculate the dynamics of traffic pattern formation
especially the first passage time distribution for a transition from free flow condition to
congested traffic including the influence of the parameters affecting the adhesion and
discharge rates.
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INTRODUCTION

From a traffic engineering point of view a traffic breakdown is defined in a deterministic
sense as a
− speed drop Δv > 15 km/h
− and a mean velocity after speed drop vfinal < 75 km/h
− while the traffic volume before speed drop is q > 1000 veh/h/lane
usually based on five–minutes–interval measurement data. This definition is not very critical
with respect to the introduced thresholds as it was shown earlier (Kühne and Mahnke, 2005).
But observations by different authors from freeways around the world (e. g. in and near
Toronto, Canada, by Daganzo et al. (1999) & Lorenz and Elefteriadou, 2000; near Cologne,
Germany, by Brilon and Zurlinden, 2003) indicate that traffic breakdowns do not necessary
occur at maximum flow and can occur at flows lower or higher than those traditionally
accepted as capacity value. The notion breakdown means a stochastic transition from an
uncongested traffic state to a congested state which is comparable with a phase transition in
nature between different states of matter.

Therefore we understand the traffic breakdown is a statistical event which has to be described
by probabilities W(q) of breakdown associated with specific vehicular flows q. The stochastic
approach based on dynamical equations (balance equation as well as Fokker–Planck equation)
to define precisely and to determine analytically the breakdown probability is related to the
stochastic concept of capacity (Brilon, Geistefeldt and Regler, 2005) using product limit
technique.

Suggested by recent studies quoting data from German freeways we continue to develop the
probabilistic approach for understanding of traffic breakdown. The phenomenon will be
described by a master equation which balances the effects of growth of a car cluster with
those responsible for shrinking. We do so in modelling the dynamics of jam formation similar
to nucleation of a supersaturated vapour by two contributions only, called inflow rate
responsible for growth and discharge rate responsible for shrinkage, see schematic Fig. 1.

Figure 1. Probabilistic description of traffic pattern formation: q [veh/h] = traffic flow or
traffic volume; n = cluster size or spatial queue length (number of congested vehicles) as
stochastic variable; τ [τ  ≈ 1.5...2.0 s/veh] = characteristic time needed for the first car leaving
the cluster to become free.
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The present paper studies either discrete directed random–walk–dynamics or related
continuous drift–diffusion–dynamics together with boundary conditions as a first passage
time or escape problem to reach the critical car cluster size nesc for the first time. This critical
size summarizes the previous thresholds for speed drop and averaged speed in the definition
of a traffic breakdown. The first passage time probability can be calculated from the
stochastic differential equation using either forward or backward time development and
asking how long the traffic state will remain in free flow (uncongested) conditions. For this
aim, special boundary conditions will take into account, (1) n ≥ 0, i. e. reflecting boundary
condition at n = 0 in the traffic state space for free flow conditions and (2) n ≤ nesc, i. e. nesc

absorbing boundary condition at n = nesc for reaching critical congested state for the first time
which means breaking down of the traffic.

Analytical expressions for the breakdown probability W(q) in comparison with survival
probability functions like Weibull distribution are shown together with empirical data points
from German freeway A3 near Cologne based on Regler’s investigation of 834 breakdown
observations on A3 within 5–minutes–intervals (Regler, 2004; Brilon, Geistefeldt and Regler,
2005).

The paper concludes with recommendations and implementations for traffic management and
traffic control.

PROBALISTIC DESCRIPTION OF CAR CLUSTER FORMATION

For the following probabilistic description a traffic breakdown is defined as a car cluster
formation process. For this we consider a model of traffic flow on a freeway section and study
the spontaneous formation of a jam regarded as a large car cluster arising on the road. To get
rid of some boundary conditions like entries and exits we can idealise the section by a circular
road of length L with N cars moving on it. All the cars are assumed to be identical vehicles
and can form two phases. One of them is the set of freely moving cars and the other is the
congestion called car cluster. The cluster is specified by its size n, the number of aggregated
cars. Its internal parameters, namely, the headway distance Δxclust and, consequently, the
speed of cars in the cluster are treated as fixed values independent of the cluster size n. We
note that in the model under consideration there can be only one cluster on the road. The free
flow phase is specified also by the corresponding headway distance Δxfree that, however,
depends strictly speaking on the car cluster size n. The larger the cluster is, the less is the
number (N-n) of the freely moving cars and therefore the larger is the headway distance.

Our model is illustrated in Fig. 2 where we have shown two different regimes of traffic flow,
i. e., free traffic flow (left) and congested traffic flow (right). In the congested traffic several
jams can exist simultaneously as example two clusters in Fig. 2. Here we consider a simple
model where only one car cluster (queue of n cars) is allowed.
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Figure 2. Free traffic flow (left) and congested traffic flow (right) on a one–lane circular
road. In the case of congested traffic (right) there are two clusters of different length
coexisting with free flow shown as an example. The headway between the cars is Δxclust inside
a cluster and Δxfree in free flow. The direction of movement is indicated by an arrow.

When a vehicular cluster arises on the road its further growth is due to the attachment of the
free cars to its upstream boundary, whereas the cars located near its downstream boundary
accelerate to leave it, which decreases the cluster size. These processes are treated as random
changes of the cluster size n by ± 1 (see Fig. 3) and the cluster evolution is described in terms
of time variations of the probability function P(n,t) for the cluster to be of size n at time t.
Then following (Mahnke, Pieret, 1997; Mahnke et al, 2005) we write the contributions for
growth and shrinkage into a balance equation called master equation governing the cluster
evolution

(1)

The quantity P(n,t) is the probability of finding n vehicles jammed in a cluster at time t.

Figure 3. Schematic illustration of cluster transformations.
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The growth rate w+(n) that a car is attached to the cluster takes into account strictly speaking
the net time gap for a freely driving car to move up to the cluster. If net time gap and gross
time gap are taken equal then this rate is just the traffic flow q (measured in [veh/h])

(2)

to which the clustered vehicles as standing or slowly moving cars do not contribute. The
attachment rate (2) is thus independent of the cluster size n.
The detachment rate w-(n) that cars evaporating from the cluster at its downstream front is
written as

(3)

where the value τ∞ (measured in [sec/veh]) can be interpreted as the characteristic time
needed for the first car in the cluster to leave it and to go out from its downstream boundary at
a distance about the headway distance in the current free flow state. When the cluster is
sufficiently large, it is reasonable to regard the characteristic time τ(n) as a constant τ∞. For
small clusters the dependence, however, requires special attention, see (Kühne, 2001; Kühne
et. al., 2002; Kühne and Mahnke, 2005).

In order to apply well developed techniques of escape problems in the theory of stochastic
processes (Gardiner, 2004; Honerkamp, 1994) to the analysis of the traffic breakdown
probability we approximate the discrete balance equation (1) the corresponding Langevin
equation (4). Our stochastic variable is the size n of a vehicular cluster. The equation of
motion which describes the behaviour of a stochastic trajectory n(t) in time t is a stochastic
differential equation and for our model under consideration it takes the following form

(4)

with initial condition n (t=0) = n0 ≈ 0

with a constant driving force (drift velocity v ≈ w+ - w-) as well as a constant fluctuation term
(diffusion D). Further on we introduce boundary conditions for the stochastic value n(t). It is
naturally to define n = 0 as the reflecting border since cluster size n(t) should be always
nonnegative. On the other hand, n = nesc is the absorbing or escape value and the breakdown
phenomenon appears when cluster size n(t) equals nesc, see Fig. 4 for illustration.
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Figure 4. Example of a stochastic trajectory with the initial condition n(t=0)=0 showing
reflecting boundary at n = 0 veh. and absorbing boundary at nesc = 35 veh.

Nevertheless, we are not only interested to know the behaviour of one particular stochastic
trajectory but we want to study an ensemble as well as. Therefore we approximate the discrete
balance equation (1) by the corresponding Fokker–Planck equation (2) called drift–diffusion
equation

(5)

Instead of the driving force v ≈ w+(n) – w-(n) ≈ q – 1/τ∞ as difference between attachment and
detachment rates we would like to consider another important quantity, the so–called potential
U(n) defined by – dU/dn = v(n) which reads in our case U(n) = - v n showing a linear
function. The functional graph of the potential is presented in Fig. 5 for different scenarios
where the system state tends either to n = 0 (free traffic flow, q < 1/τ∞) or shows
undetermined situation ( q ≈ 1/τ∞) or tends to completely congested traffic ( q > 1/τ∞) with
n = nesc.

Figure 5. The linear potential U(x) with x = n/nesc for three different scenarios.
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Summarizing up to now the following task has been stated. Our aim is to solve the Fokker–
Planck equation (5) which can be written as continuity equation

(6)
with flux

(7)

including initial condition as delta function around n0 = 0 given by

(8)

together with two boundary conditions:

n = 0 – reflecting boundary, i. e. no flux at n0=0 given by

(9)
and
n = nesc – absorbing boundary, given by

(10)

If we know the probability function p(n,t) to be in state n (cluster size) at time t which
satisfies the Fokker–Planck equation (5) in agreement with starting condition (8) as well as
both boundary conditions (9, 10) we are able to calculate the first passage time distribution
function. The exact mathematical results can be found in Hinkel and Mahnke (2006).

BREAKDOWN PROBABILITY

In terms of probabilistic modelling of vehicular traffic the breakdown is an event when the
system’s state which started at time t = 0 with n = 0 (free flow) reaches for the first time n =
nesc where the escape value nesc is a given cluster size regarded as overcritical.

Following Risken (1996) the distribution function of the first passage times t is given by the
outflow probability through the absorbing boundary at n = nesc taking into account the
regarded domain 0 ≤ n ≤ nesc. The first passage time probability distribution P(t,n=nesc) or
outflow probability at the absorbing boundary nesc is given by
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(11)

and has been calculated analytically. The graphical results are shown in Fig. 6. The system
reaches the absorbing boundary n = nesc faster with increasing values of traffic volume q
which means increasing drift parameter v.

The first passage time probability density P(t,n=nesc) shown in Fig. 6 can be integrated to
obtain the breakdown probability within the time interval t ∈ [0, tobs] as a cumulative
probability

(12)

Figure 6. The first passage time probability density distribution P(t,n=nesc) (11) for different
values of drift v and diffusion D parameters.

This quantity of practical interest is the probability W(v,D,t = tobs) that traffic breakdown takes
place within a given observation time interval t ∈ [0, tobs]. It is obtained by integrating the
breakdown probability density P(t,n = nesc) (11).

The result of integration in three different cases where v/D is larger, equal, or smaller than -2
reads:

(13)
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(14)

(15)

where the values mk
~

and 0z are solutions of transcendental equations

(16)

(17)

We would like to mention that the smallest or ground–state wave vector 0

~
k vanishes when

v/D tends to -2 from above, and no continuation of this solution exists on the real axis for

v/D < -2. A purely imaginary solution 00

~
iz=k appears instead, where z0 is real (Hinkel and

Mahnke, 2006).

Fig. 7 shows the comparison of empirical data with analytical solution (13) – (15). The
breakdown probability W(q) as function of flow rate q is presented as analytical solution from
traffic flow dynamics (symbols) in agreement with measured capacity distribution function
(data provided by Brilon et al., 2005, black dots).



786 Transportation and Traffic Theory 17

Figure 7. Cumulative breakdown probability W(q,t = tobs) for the observation time interval
tobs=5 min. Black circles are empirical data from German Autobahn A3 (Regler, 2004).
Another points are analytical result (12) for the different values of absorbing barrier nesc⋅leff

and relaxation time τ. The parameters are leff = 7 m, n0 = 0.

The only parameter which allows fitting the empirical data is nesc. All other parameters like τ

as inverse discharge rate and the critical density ρ = 1/leff are fixed within a narrow range due
to elementary definitions. The size nesc defines the number of vehicles within a cluster to
discriminate congested (n > nesc) from non-congested (n < nesc) traffic and summarizes
therefore the thresholds for a breakdown in comparison with statistical undulations. The value
of nesc is about 40 % higher in case of a traffic control system switched on along the regarded
road section and shows the effects of traffic control systems by stabilizing traffic flow. It
leads to an onset of the breakdown at higher critical traffic volumes in comparison to a
situation without a traffic control system. The range nesc is limited to realistic cluster sizes.
Very small values like nesc = 2 make no sense as well as too large values nesc = 1000. Such
extremes can be omitted.

WEIBULL DISTRIBUTIONS AS FIT FUNCTION

The shape of cumulative breakdown probability W(q,t = tobs) in any case reminds to the
stochastic distributions used in reliability assessment and support the ideas by Regler (2004)
and others. These authors use Weibull distributions as fitting curves with enough parameters
to match a broad variety of cumulative distribution functions. The Weibull function is defined
as (Muthly, 2004)

, (18)
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where α and β are control parameters of the distribution. We have fitted our calculation for
the cumulative (breakdown) probability to Weibull distribution. Fig. 8 confirms the S–shaped
overall behaviour by fitting of measurements for traffic breakdown probability distribution
from field observation for German Autobahn A5 within 5 min measurement intervals.

The following transformations relating the parameters in our equations to the physical
observables which have been used

(19)

(20)
where leff is the effective length of a car. Here q is the vehicular flow and τ is the characteristic
reaction (relaxation) time constant, as introduced earlier.

Figure 8. Cumulative breakdown probability W(q,t = tobs). The parameters of calculation
(Fokker–Planck equation) and simulation (Master equation) are escape cluster size nesc=19
veh., effective length of car leff=7 m, relaxation time τ=2 s, absorbing boundary xesc = leff ⋅

nesc=133 m, observation time tobs=5 min. For comparison Weibull distribution is shown with
parameter values α=8.3 and β=1865.

CONCLUSION

We have considered the traffic breakdown phenomenon regarded as a random process
developing via nucleation mechanism. The origin of critical jam nuclei proceeds in a
metastable phase of traffic flow and seems to be located inside a not too large region on a
highway, for example, in the close proximity of a highway bottleneck. The induced complex
structure of the congested traffic phase is located upstream of the bottleneck. Keeping these
properties in mind, we have applied the probabilistic model regarding the jam emergence as
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the development of a large car cluster on highway. In these terms the traffic breakdown
proceeds through the formation of a certain car cluster of overcritical size in the metastable
vehicular flow, which enable us to confine ourselves to the single cluster model.

A method how to calculate the traffic breakdown in this simple physical model has been
discussed and developed. A brief summary of the results in a continuum drift–diffusion
approximation is presented and the calculated breakdown probability is compared to the
Weibull distribution. In the following, after comparing the results with real empirical data one
needs to conclude with recommendations for a comprehensive operation improvement and
provide necessary steps for a long lasting stabilisation of traffic for a given vehicular flow
time series pattern (Schick, 2003; Zurlinden, 2003).

Finally we discuss the influence of controlling measures on breakdown probability. For
assessment of the influence of control measures on the breakdown probability the operational
definition of a traffic breakdown as a speed drop beyond a certain threshold is used. To
quantify the influence of control measures such as traffic actuated speed limits, lane closures
and keep in lane recommendations and eventually ramp metering field observations exploring
more than 20 000 data points from measurements of freeway sections with and without
corridor control systems are analysed.

The investigations were carried out at the autobahn A9 from München to Holledau between
July 27 and August 9, 2000. Analysing speed–flow diagrams from one–minute intervals for a
three lane section with and without automatic traffic control system we conclude that there is
no significant change in the maximum observed traffic flow due to traffic control measures.
The stabilising effect of the control system reduces speed drops in the traffic volume range
between 3000 and 5400 veh/h/3 lanes and stabilises the final speed above 75 km/h. The
beginning of the cumulative distribution is altered by a factor of 3 while the tail of the
cumulative distribution is expected to be unchanged as is the maximum observed traffic flow.
In conclusion we reflect changes due to automatic traffic control system on the breakdown
probability by altering the escaping cluster size nesc and the difference in the discharge rate for
small and large clusters.
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DEVELOPING A POSITIVE APPROACH
TO TRAVEL DEMAND ANALYSIS:
SILK THEORY AND BEHAVIORAL
USER EQUILIBRIUM
Lei Zhang, Department of Civil, Construction, and Environmental Engineering,
Oregon State University, USA

SUMMARY

This paper develops a positive approach to travel demand analysis, which does not assume
perfect rationality (i.e. complete information and utility maximization) in travel decision-
making. Instead, the process through which travelers learn the characteristics of the
transportation system, accumulate spatial knowledge, search for alternatives under imperfect
information, and employ subjective beliefs and heuristic rules in decision-making is
theorized. The proposed SILK theory (for its emphasis on Search, Information, Learning, and
Knowledge in travel decision-making) is able to produce quantitative models of individual
travel behavior in which learning follows Bayes principles and behavioral rules are
empirically derived by knowledge-acquisition methods. System-level demand patterns that
emerge from individual behaviors are then obtained using agent-based aggregation
techniques. This positive approach is demonstrated by the subsequent development of a route
choice model for the Twin Cities (Minneapolis-St. Paul, Minnesota) metropolitan area,
including the quantification of spatial knowledge and Bayesian learning process, collection of
process data for model estimation and validation, the derivation of route search and choice
heuristics as production (if-then) rules, and the prediction of aggregate flow patterns. The
traffic equilibrium under the adopted positive assumptions is defined as the Behavioral User
Equilibrium (BUE) at which the subjective search gain is lower than the perceived search cost
for all users. Results suggest that normative assumptions, such as perfect information and
unlimited human abilities to maximize utility, can produce significant prediction biases. The
proposed positive approach, consisting of the SILK theoretical framework, practical data
collection techniques, and unconventional travel modeling methods, serves as an alternative
framework (to rational behavior theory) for developing travel demand models.
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INTRODUCTION

Complexity in travel demand analysis arises from several aspects, including the complexity of
the transportation system, the large number of choice dimensions and alternatives, different
time scales of travel choices, interaction between travelers, individual difference in terms of
preferences, characteristics, and spatial knowledge, and data limitation. These complexities
force travel demand modelers to make simplifications. Normative behavioral theory assumes
that individuals are rational, have perfect information, and always maximize utility (von
Neumann and Morgenstern 1947, Savage, 1954). However, the normative description of
travel behavior is obviously unrealistic in complex decision situations. The normative
approach also encounters computational feasibility problems in large systems with numerous
choice combinations. More recent activity-based microsimulation models tend to make
plausible assumptions about the travel decision-making process and focus on model
calibration and verification without a consistent micro-behavioral foundation.

This paper addresses these theoretical and modeling issues in travel demand analysis in two
steps. First, built upon previous research on spatial behavior (Golledge and Stimson 1997)
and search theory (Stigler 1961), a positive (SILK) theory of travel behavior is developed,
which avoids assumptions of complete information and perfect rationality. The second step
demonstrates the positive approach with the development and application of a route choice
model in the Twin Cities.

A positive theory of travel behavior concerns about how travel decisions are actually made,
not how they should be made as in a normative theory. A salient problem in travel analysis is
not the unawareness of the deficiencies of normative behavioral assumptions, but the lack of
alternative positive theories that are empirically testable and lead to applicable quantitative
models. The theoretical contribution of this research lies in the development of a positive
theory that can produce behaviorally realistic and operational travel demand models. The
proposed SILK theory emphasizes the role of Search, Information, Learning, and Knowledge
in travel decision-making. Normative assumptions that travelers always have perfect
knowledge and maximize utility are removed. The research focus is on how individuals learn
about the transportation system and what behavioral rules they actually use to search and
choose alternatives. Section 3 summarizes the key assumptions and features of the SILK
theory.

Several modeling methods traditionally not used in travel demand analysis are identified
appropriate for developing positive travel models. In the positive approach, individuals are no
longer assumed to possess perfect knowledge. This requires a quantitative representation of
spatial knowledge and a specification of the learning process, for which Bayes rules are
adopted. A search process through which travel alternatives are sequentially examined is
central to the positive approach, and individual travelers must employ certain search
heuristics to deal with various costs associated with searching for alternatives. Travelers must
also adopt decision heuristics to choose among known alternatives, which are often poorly
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described by the utility-maximization principle. These search and decision heuristics are
represented by sets of production (if-then) rules in the positive approach. Artificial
Intelligence methods, especially those for knowledge acquisition, are selected to empirically
derive search and decision rules. Data for the empirical rule-induction process are collected
from carefully-designed surveys and field experiments. In the positive approach, each
individual traveler has limited and unique knowledge about the transportation system,
accumulates knowledge through Bayesian learning, search alternatives using a set of search
rules, make and adjust travel choices using a set of decision rules, and interact with each
other. This evolutionary description of the individual decision-making process enjoys richer
and more realistic representation of travel behavior. The final element of the positive
modeling procedure is responsible for aggregating individual behaviors into system demand
patterns. Agent-based simulation is found to be a robust and computationally feasible tool for
this purpose even on large-scale networks. Section 4 or this paper presents the aforementioned
methods for modeling individual travel behavior, followed by a detailed discussion of the
agent-based techniques in Section 5.

A demonstration of the proposed SILK theory and positive modeling approach is warranted.
The paper documents the development and application of a fully operational traffic
assignment model under positive assumptions, while the positive approach also applies to
modeling other dimensions of travel choices. The positive traffic assignment model is
calibrated, validated, and tested on the Twin Cities (Minneapolis-St. Paul, Minnesota) road
network. In the route choice context, network flow patterns emerge from individual network
learning, route search, and route changing behavior. User equilibrium principles following
assumptions of perfect information and substantive rationality have dominated traffic
assignment analysis. Although traffic assignment algorithms under normative assumptions
have enjoyed wide acceptance, these normative assumptions hardly correspond to reality.
Travelers have limited spatial-temporal knowledge about the transportation network and
alternative routes connecting origins and destinations. The dynamic nature of congestion and
its extent makes spatial learning a complex task. Instead of optimization principles, simple but
effective heuristics may be adopted by travelers to learn and compare alternative routes. In
Section 6 of the paper, the traffic flow patterns under traditional normative assumption and
under the novel positive assumptions are compared. A novel traffic assignment principle
resulting from the positive assumption, Behavioral User Equilibrium (BUE) is also defined in
this section, which can replace deterministic or stochastic user equilibrium principles in travel
analysis.

The development of the positive travel demand modeling approach in this research is a
comprehensive task, which involves theoretical constructs, several modeling methods,
experiment design, data collection, and applications. For improved readability, this paper
emphasizes the theoretical and methodological contributions. The route choice model is
described with just sufficient details to demonstrate the positive approach. As the result of this
decision, certain details about the route choice model are excluded, including several surveys
and field experiments that provide data for empirical derivation of route search and decision
rules. However, readers interested in these topics are referred to appropriate references.
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The remainder of this paper is organized as follows. Section 2 briefly reviews previous
studies on travel behavior theories and demand models most relevant to our topic. Section 3
summarizes the positive theoretical framework. Section 4 documents the first stage of model
development –acquiring individual behavioral rules regarding learning, search, and decision-
making. Section 5 outlines the agent-based simulation procedure that links individual
behaviors and interactions to aggregate demand. Section 6 presents the application of the
positive route choice model on the Twin Cities network. Conclusions are offered in Section
7.

LITERATURE REVIEW

Rational behavior theory assumes individuals are capable of identifying all alternatives,
measuring all of their attributes, and always selecting the alternative that maximize their
utility (Samuelson 1947, Von Neumann and Morgenstern 1947, Savage 1954). Most travel
behavior studies adopt a utility-based theoretical framework that assumes rational behavior to
varying degrees (Horowitz 1985). Tversky and Kahneman (1974, pp. 1131) argues on the
basis of a number of empirically studies that individuals rely on mental shortcuts or heuristics
that "are highly economical and usually effective but ... lead to systematic and predictable
errors." There exist at least two general theories of human behavior that do not assume
substantive rationality: prospect theory (Kahneman and Tversky 1979) and bounded
rationality theory (Simon 1955). Prospect theory suggests that values are assigned to gains
and losses and that decision makers use subjective and biased weights to replace probabilities.
Bounded rationality was proposed based on the recognition that decision-makers must pay
time and other costs to gather information, search for alternatives, and make decisions. With
these constraints or bounds, individuals tend to exhibit satisficing behavior instead of utility
maximization.

The travel decision-making process involves a search for alternatives, sometimes referred to
as the choice set generation process. Search theory originally developed in economics (Stigler
1961, Salop 1973, Rothschild 1974) postulates that a cost characterizes information
acquisition when an additional alternative is explored in the search process. Despite the
obvious relevance of search theory to travel decision-making that occurs in a complex system
and often involves a large number of alternatives, few travel behavior studies apply search
theory (Timmermans 1980, Richardson 1982, Williams and Ortuzar 1982). Mahmassani and
Change (1987) model travel choices as a bounded rational search process, but use the concept
of individual bands instead of search gains and costs. A large body of literature on travel
analysis (e.g. Mansky 1977, Swait and Ben-Akiva 1987, Ben-Akiva and Boccara 1995,
Cascetta et al. 2002) discusses and improves the behavioral realism of the choice set
generation process since the assumption of a full choice set (one that includes all alternatives)
is often unacceptable and shown to cause prediction biases (Williams and Ortuzar 1982).
However, the value of search theory in addressing the choice set generation issue has been
largely unexploited.
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Several decision theories, besides utility maximization, describe how individuals compare and
choose among alternatives (Slovic et al. 1977, Svenson 1979, Ben-Akiva and Lerman 1985)
including dominance, satisfaction, lexicographic rules, and elimination by aspects. Various
knowledge representation methods using machine learning and logical programming have
also been developed to simulate human decision-making processes (Durkin 1994, Arentze and
Timmermans 2000).

It is uncontroversial that an individual’s knowledge about a transportation network and
alterative routes are incomplete and often biased. The developmental nature of spatial
knowledge (Golledge and Stimson 1997) implies that there is a spatial learning process.
However, a general theory that allows quantitative modeling of spatial learning and
knowledge accumulation has yet to be developed, which is important for incorporating these
elements into travel models. Several studies model route perception update and travel time
learning based on Bayesian theory in the dynamic route choice scenario without considering
the complete spatial-temporal network knowledge (Iida et al. 1992, Jha et al. 1996). Asakura
et al. (2001) use a measure of functional hierarchies of roads to represent the topological
aspect of network knowledge. Ramming (2002) models network knowledge as a set of latent
variables, estimates coefficients using survey data, and uses fitted values of network
knowledge as an explicit variable in discrete choice models. But neither study considers the
learning process through which network knowledge is obtained. In order to model imperfect
knowledge in travel analysis, it is prerequisite to understand the nature and organization of
spatial knowledge. Geographers often describe spatial knowledge as a mental or cognitive
map characterized by incompleteness and biases (Tolman 1948, Tversky 1981). There is
strong evidence that spatial information is organized in a hierarchical structure. Places
(Stevens and Coupe 1978, Chase 1983, Hirtle and Jonides 1985, McNamara 1986) and streets
(Pailhous 1970, Elliott and Lesk 1982, Streeter and Vittelo 1986, Peruch et al. 1989) are
ordered according to their importance to an individual and their prominence (i.e. ease of
identification) into primary, secondary, and lower-order entities. A common explanation is
that the hierarchical structure of spatial knowledge offers economy of storage of information
in memory and simplified the retrieval of knowledge when spatial tasks such as wayfinding
and location choices arise. Certain assumptions about spatial knowledge and spatial search in
this paper arise from the results of these previous studies.

SILK: A POSITIVE THEORY OF TRAVEL DECISION-MAKING

The proposed SILK theory emphasizes the role of Search, Information, Learning, and
Knowledge in travel decision-making. Figure 1 illustrates the hypothesized travel decision-
making process under this theoretical framework. At any given time, an individual has a
certain level of knowledge about places, activities, and transportation networks in an urban
area. This knowledge can be drawn upon to solve various spatial tasks such as finding
destinations and routes. The problem-solving process consists of several procedural steps in
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the true behavioral sense. An individual first relies on subjective beliefs to determine the
expected gain from a search for alternatives. These beliefs stem from the individual’s existing
knowledge which is learned from previous experiences. Searching for alternatives involves
costs associated with information acquisition and other mental efforts, which can be
generalized as a perceived search cost. Subjective search gain and perceived search cost result
in a tradeoff that determines when a search for alternatives is initiated or stopped. Although
the subjective search gain is defined by individual’s beliefs and therefore can be
quantitatively derived from quantified spatial knowledge, it is much more difficult to
theoretically determine the magnitude of perceived search cost which should be individually
different. Therefore, the perceived search cost and its relations with other variables need to be
empirically derived.

If an individual decides not to search for alternatives, repetitive learned behavior or habitual
behavior is executed. For instance, if the stimulus is increased congestion, the congested route
is still used in this case. If the individual decides to search, a search method (or heuristics) is
employed to identify alternatives, which is a mapping from spatial knowledge to one or more
feasible alternatives. A central hypothesis of the SILK theory is that the search method used
by travelers is not a random search in which all feasible alternatives are considered equally
favorable. Instead, the search method consists of rules that are systematic and favor certain
alternatives (e.g. shorter routes, larger shopping centers).

The subsequent decision step chooses an alternative. The decision rules constitute a mapping
from perceived attributes of alternatives to a choice. Implementation of the SILK theory
requires empirical derivation of the decision rules. The outcome of the decision step is a
provisional try behavior. The execution of the provisional try behavior provides first-hand
experience about the actual attributes of the temporarily-chosen alternative at the time of trial.
The positive theory recognizes the role of historical dependency in decision-making. After
each round of search, an individual employs the decision rules to compare the newly
identified alternative with previously learned alternatives, or with the alternative currently
being used. All other things equal, the individual may prefer the currently used alternative due
to habit, or prefer the new alternative due to the desire for variety. The true preference as
represented by the decision rules, which could be individually different, should be empirically
derived from data.

Information from various sources can be gathered by an individual and expands the
individual’s knowledge through a learning process. The updated knowledge alters the
aspiration level and changes subjective beliefs. For instance, repetitively encountering
congestion after several rounds of search for alternative routes connecting an origin-
destination pair could reduce the degree of belief that an uncongested or less congested route
exists, which reduces the subjective search gain and may cause the search process to cease. In
other cases, an additional round of search for alternatives may be undertaken if the currently
used alternative still does not meet the aspiration level. A theoretically sound and carefully
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Figure 1. Conceptualization of the travel decision-making process in SILK

specified learning and belief-updating process can effectively describe how individuals adjust
their aspiration/expectation levels, and provide guidance for subsequent modeling step. The
SILK theory incorporates Bayes rules into the learning and belief updating process and
therefore inherits all assumptions underlying the Bayesian theory.

As depicted in Figure 1, the decision-making process in responses to a new spatial task or a
new stimulus ends if the search process stops after a certain number of (possibly zero) search
rounds. The termination of search is signalized by an individual’s subjective search gain
lower than the perceived search cost, which has been a standard assumption of search theory
in economics. Either a satisfactory alternative has been identified, or the aspiration level has
been adjusted downwards sufficiently. Although the conceptualization of subjective search
gain, perceived search cost, search initialization, and search stopping conditions in the SILK
theory is similar to that in bounded rationality theory, the SILK theory is unique in that by
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incorporating theoretical constructs from Bayesian learning (belief updating), Artificial
Intelligence (rule-based search and decision heuristics), Search theory (the search process),
and behavioral science (historical dependency in decision-making) into a coherent framework,
it explains the travel decision-making process in its entirety under positive assumptions.
Furthermore, the SILK theorization allows consistent quantitative modeling of travel demand
without normative assumptions as we shall see in the following sections. Socio-demographic
characteristics enter the decision process by influencing the search and decision rules. Various
situational, environmental, household, spatial, and temporal constraints limit the search space.

Most assumptions underlying the SILK theory have been justified in previous research
supporting Bayesian theory, Search theory, Bounded rationality, and Rule-based decision
making (see citations in Section 2). The assumptions regarding the developmental nature of
spatial knowledge and historical dependencies in decision making are supported by evidence
in behavioral geography (Golledge and Stimson 1997, Ch. 5) and previous empirical studies
(Goodwin 1977, Blasé 1979, Williams and Ortuzar 1982, Aarts and Dijksterhuis 2000). A
more detailed discussion of the SILK theory with further justifications of the assumptions
made is available in Zhang (2006a).

MODELING INDIVIDUAL BEHAVIOR

In order to apply the SILK theory to develop quantitative models, it is necessary to: (1) at the
microscopic individual level, quantify and specify spatial knowledge and the learning process
(Section 4.1), determine perceived search costs and gains for users with different
characteristics (Section 4.2), and empirically derive search rules (Section 4.3) and decision
rules (Section 4.4) from data; (2) at the macroscopic system level, derive aggregate demand
patterns from individual behaviors and interactions (Section 5). The various modeling
methods proposed for the positive approach are elaborated in the development of a positive
traffic assignment model. It will become obvious that the methodological framework can be
adapted to model other dimensions of travel choices. When applied to the traffic assignment
modeling task, the SILK theory suggests that spatial knowledge relevant to route choice can
be quantified and improved though a Bayesian learning process. The expected gain from an
additional search for alterative routes arises from an individuals’ unique knowledge and
beliefs. Subjective search gain and perceived search cost jointly determine search starting and
stopping conditions. The heuristics individuals develop to search for routes and choose among
known routes are represented by production (if-then) rules which should be empirically
derived and validated.

Spatial Knowledge and Learning

An individual new to an area has little knowledge about places and roads. However,
information regarding the layout of the streets and their hierarchies is usually available
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through various media (e.g. maps, internet). An important question of spatial cognition and
learning is how human beings store the enormous amount of spatial information and retrieve
such information effectively. Empirical studies show that road network is hierarchically
structured in the cognitive map (Pailhous 1970, Elliott and Lesk 1982, Streeter and Vittelo
1986, Peruch et al. 1989). Individuals in general have better knowledge of the major roads
(e.g. freeway network) than secondary (e.g. major arterial streets) and tertiary roads (e.g.
connectors, residential streets). It is therefore assumed in this research that individual’s initial
route knowledge includes network connectivity and hierarchy which provide them certain
beliefs about travel costs on various levels of roads under uncongested conditions. However,
they can only learn the actual travel costs on individual roads after traveling on these roads.

Assume that an individual’s perception capabilities allow the separation of a specific route
attribute (say travel time) into I categories, and travel time ti has been observed ni times
between an OD pair in prior experience. The individuals’ spatial knowledge about routes
connect the OD pair can be quantified as a vector K = (n1, …, ni, …, nI). Bayes rule suggests
that when a new alternative route is identified and the travel time observed on that route by
the individual falls into category i, the undated knowledge becomes (n1, …, ni+ 1, …, nI).
This updating procedure implies each past observation is weighted the same by the individual.
Let vector P(p1, …, pi, …, pI) represent an individual’s subjective beliefs, where pi is the
subjective probability that an additional search would produce an alternative route with
attribute ti. In order to establish a quantitative relationship between knowledge K and beliefs
P, it is assumed that individuals’ prior beliefs follow a Dirichlet distribution. Dirichlet is the
conjugate prior of the multinomial distribution, and the posterior beliefs will also be a
Dirichlet (Rothschild 1974). Let N denote the total number of observations (N = Σni). This is
equivalent to assuming:

Nnp ii /= (1)

This assumption is quite general in fact, because it can be shown according to the strong law
of large numbers, that as experience accumulates (N becomes large), individuals behave as if
their priors are Dirichlet:
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Search Gain and Search Cost

Under the above assumptions about spatial learning and knowledge, it is possible to drive the
subjective search gain. Let an individual’s travel time (or another route attribute, or a linear
combination of all route attributes) on the route currently used be t. The expected gain (g) in
terms of travel time savings per trip from an additional search is:
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Equation 3 can be further simplified. Since drivers are able to use the best of all searched
routes, t is always the minimum of all observed travel times (tmin). Since it is assumed that
individuals believe there is no congestion until they experience delays in their actual travel,
they initially believe it takes t* to travel between the OD pair, where t* is the free-flow travel
time of the route identified during the first round of search. As the search process proceeds,
the subjective probability of finding a route with travel time t* after N searches is 1/(N + 1).
Therefore, the expression of the subjective search gain becomes:

)1/()( *
min +−= Nttg (t* ≤ tmin and g is always positive) (4)

This equation reveals two properties of the subjective search gain: (1) it decreases as the
number of searches increases; (2) it decreases if a better route is found (smaller tmin).

Although search gain may increase or decrease as the search process proceeds, the search cost
a traveler perceives is assumed to be constant for the same traveler throughout the search
process. However, perceived search costs for different travelers may be different. If an
individual stops searching for alternatives after n rounds of search, the perceived search cost
for this individual must be lower than the expected search gain after (n – 1) searches such that
search n is meaningful, and must be higher than the expected search gain after n searches such
that search (n + 1) search does not occur. These lower and upper bounds of search cost can be
calculated using Equation 4. We can let the average be the estimate of the perceived search
cost (c):
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In order to empirically derive the distribution of perceived search costs, one needs to observe
the search processes of a number of individuals and the order by which alternatives are
sequential searched. When direct observations are difficult, carefully designed surveys in
which subjects report their previous search processes may also be used. A survey designed for
modeling route search behavior and computing route search costs is described in the
following section.

A subsequent finding is that the computed search cost (c) is linearly correlated to
t*(correlation coefficient is 0.70) but independent of socio-economic and demographic
characteristic such as age, gender, income, and length of residence in the city. This indicates
that the distribution of perceive search costs depends on the length of the trip – for any
individual, the perceived search cost is higher when the trip is longer. Therefore, it is the
distribution of the relative search cost (c* = c/t*) that is used in the subsequent analysis. The
computed cumulative density function of c* from the survey as well as its log-normal
approximation, is plotted in Figure 2. The distribution can be interpreted as follows. If free-
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flow travel time between an OD pair is 10 minutes according to the initial spatial knowledge,
the highest perceived cost of searching for alternative routes connecting this OD pair among
all drivers is about equivalent to 3.6 minutes of travel time per trip. About 90 percent of
drivers perceive a search cost that is less than 2 minutes per trip (Point A). In other words, 90
percent of drivers will search for new alternative routes for this trip if the subjective search
gain is larger than 2 minutes per trip. Only 20 percent of drivers will continue to search for
new routes when the subjective search gain is 0.8 minute (Point B).
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Figure 2. Distribution of relative search costs

Search Rules

Empirical evidence suggests that location search (Humphreys and Whitelaw 1979) is
characterized by non-randomness and systematic biases. It should be obvious that route
search is not random because travelers tend to first consider routes that appear to be effective.
This research adopts production (if-then) rules to represent individuals’ route search behavior.
In this section, the method for empirically deriving these rules and its application in route
search are presented.

Results from several previous empirical studies can facilitate the specification of search rules:
(1) route knowledge is hierarchically organized with various levels of roads (Pailhous 1970,
Elliott and Lesk 1982, Streeter and Vittelo 1986, Peruch et al. 1989); (2) experienced drivers
travel on the basic network (network of roads at the highest level of hierarchy) as further as
them can and exit the basic network at the point closest to their destinations. It is therefore
hypothesized in this study that the rules individuals use to search for alterative routes can be
separated into two categories: (1) how to transfer between different levels of roads; (2) how to
travel on sub-networks with each consisting of roads at the same level of hierarchy. It is
further assumed that individuals are able to find the shortest path (however defined) within
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each sub-network. This assumption is, however, much weaker than the assumption that
drivers can identify the shortest path between any OD pair, because: (1) each sub-network is
much simpler than the complete network; (2) the basic network of the high-order roads (e.g.
the freeway sub-network) is known by most drivers; (3) although sub-networks of lower-order
roads are more complex, most travel on these lower-order sub-networks is the drive from the
origin to an access point on the basic network and from an egress point on the basic network
to the destination. Empirical findings supporting this assumption can be found in Bovy and
Stern (1990, p.56). They find drivers are well informed about the higher-order roads, and
familiar with the lower-order roads only in the vicinity of their major activity locations
(home, office etc.). The problem of modeling route search behavior under the above
assumptions becomes the derivation of rules drivers use to determine whether or not to use
the basic network, and how to access and exit the basic network. This is achieved by
collecting route search data from a survey conducted in Fall 2004, and extracting search rules
from the data using knowledge-acquisition algorithms.

The data set was collected from 82 drivers in the Twin Cities, Minnesota, who are part time or
full time students at the University of Minnesota. During the peak period, about 600,000
vehicle trips are made each hour on this road network that has 7976 nodes, 20194 links, 537
access points (mostly on-ramps) to the basic network (defined as the freeway network), and
530 egress points (mostly off-ramps). During the survey, each subject fills in a questionnaire
regarding socio-economic and demographic characteristics, typical travel patterns, and routes
considered and chosen for three different origin-destination pairs: home to the university,
home to a randomly-selected destination A, and A to another randomly-selected destination
B. This design allows for varying degrees of familiarity with the origin-destination pairs. The
routes are initially drawn by subjects on an oversized-map, and subsequently coded in GIS as
a sequence of network nodes. The subjects are asked to recall the order of the routes they have
considered and actually used, which is necessary to empirically derive their perceived search
costs. The total number of routes reported is 295 between 165 distinct origin-destination
pairs. The average distance of the routes is 14 miles (minimum 0.6 mile, maximum 42 miles)
and the average free-flow travel time of the routes (based on the planning network coded by
the regional planning agency) is 16 minutes (minimum 1 minute, maximum 54 minutes). In
order to focus on the SILK theory and the modeling methodology, the details on how the
survey data are further processed for rule induction are discussed elsewhere (Zhang 2006a, b).

If-then rules are selected to represent route search heuristics for several reasons: (1) they are
shown to be capable of replicating various types of human heuristics and decision-making
processes in previous studies on expert systems; (2) the execution of if-then rules require
minimum computational resources which is important for models involving millions of
independent decision agents. Various machine learning algorithms (Witten and Frank 2000)
are able to derive if-then rules using the collected survey data. From three popular algorithms
for deriving if-then classification rules including C4.5 (Quinlan 1986), PRISM (Cendrowska
1987), and RIPPER (Cohen 1995), RIPPER is chosen for its better predictive performance on
our dataset. The final route search rule set derived from the survey data consists of 16 rules
for selecting access points and 13 rules for selecting egress points on the basic network. The
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two rule sets are quite similar, and therefore only the rules for selecting access points are
shown in disjunctive normal forms, where “Δ” denotes changes or percentage changes (Route
B attributes – Route A attributes); “[ ]” constitutes a complete antecedent condition of the if-
then rules; “Time” is the total travel time; “Btime” is travel time on the basic network;
“Transfer” is number of transfers between different levels of roads.

Choose Route A as the alternative route for consideration, if
[ΔTime = (0.21 ~ infinity)] Rule 1

Or [ΔTime = (0.13 ~ 0.21)
And ΔBtime = (–infinity ~ –0.57)] Rule 2
And ΔBtime = (–0.57 ~ 0.19)

And ΔTransfer = 0 or 1] Rule 3
And Time = (30 minutes ~ infinity)] Rule 4

And ΔBtime = (0.19 ~ infinity)
And ΔTransfer = 1] Rule 5

Or [ΔTime = (0.04 ~ 0.13)
And ΔBtime = (–infinity ~ –0.57)] Rule 6
And ΔBtime = (–0.57 ~ 0.19) And (ΔTransfer = 0 or 1)] Rule 7
And ΔBtime = (–0.57 ~ –0.19) And ( Time = (15 ~ 30 minutes)] Rule 8
And ΔBtime = (0.19 ~ 0.57) And (ΔTransfer = 1)] Rule 9

Or [ΔTime = (–0.04 ~ 0.04)
And ΔBtime = (–infinity ~ –0.57)] Rule 10
And ΔBtime = (–0.57 ~ 0.19)

And ΔTransfer = 1] Rule 11
And ΔBtime = (–0.57 ~ –0.19) And (ΔTransfer = 0)] Rule 12

And ΔBtime = (0.19 ~ 0.57) And (ΔTransfer = 1)]
Or [ΔTime = (–0.21 ~ –0.04)

And ΔBtime = (–infinity ~ –0.57)] Rule 13
And ΔBtime = (–0.57 ~ 0.19) And (ΔTransfer = 1)] Rule 14
And ΔBtime = (–0.57 ~ –0.19) And (ΔTransfer = 0)] Rule 15

Otherwise, choose Route B as the alternative route for consideration. Rule 16

For instance, Rule 1 suggests that drivers will identify a specific route in a round of search if
its travel time is significantly lower (21%) than other routes. The execution of this rule alone
can exclude a large percentage of feasible alternative routes from further considerations. As
the travel time difference becomes less apparent (Rule 2 to 15), other factors related to the
simplicity of routes, such as the percentage of travel on the basic network, and number of
transfers between different sub-networks, also play an important role. Collectively, these rules
replicate the heuristics individuals use to identify alternative routes based on their existing
spatial knowledge. As knowledge changes (e.g. a congested section in the network is learned),
the same rule set can generate different routes (e.g. a new route bypassing the congested
section). Repeated executions of these rules in each round of route search produce one
alternative route for the subsequent decision step (Section 4.4). Finally, when used to predict
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behavior, these rules can be executed as deterministic or probabilistic rules (based on their
accuracy on the estimation/validation datasets).

Decision Rules

After each round of search, a new alternative is identified. An individual either rejects or
changes behavior to use the new alternative. This is determined by a set of decision rules. In
the case of route choice, these are rules describing route changing or route switching
behavior. Even though during the search process many alternative routes may be considered,
the final route choice decision is assumed to be the outcome of a series of route changing
decisions. Different from utility maximization, this assumption about the decision step allows
for historical dependencies and does not presume unreasonable human information processing
and computational capabilities. Similar to the derivation of search rules, an experiment is
designed and implemented in Spring 2004 where subjects’ actual route changing behaviors
can be observed. A machine learning algorithm then extracts decision rules from the collected
behavioral data. Again, we briefly summarize the experiment and present the resulting
decision rules.

The experiment was designed using both stated preference survey techniques and field
observations. Five roughly parallel routes between the University of Minnesota East Bank
Campus and Downtown Saint Paul are selected for the experiment. One of the routes is a
freeway, and the rest are major arterial streets. Subjects are selected randomly from the
University of Minnesota staff list. Each of the 117 subjects is given a pre-test to gather
various socio-economic, demographic, and travel pattern data. Their vehicles were then
temporarily equipped with a recording GPS unit, which collects vehicle location data at one-
second intervals. During the field experiment, each subject was advised to take four of the
five selected routes at a given random order. The GPS data were used to confirm that the
subjects traveled the correct route, and to calculate the actual route attributes such as total
travel time, distance, number of stops, delay time, and speed. At the end of the field
experiment, each subject rated the efficiency, easiness, pleasure, and familiarity of the
traveled routes on a 1~7 scale (7 being the most efficient, easiest, most pleasant, or most
familiar), and ranked the four routes traveled for various trip purposes. This design allows
analysts to observe how the subjects change routes as they learn the attributes of alternative
routes sequentially in real-world driving scenarios.

The route changing rules for commute trips derived from machine learning algorithms are
present below, where Δ denotes changes or percentage changes (new route attributes – current
route attributes), and absolute values are attributes of the currently used route.

Change route, if
[ΔTime ≤ -39%] Rule 1
or [ΔTime ≤ -11% and ΔPleasure ≥ -1] Rule 2
or [ΔFamiliarity ≥ 3 and Commute time ≤ 20 min] Rule 3
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or [ΔTime ≤ 6% and ΔPleasure ≥ 3] Rule 4
or [ΔTime ≤ 15% and Δ Familiarity ≥ 2 and ΔDelay ≥ -40%] Rule 5
or [Familiarity = 1 and ΔTime ≤ 51% and Commute time ≤ 20 min and Income = 1]

Rule 6
or [Delay ≥ 4 min and ΔStops ≤ 0 and Commute distance ≤ 8 miles] Rule 7
or [ΔPleasure ≥ 2 and ΔFamiliarity ≥ 0 and Commute time ≤ 16 min] Rule 8
Otherwise, continue to use the current route. Rule 9

There exists perception threshold in route changing behavior. For instance, Rule 1 implies
drivers will change routes as long as travel time can be reduced by more than 39%. Travel
time reduction less than 11% is insignificant. Variable “familiarity” is present in several rules,
which is evidence of historical dependencies in route choice. A comparison shows that the
predictive performance of the route changing rule set is superior to a normative logit model
using measures such as hit ratios at the individual level, and route flows at the aggregate level
(see Zhang 2006a, b for details).

MODELING SYSTEM DEMAND PATTERNS

In order to estimate System demand patterns, all individual leaning and behavioral rules need
to be aggregated to produce macro-level statistics. This is achieved by agent-based
simulation. In the case of traffic assignment, the most valuable system statistics are the traffic
flows and travel costs on individual links. Zhang and Levinson (2004) describe the agent-
based modeling techniques, and discuss its applications in travel analysis.

In the agent-based simulation, each driver agent starts with an initial knowledge about the
road network as defined in Section 4.1, decide when to start and then stop the search process
based on subjective search gains and perceived search costs computed by equations in Section
4.2, employs search rules developed in Section 4.3 to find alterative routes, and applies
decision rules developed in Section 4.4 to select route after each round of search. Currently, a
BPR function is used to compute link costs, which may be replaced by a regional microscopic
traffic simulator in the future. The aggregate traffic flow pattern from this positive agent-
based model is defined as the Behavioral User Equilibrium (BUE): The BUE is reached on a
network when all users with limited spatial knowledge stop searching for alternatives because
for each user the perceived search cost exceeds the expected gain from an additional search.
The proposed positive approach tracks the individual decision making process in great details,
and still allows the convergence of traffic flows into a well defined equilibrium pattern for
planning and engineering applications. Of course, evolutionary factors such as population
change could be introduced into the model if demand evolution is more of interest and if an
equilibrium solution is not desirable.
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The BUE equilibration process can be directly measured by the number of drivers still
searching for alterative routes. To prove the existence of BUE, we revisit Equation 4 which
defines the subjective search gain (gi) for traveler i. The traveler’s perceived search cost (ci) is
always a positive constant. Therefore, there must exist a positive integer Ni such that after Ni

searches ci > gi, because:
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Let N* be the maxim of all Ni s. The BUE will surely be reached after N* search iterations,
proves its existence. The BUE exists because users adjust their beliefs and subjective search
gains to accommodate unsatisfactory performance of the transportation system. Eventually, an
individual stops search either because a good alternative is identified, or because repeated
experience with unsatisfactory alternatives leads to decreased expectations. Properties such as
the stability and uniqueness properties of the BUE are discussed elsewhere (Zhang 2006a).

DEMONSTRATION OF THE POSITIVE APPROACH

The BUE is solved for the Twin Cities road network that has 7,976 nodes, 20,194 links, and
about 600,000 travelers during a typical peak hour. The positive route choice model
converges after 43 search iterations (see Figure 3) within 4.2 CPU hours on a 1.7GHz PC. At
the equilibrium, the average excess travel time, defined as the percentage difference between
travel times on the actually used routes and on the shortest paths, is 15% (0% in deterministic
user equilibrium by definition). The perceived search cost and cognitive limitations force
users to consider only a small number of routes before ending their search processes. The
positive model predicts that more than 80% drivers consider fewer than three alternative
routes. The estimated distribution of number of routes actually considered also closely
approximates the observed distribution (see Figure 4).

Figure 3. Convergence of BUE on the Twin Cities Road Network
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Figure 4. Distribution of the Number of Considered Alternative Routes

Figure 5. Distributions of Link Volume Capacity Ratios
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and 0.25 for SUE. The traffic flows under different behavioral assumptions are clearly
different as shown by the correlation coefficients (see Table 1). It is also found that DUE
significantly underestimates the level of congestion on the most congested roads in the
network compared to BUE (see Figure 5). Comparisons with observed traffic counts show
that the BUE (R2 = 0.53) flows provide slightly better goodness-of-fit than DUE (0.51) and
SUE (0.46) flows, thought the quality of the traffic count data is not entirely reliable for
common data collection issues. Another application evaluating network performance before
and after a policy change demonstrates that different behavioral assumptions (normative vs.
positive) can lead to opposite policy recommendations (Zhang 2006c).

Table 1. Correlation Coefficients between Flows at Different Equilibria
Correlation Coefficients BUE Flow DUE Flow SUE Flow
BUE Flow 1 0.92 0.82
DUE Flow 1 0.86
SUE Flow 1

The BUE derived from the positive approach is also different from the Boundedly Rational
User Equilibrium (BRUE) proposed by Mahmassani and Chang (1987) who use the notion of
indifferent bands to theorize travelers’ satisficing behavior under imperfect information. Our
approach explicitly theorizes and models the search process and its three important
characteristics: search rules, search cost, and search gain. The Bayesian learning process,
belief updating and expectation adjustment, and empirical derivation of behavioral rules are
also unique in BUE.

CONCLUSIONS

The need for travel forecasting models with improved behavioral realism and capabilities is
imperative due to proposals of more sophisticated travel demand management, pricing, and
information-related policies. Activity-based models are often criticized for not having a
consistent behavioral foundation. Under these circumstances, developing positive theories of
travel behavior based on empirical evidence is important, and expected to improve both our
understanding of the travel-decision making process and the realism of travel demand models.
The SILK theory and the positive modeling approach presented in this paper represent a pilot
effort in developing comprehensive travel models that explicitly consider imperfect
knowledge, spatial learning, search and decision heuristics, information acquisition and
decision cost, and the dynamics of expectations and beliefs in decision making. This research
demonstrates that the positive approach for travel demand analysis is feasible, that a general
and applicable positive theory can be developed, and that normative and positive behavioral
assumptions produce significantly different demand estimates.

One feature of the positive approach may be considered an advantage or a limitation –
behavioral rules need to be empirically estimated and validated. It is an advantage because
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empirically derived rules should better describe the decision-making process than those
implied by standard normative assumptions. It is a limitation for its data requirement.
Whether or not the increased data collection cost is justified by the improved model realism
and performance has always been a controversial question in travel demand forecasting. The
total cost of conducting the two surveys and developing BUE on the Twin Cities network is
around fifty thousand dollars. The author believes it is worthwhile considering that in many
areas flow estimates are used to allocate millions or even billions dollars of future
transportation investments.

Many activity-based models use computational process methods, and specify various search
heuristics in the generation of choice set. However, the conditions under which search starts
and stops in travel decision-making are inadequately explored. It is also uncertain to what
extent hypothesized heuristics correspond to reality. This research addresses these issues and
makes several contributions. First, the concepts of subjective search gains and costs are
developed in this paper, as well as mathematical and empirical methods for deriving these
variables that determine the initialization and stopping of search. This theorization of the
search process could also be used in other modeling tasks that require choice set generation.
Second, this paper distinguishes search heuristics from choice heuristics. The actual rules
travelers use to identify alternatives and to make choices should be separately analyzed.
Third, machine learning algorithms for extracting production rules have been successfully
applied in this study to empirically derive and verify the heuristic rules from survey and
experiment data. This should reduce the arbitrariness in specifying heuristics in activity-based
and microsimulation models. Finally, the proposed positive route choice model is fully
operational as demonstrated on a large real-world network. The Behavioral User Equilibrium
(BUE) defined in this study can serve as an alternative traffic assignment principle to
normative models such as DUE and SUE. The disaggregate nature of BUE should facilitate
the integration of activity-based models (especially the computational process models) and
traffic assignment.

Since the positive approach considers imperfect information and search cost, it is therefore
more suitable than normative models for studying the demand impact of traveler information
services. According to the SILK theory, these information services effectively reduce
perceived search costs. Drivers will use information services if the service access cost is
lower than their perceived costs of searching for alternatives on their own and lower than their
subjective search gains. Information obtained from traveler information services, like
information obtained from other sources, can also update spatial knowledge and beliefs and
eventually influence behavior. These research opportunities should be pursued in future
studies.
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SUMMARY 

This paper presents a new Markov model to study travelers' stochastic behavior in their day- 
to-day route choice adjustment process. The model is characterized by two components: how 
often a traveler reconsiders hislher route choice (route-switching rate), and what the 
probability is to take a certain route (route choice probability). By applying the evolutionary 
game theory, the conventional perfect information and complete rationality requirements in 
equilibrium analysis are relaxed. A deterministic mean (expected) route flow dynamic is 
derived which closely approximates the underlying route flow stochastic process in any finite 
time span as the travel demand grows large. The mean dynamic is general in that many 
existing deterministic processes can be considered as its special cases, and more importantly, 
their meaningful individual behavior explanations are unveiled. It can be shown that with 
certain reasonable assumptions of behavioral rules of route-switching rate and route choice 
probability, the Wardrop user equilibrium can be approached by travelers' day-to-day 
behavior adjustment process, even if an individual traveler only has access to incomplete 
information and exhibits limited rationality. In addition, the day-to-day mean route flow 
dynamic may evolve to user equilibrium, the stochastic user equilibrium, system optimal and 
other disequilibrium states depending on different behavioral rules of route-switching rate and 
route choice probability, network supply and congestion toll pricing schemes. This model is 
particularly useful to study the resulting day-to-day disequilibrium traffic evolving pattern 
when a portion of a network infrastructure is to undergo a scheduled upgrade or when a 
capacity reduction takes place due to external interventions. We demonstrate this in the case 
study with three testing scenarios. 
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INTRODUCTION 

Transportation network equilibrium models have become the main thrust of advances in the 
field of traffic network analysis. The concept of user equilibrium (UE) was first proposed by 
Wardrop (1952) which stated that at the equilibrium state, no traveler could improve hislher 
travel cost by unitarily changing routes. The equilibrium flows are considered as the predicted 
traffic flow in the long run and have been widely used for a variety of transportation planning 
purposes. 

Equilibrium analysis, however, only pays attention to the final "attractor" state while ignoring 
how travelers dynamically adjust their behavior and traffic flow evolves over "days". With 
the new advances in the Intelligent Transportation Systems (ITS), travelers may have access 
to both historical and real-time traffic information; therefore adjust their route choice behavior 
by their day-to-day learning and information updating processes. Consequently, day-to-day 
traffic dynamics is of great importance in transportation network analysis, both for a better 
understanding of the properties of the standard traffic equilibrium model, and for practical 
reasons related to the monitoring and management of traffic flows. Recent advances in day- 
to-day dynamic congestion pricing are reported by Friesz et al. (2004) and Yang and Szeto 
(2006), which demonstrate how transport managers exploit day-to-day time varying pricing 
schemes to maximize consumer surplus and to realize system optimal, respectively. In 
addition, it should be noted that, the day-to-day dynamics approach is also highly suited to 
incorporate within-day dynamics into "doubly dynamics" and can be seen as a more general 
framework than the equilibrium models (Cascetta and Cantarella, 1991; Friesz et al., 1996; 
Cantarella et al., 1999; Balijepalli and Watling, 2005). 

Existing day-to-day traffic dynamics include continuous-time deterministic processes (e.g., 
Smith, 1983; Smith, 1984; Friesz et al., 1994; Nagumey and Zhang, 1996; Jin, 2006), and 
discrete-time stochastic models (e.g. Chang and Mahmassani, 1988; Cascetta, 1989; Davis 
and Nihan, 1993; Jha et al., 1998; Hazelton and Watling, 2004). Deterministic processes listed 
above have good mathematical properties in terms of a unique solution trajectory, the 
equivalence between their fixed points and UE, and the stability property, but ignore random 
fluctuations of demand and supply, and travelers' behavior under uncertainty given the fact 
that travelers can only access incomplete traffic information and might not be completely 
rational. In contrast, stochastic processes address the randomness issue and capture travelers' 
behavior under uncertainty by means of Markov decision models, however computing the 
large transition probability matrix in Markov models is analytically difficult and 
computationally expensive. To overcome this difficulty, Davis and Nihan (1993) was one of 
the first to use the mean (expected) deterministic dynamic to approximate the stochastic 
process as the population size grows large, and this approximation was observed in the 
numerical study in Cantarella and Cascetta (1995). Nevertheless, compared to the 
deterministic processes, the convergence and stability results for these stochastic models are 
more complex to analyze. Given the numerous and extensive studies over the classic 
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Wardropian traffic equilibrium analysis, understanding the linkage between day-to-day traffic 
dynamics and traffic equilibria is crucial for research. 

In this paper, by taking advantages from both deterministic and stochastic approaches, we 
study the day-to-day traffic dynamics and present a new framework using the evolutionary 
game theory. The evolutionary game theory applies population dynamical methods into 
classic game theory, relaxes the requirements for rationality of players and provides insight 
into the system dynamic evolving behavior (e.g., Weibull, 1995; Hofbauer and Sigmund, 
2003). By applying the evolutionary game theory, we first address the stochastic behavior of 
an individual traveler, i.e., how often one reconsiders hisfher route choice (route-switching 
rate) to capture traveler's habitual behavior or inertia, and what is the probability (route 
choice probability) that a certain route being chosen to reflect the uncertainty. Since route 
flow is the sum of all the individual travelers on this route, we next build up the stochastic 
process of the aggregated route flow. Subsequently we show that when the traffic demand is 
large, the mean route flow dynamic over finite time spans follows an almost deterministic 
trajectory. Our goal of this paper is to find some deterministic processes to closely 
approximate the stochastic process and study the relationship between their fixed points and 
the traffic equilibria. 

Our mean dynamic is general in that many existing deterministic processes can be considered 
as its special cases (Smith, 1984; Nagurney and Zhang, 1996; Yang, 2005; Jin, 2006). More 
importantly, more meaningful individual traveler's behavior explanations are unveiled. 
Besides, it can be concluded from this general framework that if every individual traveler 
follows certain reasonable rules of route-switching rate and route choice probability, the 
Wardrop user equilibrium can be approached by travelers' day-to-day behavior adjustment 
process. Traditionally, the behavior assumption for user equilibrium is that each traveler 
obtains perfect information and exhibits completely rationally. In contrast, our behavior 
assumption for an individual is the Markov decision rule, i.e., one makes route choice "today" 
only depending on the limited road information available from "yesterday", and behaves not 
completely rationally in that one might choose the non-optimal route with certain probability. 
Furthermore, the day-to-day mean route flow dynamic may evolve to user equilibrium, the 
stochastic user equilibrium, system optimal and other disequilibrium states depending on the 
different behavior rules of revision rate and choice probability, network supply and 
congestion toll pricing schemes. 

The remainder of this paper is organized as follows. We will begin with the formulation of 
the continuous-time route flow Markov model. The mean route flow dynamic of the 
underlying Markov model will be presented. Next we will address the relationship between 
the existing continuous-time deterministic day-to-day processes and the mean dynamic. 
Computational results will be presented on applying the model to study the resulting traffic 
pattern under various capacity reduction scenarios. Finally, discussions and conclusion 
remarks are given. 
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METHODOLOGY 

It is assumed throughout this paper that the travel demand is fixed and day-to-day static, while 
the elastic demand can be extended by adding a dummy route with zero cost to accommodate 
the excess demand. Travelers are assumed to behave homogeneously and be 
"indistinguishable" (Cascetta, 1989). 

Formulation of the Continuous-time Route Flow Markov Model 

Typically, a transportation network can be considered as a fully-connected directed graph 
denoted as G(NA) ,  consisting of a set of nodes N and a set of links A .  Let the set of O-D 

pairs be denoted by W ,  the traffic demand for O-D pair W E  W by d W ,  the set of routes 
between O-D pair W E  W by P w ,  the flow on route p E P w  by fpw, the route travel cost on 

route p by C,", the flow on link a €  A by x,, the travel cost on link a by z, , the 

dimensions of the route flow vector f , the link flow vector x  , the demand vector d ,  and the 

set Pw by nr , na , n W ,  and nP , respectively. Let the matrix A denote the link-route 
incidence matrix. 

The traffic assignment model is to assign O-D demand vector d = ( d  ', d  ',..., d  ") over the 
transportation network G(NA) .  Recall the definition of the feasible route flow set K  is the 

Cartesian product of each K w  = { y  E RnP : y t 0 ,  and yp" = d w  ) ; hence, feasible route 
p t P W  

flows can take any real values in the set K .  In the Markov process context, it is more 
convenient to have the finite state space instead of the real-valued infinite one. In order to 
make the population large but finite, we will first fix a large number N  and multiply it with 
the demand vector to construct the new demand ( N d ' , N d 2 , ~ ~ ~ , N d W )  . This rescaled 
construction is also used in Davis and Nihan (1993) and Balijepalli and Watling (2005). The 

finite route flow set is denoted by K~ = ( f  E K  : N f  E z'" ) where z"' denotes the set of all 
1  

non-negative integer-valued vectors with dimension nr . Therefore, K = K  n -z'" is a 
N  

fine discrete grid of the continuous real-valued convex set K .  The route cost function is 

C :  K  + R,"' and link cost function T :  X + R: where X is the feasible link flow set, 

X = ( x  : x  = Af , f  E K )  . At each "day" t , NdW travelers for O-D pair X = { x  : x  = Af  , f  E K )  

choose routes in the feasible route set P w  . In this model, the state vector is the discretized 
route flow random vector fr E K ~ .  The route cost random vector C, can be expressed by 

C, = A T ~ ( A f r ) .  The subscript t is dropped from the dynamic variables hereafter to simplify 

notations if there is no confusion. 

Before studying the route flow dynamics, let us first address the individual traveler's 
stochastic route-choice behavior. The basic two components to model an individual behavior 
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in the evolutionary game theory are the revision rate vector hw : K w  + R : ~  and choice 

probability vector nw : K w  + Aw , where Aw = { z w  E RnP : zpW = 1, z W  2 0 )  is the set of 
p t P W  

probability measure vector on RnP (Sandholm, 2006). It is assumed that travelers will stay on 
a route with a non-negligible randomly distributed time interval due to their inertia to switch 
routes. Route-switching rate describes how fast travelers are revaluating their route choices. 
Route choice probability defines when travelers reconsider their route choices, the probability 
that they will choose each route. Route-switching rate and route choice probability both 
depend on the traffic flow state on the current "day", i.e., the flow distribution. Although 
route-switching rate and route choice probability are not completely new concepts in 
traveler's behavior study (e.g., Mahmassani and Chang, 1987; Chang and Mahmassani, 
1988), modeling traveler's random inertia is not well understood in the literature. Traveler's 
inertia is usually modelled as a deterministic and state-independent constant term; for 
example, either all travelers or a small fixed percentage of travelers will reconsider routes 
every "day" (Cantarella and Cascetta, 1995; Watling, 1999), while in this paper we model 
traveler's inertia as a state-dependent random variable. Our approach is based on the 
following observation: consider the situation where the day-to-day route travel cost varies 
greatly among routes, it is more logical to assume that travelers will switch routes more 
frequently, while they will switch routes less frequently if all routes have almost the same 
travel costs. 

To model the individual's inertia, it is assumed that each traveler is associated with a random 
clock which rings exponentially, that is, the amount of time staying on route p between two 

consecutive rings is exponentially distributed with the parameter 1; = 1 ; ( f )  for the 0 - D  

pair W E  W and the route p~ Pw . The route-staying time for every individual traveler is 

independent of each other and memory-less, i.e., depending only on the current route flow 
state f if we assume the continuous-time Markov decision model of individual traveler. If 
one's clock rings, helshe will reconsider hidher route choice: whether to stay on the same 
route, or change to another route q~ Pw ( q  + p )  with probability x; = x;(f), as illustrated 

in Figure 1. 
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I Route choice 

I Route k 

Route j 
p 

Figure 1 The Continuous-time Markov Model for an Individual Traveler 

The statements above construct the homogeneous Markov process for individual traveler's 
day-to-day route choice behavior. In the following, we will show that the aggregated route 
flow is a Markov process {fr },,, within the state space K N  as well. 

Let the current time moment be day t and the current route flow state f E K ~ .  Therefore, 

there are Nf; travelers from the 0 - D  pair W E  W on the route p ~  Pw . All the travelers on 

route p  have the same exponential rate A;(f) while the route-staying time of each traveler is 

independent of each other. The first clock rings after time t is actually the winner of the 
underlying independent "exponential race" over all routes. Hence, the route-staying time d 
before the first traveler's clock rings is exponential distributed with parameter N Z ,  that is, 
1 E e x p ( ~ z )  where 1 = xx f,"A; is the weighted average of the exponential rates over all 

" P 

routes. Regardless of the time when the clock alarms, the probability that this clock belongs to 
f "AW 

the travelers on route p is + . When a traveler on route p reconsiders hislher route 
A 

choice, helshe will choose route q with probability x: . This choice probability is 

independent of the history and conditional only upon the current route flow state. Suppose 

after time !, the number of travelers on route q changes from Nf: to Nf; f l ,  then it 

concludes that the first ringing clock belongs to the travelers on route p , and there is only 
one traveler switching from route p  to route q .  To sum up all the statements above, we can 
conclude that the probability that the first ringing clock belonging to a traveler on route p 
and the traveler switches from route p  to route q is 
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fpWa; 
---AT:, where it = xx f,"Rz 

R W P  

Since after time t ,  the route-staying time before the first route switching t~ exp(NX), only 

depends on the route flow vector f t ,  and the choice probability AT: only depends on ft as 

well regardless of the history, it concludes that this process { f ~ ) , , ,  is a Markov process. 

The Mean Route Flow Dynamic and its Deterministic Approximation 

The statements above show that the underlying process {f:),,, is the continuous-time 

Markov process. Because of the continuity of the "exponential race", there is only one 
traveler having the opportunity to reconsider hisher route choice when hislher clock rings 

1 
first. Hence the actual increment of the route flow vector is 5 = - ( e ,  - e p )  , q # p if a 

N 

traveler switches from route p to route q , where e p  and eq are the basis vectors in R ~ '  with 

pth and qth element equal to 1 and others 0, respectively. Let tk denote the time of the kth 

route-switching opportunity occurring, tk+l for k+l th  and C N  the random route flow 

increment at time tk+, . Then the distribution of ( N  is p(SN = Z) = ~ ( f ; ,  = f + z I f :  = f )  . 
Generalizing all the statements above, we can write the formulation of the distribution of the 
increment C N  as 

1 fpWR;(f) 
p(CN = - ( e q  - e p ) )  =- x ( f )  fo rsomeq#p 

N 

Since the total route-switching rate is NX, within a small time interval ( t , t  + 6 ) ,  there are 

~ 1 6  route-switching opportunities. Therefore, it can be seen that even in a very small 
interval, the switching rate can go to infinite as N grows out of bound. However, for each 
switching, the upper bound of the expected route flow increment at next revision is of order 
1 
- . Hence, the overall expected increment in this interval (t , t  + 6 )  is of order x6 ,  which is 
N 

bounded although the population size N approaches very large. Since during ( t , t  + 6 )  there 

is a large number of switches and each of them generates almost the same expected flow 

increment, followed by the law of large numbers, the total change of { fr )  is mainly 

determined by its mean dynamic, which can be shown as the deterministic ordinary 

differential equation (ODE) in the following. The mean dynamic of process { f ; " }  is defined 

as the deterministic ordinary differential equation whose solution approximates the Markov 

process {fr)  . Explicitly, this ODE can be expressed by f = V N ( f )  , where vN is a 

continuous function over the discretized route flow space K N .  
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The expected route flow switching increment for every revision opportunity is 

The expected increment per time unit of the process {ffv} can be written as 

Since this vector field v N  (f) is unrelated to the population size N , we can write the mean 
dynamic for each route flow as 

Let the superscript dot denote the derivative with respect to time. Summarizing all the 
statements above, we can derive the mean dynamic of the route flow stochastic process, given 
by Theorem 1.  

Theorem 1 The mean dynamic of the route flow Markov process {ffv } can be expressed by 

f; =Z~W Cf;a; - fpWa;  f o r a l l p ~  p W , w €  W a n d f  E K .  
qtPW 

(6) 

The intuitive explanation of the mean dynamic (6) is as follows: the flow change rate on route 
p can be considered as the difference between the inflow rate into route p and outflow rate 
from route p . The inflow rate into route p is the multiplication of the total flow switch rate 

f;A; and the route choice probability x; ,  and the outflow rate from route p is the 
q t P W  

multiply of the flow f r  and the route-switching rate 1;. 

Remark. Some properties of the mean dynamic (6) include the solution trajectory f (t) non- 
negativity and flow conservation, i.e., f ( t ) ~  K given the initial point f , , ~  K .  To show the 

non-negativity property, let us define the boundary of set K is 
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K O  = {f E K : A = Oand f j  > 0 for some i and j # i) . It is straightforward to show 2 0 for 

f E K O  and A = 0 ,  i.e., at the boundary points, the mean dynamic (6) forces the flow to move 

in the direction not to decrease any more. The flow conversation property is satisfied after 

checking Jb" = 0 
Q E P ~  

With the mean dynamic in place, the next question is to see how close this mean dynamic is 

to the underlying continuous-time Markov process {ffv}. Intuitively, from the strong law of 

the large numbers, the stochastic evolution is mainly determined by its mean dynamic. 
Rigorously, the link between the mean flow dynamic (6) and the finite horizon behavior of 

Markov process ( f r  } can be stated in Theorem 2. 

Theorem 2 Let {{f:},,o}~=No be a realization of continuous-time route flow Markov 

processes. Assume that the initial condition f E K converges to f, E K . Suppose the mean 

dynamic is Lipschitz continuous, and {f,),,, be the solution to the mean dynamic f = V(f) 

from initial condition fo . Then for each T < wand& > 0, one has lim P sup f: < E = 1. 
N+. [..A - 1 . 1  ] 

Proof: see Appendix 1. 

The Relationship between the Mean dynamic and Existing Day-to-day Dynamics 

The arguments above apply the evolutionary game theory to derive the mean route flow 
dynamic and shows that this mean dynamic is a close approximation to the underlying 
continuous-time stochastic process. We claim that our model is a general day-to-day 
dynamics formulation in that many existing deterministic day-to-day processes can be 
considered as the special cases of our mean dynamic by appropriately setting up the route- 
switching rate 11 and the route choice probability n. By accommodating existing deterministic 
day-to-day processes into our general frame work, they can be considered as the deterministic 
approximation of the underlying stochastic processes, and their meaningful individual 
behavior explanations are recognized. 

In the literature, most of the continuous-time deterministic dynamics have the property that 
there exists unique solution trajectories of the ODEs and the fixed points of the ODEs are the 
corresponding user equilibrium. They include the proportionally switching dynamical system 
(Smith, 1984; Smith and Wisten, 1995; Huang and Lam, 2002; Peeta and Yang, 2003), the 
projected dynamical system (Nagurney and Zhang, 1996; Nagurney and Zhang, 1997), the 
BNN (Brown-von Neumann-Nash) dynamic (Yang, 2005) and the First-in-First-out (FIFO) 
dynamical system (Jin, 2006). 
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First let us address the relationship between the proportional-switch adjustment process model 
and our mean dynamic (6). The proportional-switch adjustment process (PAP) originates from 
Smith (1984), although it is not named by Smith (1984). The basic idea of the proportional- 
switch adjustment process is that travelers on a higher cost route will switch to other lower 
cost routes in next "day", while the switching rate depends on the cost difference between this 
route and other routes. The proportionally switching dynamical system can be written as 

Let the route-switching rate be A; = [C,"-C,"], and route choice probability 
q t  PW 

?r; = LC," - cbl+ where n; denotes the probability to choose route p when travelers on C LC," - c:1+ 
stPW 

route q reconsider routes. Then the mean dynamic (6 )  coincides with the proportionally 
switching dynamical system (7). The fixed point of (6 )  under this (A,%?) setting will be user 
equilibrium. 

After investigating the ( 1 , ~ )  setting for the proportionally switching dynamical system, we 

can understand better the underlying individual behavior. The behavior explanation for the 
proportionally switching dynamical system is that, the higher the traveler cost on route p is 
over other routes for the same 0 -D  pair, the more often a traveler on this route will reconsider 
switching routes, i.e., helshe has less inertia to change routes. If the travel cost on route p i s  

less than or equal to that of all other routes connecting the same 0 -D  pair, a traveler will stay 
on this route with probability 1. A traveler will switch from route q to route p with positive 
probability if the travel cost on route p is lower; otherwise, helshe won't switch at all. 

The Projected Dynamical System 

The projected dynamical system describes disequilibrium trajectories of traffic dynamics prior 
to reaching user equilibrium. It has been widely used to solve the variational inequality 
problem (Nagumey, 1993). It can be expressed by 

i = n, (f,-c) (8)  

where the operator II, is defined as n , (x ,y )  = lim P ~ ( x + t y ) - x  and P, ( x )  = arg minllx - zll 
E+O E z t K  

is the projection of vector x into the feasible set K 

Inspired by Sandholm and Lahkar (2005), we can partition the route index set into three 

subsets, Q = { k :  f, > 0 } ,  Z, = { k :  f, =0,  f, > 0 )  and Z, = { k :  f, =o, f, = 0 ) .  Let I Z , ~  and 

I Q ~  denote the dimension of set Q and Z, , respectively. Then we define 
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C ~k +Cck C ~k +Cck 
E P ] -  = CP - kEzi 1 , and [ I  = max[o, - C P ]  . The 

' G l + l ~ l  ' G l + l ~ l  

important statement is that we can set up the following ( 1 , ~ )  rule such that the project 

dynamical system (8)  can be expressed by our mean dynamic (6).  

and np ( f )  = 
[Z.,l+ 

C [ E k l +  
k s Z , U Q  

This ( 1 , ~ )  rule indicates the individual behavior explanation for the projected dynamical 
system is that, the higher the travel cost on route p is over the "weighted average" travel cost 

C ck + C C k  
kc Zc , more often travelers on this route would like to change routes, i.e., they 

l ' G l + l ~ l  

exhibit less inertia in their route choices. Travelers will switch to route p with positive 
probability if the travel cost in route p is lower than the "weighted average" travel cost 

The FIFO Dynamical System 

The FIFO dynamical system was developed in Jin (2006) by observing FIFO violation among 
routes connecting the same 0 - D  pair. Compared with the dynamical systems (7) and (8)  
above, one distinct feature of FIFO dynamical system is that the right hand side of the FIFO 
dynamic system (9 )  is continuously differentiable. The FIFO dynamical system can be written 
as 

1 
where Cw =- C C,"f," is the average travel cost for OD pair w . Let 

d W  p,PW 

1; = dw(C," - p w )  and n," = f P x w  where pw = mine," . It is straightforward to check that 
p t P "  

this (1,n) rule will make the mean dynamic (6) identical to the FIFO dynamical system (9). 

The individual behavior explanation for the FIFO dynamical system is that, a traveler on 
higher cost route reconsiders hisher route choice more often, and the probability for himlher 
to change to a route p is proportional to how many travelers on the route p . 
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The BNN Dynamic 

The BNN dynamic is a canonical dynamic in microeconomics to model players' dynamical 
evolving behavior. It was first introduced by Brown and von Neumann (1950) for symmetric 
zero-sum games and recently studied extensively in Swinkels (1993), Hofbauer (2000), 
Sandholm (2001) and Hofbauer and Sigmund (2003). An interpretation of BNN dynamic is as 
follows: during any small time interval, all players in a population are equally likely to switch 
strategies, and the rate to do so is proportional to the sum of the excess payoffs in the 
population. Those who switch choose strategies with above average payoffs, choosing each 
with probability proportional to the strategy's excess payoff (Sandholm, 2001). 

The first attempt to model BNN traffic route flow dynamics is in Yang (2005). Let the 
1 

average route cost be Cw =- x C,"f," for O-D pair w , and the excess route cost 
d W  ,,PW 

[k;], = max{O,-C," +Cw} denotes the excess travel cost of route p relative to the average 

travel cost for O-D pair w . Then the BNN dynamic can be written as 

There are three important properties of BNN route flow dynamics: first the right hand side of 
BNN route dynamic is Lipschitz continuous hence it admits a unique solution trajectory. 

Second, the fixed point f * of BNN route flow dynamic is equivalent to the Wardrop user 

equilibrium. Third, the user equilibrium is the state where the excess route cost satisfies 
[k,"], = O,Vw,p (Friesz and Shah, 2001; Yang, 2005). 

Corresponding to the general mean dynamic (6), we have route-switching rate 

/Z,"(f) = [k;], and choice probability x,"(f) = ["I' for BNN dynamic. Indeed, it 
q t P Y  x re:,.], 

describes a certain traveler's learning process where the frequency to choose routes with 
travel cost above average decrease, while the frequency with travel cost below average 
increase, as long as the route flow is changing. In other words, travelers will choose the routes 
with positive probability whose travel cost is less than the weighted average travel cost over 
all feasible routes. 

The Logit Dynamic and SUE 

In the statements above, we have discussed the cases where the mean flow dynamic 
converges to user equilibrium. We can find the example of the settings of the appropriate 
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( 1 , ~ )  rules such that the mean dynamic (6) converges to SUE. For example, let /Z,W = 1 and 

exp(-BC,") 
zW = . Then the mean dynamic (6) becomes 

exp(-BCqW) 
q.pw 

Apparently the fixed point of the dynamic (11) is the logit-based SUE. For ( l l ) ,  the logit 
discrete choice model is used. Similarly, if the probit model is chosen to define the choice 
probability, the fixed point of (1 1) will be the probit-based SUE. 

The Day-to-Day Dynamic Toll and System Optimal 

Yang and Szeto (2006) show that imposing a day-to-day dynamic congestion toll 
p ( t )=k ( t ) ' x ( t )  will guide the day-to-day dynamic flow evolving towards system optimal 

instead of user equilibrium, considering a general drivers' behavior adjustment process 
(including PAP, PDS, and BNN dynamics). Their day-to-day dynamic toll can be considered 
as the dynamic version of the classic marginal social cost one, by replacing the system 
optimal link flow and link travel cost with the ones on the current "day". Moreover, the 
dynamic total system cost is monotonically decreasing along the day-to-day dynamic flow 
trajectory until it converges to system optimal flows. 

The Disequilibrium Trajectory 

Note that the mean dynamic might converge to disequilibrium states as well. The following 
example demonstrates under certain network supply condition, the mean dynamic converges 
to a periodic trajectory instead of the equilibrium. Consider the network with one 0-D pair 
and 3 parallel links, and the route travel cost function is C, = 2f, + f2 +4f, , 
C2 = 4f, + 2 f2 + f, , and C, = fi + 4 f2 + 2f,. The 0 -D  demand is 1. It is straightforward to 

show that the only user equilibrium point is evenly distributed route flow 
(fi, f2, f3) = (113, 113, 1/3), which is the center of the triangle in figure 2. However, by 

solving the BNN dynamic, the solution trajectory turns out to converge to a middle circle 
regardless of the initial point, rather than the only equilibrium point. Even if the initial point is 
around the user equilibrium, a small perturbation will cause the dynamic to leave the 
equilibrium and to head to the middle circle as shown in the phase portrait in figure 2. The 
solution trajectory also approaches the middle circle when the initial conditions are outside of 
this circle. In figure 2, the three vertexes are the cases that all the demand is assigned to only 
one route. The arcs with arrows indicate the solution trajectory of the BNN dynamic given an 
initial point. The reason why the mean dynamic presents a periodic trajectory lies in the 
stability property of the equilibrium, which is not the focus of this paper. 
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Figure 2 Phase Portrait of the BNN Dynamic for the Three-link Network 

EXPERIMENTAL STUDIES 

By using the mean dynamic to closely approximate the underlying stochastic route flow 
changes, we can model the day-to-day disequilibrium dynamic traffic flow evolution from 
any given initial traffic condition. Therefore, our model is particularly useful to study the 
resulting dynamic traffic pattern when network supply and demand changes, for example, a 
portion of a network infrastructure is to undergo a scheduled upgrade or when a capacity 
reduction takes place due to external interventions. In this section, we will illustrate the 
evolution of several route flow dynamics (e.g., PAP, BNN and Logit dynamics) undergoing 
different road conditions. 

The simple test network will be the 3x3 grid network with 9 nodes, 12 links and 6 routes 
from origin 1 to destination 9, as shown in Figure 3. The total O-D flows are 500 units. The 
route and link correspondence is shown in Table 1.  
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Destination 
Figure 3 The 3 x 3 Grid Network 

Table 1 Route and Link Correspondence in the 3 x  3 grid network 
Route 1 Links 
1 1 1-2-3-6-9 

The link travel time function is z, = 1.5[1+0.15(~ )3], where x, is the link flow and C, is Aa 
the capacity for link a .  All twelve links have the same capacity 2200 vehicles. The initial 
point of route flow vector is randomly chosen as f = (62.5, 100, 125, 75, 62.5, 75)'. The 
unique (stochastic) user equilibrium flows are x = [250 125 250 125 125 125 125 125 
125 250 125 2501'. 

Three testing scenarios are listed in Table 2. For scenario 1, there is no capacity reduction of 
any link. Scenario 2 describes the situation where there is 80% capacity reduction occurred at 
link 1 (node 1-2) from time t = 3. In scenario 3, the capacity of link 1 returns back to normal 
from time t = 6. 

Table 2 Three Testing Scenarios 
Scenario 

1 
2 

3 

Distinctive features 

No incident occurred. 
80% capacity reduction occurred at link 1 (node 1-2) from time 
t = 3 
80% capacity reduction at link 1 occurred from time t = 3 and its 
capacity returned back to normal from time t = 6 
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The dynamic route flow evolution of PAP, BNN and Logit dynamics are shown below in 
Figures 4, 5 and 6, corresponding to scenario 1. For both PAP and BNN dynamics, the 
dynamic route flow pattern smoothly converge to the Wardrop user equilibrium route flow 
f*  = (125, 55.55, 69.45, 125, 69.45, 55.55)', while the Logit dynamic flow converges to 

SUE route flow T = (89.6, 80.2, 80.2, 89.6, 80.2, 80.2)'. In terms of the convergence rate, 
the PAP dynamic converges to the UE route flows faster than the BNN dynamic. 

D l ~ m i c  Route Flw br PAP Wnamic (No Cap. Reduclrn) 
130 - m e  I - m e 2  - 

Figure 4 PAP Dynamic Route Flows without Link Capacity Reduction 

Dynamic Rnute Rwvbt BNN Dynsmic (Eb Cap W h l  
190- -. - m e  1 

v mule5 
laYIe6 

Figure 5 BNN Dynamic Route Flows without Link Capacity Reduction 
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- - mute l 
mute 2 
mute3 
mute4 

, mute5 - mute8 
- -. 

Figure 6 Logit Dynamic Route Flows without Link Capacity Reduction 

For scenario 2, there is 80% capacity reduction on link 1 from time t = 3. Figures 7, 8 and 9 
show the corresponding dynamic route flow evolution for the three dynamics. The route flows 
are heading their ways to the UE ones before the capacity reduction on link 1. After the 
external shock to the system, the dynamics depart away from their original trajectory and 
change dramatically to reflect the drivers' responses to this shock. The route flows on route 1, 
2 and 3 decrease fast after the capacity reduction in link 1 because link 1 is part of these 
routes. On the contrary, the route flows of route 4, 5 and 6 increase dramatically. 
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D f ~ m i c  Rouo F w  LM PAP hlwm~c *In Cwecllv Recwilm on Lin* I 
m - 

- 
mute l 

180 
mute P * .  - . mute3 - .......*I.. route4 

160 
. mute5 . mute6 ............ ---- . . .  

140 

nme 

Figure 7 PAP Dynamic Route Flows with Capacity Reduction on Link 1 

Dynsmlc b l e  Flow k+ ENN Dynamic vrilh w i l y  Reduction on Lir* r 
rao- - mule l . 

Figure 8 BNN Dynamic Route Flows with Capacity Reduction on Link 1 
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- m e  2 - m e 3  .,,. *r*.- . . m s 4  . . ..*. . .. - - . . . . mu.5 ' . muse 
- 

Figure 9 Logit Dynamic Route Flows with Capacity Reduction on Link 1 

Scenario 2 is the example of the study on driver's behavior on an unrecoverable external 
shock (e.g., permanent network change or a long-term construction). Meanwhile, it is also of 
interest to study the traffic dynamic under some short-term shock, for example, incident, 
short-term construction, and lane closures. This is the motivation for the study of scenario 3. 
In this case, there is a severe construction, e.g., 80% of capacity reduction, occurred on link 1 
at time t = 3. After three time units, the construction is cleared and the road condition is back 
to normal at time t = 6. Figures 10, 11 and 12 depict the PAP, BNN, and Logit traffic 
dynamics for this scenario. The route flows on route 1, 2 and 3 decrease steeply from time t = 
3 to t = 6, while route flows on route 4, 5 and 6 increase dramatically in the same period 
because of the capacity reduction on link 1. After time point t = 6, the capacity on link 1 
comes back to normal, the route flows on route 1, 2 and 3 begin to go up very fast, while the 
route flows on route 4, 5 and 6 start going down. Finally, the PAP and BNN dynamics 
converge to new UE flow f *  = (125, 44, 81, 125, 81, 44)' , which is different from the 

original UE flow f *  = (125, 55.55, 69.45, 125, 69.45, 55.55)' in scenario 1. Indeed, the 

network condition in scenario 3 after time t = 6 is the same as that in scenario 1. However, the 
route flow vectors at equilibrium states in these two scenarios are different from each other. 
This example illustrates an important fact that the route flows at equilibrium may be different 
because of the impact of some network changes or on-off events, while the equilibrium link 
flows are the same. The explanation might be that initial route flow conditions for scenario 1 
and 3 are different, and that the equilibrium route flows are not unique, thus they eventually 
converge to different equilibrium route flows. More details will be discussed in a subsequent 
paper, from the stability point of view. However, as the SUE route flow is unique, the Logit 
dynamic finally moves to the original SUE route flow as in scenario 1. 
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Figure 10 PAP Dynamic Route Flows with Capacity Recovery on Link 1 

Figure 11 BNN Dynamic Route Flows with Capacity Recovery on Link 1 
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Figure 12 Logit Dynamic Route Flows with Capacity Recovery on Link 1 

CONCLUDING REMARKS 

In this paper, we present a new framework in modeling travelers' day-to-day route choice 
behavior adjustment process, which integrates the advantages of both deterministic ODE 
formulations and discrete-time stochastic processes. Under the assumption that the 0-D 
demand is large, the mean flow dynamic closely approximates the underlying route flow 
stochastic process. The unique solution trajectory of the mean dynamic in finite-time horizon 
can provide us the dynamic traffic flow evolution given any initial traffic condition. This 
mean dynamic is a general day-to-day dynamics formulation in that many existing 
deterministic processes can be considered as its special cases, and their meaningful individual 
behavior explanations are recognized. 

By constructing some reasonable traveler's stochastic learning schemes, we show the 
existence of user equilibrium even if one considers traveler's imperfect behavior under 
uncertainty. User equilibrium can be approached even if the traveler's behavior assumption is 
relaxed as an individual traveler only has access to limited information and exhibits limited 
rationality. User equilibrium, as well as the stochastic user equilibrium, might be the fixed 
points of the mean (deterministic) dynamic, therefore, they can be classified as the day-to-day 
deterministic equilibria, while the day-to-day stochastic equilibrium may denote the stationary 
flow distribution of the stochastic process (Watling and Hazelton, 2003). 

This study also reveals the important linkage between the fixed points of day-to-day dynamics 
and the equilibria of traffic assignment problems. Therefore, some higher order Runge-Kutta 
methods in dynamical system literature may be exploited to solving traffic assignment 
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problems. The case study illustrates an interesting observation that the equilibrium route 
flows might be changed due to the impact of some network changes or on-off events, while 
the equilibrium link flows are the same. 

One theoretical investigation for future research is to study the local and global stability of the 
mean dynamic, especially when multiple traffic equilibria exist. For more applications, this 
research can be used to study detailed representations of temporal and spatial evolution of 
traffic congestion, thus providing the ability for transportation management authority to 
utilize the traffic control devices and route guidance systems to direct the traffic flows to 
more uncongested routes and improve the system performance. 

APPENDIX 1 

The proof of theorem 2 is mainly based on Kurtz (1970) and Sandholm (2006). For the sake 
of completeness, we show that the three conditions of theorem in Kurtz (1970) are satisfied. 

Lemma 3 (Kurtz 1970) Let V be a Lipschitz continuous vector field. Suppose that for some 

sequence {aN t=No converging to 0 ,  we have 

(1)  lim supIvN ( f )  - v ( ~ ) I  = o 
N+- 

ft.. 

(2)  lim sup ( f )  < w 
N+- f .~N  

(3)  lim sup A$ ( f )  = 0 
N + - f t ~ N  

and that the initial conditions f: r K" converges to f o  r K , where AN ( f )  = ( N Z ) E ( S ~ ~ )  and 

A:. ( f )  = ( N Z ) E ( S ~ ~ ~ , , . ~ ) .  Let { f t} t ,o  be the solution to the mean dynamic f = V ( f )  from 

initial condition f o .  Then for each T < - and E > 0 ,  we have 

Condition ( 1 )  of Lemma 3 is straightforward due to the right hand side of the mean dynamic 
(6) is Lipschitz continuous. 

Condition (2)  and (3)  are also satisfied because the 2-norm of the flow increment C N  at any 

time is always either zero or &A. The proof is complete if we take the sequence 

6 N = 2 / f i .  
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THE CO-EVOLUTION OF LAND USE AND
ROAD NETWORKS

David Levinson, Feng Xie, and Shanjiang Zhu, University of Minnesota, Minneapolis, USA

INTRODUCTION

Transportation and land use are interdependent shapers of urban form. First, changes in land
use alter travel demand patterns, which determine traffic flows on transportation
infrastructure. Second, changed traffic flows drive the improvement of transportation
facilities. Third, new transportation facilities change the accessibility pattern, which drives the
re-location of activities and land uses. During this process, both transportation and land use
are evolving constantly, leading to salient spatial transformations such as agglomeration and
centralization over space and transportation networks. For example, as cities evolved in the
first half of the 20th century, we saw a concentration of activities and development at the
centers of cities. As freeways were constructed from the 1960s, roads also became more
differentiated with regard to their functional designs and running speeds (certainly in the pre-
auto era most unpaved streets were equally slow, with paved streets and highways and then
freeways, some roads got much faster). Urban agglomeration and differentiated highway
networks are referred to as hierarchical systems in this study.

In the context of the co-evolution of land use and road networks, this paper in particular
examines the degree to which the dynamics of land use is reinforcing or counteracting
hierarchies of road networks. By this we ask will a more hierarchical distribution of activities
lead to a more or less hierarchical road network? Observation of historical evidence does not
lead to a clear conclusion, as the development of a hierarchy of transit systems during the
streetcar/subway era was accompanied with a concentration of development (especially
employment) in the center of cities (from an undeveloped state), while the development of a
hierarchical road network (from an underdeveloped and largely undifferentiated street system)
occurred when those same cities were decentralized from a highly developed state. This paper
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aims to examine this question in a simulation environment with controlled initial conditions
and quantitative measurements of spatial hierarchy.

The remainder of this paper is organized as follows: the next section presents a review of
related literature, which is followed by an introduction to the simulation model developed for
this study. Then the experiments are outlined, and results are reported, and some sensitivity
analyses conducted. The conclusions summarize the findings and suggest future directions for
research.

LITERATURE REVIEW

While there have been some investigations of the evolution of transportation infrastructure
and that of urban land use separately, few have examined the integrated development of
transportation and urban space in an evolutionary way, leaving the co-evolution of
transportation and land use still poorly understood.

The investigation of the growth and transformation of transportation infrastructure dates back
to 1960s, when a series of studies were conducted by geographers and transportation planners
to replicate the changing topology and connectivity of road or rail networks (Garrison and
Marble, 1962; Taaffe et al., 1963; Morrill, 1965). The dynamic analysis of transportation
networks, however, was based on heuristic and intuitive rules in these studies, due to a lack of
understanding on its inherent mechanisms at that time. In recent years, a limited number of
attempts have been made to model the dynamics of transportation networks in a more realistic
way. Yamins et al. (2003) presented a simulation of road growing dynamics on a land use
lattice that generates global features observed in urban transportation infrastructure. Van Nes
and van der Zijpp (2000) and van Nes (2002) claimed that the emergence of hierarchy in
transport networks is a natural phenomenon in maximizing performance while minimizing the
resources needed, and also discussed the relation between hierarchy in transport networks and
that in spatial structures. Yerra and Levinson (2005) and Levinson and Yerra (2006)
incorporated a simplified travel demand model to predict traffic flows on a surface
transportation network, and introduced independent agents to invest (disinvest) in individual
roads according to the revenue and cost associated with forecasted traffic. They demonstrated
that a network could evolve into a hierarchical structure from either a random or a uniform
state, even based on completely decentralized decisions of autonomous roads. Previous
studies, however, didn’t integrate the dynamics of transportation networks with the
development of urban space, with land use either ignored or taken as exogenous.

The evolution of urban space has been examined by another steam of studies. The pioneering
work by von Thünen (1910) presented a monocentric city surrounded by agricultural land and
predicted the rent and land use distribution for competing socio-economic groups. Christaller
(1933) introduced central place theory and demonstrated that a hierarchy of central places
will emerge on a homogenous plain to serve the surrounding market while minimizing
transportation costs. Krugman (1996) explores the phenomenon of self-organization in urban
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space. He develops an edge city model to demonstrate how interdependent location decisions
of businesses within a metropolitan area could lead to a polycentric pattern under the tension
between centripetal and centrifugal forces. Based on these theoretical investigations, a host of
empirical land use-transport models have been developed to forecast land use development
while considering transportation as an important factor. One of the first that gained
substantive interest was the Lowry model (Lowry, 1963). Since the 1980s, many integrated
land use models have been applied in real cities and some have been developed into
commercial packages. Examples include START (Bates et al., 1991), LILT (Mackett, 1983,
1990, 1991), and URBANSIM (Alberi and Waddell, 2000; Waddell, 2002). A comprehensive
review of these integrated land use-transport models has been provided by Timmermans
(2003). In most of these models, the dynamics of urban space has been played out as the
outcome of the location decisions made by residents and businesses, in which both
accessibility to employment and accessibility to population play essential roles (Hansen,
1959; Guttenberg, 1960; Huff, 1963).

Although the concept of accessibility connects transportation with land use development, the
change of transportation networks has seldom been considered in previous land use-transport
models. A possible explanation is that these models are already complicated enough. They
usually involve multiple modeling approaches, incorporate numerous constraints and
assumptions, and are estimated from empirical data, unavoidably leading to a comprehensive
modeling framework including a wide variety of components. These models are so specific
and complex that 1) they are difficult to replicate; 2) the relationships between components
are entangled and implicit; 3) the emergent large-scale patterns in space and network are
difficult to recognize and analyze. Lee (1973) also has an important critique.

In contrast to those complicated and all-encompassing models that do not provide an explicit
perspective, this paper models the integrated dynamics of land use and roads in as simple a
way as possible that captures salient properties, enabling us to display and analyze the
emergent hierarchy and agglomeration patterns of space and network on a large scale, as well
as observe the interactions (reinforcement or counteraction) between the dynamics of roads
and the development of land uses. The specific simplifications and assumptions made in our
model specifications will be discussed later.

Extending Krugman (1996), Levinson and Yerra (2006), and Yerra and Levinson (2005), this
paper models the co-evolution of land use and road network as a bottom-up, rather than a top-
down process, by which interdependent location decisions of businesses (equivalently
referred to as employment or jobs in this paper) and residents (also called population or
workers or housing or resident workers) are incorporated, as well as investment decisions of
autonomous roads based on predicted traffic on a network. Planners and engineers would
argue that while market-based land use may be constrained by zoning and plans,
transportation network investments are decisions that are now driven, or coordinated, by
centralized organizations such as state departments of transportation or metropolitan planning
organizations that make major investment decisions using a forecasting model and planning
process to test and evaluate alternative scenarios. Local jurisdictions, of which there are many
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in some metropolitan areas, make investments on lower level roads. Certainly these
organizations do affect new investment, but the decision to build or expand a link is also
constrained by many facts on the ground, actual traffic on the link, competing parallel links,
and complementary and upstream and downstream links, the costs of expansion, and limited
budgets (Levinson and Karamalaputi 2003a,b). According to Krugman (1996), a self-
organizing system of urban space and network will evolve into order and pattern, even based
on simple, myopic, decentralized decisions of individual businesses and workers. If we can
generate convincing collective representations of land use and network structure without any
centralized planning or direction, perhaps planning is not as important in shaping urban areas
as it is sometimes credited.

MODEL FRAMEWORK

A Simulator of Integrated Growth of Network Growth and Land-use (SIGNAL) is developed
in this study to simulate the co-evolution of land use and road networks. An overview and
inter-connection of these models is illustrated in Figure 1. The components of the model
include travel demand, road investment, accessibility, and land use.

Figure 1. Overview of the SIGNAL model.

Travel demand models

The travel demand model converts population and employment data into traffic using the
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steps of trip generation, trip distribution, and traffic assignment (for simplicity, a single mode
is assumed) (Ortuzar and Willumsen, 2001).

A simplified trip generation model estimates the number of vehicle trips that originate from
or are destined to a zone as a linear combination of the quantities of employment and
population in this zone, without distinguishing trips by purpose:

Oi = ξ1Ei + ξ2Pi (1)

iii PED 21 ψψ += (2)

where Oi and Di represent the number of trips that originate in or are destined to Zone i
respectively, while Ei and Pi are the employment (jobs) and population (resident workers) in
this zone.

A doubly constrained gravity-based trip distribution model is adopted to match both trip
generation and attraction of locations based on a negative exponential function that assumes
the interactions of zones decreases with the travel time between them:

Tij = KiK jOiDje
ε tij (3)

where Tij is number of trips from zone i to zone j; Ki, Kj are balancing coefficients; Oi is the
production of zone i; Dj is the attraction of zone j. The parameters in this trip distribution
model have been calibrated using the empirical data in the Twin Cities, (see Levinson et al.
(2006) for details). The variable tij is the generalized travel cost from zone i to zone j
calculated as:

tij =
(δi, j

a

a
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where tm,i and tm,j represent the generalized intra-zonal travel time in zones i and j,
respectively. The generalized intra-zonal travel time captures a variety of costs incurred on
trips that rise with land use intensity. It represents things like higher congestion levels, longer
elevator waits in taller buildings, greater difficulty of finding parking, and taking longer to
engage in parking that add to local travel time and travel cost in both zones. An intrazonal
generalized time penalty acts as a surrogate for all of the above. Assuming a simple quadratic
relationship between the generalized intra-zonal travel time and land use density in zone i, tm,i

is calculated as:
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where t0
m is a specified base intra-zonal travel cost for all zones, Gi is the number of activities

in zone i, while G represents the average number of activities across all zones. In our case,

Gi = Ei + Pi (6)

where Ei and Pi represent the employment and population in zone i, respectively. They will be
discussed later in the land use model.

The inter-zonal travel cost between zone i and zone j is computed as a summation of link
travel cost along the shortest path from zone i to zone j, where ta represents the generalized
travel time that a vehicle spends on link a, while δa

i,j is a dummy variable equal to 1 if link a
belongs to the shortest path from zone i to zone j and 0 otherwise. Dijkstra’s Algorithm
(Chachra et al. 1979) finds the shortest path from each node to all other nodes of the network.
The generalized cost of travel time on link a is calculated by incorporating adding monetary
cost (toll) (with an appropriate conversion factor) to the actual travel time on this link (tolls
are charged by the road agent):

ta =
la

ν a

+
Ra /η

fa

(7)

where la, va, fa, and Ra respectively represent the length, average speed, traffic flow, and
collected revenue of link a in a given time period. The parameterη represents the average
value of time. The calculation of Ra will be discussed later.

A Stochastic User Equilibrium (SUE) is adopted in traffic assignment to predict route choices
on a network according to perceived travel time, implementing Dial’s Algorithm and Method
of Successive Average (MSA) (Sheffi, 1985; Davis and Sanderson, 2002). Traffic assignment
in a time period starts with the congested travel time resulting from the preceding time period,
which makes the convergence in MSA much faster. The convergence rule in MSA specifies a
maximal allowable link flow change equal to 0.5 (or a maximum of 100 iterations). A smaller
maximal allowable flow change will result in a flow pattern that is closer to the equilibrium,
but there is tradeoff between the accuracy and run time. The parameters in the model have
also been calibrated by Levinson et al. (2006).

Road investment models

Road investment models describe the economic decisions of individual roads as autonomous
agents. These decisions in terms of tolling, spending, and investing are abstracted in simple
equation forms, also assuming autonomous roads make myopic decisions without considering
cooperating with others or saving for the future.

A revenue model determines the toll a road collects during a given time period, depending on
the traffic that uses this road. To ensure two parallel and opposite one-way links a and b that
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connect two nodes are always maintained at the same conditions, we assume that a single
agent operates both links as a whole. Let fa and fb respectively represent the flow traversing
link a and link b for a given time period, the total revenue collected on both links by the agent
can be calculated as:

Ra+b = τla fa + fb( ) (8)

where τ is the regulated toll rate. A regulated toll rate across all the links simulates a distance
based tax, which is the most common practice throughout the United States. Both link a and
link b have the same length: lb= la.

The cost to maintain links in their present usable conditions depends on link length, flow and
capacity. Suppose link a and link b have the same capacity Ca=Cb , the overall spending of the
agent operating links a and b is calculated as:

Sa +b = laCa
σ 2 ( fa

σ 1 + fb
σ 1 ) (9)

where the coefficients σ1 and σ2 are specified flow and capacity powers in the equation.

An investment model assumes each agent spends all its available revenue at the end of a time
period myopically, without saving it for the future. If the revenue exceeds the maintenance
cost, remaining revenue will be invested to expand the capacity of subordinate links. In
contrast, if the revenue is insufficient to cover the cost, road conditions will deteriorate and
link capacity will drop until the link is eventually abandoned. This investment policy adopted
by each agent can be expressed in a simplistic form as:

Ca
k+1 = Ca

k Rk
a+b

Sk
a+b

⎛

⎝
⎜

⎞

⎠
⎟

ρ

(10)

where Ca= Cb is the capacity of link a and b, which changes with iteration (k), respectively,
while ρ is a specified coefficient that affects the speed of convergence. As implied by
Equations (8)-(10) and specified parameters (detailed in Table 1), a network equilibrates when
the flow on each link equals road capacity in quantity.

Zhang and Levinson (2005) estimated the relationship between the free flow speed of a link
and its capacity in a log-linear model based on the empirical data in the Twin Cities. The log-
linear relationship is adopted here to update the free flow speed (vf) of a link after its capacity
is changed:

vf ,a = ω1 +ω2Ln Ca( ) (11)

where ω1 and ω2 are two coefficients in the log linear equation while Ca is the capacity of link
a.



846 Transportation and Traffic Theory 17

The relationship between the free flow speed and congested speed of a link is defined by the
BPR function (Bureau of Public Roads, 1964) as:

vc,a = vf ,a 1+ α *
fa

Ca
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(12)

where α and β are the coefficients of the function, assumed to equal 0.15 and 4.0,
respectively.

Accessibility and land use models

Accessibility reflects the desirability of a place by calculating the opportunities and activities
which are available from this place via a road network but are also impeded by the travel cost
on the network. Suppose an urban space is divided into J Traffic Analysis Zones (TAZs) or
land use cells that contain both employment (jobs) and population (workers). The
accessibility in each cell (to employment and population) is computed respectively using a
negative exponential measure:

Ai,E = Eje
−θ tij

j=1

J

∑ (13)

Ai,P = Pje
−θ tij

j=1

J

∑ (14)

where Ai,E is the accessibility to employment (jobs) from zone i while Ai,P is the accessibility
to population (workers). The coefficient θ indicates how the accessibility of a zone declines
with the increase of travel time to the zone. This coefficient basically represents the same idea
with ε in Equation (3), indicating the impedance factor in travel that increases with travel
time. Thus θ adopts the same value with ε, though the sensitivity of θ is tested later
separately.

A land use model is then developed to reflect how the distribution of population and
employment respond to the accessibility patterns, while keeping the total population and total
employment constant. The land use model is simplified in the sense that accessibility to
employment and accessibility to population are the only factors that affect the decision on
locations made by businesses and workers. As accessibility is essential in the relationship
between transportation and land use, other factors such as land price and administrative
policies are excluded to keep this relationship succinct and clear, thus enabling simple
accessibility-based rules to which independent location choices can be made. To be
representative, our land use model contains both centripetal and centrifugal forces, that is, a
force of attraction (e.g. economies of agglomeration) and a force of repulsion (a desire on the
resident workers part for spatial separation, keeping all activities from locating at a single
point). We assume people want to live near jobs, but far from other people (to maximize
available space and to avoid potential competitors for jobs), while businesses (employment)
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want to be accessible both to other businesses and to people (who are their suppliers of labor
and customers). The following stylized models are developed to track the dynamics of
population and employment based on independent decisions of businesses with regard to their
locations. The first group of equations describes the dynamics of businesses.

PiEiEi AAU ,,, λ+= (15)

UE =

(U j ,EEj )
j=1

J

∑

Ej

j=1

J

∑
(16)
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The employment utility (desirability) of a zone is estimated as a linear combination of its
accessibility to employment and to population in Equation (15). Note that both accessibility to
employment and accessibility to population reinforce the employment desirability, indicating
a strong centripetal force exists in shaping the pattern of employment (though intrazonal
transportation costs do increase with density). The average utility that each business enjoys is
calculated in Equation (16), and the influx of businesses to a zone in the next time period
(iteration k+1) is proportional to the utility above the average that a business can enjoy in the
zone as well as the total number of existing businesses, according to Equation (17). It can be
easily proven by adding up Equation (17) for all zones that the total employment is ensured to
be constant in these equations. The parameters λ and γ are two coefficients in the linear
equations.

Ui,P = Ai,E − μAi,P (18)
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Similarly, the dynamics of population is described in Equations (18)-(20). The only difference
lies in Equation (18), in which the residence disutility is determined by a centripetal force and
a centrifugal force. A hedonic analysis of home sale prices in the Minneapolis-St. Paul region
conducted by El-Geneidy and Levinson (2006) reveals that μ is near 1.0.

Figure 2 illustrates the feedback relationship between the network and land use variables
within our system of co-evolution. An arrow with a plus (+) or minus (-) between two boxes
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shows a positive or negative relationship between the boxes. As can be seen, road expansion
increases capacity, which improves free flow speed; the increased capacity increases cost,
then forces the capacity back according to the investment rules. The improvement of travel
time increases traffic flow, which increases the revenue and facilitates road expansion. The
improvement of travel time also increases both accessibility to jobs and accessibility to
houses. Employment density is positively associated with both accessibilities while
population density is negatively impacted by accessibility to houses. Increased employment or
population density increases intrazonal travel time, which offsets the improvement of travel
time due to road investment.

Figure 2. The feedback relationship in the transportation/land use system

After investing (or disinvesting) in each link in the network, computing accessibility, and
relocating land uses, the time period is incremented and the whole process is repeated. In this
study one time period represents a hypothetical year as the day-to-day traffic on the network
is predicted and converted to yearly traffic for road investment models.
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HYPOTHESES AND SIMULATION EXPERIMENTS

Two sets of experiments are conducted. The first fixes the land use, and explores how the
network evolves in response to those fixed land uses. The second allows both the network and
the land use to evolve simultaneously.

The research question is the degree to which hierarchies of road networks are reinforced or
counteracted by the dynamics of land use. It is posited that this depends on initial land use and
network conditions. Initially flat road networks become more concentrated, and initially
concentrated networks become less so when land uses are allowed to vary rather than remain
constant. That is, they reinforce to a point, and counteract beyond some point.

Simulation experiments were conducted in a hypothetical metropolitan area where both the
population and employment are distributed over a two-dimensional grid. For simplicity, the
experiments here are conducted over a square planar surface, stretching 20 km in both
dimensions, divided into a 20X20 grid lattice of land use cells (400 zones). Each zone
occupies one square kilometer of land. A total of 400,000 people are living in this city, which
is equivalent to an average of 1,000 residents in each zone. Total employment equals 400,000
as well (and each resident holds a job). Two-way roads connect the centroids of each pair of
adjacent zones, thus forming a 19X19 grid of road network as well, comprising 400 nodes and
1,520 links.

Table 1 lists parameters and their values for our experiments. As explained in Table 1, the toll
rate and value of time are adopted from empirical estimates; the coefficients that define the
log-linear relationship between link capacity and free flow speed are estimated by Zhang and
Levinson (2005) using the empirical data in the Twin Cities. Among those parameters that are
arbitrarily specified for the models, some of them were tested in the experiments using
sensitivity analysis, which will be discussed later.

Each set of experiments was tested under two different sets of initial conditions. Both sets of
initial conditions specify a uniform network in which the same initial conditions are specified
for all the links except for their locations: each link is 1 km in length with a free flow speed of
35 km/h, and a capacity of 800 veh/h. The first specifies uniform land uses with both
population and employment of each zone equal to 1,000; the second assumes a concentrated
distribution of road capacity. The experiments are outlined in Table 2.
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Table 1. Model parameters

Parameter Description Citation Value Source

ξ1, ξ2,

ψ1, ψ2

Coefficients in trip
generation
and attraction

Eq.(1)

0.5 trips/person,
1.0 trips/person,
1.0 trips/person,
0.5 trips/person

Specified

ε Trip distribution coefficient Eq. (3) 0.05/min
Empirical
calibrated

tm
0 Base intra-zonal travel time Eq. (5) 10 min Specified

η Value of time Eq. (7) $10 /h
Empirical
estimates

τ Toll rate Eq.(8)
$1.0/

veh-km
Specified

σ1, σ2 Coefficients in cost model Eq.(9) 0, 1 Specified*
ρ Capacity reduction factor Eq.(10) 0.25 Specified*

ω1, ω2

Coefficients in the capacity-
freeflow speed loglinear
function

Eq.(11) -30.6 km/hr, 9.8
Empirical
estimates

α, β Coefficients in BPR function Eq.(12) 0.15, 4.0
Typical
values

θ
Impedance factor in
accessibility model

Eq.(13),
Eq.(14)

0.05/min Specified*

λ
Coefficient in employment
desirability model

Eq.(15) 1.0 Specified*

μ
Coefficient in population
desirability model

Eq.(18) 1.0
Empirical
estimate

γ
Coefficient in land use
model

Eq.(17),
Eq.(20) 1.0×10-6 Specified

Note: Analyses were conducted on the sensitivity of asterisked parameters

Table 2. Specification of experiments

Initial conditions Dynamics
No.

Link capacity Employment Population Roads Land uses
1a Uniform Uniform Uniform Evolving Fixed
1b Concentrated Uniform Uniform Evolving Fixed
2a Uniform Uniform Uniform Evolving Evolving
2b Concentrated Uniform Uniform Evolving Evolving

A series of measures of collective properties are developed to track the patterns in the
experiments. The Gini index is adopted in this study to indicate the degree of spatial
agglomeration for land use and network infrastructure. The Gini index has been widely
adopted as a measure of spatial concentration (Krugman, 1991; Chatterjee, 2002). Chatterjee
(2003) elaborates the computation of the Gini index based on the Lorenz Curve. The Gini
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index of land use (employment or population) is computed in this study to reflect how evenly
land uses are distributed on the hypothetical space. The index is a number from zero to one,
which is equal to zero when employment or population is uniformly located across all zones,
while close to one when all employment or population is located in one zone. The more
unevenly land use is distributed, the higher value the index is.

Similarly, the Gini index of road capacity is computed to reflect how evenly roads are
developed. The index equals zero when all roads have the same capacity while it becomes
higher when a larger portion of total capacities are occupied by a smaller number of roads.

In analogy with kinematics, measures of the moment of inertia (I) and the equivalent radius
(r) are computed to reflect the spatial clustering patterns of land use and network
infrastructure.

The moment of inertia for the spatial distribution of employment is computed as:

I = E jd j
2

j=1

n

∑ (21)

where E j represents the employment of Zone j while dj is the distance between the centroid of
this zone and the center of the hypothetical metropolitan area.

The equivalent radius is then computed as:

∑
=

=
n

j
jEIr

1

(22)

The equivalent radius r essentially reflects how far away employment is distributed from the
center of a region. A radius of zero indicates all employment clusters in the center of the
region while a larger radius indicates employment is located farther away from the center.

Similarly the equivalent radius can also be computed for the spatial distribution of population
as well as road capacity.

RESULTS

Experiments 1(a) and1(b) allow roads to invest in their capacities while fixing the land use,
these experiments are similar in nature to those presented in Yerra and Levinson (2005) and
Levinson and Yerra (2006), though differing in specific parameters, the route assignment
model, and initial conditions. Figure 3 illustrates the fluctuations of average link capacity for
1(a) and 1(b) in the first 50 iterations. As can be seen, with fixed land use road dynamics
reaches equilibrium quickly. Whether starting from a uniform state with an average link
capacity of 800 veh/h or from a concentrated state with an average capacity of 1426 veh/h, the
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network adjusts itself in response to the fixed land use pattern and converges to an average
capacity of about 983 veh/h. The observation that initially flat network becomes more
concentrated while the initially concentrated network becomes less so, and they tend to
converge on the same level of average capacity suggests a stable hierarchical distribution of
road capacity may emerge from different initial conditions.
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Figure 3. The fluctuations of average capacity with fixed land use

Experiments 2(a)-2(b), on the other hand, allow both land use and network to evolve, thus
generating different network structures and land use patterns. The evolving spatial patterns of
network and land use were analyzed by plotting the measures of Gini index and equivalent
radius for link capacity, employment, and population on a time horizon over 1,000 iterations.
Since significant changes in networks occurred during the first 50 or so iterations, the
horizontal axis is plotted at a log scale. The plots are summarized in Figures 4 (i)-(iv). Each
plot displays four fluctuations from uniform and concentrated initial network with and
without land use dynamics, that is, Experiments 1(a), 1(b), 2(a), and 2(b).

Plots 4 (i) and Plot 4(ii) demonstrate how spatial patterns of road capacity distribution evolve
over time from the perspectives of agglomeration (reflected by the Gini index) and
centralization (reflected by equivalent radius), respectively. As already shown in Figure 3,
Experiments 1(a) and 1(b) reached equilibrium with fixed land use within the first 50
iterations and remained unchanged thereafter, both resulting in a Gini index of 0.035 and an
equivalent radius of 7.9 km. In Experiments 2(a) and 2(b), on the other hand, the network
quickly adjusted its distribution of road capacity to the contemporary traffic pattern from its
uniform or concentrated initial state in the first 50 iterations and then gradually changed as the
land use evolved. After about 50 iterations, the Gini index in both experiments keeps
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Figure 4. Measures of spatial patterns

increasing while the radius is dropping, showing a strong trend of agglomeration and
centralization of road capacity. More interestingly, whether starting from an uniform or
concentrated network, the experiments allowing land use dynamics (2(a) and 2(b)) generate a
consistently higher Gini index and lower radius compared to their counterparts with fixed
land use, suggesting the evolution of land use distribution reinforces the differentiation of
roads.

Plots 4(iii) and 4(iv) illustrate how the spatial patterns of population and employment evolve
over time. Starting from a uniform network or a concentrated network, land use patterns
display almost the same fluctuation (despite slight differences in the first 100 iterations).
Although the Gini index and equivalent radius for both population and employment keep
increasing, the distribution of population display a consistently lower Gini index and higher
equivalent radius than that of employment, indicating employment has a stronger tendency of
agglomeration and centralization, which is consistent with our assumption that employment
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wants to locate near to each other while people do not like to live together, but want to be near
jobs.

Our findings can be further corroborated by the snapshots of emergent network patterns
shown in Figure 5. Figure 5 displays two emergent networks over 1,000 iterations in
Experiment 1(a) and Experiment 2(a), respectively. Different levels of capacity are displayed
in five different levels of greyness in a relative scale. Obviously, the resulting network of
Experiment 2(a) with evolving land use is more concentrated than that of 1(a) with fixed land
use, suggesting land use dynamics reinforces the hierarchical distribution of road
infrastructure in the context of co-evolution of network and land use. Figure 5(i) shows the
emergence of beltways that are more important than internal roads, Figure 5(ii) does not have
a similar beltway, roads just decline in importance with distance from the centre.

(i) Experiment 1(a) Uniform initial conditions- fixed land use –

road evolution (iteration 1000)

(ii) Experiment 2(a) uniform initial conditions- land use

evolution– road evolution (iteration 1000)

Figure 5. Emergent network patterns.

SENSITIVITY

The specified capacity power σ2 in our road cost model affects the pattern of road
infrastructure. A range of σ2 was tested. Higher values σ2 (say 1.5) impose a high
maintenance cost on roads, and generate a shrinking network infrastructure over time (given
initial capacities); lower values for σ2, on the other hand, set the cost so low that the capacity
expanded rapidly. For example, a value of 0.5 expands the average link capacities by 10 times
in 20 years; finally the value of 1.0 was chosen for it generated a moderate and reasonable

Link Capacity

Low High
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growth of network infrastructure with an increase of average road capacity from 800 veh/h to
1,015 veh/h over 1,000 iterations, which allows us to illustrate other salient points in the
model. Another parameter ρ, capacity reduction factor in Equation (10), affects the speed of
network convergence without changing the final converged pattern. Taking a higher value of
1.0, for example, the network in Experiment 1(a) converges within only 2 iterations.

Changing the specified values of two parameters λ and θ in the land use model may affect the
emerging spatial patterns significantly. The coefficient λ in Equation (15) indicates the
importance of accessibility to population in the location choices of employment, relative to
accessibility to other employment. When λ equals zero, the location of employment only
depends on the accessibility to jobs; while a large λ indicates employment more likely
pursues a population-rich location. The accessibility reduction factor θ in Equations (13) and
(14) determines how fast the accessibility of a place will decline with the increase of
(generalized) travel cost to that place, reflecting the extent to which the change of travel time
can affect the location of land use. Different values for the two parameters were tested and the
results are summarized in Figure 6 (i)-(iv). To be concise, only the Gini index of land use in
the uniform scenario is plotted. This analysis is based off of experiment 1(b).

As can be seen in Plots 6(i) and 6(ii), an increased λ magnifies the concentration of both
population and employment. When λ equals 10, employment is rapidly attracted to
population-rich places, making these places more attractive to population, and thus forming a
positive feedback. As shown in Figure 6(iv), the decrease of θ (the accessibility impedance
factor) basically exaggerates and quickens the concentration of employment because it puts
more weight on the reinforcement effect associated with road dynamics. When θ equals 0.01,
the Gini index of employment peaks within 70 iterations, while when it equals 0.1, the
concentrations become very slow. Figure 6(iii) shows that although the concentration of
population does not occur as fast as employment, the increase of θ still significantly quickens
its concentration process.

CONCLUSIONS

This study models the co-evolution of land use and transportation network as a bottom-up
process by which the re-location of activities and expansion of roads are driven by
interdependent decisions of individual businesses, workers, and road agents according to
simple decision rules. The model was kept simple so that collective spatial patterns of land
use distribution can be displayed and analyzed without multiple conflating factors, while the
sensitivity of these patterns were also discussed. The Gini index and equivalent radius were
adopted to track down the evolution of spatial patterns.

This paper in particular examines the evolution of road networks under the context of the co-
evolution of network and land use. Simulation experiments suggest that there may exist an
inherently stable hierarchical distribution of road capacity so that flat networks become more
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Figure 6. Sensitive analyses for two parameters

concentrated (and concentrated network become less concentrated) given a particular land use
pattern. Experimental results also demonstrate that the agglomeration and centralization of
road infrastructure is reinforced by the dynamics of employment and population under the
tension of pushing and pulling forces. Land use organization and concentration make the road
network more concentrated than it otherwise would be. Since it has been replicated in a self-
organizing process based on completely decentralized decisions in this study, this
reinforcement phenomenon is suggested to be an emergent property of the co-evolution of
land use and road network.

As cities have evolved in the 20th century, we have seen a flattening of the density gradient of
land use (centers of cities are relatively less important) as more highways are constructed and
road networks became more hierarchical (certainly in the pre-auto era most unpaved roads
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were equally slow, with paved highways and then freeways, some roads got much faster). In a
sense the faster roads have enabled decentralization of activities. Our simulation model can be
employed in later studies to examine the concentration and flattening of land use that could be
reinforced or counteracted by the evolution of road networks.
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