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PREFACE TO SIXTH EDITION

As a result of a new outlook among instructors and students, and
a growing realization of the benefits that may be gained from a suitable

text book, this edition has been prepared.

" New material has been added particularly in chapters dealing with
stresses. In chapter 8 on normal stresses, the general equation of stress and
the core theory have been introduced. In chapter & on shear stresses, tors-
jon of non-circular solid sections and thin-walled open and closed sections
has been included. Further, additional problems to be worked out are
presented at the end of each chapter so as to give the instructor a wider
choice in the selection of the problems the student may solve.

On the preparation of this edition, no effort was spared to meet most
of the advices and suggestions offered by my colleagues and students
alike. The many critical questions that my former students have asked,
while seeking to clarify the basic principles in their own minds, have been
of immeasurable help in this respect.

. The pubhcat1on of Part 2 of this book will follow this edition. While
Part 1 is mainly concerned with the analysis of statically determinate
structures, Part 2 will deal with deformations and the analysis of stati-
cally indeterminate structures.

It was hoped to present Part2 earlier but this was postponed owing to a
full-*ime engagement of the author on a major research programme con-
ducted at Lehigh University, U.S.A., which lasted almost two years.

Finally, the author wishes to extend his gratitude to Architect, S.
El-Komey and Mr. A. Rasmey who were responsible for the design of
the new cover of this book.

Cairo, December 1983
W.M. El-Dakhakhni
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PREFACE TO FIRST EDITION

Dictating notes to students consumes a great deal of effort on both the
instructor and the students sides, and wastes a large part of the lecture’s
time. Should this effort and time be saved, they could be directed towards
better understanding of the principles taught and attempting to cover
more material.

Although several good English-written books are "available on the
subject, they do not serve the purpose because in these the ft-1b system is
adopted. Moreover, the subjects taught in our universities under Theory
of Structures may be partly found in books on Theory of Structures and
partly in books on Strength of Materials.

This book is designed to serve the need of our engineering students and
to introduce the Theory of Structures for those among them who are ap-
proaching the subject for the first time.

The content covers the course taught to engineering students in their
first year and a significant part of their second year. It is hoped that, by the
aid of this book, the latter part may be relegated to the first year course
s0 as to give room to modern and more advanced material to be taught

in subsequent courses.

The book contains a large number of fully worked out examples. A
large proportion of these are based on questions set in examination
papers of both Egyptian and foreign universities. Also, the book contains
a large number of examples to be worked out that appear at the end of
each chapter. These are presented in the same sequence as the various
sections within the chapter and are generally arranged in order of difficulty.
In many cases the data g}vcn are so chosen for Arithmetical simplicity.

The author is thankful to his colleagues in the Civil Engineering Dept.,
Assiut University for many fruitful discussions. Mrs. Gamal El-Dakhakhni

~ for typing the manuscript, and the Staff of Dar Al-Maaref for their

IX




wonderful co-operation without which the production of this book in
this form would not have been possible.

At last, and by no means the least, the author wishes to express his grati-
tude to his family particularly his parents, to whom this book is dedicated,
fore their continuous encouragement.

W.M. El-Dakhakhni
Cairo, September 1968.
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CHAPTER 1
PRINCIPLES OF PLANE STATICS

1.1 Introduction

Statics is that branch of Mechanics which deals with the determination
of forces keeping a rigid body in a state of equilibrium. There are two
methods of solving problems of this nature; graphical and analytical. The
selection of the method depends on the type of the problem and on personal
preference of the student. Among the problems that are solved more
advantageously by graphical methods are the determination of the member
forces and the resultant deflection of various truss joints. The author finds
that not only is a knowledge of graphical methods helpful in the solution
of probfems such as these, but also that it emphasizes the analytical solution
and helps the student to visualize the physical meaning of the problem at
hand.

In this book, therefore, graphic statics will be dealt with in details and
discussion of its application to various problems will be made in the appro-

priate place.

1.2 Definitions

Rigid body : Structures and structural members are referred to as rigid
bodies. In the exact sense, a rigid body is one whose dimensions never
change under any applied forces. It must be remembered that there is no
perfect rigid body as structures are made of materials that deform slightly
under the application of loads.

Force : A force is.any action that changes the state of body from rest
to motion or vice versa. It is completely specified by : (1) magnitude in
terms of a chosen unit; kilogramme (kg) or ton (t), (2) point of application,
(3) direction. The last two particulars may be replaced by the line of
action and sense of direction (arrow head). For example, a force of 3 t.
acting at point a and in a direction making an angle of 30° with the x-axis
could be equally specified by saying 3 t. acting along line ab from a to b.
A force is a vector quantity as it has both magnitude and direction. Hence
it may be represented graphically by a line drawn through the point of
application and having a length equal to the magnitude of the force to
a suitable scale. The slope of this line indicates the direction of the force




— D

and an arrow head the sense in Y
which the force acts. Referring {
6 iy Ll whie favs P i o 4
completely defined by the vector l 6

|

ab; given as P units of length,

X

acting through point a in a
direction making an angle g

) - Fig.. 1.1
with the x-axis from a to b.

As far as the equilibrium condition of a rigid body is concerned the
effect of a force may be considered the same at any point along its line of
action. For example, the reactions R, c
and Ry of the simple truss shown in
Fig. 1.2 are the same whether the load

b
acts at ¢ or d. “Only the internal forces & d
in t%lC truss would change. With P TRa JP Rb
applied at ¢, member cd has zero force,
and if P is applied at d member cd will Fig. 1.2

have a force equal to P,

Moment : Moment of a force is its ability to make a body turn. Re-
ferring to Fig. 1.3, the moment of a force about any point o in its plane is
given by the product of the force and
the perpendicular distance from o to

its line of action, i.e. moment of force E
P about o; M, = Pr. The units of ¥l
moment are distance times force, i.e. /

/

cm.kg. or m.t. o
Fig. 1.3

Concurrent forces : A concurrent force system is shown in Elg: 4 a.
It consists of a number of forces whose lines of action meet in a common
point.

Parallel forces : A parallel force system consists of a number of forces

whose lines of action are all parallel as shown in Fig. 1.4 b.

Nonconcurrent forces : A system of nonconcurrent forces is shown in
Fig. 1.4 c. It consists of a number of forces in various directions and their
lines of action do not meet in a common point.

Couple : Any two forces equal in magnitude, opposite in direction
and not having a common line of action form a couple. This system of




(c)
Fig. 1.4

P, P3 Ps

forces has a purely rotational effect on any rigid body. Referring to Fig. 1.5
and taking moments about point m then, moment of couple = Pl B
P % mn — Pr: The same result can be obtained by taking moments about

n, o, or any other point in the plane
of the forces. Thus, it can be deduced
that the moment of a couple about any
point in its plane is constant and is
equal to the product of one of the
forces and the perpendicular distance
between the lines of action of the two
forces.

Resultant : The resultant of a system
of forces acting on a rigid body is a
single force or couple, which has the
same effect on the equilibrium of the

body under consideration.

p
S
» A
F N
%
~
2\
L ~
™
~o
Fig. 1.5

Equilibrant : A force which holds a system of forces in equilibrium

is called the equilibrant of these forces.

Equilibrium : A body which is initially at rest and remains so when
acted upon by a system of forces is said to be in a state of static equilibrium.
For a rigid body to be in equilibrium, it is necessary that the resultant is
neither a force nor a couple otherwise it will tend to cause the body to tran”

slate or rotate.
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1.3 Composition and resolution of forces

The process of replacing two or more forces by a single resultant force
is known as composition of forces. . The reverse process; replacing a single

force by two or more equivalent forces, called components, is called resolu-
tion . of a force.

Two methods for solution will be considered.

Graphical method : The resultant of two concurrent forces P, and P,
such as those shown in Fig. 1.6 a, fnay be obtained graphically by drawing
the diagonal of a parallelogram constructed with the vectors representing
these two forces drawn as sides as shown in Fig. 1.6 b. The same result
could also be obtained from one of the triangles of forces shown in

P2
P P‘ﬁ a
Pf &~ 47&
P2 P, P2

(a) (b) (c)

Fig. 1.6

Fig. 1.6 c. In constructing these triangles, cither force may be drawn first
and then the other force is laid out from the end of the.first vector. The
resultant is then obtained in magnitude and direction from the closing
vector of the triangle drawn from the beginning of the first vector to the
end of the second. Its line of action must pass through the point of inter-

section of Py and P, otherwise it would not have the same effect as the two
forces.

Ifa force R is required
to be resolved into two
components P, and P, any
two of the four quantities
defining the two components;
magnitude and direction of
each, must be given and
the other two are found from

the force triangle.
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Analytical method : Referring to the triangle of forces shown
in Fig. 1.7,

e \/a——(—i__z T
R =/ (@ +F; cosp)? + (P,sin p)* a1
cd P, sin B8
tan g = = ALY
ad P, + P, cos B

Equations 1.1 and 1.2 give the magnitude and direction of the resultant R.

The reverse process, that of replacing a force by two components is

_ possible provided that two of the unknowns defining the two components

are given. These may be the
directions of the two components,
their magnitudes, or the magn-
itude and direction of one.
It is customary, however, to

resolve a force along two
directions perpendicular to each
other, taken for convenience Fig. 1.8
as the x and y directions. In

Fig. 1.8, X and Y are the rectangular components of R.
‘ X =Rcos g o b
Y =Rsing o 1t

Given the rectangular components, the magnitude and direction of the
resultant are given by :

R = /X% 1 Y2 e 5.
%

tan g = —— raeai o6
X%

1.4 Resultant of a system of concurrent forces

Graphical method : Consider a system of concurrent forces, Py, P,, P,,
and P, as shown in Fig. 1.9 a. This figure, which shows the forces in their
relative positions is called a space diagram. Referring to Fig. 1.9 b, the
resultant R, of the two forces P; and P, is obtained in magnitude and
direction from the triangle of forces abc and its line of action is parallel to




(a) fhl (c)

Fig. 1.9

vector ac and through the common point of intersection of the forces.
Similarly. the resultant Ry,, of the forces Ry, and P, may be obtained, and
then the rsultant Ry,,, of Ry,; and P, which is the resultant of all the four
forces Py, P,, P, and P,. The magnitude and direction could have been
obtained directly without drawing the intermediate dashed lines, ac and
ad. The resulting diagram, shown in Fig. 1.9 ¢, is called the force polygon.
In drawing the force polygon, all the forces are arranged in one sense,
irrespective of the order in which they are drawn, and then the magni;
tude and direction of the resultant are given by the closing vector of the
polygon drawn in the opposite sense. Its line of action is obviously parallel
to vector ae and passes through the common point of intersection.

Analytical method : The first step in the analytical solution is to choose
two suitable rectangular axes, usually taken as the x and y axes, and then
resolve all the forces along these axes not forgetting that components acting
in opposite directions have opposite signs.

Referring to Fig. 1.10,

Fig. 1.10

X = Pycos @ — P, cos @, — P, cos g; + P, cos g,
Y = P, sin @, + Pysin g, — Py sing; — P, sin g,




R
The resultant acts though o and its magnitude and direction are given
by :
R = /X2 4 Y2
Y

tan B —= ———

X

Example 1.1 Determine graphically and- analytically the resultant of

the concurrent forces shown in Fig. 1.11 a.

Graphical solution : Starting from point a, Fig. 1.11 b, draw vectors
representing forces 2, 3, 5 and 4 t. The resultant is given by R (vector ab)
which scales 1.8 t and acts through point o in the direction shown in the

force polygon, Fig. 1.11 b.

5t 3t

Fig. 1.11

Analytical solution : Choosing the rectangular axes as the x and y
axes, and resolving along these directions then referring to Fig. 1.12,

Fig. 1.12




ot

X = 2cos 30 — 3 cos 60 — 5 cos 15 4+ 4 cos 45
=2 X 0866 — 3 X 05 — 5 x 0.966 + 4 x 0.707
= 1.73 — 1.50 — 4.83 + 2.83 = 1.77t €=

Y = 25sin 30 4 3 sin 60 — 5 sin 15 — 4 sin 45
=2 x 05+ 3 x 086 — 5 x 0286 — 4 x 0.707
= 1.0 4 260 — 1.43 — 283 = 066t |

R = /1772 1 0662 — 1.84 te

0.66

tan g = = 0.373, i.c. g = 20°27

1.77

1.5 Resultant of a system of nonconcurrent forces

Graphical method : The magnitude and direction of the resultant of
a system of nonconcurrent forces are obtained in the usual way by the
closing side of a force polygon. The actual position of the resultant is found
by a construction which replaces each of the given forces by two compon-
ents. Referring to Fig. 1.13 a, suppose that the resultant of the forces |

R (b)

Fig. 1.13

P, and P, is required. Its magnitude and direction are given by the closing
vector ad in the force polygon abcd shown in Fig. 1.13 b. The line of action
of the resultant is determined as follows : Choose any point o in the force
polygon and join oa, ob, oc, and od. Take any point p on the line of action
of P;, (Fig. 1.13 a). At p resolve P; into two components ao and ob. Ex- _
tend the line of action of component ob to intersect the line of action of
P,, at q. At this point resolve P, into two components bo and oc. In the
same manner resolve P, at r into two components co and od. Thus, the
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original system of forces is replaced by six components; two pairs of which
ob & bo and oc & co being equal and opposite, cancel each other. The
resultant of the six components, and therefore of the original force system,
is the resultant of the two remaining components ao and od and acts
through the point of intersection of their lines of action.

The diagram constructed from the force polygon is called the polar
diagram, o is the pole, and each of the lines oa, ob, and od, a ray. The
diagram constructed from the lines spgrt on the space diagram is called
the link or funicular polygon and each of the lines sp, pq, qr and rt, a link.
It is important to remember that a link is drawn between the lines of action
of two forces which are adjacent to each other and also parallel to the ray
directed through the intersection of these two forces in the force polygon.

Analytical method : In order that the resultant of a system of noncon-
current forces may have the same effect as the given system, its components
along two perpendicular axes must be equal to the algibraic sum of the
components of the given forces along the same axes and also it must have
the same rotational effect, i.e. same moment about any point in the plane
of the given force system. Referring to Fig. 1.14, if R is the resultant and
X and Y are its components along the x and y axes respectively then,




)

The last two equations give the magnitude and direction of the result-
ant. Its position is determined from the condition that the moment of
the resultant about any point in the plane must be equal to the algibraic
sum of the moments of the given system of forces. Hence, choosing any
point o and taking moments of the given forces, or for convenience in this
case of the components of the given forces, about this point then,

Y av= Yyoa; 4 ¥, a, +%; a,
Y, a; | Y,a, [ ¥, a,

O A — s = L
=Y

i.c. the resultant passes through a point distance a; given by equation I3,
from the chosen point o.

Example 1.2 Determine graphically and analytically the resultant of
the forces acting on beam ab shown in Fig. 1.15 a.

4t Lt ‘> :

60 o~ <= /
a ; b
e il 4
R: 9-50
Fig. 1.15

Graphical solution : Draw the force polygon (Fig. 1.15 b) to a conven-
ient scale. The resultant is.given by ad which scales 9.5 t. Choose pole o
and join oa, ob, oc and od. Draw the link polygon (Fig. 1.15 a) with links
1, 2, 3 and 4 parallel to their corresponding rays oa, ob, oc and od. Extend
links 1 and 4 to meet in a point. From this point, draw a parallel to ad to

get the line of action of the resultant.
Analytical solution : Choose the x and y axes as’ab and the normal
to ab through a.
X = 3 cos 60 + 4 cos'90 — 4 cos 45
=3 x 05 —4 x 0707 = — 1.33, ie. 1.35 t €=
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Y = 3 sin 60 - 4 sin 90 + 4 sin 45
=3 X 0866 + 4+ 4 x 0707 =943t |
R — /1332 + 9432 = 95t /
9.43

tan g = = 7.0902 e g =81 058"
1.33

Taking moments about -a and assuming that the resultant R cuts ab
at a distance x from a then,

943 X x = 3 x 0866 x 2 4 x 6 + 4 x 0.707 X 9

54.65
X = —— = 58 m.
9.43

1.6 Conditions of equilibrium for concurrent forces

Referring to Fig. 1.9 a which is reproduced in Fig. 1. 16a, if a force
P. equal and oppesite to the resultant R were added to the given force
system, the resultant would be zero and therefore the force polygon must’
close as shown in Fig. 1.16 b. This indicates that the algebraicsums of the

components along any chosen rectangular axes are zero.

Ny 2

B
Eﬁ-—v s \ Ps
P
/PB \Pt. P ‘
A .p5
(a)

(b)
Fig. 1.16

Hence, if several concurrent forces are known to be in equilibrium,
the following conditions must be satisfied.

Graphical : Closed force polygon.
Analytical : X = 0 s bioy
and XY =0 s 1.9
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From the analytical conditions, it is seen that there are only two equa-
tions of equilibrium. Hence, the maximum number of unknowns that
could be determined is two. These may be :

(a) A single force in magnitude and direction.
(b) The magnitudes of two forces of known directions

(¢) The magnitude of one force and the direction of another.

Example 1.3 For the system of concurrent forces shown in Fig. 1.17
determine graphically and analytically.

(a) The single force required to keep them in equilibrium.
(b) The two balancing forces along xx and yy.

(c) The two balancing forces; one of magnitude 18t. and the other
acts along xx.

Y R RN SN
10t ' N R :
75° \ | /
90", 45° % AW |
>0t ‘\ | 4
5 \
a
(a) (b)

Fig. 1.17

Graphical solution : Starting from point a (Fig. 1.17b), draw vectors
representing forces 5, 10, 8 and 10 t. The equilibrant is given by vector
ea, which scales 22.5 t. and acts in the direction shown in Fig. 1.17 b. The
balancing forces along xx and yy are given by vectors ef and Ta. These
forces scale 15 t. and 17 t. respectively and act in the directions shown in
Fig. 1.17 b. The two required forces in (c) are given by VCCT.OI-‘SE and eg
and these forces are 18 t. and 21 t. resﬁectively.

Analytical solution : Assuming that P is the equilibrant required in
(a), X and Y are its components along the x and y axes, and resolving
along these two directions,



=1l = ;
ZX =0 =X + 10 + 8 cos 45 — 10 cos 60 + 5 cos 30

X =—10—8 %0707 + 10 x 05 —5 x 0.866 = — 14.99 ¢,
ie. 14.99 t &

ZY =0 =Y + 8 sin 45 4+ 10 sin 60 4+ 5 sin 30

Y = —8 x.0707 — 10 x 0866 — 5 x 0.5 = — 1657 t.
i®. 16,57 |

P = /14997 | 16572 = 225t 4

1.6¥57
tan g = 799—-— B 11054, i.e. e = 469 55’

The two balancing forces required in (b) are :

NS 14109 e AW Gr e BogYis JEh 7! of

The two balancing forces required in (c) are found as follows : Assuming
that the force of 18 t. makes an angle @ with the x-axis and that the magni-
tude of the other along the positive direction of the x-axis is F then
by resolving along the x and y axes and equating to zero, two equations
are obtained from which the two unknowns, @ and F, are determined.’

Thus :
IX =0=F + 10 | 8cos45— 10 cos 60 + 5 cos 30 1+ 18 cos g

Y =0 =8sin45 & 10sin 60 + 5 sin 30 -+ 18 sin g

From the second equation, sin g = — 0.934, ie. g = — 699 10
Substituting the value of @ in the first equation,
F =—10—8x 0707 + 10 x 05 —5 x 0866 — 18 x 0.345
= — 10 — 566 + 5 — 433 — 6.2 = —21.19,i.e. 21.19 t €=

(Note that the negative sign for F means that its direction is opposite
to that assumed).

1.7 Conditions of equilibrium for nonconcurrent forces

Referring to Fig. 1.13 a which is reproduced in Fig. 1.18 a, if a force
P, equal and opposite to the resultant R were added to the given system,
and if in addition it were collinear with the resultant then a system in equ-

ilibrium is obtained. For this system the force polygon is closed indicating
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(b)
Fig. 1.18

that. the algebraic sums of the components along the chosen rectangular
axes are zero. Also, when the link polygon is drawn, it will be found that
it closes -on itself, From the link polygon it is seen that the given force
system is replaced by four pairs of forces, each of which consists of two
equal, opposite and collinear forces. Therefore the original system is-in
equilibrium.

Suppose that P, were not collinear with R but acts parallel to it along
the dashed-line shown in Fig. 1.18a. The force polygon will still close but
from the link polygon it is seen that the given force system is replaced by
three equal and opposite pairs of forces in equilibrium, and a pair of forces
equal, opposite and at a distance r apart and thus forms a -couple of
moment equal to oa X r clockwise @ being measured to force scale and

r to linear scale). Therefore, the given system of forces is not in equilibrium.
Hence, if several nonconcurrent forces are known to be in equilibrium,
the following conditions must be satisfied.
Graphical : Closed force polygon.
Closed link polygon.

If the force polygon closes but the link polygon does not, the given
system of forces will be equivalent to a couple.

Analytical : £X = 0 el
EXS 0 o |
IM, =0 v

[¢]

where o is any point in the plane of the forces.
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From the analytical conditions, it is seen that there are three equations.
Hence the maximum number of unknowns that could be determined is

three. These may be :

(a) Three forces known in direction but of unknown magnitudes.

(b) The magnitude only of one force and the magnitude and direction

of another force.

It should be remembered that a parallel force system is a special case
of nonconcurrent forces. In this case, however, the analytical condition
ZX = 0 is initially satisfied. Hence, the maximum number of unknowns
that can be determined for a system of parallel forces in equilibrium is

two only.

1.8 Three-force theorem

“Three nonparallel forces in equilibrium must intersect in a common point. “The
magnitudes and directions of these forcese are given by the sides of a triangle of forces

with the arrow heads in one continuous sense™.

This is obvious when one notices that any two of the three forces can
be replaced by a resultant force through their point of intersection and
that in order that the third force may be in equilibrium with the resultant,

their lines of action must be coinsident.

This theorem is commonly used in the solution of statical problems.
Its importance is demonstrated in the soluiion. of the problems given in

the following section.

1.9 Treatment of some problems in statics

(1) Determination of two parallel equilibrants of a system of parallel

forces.

Graphical method : Consider the system of parallel forces P;, P, and
P, shown in Fig. 1.19 a, and suppose it is required to find the two parallel
forces through a and b that would keep the system in equilibrium. If R
is the resultant of the two parallel equilibrants required then, for equili-
brium conditions, it must be equal and opposite to the resultant of the
given force system. Hence the two required equilibrants must be parallel
to the given force system. Draw the part in the force polygon corresponding




P‘ P2 P3 —T"i
a y \ i Ry 2
Ra Closing nk__ - 3
| o 3
; Rp
{a) (b)

Fig. 1.19

to P, P, and P,. Choose a pole 0 and join 01, 02, 03 and 04. Draw a link
parallel to ray 01 between P, and the known line of action of R,. Similarly,
draw successively the links between P; & P,, and P, & P,, and then
between P, and the line of action of R,,. Since R, and R, are both vertical,
point 5 in the force polygon (Fig. 1.19 b) must lie on the line 1234. Also,
since P, P,, P,, R, and R, are known to be in equilibrium, the link
polygon must close, which condition is satisfied by drawing the line a’b’
which is called the closing link. This link lying between R, and R, in the
space diagram must have a corresponding parallel ray in the polar diagram.
Hence, 5 is the point of intersection between ray 05 drawn parallel to the
closing link and line 1234. Vectors 51 and 45, therefore, represent R, and
R, respectively.

Analytical method ; Referring to Fig. 1.20 and taking moments about a,

a lP‘ IP’ lpa b
Ra 5 -;2 _.l J R»

a3
a

Fig. 1.20
IM, =0=R,a—P,a —P,a, — P, a,
P a + P,a, + P; a,
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Note that a check can be applied to the values thus obtained from the

IM, =0 condition.

a system. of parallel forces. Find

analytically and graphically the
equilibrants A and B passing f-‘ "l‘ 2m —~.J.. i -4.1‘1
through a and b if A and B are

parallel. &Y

Example 1.4 Fig. 1.21 shows 2t A 4Lt
a 1 j 1 b

Analytical solution :

Since A and B are parallel and since the equation £X = 0 must be
satisfied, it follows that both A and B must be parallel to the given force

system, i.e. vertical.

IM, =0=B x5 —4x4—4x%x3-—2x1
6 +
B :—_Ez_ﬂ:ﬁt.f
5

M, =0 = A x5 — 2™ 4 —4 x 20=4%4 x 1

8 A58 gt

As a check the condition Y = 0 must be safisfied. Hence,
¥ =4 —2 -4 4 4+ 6 =20

Graphical solution :

2t Lt 4t
= ¥ v ¥ b Ra:,}_; \
> 0
3 . K 3
. |Closing llink | Rb -ej_‘ Ecale
T lem. = 4 t.
(a) (b)

Fig. 1.22

Draw the force polygon for the given forces to a suitable scale. Choose
any pole 0, join 01, 02, 03 and 04 and draw the corresponding link polygon.
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From 0 draw a parallel to the closing link to intersect line 1234 in 5. Then
vector 51 represents equilibrant A and vector 45 equilibrant B, From the
diagram shown in Fig. 1.22 b, these scale 4 t. and 6 t. respectively.

(2) Determination of two equilibrants; one given by its point of
application and the second by its line of action.

Consider the system of forces P;, P, and P, shown in Fig. 1.23a and
suppose that it is required to find the two forces that keep them in equi-
librium, In this case, it is known that the left equilibrant passes through
the given point a and that the right equilibrant acts along the given line
bb . There are two graphical solutions to this problem :

(a) By use of the three-force theorem.

Referring to Fig. 1.23, the force and link polygons are drawn and the

Fig. 1.23

resultant R is found in the usual manner. bb’ is extended to meet the line
of actien of R in c. Since three nonparallel forces in equilibrium must meet
in a point, the equilibrant through a must also pass through c. Knowing
the directions of R, and R,, their magnitudes are obtained from the force
polygon (Fig. 1.23 b) by resolving R along ca and cb.
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(b) By use of the link polygon.

Draw the part of the force polygon corresponding to the given forces
P, P, and P,. Choose a pole 0 and draw rays to points 1, 2,3 and 4.

ta)

Through the given point a, draw a link parallel to ray 01 between P; and the
unknown line of action of R,. Similarly, draw successively the links between
P, & P,, and P, & P, and then between P; and the known line of action
of R,. This last link intersects the given line of action of Ry, at b. For equ-
ilibrium, the link polygon must close and ab will be the closing link. Draw
the corresponding ray in the force polygon (Fig. 1.24 b) parallel to the
closing link. This ray must pass through the intersection of the vectors
representing R, and R,. Now this point of intersection lies on the ray paral-
lel to the closing link and also on the line drawn from point 4 in the force
polygon parallel to bb and is thus determined. Vectors 51 and 45, there-
fore, give the magnitudes and directions of R, and R, respectively.

Analytical method :

Choose any two rectangular axes, for convenience taken as bb and the
normal to it through the given point a, and resolve all the forces along these
chosen axes. Then applying the three equations of equilibrium, and refer
ring to Fig. 1.25,

IX =0,X, =X +X,—X,—>

Y, a + Y3 + Y, a

IM, = 0, Y, =

a
a

Y =0,Y, =Y, +Y,+Y¥, —Y, 1




Example 1.5 For the system of forces shown in Fig. 1.26, find graphically
and analytically the equilibrants A and B passing through a and b if B

is vertical.

4t 4t

el e i

Fig. 1.26

t r
b

!
24_1_!

Graphical solution :

The force and link polygons are drawn and the resultant R is found
as shown in Fig. 1.27. Extend the line of action of R to meet the vertical
through b in point ¢. Join ¢ to a. ca and cb are the lines of action of the
equilibrants A and B respectively. R is resolved along these two directions
in the force polygon and the forces are scaled. These are found to be :
A — 714 and B*="5.3"t

Analytical solution :

%
EMa=0:9B—2x8—2><6———><5——4-><2
2 o T
1

B = — (16 + 12 + 14.2 + 5.68) = 5.3t T
9



= B =

2
Y

Force Scale-

1cm. = 4t.
4 4
Xy =H0 = Xt M mian—
2 2
X, = 568t 4=
4 4
Y =0=Y — — — —— 2 24 53

Y R

Y, =438t T

A = /5682 1 4382 = 7.16 t.
and makes an angle @ with the horizontal,

4.38
tan g =—— = 0.772
5.68

6 = 379 40’

(3) Determination of three equilibrants given by their lines of action.
A determinate solution to this problem is only possible provided that




L

the given lines of action are neither parallel nor concurrent. If the given

lines of action have a cemmon point of intersection but this common point
of concurrericy does not lie on the line of action of the resultant of the given
system of forces as shown in Fig. 1.28 a, or if the given lines of action are

A oy

(a)

(d)

Fig. 1.28

parallel but not parallel to the resultant as shown in Fig. 1.28 b, a solution
is not possible. This is obvious as in both cases the unknown equilibrants
may be replaced by a single force which is impossible to be collinear witk
R and therefore can never be in equilibrium. If, however, the given lines
of action and the resultant of the given system of forces have a common
point of concurrency as shown in Fig. 1.28 c, or if the lines of action are
parallel and also parallel to the resultant as shown in Fig. 1.28 d, a solution
is possible but not determinate. This can be verified from the analytical
conditions; two equations and three unknowns.
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Consider the system of forces Py, P, and P, shown in Fig. 1.29, and
suppose that it is required to find three forces acting along the given lines
aa’, bb’ and cc’ to keep the given system of forces in equilibrium.

This problem can always be reduced to the previous one. Referring
to Fig. 1.30a, assume that R is the resultant of the given system which
can be found in the manner described in section 1.5. Combine any two of
the unknown forces (in this case X and Y are combined) into a single force
P. Applying the three-force theorem to R, P and Z, P must pass-through
the point of intersection of the lines of action of R and Z. From the force
polygon (Fig. 1.30 b), knowing their directions, the magnitudes of P and
Z are found. Resolving P along aa’ and bb’ (Fig. 1.29) the two left forces
required, X and Y, are obtained.

Fig. 1.30

This problem may equally be solved by use of the link polygon. Refer-
ring to Fig. 1.31a, replace any two of the required equilibrants by a single
force (in this case X and Y are replaced by P which must pass through
the point of intersection of their lines of action d). Proceed to find the two
equilibrants Z and P, the first being given by its line of action cc’ and the
second by its point of application d, as in the previous case. Once P is
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found, it will be a simple matter to resolve it along aa’ and bb’ to obtain

X and Y as shown in Fig. 1.31 b.

Analytical method :

By applying the three conditions of equilibrium, X = 0, ZY = 0 and

IM = 0, three equations are obtained from which the unknown magni-
tudes of X, Y and Z are determined. Although this solution is possible
yet it is inefficient as it involves the solution of three simultaneous equations.
By ingenuity in applying the equations of equilibrium the solution can
be simplified. For instance, by taking moments about point a (Fig. 1.32),
the only unknown entering the equation will be Z and a direct solution
for it will be possible. Similarly X and Y can be obtained directly by taking

oments about points b and ¢ respectively.
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Fig. 1.32

To generalize, the three conventional equations of equilibrium, X =0,
TY — 0, and IM = 0 can always be replaced by the moment equations
=M, = 0, ¥M, = 0, ZM_ = 0, where points a, b, and ¢ are three points
which do not lic on one straight line. This may be proved as follows : If
a system of forces satisfies any one of the three moment equations, say IM,
— 0, then the resultant cannot be a couple but may be a force acting
through point a. If the system also satisfies the equation M, = 0 then
the possibility the resultant being a force acting along ab still exists. Ifin
addition, the system satisfies the equation M, = 0, where ¢ does not lie
on the straight line passing through a and b, the possibility of a resultant
force is also eliminated. Since the resultant is neither a couple nor a force,
the system must therefore be in equilibrium. By similar reasoning it can
be shown that the conventional equations of equilibrium may be replaced
by the three independent equations IM, = 0, M, = 0, and £X = 0,
where IX is the algibraic sum of the force components in any direction

other than perpendicular to ab.

1.10 Further applications of the link polygons

(1) Determination of moment of a system of forces.

Consider the force system Py, P, and P, shown in Fig. 1.33a, and sup-
pose it is required to calculate the moment of these forces about point m.
Construct the force polygon for the given system (Fig. 1.33 b). Choose 2
pole 0, and draw the corresponding link polygon. Draw through point
m a line parallel to the direction of the resultant as determined from the
force polygon and measure, to the linear scale, the intercept y of this line
between the first and last links. Also measure, to the force scale, the polar
distance H which is the perpendicular distance from the pole 0 to the
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resultant vector in the force polygon. The moment is then given by the
product of the intercept y and the polar distance H. This can be verified
as follows :

Fig. 1.33

The sum of the moments of the given forces is equal to the moment of
their resultant about point m. Then,

M,=Rr
Triangles aod and npq are similar, and if H is drawn perpendicular
to ad then,

orHy=Rr =M

m

The method just illustrated is general in_the sense that it can be used
to find the moment of a part of the given system of forces. Suppose, for
instance, that it is required to compute the moments of P, and P, about
a point s (Fig. 1.33 a). This is equal to the moment of R, represented by
vector ac in the force polygon and whose line of action is located by the
intersection of the appropriate links of the link polygon. Hence, the
moment is equal to the product of the resultant R,, and its arm r; which

1s again equal to the product of the polar distance H, that is the perpendi-

cular distance from the pole 0 to R, and the intercept y; of the line parallel
to Ry, drawn through s between the links locating the resultant R,.

This concept is very useful in the graphical determination of the bend-
ing moment diagrams which will be described later in section 3.9.
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(2) Line of pressure.

There is a principle associated with link polygons which is often used.
If the pole is chosen so as to coincide with the initial point of the first force
in a force polygon, a special link polygon is developed. This link polygon
is known as the line of pressure or as it is sometimes called the linear arch,
and has the useful characteristic that each link represents the resultant of
the preceding forces. This is obvious when oné considers the basic prin-

ciples involved in the construction of a link polygon.

(3) Link polygons drawn through a given point.

Suppose it is required to draw a link polygon passing through a given
point m (Fig. 1.34 a). This may be done by drawing between forces P,
and P; any link that passes through point m. Corresponding to this link
there is a ray in the force polygon (Fig. 1.34 b) that must be parallel to it
and also passing through the intersection of the vectors representing P,
and P, in the force polygon. The pole 0 may now be chosen as any point

on this ray and the remainder of the link polygon completed as shown.

)

(a) {(b)
Fig. 1.34

Obviously this ray is the locus to the pole whose corresponding link poly-
gons pass through m, and hence there is an infinite number of link polygons

satisfying this condition.

(4) Link polygons drawn through two given points.

Sometimes it becomes necessary to pass a link polygon through two
particular points such as m and n (Fig. 1.35 a). The procedure is as follows:
Suppose temporarily that it is required to find two equilibrants for the

given system of forces; the first given by its point of application m and the
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{a)

Fig. 1.35

second by its line of action nn’ which is assumed vertical for convenience.
Passing the first link in the link polygon corresponding to any pole 0
through point m and proceeding as described in section 1.9, point 5 in the
force polygon defining R_ and R, is located (Fig. 1.35b). Had the pole 0
been chosen as desired, the resulting link polygon would have passed
through m and n and the closing link would have been mn. The corres-
ponding ray to this link must be parallel to mn and also pass through point
5. Hence, any point on ray 50’ may be chosen as the pole whose corres-
ponding link polygon will pass through m and n. Again, it is apparent
that there is an infinite number of link polygons that can be drawn passing
through two given points. It should be noticed that the open link polygon
m p q r n provides two equilibrants to the given system of forces along 0’1
and 40" and that m p q r n is the line of pressure.

(5) Link polygon drawn through three given points.

Consider the case where it is necessary to pass a link polygon through
three given points m, n and p as shown in Fig. 1.36 a. As before assume
temporarily that it is required to find two equilibrants to the given system
of forces; the first being given by its point of application m and the other
by its line of action which is taken vertical through n for convenience. Con-
tinue as before and locate point 5 in the force polygon (Fig. 1.36 b). As
mentioned in the preceding paragraph, line 55° which is the parallel to
mn through point 5, is the locus to the pole whose corresponding link poly-
gons pass through m and n, Now consider the forces lying between m and
P and again assume temporarily that it is required to find their vertical
equilibrant through p and that through m. In this manner point 6 in the
force polygon is located. Similarly line 66, the parallel to mp through 6,
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is the locus to the pole whose corresponding link polygons pass through
points m and p. Hence, for the link polygon to pass through all the given
three points, the pole 0’ must be the intersection of the two locii 55 and
66’. In this case, only one pole can be located and hence only one link
polygon may be passed through three specified points. It should be noticed
that the open link polygon through m, p and n is the line of pressure and
that it provides two equilibrants at m and n along 0’1 and 40'.

Further, a link polygon cannot be made to passs through more than
three specified points.
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EXAMPLES TO BE WORKED OUT

(1) Find analytically and graphically the resultant of each of the two
systems of forces shown in Figs. 1.37 a and b.

5t 3t

X

)
(a i

Fig. 1.37

(2) Find analytically and graphically the resultant of the systém of"
forces shown in Fig. 1.38 if they are equi-angularly spaced in the following
two case :

Force number 1 4 3 4 5 6 74 8
Case 1 10 9 8 7 5 4 3 2 - ko
Case 2 10 4 2 2 — 4 0 5 2 kgs

(3) Figs. 1.39 a2 and b show two joints in a truss. Determine analy-
tically and graphically the forces in members A and B.
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Fig. 1.39

(4) Figs. 1.40 a and b show two systems of forces in equilibrium. Find
the values of P and @ in each case.

Fig. 1.40

(5) Determine graphically and analytically the pulls on the pullies
a and b of the arrangement shown in Fig. 1.41.

(6) Find graphically and verify analytically the magnitude, direction
and line of action of the resultant of the system of forces shown in Figs,
1.42 a and b.
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(b)

Fig. 1.42

(7) Find graphically and check analytically the magnitude, direction
and line of action of the resultant of the system of force; shown in Fig. 1.43
and then find :

Fig. 1.43

(a) the two equilibrants if the first acts along line ab and the second
passes through point d.

(b) the three equilibrants along lines be, cd and ad.

(8) Find analytically and graphically using the three-force theorem

the equilibrants A and B, through points a and b, to the system of forces
shown in Figs. 1.44a and b if :

in Fig. (a) B is vertical

in Fig. (b) B is horizontal.
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Fig .1.44

(9) Using the three-force theorem, find the reactions of the structure
shown in Fig. 1.45 if the reaction at b is vertical.

AN
LY
b

(A & f
4m

i

E Q b
L‘——Huu— 16 m. _ﬁ“_J
Fig. 1.45

(10) A horizontal rigid bar is acted upon by the forces shown in Fig.
1.46. Determine graphically the two equilibrants A and B passing through
points a and b and satisfying the following conditions :

LA
MR

Fig. 1.46

(a) A is vertical.
(b) B is vertical.
(c) A and B are parallel.
(d) A and B are equal.
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(11) Resolve the two forces given in Figs, 1.47 a and b along directions
X, Y and Z.

Fig. 147

(12) Resolve the couple 5m. ,1
M = 18 m.t. into the. three I
directions A, B and C shown
in Fig. 1.48.

Fig. 1.48

(13) Find analytically and graphically the equilibrants A, B and C fo
the two systems of forces shown in Figs. 1.49 a and b.

f.t Gl 3t

45° i5e

mAL 5 I_H_Z_L W rft B/ 1t |c
AL‘. N, Lz*’-l- -L2m—L

(a) (b)

Fig. 149

(14) Two posts are rigidly fixed at the base and acted upon by forces
A, B and C. Ifdue to these forces the reactions at the base consist of a force
and a moment as shown in Figs. 1.50 a and b, determine analytically and
graphically the forces A, B and C.
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(a) (b)

Fig. 1.50

(15) The system of parallel forces shown in Fig. 1.51 is applied to a
string fixed at a and b. If the maximum force carried by the string should
not exceed 5 kg., what is the least possible length of the sting between

a an ! aﬁ TJST;OCm_‘_'lO:i_b
|

18 1.2 2.8 ka.

Fig. 1.51

(16) Find graphically the two parallel equilibrants through points a
and b of the forces shown in Fig. 1.52. Draw a link polygon for the set of

-03(0,50)
2t 3t 251 b(100,20)
_f
l n 45

sea R

Fig. 1.52
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forces with a horizontal closing link through point b and use this polygon

to determine the bending moment at point n.

(17) Draw the link polygon that passes through points a, b and ¢

shown in each of Figs. 1.53 a and b.
8t

3t -+ ; f 4 12
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CHAPTER 2
LOADS AND REACTIONS

2.1 Loads

Forces acting on a structure are called loads. It is not intended to
discuss load computation as this is dealt with in most design books. Hence,
throughout this book loads will be assumed as given and it is only for con-
venience that they are classified as :

(1) Dead and live loads : Dead loads consist mainly of the own weight
of the structure. If the dimensions of the structure are known, dead loads
can be computed provided that the unit weights of the materials of con-
struction are known. In practical design, the dimensions of structures are
not known and therefore they have to be assumed guided by data concern-
ing the dead weight of other similar existing structures or by some imperical
formula. Live loads are loads that vary in position such as the weight of
pedestrians, locomotives and vehicles. On dealing with such loads atten-
tion must be given to their placing on the structure so that the load func-
tion considered; reaction, shearing force, bending moment, deflection,
etc., may have its maximum possible valus.

(2) Concentrated and distributed loads : A cogcenirated load is a
load which is assumed to be acting on a point such as the wheel loads of
a train or a crane. Strictly speaking there is no concentrated loads as these
would cause infinite stresses. Distributed loads are loads distributed over
a certain length or area of the structure. It may be uniformly distributed
such as some goods of the same kind piled up to the same height, or uni-
formly varying such as hydrostatic or earth pressures, or nonuniformly
distributzd like wind forces acting on a wing of an asroplane.

2.2. Reactions

Most structures are restrained against free motion by means of supports
that connect them to some stationary body. The resistances offered by the
supports to counteract the action of the applied loads are called reactions.
These reactions are in effect the equilibrants to the loads acting on the
structure.

There are three main types of supports. Each type provides certain
kinds of restraints.
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(1) Roller support is usually represented by rollers as shown in
Fig. 2.1 a. Rollers permit translation on the surface along which they roll
as well as rotation. They provide a single reaction component normal to
the surface on which they roll. On applying the equations of equilibrium
rollers provide one unknown even if the rollers are inclined as in this case
the ratio between the two rectangular components of the reaction is known.

g

\

(c) (d)

Fig. 2.1

(2) Hinge support is usually represented by a detail as shown in
Fig. 1.2 b. It permits rotation only and is capable of providing a single
force in any direction. Thus when the equations of equilibrium are applied,
a hinge support provides two unknowns; magnitude and direction of the
reaction. These are usually substituted for by the magnitudes of its hori-

zontal and vertical components.

(3) Fixed support is usually represented by a detail as shown in
Fig. 2.1 c. It neither permits translation in any direction nor does it allow
rotation. It is capable of providing a single force in any direction at any
location. Hence when the equations of equilibrium are applied, a fixed
support provides three unknowns; magnitude, direction and line of action
of the reaction. These are usually substituted for by two rectangular com-

ponents and a moment.

Another type of support that may be used is shown in Fig. 2.1 d, and
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is called link support or pendulum. It has the same action as the roller

support, i.e. it provides one reaction component along the link.

To summerize, in genereal a roller support at point a provides one
reaction component Y,, a hinge support provides two components X and
Y, while a fixed support provides three reaction components X, Y, and
M,. It must be remembered that one or more of these reaction compon
ents may be zero for structures under particular cases of loading. Further,
it is to be known that a reaction component may act in either sense, i.e.
the vertical component Y may act upwards or downwards, the horizontal
component X may act to the right or to the left and finally the moment M

may act either clockwise or anticlockwise as shown in Fig. 2.1.

2.3 Calculation of reactions

In general a structure is acted upon by a system of nonconcurrent forces
consisting of the known applied loads and the unknown reactions, which
as mentioned before are the equilibrants to the applied loads. ‘Hence, if
the structure is to remain in equilibrium the three equations of equilibrium,
ZX = 0, £Y = 0 and XM = 0 must be fulfilled simultaneously by the
loads and reactions. The application of these equations to several problems

is illustrated below.

Example 2.1 Find the reactions for beam ab loaded as shown in Fig. 2.2 a.

Solution : The centre line of the beam, with the unknown reaction

components and all the given loads, are drawn in Fig. 2.2 b. At a, two
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reaction components X, and Y, may exist as the end is hinged. At
b, there cannot be but one vertical reaction component Y as the end is
on a roller. For convenience the inclined force is replaced with its horizon-
tal and vertical components as shown. Applying the equations of
equilibrium,

IX=0=X,—3
X,=3t —
IM, =0=Y, x 6 —4 x4—6 x 3

16 4 18

SRTE = e
6
M, =0 =Y, x 6 —6 x 3 —4 x 2
18 + 8
Ya=+ — 438 ¢ T

Check : TY = 0
567 — 6 — 4 - 433 =0

Example 2.2 Find the reactions for beam ab loaded as shown in Fig. 2.3.

Solution : As in the preceding example, the centre line of the beam
with the unknown reaction components and all the given loads, are drawn

in Fig. 2.3 b. At a, two reaction components X, and Y, may exist as the
end is hinged. At b, the reaction R, acts normal to the supporting plane
| as the end is on a roller. For convenience in applying the equations of
equilibrium, R, is replaced with its two components X, and Y, which in
this particular problem are numerically equal.

1,“ ‘3.3 t

(a) -

g S = -1
VAT
e 2 b
7 3.
(b) _xﬁ’ 1t JS' Xb=Yb
YaLZ B s yeosRb
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BMua—10— ¥y W= 2858505 ——dlanesd
Y, = ——— =45t f

Since the slope of the supporting plane at bis 1 : 1,
X, = 45 t &
SM, =0 =Y, x7—7 X 5—35 x 2

a

Y :—-——:Bt;T

X —0 =X —45
X, — 45t —»

a

Check : ¥ = 0
7 35 — 66— 45 —40

Example 2.3 Determine the reactions for the overhanging beam shown
in Fig. 2.4

Solution : For calculating the reactions, the distributed load is replaced
with an equivalent concentrated load. This load is equal to the sum of
the distributed load on the beam. As the intensity of the distributed load
varies abruptly at b the portion of the load between a and b is replaced
with one concentrated load = 1.5 X 5 = 7.5 t. acting at the centroid of
the distributed load of this portion, i.e. at 2.5 m. from a. Similarly, the
rest of the distributed load is replaced with a concentrated load = 2 X 2
= 4 t. at | m. from b. The rest of the procedures are similar to those

1.5 t/m 2 tim Jat
(2) IEEEERXEREEERENE] |
> - = =g
— bl
2 5.0m )

i 17.51 r‘ r"
(b) YaLz.s m.l._z.smi‘,’lhld-l

Fig. 2.4
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in the preceding examples. Referring to Fig. 2.4 b and applying the three
equations of equilibrium,

| X —0 =X,
X, =0
M. — 0 =% x 74+ 4 % 602502656 Y, X5
Y, - L R e ot

3

IMy =0=4x24+4x1—75x254Y, x5

Vi 18.75 — 8 — 4 . T

. 5

Check : Y = 0
1.35 — 75 4+ 1415 — 4 — 4 =0

Example 2.4 Determine the reactions for the cantilever ab loaded as

shown in Fig. 2.5a.

251

= 1t/m 4
ZEERREEIRERERNEPN L

(aj

Solution : An examination of the supporting conditions shows that
support a, being fixed, may have three reaction components X Y, and
M,. These and the applied loads, after replacing the inclined load with
its horizontal and vertical components and the uniformly distributed load

with its equivalent concentrated load, are shown in Fig. 2.5 b.




L
Ko O ==Xibn b

a
X, =15t -
B (s e
Y, =3¢t 1
IM,. = 0=3 X 15 | 2308 M,
M, = 10.5 m.t. (anticlockwise)
Check : Taking moments about any point, say b then,
M, = 0 E
3 xX15 4105 —5 %x3=020

Example 2.5 Determine the reactions for beam abcd under the given loads
if it is supported by three link members arranged as shown in Fig. 2.6 a.

Solution : An inspection of the supporting conditions of the given
structure shows that there are three reaction components Ry, R, and Ry
of fixed directions along the link members bb’, cc’ and dd’ respectively.
These together with the applied loads are shown in Fig. 2.6 b.

(a)

Fig. 2.6




o8 P E

Applying the three conventional conditions of equilibrium; £X = 0,
2Y = 0and IM = (0, three simultaneous equations are obtained, which
when solved give the three unknown magnitudes of R, R, and R,.
Although this solution is quite permissible, yet it is not very clever as it
involves the solution of three simultaneous equations. A direct solution
may be carried out as follows :

By taking moments about the point of intersection of the lines of

action of Ry and R_ the only unknown which enters the equation will
be R,. Thus,

M, =0 =3 x04+8x1+1x3—R; x5

Rd:8:3:2.2t. 1

Similarly, ZM, = 0 =1 x 2 + 8 x 4 + 3 x 5 —Re x 5 /2

it e ek e R
Bl L

B3 ] %2 18 x4 B o5 R 5 T

Rl 22+ _ga3.
5/72
Check :EY° = 0
6.93 sin 45 + 6.93 sin 45 + 22 — 3 — 8 — 1
— 48 b 494 99 38§ —1 =1

X —-0

6.93 cos 45 — 6.23 cos 43 = 0
Example 2.6 Fig. 2.7a shows the centre line of a truss. Find its reac-

tions for the given system of loads.

Solution : At a, there are two reaction components X, and Y,. At b,
there is one reaction component R, normal to the supporting plane. For
convenience in computing the reactions, Ry is replaced with X and Y,
which in this particular problem bear the fixed ratio X,[Y, = tan 30, i.c.
N — \/ "3 X,. Further, note that for computing the reactions the shape
of the structure is not important. Any shape supported in the same manner
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and acted upon by the same loads will have the same reactions as thosz of
the given structure. To emphasize this point, consider the arbitrary shape
shown in Fig. 2.7 b which is supported in the same manner and subjected
to the same system of loads zs the original structure. Applying the equa-
tions of equilibrium,

11
¥ ’:
23; /[ \ Xb ,-3/03
o =
f y3t  ¥3t ‘13t
30m VbT)ngb

BN C— 022808 s BEgRAL T SEERCI B S0t S adiiniid 5 16
—=e Wi i BB Mgl of B0

v s it Saals Bctnil2 18 o a gan 1
TR
Xep =Y, [ /3 =48/ /7 =28t ¢

IX =0=1.42 4+ 2 .28 — X,
Ko =0t

M, = 0'=Y_ 08— 2 3¢ 3 - 2203 L lE gl sl
— 3 x 4 3.5 2

N 6 — 66 —2 + 18 + 12 + 6 ~ 417

5 8
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Check: XY .= 0
417 — 3 —3 —3 4 483 =0
Had the supports a and b been on the same level. The solution for the
reactions would have been much easier, for in that case a direct solution
for the vertical components of the reactions could have been obtained
directly from the equations M, = 0 and IM, = 0.

2.4 Condition equations

Some structures consist of several parts connected together by hinges,
links or rollers, Such connections are detailed in such a way so as to be
able to transmit only one type of force from one part of the structure to
the other.

Fig. 2.8

Consider, for example, the structure shown in Fig. 2.8. It is supported
by hinge supports at a and b and is provided with an intermediate hinge
at c. Since a hinge is free to rotate, it cannot transmit moment from part
ac to part be or vice versa. Therefore, the algebraic sum of the moments
about the hinge c of all the forces, including the reactions, acting on either
part ac or part bc must be zero. In an equation form this is expressed as :

c

TN ~al) SN
a b

Either of these equations together with the three equations of equilibrium
are sufficient for the determination of the four reaction components X,
Y, X, and Y.

Further, consider the structure shown in Fig. 2.9, It is fixed at a, sup-
ported on a hinge at b, and has a roller inserted at c. Since the roller cannot
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Fig. 2.9

transmit but a vertical force from one part to the other, and that it is free

to translate horizontally and also to rotate, it follows that :

(1) The sum algebraic of the horizontal components of the forces acting
on either part to the right or to the left of ¢ must be equal to zero.

(2) The sum algebraic of the moments about c of the forces acting on
either side of ¢ must be zero.

In an equation form these conditions are expressed zs :

2% =0 &  ZXK—0
a b

B EM = & M =48
a b ¢©

Either equations in (1) and one of the two equations in (2) together with
the three equations of equilibrium applied to the structure as a whole are
sufficient to determine the five reaction components X, Y, M,, X, and Yy,

Example 2.7 Fig. 2.10 shows a three-hinged polygonal arch. Find its
reactions under the given system of lcads.

Solution : There are four reaction components; X,, Y., X, and Y,.

51t
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Applying the three equations of equilibrium and the fourth condition
equation,
IM, =0=Y, x22—25 x 20— 10 x 16 — 5 x 11
— 45 67—y X 2
50 55 24 8
Y, ———2 0 il N, s
22
IM, =0=Y, x 22 —25 x2—10 x 6 —5 x 11
— 4 x 16 — 4 x 20

Yb———5+60+5;2+64+80:12t.1“

ITM, =0 =12 x 11 —4%9 4 x5—X, X8

T e RS e

8

X —0=X_ —95

a

X — 9505
Check : XY = 0
135 — 25 — 10 —5 —4 — 4 4+ 12 = 0

Example 2.8 Determine the reactions of the structure shown in Fig.
2.11 a.

Solution : There are four reaction components X, Y., M, and Y,.
These could be obtained from the three conditions of equilibrium and the
fourth condition provided by the intermediate hinge at c. However, for
structures similar to that given, it is often easier to divide the composed
structure to its component parts. Isolate the two parts ac and bc as shown
in Fig. 2.11 b. In doing so, hinge c is replaced with its action; i.e. a force
in any direction through the centre of the hinge, which again is replaced
with its two components Y, and X_. If these are assumed to act as shown
on part be, they must act in opposite senses on part ac.

For part bc,

IX =0 = X,
X(:

IM=0=Y, x4 —4x2—12 x 3

[+

ll



LY =0=44+6x2—11—Y,

Y. =4+12—11=5¢T
For part ac,

X =0 =X

X, =0

B —0=¥%¥ -9 % 2~—5

¥ —4 5 —0¢1
SM, =0=2x2x1+5x2—M,
M, = 4 4+ 10 = 14 m.t. (anticlockwise)

Check : ZM, = 0
2B 2 LR o — Y M6

Example 2.9 The three-hinged frame abcd has two hinged supports at
a and d, and an intermediate hinge at c as shown in Fig. 2.12. Determine
its reactions under the given system of loads.

Solution : There are four reaction components X, Y,, X, and Y.
v el S e e S LRIl R e e |
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b ‘Rum 2m
&m
Xa Xd
R A ]
' Yd
Lzm-T-Ya——- 8 m —-%2.—.»1
Fig. 2.12
10— 4
Al = =
a 5 1
M, =0=Y, x 8—2 X 10 x 3—2 %2 %9

fM —12t.1‘

M, =0 =X, X642 x 2 x 1
d

X, = — -i:‘s_ — — 0.67 t., i.e. 0.67 t —

IX =0 =X, + 067

Xy = — 067 t. , ie. 0.67 t. ¢ _
Check : A partial check can be obtained from XY = 0

2 X 10 +2 x2—12—12=0

This check does not include the horizontal components X, and X,.

M, =0 =X_ x6 1 2'x 10 x5 _12.x8

x o~ 10 R o 0.67 t., i.e. 0.67 t. ¢—

6

which is the value obtained before from the independent equation £X = 0,
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Example 2.50 The frame abcd is fixed at a and hinged at d, and has
two intermediate hinges at b and c as shown in Fig. 2.13. Determine its
reactions under the given vertical and horizontal loads.

25t/m

0.5 t/m

Xd

Fig. 2.13

Solution : There are five reaction components; three at the fixed
support; X, ¥, and M,, and two at the hinged support; X, and V.
Applying the three equations of equilibrium and the two condition equa-
tions provided by the hinges at b and c,

X a7

d (4

16
Xd=-—-8—'=2t."_’

b
SN e W w10 1 2 B 127 25526 B 10
d

180 4 96 — 16

Y —
: 10

:26t.T

ZY =0=Y, +26—25x12—8
Y, =30 4+8—2 =12¢ {

a




X =0=X,—05x 8 —2
+ 2 =6t
=M, +05x8x4—6Xx8

™M
£
|
S

M, = 48 — 16 = 32 m.t. (anticlockwise)

Check : EM =0
a

32405x8x4+25%x12x4—6x8— 12 x 10
— 894 16 120 — 48 — 120 — ¢

2.5 General remarks

The student should study the preceding examples carefully and notice
in particular the following general remarks regarding the computation
of reactions.

(1) Inclined forces are usually replaced with their horizontal and
vertical components. Also, distributed loads are replaced with equivalent
concentrated loads acting at the centroids of the parts they replace.

(2) For direct computation of the reactions of some structures, the
conventional equations of equilibrium; XX = 0, ZY = 0and IM = 0
may be replaced with any other three convenient forms. (See section 1.9).

(3) If the answer of a reaction component comes out positive it acts in
the assumed direction. If, however, it comes out negative the component
acts in a direction opposite to that assumed.

(4) In problems including condition equations where .it is sometimes
convenient to break up the given structure into separate component parts,
the interacting forces between adjacent parts may be assumed to act in
either sense, for vertical components upwards or downwards, and for hori-
zontal components to the right or to the left, but they must act in opposite
senses on two adjacent parts.

(5) A check on the results is always desirable. .Note that some of the
checks given in the preceding examples are only partial checks. Also, the
student is strongly advised to clearly indicate his results by underlining
them and showing the units and directions of the forces.

2.6 Stability and determinancy
There are two main types of statical stability and determinancy of
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structures; external concerned with the reactions and internal concerned
with the internal forces and moments. This discussion will be confined to
external stability and determinancy.

A stable structure is one which can support a general system of loads
elastically and immediately on its-application.

Since there are three possible movements of a plane structure under a
general case of loading; translation in the horizontal and vertical directions
and rotation, no less than three reaction components can make a structure
stable. However, three or even more reaction components are not always
sufficient to make a structure stable. For example, when the lines of action
of the reaction components are concurrent as shown in Fig. 2.14a, or
parallel as shown in Fig. 2.14 b, the structure is unstable as in the first case
the structure is not completely restrained and will tend to rotate about the
the point of concurrency 0, and in the second case it has no restraint to
prevent any tendency of the structure to move normal to the direction of
the links,

A determinate structure is defined as one for which the reactions can
be determined by the application of the equations of equilibrium in
addition to condition equations, if any, introduced by special constructional
details.

o e e

Fig. 2.14

If the number of the available equations is fewer than the number of
the unknown reaction components, the structure is said to be statically
indeterminate. The degree of indeterminangy corresponds to the number
reaction components in excess to the available number of equations.
If, on the other hand, the number of the available equations is more than
the number of the reaction components, the structure is unsézble.
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2.7 Classified examples

The beam shown in Fig. 2.15 is supported on two rollers. The number
of reaction components is one less than the three required for stability and
hence the beam is unstable.

_Q_ Unstable Q

Fig. 2 15

Fig. 2.16 shows a truss supported on a hinge at a and a roller at b. It
has three reaction components which could be determined from the three
equations of equilibrium. Hence, the truss is staticaly determinate.

a ~NGb
e Stable_statically determ._fo._
Fig. 2.16

Fig. 2.17 shows a beam supported on three link members which are
neither parallel nor concurrent and hence it is stable. Also, the three
reaction components could be determined from the three equations of

equilibrium.  Therefore, it is statically determinate.

bl

Stable . statically determinate
Fig. 2.17

Fig. 2.18 shows a three-hinged arch. It has four reaction components
which could be determined from the three equations of equilibrium and
a fourth condition provided by the central hinge. Hence, the arch is stati-
cally determinate.
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Stable _ statically determinaie

Fig. 2.18

Fig. 2.19 shows a frame which is fixed at b and supported on a hinge
at a. It has five reaction components which could be determined from
the three equations of equilibrium and the two condition equations pro-
vided by the two intermediate hinges at ¢ and d. Hence, the frame

is statically determinate.

I 3

A
Stable - statically determinate
Fig. 2.19

The frame shown in Fig. 2.20 is fixed at a and b and is provided with
three intermediate hinges at ¢, d and e. It has six reaction components
which could be determined from the three equations of equilibrium in
addition to the condition equations provided by the three intermediate
hinges. The given structure is therefore statically determinate.

Stable- statically
determinaie

Fig. 2.20




The beam shown in Fig. 2.21 is fixed at a and supported on a roller
at b. It has four unknown reaction components which are one in excess
to the number of the equations available. Hence, the beam is statically
indeterminate to the first degree.

r .
Stable - once statically
indeterminate

Fig. 2.21

The beam shown in Fig. 2.22 is fixed at both ends. It has six unknown
reaction components which are three in excess to the number of equations
available. Hence, the beam is statically indeterminate to the third degree.

: .

Stable . three times static.
ally indeterminate

Fig. 2.22
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EXAMPLES TO BE WORKED OUT

(1) — (20) Determine the reactions of the structures shown in Figs.
2.23 - 2.42.

> lGi Azsr l‘lt 15{
e L T P

Fig. 2.23 Fig. 2.24

Am—i_z

Fig. 2.25 Fig. 2.26

Ft 6m.t. 6m.t. 3m.t.
o o L DL o s

: ; b ; -
JLE; Sl Zm\-..[_2 -j— %1.::1_/_2.5 m:Lj_z jL

Fig. 2.27 Fig. 2.28

8 mt.
Z 1t/m
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Fig. 2.30
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Fig. 2.41 Fig. 2.42

(21), (22) Determine the reactions of the two frames shown in Figs.
943 and 2.44 and also the forces in the link members de.

1.9 t/m

o R |

3 am am]3 ]

Fig. 244
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(23), (24) Determine the reactions of the two frames shown in Figs.

2.45 and 2.46 and find the forces in the knee braces.

Lt/m

a
T 53
Knee bracin

2 L“i LR
ko2 oo Jeogtfe galind 5. peged @9 Lol

Fig. 245

Fig. 2.46

(25) — (33) State whether the structures shown in Figs. 2.47 - 2.55
are stable or unstable and statically determinate or indeterminate.
Give the degree of indeterminancy in every case.

LA Y

Fig. 2.47 Fig. 248 Fig. 2.49

& e o o L D 2

Fig. 2.50 Fig. 2.51

Fig. 2.52 Fig. 2.53

2N AT

Fig. 2.54 Fig. 2.55
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CHAPTER 3

THRUST, SHEARING FORCE AND BENDING MOMENT

3.1 Introduction

The main aim of structural analysis is to find out whether a structure
can carry safely all the loads that may act on it during its life time. This
involves a comparison of the greatest values of the internal forces produced
by the applied loads and the resistances of the structural element under
consideration according to its dimensions and material of construction.
In this chapter various internal forces will be studied. At this elementary
stage, however, discussion will be limited to straight members, in which
the axis joining the centroids of successive cross-sections is a straight line,
subjected to loads lying in a single plane which also contains an axis of
symmetry of every cross-section. Under these two conditions, members
will bend in the plane of loading without twisting.

gt

Centroidal axis

(b) (c)

Fig. 3.1

Consiaer a structural member and let it be in equilibrium under the
system of loads shown in Fig. 3.1 a. Let xx be any cross-section which cuts it
into two separate parts A and B. If the member as a whole is in equilibrium
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then every part of it must be in equilibrium. Part A, for instance, must
be in equilibrium under forces P; , P; and a force R which is the action of
part B on part A (Fig. 3.1 b). In general, R could be resolved to a tan-
gential force Q and an eccentric normal force N which is equivalent to a
central normal force N and a moment M = N xe. The various internal

forces at section xx are shown in Fig. 3.1 c.

3.2 Defimitions

Normal force : The force N acting along the axis of the member in
Fig. 3.1 cis called normal force or thrust. Thrust at a section is defined as the
algebraic sum of the components along the axis of the member of all the
forces on either side of that section. When the axial force tends to pull two
parts of a member apart, thrust is termed positive and when it tends to
press them together it is negative.

Shearing force : The force Q acting tangential to section xx in Fig. 3.1c
is called shearing farce. Shearing force at a section is defined as the algebraic
sum of the components perpendicular to the axis of the member on either
side of that section. Shearing force acting upwards to the left or downwards
to the right of the section is termed positive while shearing force acting’
downwards to the left or upwards to the right of the section is negative.

Bending moment : The moment M at section xx in Fig. 3.1 c is called
bending moment and is defined as the algebraic sum of the moments of
all the forces on either side of that section. Bending moment tending to

Q4 ja

e L = UM R
@ @

- + ve thrust -ve thrust + ve shear -ve shear
(a) (b)
==Y —
+¥e moment = ve moment
(c)

Fig. 3.2
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produce tension in the lower fibres of a structural member and compression
in the upper fibres is termed positive and vice versa.
Sign conyentions for thrust, shearing force and bending moment are
shown in Figs. 3.2 a, b and ¢ respectively.
Beam : One of the most common structural members is the beam. It

is a member which is subjected to bending by loads generally oblique to
its longitudinal axis. Several examples are shown in Figs. 3.3 a-h. The

St s el e L o2y
(2} (b)

% L
e e e
{c) (d)

gﬁ
L L e e
(e) (f)
P e S ?.
= Ly ‘%- () -l Lj
(g)
e e
=1 —t— L2 ———-L—Lg
(h)
Fig. 3.3

beam shown in Fig. 3.3a is called simple beam, that in Fig. 3.3 b is said
to have an overhang or an overhanging beam, that in Fig. 3.3 c is a cantifever,
that in Fig. 3.3d is a double overhanging beam, that in Fig. 3.3 ¢ is a
resirained beam, that in Fig. 3.3f is a fixed or fixed-ended beam, that in
Fig. 3.3 g. is termed a cantilever beam, while that in Fig. 3.3 h is a con-
tinuous beam. For all beams the distance L between supports is called a
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span. In continuous or cantilever beams there are several spans which are
not necessarily of the same length.

Thrust or normal force diagram (N.F.D.): Thisis a diagram with the
centre line of the member as base line and ordinates representing the values
of the thrust at successive cross-sections; compression and tension being
drawn on opposite sides of the base line.

Shearing force diagram (S.F.D.) : This is a diagram with the centre
line of the member as a base line and ordinates representing the values of
the shearing force at successive cross-sections; positive shear being drawn
upwards and negative downwards.

Bending moment diagram (B.M.D.) : This is a diagram with the centre
line of the member as a base line and ordinates as the values of the bending
moment at suceessive cross-sections; positive bending moment being drawn
downwards and negative upwards.

Although it is only necessary to sketch these diagrams and mark the
significant ordinates with their numerical values, yet it is always desirable
to plot them to a convenient scale. This is very important to the designer

as it helps him to determine the critical most highly stressed sections.

3-3 Method of computation of thrust, shearing force and bending

moment

The procedures for computing the thrust, shearing force, and bending
moment at any section of a beam are straightforward and follow directly
from the definitions given in the preceding section. It is to be remembered
that thrust, shearing force and bending moment at any section may be

computed by considering all the loads, including the reactions, on either

side of the section under consideration. Either part may be used, arith-

metical simplicity governs. The following example, explains typical

computations.

Example 3.1 Calculate the thrust, shearing force and bending moment at
sections ¢ and d of the beam shown in Fig. 3.4.

Solution : The first step is finding the unknown reactions. These are
found by the methods described in chapter 2 and are shown, with
the applied loads after being resolved into vertical and horizontal compon-

ents, in Iig. 3.4 b.

Section c is investigated first. As mentioned before, the part of the




B

beam on either side of the section may be used but it 1s obviousin this case
that the forces on the part to the left of the section are simpler.

6t

51 3
\14 05t/m
EEEEEE

(3

ak b
g C E 26,
S s 2mlig
4 6
0.5t/m
(b) 3t_l 6 S L ¢
P e s sed el b T
5t 6t
Fig: 3.t
By definition,
N, =0
Q. = 5 t., upwards to the left of the section, i.e. 4 5t
M. — 5 % 1 = 5 m.t., causing tension in the lower fibers, i.e. + 5 m.t.

c

To demonstrate the advantage of using the left part instead of the right

one, computations are re-carried out using the right part.

N, — . -3+ 8="0

[

@ — 4 6 0.5 ¥ 2 — 6 = 5 t., downwards to the right of the

section, i.e. -+ Ot

M, =6 x4—05x2x3—6X 92 —4 % 1 = 5 m.t., causing tension
in the lower fibers, i.e. 4+ 5 m.t.

These are the same results which have been more readily obtained
before.

Consider now section d. At a section just to the left of point d,
N—=00Q=+5t,andM =135 X 2=+ 10 m.t.,
while just to its right and again computing the straining actions from the
part of the beam to the left of the section.

N:——Bt.,Q:+5—4:+1t.,ande:5x2:+10m.t.

This indicates the importance of determining the thrust and shearing force




= GG =

on cither side of a concentrated load. The bending moment in both cases
is the same.

(As.an exercise, the student may compute N. Q and M at section d
from the loads on the part of the beam to the right of the section).

3.4 Thrust, shearing force, and bending moment diagrams

The values of thrust, shearing force, and bending moment at as many
sections as may be needed are obtained by the methods described above.
Alternatively, algebraic expressions mav be written down giving the values
of the thrust, shearing force, and bending moment for any section along
the beam. The values obtained by either method when plotted against a
base line whose length equals the length of the beam give the thrust,
shearing force, and bending moment diagrams, Some typical examples
of N.F., S.F., and B.M.Ds. follow.

Example 3.2 Draw the N.F., S.F., and B.M.Ds. for the bzam and loading
given in example 3.1.

Solution : The loads and reactions are reproduced in Fig. 3.5a. The

(a) ¢,
3 3t
(b) N.F.D.
5 3 _

(c) i | S0 SFD
(c) BMD
..1_

10 T 1m.t.

Fiz. 3.5
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thrust on a section just to the right of point a is zero and remains so until
just to the left of point d. Just to the right of d, the thrustis — 3 t. which
means that the N.F.D. rises abruptly from zero to- 3 at this point, and since
no additional horizontal loads are applied between point d and b, the
thrust remains constant throughout this part of the beam as shown in Fig.
3.5b. The shearing force on a section just to the right of a is 4 5 t., and
therefore the S.F.D. rises abruptly from zero to + 5 at this point, and since
no additional vertical loads are applied between a and d, the shear remains
constant throughout this part of the beam. Just to the right of point d, the
4 t. concentrated load has caused the shear to be reduced from 4 5 to -+ 1.
Between d and e the shear remains + 1 t. and the S.F.D. follows a horizon-
talline. Just to the right of point e the 6 t. concentrated load has caused the
shear to be further reduced to — 5 t. In part eb, the shear on any section
at a distance x to the right of point eis Q@ = — 5 — 0.5 x, which indicates
that the S.F.D.in this part is a straight line increasing numerically from an
ordinate of 5 t. at point e to 6 t. at point b. This last value may be more
simply obtained considering a section just to the left of point b and con-
sidering the forces to its right which in this particular case is 6 t. upwards,
i.e. @ = — 6 t. The S.F.D. is shown in Fig. 3.5 c. The bénding moment
at a section distance x from point a in part ad is M = 5 x. Therefore, the
B.M.D. starts from zero at point a and increases linearly to an ordinate
of 10 m.t. at point d. In part de, the bending moment at any section dis-
tance x from point d is M = 5 (2 + x) — 4 x = 10 + x, or more simply
M = 10 -+ x where 10 is the moment at section d and x is the moment of
the resultant vertical force to the left of d. which is the shearing force at
d. Hence, the B.M.D. in this part is a straight line increasing from an
ordinate of 10 at d to 11 at e. Finally, in the part eb the bending moment
at any section distance x to theright ofeisM = 11 — 5x — x%4. There-
fore, the B.M.D. starts at 11 at point e and decreases along a curve to zero
at point b. This last part of the beam may be investigated more simply by
considering a section at a distance x from point b, then the bending moment
atany section in this partis M = 6 x — x’/4 which means that the B.M.D.
is zero at b and increases along a curve to an ordinate of 11 at e which is
the same result obtained before. The B.M.D. is shown in Fig. 3.5 d.

Example 3.3 Construct the N.F., S.F. and B.M.Ds. for the overhanging
beam loaded as shown in Fig. 3.6 a.
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Solution : Reactions,

IM, =0=4+1x4x2—2XT71 ¥ 05—2x 1—Y, x4

a

4 S
¥, — +841 2:2.25t.T

IM=0=2x54+2x1x45+1x4x2—-4_Y, x4

W oe— 1058 1.8 —4 =5.75t.T
4

2X=0=xh ;Xh:——’o

Check, Y = 0

24+2x1+4+1x4—575—225 =0

Straining actions : Since all the loads are normal to the axis of the
beam, there is no thrust at any section of the beam. Starting from the left
end, just to the right of point c the shearing force is — 2 t. In the part ac,
the shear on any section at a distance x from pointcis Q = — 2 — 2x,
which indicates that the S.F.D. in this part is a straight line decreasing
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from a value of — 2 at point ¢ to — 4 just to the left of point a, but just to
its right the shear is increased by the value of the reaction to + 1.75 t., i.e.
at point a there is a sudden change in the S.F.D. from — 4 to + 1.75. In
the same manner the remainder of the S.F.D. shown in Fig. 3.6 ¢ may be
easily verified. The bending moment at a section distance x from point
cin part ac is M = — (2x + x2). Therefore, the B.M.D. starts at zero
at point ¢ and varies along a curve to an ordinate of — 3 m.t. at point a.
Similarly, in part ad. the B.M.D. is a curve increasing to an ordinate of
-— 1.5 m.t. at a section just to the left of point d. However, just to the right of
point d the B.M.D. has increased by 4 m.t. to 4 2.5 m.t. Therefore, at the
point of application of a concentrated moment, there is a sudden change
in the B.M.D. similar to that in the S.F.D. due to concentrated loads.
Finally, the B.M.D. in the part db is a curve decreasing from an ordinate
of -+ 2.5 at d to zero at b. The B.M.D. is shown in Fig. 3.6 d.

3.5 Relationships between load, shearing force and bending

moment

Although the methods discussed in the preceding section for finding
the N.F., S.F., and B.M.Ds. are most important and fundamental, yet in
cases where a beam is subjected to loads perpendicular to its axis, as the
majority of the beams are, the construction of the 5.F. and B.M.Ds. may
be facilitated by knowing certain relationships that exist between load,

shear, and bending moment.

e

Fig. 3.7




=

Consider a simple beam subjected to a load of varying intensity and
assume that the S.F. and B.M.Ds. are as shown in Fig. 3.7. Consider now
the equilibrium of a small element of the beam of legnth dx over which
the intensity of the load may be assumed uniform and equal to w as

indicated.

BV =D O —avider— [ — dO)

Q e
dx

i.e. the slope of the S.F.D. at any scction is measured by the value of the
load intenisty at this section. Therefore, if a uniformly distributed load is
applied to a part of a beam, w will be constant and hence the S.F.D. will
have a constant slope ; i.e. will be a straight line in this part. If no load
is applied to a beam between two points, the slope of the S.F.D. will be
zero; i.e. it will be a straight line parallel to the base line between these
two points. If a concentrated load is applied at a point of a beam, w,
which is the load intensity, will be infinite and hence the slope of the 5.F.D.
will be infinite or vertical at this point. Generally, if the applied load is
distributed but its intensity varies from point to point, the S.F.D. will be

a curve whose slope changes continuously to correspond.

W =

Integrating both sides of equation 3.1,

Xq Q,
f w dx = de
X Qy

where Q ; and Q , are the values of the shearing force at x = x, and
X = x, respectively.

Xy

]de=Q2——Ql St 32

Xq
i.e. the change in the shearing force between two sections 1 and 2 is equal
to the total load between these two sections. Therefore, if no load is applied
to a part of a beam between two sections, there will be no change in the
shearing force and the S.F.D. will be a straight line parallel to the base
line between these two sections. This conforms to equation 3.1. Ata
point of application of a concentrated load, there will be a discontinuity
in the S.F.D. and the difference in ordinates from one side of the load to
the other will be equal to the concentrated load.
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Taking moments about face 2.2 (Fig. 3.7),
dx
EM=0=de+M——-wdx—2—-w(M—|—dM)
Neglecting infinitismals of second order,

= — 33

i.e. the slope of the B.M.D. at any section is measured by the ordinate of
the shearing force at this section. Therefore, if the shear is constant in a
part of a beam, the BM.D. will be a straight line in this part. However,
if the shear varies in any manner the B.M.D. will be a curve. At the point
of application of a concentrated load, there is an abrupt change in the
ordinate of the S.F.D. and therefore an abrupt change in the slope of the
B.M.D. at such a point. Further, the ordinate of the B.M.D. is a maxim-
um or a minimum at the point of zero shear. According to the sign conven-
tions used, and starting from the left end, then if at any point the ordinate
of the S.F.D. changes from positive to negative then the bending moment
is a maximum (maximum positive) at this point. If, on the other hand,
the ordinate of the S.F.D. at a point changes from negative to positive,
the bending moment is"a minimum (maximum negative) at this point.

Integrating both sides of equation 3.3,

X2 M,

f Qdx = [ dM

Xq M,
where M, and M, are the values of the bending moment at x = x; and
X = X, respectively.

*xy

]Q_dx= Mz—M1 . 3.4

Xy

i.e. the change in the bending moment between two sections 1 and 2 is
equal to the area of the S.F.D. between these two sections.

3.6 Standard cases of S.F. and BM.Ds.

By making use of the relationships given in the preceding section, the
forms of the S.F. and B.M.Ds. may be sketched and by computing numerical
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values of shearing forces and bending moments at the points where the
shapes of the diagrams change or at sections where the maximum or
minimum occur, full knowledge of these diagrams is obtained.

Several standard cases are considered in the following.

(a) Simple beam with a non-central vertical load.

Pb Pa
From statics, Y, = —— Tand Y, =
L L

t

S.F.D. : Between a and c the load is zero and therefore the shear is
constant and equal to + Pb/L. Similarly, between ¢ and b, the load
being zero, the shear is constant and equal to — Pa/L.

b
Eb_h..—a —-L‘-:—— 3 _"ILE
P
L =+
SFD 4 Pa

8M.D.

Fig. 3.8

B.M.D. : Between a and c the shear is constant and therefore the bend-
ing moment varies linearly from zero at a to + Pab[L at c. Similarly,
in part bc the moment varies linearly from zero at b to 4 Pab/L at c.
(Note that the maximum moment occurs at ¢ where the shear changes

from positive to negative).
Hence the S.F. and B.M.Ds. arc as shown in Fig. 3.8.

(b) Simple beam with a central vertical lead.

This is a special case of the previous one. The S.F. and B.M.Ds. are
as shown in Fig. 3.9.
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(c) Simple beam with two equidistant equal loads.
From statics, ¥, = Y, = P T

S.F.D. : Between a and c the load is zero and therefore the shear is con
stant and equal to + P. Between c and d the load is zero and the shear is
equal to P — P = 0. Similarly, between b and d the load being zero the
shear is constant and equal to — P.

B.M.D. : Between a and c¢ the shear is constant and therefore the
bending moment varies linearly from zero at a to Pa at c. Between ¢ and
d the shear is zero and therefore the bending moment is constant and equaj
to Pa. Similarly in part bd the moment varies linearly from 4 Paat d to
zeroat b. The S.F. and B.M.Ds. are shown in Fig. 3.10.
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Fig. 3.10
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(d)‘ Simple beam with a uniformly distributed load covering the span.

From statics, Y, = Y, = £ T
2

w T
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Fig. 3.11

S.F.D. : Between a and b, w is constant and therefore the shear varies
linearly from + wL/2 at a to — wL/2 at b.

B.M.D. : For any section at a distance x from a,

wLx wx?2

M= — — —

2 2
Le. the BM.D. varies parabolically along the span. The form of the

B.M.D. can now be sketched. The maximum moment occurs at the point

of zero shear, i.e. at mid-span and has a value wL2/8.

The 5.F. and B.M.Ds. are shown in Fig. 3.11.

(e) Simple beam acted upon by an end moment.

From statics, ¥, = M/L | and Y, = M/L 1

S.F.D. : Throughout the length of the beam the load is zero and there-
fore the shear is constant and equal to — M/L.

B.M.D. : As the shear is constant between a and b, the moment varies
linearly from zero at a to — M at b.

The S.F. and B.M.Ds. are shown in Fig. 3.12.
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(f) Simple beam with an-intermediate concentrated moment.

From statics, ¥, = MJL l and Y, = M/L T

S.F.D. : Throughout the length of the beam the load is zero and
therefore the shear is constant and equal to — M/L .

B.M.D. :Between a and c the shear is constant and therefore the bend-
ing moment varies linearly from zero at a to — Ma/L just to the left of c.
Just to the right of ¢ the moment is increased by M to + Mb/L, and

again varies linearly to zero at b.

The S.F. and B.M.Ds. are shown in Fig. 3.13.

a c:\\M b
M/L&. a ;9 b ‘_:TM,L
L

SFD.
M/L = M/L
Ma/L
B.M.D, —
Mb/L
Fig. 3.13

(g) Cantilever with a concentrated end load.

From statics, Y, = P 1 and M, = PL (anticlockwise)
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S.F.D. : Between a and b the load is zero and therefore the shear is
constant and equal to + P.

B.M.D. : Between a and b as the shear is constant, the bending moment
varies linearly from zero at b to — PL at a. Note that for cantilevers the
S.F. and B.M.Ds. can be drawn without calculating the reactions. This
is done by starting the computations from the free end. The S.F. and
B.M.Ds. are shown in Fig. 3.14.

('\:L biP
g
P

S.F.D. =9

PL

BMD.

Fig. 3.14

(h) Cantilever with a uniformly distributed load.

From statics, Y, = wL T and M, = wL2/2 (anticlockwise)

2

wl /2
™
- w
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a b
Wil L
wl =
SFD
wL2l2
BMD =
Fig. 3.15

S.F.D. : Theroughout the length of the beam the load is constant and
therefore the shear varies linearly from zero at b to + wL at a.
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B.M.D. : As the shear varies linearly along the beam the bending
moment varies parabolically from zero at b to — wL2%/2 at a. Note again
that both the S.F. and B.M.Ds. can be drawn without calculating  the
reactions. The S.F. and B.M.Ds. are shown in Fig. 3.15.

3.7 Principle of superposition

Very often, the loading on a beam consists of 2 combination of two or
more of the standard cases given in the preceding section. The resulting
S.F. and B.M.Ds. for any of these loading combination can be readily
determined by the prinsiple of superposttion, which may be stated asfollows

““ The effect of several loads aciing simultaneously on an elastic body 15 the same
as the algebraic sum of the effects of these loads when each load acts seperately’.

This principle is the base to the elastic methods of structural analysis
and is applicable provided that :

(1) The body is elastic, i.e. it regains its original shape on the
removal of the applied loads.

(2) Stresses are proportional to strains, i.e. the material of the body
obeys Hook’s law.

(3) The geometry of the structure does not change during the applica-
tion of loads; elastic strains being neglected.

The principle of superposition may best be explained by the following

examples.

Example 3.4 Consider the case of a simple beam loaded as shown in
Fig. 3.16 a. Taking the concentrated load and the uniformly distributed
load as separate systems, the resulting S.F. and B.M.Ds. for each individual
case are shown in Figs. 3.16d,e,l &m, and the combination in Figs. 3.16f
& n or, as shown on the centre line as base line in Figs. 3.16 g. & o'respe-
ctively. By drawing the S.F. and B.M.Ds. for individual cases to the same
scale the ordinates for the final S.F. and B.M.Ds. in Figs. 3.16 g & o can
be scaled by dividers. Sometimes it is useful to draw the B.M.D. in parts
as shown in Fig. 3.16 n. This type of diagram is of particular value in com-

puting deflections of beams.
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" Example 3.5 Consider the case of a simple beam loaded as shown in
Fig. 3.17 a. In this case the separate systems are shown in Figs. 3.17 b &ec.
The separate S.F. and B.M.Ds. are shown in Figs. 3.17d, e, | & m, and
the combined S.F. and B.M.Ds. are shown in Figs. 3.17g and o
respectively.
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3.6 Illustrative examples

The following examples will illustrate the construction of the N.F., S.F.
and B.M.Ds. for statically determinate beams utilizing the principles
discussed in the preceding sections in this chapter. For further emphasis,
the steps used in such problems are summerized.
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(1) Make a neat sketch of the beam on which all the applied
loads are clearly noted and loeated by dimension lines from the supports.

(2) Compute the unknown reactions and indicate them with their
proper sign on the sketch drawn in step 1.

(3) Replace all the inclined forces, given or calculated, by compon-

ents acting parallel and perpendicular to the beam axis.

(4) Start from the left end and compute the values of the thrust at
the various sections along the beam where the thrust changes. This is
carried out by direct computation as explained in section 3.3.

(5) Proceed from left to right along the beam and establish the shape
of the S.F. and B.M.Ds. by using the principles given in section 3.5. Com-
pute then, the numerical values of the ordinates at the points where the
shapes of the diagrams change and at points where maximum or minimum
values occur. These values are usually computed by the methods described

in section 3.3.

Example 3.6 Draw the N.F¥., S.F. and BM.Ds. for the beam shown
in Fig. 3.18.

Solution :

Reactions

IM, =0=10x1+4+8x2+10x4—Y, X5
= 132t. T
IM, =0=10x1+4+8x384+10x4—Y, x5

v =7T::14.8t.’f

N.E.D
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Fig. 3.18
S.F.D.
Q (in ac) = + 148t
Q (in cd) = 148 — 10 = + 48 .
Q (inde) — 48 —8 =—32¢
Q (ineb) = — 32— 10 =—132¢
B.M.D.
M 0

M, = 148 x 1
M, = 148 x 2
M, = 148 x 4
or M, = 132 x 1

(=

4+ 14.8 m.t

10 x 1 = + 19.6 m.t.

10 x 3—8 x 2=+ 132 m.t.
+ 13.2 m.t.
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Note that the maximum bending moment occurs at the point where
the shear is zero.

Example 3.4 Draw the N.F.,, S.F. and B.M.Ds. for the beam shown

in Fig. 3.19.
41 e & ML
°r }c d zb
5 :
B g 2 3m 3m __4051
N.F.D
35—
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SFD.
= 05t
= | B.M.D
+ 1.5mit
S o
7
Fig. 3.19
Solution :

Reactions

IM,=0=4x2—-4—Y, x 8

= 4
Y 5 = 05t 1
LY =0=4—05—Y,
Y., =35t T
N.F.D.
Since no axial loads are applied to the beam, the N.F.D. is zero

S.F.D.

Q (in ac) = + 35 t
Q(inch) = +35—4=—05t
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B.M.D.
M, =35 % 2 ==} 7 mit,
M, (left) = 35 x 5 —4 x 3 = + 5.9 mt,
Since a moment of 4 m.t. acts at point d, the bending moment changes
suddenlty and its value just to the right of d will be :
M, (right) = + 55 — 4 = + 1.5 m.t
or M, (right) = 0.5 X 3 = + L5 m.t
M, =0

Note that the slope of the B.M.D. along cd is the same as that along
db as the S.F. is constant in both parts.

Example 3.8 Draw the N.F., S.F. and B.M.Ds. for the beam shown in

Fig. 3.20. Also calculate the position and value of the maximum positive
bending moment.

b bm -
NF.D
i S.F.D
| % % 38T B e
6t
B.M.D
-+ M max.
4{3mt

Fig. 3.20
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Solution :
Reactions
SM o Qo e % e Y s
2 3
36
3 X6
ZY =0 = 3 —G_Ya'

Y, =9—6=3¢1

N.F.D.

As in the previous example since all the loads are perpendicular to
the axis of the beam, the N.F.D. is zero.

S.F.D.
As the load varies linearly, the S.F.D. varies parabolically.
Q. =+3t
Qb = = 6 t.
B.M.D.

Since the shear varies parabolically, the B.M.D. is a cubic curve. As-
sume the point of zero shear at a distance x from a.

1 x
——xx —=20
2 2

X =2 \/?ni.

2.7 i
X_
2 3

x2J3=+4/3mt

1
M, =3x2/3——x2/3x
2

Example 3.9 Find the best position of support b of the beam shown
in Fig. 3.21.

Solution : The best position of a support is usually that which corres-
ponds to the maximum positive and maximum negative moments being
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equal. Assume that the required position of support b is at a distance x

from end c.

1t/m. 051
a c
b
e = - j
8m
Fig. 3.21

Reactions

IM

0=1x8x4+05x8—Y,(@—x

36

i 8 —x

M, =0 =05x—8 (4 —x) + (8 —1x Y,

32 — 85x
e
36 + 32 — 8.5x
Check : £Y = —8x1—05=0

8 —x
Maximum negative moment occurs at support b.

2
M,,, negative = 0.5x + _:(2__

Maximum positive moment occurs at point of zero shear. Assume this
point to be at a distance y from support a.

32 — 85x

. —1 xy=0
32 — 85x
8 —x

o 32 — 8.5x \2 1{ 32 —85 \3
M, positive = (_.—B.HT) = 2_(_._8_._._rx_.)

i B faa%e— B A
=g 48— x
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Equating the maximum positive to the maximum negative moments,

v L R 30 — g5
8 — x

Solving this equation which is more simply done by trial,

x == Dap,

Example 3.10 Draw the N.F., 5.F. and B.M.Ds. for the inclined beam
shown in Fig. 3.22.

Solution :

Reactions

Since R, is vertical, Ry, must also be vertical.

Il x 6 4+ 8
From symmetry, R, = R, = ———— = 7 t. T
2

Resolve all the loads along and perpendicular to the axis of the beam.
The components of all the loads are shown in Fig. 3.23 a. From these com-
ponents the N.F., 5.F. and B.M.Ds. are drawn in the usual manner and
are shown in Figs. 3.23 b, ¢ & d respectively. Note that the B.M.D. in this
case is the same as for a horizontal beam having a span equal to the horiz-
ontal projection of the given beam and acted upon by the same vertical
loads. To generalize, when inclined beams are subjected to concentrated
vertical loads or distributed vertical load per unit length of the horizontal
projection, the B.M.D. is identical to that of a horizontal beam ofa span
length equal to the horizontal projection of the inclined one and acted upon
by the same vertical loads.
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Fig. 3.23

All' the beams considered till now have been statically determinate.
For statically indeterminate heams, once the redundanis are determined
they may be treated as external loads and the procedures for drawing the
N.F., S.F. and B.M.Ds. are basically the same as for statically determinate

beams.

3.9 Graphical method for determining the N.F,, SF. and B.M.Ds.

Thrust, shear and bending moment can be determined graphically by
means of the line of pressure. This method is suitable for curved beams

or arches and will be discussed later (section 4.5).

In those cases, however, where a straight beam is subjected to loads
normal to its axis, as the majority of the beams are, the thrust is zero and
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the construction of the S.F. and B.M.D. is more easily carried out by the
link polygon method which is described in the following.

Consider a simply supported beam ab subjected to a system of vertical
loads P,P,, and P3, as shown in Fig. 3.24 a. Draw the polar diagram for
the given force system to a suitable scale (Fig. 3.24 b). The reactions R,
and R, are determined in the usual manner by closing the link polygon
(Fig. 3.24 c). The S.F.D. is found by projecting the various loads from the
force polygon on their lines of action as shown in Iig. 3.24 d.

JPI lpz P3 4
(a) ‘a L

A c

Ry Xy - X2 wﬁ’z
SED. |t . S| B |
(d)
B'('Q)D ' %*“- = C 1
y / |
Q\\\ . _ ( b)
Fig. 3.24

Consider any section as ¢ in the beam.

Now triangles oae and prt are similar.

rt (distance) ae force) R, (force)

xy (distance) ~ H (force) = H (force)

R, (force). x, (distance) = H (force). rt (distance)
Ry x; = Hrt - (a)

also triangles oab and qrs are similar.

sr (distance) ab (force) P, (force)

x, (distance) —~ H (force) = H (force)
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P, (force). x, (distance) = H (force). sr (distance)

P; x; — H s ... (b)
but M, = R;x; — P % e ifC)
substituting from (a) and (b) into (c),

M, = H (force) x (rt — sr) (distance)

=Hy

i.e. the closed link polygon represents the B.M.D. and the bending moment
at any section is the polar distance H, measured to the force scale times
the intercept y of the link polygon measured to the linear scale. Usually it
is convenient to have a B.M.D. drawn on a horizontal base. This is done
by drawing the link polygon that corresponds to the new pole o' on the
horizontal line through e.

The procedures for drawing the S.F. and B.M.Ds. for the general case
of a nonuniformly distributed load are mainly similar to those outlined above.
Referring to Fig. 3.25, the load diagram is divided into vertical strips and

Ra{ T/P1 2! VP3| vPu[Rb

SF.D g T
(b) \\_‘_\,__'.______—.'.
::.._:;
B.MD. k_- CL. -
(c) S o Lf%
Fig. 3.25

the area of each strip is replaced by an equivalent concentrated load acting
at the controid of the area. The S.F. and B.M.Ds. are then drawn in the
usual manner. The diagrams thus drawn, however, will have the exact
values at the ends of the strips because for these points the shearing force
and bending moment wili be the same whether the loads on their right or
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left are concentrated or distributed. The final S.F.D. will be a curve join
ing the ends of strips with equal give- and-take areas. Also the final B.M D.
will be a curve touching the link polygon at the ends of strips as shown in
Figs. 3.25b and c. It should be remembered that these diagrams are
approximately correct and the shorter the length of the strip the more
accurate will the result be. Further, points of particular interest or points
of application of concentrated loads should be taken as ends of strips.

Example 3.11 Find graphically the S.F. and B.M.Ds. for the overhanging
beam shown in Fig. 3.26 a.

Solution : The polar diagram (Fig. 3.26 b) i3 drawn to scale 1 cm —
4 t. For convenience the polar distance H is taken 16 t. The link polygon
Is constructed in the usual manner and the closing link is drawn as shown
in Fig. 3.26 c. The reactions are determined by drawing a ray parallel to
the closing link. The S.F.D. is constructed by projecting the forces on their
lines of action and is shown in Fig. 3.26 d. Fig. 3.26 c is the required B.M.D
to scale | em. = 32 m.t. in which 32 is the product of the polar distance

5 ‘5: 151 . M\l
Linear sc-:al—ée— 4 - |

gLl

1em=2m. (a) :

— — ———— - —

(d) |

s
Force scale 1

lem = 41t
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(16 t.) and the linear scale (1 cm. = 2 m.). For example, the bending
moment at point ¢ is measured to be y, x 32 = 16 m.t. The signs may

be found by inspection.

Example 3.12 Construct the S.F.and B.M.Ds. for the cantilever shown
in Fig. 3.27 a.

Solution : ‘Starting at the free end, the force polygon in Fig. 3.27 b is
drawn. The pole 0 is taken at H = 10 t. horizontally to the left of the
starting point of the force polygon. This is done for convenience so as o
obtain a B.M.D. with a horizontal base. The link polygon is drawn as shown

rl y121
lem=1m 2

(a)
|
o e = F.D.
"a__i _____ = SED
4t s
by 5 (d)
Force scale }—
e
B.M.D.
(c)
Fig. 3.27

in Fig. 3.27 c. 'This is the required B.M.D. with scale 1 cm. = 10 m.t.,
in which 10 is the product of the polar distance (10 t.) and the linear scale

(1 cm. = 1 m.). With this scale the bending moment at the fixed end is

measured to be :

M =16 % 10 = 16 mt

The S.F.D. is obtained in the usual way by projecting the forces on their

corresponding lines of action and is shown in Fig. 3.27 d.
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Example 3.13 Construct the S.F. and BM.Ds. for the simple beam
shown in Fig. 3.28 a.

Solution : The distributed load is replaced by a series of concentrated
loads. This is done by dividing the load diagram into strips. In this case
four strips, each 2 m. long, are used.

26t/m.

Linear scale
1cm=1.5m

0t ) ol

Force scale = 1
1cm = 4t 4/ S \\
= L-—L, I \

—

(c)
Fig. 3.28

The equivalent concentrated loads are given by :

Pl:gﬁ—;——zﬁ X 2 = 48t

P2222+18 X 2 =40t
2

p 1.841.4 O A
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The centroids of the trapizoidal strips are found by the simple graphical
method illustrated in Fig. 3.28 a.The polar diagram is drawn and the polar
distance is taken 10 t. (Fig. 3.28 b). The link polygon (Fig. 3.28 c) is then
drawn and the closing link is found. A ray parallel to this closing link will
determine the reactions. The link polygon represents the B.M.D. and the
S.F.D. is found in the usual manner by projecting the forces on their cor-
responding lines of action. It is to be noted that the ordinates of these
diagrams are exact only at points a, b, ¢, d and e. The values at these
points are joined by a curve as explained in section 3.9. This is done and
the final S.F. and B.M.Ds. are shown in Fig. 3.28 ¢ and d.
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EXAMPLES TO BE WORKED OUT

(1) - (8) Draw the N.F., S.F. and B.M.Ds. for the statically deter-
minate beams shown in Figs. 3.29-3.36.

St\i 75:
e e L

Fig. 3.29

2 24/m AR i
Lide 2 eem’]

Fig. 3.3

4t

1t/m

2 :L.Z..JJm-%Z J

Fig. 3.33

5t

5t

'L‘J 3

e R

Fig. 3.35

emit G_n{
“paos 3
R e
Fig. 3.30
6mi 2t

ft 5%‘* 3t/m
Lz_?:a e 3aL2 -L—t.mA :

Fig. 3.34

3t

It |3
4

L_1 J._Z m -.-Lh-\

Fig. 3.36

(9), (10) Draw the N.F.,, S.F. and B.M.Ds. of the two beams shown
in Figs. 3.37 and 3.38. Calculate the position and value of the maximum

positive bending moment.




—f_
1.5m
09t/m
[, Im 1m___]
Fig. 3.37

Fig. 3.38

(11) - (16) Draw the N.F., S.F. and B.M.Ds. for the beams shown

in Fig. 3.39 - 3.44.

1.2 t/m. hz. proj.
ERSrEEEERERNEENE

60°]
60°
181
L1_]____ TS

Fig. 3.39

({' P

a

:
s

Fig. 3.40

r1 T_iat;nm.r_ : Th-l
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(17) For the balacony beam 1t/m. hz. prO!-
shown in Fig. 3.45 draw the N.F,

S.F. and B.M.Ds. if : c d
(2) the beam is fixed at point d.
(b) the beam is hinged at a and Z
supported or a roller at d. i
(c) the beam is hinged at b and 2

supported on a roller at c. L]_,_L___ 4m —-—L‘I

Compare the values of the maxi- .
Fig. 3.45

mum moment in each case.

(18), (19) Long open water tanks are full of water to the level shown
in Figs. 3.46 and 3.47. Draw the N.F,, S.F. and B.M.Ds. of all the parts
of the tanks.

e P i |
& = Sm

2m

4- |
L =T L

Lral — —m _4&14 fea o 2pme ) ﬁ_

Fig. 3.46 Fig. 3.47

(20) A rectangular combined footing supports two columns as shown
in Fig. 3.48. Calculate the distance x such that the stress on the soil is uni-
form and draw the corresponding S.F. and B.M.Ds.

36¢ 24t

Sot [ | i i
L_x e - ofom |y

Fig. 348
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{21) The beam given in
Fig. 3.49 is provided with an

intermediate hinge at point c.
Find the best position of the

hinge and draw the correspon- E—— 8m ——_"L 2*']

ding S.F. and B.M.Ds. Fig. 3.49

(22) A pair of lock gates are
strengthened by two beams ac and
bc. If the load on the beams is as
shown in Fig. 3.50, draw the N.F.,
S.F. and B.M.Ds. for one beam.

Fig. 3.50

(23) A timber coffer dam is made of planking supported by vertical
piles. The piles are fixed at the bed level and supported by struts at the
water level as shown in Fig. 3.51. If the piles are spaced 0.70 m. and the
struts support 2/7 of the total water pressure, what will be the S.F. and
B.M. in the pile at the bed level ?

W.L.(8.00) Fr

B.L.(000)
4

i

Fig: 3.51
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(24) Show that the change in the B.M. between the points x = 1 and
x = 2 (Fig. 3.52) is equal to the area under the S.F.D. between these two
points.

Fecsrenannet il

Fig. 3.52

(25) For the beam shown in Fig. 3.53., find graphically the S.F. and
B.M.Ds. Show that the change in the shear between points b and c is equal
to the area under the load diagram between these two points. Also show
that the change in the B.M. between points a and ¢ equals the area under
the S.F.D. between these two points.

4t
3tim. 2t/m

Fig. 3.53

(26),(27) Find the value of P acting on the two beams shown in Figs.
3.54 and 3.55 so that the maximum positive and negative moments are

equal.

wt/m 1t/m
%HHHHHHT—I EENEEEEEEEIEREEERRRYR
_Zrk_ A
P Pe
Fig. 3.54 Fig. 3.55

(28) For the trussed beam shown in Fig. 3.56, find the forces in the
link members and draw the N.F., S.F. and B.M.Ds. for the beam.




2t/m

? -
i

0 R

Fig. 3.56

(29) - (31) For the statically indeterminate beams shown in Figs. 3.57,
3.58 and 3.59 draw the S.F. and B.M.Ds. if :

in Fig. 3.57, F,, = + 4t

in Fig. 3.58, M, = — wL2/8
in Fig. 359, M, = — 132 mt. and Y, = 9t ¢
1 t/m

| w TR

L t.m..L_ 4 6 ]

b Fig. 3.57
3

wit/m

b

P lm Lm

Fig. 3.58
b

3t 3t
1 > l 1 2t/m
a IHHHHHHHHHHHJd

.
o= DR P i
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CHAPTER 4

STATICALLY DETERMINATE RIGID FRAMES

4.1 Definitions
Connections : There are two main types of structural connections :

(1) Hinged or pin-connection allows relative rotation between the
ends of the connected members and hence no moment can be transmitted
from one member to the other. Referring to Fig. 4.1 a, the action of
member A on member B cannot be but a single force R acting through the

centre of the hinge. Such a joint may be formed by a proper pin or by
riveting.

(b)

Fig. 4.1

(2) Rigid connection does not allow relative rotation between the ends
of the connected members. The angle between two rigidly connected
members remains constant as the structure deforms under load. In general,
the actioh of a member A rigidly connected to another B is equivalent to
a force R and a moment M as shown in Fig. 4.1 b. Such a joint may be
formed by riveting, welding or by monolithic casting.

Rigid frame : A rigid frame, or as often briefly called “Frame”, is a
structure composed of a number of members connected together by joints
all of which or some are rigid.

4.2 Internal stability and determinancy

Before dealing with the analysis of frames, it will be advantageous to
discuss the criteria of stability and determinancy. External stability and
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determinancy having been considered in section 2.6, the following
discussion will be limited mainly to combined and internal stability and
determinancy.

Consider a frame and let it have m members, j joints and also let there
be r external reaction components. In general, a cross-section in a member
has three straining actions; thrust, shearing force and bending moment,
which when determined corresponding values at any other section along
the same member may be computed. Thus, the number of independent
unknowns is equal to 3 m —+ r. On the other hand, if the frame is in equ-
ilibrium, every joint in it is in equlibrium, and since a rigid joint is gen-
erally subject to a system of forces equivalent to a force and a couple the
number of the available equations of equilibrium is equal to 3j; three
equations for each joint.

Sometimes frames consist of several parts connected together by hinges

or links. Ifs condition equations (See section 2.4) are introduced due to
these connections, the total number of equations available for the solution
of the unknowns will be 3j + s.

A frame may be classified as unstable, statically determinate or stati-
cally indeterminate, or as sometimes called redundant, by comparing the

number of unknowns with the available number of independent equations.

Thus,

If 33 4+ s> 3m 4 r, the frame is unstable,
3j + s =3m + r, the frame is statically determinate,

3j + s <3m + r, the frame is staticaliy indeterminate,

and if n is the degree of indeterminancy (or redundancy) then,
n=3m+r— (3] 4+ s)

Example 4.1 Classify the frames shown in Figs. 4.2 a-k as being unstable,
statically determinate or statically indeterminate. Indicate the degree

of indeterminancy in each case.
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o \C_Q_/
T

=

.\g}-

(b)

(e)

(c)

=

(f)

{g) (h) (k)
Fig. 4.2
Frame j s m r. 3j+s 3m-+r Classification
a 4 — 3 3 12 12 Determinate
b 4 — 3 71216 Indeterminate- 4th degree
c 8§ — 10 3 24 33 Indeterminate- 9th degree
d 7 3 7 3 24 24 Determinate
e 7 2 7 4: =234 25 Indeterminate- 2nd degree
f 7 — 7 Bisn 2l sy Indeterminate- 6th degree
g 8 2 7 9 - 26 30 Indeterminate- 4th degree
h 6 — 6 6 18 24 Indeterminate- 6th degree
k 12— 4 12 356 54 Indeterminate-18th degree
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It should be noted that n denotes the combined degree of indetermin-
ancy, or redundancy, with respect to both thc reactions and the internal
straining actions. The degree of external indeterminancy, i.e. with respect
to reactions only may be found in the manner discussed previously in section
2.6. The degree of internal indeterminancy is obviously the difference
between the combined and external degree of indeterminancy. Thus,

1'1i=n‘=*—l'lE

Further, the comparison between the available number of equations
and the number of unknowns, though necessary, is not always sufficient to
decide whether a frame is stable or not. If 3j + s is greater than 3m -+ r,
then this comparison is sufficient for deciding that the frame is unstable.
If, however, 3] + s is equal to or less than 3 m -+ r it does not automa-
tically mean that the frame is stable. To explain this statement, consider
the frame shown in Fig. 4.3 a.

(a) (b)
Fig. 4.3

] = 6 Ble—=

Sa=—=n 4 L =)

3j + 8 =22 < B3m+ 1 =24
A comparison between the number of the available equations and the
number of independent unknowns will show that the frame is statically
indeterminate or redundant to the second degree. However, it is obvious
that there is nothing to prevent it from collapsing in the manner shown in
Fig. 4.3 b, and is therefore classified as unstable.

This example shows that blind comparison between the number of the
available equations and the number of independent unknowns does not
necessarily yield the right answer. It is not argued that the method
is sometimes useful but it is advised that when adopted, it should be used
with care.
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The most basic method to determine the degree of indeterminancy of
an indeterminate frame is to remove as many supports and or to cut as
many members to reduce the frame to a statically determinate structure.
The degree of indeterminancy, or redundancy, corresponds then tc the
number of the removed supports and or cut members. The removed
restraints are called redundants. To explain this statement, consider the
highly indeterminate frame, known as the Virendeel girder, shown in

Fig. 4.4 a. "It may be reduced to a statically determinate frame by cutting

£ =i i TQ s
l N
{‘ ’_‘ M‘.). M
7 A A Q

{a) (b) (c)

Fig. 4.4

the top members as shown in Fig. 4.4 b. In choosing the positions of the
cuts, it should be kept in mind that the reduced structure remains stable.
Noting that generally the number of unknowns at each cut section is equal
to three (Fig. 4.4 c), the degree of indeterminancy of the given frame, n e
3 x 4 = 12. The redundants chosen in this case are the N.F., S.F. and
B.M. at each of the cut sections.

The student will do good if he classifies the frame; given in example
4.1 according to this method.

4.3 Method of analysis

The first step in the analysis of frames is the computation of the ex-
ternal reaction components. The beginner may then isolate the various
members as free bodies and draw N.F., S.F. and B.M.Ds. for each indi-
vidual member utilizing the relationships between load, shearing force
and bending moment developed in section 3.5. and bearing in mind the

following important basic principle :

“If the framz as a whole is in equilibrium, then every part af it, whether
a member or a joint, is in equilibrium under the loads acting on il together
with the action of the other members connected to it”.

Later when the student becomes familiar with the method of analysis,
he will find that direct drawing of N.F., S.F. and B.M.Ds. of the whole
frame is a simple matter.
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The sign conventions used in regard to frames are similar to those
used for beams and mentioned in section 3.2. Some difficulty may arise
regarding the signs of B.M.Ds. To avoid confusion, various members may
be considered as beams being looked at from the inside of the frame. The
student is advised, however, to accustom himself to drawing the B.M.D.
on the tension side of the various members of the frame. The parts of the
B.M.D. lying inside the frame are positive and those outside the frame are
negative. The determination of the tension side of a member is of great
importance in the design of structures. For reinforced concrete structures
the tension side defines the side where the main reinforcement should be
placed and in metallic structures the compression side generally calls for
additional investigation with regard to the stability of the member
considered.

As no new theory is involved, the analysis may best be followed by
working out some typical examples.

Example 4.2 Draw free-body, thrust, shearing force and bending
moment diagrams for all the members of the frame shown in Fig. 4.5 a."

Solution : The three unknown reaction components at the fixed sup-
port are found by the application of the three equations of equilibrium.

EX slp= X,
X, =0
Y =0=Y,—1—2—2—2—1
Y, =8¢t ¢
0=M, +1 x2—2x2—2x4—1x6

M, = 16 m.t. (anticlockwise)

IM, =

a

Member ab

This member is in equilibrium under the forces and moments shown
in Fig. 4.5 b. The force 8 t. acting downwards and the clockwise moment
of 16 m.t. acting at b, represent the action of members bc and ¢d on mem-
ber ab which are found by considering the equilibrium of the latter as a
free-body. The corresponding N.F., S.F. and B.M.Ds. are shown in Fig.
4.5 b.

Member bc

The moment and forces maintaining member bc in equilibrium
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NF.D.
SFED.
BMD o
tl 16 m.t. 8t 16m.t
smnB=02316 b =
cos 8= 0948 (b) ’T
‘°"”‘(P 8t 16m.t.
8 t N.F.D SED. BMD.
Fig. 4.5

together with the corresponding N.F., S.F. and B.M.Ds. are shown in
Fig. 45¢c. The N.F. and S.F.Ds. are obtained in the usual manner by
resolving the forces along and normal to the axis of the member.

Member bd

The applied force and the actions of the rest of the frame on member
bd together with the N.F., S.F. and B.M.Ds. are shown in Fig. 45d.
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Example 4.3 Draw the free-body, thrust, shearing force and bending
moment diagrams of all the members and the joints of the frame shown
in Fig. 4.6 a.

Solution = BX — 0 — | — X

a

X, =1t—

EME—0 — L o5 25 o 2 SV S
A

¥ i =0 = 25 — 155 Y,

Y, =1¢t1%

The free-body, N.F., S.F. and B.M.Ds. of members ac, cd and db are
shown in succession in Figs. 4.6 b, c and d. Free-body diagrams for joints
¢ and d are shown in Figs. 4.6 e and f respectively.

Example 4.4 Fig. 4.7 a shows a frame in a shed. Draw the free-body,
N.F., S.F. and B.M.Ds. for member ab.

Solution : Member be is a link member, i.e. subjected to axial load Rc :

only.

IM, = 0 = 08K, X 7.5 X 09542 X°2 —2.235-x 4
R, =4t/

X, =06 x 4 =24t

Y b—=08 x 4 =2732¢ |

X =0 =X, —24

X =24t —

IY =0=Y, — 32 — 225 — 45 — 225

Yo e 12247F

Member ab is in equilibrium under the forces shown in Fig. 4.7 b.
Considering section s-s, and taking moments of all forces on the right of
the section about points 0, 0, and 0,, forces Py, P, and P, are found to be
equal to 7.5 t. (tension), 3.75 t. (compression) and 3 t. (compression) respe-
ctively. Hence, member ab as a free-body and the forces maintaining it
in equilibrium are as shown in Fig. 4.7 c. The components of these forces
along and normal to the axis of the member are shown in Fig. 4.7d. The
N.F., S.F. and B.M.Ds. are given in Figs. 4.7 ¢, f and g respectively.
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995 t 3614
+
10.8 md.
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I
12.2 t 2 4t
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(e) (f) (g)

Fig. 4.7




—110—

Example 4.5 Draw the free-body, thrust, shearing force and bending
moment diagrams for all the members of the three-hinged frame shown in
Fig. 4.8 a.

Solution : IM, = 0 = Y, x 11 —8 x L1 x 7
Y, =56¢ {
Z¥Y =0=Y,—8 x 1.1 —56
'Y, —s2¢ 1

IM, =0 =32 %83 — X, X 4

X =24t —
IX =0=X, —24

Xy, = 24 t.

The free-body, N.F., S.F. and B.M.Ds. for members ac, cd and db are
shown in Figs. 4.8 b-d. Note that ac is a link member, i.e, subject to axial
load only. If wanted, N.F., S.F. and B.M.Ds. of the whole frame may be
obtained by combining the ecorresponding diagrams of the various
members. This has been done and the result is shown in Figs. 4.8 e- g.

All the frames considered until now have been statically determinate.
For statically indeterminate frames, once the redundants, whether external
reaction components or internal straining actions, are determined, the
procedures for drawing the N.F., S.F. and B.M.Ds. are basically the same
as for statically determinate frames.

4.4 Illustrative examples

In the following, a number of solved examples is given. The student
is advised to solve these problems independently and then check his results
agianst those given. Particular attention should be paid to the joints where
three members meet and to the thrust and the shearing force diagrams of
inclined members.

Examples 4.6 - 4.13 Draw the N.F., S.F. and B.M.Ds. of the statically
determinate frames shown in Figs. 4.9-4.15.
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25 t/m 1t/m hz.proj.
L{lijliﬂriiiiiﬂ
Jst | 251
£ es 2
- Im= Tf_
S an;;
do
LA
!
e A2 [._ 2 Llam famy212]
Fig. 4.14 Fig. 4.15

Solution : The solution of problems 4.6-4.13 is given in Figs. 4.16-4.22.
Figs. (a) show the -external reactions, Figs. (b) the thrust diagrams,
Figs. (c) the shearing force diagrams and Figs. (d) the beuding moment

diagrams.
le t
=
3t =
N.F.D
= 5t 3t
?5! ‘311
(a) (b)
5t
[ +]
3t g ERleazsy 11
E S ED.

Fig. 4.16
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Fig. 4.17
2t/m
FXER3| e
6t 6t
|
T NED, |
6. BElost 195t
19.5¢
(a) (b)
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4.5 Three-hinged arches

An arch is a structure which developes horizontal reaction components
as well as vertical components even when it is subjected to vertical loading
only. The main advantage of the arch is that the horizontal reaction

components produce moments that counteract those due to the vertical
components.

Two_ ninged arch

Fixed arch

S

Fig. 4.23 shows three different types of arches; the three-hinged, the
two-hinged and the hingeless or fixed arches.

Fig. 4.23

Among these three types, the three-hinged arch is the only statically
determinate one and hence is the only one considered here. The three-
hinged arch can be analysed by either analytical or graphical methods.

Analytical solution :

The four reaction components of the arch can be calculated, in the
manner described in section 2.4, from the three equations of equilibrium
and the fourth condition equation that the bending moment at the inter-
mediate hinge is zero. Once the reactions are determined, the bending
moment at any section along the arch can be determined in the usual
manner by calculating the moments of all the forces either to the right or
the left of the section. Determining the thrust and shearing force, how-

ever, requires more work as the resultant of all the forces to the left or the

right of the section must be resolved into components along the tangent to
the arch and the normal to it at the section considered. If the shape of the
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arch is represented by an equation, then the slope of the tangent can
be determined from the first derivative of the equation. As most arches
are parabolic or circular, this presents no difficulty. The method is
illustrated by a numerical example.

Example 4.14 Determine the thrusts, shearing forces and bending

moments at points d and e of the three-hinged parabolic arch shown in
Fig. 4.24 if it is presented by the equation : y = x — 0.025 x2

Y

Xa a x )
Ya
Fig. 4.24
Solution :
IM,=0=Y, x 40 — 6 (10 + 20 + 30)
i, =9t 1
LY =0=Y,—3 x6+9
Y..= 9t T

IM, =0 =9 x 20 — 10 x 6 — 10 X,

X, =12t
X =0=12 — X,
R =12 b
If a section is taken through point d, the free-body diagram of the part
of the arch on the left hand side of the section will be as shown in either
Fig. 4.252a or 4.25b.

Atx =5y =1y, =5 — 002 x 52 = 4375 m.
tan 6, = (-91) =1 —.005 % 5= 075
dx e

sin ® = 0.6 and cos ;, = 0.8
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Since the slope of the arch changes from point to point, it is easier to cal-
culate the reactions X, Y and M acting on the free body. Thus, referring
to Fig. 4.25a,

Q N
d Esa
12t a
9t (p)
N, M G
b 12t
(d)
9t
M
N 6t
e
o
b 12¢
(f) 19‘
Fig. 4.25
3% — b —17 % %o 2 e
%Y =0= 9—Y Y = 9t }
M, =0 =12 x 4375 —9 x 5 + M
M = — 7.5 m.t., i.e. M = 7.5 m.t. (clockwise)

M is the bending moment at section d. The thrust and shearing force
can be easily expressed in terms of X and Y. Thus, referring to Fig. 4.25b,

N; = — (Y sin ©; + X cos 6;.)

= — (9 x 06+ 12 x 08) =—15¢t
Qy = Y cos  — X sin 6,

=9 x 08 —12 x 06 =0

Similarly, when a section is taken through point e, the part of the arch on
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the right hand side may be considered as a free-body. However, since this
section coinsides with a concentrated load, two sections; just to the right
and just to the left of the load must be considered. The former is shown
in the free-body diagram in Figs. 4.25 c or d, and the latter in the free-
-body diagram in Fig. 4.25¢ or f.

At x = 30, y~y, = 30 — 0.025 x 30% — 7.5 m.

dy
(—dT')x=30 = 1 — 0.05 > 30" = —

N =—

tan 6, = 0.50, sin @, — 0.446 and cos @, = 0.893

For a section just to the right of e (Figs. 4.25 ¢ and d),
IX =0=219—X% X =12t —
3Y =0=9_Y : ¥ —oe |
IM,=0=M + 12 x 75 — 9 x 10 M=0

-]

I

M is the bending moment at point e and,

N, = — (12 x 0893 + 9 x 0446) — — 14.74 t.
Q. =12 x 0446 — 9 x 0.893 = — 2685 t.

For a section just to the left of e (Figs. 4.25 ¢ and f),
=0 =12 — X X =12t —
Yo 0=—10-6 Y g}
N, = — (12 x 0893 + 3 x 0.446) = — 12.054 t.

Q. =12 x 0446 — 3 x 0.893 — 2.673 t.

Graphical solution :

Many engineers prefer the graphical method to the analytical method
of solution not only because it is quicker but also as it gives the values of
the reactions of the arch, thrusts, shearing forces and bending moments
at various points along its axis in one operation.

The determination of the reactions is based on the fact that the bending
moment at the intermediate hinge is zero. Consider for example the three-
hinged arch shown in Fig. 4.26 a. According to the principle of superposi-
tion, the final reactions to the applied loads is equal to the sum of
the reactions to two load systems corresponding to the loads on either side
of the intermediate hinge acting separately as shown in Figs. 4.26 b and
c. It is easier to find the reactions for each of cases (b) and (c) as the reaction
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on the unloaded side must pass through the intermediate hinge if the bend-
ing moment there is to be zero. The problem thus reduces to finding two

equilibrants to a system of forces, one given by its point of application and

Fig. 4.26

the other by its line of action. These may be easily found by the methods
described in section 1.9.

With reference to Fig. 4.26, the method of determining the reactions
is summerized in the following :

(1) The resultant P, of the loads shown in Fig. 4.26 b is determined
by means of a polar diagram with pole 0; and its corresponding
link polygon.

(2) The reaction components A, and B, due to these loads are found
by resolving P; along line bc and through point a. Once their directions
are known, the magnitudes of these components are found from the polar
diagram shown in Fig. 4.26 d.
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(3) Similarly, the resultant P, of the loads shown in Fig. 4.26 c is
found by means of a polar diagram with pole 0, and its corresponding
link polygon.

(4) The reaction components A, and B, due to these loads are found
by resolving P, into two components along line ac and through point b.
The values of these components are found from the polar diagram shown
in Fig. 4.26 d.

(5) The final reactions A and B at supports a and b are obviously the
resultants of A, & A; and B, & B, respectively. Their magnitudes and
directions may be obtained by combining their corresponding compon-
ents as shown in Fig. 4.26d.

It should be noticed that the two polar diagrams with poles 0, and 0,
are drawn in one figure on purpose so as to simplify the last step of com=

bining the reaction components.

-Referring again to Fig. 4.26 d, if a link polygon with O as a pole is
drawn, the resulting polygon is the line of pressure. In order to avoid too
many lines in one figure, the polar diagram with 0 as a pole is reproduced
in Fig. 4.27 a, and its corresponding link polygon is shown in Fig. 4.27 b.
Since as mentioned in section 1.10, a link between any two loads in this
special link polygon represents the line of action of the resultant of all the
loads either to the right or left of any point between these two loads, then it
must pass through the points of zero moments, i.e. the three hinges a, b and
c. Further, as there is only one link polygon which can be made to pass
through three given points, a new method for finding the arch reactions
is suggested. If, by any method, a link polygon is made to pass through

Fig. 4.27



ATy e O

SN D B T

TN T T RS W

i

y

—123—

the three hinges then the magnitudes of the reactions are simply obtained
by measuring the first and last rays in the corresponding polar diagram
and their lines of action coinside with the first and last links in the line of

pressure.

Once the line of pressure is drawn, the thrust and shearing force at a
point hetween any two loads are readily obtainable by resolving the cor-
responding link along and perpendicular to the tangent to the arch at
that point, and the bending moment is the product of the force represented
by the link in the panel where the point lies, and the perpendicular dis-
tance from the point to the link. For example, the thrust and shearing
force at peint d (Fig. 4.27) is found by resolving the force represented by
link pq along the tangent and the normal to the arch at d. This is done
on the polar diagram as shown in Fig. 4.27 a. Also, the bending moment

at point d is the product of force 02 in the polar diagram, by the distance
r which is the perpendicular from point d to link pq.

A special case of practical importance is the three-hinged arch sub-
jected to vertical loads. The thrust and shearing force at any point along.
the arch axis may be found in the manner described above. The determ-
ination of the bending moment, however, is further simplified. This is
explained with reference to Fig. 4.28. The bending moment at point d
on the arch is given by :

s @

i.e. the area between the arch axis and the line of pressure represents the
bending moment diagram. When at any point, the vertical ordinate y

Fig. 4.28
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of this area is multiplied by the polar distance H, the product gives the
bending moment at this point.

Example 4.15 Find graphically the reactions, thrust, shearing force
and bending moment at point d of the three-hinged circular arch shown
in Fig. 4.29.

Solution :

Following the procedure described in this section the determination
of the reactions is illustrated in Figs. 4.30 a, b and c. From the fdrcc'po[y-
gon in Fig. 4.30 c, the reactions A and B scale 8 t. and 14.5 t. respectively
and act in the directions indicated.

The link polygon with 0 as a pole is shown in Fig. 4.31 a.

The thrust and shearing force at point d are scaled from the force poly-
gon in Fig. 4.31 b.

N = 9.5 t. (compression), Q = 2.2 t.
and the bending moment at point d is the product r (to the linear scale

and force 03 (to the force scale); My = 04 x 10 = 4 m.t.
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Linear Scale
lem =2.5m

Force scale
lcm= 4t

{c)

Fig. 4.30

b %

( b)

Fig. 4.31
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EXAMPLES TO BE WORKED OUT

(1) Draw the N.F.,, S.F. and 1t/m
B.M.Ds. of the frame shown in Fig. _‘_c EEEEERXERE K b
4.32 under the following cases of UJ-—‘ih—
loading : S {2t/m
1 [EXXEN|
(a) the given loading — Fig. | 2 m_..J
4.32. 3m
(b) a uniformly distributed load
of 0.5 t./m. on part ac. VA
(c) combination of (a) and (b). l-‘—— 6m
Verify the principle of superposition. Fig. 4.32

(2) - (22) Draw the N.F., S.F. and B.M.Ds. of the frames shown in
Figs. 2.37 - 2.40, 2.43 - 2.46 and 4.33 - 4.44.

3t
6t 2t/m

["5"‘1"5’
Wit

_.[15 L_a.sm.___,l __..]2.__10m___,.q-2|__

Fig. 4.33 Fig. 4.34
1t/m naz. pro'E. 2 ._3mﬂ3t

1t/m

—

Y
= o
"b.'J'_——T —ﬁsh

hm

1t/ m-
Y EEENEEERETE!

L_ 6m ——L——sm_——

Fig. 4.35 Fig. 4.36

3 2tim
JERNT|

s I A
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Fig. 4.39 Fig. 4.40
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it/m

-.._Am_.L_lom...L_ l.m-.l-._l-m_,.l

Fig. 4.44

{23) The frame abcd carries a uniformly distributed load of 2 t./m.
over the part be. It is hinged at d and supported at b by a link member
ab, which can have one of the positions shown in Figs. 445 a, b and c. It
is required to :

2t/m 2t/m

2m (b) 2m
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(a) draw the N.F., S.F. and B.MDs. for each case.

(b) determine the position and value of the maximum positive moment.

(c) study the three systems from the statical point of view.

(24) - (27) Draw the N.F., S.F. and B.M.Ds. of the statically indete-
rminate frames shown in Figs. 4.46 - 4.49 if :

in Fig. 4.46, X, = 1.2 t. (to the left)

in Fig. 447, M, = 6 m.t. (anticlockwise)

in Fig. 4.48, M, = 26 m.t. (clockwise) and

M, = 30 m.t. (anticlockwise)

in Fig. 440, N, = + 025t,Q, = 0and M, = + 3.5 m.t.

251/ 1"

2t lll'i_l'!'llirnlllll] l l
I Lt!} 2m - =3
6m 2t/m Z‘J 2m
iiiiii{iiil _#,

AN 3m
e L B

Fig. 4.46 Flg. 4.47
4tIm
2t/
[‘}“1**&{+riiiiiitTitllJ
let
1.5m ¢ a B
45m o

b
-L_ i e c e d l,
_.lzL_Gm_,L_Grn__,.ZL_ ”H:‘fljr'nifuf :

Fig. 4.48 Fig. 4.49
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1l

eem — |
Fig. 4.50

(28) Fig. 4.50 shows a three-hinged parabolic arch whose axis is
represented by the equation y = 1.6 x — 0.1 x2. Find analytically and
graphically the reactions of the arch, the thrust, shearing force and bending
moment at points d and e on its axis.

(29) The axis of the three-hinged arch shown in Fig. 4.5] forms a
semi-circle. The brackets inside the arch are rigidly connected to it.
Calculate the thrust, shearing force and bending moment at the quarter
points, € and f.

' _,Lz._;.z,]._am-,J
10m __...__~..1

Fig. 4.51

(30) Find graphically and analytically the reactions, thrust,
shearing force and bending moment at point d of the three-hinged circular
arch shown in Fig. 4.52.
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O S
EEEEZIREEERETA S

(31) For the three-hinged parabolic arch shown in Fig. 4.53, draw
the bending m oment diagram under a ;uniformly distributed load of 2 t./m.
of horizontal projection on : (a) part ac, (b) part be, (c) the whole span.

Explain why the bending moment diagram for the case of loading in

(c) zero.

1em >

Fig. 453
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CHAPTER 5

STATICALLY DETERMINATE TRUSSES

5.1 Introduction

A truss may be defined as a structure which consists of a number of
straight members pin-connected together. In practice, members are bol-
ted, riveted or welded at their ends. Nevertheless, they are assumed to be
pin-connected in the analysis because it has been found that such an
analysis gives a good estimate of the forces in the members. Provided
the external loads are applied at the pin joints, all the truss members will
be link members subjected to either axial tension or compression,
Members carrying tension are usually called ties and those carrying com-
pression are termed struts.

Trusses considered in this chapter are plane and co-planer with the
applied loads. Apart from this type, there are space trusses in which the
members are situated in more than one plane. However, in many cases,
the analysis of space trusses may be reduced to the case of a number of

plane trusses.

5.2 Classification of trusses

Trusses may be classified according to various criteria. Two classi-
fications of particular interest from the analysis point of view are cons-
idered here. These are whether the truss is stable, statically determinate
or indeterminate, and whether it is simple or complex.

5.3 Stability and determinancy

Before dealing with the criteria of stability and determinancy of trusses,
the student is advised to recall the relevant discussions in sections 2.6.
and 4.2.

Consider a truss and let it have m members, j joints and 1 external
reaction components. By definition, the truss members carry only axial
loads. Thus, the number of unknowns is equal tom - r; m member forces
and r reaction components. On the other hand, since each joint s
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subjected to a system of concurrent forces in equilibrium, the number of
the available equations is equal to 2 j; two equations for each joint.

A truss may be classified as unstable, statically determinate or statically
indeterminate by comparing the number of unknowns with the number

of equations available.

If 2j > m + 1, the truss is unstable.
2j = m + 1, the truss is statically determinate.

2j < m + 1, the truss is statically indeterminate.

It should be emphasized that the abovementioned comparison is not
always sufficient to decide whether a truss is stable or not.

If 2j > m -+ 1, this comparison is sufficient to indicate that the truss
is unstable. If, however, 2j < m + r, it does not automatically mean that
the truss is stable. To explain this statement, consider the two trusses shown
in Figs. 5.1 a and b.

(a) (b) (c)
Fig. 5.1

Both trusses satisfy the relationship 2j = m -+ r. However, while the
truss shown in Fig. 5.1 a is stable and statically deferminate, that shown
in Fig. 5.1 b is unstable since it can distorte as shown in Fig. 5.1 ¢ without
offering any resistance to a general case of loading.

This example shows that blind comparison between the number of
the available equations and the number of unknowns does not necessarily
yield the right answer.

It may be nofaced that no mention, as yet, has been made to the criteria
of internal and external indeterminancy. This has been done on purpose
as the computation of the external reaction components is sometimes related
to the disposition of the truss members and it is difficult, therefore, to
distinguish between internal and external indeterminancy. The following

examples may illustrate this point.
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Fig. 5.2. shows a truss resting on two hinges at a and b which provide
4 > 3 reaction components but is still statically determinate as an additional
condition is furnished by equating the moments of all the forces either

Fig. 5.2

to the right or to the left of hinge c to zero as in the case of three-hinged
frames and arches. It may be argued that, by definition, all the joints of
the truss are hinges so why joint ¢ in particular has been chosen to provide
the required condition. The answer is that joint ¢ differs from all the others
in that it divides the structure into two entirely separate paris.

p
d
e
c
a’ b
(a)
e A
,/"- p-.SeC e,
Waa /,
s /
7 [
4 \
r
/ ‘e
| o
\e 7
N a // b
o e BT
= (b}
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Fig. 5.3 a shows another two-hinged truss with an intermediate hinge
which is not so obvious. The forces in the two members meeting at d are
found by considering the equilibrium of the joint. The members may
then be replaced by the forces they carry as shown in Fig. 5.3 b. A fourth
condition is thus established by equating the moments of all the forces
either to the right or the left of the hinge ¢ to zero. This condition together
with the three conditions of equilibrium are sufficient to determine the four

reaction components at the supports.

Fig. 5.4 a shows a truss resting on two rollers and a hinged support
which provide 4>3 reaction components but is still statically determinate.
The reactions may be found with reference to Fig. 5.4 b as follows :

Fig. 5.4

(1) Members cb and cd are replaced by the forces they carry; each

7

£ sec O

force being equal to

f
(2) IM; = 0 and EM, = 0, are two equations which when solved

give the values of Y, and Y..

(3) X, and Y, are found from the conditions X = 0and ZY = 0
applied to the whole structure.
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Fig. 5.5a shows a truss resting on a hinged support at a and three rollers
atb, ¢ and d, which provide 5 > 3 reaction components but is still statically
determinate. The five reaction components may be found with reference
to Fig. 55b as follows :

Fig. 5.5

Yy

The load in each member meeting at b is sec @. Similarly, the

5 . Y
load in each member meeting at ¢ is 2‘ sec @. Thus,

e f a

IM, =0 5 M, =0 5 IM, = 0
d d d _
FY = Oiand EXE— 0

are fivé equations which when solved simultaneously give the five rea-
ction components at the supports.

5.4, Simple and complex trusses

Any truss supported in a statically determinate manner and developed
by successive addition of joints to a basic triangle such that each new joint

is connected to two existing ones by two members not in alignment is called

a simple truss. Whenever the composition of a truss does not follow this
scheme, it is called a complex truss. Simple trusses allow a much easier
solution than complex ones. When the complexity consists of a few modi-
fications from a simple truss, complex trusses can also be easily analysed.

Fig. 5.6 shows two examples of such trusses.
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(a) (b)

Fig. 5.6

5.5 Methods of analysis

Considering first simple trusses, forces in the members can be determ-
ined by either analytical, graphical or a combination of both methods. In
any method, the following guiding principles should be noticed.

(1) The truss as a whole is a rigid body kept in equilibrium by the
applied loads and the reaction components at the supports. These forces
generally form a system of non-concurrent forces for which three equations
of equilibrium may be written. '

(2) Any part of the truss is a rigid body kept in equilibrium by the
external forces including the pre-calculated reactions together with the

reactions acting upon it by the rest of the structure.

(3) Any joint in a truss is kept in equilibrium by the effect of
the external forces and the forces in the members meeting at this joint.
These forces form a system of concurrent forces for which two equations
of equilibrium may be written.

(4) Each of the truss members is a link member which may be replaced
by equal and opposite forces at its ends.

5.6 Application of the method of joints

In this method the equilibrium of each of the truss joints is considered
separately. When a number of members meet at a joint, all but two of the
forces they carry are known, the other two may be found from the
application of the two equations available for a set of concurrent forces in
equilibrium; ZX = 0 and XY = 0. Since all the forces in the truss

members are unknown, the analysis should start with a joint where two
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members only meet. After finding the forces in these two members, an
adjacent joint at the end of one of them will have two unknown forces only.
These may be found in a similar manner bearing in mind that each
member of the truss, being a link member, exerts equal and opposite forces
on the joints at its ends. The procedure is repeated until all the joints have
been considered and hence all the forces in the members determined.

In general, it is necessary to first determine the reaction components
from the equations of equilibrium for the entire structure in order to have

only two unknown forces at a joint where the analysis could. be started.

The analysis of a truss by the method of joints will be illustrated by a

numerical example.

Example 5.1 Find the forces in all the members of the truss shown in

Fig. 5.7 using the method of joints.

111 2t 2t
f_g > pf _ Ye
N IS
2m 1t
| i Mg . ;
b c '
?, 2x2=4m 41.. 2m .J
1.5¢ 4L.5¢
' Fig. 5.7

Solution : The reaction components at supports a and c are found
from the equations of equilibrium applied to the truss as a whole. Thus,

a

FM._ =0 = 2 x 2 P 4T X 6. T

41846 upg
<

Vi

EM—HO —aN . e A L dladt 2t Zaiuds —— e 4

Yool T a —iei5reat
z

IX =0=X

&
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In considering the equilibrium of individual joints, it is preferable to
assume that all the members are in tension and thus the forces are directed
away from the joints. In such a case, a negative result means that the
member is in compression and the force is directed towards the joifit under

consideration.

The analysis could be started at either joint a or joint d as they have

two unknown forces only.
Considering the equilibrium of joint a,
IX =0=F,,F, =0
ZY =0=15 4 F,,F,=—15t
Considering the equilibrium of joint g.
Y =0 =15—1—F, cos 45, F, — 0.5,/ 2 t.
EXvocmil) == oo o035 1/ o2 c008 B g == = 0,5,

Considering the equilibrium of joint b.
X =0 =F, — 05,/ 2cos 45, F,_, = 05 t.
Y — 0 = Fy; + 0.5+/.2 cos 45, F,e = — 0.5 t.

Considering the equilibrium of joint f,
Y =0 =05—2 —Fcos45, F,=—15 /72t
X =0=05+F, — 15,/ 2cos45.F, =1t

Considering the equilibrium of joint e,
IX =0=1—F, cos 45, F 4 =\/—Q-t.
BY =0 — 2 o T eosds L F, Fo = gk

Considering the equilibrium of joint c,

IX ="0:205: 15 ,\/_2“907:..5%5' By Fy =~y

Check at joint d, _ ‘
: X :'1—\/-5;c0545=0
Y =1 — ./ 2cos45 =0

Positive F’s correspond to tension and negative F’s to compression.
P P
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5.7 Zero members

In the preceding example, member ab has been found to carry a zero
force. Such members are called zero members. As far as the analysis is
concerned zero members may be omitted altogether without affecting the
forces in the rest of the members. If this is the case, students often enquire,
why such members arz provided in the first place. The answer is that a
zero member under a certain case of loading may carry a force under
another case of loading. For instance if the truss shown in Fig. 5.7 is sub-
jected to a horizontal force, member ab will not remain a zero member
but will carry a force equal to the horizontal reaction component at a.
Also, members carrying zero calculated force are provided for design pur-
poses such as to avoid buckling of long compression members or sagging of

long horizontal tension members.

Usually, it simplifies the problem a great deal to detect the zero members
in a truss and omitt them before carrying out a complete analysis.

Referring to Figs. 5.8 a and b, the following two rules may help to spot
the zero members.

F1=0 F!'O
Fz Ez=0 :
(a) (b)

Fig. 5.8

(1) If a joint is acted upon by only three member forces F, , F, and
F, , two of which, say F, and F, , haye the same line of action, then the
remaining force F, must be zero.

(2) Ifa joint is acted upon by only two member forces F; and F, which |

do not have the same line of action then both forces must be zero.

These two rules follow from the consideration of equilibrium of the
joint or by resolving the forces along members 2 and 3 in case (a) and along

cither member 1 or 2 in case (b).

The simplification resulting from first determining the zero members

is illustrated in the following example.
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©

Fig. 59

By rule number (1) given in this section, the truss given in Fig. 5.9a
may be shown to-have six zero members; marked 0 in the figure. Thus,
regarding the analysis, the given truss may be replaced by that shown in
Fig. 5.9 b which has seven unknown member forces only against the seven-
teen forces of the original truss.

5.8 Application of the miethod of sections

It is often desirable to find the force in a single member of a truss with-
out analysing the entire. structure. An analysis by the method of sections
generally gives this force by a single operation without the necessity of find-
ing the forces in the other members as in the case of the method of joints.

Instead of considering the equilibrium of a joint, a section is taken
through the truss dividing it into two entirely separate parts, and the equ-
illibrium of either part is considercd. Generally, the section is chosen so
that it cuts three members including the one whose force is to be determined.
This force is then simply obtained by taking moments about the point of
intersection of the other two members.

If the forces in any or all of members 1, 2 and 3 of the truss shown
in Fig. 5.10 a are desired, the section will be as shown.
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F";’c lmx
f‘ ngng
b . b ,
l
) ' I

(a)

Fig. 5.10

The three unknown forces F; , F, and F,; may be found from the three
equations of equilibrium applied to the part of the truss on either side
of the section. If instead of applying the conventional equations of
equilibrium; £X = 0, £Y = 0 and M = 0, use is made of the substitute
equilibrium conditions; ¥M, = 0, M, = 0 and ZM_ = 0 (section 1.9)
where a, b and ¢ are three points in the plane and not on the same line.
The forces are then obtained directly. Thus, with reference to Fig. 5.10 b.

IM, = 0 gives the value of F;,

ZM, = 0 gives the value of F,,
and IM_ = 0 gives the value of F,.

Although it is preferable to take the section across three members, it
is possible sometimes to take it across four or more members provided
that all but the one whose force is to be determined intersect. This force
is then found by taking moments about the common point of intersection

of the other members.

Figs. 5-11-5.13 show examples of such sections with the corresponding
centre of moments for the determination of forces F; in the members

marked (1).

Fig. 5.11
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C

A T o ) o lr

Fig. 5.12

e loY.

=z

Fig. 5.13

Sometimes the moments equation does not give directly the required
force. Such cases are usually encountered when the forces in the diagonals
of trusses with parallel chords are desired.

P1 £ P P2 P3 Py R

b ool ek

wfl

a
|
b (b) Ya (a) ol r

Fig. 5.14

For example the force F; in member (1) of the truss shown in Fig. 5.14a
cannot be determined by the application of the moments equation as the
other two members do not intersect. This force, however, can be obtained
directly by applying the equilibrium condition XY = 0. Thus, with
reference to Fig. 5.14b, 5Y = 0 =Y, — P, — P, — F, sin 6, gives
the value of F;.

The analysis of a truss by the method of sections will be illustrated by

a numerical example.




— 144 —

Example 5.2 Find the forces in members fe, fc and bc of the truss
shown in Fig. 5.7 using the method of sections,.

Solution : The reactions are found from the equations of equilibrium
applied to the truss as a whole. These have been found in Example 5.1
and are as indicated. The section suitable for the determination of the
forces in members fe, fc and be is as shown in Fig. 5.15. When writing the
equations of equilibrium for a part on either side of the section, all the cut
members are assumed in tension and the forces are directed away from
the joints. Thus, whenever a negative sign for the force is obtained it

means that the member is in compression and the force acts towards the
joint.

o gl R ¢ P 2
g = \——' e
AN
e 1t
N
F3
a F3 :s d
15t b = € W
(a) (b)
Fig. 5.15

Consider the equilibrium of the part of the truss to the leftfof the
section — Fig. 5.15a.

c

4 +4 —6
F, :_.é——_lt.

sz:0:l.5><2—1><2ﬁF3x2

B —- 15 faq

Positive F’s correspond to tension and negative F’s to compression.

These values check with those obtained in Example 5.1 by the mcthod of
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joints. The part of the truss to the night of the section might have equally
been used. Referring to Fig. 5.15 b, the equations of equilibrium would
be as follows :
M. —0=1 x 2 — F x2
ML= 0 =1 o4 L2 B4 2 By D
1
5Y =0 —=45—2—1 1 F, x ——

2

These equations give results identical to those obtained previously.

5.9 Application of the method of force coefficients

Consider member ab of a truss which is connected to other members

at a and b as shown in Fig. 5.16.

+Y

‘:(Y -Ya)
:ab o _____Jj
I——-(xb-xa)—J

+ X

Fig. 5.16

Let L, and F,, be the length and the force in member ab. Now
imagine the forces at all joints to be resolved in the same directions x and
y. The components of F,, at a, parallel to the x and y axes are then,

X, — X —
I ol F, e
ab Lab

These components may be written as :

F F
= and  (y, — Ya) =2
]"ab Lab

(xb ¥ xa)

a

gy i T ;
The ratio —2 which is common to both components, is called the force

ab®
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coefficient of member ab and is denoted by f,,. Thus,

F
fab = —= and Fab = fab L.,

L

When the resolution of forces at ajoint is made, the forces in the members
are always assumed to be tensile and the terms, (x, — %), (Y, — ¥s)»
etc.; in the equations are considered positive or negative according to
whether they tend to move the joint in the positive or negative directions
of the x and y-axes.

As an example on the application of this method, the truss shown in
Fig. 5.7 and already solved by the method of joints, will be analysed.

Example 5.3 Find the forces in all the members of the truss shown in
Fig. 5.7 which is reproduced in Fig. 5.17 using the method of force
coeflicients,

it ) 2t 2t +y
1 9 f e I 2
2m 1it
i o
b c
"StL_ 2m _Je-2m I"SlZm_J

Fig. 5.17

Solution : Taking the co-ordinate axes positive in the directions shown
and starting from joint a the equilibrium equations are formed as follows :
Considering first the equation for the x-direction,

2f, =0 fz =10
and Fp =f3 L, =0
Considering now the equation for the y-direction,
15 +2f, =0 .=
and Fag=f“Lu=—3]‘X2=4l.5t.

Following the same procedure at every joint, the necessary equations
are formed and are best set out in a tabulated form as in Table 5.1.
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Joint | Equations Member f Length Force
26, =0 sk 3 0
a
2f,+15=0 “ag — ¥, 2 — 113
- 2L, - 2£/=10 g — 1, 2 —1l2
— 2 f—2 f;,—1=0 o (A 2.3 2P
i S - §OF. - 90, =0 b 13 2 1,
oL H2%, =0 bf [ Zae=tis
f 26, +2f, —2f,=0 fe ' 2 1
=26 =25-2-19 o = i, 2\/7 3./2]2
e |2fa—25=0 ed il o Jor lEa
g ot g B oL 2.
c 2fy 26, —26, =0 & —'f5 2 =l
2f_4+2f,+45=0 e —4L 2 — 3

Table 5.1

5.10 Graphical method — stress diagram

In the analysis of trusses by the method of joints, two unknown forces
were obtained from the two equations of equilibrium; XX = 0 and
TY = 0, applied to each joint. As has been shown in chapter 1, it is also
possible to find two unknown forces at each joint graphically by the use
of the force polygon for the forces meeting at the joint. The joints must
be considered in the same sequence as used in the method of joints, i.e.
the analysis could only be started at a joint where no more than two
unknown forces exist. Consider for example the simple truss shown in
Fig. 5.18. The known forces are the applied load at the apex and the
two reactions at the supports.

In the graphical method, it is convenient to use Bow’s notation to des-
cribe the forces. All spaces between the forces; applied loads, pre-calcula-
ted reactions and unknown member forces, are lettered and each force
is designated by the two letters corresponding to the spaces on its sides.
Thus referring to Fig. 5.18 and reading clockwise round the joints, the load
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Fig. 5.18
P at the apex is called load ab, the reaction at the left support is load ca,
and the reaction at the right support is load bc. Similarly, the force in

the horizontal member is force dc or force cd according to which end of

the member is being considered.

(a)

a id
c {(b)

2
: 5 Force cd
d b (C ) o"oa
& a
7.

Fig. 5.19
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The forces in the inclined members can be obtained by drawing a
triangle of forces for the forces meeting at the apex as shown in Fig. 5.19%a.
The foree in the horizontal member can be obtained either by drawing a
triagnle of forces for the forces meeting at the left or the right supports
— Figs. 5.19b and c.

The triangles of forces drawn for individual joints and shown in Figs.
5.19 2, b and ¢ can be combined to form a single diagram called a stress

diagram — Fig. 5.20.

The directions of the arrows in the truss diagram, which indicate the
action of the member forces on the joints, are obtained by considering
each joint to be the centre of a clock and the letters are read clockwise
round it. Thus, having drawn the stress diagram consider, say, the joint
at the left support. Reading clockwise round this joint, the inclined
member is ad. On the stress diagram, the direction from a to d is down.
ward to the left. Therefore, the arrow is placed in the truss diagram thus J
near the joint. The horizontal member is dc, and d to ¢ on the stress dia-
gram is a direction left to right so the arrow is placed thus —near the joint
The directions of the arrows in the other members are found in a similar

manner.
The principles described in the previous simple example can b
applied to simple trusses having any number of members.-

The general procedures of analysis are as follows :

(1) The external reactions are determined. This can be done graphi-
cally but it is usually more convenient to use the analytical method.

For cantilever trusses, this step may be done without.

(2) Using Bow’s notation, a force polvgon, for the external loads in-

cluding the reactions, is drawn.

(3) Starting with a terminal joint, where no more than two unknown
member forces meet, the force polygon for this joint is drawn. This is done
on the force diagram drawn in step (2).

4 — Going round the joints in a clockwise direction, the joint forces

are marked by arrows on the truss diagram, close to the joint.




—aloh

o —
._[
d C Pt
s
Truss diagram Stress diagram

Fig. 5.20

(5) These arrows are transferred to the other end of the member in
a reversed direction.

(6) A jointattheend of one of the members whose force has been
determined in step (3), and where no more than two other members meet
is considered next,

(7) The procedures are continue 1 until all the joints have been con-
sidered. The result is a complete stress diagram from which the magni-
tudes of the forces can be scaled, and a truss diagram with arrows at both
ends of all the members. A member with arrows thus ¢——» is in

compression and that with arrows thus — ¢— is in tension.

As an example to the application of these procedures, the truss in
Fig. 5.7, previously analysed by analytical met ods, will be analysed
graphically.

Solution : The notations used are as shown in Fig. 5.2 la. The stress
diagram drawn to scale 1.cm. = 1 t,, is shown in Fig. 5.21 b. The final
result is given i Table 5.2.. Positive signs indicate tension and negative
signs indicate compression.

Member bg cg dh hg ““hj* “jb ekl Siot ldsasdia if

Force 0 -15 -05 407 -05 0.5 +1.0 -2.1 -3.0 -1.0 414

Table 5.2
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1t 2t 2t
d ,l> e . ¥ h_|d
A A . :
‘ ng.g
c h N K f
g J . 1t
Y = ' e k
b a
1,5¢ 4.51
(a) (b)
f
a ’
Fig. 5.21

5.11 Ambiguous trusses

Sometimes difficulty arises in analysing trusses by the method of joints
alone or in drawing the stress diagram either because all the joints have
more than two members in which case the stress diagram cannot be dire-
ctly started, or it can be started but not continued for a similar reason as

that mentioned above.

7468 Xy =

! f

Fig. 5.22

In the truss shown in Fig. 5.22, for example, a direct solution cannot
be started since all the joints of the truss have more than two members.

In the truss shown in Fig. 5.23, the solution may be started by con-
sidering the equilibrium of joint a after the components of the reactions
have been determined. The next step will lead to either joint d or
joint e, at which three unkno vn member forces meet. If the analysis is
started at joint b, similar situatien will develop at joints i and k.




3t

Fig. 5.23

The usual manner of getting over the difficulty in such ambiguous
cases is to calculate first one of the member forces. This can be accom-
plished by the method of sections.

By passing section 1 - I through the truss shown in Fig. 5.22 as indica-
ted the force in the tie ab can ke calculated by taking moments of all the
forces to the left or to the right of the section about joint c. As a result; the
analysis can be started and, in this case, completed.

Similarly, by passing section 2 - 2 through the truss shown in Fig. 5.23 -
as indicated the force in member ek can be calculated by taking moments
of all the forces to the left or tc the right of the section about joint c. As
a result, joint e will have only two unknown forces which can be obtained
graphically in the vsual manner, and the solution for the rest of the member
forces is continued accordingly.

The procedure will be illustrated by a numerical example.

Example 5.5 Find the forces in all the members of the truss shown in
Fig. 5.24 b.

15¢ 3t "l= i.5 3t 1 3t 3t 1.5¢

|

3t
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Solution : The rzactions are found in the usual manner by considering

the equilibrium of the truss as a whole. Thus, L
XB = 3 t. ¢ B
Mo, =0=3 x3+3 3 +6+9 + 15 x 12 — Yy x 12
Ys = 6.75 t. T
ZY =9 =151 3 x 3 -+ 15— 6.5 — ¥u
Y, = 525 t. 1
Considering the equilibrium of the part to the left of section 1-1 shown
in Fig. 5.24 a, the force in member AB is found as follows :

3!4(; d}‘ e“”f 4 g
{ nfdo
P |h
J 75¢t
4 (]
6.7
(a) 2.
a b ¢
! ' —]d
k
By m ¢
4
n f 3
p
o 9
Al
(b)
Fig. 5.25
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EMei== Q8=:525" w-6—=1.5 y16.—=3 ¥ 3 —F 2 3

c

F = |- 45 &

Now member AB can be replaced by two equal tensile forces at joints
A and B, and the stress diagram may be drawn starting from either joint

A or joint B.

The stress diasram drawn to scale 1 cm. = 2 t. is shown in Fig. 5.25 b,
and the notations used are shown in Fig. 5.25a.  he final result is given

in Table 5.3.

Member bk kj dl lk em ml mj fo nj go on op pj ph

Forc= =3 =5 6 35 -6 =3 1.7 -3 -5 -3 =3 33 833 3.

Table 5.3

5.12 Amalysis of complex trusses

Since a complex truss does not satisfy the definition of simple trusses
including the ambiguous cases, the methods described in the previous

sections do not provide a direct solution of this type of trussss.

Complex trusses are usually solved by the substitute member method

which is sometimes referred to as Henneberg’s method. By replacing one

Fig. 526




or more members in a complex truss, it is possible to reduce it to a simple
truss that can be solved directly by the methods described earlier for the
analysis of simple trusses. Then, a correction may be applied later to

eliminate the effect of the substitute member or members.

The complex truss shown in Fig. 5.26 a, for example, may be reduced
to the simple truss shown in Fig. 5.26 b by replacing member bd by

member eb.

Let the forces in the members of the original truss be denoted by F,
and the forces in the members of the reduced simple truss by F,. If the
external loads are now removed and two equal and opposite unit forces
are applied at the joints at the ends of the removed member; joints d and
b as shown in Fig. 5.26 c, another set of member forces F, will be obtained.
If further the unit opposite forces at joints d and b are replaced by forces
of magnitude X as shown in Fig. 5.26 d, the set of forces in the reduced
simple truss will be F; X. The unknown factor X, which is the force in
the removed member db is found from the condition that the final force

in the substitute member eb must be zero. Thus,

Feb=Foeb'Jl_erbX=0

FO
fiom which, X = — =
F
eb

Once the force in member db is found, it may be treated as an external
load applied at joints d and b and the analysis completed by the methods
used earlier for simple trusses. Alternatively the forces in every member
of the original truss may be obtained by superimposing the forcesin
Figs. 5.26 b and d, or by applying the following relation for indivi ual
members,

F=F +FX

In some cases, it is necessary to introduce more than one substitute
member in order t> reduce a complex truss to a simple one. Since, how-
ever, the basic idea has been explained and complex trusses are seldoru
encountered in practice, no further space will be spared for a more
comprchensive study. For further discussion on the subject the student is

referred to “Timoshenko and Young, Theory ol structures™.
The method will be illustirated by a numerical example.

Example 5.6 Determine the forces in all the members of the complex

truss shown in Fig. 527 a, using Henneberg’s method.




Solution :

If member ef is temp rarily removed and a substitute
member bf is added as shown in Fig. 5.27 b, the details of the calculations

— e

will be as pres nted in Table 5.4.

3t 3t

(b)
1t 1t
\
/ -
(c)
Tig. 5.27
Member F, F, F=F,+ FX
ab | + 52 + 5/6 =
be g 1+ 2/3 oy
ad ol + 5/6 e
bd + 52 = 356 SE P T
cg iy 4 2/3 ==l
bg N 5 o of5is o
de =~ J5 + /53 AR e
fg — 8./55 + 4 /515 s W
ce —\/‘E *'2‘\/_2/3 +5\/—§
o | — 5./ — 5 +/ 26 Lo 2
ef 0 + 1 =y
bf + 9/ 710/10 + J1o/10 .0

Table 5.4
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The factor X has been obtained from the relation,

F 10 10
B e 10

|

5.13 Illustrative examples

The following examples illustrate the application of the various methods
to the analysis of several typ:s of statically determinate trusses. The student
is advised to solve the given problems independently and then check his
results against those given. Further, he will do good to solve the problems
by different methods and compare their relative ease when applied to

individual trusses.

Examples 5.7-5.14 Calculate the forces in all the members of the trusses
shown in Figs: 5.28-5.35 by the method of joints.

Fig. 5.30 Fig. 531




Solution 5.7 (Fig. 5.28) :

BN =07 5 L9 3% w2
14 + 6

Yb= 4 =5t-T
XY :0:7——-5——Ya
Y, =24

X =0=2—)(a

Xo— 92 e
Now resolving horizontally and vertically at each joint in turn,
Ata, F,+4+ 45F, —2=0
: 35-E k2 — 0

Fa=+ 43¢, F_=—10/3 .
At dye o= ps & o

Foe —7 =0
Fo = + 431, Fy = + 7 .
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Atc, F, x 4/5 + Fy x 4/5 + 103 x 45 =0
F_, x 3/5—F, x 35+ 103 x3/5—7=0

F,=+52¢t,F, =—356t
Ate, 52 %35 4+ F, =20
F,=—32¢«%

At b, this last joint provides a check on the results,
IX = 14/3 — 35/6 X 4/5 =0
T =5—35/6 x35—32=0

Solution 5.8 (Fig. 5.29) :
IM, =0=3x3+4+5%x64+1x944x12-Y x12

9+ 30 + 9 4 43
Y T 12 Sali]
Y =0=24+3+5+4+1+4+4—8—-Y,
Y, =711
Ata, Fnk+7:0
E. —0
}abZOSFak=_7t
1
1
Fkbx7—+2—7=0
7
Fkb:+5\/“§t,ij=—5t
— 1
Atb, F,—5.,/2x — —0=0
2
S — 1
F +5/2x — =0
~ 2
=" F 5 Fptes =5
1
Atj, Fy +FoxX—— +5=0
2
1
chx——5—§—3=0
2 —
ch=+2\/2t,F,h=—-—7t

Ath, FE. A+ 7—=20
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1 Bl |
Atc, FOF, x 85 S5l tony 7 w1 3w g
ST 2
1 2 1
chx—-——5+2\/2x—:-_=0
J2 V32
Fg = #hadn/agdt, Bae toke
& 1
Avg Ep b3 Tt Tig
g
bk 1
Fu+3/2x —+1=0
V2 |
Fpp=—4t,Fy = — 41
1
Atd, Fy X — 4 F, —4=0
2
1
Fg X —— —4 =0
V2 il
B =tk T8, Ed =4
1
Atf, Fux — —4 =0
iz
1 :
Fdfx___+Ffe+4=0
=
F,b =—8t
At e, t is last joint provides a check on the results,
XX —=0

Y =8—8 =0

S lution 5.9 (Fig. 5.3)) :
M :0:1.5><4+6x2——Yb><G

a
6 + 12

Yb= 6:3t.T
Y =0=6-—-3—Y,
Y, =3¢t 1

X =0:1.5HXB




R

Pl =
Ate, F, +15=0
F, =0
F,=0,F, =—15¢
1 1
Atﬁ', Feh X—:—|—F°f><——:_=0
52 2
1 1
FchX—-_HFerX —__+3=0
e i
g e e L T
1 et
Atihyi By shoBipus stemibobb Bl b Bixos—tramid)
2 J2
1 e 1
th X*_—-l.5\/2><'—_:0
2 i
E, = + 1.8/ 2t B, —=—45¢
1
At d: Fdf X ”_'_;— 4.5 = 0
V2
1
Fap X — + Egu =i
J2 :
Fye=+ 45 /2t ,Fy =—45¢t
25 1 L 1
AtE F, +45./7x — =458 /2 —a1L0=10
] i
1 1
Fg X — + Fex — —6 =120
5 2 =
Fpo— ot
At b, this last joint provides a check on the results,
1
IX=3—-15/2x ——15=0
]
= 1
EY—3—4.5+1.5\/2><:/—:_=0
2

Solution 5.10 (Fig. 5.31) :
Resolving the resultant of the inclined forces horizontally and

vertically then,
IM, = 0 = 48 x 24 + 36 x 1.8 — Y, x'96
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Y, = 1875t ¢

ZY =0 = 48 — 1.875 — Y,
¥, — 29355 ¢

IX =0=X, — 36

2= Al

a

Generally, difficulty arises in such a truss at either joints d or f if the
analysis is started at joint a, or at joints h or k if the analysis is started at
joint b, due“to the presence of three anknown member forces. However,
by inspection, it could be seen that members ij, jk, kh, hj and jc have zero
forces for the given case of loading.

Consequently, no difficulty will arise in this particular casc if the
analysis is started at joint b.

Atbh, F x 454 E,.— 0
Foe X 3/5 4 1.875°=10
P — 312t B, — L 25¢
Ata, Fgu 4+ F, X 45+ 1 x35—36=0
Fie X 35 —1 x 4/5 4 2925 = 0
E;,=—354t ,F = 4 583 t.
Atd, Fj X 054 — Fy x 06 + 25 — 583 = 0
Fse X 084 + F;, x 0.8 =0

Fie = +28t. , Fe o 3 ¢,
At f, resolving along member ac and normal to it,
Fo + F, x 0935 + 354 = 0
Et 56035 15020 35t 0
Fp, = + 286t ,F, = —62t¢
At g. resolving along member ac and normal to it,
L. =68 =09
B 2 =0
E. —=—2% ,F..— — 68¢
Ate. F, X 054 —2.85 x 054 —2.86 x 0935 + 2 x 06 =0
‘ F.. = -+ 568

Solution 5.11 (Fig. 5.32) :
IM,=0=9x4+4x3—Y, x38

Y, =6t T
Y -=0=9—6ﬁYa
¥ =3ct

IX =0=4-X
X, = 4t
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At a,

At c,

At b,

At f,

At e,

ae

bry

ac

cd

Fc d
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—4=0
+3=0
F, —4t,F_=—3
X 45 + Fa X 45 +4 =0
X 35 —F,. X 35+ 3=0
F,—— 56F, —0
=0
b 6=
F,, =0, F,=—6t

X 45 + F, x 45 =0

X 35 —F, x 3/5+6=0
Fg=—5t6,F =435

X 45 — 4 =0

X 35 4 F,; =0

Foq—=s—3 L

e

At d, this last joint provides a check on the results,

X
ZY

=5 x 45—5x 45 =0
=34+5x%x35+5x35—9=0

Solution 5.12 (Fig. 5.33) :

From symmetry, Y, = Y, =

At a,

At c,

ad

ad

ce

ce

5 8.8
2Eo0F2 gt

2 2 = 1
X kB TG T v
S5 VB VAT

1 3 e 3
X — —Fyx — —5+4,/T0x — =0
AT I8 J10
Fog= + 5+ 1341 ,F, =—13./5 4 ¢

I
o
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2 2
Atd, Fpe X — + F,q —5x45—5/18 x — =0
J13 —a 1B
3 o 3
Fao X — 45418 % —&_ 5% gpmyg
V13" 7 JI5
Be=— /B 0= 4 74

Since the truss and the loads are symmetrical there is no need to con-
sider further joints.

Solution 5.13 (Fig. 5.34) :
IM,=0=2 x3+4+7x2—Y, x4
Y, _ 6 + 14

N =07 55

. | 1
P e 2 BT = 4T = 0
2 9
Fed i —7_J?/2 t. ,Fec = — 7\/3!2 L
2 1
Atc, FcbX‘l-/f)—-—-——X—:_Jg-Q:G
J2
Bda® . x1
Foo X354+ F, +—x —=0
<2
Fo, = + 158¢t ,F, = — 378 ¢
BZ T —1
Atd, F,y X 45— — x ——=20
e AT
ZJE— 1
B =38 - o+ Ey 0
2 o2
F, = + 358t ,Fy,=— 498 t.
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Ata, F, + 358 % 45 —2 =0
E, = =32t
At b, this last joint provides a check on the results,
IX = 158 x 4/5 — 32 =0
SY =5 + 158 x 3/5 — 49/8 = 0

Solution 5.14 (Fig. 5.35) :
EIM=0=2 x4+ Y, x2

Y, = —82 =4t}
Y =0=2+4—Y,
Y, =6t 1 '
IX =0=X,, X,=0
By inspection, members ab, bc, cd, cf, fg. gh, kj and je have zero forces.
2
Ati, F, 4+ Fp x — =10
V5
1
Fp X — —2=0
V5
F, = +2J5¢t,F =—4t
1 2
Arhl Fogt-—— -tos Bt -
ST 5
1 1
B: X — + B 2. 05w 0
2 5
E.— +4J26,H =—6¢
At B A 2><J-=0
£
1
B/ A 2 x —— =1
e
F, = — 4t ,Fy =44t
Ate N B £ 6 =10
E o =—561

It is to be noted that in calculating the member forces, no use has been
made of the calculated reactions. This is generally true for cantilever
trusses if the analysis is started from the free end.
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Examples 5.15 = 5.20 Find the forces in the marked members of the
trusses shown in Figs, 5.36-5.41 using the method of sections.

2t 2t 2t 2t 26 2t

% T8 (I 5 i N5 g8 Bt
4m =B
i b

L_ 4x3=12 m _,,| : L_‘O.L_lgxl.:iﬁm___.'

Fig. 5.36 Fig- 5_37
05t 1t 1t 1t 1t 1t 05¢ o "k 2'_ 2t 1t
d = L 7 "_31
== & m
—S;r—n / g >t e‘t‘
A m 2 c ! :
kb ex2:12m if!t i |
4=8m . 3x4212 M
Fig. 5.38 Fig. 5.39
10¢ 10t
TR
j f
. 4t s
h_y
h i }
: l am
g i el = ¥
6ty d f 3
1
a = Gt %
L ,4_3
bnssn sl siamm 2 i g L3 pmy

Fig. 5.40 Fig. 5.41
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. Solution 5.15 (Fig. 5.36) :

M, —

a

XY

X —

0=12x3+12x6+12x9+06x12—Y, x12

¥ 2 SGare + 108 + 12 w5y (1
12

0=06+12 +12 406 —24—-Y,

Y, =24t ¢

0 ="X, X — 0

Consider section a-a as shown in Fig. 5.42

For member de, take moments about point c.

IM, =

0= (24— 0B X 65128327 = 8
B, = —24 ¢

e

For member fc, take moments about point d.

M, =

0= (24—06) x 3 + F, x 173
F. = 4+ 3.12 t.

For member dc take moments about point a.

M, =

0 =12 33+ F, x &
F,, =—12¢t

Solution 5.16 (Fig. 5.37) :

IM, =

a

IY =

X =

0=4x6+2(16+12+8+4—4— Y, X 16
Y, —96/16 — 6 T

0=86x2 —-6-=1Y,
Y,=6t 1
0=4—X,
X, =4t &
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2t 2t

~d i 4
4 ¢ : ; b
d (a) (b) X 6t

Fig. 5.43

Consider section a-a_as shown in Fig. 543 a.
For member ad, take moments about point k.
2
IM =0=2 x4 —4x6+4+F, x — x6
I7
Fau=+ 45/3t
For member kd, take moments about point h.

IM, = 0=6x 12 +4x6—2 x16—2 x 12— F,, x _l_x 12
JT
Fuu = + 10/72/3 t.
For member ie, consider section b-b shown in Fig. 5.43 b,
XY =0=6—2—2 -2 F,
F,. =0

le

Solution 5.17 (Fig. 5.38) :
= 0= 05 x 12+ 1(10+8+644F2)—Y, % 17

6 4 30
sz--—-Jq—Q——=3t.T
IV —0=6—3=3¢1

IM;=0=3X6—05x6—1x4—1x2—X, x3

18 — 3 — 4 —
Xa= 3 2:3[.—+

X —5 %

=0
Xy = 3 t ¢
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3t

3t

(a) (b)
Fig. 5.44

Consider section a-a as shown in Fig. 5.44 a.
For member ef, take moments about point c.
IM,=0=3 X6—05x6—3 x 3+ F,; x 4
Foe= — 15t
Consider section b-b as shown in Fig. 5.44 b.
For member fh, take moments about point g.
EM, =0 =3x4—05 Xx4—3 X212 FF, xI
Fp, = — 2t
For member eg, take moments about point f.

2
IM=0=3xXx2—-05x%x2—3x3—-F, x—.,x 2

ch:—\/_B_t. Ye?
Solution 5.18 (Fig. 5.39) :
IM,=0=1x124+2x8+4+2x4+2x6—3x8-Y, xI2
Y, = 2412 =21+ 1
Y =0=3+1424+24+1—2-Y,
Y,=7t 1
X =0=2—X, Xy = 2 t. ¢—

b\‘ 2t 1t l}
1 y I

Fic 2t
% G
\ A
b 2t
(a) (b) (c)
Fig. 5.45
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For member cd, consider section a-a as shown in Fig 5.45 a, and take

moments about point j.

IM =0 =2 x4 —1x4—2x6—Fy X6
Fgy=—28/6=—43t

For member fc, consider section b-b as shown in Fig. 5.45 b, and resolve

at joint f.
IX =0 =F; x 45 + F, x 45
Fi + Fr. = 0

By considering the equilibrium of the partof the truss to the right of
section b-b,
Y =0=2—1—2+4 Fy x 3/5—F, x 3/5
3,"5 Fﬁ e 3/5 ch = 1 — 0
From these two equations,
Fﬁ = 4 5/6 . and ch = — 5/6 L.
For member ig, consider the equilibrium of joint i shown in Fig. 5.45 c.
5Y — 02 56 + 36 | E
Fig = 2-5 i.
Solution 5.19 (Fig. 5.40) :
IM,=0=%6 x 18 —Y, X 6

Y, =181t ¢
LY =0=6—18—Y,
¥, =]

IM.=0=12 x 3 —X x©6

X, = 6 t. &

IX =0 =6F— X,

X, =6t —
For member ce, consider section a-a as shown in Fig. 5.46 a, and take
moments about point d.
IMy=0= (6 —6) 12 + 12 x 6 +F, x®6

F,= — 121

ce
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b
/\ FbC Fbe
6t
b
= | 1 181t

-
i
/P 6t
(b) (c)
Fig. 5.46

For member ef, consider section b-b as shown in Fig. 5.46 b and take
moments about point i.

IMi=0=F,x r
Fo= 0

Member ed cannot be obtained directly. It may be found by first |

calculating the force in member be and then resolving vertically at joint e.

With reference to Fig. 5.46 c,

1
X =0=6—F,, x ——
i
2

BN == B e
V5

Fp, = — 30 t.
By considering the equilibrium of point e and noting that E..—4

Ei=F, — — 30 ¢

Solution 5.20 (Fig. 5.41) :
M, =0=4(44+8+4+12) + 10 x 6 — Y, x 6

Y, =26t T
BY —0— 100 — 25—
6 el il

X — 4 4 L K
X, = 12t «-
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6t 26t

(b)

Fig. 5.47

For member eh, consider section a-a as shown in Fig. 547 a and take

moments about point d.
IMy=0=26 x 6 —12 x4 + F, x 6

F, = —18¢t

Consider section b-b as shown in Fig. 5.47 b.

Resolving vertically at joint f
LY = 0 =F, x 4/5 + F;, X 4/5

Considering the equilibriym of the part of the truss below section b-b,

IK — 0 = Fy % 3/5 = F; X357 5

From these two equations,
Fo == 4+ 20/3 .

The force in member ih may be obtained by resolving the forces at

joint h. Thus,
IX =0 = F, + 20/3 x 3/5
Fih o e ‘4‘ t.
Exzamples 5.21-5.23 Calculate the forcesin all the members of the trusses

shown in Figs. 5.30, 5.33 and 5.34 by the method of force coefficients.

Solation : The solutiom of problms 5.21-5.23 are presented in Tables

5.5-5.7 respectively.
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Solution 5.21 (Fig. 5.30) :
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Joint Equations Member f Length Force
a 2f,=0 af 0 12 0
2£. £8 =20 ae. —32 .2 — 3
B2 L, + 15 =10 ch —3/4 2 — 3/2
2f. =0 ce 0-; 52 0
eEOER L ORE — eh —3/4 2/7 —3./72
SIS e of " B 204 *3,/7)
h 4f, +4f,—2f —2f —0hd —98 4 <& g
1f, L2t —% hb = 33 40 “3 /5o
£ 4f, P4, —2F B9 — 0.4 98" 4/2  9./22
—4fy—2f, +6=20 fbo —3/4 4 =3
b LA E s bh 38 4/2  3./72
S B g D bd —9/8 4 — 9/2
d 46, + 46 —49
4f, +4f, =0
Table 5.5

Note that the last two equations provide a check on the results since
they are satisfied when the values of the force coefficients already found are
substituted in them.

Solution 5.22 (Fig. 5.33) :

Joint Equations Member f Length Force
a faf, Be @ ad 1 5 5
S LG F 9 =S car D 2./10 — 4./1B

¢ 6f, +2f4—21f, =0 ce ~=13)12 .3/5 — 13./5/4
8L, —3FBF S50 o 5/4 J13  5/18j4
d 8fyt4f, —2f, 4+f-=0 dg T 7

Bif nlcB a3, — 0 de

Y8 .2 /988 /T3

Table 5.6
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Solution 5.23 (Fig. 5.34):

Joint Equations Member f Length Force
e@ 21, -2 =0 PSS TR B e
of, + BESL 7 =80 ec LA B24/0 =TI
dt2f, + 4#f,;=0 ad 7/8 5 35/8
¥f, - Bf S3F =0 hd a3 49/8
b £546, oL 8 fnsk 5 =0 be 3/8 5 15/8
4f, +4f, =0 ba o . —4/8 4 — 3/2
et - e i0p @A g 35/8
Sfrt3f. F2—=0 ac —3724 3 —37/8
c 2f, +4f. +2=0
—gFEYL $f L a1, =0

Table 5.7

Examples 5.24-5.30 Find graphically the forces in all the members of
the trusses shown in Figs. 5.37 and 5.48-5.53.

4t 4t 4t
St i - J{ & J -
5 o
e a X Ab
e M o batzidem
Fig. 5.48 Fig. 5.49
2t 2t 2t
L ey v,
S
7\ 2""/\/\/\b
2 AN
N\/ T “i
12
Fasy = 2
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=

|

2m
} D
Llrw o vl zsmos)]

Solution 5.24 (Fig. 5.37) :

Having found the reactions (Example 5.16), and lettering the forces
as shown in Fig. 5.54 a, the stress diagram can be drawn as shown in Fig.
5.54 b. The magnitude of the forces can be scaled from the stress diagram,
while their type can be noted from the arrows marked on Fig. 5.54 a.

e VRN U SRMERET BN

d e ¢ f q h b 4t
k n Bc, F t )
[+ S y
cW 1 fm N2 N T3S Wy J G
4t g
b t
6t £ 2
q
Force Scale : ?
lcm = 2t
(a) (b)
Fig. 554
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Solution 5.25 (Fig. 5.48) :

The reactions may be found by inspection and are as indicated in
Fig. 5.55 a. Since both the truss and loading are symmetrical, there is no
need to draw a complete stress diagram. However, a complete stress
diagram is shown in Fig. 5.55 b, as this provides a check on the results.

3t 3t 3t J )
b ] L {m o Kle :
¥ ! k a Bl n i P
O - .~ Fat
- & X g9
a h g L f h
| Y _ K / s
6t 1t TE o 1t 6t a,d,
m
Force Scale.
tecm =2t o} e
{a) (b)
Fig. 5.55

Solution 5.26 (Fig. 5.49) :

M. —0 =2 x12.4+4x 10 L4 x6F4x2L3 <2 ¥ xI2
¥, — 85 ¢ 1

SV =0 =9 3.4 L4 4 L9 -85V,
Y.:7.5t.‘|‘

IX =0=3-—X,
X, =3t ¢

The stress diagram corresponding to the lettering of Fiz. 5.56 a is
shown in Fig. 5.56 b.

Solution 5.27 (Fig. 5.50) :

It is more convenient in this example to find the reactions graphically.
The vertical reaction at the right support is extended to intersect the
applied load at point x. The direction of the reaction at the:left support
is then found by joining x to the latter as shown in Fig. 5.57 a. Having
found the reactions, the stress diagram is drawn in the usual manner and
is as shown in Fig. 5.57 b.
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0
q ITI aos

5 g

Force Scale: g
1cm= 2t
(a) (b) h
{
Fig. 5.56

4t 2 12 St Force Scale -

Xeme= 2t
(a) (b)

Fig. 5.57

Solution 5.28 (Fig. 5.51) :
M. = 0=27104+8+6+4-+2+6 4 228y S

5 =7
B s e
Y, = dup

FX. =0 =12 x 3 — X
X, = 6 t. ¢
Having found the reactions, and lettering the forces as shown in Fig.
5.58 a, the stress diagram can be drawn as shown in Fig. 5.58 b.




2t 2t 2t
el
r (s 5 f

u p &S Z Ne—
Rt L/ zla
2t < 3
£l /w,-

6t €| g

Force Scale: 9 .“m

(a) e (b)

Fig. 5.58

Solution 5.29 (Fig. 5.52) :
IM =0 3y 5 ¥ 9
Yy — 52 =75t 1
ZY =0=3+4+6—175—Y,
Y. =549

XK ==X, , X0

The stress diagram and the type of the member forces are shown in
Fig. 5.59.

=00 O

Force Scale:
lem= 2t

Fig. 5.39
It should be noted that, as for all cantilever trusses, the stress diagram
could be drawn without calculating the rcactions.
Solution 5.30 (Fig. 5.53) :
IM,=0=2x6+4+6 x1+4+6 x3— Y, x4
Yb:36/4=9t.T




* m
WA NN I - =
o)
25t VSt &25: l S e
L_.r.xt.-lsm_..l bxb = 24 m —
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ZY =0=6+6—9—Y,
Y'a=-3t.‘[‘

X, = 2 te—

The stress diagram and the type of the member forces are shown in Fig.
3.60. Again, it should be noted that the stress diagram in this case could
be drawn without calculating the reactions.

lem= 2t

(b)

Example 5.31 = 5.34 Draw the stress diagrams for the trusses shown in
Figs. 5.61 - 5.63 and Fig. 5.31.

g h 2t 2t 2t 2t 2t
a v 4 \l o
C e _3{
3

Fig. 5.61 Fig. 5.62
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1.5t 3t 15t l

S

4

e ' L
e [

Fig. 5.63

Solution 5.31 (Fig. 5.61) :
From symmetry, Y, = Y, = 5t T

In this case, the stress diagram can be started at either joints a or b.
However difficulty will arise at joints c and d or e and f. A forcein one of
the members, taken for convenience as member gh is computed by the
method of sections, and theh the stress diagram is drawn in the usual

manner.

o

Fig. 5.64
Referring ta Fig 5.64,
IM, =0 =5 X 8—25 x4+ F x 4
F =30/4=—75+t

As both the truss and loading are symmetrical, one. half of the stress
diagram is enough. This is shown in Fig. 5.65:



75t b

£ d
a
c
Force Scale 1cm:z 2t
(a) ' (b)
Fig. 5.65
Solution 5.32 (Fig. 5.62) :
From symmetry, Y, = Y, = 5t §
Consider section a-a as shown in Fig. 5.66.
2t 2t a
_,C7
5t S.6
)]
F .a\(
Fig. 5.66
IM,=0=5x12—-2(8 1+ 4 —F x 56
F = 36/5.6 = 6.42 t.
20 L2 2t 2t
b c d & f g b

htt x ‘k
sF gl 5t i ¢
a a J [ \
K W?r d

Force Scale:
Y em= 21t

Fig. 5.67

The stress diagram for half the truss and the type of member forces
are shown in Fig. 5.67.
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Solution 5.33 (Fig. 5.63) :
From symmetry, Y, = Y, = 6 t._T

Consider section a-a as shown in Fig. 5.68.

3t

Fig. 5.68

IM, =0 =6 x3—3.x3—15x6—Fx 4
F =0
Now that the force F has been found, the stress diagram can be

started at joint a. For symmetry, the stress diagram for half the truss only
is given. This is shown in Fig. 5.69.

b
d
e
c
Force Scale: 9 P
lem = 2¢
a
Fig. 5.69

Solution 5.34 (Fig. 5.31) :

In general, the stress diagram for the given truss cannot be completed
without calculating one of the member forces. However, for the particu-
lar case of loading considered it could be seen that members ij, ik, kh, hi
and jc have zero forces. Thus, no difficulty in drawing the stress
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diagram will arise if it is started at joint b.

The reactions having already been calculated, the stress diagram will
be as shown in Fig. 5.70.

= > — =

Force Scale

1.375t1 om0y

Fig. 5.70

Example 5.35 Calculate the forces in all the members of the complex
truss shown in Fig. 5.71.

10.5 =

3
o

%

w
3

a b

L

Fig. 5.71

15m

-

Solution 5.35 :
Member ef is removed and a substitute member ab is added as
shown in Fig. 5.72. The details of the calculations are listed in Table 58

e
c d c%d
d b a b
W
5t f 5t f

10t

Fig. 5.72
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Member F, F, it
ac, bd 0 — 7/2 — 35
ce, de 0 — /372 - SB5 . HT
af, bf e 8 E e IR 0
be, ad 3735/ 9 80 3
ef 0 = + 10
ab = 10 Fd 0
Table 5.8

The factor X is found from the condition that the final force in
the substitute member ab should be zero. Thus,

xz_(f_d)
FI ab

=21
1
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EXAMPLES TO BE WORKED OUT

(1) - (21) Find graphically the forces in all the members of the trusses
shown in Figs. 5.73-5.93.
Check analytically the forces in the marked members.

1 e
'2" 2mi2m :
1t 2t l__{.
.;.t 1"t 3L L
Jae Sam >t 5
L__-l-xZ:Bm_..I l.._—— g m —’—l
Fig.-5.73 Fig. 5.74

im H i
1m_ f
m
2m l 3
Z'm m
e R
2m 5m
Vs ~
._JZ lemL_ L.Sm,!‘_iim_,.l
Fig. 5.75 Fig. 5.76
2t 2t

l 2t 2t 2t 2% |
+_.L
18my ///T\\\\5>J TN yom
1.8m I j 1.8 m

l_‘_-_ioxB:.lZm__,_l L 4x3:212m __l_r

Fig. 5.77 Fig. 5.78
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2t 2t

074"

i TSN l¢x3-12m——L3»—|
Fig. 5.81
e o

104

«' 3 | 6m_|

Fig. 5.83

2t 4t 4t 4t 4t & 4 4t 2t

T— o
4.5
5 =k

= 8x15=z12m

Fig. 5.85

15t 3¢ a3t 3t 15t

i 2
——
2
e
P t4x&=z16m——
Fig. 5.80
2t 2t 2t

1

E s

J 3 a8 12m ] 3 L_

Fig. 5.84

1t — —'1
-1.5m

25m
s V3¢ "3t Y3t J3t \’3?,}:I

[=—— 6ix2'5 155 m

Fig. 5.86
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1.51¢ 1.5it 2t 2t 2t 2t
2t 1 1512 4 ¥
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Fig. 5.87 Fig. 5.88
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Fig. 5.89
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5t

T & e
2m
sl AR [t _Q}'

b Sxatem ] Lotm JLo2m

Fig. 5.92 Fig. 5.93

(22) , (23) Calculate the forces in all the members of each of the two
complex trusses shown in Figs. 5.94, 5.95.

¥

S - SR |
3t 3t - 1.5
5t
1t 1t { : _f
m
—

2m \ i
A 0
fe—tim Ll.rn._-;?- { ”‘—3"‘ - 3 ‘f

5
Fig. 5.94 Fig. 5.95
(24) , (26) Find the forces in each of the truss members and draw the

N.F., S.F. and B.M.Ds. of the columns in each of the sheds shown in
Figs. 5.96-5.100. :

05t

1.51 1t
1t 2t 3 it

It I
}_O.St 1t 2m Gt
2m ‘ ,}
hor 4m
hie P | L

Lgx1-5=3 I 3’“‘5:!"5 lé 3x1.5= 4-5__.'

Fig. 596 Fig. 5.97
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CHAPTER 6

INFLUENCE LINES FOR STATICALLY DETERMINATE
STRUCTURES

6.1 Introduction

In chapters 2 - 5, it has been shown how to find the values of various
load functions in statically determinate structures. By a load functioh,
it is meant any function that changes with the position of the load. A
reaction at a support, shearing force, bending moment and thrust at a
section of a beam or a frame, and the force in a member of a truss are ex-
amples of the load functions. All the structures considered were subje-
cted to fixed or dead loads. In practice, however, structures may be sub-
Jjected to moving loads in addition to the dead loads which are always
acting. To design such structures, it is necessary to find out the biggest.
effect that may be produced by the live loads on the warious load
functions. This can be done by :

(1) Determination of the position of the moving loads which will
give the largest values of the load functions that may govern the design.

(2) Calculation of the values of the load functions required. These
may be found by inspection for simple beams under simple cases of load-
ing. However, for other types of structures and for complicated live load
systems, the process is somewhat complicated so that, in such cases, influ-
ence lines are used.

6.2 Definition

An influence line for a load function is a curve whose ordinate at any
point equals the value of this load function due to a unit load, say 1 t., act-
ing. at that point.

Fig. 6.1 shows the influence lines for the bending moment and shear-
ing force at section c. By definition, ordinate m, is the value of the bending
momerit at section ¢ when a unit load is at section . Similarly, ordinate
q, is the value of the shearing force at section ¢ when the unit load is at 1.
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Fig. 6.1

It is essential to understand the difference between the infiuence lines
for shear or moment at a section in a beam and the shearing force and
bending moment diagrams for the beam. A shear, or moment, diagram
is drawn for a condition in which all the loads are fixed in position on the
structure, and it gives the values of the shear, or moment, at all the
sections of the structure for the particular loading position considered.
On the other hand, an influence line for shear, or moment, at a section
is drawn when the loading consists of a unit load moving across the struc-
ture, and gives the value of the shear, or moment, at one particular point

for various :positions of the unit load on the structure.

6.3 Properties of the influence lines

Since the ordinate of an influence line at a section equals the value of
a particular function for which the influence line is constructed when a
unit load is placed at that section, the following general rules hold :

(1) The value of a function due to a single concentrated load equals
the product of the load and the ordinate of the influence line of that func-
tion at the point of application of the load. Further, the total value of a
function. due to a number of concentrated loads is the sum of the products
of each load and the ordinate of the influence line at the position of the
load. This follows from the principle of superposition.
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Thus, referring to Fig. 6.2, the moment at ¢ due to the shown load
system is given by :
M, = P, m; + P,m, 4 P, m,

Similarly, the shearing force at c is given by :

Qc = qul + PZQZ_P3 q,

P_pp

1 c
ILL Mc
m md m
3+
q2
q3 = fhy
2
Fig. 6.2

(2) In order to obtain the maximum value of a function, due to a
single concentrated load, the load should be placed at the section where
the ordinate of the influence line for that function is a maximum. It is
obvious that if the maximum positive value of a function is required, the
load should be placed at the point where the ordinate of the influence line
has its maximum positive value. On the other hand, if the maximum
negative value is required, the load should be placed at the point where
the ordinate of the influence line has its maximum negative value.

Thus, referring to Fig. 6.3, the moment at point ¢ due to a single con-
centrated load P is a maximum when P is at c. Similarly, the shearing
force at c has its maximum positive value when the load P is just to the
right of ¢, and its' maximum negative value when P is just to the left of c.

(3) The value of a load function due to uniformly distributed load
is equal to the product of the load intensity and the net area, under the
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influence line of the considered function, that corresponds to the loaded

part.
This may be easily proved with reference to Fig. 6.4.
wt/im
EY bl
fq :
=
f Eiae

[, Jex

fe— & —

Fig. 6.4

Let f, f, be the influence line of some load function F for a part of
a structure loaded along part ab as shown. The part of the uniform load
applied in distance dx may be considered as a concentrated load of magn-
itude wdx, and from rule (1), the value of the function due to this
elemental concentrated load is given by :
dF = wdx f
The total value of the function F due to the shown load is then obtained

by integrating dF between x = 0 and x = a.

Thus, F=]'wdxf=w}fdx
(4] o

— w x area under the influence line in part ab.
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(4) To obtain the "Imaximum value of a load function due to a uni-
formly distributed live load, the load should be placed so as to cover the
part of the structure for which the ordinates of the influence line have
similar sign as that of the function under consideration.

To illustrate the application of rules (3) and (4), consider the simple
beam shown in Fig. 6.5 which is subjected to a uniformly distributed live
load longer than the span of intensity 2 t./m.

a c D
/ ]
10m
0.6
.f_
—J0.4 ILQc
Fig. 6.5

For maximum positive Q . the load should cover the part bc. Then,

max. positive Q) . = 2 (0—622-<—-§) = 3.6it

For maximum negative Q _ the load should cover the part ac. Then,

max. negative Q = 2 (:——MQ—X%) = — 16t

If the load covers the entire length of the beam, the shear at ¢ will be
given by :

06 x 6 04 x4 o
2 2

Qc=2(

6.4 Extreme values

On designing any part of a structure, it is necessary to determine the
greatest possible values; maximum positive and maximum negative, of
various load functions due to combinations of the dead load which is always
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acting, and the live loads placed in such a way so as to produce maxi-
mum effects. The values of the load functions resulting from these com-
binations are called the extreme values of ' these functions. The extreme
values of a load function, therefore, define upper and lower limits of the
range within which the load function considered may vary.

Referring to the simple beam shown in Fig. 6.5, if it carries a unifor-
mly distributed dead load of 1 t./m in addition toa uniformly distributed

live load of 2 t./m, the extreme values of the shear at section ¢ will be
found as follows :

Q. (due to D.L.) = 1 (0'6 2X L. 0'4;4) =1t

max. positive Q_ (due to L.L) — 2 ( 9'—6-;‘—6 ) =6 ¢

max. negative Q. (due toL.L.) = 2 (——02—):}-) = — 16t

The extreme values for the shearing force at ¢ are thus given by :

max. positive Q. = 1 + 3.6 = 4.6 t.

max. negative Q. =1 — 1.6 = — 06 t.

6.5 Construction of influence lines for simply supported beams

Consider a unit load crossing a simply supported beam as shown in
Fig. 6.6 a. For the load at a distance x from a, the reactions are given

by :

Tt
N e
L L
It is noted that the variation of both Y, and Y, is linear with x. At
x=0,Y, =landatx =L, Y, = 0. Similarly, Y, = 1atx = L and
Yy, =-0.atx = 0! The influence Yines for the reactions at: -a and b are

therefore as shown in Figs. 6.6 b and c. The positive sign indicates that
the reactions are upward. 3
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Fig. 6.6

To construct the influence line for the shearing force at any given
section, consider section c at distance a from the right suport as shown in
Fig. 6.6a As the load moves from a to c, i.e. to the left of c, the shearing
force at c is negative and is equal to the reaction at b, i.e. Q.= —x/LAs
the load crosses c, the shearing force is no longer equal to the reaction at
b but to (1 — Y,), or more conveniently, to Y,. Thus as the unit load
moves from c to b, i.e. to the right of c, the shearing force at c is positive
and is equal to the reaction at a, i.e. Q.=+ (L —x)/L The influence
line for the shearing force at c is thus as shown in Fig. 6.6, d. The critical
ordinates at ¢ are readily obtainable from similar triangles.
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To construct the influence line for the bending moment at any given
section, consider section ¢ shown in Fig. 6.6 a. As the load moves to the
right of ¢ the bending moment at c-is positive and equal to Y, (L — a),

or M = g_L_L—._x) (L — a). As the load moves to the left of c, the

- e X
bending moment at c is positive and equal to Y, X a, or M, = — X a

The influence line for the bending moment at c is thus as shown in Fig.
6.6 e. The maximum ordinate at c can be calculated either from similar
triangles or from the first principles due to the action of a load of 1 t. acting

a (L — a)

at ¢, M, =
L

c

It should be noticed that the influence lines of all the load functions
considered are linear functions of the distance x. This is characteristic of
all statically determinate structures. Therefore, in order to construct
the influence line for any load function of any staticaliy determinate
structure only main ordinates are calculated and then connected by
straight lines to form the required influence line. For instance, for the
influence line for the reaction Y,, the unit load is first placed at a and
then at b. When the load is in the former position, Y, = 1 and when it
is in the latter position, Y, = 0. After obtaining these main ordinates, a
straight line is drawn between them to form the influence line shown in
Fig. 6.6 b. Further, it is often more convenient in computing the ordin-
ates of the influence lines to work from the forces on the side of the section
which is away from the unit moving load.

6.6 Maximum S.F. and B.M. at a given section in a simple beam

When a simple beam is subjected to a single concentrated load or a
uniformly distributed live load longer than the span, the position of the
load to give maximum value of shearing force and bending moment at a
given section can be easily found with the aid of influence lines by the
application of the rules giyen in section 6.3. There are another two
important cases of loading that need to be considered. These are :
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(1) Uniformly distributed load shorter than the span.

‘From the influence line for the shearing force at section ¢ shown in
Fig. 6.7 b, it can be seen that the maximum positive shearing force at ¢
occurs when the head of the load is at ¢ and the load covers the part of the
span to the right of the section as shown in Fig. 6.7 ¢, and the maximum
negative value occurs when the end of the load is at ¢ and the load covers
the part of the span to the left of the section as shown in Fig. 6.7 d.

d c D

(a)
o) h ——— 12 —]
L
1LQ¢ 2, e
b
=L (b)
LT (c)
— a —}
I 0 (d)
8 .
ILMc 5
w +
()

EEEEEEEE]
foox 224
Fig. 6.7

From consideration of the influence line for the bending moment at
c shown in Fig. 6.7 ¢, it is obvious that the load should be placed
as shown in Fig. 6.7 f covering a part of the span on either side of c. It
can be proved that for maximum moment at section c the section should
divide the load in the same ratio as it divides the span. Thus referring to
Fig. 6.7 f, the maximum moment occurs at ¢ when:

x —_—
[] = ["

<
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(2) Series of corcentrated loads at fixed distances apart.

When a series of concentrated loads crosses a span the maximum

positive shearing force at a given section ¢ will generally occur when the
load at the head of the series is just to the right of ¢ and the rest of the loads

are all to its right as shown in Fig. 6.8 c. Similarly, the maximum nega-

tive shearing force will occur when the end load is at ¢ and the rest of the
loads are all to the left of the section as shown in Fig. 6.8 d.

1LQc ¥

a8 (4 b
(a)
Piaoor o dgyiel e do 12 24

L —_—

Py l' ng ng 4Pz.

IL.Mc

_'_

P!
ream 1P

o

F’11 f’z fa lpt.

Fig. 6.8

(b)

NP A

(d)

(e)

(f)

While this may be generally true, it is possible sometimes, particularly

when the first load or loads are light compared to the loads that follow,

to have maximum values when the first load or loads have actually pas-

sed the section. In such cases, the values of the shearing force for
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the various possible load positions may be calculated and the biggest value
is the maximum required.

Referring to Fig. 6.8 f, the maximum bending moment occurs at ¢
when a load P is at c. This is because the bending moment diagram for a
series of concentrated loads consists of a number of straight lines intersect-
ing at the positions of the loads. It can be proved that the load P gives the
required position of the loads on the beam to cause maximum bending
moment at c if it satisfies the following two conditions :

if P is considered with the loads on the left of the section,

P; P_r

and if it is considered with the loads on the right of the section,

P B
— <

ll lr

Once the position of the loads causing maximum moment at ¢
is known, the value of this moment may be easily calculated from the

ordinates of the influence line shown in Fig. 6.8 e.

6.7 Absolute maximum S.F. and BM. in simple beams

In the methods which have been given for the calculation of maxim-
um shearing force and bending moment due to live load systems it
was assumed that the section at which the maximum shearing force or
moment to be calculated is known. It is often necessary to calculate the
absolute maximum shearing force and moment in the beam. By the
absolute maximum shearing force and moment, it is meant the biggest
value that can occur at any section of the beam under a given live load

system.

The absolute maximum positive shearing force in a simple beam
occurs at the left support, while the absolute maximum negative shearing
force occurs at the right support.
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Fig. 6.9 shows the load positions for various live load systems; single
concentrated load, uniformly distributed load shorter than the span, uni- -
formly distributed load longer than the span and a series of concentrated
loads, to produce absolute maximum positive shearing force. Fig. 6.10
shows the load positions to cause absolute maximum negative shearing
force. These load positions correspond also to the maximum upward reac-
tions at the supports.

The absolute maximum moment occurs at mid span under either a
single concentrated load or a uniformly distributed load. Under a series of
concentrated loads, the section where absolute maximum moment occurs

is not so obvious.

As mentioned before, since the bending moment diagram for a series
of concentrated loads consists of a number of straight lines intersecting at
the positions of the loads, then the absolute maximum moment occurs
under one of the loads. Before calculating the absolute maximum
moment, two questions must be answered; under which load does the
absolute maximum moment occur ? and what is the position of this load
on the span to produce absolute maximum moment ?

The answer to the first question is determined by trial, but the second
is found by the following rule :
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The absolute maximum moment occurs under one of the loads which
are applied to the beam such that the middle of the beam is equidistant
from this load and the resultant of all the loads on the beam.

A special case of importance is when the loading system consists
of two equal concentrated loads. In such a case, the absolute maximum
moment occurs under either of them when it is at a distrance d /4 from the
middle of the beam, where d is the spacing between the two loads. This
is true provided that both loads lie on the span otherwise the absolute
maximum moment occurs at the middle of the beam and its value equals
PL /4.

Example 6.x The simple beam -shown in Fig. 6.11a is subjected to
a uniformly distributed live load of intensity 2t./m. In addition, the
beam carries a uniformly distributed dead load of intensity 1 t./m. Deter-
mine for section ¢ :

(1) the shearing force and bending moment due to dead load.

(2) the maximum positive and maximum. negative shearing . force.

and also the maximum moment due to live load..

(3) the extreme values for the shearing force and moment.

y (a)
# Le— &4 Mo
I 16 m R
: 025
I.LLGc¢ =1 (b)
—J075
I.L.Mc (¢)
.+..
3
Fig. 6.11
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Solution : The influence lines for the shear and moment at c are

shown in Figs. 6.11 b and c.

o.25><4_0.75><12)__ﬂ4‘

fhic 1 BE G = 1 t.
Q. (due to D.L.) ( 5 5

M, (due to D.L) — 1 X L;—-s- — 2 m.t.

Maximum positive Q  due to L.L. occurs with the load covering part ac
and is equal to :

G 0'25X4=1t.

2

Maximum negative Q_ due to L.L. occurs with the load covering part bc
aud is equal to :

_2X0.75><12 =t

2

Maximum positive M, occurs with the load covering all the span and is
equal to :

Extreme values for Q_ :
—4 4+ 1 =— 3t
= — s s 1ot

Extreme values for M, :
24 m.t.
24 + 48 = 72 m.t.
Example 6.2 A simply supported beam is subjected to the load
system shown in Fig. 6.12 a. Using the influence lines, find the positions

of the loads to cause maximum positive and maximum negative shearing,

force and maximum moments at points ¢ and d. Calculate these values.

Solution : The influence lines for the shear and moment at points ¢
and d are shown in Figs. 6.12b - e.
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Maximum positive Q. may occur with the first load just to the right
of c, but since the first load is light compared to the loads that follow,
there is a possibility that the maximum positive shear may occur with
the second load (3 t.) just to the rightof c. In such a case Q_ is calculated
for both positions and the bigger value is considered.

For 0.5t at c,

D —05x 075 13 x065 |5 x 04532 <03 —5175¢
For 3t. at c,

Q. —3 X 07545 <05+ 2x04—05 X 015=3751

Thus, the maximum positive Q _ occurs with 3 t. just to the right of c and
is equal- to 5.725 t.
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Maximum negative Q _ occurs with 2 t. just to the left of c.
Maximum negative . = — 025 x 2 —0.1 x5 =—10t

It should be noted that with the 2 t. load just to the left of ¢, both the 3 t.
and 0.5 t. loads are off the span.
For maximum positive Q 4 there are two possible positions of the load;
0.5 t. load just to the right of d and 3 t. load just to the right of d. It will
be found by trial that the latter position gives maximum positive Q 4 and
its value is given by :
Maximum positive Q 4 == 0.5 X 3 4 0.3 x 5 + 0.15 x 2

— 04 % 05 = 3.1 .

Maximum negative Q , occurs with 2 t. just to the left of d.

Maximum negative Q4 = — 0.5 x 2 —0.35 X 5 —0.15 x 3
— 0.05 x 0.5 = — 3.225 t.

For maximum positive M_, apply the rule given in section 6.6.
With the 3 t. load at c it will be found that :

3.5/25 > 7/7.5 and  0.52.5 < 10/7.5

Thus, the maximum moment occurs with the load of 3 t. at ¢ and its

value is found from the influence line in Fig. 6.12d.

"Maximum positive M, = 0.5 x 1.125 + 3 x 1.875 + 5 x 1.375

-2 ] = [5/06 m.t

For maximum positive M, it will be found, with the load of 5 t. at
d, that :

8.5/5 > 2/5 and  3.5/5 < 75

Thus, the maximum moment occurs with the load of 5 t. at d and its
value is found from the influence line in Fig. 6.12 e.

Maximum positive My = 0.5 x 1 +3 x 1.5 +5 X 25
SEaee ] o R T

Example 6.3 The simple beam shown in Fig. 6.13 a is subjected to
the given load system. Determine the position of the loads causing absol-
ute maximum moment in the beam and then using the influence lines
calculate its value. Find also the equivalent uniformly distributed live
load longer than the span which will cause the same absolute maximum

bm’\ Aing mament.
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Fig. 6.13

Solution :

Applying the rule given in section 6.7; the absolute maximum moment
occurs at d with the position of the load as shown in Fig. 6.13b. The
influence line for the moment at d is shown in Fig. 6.13 ¢, from which,

Absolute maximum My = 50 X 6.05 = 302.5 m.t.

Under a uniformly distributed load, the absolute maximum moment
occurs at c. Let the intensity of the equivalent uniformly distributed live
load be w, and using the influence line in Fig. 6.13d then,

25 x 6.25
2

M w — 3025

w = 3.872 t./m.
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6.8 Construction of influence lines for overhanging beams

Consider the beam shown in Fig. 6.14a. The influence lines for the

reactions will first be constructed.

o e e S fp A
C . .

Lq L2
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LY, =Jtasy (D)
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Fig. 6.14

As a unit load moves from a to b, the reaction at a is as for a simple
beam. When the load passes b, the reaction at a is negative, i.e. down-
ward. When the load is at ¢, Y, = — 1 X L, [ L;, Hence, the influe-
nce line for the reaction at ais as shown in Fig. 6.14 b. Similarly, as
a unit load moves from a to b, the reaction at b is as for a simple beam.
When the load passes b, the reaction is still upward. When the load is
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L, + L : : :
atic, W s=il a¢ —L_* 2 Hence, the influence line for Y, is as shown
1

in Fig. 6.14 c.

Consider a section d in the end-supported part of the beam. As the
unit load moves to the right of d, the shearing force is positive and equal
to Y,, and the moment to Y, X a, and as the load moves to 